Science.gov

Sample records for fdopa pet study

  1. Automated image registration for FDOPA PET studies

    NASA Astrophysics Data System (ADS)

    Lin, Kang-Ping; Huang, Sung-Cheng; Yu, Dan-Chu; Melega, William; Barrio, Jorge R.; Phelps, Michael E.

    1996-12-01

    In this study, various image registration methods are investigated for their suitability for registration of L-6-[18F]-fluoro-DOPA (FDOPA) PET images. Five different optimization criteria including sum of absolute difference (SAD), mean square difference (MSD), cross-correlation coefficient (CC), standard deviation of pixel ratio (SDPR), and stochastic sign change (SSC) were implemented and Powell's algorithm was used to optimize the criteria. The optimization criteria were calculated either unidirectionally (i.e. only evaluating the criteria for comparing the resliced image 1 with the original image 2) or bidirectionally (i.e. averaging the criteria for comparing the resliced image 1 with the original image 2 and those for the sliced image 2 with the original image 1). Monkey FDOPA images taken at various known orientations were used to evaluate the accuracy of different methods. A set of human FDOPA dynamic images was used to investigate the ability of the methods for correcting subject movement. It was found that a large improvement in performance resulted when bidirectional rather than unidirectional criteria were used. Overall, the SAD, MSD and SDPR methods were found to be comparable in performance and were suitable for registering FDOPA images. The MSD method gave more adequate results for frame-to-frame image registration for correcting subject movement during a dynamic FDOPA study. The utility of the registration method is further demonstrated by registering FDOPA images in monkeys before and after amphetamine injection to reveal more clearly the changes in spatial distribution of FDOPA due to the drug intervention.

  2. Striatal FDOPA uptake and cognition in advanced non-demented Parkinson's disease: a clinical and FDOPA-PET study.

    PubMed

    van Beilen, Marije; Portman, Axel T; Kiers, Henk A L; Maguire, Ralph P; Kaasinen, Valtteri; Koning, Marthe; Pruim, Jan; Leenders, Klaus L

    2008-01-01

    This study sought to determine the nature of the relationship between cognition and striatal dopaminergic functioning in 28 patients with advanced Parkinson's disease (PD) using fluorodopa Positron emission tomography (FDOPA-PET) and neuropsychological test scores. Mental flexibility was related to putamen activity while mental organization (executive memory and fluency) was related to caudate FDOPA uptake. Interestingly, the caudate may be more important in the mental components of executive functioning, while the putamen may be more important in the motor components of executive functioning.

  3. Antidepressant response to aripiprazole augmentation associated with enhanced FDOPA utilization in striatum: a preliminary PET study

    PubMed Central

    Conway, Charles R.; Chibnall, John T.; Cumming, Paul; Mintun, Mark A.; Gebara, Marie Anne I.; Perantie, Dana C.; Price, Joseph L.; Cornell, Martha E.; McConathy, Jonathan E.; Gangwani, Sunil; Sheline, Yvette I.

    2014-01-01

    Several double blind, prospective trials have demonstrated an antidepressant augmentation efficacy of aripiprazole in depressed patients unresponsive to standard antidepressant therapy. Although aripiprazole is now widely used for this indication, and much is known about its receptor-binding properties, the mechanism of its antidepressant augmentation remains ill-defined. In vivo animal studies and in vitro human studies using cloned dopamine dopamine D2 receptors suggest aripiprazole is a partial dopamine agonist; in this preliminary neuroimaging trial, we hypothesized that aripiprazole’s antidepressant augmentation efficacy arises from dopamine partial agonist activity. To test this, we assessed the effects of aripiprazole augmentation on the cerebral utilization of 6-[18F]-fluoro-3,4-dihydroxy-L-phenylalanine (FDOPA) using positron emission tomography (PET). Fourteen depressed patients, who had failed 8 weeks of antidepressant therapy with selective serotonin reuptake inhibitors, underwent FDOPA PET scans before and after aripiprazole augmentation; eleven responded to augmentation. Whole brain, voxel-wise comparisons of pre- and post-aripiprazole scans revealed increased FDOPA trapping in the right medial caudate of augmentation responders. An exploratory analysis of depressive symptoms revealed that responders experienced large improvements only in putatively dopaminergic symptoms of lassitude and inability to feel. These preliminary findings suggest that augmentation of antidepressant response by aripiprazole may be associated with potentiation of dopaminergic activity. PMID:24468015

  4. [¹⁸F]FDOPA uptake in the raphe nuclei complex reflects serotonin transporter availability. A combined [¹⁸F]FDOPA and [¹¹C]DASB PET study in Parkinson's disease.

    PubMed

    Pavese, N; Simpson, B S; Metta, V; Ramlackhansingh, A; Chaudhuri, K Ray; Brooks, D J

    2012-01-16

    Brain uptake of [(18)F]FDOPA, measured with PET, reflects the activity of aromatic amino acid decarboxylase, an enzyme largely expressed in monoaminergic nerve terminals. This enzyme catalyzes a number of decarboxylation reactions including conversion of l-dopa into dopamine and 5-hydroxytryptophan into serotonin. For more than 20years [(18)F]FDOPA PET has been used to assess dopaminergic nigrostriatal dysfunction in patients with Parkinson's disease (PD). More recently, however, [(18)F]FDOPA PET has also been employed as a marker of serotoninergic and noradrenergic function in PD patients. In this study, we provide further evidence in support of the view that [(18)F]FDOPA PET can be used to evaluate the distribution and the function of serotoninergic systems in the brain. Eighteen patients with PD were investigated with both [(18)F]FDOPA and [(11)C]DASB PET, the latter being a marker of serotonin transport (SERT) availability. We then assessed the relationship between measurements of the two tracers within brain serotoninergic structures. [(18)F]FDOPA uptake in the median raphe nuclei complex of PD patients was significantly correlated with SERT availability in the same structure. Trends towards significant correlations between [(18)F]FDOPA Ki values and [(11)C]DASB binding values were also observed in the hypothalamus and the anterior cingulate cortex, suggesting a serotoninergic contribution to [(18)F]FDOPA uptake in these regions. Conversely, no correlations were found in brain structures with mixed dopaminergic, serotoninergic and noradrenergic innervations, or with predominant dopaminergic innervation. These findings provide evidence that [(18)F]FDOPA PET represents a valid marker of raphe serotoninergic function in PD and supports previous studies where [(18)F]FDOPA PET has been used to assess serotoninergic function in PD.

  5. Biopsy validation of 18F-DOPA PET and biodistribution in gliomas for neurosurgical planning and radiotherapy target delineation: results of a prospective pilot study

    PubMed Central

    Pafundi, Deanna H.; Laack, Nadia N.; Youland, Ryan S.; Parney, Ian F.; Lowe, Val J.; Giannini, Caterina; Kemp, Brad J.; Grams, Michael P.; Morris, Jonathan M.; Hoover, Jason M.; Hu, Leland S.; Sarkaria, Jann N.; Brinkmann, Debra H.

    2013-01-01

    Background Delineation of glioma extent for surgical or radiotherapy planning is routinely based on MRI. There is increasing awareness that contrast enhancement on T1-weighted images (T1-CE) may not reflect the entire extent of disease. The amino acid tracer 18F-DOPA (3,4-dihydroxy-6-[18F] fluoro-l-phenylalanine) has a high tumor-to-background signal and high sensitivity for glioma imaging. This study compares 18F-DOPA PET against conventional MRI for neurosurgical biopsy targeting, resection planning, and radiotherapy target volume delineation. Methods Conventional MR and 18F-DOPA PET/CT images were acquired in 10 patients with suspected malignant brain tumors. One to 3 biopsy locations per patient were chosen in regions of concordant and discordant 18F-DOPA uptake and MR contrast enhancement. Histopathology was reviewed on 23 biopsies. 18F-DOPA PET was quantified using standardized uptake values (SUV) and tumor-to-normal hemispheric tissue (T/N) ratios. Results Pathologic review confirmed glioma in 22 of 23 biopsy specimens. Thirteen of 16 high-grade biopsy specimens were obtained from regions of elevated 18F-DOPA uptake, while T1-CE was present in only 6 of those 16 samples. Optimal 18F-DOPA PET thresholds corresponding to high-grade disease based on histopathology were calculated as T/N > 2.0. In every patient, 18F-DOPA uptake regions with T/N > 2.0 extended beyond T1-CE up to a maximum of 3.5 cm. SUV was found to correlate with grade and cellularity. Conclusions 18F-DOPA PET SUVmax may more accurately identify regions of higher-grade/higher-density disease in patients with astrocytomas and will have utility in guiding stereotactic biopsy selection. Using SUV-based thresholds to define high-grade portions of disease may be valuable in delineating radiotherapy boost volumes. PMID:23460322

  6. Acute and sustained effects of methylphenidate on cognition and presynaptic dopamine metabolism: an [18F]FDOPA PET study.

    PubMed

    Schabram, Ina; Henkel, Karsten; Mohammadkhani Shali, Siamak; Dietrich, Claudia; Schmaljohann, Jörn; Winz, Oliver; Prinz, Susanne; Rademacher, Lena; Neumaier, Bernd; Felzen, Marc; Kumakura, Yoshitaka; Cumming, Paul; Mottaghy, Felix M; Gründer, Gerhard; Vernaleken, Ingo

    2014-10-29

    Methylphenidate (MPH) inhibits the reuptake of dopamine and noradrenaline. PET studies with MPH challenge show increased competition at postsynaptic D2/3-receptors, thus indirectly revealing presynaptic dopamine release. We used [(18)F]fluorodopamine ([(18)F]FDOPA)-PET in conjunction with the inlet-outlet model (IOM) of Kumakura et al. (2007) to investigate acute and long-term changes in dopamine synthesis capacity and turnover in nigrostriatal fibers of healthy subjects with MPH challenge. Twenty healthy human females underwent two dynamic [(18)F]FDOPA PET scans (124 min; slow bolus-injection; arterial blood sampling), with one scan in untreated baseline condition and the other after MPH administration (0.5 mg/kg, p.o.), in randomized order. Subjects underwent cognitive testing at each PET session. Time activity curves were obtained for ventral putamen and caudate and were analyzed according to the IOM to obtain the regional net-uptake of [(18)F]FDOPA (K; dopamine synthesis capacity) as well as the [(18)F]fluorodopamine washout rate (kloss, index of dopamine turnover). MPH substantially decreased kloss in putamen (-22%; p = 0.003). In the reversed treatment order group (MPH/no drug), K was increased by 18% at no drug follow-up. The magnitude of K at the no drug baseline correlated with cognitive parameters. Furthermore, individual kloss changes correlated with altered cognitive performance under MPH. [(18)F]FDOPA PET in combination with the IOM detects an MPH-evoked decrease in striatal dopamine turnover, in accordance with the known acute pharmacodynamics of MPH. Furthermore, the scan-ordering effect on K suggested that a single MPH challenge persistently increased striatal dopamine synthesis capacity. Attenuation of dopamine turnover by MPH is linked to enhanced cognitive performance in healthy females.

  7. Contribution of FDOPA PET to radiotherapy planning for advanced glioma

    NASA Astrophysics Data System (ADS)

    Dowson, Nicholas; Fay, Michael; Thomas, Paul; Jeffree, Rosalind; McDowall, Robert; Winter, Craig; Coulthard, Alan; Smith, Jye; Gal, Yaniv; Bourgeat, Pierrick; Salvado, Olivier; Crozier, Stuart; Rose, Stephen

    2014-03-01

    Despite radical treatment with surgery, radiotherapy and chemotherapy, advanced gliomas recur within months. Geographic misses in radiotherapy planning may play a role in this seemingly ineluctable recurrence. Planning is typically performed on post-contrast MRIs, which are known to underreport tumour volume relative to FDOPA PET scans. FDOPA PET fused with contrast enhanced MRI has demonstrated greater sensitivity and specificity than MRI alone. One sign of potential misses would be differences between gross target volumes (GTVs) defined using MRI alone and when fused with PET. This work examined whether such a discrepancy may occur. Materials and Methods: For six patients, a 75 minute PET scan using 3,4-dihydroxy-6-18F-fluoro-L-phynel-alanine (18F-FDOPA) was taken within 2 days of gadolinium enhanced MRI scans. In addition to standard radiotherapy planning by an experienced radiotherapy oncologist, a second gross target volume (GTV) was defined by an experienced nuclear medicine specialist for fused PET and MRI, while blinded to the radiotherapy plans. The volumes from standard radiotherapy planning were compared to the PET defined GTV. Results: The comparison indicated radiotherapy planning would change in several cases if FDOPA PET data was available. PET-defined contours were external to 95% prescribed dose for several patients. However, due to the radiotherapy margins, the discrepancies were relatively small in size and all received a dose of 50 Gray or more. Conclusions: Given the limited size of the discrepancies it is uncertain that geographic misses played a major role in patient outcome. Even so, the existence of discrepancies indicates that FDOPA PET could assist in better defining margins when planning radiotherapy for advanced glioma, which could be important for highly conformal radiotherapy plans.

  8. Presynaptic Dopamine Capacity in Patients with Treatment-Resistant Schizophrenia Taking Clozapine: An [(18)F]DOPA PET Study.

    PubMed

    Kim, Euitae; Howes, Oliver D; Veronese, Mattia; Beck, Katherine; Seo, Seongho; Park, Jin Woo; Lee, Jae Sung; Lee, Yun-Sang; Kwon, Jun Soo

    2017-03-01

    Some patients with schizophrenia show poor response to first-line antipsychotic treatments and this is termed treatment-resistant schizophrenia. The differential response to first-line antipsychotic drugs may reflect a different underlying neurobiology. Indeed, a previous study found dopamine synthesis capacity was significantly lower in patients with treatment-resistant schizophrenia. However, in this study, the treatment-resistant patients were highly symptomatic, whereas the responsive patients showed no or minimal symptoms. The study could not distinguish whether this was a trait effect or reflected the difference in symptom levels. Thus, we aimed to test whether dopaminergic function is altered in patients with a history of treatment resistance to first-line drugs relative to treatment responders when both groups are matched for symptom severity levels by recruiting treatment-resistant patients currently showed low symptom severity with the clozapine treatment. Healthy controls (n=12), patients treated with clozapine (n=12) who had not responded to first-line antipsychotics, and patients who had responded to first-line antipsychotics (n=12) were recruited. Participants were matched for age and sex and symptomatic severity level in patient groups. Participants' dopamine synthesis capacity was measured by using [(18)F]DOPA PET. We found that patients treated with clozapine show lower dopamine synthesis capacity than patients who have responded to first-line treatment (Cohen's d=0.9191 (whole striatum), 0.7781 (associative striatum), 1.0344 (limbic striatum), and 1.0189 (sensorimotor striatum) in line with the hypothesis that the dopaminergic function is linked to treatment response. This suggests that a different neurobiology may underlie treatment-resistant schizophrenia and that dopamine synthesis capacity may be a useful biomarker to predict treatment responsiveness.

  9. Sensitivity of kinetic macro parameters to changes in dopamine synthesis, storage, and metabolism: a simulation study for [¹⁸F]FDOPA PET by a model with detailed dopamine pathway.

    PubMed

    Matsubara, Keisuke; Watabe, Hiroshi; Kumakura, Yoshitaka; Hayashi, Takuya; Endres, Christopher J; Minato, Kotaro; Iida, Hidehiro

    2011-08-01

    Quantitative interpretation of brain [¹⁸F]FDOPA PET data has been made possible by several kinetic modeling approaches, which are based on different assumptions about complex [¹⁸F]FDOPA metabolic pathways in brain tissue. Simple kinetic macro parameters are often utilized to quantitatively evaluate metabolic and physiological processes of interest, which may include DDC activity, vesicular storage, and catabolism from (18) F-labeled dopamine to DOPAC and HVA. A macro parameter most sensitive to the changes of these processes would be potentially beneficial to identify impaired processes in a neurodegenerative disorder such as Parkinson's disease. The purpose of this study is a systematic comparison of several [¹⁸F]FDOPA macro parameters in terms of sensitivities to process-specific changes in simulated time-activity curve (TAC) data of [¹⁸F]FDOPA PET. We introduced a multiple-compartment kinetic model to simulate PET TACs with physiological changes in the dopamine pathway. TACs in the alteration of dopamine synthesis, storage, and metabolism were simulated with a plasma input function obtained by a non-human primate [¹⁸F]FDOPA PET study. Kinetic macro parameters were calculated using three conventional linear approaches (Gjedde-Patlak, Logan, and Kumakura methods). For simulated changes in dopamine storage and metabolism, the slow clearance rate (k(loss) ) as calculated by the Kumakura method showed the highest sensitivity to these changes. Although k(loss) performed well at typical ROI noise levels, there was large bias at high noise level. In contrast, for simulated changes in DDC activity it was found that K(i) and V(T), estimated by Gjedde-Patlak and Logan method respectively, have better performance than k(loss).

  10. The sensitivity and specificity of F-DOPA PET in a movement disorder clinic

    PubMed Central

    Ibrahim, Nevein; Kusmirek, Joanna; Struck, Aaron F; Floberg, John M; Perlman, Scott B; Gallagher, Catherine; Hall, Lance T

    2016-01-01

    Idiopathic Parkinson’s disease (PD) is the second most common neurodegenerative disorder. Early PD may present a diagnostic challenge with broad differential diagnoses that are not associated with nigral degeneration or striatal dopamine deficiency. Therefore, the early clinical diagnosis alone may not be accurate and this reinforces the importance of functional imaging targeting the pathophysiology of the disease process. 18F-DOPA L-6-[18F] fluoro-3,4-dihydroxyphenylalnine (18F-DOPA) is a positron emission tomography (PET) agent that measures the uptake of dopamine precursors for assessment of presynaptic dopaminergic integrity and has been shown to accurately reflect the monoaminergic disturbances in PD. In this study, we aim to illustrate our local experience to determine the accuracy of 18F-DOPA PET for diagnosis of PD. We studied a total of 27 patients. A retrospective analysis was carried out for all patients that underwent 18F-DOPA PET brain scan for motor symptoms suspicious for PD between 2001-2008. Both qualitative and semi-quantitative analyses of the scans were performed. The patient’s medical records were then assessed for length of follow-up, response to levodopa, clinical course of illness, and laterality of symptoms at time of 18F-DOPA PET. The eventual diagnosis by the referring neurologist, movement disorder specialist, was used as the reference standard for further analysis. Of the 28 scans, we found that one was a false negative, 20 were true positives, and 7 were true negatives. The resultant values are Sensitivity 95.4% (95% CI: 100%-75.3%), Specificity 100% (95% CI: 100%-59.0%), PPV 100% (95% CI 100%-80.7%), and NPV 87.5% (95% CI: 99.5%-50.5%). PMID:27069770

  11. Functional characterization of non-metastatic paraganglioma and pheochromocytoma by 18F-FDOPA PET: focus on missed lesions

    PubMed Central

    Gabriel, Sophie; Blanchet, Elise M; Sebag, Frédéric; Chen, Clara C; Fakhry, Nicolas; Deveze, Arnaud; Barlier, Anne; Morange, Isabelle; Pacak, Karel; Taïeb, David

    2012-01-01

    SUMMARY Aims and methods To evaluate the clinical value of 18F-fluorodihydroxyphenylalanine (18F-FDOPA) PET in relation to tumour localization and the patient’s genetic status in a large series of pheochromocytoma/paraganglioma (PHEO/PGL) patients and to discuss in detail false-negative results. A retrospective study of PGL patients who were investigated with 18F-FDOPA PET or PET/CT imaging in two academic endocrine tumour centers was conducted (La Timone University Hospital, Marseilles, France and National Institutes of Health (NIH), Bethesda, MD, USA). Results One hundred sixteen patients (39.7% harboring germline mutations in known disease susceptibility genes) were evaluated for a total of 195 PHEO/PGL foci. 18F-FDOPA PET correctly detected 179 lesions (91.8%) in 107 patients (92.2%). Lesion-based sensitivities for parasympathetic PGLs (head, neck, or anterior/middle thoracic ones), PHEOs, and extra-adrenal sympathetic (abdominal or posterior thoracic) PGLs were 98.2% [96.5% for Timone and 100% for NIH], 93.9% [93.8% and 93.9%], and 70.3% [47.1% and 90%], respectively (P<0.001). Sympathetic (adrenal and extra-adrenal) SDHx-related PGLs were at a higher risk for negative 18F-FDOPA PET than non-SDHx-related PGLs (14/24 vs 0/62, respectively, p<0.001). By contrast, the risk of negative 18F-FDOPA PET was lower for parasympathetic PGLs regardless of the genetic background (1/90 in SDHx vs 1/19 in non-SDHx tumours, p= 0.32). 18F-FDOPA PET failed to detect 2 head and neck PGLs (HNPGL), likely due to their small size, while most missed sympathetic PGL were larger and may have exhibited a specific 18F-FDOPA-negative imaging phenotype. 18F-FDG PET detected all the missed sympathetic lesions. Conclusions 18F-FDOPA PET appears to be a very sensitive functional imaging tool for HNPGL regardless of the genetic status of the tumours. Patients with false-negative tumours on 18F-FDOPA PET should be tested for SDHx mutations. PMID:23230826

  12. Lateralisation of striatal function: evidence from 18F-dopa PET in Parkinson's disease

    PubMed Central

    Cheesman, A; Barker, R; Lewis, S; Robbins, T; Owen, A; Brooks, D

    2005-01-01

    Objectives: The aetiology of the cognitive changes seen in Parkinson's disease (PD) is multifactorial but it is likely that a significant contribution arises from the disruption of dopaminergic pathways. This study aimed to investigate the contribution of the dopaminergic system to performance on two executive tasks using 18F-6-fluorodopa positron emission tomography (18F-dopa PET) in PD subjects with early cognitive changes. Methods: 16 non-demented, non-depressed PD subjects were evaluated with the Tower of London (TOL) spatial planning task, a verbal working memory task (VWMT) and 18F-dopa PET, all known to be affected in early PD. Statistical parametric mapping (SPM) localised brain regions in which 18F-dopa uptake covaried with performance scores. Frontal cortical resting glucose metabolism was assessed with 18F-fluoro-2-deoxy-D-glucose (18F-FDG) PET. Results: SPM localised significant covariation between right caudate 18F-dopa uptake (Ki) and TOL scores and between left anterior putamen Ki and VWMT performance. No significant covariation was found between task scores and 18F-dopa Ki values in either limbic or cortical regions. Frontal cortical glucose metabolism was preserved in all cases. Conclusions: These findings support a causative role of striatal dopaminergic depletion in the early impairment of executive functions seen in PD. They suggest that spatial and verbal executive tasks require integrity of the right and left striatum, respectively, and imply that the pattern of cognitive changes manifest by a patient with PD may reflect differential dopamine loss in the two striatal complexes. PMID:16107352

  13. Pre- and post-synaptic dopamine imaging and its relation with frontostriatal cognitive function in Parkinson disease: PET studies with [11C]NNC 112 and [18F]FDOPA.

    PubMed

    Cropley, Vanessa L; Fujita, Masahiro; Bara-Jimenez, William; Brown, Amira K; Zhang, Xiang-Yang; Sangare, Janet; Herscovitch, Peter; Pike, Victor W; Hallett, Mark; Nathan, Pradeep J; Innis, Robert B

    2008-07-15

    Frontostriatal cognitive dysfunction is common in Parkinson disease (PD), but the explanation for its heterogeneous expressions remains unclear. This study examined the dopamine system within the frontostriatal circuitry with positron emission tomography (PET) to investigate pre- and post-synaptic dopamine function in relation to the executive processes in PD. Fifteen non-demented PD patients and 14 healthy controls underwent [(18)F]FDOPA (for dopamine synthesis) and [(11)C]NNC 112 (for D(1) receptors) PET scans and cognitive testing. Parametric images of [(18)F]FDOPA uptake (K(i)) and [(11)C]NNC 112 binding potential (BP(ND)) were calculated using reference tissue models. Group differences in K(i) and BP(ND) were assessed with both volume of interest and statistical parametric mapping, and were correlated with cognitive tests. Measurement of [(18)F]FDOPA uptake in cerebral cortex was questionable because of higher K(i) values in white than adjacent gray matter. These paradoxical results were likely to be caused by violations of the reference tissue model assumption rendering interpretation of cortical [(18)F]FDOPA uptake in PD difficult. We found no regional differences in D(1) receptor density between controls and PD, and no overall differences in frontostriatal performance. Although D(1) receptor density did not relate to frontostriatal cognition, K(i) decreases in the putamen predicted performance on the Wisconsin Card Sorting Test in PD only. These results suggest that striatal dopamine denervation may contribute to some frontostriatal cognitive impairment in moderate stage PD.

  14. Effect of Carbidopa on 18F-FDOPA Uptake in Insulinoma: From Cell Culture to Small-Animal PET Imaging.

    PubMed

    Detour, Julien; Pierre, Alice; Boisson, Fréderic; Kreutter, Guillaume; Lavaux, Thomas; Namer, Izzie Jacques; Kessler, Laurence; Brasse, David; Marchand, Patrice; Imperiale, Alessio

    2017-01-01

    Patient premedication with carbidopa seems to improve the accuracy of 6-(18)F-fluoro-3,4-dihydroxy-l-phenylalanine ((18)F-FDOPA) PET for insulinoma diagnosis. However, the risk of PET false-negative results in the presence of carbidopa is a concern. Consequently, we aimed to evaluate the effect of carbidopa on (18)F-FDOPA uptake in insulinoma β-cells and an insulinoma xenograft model in mice.

  15. Radionecrosis versus disease progression in brain metastasis. Value of (18)F-DOPA PET/CT/MRI.

    PubMed

    Hernández Pinzón, J; Mena, D; Aguilar, M; Biafore, F; Recondo, G; Bastianello, M

    2016-01-01

    The use of (18)F-DOPA PET/CT with magnetic resonance imaging fusion and the use of visual methods and quantitative analysis helps to differentiate between changes post-radiosurgery vs. suspicion of disease progression in a patient with brain metastases from melanoma, thus facilitating taking early surgical action.

  16. Joint factor and kinetic analysis of dynamic FDOPA PET scans of brain cancer patients.

    PubMed

    Dowson, N; Bourgeat, P; Rose, S; Daglish, M; Smith, J; Fay, M; Coulthard, A; Winter, C; MacFarlane, D; Thomas, P; Crozier, S; Salvado, O

    2010-01-01

    Kinetic analysis is an essential tool of Positron Emission Tomography image analysis. However it requires a pure tissue time activity curve (TAC) in order to calculate the system parameters. Pure tissue TACs are particularly difficult to obtain in the brain as the low resolution of PET means almost all voxels are a mixture of tissues. Factor analysis explicitly accounts for mixing but is an underdetermined problem that can give arbitrary results. A joint factor and kinetic analysis is proposed whereby factor analysis explicitly accounts for mixing of tissues. Hence, more meaningful parameters are obtained by the kinetic models, which also ensure a less ambiguous solution to the factor analysis. The method was tested using a cylindrical phantom and the 18F-DOPA data of a brain cancer patient.

  17. Statistical parametric mapping with 18F-dopa PET shows bilaterally reduced striatal and nigral dopaminergic function in early Parkinson's disease

    PubMed Central

    Ito, K; Morrish, P; Rakshi, J; Uema, T; Ashburner, J; Bailey, D; Friston, K; Brooks, D

    1999-01-01

    OBJECTIVE—To apply statistical parametric mapping to 18F-dopa PET data sets, to examine the regional distribution of changes in dopaminergic metabolism in early asymmetric Parkinson's disease.
METHODS—Thirteen normal volunteers (age 57.7 (SD 16.5) years; four women, nine men ) and six patients (age 50.3 (SD 13.5) years; three women, three men) with asymmetric (right sided) Parkinson's disease were studied. Images from each dynamic dopa PET dataset were aligned and parametric images of 18F-dopa influx (Ki) were created for each subject. The Ki images were transformed into standard stereotactic space. The Ki values of the caudate and putamen on spatially normalised images were compared with the Ki values before normalisation. The application of statistical parametric mapping (SPM) allowed statistical comparison of regional Ki values on a voxel by voxel basis between healthy volunteers and patients with Parkinson's disease.
RESULTS—There was a strong correlation between the Ki values before and after spatial normalisation (r=0.898, p=0.0001). Significant decreases in the Ki values were found for the Parkinson's desease group throughout the entire left putamen (p< 0.001) and focally in the dorsal right putamen (p< 0.001). Decreased Ki values were also shown bilaterally in the substantia nigra (p< 0.01).
CONCLUSION—Using (SPM) and 18F-dopa PET, reductions in both striatal and nigral brain dopaminergic function could be demonstrated in early Parkinson's disease.

 PMID:10329749

  18. Use of [18F]FDOPA-PET for in vivo evaluation of dopaminergic dysfunction in unilaterally 6-OHDA-lesioned rats

    PubMed Central

    2011-01-01

    Background We evaluated the utility of L-3,4-dihydroxy-6-[18F]fluoro-phenylalanine ([18F]FDOPA) positron emission tomography (PET) as a method for assessing the severity of dopaminergic dysfunction in unilaterally 6-hydroxydopamine (6-OHDA)-lesioned rats by comparing it with quantitative biochemical, immunohistochemical, and behavioral measurements. Methods Different doses of 6-OHDA (0, 7, 14, and 28 μg) were unilaterally injected into the right striatum of male Sprague-Dawley rats. Dopaminergic functional activity in the striatum was assessed by [18F]FDOPA-PET, measurement of striatal dopamine (DA) and DA metabolite levels, tyrosine hydroxylase (TH) immunostaining, and methamphetamine-induced rotational testing. Results Accumulation of [18F]FDOPA in the bilateral striatum was observed in rats pretreated with both aromatic L-amino acid decarboxylase and catechol-O-methyltransferase (COMT) inhibitors. Unilateral intrastriatal injection of 6-OHDA produced a significant site-specific reduction in [18F]FDOPA accumulation. The topological distribution pattern of [18F]FDOPA accumulation in the ipsilateral striatum agreed well with the pattern in TH-stained corresponding sections. A significant positive relationship was found between Patlak plot Ki values and striatal levels of DA and its metabolites (r = 0.958). A significant negative correlation was found between both Ki values (r = -0.639) and levels of DA and its metabolites (r = -0.719) and the number of methamphetamine-induced rotations. Conclusions Ki values determined using [18F]FDOPA-PET correlated significantly with the severity of dopaminergic dysfunction. [18F]FDOPA-PET makes it possible to perform longitudinal evaluation of dopaminergic function in 6-OHDA-lesioned rats, which is useful in the development of new drugs and therapies for Parkinson's disease (PD). PMID:22214344

  19. Intra-individual comparison of 18F-FET and 18F-DOPA in PET imaging of recurrent brain tumors

    PubMed Central

    Kratochwil, Clemens; Combs, Stephanie E.; Leotta, Karin; Afshar-Oromieh, Ali; Rieken, Stefan; Debus, Jürgen; Haberkorn, Uwe; Giesel, Frederik L.

    2014-01-01

    Background Both 18F-fluorodihydroxyphenylalanine (18F-DOPA) and 18F-fluoroethyltyrosine (18F-FET) have already been used successfully for imaging of brain tumors. The aim of this study was to evaluate differences between these 2 promising tracers to determine the consequences for imaging protocols and the interpretation of findings. Methods Forty minutes of dynamic PET imaging were performed on 2 consecutive days with both 18F-DOPA and 18F-FET in patients with recurrent low-grade astrocytoma (n = 8) or high-grade glioblastoma (n = 8). Time-activity-curves (TACs), standardized uptake values (SUVs) and compartment modeling of both tracers were analyzed, respectively. Results The TAC of DOPA-PET peaked at 8 minutes p.i. with SUV 5.23 in high-grade gliomas and 10 minutes p.i. with SUV 4.92 in low-grade gliomas. FET-PET peaked at 9 minutes p.i. with SUV 3.17 in high-grade gliomas and 40 minutes p.i. with SUV 3.24 in low-grade gliomas. Neglecting the specific uptake of DOPA into the striatum, the tumor-to-brain and tumor-to-blood ratios were higher for DOPA-PET. Kinetic modeling demonstrated a high flow constant k1 (mL/ccm/min), representing cellular internalization through AS-transporters, for DOPA in both high-grade (k1 = 0.59) and low-grade (k1 = 0.55) tumors, while lower absolute values and a relevant dependency from tumor-grading (high-grade k1 = 0.43; low-grade k1 = 0.33) were observed with FET. Conclusions DOPA-PET demonstrates superior contrast ratios for lesions outside the striatum, but SUVs do not correlate with grading. FET-PET can provide additional information on tumor grading and benefits from lower striatal uptake but presents lower contrast ratios and requires prolonged imaging if histology is not available in advance due to a more variable time-to-peak. PMID:24305717

  20. The role of 18FDG, 18FDOPA PET/CT and 99mTc bone scintigraphy imaging in Erdheim-Chester disease.

    PubMed

    García-Gómez, F J; Acevedo-Báñez, I; Martínez-Castillo, R; Tirado-Hospital, J L; Cuenca-Cuenca, J I; Pachón-Garrudo, V M; Álvarez-Pérez, R M; García-Jiménez, R; Rivas-Infante, E; García-Morillo, J S; Borrego-Dorado, I

    2015-08-01

    Erdheim-Chester disease (ECD) is a rare non-Langerhans cell histiocitosis, characterized by multisystemic xanthogranulomatous infiltration by foamy histiocytes that stain positively for CD68 marker but not express CD1a and S100 proteins. Etiology and pathogenesis are still unknown and only about 500 cases are related in the literature. Multisystemic involvement leads to a wide variety of clinical manifestations that results in a poor prognosis although recent advances in treatment. We present the clinical, nuclear medicine findings and therapeutic aspects of a serie of 6 patients with histopathological diagnosis of ECD, who have undergone both bone scintigraphy (BS) and 18F-fluorodeoxyglucose (18FDG)-PET/CT scans in our institution. A complementary 18F-fluorodopa (18FDOPA)-PET/CT was performed in one case. Three different presentations of the disease were observed in our casuistic: most indolent form was a cutaneous confined disease, presented in only one patient. Multifocal involvement with central nervous system (CNS) preservation was observed in two patients. Most aggressive form consisted in a systemic involvement with CNS infiltration, presented in three patients. In our experience neurological involvement, among one case with isolate pituitary infiltration, was associated with mortality in all cases. 18FDG-PET/CT and BS were particularly useful in despite systemic involvement; locate the site for biopsy and the treatment response evaluation. By our knowledge, 18FDOPA-PET/CT not seems useful in the initial staging of ECD. A baseline 18FDG-PET/CT and BS may help in monitoring the disease and could be considered when patients were incidentally diagnosed and periodically 18FDG-PET/CT must be performed in the follow up to evaluate treatment response.

  1. Postinjection L-phenylalanine increases basal ganglia contrast in PET scans of 6-18F-DOPA

    SciTech Connect

    Doudet, D.J.; McLellan, C.A.; Aigner, T.G.; Wyatt, R.; Adams, H.R.; Miyake, H.; Finn, R.T.; Cohen, R.M. )

    1991-07-01

    The sensitivity of 18F-DOPA positron emission tomography for imaging presynaptic dopamine systems is limited by the amount of specific-to-nonspecific accumulation of radioactivity in brain. In rhesus monkeys, we have been able to increase this ratio by taking advantage of the lag time between 18F-DOPA injection and the formation of its main metabolite, the amino acid 18F-fluoromethoxydopa, the entrance of which into brain is responsible for most of the brain's nonspecific radioactivity. By infusing an unlabeled amino acid, L-phenylalanine, starting 15 min after 18F-DOPA administration, we preferentially blocked the accumulation of 18F-fluoromethoxydopa by preventing its entrance into brain through competition at the large neutral amino acid transport system of the blood-brain barrier. This method appears as reliable as the original and more sensitive, as demonstrated by the comparison of normal and MPTP-treated animals under both conditions.

  2. Combined PET/CT by 18F-FDOPA, 18F-FDA, 18F-FDG, and MRI correlation on a patient with Carney triad.

    PubMed

    Papadakis, Georgios Z; Patronas, Nicholas J; Chen, Clara C; Carney, J Aidan; Stratakis, Constantine A

    2015-01-01

    Carney triad is a rare syndrome involving gastrointestinal stromal tumor, pulmonary chondroma, and extra-adrenal paraganglioma. We present a 21-year-old woman with the complete triad who was evaluated with MRI, F-FDOPA, F-FDA, and F-FDG. F-FDOPA best demonstrated the paraganglioma, whereas hepatic metastases noted by MRI demonstrated increased uptake only by F-FDG.

  3. Differing patterns of striatal sup 18 F-dopa uptake in Parkinson's disease, multiple system atrophy, and progressive supranuclear palsy

    SciTech Connect

    Brooks, D.J.; Ibanez, V.; Sawle, G.V.; Quinn, N.; Lees, A.J.; Mathias, C.J.; Bannister, R.; Marsden, C.D.; Frackowiak, R.S. )

    1990-10-01

    Using positron emission tomography (PET), we studied regional striatal 18F-dopa uptake in 16 patients with L-dopa-responsive Parkinson's disease (PD), 18 patients with multiple system atrophy, and 10 patients with progressive supranuclear palsy. Results were compared with those of 30 age-matched normal volunteers. The patients with PD showed significantly reduced mean uptake of 18F-dopa in the caudate and putamen compared to controls, but while function in the posterior part of the putamen was severely impaired (45% of normal), function in the anterior part of the putamen and in the caudate was relatively spared (62% and 84% of normal). Mean 18F-dopa uptake in the posterior putamen was depressed to similar levels in all patients. Unlike patients with PD, the patients with progressive supranuclear palsy showed equally severe impairment of mean 18F-dopa uptake in the anterior and posterior putamen. Caudate 18F-dopa uptake was also significantly lower in patients with progressive supranuclear palsy than in patients with PD, being depressed to the same level as that in the putamen. Mean 18F-dopa uptake values in the anterior putamen and caudate in patients with multiple system atrophy lay between PD and progressive supranuclear palsy levels. Locomotor disability of individual patients with PD or multiple system atrophy correlated with decline in striatal 18F-dopa uptake, but this was not the case for the patients with progressive supranuclear palsy. We conclude that patients with PD have selective nigral pathological features with relative preservation of the dopaminergic function in the anterior putamen and caudate, whereas there is progressively more extensive nigral involvement in multiple system atrophy and progressive supranuclear palsy.

  4. Complementary PET studies of striatal neuronal function in the differential diagnosis between multiple system atrophy and Parkinson's disease.

    PubMed

    Antonini, A; Leenders, K L; Vontobel, P; Maguire, R P; Missimer, J; Psylla, M; Günther, I

    1997-12-01

    We used PET with the tracers [18F]fluorodeoxyglucose (FDG), [18F]fluorodopa (FDOPA) and [11C]raclopride (RACLO) to study striatal glucose and dopa metabolism, and dopamine D2 receptor binding, respectively, in nine patients with multiple system atrophy. Ten patients with classical Parkinson's disease were investigated with the same three PET tracers' and three separate groups, each of 10 healthy subjects, served as control populations. We found that striatal FDOPA values separated all healthy subjects from patients with parkinsonism but they were not useful in distinguishing multiple system atrophy from Parkinson's disease. Conversely, striatal RACLO as well as FDG values discriminated all multiple system atrophy from Parkinson's disease patients as well as from healthy control subjects. Metabolic and receptor binding decrements in the putamen of multiple system atrophy patients were significantly correlated. Stepwise regression analysis revealed that a linear combination of putamen RACLO and FDOPA values accurately predicted clinical measures of disease severity in the multiple system atrophy group. Our findings suggest that striatal FDG and particularly RACLO are sensitive and effective measures of striatal function and may help characterizing patients with multiple system atrophy. In contrast, FDOPA measurements are accurate in detecting abnormalities of the nigrostriatal dopaminergic system but may not distinguish among different forms of parkinsonism.

  5. Dual time point method for the quantification of irreversible tracer kinetics: A reference tissue approach applied to [(18)F]-FDOPA brain PET.

    PubMed

    Alves, Isadora L; Meles, Sanne K; Willemsen, Antoon Tm; Dierckx, Rudi A; Marques da Silva, Ana M; Leenders, Klaus L; Koole, Michel

    2016-01-01

    The Patlak graphical analysis (PGAREF) for quantification of irreversible tracer binding with a reference tissue model was approximated by a dual time point imaging approach (DTPREF). The DTPREF was applied to 18 [(18)F]-FDOPA brain scans using the occipital cortex as reference region (DTPOCC) and compared to both PGAOCC and striatal-to-occipital ratios (SOR). Pearson correlation analysis and Bland-Altman plots showed an excellent correlation and good agreement between DTPOCC and PGAOCC, while correlations between SOR and PGAOCC were consistently lower. Linear discriminant analysis (LDA) demonstrated a similar performance for all methods in differentiating patients with Parkinson's disease (PD) from healthy controls (HC). Specifically for [(18)F]-FDOPA brain imaging, these findings validate DTPOCC as an approximation for PGAOCC, providing the same quantitative information while reducing the acquisition time to two short static scans. For PD patients, this approach can greatly improve patient comfort while reducing motion artifacts and increasing image quality. In general, DTPREF can improve the clinical applicability of tracers with irreversible binding characteristics when a reference tissue is available.

  6. FDOPA Patterns in Adrenal Glands: A Pictorial Essay.

    PubMed

    Moreau, Aurélie; Giraudet, Anne Laure; Kryza, David; Borson-Chazot, Françoise; Bournaud-Salinas, Claire; Mognetti, Thomas; Lifante, Jean-Christophe; Combemale, Patrick; Giammarile, Francesco; Houzard, Claire

    2017-05-01

    F-FDOPA is a well-established tool to explore pheochromocytomas. It tends to replace I-MIBG scan in metastatic pheochromocytomas, multiple endocrine neoplasia type 2-related tumors, succinate dehydrogenase [ubiquinone] iron-sulfur subunit-negative tumors, and succinate dehydrogenase[ZERO WIDTH SPACE]-positive lesions. To our knowledge, no study has characterized physiological and pathological adrenal glands with F-FDOPA from a quantitative point of view. We report the features of different normal and pathological adrenal glands with F-FDOPA. Within our series, only pheochromocytomas present a significantly increased uptake reflecting the high specificity of this tracer. Tumors such as adenomas or myelolipomas present no F-FDOPA significant accumulation. Interestingly, adrenal gland hyperplasia and solitary glands do not demonstrate compensatory uptake.

  7. PET studies in epilepsy

    PubMed Central

    Sarikaya, Ismet

    2015-01-01

    Various PET studies, such as measurements of glucose, serotonin and oxygen metabolism, cerebral blood flow and receptor bindings are availabe for epilepsy. 18Fluoro-2-deoxyglucose (18F-FDG) PET imaging of brain glucose metabolism is a well established and widely available technique. Studies have demonstrated that the sensitivity of interictal FDG-PET is higher than interictal SPECT and similar to ictal SPECT for the lateralization and localization of epileptogenic foci in presurgical patients refractory to medical treatments who have noncontributory EEG and MRI. In addition to localizing epileptogenic focus, FDG-PET provide additional important information on the functional status of the rest of the brain. The main limitation of interictal FDG-PET is that it cannot precisely define the surgical margin as the area of hypometabolism usually extends beyond the epileptogenic zone. Various neurotransmitters (GABA, glutamate, opiates, serotonin, dopamine, acethylcholine, and adenosine) and receptor subtypes are involved in epilepsy. PET receptor imaging studies performed in limited centers help to understand the role of neurotransmitters in epileptogenesis, identify epileptic foci and investigate new treatment approaches. PET receptor imaging studies have demonstrated reduced 11C-flumazenil (GABAA-cBDZ) and 18F-MPPF (5-HT1A serotonin) and increased 11C-cerfentanil (mu opiate) and 11C-MeNTI (delta opiate) bindings in the area of seizure. 11C-flumazenil has been reported to be more sensitive than FDG-PET for identifying epileptic foci. The area of abnormality on GABAAcBDZ and opiate receptor images is usually smaller and more circumscribed than the area of hypometabolism on FDG images. Studies have demonstrated that 11C-alpha-methyl-L-tryptophan PET (to study synthesis of serotonin) can detect the epileptic focus within malformations of cortical development and helps in differentiating epileptogenic from non-epileptogenic tubers in patients with tuberous sclerosis complex

  8. PET studies in epilepsy.

    PubMed

    Sarikaya, Ismet

    2015-01-01

    Various PET studies, such as measurements of glucose, serotonin and oxygen metabolism, cerebral blood flow and receptor bindings are availabe for epilepsy. (18)Fluoro-2-deoxyglucose ((18)F-FDG) PET imaging of brain glucose metabolism is a well established and widely available technique. Studies have demonstrated that the sensitivity of interictal FDG-PET is higher than interictal SPECT and similar to ictal SPECT for the lateralization and localization of epileptogenic foci in presurgical patients refractory to medical treatments who have noncontributory EEG and MRI. In addition to localizing epileptogenic focus, FDG-PET provide additional important information on the functional status of the rest of the brain. The main limitation of interictal FDG-PET is that it cannot precisely define the surgical margin as the area of hypometabolism usually extends beyond the epileptogenic zone. Various neurotransmitters (GABA, glutamate, opiates, serotonin, dopamine, acethylcholine, and adenosine) and receptor subtypes are involved in epilepsy. PET receptor imaging studies performed in limited centers help to understand the role of neurotransmitters in epileptogenesis, identify epileptic foci and investigate new treatment approaches. PET receptor imaging studies have demonstrated reduced (11)C-flumazenil (GABAA-cBDZ) and (18)F-MPPF (5-HT1A serotonin) and increased (11)C-cerfentanil (mu opiate) and (11)C-MeNTI (delta opiate) bindings in the area of seizure. (11)C-flumazenil has been reported to be more sensitive than FDG-PET for identifying epileptic foci. The area of abnormality on GABAAcBDZ and opiate receptor images is usually smaller and more circumscribed than the area of hypometabolism on FDG images. Studies have demonstrated that (11)C-alpha-methyl-L-tryptophan PET (to study synthesis of serotonin) can detect the epileptic focus within malformations of cortical development and helps in differentiating epileptogenic from non-epileptogenic tubers in patients with tuberous

  9. (18)F-DOPA PET/CT for assessment of response to induction chemotherapy in a child with high-risk neuroblastoma.

    PubMed

    Piccardo, Arnoldo; Lopci, Egesta; Foppiani, Luca; Morana, Giovanni; Conte, Massimo

    2014-03-01

    Functional imaging plays a crucial role in the assessment of neuroblastoma. The evaluation of response to induction chemotherapy is a cornerstone in scheduling proper treatment management in patients affected by high-risk neuroblastoma. (123)I-metaiodobenzylguanidine has been recognized as the radiopharmaceutical of choice in neuroblastoma assessment. To date, the clinical role of PET/CT in pediatric malignancy is not well established.(18)F-DOPA-PET/CT has been recently used in neuroblastoma, and compared with (123)I-MIBG-scan. Scant new data are available about the role of this tool in the evaluation of treatment response after induction chemotherapy. We investigate the role of (18)F-DOPA-PET/CT in characterizing the response to induction chemotherapy in a child affected by high-risk-neuroblastoma, in whom the rare association of (123)I-MIBG-negative primary tumor and MIBG-positive bone marrow metastases was observed.

  10. Equivalent dose rate at 1m of patients with known or suspected neuroendocrine tumor exiting a nuclear medicine department after (68)Ga-DOTATOC, (18)F-FDOPA or (18)F-FDG PET/CT, or (111)In-pentetreotide or (123)I-mIBG SPECT/CT.

    PubMed

    Zhang-Yin, Jules; Dirand, Anne-Sophie; Sasanelli, Myriam; Corrégé, Gwenaelle; Peudon, Aude; Kiffel, Thierry; Nataf, Valérie; Clerc, Jérôme; Montravers, Françoise; Talbot, Jean-Noël

    2017-02-16

    (123)I-mIBG and (111)In-pentetrotide SPECT have been used for functional imaging of neuroendocrine tumors (NET) for the last two decades. More recently, PET/CT imaging with (18)F-FDG, (18)F-FDOPA and (68)Ga somatostatin-receptor ligands in NETs has been expanding. No direct measurements of the dose rate from NET patients exiting the nuclear medicine department could be found in the literature after PET/CT with (18)F-FDOPA or (68)Ga-DOTATOC, a somatostatin analogue. Methods: We measured the dose rates from NET patients undergoing PET/CT or SPECT/CT in our centers. A total of 103 paired measurements of equivalent dose rate at 1m of the patient (EDR-1m) were performed in 98 patients on leaving the department. The detector was facing the sternum or the urinary bladder, at a distance of 1 meter from and right in front of the patient. The practice for exiting the department differed according to whether the patient was referred to PET/CT or to SPECT/CT. PET/CT patients were discharged after imaging. Results: The median administered activity was 122 MBq in 53 (68)Ga-DOTATOC PET/CTs, 198 MBq in 15 (18)F-FDOPA PET/CTs and 176 MBq in 13 (18)F-FDG PET/CTs. The corresponding median EDR-1m (in µSv/h) were 4.8, 9.5 and 8.8 respectively facing the sternum, and 5.1, 10.1 and 9.5 respectively facing the bladder. SPECT/CT patients left the department earlier, just after radiopharmaceutical injection. The median administered activity was 170 MBq in 12 (111)In-pentetreotide SPECT/CTs and 186 MBq in 10 (123)I-mIBG SPECT/CTs. The corresponding median EDR-1m (in µSv/h) were 9.4, and 4.9 respectively at the level of the sternum, and 9.3 and 4.7 respectively at the level of the bladder. The EDR-1m was <20 µSv/h in all patients. Thus when exiting the nuclear medicine department, the NET patients injected with (68)Ga-DOTATOC or (123)I mIBG emitted an average EDR-1m roughly half of that of patients injected with other radiopharmaceuticals. This is a complementary argument for replacing

  11. High-Grade Glioma Radiation Therapy Target Volumes and Patterns of Failure Obtained From Magnetic Resonance Imaging and {sup 18}F-FDOPA Positron Emission Tomography Delineations From Multiple Observers

    SciTech Connect

    Kosztyla, Robert; Chan, Elisa K.; Hsu, Fred; Wilson, Don; Ma, Roy; Cheung, Arthur; Zhang, Susan; Moiseenko, Vitali; Benard, Francois; Nichol, Alan

    2013-12-01

    Purpose: The objective of this study was to compare recurrent tumor locations after radiation therapy with pretreatment delineations of high-grade gliomas from magnetic resonance imaging (MRI) and 3,4-dihydroxy-6-[{sup 18}F]fluoro-L-phenylalanine ({sup 18}F-FDOPA) positron emission tomography (PET) using contours delineated by multiple observers. Methods and Materials: Nineteen patients with newly diagnosed high-grade gliomas underwent computed tomography (CT), gadolinium contrast-enhanced MRI, and {sup 18}F-FDOPA PET/CT. The image sets (CT, MRI, and PET/CT) were registered, and 5 observers contoured gross tumor volumes (GTVs) using MRI and PET. Consensus contours were obtained by simultaneous truth and performance level estimation (STAPLE). Interobserver variability was quantified by the percentage of volume overlap. Recurrent tumor locations after radiation therapy were contoured by each observer using CT or MRI. Consensus recurrence contours were obtained with STAPLE. Results: The mean interobserver volume overlap for PET GTVs (42% ± 22%) and MRI GTVs (41% ± 22%) was not significantly different (P=.67). The mean consensus volume was significantly larger for PET GTVs (58.6 ± 52.4 cm{sup 3}) than for MRI GTVs (30.8 ± 26.0 cm{sup 3}, P=.003). More than 95% of the consensus recurrence volume was within the 95% isodose surface for 11 of 12 (92%) cases with recurrent tumor imaging. Ten (91%) of these cases extended beyond the PET GTV, and 9 (82%) were contained within a 2-cm margin on the MRI GTV. One recurrence (8%) was located outside the 95% isodose surface. Conclusions: High-grade glioma contours obtained with {sup 18}F-FDOPA PET had similar interobserver agreement to volumes obtained with MRI. Although PET-based consensus target volumes were larger than MRI-based volumes, treatment planning using PET-based volumes may not have yielded better treatment outcomes, given that all but 1 recurrence extended beyond the PET GTV and most were contained by a 2-cm

  12. Response Assessment in Neuro-Oncology working group and European Association for Neuro-Oncology recommendations for the clinical use of PET imaging in gliomas.

    PubMed

    Albert, Nathalie L; Weller, Michael; Suchorska, Bogdana; Galldiks, Norbert; Soffietti, Riccardo; Kim, Michelle M; la Fougère, Christian; Pope, Whitney; Law, Ian; Arbizu, Javier; Chamberlain, Marc C; Vogelbaum, Michael; Ellingson, Ben M; Tonn, Joerg C

    2016-09-01

    This guideline provides recommendations for the use of PET imaging in gliomas. The review examines established clinical benefit in glioma patients of PET using glucose ((18)F-FDG) and amino acid tracers ((11)C-MET, (18)F-FET, and (18)F-FDOPA). An increasing number of studies have been published on PET imaging in the setting of diagnosis, biopsy, and resection as well radiotherapy planning, treatment monitoring, and response assessment. Recommendations are based on evidence generated from studies which validated PET findings by histology or clinical course. This guideline emphasizes the clinical value of PET imaging with superiority of amino acid PET over glucose PET and provides a framework for the use of PET to assist in the management of patients with gliomas.

  13. Preclinical assessment of dopaminergic system in rats by MicroPET using three positron-emitting radiopharmaceuticals

    NASA Astrophysics Data System (ADS)

    Lara-Camacho, V. M.; Ávila-García, M. C.; Ávila-Rodríguez, M. A.

    2014-11-01

    Different diseases associated with dysfunction of dopaminergic system such as Parkinson, Alzheimer, and Schizophrenia are being widely studied with positron emission tomography (PET) which is a noninvasive method useful to assess the stage of these illnesses. In our facility we have recently implemented the production of [11C ]-DTBZ, [11C ]-RAC, and [18F ]-FDOPA, which are among the most common PET radiopharmaceuticals used in neurology applications to get information about the dopamine pathways. In this study two healthy rats were imaged with each of those radiotracers in order to confirm selective striatum uptake as a proof of principle before to release them for human use.

  14. Preclinical assessment of dopaminergic system in rats by MicroPET using three positron-emitting radiopharmaceuticals

    SciTech Connect

    Lara-Camacho, V. M. Ávila-García, M. C. Ávila-Rodríguez, M. A.

    2014-11-07

    Different diseases associated with dysfunction of dopaminergic system such as Parkinson, Alzheimer, and Schizophrenia are being widely studied with positron emission tomography (PET) which is a noninvasive method useful to assess the stage of these illnesses. In our facility we have recently implemented the production of [{sup 11}C]-DTBZ, [{sup 11}C]-RAC, and [{sup 18}F]-FDOPA, which are among the most common PET radiopharmaceuticals used in neurology applications to get information about the dopamine pathways. In this study two healthy rats were imaged with each of those radiotracers in order to confirm selective striatum uptake as a proof of principle before to release them for human use.

  15. Quantitative analysis of PET studies.

    PubMed

    Weber, Wolfgang A

    2010-09-01

    Quantitative analysis can be included relatively easily in clinical PET-imaging protocols, but in order to obtain meaningful quantitative results one needs to follow a standardized protocol for image acquisition and data analysis. Important factors to consider are the calibration of the PET scanner, the radiotracer uptake time and the approach for definition of regions of interests. Using such standardized acquisition protocols quantitative parameters of tumor metabolism or receptor status can be derived from tracer kinetic analysis and simplified approaches such as calculation of standardized uptake values (SUVs).

  16. PET and SPECT studies in Parkinson's disease.

    PubMed

    Brooks, D J

    1997-04-01

    Positron emission tomography (PET) and single photon emission tomography (SPECT) provide sensitive means for quantifying the loss of nigrostriatal dopaminergic fibres in Parkinson's disease and for detecting the presence of dopaminergic dysfunction in asymptomatic at-risk relatives and patients with isolated tremor. Functional imaging can also be used to follow the rate of disease progression objectively, determine the efficacy of putative neuroprotective agents, and monitor the viability of transplants of fetal tissue. Additionally, in vivo pharmacological changes associated with development of treatment complications (fluctuations, dyskinesias) can be studied. Loss of dopaminergic projections produces profound changes in resting and activated brain metabolism. PET and SPECT activation studies have suggested that the akinesia of Parkinson's disease is associated with failure to activate the supplementary motor and dorsal pre-frontal areas. Activation of these cortical areas is restored towards normal by the use of dopaminergic medication, striatal transplantation with fetal mesencephalic tissue, and pallidotomy. The aim of this chapter is to review the insight which functional imaging has given us into the pathophysiology of parkinsonism.

  17. Detection of preclinical Parkinson's disease with PET

    SciTech Connect

    Brooks, D.J. )

    1991-08-01

    Putamen 18F-dopa uptake of patients with Parkinson's disease (PD) is reduced by at least 35% at onset of symptoms; therefore, positron-emission tomography (PET) can be used to detect preclinical disease in clinically unaffected twins and relatives of patients with PD. Three out of 6 monozygotic and 2 out of 3 dizygotic unaffected PD co-twins have shown reduced putamen 18F-dopa uptake to date. In addition, an intact sibling and a daughter of 1 of 4 siblings with PD both had low putamen 18F-dopa uptake. These preliminary findings suggest there may be a familial component to the etiology of PD. PET can also be used to detect underlying nigral pathology in patients with isolated tremor and patients who become rigid taking dopamine-receptor blocking agents (DRBAs). Patients with familial essential tremor have normal, and those with isolated rest tremor have consistently low, putamen 18F-dopa uptake. Drug-induced parkinsonism is infrequently associated with underlying nigral pathology.

  18. Detection of preclinical Parkinson's disease with PET

    SciTech Connect

    Brooks, D.J. )

    1991-05-01

    Putamen 18F-dopa uptake of patients with Parkinson's disease (PD) is reduced by at least 35% at onset of symptoms; therefore, positron-emission tomography (PET) can be used to detect preclinical disease in clinically unaffected twins and relatives of patients with PD. Three out of 6 monozygotic and 2 out of 3 dizygotic unaffected PD co-twins have shown reduced putamen 18F-dopa uptake to date. In addition, an intact sibling and a daughter of 1 of 4 siblings with PD both had low putamen 18F-dopa uptake. These preliminary findings suggest there may be a familial component to the etiology of PD. PET can also be used to detect underlying nigral pathology in patients with isolated tremor and patients who become rigid taking dopamine-receptor blocking agents (DRBAs). Patients with familial essential tremor have normal, and those with isolated rest tremor have consistently low, putamen 18F-dopa uptake. Drug-induced parkinsonism is infrequently associated with underlying nigral pathology.

  19. Study of LAT1 Expression in Brain Metastases: Towards a Better Understanding of the Results of Positron Emission Tomography Using Amino Acid Tracers

    PubMed Central

    Papin-Michault, Caroline; Bonnetaud, Christelle; Dufour, Maxime; Almairac, Fabien; Coutts, Mickael; Patouraux, Stéphanie; Virolle, Thierry; Darcourt, Jacques; Burel-Vandenbos, Fanny

    2016-01-01

    Positron emission tomography using radiolabeled amino acid (PET-AA) appears to be promising in distinguishing between recurrent tumour and radionecrosis in the follow-up of brain metastasis (BM). The amino acid transporter LAT1 and its cofactor CD98, which are involved in AA uptake, have never been investigated in BM. The aim of our study was to determine and compare the expression of LAT1 and CD98 in BM and in non-tumoral brain tissue (NT). The expression of LAT1 and CD98 were studied by immunohistochemistry in 67 BM, including 18 BM recurrences after radiotherapy, in 53 NT, and in 13 cases of patients with previously irradiated brain tumor and investigated by [18F] FDOPA-PET. LAT1 and CD98 expression were detected in 98.5% and 59.7% of BM respectively and were significantly associated with BM tissue as compared to NT (p<0.001). LAT1 expression in recurrent BM was significantly increased as compared to newly occurring BM. Ten cases investigated by [18F] FDOPA-PET corresponding to recurrent BM displayed significant [18F] FDOPA uptake and LAT1 overexpression whereas three cases corresponding to radionecrosis showed no or low uptake and LAT1 expression. LAT1 expression level and [18F] FDOPA uptake were significantly correlated. In conclusion, we hypothesized that BM may overexpress the AA transporter LAT1. We have shown that LAT1 overexpression was common in BM and was specific for BM as compared to healthy brain. These results could explain the specific BM uptake on PET-AA. PMID:27276226

  20. Adrenal masses of varied etiology: anatomical and molecular imaging features on PET-CT.

    PubMed

    Sharma, Punit; Singh, Harmandeep; Dhull, Varun Singh; Suman KC, Sudhir; Kumar, Abhishek; Bal, Chandrasekhar; Kumar, Rakesh

    2014-03-01

    A wide spectrum of benign and malignant diseases can present as an adrenal mass. Combined PET-CT is useful for evaluation of adrenocortical and adrenomedullary masses. F-FDG has been extensively used as PET radiotracer for this purpose. F-FDOPA PET, Ga-DOTA peptide (Ga-DOTANOC/TATE) PET, and C-HED PET have also been used for imaging of adrenal medullary lesions, whereas C-MTO PET has been used for adrenocortical imaging. We provide a review of imaging characteristics of adrenal gland pathologies on PET-CT using different tracers.

  1. A study of artefacts in simultaneous PET and MR imaging using a prototype MR compatible PET scanner.

    PubMed

    Slates, R B; Farahani, K; Shao, Y; Marsden, P K; Taylor, J; Summers, P E; Williams, S; Beech, J; Cherry, S R

    1999-08-01

    We have assessed the possibility of artefacts that can arise in attempting to perform simultaneous positron emission tomography (PET) and magnetic resonance imaging (MRI) using a small prototype MR compatible PET scanner (McPET). In these experiments, we examine MR images for any major artefacts or loss in image quality due to inhomogeneities in the magnetic field, radiofrequency interference or susceptibility effects caused by operation of the PET system inside the MR scanner. In addition, possible artefacts in the PET images caused by the static and time-varying magnetic fields or radiofrequency interference from the MR system were investigated. Biological tissue and a T2-weighted spin echo sequence were used to examine susceptibility artefacts due to components of the McPET scanner (scintillator, optical fibres) situated in the MR field of view. A range of commonly used MR pulse sequences was studied while acquiring PET data to look for possible artefacts in either the PET or MR images. Other than a small loss in signal-to-noise using gradient echo sequences, there was no significant interaction between the two imaging systems. Simultaneous PET and MR imaging of simple phantoms was also carried out in different MR systems with field strengths ranging from 0.2 to 4.7 T. The results of these studies demonstrate that it is possible to acquire PET and MR images simultaneously, without any significant artefacts or loss in image quality, using our prototype MR compatible PET scanner.

  2. PET IMAGING STUDIES IN DRUG ABUSE RESEARCH.

    SciTech Connect

    Fowler, J.S.; Volkow, N.D.; Ding, Y.S.; Logan, J.; Wang, G.J.

    2001-01-29

    . This will be followed by highlights of PET studies of the acute effects of the psychostimulant drugs cocaine and methylphenidate (ritalin) and studies of the chronic effects of cocaine and of tobacco smoke on the human brain. This chapter concludes with the description of a study which uses brain imaging coupled with a specific pharmacological challenge to address the age-old question of why some people who experiment with drugs become addicted while others do not.

  3. Reconstruction of linear kinetic parameters directly from projection PET data

    NASA Astrophysics Data System (ADS)

    Angelis, G. I.; Tziortzi, A. C.; Tsoumpas, C.

    2011-09-01

    Dynamic Positron Emission Tomography (PET) data provide functional information. Usually, this is measured in the form of pharmacokinetic parameters derived from the temporal response of each region. Recent trends have shown that when pharmacokinetic parameters are estimated directly from the projection data, they are less affected by noise. This work investigates an existing parametric maximum likelihood expectation maximization algorithm applied to [18F]DOPA data using reference-tissue input function. The study reveals how direct reconstruction of pharmacokinetic parameters from the measured data can be performed optimally. It explains how to optimize the speed of the standard iterative algorithm and it compares the results with the existing FBP method. The improvement of the quality of the parametric images preserving quantification suggests the usefulness of direct estimation of the kinetic parameters. This algorithm is freely available within the open-source library STIR 2.1.

  4. Towards optimal imaging with PET: an in silico feasibility study.

    PubMed

    McNamara, A L; Toghyani, M; Gillam, J E; Wu, K; Kuncic, Z

    2014-12-21

    The efficacy of Positron Emission Tomography (PET) imaging relies fundamentally on the ability of the system to accurately identify true coincidence events. With existing systems, this is currently accomplished with an energy acceptance criterion followed by correction techniques to remove suspected false coincidence events. These corrections generally result in signal and contrast loss and thus limit the PET system's ability to achieve optimum image quality. A key property of annihilation radiation is that the photons are polarised with respect to each other. This polarisation correlation offers a potentially powerful discriminator, independent of energy, to accurately identify true events. In this proof of concept study, we investigate how photon polarisation information can be exploited in PET imaging by developing a method to discriminate true coincidences using the polarisation correlation of annihilation pairs. We implement this method using a Geant4 PET simulation of a GE Advance/Discovery LS system and demonstrate the potential advantages of the polarisation coincidence selection method over a standard energy criterion method. Current PET ring detectors are not capable of exploiting the polarisation correlation of the photon pairs. Compton PET systems, however are promising candidates for this application. We demonstrate the feasibility of a two-component Compton camera system in identifying true coincidences with Monte Carlo simulations. Our study demonstrates the potential of improving signal gain using polarisation, particularly for high photon emission rates. We also demonstrate the ability of the Compton camera at exploiting this polarisation correlation in PET.

  5. Towards optimal imaging with PET: an in silico feasibility study

    NASA Astrophysics Data System (ADS)

    McNamara, A. L.; Toghyani, M.; Gillam, J. E.; Wu, K.; Kuncic, Z.

    2014-12-01

    The efficacy of Positron Emission Tomography (PET) imaging relies fundamentally on the ability of the system to accurately identify true coincidence events. With existing systems, this is currently accomplished with an energy acceptance criterion followed by correction techniques to remove suspected false coincidence events. These corrections generally result in signal and contrast loss and thus limit the PET system’s ability to achieve optimum image quality. A key property of annihilation radiation is that the photons are polarised with respect to each other. This polarisation correlation offers a potentially powerful discriminator, independent of energy, to accurately identify true events. In this proof of concept study, we investigate how photon polarisation information can be exploited in PET imaging by developing a method to discriminate true coincidences using the polarisation correlation of annihilation pairs. We implement this method using a Geant4 PET simulation of a GE Advance/Discovery LS system and demonstrate the potential advantages of the polarisation coincidence selection method over a standard energy criterion method. Current PET ring detectors are not capable of exploiting the polarisation correlation of the photon pairs. Compton PET systems, however are promising candidates for this application. We demonstrate the feasibility of a two-component Compton camera system in identifying true coincidences with Monte Carlo simulations. Our study demonstrates the potential of improving signal gain using polarisation, particularly for high photon emission rates. We also demonstrate the ability of the Compton camera at exploiting this polarisation correlation in PET.

  6. Fourier-wavelet restoration in PET/CT brain studies

    NASA Astrophysics Data System (ADS)

    Knešaurek, Karin

    2012-10-01

    Our goal is to improve brain PET imaging through the application of a novel, hybrid Fourier-wavelet (WFT) restoration technique. The major limitation of PET studies is a relatively poor resolution in comparison with MRI and CT imaging and there is a need for improved PET imaging. A GE DLS PET/CT 16 slice system was used to acquire the studies. In order to create restoration filters the point source study was performed. The 6-fillable spheres and 3D Hoffman brain phantom studies were acquired and used to test and optimize the restoration approach. The patient data used in the study were acquired in a 3D PET mode, using the standard clinical protocol. Here, we have implemented Fourier-wavelet regularized restoration. In the Fourier domain, the inverse of modulation transfer function was multiplied by a Butterworth low-pass filter, order n=6 and cut-off frequency f=0.35 cycles/pixel. In addition, wavelet (Daubechies, order 2) noise suppression was applied by “hard threshold”. Hot spheres and 3D Hoffman brain studies showed that the restoration process not only improves resolution and contrast but also improves quantification in 3D PET/CT imaging. The average contrast increase was 19% and the quantification improved in the range 8-20% depending on sphere size. In the restored images, there was no significant increase in noise when compared with the original images. The clinical studies followed brain phantom findings, i.e., the restored images had better contrast and resolution properties, when compared with the original images. The results of the study demonstrate that the quality and quantification of 3D brain 18F FDG PET images can be significantly improved by Fourier-wavelet (WFT) restoration filtering.

  7. Modification of a medical PET scanner for PEPT studies

    NASA Astrophysics Data System (ADS)

    Sadrmomtaz, Alireza; Parker, D. J.; Byars, L. G.

    2007-04-01

    Over the last 20 years, positron emission tomography (PET) has developed as the most powerful functional imaging modality in medicine. Over the same period the University of Birmingham Positron Imaging Centre has applied PET to study engineering processes and developed the alternative technique of positron emission particle tracking (PEPT) in which a single radioactively labelled tracer particle is tracked by detecting simultaneously the pairs of back-to-back photons arising from positron/electron annihilation. Originally PEPT was performed using a pair of multiwire detectors, and more recently using a pair of digital gamma camera heads. In 2002 the Positron Imaging Centre acquired a medical PET scanner, an ECAT 931/08, previously used at Hammersmith Hospital. This scanner has been rebuilt in a flexible geometry for use in PEPT studies. This paper presents initial results from this system. Fast moving tracer particles can be rapidly and accurately located.

  8. Designing and Developing PET-Based Precision Model in Thyroid Carcinoma: The Potential Avenues for a Personalized Clinical Care.

    PubMed

    Basu, Sandip; Parghane, Rahul Vithalrao

    2017-01-01

    This communication enumerates the current uses and potential areas where PET could be clinically utilized for developing "precision medicine" type model in thyroid carcinoma. (1) In routine clinics, PET imaging (with fluorodeoxyglucose [FDG]) is utilized to investigate patients of differentiated thyroid carcinoma (DTC) with high thyroglobulin and negative iodine scintigraphy (TENIS) and in medullary carcinoma thyroid (MCT) when the tumor markers (eg, calcitonin and carcino embryonic antigen [CEA]) are raised postoperatively (PET with FDG, (68)Ga-DOTA-NOC/TATE, FDOPA). Both are examples of management personalization, where PET-computed tomography (CT) has been found substantially useful in detecting sites of metastatic disease and making decision with regard to feasibility and planning of surgery on an individual patient basis. (2) The next important area of management personalization is in patients of TENIS with metastatic disease not amenable to surgery through examining FDG-PET findings in tandem with radio iodine scan and (68)Ga-DOTA-TATE/NOC PET/CT. Heterogeneous behavior of the metastatic lesions is frequently observed clinically: analyzing the findings of three studies aids in sub-segmenting patients into subgroups and thereby deciding upon the best approach (observation with LT4 suppression vs PRRT vs tyrosine kinase inhibitors) that could be individualized in a given case. (3) In metastatic/inoperable MCT, (68)Ga-DOTA-TATE/NOC PET-CT helps in deciding upon feasibility of targeted PRRT in an individual patient and helps in follow-up and response evaluation. (4) Disease prognostification with FDG-PET is evolving both in DTC and MCT, where FDG avidity would indicate an aggressive biology, though the implication of this from treatment viewpoint is unclear at this point. Conversely, a negative FDG-PET in DTC and TENIS would suggest a favorable prognosis in an individual. (5) Iodine-124 PET/CT has the added potential of obtaining lesional dosimetry compared to

  9. A dual-tracer study of extrastriatal 6-[18F]fluoro-m-tyrosine and 6-[18F]-fluoro-L-dopa uptake in Parkinson's disease.

    PubMed

    Li, Clarence T; Palotti, Matthew; Holden, James E; Oh, Jen; Okonkwo, Ozioma; Christian, Bradley T; Bendlin, Barbara B; Buyan-Dent, Laura; Harding, Sandra J; Stone, Charles K; DeJesus, Onofre T; Nickles, Robert J; Gallagher, Catherine L

    2014-08-01

    6-[(18)F]-Fluoro-L-dopa (FDOPA) has been widely used as a biomarker for catecholamine synthesis, storage, and metabolism--its intense uptake in the striatum, and fainter uptake in other brain regions, is correlated with the symptoms and pathophysiology of Parkinson's disease (PD). 6-[(18)F]fluoro-m-tyrosine (FMT), which also targets L-amino acid decarboxylase, has potential advantages over FDOPA as a radiotracer because it does not form catechol-O-methyltransferase (COMT) metabolites. The purpose of the present study was to compare the regional distribution of these radiotracers in the brains of PD patients. Fifteen Parkinson's patients were studied with FMT and FDOPA positron emission tomography (PET) as well as high-resolution structural magnetic resonance imaging (MRI). MRI's were automatically parcellated into neuroanatomical regions of interest (ROIs) in Freesurfer (http://surfer.nmr.mgh.harvard.edu); region-specific uptake rate constants (Kocc) were generated from coregistered PET using a Patlak graphical approach. The essential findings were as follows: (1) regional Kocc were highly correlated between the radiotracers and in agreement with a previous FDOPA studies that used different ROI selection techniques; (2) FMT Kocc were higher in extrastriatal regions of relatively large uptake such as amygdala, pallidum, brainstem, hippocampus, entorhinal cortex, and thalamus, whereas cortical Kocc were similar between radiotracers; (3) while subcortical uptake of both radiotracers was related to disease duration and severity, cortical uptake was not. These results suggest that FMT may have advantages for examining pathologic changes within allocortical loop structures, which may contribute to cognitive and emotional symptoms of PD.

  10. Towards Implementing an MR-based PET Attenuation Correction Method for Neurological Studies on the MR-PET Brain Prototype

    PubMed Central

    Catana, Ciprian; van der Kouwe, Andre; Benner, Thomas; Michel, Christian J.; Hamm, Michael; Fenchel, Matthias; Fischl, Bruce; Rosen, Bruce; Schmand, Matthias; Sorensen, A. Gregory

    2013-01-01

    A number of factors have to be considered for implementing an accurate attenuation correction (AC) in a combined MR-PET scanner. In this work, some of these challenges were investigated and an AC method based entirely on the MR data obtained with a single dedicated sequence was developed and used for neurological studies performed with the MR-PET human brain scanner prototype. Methods The focus was on the bone/air segmentation problem, the bone linear attenuation coefficient selection and the RF coil positioning. The impact of these factors on the PET data quantification was studied in simulations and experimental measurements performed on the combined MR-PET scanner. A novel dual-echo ultra-short echo time (DUTE) MR sequence was proposed for head imaging. Simultaneous MR-PET data were acquired and the PET images reconstructed using the proposed MR-DUTE-based AC method were compared with the PET images reconstructed using a CT-based AC. Results Our data suggest that incorrectly accounting for the bone tissue attenuation can lead to large underestimations (>20%) of the radiotracer concentration in the cortex. Assigning a linear attenuation coefficient of 0.143 or 0.151 cm−1 to bone tissue appears to give the best trade-off between bias and variability in the resulting images. Not identifying the internal air cavities introduces large overestimations (>20%) in adjacent structures. Based on these results, the segmented CT AC method was established as the “silver standard” for the segmented MR-based AC method. Particular to an integrated MR-PET scanner, ignoring the RF coil attenuation can cause large underestimations (i.e. up to 50%) in the reconstructed images. Furthermore, the coil location in the PET field of view has to be accurately known. Good quality bone/air segmentation can be performed using the DUTE data. The PET images obtained using the MR-DUTE- and CT-based AC methods compare favorably in most of the brain structures. Conclusion An MR-DUTE-based AC

  11. 123I-MIBG, 18F-DOPA and 18F-FDG in a patient with MEN2 syndrome and recurrent pheochromocytoma.

    PubMed

    Cuenca-Cuenca, J I; Marín-Oyaga, V A; Borrego-Dorado, I; Navarro-González, E; Martos-Martínez, J M; Vázquez-Albertino, R

    2013-01-01

    Pheochromocytoma is a rare tumor located in the medulla of the adrenal gland that is characterized by high catecholamine synthesis. Surgery is the treatment of choice and is usually curative if appropriately diagnosed and excised. Imaging methods, both morphological and functional, are of great importance in presurgical evaluation. We report the case of a female patient with multiple endocrine neoplasia syndrome type 2, with bilateral adrenalectomy due to two pheochromocytomas and progressive elevation of urinary metanephrine. Magnetic resonance imaging showed a nodular image in the right adrenal fossa. The patient was referred to our unit in order to confirm suspicion of recurrence. Due to the absence of pathological findings in the (123)I-MIBG scintigraphy and high suspicion of recurrence, PET/CT imaging with (18)F-DOPA and (18)F-FDG were performed, and the diagnosis was confirmed.

  12. Reducing between scanner differences in multi-center PET studies.

    PubMed

    Joshi, Aniket; Koeppe, Robert A; Fessler, Jeffrey A

    2009-05-15

    This work is part of the multi-center Alzheimer's Disease Neuroimaging Initiative (ADNI), a large multi-site study of dementia, including patients having mild cognitive impairment (MCI), probable Alzheimer's disease (AD), as well as healthy elderly controls. A major portion of ADNI involves the use of [(18)F]-fluorodeoxyglucose (FDG) with positron emission tomography (PET). The objective of this paper is the reduction of inter-scanner differences in the FDG-PET scans obtained from the 50 participating PET centers having fifteen different scanner models. In spite of a standardized imaging protocol, systematic inter-scanner variability in PET images from various sites is observed primarily due to differences in scanner resolution, reconstruction techniques, and different implementations of scatter and attenuation corrections. Two correction steps were developed by comparison of 3-D Hoffman brain phantom scans with the 'gold standard' digital 3-D Hoffman brain phantom: i) high frequency correction; where a smoothing kernel for each scanner model was estimated to smooth all images to a common resolution and ii) low frequency correction; where smooth affine correction factors were obtained to reduce the attenuation and scatter correction errors. For the phantom data, the high frequency correction reduced the variability by 20%-50% and the low frequency correction further reduced the differences by another 20%-25%. Correction factors obtained from phantom studies were applied to 95 scans from normal control subjects obtained from the participating sites. The high frequency correction reduced differences similar to the phantom studies. However, the low frequency correction did not further reduce differences; hence further refinement of the procedure is necessary.

  13. PET studies of parkinsonian patients treated with autologous adrenal implants.

    PubMed

    Guttman, M; Burns, R S; Martin, W R; Peppard, R F; Adam, M J; Ruth, T J; Allen, G; Parker, R A; Tulipan, N B; Calne, D B

    1989-08-01

    Transplantation of autologous adrenal medulla tissue into the striatum has recently been proposed as a treatment for Parkinson's disease. We report the use of positron emission tomography (PET) to evaluate patients who had adrenal implants placed into the right caudate. 6-[18F] fluoro-L-dopa (6-FD) scans were performed to study the integrity and activity of the implant, and the nigrostriatal dopamine system before and six weeks after transplantation surgery. [68Ga] Gallium-ethylenediaminetetraacetate (Ga) scans were also performed to assess the blood brain barrier. The Ga scans performed on two patients showed increased permeability of the blood brain barrier at the surgical site. 6-FD PET scans in five patients did not show a consistent change in striatal uptake following adrenal medullary implantation after six weeks. Further assessment of implant viability with 6-FD PET scans after longer follow up may provide useful information if the blood-brain barrier becomes re-established with the passage of time.

  14. Usefulness of FDG, MET and FLT-PET Studies for the Management of Human Gliomas

    PubMed Central

    Miyake, Keisuke; Shinomiya, Aya; Okada, Masaki; Hatakeyama, Tetsuhiro; Kawai, Nobuyuki; Tamiya, Takashi

    2012-01-01

    The use of positron imaging agents such as FDG, MET, and FLT is expected to lead the way for novel applications toward efficient malignancy grading and treatment of gliomas. In this study, the usefulness of FDG, MET and FLT-PET images was retrospectively reviewed by comparing their histopathological findings. FDG, MET, and FLT-PET were performed in 27 patients with WHO grade IV, 15 patients with WHO grade III, and 12 patients with WHO grade II during 5.5 years. The resulting PET images were compared by measuring SUVs and T/N ratios (tumor to normal tissue ratios). Although there were no significant differences in FDG-PET, there were significant differences in the T/N ratios in the MET-PET between WHO grades II and IV and in the FLT-PET between the WHO grades III and IV. In glioblastoma patients, the SUVs of the areas depicted by MRI in the MET-PET were different from those SUVs in the FLT-PET. Importantly, the areas with high SUVs in both MET-PET and FLT-PET were also high in Ki-67 index and were histologically highly malignant. PET imaging is a noninvasive modality that is useful in determining a tumor area for removal as well as improving preoperative diagnosis for gliomas. PMID:22577290

  15. 18F-FDG PET/CT and PET/MRI Perform Equally Well in Cancer: Evidence from Studies on More Than 2,300 Patients

    PubMed Central

    Spick, Claudio; Herrmann, Ken; Czernin, Johannes

    2016-01-01

    18F-FDG PET/CT has become the reference standard in oncologic imaging against which the performance of other imaging modalities is measured. The promise of PET/MRI includes multiparametric imaging to further improve diagnosis and phenotyping of cancer. Rather than focusing on these capabilities, many investigators have examined whether 18F-FDG PET combined with mostly anatomic MRI improves cancer staging and restaging. After a description of PET/MRI scanner designs and a discussion of technical and operational issues, we review the available literature to determine whether cancer assessments are improved with PET/MRI. The available data show that PET/MRI is feasible and performs as well as PET/CT in most types of cancer. Diagnostic advantages may be achievable in prostate cancer and in bone metastases, whereas disadvantages exist in lung nodule assessments. We conclude that 18F-FDG PET/MRI and PET/CT provide comparable diagnostic information when MRI is used simply to provide the anatomic framework. Thus, PET/MRI could be used in lieu of PET/CT if this approach becomes economically viable and if reasonable workflows can be established. Future studies should explore the multiparametric potential of MRI. PMID:26742709

  16. PET-based dose delivery verification in proton therapy: a GATE based simulation study of five PET system designs in clinical conditions.

    PubMed

    Robert, Charlotte; Fourrier, Nicolas; Sarrut, David; Stute, Simon; Gueth, Pierre; Grevillot, Loïc; Buvat, Irène

    2013-10-07

    PET is a promising technique for in vivo treatment verification in hadrontherapy. Three main PET geometries dedicated to in-beam treatment monitoring have been proposed in the literature: the dual-head PET geometry, the OpenPET geometry and the slanted-closed ring geometry. The aim of this work is to characterize the performance of two of these dedicated PET detectors in realistic clinical conditions. Several configurations of the dual-head PET and OpenPET systems were simulated using GATE v6.2. For the dual-head configuration, two aperture angles (15° and 45°) were studied. For the OpenPET system, two gaps between rings were investigated (110 and 160 mm). A full-ring PET system was also simulated as a reference. After preliminary evaluation of the sensitivity and spatial resolution using a Derenzo phantom, a real small-field head and neck treatment plan was simulated, with and without introducing patient displacements. No wash-out was taken into account. 3D maps of the annihilation photon locations were deduced from the PET data acquired right after the treatment session (5 min acquisition) using a dedicated OS-EM reconstruction algorithm. Detection sensitivity at the center of the field-of-view (FOV) varied from 5.2% (45° dual-head system) to 7.0% (full-ring PET). The dual-head systems had a more uniform efficiency within the FOV than the OpenPET systems. The spatial resolution strongly depended on the location within the FOV for the ϕ = 45° dual-head system and for the two OpenPET systems. All investigated architectures identified the magnitude of mispositioning introduced in the simulations within a 1.5 mm accuracy. The variability on the estimated mispositionings was less than 2 mm for all PET systems.

  17. PET-based dose delivery verification in proton therapy: a GATE based simulation study of five PET system designs in clinical conditions

    NASA Astrophysics Data System (ADS)

    Robert, Charlotte; Fourrier, Nicolas; Sarrut, David; Stute, Simon; Gueth, Pierre; Grevillot, Loïc; Buvat, Irène

    2013-10-01

    PET is a promising technique for in vivo treatment verification in hadrontherapy. Three main PET geometries dedicated to in-beam treatment monitoring have been proposed in the literature: the dual-head PET geometry, the OpenPET geometry and the slanted-closed ring geometry. The aim of this work is to characterize the performance of two of these dedicated PET detectors in realistic clinical conditions. Several configurations of the dual-head PET and OpenPET systems were simulated using GATE v6.2. For the dual-head configuration, two aperture angles (15° and 45°) were studied. For the OpenPET system, two gaps between rings were investigated (110 and 160 mm). A full-ring PET system was also simulated as a reference. After preliminary evaluation of the sensitivity and spatial resolution using a Derenzo phantom, a real small-field head and neck treatment plan was simulated, with and without introducing patient displacements. No wash-out was taken into account. 3D maps of the annihilation photon locations were deduced from the PET data acquired right after the treatment session (5 min acquisition) using a dedicated OS-EM reconstruction algorithm. Detection sensitivity at the center of the field-of-view (FOV) varied from 5.2% (45° dual-head system) to 7.0% (full-ring PET). The dual-head systems had a more uniform efficiency within the FOV than the OpenPET systems. The spatial resolution strongly depended on the location within the FOV for the ϕ = 45° dual-head system and for the two OpenPET systems. All investigated architectures identified the magnitude of mispositioning introduced in the simulations within a 1.5 mm accuracy. The variability on the estimated mispositionings was less than 2 mm for all PET systems.

  18. Radiotracers for PET and SPECT studies of neurotransmitter systems

    SciTech Connect

    Fowler, J.S.

    1991-01-01

    The study of neurotransmitter systems is one of the major thrusts in emission tomography today. The current generation of Positron Emission Tomography (PET) and Single Photon Emission Computed Tomography (SPECT) radiotracers examines neurotransmitter properties from a number of different perspectives including their pre and post synaptic sites and the activity of the enzymes which regulate their concentration. Although the dopamine system has been the most extensively investigated, other neurotransmitter systems including the acetylcholine muscarine, serotonin, benzodiazepine, opiate, NMDA and others are also under intensive development. Enzymes involved in the synthesis and regulation of neurotransmitter concentration, for example monoamine oxidase and amino acid decarboxylase has also been probed in vivo. Medical applications range from the study of normal function and the characterization of neurotransmitter activity in neurological and psychiatric diseases and in heart disease and cancer to the study of the binding of therapeutic drugs and substances of abuse. This chapter will provide an overview of the current generation of radiotracers for PET and SPECT studies of neurotransmitter systems including radiotracer design, synthesis localization mechanisms and applications in emission tomography. 60 refs., 1 tab.

  19. How to Design PET Experiments to Study Neurochemistry: Application to Alcoholism

    PubMed Central

    Morris, Evan D.; Lucas, Molly V.; Petrulli, J. Ryan; Cosgrove, Kelly P.

    2014-01-01

    Positron Emission Tomography (PET) (and the related Single Photon Emission Computed Tomography) is a powerful imaging tool with a molecular specificity and sensitivity that are unique among imaging modalities. PET excels in the study of neurochemistry in three ways: 1) It can detect and quantify neuroreceptor molecules; 2) it can detect and quantify changes in neurotransmitters; and 3) it can detect and quantify exogenous drugs delivered to the brain. To carry out any of these applications, the user must harness the power of kinetic modeling. Further, the quality of the information gained is only as good as the soundness of the experimental design. This article reviews the concepts behind the three main uses of PET, the rationale behind kinetic modeling of PET data, and some of the key considerations when planning a PET experiment. Finally, some examples of PET imaging related to the study of alcoholism are discussed and critiqued. PMID:24600335

  20. Optimization of PET instrumentation for brain activation studies

    SciTech Connect

    Dahlbom, M.; Cherry, S.R.; Hoffman, E.J. . Dept. of Radiological Science); Eriksson, L. . Dept. of Clinical Neurophysiology); Wienhard, K. )

    1993-08-01

    By performing cerebral blood flow studies with positron emission tomography (PET), and comparing blood flow images of different states of activation, functional mapping of the brain is possible. The ability of current commercial instruments to perform such studies is investigated in this work, based on a comparison of noise equivalent count (NEC) rates. Differences in the NEC performance of the different scanners in conjunction with scanner design parameters, provide insights into the importance of block design (size, dead time, crystal thickness) and overall scanner design (sensitivity and scatter fraction) for optimizing data from activation studies. The newer scanners with removable septa, operating with 3-D acquisition, have much higher sensitivity, but require new methodology for optimized operation. Only by administering multiple low doses (fractionation) of the flow tracer can the high sensitivity be utilized.

  1. Using a Popular Pet Fish Species to Study Territorial Behaviour

    ERIC Educational Resources Information Center

    Abante, Maria E.

    2005-01-01

    The colourful, vigorous territorial display behaviour of the Siamese fighting fish, "Betta splendens", has great appeal for both pet enthusiasts and animal behaviourists. Their beauty, longevity, easy maintenance and rearing make them a popular pet and an ideal science laboratory specimen. This investigation utilises "B. splendens" to test for the…

  2. Approaches using molecular imaging technology -- use of PET in clinical microdose studies.

    PubMed

    Wagner, Claudia C; Langer, Oliver

    2011-06-19

    Positron emission tomography (PET) imaging uses minute amounts of radiolabeled drug tracers and thereby meets the criteria for clinical microdose studies. The advantage of PET, when compared to other analytical methods used in microdose studies, is that the pharmacokinetics (PK) of a drug can be determined in the tissue targeted for drug treatment. PET microdosing already offers interesting applications in clinical oncology and in the development of central nervous system pharmaceuticals and is extending its range of application to many other fields of pharmaceutical medicine. Although requirements for preclinical safety testing for microdose studies have been cut down by regulatory authorities, radiopharmaceuticals increasingly need to be produced under good manufacturing practice (GMP) conditions, which increases the costs of PET microdosing studies. Further challenges in PET microdosing include combining PET with other ultrasensitive analytical methods, such as accelerator mass spectrometry (AMS), to gain plasma PK data of drugs, beyond the short PET examination periods. Finally, conducting clinical PET studies with radiolabeled drugs both at micro- and therapeutic doses is encouraged to answer the question of dose linearity in clinical microdosing.

  3. Approaches using molecular imaging technology - use of PET in clinical microdose studies§

    PubMed Central

    Wagner, Claudia C; Langer, Oliver

    2013-01-01

    Positron emission tomography (PET) imaging uses minute amounts of radiolabeled drug tracers and thereby meets the criteria for clinical microdose studies. The advantage of PET, when compared to other analytical methods used in microdose studies, is that the pharmacokinetics (PK) of a drug can be determined in the tissue targeted for drug treatment. PET microdosing already offers interesting applications in clinical oncology and in the development of central nervous system pharmaceuticals and is extending its range of application to many other fields of pharmaceutical medicine. Although requirements for preclinical safety testing for microdose studies have been cut down by regulatory authorities, radiopharmaceuticals increasingly need to be produced under good manufacturing practice (GMP) conditions, which increases the costs of PET microdosing studies. Further challenges in PET microdosing include combining PET with other ultrasensitive analytical methods, such as accelerator mass spectrometry (AMS), to gain plasma PK data of drugs, beyond the short PET examination periods. Finally, conducting clinical PET studies with radiolabeled drugs both at micro- and therapeutic doses is encouraged to answer the question of dose linearity in clinical microdosing. PMID:20887762

  4. The use of PET imaging in studying cognition, genetics and pharmacotherapeutic interventions in schizophrenia.

    PubMed

    Vyas, Nora S; Patel, Neva H; Nijran, Kuldip S; Al-Nahhas, Adil; Puri, Basant K

    2011-01-01

    Positron emission tomography (PET) offers a strategic imaging platform to provide a map of functional neural correlates associated with the underlying cognitive deficits in schizophrenia. It enables regional cerebral glucose metabolism and dopaminergic and serotonergic receptor function to be studied. PET neuroimaging can therefore be used in drug development and to study putative treatments. Recent PET studies of the first-generation antipsychotics flupentixol and haloperidol, and of the second-generation antipsychotics risperidone, aripiprazole, quetiapine, sertindole, ziprasidone, paliperidone and olanzapine, have been carried out; modulation of limbic circuitry has been found to be a predictor of treatment response. PET can also be used to predict and monitor likely extrapyramidal side effects from antipsychotic treatment. PET and neuropsychological testing can together also allow the study of putative molecular genetic changes associated with schizophrenia. Advances in the imaging, cognition and molecular genetics are likely to lead to the development of future diagnostics, treatments and novel pharmacological agents.

  5. Accuracy and Precision of Partial-Volume Correction in Oncological PET/CT Studies.

    PubMed

    Cysouw, Matthijs C F; Kramer, Gerbrand Maria; Hoekstra, Otto S; Frings, Virginie; de Langen, Adrianus Johannes; Smit, Egbert F; van den Eertwegh, Alfons J M; Oprea-Lager, Daniela E; Boellaard, Ronald

    2016-10-01

    Accurate quantification of tracer uptake in small tumors using PET is hampered by the partial-volume effect as well as by the method of volume-of-interest (VOI) delineation. This study aimed to investigate the effect of partial-volume correction (PVC) combined with several VOI methods on the accuracy and precision of quantitative PET.

  6. PET studies of the striatal dopaminergic system in Parkinson's disease (PD).

    PubMed

    Piccini, P; Turjanski, N; Brooks, D J

    1995-01-01

    Positron emission tomography (PET) is a functional imaging technique which allows detection of biochemical and pharmacological dysfunction of the nigrostriatal dopaminergic system and provides the opportunity to investigate living patients with PD. This paper reviews the contribution of PET studies to the understanding of neurochemical changes underlying Parkinson's disease.

  7. The consumption and recycling collection system of PET bottles: a case study of Beijing, China.

    PubMed

    Zhang, Hua; Wen, Zong-Guo

    2014-06-01

    After studying the recycling collection system of polyethylene terephthalate (PET) bottles worldwide, the authors conducted an intercept survey in Beijing. Two separate questionnaires were issued, one questionnaire to PET bottle consumers and one to PET bottle recyclers. In this study, consumers are defined as people that consume PET-bottled beverages in their daily life. Recyclers were defined as those involved in the collection and recycling of PET bottles. These include scavengers, itinerant waste buyers, small community waste-buying depots, medium/large redemption depots, and recycling companies. In total, 580 surveys were completed, including 461 by consumers and 119 by recyclers. The authors found that consumption of PET bottles in Beijing was nearly 100,000 tonnes in 2012. Age, occupation, gender, and education were identified as significant factors linked to PET-bottled beverage consumption, while income was not a significant factor. 90% Of post-consumed PET bottles were collected by informal collectors (i.e., scavengers and itinerant waste buyers). The survey also found that nearly all PET bottles were reprocessed by small factories that were not designed with pollution control equipment, which allows them to offer higher prices for waste recyclable bottles. As Beijing is trying to build a formal recycling collection system for recyclables, subsidies should be given to the formal recycling sector rather than being charged land use fees, and attention should also be given to informal recyclers that make their living from the collection of recyclables. Informal and formal sectors may work together by employing the scavengers and itinerant waste buyers for the formal sectors. In addition to the recycling of PET bottles, concern should also be allocated to reduce consumption, especially among young people, as they, compared to other groups, have a stronger demand for PET-bottled beverages and will be the main body of society.

  8. Development of fluorinated CB(2) receptor agonists for PET studies.

    PubMed

    Lueg, Corinna; Schepmann, Dirk; Günther, Robert; Brust, Peter; Wünsch, Bernhard

    2013-12-01

    A convergent strategy was followed to modify systematically carbazole based CB(2) receptor ligands. The length of the N-(fluoroalkyl) group (n in 7), the length of the alkanamide (m in 7) and the substitution pattern of the phenyl moiety (X and Y in 7) were varied systematically. The highest CB(2) affinity was found for the 2-fluoroethyl substituted carbazole derivative 20a (Ki=5.8nM) containing the propionamide and the 2-bromo-4-fluorophenyl moiety. According to docking studies 20a fits nicely into the binding pocket of the CB(2) receptor, but elongation of the fluoroethyl side chain leads to a different binding mode of the ligands. The high CB(2) affinity together with the high selectivity over the CB(2) subtype qualifies the fluoroethyl derivative 20a to be developed as a PET tracer.

  9. Compensation for respiratory motion in cardiac PET - A feasibility study

    SciTech Connect

    Budinger, T.F.; Klein, G.J.; Reed, J.H. |

    1996-05-01

    We characterize respiration-induced motion in the canine myocardium and present preliminary efforts to compensate for the motion in gated PET. An anesthetized dog was injected with 23 mCi FDG-18 and placed in a CTI/Siemens ECAT EXACT HR scanner. The animal was mechanically held at peak inspiration and peak expiration positions for alternate eight-second time periods. Data from each eight-second interval were stored separately, resulting in a total of 32 interleaved volume datasets for each study; half of which represented data during peak inspiration, half represented data during peak expiration. Data from each position were summed and separately reconstructed. The above protocol was repeated four times. Ungated transmission data were acquired while the animal was ventilated normally and were used to correct for the effects of attenuation. Images from each reconstruction were aligned using a cross-correlation technique, which gives the rigid-body transformation necessary to register the two volumes. Over the four sets of data a 10.8 {plus_minus} 0.7 mm magnitude translation and a 6.3 {plus_minus} 0.5 degree rotation were required to align the inspiration data with the expiration data. Consistent registration of the gated data allows summing of the data to improve statistics. Obviously, if one sums the images without regard to misregistration, blurring occurs proportional to the amount of movement over the respiratory cycle. The blurring is markedly decreased by first registering the gated datasets in image space, and then summing according to the transformation parameters. Though cardiac gating was not used in this preliminary study, it indicates that rigid body transformation followed by summation can compensate for a large portion of the image degradations due to respiratory motion. Gated acquisition of PET data using respiratory status signals via a pneumatic bellows will allow separate stages of the respiratory cycle to be collected on the ECAT EXACT HR.

  10. Optimization of the protocols for the use of contrast agents in PET/CT studies.

    PubMed

    Pelegrí Martínez, L; Kohan, A A; Vercher Conejero, J L

    The introduction of PET/CT scanners in clinical practice in 1998 has improved care for oncologic patients throughout the clinical pathway, from the initial diagnosis of disease through the evaluation of the response to treatment to screening for possible recurrence. The CT component of a PET/CT study is used to correct the attenuation of PET studies; CT also provides anatomic information about the distribution of the radiotracer. CT is especially useful in situations where PET alone can lead to false positives and false negatives, and CT thereby improves the diagnostic performance of PET. The use of intravenous or oral contrast agents and optimal CT protocols have improved the detection and characterization of lesions. However, there are circumstances in which the systematic use of contrast agents is not justified. The standard acquisition in PET/CT scanners is the whole body protocol, but this can lead to artifacts due to the position of patients and respiratory movements between the CT and PET acquisitions. This article discusses these aspects from a constructive perspective with the aim of maximizing the diagnostic potential of PET/CT and providing better care for patients.

  11. Microglia, amyloid, and cognition in Alzheimer's disease: An [11C](R)PK11195-PET and [11C]PIB-PET study.

    PubMed

    Edison, Paul; Archer, Hilary A; Gerhard, Alexander; Hinz, Rainer; Pavese, Nicola; Turkheimer, Federico E; Hammers, Alexander; Tai, Yen Fong; Fox, Nick; Kennedy, Angus; Rossor, Martin; Brooks, David J

    2008-12-01

    [11C](R)PK11195-PET is a marker of activated microglia while [11C]PIB-PET detects raised amyloid load. Here we studied in vivo the distributions of amyloid load and microglial activation in Alzheimer's disease (AD) and their relationship with cognitive status. Thirteen AD subjects had [11C](R)PK11195-PET and [11C]PIB-PET scans. Ten healthy controls had [11C](R)PK11195-PET and 14 controls had [11C]PIB-PET scans. Region-of-interest analysis of [11C](R)PK11195-PET detected significant 20-35% increases in microglial activation in frontal, temporal, parietal, occipital and cingulate cortices (p<0.05) of the AD subjects. [11C]PIB-PET revealed significant two-fold increases in amyloid load in these same cortical areas (p<0.0001) and SPM (statistical parametric mapping) analysis confirmed the localisation of these increases to association areas. MMSE scores in AD subjects correlated with levels of cortical microglial activation but not with amyloid load. The inverse correlation between MMSE and microglial activation is compatible with a role of microglia in neuronal damage.

  12. Enzymatic surface modification and functionalization of PET: a water contact angle, FTIR, and fluorescence spectroscopy study.

    PubMed

    Donelli, Ilaria; Taddei, Paola; Smet, Philippe F; Poelman, Dirk; Nierstrasz, Vincent A; Freddi, Giuliano

    2009-08-01

    The purpose of this study was to investigate the changes induced by a lypolytic enzyme on the surface properties of polyethylene terephthalate (PET). Changes in surface hydrophilicity were monitored by means of water contact angle (WCA) measurements. Fourier Transform Infrared spectroscopy (FTIR) in the Attenuated Total Reflectance mode (ATR) was used to investigate the structural and conformational changes of the ethylene glycol and benzene moieties of PET. Amorphous and crystalline PET membranes were used as substrate. The lipolytic enzyme displayed higher hydrolytic activity towards the amorphous PET substrate, as demonstrated by the decrease of the WCA values. Minor changes were observed on the crystalline PET membrane. The effect of enzyme adhesion was addressed by applying a protease after-treatment which was able to remove the residual enzyme protein adhering to the surface of PET, as demonstrated by the behavior of WCA values. Significant spectral changes were observed by FTIR-ATR analysis in the spectral regions characteristic of the crystalline and amorphous PET domains. The intensity of the crystalline marker bands increased while that of the amorphous ones decreased. Accordingly, the crystallinity indexes calculated as band intensity ratios (1,341/1,410 cm(-1) and 1,120/1,100 cm(-1)) increased. Finally, the free carboxyl groups formed at the surface of PET by enzyme hydrolysis were esterified with a fluorescent alkyl bromide, 2-(bromomethyl)naphthalene (BrNP). WCA measurements confirmed that the reaction proceeded effectively. The fluorescence results indicate that the enzymatically treated PET films are more reactive towards BrNP. FTIR analysis showed that the surface of BrNP-modified PET acquired a more crystalline character.

  13. Bimodal Thrombus Imaging: Simultaneous PET/MR Imaging with a Fibrin-targeted Dual PET/MR Probe—Feasibility Study in Rat Model

    PubMed Central

    Uppal, Ritika; Catana, Ciprian; Ay, Ilknur; Benner, Thomas; Sorensen, A. Gregory

    2011-01-01

    Purpose: To image thrombus by using magnetic resonance (MR) imaging and positron emission tomography (PET) simultaneously in a rat arterial thrombus model with a dual PET/MR probe. Materials and Methods: Animal studies were approved by the institutional animal use committee. A dual PET/MR probe was synthesized by means of partial exchange of gadolinium for copper 64 (64Cu) in the fibrin-targeted MR probe EP-2104R. A preformed 25-mm thrombus was injected into the right internal carotid artery of a rat. Imaging was performed with a clinical 3.0-T MR imager with an MR-compatible human PET imager. Rats (n = 5) were imaged prior to and after systemic administration of the dual probe by using simultaneous PET/MR. The organ distribution of 64Cu and gadolinium was determined ex vivo (n = 8), 2 hours after injection by using well counting and inductively coupled plasma mass spectrometry, respectively. Signal intensity ratios (SIRs) between the thrombus-containing and contralateral vessel were computed from PET images and MR data before and after probe administration. Results: The dual probe was synthesized with greater than 98% radiochemical purity. Thrombus enhancement was observed in all five animals at both MR (SIR[postprobe]/SIR[preprobe] = 1.71 ± 0.35, P = .0053) and PET (SIR = 1.85 ± 0.48, P = .0087) after injection of the dual PET/MR probe. Ex vivo analysis at 2 hours after injection showed the highest 64Cu and gadolinium concentrations, after the excretory organs (kidney and liver), to be in the thrombus. Conclusion: A fibrin-targeted dual PET/MR probe enables simultaneous, direct MR and PET imaging of thrombus. © RSNA, 2010 PMID:21177389

  14. Feasibility study of small animal imaging using clinical PET/CT scanner

    NASA Astrophysics Data System (ADS)

    Hsu, Wen-Lin; Chen, Chia-Lin; Wang, Ze-Jing; Wu, Tung-Hsin; Liu, Dai-Wei; Lee, Jason J. S.

    2007-02-01

    The feasibility of small animal imaging using a clinical positron emission tomography/computed tomography (PET/CT) scanner with [F-18]-fluoro-2-deoxy- D-glucose (FDG) was evaluated. Two protocols in PET/CT system, single-mouse high-resolution mode (SHR) and multi-mouse high throughput mode (MHT) protocol were employed to investigate the ability of the scanner and also explored the performance differences between microPET and clinical PET/CT. In this study, we have found that even the clinical PET/CT scanner could not compete with the microPET scanner, especially in spatial resolution; the high-resolution CT image could advance the anatomical information to sub-millimeter level. Besides, CT-based attenuation correction can improve the image uniformity characteristics and quantification accuracy, and the large bore of a human whole-body scanner broadens the possibility of high throughput studies. Considering all the benefits, clinical PET/CT imaging might be a potential alternative for small animal study.

  15. Nonlinear spatio-temporal filtering of dynamic PET data using a four-dimensional Gaussian filter and expectation-maximization deconvolution

    NASA Astrophysics Data System (ADS)

    Floberg, J. M.; Holden, J. E.

    2013-02-01

    We introduce a method for denoising dynamic PET data, spatio-temporal expectation-maximization (STEM) filtering, that combines four-dimensional Gaussian filtering with EM deconvolution. The initial Gaussian filter suppresses noise at a broad range of spatial and temporal frequencies and EM deconvolution quickly restores the frequencies most important to the signal. We aim to demonstrate that STEM filtering can improve variance in both individual time frames and in parametric images without introducing significant bias. We evaluate STEM filtering with a dynamic phantom study, and with simulated and human dynamic PET studies of a tracer with reversible binding behaviour, [C-11]raclopride, and a tracer with irreversible binding behaviour, [F-18]FDOPA. STEM filtering is compared to a number of established three and four-dimensional denoising methods. STEM filtering provides substantial improvements in variance in both individual time frames and in parametric images generated with a number of kinetic analysis techniques while introducing little bias. STEM filtering does bias early frames, but this does not affect quantitative parameter estimates. STEM filtering is shown to be superior to the other simple denoising methods studied. STEM filtering is a simple and effective denoising method that could be valuable for a wide range of dynamic PET applications.

  16. Nonlinear spatio-temporal filtering of dynamic PET data using a four-dimensional Gaussian filter and expectation-maximization deconvolution.

    PubMed

    Floberg, J M; Holden, J E

    2013-02-21

    We introduce a method for denoising dynamic PET data, spatio-temporal expectation-maximization (STEM) filtering, that combines four-dimensional Gaussian filtering withEMdeconvolution. The initial Gaussian filter suppresses noise at a broad range of spatial and temporal frequencies and EM deconvolution quickly restores the frequencies most important to the signal. We aim to demonstrate that STEM filtering can improve variance in both individual time frames and in parametric images without introducing significant bias. We evaluate STEM filtering with a dynamic phantom study, and with simulated and human dynamic PET studies of a tracer with reversible binding behaviour, [C-11]raclopride, and a tracer with irreversible binding behaviour, [F-18]FDOPA. STEM filtering is compared to a number of established three and four-dimensional denoising methods. STEM filtering provides substantial improvements in variance in both individual time frames and in parametric images generated with a number of kinetic analysis techniques while introducing little bias. STEM filtering does bias early frames, but this does not affect quantitative parameter estimates. STEM filtering is shown to be superior to the other simple denoising methods studied. STEM filtering is a simple and effective denoising method that could be valuable for a wide range of dynamic PET applications.

  17. Signal-to-noise ratio in neuro activation PET studies

    SciTech Connect

    Votaw, J.R.

    1996-04-01

    It has become commonplace to compare scanner sensitivity characteristics by comparing noise equivalent count rate curves. However, because a 20-cm diameter uniform phantom is drastically difference from a human brain, these curves give misleading information when planning a neuro activation PET experiment. Signal-to-noise ratio (SNR) calculations have been performed using measured data (Siemens 921 scanner) from the three-dimensional (3-D) Hoffman brain phantom for the purpose of determining the optimal injection and scanning protocol for [{sup 15}O] labeled activation experiments. Region of interest (ROI) values along with the variance due to prompt (trues plus randoms) and random events were determined for various regions and radioactivity concentrations. Calculated attenuation correction was used throughout. Scatter correction was not used when calculating the SNR in activation studies because the number of scattered events is almost identical in each data acquisition and hence cancels. The results indicate that randoms correction should not be performed and that rather than being limited by the scanner capabilities, neuro activation experiments are limited by the amount of radioactivity that can be injected and the length of time the patient can stay in the scanner.

  18. [Extension study and evaluation of the therapeutic response in a patient with metastatic lung adenocarcinoma using sequential study with ¹⁸F-FDG PET-CT and ¹⁸F-fluoride PET-CT].

    PubMed

    Moragas, M; Soler, M; Riera, E; García, J R

    2015-01-01

    We report a case of a patient with lung adenocarcinoma and bone and extraosseus metastases studied with (18)F-FDG PET-CT, (99m)Tc-HMDP and (18)F-fluoride PET-CT. It assesses the usefulness of (18)F-FDG PET-CT for initial staging of the disease and monitoring response to therapy. For the study of the sclerotic bone metastases it shows the superiority of 99mTc-HMDP bone scintigraphy and (18)F-fluoride PET-CT over (18)F-FDG PET-CT, and (18)F-fluoride PET-CT over bone scintigraphy. It also shows the usefulness of (18)F-fluoride PET-CT for monitoring the bone metastases.

  19. Fluorine-18 labeled tracers for PET studies in the neurosciences

    SciTech Connect

    Ding, Yu-Shin; Fowler, J.S.

    1995-12-31

    This chapter focuses on fluorine-18, the positron emitter with the longest half-life, the lowest positron energy and probably, the most challenging chemistry. The incorporation of F-18 into organic compounds presents many challenges, including: the need to synthesize and purify the compound within a 2--3 hour time frame; the limited number of labeled precursor molecules; the need to work on a microscale; and the need to produce radiotracers which are chemically and radiochemically pure, sterile and pyrogen-free, and suitable for intravenous injection. The PET method and F-18 labeling of organic molecules are described followed by highlights of the applications of F-18 labeled compounds in the neurosciences and neuropharmacology. It is important to emphasize the essential and pivotal role that organic synthesis has played in the progression of the PET field over the past twenty years from one in which only a handful of institutions possessed the instrumentation and staff to carry out research to the present-day situation where there are more than 200 PET centers worldwide. During this period PET has become an important scientific tool in the neurosciences, cardiology and oncology. It is important to point out that PET is by no means a mature field. The fact that a hundreds of different F-18 labeled compounds have been developed but only a few possess the necessary selectivity and sensitivity in vivo to track a specific biochemical process illustrates this and underscores a major difficulty in radiotracer development, namely the selection of priority structures for synthesis and the complexities of the interactions between chemical compounds and living systems. New developments in rapid organic synthesis are needed in order to investigate new molecular targets and to improve the quantitative nature of PET experiments.

  20. Netupitant PET imaging and ADME studies in humans

    PubMed Central

    Spinelli, Tulla; Calcagnile, Selma; Giuliano, Claudio; Rossi, Giorgia; Lanzarotti, Corinna; Mair, Stuart; Stevens, Lloyd; Nisbet, Ian

    2014-01-01

    Netupitant is a new, selective NK1 receptor antagonist under development for the prevention of chemotherapy-induced nausea and vomiting. Two studies were conducted to evaluate the brain receptor occupancy (RO) and disposition (ADME) of netupitant in humans. Positron emission tomography (PET) imaging with the NK1 receptor-binding–selective tracer [11C]-GR205171 was used to evaluate the brain penetration of different doses of netupitant (100, 300, and 450 mg) and to determine the NK1-RO duration. A NK1-RO of 90% or higher was achieved with all doses in the majority of the tested brain regions at Cmax, with a long duration of RO. The netupitant minimal plasma concentration predicted to achieve a NK1-RO of 90%, C90%, in the striatum was 225 ng/mL; after administration of netupitant 300 mg, concentrations exceeded the C90%. In the ADME study, a single nominal dose of [14C]-netupitant 300 mg was used to assess its disposition. Absorption was rapid and netupitant was extensively metabolized via Phase I and II hepatic metabolism. Elimination of >90% was predicted at day 29 and was principally via hepatic/biliary route (>85%) with a minor contribution of the renal route (<5%). In conclusion, these studies demonstrate that netupitant is a potent agent targeting NK1 receptors with long lasting RO. In addition, netupitant is extensively metabolized and is mainly eliminated through the hepatic/biliary route and to a lesser extent via the kidneys. PMID:24122871

  1. Prognostic value of interim and restaging PET/CT in Hodgkin lymphoma. Results of the CHEAP (Chemotherapy Effectiveness Assessment by PET/CT) study - long term observation.

    PubMed

    Miltenyi, Z; Barna, S; Garai, I; Simon, Z; Jona, A; Magyari, F; Gergely, M; Nagy, Z; Keresztes, K; Pettendi, P; Illes, A

    2015-01-01

    Very few studies have determined the prognostic value of interim and restaging PET/CT in patients with Hodgkin lymphoma using current standard of care therapy outside clinical trials. We analyzed the effect of the results of interim and restaging PET/CT on the survival (overall- and relapse-free) in patients who received standard first-line treatment based on the stage of disease and risk factors. We investigated the differences between the relapse and non-relapse groups based on the clinical pathological characteristics of patients who had positive interim PET/CT results.Between January 1, 2007 and December 31, 2011, the staging, interim and restaging PET/CT scans of patients with Hodgkin lymphoma were analyzed. The Deauville criteria were used for the evaluation of interim PET/CT scans. One hundred and thirteen Hodgkin lymphoma patients underwent staging, interim and restaging PET/CT scans. None of the therapy was modified based on the interim PET/CT results. The median follow-up time was 43.5 months. A total of 62 early stage patients and 51 advanced stage patients were identified. The five-year overall survival rates were 93.4% in the interim PET negative group and 58% in the interim PET positive group (p<0.001). The five-year relapse-free survival rates for the negative and positive groups were 92.7% and 40.8%, respectively (p<0.001). The negative predictive value was 100% in the early stage group and 82.35% in the advanced stage group. By comparison, the positive predictive values were 53.8% and 58.8%, respectively, in these two groups. In the interim PET positive group, patients over 40 years of age had a significantly higher probability of relapse (p=0.057).The routine clinical use of interim PET/CT is highly recommended based on our investigation. However, patients with positive interim PET/CT results required frequent additional evaluations.

  2. Flutriciclamide (18F-GE180) PET: First-in-Human PET Study of Novel Third-Generation In Vivo Marker of Human Translocator Protein.

    PubMed

    Fan, Zhen; Calsolaro, Valeria; Atkinson, Rebecca A; Femminella, Grazia D; Waldman, Adam; Buckley, Christopher; Trigg, William; Brooks, David J; Hinz, Rainer; Edison, Paul

    2016-11-01

    Neuroinflammation is associated with neurodegenerative disease. PET radioligands targeting the 18-kDa translocator protein (TSPO) have been used as in vivo markers of neuroinflammation, but there is an urgent need for novel probes with improved signal-to-noise ratio. Flutriciclamide ((18)F-GE180) is a recently developed third-generation TSPO ligand. In this first study, we evaluated the optimum scan duration and kinetic modeling strategies for (18)F-GE180 PET in (older) healthy controls.

  3. Study of the Crystalline Morphology Evolution of PET and PET/PC Blends by Time-resolved Synchrotron Small Angle X-ray Scattering (SAXS) and DSC

    SciTech Connect

    Barbosa, Irineu; Larocca, Nelson M.; Hage, Elias; Plivelic, Tomas S.; Torriani, Iris L.; Mantovani, Gerson L.

    2009-01-29

    Isothermal melt crystallization of poly(ethylene terephthalate)(PET) and PET/PC (polycarbonate) blend, with and without a transesterification catalyst, was studied by time-resolved small-angle X-ray scattering (SAXS) and differential scanning calorimetry (DSC) in order to achieve the variation of the morphological parameters throughout the whole crystallization time. For neat PET, the catalyst promotes a decrease of the crystal lamellar thickness but for the blend no variations were observed. The effect of incorporation of catalyst in crystallization kinetics was very distinct in PET pure and the blend: in the former the catalyst leads to an increase of this kinetics while for the latter it was observed a decreasing.

  4. FDG PET/CT dataset for navigation on femoral bone: a feasibility study.

    PubMed

    Militz, Matthias; Uhde, Jörg; Christian, Georg; Linke, Rainer; Morgenstern, Mario; Hungerer, Sven

    2015-12-01

    FDG PET/CT has become a valuable tool in the diagnosis of the activity of chronic osteomyelitis. The surgical strategy in the treatment of chronic osteomyelitis is the identification of the bone focus and radical debridement of sequesters. The aim of the current study was the registration and use of the FDG PET/CT imaging datasets on a navigation system to provide diagnostic imaging based feedback during surgical procedures. For the present study, FDG PET/CT scans were acquired from artificial bones and cadaver bones with a local focus of activity. The DICOM data sets were merged using a navigation system. The referenced regions of interest were matched with fluoroscopic pictures to register the PET/CT DICOM datasets to the bone and direct visual control. Navigated targeting led to accurate results when verified with fluoroscopic images by targeting previously inserted reference points in artificial and cadaver bone. FDG PET/CT datasets are suitable for navigation and compatible with conventional planning and navigation software. The combination of diagnostic FDG PET/CT imaging with surgical navigation techniques could be a valuable tool for the accurate treatment of chronic osteomyelitis.

  5. SU-E-J-270: Study of PET Response to HDR Brachytherapy of Rectal Cancer

    SciTech Connect

    Hobbs, R; Le, Y; Armour, E; Efron, J; Azad, N; Wahl, R; Gearhart, S; Herman, J

    2014-06-01

    Purpose: Dose-response studies in radiation therapy are typically using single response values for tumors across ensembles of tumors. Using the high dose rate (HDR) treatment plan dose grid and pre- and post-therapy FDG-PET images, we look for correlations between voxelized dose and FDG uptake response in individual tumors. Methods: Fifteen patients were treated for localized rectal cancer using 192Ir HDR brachytherapy in conjunction with surgery. FDG-PET images were acquired before HDR therapy and 6–8 weeks after treatment (prior to surgery). Treatment planning was done on a commercial workstation and the dose grid was calculated. The two PETs and the treatment dose grid were registered to each other using non-rigid registration. The difference in PET SUV values before and after HDR was plotted versus absorbed radiation dose for each voxel. The voxels were then separated into bins for every 400 cGy of absorbed dose and the bin average values plotted similarly. Results: Individual voxel doses did not correlate with PET response; however, when group into tumor subregions corresponding to dose bins, eighty percent of the patients showed a significant positive correlation (R2 > 0) between PET uptake difference in the targeted region and the absorbed dose. Conclusion: By considering larger ensembles of voxels, such as organ average absorbed dose or the dose bins considered here, valuable information may be obtained. The dose-response correlations as measured by FDG-PET difference potentially underlines the importance of FDG-PET as a measure of response, as well as the value of voxelized information.

  6. Twelve automated thresholding methods for segmentation of PET images: a phantom study

    NASA Astrophysics Data System (ADS)

    Prieto, Elena; Lecumberri, Pablo; Pagola, Miguel; Gómez, Marisol; Bilbao, Izaskun; Ecay, Margarita; Peñuelas, Iván; Martí-Climent, Josep M.

    2012-06-01

    Tumor volume delineation over positron emission tomography (PET) images is of great interest for proper diagnosis and therapy planning. However, standard segmentation techniques (manual or semi-automated) are operator dependent and time consuming while fully automated procedures are cumbersome or require complex mathematical development. The aim of this study was to segment PET images in a fully automated way by implementing a set of 12 automated thresholding algorithms, classical in the fields of optical character recognition, tissue engineering or non-destructive testing images in high-tech structures. Automated thresholding algorithms select a specific threshold for each image without any a priori spatial information of the segmented object or any special calibration of the tomograph, as opposed to usual thresholding methods for PET. Spherical 18F-filled objects of different volumes were acquired on clinical PET/CT and on a small animal PET scanner, with three different signal-to-background ratios. Images were segmented with 12 automatic thresholding algorithms and results were compared with the standard segmentation reference, a threshold at 42% of the maximum uptake. Ridler and Ramesh thresholding algorithms based on clustering and histogram-shape information, respectively, provided better results that the classical 42%-based threshold (p < 0.05). We have herein demonstrated that fully automated thresholding algorithms can provide better results than classical PET segmentation tools.

  7. Preliminary studies of PQS PET detector module for dose verification of carbon beam therapy

    NASA Astrophysics Data System (ADS)

    Kim, H.-I.; An, S. Jung; Lee, C. Y.; Jo, W. J.; Min, E.; Lee, K.; Kim, Y.; Joung, J.; Chung, Y. H.

    2014-05-01

    PET imaging can be used to verify dose distributions of therapeutic particle beams such as carbon ion beams. The purpose of this study was to develop a PET detector module which was designed for an in-beam PET scanner geometry integrated into a carbon beam therapy system, and to evaluate its feasibility as a monitoring system of patient dose distribution. A C-shaped PET geometry was proposed to avoid blockage of the carbon beam by the detector modules. The proposed PET system consisted of 14 detector modules forming a bore with 30.2 cm inner diameter for brain imaging. Each detector module is composed of a 9 × 9 array of 4.0 mm × 4.0 mm × 20.0 mm LYSO crystal module optically coupled with four 29 mm diameter PMTs using Photomultiplier-quadrant-sharing (PQS) technique. Because the crystal pixel was identified based upon the distribution of scintillation lights of four PMTs, the design of the reflector between crystal elements should be well optimized. The optical design of reflectors was optimized using DETECT2000, a Monte Carlo code for light photon transport. A laser-cut reflector set was developed using the Enhanced Specular Reflector (ESR, 3M Co.) mirror-film with a high reflectance of 98% and a thickness of 0.064 mm. All 81 crystal elements of detector module were identified. Our result demonstrates that the C-shaped PET system is under development and we present the first reconstructed image.

  8. Twelve automated thresholding methods for segmentation of PET images: a phantom study.

    PubMed

    Prieto, Elena; Lecumberri, Pablo; Pagola, Miguel; Gómez, Marisol; Bilbao, Izaskun; Ecay, Margarita; Peñuelas, Iván; Martí-Climent, Josep M

    2012-06-21

    Tumor volume delineation over positron emission tomography (PET) images is of great interest for proper diagnosis and therapy planning. However, standard segmentation techniques (manual or semi-automated) are operator dependent and time consuming while fully automated procedures are cumbersome or require complex mathematical development. The aim of this study was to segment PET images in a fully automated way by implementing a set of 12 automated thresholding algorithms, classical in the fields of optical character recognition, tissue engineering or non-destructive testing images in high-tech structures. Automated thresholding algorithms select a specific threshold for each image without any a priori spatial information of the segmented object or any special calibration of the tomograph, as opposed to usual thresholding methods for PET. Spherical (18)F-filled objects of different volumes were acquired on clinical PET/CT and on a small animal PET scanner, with three different signal-to-background ratios. Images were segmented with 12 automatic thresholding algorithms and results were compared with the standard segmentation reference, a threshold at 42% of the maximum uptake. Ridler and Ramesh thresholding algorithms based on clustering and histogram-shape information, respectively, provided better results that the classical 42%-based threshold (p < 0.05). We have herein demonstrated that fully automated thresholding algorithms can provide better results than classical PET segmentation tools.

  9. PET-CT for staging and early response: results from the Response-Adapted Therapy in Advanced Hodgkin Lymphoma study.

    PubMed

    Barrington, Sally F; Kirkwood, Amy A; Franceschetto, Antonella; Fulham, Michael J; Roberts, Thomas H; Almquist, Helén; Brun, Eva; Hjorthaug, Karin; Viney, Zaid N; Pike, Lucy C; Federico, Massimo; Luminari, Stefano; Radford, John; Trotman, Judith; Fosså, Alexander; Berkahn, Leanne; Molin, Daniel; D'Amore, Francesco; Sinclair, Donald A; Smith, Paul; O'Doherty, Michael J; Stevens, Lindsey; Johnson, Peter W

    2016-03-24

    International guidelines recommend that positron emission tomography-computed tomography (PET-CT) should replace CT in Hodgkin lymphoma (HL). The aims of this study were to compare PET-CT with CT for staging and measure agreement between expert and local readers, using a 5-point scale (Deauville criteria), to adapt treatment in a clinical trial: Response-Adapted Therapy in Advanced Hodgkin Lymphoma (RATHL). Patients were staged using clinical assessment, CT, and bone marrow biopsy (RATHL stage). PET-CT was performed at baseline (PET0) and after 2 chemotherapy cycles (PET2) in a response-adapted design. PET-CT was reported centrally by experts at 5 national core laboratories. Local readers optionally scored PET2 scans. The RATHL and PET-CT stages were compared. Agreement among experts and between expert and local readers was measured. RATHL and PET0 stage were concordant in 938 (80%) patients. PET-CT upstaged 159 (14%) and downstaged 74 (6%) patients. Upstaging by extranodal disease in bone marrow (92), lung (11), or multiple sites (12) on PET-CT accounted for most discrepancies. Follow-up of discrepant findings confirmed the PET characterization of lesions in the vast majority. Five patients were upstaged by marrow biopsy and 7 by contrast-enhanced CT in the bowel and/or liver or spleen. PET2 agreement among experts (140 scans) with a κ (95% confidence interval) of 0.84 (0.76-0.91) was very good and between experts and local readers (300 scans) at 0.77 (0.68-0.86) was good. These results confirm PET-CT as the modern standard for staging HL and that response assessment using Deauville criteria is robust, enabling translation of RATHL results into clinical practice.

  10. Towards coronary plaque imaging using simultaneous PET-MR: a simulation study

    NASA Astrophysics Data System (ADS)

    Petibon, Y.; El Fakhri, G.; Nezafat, R.; Johnson, N.; Brady, T.; Ouyang, J.

    2014-03-01

    Coronary atherosclerotic plaque rupture is the main cause of myocardial infarction and the leading killer in the US. Inflammation is a known bio-marker of plaque vulnerability and can be assessed non-invasively using fluorodeoxyglucose-positron emission tomography imaging (FDG-PET). However, cardiac and respiratory motion of the heart makes PET detection of coronary plaque very challenging. Fat surrounding coronary arteries allows the use of MRI to track plaque motion during simultaneous PET-MR examination. In this study, we proposed and assessed the performance of a fat-MR based coronary motion correction technique for improved FDG-PET coronary plaque imaging in simultaneous PET-MR. The proposed methods were evaluated in a realistic four-dimensional PET-MR simulation study obtained by combining patient water-fat separated MRI and XCAT anthropomorphic phantom. Five small lesions were digitally inserted inside the patients coronary vessels to mimic coronary atherosclerotic plaques. The heart of the XCAT phantom was digitally replaced with the patient's heart. Motion-dependent activity distributions, attenuation maps, and fat-MR volumes of the heart, were generated using the XCAT cardiac and respiratory motion fields. A full Monte Carlo simulation using Siemens mMR's geometry was performed for each motion phase. Cardiac/respiratory motion fields were estimated using non-rigid registration of the transformed fat-MR volumes and incorporated directly into the system matrix of PET reconstruction along with motion-dependent attenuation maps. The proposed motion correction method was compared to conventional PET reconstruction techniques such as no motion correction, cardiac gating, and dual cardiac-respiratory gating. Compared to uncorrected reconstructions, fat-MR based motion compensation yielded an average improvement of plaque-to-background contrast of 29.6%, 43.7%, 57.2%, and 70.6% for true plaque-to-blood ratios of 10, 15, 20 and 25:1, respectively. Channelized

  11. Driving with pets and motor vehicle collision involvement among older drivers: a prospective population-based study

    PubMed Central

    Huisingh, Carrie; Levitan, Emily B.; Irvin, Marguerite R.; Owsley, Cynthia; McGwin, Gerald

    2016-01-01

    Objective Distracted driving is a major cause of motor vehicle collision (MVC) involvement. Pets have been identified as potential distraction to drivers, particularly in the front. This type of distraction could be worse for those with impairment in the cognitive aspects of visual processing. The purpose of this study is to evaluate the association between driving with pets and rates of motor vehicle collision involvementin a cohort of older drivers. Methods A three-year prospective was conducted in a population-based sample of 2000 licensed drivers aged 70 years and older. At the baseline visit, a trained interviewer asked participants about pet ownership, whether they drive with pets, how frequently, and where the pet sits in the vehicle. Motor vehicle collision (MVC) involvement during the three-year study period was obtained from the Alabama Department of Public Safety. At-fault status was determined by the police officer who arrived on the scene. Participants were followed until the earliest of death, driving cessation, or end of the study period. Poisson regression was used to calculate crude and adjusted rate ratios (RR) examining the association between pet ownership, presence of a pet in a vehicle, frequency of driving with a pet, and location of the pet inside with vehicle with any and at-fault MVC involvement. We examined whether the associations differed by higher order visual processing impairment status, as measured by Useful Field Of View, Trails B, and Motor-free Visual Perception Test. Results Rates of crash involvement were similar for older adults who have ever driven with a pet compared to those who never drove with their pet (RR=1.15, 95% CI 0.76-1.75). Drivers who reported always or sometimes driving with their pet had higherMVC rates compared topet owners who never drive with a pet, but this association was not statistically significant (RR=1.39, 95% CI 0.86-2.24). In terms of location, those reporting having a pet frequently ride in the

  12. Sensory analysis of pet foods.

    PubMed

    Koppel, Kadri

    2014-08-01

    Pet food palatability depends first and foremost on the pet and is related to the pet food sensory properties such as aroma, texture and flavor. Sensory analysis of pet foods may be conducted by humans via descriptive or hedonic analysis, pets via acceptance or preference tests, and through a number of instrumental analysis methods. Sensory analysis of pet foods provides additional information on reasons behind palatable and unpalatable foods as pets lack linguistic capabilities. Furthermore, sensory analysis may be combined with other types of information such as personality and environment factors to increase understanding of acceptable pet foods. Most pet food flavor research is proprietary and, thus, there are a limited number of publications available. Funding opportunities for pet food studies would increase research and publications and this would help raise public awareness of pet food related issues. This mini-review addresses current pet food sensory analysis literature and discusses future challenges and possibilities.

  13. Exposure to pets and atopic dermatitis during the first two years of life. A cohort study.

    PubMed

    Zirngibl, Angelika; Franke, Kaethe; Gehring, Ulrike; von Berg, Andrea; Berdel, Dietrich; Bauer, Carl Peter; Reinhardt, Dietrich; Wichmann, H-Erich; Heinrich, Joachim

    2002-12-01

    The aim of this study was to assess the association between keeping pets in early childhood and the occurrence of atopic dermatitis in an ongoing birth cohort followed up to the age of 2 years. We analyzed data of 4578 children in the intervention and observation part of an ongoing cohort study. The children were recruited at birth in the two study regions Wesel and Munich between January 1996 and June 1998. Information on atopic diseases and pet ownership was obtained by questionnaire at the child's first and second birthday. The logistic regression model showed a negative association between 'keeping any pet' and in particular 'keeping dogs' in the 1st year of life and the development of atopic dermatitis in the 1st and the 2nd years of life. The protective effects remained statistically significant after adjusting for several possible confounding variables (1st year(any) pet OR 0.71, 95% CI [0.55;0.92], 1st year(dog) OR 0.62, 95% CI [0.39;0.98], 2nd year(any) pet OR 0.74, 95% CI [0.57;0.97], 2nd year(dog) OR 0.63, 95% CI [0.40;0.98]). Ownership of small furred pets (hamster, rabbit and guinea pig) also showed a borderline protective effect for the 1st year. We assume an association between keeping pets and undefined environmental factor(s) that contribute protectively to the development of atopic dermatitis in early life, presumably by effects on the maturation of the immune system.

  14. Automated evaluation of setup errors in carbon ion therapy using PET: Feasibility study

    SciTech Connect

    Kuess, Peter Hopfgartner, Johannes; Georg, Dietmar; Helmbrecht, Stephan; Fiedler, Fine; Birkfellner, Wolfgang; Enghardt, Wolfgang

    2013-12-15

    Purpose: To investigate the possibility of detecting patient mispositioning in carbon-ion therapy with particle therapy positron emission tomography (PET) in an automated image registration based manner. Methods: Tumors in the head and neck (H and N), pelvic, lung, and brain region were investigated. Biologically optimized carbon ion treatment plans were created with TRiP98. From these treatment plans, the reference β{sup +}-activity distributions were calculated using a Monte Carlo simulation. Setup errors were simulated by shifting or rotating the computed tomography (CT). The expected β{sup +} activity was calculated for each plan with shifts. Finally, the reference particle therapy PET images were compared to the “shifted” β{sup +}-activity distribution simulations using the Pearson's correlation coefficient (PCC). To account for different PET monitoring options the inbeam PET was compared to three different inroom scenarios. Additionally, the dosimetric effects of the CT misalignments were investigated. Results: The automated PCC detection of patient mispositioning was possible in the investigated indications for cranio-caudal shifts of 4 mm and more, except for prostate tumors. In the rather homogeneous pelvic region, the generated β{sup +}-activity distribution of the reference and compared PET image were too much alike. Thus, setup errors in this region could not be detected. Regarding lung lesions the detection strongly depended on the exact tumor location: in the center of the lung tumor misalignments could be detected down to 2 mm shifts while resolving shifts of tumors close to the thoracic wall was more challenging. Rotational shifts in the H and N and lung region of +6° and more could be detected using inroom PET and partly using inbeam PET. Comparing inroom PET to inbeam PET no obvious trend was found. However, among the inroom scenarios a longer measurement time was found to be advantageous. Conclusions: This study scopes the use of various

  15. PET - A proton/electron telescope for studies of magnetospheric, solar, and galactic particles

    NASA Technical Reports Server (NTRS)

    Cook, Walter R.; Cummings, Alan C.; Cummings, Jay R.; Garrard, Thomas L.; Kecman, Branislav; Mewaldt, Richard A.; Selesnick, Richard S.; Stone, Edward C.; Baker, Daniel N.; Von Rosenvinge, Tycho T.

    1993-01-01

    The Proton/Electron Telescope (PET) on SAMPEX is designed to provide measurements of energetic electrons and light nuclei from solar, galactic, and magnetospheric sources. PET is an all solid-state system that will measure the differential energy spectra of electrons from about 1 to about 30 MeV and H and He nuclei from about 20 to about 300 MeV/nuc, with isotope resolution of H and He extending from about 20 to about 80 MeV/nuc. As SAMPEX scans all local times and geomagnetic cutoffs over the course of its near-polar orbit, PET will characterize precipitating relativistic electron events during periods of declining solar activity, and it will examine whether the production rate of odd nitrogen and hydrogen molecules in the middle atmosphere by precipitating electrons is sufficient to affect O3 depletion. In addition, PET will complement studies of the elemental and isotopic composition of energetic heavy (Z greater than 2) nuclei on SAMPEX by providing measurements of H, He, and electrons. Finally, PET has limited capability to identify energetic positrons from potential natural and man-made sources.

  16. Positron range in tissue-equivalent materials: experimental microPET studies.

    PubMed

    Alva-Sánchez, H; Quintana-Bautista, C; Martínez-Dávalos, A; Ávila-Rodríguez, M A; Rodríguez-Villafuerte, M

    2016-09-07

    In this work an experimental investigation was carried out to study the effect that positron range has over positron emission tomography (PET) scans through measurements of the line spread function (LSF) in tissue-equivalent materials. Line-sources consisted of thin capillary tubes filled with (18)F, (13)N or (68)Ga water-solution inserted along the axis of symmetry of cylindrical phantoms constructed with the tissue-equivalent materials: lung (inhale and exhale), adipose tissue, solid water, trabecular and cortical bone. PET scans were performed with a commercial small-animal PET scanner and image reconstruction was carried out with filtered-backprojection. Line-source distributions were analyzed using radial profiles taken on axial slices from which the spatial resolution was determined through the full-width at half-maximum, tenth-maximum, twentieth-maximum and fiftieth-maximum. A double-Gaussian model of the LSFs was used to fit experimental data which can be incorporated into iterative reconstruction methods. In addition, the maximum activity concentration in the line-sources was determined from reconstructed images and compared to the known values for each case. The experimental data indicates that positron range in different materials has a strong effect on both spatial resolution and activity concentration quantification in PET scans. Consequently, extra care should be taken when computing standard-uptake values in PET scans, in particular when the radiopharmaceutical is taken up by different tissues in the body, and more even so with high-energy positron emitters.

  17. Examination of assumptions for local cerebral blood flow studies in PET

    SciTech Connect

    Koeppe, R.A.; Hutchins, G.D.; Rothley, J.M.; Hichwa, R.D.

    1987-11-01

    Two common assumptions made in most positron emission tomography (PET) cerebral blood flow techniques have been examined in detail. These are (1) that the blood-borne radioactivity component in the measured PET data is negligible, and (2) that differences in arrival time of the arterial bolus across the brain cause insignificant biases in the estimated cerebral blood flow (CBF) values. Biases in CBF values due to partial failure of these assumptions have been predicted by computer simulation studies and also quantitated for both dynamic and single scan PET methods using H/sub 2/ /sup 15/O. Both computer simulations and measured PET data indicate that these assumptions can sometimes cause significant errors in the estimated flow values. The magnitude of these errors depends on the PET technique used (dynamic or static) and on the interval of data included in the flow calculations. The bias caused when these assumptions fail can be considerably reduced by omitting approximately 40 sec of data immediately following tracer administration from the CBF calculations.

  18. Positron range in tissue-equivalent materials: experimental microPET studies

    NASA Astrophysics Data System (ADS)

    Alva-Sánchez, H.; Quintana-Bautista, C.; Martínez-Dávalos, A.; Ávila-Rodríguez, M. A.; Rodríguez-Villafuerte, M.

    2016-09-01

    In this work an experimental investigation was carried out to study the effect that positron range has over positron emission tomography (PET) scans through measurements of the line spread function (LSF) in tissue-equivalent materials. Line-sources consisted of thin capillary tubes filled with 18F, 13N or 68Ga water-solution inserted along the axis of symmetry of cylindrical phantoms constructed with the tissue-equivalent materials: lung (inhale and exhale), adipose tissue, solid water, trabecular and cortical bone. PET scans were performed with a commercial small-animal PET scanner and image reconstruction was carried out with filtered-backprojection. Line-source distributions were analyzed using radial profiles taken on axial slices from which the spatial resolution was determined through the full-width at half-maximum, tenth-maximum, twentieth-maximum and fiftieth-maximum. A double-Gaussian model of the LSFs was used to fit experimental data which can be incorporated into iterative reconstruction methods. In addition, the maximum activity concentration in the line-sources was determined from reconstructed images and compared to the known values for each case. The experimental data indicates that positron range in different materials has a strong effect on both spatial resolution and activity concentration quantification in PET scans. Consequently, extra care should be taken when computing standard-uptake values in PET scans, in particular when the radiopharmaceutical is taken up by different tissues in the body, and more even so with high-energy positron emitters.

  19. PET: a proton/electron telescope for studies of magnetospheric, solar, and galactic particles

    SciTech Connect

    Cook, W.R.; Cummings, A.C.; Cummings, J.R.; Garrard, T.L.; Kecman, B.; Mewaldt, R.A.; Selesnick, R.S.; Stone, E.C. ); Baker, D.N.; Rosenvinge, T.T. von ); Callis, L.B. ); Blake, J.B.

    1993-05-01

    The Proton/Electron Telescope (PET) on SAMPEX is designed to provide measurements of energetic electrons and light nuclei from solar, galactic, and magnetospheric sources. PET is an all solid-state system that will measure the differential energy spectra of electrons from [approximately]1 to [approximately]30 MeV and H and He nuclei from [approximately]20 to [approximately]300 MeV/nuc, with isotope resolution of H and He extending from [approximately]20 to [approximately]80 MeV/nuc. As SAMPEX scans all local times and geomagnetic cutoffs over the course of its near-polar orbit, PET will characterize precipitating relativistic electron events during periods of declining solar activity, and it will examine whether the production rate of odd nitrogen and hydrogen molecules in the middle atmosphere by precipitating electrons is sufficient to affect O[sub 3] depletion. In addition, PET will complement studies of the elemental and isotopic composition of energetic heavy (Z > 2) nuclei on SAMPEX by providing measurements of H, He, and electrons. Finally, PET has limited capability to identify energetic positrons from potential natural and man-made sources.

  20. In-beam PET imaging for on-line adaptive proton therapy: an initial phantom study.

    PubMed

    Shao, Yiping; Sun, Xishan; Lou, Kai; Zhu, Xiaorong R; Mirkovic, Dragon; Poenisch, Falk; Grosshans, David

    2014-07-07

    We developed and investigated a positron emission tomography (PET) system for use with on-line (both in-beam and intra-fraction) image-guided adaptive proton therapy applications. The PET has dual rotating depth-of-interaction measurable detector panels by using solid-state photomultiplier (SSPM) arrays and LYSO scintillators. It has a 44 mm diameter trans-axial and 30 mm axial field-of-view (FOV). A 38 mm diameter polymethyl methacrylate phantom was placed inside the FOV. Both PET and phantom axes were aligned with a collimated 179.2 MeV beam. Each beam delivered ∼50 spills (0.5 s spill and 1.5 s inter-spill time, 3.8 Gy at Bragg peak). Data from each beam were acquired with detectors at a given angle. Nine datasets for nine beams with detectors at nine different angles over 180° were acquired for full-tomographic imaging. Each dataset included data both during and 5 min after irradiations. The positron activity-range was measured from the PET image reconstructed from all nine datasets and compared to the results from simulated images. A (22)Na disc-source was also imaged after each beam to monitor the PET system's performance. PET performed well except for slight shifts of energy photo-peak positions (<1%) after each beam, due mainly to the neutron exposure of SSPM that increased the dark-count noise. This minor effect was corrected offline with a shifting 350-650 keV energy window for each dataset. The results show a fast converging of activity-ranges measured by the prototype PET with high sensitivity and uniform resolution. Sub-mm activity-ranges were achieved with minimal 6 s acquisition time and three spill irradiations. These results indicate the feasibility of PET for intra-fraction beam-range verification. Further studies are needed to develop and apply a novel clinical PET system for on-line image-guided adaptive proton therapy.

  1. In-beam PET imaging for on-line adaptive proton therapy: an initial phantom study

    NASA Astrophysics Data System (ADS)

    Shao, Yiping; Sun, Xishan; Lou, Kai; Zhu, Xiaorong R.; Mirkovic, Dragon; Poenisch, Falk; Grosshans, David

    2014-07-01

    We developed and investigated a positron emission tomography (PET) system for use with on-line (both in-beam and intra-fraction) image-guided adaptive proton therapy applications. The PET has dual rotating depth-of-interaction measurable detector panels by using solid-state photomultiplier (SSPM) arrays and LYSO scintillators. It has a 44 mm diameter trans-axial and 30 mm axial field-of-view (FOV). A 38 mm diameter polymethyl methacrylate phantom was placed inside the FOV. Both PET and phantom axes were aligned with a collimated 179.2 MeV beam. Each beam delivered ˜50 spills (0.5 s spill and 1.5 s inter-spill time, 3.8 Gy at Bragg peak). Data from each beam were acquired with detectors at a given angle. Nine datasets for nine beams with detectors at nine different angles over 180° were acquired for full-tomographic imaging. Each dataset included data both during and 5 min after irradiations. The positron activity-range was measured from the PET image reconstructed from all nine datasets and compared to the results from simulated images. A 22Na disc-source was also imaged after each beam to monitor the PET system's performance. PET performed well except for slight shifts of energy photo-peak positions (<1%) after each beam, due mainly to the neutron exposure of SSPM that increased the dark-count noise. This minor effect was corrected offline with a shifting 350-650 keV energy window for each dataset. The results show a fast converging of activity-ranges measured by the prototype PET with high sensitivity and uniform resolution. Sub-mm activity-ranges were achieved with minimal 6 s acquisition time and three spill irradiations. These results indicate the feasibility of PET for intra-fraction beam-range verification. Further studies are needed to develop and apply a novel clinical PET system for on-line image-guided adaptive proton therapy.

  2. MR-based motion correction for PET imaging using wired active MR microcoils in simultaneous PET-MR: Phantom study

    SciTech Connect

    Huang, Chuan; Brady, Thomas J.; El Fakhri, Georges; Ouyang, Jinsong; Ackerman, Jerome L.; Petibon, Yoann

    2014-04-15

    Purpose: Artifacts caused by head motion present a major challenge in brain positron emission tomography (PET) imaging. The authors investigated the feasibility of using wired active MR microcoils to track head motion and incorporate the measured rigid motion fields into iterative PET reconstruction. Methods: Several wired active MR microcoils and a dedicated MR coil-tracking sequence were developed. The microcoils were attached to the outer surface of an anthropomorphic{sup 18}F-filled Hoffman phantom to mimic a brain PET scan. Complex rotation/translation motion of the phantom was induced by a balloon, which was connected to a ventilator. PET list-mode and MR tracking data were acquired simultaneously on a PET-MR scanner. The acquired dynamic PET data were reconstructed iteratively with and without motion correction. Additionally, static phantom data were acquired and used as the gold standard. Results: Motion artifacts in PET images were effectively removed by wired active MR microcoil based motion correction. Motion correction yielded an activity concentration bias ranging from −0.6% to 3.4% as compared to a bias ranging from −25.0% to 16.6% if no motion correction was applied. The contrast recovery values were improved by 37%–156% with motion correction as compared to no motion correction. The image correlation (mean ± standard deviation) between the motion corrected (uncorrected) images of 20 independent noise realizations and static reference was R{sup 2} = 0.978 ± 0.007 (0.588 ± 0.010, respectively). Conclusions: Wired active MR microcoil based motion correction significantly improves brain PET quantitative accuracy and image contrast.

  3. Subthalamic Nucleus Stimulation and Dysarthria in Parkinson's Disease: A PET Study

    ERIC Educational Resources Information Center

    Pinto, Serge; Thobois, Stephane; Costes, Nicolas; Le Bars, Didier; Benabid, Alim-Louis; Broussolle, Emmanuel; Pollak, Pierre; Gentil, Michele

    2004-01-01

    In Parkinson's disease, functional imaging studies during limb motor tasks reveal cerebral activation abnormalities that can be reversed by subthalamic nucleus (STN) stimulation. The effect of STN stimulation on parkinsonian dysarthria has not, however, been investigated using PET. The aim of the present study was to evaluate the effect of STN…

  4. J-PET detector system for studies of the electron-positron annihilations

    NASA Astrophysics Data System (ADS)

    Pawlik-Niedźwiecka, M.; Khreptak, O.; Gajos, A.; Wieczorek, A.; Alfs, D.; Bednarski, T.; Białas, P.; Curceanu, C.; Czerwiński, E.; Dulski, K.; Głowacz, B.; Gupta-Sharma, N.; Gorgol, M.; Hiesmayr, B. C.; Jasińska, B.; Kamińska, D.; Korcyl, G.; Kowalski, P.; Krzmień, W.; Krawczyk, N.; Kubicz, E.; Mohammed, M.; Niedźwiecki, Sz.; Raczyński, L.; Rudy, Z.; Silarski, M.; Wiślicki, W.; Zgardzińska, B.; Zieliński, M.; Moskal, P.

    2016-11-01

    Jagiellonian Positron Emission Tomograph (J-PET) has been recently constructed at the Jagiellonian University as a prototype of a cost-effective scanner for the metabolic imaging of the whole human body. J-PET detector is optimized for the measurement of momentum and polarization of photons from the electron-positron annihilations. It is built out of strips of plastic scintillators, forming three cylindrical layers. As detector of gamma quanta it will be used for studies of discrete symmetries and multiparticle entanglement of photons originating from the decays of ortho-positronium atoms.

  5. Simulation of a PET system and study of some geometry parameters

    SciTech Connect

    Abreu, Yamiel; Pinera, Ibrahin; Leyva, Antonio; Cabal, Ana E.; Cruz, Carlos M.; Diaz, Angelina; Montano, Luis M.

    2008-08-11

    The Monte Carlo simulation of small animal conventional positron emission tomography (PET) is an important tool for geometry parameters optimization, image reconstruction algorithm tests, performance of different radioisotopic sources and some others. The present work deals with the Monte Carlo study of a small cylindrical PET system in the framework of the GEANT4 code. Two different accepted ring width values and spherical sources of {sup 18}F and {sup 44}Sc isotopes were considered. Then, the improvement of the detection efficiency and spatial resolution was analyzed in all the cases.

  6. Representativeness of clinical PET study participants with schizophrenia: A systematic review.

    PubMed

    Kirino, So; Suzuki, Takefumi; Takeuchi, Hiroyoshi; Mimura, Masaru; Uchida, Hiroyuki

    2017-01-05

    While positron emission tomography (PET) studies have provided invaluable data on antipsychotic effects, selection bias remains a serious concern. A systematic review of PET studies that measured dopamine D2 receptor blockade with antipsychotics was conducted to examine their inclusion/exclusion criteria, using PubMed, EMBASE, and ClinicalTrials.gov (last search, September 2016). PET studies were included if they measured D2 receptor occupancy in patients with schizophrenia and included introduction of antipsychotic treatment or antipsychotic regimen change in a systematic manner. Twenty-six studies were identified. Age limit was included in 13 studies; one study solely included geriatric patients while others targeted younger adults. Eleven, 6, and 3 studies specifically targeted clinically stable patients, patients with severe psychopathology, and antipsychotic-free patients, respectively. Nineteen and 18 studies excluded patients with physical comorbidity and substance abuse, respectively. As a result, the mean age of subjects ranged from 23 to 42 years when one study that targeted geriatric patients was excluded. Mean Positive and Negative Syndrome Scale total scores ranged from 54 to 95. No comparison active-drug or placebo arm was employed in 24 studies. Blind assessment of symptomatology was performed in 5 studies. In general, subjects participating in clinical PET studies were relatively young, presented with mild symptomatology, and were free from substance abuse or physical comorbidities. These characteristics need to be taken into account when clinical PET data are interpreted. On the other hand, it should also be noted that this study was only qualitative and conservative interpretation is necessary for possibility of subjective bias.

  7. Weight Gain following Pallidal Deep Brain Stimulation: A PET Study.

    PubMed

    Sauleau, Paul; Drapier, Sophie; Duprez, Joan; Houvenaghel, Jean-François; Dondaine, Thibaut; Haegelen, Claire; Drapier, Dominique; Jannin, Pierre; Robert, Gabriel; Le Jeune, Florence; Vérin, Marc

    2016-01-01

    The mechanisms behind weight gain following deep brain stimulation (DBS) surgery seem to be multifactorial and suspected depending on the target, either the subthalamic nucleus (STN) or the globus pallidus internus (GPi). Decreased energy expenditure following motor improvement and behavioral and/or metabolic changes are possible explanations. Focusing on GPi target, our objective was to analyze correlations between changes in brain metabolism (measured with PET) and weight gain following GPi-DBS in patients with Parkinson's disease (PD). Body mass index was calculated and brain activity prospectively measured using 2-deoxy-2[18F]fluoro-D-glucose PET four months before and four months after the start of GPi-DBS in 19 PD patients. Dopaminergic medication was included in the analysis to control for its possible influence on brain metabolism. Body mass index increased significantly by 0.66 ± 1.3 kg/m2 (p = 0.040). There were correlations between weight gain and changes in brain metabolism in premotor areas, including the left and right superior gyri (Brodmann area, BA 6), left superior gyrus (BA 8), the dorsolateral prefrontal cortex (right middle gyrus, BAs 9 and 46), and the left and right somatosensory association cortices (BA 7). However, we found no correlation between weight gain and metabolic changes in limbic and associative areas. Additionally, there was a trend toward a correlation between reduced dyskinesia and weight gain (r = 0.428, p = 0.067). These findings suggest that, unlike STN-DBS, motor improvement is the major contributing factor for weight gain following GPi-DBS PD, confirming the motor selectivity of this target.

  8. Weight Gain following Pallidal Deep Brain Stimulation: A PET Study

    PubMed Central

    Sauleau, Paul; Drapier, Sophie; Duprez, Joan; Houvenaghel, Jean-François; Dondaine, Thibaut; Haegelen, Claire; Drapier, Dominique; Jannin, Pierre; Robert, Gabriel; Le Jeune, Florence; Vérin, Marc

    2016-01-01

    The mechanisms behind weight gain following deep brain stimulation (DBS) surgery seem to be multifactorial and suspected depending on the target, either the subthalamic nucleus (STN) or the globus pallidus internus (GPi). Decreased energy expenditure following motor improvement and behavioral and/or metabolic changes are possible explanations. Focusing on GPi target, our objective was to analyze correlations between changes in brain metabolism (measured with PET) and weight gain following GPi-DBS in patients with Parkinson’s disease (PD). Body mass index was calculated and brain activity prospectively measured using 2-deoxy-2[18F]fluoro-D-glucose PET four months before and four months after the start of GPi-DBS in 19 PD patients. Dopaminergic medication was included in the analysis to control for its possible influence on brain metabolism. Body mass index increased significantly by 0.66 ± 1.3 kg/m2 (p = 0.040). There were correlations between weight gain and changes in brain metabolism in premotor areas, including the left and right superior gyri (Brodmann area, BA 6), left superior gyrus (BA 8), the dorsolateral prefrontal cortex (right middle gyrus, BAs 9 and 46), and the left and right somatosensory association cortices (BA 7). However, we found no correlation between weight gain and metabolic changes in limbic and associative areas. Additionally, there was a trend toward a correlation between reduced dyskinesia and weight gain (r = 0.428, p = 0.067). These findings suggest that, unlike STN-DBS, motor improvement is the major contributing factor for weight gain following GPi-DBS PD, confirming the motor selectivity of this target. PMID:27070317

  9. Implementation and evaluation of a calculated attenuation correction for PET

    SciTech Connect

    Siegel, S.; Dahlbom, M. . Dept. of Radiological Sciences)

    1992-08-01

    A limiting factor in PET is the necessity of a transmission scan for attenuation correction (AC). In areas of uniform attenuation, this measured AC can be replaced by a calculated AC. This paper presents an accurate and efficient method based on estimating the object contour from the emission sinograms. The method relies on a robust algorithm to determine the border between activity and scatter background. In this work, the authors present an algorithm that has been consistent in finding the object outline for a variety of tracers ([sup 18]F-FDG, [sup 18]F-FDOPA, [sup 15]O-water and [sup 13]N-ammonia), extreme uptake distributions (brain tumors and hemispherectomies) and system geometries, with little operator intervention. FDG brain scans using this algorithm were compared to images corrected using measured AC, showing a maximum deviation of [plus minus] 8.9%. The algorithm has been extended to abdominal PET scans and 3-D acquisitions.

  10. Investigation of partial volume correction methods for brain FDG PET studies

    SciTech Connect

    Yang, J.; Huang, S.C.; Mega, M.; Toga, A.W.; Small, G.W.; Phelps, M.E.; Lin, K.P.

    1996-12-01

    The use of positron emission tomography (PET) in quantitative fluorodeoxyglucose (FDG) studies of aging and dementia has been limited by partial volume effects. A general method for correction of partial volume effects (PVE) in PET involves the following common procedures; segmentation of MRI brain images into gray matter (GM), white matter (WM), cerebral spinal fluid (CSF), and muscle (MS) components; MRI PET registration; and generation of simulated PET images. Afterward, two different approaches can be taken. The first approach derives first a pixel-by-pixel correction map as the ratio of the measured image to the simulated image [with realistic full-width at half-maximum (FWHM)]. The correction map was applied to the MRI segmentation image. Regions of interest (ROI`s) can then be applied to give results free of partial volume effects. The second approach uses the ROI values of the simulated ``pure`` image (with negligible FWHM) and those of the simulated and the measured PET images to correct for the PVE effect. By varying the ratio of radiotracer concentrations for different tissue components, the in-plane FWHM`s of a three-dimensional point spread function, and the ROI size, the authors evaluated the performance of these two approaches in terms of their accuracy and sensitivity to different simulation configurations. The results showed that both approaches are more robust than the approach developed by Muller-Gartner et al., and the second approach is more accurate and more robust than the first. In conclusion, the authors recommend that the second approach should be used on FDG PET images to correct for partial volume effects and to determine whether an apparent change in GM radiotracer concentration is truly due to metabolic changes.

  11. Clustering-Based Linear Least Square Fitting Method for Generation of Parametric Images in Dynamic FDG PET Studies

    PubMed Central

    Huang, Xinrui; Zhou, Yun; Bao, Shangliang; Huang, Sung-Cheng

    2007-01-01

    Parametric images generated from dynamic positron emission tomography (PET) studies are useful for presenting functional/biological information in the 3-dimensional space, but usually suffer from their high sensitivity to image noise. To improve the quality of these images, we proposed in this study a modified linear least square (LLS) fitting method named cLLS that incorporates a clustering-based spatial constraint for generation of parametric images from dynamic PET data of high noise levels. In this method, the combination of K-means and hierarchical cluster analysis was used to classify dynamic PET data. Compared with conventional LLS, cLLS can achieve high statistical reliability in the generated parametric images without incurring a high computational burden. The effectiveness of the method was demonstrated both with computer simulation and with a human brain dynamic FDG PET study. The cLLS method is expected to be useful for generation of parametric images from dynamic FDG PET study. PMID:18273393

  12. [In vivo visualization of neurotransmitter function in the human brain by PET].

    PubMed

    Itoh, M; Yanai, K; Yamaguchi, S; Fujiwara, T; Nagasawa, H; Yokoyama, H; Iinuma, K; Ido, T

    1995-03-01

    Measurement of cerebral blood flow and energy metabolism using PET with 15O and 18F labeled tracers allows quantitative evaluation of cerebral metabolism that can be perturbed in pathological states. Neurotransmission is a new target that is visualized by labeling of substrates of enzymes that are involved in neurotransmitter synthesis or degradation. Neuronal receptors are mapped by introducing the labeled ligands that are specifically bound to the receptors in question. We developed unique tracers that label dopamine D2 or histamine H1 receptors. With other available ligands for the muscarinic cholinergic receptors and [18F] fluorodopa, we started clinical investigations to document the state of neurotransmission in patients with epilepsy, Parkinson's disease and dementia. Using [11C] doxepin we observed an increase of H1 receptors in the epileptic foci that showed decreased glucose metabolic rate at the interictal phase. This phenomenon is compatible with reported increase of mu opiate receptors in the brains of epileptic patients. Brain uptake of FDOPA (Ki), calculated by the graphical plot was found relatively stable with age both in the normal population and dementia patients. However, the striatal Ki of FDOPA of severely demented patients significantly reduced, compared with the normal aged subjects. The correlation analysis between FDOPA Ki and severity of dementia as assessed by mini-mental state examination revealed a significant reduction of Ki associated with the disease progression. Increase in D2 receptor density as assessed by the uptake of YM 09151-2 was observed in cases with reduced FDOPA uptake, which may correspond to the state of supersensitivity of the D2 receptors.

  13. 18F-FET-PET in Primary Hyperparathyroidism: A Pilot Study

    PubMed Central

    Krakauer, Martin; Kjaer, Andreas; Bennedbæk, Finn N.

    2016-01-01

    Preoperative localisation of the diseased parathyroid gland(s) in primary hyperparathyroidism (PHP) is a prerequisite for subsequent minimally invasive surgery. Recently, as alternatives to conventional sestamibi parathyroid scintigraphy, the 11C-based positron emission tomography (PET) tracers methionine and choline have shown promise for this purpose. We evaluated the feasibility of using the 18F-based PET tracer fluoroethyl-l-tyrosine (FET), as the longer half-life of 18F makes it logistically more favourable. As a proof-of-concept study, we included two patients with PHP in which dual-isotope parathyroid subtraction single photon emission computed tomography had determined the exact location of the parathyroid adenoma. A dynamic FET PET/CT scan was performed with subsequent visual evaluation and calculation of target-to-background (TBR; parathyroid vs. thyroid). The maximum TBR in the two patients under study was achieved approximately 30 min after the injection of the tracer and was 1.5 and 1.7, respectively. This ratio was too small to allow for confident visualisation of the adenomas. FET PET/CT seems not feasible as a preoperative imaging modality in PHP. PMID:27548229

  14. Study of multispectral convolution scatter correction in high resolution PET

    SciTech Connect

    Yao, R.; Lecomte, R.; Bentourkia, M.

    1996-12-31

    PET images acquired with a high resolution scanner based on arrays of small discrete detectors are obtained at the cost of low sensitivity and increased detector scatter. It has been postulated that these limitations can be overcome by using enlarged discrimination windows to include more low energy events and by developing more efficient energy-dependent methods to correct for scatter. In this work, we investigate one such method based on the frame-by-frame scatter correction of multispectral data. Images acquired in the conventional, broad and multispectral window modes were processed by the stationary and nonstationary consecutive convolution scatter correction methods. Broad and multispectral window acquisition with a low energy threshold of 129 keV improved system sensitivity by up to 75% relative to conventional window with a {approximately}350 keV threshold. The degradation of image quality due to the added scatter events can almost be fully recovered by the subtraction-restoration scatter correction. The multispectral method was found to be more sensitive to the nonstationarity of scatter and its performance was not as good as that of the broad window. It is concluded that new scatter degradation models and correction methods need to be established to fully take advantage of multispectral data.

  15. A pet study of visual and semantic knowledge about objects.

    PubMed

    Kellenbach, Marion L; Hovius, Marjolijn; Patterson, Karalyn

    2005-04-01

    The distinctiveness of temporal lobe regions activated during the retrieval of knowledge regarding structural, colour and associative (encyclopaedic) aspects of familiar objects was investigated using PET. These three types of knowledge were contrasted using well matched tasks requiring the detection, in a series of coloured-in line drawings, of occasional anomalous objects (in the three conditions: structurally incorrect chimeras composed of parts of real objects; inappropriately coloured objects; familiar objects that do not exist in the modern world). Relative to a resting baseline condition, all semantic retrieval tasks yielded extensive bilateral activations in occipital and temporal areas, extending anteriorly on the ventral surface of the brain, plus an area in the right superior parietal lobe. In direct semantic-task comparisons focussing on the temporal lobe: (i) structural relative to associative decisions activated the right posterior middle/inferior temporal gyrus; (ii) colour decisions relative to structural judgements were associated with a region in the right superior temporal gyrus; (iii) the associative decision task selectively activated the left anterior middle/superior temporal gyrus and temporal pole relative to both object structure and colour, and also the homologous right temporal pole relative to colour only. These results indicate that each type of stored knowledge involves at least partially distinct cortical areas, and suggest that both anterior/posterior and left/right temporal regions have specialised roles.

  16. A Factor-Image Framework to Quantification of Brain Receptor Dynamic PET Studies

    PubMed Central

    Wang, Z. Jane; Szabo, Zsolt; Lei, Peng; Varga, József; Liu, K. J. Ray

    2007-01-01

    The positron emission tomography (PET) imaging technique enables the measurement of receptor distribution or neurotransmitter release in the living brain and the changes of the distribution with time and thus allows quantification of binding sites as well as the affinity of a radioligand. However, quantification of receptor binding studies obtained with PET is complicated by tissue heterogeneity in the sampling image elements (i.e., voxels, pixels). This effect is caused by a limited spatial resolution of the PET scanner. Spatial heterogeneity is often essential in understanding the underlying receptor binding process. Tracer kinetic modeling also often requires an intrusive collection of arterial blood samples. In this paper, we propose a likelihood-based framework in the voxel domain for quantitative imaging with or without the blood sampling of the input function. Radioligand kinetic parameters are estimated together with the input function. The parameters are initialized by a subspace-based algorithm and further refined by an iterative likelihood-based estimation procedure. The performance of the proposed scheme is examined by simulations. The results show that the proposed scheme provides reliable estimation of factor time-activity curves (TACs) and the underlying parametric images. A good match is noted between the result of the proposed approach and that of the Logan plot. Real brain PET data are also examined, and good performance is observed in determining the TACs and the underlying factor images. PMID:18769527

  17. Using triple gamma coincidences with a pixelated semiconductor Compton-PET scanner: a simulation study

    NASA Astrophysics Data System (ADS)

    Kolstein, M.; Chmeissani, M.

    2016-01-01

    The Voxel Imaging PET (VIP) Pathfinder project presents a novel design using pixelated semiconductor detectors for nuclear medicine applications to achieve the intrinsic image quality limits set by physics. The conceptual design can be extended to a Compton gamma camera. The use of a pixelated CdTe detector with voxel sizes of 1 × 1 × 2 mm3 guarantees optimal energy and spatial resolution. However, the limited time resolution of semiconductor detectors makes it impossible to use Time Of Flight (TOF) with VIP PET. TOF is used in order to improve the signal to noise ratio (SNR) by using only the most probable portion of the Line-Of-Response (LOR) instead of its entire length. To overcome the limitation of CdTe time resolution, we present in this article a simulation study using β+-γ emitting isotopes with a Compton-PET scanner. When the β+ annihilates with an electron it produces two gammas which produce a LOR in the PET scanner, while the additional gamma, when scattered in the scatter detector, provides a Compton cone that intersects with the aforementioned LOR. The intersection indicates, within a few mm of uncertainty along the LOR, the origin of the beta-gamma decay. Hence, one can limit the part of the LOR used by the image reconstruction algorithm.

  18. Conceptual design and simulation study of an ROI-focused panel-PET scanner.

    PubMed

    Xie, Qingguo; Wan, Lu; Cao, Xiaoqing; Xiao, Peng

    2013-01-01

    Positron emission tomography (PET) is an important imaging modality for clincial use. Conventionally, the PET scanner is generally built to provide a roomy enough transverse field-of-view (FOV) for imaging most adults' torsos. However, in many cases, the region-of-interest (ROI) for imaging is usually a small area inside the human body. Therefore, to fulfill a PET system which provides an FOV comparable in size to the target ROI seems appealing and more cost effective. Meanwhile, such a PET system has the potential for portable or bedside application with the reduced system size. In this work, we have investigated the feasibility of using dual-headed panel-detectors to build an ROI-focused PET scanner. A novel windowed list-mode ordered subset expectation maximization method was developed to perform the ROI image reconstruction. With this method, the ROI of the object can be reconstructed from the coincidences whose position determined by time-of-flight (TOF) measurements was inside the ROI. Monte Carlo simulation demonstrates the feasibility of detecting lesions not less than 1 cm in diameter, with a 300 ps full width at half maximum timing resolution. As a critical system performance, the impact of TOF information on image quality has been studied and the required TOF capability was assessed. With enhanced timing resolution, the distortions and artifacts were reduced effectively. The further improved TOF capability also shows a noticeable improvement of detection performance for low uptake lesions, as well as the recovery speed of lesion contrast, which is of practical significance in the lesion detection task.

  19. 68Ga-PRGD2 PET/CT in the Evaluation of Glioma: A Prospective Study

    PubMed Central

    2015-01-01

    Integrin αvβ3 is overexpressed in both neovasculature and glioma cells. We aimed to evaluate 68gallium-BNOTA-PRGD2 (68Ga-PRGD2) as a new reagent for noninvasive integrin αvβ3 imaging in glioma patients. With informed consent, 12 patients with suspicious brain glioma, as diagnosed by enhanced magnetic resonance imaging (MRI) scanning, were enrolled to undergo 68Ga-PRGD2 PET/CT and 18F-FDG PET/CT scans before surgery. The preoperative images were compared and correlated with the pathologically determined WHO grade. Next, the expression of integrin αvβ3, CD34, and Ki-67 were determined by immunohistochemical staining of the resected brain tumor tissue. Our findings demonstrated that 68Ga-PRGD2 specifically accumulated in the brain tumors that were rich of integrin αvβ3 and other neovasculature markers, but not in the brain parenchyma other than the choroid plexus. Therefore, 68Ga-PRGD2 PET/CT was able to evaluate the glioma demarcation more specifically than 18F-FDG PET/CT. The maximum standardized uptake values (SUVmax) of 68Ga-PRGD2, rather than those of 18F-FDG, were significantly correlated with the glioma grading. The maximum tumor-to-brain ratios (TBRmax) of both tracers were significantly correlated with glioma grading, whereas 68Ga-PRGD2 seemed to be more superior to 18F-FDG in differentiating high-grade glioma (HGG) from low-grade glioma (LGG). Moreover, 68Ga-PRGD2 PET/CT showed different accumulation patterns for HGG of WHO grades III and IV. This is the first noninvasive integrin imaging study, to the best of our knowledge, conducted in preoperative patients with different grades of glioma, and it preliminarily indicated the effectiveness of this novel method for evaluating glioma grading and demarcation. PMID:25093246

  20. Synthesis, characterization, and monkey positron emission tomography (PET) studies of [18F]Y1-973, a PET tracer for the neuropeptide Y Y1 receptor.

    PubMed

    Hostetler, Eric D; Sanabria-Bohórquez, Sandra; Fan, Hong; Zeng, Zhizhen; Gantert, Liza; Williams, Mangay; Miller, Patricia; O'Malley, Stacey; Kameda, Minoru; Ando, Makoto; Sato, Nagaaki; Ozaki, Satoshi; Tokita, Shigeru; Ohta, Hisashi; Williams, David; Sur, Cyrille; Cook, Jacquelynn J; Burns, H Donald; Hargreaves, Richard

    2011-02-14

    Neuropeptide Y receptor subtype 1 (NPY Y1) has been implicated in appetite regulation, and antagonists of NPY Y1 are being explored as potential therapeutics for obesity. An NPY Y1 PET tracer is useful for determining the level of target engagement by NPY Y1 antagonists in preclinical and clinical studies. Here we report the synthesis and evaluation of [(18)F]Y1-973, a novel PET tracer for NPY Y1. [(18)F]Y1-973 was radiolabeled by reaction of a primary chloride with [(18)F]KF/K2.2.2 followed by deprotection with HCl. [(18)F]Y1-973 was produced with high radiochemical purity (>98%) and high specific activity (>1000 Ci/mmol). PET studies in rhesus monkey brain showed that the distribution of [(18)F]Y1-973 was consistent with the known NPY Y1 distribution; uptake was highest in the striatum and cortical regions and lowest in the pons, cerebellum nuclei, and brain stem. Blockade of [(18)F]Y1-973 uptake with NPY Y1 antagonist Y1-718 revealed a specific signal that was dose-dependently reduced in all regions of grey matter to a similarly low level of tracer uptake, indicative of an NPY Y1 specific signal. In vitro autoradiographic studies with [(18)F]Y1-973 in rhesus monkey and human brain tissue slices revealed an uptake distribution consistent with the in vivo PET studies. Highest binding density was observed in the dentate gyrus, caudate-putamen, and cortical regions; moderate binding density in the hypothalamus and thalamus; and lowest binding density in the globus pallidus and cerebellum. In vitro saturation binding studies in rhesus monkey and human caudate-putamen homogenates confirmed a similarly high B(max)/K(d) ratio for [(18)F]Y1-973, suggesting the tracer may provide a specific signal in human brain of similar magnitude to that observed in rhesus monkey. [(18)F]Y1-973 is a suitable PET tracer for imaging NPY Y1 in rhesus monkey with potential for translation to human PET studies.

  1. Making MetPetDB a tool for reconnaissance studies of metamorphism and metamorphic rocks

    NASA Astrophysics Data System (ADS)

    Hallett, B. W.; Spear, F. S.; Horkley, L. K.; Adali, S.; Fox, P. A.

    2012-12-01

    Recent data mining efforts have significantly increased the coverage and quantity of published data that form the foundation of MetPetDB: the Database for Metamorphic Petrology. Mineral assemblage, metamorphic grade, geochemical mineral and whole rock analyses, and image data from over 600 published papers have been compiled and uploaded, with focus on a number of particularly well-studied metamorphic belts of regional extent. As a result of data mining efforts in the past several years, MetPetDB now contains data for over 9,000 samples, over 10,000 mineral and whole rock (major or trace element) analyses, and over 20,000 images including maps, thin section scans, photomicrographs, SE and BSE images, and X-ray maps. These data are available for searching and download, exportable in spreadsheets and/or as placemark layers in a Google Earth .kml file. Each Google Earth placemark contains a link to the full data available through MetPetDB's web interface. The improved spatial coverage provides a starting point for a geoscientist to rapidly gather sample and geochemical data for a growing inventory of distinct metamorphic belts. Regional searches can be performed by choosing a user-defined bounding box, or any of a number of bounding polygons that delineate distinct metamorphic belts, such as the Greenland Caledonides, or the Bohemian Massif. MetPetDB is a tool for researchers to share, compile, and organize sample information, both published and unpublished, enabling production of a dynamic GIS to aid in planning field work, producing geologic maps, or making inventory of geochemical data for metamorphic rocks. In addition to regional queries, published metamorphic rock samples with non-spatial commonalities may be queried and compiled using MetPetDB. For example, a petrologist with an interest in the equilibrium exchange of yttrium between garnet and monazite at mid-crustal conditions could easily find garnet with a certain range of yttrium content in amphibolite

  2. TandemPET- A High Resolution, Small Animal, Virtual Pinhole-Based PET Scanner: Initial Design Study

    PubMed Central

    Raylman, Raymond R.; Stolin, Alexander V.; Martone, Peter F.; Smith, Mark F.

    2016-01-01

    Mice are the perhaps the most common species of rodents used in biomedical research, but many of the current generation of small animal PET scanners are non-optimal for imaging these small rodents due to their relatively low resolution. Consequently, a number of researchers have investigated the development of high-resolution scanners to address this need. In this investigation, the design of a novel, high-resolution system based on the dual-detector, virtual-pinhole PET concept was explored via Monte Carlo simulations. Specifically, this system, called TandemPET, consists of a 5 cm × 5 cm high-resolution detector made-up of a 90 × 90 array of 0.5 mm × 0.5 mm × 10 mm (pitch= 0.55 mm) LYSO detector elements in coincidence with a lower resolution detector consisting of a 68 × 68 array of 1.5 mm × 1.5 mm × 10 mm LYSO detector elements (total size= 10.5 cm × 10.5 cm). Analyses indicated that TandemPET’s optimal geometry is to position the high-resolution detector 3 cm from the center-of-rotation, with the lower resolution detector positioned 9 cm from center. Measurements using modified NEMA NU4-2008-based protocols revealed that the spatial resolution of the system is ~0.5 mm FWHM, after correction of positron range effects. Peak sensitivity is 2.1%, which is comparable to current small animal PET scanners. Images from a digital mouse brain phantom demonstrated the potential of the system for identifying important neurological structures. PMID:27041767

  3. 2-Year Natural Decline of Cardiac Sympathetic Innervation in Idiopathic Parkinson Disease Studied with 11C-Hydroxyephedrine PET.

    PubMed

    Wong, Ka Kit; Raffel, David M; Bohnen, Nicolaas I; Altinok, Gulcin; Gilman, Sid; Frey, Kirk A

    2017-02-01

    The objective of this study was to detect regional patterns of cardiac sympathetic denervation in idiopathic Parkinson disease (IPD) using (11)C-hydroxyephedrine ((11)C-HED) PET and determine the denervation rate over 2 y.

  4. Study of oxygen scavenging PET-based films activated by water

    NASA Astrophysics Data System (ADS)

    Rossi, Gabriella; Scarfato, Paola; Incarnato, Loredana

    2016-05-01

    In this work an active barrier system consisting of a thin and transparent film based on polyethylene terephthalate (PET) was studied. Dynamic oxygen absorption measurements were performed at different values of relative humidity and temperature, pointing out that humidity is a key factor in activating the oxidation of the polymer sample. Moreover, the thermal and optical properties of the films were investigated and a good correlation was found between the crystallinity increase and the consequent transparency reduction occurring after the oxygen absorption.

  5. Evaluation of MLACF based calculated attenuation brain PET imaging for FDG patient studies

    NASA Astrophysics Data System (ADS)

    Bal, Harshali; Panin, Vladimir Y.; Platsch, Guenther; Defrise, Michel; Hayden, Charles; Hutton, Chloe; Serrano, Benjamin; Paulmier, Benoit; Casey, Michael E.

    2017-04-01

    Calculating attenuation correction for brain PET imaging rather than using CT presents opportunities for low radiation dose applications such as pediatric imaging and serial scans to monitor disease progression. Our goal is to evaluate the iterative time-of-flight based maximum-likelihood activity and attenuation correction factors estimation (MLACF) method for clinical FDG brain PET imaging. FDG PET/CT brain studies were performed in 57 patients using the Biograph mCT (Siemens) four-ring scanner. The time-of-flight PET sinograms were acquired using the standard clinical protocol consisting of a CT scan followed by 10 min of single-bed PET acquisition. Images were reconstructed using CT-based attenuation correction (CTAC) and used as a gold standard for comparison. Two methods were compared with respect to CTAC: a calculated brain attenuation correction (CBAC) and MLACF based PET reconstruction. Plane-by-plane scaling was performed for MLACF images in order to fix the variable axial scaling observed. The noise structure of the MLACF images was different compared to those obtained using CTAC and the reconstruction required a higher number of iterations to obtain comparable image quality. To analyze the pooled data, each dataset was registered to a standard template and standard regions of interest were extracted. An SUVr analysis of the brain regions of interest showed that CBAC and MLACF were each well correlated with CTAC SUVrs. A plane-by-plane error analysis indicated that there were local differences for both CBAC and MLACF images with respect to CTAC. Mean relative error in the standard regions of interest was less than 5% for both methods and the mean absolute relative errors for both methods were similar (3.4%  ±  3.1% for CBAC and 3.5%  ±  3.1% for MLACF). However, the MLACF method recovered activity adjoining the frontal sinus regions more accurately than CBAC method. The use of plane-by-plane scaling of MLACF images was found to be a

  6. Methods for the correction of vascular artifacts in PET O-15 water brain-mapping studies

    SciTech Connect

    Chen, K.; Reiman, E.M. |; Lawson, M.; Yun, L.S.; Bandy, D.

    1996-12-01

    While positron emission tomographic (PET) measurements of regional cerebral blood flow (rCBF) can be used to map brain regions that are involved in normal and pathological human behaviors, measurements in the anteromedial temporal lobe can be confounded by the combined effects of radiotracer activity in neighboring arteries and partial-volume averaging. The authors now describe two simple methods to address this vascular artifact. One method utilizes the early frames of a dynamic PET study, while the other method utilizes a coregistered magnetic resonance image (MRI) to characterize the vascular region of interest (VROI). Both methods subsequently assign a common value to each pixel in the VROI for the control scan and the activation scan. To study the vascular artifact and to demonstrate the ability of the proposed methods correcting the vascular artifact, four dynamic PET scans were performed in a single subject during the same behavioral state. For each of the four scans, a vascular scan containing vascular activity was computed as the summation of the images acquired 0--60 s after radiotracer administrations, and a control scan containing minimal vascular activity was computed as the summation of the images acquired 20--80 s after radiotracer administration. t-score maps calculated from the four pairs of vascular and control scans were used to characterize regional blood flow differences related to vascular activity before and after the applications of each vascular artifact correction method. Both methods eliminated the observed differences in vascular activity, as well as the vascular artifact observed in the anteromedial temporal lobes. Using PET data from a study of normal human emotion, these methods permitted us to identify rCBF increases in the anteromedial temporal lobe free from the potentially confounding, combined effects of vascular activity and partial-volume averaging.

  7. The effect of nimodipine on the evolution of human cerebral infarction studied by PET.

    PubMed

    Hakim, A M; Evans, A C; Berger, L; Kuwabara, H; Worsley, K; Marchal, G; Biel, C; Pokrupa, R; Diksic, M; Meyer, E

    1989-08-01

    Fourteen patients were studied by positron emission tomography (PET) within 48 h of onset of a hemispheric ischemic stroke and again 7 days later. After the first set of PET scans, the patients were randomized to receive either nimodipine (n = 7) or a carrier solution (n = 7) by intravenous infusion. The infusions were maintained until the end of the second PET studies. CBF, cerebral blood volume (CBV), oxygen extraction ratio (OER), CMRO2, and CMRglc were measured each time. These metabolic and perfusion measurements were performed by standard methods. A surface map of each metabolic and perfusion measurement in the cortical mantle was generated by interpolating between the available slices. The various surface maps representing the physiological characteristics determined in the same or subsequent studies were aligned so that all data sets could be analyzed identically using an array of square regions of interest (ROIs). The functional status of each ROI was recorded at the two intervals following the cerebrovascular accident to characterize the evolution of the infarct, penumbra, and normal brain regions. We presumed the ischemic penumbra to be cortical regions in the proximity of the infarct and perfused at CBF values between 12 and 18 ml/100 g/min on the first PET scan, while densely ischemic regions had CBF of less than 12 nl/100 g/min and normally perfused brain greater than 18 ml/100 g/min. In the densely ischemic zone, CBF increased more in the nimodipine-treated group than in the carrier group. As well, in this region nimodipine reversed the decline in CMRO2 noted in the carrier group, the difference in the changes being significant. In the penumbra zone, comparable trends were noted in OER and CMRO2 but the difference in the changes between the two groups did not reach statistical significance. Changes in CMRglc and CBV were comparable between the two groups in both cortical regions.

  8. Flow optimization study of a batch microfluidics PET tracer synthesizing device

    PubMed Central

    Elizarov, Arkadij M.; Meinhart, Carl; van Dam, R. Michael; Huang, Jiang; Daridon, Antoine; Heath, James R.; Kolb, Hartmuth C.

    2010-01-01

    We present numerical modeling and experimental studies of flow optimization inside a batch microfluidic micro-reactor used for synthesis of human-scale doses of Positron Emission Tomography (PET) tracers. Novel techniques are used for mixing within, and eluting liquid out of, the coin-shaped reaction chamber. Numerical solutions of the general incompressible Navier Stokes equations along with time-dependent elution scalar field equation for the three dimensional coin-shaped geometry were obtained and validated using fluorescence imaging analysis techniques. Utilizing the approach presented in this work, we were able to identify optimized geometrical and operational conditions for the micro-reactor in the absence of radioactive material commonly used in PET related tracer production platforms as well as evaluate the designed and fabricated micro-reactor using numerical and experimental validations. PMID:21072595

  9. Short-Term Practice Effects and Brain Hypometabolism: Preliminary Data from an FDG PET Study.

    PubMed

    Duff, Kevin; Horn, Kevin P; Foster, Norman L; Hoffman, John M

    2015-05-01

    Practice effects are improvements in cognitive test scores due to repeated exposure to the same tests. Typically viewed as error, short-term practice effects have been shown to provide valuable clinical information about diagnosis, prognosis, and treatment outcomes in older patients with mild cognitive impairments. This study examined short-term practice effects across one week and brain hypometabolism on fluoro-2-deoxyglucose (FDG) positron emission tomography (PET) in 25 older adults (15 intact, 10 Mild Cognitive Impairment). Averaged cerebral brain metabolism on FDG PET was correlated with multiple cognitive scores at baseline in those with Mild Cognitive Impairment, and short-term practice effects accounted for additional variance in these same subjects. The relationship between brain metabolism and cognition (either at baseline or practice effects) was minimal in the intact individuals. Although needing replication in larger samples, short-term practice effects on tests of executive functioning and memory may provide valuable information about biomarkers of Alzheimer's disease.

  10. Nonparametric Residue Analysis of Dynamic PET Data With Application to Cerebral FDG Studies in Normals

    PubMed Central

    O'Sullivan, Finbarr; Muzi, Mark; Spence, Alexander M.; Mankoff, David M.; O'Sullivan, Janet N.; Fitzgerald, Niall; Newman, George C.; Krohn, Kenneth A.

    2009-01-01

    Kinetic analysis is used to extract metabolic information from dynamic positron emission tomography (PET) uptake data. The theory of indicator dilutions, developed in the seminal work of Meier and Zierler (1954), provides a probabilistic framework for representation of PET tracer uptake data in terms of a convolution between an arterial input function and a tissue residue. The residue is a scaled survival function associated with tracer residence in the tissue. Nonparametric inference for the residue, a deconvolution problem, provides a novel approach to kinetic analysis—critically one that is not reliant on specific compartmental modeling assumptions. A practical computational technique based on regularized cubic B-spline approximation of the residence time distribution is proposed. Nonparametric residue analysis allows formal statistical evaluation of specific parametric models to be considered. This analysis needs to properly account for the increased flexibility of the nonparametric estimator. The methodology is illustrated using data from a series of cerebral studies with PET and fluorodeoxyglucose (FDG) in normal subjects. Comparisons are made between key functionals of the residue, tracer flux, flow, etc., resulting from a parametric (the standard two-compartment of Phelps et al. 1979) and a nonparametric analysis. Strong statistical evidence against the compartment model is found. Primarily these differences relate to the representation of the early temporal structure of the tracer residence—largely a function of the vascular supply network. There are convincing physiological arguments against the representations implied by the compartmental approach but this is the first time that a rigorous statistical confirmation using PET data has been reported. The compartmental analysis produces suspect values for flow but, notably, the impact on the metabolic flux, though statistically significant, is limited to deviations on the order of 3%–4%. The general

  11. A study of commercially-available polyethylene terephthalate (PET) and polycarbonate as nuclear track detector materials

    NASA Astrophysics Data System (ADS)

    Espinosa, G.; Golzarri, J. I.; Vazquez-Lopez, C.; Trejo, R.; Lopez, K.; Rickards, J.

    2014-07-01

    In the study of the sensitivity of materials to be used as nuclear track detectors, it was found that commercial polyethylene terephthalate (PET) from Ciel® water bottles, commercial roof cover polycarbonate, and recycled packaging strips (recycled PET), can be used as nuclear track detectors. These three commercial materials present nuclear tracks when bombarded by 2.27 MeV nitrogen ions produced in a Pelletron particle accelerator, and by fission fragments from a 252Cf source (79.4 and 103.8 MeV), after a chemical etching with a 6.25M KOH solution, or with a 6.25M KOH solution with 20% methanol, both solutions at 60±1°C. As an example, the nitrogen ions deposit approximately 1 keV/nm in the form of ionization and excitation at the surface of PET, as calculated using the SRIM code. The fission fragments deposit up to 9 keV/nm at the surface, in both cases generating sufficient free radicals to initiate the track formation process. However, 5 MeV alpha particles, typical of radon (222Rn) emissions, deposit only 0.12 keV/nm, do not present tracks after the chemical etching process. This valuable information could be very useful for further studies of new materials in nuclear track methodology.

  12. RADIOSYNTHESIS AND CHIRAL SEPARATION OF C-11 LABELED BORONOPHENYLALANINE FOR BNCT STUDIES WITH PET.

    SciTech Connect

    STUDENOV,A.; DING,Y.S.; FERRIERI,R.; MIURA,M.; CODERRE,J.; FOWLER,J.S.

    2001-06-10

    The overall goal of this research is to combine two powerful methodologies, boron neutron capture therapy (BNCT) and positron emission tomography (PET), to advance the treatment of patients with malignant brain tumors. BNCT is a method to selectively deliver lethal alpha radiation to a tumor through the administration of a boron-10 containing drug, and irradiation of the tumor area with neutrons [1]. L-Boronophenylalanine (L-{sup 10}BPA) is a boron-10 containing amino acid currently used for BNCT [4]. In order to perform neutron dosimetry, it is essential to determine tumor boron-10 levels in the course of the therapy. PET has the ability to measure the concentration of drugs labeled with positron-emitting isotopes in the human body [2]. 2-Fluoro-4-borono-phenylalanine ([{sup 18}F]FBPA) has been labeled as a surrogate marker for L-BPA for pharmacokinetic studies in brain tumor patients [3]. However, [{sup 18}F]FBPA is a different drug than L-BPA because it contains a fluorine atom. We report here the labeling of L-BPA with C-11, which has the advantage of being chemically identical to L-BPA. Carbon-11 is also well suited to repeated studies within the same PET scanning session.

  13. Accelerated acquisition of tagged MRI for cardiac motion correction in simultaneous PET-MR: Phantom and patient studies

    SciTech Connect

    Huang, Chuan; Petibon, Yoann; Ouyang, Jinsong; El Fakhri, Georges; Reese, Timothy G.; Ahlman, Mark A.; Bluemke, David A.

    2015-02-15

    relatively accurate motion fields and yield tMR-based motion corrected PET images with similar image quality as those reconstructed using fully sampled tMR data. The reduction of tMR acquisition time makes it more compatible with routine clinical cardiac PET-MR studies.

  14. The Effect of Endogenous Adenosine on Neuronal Activity in Rats: An FDG PET Study

    PubMed Central

    Paul, Soumen; Zhang, Dali; Mzengeza, Shadreck; Ko, Ji Hyun

    2016-01-01

    ABSTRACT 2–18F‐fluorodeoxy‐D‐glucose (FDG) is a glucose analog that is taken up by cells and phosphorylated. The amount of FDG accumulated by cells is a measure of the rate of glycolysis, which reflects cellular activity. As the levels and actions of the neuromodulator adenosine are dynamically regulated by neuronal activity, this study was designed to test whether endogenous adenosine affects tissue accumulation of FDG as assessed by positron emission tomography (PET) or by postmortem analysis of tissue radioactivity. Rats were given an intraperitoneal injection of the adenosine A1 receptor antagonist 8‐cyclopentyl‐1,3‐dipropyl‐xanthine (DPCPX, 3 mg/kg), the adenosine kinase inhibitor ABT‐702 (3 mg/kg), or vehicle 10 minutes prior to an intravenous injection of FDG (15.4 ± 0.7 MBq per rat). Rats were then subjected to a 15 minute static PET scan. Reconstructed images were normalized to FDG PET template for rats and standard uptake values (SUVs) were calculated. To examine the regional effect of active treatment compared to vehicle, statistical parametric mapping analysis was performed. Whole‐brain FDG uptake was not affected by drug treatment. Significant regional hypometabolism was detected, particularly in cerebellum, of DPCPX‐ and ABT‐702 treated rats, relative to vehicle‐treated rats. Thus, endogenous adenosine can affect FDG accumulation although this effect is modest in quiescent rats. PMID:27082948

  15. A Study on the Basic Criteria for Selecting Heterogeneity Parameters of F18-FDG PET Images

    PubMed Central

    Forgacs, Attila; Pall Jonsson, Hermann; Dahlbom, Magnus; Daver, Freddie; D. DiFranco, Matthew; Opposits, Gabor; K. Krizsan, Aron; Garai, Ildiko; Czernin, Johannes; Varga, Jozsef; Tron, Lajos; Balkay, Laszlo

    2016-01-01

    Textural analysis might give new insights into the quantitative characterization of metabolically active tumors. More than thirty textural parameters have been investigated in former F18-FDG studies already. The purpose of the paper is to declare basic requirements as a selection strategy to identify the most appropriate heterogeneity parameters to measure textural features. Our predefined requirements were: a reliable heterogeneity parameter has to be volume independent, reproducible, and suitable for expressing quantitatively the degree of heterogeneity. Based on this criteria, we compared various suggested measures of homogeneity. A homogeneous cylindrical phantom was measured on three different PET/CT scanners using the commonly used protocol. In addition, a custom-made inhomogeneous tumor insert placed into the NEMA image quality phantom was imaged with a set of acquisition times and several different reconstruction protocols. PET data of 65 patients with proven lung lesions were retrospectively analyzed as well. Four heterogeneity parameters out of 27 were found as the most attractive ones to characterize the textural properties of metabolically active tumors in FDG PET images. These four parameters included Entropy, Contrast, Correlation, and Coefficient of Variation. These parameters were independent of delineated tumor volume (bigger than 25–30 ml), provided reproducible values (relative standard deviation< 10%), and showed high sensitivity to changes in heterogeneity. Phantom measurements are a viable way to test the reliability of heterogeneity parameters that would be of interest to nuclear imaging clinicians. PMID:27736888

  16. Diseases in pet guinea pigs: a retrospective study in 1000 animals.

    PubMed

    Minarikova, A; Hauptman, K; Jeklova, E; Knotek, Z; Jekl, V

    2015-08-22

    Guinea pigs are commonly kept as pet animals; however, information about particular disease prevalence is lacking. The objective of this article was to present disease prevalence in 1000 pet guinea pigs from private owners divided into three age groups: under two years; between two and five years; and above five years. Medical records of guinea pigs (Cavia aperea f. porcellus) that were presented to the authors' clinic in the period from January 2008 to August 2013 were reviewed. The most commonly diagnosed disease in guinea pigs was dental disease (36.3 per cent), with higher prevalence in the middle age group (P<0.001) and in males (P<0.001) rather than females. Skin problems were seen as the second most common disease (33.3 per cent), with higher prevalence in male guinea pigs (P<0.001) and in animals younger than two years (P<0.001). Ovarian cystic disease was the third most commonly seen disorder, with higher prevalence in females older than two years (P<0.001). Other common health disorders included gastrointestinal stasis, heterotopic ciliary body calcifications, fatty eye and tibiofemoral osteoarthritis. Only 81 guinea pigs from a total of 1000 animals were healthy. This is the first study to describe the disease prevalence in three age groups of pet guinea pigs.

  17. Global cerebral glucose utilization is independent of brain size: a PET Study

    SciTech Connect

    Hatazawa, J.; Brooks, R.A.; Di Chiro, G.; Campbell, G.

    1987-07-01

    Cerebral glucose metabolic rates were measured in 80 normal volunteers by studying the uptake of (/sup 18/F)deoxyglucose with positron emission tomography (PET), using three PET scanners. A brain size index was determined from the PET images using either length-width or area measurements of the brain at a standard level. There was a significant negative correlation between glucose metabolism per unit volume and brain size that was well described by an inverse functional relationship, implying that the total glucose consumption of the brain is approximately constant. Analyses of men versus women revealed no sex differences in total brain glucose consumption, although there were differences in brain size and in glucose metabolism per unit volume. Similarly there was no significant correlation of total brain glucose consumption with age. The variation with brain size accounted for 46% of the logarithmic intersubject metabolic variance. When comparing global metabolic rates in different subjects, multiplying the rates by a brain size index has the dual advantage of correcting for differences related to brain size and correcting for differences in cerebrospinal fluid volume.

  18. A Study on the Basic Criteria for Selecting Heterogeneity Parameters of F18-FDG PET Images.

    PubMed

    Forgacs, Attila; Pall Jonsson, Hermann; Dahlbom, Magnus; Daver, Freddie; D DiFranco, Matthew; Opposits, Gabor; K Krizsan, Aron; Garai, Ildiko; Czernin, Johannes; Varga, Jozsef; Tron, Lajos; Balkay, Laszlo

    2016-01-01

    Textural analysis might give new insights into the quantitative characterization of metabolically active tumors. More than thirty textural parameters have been investigated in former F18-FDG studies already. The purpose of the paper is to declare basic requirements as a selection strategy to identify the most appropriate heterogeneity parameters to measure textural features. Our predefined requirements were: a reliable heterogeneity parameter has to be volume independent, reproducible, and suitable for expressing quantitatively the degree of heterogeneity. Based on this criteria, we compared various suggested measures of homogeneity. A homogeneous cylindrical phantom was measured on three different PET/CT scanners using the commonly used protocol. In addition, a custom-made inhomogeneous tumor insert placed into the NEMA image quality phantom was imaged with a set of acquisition times and several different reconstruction protocols. PET data of 65 patients with proven lung lesions were retrospectively analyzed as well. Four heterogeneity parameters out of 27 were found as the most attractive ones to characterize the textural properties of metabolically active tumors in FDG PET images. These four parameters included Entropy, Contrast, Correlation, and Coefficient of Variation. These parameters were independent of delineated tumor volume (bigger than 25-30 ml), provided reproducible values (relative standard deviation< 10%), and showed high sensitivity to changes in heterogeneity. Phantom measurements are a viable way to test the reliability of heterogeneity parameters that would be of interest to nuclear imaging clinicians.

  19. Quality control for quantitative multicenter whole-body PET/MR studies: A NEMA image quality phantom study with three current PET/MR systems

    SciTech Connect

    Boellaard, Ronald; Rausch, Ivo; Beyer, Thomas; Delso, Gaspar; Yaqub, Maqsood; Quick, Harald H.; Sattler, Bernhard

    2015-10-15

    Purpose: Integrated positron emission tomography/magnetic resonance (PET/MR) systems derive the PET attenuation correction (AC) from dedicated MR sequences. While MR-AC performs reasonably well in clinical patient imaging, it may fail for phantom-based quality control (QC). The authors assess the applicability of different protocols for PET QC in multicenter PET/MR imaging. Methods: The National Electrical Manufacturers Association NU 2 2007 image quality phantom was imaged on three combined PET/MR systems: a Philips Ingenuity TF PET/MR, a Siemens Biograph mMR, and a GE SIGNA PET/MR (prototype) system. The phantom was filled according to the EANM FDG-PET/CT guideline 1.0 and scanned for 5 min over 1 bed. Two MR-AC imaging protocols were tested: standard clinical procedures and a dedicated protocol for phantom tests. Depending on the system, the dedicated phantom protocol employs a two-class (water and air) segmentation of the MR data or a CT-based template. Differences in attenuation- and SUV recovery coefficients (RC) are reported. PET/CT-based simulations were performed to simulate the various artifacts seen in the AC maps (μ-map) and their impact on the accuracy of phantom-based QC. Results: Clinical MR-AC protocols caused substantial errors and artifacts in the AC maps, resulting in underestimations of the reconstructed PET activity of up to 27%, depending on the PET/MR system. Using dedicated phantom MR-AC protocols, PET bias was reduced to −8%. Mean and max SUV RC met EARL multicenter PET performance specifications for most contrast objects, but only when using the dedicated phantom protocol. Simulations confirmed the bias in experimental data to be caused by incorrect AC maps resulting from the use of clinical MR-AC protocols. Conclusions: Phantom-based quality control of PET/MR systems in a multicenter, multivendor setting may be performed with sufficient accuracy, but only when dedicated phantom acquisition and processing protocols are used for

  20. First in situ TOF-PET study using digital photon counters for proton range verification

    NASA Astrophysics Data System (ADS)

    Cambraia Lopes, P.; Bauer, J.; Salomon, A.; Rinaldi, I.; Tabacchini, V.; Tessonnier, T.; Crespo, P.; Parodi, K.; Schaart, D. R.

    2016-08-01

    Positron emission tomography (PET) is the imaging modality most extensively tested for treatment monitoring in particle therapy. Optimal use of PET in proton therapy requires in situ acquisition of the relatively strong 15O signal due to its relatively short half-life (~2 min) and high oxygen content in biological tissues, enabling shorter scans that are less sensitive to biological washout. This paper presents the first performance tests of a scaled-down in situ time-of-flight (TOF) PET system based on digital photon counters (DPCs) coupled to Cerium-doped Lutetium Yttrium Silicate (LYSO:Ce) crystals, providing quantitative results representative of a dual-head tomograph that complies with spatial constraints typically encountered in clinical practice (2  ×  50°, of 360°, transaxial angular acceptance). The proton-induced activity inside polymethylmethacrylate (PMMA) and polyethylene (PE) phantoms was acquired within beam pauses (in-beam) and immediately after irradiation by an actively-delivered synchrotron pencil-beam, with clinically relevant 125.67 MeV/u, 4.6  ×  108 protons s-1, and 1010 total protons. 3D activity maps reconstructed with and without TOF information are compared to FLUKA simulations, demonstrating the benefit of TOF-PET to reduce limited-angle artefacts using a 382 ps full width at half maximum coincidence resolving time. The time-dependent contributions from different radionuclides to the total count-rate are investigated. We furthermore study the impact of the acquisition time window on the laterally integrated activity depth-profiles, with emphasis on 2 min acquisitions starting at different time points. The results depend on phantom composition and reflect the differences in relative contributions from the radionuclides originating from carbon and oxygen. We observe very good agreement between the shapes of the simulated and measured activity depth-profiles for post-beam protocols. However, our results also

  1. First in situ TOF-PET study using digital photon counters for proton range verification.

    PubMed

    Cambraia Lopes, P; Bauer, J; Salomon, A; Rinaldi, I; Tabacchini, V; Tessonnier, T; Crespo, P; Parodi, K; Schaart, D R

    2016-08-21

    Positron emission tomography (PET) is the imaging modality most extensively tested for treatment monitoring in particle therapy. Optimal use of PET in proton therapy requires in situ acquisition of the relatively strong (15)O signal due to its relatively short half-life (~2 min) and high oxygen content in biological tissues, enabling shorter scans that are less sensitive to biological washout. This paper presents the first performance tests of a scaled-down in situ time-of-flight (TOF) PET system based on digital photon counters (DPCs) coupled to Cerium-doped Lutetium Yttrium Silicate (LYSO:Ce) crystals, providing quantitative results representative of a dual-head tomograph that complies with spatial constraints typically encountered in clinical practice (2  ×  50°, of 360°, transaxial angular acceptance). The proton-induced activity inside polymethylmethacrylate (PMMA) and polyethylene (PE) phantoms was acquired within beam pauses (in-beam) and immediately after irradiation by an actively-delivered synchrotron pencil-beam, with clinically relevant 125.67 MeV/u, 4.6  ×  10(8) protons s(-1), and 10(10) total protons. 3D activity maps reconstructed with and without TOF information are compared to FLUKA simulations, demonstrating the benefit of TOF-PET to reduce limited-angle artefacts using a 382 ps full width at half maximum coincidence resolving time. The time-dependent contributions from different radionuclides to the total count-rate are investigated. We furthermore study the impact of the acquisition time window on the laterally integrated activity depth-profiles, with emphasis on 2 min acquisitions starting at different time points. The results depend on phantom composition and reflect the differences in relative contributions from the radionuclides originating from carbon and oxygen. We observe very good agreement between the shapes of the simulated and measured activity depth-profiles for post-beam protocols. However, our results

  2. Specification and estimation of sources of bias affecting neurological studies in PET/MR with an anatomical brain phantom

    NASA Astrophysics Data System (ADS)

    Teuho, J.; Johansson, J.; Linden, J.; Saunavaara, V.; Tolvanen, T.; Teräs, M.

    2014-01-01

    Selection of reconstruction parameters has an effect on the image quantification in PET, with an additional contribution from a scanner-specific attenuation correction method. For achieving comparable results in inter- and intra-center comparisons, any existing quantitative differences should be identified and compensated for. In this study, a comparison between PET, PET/CT and PET/MR is performed by using an anatomical brain phantom, to identify and measure the amount of bias caused due to differences in reconstruction and attenuation correction methods especially in PET/MR. Differences were estimated by using visual, qualitative and quantitative analysis. The qualitative analysis consisted of a line profile analysis for measuring the reproduction of anatomical structures and the contribution of the amount of iterations to image contrast. The quantitative analysis consisted of measurement and comparison of 10 anatomical VOIs, where the HRRT was considered as the reference. All scanners reproduced the main anatomical structures of the phantom adequately, although the image contrast on the PET/MR was inferior when using a default clinical brain protocol. Image contrast was improved by increasing the amount of iterations from 2 to 5 while using 33 subsets. Furthermore, a PET/MR-specific bias was detected, which resulted in underestimation of the activity values in anatomical structures closest to the skull, due to the MR-derived attenuation map that ignores the bone. Thus, further improvements for the PET/MR reconstruction and attenuation correction could be achieved by optimization of RAMLA-specific reconstruction parameters and implementation of bone to the attenuation template.

  3. Experimental Study of Sliding Friction for PET Track Membranes

    NASA Astrophysics Data System (ADS)

    Filippova, E. O.; Filippov, A. V.; Shulepov, I. A.

    2016-04-01

    The article is presented results of a study of the process for a dry friction metal-polymer couple on scheme disc-finger. Track membrane from polyethylene terephthalate was a research material. Membrane had pores with 0.4 and 0.8 μm diameters. The effect of the sliding velocity for membranes with pores of 0.8 microns was determined. Research was shown that increasing pore’s diameter caused a reduction of the friction coefficient and downturn its magnitude vibrations. The study showed that track membrane have adequate resistance to wear and can be successfully used in surgical procedures in the layers of the cornea.

  4. Pet Health

    MedlinePlus

    ... Before getting a pet, think carefully about which animal is best for your family. What is each ... Does anyone have pet allergies? What type of animal suits your lifestyle and budget? Once you own ...

  5. The South Carolina PET Study: Teachers' Perceptions and Student Achievement.

    ERIC Educational Resources Information Center

    Mandeville, Garrett K.; Rivers, Janelle L.

    1991-01-01

    A series of three related studies provided evaluative information concerning the Madeline Hunter model of the Program for Effective Teaching implementation in South Carolina. Primary results showed that training was well received by the teachers, that follow-up coaching was limited in quantity and not always consistent with Hunters's…

  6. Derivation of input function from FDG-PET studies in small hearts

    SciTech Connect

    Wu, Hsiao-Ming; Huang, Sung-Cheng; Allada, V.

    1996-10-01

    The extraction of pure arterial time-activity curves (TACs) from dynamic PET images of a small animal heart using factor analysis of dynamic structures (FADS) was found to be unsuccessful due to the small size of the cardiac chamber that causes extensive mixture of TACs of different structures. In this study, we used digital phantoms of the left ventricle (LV cavity size: 1-2 cm) and small monkey (LV cavity size: {approx} 2 cm) dynamic FDG PET studies to evaluate FADS for extracting the pure blood-pool TACs by adding a single blood sample (taken at a late scan time) constraint. In the digital phantom studies, spillover fractions in the extracted blood-pool TACs using FADS without a blood sample constraint (FADS(-)) and with a blood sample constraint (FADS(+)) were 3%-91% and < 3%, respectively. In the monkey studies (n = 4), FADS(+) extracted blood-pool TACs matched well with the arterialized well counter measurements (% differences of curve integration: FADS(-) < 82%; FADS(+) < 9%). The microparameters (K*{sub 1}, k*{sub 2}, k*{sub 3}, k*{sub 4}) and macroparameters (K{sub nlr}), obtained from the FADS(+) blood-pool TACs, were similar to those obtained from plasma samples in a three-compartment model fitting (% differences of K{sub nlr}: phantom studies < 5%; monkey studies < 9%). The FADS technique with a single-blood sample has the potential to extract the pure blood-pool TACs directly from dynamic PET images of a small animal without multiple blood sampling, region of interest definition or spillover correction. 14 refs., 5 figs., 3 tabs.

  7. A comparative study between evaluation methods for quality control procedures for determining the accuracy of PET/CT registration

    NASA Astrophysics Data System (ADS)

    Cha, Min Kyoung; Ko, Hyun Soo; Jung, Woo Young; Ryu, Jae Kwang; Choe, Bo-Young

    2015-08-01

    The Accuracy of registration between positron emission tomography (PET) and computed tomography (CT) images is one of the important factors for reliable diagnosis in PET/CT examinations. Although quality control (QC) for checking alignment of PET and CT images should be performed periodically, the procedures have not been fully established. The aim of this study is to determine optimal quality control (QC) procedures that can be performed at the user level to ensure the accuracy of PET/CT registration. Two phantoms were used to carry out this study: the American college of Radiology (ACR)-approved PET phantom and National Electrical Manufacturers Association (NEMA) International Electrotechnical Commission (IEC) body phantom, containing fillable spheres. All PET/CT images were acquired on a Biograph TruePoint 40 PET/CT scanner using routine protocols. To measure registration error, the spatial coordinates of the estimated centers of the target slice (spheres) was calculated independently for the PET and the CT images in two ways. We compared the images from the ACR-approved PET phantom to that from the NEMA IEC body phantom. Also, we measured the total time required from phantom preparation to image analysis. The first analysis method showed a total difference of 0.636 ± 0.11 mm for the largest hot sphere and 0.198 ± 0.09 mm for the largest cold sphere in the case of the ACR-approved PET phantom. In the NEMA IEC body phantom, the total difference was 3.720 ± 0.97 mm for the largest hot sphere and 4.800 ± 0.85 mm for the largest cold sphere. The second analysis method showed that the differences in the x location at the line profile of the lesion on PET and CT were (1.33, 1.33) mm for a bone lesion, (-1.26, -1.33) mm for an air lesion and (-1.67, -1.60) mm for a hot sphere lesion for the ACR-approved PET phantom. For the NEMA IEC body phantom, the differences in the x location at the line profile of the lesion on PET and CT were (-1.33, 4.00) mm for the air

  8. ISPMER: Integrated system for combined PET, MRI, and electrophysiological recording in somatosensory studies in rats

    NASA Astrophysics Data System (ADS)

    Shih, Yen-Yu; Chen, You-Yin; Chen, Jyh-Cheng; Chang, Chen; Jaw, Fu-Shan

    2007-10-01

    The present study developed an integrated system for use in combined PET, MRI, and electrophysiological recording in somatosensory studies in rats, called ISPMER. A stereotaxic frame was designed for animal positioning that could be used in all three measurement modalities, and its dimensions complied with the gold standard of the Paxinos and Watson rat brain atlas. A graphical user interface was developed for analyzing the data using several signal processing algorithms. This integrated system provides a novel interface for the recording and processing of three-dimensional neuronal signals in three modalities.

  9. Estimated radiation dose to the newborn in FDG-PET studies

    SciTech Connect

    Ruotsalainen, U.; Suhonen-Polvi, H.; Eronen, E.; Kinnala, A.

    1996-02-01

    The aim of this study was to estimate the radiation dose due to intravenous injection of 2-[{sup 18}F]fluoro-2-deoxy-D-glucose (FDG) for infants studied with PET. The radioactivity concentration in the brain and bladder content was measured with PET to determine the cumulated activity in these organs in 21 infant FDG studies. The individual organ masses were estimated according to the whole-body and brain masses, and they were used to calculate the absorbed dose per unit cumulated activity (S values). For organs other than brain and bladder, the cumulated activity was defined from adult studies. For each individual patient, the absorbed dose to the brain, bladder wall and selected organs were calculated. An estimation of the effective dose was determined. Whole-body distribution of FDG in the infants differed from adults: a greater proportion of the injected activity accumulated into the brain (9% versus 7%) and less was excreted to urine (7% versus 20% respectively). The measured cumulated activity in the brain was 0.25 MBq {center_dot} h/MBq and in the bladder content 0.04 MBq {center_dot}h/MBq with a large individual variation in latter. The calculated absorbed dose was 0.24 mGy/MBq to the brain and 1.03 mGy/MBq to the bladder wall. The estimated effective dose was 0.43 mSv/MBq. The dose to the bladder wall was lower in infants as compared to adults with ordinary amounts of injected activity. The greater amount of activity remaining in the body may increase the dose to other organs. The effective dose was lower compared to adults and conventional nuclear medicine studies of infants. PET can be a valuable tool in pediatric nuclear medicine because of good resolution images, sensitive radiation measurement and a variety of tracers labeled with short-lived isotopes. 27 refs., 4 figs., 2 tabs.

  10. Simulation study of PET detector limitations using continuous crystals

    NASA Astrophysics Data System (ADS)

    Cabello, Jorge; Etxebeste, Ane; Llosá, Gabriela; Ziegler, Sibylle I.

    2015-05-01

    Continuous crystals can potentially obtain better intrinsic detector spatial resolution compared to pixelated crystals, additionally providing depth of interaction (DoI) information from the light distribution. To achieve high performance sophisticated interaction position estimation algorithms are required. There are a number of algorithms in the literature applied to different crystal dimensions and different photodetectors. However, the different crystal properties and photodetector array geometries have an impact on the algorithm performance. In this work we analysed, through Monte Carlo simulations, different combinations of realistic crystals and photodetector parameters to better understand their influence on the interaction position estimation accuracy, with special emphasis on the DoI. We used an interaction position estimation based on an analytical model for the present work. Different photodetector granulation schemes were investigated. The impact of the number of crystal faces readout by photodetectors was studied by simulating scenarios with one and two photodetectors. In addition, crystals with different levels of reflection and aspect ratios (AR) were analysed. Results showed that the impact of photodetector granularity is mainly shown near the edges and specially in the corners of the crystal. The resulting intrinsic spatial resolution near the centre with a 12 × 12 × 10 mm3 LYSO crystal was 0.7-0.9 mm, while the average spatial resolution calculated on the entire crystal was 0.77 ± 0.18 mm for all the simulated geometries with one and two photodetectors. Having front and back photodetectors reduced the DoI bias (Euclidean distance between estimated DoI and real DoI) and improved the transversal resolution near the corners. In scenarios with one photodetector, small AR resulted in DoI inaccuracies for absorbed events at the entrance of the crystal. These inaccuracies were slightly reduced either by increasing the AR or reducing the amount of

  11. The ADNI PET Core: 2015

    PubMed Central

    Jagust, William J.; Landau, Susan M.; Koeppe, Robert A.; Reiman, Eric M.; Chen, Kewei; Mathis, Chester A.; Price, Julie C.; Foster, Norman L.; Wang, Angela Y.

    2015-01-01

    INTRODUCTION This paper reviews the work done in the ADNI PET core over the past 5 years, largely concerning techniques, methods, and results related to amyloid imaging in ADNI. METHODS The PET Core has utilized [18F]florbetapir routinely on ADNI participants, with over 1600 scans available for download. Four different laboratories are involved in data analysis, and have examined factors such as longitudinal florbetapir analysis, use of FDG-PET in clinical trials, and relationships between different biomarkers and cognition. RESULTS Converging evidence from the PET Core has indicated that cross-sectional and longitudinal florbetapir analyses require different reference regions. Studies have also examined the relationship between florbetapir data obtained immediately after injection, which reflects perfusion, and FDG-PET results. Finally, standardization has included the translation of florbetapir PET data to a centiloid scale. CONCLUSION The PET Core has demonstrated a variety of methods for standardization of biomarkers such as florbetapir PET in a multicenter setting. PMID:26194311

  12. Brain metabolic changes in Hodgkin disease patients following diagnosis and during the disease course: An 18F-FDG PET/CT study

    PubMed Central

    CHIARAVALLOTI, AGOSTINO; PAGANI, MARCO; CANTONETTI, MARIA; DI PIETRO, BARBARA; TAVOLOZZA, MARIO; TRAVASCIO, LAURA; DI BIAGIO, DANIELE; DANIELI, ROBERTA; SCHILLACI, ORAZIO

    2015-01-01

    The aim of the present study was to investigate brain glucose metabolism in patients with Hodgkin disease (HD) after diagnosis and during chemotherapy treatment. Following the administration of first-line doxorubicin, bleomycin, vinblastine and dacarbazine (ABVD) chemotherapy, 74 HD patients underwent 18F-fluoro-2-deoxy-D-glucose (18F-FDG) positron emission tomography (PET)/computed tomography brain scans, both baseline (PET0) and interim (PET2) at the Department of Biomedicine and Prevention, University of Rome Tor Vergata (Rome, Italy). Fifty-seven patients were further evaluated 15±6 days after four additional cycles (PET6). Furthermore, a control group (CG) of 40 chemotherapy-naïve subjects was enrolled. Differences in brain 18F-FDG uptake between the CG, PET0, PET2 and PET6 scans were analyzed using statistical parametric mapping. Compared with the PET0 and CG scans, the PET2 scan demonstrated a higher metabolic activity in Brodmann area (BA) 39, and a metabolic reduction in BA 11 bilaterally and in left BA 32. All of these changes disappeared at PET6. The results of the present study indicate that ABVD chemotherapy has a limited impact on brain metabolism. PMID:25621038

  13. Non-Gaussian smoothing of low-count transmission scans for PET whole-body studies.

    PubMed

    Pawitan, Y; Bettinardi, V; Teräs, M

    2005-01-01

    A non-Gaussian smoothing (NGS) technique is developed for filtering low count transmission (TR) data to be used for attenuation correction (AC) of positron emission tomography (PET) studies. The method is based on a statistical technique known as the generalized linear mixed model that allows an inverse link function that avoids the inversion of the observed transmission data. The NGS technique has been implemented in the sinogram domain in one-dimensional mode as angle-by-angle computation. To make it adaptive as a function of the TR count statistics we also develop and validate an objective procedure to choose an optimal smoothing parameter. The technique is assessed using experimental phantoms, simulating PET whole-body studies, and applied to real patient data. Different experimental conditions, in terms of TR scan time (from 1 h to 1 min), covering a wide range of TR counting statistic are considered. The method is evaluated, in terms of mean squared error (MSE), by comparing pixel by pixel the distribution for high counts statistics TR scan (1 h) with the corresponding counts distribution for low count statistics TR scans (e.g., 1 min). The smoothing parameter selection is shown to have high efficiency, meaning that it tends to choose values close to the unknown best value. Furthermore, the counts distribution of emission (EM) images, reconstructed with AC generated using low count TR data (1 min), are within 5% of the corresponding EM images reconstructed with AC generated using the high count statistics TR data (1 h). An application to a real patient whole-body PET study shows the promise of the technique for routine use.

  14. Study of a high-resolution PET system using a Silicon detector probe

    NASA Astrophysics Data System (ADS)

    Brzeziński, K.; Oliver, J. F.; Gillam, J.; Rafecas, M.

    2014-10-01

    A high-resolution silicon detector probe, in coincidence with a conventional PET scanner, is expected to provide images of higher quality than those achievable using the scanner alone. Spatial resolution should improve due to the finer pixelization of the probe detector, while increased sensitivity in the probe vicinity is expected to decrease noise. A PET-probe prototype is being developed utilizing this principle. The system includes a probe consisting of ten layers of silicon detectors, each a 80 × 52 array of 1 × 1 × 1 mm3 pixels, to be operated in coincidence with a modern clinical PET scanner. Detailed simulation studies of this system have been performed to assess the effect of the additional probe information on the quality of the reconstructed images. A grid of point sources was simulated to study the contribution of the probe to the system resolution at different locations over the field of view (FOV). A resolution phantom was used to demonstrate the effect on image resolution for two probe positions. A homogeneous source distribution with hot and cold regions was used to demonstrate that the localized improvement in resolution does not come at the expense of the overall quality of the image. Since the improvement is constrained to an area close to the probe, breast imaging is proposed as a potential application for the novel geometry. In this sense, a simplified breast phantom, adjacent to heart and torso compartments, was simulated and the effect of the probe on lesion detectability, through measurements of the local contrast recovery coefficient-to-noise ratio (CNR), was observed. The list-mode ML-EM algorithm was used for image reconstruction in all cases. As expected, the point spread function of the PET-probe system was found to be non-isotropic and vary with position, offering improvement in specific regions. Increase in resolution, of factors of up to 2, was observed in the region close to the probe. Images of the resolution phantom showed

  15. Minipigs and potbellied pigs as pets in the veterinary practice--a retrospective study.

    PubMed

    Sipos, W; Schmoll, F; Stumpf, I

    2007-11-01

    Minipigs have become popular pets in recent years. Therefore, an increasing number of veterinarians are being challenged by specific problems of these animals. This retrospective study gives an overview on the diagnoses and therapeutic interventions of the patients submitted to the clinic for swine at the University of Veterinary Medicine Vienna during the last 6 years (n=48). Most frequently, colic symptoms of the gastro-intestinal tract (n=12) and orthopaedic locomotion disorders (n=10), mainly due to accidents or long claws, could be observed, followed by urogenital tract and skin disorders (n=4 each). Therapeutic interventions are discussed with regard to medical aspects as well as statutory provisions.

  16. Altered cerebral glucose metabolism in an animal model of diabetes insipidus: a micro-PET study.

    PubMed

    Idbaih, Ahmed; Burlet, Arlette; Adle-Biassette, Homa; Boisgard, Raphaël; Coulon, Christine; Paris, Sophie; Marie, Yannick; Donadieu, Jean; Hoang-Xuan, Khê; Ribeiro, Maria-Joao

    2007-07-16

    The Brattleboro rat is an animal model of genetically induced central diabetes insipidus. These rats show cognitive and behavioral disorders, but no neurodegenerative disease has been observed. We studied brain glucose uptake, a marker of neuronal activity, in 6 Brattleboro rats, in comparison with 6 matched Long-Evans (LE) control rats. A group of 3 Brattleboro rats and 3 Long-Evans rats was studied in vivo and another group of animals was studied ex vivo. In vivo studies were performed using fluorodeoxyglucose labeled with fluorine 18 ((18)F-FDG) and a dedicated small-animal PET device. At 30 min and 60 min p.i., (18)F-FDG uptake was significantly higher in the frontal cortex, striatum, thalamus and cerebellum of Brattleboro rats than in LE rats when measured by PET in vivo (p<0.05), but only a trend towards higher values was found ex vivo. Our results show for the first time that brain glucose metabolism is modified in Brattleboro rats. This altered brain glucose metabolism in Brattleboro rats may be related to the observed cognitive and behavioral disorders. Functional analyses of brain metabolism are promising to investigate cognitive behavioral disturbances observed in Brattleboro rats and their link to diabetes insipidus.

  17. Response-adapted therapy for aggressive non-Hodgkin's lymphomas based on early [18F] FDG-PET scanning: ECOG-ACRIN Cancer Research Group study (E3404).

    PubMed

    Swinnen, Lode J; Li, Hailun; Quon, Andrew; Gascoyne, Randy; Hong, Fangxin; Ranheim, Erik A; Habermann, Thomas M; Kahl, Brad S; Horning, Sandra J; Advani, Ranjana H

    2015-07-01

    A persistently positive positron emission tomography (PET) scan during therapy for diffuse large B-cell lymphoma (DLBCL) is predictive of treatment failure. A response-adapted strategy consisting of an early treatment change to four cycles of R-ICE (rituximab, ifosfamide, carboplatin, etoposide) was studied in the Eastern Cooperative Oncology Group E3404 trial. Previously untreated patients with DLBCL stage III, IV, or bulky II, were eligible. PET scan was performed after three cycles of R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, prednisone) and scored as positive or negative by central review during the fourth cycle. PET-positive patients received four cycles of R-ICE, PET-negative patients received two more cycles of R-CHOP. A ≥ 45% 2-year progression-free survival (PFS) for mid-treatment PET-positive patients was viewed as promising. Of 74 patients, 16% were PET positive, 79% negative. The PET positivity rate was much lower than the 33% expected. Two-year PFS was 70%; 42% [90% confidence interval (CI), 19-63%] for PET-positives and 76% (90% CI 65-84%) for PET-negatives. Three-year overall survival (OS) was 69% (90% CI 43-85%) and 93% (90% CI 86-97%) for PET-positive and -negative cases, respectively. The 2-year PFS for mid-treatment PET-positive patients intensified to R-ICE was 42%, with a wide confidence interval due to the low proportion of positive mid-treatment PET scans. Treatment modification based on early PET scanning should remain confined to clinical trials.

  18. Study and optimization of positioning algorithms for monolithic PET detectors blocks

    NASA Astrophysics Data System (ADS)

    Garcia de Acilu, P.; Sarasola, I.; Canadas, M.; Cuerdo, R.; Rato Mendes, P.; Romero, L.; Willmott, C.

    2012-06-01

    We are developing a PET insert for existing MRI equipment to be used in clinical PET/MR studies of the human brain. The proposed scanner is based on annihilation gamma detection with monolithic blocks of cerium-doped lutetium yttrium orthosilicate (LYSO:Ce) coupled to magnetically-compatible avalanche photodiodes (APD) matrices. The light distribution generated on the LYSO:Ce block provides the impinging position of the 511 keV photons by means of a positioning algorithm. Several positioning methods, from the simplest Anger Logic to more sophisticate supervised-learning Neural Networks (NN), can be implemented to extract the incidence position of gammas directly from the APD signals. Finally, an optimal method based on a two-step Feed-Forward Neural Network has been selected. It allows us to reach a resolution at detector level of 2 mm, and acquire images of point sources using a first BrainPET prototype consisting of two monolithic blocks working in coincidence. Neural networks provide a straightforward positioning of the acquired data once they have been trained, however the training process is usually time-consuming. In order to obtain an efficient positioning method for the complete scanner it was necessary to find a training procedure that reduces the data acquisition and processing time without introducing a noticeable degradation of the spatial resolution. A grouping process and posterior selection of the training data have been done regarding the similitude of the light distribution of events which have one common incident coordinate (transversal or longitudinal). By doing this, the amount of training data can be reduced to about 5% of the initial number with a degradation of spatial resolution lower than 10%.

  19. Standardized Input Function for 18F-FDG PET Studies in Mice: A Cautionary Study

    PubMed Central

    Fernandez, Philippe; Zanotti-Fregonara, Paolo

    2017-01-01

    Aim of the Study The aim of this study was to assess the accuracy of a standardized arterial input function (SAIF) for positron emission tomography 18F-FDG studies in mice. In particular, we tested whether the same SAIF could be applied to populations of mice whose fasting conditions differed. Methods The SAIF was first created from a population of fasting mice (n = 11) and validated within this group using a correlation analysis and a leave-one-out procedure. Then, the SAIF was prospectively applied to a population of non-fasting mice (n = 16). The SAIFs were scaled using a single individual blood sample taken 25 min after injection. The metabolic rates of glucose (CMRglc) calculated with the SAIFs were compared with the reference values obtained by full arterial sampling (AIF). Results In both populations of mice, CMRglc values showed a very small bias but an important variability. The SAIF/AIF CMRglc ratio in the fasting mice was 0.97 ± 0.22 (after excluding a major outlier). The SAIF/AIF CMRglc ratio in the non-fasting mice was 1.04 ± 0.22. This variability was due to the presence of cases in which the SAIF poorly estimated the shape of the input function based on full arterial sampling. Conclusion Although SAIF allows the estimation of the 18F-FDG mice input function with negligible bias and independently from the fasting state, errors in individual mice (as high as 30–50%) cause an important variability. Alternative techniques, such as image-derived input function, might be a better option for mice PET studies. PMID:28125579

  20. Preliminary study: fibre content in pet rabbit diets, crude fibre versus total dietary fibre.

    PubMed

    Molina, J; Martorell, J; Hervera, M; Pérez-Accino, J; Fragua, V; Villaverde, C

    2015-04-01

    Fibre is an important nutrient for rabbit health, and, on commercial pet rabbit packaging, it is labelled as crude fibre (CF). In several species, it is considered that CF is not an accurate representation of the fibre content in feedstuffs. The objective of this study was to compare the CF stated on the label (CFL) with laboratory analysis of CF (CFA) and the analysed content of total dietary fibre (TDF) in different commercial pet rabbit feeds. We selected 15 commercial diets and analysed CF and TDF. A mixed model was used to evaluate differences between CFL, CFA and TDF, and linear regression was performed to study the correlation between CFL and CFA with TDF. CFA and CFL were not significantly different (p = 0.836) in the feeds studied, and both were lower than TDF (p < 0.001). The correlations between TDF and both CFA and CFL were significant (p < 0.001 and p = 0.02, respectively), but the correlation was better with CFA (R = 0.86) than with CFL (R = 0.53). As expected, TDF content was higher than CF content, an average of two times. These results suggest that the CF content in rabbit diets reported on the label is not an appropriate indicator of their total fibre content, although further work with a larger sample size is required to confirm these results.

  1. A simulation study of a C-shaped in-beam PET system for dose verification in carbon ion therapy

    NASA Astrophysics Data System (ADS)

    Jung An, Su; Beak, Cheol-Ha; Lee, Kisung; Hyun Chung, Yong

    2013-01-01

    The application of hadrons such as carbon ions is being developed for the treatment of cancer. The effectiveness of such a technique is due to the eligibility of charged particles in delivering most of their energy near the end of the range, called the Bragg peak. However, accurate verification of dose delivery is required since misalignment of the hadron beam can cause serious damage to normal tissue. PET scanners can be utilized to track the carbon beam to the tumor by imaging the trail of the hadron-induced positron emitters in the irradiated volume. In this study, we designed and evaluated (through Monte Carlo simulations) an in-beam PET scanner for monitoring patient dose in carbon beam therapy. A C-shaped PET and a partial-ring PET were designed to avoid interference between the PET detectors and the therapeutic carbon beam delivery. Their performance was compared with that of a full-ring PET scanner. The C-shaped, partial-ring, and full-ring scanners consisted of 14, 12, and 16 detector modules, respectively, with a 30.2 cm inner diameter for brain imaging. Each detector module was composed of a 13×13 array of 4.0 mm×4.0 mm×20.0 mm LYSO crystals and four round 25.4 mm diameter PMTs. To estimate the production yield of positron emitters such as 10C, 11C, and 15O, a cylindrical PMMA phantom (diameter, 20 cm; thickness, 20 cm) was irradiated with 170, 290, and 350 AMeV 12C beams using the GATE code. Phantom images of the three types of scanner were evaluated by comparing the longitudinal profile of the positron emitters, measured along the carbon beam as it passed a simulated positron emitter distribution. The results demonstrated that the development of a C-shaped PET scanner to characterize carbon dose distribution for therapy planning is feasible.

  2. PET/CT-guided treatment planning for paediatric cancer patients: a simulation study of proton and conventional photon therapy

    PubMed Central

    Brodin, N P; Björk-Eriksson, T; Birk Christensen, C; Kiil-Berthelsen, A; Aznar, M C; Hollensen, C; Markova, E; Munck af Rosenschöld, P

    2015-01-01

    Objective: To investigate the impact of including fluorine-18 fludeoxyglucose (18F-FDG) positron emission tomography (PET) scanning in the planning of paediatric radiotherapy (RT). Methods: Target volumes were first delineated without and subsequently re-delineated with access to 18F-FDG PET scan information, on duplicate CT sets. RT plans were generated for three-dimensional conformal photon RT (3DCRT) and intensity-modulated proton therapy (IMPT). The results were evaluated by comparison of target volumes, target dose coverage parameters, normal tissue complication probability (NTCP) and estimated risk of secondary cancer (SC). Results: Considerable deviations between CT- and PET/CT-guided target volumes were seen in 3 out of the 11 patients studied. However, averaging over the whole cohort, CT or PET/CT guidance introduced no significant difference in the shape or size of the target volumes, target dose coverage, irradiated volumes, estimated NTCP or SC risk, neither for IMPT nor 3DCRT. Conclusion: Our results imply that the inclusion of PET/CT scans in the RT planning process could have considerable impact for individual patients. There were no general trends of increasing or decreasing irradiated volumes, suggesting that the long-term morbidity of RT in childhood would on average remain largely unaffected. Advances in knowledge: 18F-FDG PET-based RT planning does not systematically change NTCP or SC risk for paediatric cancer patients compared with CT only. 3 out of 11 patients had a distinct change of target volumes when PET-guided planning was introduced. Dice and mismatch metrics are not sufficient to assess the consequences of target volume differences in the context of RT. PMID:25494657

  3. Parallax error in long-axial field-of-view PET scanners—a simulation study

    NASA Astrophysics Data System (ADS)

    Schmall, Jeffrey P.; Karp, Joel S.; Werner, Matt; Surti, Suleman

    2016-07-01

    There is a growing interest in the design and construction of a PET scanner with a very long axial extent. One critical design challenge is the impact of the long axial extent on the scanner spatial resolution properties. In this work, we characterize the effect of parallax error in PET system designs having an axial field-of-view (FOV) of 198 cm (total-body PET scanner) using fully-3D Monte Carlo simulations. Two different scintillation materials were studied: LSO and LaBr3. The crystal size in both cases was 4  ×  4  ×  20 mm3. Several different depth-of-interaction (DOI) encoding techniques were investigated to characterize the improvement in spatial resolution when using a DOI capable detector. To measure spatial resolution we simulated point sources in a warm background in the center of the imaging FOV, where the effects of axial parallax are largest, and at several positions radially offset from the center. Using a line-of-response based ordered-subset expectation maximization reconstruction algorithm we found that the axial resolution in an LSO scanner degrades from 4.8 mm to 5.7 mm (full width at half max) at the center of the imaging FOV when extending the axial acceptance angle (α) from  ±12° (corresponding to an axial FOV of 18 cm) to the maximum of  ±67°—a similar result was obtained with LaBr3, in which the axial resolution degraded from 5.3 mm to 6.1 mm. For comparison we also measured the degradation due to radial parallax error in the transverse imaging FOV; the transverse resolution, averaging radial and tangential directions, of an LSO scanner was degraded from 4.9 mm to 7.7 mm, for a measurement at the center of the scanner compared to a measurement with a radial offset of 23 cm. Simulations of a DOI detector design improved the spatial resolution in all dimensions. The axial resolution in the LSO-based scanner, with α  =  ± 67°, was improved from 5.7 mm to 5.0 mm by

  4. Design study of an in situ PET scanner for use in proton beam therapy

    NASA Astrophysics Data System (ADS)

    Surti, S.; Zou, W.; Daube-Witherspoon, M. E.; McDonough, J.; Karp, J. S.

    2011-05-01

    Proton beam therapy can deliver a high radiation dose to a tumor without significant damage to surrounding healthy tissue or organs. One way of verifying the delivered dose distribution is to image the short-lived positron emitters produced by the proton beam as it travels through the patient. A potential solution to the limitations of PET imaging in proton beam therapy is the development of a high sensitivity, in situ PET scanner that starts PET imaging almost immediately after patient irradiation while the patient is still lying on the treatment bed. A partial ring PET design is needed for this application in order to avoid interference between the PET detectors and the proton beam, as well as restrictions on patient positioning on the couch. A partial ring also allows us to optimize the detector separation (and hence the sensitivity) for different patient sizes. Our goal in this investigation is to evaluate an in situ PET scanner design for use in proton therapy that provides tomographic imaging in a partial ring scanner design using time-of-flight (TOF) information and an iterative reconstruction algorithm. GEANT4 simulation of an incident proton beam was used to produce a positron emitter distribution, which was parameterized and then used as the source distribution inside a water-filled cylinder for EGS4 simulations of a PET system. Design optimization studies were performed as a function of crystal type and size, system timing resolution, scanner angular coverage and number of positron emitter decays. Data analysis was performed to measure the accuracy of the reconstructed positron emitter distribution as well as the range of the positron emitter distribution. We simulated scanners with varying crystal sizes (2-4 mm) and type (LYSO and LaBr3) and our results indicate that 4 mm wide LYSO or LaBr3 crystals (resulting in 4-5 mm spatial resolution) are adequate; for a full-ring, non-TOF scanner we predict a low bias (<0.6 mm) and a good precision (<1 mm) in the

  5. A feasibility study of ortho-positronium decays measurement with the J-PET scanner based on plastic scintillators

    NASA Astrophysics Data System (ADS)

    Kamińska, D.; Gajos, A.; Czerwiński, E.; Alfs, D.; Bednarski, T.; Białas, P.; Curceanu, C.; Dulski, K.; Głowacz, B.; Gupta-Sharma, N.; Gorgol, M.; Hiesmayr, B. C.; Jasińska, B.; Korcyl, G.; Kowalski, P.; Krzemień, W.; Krawczyk, N.; Kubicz, E.; Mohammed, M.; Niedźwiecki, Sz.; Pawlik-Niedźwiecka, M.; Raczyński, L.; Rudy, Z.; Silarski, M.; Wieczorek, A.; Wiślicki, W.; Zgardzińska, B.; Zieliński, M.; Moskal, P.

    2016-08-01

    We present a study of the application of the Jagiellonian positron emission tomograph (J-PET) for the registration of gamma quanta from decays of ortho-positronium (o-Ps). The J-PET is the first positron emission tomography scanner based on organic scintillators in contrast to all current PET scanners based on inorganic crystals. Monte Carlo simulations show that the J-PET as an axially symmetric and high acceptance scanner can be used as a multi-purpose detector well suited to pursue research including e.g. tests of discrete symmetries in decays of ortho-positronium in addition to the medical imaging. The gamma quanta originating from o-Ps decay interact in the plastic scintillators predominantly via the Compton effect, making the direct measurement of their energy impossible. Nevertheless, it is shown in this paper that the J-PET scanner will enable studies of the { o-Ps }→ 3γ decays with angular and energy resolution equal to σ (θ ) ≈ {0.4°} and σ (E) ≈ 4.1 {keV}, respectively. An order of magnitude shorter decay time of signals from plastic scintillators with respect to the inorganic crystals results not only in better timing properties crucial for the reduction of physical and instrumental background, but also suppresses significantly the pile-ups, thus enabling compensation of the lower efficiency of the plastic scintillators by performing measurements with higher positron source activities.

  6. Regularized ML reconstruction for time/dose reduction in 18F-fluoride PET/CT studies

    NASA Astrophysics Data System (ADS)

    De Bernardi, Elisabetta; Magnani, Patrizia; Gianolli, Luigi; Carla Gilardi, Maria; Bettinardi, Valentino

    2015-01-01

    We are proposing a regularized reconstruction strategy for the detection of bone lesions in 18F-fluoride whole body PET images obtained with 1 min/bed using the anatomical information provided by co-registered CT images. Bones are recognized on CT images and then transposed into the PET volume framework. During PET reconstruction, two different priors are used for bone and non-bone voxels: the relative difference prior in bone and the P-Gaussian prior in non-bone. After a tuning of the priors’ parameters, the reconstruction strategy has been tested on 6 18F-fluoride PET/CT studies, on a total of 67 lesions. Regularized images provided results comparable to the standard 3 min/bed images, in terms image quality, lesion activity, noise level and noise correlation. The proposed strategy therefore appears to be a useful tool to reduce the acquisition time or the injected dose in 18F-fluoride PET studies.

  7. Initial studies using the RatCAP conscious animal PET tomograph

    NASA Astrophysics Data System (ADS)

    Woody, C.; Vaska, P.; Schlyer, D.; Pratte, J.-F.; Junnarkar, S.; Park, S.-J.; Stoll, S.; Purschke, M.; Southekal, S.; Kriplani, A.; Krishnamoorthy, S.; Maramraju, S.; Lee, D.; Schiffer, W.; Dewey, S.; Neill, J.; Kandasamy, A.; O'Connor, P.; Radeka, V.; Fontaine, R.; Lecomte, R.

    2007-02-01

    The RatCAP is a small, head-mounted PET tomograph designed to image the brain of a conscious rat without the use of anesthesia. The detector is a complete, high-performance 3D tomograph consisting of a 3.8 cm inside-diameter ring containing 12 block detectors, each of which is comprised of a 4×8 array of 2.2×2.2×5 mm 3 LSO crystals readout with a matching APD array and custom ASIC, and has a 1.8 cm axial field of view. Construction of the first working prototype detector has been completed and its performance characteristics have been measured. The results show an intrinsic spatial resolution of 2.1 mm, a time resolution of ˜14 ns FWHM, and a sensitivity of 0.7% at an energy threshold of 150 keV. First preliminary images have been obtained using 18F-FDG and 11C-methamphetamine, which show comparable image quality to those obtained from a commercial MicroPET R4 scanner. Initial studies have also been carried out to study stress levels in rats wearing the RatCAP.

  8. Positron emission tomography (PET) studies of dopaminergic/cholinergic interactions in the baboon brain

    SciTech Connect

    Dewey, S.L.; Brodie, J.D.; Fowler, J.S.; MacGregor, R.R.; Schlyer, D.J.; King, P.T.; Alexoff, D.L.; Volkow, N.D.; Shiue, C.Y.; Wolf, A.P. )

    1990-01-01

    Interactions between the dopaminergic D2 receptor system and the muscarinic cholinergic system in the corpus striatum of adult female baboons (Papio anubis) were examined using positron emission tomography (PET) combined with (18F)N-methylspiroperidol (( 18F)NMSP) (to probe D2 receptor availability) and (N-11C-methyl)benztropine (to probe muscarinic cholinergic receptor availability). Pretreatment with benztropine, a long-lasting anticholinergic drug, bilaterally reduced the incorporation of radioactivity in the corpus striatum but did not alter that observed in the cerebellum or the rate of metabolism of (18F)NMSP in plasma. Pretreatment with unlabelled NMSP, a potent dopaminergic antagonist, reduced the incorporation of (N-11C-methyl)benztropine in all brain regions, with the greatest effect being in the corpus striatum greater than cortex greater than thalamus greater than cerebellum, but did not alter the rate of metabolism of the labelled benztropine in the plasma. These reductions in the incorporation of either (18F)NMSP or (N-11C-methyl)benztropine exceeded the normal variation in tracer incorporation in repeated studies in the same animal. This study demonstrates that PET can be used as a tool for investigating interactions between neurochemically different yet functionally linked neurotransmitters systems in vivo and provides insight into the consequences of multiple pharmacologic administration.

  9. Quantitative evaluation of the memory bias effect in ROC studies with PET/CT

    NASA Astrophysics Data System (ADS)

    Kallergi, Maria; Pianou, Nicoletta; Georgakopoulos, Alexandros; Kafiri, Georgia; Pavlou, Spiros; Chatziioannou, Sofia

    2012-02-01

    PURPOSE. The purpose of the study was to evaluate the memory bias effect in ROC experiments with tomographic data and, specifically, in the evaluation of two different PET/CT protocols for the detection and diagnosis of recurrent thyroid cancer. MATERIALS AND METHODS. Two readers participated in an ROC experiment that evaluated tomographic images from 43 patients followed up for thyroid cancer recurrence. Readers evaluated first whole body PET/CT scans of the patients and then a combination of whole body and high-resolution head and neck scans of the same patients. The second set was read twice. Once within 48 hours of the first set and the second time at least a month later. The detection and diagnostic performances of the readers in the three reading sessions were assessed with the DBMMRMC and LABMRMC software using the area under the ROC curve as a performance index. Performances were also evaluated by comparing the number and the size of the detected abnormal foci among the three readings. RESULTS. There was no performance difference between first and second treatments. There were statistically significant differences between first and third, and second and third treatments showing that memory can seriously affect the outcome of ROC studies. CONCLUSION. Despite the fact that tomographic data involve numerous image slices per patient, the memory bias effect is present and substantial and should be carefully eliminated from analogous ROC experiments.

  10. Bio-inspired surface modification of PET for cardiovascular applications: Case study of gelatin.

    PubMed

    Giol, E Diana; Schaubroeck, David; Kersemans, Ken; De Vos, Filip; Van Vlierberghe, Sandra; Dubruel, Peter

    2015-10-01

    An aqueous-based bio-inspired approach was applied to chemically bind a bio compatible and cell-interactive gelatin layer on poly(ethylene terephthalate) (PET) for cardiovascular applications. The protein layer was immobilized after an initial surface activation via a dopamine coating. The individual and synergetic effect of the dopamine deposition procedure and the substrate nature (pristine versus plasma-treated) was investigated via XPS, AFM, SEM and contact angle measurements. Dependent on the applied parameters, the post dopamine coating presented various surface roughnesses ranging between 96 nm and 210 nm. Subsequent gelatin immobilization mostly induced a smoothening effect, but the synergetic influence of the deposition protocol and plasma treatment resulted in different gelatin conformations. In addition, a comprehensive comparative study between chemically-modified (via dopamine) and physically-modified (physisorption) PET with gelatin was developed within the present study. All investigated samples were submitted to preliminary haemocompatibility tests, which clearly indicated the direct link between blood platelet behaviour and final protein arrangement.

  11. Optimization of PET activation studies based on the SNR measured in the 3-D Hoffman brain phantom.

    PubMed

    Li, H H; Votaw, J R

    1998-08-01

    This work investigates the noise properties of O-15 water PET images in an attempt to increase the sensitivity of activation studies. A method for computing the amount of noise within a region of interest (ROI) from the uncertainty in the raw data was implemented for three-dimensional (3-D) positron emission tomography (PET). The method was used to study the signal-to-noise ratio (SNR) of regions-of-interest (ROI's) inside a 3-D Hoffman brain phantom. Saturation occurs at an activity concentration of 2.2 mCi/l which corresponds to a 75-mCi O-15 water injection into a normal person of average weight. This establishes the upper limit for injections for human brain studies using 3-D PET on the Siemens ECAT 921 EXACT scanner. Data from human brain activation studies on four normal volunteers using two-dimensional (2-D) PET were analyzed. The biological variation was found to be 5% in 1-ml ROI's. The variance for a complete activation study was calculated, for a variety of protocols, by combining the Poisson noise propagated from the raw data in the phantom experiments with the biological variation. A protocol that is predicted to maximize the SNR in dual-condition activation experiments while remaining below the radiation safety limit is: ten scans with 45 mCi per injection. The data should not be corrected for random or scatter events since they do not help in the identification of activation sites while they do add noise to the image. Due to the lower noise level of 3-D PET, the threshold for detecting a true change in activity concentration is 10%-20% lower than 2-D PET. Because of this, a 3-D activation experiment using the Siemens 921 scanner requires fewer subjects for equal statistical power.

  12. Low-carbohydrate diet versus euglycemic hyperinsulinemic clamp for the assessment of myocardial viability with 18F-fluorodeoxyglucose-PET: a pilot study.

    PubMed

    Soares, José; Rodrigues Filho, Filadelfo; Izaki, Marisa; Giorgi, Maria Clementina P; Catapirra, Rosa M A; Abe, Rubens; Vinagre, Carmen G C M; Cerri, Giovanni G; Meneghetti, José Cláudio

    2014-02-01

    Positron emission tomography with (18)F-fluorodeoxyglucose (FDG-PET) is considered the gold standard for myocardial viability. A pilot study was undertaken to compare FDG-PET using euglycemic hyperinsulinemic clamp before (18)F-fluorodeoxyglucose ((18)F-FDG) administration (PET-CLAMP) with a new proposed technique consisting of a 24-h low-carbohydrate diet before (18)F-FDG injection (PET-DIET), for the assessment of hypoperfused but viable myocardium (hibernating myocardium). Thirty patients with previous myocardial infarction were subjected to rest (99m)Tc-sestamibi-SPECT and two (18)F-FDG studies (PET-CLAMP and PET-DIET). Myocardial tracer uptake was visually scored using a 5-point scale in a 17-segment model. Hibernating myocardium was defined as normal or mildly reduced metabolism ((18)F-FDG uptake) in areas with reduced perfusion ((99m)Tc-sestamibi uptake) since (18)F-FDG uptake was higher than the degree of hypoperfusion-perfusion/metabolism mismatch indicating a larger flow defect. PET-DIET identified 79 segments and PET-CLAMP 71 as hibernating myocardium. Both methods agreed in 61 segments (agreement = 94.5 %, κ = 0.78). PET-DIET identified 230 segments and PET-CLAMP 238 as nonviable. None of the patients had hypoglycemia after DIET, while 20 % had it during CLAMP. PET-DIET compared with PET-CLAMP had a good correlation for the assessment of hibernating myocardium. To our knowledge, these data provide the first evidence of the possibility of myocardial viability assessment with this technique.

  13. Short-Term Practice Effects and Brain Hypometabolism: Preliminary Data from an FDG PET Study

    PubMed Central

    Duff, Kevin; Horn, Kevin P.; Foster, Norman L.; Hoffman, John M.

    2015-01-01

    Practice effects are improvements in cognitive test scores due to repeated exposure to the same tests. Typically viewed as error, short-term practice effects have been shown to provide valuable clinical information about diagnosis, prognosis, and treatment outcomes in older patients with mild cognitive impairments. This study examined short-term practice effects across one week and brain hypometabolism on fluoro-2-deoxyglucose (FDG) positron emission tomography (PET) in 25 older adults (15 intact, 10 Mild Cognitive Impairment). Averaged cerebral brain metabolism on FDG PET was correlated with multiple cognitive scores at baseline in those with Mild Cognitive Impairment, and short-term practice effects accounted for additional variance in these same subjects. The relationship between brain metabolism and cognition (either at baseline or practice effects) was minimal in the intact individuals. Although needing replication in larger samples, short-term practice effects on tests of executive functioning and memory may provide valuable information about biomarkers of Alzheimer’s disease. PMID:25908614

  14. PET study of 11C-acetoacetate kinetics in rat brain during dietary treatments affecting ketosis.

    PubMed

    Bentourkia, M'hamed; Tremblay, Sébastien; Pifferi, Fabien; Rousseau, Jacques; Lecomte, Roger; Cunnane, Stephen

    2009-04-01

    Normally, the brain's fuel is glucose, but during fasting it increasingly relies on ketones (beta-hydroxybutyrate, acetoacetate, and acetone) produced in liver mitochondria from fatty acid beta-oxidation. Although moderately raised blood ketones produced on a very high fat ketogenic diet have important clinical effects on the brain, including reducing seizures, ketone metabolism by the brain is still poorly understood. The aim of the present work was to assess brain uptake of carbon-11-labeled acetoacetate (11C-acetoacetate) by positron emission tomography (PET) imaging in the intact, living rat. To vary plasma ketones, we used three dietary conditions: high carbohydrate control diet (low plasma ketones), fat-rich ketogenic diet (raised plasma ketones), and 48-h fasting (raised plasma ketones). 11C-acetoacetate metabolism was measured in the brain, heart, and tissue in the mouth area. Using 11C-acetoacetate and small animal PET imaging, we have noninvasively quantified an approximately seven- to eightfold enhanced brain uptake of ketones on a ketogenic diet or during fasting. This opens up an opportunity to study brain ketone metabolism in humans.

  15. Sound Richness of Music Might Be Mediated by Color Perception: A PET Study

    PubMed Central

    Satoh, Masayuki; Nagata, Ken; Tomimoto, Hidekazu

    2015-01-01

    Objects. We investigated the role of the fusiform cortex in music processing with the use of PET, focusing on the perception of sound richness. Method. Musically naïve subjects listened to familiar melodies with three kinds of accompaniments: (i) an accompaniment composed of only three basic chords (chord condition), (ii) a simple accompaniment typically used in traditional music text books in elementary school (simple condition), and (iii) an accompaniment with rich and flowery sounds composed by a professional composer (complex condition). Using a PET subtraction technique, we studied changes in regional cerebral blood flow (rCBF) in simple minus chord, complex minus simple, and complex minus chord conditions. Results. The simple minus chord, complex minus simple, and complex minus chord conditions regularly showed increases in rCBF at the posterior portion of the inferior temporal gyrus, including the LOC and fusiform gyrus. Conclusions. We may conclude that certain association cortices such as the LOC and the fusiform cortex may represent centers of multisensory integration, with foreground and background segregation occurring at the LOC level and the recognition of richness and floweriness of stimuli occurring in the fusiform cortex, both in terms of vision and audition. PMID:26525171

  16. Study of a high-resolution, 3D positioning cadmium zinc telluride detector for PET

    NASA Astrophysics Data System (ADS)

    Gu, Y.; Matteson, J. L.; Skelton, R. T.; Deal, A. C.; Stephan, E. A.; Duttweiler, F.; Gasaway, T. M.; Levin, C. S.

    2011-03-01

    This paper investigates the performance of 1 mm resolution cadmium zinc telluride (CZT) detectors for positron emission tomography (PET) capable of positioning the 3D coordinates of individual 511 keV photon interactions. The detectors comprise 40 mm × 40 mm × 5 mm monolithic CZT crystals that employ a novel cross-strip readout with interspersed steering electrodes to obtain high spatial and energy resolution. The study found a single anode FWHM energy resolution of 3.06 ± 0.39% at 511 keV throughout most of the detector volume. Improved resolution is expected with properly shielded front-end electronics. Measurements made using a collimated beam established the efficacy of the steering electrodes in facilitating enhanced charge collection across anodes, as well as a spatial resolution of 0.44 ± 0.07 mm in the direction orthogonal to the electrode planes. Finally, measurements based on coincidence electronic collimation yielded a point spread function with 0.78 ± 0.10 mm FWHM, demonstrating 1 mm spatial resolution capability transverse to the anodes—as expected from the 1 mm anode pitch. These findings indicate that the CZT-based detector concept has excellent performance and shows great promise for a high-resolution PET system.

  17. Study of a high-resolution, 3D positioning cadmium zinc telluride detector for PET.

    PubMed

    Gu, Y; Matteson, J L; Skelton, R T; Deal, A C; Stephan, E A; Duttweiler, F; Gasaway, T M; Levin, C S

    2011-03-21

    This paper investigates the performance of 1 mm resolution cadmium zinc telluride (CZT) detectors for positron emission tomography (PET) capable of positioning the 3D coordinates of individual 511 keV photon interactions. The detectors comprise 40 mm × 40 mm × 5 mm monolithic CZT crystals that employ a novel cross-strip readout with interspersed steering electrodes to obtain high spatial and energy resolution. The study found a single anode FWHM energy resolution of 3.06 ± 0.39% at 511 keV throughout most of the detector volume. Improved resolution is expected with properly shielded front-end electronics. Measurements made using a collimated beam established the efficacy of the steering electrodes in facilitating enhanced charge collection across anodes, as well as a spatial resolution of 0.44 ± 0.07 mm in the direction orthogonal to the electrode planes. Finally, measurements based on coincidence electronic collimation yielded a point spread function with 0.78 ± 0.10 mm FWHM, demonstrating 1 mm spatial resolution capability transverse to the anodes-as expected from the 1 mm anode pitch. These findings indicate that the CZT-based detector concept has excellent performance and shows great promise for a high-resolution PET system.

  18. Study of a high-resolution, 3-D positioning cadmium zinc telluride detector for PET

    PubMed Central

    Gu, Y; Matteson, J L; Skelton, R T; Deal, A C; Stephan, E A; Duttweiler, F; Gasaway, T M; Levin, C S

    2011-01-01

    This paper investigates the performance of 1 mm resolution Cadmium Zinc Telluride (CZT) detectors for positron emission tomography (PET) capable of positioning the 3-D coordinates of individual 511 keV photon interactions. The detectors comprise 40 mm × 40 mm × 5 mm monolithic CZT crystals that employ a novel cross-strip readout with interspersed steering electrodes to obtain high spatial and energy resolution. The study found a single anode FWHM energy resolution of 3.06±0.39% at 511 keV throughout most the detector volume. Improved resolution is expected with properly shielded front-end electronics. Measurements made using a collimated beam established the efficacy of the steering electrodes in facilitating enhanced charge collection across anodes, as well as a spatial resolution of 0.44±0.07 mm in the direction orthogonal to the electrode planes. Finally, measurements based on coincidence electronic collimation yielded a point spread function with 0.78±0.10 mm FWHM, demonstrating 1 mm spatial resolution capability transverse to the anodes – as expected from the 1 mm anode pitch. These findings indicate that the CZT-based detector concept has excellent performance and shows great promise for a high-resolution PET system. PMID:21335649

  19. An inter-laboratory comparison study of image quality of PET scanners using the NEMA NU 2-2001 procedure for assessment of image quality

    NASA Astrophysics Data System (ADS)

    Bergmann, Helmar; Dobrozemsky, Georg; Minear, Gregory; Nicoletti, Rudolf; Samal, Martin

    2005-05-01

    An inter-laboratory comparison study was conducted to assess the image quality of PET scanners in Austria. The survey included both dedicated PET scanners (D-PET, n = 8) and coincidence cameras (GC-PET, n = 7). Measurement of image quality was based on the NEMA (National Electrical Manufacturers Association) NU 2-2001 protocol and the IEC (International Electrotechnical Commission) body phantom. The latter contains six fillable spheres ranging in diameter from 37 mm down to 10 mm and a 'lung' insert. The two largest lesions L1-2 simulate cold lesions, the four smaller ones (L3-6) are filled with 18F and activity concentration ratios relative to background of 8:1 and 4:1, respectively. Acquisition and reconstruction in the study employed the participating institutes' standard oncological processing protocol. Calculation of contrast of the spheres was performed with a fully automated procedure. Contrast quality indices (CQIs) reflecting global performance were obtained by summing individual contrast values. Other image quality parameters calculated according to the NEMA protocol were background variability and relative error for correction of attenuation and scatter. Contrast values obtained were 61 ± 16 and 37 ± 14 for L1 (per cent contrast ± SD for D-PET and GC-PET, respectively), 57 ± 16 and 29 ± 16 for L2, 46 ± 10 and 26 ± 6.3 for L3, 37 ± 10 and 15 ± 4.3 for L4, 26 ± 11.5 and 6.1 ± 2.5 for L5, 14 ± 7.1 and 2.6 ± 2.6 for L6, with D-PET systems consistently being superior to GC-PET systems. CQIs permitted ranking of the scanners, also demonstrating a clear distinction between D-PET and GC-PET systems. Background variability was largest for GC-PET systems; the relative error of attenuation and scatter correction was significantly correlated with image quality for D-PET systems only. The study demonstrated considerable differences in image quality not only between GC-PET and D-PET systems but also between individual D-PET systems with possible

  20. PET/CT imaging for treatment verification after proton therapy: A study with plastic phantoms and metallic implants

    SciTech Connect

    Parodi, Katia; Paganetti, Harald; Cascio, Ethan; Flanz, Jacob B.; Bonab, Ali A.; Alpert, Nathaniel M.; Lohmann, Kevin; Bortfeld, Thomas

    2007-02-15

    The feasibility of off-line positron emission tomography/computed tomography (PET/CT) for routine three dimensional in-vivo treatment verification of proton radiation therapy is currently under investigation at Massachusetts General Hospital in Boston. In preparation for clinical trials, phantom experiments were carried out to investigate the sensitivity and accuracy of the method depending on irradiation and imaging parameters. Furthermore, they addressed the feasibility of PET/CT as a robust verification tool in the presence of metallic implants. These produce x-ray CT artifacts and fluence perturbations which may compromise the accuracy of treatment planning algorithms. Spread-out Bragg peak proton fields were delivered to different phantoms consisting of polymethylmethacrylate (PMMA), PMMA stacked with lung and bone equivalent materials, and PMMA with titanium rods to mimic implants in patients. PET data were acquired in list mode starting within 20 min after irradiation at a commercial luthetium-oxyorthosilicate (LSO)-based PET/CT scanner. The amount and spatial distribution of the measured activity could be well reproduced by calculations based on the GEANT4 and FLUKA Monte Carlo codes. This phantom study supports the potential of millimeter accuracy for range monitoring and lateral field position verification even after low therapeutic dose exposures of 2 Gy, despite the delay between irradiation and imaging. It also indicates the value of PET for treatment verification in the presence of metallic implants, demonstrating a higher sensitivity to fluence perturbations in comparison to a commercial analytical treatment planning system. Finally, it addresses the suitability of LSO-based PET detectors for hadron therapy monitoring. This unconventional application of PET involves countrates which are orders of magnitude lower than in diagnostic tracer imaging, i.e., the signal of interest is comparable to the noise originating from the intrinsic radioactivity of

  1. The Study of the Effect of Solvents Absorption in PET Packaging Films

    NASA Astrophysics Data System (ADS)

    Denktaş, Cenk; Yildirim, Hüseyin

    2007-04-01

    The effects of absorption solvents into poly(ethylene terephtalete) (PET) films, which are used as food packaging materials, was investigated by DSC, SEM and mechanical methods at various temperatures (5, 25 and 40 °C) and for different periods (1-8 weeks), respectively. Due to the interaction of PET films with solvents, there had been serious deformation on the surface morphology of PET films. Plasticizer effects occurrence, because of absorption of solvents, caused weakening of mechanical properties of PET films. As a result, there had been a 42.88 % and 39.20 % decrease in stress at break at 5 °C for 8 weeks, respectively.

  2. Sensitivity study of voxel-based PET image comparison to image registration algorithms

    SciTech Connect

    Yip, Stephen Chen, Aileen B.; Berbeco, Ross; Aerts, Hugo J. W. L.

    2014-11-01

    Purpose: Accurate deformable registration is essential for voxel-based comparison of sequential positron emission tomography (PET) images for proper adaptation of treatment plan and treatment response assessment. The comparison may be sensitive to the method of deformable registration as the optimal algorithm is unknown. This study investigated the impact of registration algorithm choice on therapy response evaluation. Methods: Sixteen patients with 20 lung tumors underwent a pre- and post-treatment computed tomography (CT) and 4D FDG-PET scans before and after chemoradiotherapy. All CT images were coregistered using a rigid and ten deformable registration algorithms. The resulting transformations were then applied to the respective PET images. Moreover, the tumor region defined by a physician on the registered PET images was classified into progressor, stable-disease, and responder subvolumes. Particularly, voxels with standardized uptake value (SUV) decreases >30% were classified as responder, while voxels with SUV increases >30% were progressor. All other voxels were considered stable-disease. The agreement of the subvolumes resulting from difference registration algorithms was assessed by Dice similarity index (DSI). Coefficient of variation (CV) was computed to assess variability of DSI between individual tumors. Root mean square difference (RMS{sub rigid}) of the rigidly registered CT images was used to measure the degree of tumor deformation. RMS{sub rigid} and DSI were correlated by Spearman correlation coefficient (R) to investigate the effect of tumor deformation on DSI. Results: Median DSI{sub rigid} was found to be 72%, 66%, and 80%, for progressor, stable-disease, and responder, respectively. Median DSI{sub deformable} was 63%–84%, 65%–81%, and 82%–89%. Variability of DSI was substantial and similar for both rigid and deformable algorithms with CV > 10% for all subvolumes. Tumor deformation had moderate to significant impact on DSI for progressor

  3. Effect of pet ownership on respiratory responses to air pollution in Chinese children: The Seven Northeastern Cities (SNEC) study

    NASA Astrophysics Data System (ADS)

    Qian, Zhengmin (Min); Dong, Guang-Hui; Ren, Wan-Hui; Simckes, Maayan; Wang, Jing; Zelicoff, Alan; Trevathan, Edwin

    2014-04-01

    Previous studies examining pet ownership as a risk factor for respiratory conditions have yielded inconsistent results. Little is known about whether or not pet ownership modifies the relationship between air pollutants and respiratory symptoms and asthma in children. In order to evaluate the interaction between pet and air pollution on respiratory health in children, we recruited 30,149 children, aged 2-12 years, from 25 districts of seven cities in northeast China. Parents of the children completed questionnaires that characterized the children's histories of respiratory symptoms and illnesses and associated risk factors. Average ambient annual exposures to particulate matter with an aerodynamic diameter ≤10 μm (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), and ozone (O3) were estimated from monitoring stations in each of the 25 study districts. The results showed that among children without pets at home, there were statistically significant associations between both recent exacerbations of asthma among physician-diagnosed asthmatics and respiratory symptoms and all pollutants examined. Odds ratios (ORs) ranged from 1.12 [95% confidence interval (CI), 1.00-1.26] to 1.41 (95% CI, 1.24-1.61) per 31 μg m-3 for PM10, whereas, among children with pets at home, there were no effects or small effects for either asthma or the symptoms. The interactions between dog ownership and PM10, SO2, NO2, and O3 were statistically significant, such that children with a dog at home had lower reporting of both current asthma and current wheeze. In conclusion, this study suggests that pet ownership decreased the effects of air pollution on respiratory symptoms and asthma among Chinese children.

  4. FDG-PET and Neuropsychiatric Symptoms among Cognitively Normal Elderly Persons: The Mayo Clinic Study of Aging

    PubMed Central

    Krell-Roesch, Janina; Ruider, Hanna; Lowe, Val J.; Stokin, Gorazd B.; Pink, Anna; Roberts, Rosebud O.; Mielke, Michelle M.; Knopman, David S.; Christianson, Teresa J.; Machulda, Mary M.; Jack, Clifford R.; Petersen, Ronald C.; Geda, Yonas E.

    2016-01-01

    One of the key research agenda of the field of aging is investigation of presymptomatic Alzheimer’s disease (AD). Furthermore, abnormalities in brain glucose metabolism (as measured by FDG-PET) have been reported among cognitively normal elderly persons. However, little is known about the association of FDG-PET abnormalities with neuropsychiatric symptoms (NPS) in a population-based setting. Thus, we conducted a cross-sectional study derived from the ongoing population-based Mayo Clinic Study of Aging in order to examine the association between brain glucose metabolism and NPS among cognitively normal (CN) persons aged > 70 years. Participants underwent FDG-PET and completed the Neuropsychiatric Inventory Questionnaire (NPI-Q), Beck Depression Inventory (BDI), and Beck Anxiety Inventory (BAI). Cognitive classification was made by an expert consensus panel. We conducted multivariable logistic regression analyses to compute odds ratios (OR) and 95% confidence intervals after adjusting for age, sex, and education. For continuous variables, we used linear regression and Spearman rank-order correlations. Of 668 CN participants (median 78.1 years, 55.4% males), 205 had an abnormal FDG-PET (i.e., standardized uptake value ratio < 1.32 in AD-related regions). Abnormal FDG-PET was associated with depression as measured by NPI-Q (OR = 2.12; 1.23–3.64); the point estimate was further elevated for APOE ɛ4 carriers (OR = 2.59; 1.00–6.69), though marginally significant. Additionally, we observed a significant association between abnormal FDG-PET and depressive and anxiety symptoms when treated as continuous measures. These findings indicate that NPS, even in community-based samples, can be an important additional tool to the biomarker-based investigation of presymptomatic AD. PMID:27447426

  5. [Pets, veterinarians, and multicultural society].

    PubMed

    Klumpers, M; Endenburg, N

    2009-01-15

    Dutch society comprises a growing percentage of non-Western ethnic minority groups. Little is known about pet ownership among these groups. This study explores some aspects of pet ownership, and the position of veterinarians, among the four largest non-Western ethnic minority groups in the Netherlands. Information was gathered through street interviews with people from a Moroccan, Turkish, Surinamese, or Antillean (including Aruban) background. Five hundred people where interviewed, including 41 pet owners. Results showed that people from non-Western ethnic minorities kept pets less often than Dutch people, with fish and birds being the most frequently kept pets. The number of visits to the veterinary clinic was comparable to that of Dutch pet owners; however, reasons given for the last visit were different. People from non-Western ethnic minorities mostly visited a veterinarian if their pet was ill whereas Dutch people visited the veterinarian if their pet needed to be vaccinated. People from non-Western ethnic minorities were positive about veterinarians, considering that they had sufficient knowledge about and concern for their pets. Moreover, veterinarians were trusted and provided understandable information--the respondents felt that they could go to their veterinarian with any question or problem regarding their pets. Although most respondents considered a visit to the veterinarian expensive, they were more than willing to invest in their pet's health.

  6. A web-based image viewer for multiple PET-CT follow-up studies.

    PubMed

    Haraguchi, Daiki; Kim, Jinman; Kumar, Ashnil; Constantinescu, Liviu; Wen, Lingfeng; Feng, David Dagan

    2011-01-01

    There exist many viewers for single-modal medical images that are efficient and are equipped with powerful analysis tools. However, there is a distinct lack of efficient image viewers for multi-modality images, particularly for displaying multiple follow-up studies that depict a patient's response to treatment over time. Such viewers would be required to display large amounts of image data. In this study, we present the TAGIGEN viewer--a web-based image viewer designed specifically for the visualisation of multi-modality follow-up studies. We innovate by defining a series of dynamically generated image grid layouts that display sets of related images together in order to improve the ability to compare and assimilate the myriad images. We adopted a web-based client-server image streaming technology, thus enabling interactive navigation of the images in a computationally efficient manner. Furthermore, our web-based approach is interoperable and requires no software installation. We evaluated the ability of our viewer in displaying and understanding a patient's follow-up images in a case study with combined positron emission tomography and computed tomography (PET-CT) follow-up scans. We conducted a usability survey on 10 participants to measure the usefulness of our viewer, used as an outpatient viewer e.g. viewer designed for use by the patients, in tracking a patient's disease state across four PET-CT studies. Our initial results suggest that our viewer was able to efficiently visualise the patient data over time, and that the web-based implementation was fast (loading on average within 5.6 seconds with real-time navigation) and easy to use (overall survey score higher than 4 / 5).

  7. Long-term effects of 'ecstasy' abuse on the human brain studied by FDG PET.

    PubMed

    Buchert, R; Obrocki, J; Thomasius, R; Väterlein, O; Petersen, K; Jenicke, L; Bohuslavizki, K H; Clausen, M

    2001-08-01

    The popular recreational drug, 'ecstasy', mainly contains 3,4-methylenedioxymethamphetamine (MDMA) as the psychotropic agent. MDMA is suspected of causing neurotoxic lesions to the serotonergic system as demonstrated by animal studies, examinations of human cerebrospinal fluid, and the first positron emission tomography (PET) studies using the serotonin transporter ligand [11C]-McN5652. Damage of serotonergic afferents might mediate long-lasting alterations of cerebral glucose metabolism as a secondary effect. To study a relationship between ecstasy use and long-lasting alterations, PET using 2-[18F]-fluoro-2-deoxy-d-glucose (FDG) was performed in 93 ecstasy users and 27 subjects without any known history of illicit-drug abuse. As an index of glucose metabolism, mean normalized FDG uptake was determined in both groups using a computerized brain atlas, and was compared for a selected number of brain regions. FDG uptake was normalized in each individual by dividing local FDG uptake by the maximum FDG uptake in the individual's brain. Within the group of ecstasy users we examined the relationship between FDG uptake and cumulative ecstasy dose, time since last ecstasy ingestion at the time of PET scanning, and age at first ecstasy use, respectively. Normalized FDG uptake was reduced within the striatum and amygdala of ecstasy users when compared to controls. No statistically significant correlation of the FDG uptake and the cumulative dose of ecstasy was detected. A positive correlation was found in the cingulate between FDG uptake and the time since last ecstasy ingestion. As compared to the control group, normalized FDG uptake in the cingulate was reduced in ecstasy users who took ecstasy during the last 6 months, while it was elevated in former ecstasy users who did not consume ecstasy for more than 1 year. FDG uptake was significantly more affected in ecstasy users who started to consume ecstasy before the age of 18 years. In conclusion, ecstasy abuse causes long

  8. [The brain mechanism of error detection: the P.E.T. study].

    PubMed

    Kireev, M V; Korotkov, A D; Poliakov, Iu I; Anichkov, A D; Medvedev, S V

    2011-10-01

    In present research, the brain maintenance of the error detection mechanism was studied in resting condition and while subjects consciously implemented incorrect actions (i.e. deception). Assessment of the regional cerebral blood flow revealed involvement of anterior cingulated cortex in deception. The obtained data indicate that it is impossible to consciously control the activity of the error detection mechanism. PET study of patients with obsessive compulsive disorder in resting condition revealed a decrease of brain glucose metabolism in the anterior cingulated cortex in comparison with healthy subjects. These data pointed to malfunctioning of the error detection mechanism. The findings support the formerly proposed hypothesis about the impact of the error detection mechanism in formation and support of obsessive compulsive disorder.

  9. Brain metabolism in patients with hepatic encephalopathy studied by PET and MR.

    PubMed

    Keiding, Susanne; Pavese, Nicola

    2013-08-15

    We review PET- and MR studies on hepatic encephalopathy (HE) metabolism in human subjects from the point of views of methods, methodological assumptions and use in studies of cirrhotic patients with clinically overt HE, cirrhotic patients with minimal HE, cirrhotic patients with no history of HE and healthy subjects. Key results are: (1) Cerebral oxygen uptake and blood flow are reduced to 2/3 in cirrhotic patients with clinically overt HE but not in cirrhotic patients with minimal HE or no HE compared to healthy subjects. (2) Cerebral ammonia metabolism is enhanced due to increased blood ammonia in cirrhotic patients but the kinetics of cerebral ammonia uptake and metabolism is not affected by hyperammonemia. (3) Recent advantages in MR demonstrate low-grade cerebral oedema not only in astrocytes but also in the white matter in cirrhotic patients with HE.

  10. Study conformational dynamics of intrinsically disordered protein by PET-FCS (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Enderlein, Joerg; Zhou, Man; Van, Qui; Gregor, Ingo

    2016-02-01

    Intrinsically disordered proteins (IDP) form a large and functionally important class of proteins that lack an ordered three-dimensional structure. IDPs play an important role in cell signaling, transcription, or chromatin remodeling. The discovery of IDPs has challenged the traditional paradigm of protein structure which states that protein function depends on a well-defined three-dimensional structure. Due to their high conformational flexibility and the lack of ordered secondary structure, it is challenging to study the flexible structure, dynamics and energetics of these proteins with conventional methods. In our work, we employ photoinduced electron transfer (PET) combined with fluorescence correlation spectroscopy (FCS) for studying the conformational dynamics of one specific class of IDPs: phenylalanine-glycine rich protein domains (FG repeats) which are dominant building blocks within the pore of nuclear pore complexes. Nuclear pore complexes are large protein assemblies that cross the nuclear envelope and form selective barrier, which regulate bidirectional exchange between nucleus and cytoplasm.

  11. A feasibility study of a molecular-based patient setup verification method using a parallel-plane PET system

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Satoshi; Ishikawa, Masayori; Bengua, Gerard; Sutherland, Kenneth; Nishio, Teiji; Tanabe, Satoshi; Miyamoto, Naoki; Suzuki, Ryusuke; Shirato, Hiroki

    2011-02-01

    A feasibility study of a novel PET-based molecular image guided radiation therapy (m-IGRT) system was conducted by comparing PET-based digitally reconstructed planar image (PDRI) registration with radiographic registration. We selected a pair of opposing parallel-plane PET systems for the practical implementation of this system. Planar images along the in-plane and cross-plane directions were reconstructed from the parallel-plane PET data. The in-plane and cross-plane FWHM of the profile of 2 mm diameter sources was approximately 1.8 and 8.1 mm, respectively. Therefore, only the reconstructed in-plane image from the parallel-plane PET data was used in the PDRI registration. In the image registration, five different sizes of 18F cylindrical sources (diameter: 8, 12, 16, 24, 32 mm) were used to determine setup errors. The data acquisition times were 1, 3 and 5 min. Image registration was performed by five observers to determine the setup errors from PDRI registration and radiographic registration. The majority of the mean registration errors obtained from the PDRI registration were not significantly different from those obtained from the radiographic registration. Acquisition time did not appear to result in significant differences in the mean registration error. The mean registration error for the PDRI registration was found to be 0.93 ± 0.33 mm. This is not statistically different from the radiographic registration which had a mean registration error of 0.92 ± 0.27 mm. Our results suggest that m-IGRT image registration using PET-based reconstructed planar images along the in-plane direction is feasible for clinical use if PDRI registration is performed at two orthogonal gantry angles.

  12. PET/CT surveillance detects asymptomatic recurrences in stage IIIB and IIIC melanoma patients: a prospective cohort study.

    PubMed

    Madu, Max F; Timmerman, Pieter; Wouters, Michel W J M; van der Hiel, Bernies; van der Hage, Jos A; van Akkooi, Alexander C J

    2017-02-20

    AJCC stage IIIB and IIIC melanoma patients are at risk for disease relapse or progression. The advent of effective systemic therapies has made curative treatment of progressive disease a possibility. As resection of oligometastatic disease can confer a survival benefit and as immunotherapy is possibly most effective in a low tumor load setting, there is a likely benefit to early detection of progression. The aim of this pilot study was to evaluate a PET/computed tomography (CT) surveillance schedule for resected stage IIIB and IIIC melanoma. From 1-2015, stage IIIB and IIIC melanoma patients at our institution underwent 6-monthly surveillance with PET/CT, together with 3-monthly S100B assessment. When symptoms or elevated S100B were detected, an additional PET/CT was performed. Descriptive statistics were used to evaluate outcomes for this surveillance schedule. Fifty-one patients were followed up, 27 patients developed a recurrence before surveillance imaging, five were detected by an elevated S100B, and one patient was not scanned according to protocol. Eighteen patients were included. Thirty-two scans were acquired. Eleven relapses were suspected on PET/CT. Ten scans were true positive, one case was false positive, and one case was false negative. All recurrences detected by PET/CT were asymptomatic at that time, with a normal range of S100B. The number of scans needed to find one asymptomatic relapse was 3.6. PET/CT surveillance imaging seems to be an effective strategy for detecting asymptomatic recurrence in stage IIIB and IIIC melanoma patients in the first year after complete surgical resection.

  13. A simulation study of a dual-plate in-room PET system for dose verification in carbon ion therapy

    NASA Astrophysics Data System (ADS)

    Chen, Ze; Hu, Zheng-Guo; Chen, Jin-Da; Zhang, Xiu-Ling; Guo, Zhong-Yan; Xiao, Guo-Qing; Sun, Zhi-Yu; Huang, Wen-Xue; Wang, Jian-Song

    2014-08-01

    During carbon ion therapy, lots of positron emitters such as 11C, 15O, 10C are generated in irradiated tissues by nuclear reactions, and can be used to track the carbon beam in the tissue by a positron emission tomography (PET) scanner. In this study, an dual-plate in-room PET scanner has been designed and evaluated based on the GATE simulation platform to monitor patient dose in carbon ion therapy. The dual-plate PET is designed to avoid interference with the carbon beamline and with patient positioning. Its performance was compared with that of four-head and full-ring PET scanners. The dual-plate, four-head and full-ring PET scanners consisted of 30, 60, 60 detector modules, respectively, with a 36 cm distance between directly opposite detector modules for dose deposition measurements. Each detector module consisted of a 24×24 array of 2 mm×2 mm×18 mm LYSO pixels coupled to a Hamamatsu H8500 PMT. To estimate the production yield of positron emitters, a 10 cm×15 cm×15 cm cuboid PMMA phantom was irradiated with 172, 200, 250 MeV/u 12C beams. 3D images of the activity distribution measured by the three types of scanner are produced by an iterative reconstruction algorithm. By comparing the longitudinal profile of positron emitters along the carbon beam path, it is indicated that use of the dual-plate PET scanner is feasible for monitoring the dose distribution in carbon ion therapy.

  14. Correction for FDG PET dose extravasations: Monte Carlo validation and quantitative evaluation of patient studies

    SciTech Connect

    Silva-Rodríguez, Jesús Aguiar, Pablo; Sánchez, Manuel; Mosquera, Javier; Luna-Vega, Víctor; Cortés, Julia; Garrido, Miguel; Pombar, Miguel; Ruibal, Álvaro

    2014-05-15

    Purpose: Current procedure guidelines for whole body [18F]fluoro-2-deoxy-D-glucose (FDG)-positron emission tomography (PET) state that studies with visible dose extravasations should be rejected for quantification protocols. Our work is focused on the development and validation of methods for estimating extravasated doses in order to correct standard uptake value (SUV) values for this effect in clinical routine. Methods: One thousand three hundred sixty-seven consecutive whole body FDG-PET studies were visually inspected looking for extravasation cases. Two methods for estimating the extravasated dose were proposed and validated in different scenarios using Monte Carlo simulations. All visible extravasations were retrospectively evaluated using a manual ROI based method. In addition, the 50 patients with higher extravasated doses were also evaluated using a threshold-based method. Results: Simulation studies showed that the proposed methods for estimating extravasated doses allow us to compensate the impact of extravasations on SUV values with an error below 5%. The quantitative evaluation of patient studies revealed that paravenous injection is a relatively frequent effect (18%) with a small fraction of patients presenting considerable extravasations ranging from 1% to a maximum of 22% of the injected dose. A criterion based on the extravasated volume and maximum concentration was established in order to identify this fraction of patients that might be corrected for paravenous injection effect. Conclusions: The authors propose the use of a manual ROI based method for estimating the effectively administered FDG dose and then correct SUV quantification in those patients fulfilling the proposed criterion.

  15. Synthesis and PET studies of [11C-cyano]letrozole (Femara), an aromatase inhibitor drug

    SciTech Connect

    kil K. E.; Biegon A.; Kil, K.-E.; Biegon, A.; Ding, Y.-S.; Fischer, A.; Ferrieri, R.A.; Kim, S.-W.; Pareto, D.; Schueller, M.J.; Fowler, J.S.

    2008-11-10

    Aromatase, a member of the cytochrome P450 family, converts androgens such as androstenedione and testosterone to estrone and estradiol respectively. Letrozole (1-[bis-(4-cyanophenyl)methyl]-1H-1,2,4-triazole, Femara{reg_sign}) is a high affinity aromatase inhibitor (K{sub i}=11.5 nM) which has FDA approval for breast cancer treatment. Here we report the synthesis of carbon-11 labeled letrozole and its assessment as a radiotracer for brain aromatase in the baboon. Letrozole and its precursor (4-[(4-bromophenyl)-1H-1,2,4-triazol-1-ylmethyl]benzonitrile, 3) were prepared in two-step syntheses from 4-cyanobenzyl bromide and 4-bromobenzyl bromide, respectively. The [{sup 11}C]cyano group was introduced via the tetrakis(triphenylphosphine)palladium(0) catalyzed coupling of [{sup 11}C]cyanide with the bromo-precursor (3). PET studies in the baboon brain were carried out to assess regional distribution and kinetics, reproducibility of repeated measures and saturability. The free fraction of letrozole in the plasma, log D, and the [{sup 11}C-cyano]letrozole fraction in the arterial plasma were also measured. [{sup 11}C-cyano]Letrozole was synthesized in 60 min with a radiochemical yield of 79-80%, with a radiochemical purity greater than 98% and a specific activity of 4.16 {+-} 2.21 Ci/{micro}mol at the end of bombardment (n=4). PET studies in the baboon revealed initial rapid and high uptake and initial rapid clearance followed by slow clearance of carbon-11 from the brain with no difference between brain regions. The brain kinetics was not affected by co-injection of unlabeled letrozole (0.1 mg/kg). The free fraction of letrozole in plasma was 48.9% and log D was 1.84. [{sup 11}C-cyano]Letrozole is readily synthesized via a palladium catalyzed coupling reaction with [{sup 11}C]cyanide. Although it is unsuitable as a PET radiotracer for brain aromatase as revealed by the absence of regional specificity and saturability in brain regions, such as amygdala, which are known

  16. 18F-FDOPA PET/CT or PET/MRI in Measuring Tumors in Patients With Newly-Diagnosed or Recurrent Gliomas

    ClinicalTrials.gov

    2017-01-30

    Adult Anaplastic Ependymoma; Adult Anaplastic Oligodendroglioma; Adult Brain Stem Glioma; Adult Diffuse Astrocytoma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Mixed Glioma; Adult Oligodendroglioma; Adult Pilocytic Astrocytoma; Adult Pineal Gland Astrocytoma; Adult Subependymal Giant Cell Astrocytoma; Childhood High-grade Cerebellar Astrocytoma; Childhood High-grade Cerebral Astrocytoma; Childhood Low-grade Cerebellar Astrocytoma; Childhood Low-grade Cerebral Astrocytoma; Recurrent Adult Brain Tumor; Recurrent Childhood Anaplastic Astrocytoma; Recurrent Childhood Anaplastic Oligoastrocytoma; Recurrent Childhood Anaplastic Oligodendroglioma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Diffuse Astrocytoma; Recurrent Childhood Fibrillary Astrocytoma; Recurrent Childhood Gemistocytic Astrocytoma; Recurrent Childhood Giant Cell Glioblastoma; Recurrent Childhood Glioblastoma; Recurrent Childhood Gliomatosis Cerebri; Recurrent Childhood Gliosarcoma; Recurrent Childhood Oligoastrocytoma; Recurrent Childhood Oligodendroglioma; Recurrent Childhood Pilomyxoid Astrocytoma; Recurrent Childhood Protoplasmic Astrocytoma; Recurrent Childhood Subependymal Giant Cell Astrocytoma; Recurrent Childhood Visual Pathway and Hypothalamic Glioma; Recurrent Childhood Visual Pathway Glioma; Untreated Childhood Anaplastic Astrocytoma; Untreated Childhood Anaplastic Oligoastrocytoma; Untreated Childhood Anaplastic Oligodendroglioma; Untreated Childhood Brain Stem Glioma; Untreated Childhood Cerebellar Astrocytoma; Untreated Childhood Cerebral Astrocytoma; Untreated Childhood Diffuse Astrocytoma; Untreated Childhood Fibrillary Astrocytoma; Untreated Childhood Gemistocytic Astrocytoma; Untreated Childhood Giant Cell Glioblastoma; Untreated Childhood Glioblastoma; Untreated Childhood Gliomatosis Cerebri; Untreated Childhood Gliosarcoma; Untreated Childhood Oligoastrocytoma; Untreated Childhood Oligodendroglioma; Untreated Childhood Pilomyxoid Astrocytoma; Untreated Childhood Protoplasmic Astrocytoma; Untreated Childhood Subependymal Giant Cell Astrocytoma; Untreated Childhood Visual Pathway and Hypothalamic Glioma; Untreated Childhood Visual Pathway Glioma

  17. PILOT STUDY OF THE POTENTIAL FOR HUMAN EXPOSURES TO PET-BORNE DIAZINON RESIDUES FOLLOWING LAWN APPLICATIONS IN NORTH CAROLINA

    EPA Science Inventory

    This study examined the potential for indoor/outdoor pet dogs to be an important pathway for transporting diazinon residues into homes and onto occupants following residential lawn applications. The primary objective was to investigate the potential exposures of children and thei...

  18. A FEASIBILITY STUDY EXAMINING THE POTENTIAL FOR HUMAN HEALTH EXPOSURE TO PET-BORNE DIAZINON RESIDUES FOLLOWING RESIDENTIAL TURF APPLICATIONS

    EPA Science Inventory

    The domestic dog may be a vehicle for translocation of pesticide residues following residential applications to turf. In addition, human occupants may be exposed to residues deposited inside homes by pets or by intimate contacts with them. This study examines the potential of a...

  19. A FEASIBILITY STUDY EXAMINING THE POTENTIAL FOR HUMAN EXPOSURE TO PET-BORNE DIAZINON RESIDUES FOLLOWING RESIDENTIAL TURF APPLICATIONS

    EPA Science Inventory

    The domestic dog may be a vehicle for translocation of pesticide residues following residential applications to turf. In addition, human occupants may be exposed to residues deposited inside homes by pets or by intimate contacts with them. This study examines the potential of ...

  20. High density polyethylene (HDPE)/poly(ethylene terephthalate) (PET) polymer blend studies related to recycling co-mingled plastics

    NASA Astrophysics Data System (ADS)

    Tsai, Pang-Yen

    Polymer blends of virgin high density polyethylene (HDPE) and poly(ethylene terephthalate) (PET) were studied as an attempt to relate the microstructure to the mechanical properties of the blends. The virgin blends were prepared by extrusion and then injection molded into specimens for characterization. Two of the virgin blends were tested for possible compatibilization using a styrene-ethylene-butylene-styrene (SEBS) block copolymer. In addition, six blends of post-consumer resins (PCRs) of HDPE and PET were included in this work for comparison. The moduli of the virgin blends showed positive deviation from those expected from the rule of mixtures. The synergism of the composite moduli can be explained partly by a Poisson's effect. Yield strengths of the blends molded at low injection chamber temperatures (200sp°, 230sp°, and 250sp°C) followed the rule of mixtures well, because PET filaments found in the composites had very high length to diameter ratios. When the injection chamber temperature was above the PET melting point (˜254sp°C), PET filaments were found to break down into particles, and the yield strengths of the blends coincided with the values expected from the inverse rule of mixtures. Impact strengths of the virgin blends were much less than that of a HDPE homopolymer due to poor interfacial bonding between HDPE and PET. Compatibilization appeared to be advantageous since it dramatically improved the impact strength of the virgin blends. SEM micrographs of impact fractured surfaces revealed that the improved adhesion from compatibilization and the presence of numerous uniaxially aligned PET filaments in the HDPE substrate can account for the significant increases in fracture resistance of the compatibilized blends. Mechanical performance of the PCRs was inferior to that of the virgin blends. Aside from polymer degradation and contamination due to repeated processing and handling, absence of PET filaments and interfacial bonding could be

  1. Automated production of [18F]VAT suitable for clinical PET study of vesicular acetylcholine transporter

    PubMed Central

    Yue, Xuyi; Bognar, Christopher; Zhang, Xiang; Gaehle, Gregory; Moerlein, Stephen M.; Perlmutter, Joel S.; Tu, Zhude

    2015-01-01

    Automated production of a promising radiopharmaceutical (-)-(1-(8-(2-[18F]fluoroethoxy)-3-hydroxy-1,2,3,4-tetrahydronaphthalen-2-yl)-piperidin-4-yl)(4-fluorophenyl)methanone ([18F]VAT) for vesicular acetylcholine transporter(VAChT) was achieved using a two-step procedure in a current good manufacturing practices fashion. The production of [18F]VAT was accomplished in approximately 140 min, with radiochemical yield of ~15.0% (decay corrected), specific activity > 111 GBq/μmol, radiochemical purity > 99% and mass of VAT ~3.4 μg/batch (n > 10). The radiopharmaceutical product meets all quality control criteria for human use, and is suitable for clinical PET studies of VAChT. PMID:26408913

  2. SU-E-J-263: Repeatability of SUV and Texture Parameters in Serial PET Studies

    SciTech Connect

    Schwartz, J; Humm, J; Nehmeh, S; Schoder, H

    2015-06-15

    Purpose: Standardized uptake values (SUV) are standard quantitative PET measures of FDG tumor uptake used,and are used as a tool to monitor response to therapy. Textural analysis is emerging as a new tool for assessing intratumoral heterogeneity which may allow better tissue characterization and improved prediction of response and survival rate.Understanding what variations may be expected in these parameters is key in order to make decisions based on how the change throughout the course of treatment. The aim of this study was to assess repeatability in SUV measures and texture parameters,and establish criteria that differentiate changes associated with treatment rather than statistical variability. Methods: Eighty patients,167 random lesions total,were scanned in a GE Discovery STE PET/CT Scanner. One field-of-view was chosen centered on the largest lesion observed in a clinical whole-body FDG PET.Immediately following,a gated 9 min scan was acquired in list mode,without changing the patient’s position between any scans. Data was replayed into 3 time bins,3 min each,in order to insure equivalent noise characteristics in each replicate.Data was reconstructed into 128×128×47 square matrices.One VOI was drawn over each lesion for each patient and used to segment all 3 replicates. The mean.max and peak SUV were calculated for each VOI and replicate. First-order textural features were also calculated (skewness and kurtosis). Repeatability was calculated as the average standard deviation over the mean for the 3 repeated measurements for each lesion. Results: The average percent error in the SUV max,peak and mean were 3.4%(0– 12.9%),1.9% (0–7.5%),2.8% (0–12.2%),respectively.For skewness and kurtosis they were 10.9% and 17.8%. Conclusion: We have shown that there is a large variation in %error in SUV measures across patients. SUVpeak is the least variable and kurtosis and skewness parameters are less reliable thatn SUVs.Higher order textures are be.

  3. Study of electrode pattern design for a CZT-based PET detector.

    PubMed

    Gu, Y; Levin, C S

    2014-06-07

    We are developing a 1 mm resolution small animal positron emission tomography (PET) system using 3D positioning cadmium zinc telluride photon detectors comprising 40 mm × 40 mm × 5 mm crystals metalized with a cross-strip electrode pattern with a 1 mm anode strip pitch. We optimized the electrode pattern design for intrinsic sensitivity and spatial, energy and time resolution performance using a test detector comprising cathode and steering electrode strips of varying dimensions. The study found 3 and 5 mm width cathode strips locate charge-shared photon interactions near cathode strip boundaries with equal precision. 3 mm width cathode strips exhibited large time resolution variability as a function of photon interaction location between the anode and cathode planes (~26 to ~127.5 ns full width at half maximum (FWHM) for 0.5 mm and 4.2 mm depths, respectively). 5 mm width cathode strips by contrast exhibited more stable time resolution for the same interaction locations (~34 to ~83 ns FWHM), provided more linear spatial positioning in the direction orthogonal to the electrode planes, and as much as 68.4% improvement in photon sensitivity over the 3 mm wide cathode strips. The results were understood by analyzing the cathode strips' weighting functions, which indicated a stronger 'small pixel' effect in the 3 mm wide cathode strips. Photon sensitivity and anode energy resolution were seen to improve with decreasing steering electrode bias from 0 to -80 V w.r.t. the anode potential. A slight improvement in energy resolution was seen for wider steering electrode strips (400 versus 100 µm) for charge-shared photon interactions. Although this study successfully focused on electrode pattern features for PET performance, the results are generally applicable to semiconductor photon detectors employing cross-trip electrode patterns.

  4. Designing a compact high performance brain PET scanner—simulation study

    NASA Astrophysics Data System (ADS)

    Gong, Kuang; Majewski, Stan; Kinahan, Paul E.; Harrison, Robert L.; Elston, Brian F.; Manjeshwar, Ravindra; Dolinsky, Sergei; Stolin, Alexander V.; Brefczynski-Lewis, Julie A.; Qi, Jinyi

    2016-05-01

    The desire to understand normal and disordered human brain function of upright, moving persons in natural environments motivates the development of the ambulatory micro-dose brain PET imager (AMPET). An ideal system would be light weight but with high sensitivity and spatial resolution, although these requirements are often in conflict with each other. One potential approach to meet the design goals is a compact brain-only imaging device with a head-sized aperture. However, a compact geometry increases parallax error in peripheral lines of response, which increases bias and variance in region of interest (ROI) quantification. Therefore, we performed simulation studies to search for the optimal system configuration and to evaluate the potential improvement in quantification performance over existing scanners. We used the Cramér-Rao variance bound to compare the performance for ROI quantification using different scanner geometries. The results show that while a smaller ring diameter can increase photon detection sensitivity and hence reduce the variance at the center of the field of view, it can also result in higher variance in peripheral regions when the length of detector crystal is 15 mm or more. This variance can be substantially reduced by adding depth-of-interaction (DOI) measurement capability to the detector modules. Our simulation study also shows that the relative performance depends on the size of the ROI, and a large ROI favors a compact geometry even without DOI information. Based on these results, we propose a compact ‘helmet’ design using detectors with DOI capability. Monte Carlo simulations show the helmet design can achieve four-fold higher sensitivity and resolve smaller features than existing cylindrical brain PET scanners. The simulations also suggest that improving TOF timing resolution from 400 ps to 200 ps also results in noticeable improvement in image quality, indicating better timing resolution is desirable for brain imaging.

  5. Carbon-11-cocaine binding compared at subpharmacological and pharmacological doses: A PET study

    SciTech Connect

    Volkow, N.D.; Fowler, J.S.; Logan, J. |

    1995-07-01

    The authors have characterized cocaine binding in the brain to a high-affinity site on the dopamine transporter using PET and tracer doses of [{sup 11}C]cocaine in the baboon in vivo. The binding pattern, however, of cocaine at tracer (subpharmacological) doses may differ from that observed when the drug is taken in behaviorally active doses, particularly since in vitro studies have shown that cocaine also binds to low affinity binding sites. PET was used to compare and characterize [{sup 11}C]cocaine binding in the baboon brain at low subpharmacological (18 {mu}g average dose) and at pharmacological (8000 {mu}g) doses. Serial studies on the same day in the same baboon were used to assess the reproducibility of repeated measures and to assess the effects of drugs which inhibit the dopamine, norepinephrine and serotonin transporters. Time-activity curves from brain and the arterial plasma input function were used to calculate the steady-state distribution volume (DV). At subpharmacological doses, [{sup 11}C]cocaine had a more homogeneous distribution. Bmax/Kd for sub-pharmacological [{sup 11}C]cocaine corresponded to 0.5-0.6 and for pharmacological [{sup 11}C]cocaine it corresponded to 0.1-0.2. Two-point Scatchard analysis gave Bmax = 2300 pmole/g and Kd = 3600 nM. Bmax/Kd for sub-pharmacological doses of [{sup 11}C]cocaine was decreased by cocaine and drugs that inhibit the dopamine transporter, to 0.1-0.2, but not by drugs that inhibit the serotonin or the norepinephrine transporter. None of these drugs changed Bmax/Kd for a pharmacological dose of [{sup 11}C]cocaine. At subpharmacological doses, [{sup 11}C]cocaine binds predominantly to a high-affinity site on the dopamine transporter. 36 refs., 4 figs., 5 tabs.

  6. Study of electrode pattern design for a CZT-based PET detector

    PubMed Central

    Gu, Y; Levin, C S

    2014-01-01

    We are developing a 1 mm resolution small animal positron emission tomography (PET) system using 3-D positioning Cadmium Zinc Telluride (CZT) photon detectors comprising 40 mm × 40 mm × 5 mm crystals metalized with a cross-strip electrode pattern with a 1 mm anode strip pitch. We optimized the electrode pattern design for intrinsic sensitivity and spatial, energy and time resolution performance using a test detector comprising cathode and steering electrode strips of varying dimensions. The study found 3 mm and 5 mm width cathode strips locate charge-shared photon interactions near cathode strip boundaries with equal precision. 3 mm width cathode strips exhibited large time resolution variability as a function of photon interaction location between the anode and cathode planes (~26 ns to ~127.5 ns FWHM for 0.5 mm and 4.2 mm depths, respectively). 5 mm width cathode strips by contrast exhibited more stable time resolution for the same interaction locations (~34 ns to ~83 ns FWHM), provided more linear spatial positioning in the direction orthogonal to the electrode planes, and as much as 68.4% improvement in photon sensitivity over the 3 mm wide cathode strips. The results were understood by analyzing the cathode strips’ weighting functions, which indicated a stronger “small pixel” effect in the 3 mm wide cathode strips. Photon sensitivity and anode energy resolution were seen to improve with decreasing steering electrode bias from 0 V to −80 V w.r.t the anode potential. A slight improvement in energy resolution was seen for wider steering electrode strips (400 μm vs. 100 μm) for charge-shared photon interactions. Although this study successfully focused on electrode pattern features for PET performance, the results are generally applicable to semiconductor photon detectors employing cross-trip electrode patterns. PMID:24786208

  7. Visitor behaviour and public health implications associated with exotic pet markets: an observational study

    PubMed Central

    Warwick, Clifford; Arena, Phillip C; Steedman, Catrina

    2012-01-01

    Objectives To conduct on-site assessments of public health implications at key European pet markets. Design Observational study of visitor behaviour at stalls that displayed and sold animals, mainly amphibians and reptiles, to assess potential contamination risk from zoonotic pathogens. We noted initial modes of contact as ‘direct’ (handling animals) as well as ‘indirect’ (touching presumed contaminated animal-related sources) and observed whether these visitors subsequently touched their own head or mouth (H1), body (H2) or another person (H3). Setting Publicly accessible exotic animal markets in the UK, Germany and Spain. Participants Anonymous members of the public in a public place. Main outcome measures Occurrence and frequency of public contact (direct, indirect or no contact) with a presumed contaminated source. Results A total of 813 public visitors were observed as they attended vendors. Of these, 29 (3.6%) made direct contact with an animal and 222 (27.3%) made indirect contact with a presumed contaminated source, with subsequent modes of contact being H1 18.7%, H2 52.2% and H3 9.9%. Conclusions Our observations indicate that opportunities for direct and indirect contact at pet markets with presumed contaminated animals and inanimate items constitute a significant and major concern, and that public attendees are exposed to rapid contamination on their person, whether or not these contaminations become associated with any episode of disease involving themselves or others. These public health risks appear unresolvable given the format of the market environment. PMID:23323203

  8. Central modulation in cluster headache patients treated with occipital nerve stimulation: an FDG-PET study

    PubMed Central

    2011-01-01

    Background Occipital nerve stimulation (ONS) has raised new hope for drug-resistant chronic cluster headache (drCCH), a devastating condition. However its mode of action remains elusive. Since the long delay to meaningful effect suggests that ONS induces slow neuromodulation, we have searched for changes in central pain-control areas using metabolic neuroimaging. Methods Ten drCCH patients underwent an 18FDG-PET scan after ONS, at delays varying between 0 and 30 months. All were scanned with ongoing ONS (ON) and with the stimulator switched OFF. Results After 6-30 months of ONS, 3 patients were pain free and 4 had a ≥ 90% reduction of attack frequency (responders). In all patients compared to controls, several areas of the pain matrix showed hypermetabolism: ipsilateral hypothalamus, midbrain and ipsilateral lower pons. All normalized after ONS, except for the hypothalamus. Switching the stimulator ON or OFF had little influence on brain glucose metabolism. The perigenual anterior cingulate cortex (PACC) was hyperactive in ONS responders compared to non-responders. Conclusions Metabolic normalization in the pain neuromatrix and lack of short-term changes induced by the stimulation might support the hypothesis that ONS acts in drCCH through slow neuromodulatory processes. Selective activation in responders of PACC, a pivotal structure in the endogenous opioid system, suggests that ONS could restore balance within dysfunctioning pain control centres. That ONS is nothing but a symptomatic treatment might be illustrated by the persistent hypothalamic hypermetabolism, which could explain why autonomic attacks may persist despite pain relief and why cluster attacks recur shortly after stimulator arrest. PET studies on larger samples are warranted to confirm these first results. PMID:21349186

  9. Imaging cognition II: An empirical review of 275 PET and fMRI studies.

    PubMed

    Cabeza, R; Nyberg, L

    2000-01-01

    Positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) have been extensively used to explore the functional neuroanatomy of cognitive functions. Here we review 275 PET and fMRI studies of attention (sustained, selective, Stroop, orientation, divided), perception (object, face, space/motion, smell), imagery (object, space/motion), language (written/spoken word recognition, spoken/no spoken response), working memory (verbal/numeric, object, spatial, problem solving), semantic memory retrieval (categorization, generation), episodic memory encoding (verbal, object, spatial), episodic memory retrieval (verbal, nonverbal, success, effort, mode, context), priming (perceptual, conceptual), and procedural memory (conditioning, motor, and nonmotor skill learning). To identify consistent activation patterns associated with these cognitive operations, data from 412 contrasts were summarized at the level of cortical Brodmann's areas, insula, thalamus, medial-temporal lobe (including hippocampus), basal ganglia, and cerebellum. For perception and imagery, activation patterns included primary and secondary regions in the dorsal and ventral pathways. For attention and working memory, activations were usually found in prefrontal and parietal regions. For language and semantic memory retrieval, typical regions included left prefrontal and temporal regions. For episodic memory encoding, consistently activated regions included left prefrontal and medial temporal regions. For episodic memory retrieval, activation patterns included prefrontal, medial temporal, and posterior midline regions. For priming, deactivations in prefrontal (conceptual) or extrastriate (perceptual) regions were consistently seen. For procedural memory, activations were found in motor as well as in non-motor brain areas. Analysis of regional activations across cognitive domains suggested that several brain regions, including the cerebellum, are engaged by a variety of cognitive

  10. Spectral Analysis of Dynamic PET Studies: A Review of 20 Years of Method Developments and Applications

    PubMed Central

    Rizzo, Gaia; Bertoldo, Alessandra; Turkheimer, Federico E.

    2016-01-01

    In Positron Emission Tomography (PET), spectral analysis (SA) allows the quantification of dynamic data by relating the radioactivity measured by the scanner in time to the underlying physiological processes of the system under investigation. Among the different approaches for the quantification of PET data, SA is based on the linear solution of the Laplace transform inversion whereas the measured arterial and tissue time-activity curves of a radiotracer are used to calculate the input response function of the tissue. In the recent years SA has been used with a large number of PET tracers in brain and nonbrain applications, demonstrating that it is a very flexible and robust method for PET data analysis. Differently from the most common PET quantification approaches that adopt standard nonlinear estimation of compartmental models or some linear simplifications, SA can be applied without defining any specific model configuration and has demonstrated very good sensitivity to the underlying kinetics. This characteristic makes it useful as an investigative tool especially for the analysis of novel PET tracers. The purpose of this work is to offer an overview of SA, to discuss advantages and limitations of the methodology, and to inform about its applications in the PET field. PMID:28050197

  11. A study of shape-dependent partial volume correction in pet imaging using ellipsoidal phantoms fabricated via rapid prototyping

    NASA Astrophysics Data System (ADS)

    Mille, Matthew M.

    Positron emission tomography (PET) with 2-[18F]fluoro-2-deoxy-D-glucose (FDG) is being increasingly recognized as an important tool for quantitative assessment of tumor response because of its ability to capture functional information about the tumor's metabolism. However, despite many advances in PET technology, measurements of tumor radiopharmaceutical uptake in PET are still challenged by issues of accuracy and consistency, thereby compromising the use of PET as a surrogate endpoint in clinical trials. One limiting component of the overall uncertainty in PET is the relatively poor spatial resolution of the images which directly affects the accuracy of the tumor radioactivity measurements. These spatial resolution effects, colloquially known as the partial volume effect (PVE), are a function of the characteristics of the scanner as well as the tumor being imaged. Previous efforts have shown that the PVE depends strongly on the tumor volume and the background-to-tumor activity concentration ratio. The PVE is also suspected to be a function of tumor shape, although to date no systematic study of this effect has been performed. This dissertation seeks to help fill the gap in the current knowledge about the shape-dependence of the PVE by attempting to quantify, through both theoretical calculation and experimental measurement, the magnitude of the shape effect for ellipsoidal tumors. An experimental investigation of the tumor shape effect necessarily requires tumor phantoms of multiple shapes. Hence, a prerequisite for this research was the design and fabrication of hollow tumor phantoms which could be filled uniformly with radioactivity and imaged on a PET scanner. The phantom fabrication was achieved with the aid of stereolithography and included prolate ellipsoids of various axis ratios. The primary experimental method involved filling the tumor phantoms with solutions of 18F whose activity concentrations were known and traceable to primary radioactivity standards

  12. A Prospective Study of {sup 18}FDG-PET With CT Coregistration for Radiation Treatment Planning of Lymphomas and Other Hematologic Malignancies

    SciTech Connect

    Terezakis, Stephanie A.; Schöder, Heiko; Kowalski, Alexander; McCann, Patrick; Lim, Remy; Turlakov, Alla; Gonen, Mithat; Barker, Chris; Goenka, Anuj; Lovie, Shona; Yahalom, Joachim

    2014-06-01

    Purpose: This prospective single-institution study examined the impact of positron emission tomography (PET) with the use of 2-[{sup 18}F] fluoro-2-deoxyglucose and computed tomography (CT) scan radiation treatment planning (TP) on target volume definition in lymphoma. Methods and Materials: 118 patients underwent PET/CT TP during June 2007 to May 2009. Gross tumor volume (GTV) was contoured on CT-only and PET/CT studies by radiation oncologists (ROs) and nuclear medicine physicians (NMPs) for 95 patients with positive PET scans. Treatment plans and dose-volume histograms were generated for CT-only and PET/CT for 95 evaluable sites. Paired t test statistics and Pearson correlation coefficients were used for analysis. Results: 70 (74%) patients had non-Hodgkin lymphoma, 10 (11%) had Hodgkin lymphoma, 12 (10%) had plasma-cell neoplasm, and 3 (3%) had other hematologic malignancies. Forty-three (45%) presented with relapsed/refractory disease. Forty-five (47%) received no prior chemotherapy. The addition of PET increased GTV as defined by ROs in 38 patients (median, 27%; range, 5%-70%) and decreased GTV in 41 (median, 39.5%; range, 5%-80%). The addition of PET increased GTV as defined by NMPs in 27 patients (median, 26.5%; range, 5%-95%) and decreased GTV in 52 (median, 70%; range, 5%-99%). The intraobserver correlation between CT-GTV and PET-GTV was higher for ROs than for NMPs (0.94, P<.01 vs 0.89, P<.01). On the basis of Bland-Altman plots, the PET-GTVs defined by ROs were larger than those defined by NMPs. On evaluation of clinical TPs, only 4 (4%) patients had inadequate target coverage (D95 <95%) of the PET-GTV defined by NMPs. Conclusions: Significant differences between the RO and NMP volumes were identified when PET was coregistered to CT for radiation planning. Despite this, the PET-GTV defined by ROs and NMPs received acceptable prescription dose in nearly all patients. However, given the potential for a marginal miss, consultation with an experienced PET

  13. WE-AB-204-05: Harmonizing PET/CT Quantification in Multicenter Studies: A Case Study

    SciTech Connect

    Marques da Silva, A; Fischer, A

    2015-06-15

    Purpose: To present the implementation of a strategy to harmonize FDG PET/CT quantification (SUV), performed with different scanner models and manufacturers. Methods: The strategy was based on Boellaard (2011) and EARL FDG-PET/CT accreditation program, that propose quality control measurements for harmonizing scanner performance. A NEMA IEC Body phantom study was performed using four different devices: PHP-1 (Gemini TF Base, Philips); PHP-2 (Gemini GXL, Philips); GEH (Discovery 600, General Electric); SMS (Biograph Hi-Rez 16, Siemens). The SUV Recovery Coefficient (RC) was calculated using the clinical protocol and other clinically relevant reconstruction parameters. The most appropriate reconstruction parameters (MARP) for SUV harmonization, in each scanner, are those which achieve EARL harmonizing standards. They were identified using the lowest root mean square errors (RMSE). To evaluate the strategy’s effectiveness, the Maximum Differences (MD) between the clinical and MARP RC values were calculated. Results: The reconstructions parameters that obtained the lowest RMSE are: FBP 5mm (PHP-1); LOR-RAMLA 2i0.008l (PHP-2); VuePointHD 2i32s10mm (GEH); and FORE+OSEM 4i8s6mm (SMS). Thus, to ensure that quantitative PET image measurements are interchangeable between these sites, images must be reconstructed with the above-mentioned parameters. Although, a decoupling between the best image for PET/CT qualitative analysis and the best image for quantification studies was observed. The MD showed that the strategy was effective in reducing the variability of SUV quantification for small structures (<17mm). Conclusion: The harmonization strategy of the SUV quantification implemented with these devices was effective in reducing the variability of small structures quantification, minimizing the inter-scanner and inter-institution differences in quantification. However, it is essential that, in addition to the harmonization of quantification, the standardization of the

  14. Input functions for 6-[fluorine-18]Fluorodopa quantitation in parkinsonism: Comparative studies and clinical correlations

    SciTech Connect

    Takikawa, S.; Dhawan, V.; Chaly, T.; Robeson, W.; Dahl, R.; Zanzi, I.; Mandel, F.; Spetsieris, P.; Eidelberg, D.

    1994-06-01

    PET has been used to quantify striatal 6-[{sup 18}F]fluro-L-dopa (FDOPA) uptake as a measure of presynaptic dopaminergic function. Striatal FDOPA uptake rate constants (K{sub 1}) can be calculated using dynamic PET imaging with measurements of the plasma FDOPA input function determined either directly or by several estimation procedures. The authors assessed the comparative clinical utility of these methods by calculating the striato-occipital ratio (SOR) and striatal K{sub 1} values in 12 patients with mild to moderate PD and 12 age-matched normal volunteers. The plasma FDOPA time-activity curve (K{sub 1}{sup FD}); the plasma {sup 18}F time-activity curve (K{sub i}{sup P}); the occipital time-activity curve (K{sub i}{sup OCC}); and a simplified population-derived FDOPA input function (K{sub i}{sup EFD}) were used to calculate striatal K{sub i}. Mean values for all striatal K{sub i} estimates and SOR were significantly lower in the PD group. Although all measured parameters discriminated PD patients with normals, K{sub i}{sup FD} and K{sub i}{sup EFD} provided the best between-group separation. K{sub i}{sup FD}, K{sub i}{sup EFD}, and K{sub i}{sup OCC} measures correlated significantly with quantitative disease severity ratings, although K{sub i}{sup FD} predicted quantitative clinical disability most accurately. These results suggest that K{sub i}{sup FD} may be an optimal marker of the parkinsonian disease process. K{sub i}{sup EFD} may be a useful alternative to K{sub i}{sup FD} for most clinical research applications. 40 refs., 4 figs., 7 tabs.

  15. Posttreatment PET/CT Rather Than Interim PET/CT Using Deauville Criteria Predicts Outcome in Pediatric Hodgkin Lymphoma: A Prospective Study Comparing PET/CT with Conventional Imaging.

    PubMed

    Bakhshi, Sameer; Bhethanabhotla, Sainath; Kumar, Rakesh; Agarwal, Krishankant; Sharma, Punit; Thulkar, Sanjay; Malhotra, Arun; Dhawan, Deepa; Vishnubhatla, Sreenivas

    2017-04-01

    Data about the significance of (18)F-FDG PET at interim assessment and end of treatment in pediatric Hodgkin lymphoma (HL) are limited. Methods: Patients (≤18 y) with HL were prospectively evaluated with contrast-enhanced CT (CECT) and PET combined with low-dose CT (PET/CT) at baseline, after 2 cycles of chemotherapy, and after completion of treatment. Revised International Working Group (RIW) criteria and Deauville 5 point-scale for response assessment by PET/CT were used. All patients received doxorubicin (Adriamycin), bleomycin, vinblastine, dacarbazine chemotherapy along with involved-field radiotherapy (25 Gy) for early stage (IA, IB, and IIA) and advanced stage (IIB-IV) with bulky disease. Results: Of the 57 enrolled patients, median follow-up was 81.6 mo (range, 11-97.5 mo). Treatment decisions were based on CECT. At baseline, PET/CT versus CECT identified 67 more disease sites; 23 patients (40.3%) were upstaged and of them in 9 patients (39%) upstaging would have affected treatment decision; notably none of these patients relapsed. The specificity of interim PET/CT based on RIW criteria (61.5%) and Deauville criteria (91.4%) for predicting relapse was higher than CECT (40.3%) (P = 0.03 and P < 0.0001, respectively). Event-free survival based on interim PET/CT (RIW) response was 93.3 ± 4.1 versus 89.6 ± 3.8 (positive vs. negative scan, respectively; P = 0.44). The specificity of posttreatment PET/CT (Deauville) was 95.7% versus 76.4% by CECT (P = 0.006). Posttreatment PET/CT (Deauville) showed significantly inferior overall survival in patients with positive scan versus negative scan results (66.4 ± 22.5 vs. 94.5 ± 2.0, P = 0.029). Conclusion: Interim PET/CT has better specificity, and use of Deauville criteria further improves it. Escalation of therapy based on interim PET in pediatric HL needs further conclusive evidence to justify its use. Posttreatment PET/CT (Deauville) predicts overall survival and has better specificity in comparison to

  16. 4D offline PET-based treatment verification in scanned ion beam therapy: a phantom study

    NASA Astrophysics Data System (ADS)

    Kurz, Christopher; Bauer, Julia; Unholtz, Daniel; Richter, Daniel; Stützer, Kristin; Bert, Christoph; Parodi, Katia

    2015-08-01

    At the Heidelberg Ion-Beam Therapy Center, patient irradiation with scanned proton and carbon ion beams is verified by offline positron emission tomography (PET) imaging: the {β+} -activity measured within the patient is compared to a prediction calculated on the basis of the treatment planning data in order to identify potential delivery errors. Currently, this monitoring technique is limited to the treatment of static target structures. However, intra-fractional organ motion imposes considerable additional challenges to scanned ion beam radiotherapy. In this work, the feasibility and potential of time-resolved (4D) offline PET-based treatment verification with a commercial full-ring PET/CT (x-ray computed tomography) device are investigated for the first time, based on an experimental campaign with moving phantoms. Motion was monitored during the gated beam delivery as well as the subsequent PET acquisition and was taken into account in the corresponding 4D Monte-Carlo simulations and data evaluation. Under the given experimental conditions, millimeter agreement between the prediction and measurement was found. Dosimetric consequences due to the phantom motion could be reliably identified. The agreement between PET measurement and prediction in the presence of motion was found to be similar as in static reference measurements, thus demonstrating the potential of 4D PET-based treatment verification for future clinical applications.

  17. Preclinical TSPO Ligand PET to Visualize Human Glioma Xenotransplants: A Preliminary Study

    PubMed Central

    Buck, Jason R.; McKinley, Eliot T.; Fu, Allie; Abel, Ty W.; Thompson, Reid C.; Chambless, Lola; Watchmaker, Jennifer M.; Harty, James P.; Cooper, Michael K.; Manning, H. Charles

    2015-01-01

    Current positron emission tomography (PET) imaging biomarkers for detection of infiltrating gliomas are limited. Translocator protein (TSPO) is a novel and promising biomarker for glioma PET imaging. To validate TSPO as a potential target for molecular imaging of glioma, TSPO expression was assayed in a tumor microarray containing 37 high-grade (III, IV) gliomas. TSPO staining was detected in all tumor specimens. Subsequently, PET imaging was performed with an aryloxyanilide-based TSPO ligand, [18F]PBR06, in primary orthotopic xenograft models of WHO grade III and IV gliomas. Selective uptake of [18F]PBR06 in engrafted tumor was measured. Furthermore, PET imaging with [18F]PBR06 demonstrated infiltrative glioma growth that was undetectable by traditional magnetic resonance imaging (MRI). Preliminary PET with [18F]PBR06 demonstrated a preferential tumor-to-normal background ratio in comparison to 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG). These results suggest that TSPO PET imaging with such high-affinity radiotracers may represent a novel strategy to characterize distinct molecular features of glioma growth, as well as better define the extent of glioma infiltration for therapeutic purposes. PMID:26517124

  18. MR-based motion correction for PET imaging using wired active MR microcoils in simultaneous PET-MR: Phantom study1

    PubMed Central

    Huang, Chuan; Ackerman, Jerome L.; Petibon, Yoann; Brady, Thomas J.; El Fakhri, Georges; Ouyang, Jinsong

    2014-01-01

    Purpose: Artifacts caused by head motion present a major challenge in brain positron emission tomography (PET) imaging. The authors investigated the feasibility of using wired active MR microcoils to track head motion and incorporate the measured rigid motion fields into iterative PET reconstruction. Methods: Several wired active MR microcoils and a dedicated MR coil-tracking sequence were developed. The microcoils were attached to the outer surface of an anthropomorphic 18F-filled Hoffman phantom to mimic a brain PET scan. Complex rotation/translation motion of the phantom was induced by a balloon, which was connected to a ventilator. PET list-mode and MR tracking data were acquired simultaneously on a PET-MR scanner. The acquired dynamic PET data were reconstructed iteratively with and without motion correction. Additionally, static phantom data were acquired and used as the gold standard. Results: Motion artifacts in PET images were effectively removed by wired active MR microcoil based motion correction. Motion correction yielded an activity concentration bias ranging from −0.6% to 3.4% as compared to a bias ranging from −25.0% to 16.6% if no motion correction was applied. The contrast recovery values were improved by 37%–156% with motion correction as compared to no motion correction. The image correlation (mean ± standard deviation) between the motion corrected (uncorrected) images of 20 independent noise realizations and static reference was R2 = 0.978 ± 0.007 (0.588 ± 0.010, respectively). Conclusions: Wired active MR microcoil based motion correction significantly improves brain PET quantitative accuracy and image contrast. PMID:24694141

  19. Senior Pets

    MedlinePlus

    ... Health Awareness Events About AVMA Who We Are Governance AVMA Careers AVMF Student AVMA (SAVMA) Allied Organizations ... Although senior pets may develop age-related problems, good care allows them to live happy, healthy and ...

  20. Giardia & Pets

    MedlinePlus

    ... items (for example, bedding and cloth toys) and linens (sheets and towels) can be washed in the ... and food bowls, pet bedding, floors, dog crates, linens, towels, litter box, etc.) regularly for as long ...

  1. PET scan

    MedlinePlus

    ... may have an allergic reaction to the tracer material. Some people have pain, redness, or swelling at ... with diabetes. Most PET scans are now performed along with a CT scan. This combination scan ...

  2. A retrospective molecular study of select intestinal protozoa in healthy pet cats from Italy.

    PubMed

    Mancianti, Francesca; Nardoni, Simona; Mugnaini, Linda; Zambernardi, Lucia; Guerrini, Alessandro; Gazzola, Valentina; Papini, Roberto Amerigo

    2015-02-01

    The feline gut can harbour a number of protozoan parasites. Recent genetic studies have highlighted new epidemiological findings about species of Cryptosporidium, assemblages of Giardia duodenalis and Toxoplasma gondii. Furthermore, epidemiological studies suggest the occurrence of Tritrichomonas foetus in cats is on the increase worldwide. The prevalence of selected intestinal protozoa was determined by PCR using DNA previously extracted from the faeces of 146 privately owned healthy cats from Italy. Molecular genotyping on T gondii, G duodenalis and Cryptosporidium DNA was achieved. PCR assays were positive in 32 (22.9%) samples. Three animals (2.0%) were positive for T foetus and Cryptosporidium DNA, 15 specimens (10.3%) were positive for T gondii and 11 (7.5%) for G duodenalis. Co-infections were never observed. Results of the typing analysis allowed the identification of Cryptosporidium felis in all cases. The specimens positive for T gondii hinted at clonal genotype I (n = 7), genotype II (n = 1) and genotype III (n = 7). The G duodenalis isolates were referable to assemblages F (n = 9) and C (n = 2). In conclusion, the results obtained in this study add to the literature regarding the epidemiology of these parasites by confirming their presence in the faeces of healthy pet cats.

  3. A feasibility study of PETiPIX: an ultra high resolution small animal PET scanner

    NASA Astrophysics Data System (ADS)

    Li, K.; Safavi-Naeini, M.; Franklin, D. R.; Petasecca, M.; Guatelli, S.; Rosenfeld, A. B.; Hutton, B. F.; Lerch, M. L. F.

    2013-12-01

    PETiPIX is an ultra high spatial resolution positron emission tomography (PET) scanner designed for imaging mice brains. Four Timepix pixellated silicon detector modules are placed in an edge-on configuration to form a scanner with a field of view (FoV) 15 mm in diameter. Each detector module consists of 256 × 256 pixels with dimensions of 55 × 55 × 300 μm3. Monte Carlo simulations using GEANT4 Application for Tomographic Emission (GATE) were performed to evaluate the feasibility of the PETiPIX design, including estimation of system sensitivity, angular dependence, spatial resolution (point source, hot and cold phantom studies) and evaluation of potential detector shield designs. Initial experimental work also established that scattered photons and recoil electrons could be detected using a single edge-on Timepix detector with a positron source. Simulation results estimate a spatial resolution of 0.26 mm full width at half maximum (FWHM) at the centre of FoV and 0.29 mm FWHM overall spatial resolution with sensitivity of 0.01%, and indicate that a 1.5 mm thick tungsten shield parallel to the detectors will absorb the majority of non-coplanar annihilation photons, significantly reducing the rates of randoms. Results from the simulated phantom studies demonstrate that PETiPIX is a promising design for studies demanding high resolution images of mice brains.

  4. Visual priming within and across symbolic format using a tachistoscopic picture identification task: a PET study.

    PubMed

    Lebreton, K; Desgranges, B; Landeau, B; Baron, J C; Eustache, F

    2001-07-01

    The present work was aimed at characterizing picture priming effects from two complementary behavioral and functional neuroimaging (positron emission tomography, PET) studies. In two experiments, we used the same line drawings of common living/nonliving objects in a tachistoscopic identification task to contrast two forms of priming. In the within-format priming condition (picture-picture), subjects were instructed to perform a perceptual encoding task in the study phase, whereas in the cross-format priming condition (word-picture), they were instructed to perform a semantic encoding task. In Experiment 1, we showed significant priming effects in both priming conditions. However, the magnitude of priming effects in the same-format/perceptual encoding condition was higher than that in the different-format/semantic encoding condition, while the recognition performance did not differ between the two conditions. This finding supports the existence of two forms of priming that may be subserved by different systems. Consistent with these behavioral findings, the PET data for Experiment 2 revealed distinct priming-related patterns of regional cerebral blood flow (rCBF) decreases for the two priming conditions when primed items were compared to unprimed items. The same-format priming condition involved reductions in cerebral activity particularly in the right extrastriate cortex and left cerebellum, while the different-format priming condition was associated with rCBF decreases in the left inferior temporo-occipital cortex, left frontal regions, and the right cerebellum. These results suggest that the extrastriate cortex may subserve general aspects of perceptual priming, independent of the kind of stimuli, and that the right part of this cortex could underlie the same-format-specific system for pictures. These data also support the idea that the cross-format/semantic encoding priming for pictures represents a form of lexico-semantic priming subserved by a semantic neural

  5. The MINDView brain PET detector, feasibility study based on SiPM arrays

    NASA Astrophysics Data System (ADS)

    González, Antonio J.; Majewski, Stan; Sánchez, Filomeno; Aussenhofer, Sebastian; Aguilar, Albert; Conde, Pablo; Hernández, Liczandro; Vidal, Luis F.; Pani, Roberto; Bettiol, Marco; Fabbri, Andrea; Bert, Julien; Visvikis, Dimitris; Jackson, Carl; Murphy, John; O'Neill, Kevin; Benlloch, Jose M.

    2016-05-01

    The Multimodal Imaging of Neurological Disorders (MINDView) project aims to develop a dedicated brain Positron Emission Tomography (PET) scanner with sufficient resolution and sensitivity to visualize neurotransmitter pathways and their disruptions in mental disorders for diagnosis and follow-up treatment. The PET system should be compact and fully compatible with a Magnetic Resonance Imaging (MRI) device in order to allow its operation as a PET brain insert in a hybrid imaging setup with most MRI scanners. The proposed design will enable the currently-installed MRI base to be easily upgraded to PET/MRI systems. The current design for the PET insert consists of a 3-ring configuration with 20 modules per ring and an axial field of view of ~15 cm and a geometrical aperture of ~33 cm in diameter. When coupled to the new head Radio Frequency (RF) coil, the inner usable diameter of the complete PET-RF coil insert is reduced to 26 cm. Two scintillator configurations have been tested, namely a 3-layer staggered array of LYSO with 1.5 mm pixel size, with 35×35 elements (6 mm thickness each) and a black-painted monolithic LYSO block also covering about 50×50 mm2 active area with 20 mm thickness. Laboratory test results associated with the current MINDView PET module concept are presented in terms of key parameters' optimization, such as spatial and energy resolution, sensitivity and Depth of Interaction (DOI) capability. It was possible to resolve all pixel elements from the three scintillator layers with energy resolutions as good as 10%. The monolithic scintillator showed average detector resolutions varying from 3.5 mm in the entrance layer to better than 1.5 mm near the photosensor, with average energy resolutions of about 17%.

  6. Positron Emission Tomography (PET)

    DOE R&D Accomplishments Database

    Welch, M. J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET.

  7. Positron Emission Tomography (PET)

    SciTech Connect

    Welch, M.J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET. 22 figs.

  8. Functional neuroimaging using F-18 FDG PET/CT in amnestic mild cognitive impairment: A preliminary study

    PubMed Central

    Tripathi, Madhavi; Tripathi, Manjari; Sharma, Rajnish; Jaimini, Abhinav; MD’Souza, Maria; Saw, Sanjiv; Mondal, Anupam; Kushwaha, Suman

    2013-01-01

    Background and Objective: People with amnestic mild cognitive impairment (aMCI) are at a higher risk of developing Alzheimers Dementia (AD) than their cognitively normal peers. Decreased glucose metabolism with F-18 fluorodeoxyglucose (FDG) positron emission tomography (PET) is a downstream marker of neuronal injury and neurodegeneration. The risk of developing AD is higher in patients with aMCI who have a pattern of AD related glucose metabolic changes on FDG-PET than those who do not have these changes. We evaluated the utility of visual and ‘statistical parametric mapping (SPM)-supported reading’ of the FDG-PET scans of patients clinically classified as aMCI for identification of predementia patterns and for prediction of their progression to AD (PTAD). Patients and Methods: A total of 35 patients diagnosed as aMCI (mini mental state examination (MMSE) score ≥ 25) at the cognitive disorders and memory (CDM) clinic of speciality neurology centers were referred for a resting FDG-PET study. All patients had a detailed neurological, neuropsychological, and magnetic resonance imaging (MRI) evaluation prior to referral. Mean age of patients was 67.9 ± 8.7 (standard deviation (SD)) years, male: female (M: F) =26:9. Twenty healthy age-matched controls were included in the study for SPM (http://www.fil.ion.ucl.ac.uk/spm/). Scans were interpreted visually and using SPM. Each scan was classified as high, intermediate, or low likelihood for PTAD. Results: On visual analysis, four scans were classified as high likelihood of PTAD and reveled hypometabolism in AD related territories. Seven patients had hypometabolism in at least one AD related territory and were classified as intermediate likelihood for PTAD. Two patients had hypometabolism in other than AD territories, while 22 patients did not show any significant hypometabolism on their FDG-PET scans and were classified as low likelihood for PTAD. SPM analysis of these cases confirmed the areas hypometabolism in all

  9. An observational study of the potential for human exposures to pet-borne diazinon residues following lawn applications

    SciTech Connect

    Morgan, Marsha K. Stout, Daniel M.; Jones, Paul A.; Barr, Dana B.

    2008-07-15

    This study examined the potential for pet dogs to be an important pathway for transporting diazinon residues into homes and onto its occupants following residential lawn applications. The primary objectives were to investigate the potential exposures of occupants and their pet dogs to diazinon after an application to turf at their residences and to determine if personal contacts between occupants and their pet dogs resulted in measurable exposures. It was conducted from April to August 2001 before the Agency phased out all residential uses of diazinon in December 2004. Six families and their pet dogs were recruited into the study. Monitoring was conducted at pre-, 1, 2, 4, and 8 days post-application of a commercial, granular formulation of diazinon to the lawn by the homeowner. Environmental samples collected included soil, indoor air, carpet dust, and transferable residues from lawns and floors. Samples collected from the pet dogs consisted of paw wipes, fur clippings, and transferable residues from the fur by a technician or child wearing a cotton glove(s). First morning void (FMV) urine samples were collected from each child and his/her parent on each sampling day. Diazinon was analyzed in all samples, except urine, by GC-MS. The metabolite 2-isopropyl-4-methyl-6-hydroxypyrimidine (IMPy) was analyzed in the urine samples by HPLC-MS/MS. Mean airborne residues of diazinon on day 1 post-application were at least six times higher in both the living rooms (235{+-}267 ng/m{sup 3}) and children's bedrooms (179{+-}246 ng/m{sup 3}) than at pre-application. Mean loadings of diazinon in carpet dust samples were at least 20 times greater on days 2, 4, and 8 post-application than mean loadings (0.03{+-}0.04 ng/cm{sup 2}) at pre-application. The pet dogs had over 900 times higher mean loadings of diazinon residues on their paws on day 1 post-application (88.1{+-}100.1 ng/cm{sup 2}) compared to mean loadings (<0.09 ng/cm{sup 2}) at pre-application. The mean diazinon loadings

  10. STRATEGIES FOR QUANTIFYING PET IMAGING DATA FROM TRACER STUDIES OF BRAIN RECEPTORS AND ENZYMES.

    SciTech Connect

    Logan, J.

    2001-04-02

    A description of some of the methods used in neuroreceptor imaging to distinguish changes in receptor availability has been presented in this chapter. It is necessary to look beyond regional uptake of the tracer since uptake generally is affected by factors other than the number of receptors for which the tracer has affinity. An exception is the infusion method producing an equilibrium state. The techniques vary in complexity some requiring arterial blood measurements of unmetabolized tracer and multiple time uptake data. Others require only a few plasma and uptake measurements and those based on a reference region require no plasma measurements. We have outlined some of the limitations of the different methods. Laruelle (1999) has pointed out that test/retest studies to which various methods can be applied are crucial in determining the optimal method for a particular study. The choice of method will also depend upon the application. In a clinical setting, methods not involving arterial blood sampling are generally preferred. In the future techniques for externally measuring arterial plasma radioactivity with only a few blood samples for metabolite correction will extend the modeling options of clinical PET. Also since parametric images can provide information beyond that of ROI analysis, improved techniques for generating such images will be important, particularly for ligands requiring more than a one-compartment model. Techniques such as the wavelet transform proposed by Turkheimer et al. (2000) may prove to be important in reducing noise and improving quantitation.

  11. Uptake of carbon-11-methionine and fluorodeoxyglucose in non-Hodgkin's lymphoma: A PET study

    SciTech Connect

    Leskinen-Kallio, S.; Ruotsalainen, U.; Nagren, K.T.; Teraes, M.J.; Joensuu, H. )

    1991-06-01

    Uptake of L-(methyl-11C)methionine (11C-methionine) and (18F)-2-fluoro-2-deoxy-D-glucose (FDG) was studied with PET in 14 patients with non-Hodgkin's lymphomas. The low molecular weight fraction of venous plasma separated by fast gel filtration was used as the input function for 11C-methionine studies, and tracer accumulation was analyzed according to Patlak and Gjedde. The average uptake rate of 11C-methionine was 0.0775 {plus minus} 0.0245 min-1 (s.d.) and of FDG 0.0355 {plus minus} 0.0293 min-1, 11C-methionine uptake rate being significantly higher than that of FDG (p less than 0.01). Carbon-11-methionine accumulated strongly in all but one of the lymphomas. FDG accumulated clearly in lymphomas of high-grade malignancy, whereas two intermediate- and three low-grade malignant lymphomas had a poor uptake rate. The tumor/plasma ratio of both 11C-methionine and FDG increased faster in high and intermediate-grade lymphomas than in low-grade lymphomas, but there was considerable overlap between the histologic grades. Carbon-11-methionine seems to be preferable in detecting tumors, while FDG was superior to 11C-methionine in distinguishing the high-grade malignant lymphomas from the other grades.

  12. Spatial and temporal factors during processing of audiovisual speech: a PET study.

    PubMed

    Macaluso, E; George, N; Dolan, R; Spence, C; Driver, J

    2004-02-01

    Speech perception can use not only auditory signals, but also visual information from seeing the speaker's mouth. The relative timing and relative location of auditory and visual inputs are both known to influence crossmodal integration psychologically, but previous imaging studies of audiovisual speech focused primarily on just temporal aspects. Here we used Positron Emission Tomography (PET) during audiovisual speech processing to study how temporal and spatial factors might jointly affect brain activations. In agreement with previous work, synchronous versus asynchronous audiovisual speech yielded increased activity in multisensory association areas (e.g., superior temporal sulcus [STS]), plus in some unimodal visual areas. Our orthogonal manipulation of relative stimulus position (auditory and visual stimuli presented at same location vs. opposite sides) and stimulus synchrony showed that (i) ventral occipital areas and superior temporal sulcus were unaffected by relative location; (ii) lateral and dorsal occipital areas were selectively activated for synchronous bimodal stimulation at the same external location; (iii) right inferior parietal lobule was activated for synchronous auditory and visual stimuli at different locations, that is, in the condition classically associated with the 'ventriloquism effect' (shift of perceived auditory position toward the visual location). Thus, different brain regions are involved in different aspects of audiovisual integration. While ventral areas appear more affected by audiovisual synchrony (which can influence speech identification), more dorsal areas appear to be associated with spatial multisensory interactions.

  13. Measurement of serotonin transporter binding with PET and [11C]MADAM: a test-retest reproducibility study.

    PubMed

    Lundberg, Johan; Halldin, Christer; Farde, Lars

    2006-09-01

    [(11)C]MADAM, or [(11)C]N,N-dimethyl-2-(2-amino-4-methylphenyl thio)benzylamine, is a radioligand suitable for positron emission tomography (PET) studies of the serotonin transporter (5-HTT) in man. The purpose of this study was to examine the test-retest reproducibility using a design tailored for future applied studies. Nine healthy male subjects were examined with PET and [(11)C]MADAM under baseline conditions at two occasions 4-8 weeks apart. The subjects participated in a Phase 1 trial to which the present study was an addendum. Eight regions of interest were studied, including frontal cortex, hippocampal complex, and the raphe nuclei. All regions, but the raphe nuclei, were defined on MR-images to which the PET-images were coregistered using SPM2. Binding potentials were calculated using the simplified reference tissue model, with cerebellum as reference region. Test-retest data were calculated from the binding potentials, and included binding potential (BP) quotient, BP difference, and the intraclass correlation coefficient. The quotient was about one in all regions, and the mean difference varied between 0 and 11%. The intraclass correlation coefficient varied between 0.96 and 0.51 in the raphe nuclei and averaged bilateral regions. [(11)C]MADAM was shown to have good to excellent reliability in measurements of 5-HTT binding in brain regions of interest in research on psychiatric disorders.

  14. High prevalence of closely-related Acinetobacter baumannii in pets according to a multicentre study in veterinary clinics, Reunion Island.

    PubMed

    Belmonte, O; Pailhoriès, H; Kempf, M; Gaultier, M P; Lemarié, C; Ramont, C; Joly-Guillou, M L; Eveillard, M

    2014-06-04

    Our objective was to study the carriage of Acinetobacter baumannii (AB) in pets in Reunion Island (RI), a French territory in Indian Ocean. Overall, 138 pets were sampled (rectum, mouth, wounds if applicable) in 9 veterinary clinics (VC). The prevalence of AB carriage was 6.5% (95%CI; 2.4, 10.6) and 9 carriers were identified from 4 VC. Hospitalization in a VC and antimicrobial treatment administered within the 15 preceding days were significantly associated with AB carriage (P<0.01 and P<0.05, respectively). Despite the VC in which animals have been sampled were located all around RI, most isolates (8/9) were closely-related (>90% similarity by pulsed-field gel electrophoresis). Additional studies are needed to improve the understanding about interactions between the different reservoirs of AB in RI.

  15. Effect of motion on tracer activity determination in CT attenuation corrected PET images: A lung phantom study

    SciTech Connect

    Pevsner, Alex; Nehmeh, Sadek A.; Humm, John L.; Mageras, Gig S.; Erdi, Yusuf E.

    2005-07-15

    Respiratory motion is known to affect the quantitation of {sup 18}FDG uptake in lung lesions. The aim of the study was to investigate the magnitude of errors in tracer activity determination due to motion, and its dependence upon CT attenuation at different phases of the motion cycle. To estimate these errors we have compared maximum activity concentrations determined from PET/CT images of a lung phantom at rest and under simulated respiratory motion. The NEMA 2001 IEC body phantom, containing six hollow spheres with diameters 37, 28, 22, 17, 13, and 10 mm, was used in this study. To mimic lung tissue density, the phantom (excluding spheres) was filled with low density polystyrene beads and water. The phantom spheres were filled with {sup 18}FDG solution setting the target-to-background activity concentration ratio at 8:1. PET/CT data were acquired with the phantom at rest, and while it was undergoing periodic motion along the longitudinal axis of the scanner with a range of displacement being 2 cm, and a period of 5 s. The phantom at rest and in motion was scanned using manufacturer provided standard helical/clinical protocol, a helical CT scan followed by a PET emission scan. The moving phantom was also scanned using a 4D-CT protocol that provides volume image sets at different phases of the motion cycle. To estimate the effect of motion on quantitation of activities in six spheres, we have examined the activity concentration data for (a) the stationary phantom, (b) the phantom undergoing simulated respiratory motion, and (c) a moving phantom acquired with PET/4D-CT protocol in which attenuation correction was performed with CT images acquired at different phases of motion cycle. The data for the phantom at rest and in motion acquired with the standard helical/clinical protocol showed that the activity concentration in the spheres can be underestimated by as much as 75%, depending on the sphere diameter. We have also demonstrated that fluctuations in sphere

  16. TU-F-CAMPUS-J-04: Impact of Voxel Anisotropy On Statistic Texture Features of Oncologic PET: A Simulation Study

    SciTech Connect

    Yang, F; Byrd, D; Bowen, S; Kinahan, P; Sandison, G

    2015-06-15

    Purpose: Texture metrics extracted from oncologic PET have been investigated with respect to their usefulness as definitive indicants for prognosis in a variety of cancer. Metric calculation is often based on cubic voxels. Most commonly used PET scanners, however, produce rectangular voxels, which may change texture metrics. The objective of this study was to examine the variability of PET texture feature metrics resulting from voxel anisotropy. Methods: Sinograms of NEMA NU-2 phantom for 18F-FDG were simulated using the ASIM simulation tool. The obtained projection data was reconstructed (3D-OSEM) on grids of cubic and rectangular voxels, producing PET images of resolution of 2.73x2.73x3.27mm3 and 3.27x3.27x3.27mm3, respectively. An interpolated dataset obtained from resampling the rectangular voxel data for isotropic voxel dimension (3.27mm) was also considered. For each image dataset, 28 texture parameters based on grey-level co-occurrence matrices (GLCOM), intensity histograms (GLIH), neighborhood difference matrices (GLNDM), and zone size matrices (GLZSM) were evaluated within lesions of diameter of 33, 28, 22, and 17mm. Results: In reference to the isotopic image data, texture features appearing on the rectangular voxel data varied with a range of -34-10% for GLCOM based, -31-39% for GLIH based, -80 -161% for GLNDM based, and −6–45% for GLZSM based while varied with a range of -35-23% for GLCOM based, -27-35% for GLIH based, -65-86% for GLNDM based, and -22 -18% for GLZSM based for the interpolated image data. For the anisotropic data, GLNDM-cplx exhibited the largest extent of variation (161%) while GLZSM-zp showed the least (<1%). As to the interpolated data, GLNDM-busy varied the most (86%) while GLIH-engy varied the least (<1%). Conclusion: Variability of texture appearance on oncologic PET with respect to voxel representation is substantial and feature-dependent. It necessitates consideration of standardized voxel representation for inter

  17. Is there any complimentary role of F-18 NaF PET/CT in detecting of osseous involvement of multiple myeloma? A comparative study for F-18 FDG PET/CT and F-18 FDG NaF PET/CT.

    PubMed

    Ak, İlknur; Onner, Hasan; Akay, Olga Meltem

    2015-09-01

    Multiple myeloma (MM) is a disease characterized by a monoclonal plasma cell population in the bone marrow whereby osseous involvement is a predominant feature. The aim of this prospective study was to investigate the combined use of F-18 FDG and F-18 NaF PET/CT in the skeletal assessment of patients with MM and to compare the efficacy of these two PET tracers regarding detection of myeloma-indicative osseous lesions. A total of 26 patients (14 females and 12 males, mean age 61.8 ± 1.8 years (range 40-81 years)) with MM diagnosed according to standard criteria. All patients underwent both F-18 FDG PET/CT and F-18 NaF PET/CT scans within 1 week after the completion of the usual staging workup for MM. In total, approximately 128 focal F-18 FDG avid skeletal lesions were detected; the stage I (n = 5) patients had 10 bone lesions, the stage II (n = 11) patients had 43 lesions, and the stage III (n = 10) patients demonstrated 75 focal bone lesions. F-18 NaF PET/CTs demonstrated fewer myeloma indicative lesions than F-18 FDG PET/CTs. Totally, 57 focal bone lesions were detected with whole body F-18 NaF PET/CT (mean 2.19 ± 0.34, between 1 and 9 lesions); the five stage I patients had 6 bone lesions, the 11 stage II pts had 18 lesions, and the ten stage III patients demonstrated 33 focal bone lesions. On the other hand, F-18 NaF PET/CT demonstrated additional 135 bone lesions defined as rib fractures and other findings due to degenerative changes. In conclusion, our study implies that F-18 NaF PET/CT scan did not actually aid for assessing the myelomatous bone lesions in patients with MM. Therefore, a complementary F-18 NaF PET/CT may be an accurate modality for detecting of bone fracture in patients with MM.

  18. Effects of emotion and reward motivation on neural correlates of episodic memory encoding: a PET study.

    PubMed

    Shigemune, Yayoi; Abe, Nobuhito; Suzuki, Maki; Ueno, Aya; Mori, Etsuro; Tashiro, Manabu; Itoh, Masatoshi; Fujii, Toshikatsu

    2010-05-01

    It is known that emotion and reward motivation promote long-term memory formation. It remains unclear, however, how and where emotion and reward are integrated during episodic memory encoding. In the present study, subjects were engaged in intentional encoding of photographs under four different conditions that were made by combining two factors (emotional valence, negative or neutral; and monetary reward value, high or low for subsequent successful recognition) during H2 15O positron emission tomography (PET) scanning. As for recognition performance, we found significant main effects of emotional valence (negative>neutral) and reward value (high value>low value), without an interaction between the two factors. Imaging data showed that the left amygdala was activated during the encoding conditions of negative pictures relative to neutral pictures, and the left orbitofrontal cortex was activated during the encoding conditions of high reward pictures relative to low reward pictures. In addition, conjunction analysis of these two main effects detected right hippocampal activation. Although we could not find correlations between recognition performance and activity of these three regions, we speculate that the right hippocampus may integrate the effects of emotion (processed in the amygdala) and monetary reward (processed in the orbitofrontal cortex) on episodic memory encoding.

  19. Influence of spinal cord injury on cerebral sensorimotor systems: a PET study.

    PubMed Central

    Roelcke, U; Curt, A; Otte, A; Missimer, J; Maguire, R P; Dietz, V; Leenders, K L

    1997-01-01

    OBJECTIVES: To assess the effect of a transverse spinal cord lesion on cerebral energy metabolism in view of sensorimotor reorganisation. METHODS: PET and 18F-fluorodeoxyglucose were used to study resting cerebral glucose metabolism in 11 patients with complete paraplegia or tetraplegia after spinal cord injury and 12 healthy subjects. Regions of interest analysis was performed to determine global glucose metabolism (CMRGlu). Statistical parametric mapping was applied to compare both groups on a pixel by pixel basis (significance level P = 0.001). RESULTS: Global absolute CMRGlu was lower in spinal cord injury (33.6 (6.6) mumol/100 ml/min (mean (SD)) than in controls (45.6 (6.2), Mann-Whitney P = 0.0026). Statistical parametric mapping analysis disclosed relatively increased glucose metabolism particularly in the supplementary motor area, anterior cingulate, and putamen. Relatively reduced glucose metabolism in patients with spinal cord injury was found in the midbrain, cerebellar hemispheres, and temporal cortex. CONCLUSIONS: It is assumed that cerebral deafferentiation due to reduction or loss of sensorimotor function results in the low level of absolute global CMRGlu found in patients with spinal cord injury. Relatively increased glucose metabolism in brain regions involved in attention and initiation of movement may be related to secondary disinhibition of these regions. PMID:9010401

  20. Conspicuity of Malignant Lesions on PET/CT and Simultaneous Time-Of-Flight PET/MRI

    PubMed Central

    Minamimoto, Ryogo; Iagaru, Andrei; Jamali, Mehran; Holley, Dawn; Barkhodari, Amir; Vasanawala, Shreyas; Zaharchuk, Greg

    2017-01-01

    Purpose To compare the conspicuity of malignant lesions between FDG PET/CT and a new simultaneous, time-of-flight (TOF) enabled PET/MRI scanner. Methods All patients underwent a single-injection of FDG, followed by a dual imaging protocol consisting of PET/CT followed by TOF PET/MRI. PET/CT and PET/MRI images were evaluated by two readers independently for areas of FDG uptake compatible with malignancy, and then categorized into 5 groups (1: PET/MRI and PET/CT positive; 2: PET/MRI positive, PET/CT positive in retrospect; 3: PET/CT positive, PET/MRI positive in retrospect; 4: PET/MRI positive, PET/CT negative; 5: PET/MRI negative, PET/CT positive) by consensus. Patients with no lesions on either study or greater than 10 lesions based on either modality were excluded from the study. Results Fifty-two patients (mean±SD age: 58±14 years) underwent the dual imaging protocol; of these, 29 patients with a total of 93 FDG-avid lesions met the inclusion criteria. The majority of lesions (56%) were recorded prospectively in the same location on PET/CT and PET/MRI. About an equal small fraction of lesions were seen on PET/CT but only retrospectively on PET/MRI (9%) and vice versa (12%). More lesions were identified only on PET/MRI but not on PET/CT, even in retrospect (96% vs. 81%, respectively; p = 0.003). Discrepant lesions had lower maximum standardized uptake value (SUVmax) than concordant lesions on both modalities (p<0.001). Conclusions While most lesions were identified prospectively on both modalities, significantly more lesions were identified with PET/MRI than with PET/CT. PMID:28103230

  1. Correlation between direct microscopy and FDG-PET in the study of cerebral blood flow in rats

    NASA Astrophysics Data System (ADS)

    Blagosklonov, Oleg; Podoprigora, Guennady I.; Pushkin, Sergey V.; Nartsissov, Yaroslav R.; Comas, Laurent; Cardot, Jean-Claude; Boulahdour, Hatem

    2007-07-01

    Isotope studies provide valuable data about an organ's function in vivo. Thanks to positron emission tomography (PET) using the radiolabeled natural metabolites, such as [18F]-2-fluoro-deoxy-d-glucose (FDG), biological and physiological meaning of nuclear medicine scans has been considerably increased. Therefore it is of interest to elucidate the possibilities of the technique in a study of some natural metabolites like glycine influencing the blood microcirculation. Glycine, as a medicine, was recently shown to have a positive therapeutic effect in the treatment of patients with ischemic stroke and some other neurological disorders based on vascular disturbances. By previous direct biomicroscopic investigations of pial microvessels in laboratory rats an expressed vasodilatory effect of topically applied glycine was proved. The arterioles diameters depending on initial size have been increased by 200-250% for arterioles of 20-40 μm and by 150-200% for arterioles of 50-80 μm. The PET images were acquired before and after sublingual application of glycine (200 mg). The quantitative analysis of FDG volume concentration (Bq/ml) in the rat brain demonstrated that, in studies after glycine administration, maximal, minimal and mean FDG volume concentration in the brain increased by 200-250% in comparison with the baseline data. Thus, our results revealing evident correlation between FDG-PET images and direct biomicroscopic observations confirm the great potential of molecular imaging techniques to explore in vivo process in the brain.

  2. Design of Infusion Schemes for Neuroreceptor Imaging: Application to [11C]Flumazenil-PET Steady-State Study

    PubMed Central

    Feng, Ling; Svarer, Claus; Madsen, Karine; Ziebell, Morten; Dyssegaard, Agnete; Ettrup, Anders; Hansen, Hanne Demant; Lehel, Szabolcs; Yndgaard, Stig; Paulson, Olaf Bjarne; Knudsen, Gitte Moos; Pinborg, Lars Hageman

    2016-01-01

    This study aims at developing a simulation system that predicts the optimal study design for attaining tracer steady-state conditions in brain and blood rapidly. Tracer kinetics was determined from bolus studies and used to construct the system. Subsequently, the system was used to design inputs for bolus infusion (BI) or programmed infusion (PI) experiments. Steady-state quantitative measurements can be made with one short scan and venous blood samples. The GABAA receptor ligand [11C]Flumazenil (FMZ) was chosen for this purpose, as it lacks a suitable reference region. Methods. Five bolus [11C]FMZ-PET scans were conducted, based on which population-based PI and BI schemes were designed and tested in five additional healthy subjects. The design of a PI was assisted by an offline feedback controller. Results. The system could reproduce the measurements in blood and brain. With PI, [11C]FMZ steady state was attained within 40 min, which was 8 min earlier than the optimal BI (B/I ratio = 55 min). Conclusions. The system can design both BI and PI schemes to attain steady state rapidly. For example, subjects can be [11C]FMZ-PET scanned after 40 min of tracer infusion for 40 min with venous sampling and a straight-forward quantification. This simulation toolbox is available for other PET-tracers. PMID:27123457

  3. VOXEL-LEVEL MAPPING OF TRACER KINETICS IN PET STUDIES: A STATISTICAL APPROACH EMPHASIZING TISSUE LIFE TABLES1

    PubMed Central

    O’Sullivan, Finbarr; Muzi, Mark; Mankoff, David A.; Eary, Janet F.; Spence, Alexander M.; Krohn, Kenneth A.

    2014-01-01

    Most radiotracers used in dynamic positron emission tomography (PET) scanning act in a linear time-invariant fashion so that the measured time-course data are a convolution between the time course of the tracer in the arterial supply and the local tissue impulse response, known as the tissue residue function. In statistical terms the residue is a life table for the transit time of injected radiotracer atoms. The residue provides a description of the tracer kinetic information measurable by a dynamic PET scan. Decomposition of the residue function allows separation of rapid vascular kinetics from slower blood-tissue exchanges and tissue retention. For voxel-level analysis, we propose that residues be modeled by mixtures of nonparametrically derived basis residues obtained by segmentation of the full data volume. Spatial and temporal aspects of diagnostics associated with voxel-level model fitting are emphasized. Illustrative examples, some involving cancer imaging studies, are presented. Data from cerebral PET scanning with 18F fluoro-deoxyglucose (FDG) and 15O water (H2O) in normal subjects is used to evaluate the approach. Cross-validation is used to make regional comparisons between residues estimated using adaptive mixture models with more conventional compartmental modeling techniques. Simulations studies are used to theoretically examine mean square error performance and to explore the benefit of voxel-level analysis when the primary interest is a statistical summary of regional kinetics. The work highlights the contribution that multivariate analysis tools and life-table concepts can make in the recovery of local metabolic information from dynamic PET studies, particularly ones in which the assumptions of compartmental-like models, with residues that are sums of exponentials, might not be certain. PMID:25392718

  4. Search for PET probes for imaging the globus pallidus studied with rat brain ex vivo autoradiography.

    PubMed

    Ishiwata, K; Ogi, N; Shimada, J; Wang, W; Ishii, K; Tanaka, A; Suzuki, F; Senda, M

    2000-12-01

    We have evaluated the feasibility of using four positron emission tomography (PET) tracers for imaging the globus pallidus by ex vivo autoradiography in rats. The tracers investigated were [11C]KF18446, [11C]SCH 23390 and [11C]raclopride for mapping adenosine A2A, dopamine D1 and dopamine D2 receptors, respectively, and [18F]FDG. The highest uptake by the globus pallidus was found for [11C]SCH 23390, followed by [18F]FDG, [11C]KF18446 and [11C]raclopride. The receptor-specific uptake by the globus pallidus was observed in [11C]KF18446 and [11C]SCH 23390, but not in [11C]raclopride. Uptake ratios of globus pallidus to the striatum for [18F]FDG and [11C]KF18446 were approximately 0.6, which was twice as large as that for [11C]SCH 23390. In a rat model of degeneration of striatopallidal gamma-aminobutyric acid-ergic-enkephalin neurons induced by intrastriatal injection of quinolinic acid, the uptake of [11C]KF18446 by the striatum and globus pallidus was remarkably reduced. To prove the visualization of the globus pallidus by PET with [18F]FDG and [11C]KF18446, PET-MRI registration technique and advances in PET technologies providing high-resolution PET scanner will be required. The metabolic activity of the globus pallidus could then be measured by PET with [18F]FDG, and [11C]KF18446 may be a candidate tracer for imaging the pallidal terminals projecting from the striatum.

  5. 4D MR and attenuation map generation in PET/MR imaging using 4D PET derived deformation matrices: a feasibility study for lung cancer applications.

    PubMed

    Fayad, Hadi; Schmidt, Holger; Kuestner, Thomas; Visvikis, Dimitris

    2016-10-13

    Respiratory motion may reduce accuracy in fusion of functional and anatomical images using combined Positron emission tomography / Magnetic resonance (PET/MR) systems. Methodologies for the correction of respiratory motion in PET acquisitions using such systems are mostly based on the use of respiratory synchronized MR acquisitions to derive motion fields. Existing approaches based on tagging acquisitions may introduce artifacts in the MR images, while motion model approaches require the acquisition of training datasets. The objective of this work was to investigate the possibility of generating 4D MR images and associated attenuation maps (AMs) from a single static MR image combined with motion fields obtained from simultaneously acquired 4D non-attenuation corrected (NAC) PET images.

  6. Study on heat transfer coefficients during cooling of PET bottles for food beverages

    NASA Astrophysics Data System (ADS)

    Liga, Antonio; Montesanto, Salvatore; Mannella, Gianluca A.; La Carrubba, Vincenzo; Brucato, Valerio; Cammalleri, Marco

    2016-08-01

    The heat transfer properties of different cooling systems dealing with Poly-Ethylene-Terephthalate (PET) bottles were investigated. The heat transfer coefficient (Ug) was measured in various fluid dynamic conditions. Cooling media were either air or water. It was shown that heat transfer coefficients are strongly affected by fluid dynamics conditions, and range from 10 W/m2 K to nearly 400 W/m2 K. PET bottle thickness effect on Ug was shown to become relevant under faster fluid dynamics regimes.

  7. High-resolution PET (positron emission tomography) for medical science studies

    SciTech Connect

    Budinger, T.F.; Derenzo, S.E.; Huesman, R.H.; Jagust, W.J.; Valk, P.E. )

    1989-09-01

    One of the unexpected fruits of basic physics research and the computer revolution is the noninvasive imaging power available to today's physician. Technologies that were strictly the province of research scientists only a decade or two ago now serve as the foundations for such standard diagnostic tools as x-ray computer tomography (CT), magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), ultrasound, single photon emission computed tomography (SPECT), and positron emission tomography (PET). Furthermore, prompted by the needs of both the practicing physician and the clinical researcher, efforts to improve these technologies continue. This booklet endeavors to describe the advantages of achieving high resolution in PET imaging. 6 refs., 21 figs.

  8. High-resolution PET [Positron Emission Tomography] for Medical Science Studies

    DOE R&D Accomplishments Database

    Budinger, T. F.; Derenzo, S. E.; Huesman, R. H.; Jagust, W. J.; Valk, P. E.

    1989-09-01

    One of the unexpected fruits of basic physics research and the computer revolution is the noninvasive imaging power available to today's physician. Technologies that were strictly the province of research scientists only a decade or two ago now serve as the foundations for such standard diagnostic tools as x-ray computer tomography (CT), magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), ultrasound, single photon emission computed tomography (SPECT), and positron emission tomography (PET). Furthermore, prompted by the needs of both the practicing physician and the clinical researcher, efforts to improve these technologies continue. This booklet endeavors to describe the advantages of achieving high resolution in PET imaging.

  9. Imaging Microglial Activation in Untreated First-Episode Psychosis: A PET Study With [18F]FEPPA

    PubMed Central

    Hafizi, Sina; Tseng, Huai-Hsuan; Rao, Naren; Selvanathan, Thiviya; Kenk, Miran; Bazinet, Richard P.; Suridjan, Ivonne; Wilson, Alan A.; Meyer, Jeffrey H.; Remington, Gary; Houle, Sylvain; Rusjan, Pablo M.; Mizrahi, Romina

    2017-01-01

    Objective Neuroinflammation and abnormal immune responses are increasingly implicated in the pathophysiology of schizophrenia. Previous positron emission tomography (PET) studies targeting the translocator protein 18 kDa (TSPO) have been limited by high nonspecific binding of the first-generation radioligand, low-resolution scanners, small sample sizes, and psychotic patients being on antipsychotics or not being in the first episode of their illness. The present study uses the novel second-generation TSPO PET radioligand [18F]FEPPA to evaluate whether microglial activation is elevated in the dorsolateral prefrontal cortex and hippocampus of untreated patients with first-episode psychosis. Method Nineteen untreated patients with first-episode psychosis (14 of them antipsychotic naive) and 20 healthy volunteers underwent a high-resolution [18F]FEPPA PET scan and MRI. Dynamic PET data were analyzed using the validated two-tissue compartment model with arterial plasma input function with total volume of distribution (VT) as outcome measure. All analyses were corrected for TSPO rs6971 polymorphism (which is implicated in differential binding affinity). Results No significant differences were observed between patients and healthy volunteers in microglial activation, as indexed by [18F]FEPPA VT, in either the dorsolateral prefrontal cortex or the hippocampus. There were no significant correlations between [18F]FEPPA VT and duration of illness, clinical presentation, or neuropsychological measures after adjusting for multiple testing. Conclusions The lack of significant differences in [18F]FEPPA VT between groups suggests that microglial activation is not present in first-episode psychosis. PMID:27609240

  10. Intraarterial Microdosing, a Novel Drug Development Approach, Proof-of-Concept PET Study in Rats

    PubMed Central

    Burt, Tal; Rouse, Douglas C.; Lee, Kihak; Wu, Huali; Layton, Anita T.; Hawk, Thomas C.; Weitzel, Douglas H.; Chin, Bennett B.; Cohen-Wolkowiez, Michael; Chow, Shein-Chung; Noveck, Robert J.

    2016-01-01

    Intraarterial microdosing (IAM) is a novel drug development approach combining intraarterial drug delivery and microdosing. We aimed to demonstrate that IAM leads to target exposure similar to that of systemic full-dose administration but with minimal systemic exposure. IAM could enable the safe, inexpensive, and early study of novel drugs at the first-in-human stage and the study of established drugs in vulnerable populations. Methods Insulin was administered intraarterially (ipsilateral femoral artery) or systemically to 8 CD IGS rats just before blood sampling or 60-min 18F-FDG uptake PET imaging of ipsilateral and contralateral leg muscles (lateral gastrocnemius) and systemic muscles (spinotrapezius). The 18F-FDG uptake slope analysis was used to compare the interventions. Plasma levels of insulin and glucose were compared using area under the curve calculated by the linear trapezoidal method. A physiologically based computational pharmacokinetics/pharmacodynamics model was constructed to simulate the relationship between the administered dose and response over time. Results 18F-FDG slope analysis found no difference between IAM and systemic full-dose slopes (0.0066 and 0.0061, respectively; 95% confidence interval [CI], −0.024 to 0.029; P = 0.7895), but IAM slope was statistically significantly greater than systemic microdose (0.0018; 95% CI, −0.045 to −0.007; P = 0.0147) and sham intervention (−0.0015; 95% CI, 0.023–0.058; P = 0.0052). The pharmacokinetics/pharmacodynamics data were used to identify model parameters that describe membrane insulin binding and glucose–insulin dynamics. Conclusion Target exposure after IAM was similar to systemic full dose administration but with minimal systemic effects. The computational pharmacokinetics/pharmacodynamics model can be generalized to predict whole-body response. Findings should be validated in larger, controlled studies in animals and humans using a range of targets and classes of drugs. PMID

  11. Image derived input functions for dynamic High Resolution Research Tomograph PET brain studies.

    PubMed

    Mourik, Jurgen E M; van Velden, Floris H P; Lubberink, Mark; Kloet, Reina W; van Berckel, Bart N M; Lammertsma, Adriaan A; Boellaard, Ronald

    2008-12-01

    The High Resolution Research Tomograph (HRRT) is a dedicated human brain positron emission tomography (PET) scanner. The aim of the present study was to validate the use of image derived input functions (IDIF) as an alternative for arterial sampling for HRRT human brain studies. To this end, IDIFs were extracted from 3D ordinary Poisson ordered subsets expectation maximization (OP-OSEM) and reconstruction based partial volume corrected (PVC) OP-OSEM images. IDIFs, either derived directly from regions of interest or further calibrated using manual samples taken during scans, were evaluated for dynamic [(11)C]flumazenil data (n=6). Results obtained with IDIFs were compared with those obtained using blood sampler input functions (BSIF). These comparisons included areas under the curve (AUC) for peak (0-3.3 min) and tail (3.3-55.0 min). In addition, slope, intercept and Pearson's correlation coefficient of tracer kinetic analysis results based on IDIF and BSIF were calculated for each subject. Good peak AUC ratios (0.83+/-0.21) between IDIF and BSIF were found for calibrated IDIFs extracted from OP-OSEM images. This combination of IDIFs and images also provided good slope values (1.07+/-0.11). Improved resolution, as obtained with PVC OP-OSEM, changed AUC ratios to 1.14+/-0.35 and, for tracer kinetic analysis, slopes changed to 0.95+/-0.13. For all reconstructions, non-calibrated IDIFs gave poorer results (>61+/-34% higher slopes) compared with calibrated IDIFs. The results of this study indicate that the use of IDIFs, extracted from OP-OSEM or PVC OP-OSEM images, is feasible for dynamic HRRT data, thereby obviating the need for online arterial sampling.

  12. A FDG-PET Study of Metabolic Networks in Apolipoprotein E ε4 Allele Carriers.

    PubMed

    Yao, Zhijun; Hu, Bin; Zheng, Jiaxiang; Zheng, Weihao; Chen, Xuejiao; Gao, Xiang; Xie, Yuanwei; Fang, Lei

    2015-01-01

    Recently, some studies have applied the graph theory in brain network analysis in Alzheimer's disease (AD) and Mild Cognitive Impairment (MCI). However, relatively little research has specifically explored the properties of the metabolic network in apolipoprotein E (APOE) ε4 allele carriers. In our study, all the subjects, including ADs, MCIs and NCs (normal controls) were divided into 165 APOE ε4 carriers and 165 APOE ε4 noncarriers. To establish the metabolic network for all brain regions except the cerebellum, cerebral glucose metabolism data obtained from FDG-PET (18F-fluorodeoxyglucose positron emission tomography) were segmented into 90 areas with automated anatomical labeling (AAL) template. Then, the properties of the networks were computed to explore the between-group differences. Our results suggested that both APOE ε4 carriers and noncarriers showed the small-world properties. Besides, compared with APOE ε4 noncarriers, the carriers showed a lower clustering coefficient. In addition, significant changes in 6 hub brain regions were found in between-group nodal centrality. Namely, compared with APOE ε4 noncarriers, significant decreases of the nodal centrality were found in left insula, right insula, right anterior cingulate, right paracingulate gyri, left cuneus, as well as significant increases in left paracentral lobule and left heschl gyrus in APOE ε4 carriers. Increased local short distance interregional correlations and disrupted long distance interregional correlations were found, which may support the point that the APOE ε4 carriers were more similar with AD or MCI in FDG uptake. In summary, the organization of metabolic network in APOE ε4 carriers indicated a less optimal pattern and APOE ε4 might be a risk factor for AD.

  13. Postnatal development of hypoplastic thymus in semi-lethal dwarf pet/pet males.

    PubMed

    Chiba, Junko; Suzuki, Hiroetsu; Aoyama, Hiroaki; Katayama, Kentaro; Suzuki, Katsushi

    2011-04-01

    The petit rat (pet/pet) is a new semi-lethal dwarf mutant with anomalies in the thymus and testes, defects inherited as a single autosomal recessive trait. At birth, these pet/pet rats show low birth weight and extremely small thymuses; at 140 days of age, their thymuses show abnormal involution. In the present study, we examined early postnatal development of hypoplastic pet/pet thymuses. In addition to being hypoplastic at birth, pet/pet thymus growth was almost completely impaired during the early postnatal period. As shown by cellular incorporation of BrdU, the mitotic activity was lower in pet/pet than in normal thymuses, and terminal deoxynucleotidyl transferase dUTP nick end labeling assays showed that apoptosis occurred more often in pet/pet than in normal thymus cells during the first few days after birth. These results indicate that postnatal development of the hypoplastic pet/pet thymus is defective due to the reduced proliferation and increased apoptosis of thymic cells.

  14. Optimized PET imaging for 4D treatment planning in radiotherapy: the virtual 4D PET strategy.

    PubMed

    Gianoli, Chiara; Riboldi, Marco; Fontana, Giulia; Giri, Maria G; Grigolato, Daniela; Ferdeghini, Marco; Cavedon, Carlo; Baroni, Guido

    2015-02-01

    The purpose of the study is to evaluate the performance of a novel strategy, referred to as "virtual 4D PET", aiming at the optimization of hybrid 4D CT-PET scan for radiotherapy treatment planning. The virtual 4D PET strategy applies 4D CT motion modeling to avoid time-resolved PET image acquisition. This leads to a reduction of radioactive tracer administered to the patient and to a total acquisition time comparable to free-breathing PET studies. The proposed method exploits a motion model derived from 4D CT, which is applied to the free-breathing PET to recover respiratory motion and motion blur. The free-breathing PET is warped according to the motion model, in order to generate the virtual 4D PET. The virtual 4D PET strategy was tested on images obtained from a 4D computational anthropomorphic phantom. The performance was compared to conventional motion compensated 4D PET. Tests were also carried out on clinical 4D CT-PET scans coming from seven lung and liver cancer patients. The virtual 4D PET strategy was able to recover lesion motion, with comparable performance with respect to the motion compensated 4D PET. The compensation of the activity blurring due to motion was successfully achieved in terms of spill out removal. Specific limitations were highlighted in terms of partial volume compensation. Results on clinical 4D CT-PET scans confirmed the efficacy in 4D PET count statistics optimization, as equal to the free-breathing PET, and recovery of lesion motion. Compared to conventional motion compensation strategies that explicitly require 4D PET imaging, the virtual 4D PET strategy reduces clinical workload and computational costs, resulting in significant advantages for radiotherapy treatment planning.

  15. Pet Therapy.

    ERIC Educational Resources Information Center

    Kavanagh, Kim

    1994-01-01

    This resource guide presents information on a variety of ways that animals can be used as a therapeutic modality with people having disabilities. Aspects addressed include: pet ownership and selection criteria; dogs (including service dogs, hearing/signal dogs, seeing leader dogs, and social/specialty dogs); horseriding for both therapy and fun;…

  16. A study of response of a LuYAP:Ce array with innovative assembling for PET

    NASA Astrophysics Data System (ADS)

    Pani, Roberto; Cinti, Maria Nerina; Scafè, Raffaele; Bennati, Paolo; Lo Meo, Sergio; Preziosi, Enrico; Pellegrini, Rosanna; De Vincentis, Giuseppe; Sacco, Donatella; Fabbri, Andrea

    2015-09-01

    We propose the characterization of a first array of 10×10 Lutetium Yttrium Orthoaluminate Perovskite (LuYAP:Ce) crystals, 2 mm×2 mm×10 mm pixel size, with an innovative assembling designed to enhance light output, uniformity and detection efficiency. The innovation consists of the use of 0.015 mm thick dielectric coating as inter-pixel light-insulators, manufactured by Crytur (Czech Republic) intended to improve crystal insulation and then light collection. Respect to the traditional treatment with 0.2 mm of white epoxy, a thinner pixel gap enhances packing fraction up to 98% with a consequent improvement of detection efficiency. Spectroscopic characterization of the array was performed by a Hamamatsu R6231 photomultiplier tube. A pixel-by-pixel scanning with a collimated 99mTc radioisotope (140 keV photon energy) highlighted a deviation in pulse height close to 3.5% respect to the overall mean value. Meanwhile, in term of energy resolution a difference between the response of single pixel and the array of about 10% was measured. Results were also supported and validated by Monte Carlo simulations performed with GEANT4. Although the dielectric coating pixel insulator cannot overcome the inherent limitations of LuYAP crystal due to its self-absorption of light (still present), this study demonstrated that the new coating treatment allows better light collection (nearly close to the expected one) with in addition a very good uniformity between different pixels. These results confirm the high potentiality of this coating for any other crystal array suited for imaging application and new expectations for the use of LuYAP for PET systems.

  17. Attenuation correction for freely moving small animal brain PET studies based on a virtual scanner geometry

    NASA Astrophysics Data System (ADS)

    Angelis, G. I.; Kyme, A. Z.; Ryder, W. J.; Fulton, R. R.; Meikle, S. R.

    2014-10-01

    Attenuation correction in positron emission tomography brain imaging of freely moving animals is a very challenging problem since the torso of the animal is often within the field of view and introduces a non negligible attenuating factor that can degrade the quantitative accuracy of the reconstructed images. In the context of unrestrained small animal imaging, estimation of the attenuation correction factors without the need for a transmission scan is highly desirable. An attractive approach that avoids the need for a transmission scan involves the generation of the hull of the animal’s head based on the reconstructed motion corrected emission images. However, this approach ignores the attenuation introduced by the animal’s torso. In this work, we propose a virtual scanner geometry which moves in synchrony with the animal’s head and discriminates between those events that traversed only the animal’s head (and therefore can be accurately compensated for attenuation) and those that might have also traversed the animal’s torso. For each recorded pose of the animal’s head a new virtual scanner geometry is defined and therefore a new system matrix must be calculated leading to a time-varying system matrix. This new approach was evaluated on phantom data acquired on the microPET Focus 220 scanner using a custom-made phantom and step-wise motion. Results showed that when the animal’s torso is within the FOV and not appropriately accounted for during attenuation correction it can lead to bias of up to 10% . Attenuation correction was more accurate when the virtual scanner was employed leading to improved quantitative estimates (bias < 2%), without the need to account for the attenuation introduced by the extraneous compartment. Although the proposed method requires increased computational resources, it can provide a reliable approach towards quantitatively accurate attenuation correction for freely moving animal studies.

  18. TH-E-BRF-11: Dynamic Treatment of Clinical Margins Beyond the PET-Avid Target in Emission Guided Radiation Therapy: A Retrospective Patient Study

    SciTech Connect

    Nanduri, A; Mazin, S; Fan, Q; Yang, J; Graves, E; Loo, B; Yamamoto, T

    2014-06-15

    Purpose: Emission guided radiation therapy (EGRT) is a new modality that uses PET emissions for direct real-time tumor tracking. Radiation beamlets are delivered along PET lines of response (LOR's) by a fast rotating PET-Linac closed ring gantry. In this work, we develop a scheme to treat clinical margins defined proximal to the moving PET-avid tumor, while maintaining EGRT's inherent real-time tracking ability. Methods: The principle of EGRT is to deliver radiation along PET emission paths to concentrate dose in the PET-avid gross tumor volume (GTV). To account for adjacent non- PET avid regions in the clinical volume (CTV) a method was developed that expands the set of radiation beamlet responses to include the effective margin extension from the GTV to the CTV. An LOR detection may now Result in multiple beamlet responses: one along the original LOR, and others that are adjacent to it in the direction of margin extension. Evaluation studies were performed on a 4D digital patient as well as a clinical breast cancer patient with moving lung tumors. Emission data were obtained using GATE and a commercial PET scanner. Dose delivery was simulated using VMC++. For the patient study, Philips Pinnacle was used for planning and Mirada RTx was used for deformable dose registration across multiple breathing phases. Results: Compared with IMRT, the EGRT margin extension method achieved a 25.3% and 9.0% relative increase in dose to 95% of the CTV for the digital and clinical patients, respectively. The corresponding CTV dose increases without margin extension were 9.7% and 1.4%. The organs at risk doses were kept similar or lower for EGRT in both cases, with tumor tracking preserved. Conclusions: With the capability of accurate treatment of the moving CTV, EGRT has the potential to enable a practical and effective implementation of 4D biologically guided radiation therapy. Authors SRM and AN are stockholders of RefleXion Medical.

  19. Comparative study of ¹⁸F-FDG-PET/CT imaging and serum hTERT mRNA quantification in cancer diagnosis.

    PubMed

    Ping, Bingqiong; Tsuno, Satoshi; Wang, Xinhui; Ishihara, Yoshitaka; Yamashita, Taro; Miura, Keigo; Miyoshi, Fuminori; Shinohara, Yuki; Matsuki, Tsutomu; Tanabe, Yoshio; Tanaka, Noriaki; Ogawa, Toshihide; Shiota, Goshi; Miura, Norimasa

    2015-10-01

    We have reported on the clinical usefulness of human telomerase reverse transcriptase (hTERT) mRNA quantification in sera in patients with several cancers. Positron emission tomography-computed tomography (PET/CT) using ¹⁸F-fluorodeoxyglucose (FDG) has recently become an excellent modality for detecting cancer. We performed a diagnostic comparative study of FDG-PET/CT and hTERT mRNA quantification in patients with cancer. Four hundred seventy subjects, including 125 healthy individuals and 345 outpatients with cancer who had received medical treatments for cancer in their own or other hospitals, were enrolled. The subjects were diagnosed by FDG-PET/CT, and we measured their serum hTERT mRNA levels using real-time RT-PCR, correlating the quantified values with the clinical course. In this prospective study, we statistically assessed the sensitivity and specificity, and their clinical significance. hTERT mRNA and FDG-PET/CT were demonstrated to be correlated with the clinical parameters of metastasis and recurrence (P < 0.001), and of recurrence and tumor number in cancer compared with noncancer patients, respectively. A multivariate analysis showed a significant difference in the detection by FDG-PET/CT, ¹⁸F-FDG uptake, the detection by hTERT mRNA, and age. The use of both FDG-PET/CT and hTERT mRNA resulted in a positivity of 94.4% (221/234) for the detection of viable tumor cells. FDG-PET/CT is superior to hTERT mRNA quantification in the early detection of cancer and combinative use of FDG-PET/CT and hTERT mRNA may improve the diagnostic accuracy of cancer.

  20. Comparison of prone versus supine 18F-FDG-PET of locally advanced breast cancer: Phantom and preliminary clinical studies

    SciTech Connect

    Williams, Jason M.; Rani, Sudheer D.; Li, Xia; Whisenant, Jennifer G.; Abramson, Richard G.; Arlinghaus, Lori R.; Lee, Tzu-Cheng; MacDonald, Lawrence R.; Partridge, Savannah C.; Kang, Hakmook; Linden, Hannah M.; Kinahan, Paul E.; Yankeelov, Thomas E.

    2015-07-15

    Purpose: Previous studies have demonstrated how imaging of the breast with patients lying prone using a supportive positioning device markedly facilitates longitudinal and/or multimodal image registration. In this contribution, the authors’ primary objective was to determine if there are differences in the standardized uptake value (SUV) derived from [{sup 18}F]fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) in breast tumors imaged in the standard supine position and in the prone position using a specialized positioning device. Methods: A custom positioning device was constructed to allow for breast scanning in the prone position. Rigid and nonrigid phantom studies evaluated differences in prone and supine PET. Clinical studies comprised 18F-FDG-PET of 34 patients with locally advanced breast cancer imaged in the prone position (with the custom support) followed by imaging in the supine position (without the support). Mean and maximum values (SUV{sub peak} and SUV{sub max}, respectively) were obtained from tumor regions-of-interest for both positions. Prone and supine SUV were linearly corrected to account for the differences in 18F-FDG uptake time. Correlation, Bland–Altman, and nonparametric analyses were performed on uptake time-corrected and uncorrected data. Results: SUV from the rigid PET breast phantom imaged in the prone position with the support device was 1.9% lower than without the support device. In the nonrigid PET breast phantom, prone SUV with the support device was 5.0% lower than supine SUV without the support device. In patients, the median (range) difference in uptake time between prone and supine scans was 16.4 min (13.4–30.9 min), which was significantly—but not completely—reduced by the linear correction method. SUV{sub peak} and SUV{sub max} from prone versus supine scans were highly correlated, with concordance correlation coefficients of 0.91 and 0.90, respectively. Prone SUV{sub peak} and SUV{sub max} were

  1. (18)F Fluorocholine PET/MR Imaging in Patients with Primary Hyperparathyroidism and Inconclusive Conventional Imaging: A Prospective Pilot Study.

    PubMed

    Kluijfhout, Wouter P; Pasternak, Jesse D; Gosnell, Jessica E; Shen, Wen T; Duh, Quan-Yang; Vriens, Menno R; de Keizer, Bart; Hope, Thomas A; Glastonbury, Christine M; Pampaloni, Miguel H; Suh, Insoo

    2017-01-25

    Purpose To investigate the performance of flourine 18 ((18)F) fluorocholine (FCH) positron emission tomography (PET)/magnetic resonance (MR) imaging in patients with hyperparathyroidism and nonlocalized disease who have negative or inconclusive results at ultrasonography (US) and technetium 99m ((99m)Tc) sestamibi scintigraphy. Materials and Methods This study was approved by the institutional review board. Between May and December 2015, 10 patients (mean age, 70.4 years; range, 58-82 years) with biochemical primary hyperparathyroidism and inconclusive results at US and (99m)Tc sestamibi scintigraphy were prospectively enrolled. All patients gave informed consent. Directly after administration of 3 MBq/kg of FCH, PET imaging was performed, followed by T1- and T2-weighted MR imaging before and after gadolinium enhancement. Intraoperative localization and histologic results were the reference standard for calculating sensitivity and positive predictive value. The Wilcoxon rank test was used to calculate the mean difference in maximum standardized uptake value (SUVmax) between abnormal parathyroid uptake and physiologic thyroid uptake. The Wilcoxon rank-sum test was performed. Results MR imaging alone showed true-positive lesions in five patients and a false-positive lesion in one patient. FCH PET/MR imaging allowed correct localization of nine of 10 adenomas (90% sensitivity), without any false-positive results (100% positive predictive value). One patient had four-gland hyperplasia, of which three hyperplastic glands were not localized. The median SUVmax of the nine preoperatively identified adenomas was 4.9 (interquartile range, 2.45-7.35), which was significantly higher than the SUV, 2.7 (interquartile range, 1.6-3.8), of the thyroid (P = .008). Conclusion FCH PET/MR imaging allowed localization of adenomas with high accuracy when conventional imaging results were inconclusive and provided detailed anatomic information. More patients must be examined to confirm

  2. Can Na18F PET/CT be used to study bone remodeling in the tibia when patients are being treated with a Taylor Spatial Frame?

    PubMed

    Lundblad, Henrik; Maguire, Gerald Q; Olivecrona, Henrik; Jonsson, Cathrine; Jacobsson, Hans; Noz, Marilyn E; Zeleznik, Michael P; Weidenhielm, Lars; Sundin, Anders

    2014-01-01

    Monitoring and quantifying bone remodeling are of interest, for example, in correction osteotomies, delayed fracture healing pseudarthrosis, bone lengthening, and other instances. Seven patients who had operations to attach an Ilizarov-derived Taylor Spatial Frame to the tibia gave informed consent. Each patient was examined by Na(18)F PET/CT twice, at approximately six weeks and three months after the operation. A validated software tool was used for the following processing steps. The first and second CT volumes were aligned in 3D and the respective PET volumes were aligned accordingly. In the first PET volume spherical volumes of interest (VOIs) were delineated for the crural fracture and normal bone and transferred to the second PET volume for SUVmax evaluation. This method potentially provides clinical insight into questions such as, when has the bone remodeling progressed well enough to safely remove the TSF? and when is intervention required, in a timelier manner than current methods? For example, in two patients who completed treatment, the SUVmax between the first and second PET/CT examination decreased by 42% and 13%, respectively. Further studies in a larger patient population are needed to verify these preliminary results by correlating regional Na(18)F PET measurements to clinical and radiological findings.

  3. SU-D-201-05: Phantom Study to Determine Optimal PET Reconstruction Parameters for PET/MR Imaging of Y-90 Microspheres Following Radioembolization

    SciTech Connect

    Maughan, N; Conti, M; Parikh, P; Faul, D; Laforest, R

    2015-06-15

    Purpose: Imaging Y-90 microspheres with PET/MRI following hepatic radioembolization has the potential for predicting treatment outcome and, in turn, improving patient care. The positron decay branching ratio, however, is very small (32 ppm), yielding images with poor statistics even when therapy doses are used. Our purpose is to find PET reconstruction parameters that maximize the PET recovery coefficients and minimize noise. Methods: An initial 7.5 GBq of Y-90 chloride solution was used to fill an ACR phantom for measurements with a PET/MRI scanner (Siemens Biograph mMR). Four hot cylinders and a warm background activity volume of the phantom were filled with a 10:1 ratio. Phantom attenuation maps were derived from scaled CT images of the phantom and included the MR phased array coil. The phantom was imaged at six time points between 7.5–1.0 GBq total activity over a period of eight days. PET images were reconstructed via OP-OSEM with 21 subsets and varying iteration number (1–5), post-reconstruction filter size (5–10 mm), and either absolute or relative scatter correction. Recovery coefficients, SNR, and noise were measured as well as total activity in the phantom. Results: For the 120 different reconstructions, recovery coefficients ranged from 0.1–0.6 and improved with increasing iteration number and reduced post-reconstruction filter size. SNR, however, improved substantially with lower iteration numbers and larger post-reconstruction filters. From the phantom data, we found that performing 2 iterations, 21 subsets, and applying a 5 mm Gaussian post-reconstruction filter provided optimal recovery coefficients at a moderate noise level for a wide range of activity levels. Conclusion: The choice of reconstruction parameters for Y-90 PET images greatly influences both the accuracy of measurements and image quality. We have found reconstruction parameters that provide optimal recovery coefficients with minimized noise. Future work will include the effects

  4. Docking study, synthesis, and in vitro evaluation of fluoro-MADAM derivatives as SERT ligands for PET imaging.

    PubMed

    Mavel, Sylvie; Vercouillie, Johnny; Garreau, Lucette; Raguza, Tiziana; Ravna, Aina Westrheim; Chalon, Sylvie; Guilloteau, Denis; Emond, Patrick

    2008-10-01

    In order to predict affinity of new diphenylsulfides for the serotonin transporter (SERT), a molecular modeling model was used to compare potential binding affinity of new compounds with known potent ligands. The aim of this study is to identify a suitable PET radioligand for imaging the SERT, new derivatives, and their precursors for a C-11 or F-18 radiolabeling, were synthesized. Two fluorinated derivatives displayed good in vitro affinity for the SERT (K(i)=14.3+/-1 and 10.1+/-2.7 nM) and good selectivity toward the other monoamine transporters as predicted by the docking study.

  5. Monitoring of anti-cancer treatment with (18)F-FDG and (18)F-FLT PET: a comprehensive review of pre-clinical studies.

    PubMed

    Jensen, Mette Munk; Kjaer, Andreas

    2015-01-01

    Functional imaging of solid tumors with positron emission tomography (PET) imaging is an evolving field with continuous development of new PET tracers and discovery of new applications for already implemented PET tracers. During treatment of cancer patients, a general challenge is to measure treatment effect early in a treatment course and by that to stratify patients into responders and non-responders. With 2-deoxy-2-[(18)F]fluoro-D-glucose ((18)F-FDG) and 3'-deoxy-3'-[(18)F]fluorothymidine((18)F-FLT) two of the cancer hallmarks, altered energy metabolism and increased cell proliferation, can be visualized and quantified non-invasively by PET. With (18)F-FDG and (18)F-FLT PET changes in energy metabolism and cell proliferation can thereby be determined after initiation of cancer treatment in both clinical and pre-clinical studies in order to predict, at an early time-point, treatment response. It is hypothesized that decreases in glycolysis and cell proliferation may occur in tumors that are sensitive to the applied cancer therapeutics and that tumors that are resistant to treatment will show unchanged glucose metabolism and cell proliferation. Whether (18)F-FDG and/or (18)F-FLT PET can be used for prediction of treatment response has been analyzed in many studies both following treatment with conventional chemotherapeutic agents but also following treatment with different targeted therapies, e.g. monoclonal antibodies and small molecules inhibitors. The results from these studies have been most variable; in some studies early changes in (18)F-FDG and (18)F-FLT uptake predicted later tumor regression whereas in other studies no change in tracer uptake was observed despite the treatment being effective. The present review gives an overview of pre-clinical studies that have used (18)F-FDG and/or (18)F-FLT PET for response monitoring of cancer therapeutics.

  6. Combination of cross-sectional and molecular imaging studies in the localization of gastroenteropancreatic neuroendocrine tumors.

    PubMed

    Toumpanakis, Christos; Kim, Michelle K; Rinke, Anja; Bergestuen, Deidi S; Thirlwell, Christina; Khan, Mohid S; Salazar, Ramon; Oberg, Kjell

    2014-01-01

    Molecular imaging modalities exploit aspects of neuroendocrine tumors (NET) pathophysiology for both diagnostic imaging and therapeutic purposes. The characteristic metabolic pathways of NET determine which tracers are useful for their visualization. In this review, we summarize the diagnostic value of all available molecular imaging studies, present data about their use in daily practice in NET centers globally, and finally make recommendations about the appropriate use of those modalities in specific clinical scenarios. Somatostatin receptor scintigraphy (SRS) continues to have a central role in the diagnostic workup of patients with NET, as it is also widely available. However, and despite the lack of prospective randomized studies, many NET experts predict that Gallium-68 ((68)Ga)-DOTA positron emission tomography (PET) techniques may replace SRS in the future, not only because of their technical advantages, but also because they are superior in patients with small-volume disease, in patients with skeletal metastases, and in those with occult primary tumors. Carbon-11 ((11)C)-5-hydroxy-L-tryptophan (5-HTP) PET and (18)F-dihydroxyphenylalanine ((18)F-DOPA) PET are new molecular imaging techniques of limited availability, and based on retrospective data, their sensitivities seem to be inferior to that of (68)Ga-DOTA PET. Glucagon-like-peptide-1 (GLP-1) receptor imaging seems promising for localization of the primary in benign insulinomas, but is currently available only in a few centers. Fluorine-18 ((18)F)-fluorodeoxyglucose ((18)F-FDG) PET was initially thought to be of limited value in NET, due to their usually slow-growing nature. However, according to subsequent data, (18)F-FDG PET is particularly helpful for visualizing the more aggressive NET, such as poorly differentiated neuroendocrine carcinomas, and well-differentiated tumors with Ki67 values >10%. According to limited data, (18)F-FDG-avid tumor lesions, even in slow-growing NET, may indicate a more

  7. Quantitative simultaneous PET-MR imaging

    NASA Astrophysics Data System (ADS)

    Ouyang, Jinsong; Petibon, Yoann; Huang, Chuan; Reese, Timothy G.; Kolnick, Aleksandra L.; El Fakhri, Georges

    2014-06-01

    Whole-body PET is currently limited by the degradation due to patient motion. Respiratory motion degrades imaging studies of the abdomen. Similarly, both respiratory and cardiac motions significantly hamper the assessment of myocardial ischemia and/or metabolism in perfusion and viability cardiac PET studies. Based on simultaneous PET-MR, we have developed robust and accurate MRI methods allowing the tracking and measurement of both respiratory and cardiac motions during abdominal or cardiac studies. Our list-mode iterative PET reconstruction framework incorporates the measured motion fields into PET emission system matrix as well as the time-dependent PET attenuation map and the position dependent point spread function. Our method significantly enhances the PET image quality as compared to conventional methods.

  8. Extraversion and striatal dopaminergic receptor availability in young adults: an [18F]fallypride PET study.

    PubMed

    Baik, Sang-hyun; Yoon, Heung Sik; Kim, Sang Eun; Kim, Sang Hee

    2012-03-07

    Extraversion is a core personality trait associated with individual differences in reward sensitivity and has been linked to the dopaminergic brain system. We investigated whether dopaminergic receptor availability in the striatum was directly associated with individual differences in extraversion using the high-affinity radiotracer [¹⁸F]fallypride and PET. Seventeen healthy male and female participants completed an [¹⁸F]fallypride PET scan at rest. Extraversion was assessed using the revised Eysenck Personality Questionnaire. Dopamine receptor availability in predefined striatal regions of interest was assessed as [¹⁸F]fallypride binding potential using a reference tissue model for [¹⁸F]fallypride. Both region of interest and voxel-based whole-brain analyses showed that extraversion was significantly correlated with dopaminergic receptor availability in the striatum bilaterally. This finding contributes to our understanding of the dopaminergic neural mechanisms underlying individual differences in extraversion.

  9. List mode reconstruction for PET with motion compensation: A simulation study

    SciTech Connect

    Qi, Jinyi; Huesman, Ronald H.

    2002-07-03

    Motion artifacts can be a significant factor that limits the image quality in high-resolution PET. Surveillance systems have been developed to track the movements of the subject during a scan. Development of reconstruction algorithms that are able to compensate for the subject motion will increase the potential of PET. In this paper we present a list mode likelihood reconstruction algorithm with the ability of motion compensation. The subject moti is explicitly modeled in the likelihood function. The detections of each detector pair are modeled as a Poisson process with time vary ingrate function. The proposed method has several advantages over the existing methods. It uses all detected events and does not introduce any interpolation error. Computer simulations show that the proposed method can compensate simulated subject movements and that the reconstructed images have no visible motion artifacts.

  10. List mode reconstruction for PET with motion compensation: A simulation study

    SciTech Connect

    Qi, Jinyi; Huesman, Ronald H.

    2002-07-01

    Motion artifacts can be a significant factor that limits the image quality in high-resolution PET. Surveillance systems have been developed to track the movements of the subject during a scan. Development of reconstruction algorithms that are able to compensate for the subject motion will increase the potential of PET. In this paper we present a list mode likelihood reconstruction algorithm with the ability of motion compensation. The subject motion is explicitly modeled in the likelihood function. The detections of each detector pair are modeled as a Poisson process with time-varying rate function. The proposed method has several advantages over the existing methods. It uses all detected events and does not introduce any interpolation error. Computer simulations show that the proposed method can compensate simulated subject movements and that the reconstructed images have no visible motion artifacts.

  11. Recent Developments in PET Instrumentation

    PubMed Central

    Peng, Hao; Levin, Craig S.

    2013-01-01

    Positron emission tomography (PET) is used in the clinic and in vivo small animal research to study molecular processes associated with diseases such as cancer, heart disease, and neurological disorders, and to guide the discovery and development of new treatments. This paper reviews current challenges of advancing PET technology and some of newly developed PET detectors and systems. The paper focuses on four aspects of PET instrumentation: high photon detection sensitivity; improved spatial resolution; depth-of-interaction (DOI) resolution and time-of-flight (TOF). Improved system geometry, novel non-scintillator based detectors, and tapered scintillation crystal arrays are able to enhance the photon detection sensitivity of a PET system. Several challenges for achieving high resolution with standard scintillator-based PET detectors are discussed. Novel detectors with 3-D positioning capability have great potential to be deployed in PET for achieving spatial resolution better than 1 mm, such as cadmium-zinc-telluride (CZT) and position-sensitive avalanche photodiodes (PSAPDs). DOI capability enables a PET system to mitigate parallax error and achieve uniform spatial resolution across the field-of-view (FOV). Six common DOI designs, as well as advantages and limitations of each design, are discussed. The availability of fast scintillation crystals such as LaBr3, and the silicon photomultiplier (SiPM) greatly advances TOF-PET development. Recent instrumentation and initial results of clinical trials are briefly presented. If successful, these technology advances, together with new probe molecules, will substantially enhance the molecular sensitivity of PET and thus increase its role in preclinical and clinical research as well as evaluating and managing disease in the clinic. PMID:20497121

  12. Iodine-122-labeled amphetamine derivative with potential for PET brain blood-flow studies

    SciTech Connect

    Mathis, C.A.; Sargent, T. 3d.; Shulgin, A.T.

    1985-11-01

    The positron emitter SSI (t1/2 3.6 min) was collected from a xenon- SS/iodine- SS ( SSXe/ SSI) generator and incorporated into an amphetamine analog, 2,4-dimethoxy-N,N-dimethyl-5-( SSI)iodophenylisopropylamine (5-( SSI)-2,4-DNNA). The remote synthesis was achieved in 3 min with a 50% radioincorporation yield and a product radiopurity of greater than 98%. 5-( SSI)-2,4-DNNA was injected into a beagle dog and a brain section imaged with positron emission tomography (PET). The uptake and retention of 5-( SSI)-2,4-DNNA was compared to that of YSRb in the same animal. Dynamic PET activity data were obtained 0-20 min postinjection of 5-( SSI)-2,4-DNNA and showed rapid uptake by brain and good cerebral/extracerebral tissue distinction. A whole-body scan of a dog was also obtained with 5-123I-2,4-DNNA showing uptake in brain, lung, and other body organs. The feasibility of incorporating SSI into an extracted brain perfusion agent for use with PET is demonstrated.

  13. Optimal whole-body PET scanner configurations for different volumes of LSO scintillator: a simulation study

    NASA Astrophysics Data System (ADS)

    Poon, Jonathan K.; Dahlbom, Magnus L.; Moses, William W.; Balakrishnan, Karthik; Wang, Wenli; Cherry, Simon R.; Badawi, Ramsey D.

    2012-07-01

    The axial field of view (AFOV) of the current generation of clinical whole-body PET scanners range from 15-22 cm, which limits sensitivity and renders applications such as whole-body dynamic imaging or imaging of very low activities in whole-body cellular tracking studies, almost impossible. Generally, extending the AFOV significantly increases the sensitivity and count-rate performance. However, extending the AFOV while maintaining detector thickness has significant cost implications. In addition, random coincidences, detector dead time, and object attenuation may reduce scanner performance as the AFOV increases. In this paper, we use Monte Carlo simulations to find the optimal scanner geometry (i.e. AFOV, detector thickness and acceptance angle) based on count-rate performance for a range of scintillator volumes ranging from 10 to 93 l with detector thickness varying from 5 to 20 mm. We compare the results to the performance of a scanner based on the current Siemens Biograph mCT geometry and electronics. Our simulation models were developed based on individual components of the Siemens Biograph mCT and were validated against experimental data using the NEMA NU-2 2007 count-rate protocol. In the study, noise-equivalent count rate (NECR) was computed as a function of maximum ring difference (i.e. acceptance angle) and activity concentration using a 27 cm diameter, 200 cm uniformly filled cylindrical phantom for each scanner configuration. To reduce the effect of random coincidences, we implemented a variable coincidence time window based on the length of the lines of response, which increased NECR performance up to 10% compared to using a static coincidence time window for scanners with a large maximum ring difference values. For a given scintillator volume, the optimal configuration results in modest count-rate performance gains of up to 16% compared to the shortest AFOV scanner with the thickest detectors. However, the longest AFOV of approximately 2 m with 20 mm

  14. Optimal whole-body PET scanner configurations for different volumes of LSO scintillator: a simulation study.

    PubMed

    Poon, Jonathan K; Dahlbom, Magnus L; Moses, William W; Balakrishnan, Karthik; Wang, Wenli; Cherry, Simon R; Badawi, Ramsey D

    2012-07-07

    The axial field of view (AFOV) of the current generation of clinical whole-body PET scanners range from 15-22 cm, which limits sensitivity and renders applications such as whole-body dynamic imaging or imaging of very low activities in whole-body cellular tracking studies, almost impossible. Generally, extending the AFOV significantly increases the sensitivity and count-rate performance. However, extending the AFOV while maintaining detector thickness has significant cost implications. In addition, random coincidences, detector dead time, and object attenuation may reduce scanner performance as the AFOV increases. In this paper, we use Monte Carlo simulations to find the optimal scanner geometry (i.e. AFOV, detector thickness and acceptance angle) based on count-rate performance for a range of scintillator volumes ranging from 10 to 93 l with detector thickness varying from 5 to 20 mm. We compare the results to the performance of a scanner based on the current Siemens Biograph mCT geometry and electronics. Our simulation models were developed based on individual components of the Siemens Biograph mCT and were validated against experimental data using the NEMA NU-2 2007 count-rate protocol. In the study, noise-equivalent count rate (NECR) was computed as a function of maximum ring difference (i.e. acceptance angle) and activity concentration using a 27 cm diameter, 200 cm uniformly filled cylindrical phantom for each scanner configuration. To reduce the effect of random coincidences, we implemented a variable coincidence time window based on the length of the lines of response, which increased NECR performance up to 10% compared to using a static coincidence time window for scanners with a large maximum ring difference values. For a given scintillator volume, the optimal configuration results in modest count-rate performance gains of up to 16% compared to the shortest AFOV scanner with the thickest detectors. However, the longest AFOV of approximately 2 m with

  15. A pilot study of the prognostic significance of metabolic tumor size measurements in PET/CT imaging of lymphomas

    NASA Astrophysics Data System (ADS)

    Kallergi, Maria; Botsivali, Maria; Politis, Nikolaos; Menychtas, Dimitrios; Georgakopoulos, Alexandros; Chatziioannou, Sofia

    2015-03-01

    This study explores changes in metabolic tumor volume, metabolic tumor diameter, and maximum standardized uptake value (SUVmax), for earlier and more accurate identification of lymphomas' response to treatment using 18F- FDG PET/CT. Pre- and post-treatment PET/CT studies of 20 patients with Hodgkin disease (HL) and 7 patients with non- Hodgkin lymphoma (NHL) were retrospectively selected for this study. The diameter and volume of the metabolic tumor was determined by an in-house developed adaptive local thresholding technique based on a 50% threshold of the maximum pixel value within a region. Statistical analysis aimed at exploring associations between metabolic size measurements and SUVmax and the ability of the three biomarkers to predict the patients' response to treatment as defined by the four classes in the European Organization for Research and Treatment of Cancer (EORTC) guidelines. Results indicated moderate correlations between % change in metabolic tumor volume and % change in metabolic tumor maximum diameter (R=0.51) and between % change in maximum diameter and % change in SUVmax (R=0.52). The correlation between % change in tumor volume and % change in SUVmax was weak (R=0.24). The % change in metabolic tumor size, either volume or diameter, was a "very strong" predictor of response to treatment (R=0.89), stronger than SUVmax (R=0.63). In conclusion, metabolic tumor volume could have important prognostic value, possibly higher than maximum metabolic diameter or SUVmax that are currently the standard of practice. Volume measurements, however, should be based on robust and standardized segmentation methodologies to avoid variability. In addition, SUV-peak or lean body mass corrected SUV-peak may be a better PET biomarker than SUVmax when SUV-volume combinations are considered.

  16. Can technical characteristics predict clinical performance in PET/CT imaging? A correlation study for thyroid cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Kallergi, Maria; Menychtas, Dimitrios; Georgakopoulos, Alexandros; Pianou, Nikoletta; Metaxas, Marinos; Chatziioannou, Sofia

    2013-03-01

    The purpose of this study was to determine whether image characteristics could be used to predict the outcome of ROC studies in PET/CT imaging. Patients suspected for recurrent thyroid cancer underwent a standard whole body (WB) examination and an additional high-resolution head-and-neck (HN) F18-FDG PET/CT scan. The value of the latter was determined with an ROC study, the results of which showed that the WB+HN combination was better than WB alone for thyroid cancer detection and diagnosis. Following the ROC experiment, the WB and HN images of confirmed benign or malignant thyroid disease were analyzed and first and second order textural features were determined. Features included minimum, mean, and maximum intensity, as well as contrast in regions of interest encircling the thyroid lesions. Lesion size and standard uptake values (SUV) were also determined. Bivariate analysis was applied to determine relationships between WB and HN features and between observer ROC responses and the various feature values. The two sets showed significant associations in the values of SUV, contrast, and lesion size. They were completely different when the intensities were considered; no relationship was found between the WB minimum, maximum, and mean ROI values and their HN counterparts. SUV and contrast were the strongest predictors of ROC performance on PET/CT examinations of thyroid cancer. The high resolution HN images seem to enhance these relationships but without a single dramatic effect as was projected from the ROC results. A combination of features from both WB and HN datasets may possibly be a more robust predictor of ROC performance.

  17. High-resolution imaging of the large non-human primate brain using microPET: a feasibility study

    NASA Astrophysics Data System (ADS)

    Naidoo-Variawa, S.; Hey-Cunningham, A. J.; Lehnert, W.; Kench, P. L.; Kassiou, M.; Banati, R.; Meikle, S. R.

    2007-11-01

    The neuroanatomy and physiology of the baboon brain closely resembles that of the human brain and is well suited for evaluating promising new radioligands in non-human primates by PET and SPECT prior to their use in humans. These studies are commonly performed on clinical scanners with 5 mm spatial resolution at best, resulting in sub-optimal images for quantitative analysis. This study assessed the feasibility of using a microPET animal scanner to image the brains of large non-human primates, i.e. papio hamadryas (baboon) at high resolution. Factors affecting image accuracy, including scatter, attenuation and spatial resolution, were measured under conditions approximating a baboon brain and using different reconstruction strategies. Scatter fraction measured 32% at the centre of a 10 cm diameter phantom. Scatter correction increased image contrast by up to 21% but reduced the signal-to-noise ratio. Volume resolution was superior and more uniform using maximum a posteriori (MAP) reconstructed images (3.2-3.6 mm3 FWHM from centre to 4 cm offset) compared to both 3D ordered subsets expectation maximization (OSEM) (5.6-8.3 mm3) and 3D reprojection (3DRP) (5.9-9.1 mm3). A pilot 18F-2-fluoro-2-deoxy-d-glucose ([18F]FDG) scan was performed on a healthy female adult baboon. The pilot study demonstrated the ability to adequately resolve cortical and sub-cortical grey matter structures in the baboon brain and improved contrast when images were corrected for attenuation and scatter and reconstructed by MAP. We conclude that high resolution imaging of the baboon brain with microPET is feasible with appropriate choices of reconstruction strategy and corrections for degrading physical effects. Further work to develop suitable correction algorithms for high-resolution large primate imaging is warranted.

  18. Competitive advantage of PET/MRI.

    PubMed

    Jadvar, Hossein; Colletti, Patrick M

    2014-01-01

    Multimodality imaging has made great strides in the imaging evaluation of patients with a variety of diseases. Positron emission tomography/computed tomography (PET/CT) is now established as the imaging modality of choice in many clinical conditions, particularly in oncology. While the initial development of combined PET/magnetic resonance imaging (PET/MRI) was in the preclinical arena, hybrid PET/MR scanners are now available for clinical use. PET/MRI combines the unique features of MRI including excellent soft tissue contrast, diffusion-weighted imaging, dynamic contrast-enhanced imaging, fMRI and other specialized sequences as well as MR spectroscopy with the quantitative physiologic information that is provided by PET. Most evidence for the potential clinical utility of PET/MRI is based on studies performed with side-by-side comparison or software-fused MRI and PET images. Data on distinctive utility of hybrid PET/MRI are rapidly emerging. There are potential competitive advantages of PET/MRI over PET/CT. In general, PET/MRI may be preferred over PET/CT where the unique features of MRI provide more robust imaging evaluation in certain clinical settings. The exact role and potential utility of simultaneous data acquisition in specific research and clinical settings will need to be defined. It may be that simultaneous PET/MRI will be best suited for clinical situations that are disease-specific, organ-specific, related to diseases of the children or in those patients undergoing repeated imaging for whom cumulative radiation dose must be kept as low as reasonably achievable. PET/MRI also offers interesting opportunities for use of dual modality probes. Upon clear definition of clinical utility, other important and practical issues related to business operational model, clinical workflow and reimbursement will also be resolved.

  19. Birds Kept as Pets

    MedlinePlus

    ... Pets Pets Birds Cats Dogs Farm Animals Backyard Poultry Ferrets Fish Horses Reptiles and Amphibians Turtles Kept ... as pets can be found on the backyard poultry page. Overview Diseases Prevention More Information Boy admiring ...

  20. Preclinical acute toxicity, biodistribution, pharmacokinetics, radiation dosimetry and microPET imaging studies of [(18)F]fluorocholine in mice.

    PubMed

    Silveira, Marina B; Ferreira, Soraya M Z M D; Nascimento, Leonardo T C; Costa, Flávia M; Mendes, Bruno M; Ferreira, Andrea V; Malamut, Carlos; Silva, Juliana B; Mamede, Marcelo

    2016-10-01

    [(18)F]Fluorocholine ([(18)F]FCH) has been proven to be effective in prostate cancer. Since [(18)F]FCH is classified as a new radiopharmaceutical in Brazil, preclinical safety and efficacy data are required to support clinical trials and to obtain its approval. The aim of this work was to perform acute toxicity, biodistribution, pharmacokinetics, radiation dosimetry and microPET imaging studies of [(18)F]FCH. The results could support its use in nuclear medicine as an important piece of work for regulatory in Brazil.

  1. FDG-PET in Semantic Dementia after 6 Months of Memantine: an Open-Label Pilot Study

    PubMed Central

    Chow, Tiffany W.; Fam, David; Graff-Guerrero, Ariel; Verhoeff, Nicolaas P. G.; Tang-Wai, David F.; Masellis, Mario; Black, Sandra E.; Wilson, Alan A.; Houle, Sylvain; Pollock, Bruce G.

    2012-01-01

    Objectives To follow up on the increases we reported in normalized metabolic activity in salience network hubs from a 2-month open label study of memantine in frontotemporal dementia (FTD). Methods We repeated fluoro-deoxyglucose positron emission tomography (PET) after 6 months of drug use and subjected the data to an SPM analysis to reveal clusters of significant change from baseline. We also sought correlations between changes in behavioral disturbances on the Frontal Behavioral Inventory (FBI). Results Recruitment of one progressive nonfluent aphasia and one behavioral variant FTD precluded statistical analysis for any FTD subtype other than semantic dementia. The baseline-to-6-month interval showed increased normalized metabolic activity in the left orbitofrontal cortex (p<0.002) for 5 participants with semantic dementia. The 2–6 month interval revealed a late increase in normalized metabolic activity in the left insula (p<0.013), right insula (p<0.009), and left anterior cingulate (p<0.005). The right anterior cingulate showed both an initial increase and a delayed, further increase (2–6 month, p<0.016). FBI scores worsened by 43.3%. One participant with semantic dementia opted not to continue memantine beyond 2 months yet showed similar FDG-PET increases. Conclusions Increases in normalized cortical metabolic activity in salience network hubs were sustained in SD over a 6-month period. Since one participant without medication also showed these changes, further investigation is recommended through a double-blind, placebo-controlled study with FDG-PET as an outcome measure. PMID:22674572

  2. ECAT ART - a continuously rotating PET camera: performance characteristics, initial clinical studies, and installation considerations in a nuclear medicine department.

    PubMed

    Bailey, D L; Young, H; Bloomfield, P M; Meikle, S R; Glass, D; Myers, M J; Spinks, T J; Watson, C C; Luk, P; Peters, A M; Jones, T

    1997-01-01

    Advances in fully three-dimensional (3D) image reconstruction techniques have permitted the development of a commercial, rotating, partial ring, fully 3D positron emission tomographic (PET) scanner, the ECAT ART. The system has less than one-half the number of bismuth germanate detectors compared with a full ring scanner with the equivalent field of view, resulting in reduced capital cost. The performance characteristics, implications for installation in a nuclear medicine department, and clinical utility of the scanner are presented in this report. The sensitivity (20 cm diameterx20 cm long cylindrical phantom, no scatter correction) is 11400 cps.kBq-1.ml-1. This compares with 5800 and 40500 cps.kBq-1.ml-1 in 2D and 3D respectively for the equivalent full ring scanner (ECAT EXACT). With an energy window of 350-650 keV the maximum noise equivalent count (NEC) rate was 27 kcps at a radioactivity concentration of approximately 15 kBq.ml-1 in the cylinder. Spatial resolution is approximately 6 mm full width at half maximum on axis degrading to just under 8 mm at a distance of 20 cm off axis. Installation and use within the nuclear medicine department does not appreciably increase background levels of radiation on gamma cameras in adjacent rooms and the dose rate to an operator in the same room is 2 microSv. h-1 for a typical fluorine-18 fluorodeoxyglucose (18F-FDG) study with an initial injected activity of 370 MBq. The scanner has been used for clinical imaging with18F-FDG for neurological and oncological applications. Its novel use for imaging iron-52 transferrin for localising erythropoietic activity demonstrates its sensitivity and resolution advantages over a conventional dual-headed gamma camera. The ECAT ART provides a viable alternative to conventional full ring PET scanners without compromising the performance required for clinical PET imaging.

  3. Development of PET/MRI with insertable PET for simultaneous PET and MR imaging of human brain

    SciTech Connect

    Jung, Jin Ho; Choi, Yong Jung, Jiwoong; Kim, Sangsu; Lim, Hyun Keong; Im, Ki Chun; Oh, Chang Hyun; Park, Hyun-wook; Kim, Kyung Min; Kim, Jong Guk

    2015-05-15

    Purpose: The purpose of this study was to develop a dual-modality positron emission tomography (PET)/magnetic resonance imaging (MRI) with insertable PET for simultaneous PET and MR imaging of the human brain. Methods: The PET detector block was composed of a 4 × 4 matrix of detector modules, each consisting of a 4 × 4 array LYSO coupled to a 4 × 4 Geiger-mode avalanche photodiode (GAPD) array. The PET insert consisted of 18 detector blocks, circularly mounted on a custom-made plastic base to form a ring with an inner diameter of 390 mm and axial length of 60 mm. The PET gantry was shielded with gold-plated conductive fabric tapes with a thickness of 0.1 mm. The charge signals of PET detector transferred via 4 m long flat cables were fed into the position decoder circuit. The flat cables were shielded with a mesh-type aluminum sheet with a thickness of 0.24 mm. The position decoder circuit and field programmable gate array-embedded DAQ modules were enclosed in an aluminum box with a thickness of 10 mm and located at the rear of the MR bore inside the MRI room. A 3-T human MRI system with a Larmor frequency of 123.7 MHz and inner bore diameter of 60 cm was used as the PET/MRI hybrid system. A custom-made radio frequency (RF) coil with an inner diameter of 25 cm was fabricated. The PET was positioned between gradient and the RF coils. PET performance was measured outside and inside the MRI scanner using echo planar imaging, spin echo, turbo spin echo, and gradient echo sequences. MRI performance was also evaluated with and without the PET insert. The stability of the newly developed PET insert was evaluated and simultaneous PET and MR images of a brain phantom were acquired. Results: No significant degradation of the PET performance caused by MR was observed when the PET was operated using various MR imaging sequences. The signal-to-noise ratio of MR images was slightly degraded due to the PET insert installed inside the MR bore while the homogeneity was

  4. Anxiety in Cancer Patients during 18F-FDG PET/CT Low Dose: A Comparison of Anxiety Levels before and after Imaging Studies

    PubMed Central

    Vieira, Lina; Carolino, Elisabete; Oliveira, Cátia; Pacheco, Carolina; Castro, Maria; Alonso, Juan

    2017-01-01

    Objective. Assessing the level of anxiety in oncology patients who underwent 18F-FDG PET/CT low dose scan and identifying the main reasons that generate anxiety. Material and Method. The study included 81 cancer patients submitted to the 18F-FDG PET/CT low dose scan. Patients filled in the Scan Experience Questionnaire and the State-Trait Anxiety Inventory (STAI) before and after 18F-FDG PET/CT low dose scan. Results. Substantial levels of anxiety were detected both before and after 18F-FDG PET/CT low dose scan (STAI mean > 30), with a significant increase in the state of anxiety after scan performance (p < 0.0001, Medianpre = 31.1, and Medianpos = 33.0). 18F-FDG PET/CT low dose results are the main cause of anxiety both before (79.1%) and after (86.9%) the scan. The information provided by staff both before and on the 18F-FDG PET/CT low dose day was classified mostly as completely understandable (70.5% and 75.3%, resp.) and as very useful (70.5% and 72.6%, resp.) and correlated positively with patients' overall satisfaction with NM Department (rS = 0.372, p = 0.004 and rS = 0.528, p = 0.000, resp.), but not with anxiety levels. Conclusions. Patients perceive high levels of anxiety during the 18F-FDG PET/CT low dose scan and the concern with scan results was pointed out as the main factor for that emotional reaction. PMID:28392942

  5. Cerebral Amyloid Angiopathy Burden Associated with Leukoaraiosis:a PET/MRI Study

    PubMed Central

    Gurol, M. Edip; Viswanathan, Anand; Gidicsin, Christopher; Hedden, Trey; Ramirez-Martinez, Sergi; Dumas, Andrew; Vashkevich, Anastasia; Ayres, Alison M.; Auriel, Eitan; van Etten, Ellis; Becker, Alex; Carmasin, Jeremy; Schwab, Kristin; Rosand, Jonathan; Johnson, Keith A.; Greenberg, Steven M.

    2013-01-01

    Objective We hypothesized that vascular amyloid contributes to chronic brain ischemia, therefore amyloid burden measured by Pittsburgh Compound B retention on PET (PiB-PET) would correlate with the extent of MRI white matter hyperintensities (WMHor leukoaraiosis) in patients with high vascular amyloid deposition (Cerebral Amyloid Angiopathy, CAA) but not high parenchymal amyloid deposition (Alzheimer’s Disease, AD; Mild Cognitive Impairment, MCI) or healthy elderly (HE). Methods Fourty-two non-demented CAA patients, 50 HE subjects and 43 AD/MCI patients had brain MRI and PiB-PET. Multivariate linear regression was used to assess the independent association between PiB retention and WMD volume controlling for age, gender, apolipoprotein E genotype, and vascular risk factors within each group. Results CAA patients were younger than HE and AD (68±10 vs 73.3±7 and 74±7.4, p<0.01) but had higher amounts of WMH (medians: 21ml vs 3.2ml and 10.8ml respectively, p<0.05 for both comparisons). Global PiB retention and WMH showed strong correlation (rho=0.52, p<0.001) in the CAA group but not in HE or AD. These associations did not change in the multivariate models. Lobar microbleed count, another marker of CAA severity also remained as an independent predictor of WMH volume. Interpretation Our results indicate that amyloid burden in CAA subjects (with primarily vascular amyloid) but not AD subjects (with primarily parenchymal amyloid) independently correlate with WMH volume. These findings support the idea that vascular amyloid burden directly contributes to chronic cerebral ischemia and highlights the possible utility of amyloid imaging as a marker of CAA severity. PMID:23424091

  6. PET demonstrates different behaviour of striatal dopamine D-1 and D-2 receptors in early Parkinson's disease

    SciTech Connect

    Rinne, J.O.; Laihinen, A.; Nagren, K.B.; Bergman, J.; Solin, O.; Haaparanta, M.; Ruotsalainen, U.; Rinne, U.K. )

    1990-12-01

    Striatal dopamine D-1 receptor binding was investigated in vivo with positron emission tomography (PET) in five patients with early Parkinson's disease using {sup 11}C-SCH 23390. All patients had predominantly unilateral symptoms and showed a significant reduction in the accumulation of {sup 18}F-6-F-DOPA in the striatum contralateral to the symptoms. None of the patients had received any antiparkinsonian medication. The striatal and cerebellar radioactivity was measured and corresponding striatum/cerebellum ratios were counted. The mean striatum/cerebellum ratio of {sup 11}C-SCH 23390 binding was symmetric between the hemispheres. By contrast, the striatum/cerebellum ratio of ({sup 11}C)raclopride binding, labelling dopamine D-2 receptors, was increased significantly in the hemisphere contralateral to the symptoms as compared with the opposite hemisphere. Thus, the present results show that the behaviour of striatal D-1 and D-2 receptors is different in early Parkinson's disease.

  7. Pet Ownership among Homeless Youth: Associations with Mental Health, Service Utilization and Housing Status

    PubMed Central

    Rhoades, Harmony; Winetrobe, Hailey; Rice, Eric

    2014-01-01

    As many as 25% of homeless persons have pets. To our knowledge, pet ownership has not been studied quantitatively with homeless youth. This study examined pet ownership among 398 homeless youth utilizing two Los Angeles drop-in centers. Twenty-three percent of homeless youth had a pet. The majority of pet owners reported that their pets kept them company and made them feel loved; nearly half reported that their pets made it more difficult to stay in a shelter. Pet owners reported fewer symptoms of depression and loneliness than their non-pet owning peers. Pet ownership was associated with decreased utilization of housing and job-finding services, and decreased likelihood of currently staying in a shelter. These findings elucidate many of the positive benefits of pet ownership for homeless youth, but importantly highlight that pet ownership may negatively impact housing options. Housing and other services must be sensitive to the needs of homeless youth with pets. PMID:24728815

  8. Pet ownership among homeless youth: associations with mental health, service utilization and housing status.

    PubMed

    Rhoades, Harmony; Winetrobe, Hailey; Rice, Eric

    2015-04-01

    As many as 25 % of homeless persons have pets. To our knowledge, pet ownership has not been studied quantitatively with homeless youth. This study examined pet ownership among 398 homeless youth utilizing two Los Angeles drop-in centers. Twenty-three percent of homeless youth had a pet. The majority of pet owners reported that their pets kept them company and made them feel loved; nearly half reported that their pets made it more difficult to stay in a shelter. Pet owners reported fewer symptoms of depression and loneliness than their non-pet owning peers. Pet ownership was associated with decreased utilization of housing and job-finding services, and decreased likelihood of currently staying in a shelter. These findings elucidate many of the positive benefits of pet ownership for homeless youth, but importantly highlight that pet ownership may negatively impact housing options. Housing and other services must be sensitive to the needs of homeless youth with pets.

  9. A serial ¹⁸FDG-PET study of a patient with SSPE who had good prognosis by combination therapy with interferon alpha and ribavirin.

    PubMed

    Ohya, Takashi; Yamashita, Yushiro; Shibuya, Ikuhiko; Hara, Munetsugu; Nagamitsu, Shinichiro; Kaida, Hayato; Kurata, Seiji; Ishibashi, Masatoshi; Matsuishi, Toyojiro

    2014-07-01

    We describe a 15-year-old girl with subacute sclerosing panencephalitis (SSPE) in stage II who was treated with isoprinosine, intraventricular interferon alpha (IFN-α), and ribavirin for 3 years. She is alive at three years from onset and studies at school with the assistance of a special educational teacher. To assess residual brain function, serial (18)FDG-positron emission tomography (PET) was performed three times to measure cortical metabolism: at onset, a year later, and three years later. At onset, PET study revealed preserved glucose metabolism of the cerebral cortex. In serial PET study, glucose metabolism of the cerebral cortex was also preserved even after three years. Although SSPE is a progressive disease of the neuronal system, and typically leads to death in approximately 2-3 years, the neurological prognosis of our case was good. We consider that combination therapy in the very early stage without hypometabolism in the cerebral cortex may be effective for SSPE.

  10. FDG-PET is prognostic and predictive for progression-free survival in relapsed follicular lymphoma: exploratory analysis of the GAUSS study.

    PubMed

    Kostakoglu, Lale; Goy, Andre; Martinelli, Giovanni; Caballero, Dolores; Crump, Michael; Gaidano, Gianluca; Baetz, Tara; Buckstein, Rena; Fine, Gregg; Fingerle-Rowson, Guenter; Berge, Claude; Sahin, Deniz; Press, Oliver; Sehn, Laurie

    2017-02-01

    An exploratory analysis of 75 follicular lymphoma patients treated with obinutuzumab or rituximab induction therapy (IT) for 4 weeks in the phase II GAUSS study aimed to determine whether positron emission tomography (PET) results could predict progression-free survival (PFS) and tumor response. The proportion of patients with a PFS event (progression or death) was higher in those who were PET-positive after IT (assessed using Deauville five-point scale criteria; 35/52, 67%) than PET-negative (5/20, 25%); the hazard ratio for progression or death was 0.25 (95%CI: 0.01-0.64; p = 0.0018). A significant association was also found when PET results were assessed using International Harmonization Project and European Organisation for Research and Treatment of Cancer criteria. Change between baseline and end of IT in values of standardized uptake value and other PET parameters were associated with PFS and response. Validation of these results in prospective studies of larger cohorts is warranted.

  11. Impact of patient weight on tumor visibility based on human-shaped phantom simulation study in PET imaging system

    NASA Astrophysics Data System (ADS)

    Musarudin, M.; Saripan, M. I.; Mashohor, S.; Saad, W. H. M.; Nordin, A. J.; Hashim, S.

    2015-10-01

    Energy window technique has been implemented in all positron emission tomography (PET) imaging protocol, with the aim to remove the unwanted low energy photons. Current practices in our institution however are performed by using default energy threshold level regardless of the weight of the patient. Phantom size, which represents the size of the patient's body, is the factor that determined the level of scatter fraction during PET imaging. Thus, the motivation of this study is to determine the optimum energy threshold level for different sizes of human-shaped phantom, to represent underweight, normal, overweight and obese patients. In this study, the scanner was modeled by using Monte Carlo code, version MCNP5. Five different sizes of elliptical-cylinder shaped of human-sized phantoms with diameter ranged from 15 to 30 cm were modeled. The tumor was modeled by a cylindrical line source filled with 1.02 MeV positron emitters at the center of the phantom. Various energy window widths, in the ranged of 10-50% were implemented to the data. In conclusion, the phantom mass volume did influence the scatter fraction within the volume. Bigger phantom caused more scattering events and thus led to coincidence counts lost. We evaluated the impact of phantom sizes on the sensitivity and visibility of the simulated models. Implementation of wider energy window improved the sensitivity of the system and retained the coincidence photons lost. Visibility of the tumor improved as an appropriate energy window implemented for the different sizes of phantom.

  12. An exploratory study of the relationship of symptom domains and diagnostic severity to PET scan imaging in borderline personality disorder.

    PubMed

    Charles Schulz, S; Camchong, Jazmin; Romine, Ann; Schlesinger, Amanda; Kuskowski, Michael; Pardo, Jose V; Cullen, Kathryn R; Lim, Kelvin O

    2013-11-30

    The purpose of this report is to describe the relationship between clinical rating assessments of borderline personality disorder (BPD) and regional brain metabolism as measured by positron emission tomography with fluorodeoxyglucuse-F18 (PET-FDG). Fourteen women with BPD underwent PET-FDG scanning in a medication-free state. Correlations were performed on a voxel-by-voxel basis with Buss-Durkee Hostility Index (BDHI) and the Zanarini Rating Scale for Borderline Personality Disorder (ZAN-BPD) which provides a score for BPD severity. There was a significant negative correlation between glucose metabolism in frontal brain areas and the BDHI. Correlations of brain metabolic changes and diagnostic behavioral rating scale scores (ZAN-BPD) were small and seen mostly in posterior areas. The assessment of the statistical relationship of the BDHI to brain regions was substantially more robust than the correlations of the total ZAN-BPD. This exploratory study illustrates regional metabolic values that are highly related to hostile behavior. Our findings replicate some prior studies that have identified a negative relationship between frontal metabolism and aggression in personality disorders. We have also identified a range of other areas that relate to both positive (representing increased drive) and negative (representing impaired control) hostility scores. The substantially greater correlations of the BDHI compared with the ZAN-BPD provide information about the neural underpinnings of BPD.

  13. Optimizing light transport in scintillation crystals for time-of-flight PET: an experimental and optical Monte Carlo simulation study.

    PubMed

    Berg, Eric; Roncali, Emilie; Cherry, Simon R

    2015-06-01

    Achieving excellent timing resolution in gamma ray detectors is crucial in several applications such as medical imaging with time-of-flight positron emission tomography (TOF-PET). Although many factors impact the overall system timing resolution, the statistical nature of scintillation light, including photon production and transport in the crystal to the photodetector, is typically the limiting factor for modern scintillation detectors. In this study, we investigated the impact of surface treatment, in particular, roughening select areas of otherwise polished crystals, on light transport and timing resolution. A custom Monte Carlo photon tracking tool was used to gain insight into changes in light collection and timing resolution that were observed experimentally: select roughening configurations increased the light collection up to 25% and improved timing resolution by 15% compared to crystals with all polished surfaces. Simulations showed that partial surface roughening caused a greater number of photons to be reflected towards the photodetector and increased the initial rate of photoelectron production. This study provides a simple method to improve timing resolution and light collection in scintillator-based gamma ray detectors, a topic of high importance in the field of TOF-PET. Additionally, we demonstrated utility of our Monte Carlo simulation tool to accurately predict the effect of altering crystal surfaces on light collection and timing resolution.

  14. Polarisation-based coincidence event discrimination: an in silico study towards a feasible scheme for Compton-PET.

    PubMed

    Toghyani, M; Gillam, J E; McNamara, A L; Kuncic, Z

    2016-08-07

    Current positron emission tomography (PET) systems use temporally localised coincidence events discriminated by energy and time-of-flight information. The two annihilation photons are in an entangled polarisation state and, in principle, additional information from the polarisation correlation of photon pairs could be used to improve the accuracy of coincidence classification. In a previous study, we demonstrated that in principle, the polarisation correlation information could be transferred to an angular correlation in the distribution of scattered photon pairs in a planar Compton camera system. In the present study, we model a source-phantom-detector system using Geant4 and we develop a coincidence classification scheme that exploits the angular correlation of scattered annihilation quanta to improve the accuracy of coincidence detection. We find a [Formula: see text] image quality improvement in terms of the peak signal-to-noise ratio when scattered coincidence events are discriminated solely by their angular correlation, thus demonstrating the feasibility of this novel classification scheme. By integrating scatter events (both single-single and single-only) with unscattered coincidence events discriminated using conventional methods, our results suggest that Compton-PET may be a promising candidate for optimal emission tomographic imaging.

  15. Polarisation-based coincidence event discrimination: an in silico study towards a feasible scheme for Compton-PET

    NASA Astrophysics Data System (ADS)

    Toghyani, M.; Gillam, J. E.; McNamara, A. L.; Kuncic, Z.

    2016-08-01

    Current positron emission tomography (PET) systems use temporally localised coincidence events discriminated by energy and time-of-flight information. The two annihilation photons are in an entangled polarisation state and, in principle, additional information from the polarisation correlation of photon pairs could be used to improve the accuracy of coincidence classification. In a previous study, we demonstrated that in principle, the polarisation correlation information could be transferred to an angular correlation in the distribution of scattered photon pairs in a planar Compton camera system. In the present study, we model a source-phantom-detector system using Geant4 and we develop a coincidence classification scheme that exploits the angular correlation of scattered annihilation quanta to improve the accuracy of coincidence detection. We find a 22% image quality improvement in terms of the peak signal-to-noise ratio when scattered coincidence events are discriminated solely by their angular correlation, thus demonstrating the feasibility of this novel classification scheme. By integrating scatter events (both single-single and single-only) with unscattered coincidence events discriminated using conventional methods, our results suggest that Compton-PET may be a promising candidate for optimal emission tomographic imaging.

  16. Including anatomical and functional information in MC simulation of PET and SPECT brain studies. Brain-VISET: a voxel-based iterative method.

    PubMed

    Marti-Fuster, Berta; Esteban, Oscar; Thielemans, Kris; Setoain, Xavier; Santos, Andres; Ros, Domenec; Pavia, Javier

    2014-10-01

    Monte Carlo (MC) simulation provides a flexible and robust framework to efficiently evaluate and optimize image processing methods in emission tomography. In this work we present Brain-VISET (Voxel-based Iterative Simulation for Emission Tomography), a method that aims to simulate realistic [ (99m) Tc]-SPECT and [ (18) F]-PET brain databases by including anatomical and functional information. To this end, activity and attenuation maps generated using high-resolution anatomical images from patients were used as input maps in a MC projector to simulate SPECT or PET sinograms. The reconstructed images were compared with the corresponding real SPECT or PET studies in an iterative process where the activity inputs maps were being modified at each iteration. Datasets of 30 refractory epileptic patients were used to assess the new method. Each set consisted of structural images (MRI and CT) and functional studies (SPECT and PET), thereby allowing the inclusion of anatomical and functional variability in the simulation input models. SPECT and PET sinograms were obtained using the SimSET package and were reconstructed with the same protocols as those employed for the clinical studies. The convergence of Brain-VISET was evaluated by studying the behavior throughout iterations of the correlation coefficient, the quotient image histogram and a ROI analysis comparing simulated with real studies. The realism of generated maps was also evaluated. Our findings show that Brain-VISET is able to generate realistic SPECT and PET studies and that four iterations is a suitable number of iterations to guarantee a good agreement between simulated and real studies.

  17. Radiomics Analysis on FLT-PET/MRI for Characterization of Early Treatment Response in Renal Cell Carcinoma: A Proof-of-Concept Study1

    PubMed Central

    Antunes, Jacob; Viswanath, Satish; Rusu, Mirabela; Valls, Laia; Hoimes, Christopher; Avril, Norbert; Madabhushi, Anant

    2016-01-01

    Studying early response to cancer treatment is significant for patient treatment stratification and follow-up. Although recent advances in positron emission tomography (PET) and magnetic resonance imaging (MRI) allow for evaluation of tumor response, a quantitative objective assessment of treatment-related effects offers localization and quantification of structural and functional changes in the tumor region. Radiomics, the process of computerized extraction of features from radiographic images, is a new strategy for capturing subtle changes in the tumor region that works by quantifying subvisual patterns which might escape human identification. The goal of this study was to demonstrate feasibility for performing radiomics analysis on integrated PET/MRI to characterize early treatment response in metastatic renal cell carcinoma (RCC) undergoing sunitinib therapy. Two patients with advanced RCC were imaged using an integrated PET/MRI scanner. [18 F] fluorothymidine (FLT) was used as the PET radiotracer, which can measure the degree of cell proliferation. Image acquisitions included test/retest scans before sunitinib treatment and one scan 3 weeks into treatment using [18 F] FLT-PET, T2-weighted (T2w), and diffusion-weighted imaging (DWI) protocols, where DWI yielded an apparent diffusion coefficient (ADC) map. Our framework to quantitatively characterize treatment-related changes involved the following analytic steps: 1) intraacquisition and interacquisition registration of protocols to allow voxel-wise comparison of changes in radiomic features, 2) correction and pseudoquantification of T2w images to remove acquisition artifacts and examine tissue-specific response, 3) characterization of information captured by T2w MRI, FLT-PET, and ADC via radiomics, and 4) combining multiparametric information to create a map of integrated changes from PET/MRI radiomic features. Standardized uptake value (from FLT-PET) and ADC textures ranked highest for reproducibility in a

  18. Radiomics Analysis on FLT-PET/MRI for Characterization of Early Treatment Response in Renal Cell Carcinoma: A Proof-of-Concept Study.

    PubMed

    Antunes, Jacob; Viswanath, Satish; Rusu, Mirabela; Valls, Laia; Hoimes, Christopher; Avril, Norbert; Madabhushi, Anant

    2016-04-01

    Studying early response to cancer treatment is significant for patient treatment stratification and follow-up. Although recent advances in positron emission tomography (PET) and magnetic resonance imaging (MRI) allow for evaluation of tumor response, a quantitative objective assessment of treatment-related effects offers localization and quantification of structural and functional changes in the tumor region. Radiomics, the process of computerized extraction of features from radiographic images, is a new strategy for capturing subtle changes in the tumor region that works by quantifying subvisual patterns which might escape human identification. The goal of this study was to demonstrate feasibility for performing radiomics analysis on integrated PET/MRI to characterize early treatment response in metastatic renal cell carcinoma (RCC) undergoing sunitinib therapy. Two patients with advanced RCC were imaged using an integrated PET/MRI scanner. [18 F] fluorothymidine (FLT) was used as the PET radiotracer, which can measure the degree of cell proliferation. Image acquisitions included test/retest scans before sunitinib treatment and one scan 3 weeks into treatment using [18 F] FLT-PET, T2-weighted (T2w), and diffusion-weighted imaging (DWI) protocols, where DWI yielded an apparent diffusion coefficient (ADC) map. Our framework to quantitatively characterize treatment-related changes involved the following analytic steps: 1) intraacquisition and interacquisition registration of protocols to allow voxel-wise comparison of changes in radiomic features, 2) correction and pseudoquantification of T2w images to remove acquisition artifacts and examine tissue-specific response, 3) characterization of information captured by T2w MRI, FLT-PET, and ADC via radiomics, and 4) combining multiparametric information to create a map of integrated changes from PET/MRI radiomic features. Standardized uptake value (from FLT-PET) and ADC textures ranked highest for reproducibility in a

  19. Pet Problems at Home: Pet Problems in the Community.

    ERIC Educational Resources Information Center

    Soltow, Willow

    1984-01-01

    Discusses problems of pets in the community, examining the community's role related to disruptive pets and pet overpopulation. Also discusses pet problems at home, offering advice on selecting a pet, meeting a pet's needs, and disciplining pets. Includes a list of books, films/filmstrips, teaching materials, and various instructional strategies.…

  20. Design study of a 9 MeV compact cyclotron system for PET

    NASA Astrophysics Data System (ADS)

    Lee, Byeong-No; Shin, Seung-Wook; Song, Hoseung; Kim, Hyun-Wook; Chai, Jong-Seo

    2013-06-01

    A cyclotron is an accelerator which can be applied to both cancer diagnosis and treatment. Among commercially sold cyclotrons, the major energy is used for positron emission tomography (PET) ranges from 10 to 20 MeV. In this research, 9 MeV compact cyclotron for PET was designed. The research was conducted on the response cross section and the yield for the energy distribution to decide the design features. Also, it was determined the specifications on the basis of the fluoro-deoxy-glucose (FDG) maximum dose. The machine, which has a 20 uA beam current, is designed to be installed in small-to-medium-sized hospitals in local cities because of its relatively light weight (6 tons). This compact cyclotron, which provides 9-MeV proton beams, is composed of a azimuthally varying field (AVF) electromagnet, 83-MHz RF systems with a 20 kW amplifier, a panning ion gauge (PIG) type ion-source for negative hydrogen, and a double-stage high-vacuum system. The basic model design was done by using 3-D CAD program, CATIA and all the field calculations were performed using commercial electromagnetic field analysis code, OPERA-3D TOSCA. From this research, we expect a time reduction for FDG production, a decrease of radioactive exposure for workers, and an equipment cost reduction.

  1. Morbidity and disease management in pet rats: a study of 375 cases.

    PubMed

    Rey, F; Bulliot, C; Bertin, N; Mentré, V

    2015-04-11

    Typical diseases are well described in pet rats, but their prevalence and management are largely unknown. During a six-month period, standardised records were obtained for 375 rats presenting in three French centres to determine the diagnoses made and the treatments prescribed. Rhinitis, healthy animal and mammary gland tumours accounted for the majority of diagnoses. The 10 most common diagnoses accounted for 66.9 per cent of all cases. Inappropriate environment was a risk factor for respiratory disease (P<0.001). Mean age of presentation of rats with respiratory disease was lower for rats living in non-appropriate environment (P=0.049). Twenty-two per cent of animals underwent surgery, with a significant difference according to sex because of the higher rate of mammary gland tumours in females (P=0.006). Tumourectomy, ovariohysterectomy or castration accounted for 70 per cent of all procedures. Training veterinarians on 10 clinical situations, 3 surgical procedures and 3 therapeutic classes would improve the management of most of the pet rats. An early visit to provide owners with all recommendations and information on appropriate maintenance, and one visit around 15 months of age to detect any mass at an early stage, could help to reduce respiratory disease and improve clinical outcomes.

  2. Reversal of brain metabolic abnormalities following treatment of AIDS dementia complex with 3'-azido-2',3'-dideoxythymidine (AZT, zidovudine): a PET-FDG study

    SciTech Connect

    Brunetti, A.; Berg, G.; Di Chiro, G.; Cohen, R.M.; Yarchoan, R.; Pizzo, P.A.; Broder, S.; Eddy, J.; Fulham, M.J.; Finn, R.D.

    1989-05-01

    Brain glucose metabolism was evaluated in four patients with acquired immunodeficiency syndrome (AIDS) dementia complex using (/sup 18/F)fluorodeoxyglucose (FDG) and positron emission tomography (PET) scans at the beginning of therapy with 3'-azido-2',3'-dideoxythymidine (AZT, zidovudine), and later in the course of therapy. In two patients, baseline, large focal cortical abnormalities of glucose utilization were reversed during the course of therapy. In the other two patients, the initial PET study did not reveal pronounced focal alterations, while the post-treatment scans showed markedly increased cortical glucose metabolism. The improved cortical glucose utilization was accompanied in all patients by immunologic and neurologic improvement. PET-FDG studies can detect cortical metabolic abnormalities associated with AIDS dementia complex, and may be used to monitor the metabolic improvement in response to AZT treatment.

  3. Estimation of patient radiation dose from whole body 18F- FDG PET/CT examination in cancer imaging: a preliminary study

    NASA Astrophysics Data System (ADS)

    Mahmud, M. H.; Nordin, A. J.; Saad, F. F. Ahmad; Fattah Azman, A. Z.

    2014-11-01

    This study aims to estimate the radiation effective dose resulting from whole body fluorine-18 flourodeoxyglucose Positron Emission Tomography (18F-FDG PET) scanning as compared to conservative Computed Tomography (CT) techniques in evaluating oncology patients. We reviewed 19 oncology patients who underwent 18F-FDG PET/CT at our centre for cancer staging. Internal and external doses were estimated using radioactivity of injected FDG and volume CT Dose Index (CTDIvol), respectively with employment of the published and modified dose coefficients. The median differences of dose among the conservative CT and PET protocols were determined using Kruskal Wallis test with p < 0.05 considered as significant. The median (interquartile range, IQR) effective doses of non-contrasted CT, contrasted CT and PET scanning protocols were 7.50 (9.35) mSv, 9.76 (3.67) mSv and 6.30 (1.20) mSv, respectively, resulting in the total dose of 21.46 (8.58) mSv. Statistically significant difference was observed in the median effective dose between the three protocols (p < 0.01). The effective doses of whole body 18F-FDG PET technique may be effective the lowest amongst the conventional CT imaging techniques.

  4. Study of optical band gap, carbonaceous clusters and structuring in CR-39 and PET polymers irradiated by 100 MeV O 7+ ions

    NASA Astrophysics Data System (ADS)

    Ramola, R. C.; Chandra, Subhash; Negi, Ambika; Rana, J. M. S.; Annapoorni, S.; Sonkawade, R. G.; Kulriya, P. K.; Srivastava, A.

    2009-01-01

    Commercially purchased CR-39 and PET polymers were irradiated by 100 MeV O 7+ ions of varying fluences, ranging from 1×10 11 to 1×10 13 ions/cm 2. The effects of swift heavy ions (SHI) on the structural, optical and chemical properties of CR-39 and PET polymers were studied using X-ray diffraction (XRD), UV-visible spectroscopy and Fourier transform infrared (FTIR) spectroscopy. The XRD patterns of CR-39 show that the intensity of the peak decreases with increasing ion fluence, which indicates that the semicrystalline structure of polymer changes to amorphous with increasing fluences. The XRD patterns of PET show a slight increase in the intensity of the peaks, indicating an increase in the crystallinity. The UV-visible spectra show the shift in the absorbance edge towards the higher wavelength, indicating the change in band gap. Band gap in PET and CR-39 found to be decrease from 3.87 to 2.91 and 5.3-3.5 eV, respectively. The cluster size also shows a variation in the carbon atoms per cluster that varies from 42 to 96 in CR-39 and from 78 to 139 in PET. The FTIR spectra show an overall reduction in intensity of the typical bands, indicating the degradation of polymers after irradiation.

  5. Glucose utilization by intracranial meningiomas as an index of tumor aggressivity and probability of recurrence: a PET study

    SciTech Connect

    Di Chiro, G.; Hatazawa, J.; Katz, D.A.; Rizzoli, H.V.; De Michele, D.J.

    1987-08-01

    Seventeen patients with intracranial meningiomas were studied with positron emission tomography and fluorine-18-2-fluorodeoxyglucose (PET-FDG) to assess the glucose utilization of these tumors. Four meningiomas followed for 3-5 years after PET-FDG and surgery showed no evidence of recurrence. These tumors had significantly lower glucose utilization rates (1.9 mg/dl/min +/- 1.0) than 11 recurrent or regrowing meningiomas (4.5 mg/dl/min +/- 1.96). The glucose metabolic rates of meningiomas correlated with tumor growth, as estimated from changes in tumor size on repeated computed tomographic scans. Histopathologically, a syncytial (atypical) meningioma had the highest glucose utilization rate, followed by a papillary meningioma and an angioblastic meningioma. Individual transitional and syncytial (typical) meningiomas showed marked differences in glucose metabolism despite similar microscopic appearance. Glucose utilization rate appears to be at least as reliable as histologic classification and other proposed criteria for predicting the behavior and recurrence of intracranial meningiomas.

  6. The predictive value of early behavioural assessments in pet dogs--a longitudinal study from neonates to adults.

    PubMed

    Riemer, Stefanie; Müller, Corsin; Virányi, Zsófia; Huber, Ludwig; Range, Friederike

    2014-01-01

    Studies on behavioural development in domestic dogs are of relevance for matching puppies with the right families, identifying predispositions for behavioural problems at an early stage, and predicting suitability for service dog work, police or military service. The literature is, however, inconsistent regarding the predictive value of tests performed during the socialisation period. Additionally, some practitioners use tests with neonates to complement later assessments for selecting puppies as working dogs, but these have not been validated. We here present longitudinal data on a cohort of Border collies, followed up from neonate age until adulthood. A neonate test was conducted with 99 Border collie puppies aged 2-10 days to assess activity, vocalisations when isolated and sucking force. At the age of 40-50 days, 134 puppies (including 93 tested as neonates) were tested in a puppy test at their breeders' homes. All dogs were adopted as pet dogs and 50 of them participated in a behavioural test at the age of 1.5 to 2 years with their owners. Linear mixed models found little correspondence between individuals' behaviour in the neonate, puppy and adult test. Exploratory activity was the only behaviour that was significantly correlated between the puppy and the adult test. We conclude that the predictive validity of early tests for predicting specific behavioural traits in adult pet dogs is limited.

  7. The Predictive Value of Early Behavioural Assessments in Pet Dogs – A Longitudinal Study from Neonates to Adults

    PubMed Central

    Riemer, Stefanie; Müller, Corsin; Virányi, Zsófia; Huber, Ludwig; Range, Friederike

    2014-01-01

    Studies on behavioural development in domestic dogs are of relevance for matching puppies with the right families, identifying predispositions for behavioural problems at an early stage, and predicting suitability for service dog work, police or military service. The literature is, however, inconsistent regarding the predictive value of tests performed during the socialisation period. Additionally, some practitioners use tests with neonates to complement later assessments for selecting puppies as working dogs, but these have not been validated. We here present longitudinal data on a cohort of Border collies, followed up from neonate age until adulthood. A neonate test was conducted with 99 Border collie puppies aged 2–10 days to assess activity, vocalisations when isolated and sucking force. At the age of 40–50 days, 134 puppies (including 93 tested as neonates) were tested in a puppy test at their breeders' homes. All dogs were adopted as pet dogs and 50 of them participated in a behavioural test at the age of 1.5 to 2 years with their owners. Linear mixed models found little correspondence between individuals' behaviour in the neonate, puppy and adult test. Exploratory activity was the only behaviour that was significantly correlated between the puppy and the adult test. We conclude that the predictive validity of early tests for predicting specific behavioural traits in adult pet dogs is limited. PMID:25003341

  8. A Comparative Study of Noninvasive Hypoxia Imaging with 18F-Fluoroerythronitroimidazole and 18F-Fluoromisonidazole PET/CT in Patients with Lung Cancer

    PubMed Central

    Huang, Yong; Yu, Qingxi; Zhu, Shouhui; Wang, Suzhen; Zhao, Shuqiang; Hu, Xudong; Yu, Jinming; Yuan, Shuanghu

    2016-01-01

    Purpose This is a clinical study to compare noninvasive hypoxia imaging using 18F-fluoroerythronitroimidazole (18F-FETNIM) and 18F-fluoromisonidazole (18F-FMISO) positron emission tomography/computed tomography (PET/CT) in patients with inoperable stages III–IV lung cancer. Methods A total of forty-two patients with inoperable stages III–IV lung cancer underwent 18F-FETNIM PET/CT (n = 18) and 18F-FMISO PET/CT (n = 24) before chemo/radiation therapy. The standard uptake values (SUVs) of malignant and normal tissues depict 18F-FETNIM PET/CT and 18F-FMISO PET/CT uptake. Tumor-to-blood ratios (T/B) were used to quantify hypoxia. Results All patients with lung cancer underwent 18F-FETNIM PET/CT and 18F-FMISO PET/CT successfully. Compared to 18F-FMISO, 18F-FETNIM showed similar uptake in muscle, thyroid, spleen, pancreas, heart, lung and different uptake in blood, liver, and kidney. Significantly higher SUV and T/B ratio with 18F-FMISO (2.56±0.77, 1.98±0.54), as compared to 18F-FETNIM (2.12±0.56, 1.42±0.33) were seen in tumor, P = 0.022, <0.001. For the patients with different histopathological subtypes, no significant difference of SUV (or T/B ratio) was observed both in 18F-FMISO and 18F-FETNIM in tumor. A significantly different SUV (or T/B ratio) was detected between < = 2cm, 2~5cm, and >5cm groups in 18F-FMISO PET/CT, P = 0.015 (or P = 0.029), whereas no difference was detected in 18F-FMISO PET/CT, P = 0.446 (or P = 0.707). Both 18F-FETNIM and 18F-FMISO showed significantly higher SUVs (or T/B ratios) in stage IV than stage III, P = 0.021, 0.013 (or P = 0.032, 0.02). Conclusion 18F-FMISO showed significantly higher uptake than 18F-FETNIM in tumor/non-tumor ratio and might be a better hypoxia tracer in lung cancer. PMID:27322586

  9. (99m)Tc-DMSA (V) in Evaluation of Osteosarcoma: Comparative Studies with (18)F-FDG PET/CT in Detection of Primary and Malignant Lesions.

    PubMed

    Bandopadhyaya, G P; Gupta, Priyanka; Singh, Archana; Shukla, Jaya; Rastogi, S; Kumar, Rakesh; Malhotra, Arun

    2012-01-01

    To evaluate the role of (99m)Tc-DMSA (V) and [(18)F]FDG PET-CT in management of patients with osteosarcoma, 22 patients were included in our study. All patients underwent both (99m)Tc-DMSA (V) and whole-body [(18)F]FDG PET-CT scans within an interval of 1 week. 555-740 MBq of (99m)Tc-DMSA (V) was injected i.v. the whole-body planar, SPECT images of primary site and chest were performed after 3-4 hours. [(18)F]FDG PET-CT images were obtained 60 minutes after i.v. injection of 370 MBq of F-18 FDG. Both FDG PET-CT (mean SUV(max) = 7.1) and DMSA (V) scans showed abnormal uptake at primary site in all the 22 patients (100% sensitivity for both). Whole-body PET-CT detected metastasis in 11 pts (lung mets in 10 and lung + bone mets in 1 patient). Whole-body planar DMSA (V) and SPECT detected bone metastasis in one patient, lung mets in 7 patients and LN in 1 patient. HRCT of chest confirmed lung mets in 10 patients and inflammatory lesion in one patient. 7 patients positive for mets on DMSA (V) scan had higher uptake in lung lesions as compared to FDG uptake on PET-CT. Three patients who did not show any DMSA uptake had subcentimeter lung nodule. Resuts of both (99m)Tc-DMSA (V) (whole-body planar and SPECT imaging) and [(18)F]FDG PET-CT were comparable in evaluation of primary site lesions and metastatic lesions greater than 1 cm. Though (99m)Tc-DMSA (V) had higher uptake in the lesions as compared to [(18)F]FDG PET-CT, the only advantage [(18)F]FDG PET-CT had was that it could also detect subcentimeter lesions.

  10. Pets for Handicapped Children.

    ERIC Educational Resources Information Center

    Frith, Greg H.

    1982-01-01

    Pets can provide valuable learning for handicapped children, but selection of a type of pet should consider cost, availability and care, parents' attitudes, locality, the animal's susceptibility to training, pet's life expectancy, and the child's handicap and emotional maturity. Suggested pet-related activities are listed. (CL)

  11. PET Imaging in Huntington's Disease.

    PubMed

    Roussakis, Andreas-Antonios; Piccini, Paola

    2015-01-01

    To date, little is known about how neurodegeneration and neuroinflammation propagate in Huntington's disease (HD). Unfortunately, no treatment is available to cure or reverse the progressive decline of function caused by the disease, thus considering HD a fatal disease. Mutation gene carriers typically remain asymptomatic for many years although alterations in the basal ganglia and cortex occur early on in mutant HD gene-carriers. Positron Emission Tomography (PET) is a functional imaging technique of nuclear medicine which enables in vivo visualization of numerous biological molecules expressed in several human tissues. Brain PET is most powerful to study in vivo neuronal and glial cells function as well as cerebral blood flow in a plethora of neurodegenerative disorders including Parkinson's disease, Alzheimer's and HD. In absence of HD-specific biomarkers for monitoring disease progression, previous PET studies in HD were merely focused on the study of dopaminergic terminals, cerebral blood flow and glucose metabolism in manifest and premanifest HD-gene carriers. More recently, research interest has been exploring novel PET targets in HD including the state of phosphodiesterse expression and the role of activated microglia. Hence, a better understanding of the HD pathogenesis mechanisms may lead to the development of targeted therapies. PET imaging follow-up studies with novel selective PET radiotracers such as 11C-IMA-107 and 11C-PBR28 may provide insight on disease progression and identify prognostic biomarkers, elucidate the underlying HD pathology and assess novel pharmaceutical agents and over time.

  12. [Business administration of PET facilities: a nationwide survey for prices of PET screening and a cost analysis of three facilities].

    PubMed

    Mitsutake, Naohiro; Fujii, Ryo; Oku, Shinya; Furui, Yuji; Yasunaga, Hideo

    2007-05-01

    The purpose of this study is to analyze the business administration of PET facilities based on the survey of the price of PET cancer screening and cost analysis of PET examination. The questionnaire survey of the price of PET cancer screening was implemented for all PET facilities in Japan. Cost data of PET examination, including fixed costs and variable costs, were obtained from three different medical institutions. The marked price of the PET cancer screening was 111,499 yen in average, and the most popular range of prices was between 80,000 yen and 90,000 yen. Costs of PET per examination were accounted for 110,675 yen, 79,158 yen and Y11,644 yen in facility A, B and C, respectively. The results suggested that facilities with two or more PET/CT per a cyclotron could only secure profits. In Japan, the boom in PET facility construction could not continue in accordance with increasing number of PET facilities. It would become more essential to analyze the appropriate distribution of PET facilities and the adequate amount of PET procedures from the perspective of efficient utilization of the PET equipments and supply of PET-related healthcare.

  13. An Investigation into Associations with Attachment, Companion Pet Attachment, Empathy, and Prosocial Behaviors in 18-20 Year Old College Students: A Mixed Methods Study

    ERIC Educational Resources Information Center

    Anderson, Christian

    2010-01-01

    This study examines empathy, parental attachment, companion pet attachment and social behaviors in a sample of 120 students between the ages of 18-20 enrolled at Front Range Community College in Westminster CO during the fall semester 2008. The study is based on the research questions posed by Thompson and Gullone (2008) but pays particular…

  14. Role of PET and SPECT in the Study of Amyotrophic Lateral Sclerosis

    PubMed Central

    Cuccurullo, Vincenzo; Pagani, Marco; Valentini, Maria Consuelo; Mansi, Luigi

    2014-01-01

    Amyotrophic lateral sclerosis has been defined as a “heterogeneous group of neurodegenerative syndromes characterized by progressive muscle paralysis caused by the degeneration of motor neurons allocated in primary motor cortex, brainstem, and spinal cord.” A comprehensive diagnostic workup for ALS usually includes several electrodiagnostic, clinical laboratory and genetic tests. Neuroimaging exams, such as computed tomography, magnetic resonance imaging and spinal cord myelogram, may also be required. Nuclear medicine, with PET and SPECT, may also play a role in the evaluation of patients with ALS, and provide additional information to the clinicians. This paper aims to offer to the reader a comprehensive review of the different radiotracers for the assessment of the metabolism of glucose (FDG), the measurement of cerebral blood flow (CBF), or the evaluation of neurotransmitters, astrocytes, and microglia by means of newer and not yet clinically diffuse radiopharmaceuticals. PMID:24818133

  15. Pet allergy: how important for Turkey where there is a low pet ownership rate.

    PubMed

    Mungan, Dilşad; Celik, Gülfem; Bavbek, Sevim; Misirligil, Zeynep

    2003-01-01

    Exposure and sensitization to allergens derived from cats/dogs have been shown to represent an important risk factor for allergic respiratory diseases. So far, there has not been any study exploring cat/dog sensitization and related factors in our geographic location. The aim of this study was to determine the sensitization to cats/dogs in a group of patients with rhinitis and/or asthma and to evaluate the relationship between current and childhood exposure and sensitivity to pets. Three hundred twelve consecutive subjects with asthma and/or rhinitis were included in the study and were asked to reply a questionnaire concerning past and current pet ownership and presence of pet-related respiratory symptoms. After performing skin-prick tests, subjects were allocated into three groups: group 1 (n = 103), subjects with nonatopic asthma; group 2 (n = 54), allergic rhinitis and/or asthma patients with pet allergy; group 3 (n = 155), allergic rhinitis and/or asthma patients without pet allergy. Pet hypersensitivity was detected in 54 of 209 atopic subjects (25.8%). There was no difference in the rates of past pet ownership among subjects with (29.6%) and without (23.8%) pet allergy. However, the ratio of current pet ownership was higher in atopic patients with pet allergy (16.6%) than in nonatopic subjects (2.9%; p = 0.02). The prevalence of sensitization to pets in current owners (42.8%) was higher than prevalence of sensitization in patients who never had a pet (22.6%; p = 0.002; odds ratio, 2.67) and who owned a pet at childhood (28.2%; p = 0.038; odds ratio, 1.9). Thirteen subjects (13/54; 24%) described respiratory symptoms when exposed to cats and/or dogs. Rate of past pet ownership was similar in symptomatic and asymptomatic subjects with pet allergy (30.7% versus 29.2%; p > 0.05). Rate of current per ownership was higher in symptomatic subjects than in asymptomatic subjects with pet sensitivity (38.4% versus 9.5%; p < 0.0001). Our data indicate that pet allergens

  16. Study of PET Detector Performance with Varying SiPM Parameters and Readout Schemes.

    PubMed

    Li, Xiaoli; Lockhart, Cate; Lewellen, Tom K; Miyaoka, Robert S

    2011-01-01

    The spatial resolution performance characteristics of a monolithic crystal PET detector utilizing a sensor on the entrance surface (SES) design is reported. To facilitate this design, we propose to utilize a 2D silicon photomultiplier (SiPM) array device. Using a multi-step simulation process, we investigated the performance of a monolithic crystal PET detector with different data readout schemes and different SiPM parameters. The detector simulated was a 49.2mm by 49.2mm by 15mm LYSO crystal readout by a 12 by 12 array of 3.8mm by 3.8mm SiPM elements. A statistics based positioning (SBP) method was used for event positioning and depth of interaction (DOI) decoding. Although individual channel readout provided better spatial resolution, row-column summing is proposed to reduce the number of readout channels. The SiPM parameters investigated include photon detection efficiency (PDE) and gain variability between different channels; PDE and gain instability; and dark count noise. Of the variables investigated, the PDE shift of -3.2±0.7% and gain shift of -4±0.9% between detector testing and detector calibration had the most obvious impact on the detector performance, since it not only degraded the spatial resolution but also led to bias in positioning, especially at the edges of the crystal. The dark count noise also had an impact on the intrinsic spatial resolution. No data normalization is required for PDE variability of up to 12% FWHM and gain variability of up to 15% FWHM between SiPM channels. Based upon these results, a row-column summing readout scheme without data normalization will be used. Further, we plan to cool our detectors below room temperature to reduce dark count noise and to actively control the temperature of the SiPMs to reduce drifts in PDE and gain.

  17. A Combined [11C]diprenorphine PET Study and fMRI Study of Acupuncture Analgesia

    PubMed Central

    Dougherty, Darin D.; Kong, Jian; Webb, Megan; Bonab, Ali A.; Fischman, Alan J.; Gollub, Randy L.

    2008-01-01

    Functional neuroimaging studies suggest that a lateral network in the brain is associated with the sensory aspects of pain perception while a medial network is associated with affective aspects. The highest concentration of opioid receptors is in the medial network. There is significant evidence that endogenous opioids are central to the experience of pain and analgesia. We applied an integrative multimodal imaging approach during acupuncture. We found functional magnetic resonance imaging signal changes in the orbitofrontal cortex, insula, and pons and [11C]diprenorphine positron emission tomography signal changes in the orbitofrontal cortex, medial prefrontal cortex, insula, thalamus, and anterior cingulate cortex. These findings include brain regions within both the lateral and medial pain networks. PMID:18562019

  18. Possible role of an error detection mechanism in brain processing of deception: PET-fMRI study.

    PubMed

    Kireev, Maxim; Korotkov, Alexander; Medvedeva, Natalia; Medvedev, Svyatoslav

    2013-12-01

    To investigate brain maintenance of deliberate deception the positron emission tomography and the event related functional MRI studies were performed. We used an experimental paradigm that presupposed free choices between equally beneficial deceptive or honest actions. Experimental task simulated the "Cheat" card game which aims to defeat an opponent by sequential deceptive and honest claims. Results of both the PET and the fMRI studies revealed that execution of both deliberately deceptive and honest claims is associated with fronto-parietal brain network comprised of inferior and middle frontal gyri, precentral gyrus (BA 6), caudate nucleus, and inferior parietal lobule. Direct comparison between those claims, balanced in terms of decision making and action outcome (gain and losses), revealed activation of areas specifically associated with deception execution: precentral gyrus (BA 6), caudate nuclei, thalamus and inferior parietal lobule (BA 39/40). The obtained experimental data were discussed in relation to a possible role of an error detection system in processing deliberate deception.

  19. Investigation of time-of-flight benefits in an LYSO-based PET/CT scanner: A Monte Carlo study using GATE

    NASA Astrophysics Data System (ADS)

    Geramifar, P.; Ay, M. R.; Shamsaie Zafarghandi, M.; Sarkar, S.; Loudos, G.; Rahmim, A.

    2011-06-01

    The advent of fast scintillators yielding great light yield and/or stopping power, along with advances in photomultiplier tubes and electronics, have rekindled interest in time-of-flight (TOF) PET. Because the potential performance improvements offered by TOF PET are substantial, efforts to improve PET timing should prove very fruitful. In this study, we performed Monte Carlo simulations to explore what gains in PET performance could be achieved if the coincidence resolving time (CRT) in the LYSO-based PET component of Discovery RX PET/CT scanner were improved. For this purpose, the GATE Monte Carlo package was utilized, providing the ability to model and characterize various physical phenomena in PET imaging. For the present investigation, count rate performance and signal to noise ratio (SNR) values in different activity concentrations were simulated for different coincidence timing windows of 4, 5.85, 6, 6.5, 8, 10 and 12 ns and with different CRTs of 100-900 ps FWHM involving 50 ps FWHM increments using the NEMA scatter phantom. Strong evidence supporting robustness of the simulations was found as observed in the good agreement between measured and simulated data for the cases of estimating axial sensitivity, axial and transaxial detection position, gamma non-collinearity angle distribution and positron annihilation distance. In the non-TOF context, the results show that the random event rate can be reduced by using narrower coincidence timing window widths, demonstrating considerable enhancements in the peak noise equivalent count rate (NECR) performance. The peak NECR had increased by ˜50% when utilizing the coincidence window width of 4 ns. At the same time, utilization of TOF information resulted in improved NECR and SNR with the dramatic reduction of random coincidences as a function of CRT. For example, with CRT of 500 ps FWHM, a factor of 2.3 reduction in random rates, factor of 1.5 increase in NECR and factor of 2.1 improvement in SNR is achievable

  20. P-glycoprotein Function in the Rodent Brain Displays a Daily Rhythm, a Quantitative In Vivo PET Study.

    PubMed

    Savolainen, Heli; Meerlo, Peter; Elsinga, Philip H; Windhorst, Albert D; Dierckx, Rudi A J O; Colabufo, Nicola A; van Waarde, Aren; Luurtsema, Gert

    2016-11-01

    The blood-brain barrier (BBB) contributes to brain homeostasis by protecting the brain from harmful compounds. P-glycoprotein (P-gp) is one of the major efflux transporters at the BBB. In the present study, we assessed whether (1) P-gp function in the brain is constant or fluctuates across the day and (2) if it is affected by sleep deprivation. Four groups of rats were PET scanned with a radiolabeled P-gp substrate [(18)F]MC225, each at a different moment of the 12-h light-dark cycle to study diurnal variations: early sleep phase (ZT3), late sleep phase (ZT9), early active phase (ZT15), and late active phase (ZT21). In two additional groups, controls were allowed to sleep normally while experimental animals were sleep-deprived for 10 h in a slowly rotating drum during the sleep phase. Kinetic modeling with a one-tissue compartment model fit resulted for all brain regions in 1.2-1.8-fold higher distribution volumes (V T ) at ZT15 than at other time points. V T -values at ZT3, ZT9, and ZT21 were not significantly different from each other. Regional tracer distribution volumes in controls and sleep-deprived animals were also not significantly different. Our results indicate that P-gp function in rats displays a daily rhythm with reduced function at the beginning of the active phase. This rhythm is not dependent on sleep since acute sleep deprivation had no effect. Knowing the diurnal variation of P-gp function could be important for the design of PET studies and for choosing the correct administration time for P-gp-dependent drugs.

  1. Archaeometric study of ceramic figurines from the Maya settlement of La Blanca (Petén, Guatemala)

    NASA Astrophysics Data System (ADS)

    Horcajada, P.; Roldán, C.; Vidal, C.; Rodenas, I.; Carballo, J.; Murcia, S.; Juanes, D.

    2014-04-01

    In this article, analytical results will be presented and discussed regarding a selected set of figurines from the ancient Maya settlement of La Blanca in Petén, Guatemala. The objective is to characterize the ceramic material by two analytical complementary techniques: X-ray diffraction (XRD) and total reflection X-ray fluorescence (TXRF). The data obtained by means of both XRD and TXRF were compared and analyzed by multivariate statistical techniques in order to obtain sample groups according to their chemical composition. The results of this archaeometric study have been compared to those that have been obtained through macroscopic characterization by means of the traditional classification system know as Type-Variety. Discordances have been found between the clusters obtained by the Type-Variety classification system and the multivariate classification procedures performed on analytical data.

  2. SU-E-I-96: A Study About the Influence of ROI Variation On Tumor Segmentation in PET

    SciTech Connect

    Li, L; Tan, S; Lu, W; D'Souza, W

    2014-06-01

    Purpose: To study the influence of different regions of interest (ROI) on tumor segmentation in PET. Methods: The experiments were conducted on a cylindrical phantom. Six spheres with different volumes (0.5ml, 1ml, 6ml, 12ml, 16ml and 20 ml) were placed inside a cylindrical container to mimic tumors of different sizes. The spheres were filled with 11C solution as sources and the cylindrical container was filled with 18F-FDG solution as the background. The phantom was continuously scanned in a Biograph-40 True Point/True View PET/CT scanner, and 42 images were reconstructed with source-to-background ratio (SBR) ranging from 16:1 to 1.8:1. We took a large and a small ROI for each sphere, both of which contain the whole sphere and does not contain any other spheres. Six other ROIs of different sizes were then taken between the large and the small ROI. For each ROI, all images were segmented by eitht thresholding methods and eight advanced methods, respectively. The segmentation results were evaluated by dice similarity index (DSI), classification error (CE) and volume error (VE). The robustness of different methods to ROI variation was quantified using the interrun variation and a generalized Cohen's kappa. Results: With the change of ROI, the segmentation results of all tested methods changed more or less. Compared with all advanced methods, thresholding methods were less affected by the ROI change. In addition, most of the thresholding methods got more accurate segmentation results for all sphere sizes. Conclusion: The results showed that the segmentation performance of all tested methods was affected by the change of ROI. Thresholding methods were more robust to this change and they can segment the PET image more accurately. This work was supported in part by National Natural Science Foundation of China (NNSFC), under Grant Nos. 60971112 and 61375018, and Fundamental Research Funds for the Central Universities, under Grant No. 2012QN086. Wei Lu was supported in

  3. Design study of a high-resolution breast-dedicated PET system built from cadmium zinc telluride detectors

    PubMed Central

    Peng, Hao; Levin, Craig S

    2013-01-01

    We studied the performance of a dual-panel positron emission tomography (PET) camera dedicated to breast cancer imaging using Monte Carlo simulation. The proposed system consists of two 4 cm thick 12 × 15 cm2 area cadmium zinc telluride (CZT) panels with adjustable separation, which can be put in close proximity to the breast and/or axillary nodes. Unique characteristics distinguishing the proposed system from previous efforts in breast-dedicated PET instrumentation are the deployment of CZT detectors with superior spatial and energy resolution, using a cross-strip electrode readout scheme to enable 3D positioning of individual photon interaction coordinates in the CZT, which includes directly measured photon depth-of-interaction (DOI), and arranging the detector slabs edge-on with respect to incoming 511 keV photons for high photon sensitivity. The simulation results show that the proposed CZT dual-panel PET system is able to achieve superior performance in terms of photon sensitivity, noise equivalent count rate, spatial resolution and lesion visualization. The proposed system is expected to achieve ~32% photon sensitivity for a point source at the center and a 4 cm panel separation. For a simplified breast phantom adjacent to heart and torso compartments, the peak noise equivalent count (NEC) rate is predicted to be ~94.2 kcts s−1 (breast volume: 720 cm3 and activity concentration: 3.7 kBq cm−3) for a ~10% energy window around 511 keV and ~8 ns coincidence time window. The system achieves 1 mm intrinsic spatial resolution anywhere between the two panels with a 4 cm panel separation if the detectors have DOI resolution less than 2 mm. For a 3 mm DOI resolution, the system exhibits excellent sphere resolution uniformity (σrms/mean) ≤ 10%) across a 4 cm width FOV. Simulation results indicate that the system exhibits superior hot sphere visualization and is expected to visualize 2 mm diameter spheres with a 5:1 activity concentration ratio within roughly 7

  4. A PET study comparing receptor occupancy by five selective cannabinoid 1 receptor antagonists in non-human primates

    PubMed Central

    Hjorth, Stephan; Karlsson, Cecilia; Jucaite, Aurelija; Varnäs, Katarina; Hamrén, Ulrika Wählby; Johnström, Peter; Gulyás, Balázs; Donohue, Sean R; Pike, Victor W; Halldin, Christer; Farde, Lars

    2015-01-01

    There is a medical need for safe and efficacious anti-obesity drugs with acceptable side effect profiles. To mitigate the challenge posed by translating target interaction across species and balancing beneficial vs. adverse effects, a positron emission tomography (PET) approach could help guide clinical dose optimization. Thus, as part of a compound differentiation effort, three novel selective CB1 receptor (CB1R) antagonists, developed by AstraZeneca (AZ) for the treatment of obesity, were compared with two clinically tested reference compounds, rimonabant and taranabant, with regard to receptor occupancy relative to dose and exposure. A total of 42 PET measurements were performed in 6 non-human primates using the novel CB1R antagonist radioligand [11C]SD5024. The AZ CB1R antagonists bound in a saturable manner to brain CB1R with in vivo affinities similar to that of rimonabant and taranabant, compounds with proven weight loss efficacy in clinical trials. Interestingly, it was found that exposures corresponding to those needed for optimal clinical efficacy of rimonabant and taranabant resulted in a CB1R occupancy typically around ~20–30%, thus much lower than what would be expected for classical G-protein coupled receptor (GPCR) antagonists in other therapeutic contexts. These findings are also discussed in relation to emerging literature on the potential usefulness of ‘neutral’ vs. ‘classical’ CB1R (inverse agonist) antagonists. The study additionally highlighted the usefulness of the radioligand [11C]SD5024 as a specific tracer for CB1R in the primate brain, though an arterial input function would ideally be required in future studies to further assure accurate quantitative analysis of specific binding. PMID:25791528

  5. A PET study comparing receptor occupancy by five selective cannabinoid 1 receptor antagonists in non-human primates.

    PubMed

    Hjorth, Stephan; Karlsson, Cecilia; Jucaite, Aurelija; Varnäs, Katarina; Wählby Hamrén, Ulrika; Johnström, Peter; Gulyás, Balázs; Donohue, Sean R; Pike, Victor W; Halldin, Christer; Farde, Lars

    2016-02-01

    There is a medical need for safe and efficacious anti-obesity drugs with acceptable side effect profiles. To mitigate the challenge posed by translating target interaction across species and balancing beneficial vs. adverse effects, a positron emission tomography (PET) approach could help guide clinical dose optimization. Thus, as part of a compound differentiation effort, three novel selective CB1 receptor (CB1R) antagonists, developed by AstraZeneca (AZ) for the treatment of obesity, were compared with two clinically tested reference compounds, rimonabant and taranabant, with regard to receptor occupancy relative to dose and exposure. A total of 42 PET measurements were performed in 6 non-human primates using the novel CB1R antagonist radioligand [(11)C]SD5024. The AZ CB1R antagonists bound in a saturable manner to brain CB1R with in vivo affinities similar to that of rimonabant and taranabant, compounds with proven weight loss efficacy in clinical trials. Interestingly, it was found that exposures corresponding to those needed for optimal clinical efficacy of rimonabant and taranabant resulted in a CB1R occupancy typically around ∼20-30%, thus much lower than what would be expected for classical G-protein coupled receptor (GPCR) antagonists in other therapeutic contexts. These findings are also discussed in relation to emerging literature on the potential usefulness of 'neutral' vs. 'classical' CB1R (inverse agonist) antagonists. The study additionally highlighted the usefulness of the radioligand [(11)C]SD5024 as a specific tracer for CB1R in the primate brain, though an arterial input function would ideally be required in future studies to further assure accurate quantitative analysis of specific binding.

  6. Auditory adaptation to sound intensity in conscious rats: 2-[F-18]-fluoro-2-deoxy-D-glucose PET study.

    PubMed

    Jang, Dong Pyo; Lee, Kyoung Min; Lee, Sang-Yoon; Oh, Jin-Hwan; Park, Chan-Woong; Kim, In Young; Kim, Young-Bo; Cho, Zang-Hee

    2012-03-07

    Despite the importance of the adaptive process for discriminating the broad range of sound intensity, there have been few systemic investigations targeting the auditory mechanisms. In this study, the adaptation effect of sound intensity on the change in glucose metabolism in rat brains was examined using a PET technique. In the first experiment, broadband white noise sound (40, 60, 80, or 100 dB sound pressure level) was given for 30 min after an 2-[F-18]-fluoro-2-deoxy-D-glucose injection in an awake condition. In the second experiment, sound stimuli with an intensity modulation of 0, 0.5, and 5.0 Hz in frequency and at three intensity levels were used for examining the metabolism change according to the short time scale variation of the sound intensity. As a result, the metabolic activities in the bilateral cochlear nucleus, superior olivary complexes, and inferior colliculus were proportional to the sound intensity level, whereas the bilateral auditory cortical areas unexpectedly decreased as the sound intensity level increased in the first experiment. In the second experiment, the glucose metabolism in the auditory cortex was higher at 0.5 and 5.0 Hz modulation frequency than the 0.0 Hz modulation frequency, while retaining an inverse relationship with the sound intensity. The metabolism in inferior colliculus was higher at 5.0 Hz modulation frequency than 0.0 and 0.5 Hz modulation frequencies. Taken together, the auditory cortex metabolism seemed to be actively adapted to the average sound intensity, which indicates that it plays an important role in processing the broad range to sound intensity more than the other nucleus of the auditory pathway. Especially, this study demonstrated that the sound intensity-dependent glucose metabolism can be seen in a small rodent's brain stem level using 2-[F-18]-fluoro-2-deoxy-D-glucose PET functional neuroimaging.

  7. Is perivetricular hyperintensity region caused by decreased cerebral blood flow?; assessment by {sup 15}O-PET study

    SciTech Connect

    Kaminaga, T.; Hayashida, K.; Ishida, Y.

    1994-05-01

    The clinical significance of the regional cerebral blood flow (rCBF) and oxygen metabolism has not been established in patients who had periventricular hyperintensity (PVH) by magnetic resonance imaging (MRI). The aim of this study is to correlate the results of rCBF and oxygen metabolism by positron emission tomography (PET) with PVH by MRI. The subjects were 27 patients; 16 patient (group I) (male; 7, female; 9, age; 56.8{plus_minus}18.6) with PVH and age matched 11 patients (group II) (male; 6, female; 5, age; 55.3{plus_minus}13.6) without PVH. {sup 15}O-PET study was carried out by Headtome IV and rCBF, cerebral metabolic rate of oxygen (CMRO{sub 2}), oxygen extraction fraction (OEF) of PVH and cerebellum was calculated. T1- and T2-weighted images were obtained in all patients. Angiography was performed over 11 patients. The mean rCBF of group I in PVH (28.5{plus_minus}7.5 ml/100g/min) was significantly (p<0.01) lower than that of group II (38.6{plus_minus}5.7). The mean rCBF of group I and group II in cerebellum were 49.5{plus_minus}9.9 ml/100g/min and 50.2{plus_minus}8.9 respectively. There was no significant difference on CMRO{sub 2} and OEF between group I and group II. In MRI examination, PVH was detected in all group I patients and multiple high intensities were also detected in 7 patients of group I and 4 patients of group II on T2-weighted images. No significant stenosis (more than 75%) was detected in 11 patients by angiography. These data strongly indicate that PVH might be caused by decreased cerebral blood flow.

  8. Elevated Dopamine D2/3 Receptor Availability in Obese Individuals: A PET Imaging Study with [(11)C](+)PHNO.

    PubMed

    Gaiser, Edward C; Gallezot, Jean-Dominique; Worhunsky, Patrick D; Jastreboff, Ania M; Pittman, Brian; Kantrovitz, Lauren; Angarita, Gustavo A; Cosgrove, Kelly P; Potenza, Marc N; Malison, Robert T; Carson, Richard E; Matuskey, David

    2016-12-01

    Most prior work with positron emission tomography (PET) dopamine subtype 2/3 receptor (D2/3R) non-selective antagonist tracers suggests that obese (OB) individuals exhibit lower D2/3Rs when compared with normal weight (NW) individuals. A D3-preferring D2/3R agonist tracer, [(11)C](+)PHNO, has demonstrated that body mass index (BMI) was positively associated with D2/3R availability within striatal reward regions. To date, OB individuals have not been studied with [(11)C](+)PHNO. We assessed D2/3R availability in striatal and extrastriatal reward regions in 14 OB and 14 age- and gender-matched NW individuals with [(11)C](+)PHNO PET utilizing a high-resolution research tomograph. Additionally, in regions where group D2/3R differences were observed, secondary analyses of 42 individuals that constituted an overweight cohort was done to study the linear association between BMI and D2/3R availability in those respective regions. A group-by-brain region interaction effect (F7, 182=2.08, p=0.047) was observed. Post hoc analyses revealed that OB individuals exhibited higher tracer binding in D3-rich regions: the substantia nigra/ventral tegmental area (SN/VTA) (+20%; p=0.02), ventral striatum (VST) (+14%; p<0.01), and pallidum (+11%; p=0.02). BMI was also positively associated with D2/3R availability in the SN/VTA (r=0.34, p=0.03), VST (r=0.36, p=0.02), and pallidum (r=0.30, p=0.05) across all subjects. These data suggest that individuals who are obese have higher D2/3R availability in brain reward regions densely populated with D3Rs, potentially identifying a novel pharmacologic target for the treatment of obesity.

  9. Associations between Tumor Vascularity, Vascular Endothelial Growth Factor Expression and PET/MRI Radiomic Signatures in Primary Clear-Cell-Renal-Cell-Carcinoma: Proof-of-Concept Study.

    PubMed

    Yin, Qingbo; Hung, Sheng-Che; Wang, Li; Lin, Weili; Fielding, Julia R; Rathmell, W Kimryn; Khandani, Amir H; Woods, Michael E; Milowsky, Matthew I; Brooks, Samira A; Wallen, Eric M; Shen, Dinggang

    2017-03-03

    Studies have shown that tumor angiogenesis is an essential process for tumor growth, proliferation and metastasis. Also, tumor angiogenesis is an important prognostic factor of clear cell renal cell carcinoma (ccRCC), as well as a factor in guiding treatment with antiangiogenic agents. Here, we attempted to find the associations between tumor angiogenesis and radiomic imaging features from PET/MRI. Specifically, sparse canonical correlation analysis was conducted on 3 feature datasets (i.e., radiomic imaging features, tumor microvascular density (MVD), and vascular endothelial growth factor (VEGF) expression) from 9 patients with primary ccRCC. In order to overcome the potential bias of intratumoral heterogeneity of angiogenesis, this study investigated the relationship between regional expressions of angiogenesis and VEGF, and localized radiomic features from different parts within the tumors. Our study highlighted the significant strong correlations between radiomic features and MVD, and also demonstrated that the spatiotemporal features extracted from DCE-MRI provided stronger radiomic correlation to MVD than the textural features extracted from Dixon sequences and FDG PET. Furthermore, PET/MRI, which takes advantage of the combined functional and structural information, had higher radiomics correlation to MVD than solely utilizing PET or MRI alone.

  10. Associations between Tumor Vascularity, Vascular Endothelial Growth Factor Expression and PET/MRI Radiomic Signatures in Primary Clear-Cell–Renal-Cell-Carcinoma: Proof-of-Concept Study

    PubMed Central

    Yin, Qingbo; Hung, Sheng-Che; Wang, Li; Lin, Weili; Fielding, Julia R.; Rathmell, W. Kimryn; Khandani, Amir H.; Woods, Michael E.; Milowsky, Matthew I.; Brooks, Samira A.; Wallen, Eric. M.; Shen, Dinggang

    2017-01-01

    Studies have shown that tumor angiogenesis is an essential process for tumor growth, proliferation and metastasis. Also, tumor angiogenesis is an important prognostic factor of clear cell renal cell carcinoma (ccRCC), as well as a factor in guiding treatment with antiangiogenic agents. Here, we attempted to find the associations between tumor angiogenesis and radiomic imaging features from PET/MRI. Specifically, sparse canonical correlation analysis was conducted on 3 feature datasets (i.e., radiomic imaging features, tumor microvascular density (MVD), and vascular endothelial growth factor (VEGF) expression) from 9 patients with primary ccRCC. In order to overcome the potential bias of intratumoral heterogeneity of angiogenesis, this study investigated the relationship between regional expressions of angiogenesis and VEGF, and localized radiomic features from different parts within the tumors. Our study highlighted the significant strong correlations between radiomic features and MVD, and also demonstrated that the spatiotemporal features extracted from DCE-MRI provided stronger radiomic correlation to MVD than the textural features extracted from Dixon sequences and FDG PET. Furthermore, PET/MRI, which takes advantage of the combined functional and structural information, had higher radiomics correlation to MVD than solely utilizing PET or MRI alone. PMID:28256615

  11. Evaluation of 18-F-fluoro-2-deoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) as a staging and monitoring tool for dogs with stage-2 splenic hemangiosarcoma – A pilot study

    PubMed Central

    Winter, Amber L.; Stuebner, Kathleen; Scott, Ruth; Ober, Christopher P.; Anderson, Kari L.; Feeney, Daniel A.; Vallera, Daniel A.; Koopmeiners, Joseph S.; Modiano, Jaime F.; Froelich, Jerry

    2017-01-01

    Positron Emission Tomography-Computed Tomography (PET-CT) is routinely used for staging and monitoring of human cancer patients and is becoming increasingly available in veterinary medicine. In this study, 18-fluorodeoxyglucose (18FDG)-PET-CT was used in dogs with naturally occurring splenic hemangiosarcoma (HSA) to assess its utility as a staging and monitoring modality as compared to standard radiography and ultrasonography. Nine dogs with stage-2 HSA underwent 18FDG-PET-CT following splenectomy and prior to commencement of chemotherapy. Routine staging (thoracic radiography and abdominal ultrasonography) was performed prior to 18FDG-PET-CT in all dogs. When abnormalities not identified on routine tests were noted on 18FDG-PET-CT, owners were given the option to repeat a PET-CT following treatment with eBAT. A PET-CT scan was repeated on Day 21 in three dogs. Abnormalities not observed on conventional staging tools, and most consistent with malignant disease based on location, appearance, and outcome, were detected in two dogs and included a right atrial mass and a hepatic nodule, respectively. These lesions were larger and had higher metabolic activity on the second scans. 18FDG-PET-CT has potential to provide important prognostic information and influence treatment recommendations for dogs with stage-2 HSA. Additional studies will be needed to precisely define the value of this imaging tool for staging and therapy monitoring in dogs with this and other cancers. PMID:28222142

  12. An Analysis of Whole Body Tracer Kinetics in Dynamic PET Studies With Application to Image-Based Blood Input Function Extraction

    PubMed Central

    Huang, Jian; O’Sullivan, Finbarr

    2014-01-01

    In a positron emission tomography (PET) study, the local uptake of the tracer is dependent on vascular delivery and retention. For dynamic studies the measured uptake time-course information can be best interpreted when knowledge of the time-course of tracer in the blood is available. This is certainly true for the most established tracers such as 18F-Fluorodeoxyglucose (FDG) and 15O-Water (H2O). Since direct sampling of blood as part of PET studies is increasingly impractical, there is ongoing interest in image-extraction of blood time-course information. But analysis of PET-measured blood pool signals is complicated because they will typically involve a combination of arterial, venous and tissue information. Thus, a careful appreciation of these components is needed to interpret the available data. To facilitate this process, we propose a novel Markov chain model for representation of the circulation of a tracer atom in the body. The model represents both arterial and venous time-course patterns. Under reasonable conditions equilibration of tracer activity in arterial and venous blood is achieved by the end of the PET study—consistent with empirical measurement. Statistical inference for Markov model parameters is a challenge. A penalized nonlinear least squares process, incorporating a generalized cross-validation score, is proposed. Random effects analysis is used to adaptively specify the structure of the penalty function based on historical samples of directly measured blood data. A collection of arterially sampled data from PET studies with FDG and H2O is used to illustrate the methodology. These data analyses are highly supportive of the overall modeling approach. An adaptation of the model to the problem of extraction of arterial blood signals from imaging data is also developed and promising preliminary results for cerebral and thoracic imaging studies with FDG and H2O are obtained. PMID:24770914

  13. Elevation of Dopamine Induced by Cigarette Smoking: Novel Insights from a [11C]-(+)-PHNO PET Study in Humans

    PubMed Central

    Le Foll, Bernard; Guranda, Mihail; Wilson, Alan A; Houle, Sylvain; Rusjan, Pablo M; Wing, Victoria C; Zawertailo, Laurie; Busto, Usoa; Selby, Peter; Brody, Arthur L; George, Tony P; Boileau, Isabelle

    2014-01-01

    Positron emission tomography (PET) has convincingly provided in vivo evidence that psychoactive drugs increase dopamine (DA) levels in human brain, a feature thought critical to their reinforcing properties. Some controversy still exists concerning the role of DA in reinforcing smoking behavior and no study has explored whether smoking increases DA concentrations at the D3 receptor, speculated to have a role in nicotine's addictive potential. Here, we used PET and [11C]-(+)-PHNO ([11C]-(+)-4-propyl-3,4,4a,5,6,10b-hexahydro-2H-naphtho[1,2-b][1,4]oxazin-9-ol) to test the hypothesis that smoking increases DA release (decreases [11C]-(+)-PHNO binding) in D2-rich striatum and D3-rich extra-striatal regions and is related to craving, withdrawal and smoking behavior. Ten participants underwent [11C]-(+)-PHNO scans after overnight abstinence and after smoking a cigarette. Motivation to smoke (smoking topography), mood, and craving were recorded. Smoking significantly decreased self-reported craving, withdrawal, and [11C]-(+)-PHNO binding in D2 and D3-rich areas (−12.0 and −15.3%, respectively). We found that motivation to smoke (puff rate) predicted magnitude of DA release in limbic striatum, and the latter was correlated with decreased craving and withdrawal symptoms. This is the first report suggesting that, in humans, DA release is increased in D3-rich areas in response to smoking. Results also support the preferential involvement of the limbic striatum in motivation to smoke, anticipation of pleasure from cigarettes and relief of withdrawal symptoms. We propose that due to the robust effect of smoking on [11C]-(+)-PHNO binding, this radiotracer represents an ideal translational tool to investigate novel therapeutic strategies targeting DA transmission. PMID:23954846

  14. Striatal phosphodiesterase 10A and medial prefrontal cortical thickness in patients with schizophrenia: a PET and MRI study.

    PubMed

    Bodén, R; Persson, J; Wall, A; Lubberink, M; Ekselius, L; Larsson, E-M; Antoni, G

    2017-03-07

    The enzyme phosphodiesterase 10A (PDE10A) is abundant in striatal medium spiny neurons and has been implicated in the pathophysiology of schizophrenia in animal models and is investigated as a possible new pharmacological treatment target. A reduction of prefrontal cortical thickness is common in schizophrenia, but how this relates to PDE10A expression is unknown. Our study aim was to compare, we believe for the first time, the striatal non-displaceable binding potential (BPND) of the new validated PDE10A ligand [(11)C]Lu AE92686 between patients with schizophrenia and healthy controls. Furthermore, we aimed to assess the correlation of PDE10A BPND to cortical thickness. Sixteen healthy male controls and 10 male patients with schizophrenia treated with clozapine, olanzapine or quetiapine were investigated with positron emission tomography (PET) and magnetic resonance imaging (MRI). Striatal binding potential (BPND) of [(11)C]Lu AE92686 was acquired through dynamic PET scans and cortical thickness by structural MRI. Clinical assessments of symptoms and cognitive function were performed and the antipsychotic dosage was recorded. Patients with schizophrenia had a significantly lower BPND of [(11)C]Lu AE92686 in striatum (P=0.003) than healthy controls. The striatal BPND significantly correlated to cortical thickness in the medial prefrontal cortex and superior frontal gyrus across patients with schizophrenia and healthy controls. No significant correlation was observed between the BPND for [(11)C]Lu AE92686 in striatum and age, schizophrenia symptoms, antipsychotic dosage, coffee consumption, smoking, duration of illness or cognitive function in the patients. In conclusion, PDE10A may be important for functioning in the striato-cortical interaction and in the pathophysiology of schizophrenia.

  15. Increased activation of the human cerebellum during pitch discrimination: a positron emission tomography (PET) study.

    PubMed

    Petacchi, Augusto; Kaernbach, Christian; Ratnam, Rama; Bower, James M

    2011-12-01

    Recent years have seen a growing debate concerning the function of the cerebellum. Here we used a pitch discrimination task and PET to test for cerebellar involvement in the active control of sensory data acquisition. Specifically, we predicted greater cerebellar activity during active pitch discrimination compared to passive listening, with the greatest activity when pitch discrimination was most difficult. Ten healthy subjects were trained to discriminate deviant tones presented with a slightly higher pitch than a standard tone, using a Go/No Go paradigm. To ensure that discrimination performance was matched across subjects, individual psychometric curves were assessed beforehand using a two-step psychoacoustic procedure. Subjects were scanned while resting in the absence of any sounds, while passively listening to standard tones, and while detecting deviant tones slightly higher in pitch among these standard tones at four different performance levels. Consistent with our predictions, 1) passive listening alone elicited cerebellar activity (lobule IX), 2) cerebellar activity increased during pitch discrimination as compared to passive listening (crus I and II, lobules VI, VIIB, and VIIIB), and 3) this increase was correlated with the difficulty of the discrimination task (lobules V, VI, and IX). These results complement recent findings showing pitch discrimination deficits in cerebellar patients (Parsons et al., 2009) and further support a role for the cerebellum in sensory data acquisition. The data are discussed in the light of anatomical and physiological evidence functionally connecting auditory system and cerebellum.

  16. Improved attenuation correction for freely moving animal brain PET studies using a virtual scanner geometry

    NASA Astrophysics Data System (ADS)

    Angelis, Georgios I.; Ryder, William J.; Kyme, Andre Z.; Fulton, Roger R.; Meikle, Steven R.

    2014-03-01

    Attenuation correction in positron emission tomography brain imaging of freely moving animals can be very challenging since the body of the animal is often within the field of view and introduces a non negligible atten- uating factor that can degrade the quantitative accuracy of the reconstructed images. An attractive approach that avoids the need for a transmission scan involves the generation of the convex hull of the animal's head based on the reconstructed emission images. However, this approach ignores the potential attenuation introduced by the animal's body. In this work, we propose a virtual scanner geometry, which moves in synchrony with the animal's head and discriminates between those events that traverse only the animal's head (and therefore can be accurately compensated for attenuation) and those that might have also traversed the animal's body. For each pose a new virtual scanner geometry was defined and therefore a new system matrix was calculated leading to a time-varying system matrix. This new approach was evaluated on phantom data acquired on the microPET Focus 220 scanner using a custom-made rat phantom. Results showed that when the animal's body is within the FOV and not accounted for during attenuation correction it can lead to bias of up to 10%. On the contrary, at- tenuation correction was more accurate when the virtual scanner was employed leading to improved quantitative estimates (bias <2%), without the need to account for the animal's body.

  17. Weight gain following subthalamic nucleus deep brain stimulation: a PET study.

    PubMed

    Sauleau, Paul; Le Jeune, Florence; Drapier, Sophie; Houvenaghel, Jean-François; Dondaine, Thibaut; Haegelen, Claire; Lalys, Florent; Robert, Gabriel; Drapier, Dominique; Vérin, Marc

    2014-12-01

    Several hypotheses have been put forward to explain weight gain after deep brain stimulation (DBS), but none provides a fully satisfactory account of this adverse effect. We analyzed the correlation between changes in brain metabolism (using positron emission tomography [PET] imaging) and weight gain after bilateral subthalamic nucleus DBS in patients with Parkinson's disease. Body mass index was calculated and brain activity prospectively measured using 2-deoxy-2[18F]fluoro-D-glucose 3 months before and 4 months after the start of subthalamic nucleus deep brain stimulation in 23 patients with Parkinson's disease. Motor complications (United Parkinson's Disease Rating Scale [UPDRS]-IV scores) and dopaminergic medication were included in the analysis to control for their possible influence on brain metabolism. Mean ± standard deviation (SD) body mass index increased significantly by 0.8 ± 1.5 kg/m(2) (P = 0.03). Correlations were found between weight gain and changes in brain metabolism in limbic and associative areas, including the orbitofrontal cortex (Brodmann areas [BAs] 10 and 11), lateral and medial parts of the temporal lobe (BAs 20, 21, 22,39 and 42), anterior cingulate cortex (BA 32), and retrosplenial cortex (BA 30). However, we found no correlation between weight gain and metabolic changes in sensorimotor areas. These findings suggest that changes in associative and limbic processes contribute to weight gain after subthalamic nucleus DBS in Parkinson's disease.

  18. Rapid production of positron emitting labeled compounds for use in cardiology PET studies

    NASA Astrophysics Data System (ADS)

    Bolomey, Leonard

    1985-05-01

    Large scale clinical application of positron emission tomography requires a variety of short-lived positron emitting radionuclides to be produced in Curie quantities up to 20 times per day. Rapid routine production of these radiopharmaceuticals requires the collaboration of engineers and chemists to achieve production targetry compatible with high beam current (up to 100 μA) and radionuclide production in a chemical form compatible with the rapid radiochemical synthesis. Chemical processing is further complicated by the need to repeat the procedures several times per day and maintain sterility within the shielded area. At our cyclotron facility primary production targets for 11C, 13N, 15O, and 18F (half lives from 2 min to 2 h) are mounted on a vertical gantr that indexes to position the required target on the beam line. Target changes are handled under microprocessor control remotely from the control room such that all valves, cooling, evacuation of target manifold, and testing of interlocks are handled automatically. This system enables us to change targets, energy and particles in less than five minutes. Since the installation of the cyclotron up to fifteen batches of routine radiopharmaceuticals have been produced per day with very low radiation doses to all personnel involved. These radiopharmaceuticals will be used to measure perfusion, metabolism and other biochemical functions in man non invasively with PET.

  19. The distribution of ventilation during bronchoconstriction is patchy and bimodal: a PET imaging study.

    PubMed

    Venegas, Jose G; Schroeder, Tobias; Harris, Scott; Winkler, R Tilo; Melo, Marcos F Vidal

    2005-08-25

    Recent PET imaging data from bronchoconstricted sheep (Vidal Melo et al., 2005) showed that V /Q distributions were bimodal and topographically patchy, but including a substantial heterogeneity at scales <2.2 ml. In this paper, we reanalyze the experimental data to establish the contribution of ventilation (V (r)) heterogeneity to the bimodality in V /Q . This analysis demonstrates that the distribution of V (r) during bronchoconstriction was bimodal with large patches of severe hypoventilation occupying an average of 41% of the imaged lung. The degree of hypoventilation to these regions was highly correlated with the degree of oxygenation impairment, but was quite variable amongst animals in spite of consistent degrees of mechanical obstruction. Remarkably, those regions were found to be hyperventilated before methacholine and their degree of hyperventilation was correlated with their degree of hypoventilation during bronchoconstriction. These data suggest that improving the uniformity of ventilation at baseline may be a desirable therapeutic target if the risk of severe hypoxemia during asthma attacks is to be minimized and/or the distribution of inhaled pharmaceuticals is to be optimized.

  20. Viewing another person's body as a target object: a behavioural and PET study of pointing.

    PubMed

    Cleret de Langavant, Laurent; Trinkler, Iris; Remy, Philippe; Thirioux, Bérangère; McIntyre, Joseph; Berthoz, Alain; Dupoux, Emmanuel; Bachoud-Lévi, Anne-Catherine

    2012-07-01

    Humans usually point at objects to communicate with other persons, although they generally avoid pointing at the other's body. Moreover, patients with heterotopagnosia after left parietal damage cannot point at another person's body parts, although they can point at objects and at their own body parts and although they can grasp the others' body parts. Strikingly, their performance gradually improves for figurative human body targets. Altogether, this suggests that the body of another real person holds a specific status in communicative pointing. Here, we test in healthy individuals whether performance for communicative pointing is influenced by the communicative capacity of the target. In Experiment 1, pointing at another real person's body parts was compared to pointing at objects, and in Experiment 2, the person was replaced by a manikin. While reaction times for pointing at objects were shorter compared to pointing at other person's body parts, they were similar for objects and manikin body parts. By adapting Experiment 1 to PET-scan imaging (Experiment 3), we showed that, compared to pointing at objects, the brain network for pointing at other person's body parts involves the left posterior intraparietal sulcus, lesion of which could cause heterotopagnosia. Taken together, our results indicate that the specificity of pointing at another person's body goes beyond the visuo-spatial features of the human body and might rather rely on its communicative capacity.

  1. Activation of a residual cortical network during painful stimulation in long-term postanoxic vegetative state: a 15O-H2O PET study.

    PubMed

    Kassubek, Jan; Juengling, Freimut D; Els, Thomas; Spreer, Joachim; Herpers, Martin; Krause, Thomas; Moser, Ernst; Lücking, Carl H

    2003-08-15

    Survivors of prolonged cerebral anoxia often remain in the persistent vegetative state (PVS). In this study, long-term PVS patients were investigated by 15O-H(2)O PET to analyze their central processing of pain. The study was approved by the local Ethics Committee, the experiments were performed in accordance with the Helsinki Declaration of 2000. Seven patients remaining in PVS of anoxic origin for a mean of 1.6 years (range 0.25-4 years) were investigated. We performed functional PET of the brain using 15O-labelled water during electrical nociceptive stimulation. Additionally, a brain metabolism study using 18F-fluorodeoxyglucose (FDG) PET and multi-sequence MRI (including a 3-D data set) were acquired in all patients. PET data were analyzed by means of Statistical Parametric Mapping (SPM99) and coregistered to a study-specific brain template. MRI and FDG PET showed severe cortical impairment at the structural and the functional level, that is, general atrophy of various degrees and a widespread significant hypometabolism, respectively. Pain-induced activation (hyperperfusion) was found in the posterior insula/secondary somatosensory cortex (SII), postcentral gyrus/primary somatosensory cortex (SI), and the cingulate cortex contralateral to the stimulus and in the posterior insula ipsilateral to the stimulus (P<0.05, small-volume-corrected). No additional areas of the complex pain-processing matrix were significantly activated. In conclusion, the regional activity found at the cortical level indicates that a residual pain-related cerebral network remains active in long-term PVS patients.

  2. Reproducibility of quantitative measures of binding potential in rat striatum: A test re-test study using DTBZ dynamic PET studies

    SciTech Connect

    Avendaño-Estrada, A. Lara-Camacho, V. M. Ávila-García, M. C. Ávila- Rodríguez, M. A.

    2014-11-07

    There is great interest in the study of dopamine (DA) pathways due to the increasing number of patients with illnesses related to the dopaminergic system and molecular imaging based in Positron Emission Tomography (PET) has been proven helpful for this task. Among the different radiopharmaceuticals available to study DA interaction, [{sup 11}C]Dihydrotetrabenazine (DTBZ) has a high affinity for the vesicular monoamine transporter type 2 (VMAT2) and its binding potential (BP) is a marker of DA terminal integrity. This paper reports on the intersubject reproducibility of BP measurements in rat striatum with [11C]DTBZ using the Logańs method.

  3. WE-EF-303-06: Feasibility of PET Image-Based On-Line Proton Beam-Range Verification with Simulated Uniform Phantom and Human Brain Studies

    SciTech Connect

    Lou, K; Sun, X; Zhu, X; Grosshans, D; Clark, J; Shao, Y

    2015-06-15

    Purpose: To study the feasibility of clinical on-line proton beam range verification with PET imaging Methods: We simulated a 179.2-MeV proton beam with 5-mm diameter irradiating a PMMA phantom of human brain size, which was then imaged by a brain PET with 300*300*100-mm{sup 3} FOV and different system sensitivities and spatial resolutions. We calculated the mean and standard deviation of positron activity range (AR) from reconstructed PET images, with respect to different data acquisition times (from 5 sec to 300 sec with 5-sec step). We also developed a technique, “Smoothed Maximum Value (SMV)”, to improve AR measurement under a given dose. Furthermore, we simulated a human brain irradiated by a 110-MeV proton beam of 50-mm diameter with 0.3-Gy dose at Bragg peak and imaged by the above PET system with 40% system sensitivity at the center of FOV and 1.7-mm spatial resolution. Results: MC Simulations on the PMMA phantom showed that, regardless of PET system sensitivities and spatial resolutions, the accuracy and precision of AR were proportional to the reciprocal of the square root of image count if image smoothing was not applied. With image smoothing or SMV method, the accuracy and precision could be substantially improved. For a cylindrical PMMA phantom (200 mm diameter and 290 mm long), the accuracy and precision of AR measurement could reach 1.0 and 1.7 mm, with 100-sec data acquired by the brain PET. The study with a human brain showed it was feasible to achieve sub-millimeter accuracy and precision of AR measurement with acquisition time within 60 sec. Conclusion: This study established the relationship between count statistics and the accuracy and precision of activity-range verification. It showed the feasibility of clinical on-line BR verification with high-performance PET systems and improved AR measurement techniques. Cancer Prevention and Research Institute of Texas grant RP120326, NIH grant R21CA187717, The Cancer Center Support (Core) Grant CA

  4. SU-E-J-82: Intra-Fraction Proton Beam-Range Verification with PET Imaging: Feasibility Studies with Monte Carlo Simulations and Statistical Modeling

    SciTech Connect

    Lou, K; Mirkovic, D; Sun, X; Zhu, X; Poenisch, F; Grosshans, D; Shao, Y; Clark, J

    2014-06-01

    Purpose: To study the feasibility of intra-fraction proton beam-range verification with PET imaging. Methods: Two phantoms homogeneous cylindrical PMMA phantoms (290 mm axial length, 38 mm and 200 mm diameter respectively) were studied using PET imaging: a small phantom using a mouse-sized PET (61 mm diameter field of view (FOV)) and a larger phantom using a human brain-sized PET (300 mm FOV). Monte Carlo (MC) simulations (MCNPX and GATE) were used to simulate 179.2 MeV proton pencil beams irradiating the two phantoms and be imaged by the two PET systems. A total of 50 simulations were conducted to generate 50 positron activity distributions and correspondingly 50 measured activity-ranges. The accuracy and precision of these activity-ranges were calculated under different conditions (including count statistics and other factors, such as crystal cross-section). Separate from the MC simulations, an activity distribution measured from a simulated PET image was modeled as a noiseless positron activity distribution corrupted by Poisson counting noise. The results from these two approaches were compared to assess the impact of count statistics on the accuracy and precision of activity-range calculations. Results: MC Simulations show that the accuracy and precision of an activity-range are dominated by the number (N) of coincidence events of the reconstructed image. They are improved in a manner that is inversely proportional to 1/sqrt(N), which can be understood from the statistical modeling. MC simulations also indicate that the coincidence events acquired within the first 60 seconds with 10{sup 9} protons (small phantom) and 10{sup 10} protons (large phantom) are sufficient to achieve both sub-millimeter accuracy and precision. Conclusion: Under the current MC simulation conditions, the initial study indicates that the accuracy and precision of beam-range verification are dominated by count statistics, and intra-fraction PET image-based beam-range verification is

  5. PET with Rural-Suburban Population.

    ERIC Educational Resources Information Center

    Theimer, William C., Jr.; Gates-Lewis, Alice

    This study investigates Parent Effectiveness Training (PET) program effects on 60 single or married parents in a rural/suburban school district. The sample was randomly divided into three groups of 10 single parents and five couples each. One of the groups functioned as a control and received PET after the study was completed. Before and after…

  6. Coercive control and abused women's decisions about their pets when seeking shelter.

    PubMed

    Hardesty, Jennifer L; Khaw, Lyndal; Ridgway, Marcella D; Weber, Cheryl; Miles, Teresa

    2013-09-01

    The importance of pets in families, especially during major life stressors, is well documented. Research suggests links between pet ownership and intimate partner violence (IPV). This study explored abused women's decisions about pets when seeking help from a shelter. Interviews were conducted with 19 women who were pet owners. Using grounded theory methods, two patterns emerged surrounding abusers' treatment of pets, bonds to pets, women's decisions about pets upon seeking shelter, and future plans for pets. The presence of coercive control was central to these patterns. Women also discussed their experiences with and needs from shelter professionals and veterinarians with implications for practice.

  7. Stereotactic Comparison Study of 18F-Alfatide and 18F-FDG PET Imaging in an LLC Tumor-Bearing C57BL/6 Mouse Model

    PubMed Central

    Wei, Yu-Chun; Gao, Yongsheng; Zhang, Jianbo; Fu, Zheng; Zheng, Jinsong; Liu, Ning; Hu, Xudong; Hou, Wenhong; Yu, Jinming; Yuan, Shuanghu

    2016-01-01

    This study aimed to stereotactically compare the PET imaging performance of 18F-Alfatide (18F-ALF-NOTA-PRGD2, denoted as 18F-Alfatide) and 18F-fluorodeoxyglucose (FDG) and immunohistochemistry (IHC) staining in Lewis lung carcinoma (LLC) tumor-bearing C57BL/6 mouse model. 18F-FDG standard uptake values (SUVs) were higher than 18F-Alfatide SUVs in tumors, most of the normal tissues and organs except for the bladder. Tumor-to-brain, tumor-to-lung, and tumor-to-heart ratios of 18F-Alfatide PET were significantly higher than those of 18F-FDG PET (P < 0.001). The spatial heterogeneity of the tumors was detected, and the tracer accumulation enhanced from the outer layer to the inner layer consistently using the two tracers. The parameters of the tumors were significantly correlated with each other between 18F-FDG SUV and GLUT-1 (R = 0.895, P < 0.001), 18F-Alfatide SUV and αvβ3 (R = 0.595, P = 0.019), 18F-FDG SUV and 18F-Alfatide SUV (R = 0.917, P < 0.001), and GLUT-1 and αvβ3 (R = 0.637, P = 0.011). Therefore, 18F-Alfatide PET may be an effective tracer for tumor detection, spatial heterogeneity imaging and an alternative supplement to 18F-FDG PET, particularly for patients with enhanced characteristics in the brain, chest tumors or diabetes, meriting further study. PMID:27350554

  8. Glucagon-Like Peptide-1 Receptor PET/CT with 68Ga-NOTA-Exendin-4 for Detecting Localized Insulinoma: A Prospective Cohort Study

    PubMed Central

    Luo, Yaping; Pan, Qingqing; Yao, Shaobo; Yu, Miao; Wu, Wenming; Xue, Huadan; Kiesewetter, Dale O.; Zhu, Zhaohui; Li, Fang; Zhao, Yupei; Chen, Xiaoyuan

    2017-01-01

    Preoperative localization of insulinoma is a clinical dilemma. We aimed to investigate whether glucagon-like peptide-1 receptor (GLP-1R) PET/CT with 68Ga-NOTA-MAL-cys40-exendin-4 (68Ga-NOTA-exendin-4) is efficient in detecting insulinoma. Methods In our prospective cohort study, patients with endogenous hyperinsulinemic hypoglycemia were enrolled. CT, MRI, endoscopic ultrasound, and 99mTc-hydrazinonicotinamide-TOC SPECT/CT were done according to standard protocols. GLP-1R PET/CT was performed 30–60 min after the injection of 68Ga-NOTA-exendin-4. The gold standard for diagnosis was the histopathologic results after surgery. Results Of 52 recruited patients, 43 patients with histopathologically proven insulinomas were included for the imaging studies. Nine patients did not undergo surgical intervention. 68Ga-NOTA-exendin-4 PET/CT correctly detected insulinomas in 42 of 43 patients with high tumor uptake (mean SUVavg ± SD, 10.2 ± 4.9; mean SUVmax ± SD, 23.6 ± 11.7), resulting in sensitivity of 97.7%. In contrast, 99mTc-hydrazinonicotinamide-TOC SPECT/CT showed a low sensitivity of 19.5% (8/41) in this group of patients; however, it successfully localized the tumor that was false-negative with GLP-1R PET/CT. The sensitivities of CT, MR, and endoscopic ultrasonography were 74.4% (32/43), 56.0% (14/25), and 84.0% (21/25), respectively. Conclusion 68Ga-NOTA-exendin-4 PET/CT is a highly sensitive imaging technique for the localization of insulinoma. PMID:26795291

  9. Selective Nodal Irradiation on Basis of {sup 18}FDG-PET Scans in Limited-Disease Small-Cell Lung Cancer: A Prospective Study

    SciTech Connect

    Loon, Judith van; De Ruysscher, Dirk; Wanders, Rinus; Boersma, Liesbeth; Simons, Jean; Oellers, Michel; Dingemans, Anne-Marie C.; Hochstenbag, Monique; Bootsma, Gerben; Geraedts, Wiel; Pitz, Cordula; Teule, Jaap; Rhami, Ali; Thimister, Willy; Snoep, Gabriel; Dehing-Oberije, Cary; Lambin, Philippe

    2010-06-01

    Purpose: To evaluate the results of selective nodal irradiation on basis of {sup 18}F-deoxyglucose positron emission tomography (PET) scans in patients with limited-disease small-cell lung cancer (LD-SCLC) on isolated nodal failure. Methods and Materials: A prospective study was performed of 60 patients with LD-SCLC. Radiotherapy was given to a dose of 45 Gy in twice-daily fractions of 1.5 Gy, concurrent with carboplatin and etoposide chemotherapy. Only the primary tumor and the mediastinal lymph nodes involved on the pretreatment PET scan were irradiated. A chest computed tomography (CT) scan was performed 3 months after radiotherapy completion and every 6 months thereafter. Results: A difference was seen in the involved nodal stations between the pretreatment {sup 18}F-deoxyglucose PET scans and computed tomography scans in 30% of patients (95% confidence interval, 20-43%). Of the 60 patients, 39 (65%; 95% confidence interval [CI], 52-76%) developed a recurrence; 2 patients (3%, 95% CI, 1-11%) experienced isolated regional failure. The median actuarial overall survival was 19 months (95% CI, 17-21). The median actuarial progression-free survival was 14 months (95% CI, 12-16). 12% (95% CI, 6-22%) of patients experienced acute Grade 3 (Common Terminology Criteria for Adverse Events, version 3.0) esophagitis. Conclusion: PET-based selective nodal irradiation for LD-SCLC resulted in a low rate of isolated nodal failures (3%), with a low percentage of acute esophagitis. These findings are in contrast to those from our prospective study of CT-based selective nodal irradiation, which resulted in an unexpectedly high percentage of isolated nodal failures (11%). Because of the low rate of isolated nodal failures and toxicity, we believe that our data support the use of PET-based SNI for LD-SCLC.

  10. Dorsal premotor cortex and conditional movement selection: A PET functional mapping study.

    PubMed

    Grafton, S T; Fagg, A H; Arbib, M A

    1998-02-01

    Positron emission tomography (PET) brain mapping was used to investigate whether or not human dorsal premotor cortex is involved in selecting motor acts based on arbitrary visual stimuli. Normal subjects performed four movement selection tasks. A manipulandum with three graspable stations was used. An imperative visual cue (LEDs illuminated in random order) indicated which station to grasp next with no instructional delay period. In a power task, a large aperture power grip was used for all trials, irrespective of the LED color. In a precision task, a pincer grasp of thumb and index finger was used. In a conditional task, the type of grasp (power or precision) was randomly determined by LED color. Comparison of the conditional selection task versus the average of the power and precision tasks revealed increased blood flow in left dorsal premotor cortex and superior parietal lobule. The average rate of producing the different grasp types and transport to the manipulandum stations was equivalent across this comparison, minimizing the contribution of movement attributes such as planning the individual movements (as distinct from planning associated with use of instructional stimuli), kinematics, or direction of target or limb movement. A comparison of all three movement tasks versus a rest task identified movement related activity involving a large area of central, precentral and postcentral cortex. In the region of the precentral sulcus movement related activity was located immediately caudal to the area activated during selection. The results establish a role for human dorsal premotor cortex and superior parietal cortex in selecting stimulus guided movements and suggest functional segregation within dorsal premotor cortex.

  11. Low dopamine activity in Lesch Nyhan Disease. An 18-fluorodopa PET study

    SciTech Connect

    Ernst, M.; Zametkin, A.; Matochik, J.

    1996-05-01

    Lesch-Nyhan Disease (LND) is a rare devastating X-linked recessive disorder characterized by the virtual absence of hypoxanthine guanine phosphoribosyl transferase (HPRT), a major enzyme of the salvage pathway of purine metabolism. The clinical presentation includes hyperuricemia choreoathetosis, dystonia, aggression and self-injurious behavior. The genetic and biochemical abnormalities are fully identified. However, the neuropathophysiological process by which the lack of HPRT produces the neuropsychiatric syndrome of LND in unclear. Presynaptic uptake of 18-Fluorodopa (FD) in basal ganglia, substantia nigra, and frontal and occipital cortices was measured by PET in 12 patients with LND, 10 to 20 years old, and 15 health controls, 12 to 23 years old. Radioactive counts (mCi/cc), recorded between 90 and 130 minutes after tracer injection, were measured in regions of interest by a rater blind to subjects` identities. Results were expressed as ratios of FD uptake in specific to non-specific (occipital cortex) brain areas. Presynaptic dopamine activity was significantly lower by 69% in putamen (p<0.0001), 61% in caudate (p<0.0001), 56% in frontal cortex (p=0.003) and 43% in substantiat nigra (p<0.016) in LND patients than in control subjects. Absolute FD measures in occipital regions did not differ between the two groups. Activity of FD in the basal ganglia was stable over time in the LND group and tended to increase in the control group (r=0.50, n=15, p=0.060). In the LND group, aggressive behavior was worse as FD activity was higher (r=0.60, n=12, p=0.40). LND is associated with a striking reduction of presynaptic dopamine activity that is not region-specific. The temporal stability of FD measures and of the severity of LND symptomatology is consistent with a developmental rather than degenerative process.

  12. Leptospirosis and Pets

    MedlinePlus

    ... Bacterial Special Pathogens Branch (BSPB) BSPB Laboratory Submissions Pets Recommend on Facebook Tweet Share Compartir Leptospirosis is ... that can affect human and animals, including your pets. All animals can potentially become infected with Leptospirosis. ...

  13. Monoaminergic PET imaging and histopathological correlation in unilateral and bilateral 6-hydroxydopamine lesioned rat models of Parkinson's disease: a longitudinal in-vivo study.

    PubMed

    Molinet-Dronda, Francisco; Gago, Belén; Quiroga-Varela, Ana; Juri, Carlos; Collantes, María; Delgado, Mercedes; Prieto, Elena; Ecay, Margarita; Iglesias, Elena; Marín, Concepció; Peñuelas, Iván; Obeso, José A

    2015-05-01

    Carbon-11 labeled dihydrotetrabenazine ((11)C-DTBZ) binds to the vesicular monoamine transporter 2 and has been used to assess nigro-striatal integrity in animal models and patients with Parkinson's disease. Here, we applied (11)C-DTBZ positron emission tomography (PET) to obtain longitudinally in-vivo assessment of striatal dopaminergic loss in the classic unilateral and in a novel bilateral 6-hydroxydopamine (6-OHDA) lesion rat model. Forty-four Sprague-Dawley rats were divided into 3 sub-groups: 1. 6-OHDA-induced unilateral lesion in the medial forebrain bundle, 2. bilateral lesion by injection of 6-OHDA in the third ventricle, and 3. vehicle injection in either site. (11)C-DTBZ PET studies were investigated in the same animals successively at baseline, 1, 3 and 6weeks after lesion using an anatomically standardized volumes-of-interest approach. Additionally, 12 rats had PET and Magnetic Resonance Imaging to construct a new (11)C-DTBZ PET template. Behavior was characterized by rotational, catalepsy and limb-use asymmetry tests and dopaminergic striatal denervation was validated post-mortem by immunostaining of the dopamine transporter (DAT). (11)C-DTBZ PET showed a significant decrease of striatal binding (SB) values one week after the unilateral lesion. At this point, there was a 60% reduction in SB in the affected hemisphere compared with baseline values in 6-OHDA unilaterally lesioned animals. A 46% symmetric reduction over baseline SB values was found in bilaterally lesioned rats at the first week after lesion. SB values remained constant in unilaterally lesioned rats whereas animals with bilateral lesions showed a modest (22%) increase in binding values at the 3rd and 6th weeks post-lesion. The degree of striatal dopaminergic denervation was corroborated histologically by DAT immunostaining. Statistical analysis revealed a high correlation between (11)C-DTBZ PET SB and striatal DAT immunostaining values (r=0.95, p<0.001). The data presented here indicate

  14. Estimating neurotransmitter kinetics with ntPET: a simulation study of temporal precision and effects of biased data.

    PubMed

    Normandin, Marc D; Morris, Evan D

    2008-02-01

    We recently introduced neurotransmitter PET (ntPET), an analysis technique that estimates the kinetics of stimulus-induced neurotransmitter (NT) release. Here, we evaluate two formulations of ntPET. The arterial (ART) approach measures the tracer input function (TIF) directly. The reference (REF) approach derives the TIF from reference region data. Arterial sampling is considered the gold standard in PET modeling but reference region approaches are preferred for reduced cost and complexity. If simulated PET data with unbiased TIFs were analyzed using ART or REF, temporal precision was better than 3 min provided NT concentration peaked less than 30 min into the scanning session. The consequences of biased TIFs or stimulus-induced changes in tracer delivery were also evaluated. ART TIFs were biased by the presence of uncorrected radiometabolites in the plasma whereas REF TIFs were biased by specific binding in the reference region. Simulated changes in tracer delivery emulated ethanol-induced blood flow alterations observed previously with PET. ART performance deteriorated significantly if metabolites amounted to 50% of plasma radioactivity by 60 min. The accuracy and precision of REF were preserved even if the reference region contained 40% of the receptor density of the target region. Both methods were insensitive to blood flow alterations (proportional changes in K(1) and k(2)). Our results suggest that PET data contain information--heretofore not extracted--about the timing of NT release. The REF formulation of ntPET proved to be robust to many plausible model violations and under most circumstances is an appropriate alternative to ART.

  15. [18F]CFT [(18F)WIN 35,428], a radioligand to study the dopamine transporter with PET: characterization in human subjects.

    PubMed

    Laakso, A; Bergman, J; Haaparanta, M; Vilkman, H; Solin, O; Hietala, J

    1998-03-01

    We have characterized the usage of [18F]CFT (also known as [18F]WIN 35,428) as a radioligand for in vivo studies of human dopamine transporter by PET. CFT was labeled with 18F to a high specific activity, and dynamic PET scans were conducted in healthy volunteers at various time points up to 5 h from [18F]CFT injection. The regional distribution of [18F]CFT uptake correlated well with the known distribution of dopaminergic nerve terminals in the human brain and also with that of other dopamine transporter radioligands. Striatal binding peaked at 225 min after injection and declined thereafter, demonstrating the reversible nature of the binding to the dopamine transporter. Therefore, due to the relatively long half-life of 18F (109.8 min), PET scans with [18F]CFT could easily be conducted during the binding equilibrium, allowing estimation of Bmax/Kd values (i.e., binding potential). Binding potentials for putamen and caudate measured at equilibrium were 4.79+/-0.11 and 4.50+/-0.23, respectively. We were able to also visualize midbrain dopaminergic neurons (substantia nigra) with [18F]CFT in some subjects. In conclusion, the labeling of CFT with 18F allows PET scans to be conducted at binding equilibrium, and therefore a high signal-to-noise ratio and reliable quantification of binding potential can be achieved. With a high resolution 3D PET scanner, the quantification of extrastriatal dopamine transporters should become possible.

  16. ROC (Receiver Operating Characteristics) study of maximum likelihood estimator human brain image reconstructions in PET (Positron Emission Tomography) clinical practice

    SciTech Connect

    Llacer, J.; Veklerov, E.; Nolan, D. ); Grafton, S.T.; Mazziotta, J.C.; Hawkins, R.A.; Hoh, C.K.; Hoffman, E.J. )

    1990-10-01

    This paper will report on the progress to date in carrying out Receiver Operating Characteristics (ROC) studies comparing Maximum Likelihood Estimator (MLE) and Filtered Backprojection (FBP) reconstructions of normal and abnormal human brain PET data in a clinical setting. A previous statistical study of reconstructions of the Hoffman brain phantom with real data indicated that the pixel-to-pixel standard deviation in feasible MLE images is approximately proportional to the square root of the number of counts in a region, as opposed to a standard deviation which is high and largely independent of the number of counts in FBP. A preliminary ROC study carried out with 10 non-medical observers performing a relatively simple detectability task indicates that, for the majority of observers, lower standard deviation translates itself into a statistically significant detectability advantage in MLE reconstructions. The initial results of ongoing tests with four experienced neurologists/nuclear medicine physicians are presented. Normal cases of {sup 18}F -- fluorodeoxyglucose (FDG) cerebral metabolism studies and abnormal cases in which a variety of lesions have been introduced into normal data sets have been evaluated. We report on the results of reading the reconstructions of 90 data sets, each corresponding to a single brain slice. It has become apparent that the design of the study based on reading single brain slices is too insensitive and we propose a variation based on reading three consecutive slices at a time, rating only the center slice. 9 refs., 2 figs., 1 tab.

  17. The Psychological Effect of Pet-Ownership on Reading Achievement.

    ERIC Educational Resources Information Center

    Hamtil, Rosemary

    A study examined the possible influence that pets may have on children's reading achievement. Subjects, 61 students from three third-grade classes in an urban school, completed a questionnaire about pet ownership. Responses were compiled and score values established to recognize the length of time the child had owned the pet and how much…

  18. Pet Care Teaching Unit: 1st-3rd Grades.

    ERIC Educational Resources Information Center

    Peninsula Humane Society, San Mateo, CA.

    Activities in this unit are designed to familiarize primary grade students with the responsibilities involved in pet ownership. Teaching plans are provided for a total of 12 lessons involving social studies, language arts, math, and health sciences. Activities adaptable for readers and non-readers focus on pet overpopulation, care of pets when…

  19. Dose Optimization in TOF-PET/MR Compared to TOF-PET/CT

    PubMed Central

    Queiroz, Marcelo A.; Delso, Gaspar; Wollenweber, Scott; Deller, Timothy; Zeimpekis, Konstantinos; Huellner, Martin; de Galiza Barbosa, Felipe; von Schulthess, Gustav; Veit-Haibach, Patrick

    2015-01-01

    Purpose To evaluate the possible activity reduction in FDG-imaging in a Time-of-Flight (TOF) PET/MR, based on cross-evaluation of patient-based NECR (noise equivalent count rate) measurements in PET/CT, cross referencing with phantom-based NECR curves as well as initial evaluation of TOF-PET/MR with reduced activity. Materials and Methods A total of 75 consecutive patients were evaluated in this study. PET/CT imaging was performed on a PET/CT (time-of-flight (TOF) Discovery D 690 PET/CT). Initial PET/MR imaging was performed on a newly available simultaneous TOF-PET/MR (Signa PET/MR). An optimal NECR for diagnostic purposes was defined in clinical patients (NECRP) in PET/CT. Subsequent optimal activity concentration at the acquisition time ([A]0) and target NECR (NECRT) were obtained. These data were used to predict the theoretical FDG activity requirement of the new TOF-PET/MR system. Twenty-five initial patients were acquired with (retrospectively reconstructed) different imaging times equivalent for different activities on the simultaneous PET/MR for the evaluation of clinically realistic FDG-activities. Results The obtained values for NECRP, [A]0 and NECRT were 114.6 (± 14.2) kcps (Kilocounts per second), 4.0 (± 0.7) kBq/mL and 45 kcps, respectively. Evaluating the NECRT together with the phantom curve of the TOF-PET/MR device, the theoretical optimal activity concentration was found to be approximately 1.3 kBq/mL, which represents 35% of the activity concentration required by the TOF-PET/CT. Initial evaluation on patients in the simultaneous TOF-PET/MR shows clinically realistic activities of 1.8 kBq/mL, which represent 44% of the required activity. Conclusion The new TOF-PET/MR device requires significantly less activity to generate PET-images with good-to-excellent image quality, due to improvements in detector geometry and detector technologies. The theoretically achievable dose reduction accounts for up to 65% but cannot be fully translated into clinical

  20. Monte Carlo patient study on the comparison of prompt gamma and PET imaging for range verification in proton therapy

    NASA Astrophysics Data System (ADS)

    Moteabbed, M.; España, S.; Paganetti, H.

    2011-02-01

    The purpose of this work was to compare the clinical adaptation of prompt gamma (PG) imaging and positron emission tomography (PET) as independent tools for non-invasive proton beam range verification and treatment validation. The PG range correlation and its differences with PET have been modeled for the first time in a highly heterogeneous tissue environment, using different field sizes and configurations. Four patients with different tumor locations (head and neck, prostate, spine and abdomen) were chosen to compare the site-specific behaviors of the PG and PET images, using both passive scattered and pencil beam fields. Accurate reconstruction of dose, PG and PET distributions was achieved by using the planning computed tomography (CT) image in a validated GEANT4-based Monte Carlo code capable of modeling the treatment nozzle and patient anatomy in detail. The physical and biological washout phenomenon and decay half-lives for PET activity for the most abundant isotopes such as 11C, 15O, 13N, 30P and 38K were taken into account in the data analysis. The attenuation of the gamma signal after traversing the patient geometry and respective detection efficiencies were estimated for both methods to ensure proper comparison. The projected dose, PG and PET profiles along many lines in the beam direction were analyzed to investigate the correlation consistency across the beam width. For all subjects, the PG method showed on average approximately 10 times higher gamma production rates than the PET method before, and 60 to 80 times higher production after including the washout correction and acquisition time delay. This rate strongly depended on tissue density and elemental composition. For broad passive scattered fields, it was demonstrated that large differences exist between PG and PET signal falloff positions and the correlation with the dose distribution for different lines in the beam direction. These variations also depended on the treatment site and the

  1. [Detection of second tumors in 11C-choline PET/CT studies performed due to biochemical recurrence of prostate cancer].

    PubMed

    García, J R; Ponce, A; Canales, M; Ayuso, J; Moragas, M; Soler, M

    2014-01-01

    Early localization of biochemical recurrence in patients after radical treatment of prostate cancer is a widely accepted clinical indication of (11)C-choline PET/CT. Its widespread clinical use has prompted the depiction of incidentalomas, unusual sites of metastatic lesions, as well as false positive and negative cases. Over the last 6 years, a total of 454 (11)C-choline PET/CT studies have been performed in our institution to locate biochemical recurrence of patients with prostate cancer. With these studies, a second neoplasm has been found in 7 patients (1.54%): 3 lung, 2 colorectal, 1 esophagus and 1 esophageal junction, respectively. Although the clinical usefulness of this technique for detecting cancer lesions other than prostate origin is known for those patients who undergo this technique in the accepted indication, the diagnosis of a second tumor has a significant impact on their therapeutic management.

  2. Direct time-of-flight for quantitative, real-time in-beam PET: a concept and feasibility study.

    PubMed

    Crespo, Paulo; Shakirin, Georgy; Fiedler, Fine; Enghardt, Wolfgang; Wagner, Andreas

    2007-12-07

    We extrapolate the impact of recent detector and scintillator developments, enabling sub-nanosecond coincidence timing resolution (tau), onto in-beam positron emission tomography (in-beam PET) for monitoring charged-hadron radiation therapy. For tau < or = 200 ps full width at half maximum, the information given by the time-of-flight (TOF) difference between the two opposing gamma-rays enables shift-variant, artefact-free in-beam tomographic imaging by means of limited-angle, dual-head detectors. We present the corresponding fast, TOF-based and backprojection-free, 3D reconstruction algorithm that, coupled with a real-time data acquisition and a fast detector encoding scheme, allows the sampled beta+-activity to be visualized in the object during the course of the irradiation. Despite the very low statistics scenario typical of in-beam PET, real-treatment simulations show that in-beam TOF-PET enables high-precision images to be obtained in real-time, either with closed-ring or with fixed, dual-head in-beam TOF-PET systems. The latter greatly alleviates the installation of in-beam PET at radiotherapeutic sites.

  3. Preliminary studies of a simultaneous PET/MRI scanner based on the RatCAP small animal tomograph

    NASA Astrophysics Data System (ADS)

    Woody, C.; Schlyer, D.; Vaska, P.; Tomasi, D.; Solis-Najera, S.; Rooney, W.; Pratte, J.-F.; Junnarkar, S.; Stoll, S.; Master, Z.; Purschke, M.; Park, S.-J.; Southekal, S.; Kriplani, A.; Krishnamoorthy, S.; Maramraju, S.; O'Connor, P.; Radeka, V.

    2007-02-01

    We are developing a scanner that will allow simultaneous acquisition of high resolution anatomical data using magnetic resonance imaging (MRI) and quantitative physiological data using positron emission tomography (PET). The approach is based on the technology used for the RatCAP conscious small animal PET tomograph which utilizes block detectors consisting of pixelated arrays of LSO crystals read out with matching arrays of avalanche photodiodes and a custom-designed ASIC. The version of this detector used for simultaneous PET/MRI imaging will be constructed out of all nonmagnetic materials and will be situated inside the MRI field. We have demonstrated that the PET detector and its electronics can be operated inside the MRI, and have obtained MRI images with various detector components located inside the MRI field. The MRI images show minimal distortion in this configuration even where some components still contain traces of certain magnetic materials. We plan to improve on the image quality in the future using completely non-magnetic components and by tuning the MRI pulse sequences. The combined result will be a highly compact, low mass PET scanner that can operate inside an MRI magnet without distorting the MRI image, and can be retrofitted into existing MRI instruments.

  4. Recent developments in PET detector technology

    PubMed Central

    Lewellen, Tom K

    2010-01-01

    Positron emission tomography (PET) is a tool for metabolic imaging that has been utilized since the earliest days of nuclear medicine. A key component of such imaging systems is the detector modules—an area of research and development with a long, rich history. Development of detectors for PET has often seen the migration of technologies, originally developed for high energy physics experiments, into prototype PET detectors. Of the many areas explored, some detector designs go on to be incorporated into prototype scanner systems and a few of these may go on to be seen in commercial scanners. There has been a steady, often very diverse development of prototype detectors, and the pace has accelerated with the increased use of PET in clinical studies (currently driven by PET/CT scanners) and the rapid proliferation of pre-clinical PET scanners for academic and commercial research applications. Most of these efforts are focused on scintillator-based detectors, although various alternatives continue to be considered. For example, wire chambers have been investigated many times over the years and more recently various solid-state devices have appeared in PET detector designs for very high spatial resolution applications. But even with scintillators, there have been a wide variety of designs and solutions investigated as developers search for solutions that offer very high spatial resolution, fast timing, high sensitivity and are yet cost effective. In this review, we will explore some of the recent developments in the quest for better PET detector technology. PMID:18695301

  5. Acquiring a Pet Dog Significantly Reduces Stress of Primary Carers for Children with Autism Spectrum Disorder: A Prospective Case Control Study

    ERIC Educational Resources Information Center

    Wright, H. F.; Hall, S.; Hames, A.; Hardiman, J.; Mills, R.; Mills, D. S.

    2015-01-01

    This study describes the impact of pet dogs on stress of primary carers of children with Autism Spectrum Disorder (ASD). Stress levels of 38 primary carers acquiring a dog and 24 controls not acquiring a dog were sampled at: Pre-intervention (17 weeks before acquiring a dog), post-intervention (3-10 weeks after acquisition) and follow-up…

  6. Study of the performance of a novel 1 mm resolution dual-panel PET camera design dedicated to breast cancer imaging using Monte Carlo simulation

    SciTech Connect

    Zhang Jin; Olcott, Peter D.; Chinn, Garry; Foudray, Angela M. K.; Levin, Craig S.

    2007-02-15

    We studied the performance of a dual-panel positron emission tomography (PET) camera dedicated to breast cancer imaging using Monte Carlo simulation. The PET camera under development has two 10x15 cm{sup 2} plates that are constructed from arrays of 1x1x3 mm{sup 3} LSO crystals coupled to novel ultra-thin (<200 {mu}m) silicon position-sensitive avalanche photodiodes (PSAPD). In this design the photodetectors are configured ''edge-on'' with respect to incoming photons which encounter a minimum of 2 cm thick of LSO with directly measured photon interaction depth. Simulations predict that this camera will have 10-15% photon sensitivity, for an 8-4 cm panel separation. Detector measurements show {approx}1 mm{sup 3} intrinsic spatial resolution, <12% energy resolution, and {approx}2 ns coincidence time resolution. By performing simulated dual-panel PET studies using a phantom comprising active breast, heart, and torso tissue, count performance was studied as a function of coincident time and energy windows. We also studied visualization of hot spheres of 2.5-4.0 mm diameter and various locations within the simulated breast tissue for 1x1x3 mm{sup 3}, 2x2x10 mm{sup 3}, 3x3x30 mm{sup 3}, and 4x4x20 mm{sup 3} LSO crystal resolutions and different panel separations. Images were reconstructed by focal plane tomography with attenuation and normalization corrections applied. Simulation results indicate that with an activity concentration ratio of tumor:breast:heart:torso of 10:1:10:1 and 30 s of acquisition time, only the dual-plate PET camera comprising 1x1x3 mm{sup 3} crystals could resolve 2.5 mm diameter spheres with an average peak-to-valley ratio of 1.3.

  7. [Pets for the mentally ill].

    PubMed

    Jonas, C; Feline, A

    1981-07-01

    After studying the historical importance of the domestic animal through the ages and the role of the "pet" animal in the contemporary world, the authors present an analysis of the literature dealing with the function of the animal in child development and the use of animals as therapeutic "tools". The author's then consider, based on a series of observations, the relationship certain mentally ill patients may establish with one or several pet animals and the significance this object relation may have for the patient : animals become invested as counter depressive or delusional objects, auxiliary means for identification and projection, symbiotic relationship, as well as encouraging feeling of security and responsibility.

  8. Apathy and impaired emotional facial recognition networks overlap in Parkinson's disease: a PET study with conjunction analyses.

    PubMed

    Robert, Gabriel; Le Jeune, Florence; Dondaine, Thibault; Drapier, Sophie; Péron, Julie; Lozachmeur, Clément; Sauleau, Paul; Houvenaghel, Jean-François; Travers, David; Millet, Bruno; Vérin, Marc; Drapier, Dominique

    2014-10-01

    Apathy is a disabling non-motor symptom that is frequently observed in Parkinson's disease (PD). Its description and physiopathology suggest that it is partially mediated by emotional impairment, but this research issue has never been addressed at a clinical and metabolic level. We therefore conducted a metabolic study using (18)fluorodeoxyglucose positron emission tomography ((18)FDG PET) in 36 PD patients without depression and dementia. Apathy was assessed on the Apathy Evaluation Scale (AES), and emotional facial recognition (EFR) performances (ie, percentage of correct responses) were calculated for each patient. Confounding factors such as age, antiparkinsonian and antidepressant medication, global cognitive functions and depressive symptoms were controlled for. We found a significant negative correlation between AES scores and performances on the EFR task. The apathy network was characterised by increased metabolism within the left posterior cingulate (PC) cortex (Brodmann area (BA) 31). The impaired EFR network was characterised by decreased metabolism within the bilateral PC gyrus (BA 31), right superior frontal gyrus (BAs 10, 9 and 6) and left superior frontal gyrus (BA 10 and 11). By applying conjunction analyses to both networks, we identified the right premotor cortex (BA 6), right orbitofrontal cortex (BA 10), left middle frontal gyrus (BA 8) and left posterior cingulate gyrus (BA 31) as the structures supporting the association between apathy and impaired EFR. These results confirm that apathy in PD is partially mediated by impaired EFR, opening up new prospects for alleviating apathy in PD, such as emotional rehabilitation.

  9. 3D inpatient dose reconstruction from the PET-CT imaging of {sup 90}Y microspheres for metastatic cancer to the liver: Feasibility study

    SciTech Connect

    Fourkal, E.; Veltchev, I.; Lin, M.; Meyer, J.; Koren, S.; Doss, M.; Yu, J. Q.

    2013-08-15

    Purpose: The introduction of radioembolization with microspheres represents a significant step forward in the treatment of patients with metastatic disease to the liver. This technique uses semiempirical formulae based on body surface area or liver and target volumes to calculate the required total activity for a given patient. However, this treatment modality lacks extremely important information, which is the three-dimensional (3D) dose delivered by microspheres to different organs after their administration. The absence of this information dramatically limits the clinical efficacy of this modality, specifically the predictive power of the treatment. Therefore, the aim of this study is to develop a 3D dose calculation technique that is based on the PET imaging of the infused microspheres.Methods: The Fluka Monte Carlo code was used to calculate the voxel dose kernel for {sup 90}Y source with voxel size equal to that of the PET scan. The measured PET activity distribution was converted to total activity distribution for the subsequent convolution with the voxel dose kernel to obtain the 3D dose distribution. In addition, dose-volume histograms were generated to analyze the dose to the tumor and critical structures.Results: The 3D inpatient dose distribution can be reconstructed from the PET data of a patient scanned after the infusion of microspheres. A total of seven patients have been analyzed so far using the proposed reconstruction method. Four patients underwent treatment with SIR-Spheres for liver metastases from colorectal cancer and three patients were treated with Therasphere for hepatocellular cancer. A total of 14 target tumors were contoured on post-treatment PET-CT scans for dosimetric evaluation. Mean prescription activity was 1.7 GBq (range: 0.58–3.8 GBq). The resulting mean maximum measured dose to targets was 167 Gy (range: 71–311 Gy). Mean minimum dose to 70% of target (D70) was 68 Gy (range: 25–155 Gy). Mean minimum dose to 90% of target

  10. Dual time-point imaging for post-dose binding potential estimation applied to a [(11)C]raclopride PET dose occupancy study.

    PubMed

    Alves, Isadora L; Willemsen, Antoon Tm; Dierckx, Rudi A; da Silva, Ana Maria M; Koole, Michel

    2017-03-01

    Receptor occupancy studies performed with PET often require time-consuming dynamic imaging for baseline and post-dose scans. Shorter protocol approximations based on standard uptake value ratios have been proposed. However, such methods depend on the time-point chosen for the quantification and often lead to overestimation and bias. The aim of this study was to develop a shorter protocol for the quantification of post-dose scans using a dual time-point approximation, which employs kinetic parameters from the baseline scan. Dual time-point was evaluated for a [(11)C]raclopride PET dose occupancy study with the D2 antagonist JNJ-37822681, obtaining estimates for binding potential and receptor occupancy. Results were compared to standard simplified reference tissue model and standard uptake value ratios-based estimates. Linear regression and Bland-Altman analysis demonstrated excellent correlation and agreement between dual time-point and the standard simplified reference tissue model approach. Moreover, the stability of dual time-point-based estimates is shown to be independent of the time-point chosen for quantification. Therefore, a dual time-point imaging protocol can be applied to post-dose [(11)C]raclopride PET scans, resulting in a significant reduction in total acquisition time while maintaining accuracy in the quantification of both the binding potential and the receptor occupancy.

  11. Acquiring a Pet Dog Significantly Reduces Stress of Primary Carers for Children with Autism Spectrum Disorder: A Prospective Case Control Study.

    PubMed

    Wright, H F; Hall, S; Hames, A; Hardiman, J; Mills, R; Mills, D S

    2015-08-01

    This study describes the impact of pet dogs on stress of primary carers of children with Autism Spectrum Disorder (ASD). Stress levels of 38 primary carers acquiring a dog and 24 controls not acquiring a dog were sampled at: Pre-intervention (17 weeks before acquiring a dog), post-intervention (3-10 weeks after acquisition) and follow-up (25-40 weeks after acquisition), using the Parenting Stress Index. Analysis revealed significant improvements in the intervention compared to the control group for Total Stress, Parental Distress and Difficult Child. A significant number of parents in the intervention group moved from clinically high to normal levels of Parental Distress. The results highlight the potential of pet dogs to reduce stress in primary carers of children with an ASD.

  12. The on-line monitoring of continuously withdrawn arterial blood during PET studies using a single BGO/photomultiplier assembly and non-stick tubing.

    PubMed

    Ranicar, A S; Williams, C W; Schnorr, L; Clark, J C; Rhodes, C G; Bloomfield, P M; Jones, T

    1991-01-01

    A robust, highly sensitive system is described for monitoring the concentration of positron emitting radioisotopes contained within arterial blood continuously withdrawn during PET studies of the brain. Utilizing a specially designed flow-through bismuth germanate detector, gammas are more effectively counted, replacing the less efficient method of positron detection with plastic detectors. A polytetrafluoroethylene flow path system has been developed to overcome the problem of highly cohesive tracers adhering to the tubing material. Blood is drawn through the system from the radial artery by a medically approved peristaltic pump. Syringe samples of blood are extracted periodically downstream of the detector, for calibrations, plasma assays, metabolic analysis and physiological measurements. The complete system, including efficient heavy lead shielding is contained on a bedside trolley. Blood activity is continuously recorded throughout the PET investigations, and stored directly by the scanning computer, and additionally backed up on disc by a P.C.

  13. Common phenotypic and genotypic antimicrobial resistance patterns found in a case study of multiresistant E. coli from cohabitant pets, humans, and household surfaces.

    PubMed

    Martins, Liliana Raquel Leite; Pina, Susana Maria Rocha; Simões, Romeo Luís Rocha; de Matos, Augusto José Ferreira; Rodrigues, Pedro; da Costa, Paulo Martins Rodrigues

    2013-01-01

    The objective of the study described in this article was to characterize the antimicrobial resistance profiles among E. coli strains isolated from cohabitant pets and humans, evaluating the concurrent colonization of pets, owners, and home surfaces by bacteria carrying the same antimicrobial-resistant genes. The authors also intended to assess whether household surfaces and objects could contribute to the within-household antimicrobial-resistant gene diffusion between human and animal cohabitants. A total of 124 E. coli strains were isolated displaying 24 different phenotypic patterns with a remarkable percentage of multiresistant ones. The same resistance patterns were isolated from the dog's urine, mouth, the laundry floor, the refrigerator door, and the dog's food bowl. Some other multiresistant phenotypes, as long as resistant genes, were found repeatedly in different inhabitants and surfaces of the house. Direct, close contact between all the cohabitants and the touch of contaminated household surfaces and objects could be an explanation for these observations.

  14. PET/MRI: A luxury or a necessity?

    PubMed

    Carreras-Delgado, J L; Pérez-Dueñas, V; Riola-Parada, C; García-Cañamaque, L

    2016-01-01

    PET/MRI is a new multimodality technique with a promising future in diagnostic imaging. Technical limitations are being overcome. Interference between the two systems (PET and MRI) seems to have been resolved. MRI-based PET attenuation correction can be performed safely. Scan time is acceptable and the study is tolerable, with claustrophobia prevalence similar to that of MRI. Quantification with common parameters, such as Standardized Uptake Value (SUV), shows a fairly good correlation between both systems. However, PET/CT currently provides better results in scan time, scan costs, and patient comfort. Less patient radiation exposure is a big advantage of PET/MRI over PET/CT, which makes it particularly recommended in paediatric and adolescent patients requiring one or more studies. PET/MRI indications are the same as those of PET/CT, given that in cases where MRI is superior to CT, PET/MRI is superior to PET/CT. This superiority is clear in many soft tissue tumours. Moreover, it is common to perform both PET/CT and MRI in neurological diseases, as well as in some tumours, such as breast cancer. A single PET/MRI study replaces both with obvious benefit. MRI also allows other MRI-based PET corrections, such as motion or partial volume effect corrections. The better spatial resolution of MRI allows the transfer of well-defined MRI areas or small volumes of interest to PET image, in order to measure PET biomarkers in these areas. The richness of information of both techniques opens up immense possibilities of synergistic correlation between them.

  15. Drug pharmacokinetics and pharmacodynamics: PET and microdial studies of SR 46349B, a selective 5HT2 antagonist

    SciTech Connect

    Tan, P.; Dewey, S.L.; Gatley, S.J.

    1994-05-01

    The brain serotonin system is an important molecular target in drug development. SR 46349B is a propenone oxime ether derivative with a high affinity and selectivity for the serotonin 5HT2 receptor (Kd=1.2 nM). We have labeled SR 46349B with carbon-11 via N-methylation of a nor-precursor (supplied by Sanofi Recherche) with C-11 methyl iodide. Purification by HPLC gave [11C]SR 46349B in 98% radiochemical purity with a specific activity of 1.5 Ci/{mu}mol. Serial PET studies were carried out in a baboon for a 60 minute study period with a two hour time interval between studies. The first study was at baseline and the second after pretreatment with altanserin (0.5 mg/kg iv, 30 min prior to [11C]SR 46349B). Carbon-11 peaked at ca. 20 minutes in the frontal, parietal, temporal and occipital cortices where it plateaued for the rest of the study. Cerebellum, thalamus and striatum peaked at ca. 10 minutes and cleared to 62%, 72% and 80% of peak by 60 min. At 60 minutes, the frontal cortex to cerebellum ratio was 1.5. Treatment with altanserin reduced the frontal cortex to cerebellum ratio to 1.0. HPLC of mouse brain homogenate after [11C]SR 46349B showed >94% of the C-11 was parent compound. Microdialysis in freely moving rats after injection of SR 46349B (n=6; 10 mg/kg, ip) showed an average peak increase in extracellular dopamine of 375% which is higher than the 150% effect of altanserin. Spontaneous movements were markedly reduced. The pharmacokinetics of [11C] SR 46349B in cortical areas is consistent with the long term effects of SR 46349B on 5HT2 receptors and the elevations in extracellular dopamine without increased locomotor activity are consistent with serotonin mediated disinhibition of striatal dopamine release via blockade of serotonin receptors.

  16. Pet-Related Infections.

    PubMed

    Day, Michael J

    2016-11-15

    Physicians and veterinarians have many opportunities to partner in promoting the well-being of people and their pets, especially by addressing zoonotic diseases that may be transmitted between a pet and a human family member. Common cutaneous pet-acquired zoonoses are dermatophytosis (ringworm) and sarcoptic mange (scabies), which are both readily treated. Toxoplasmosis can be acquired from exposure to cat feces, but appropriate hygienic measures can minimize the risk to pregnant women. Persons who work with animals are at increased risk of acquiring bartonellosis (e.g., cat-scratch disease); control of cat fleas is essential to minimize the risk of these infections. People and their pets share a range of tick-borne diseases, and exposure risk can be minimized with use of tick repellent, prompt tick removal, and appropriate tick control measures for pets. Pets such as reptiles, amphibians, and backyard poultry pose a risk of transmitting Salmonella species and are becoming more popular. Personal hygiene after interacting with these pets is crucial to prevent Salmonella infections. Leptospirosis is more often acquired from wildlife than infected dogs, but at-risk dogs can be protected with vaccination. The clinical history in the primary care office should routinely include questions about pets and occupational or other exposure to pet animals. Control and prevention of zoonoses are best achieved by enhancing communication between physicians and veterinarians to ensure patients know the risks of and how to prevent zoonoses in themselves, their pets, and other people.

  17. Microglia activation in multiple sclerosis black holes predicts outcome in progressive patients: an in vivo [(11)C](R)-PK11195-PET pilot study.

    PubMed

    Giannetti, Paolo; Politis, Marios; Su, Paul; Turkheimer, Federico; Malik, Omar; Keihaninejad, Shiva; Wu, Kit; Reynolds, Richard; Nicholas, Richard; Piccini, Paola

    2014-05-01

    The pathophysiological correlates and the contribution to persisting disability of hypointense T1-weighted MRI lesions, black holes (BH), in multiple sclerosis (MS) are still unclear. In order to study the in vivo functional correlates of this MRI finding, we used 11C-PK11195 PET (PK-PET) to investigate changes in microglial activity. Ten relapsing and 9 progressive MS subjects had a PK-PET scan and a MRI scan alongside a full clinical assessment, including the expanded disability status scale (EDSS) for evaluation of disability. We studied the PK binding potential of the specifically bound radioligand relative to the non-displaceable radioligand in tissue (BPND) in T1 BHs. Out of a total of 1242 BHs identified, 947 were PK enhancing. The PKBPND was correlated with the EDSS (r=0.818; p<0.05) only in the progressive group. In the relapsing patients there was an inverse correlation between PKBPND and BH total lesion volume in whole brain (r=-0.781; p<0.05). When progressive patients were grouped according to the disability outcome at 2years from the PK-PET scan, the total PKBPND in BHs was found to be a significant outcome predictor of disability (p<0.01). Our findings show that relapsing and progressive patients have heterogeneous patterns of PKBPND in T1 BHs and indicate that BHs are not just "holes" representing loss of axons and myelin, but display inflammatory activity in the form of activated microglia. The significant association between PKBPND, neurological impairment and outcome in progressive subjects supports a role for activated microglia in disability progression.

  18. Low brain CB1 receptor occupancy by a second generation CB1 receptor antagonist TM38837 in comparison with rimonabant in nonhuman primates: a PET study.

    PubMed

    Takano, Akihiro; Gulyás, Balázs; Varnäs, Katarina; Little, Paul Brian; Noerregaard, Pia K; Jensen, Niels Ole; Elling, Christian E; Halldin, Christer

    2014-03-01

    Both central and peripheral cannabinoid receptor type 1 (CB1R) have been considered to be among the key targets for obesity treatment. First generation CB1R antagonists/inverse agonists such as rimonabant and taranabant exhibited severe CNS side effects such as anxiety and depression, which are considered to be related to the compounds' ability to access central CB1R. Recently, several compounds have been developed as second generation antagonists with a profile of restriction to peripheral CB1R. We evaluated the distribution of TM38837, a second generation CB1R antagonist, using brain and whole body PET in three cynomolgus monkeys, and established the relationship between CB1R occupancy and dose/plasma concentration of TM38837 in comparison with rimonabant. A brain PET study was performed using [(11) C]MePPEP, a PET radioligand for CB1R, to evaluate the brain CB1R occupancy of TM38837 at various plasma concentrations in comparison with rimonabant at known efficacious plasma concentrations. A whole body PET study was performed to investigate the change of peripheral distribution of [(11) C]MePPEP by TM38837 administration, which indirectly estimated the effects to the peripheral CB1R by TM38837. CB1R occupancy by both TM38837 and rimonabant increased in a dose/plasma concentration-dependent manner. However, in vivo affinity by plasma level was more than 100 times lower for TM38837. Peripherally, [(11) C]MePPEP accumulation decreased in gall bladder and brown adipose tissue by TM38837 administration. TM38837 showed rather lower CB1R occupancy than rimonabant at the expected therapeutic plasma level, which is expected to reduce CNS side effects in clinical situations. Further clinical development of TM38837 is warranted.

  19. Neuroinflammation in healthy aging: a PET study using a novel Translocator Protein 18kDa (TSPO) radioligand, [(18)F]-FEPPA.

    PubMed

    Suridjan, I; Rusjan, P M; Voineskos, A N; Selvanathan, T; Setiawan, E; Strafella, A P; Wilson, A A; Meyer, J H; Houle, S; Mizrahi, R

    2014-01-01

    One of the cellular markers of neuroinflammation is increased microglia activation, characterized by overexpression of mitochondrial 18kDa Translocator Protein (TSPO). TSPO expression can be quantified in-vivo using the positron emission tomography (PET) radioligand [(18)F]-FEPPA. This study examined microglial activation as measured with [(18)F]-FEPPA PET across the adult lifespan in a group of healthy volunteers. We performed genotyping for the rs6971 TS.PO gene polymorphism to control for the known variability in binding affinity. Thirty-three healthy volunteers (age range: 19-82years; 22 high affinity binders (HAB), 11 mixed affinity binders (MAB)) underwent [(18)F]-FEPPA PET scans, acquired on the High Resolution Research Tomograph (HRRT) and analyzed using a 2-tissue compartment model. Regression analyses were performed to examine the effect of age adjusting for genetic status on [(18)F]-FEPPA total distribution volumes (VT) in the hippocampus, temporal, and prefrontal cortex. We found no significant effect of age on [(18)F]-FEPPA VT (F (1,30)=0.918; p=0.346), and a significant effect of genetic polymorphism (F (1,30)=8.767; p=0.006). This is the first in-vivo study to evaluate age-related changes in TSPO binding, using the new generation TSPO radioligands. Increased neuroinflammation, as measured with [(18)F]-FEPPA PET was not associated with normal aging, suggesting that healthy elderly individuals may serve as useful benchmark against patients with neurodegenerative disorders where neuroinflammation may be present.

  20. A follow-up ¹⁸F-FDG brain PET study in a case of Hashimoto's encephalopathy causing drug-resistant status epilepticus treated with plasmapheresis.

    PubMed

    Pari, Elisa; Rinaldi, Fabrizio; Premi, Enrico; Codella, Maria; Rao, Renata; Paghera, Barbara; Panarotto, Maria Beatrice; De Maria, Giovanni; Padovani, Alessandro

    2014-04-01

    Hashimoto's encephalopathy (HE) is a rare neuropsychiatric syndrome associated with antithyroid antibodies. It may have an acute onset (episodes of cerebral ischemia, seizure, and psychosis) or it may present as an indolent form (depression, cognitive decline, myoclonus, tremors, and fluctuations in level of consciousness). We here describe a case of encephalopathy presenting as non-convulsive status epilepticus associated with Hashimoto's thyroiditis (HT), unresponsive to corticosteroid therapy, with improvement after plasma exchange treatment. A previously healthy 19-year-old woman, presented generalized tonic-clonic seizures. About a month later, she manifested a speech disorder characterized by difficulties in the production and comprehension of language. Within a few days she also developed confusion and difficulties in recognizing familiar places, with gradual worsening over time. EEG revealed a non-convulsive status epilepticus (NCSE). CSF examination showed slightly elevated cell count and four oligoclonal bands. MRI was unremarkable, and (18)F-FDG brain PET showed widespread hypometabolism, mostly in posterior regions bilaterally. Laboratory and ultrasound findings showed signs of HT. Treatment with steroid was introduced without any improvement. After five sessions of plasma exchange there was a decrease of antithyroid antibodies, as well as EEG and clinical improvement. Three months after discharge (18)F-FDG brain PET showed a complete normalization of the picture, and the patient was asymptomatic. This report emphasizes the successful treatment of HE with plasma exchange in a patient who presented with NCSE. Based on the actual evidence, the term "Encephalopathy associated with Hashimoto's thyroiditis" may be the most proper. Furthermore, to our knowledge, this is the first case of an adult patient studied twice with an (18)F-FDG brain PET: prior to treatment with plasma exchange, and at 3 months follow-up when the patient was clinically completely

  1. PET/MRI and PET/MRI/SISCOM coregistration in the presurgical evaluation of refractory focal epilepsy.

    PubMed

    Fernández, S; Donaire, A; Serès, E; Setoain, X; Bargalló, N; Falcón, C; Sanmartí, F; Maestro, I; Rumià, J; Pintor, L; Boget, T; Aparicio, J; Carreño, M

    2015-03-01

    We aimed to investigate the usefulness of coregistration of positron emission tomography (PET) and magnetic resonance imaging (MRI) findings (PET/MRI) and of coregistration of PET/MRI with subtraction ictal single-photon emission computed tomography (SPECT) coregistered to MRI (SISCOM) (PET/MRI/SISCOM) in localizing the potential epileptogenic zone in patients with drug-resistant epilepsy. We prospectively included 35 consecutive patients with refractory focal epilepsy whose presurgical evaluation included a PET study. Separately acquired PET and structural MRI images were coregistered for each patient. When possible, ictal SPECT and SISCOM were obtained and coregistered with PET/MRI. The potential location of the epileptogenic zone determined by neuroimaging was compared with the seizure onset zone determined by long-term video-EEG monitoring and with invasive EEG studies in patients who were implanted. Structural MRI showed no lesions in 15 patients. In these patients, PET/MRI coregistration showed a hypometabolic area in 12 (80%) patients that was concordant with seizure onset zone on EEG in 9. In 7 patients without MRI lesions, PET/MRI detected a hypometabolism that was undetected on PET alone. SISCOM, obtained in 25 patients, showed an area of hyperperfusion concordant with the seizure onset zone on EEG in 7 (58%) of the 12 of these patients who had normal MRI findings. SISCOM hyperperfusion was less extensive than PET hypometabolism. A total of 19 patients underwent surgery; 11 of these underwent invasive-EEG monitoring and the seizure onset zone was concordant with PET/MRI in all cases. PET/MRI/SISCOM coregistration, performed in 4 of these patients, was concordant in 3 (75%). After epilepsy surgery, 13 (68%) patients are seizure-free after a mean follow-up of 4.5 years. PET/MRI and PET/MRI/SISCOM coregistration are useful for determining the potential epileptogenic zone and thus for planning invasive EEG studies and surgery more precisely, especially in

  2. Modeling dose-dependent neural processing responses using mixed effects spline models: with application to a PET study of ethanol.

    PubMed

    Guo, Ying; Bowman, F DuBois

    2008-04-01

    For functional neuroimaging studies that involve experimental stimuli measuring dose levels, e.g. of an anesthetic agent, typical statistical techniques include correlation analysis, analysis of variance or polynomial regression models. These standard approaches have limitations: correlation analysis only provides a crude estimate of the linear relationship between dose levels and brain activity; ANOVA is designed to accommodate a few specified dose levels; polynomial regression models have limited capacity to model varying patterns of association between dose levels and measured activity across the brain. These shortcomings prompt the need to develop methods that more effectively capture dose-dependent neural processing responses. We propose a class of mixed effects spline models that analyze the dose-dependent effect using either regression or smoothing splines. Our method offers flexible accommodation of different response patterns across various brain regions, controls for potential confounding factors, and accounts for subject variability in brain function. The estimates from the mixed effects spline model can be readily incorporated into secondary analyses, for instance, targeting spatial classifications of brain regions according to their modeled response profiles. The proposed spline models are also extended to incorporate interaction effects between the dose-dependent response function and other factors. We illustrate our proposed statistical methodology using data from a PET study of the effect of ethanol on brain function. A simulation study is conducted to compare the performance of the proposed mixed effects spline models and a polynomial regression model. Results show that the proposed spline models more accurately capture varying response patterns across voxels, especially at voxels with complex response shapes. Finally, the proposed spline models can be used in more general settings as a flexible modeling tool for investigating the effects of any

  3. Respiratory motion compensation for simultaneous PET/MR based on a 3D-2D registration of strongly undersampled radial MR data: a simulation study

    NASA Astrophysics Data System (ADS)

    Rank, Christopher M.; Heußer, Thorsten; Flach, Barbara; Brehm, Marcus; Kachelrieß, Marc

    2015-03-01

    We propose a new method for PET/MR respiratory motion compensation, which is based on a 3D-2D registration of strongly undersampled MR data and a) runs in parallel with the PET acquisition, b) can be interlaced with clinical MR sequences, and c) requires less than one minute of the total MR acquisition time per bed position. In our simulation study, we applied a 3D encoded radial stack-of-stars sampling scheme with 160 radial spokes per slice and an acquisition time of 38 s. Gated 4D MR images were reconstructed using a 4D iterative reconstruction algorithm. Based on these images, motion vector fields were estimated using our newly-developed 3D-2D registration framework. A 4D PET volume of a patient with eight hot lesions in the lungs and upper abdomen was simulated and MoCo 4D PET images were reconstructed based on the motion vector fields derived from MR. For evaluation, average SUVmean values of the artificial lesions were determined for a 3D, a gated 4D, a MoCo 4D and a reference (with ten-fold measurement time) gated 4D reconstruction. Compared to the reference, 3D reconstructions yielded an underestimation of SUVmean values due to motion blurring. In contrast, gated 4D reconstructions showed the highest variation of SUVmean due to low statistics. MoCo 4D reconstructions were only slightly affected by these two sources of uncertainty resulting in a significant visual and quantitative improvement in terms of SUVmean values. Whereas temporal resolution was comparable to the gated 4D images, signal-to-noise ratio and contrast-to-noise ratio were close to the 3D reconstructions.

  4. 5-HTT and 5-HT(1A) receptor occupancy of the novel substance vortioxetine (Lu AA21004). A PET study in control subjects.

    PubMed

    Stenkrona, Per; Halldin, Christer; Lundberg, Johan

    2013-10-01

    Vortioxetine (Lu AA21004) is a new potential substance for the treatment of anxiety and mood disorders. It has high affinity for the 5-HT transporter (5-HTT) and moderate affinity for the 5-HT1A receptor in vitro. Positron emission tomography (PET) has commonly been used to examine the relation between dose/plasma concentration and occupancy to predict relevant dose intervals in a clinical setting. In this study 11 control subjects were examined with PET and [¹¹C]MADAM at baseline, after a single dose and after 9 days of dosing with Lu AA21004 (2.5, 10 or 60 mg) for quantification of 5-HTT occupancy. Four subjects were examined with PET and [¹¹C]WAY 100635 at baseline, after a single dose and after 9 days of dosing of Lu AA21004 (30 mg) for quantification of 5-HT(1A) occupancy. To allow for quantification of binding in the raphe nuclei, PET data were analyzed using wavelet aided parametric imaging. 5-HTT occupancy ranged from 2 (mean, 2.5 mg day 1) to 97% (60 mg day 9). The apparent affinity of Lu AA21004 binding to 5-HTT (KD(ND)) was calculated to 16.7 nM (R=0.95), and the corresponding oral dose (KD(ND)-dose) to 8.5 mg (R=0.91). No significant occupancy of 5-HT(1A) receptors was found after dosing of 30 mg Lu AA21004. Based on the literature and the present [¹¹C]MADAM binding data, a dose of 20-30 mg Lu AA21004 is suggested to give clinically relevant occupancy of the 5-HTT.

  5. Study of barrier properties and chemical resistance of recycled PET coated with amorphous carbon through a plasma enhanced chemical vapour deposition (PECVD) process.

    PubMed

    Cruz, S A; Zanin, M; Nerin, C; De Moraes, M A B

    2006-01-01

    Many studies have been carried out in order to make bottle-to-bottle recycling feasible. The problem is that residual contaminants in recycled plastic intended for food packaging could be a risk to public health. One option is to use a layer of virgin material, named functional barrier, which prevents the contaminants migration process. This paper shows the feasibility of using polyethylene terephthalate (PET) recycled for food packaging employing a functional barrier made from hydrogen amorphous carbon film deposited by Plasma Enhanced Chemical Vapour Deposition (PECVD) process. PET samples were deliberately contaminated with a series of surrogates using a FDA protocol. After that, PET samples were coated with approximately 600 and 1200 Angstrons thickness of amorphous carbon film. Then, the migration tests using as food simulants: water, 10% ethanol, 3% acetic acid, and isooctane were applied to the sample in order to check the chemical resistance of the new coated material. After the tests, the liquid extracts were analysed using a solid-phase microextraction device (SPME) coupled to GC-MS.

  6. PET neuroimaging studies of [18F]CABS13 in a double transgenic mouse model of Alzheimer’s disease and non-human primates

    PubMed Central

    Liang, Steven H.; Holland, Jason P.; Stephenson, Nickeisha A.; Kassenbrock, Alina; Rotstein, Benjamin H.; Daignault, Cory P.; Lewis, Rebecca; Collier, Lee; Hooker, Jacob M.; Vasdev, Neil

    2016-01-01

    Fluorine-18 labeled 2-fluoro-8-hydroxyquinoline ([18F]CABS13) is a promising positron emission tomography (PET) radiopharmaceutical based on a metal chelator developed to probe the “metal hypothesis of Alzheimer’s disease”. Herein, a practical radiosynthesis of [18F]CABS13 was achieved by radiofluorination followed by deprotection of an O-benzyloxymethyl group. Automated production and formulation of [18F]CABS13 resulted in 19 ± 5% uncorrected radiochemical yield, relative to starting [18F]fluoride, with ≥95% chemical and radiochemical purities, and high specific activity (>2.5 Ci/μmol) within 80 minutes. Temporal PET neuroimaging studies were carried out in female transgenic B6C3- Tg(APPswe,PSEN1dE9)85Dbo/J (APP/PS1) and age-matched wild-type (WT) B6C3F1/J control mice at 3, 7 and 10 months of age. [18F]CABS13 showed an overall higher uptake and retention of radioactivity in the central nervous system of APP/PS1 mice versus WT mice with increasing age. However, PET/magnetic resonance imaging in normal non-human primates revealed that the tracer had low uptake in the brain and rapid formation of a hydrophilic radiometabolite. Identification of more metabolically stable 18F-hydroxyquinolines that can be readily accessed by the radiochemical strategy presented herein is underway. PMID:25776827

  7. Improved PET Imaging of uPAR Expression Using new 64Cu-labeled Cross-Bridged Peptide Ligands: Comparative in vitro and in vivo Studies

    PubMed Central

    Persson, Morten; Hosseini, Masood; Madsen, Jacob; Jørgensen, Thomas J. D.; Jensen, Knud J; Kjaer, Andreas; Ploug, Michael

    2013-01-01

    The correlation between uPAR expression, cancer cell invasion and metastases is now well-established and has prompted the development of a number of uPAR PET imaging agents, which could potentially identify cancer patients with invasive and metastatic lesions. In the present study, we synthesized and characterized two new cross-bridged 64Cu-labeled peptide conjugates for PET imaging of uPAR and performed a head-to-head comparison with the corresponding and more conventionally used DOTA conjugate. Based on in-source laser-induced reduction of chelated Cu(II) to Cu(I), we now demonstrate the following ranking with respect to the chemical inertness of their complexed Cu ions: DOTA-AE105 << CB-TE2A-AE105 < CB-TE2A-PA-AE105, which is correlated to their corresponding demetallation rate. No penalty in the uPAR receptor binding affinity of the targeting peptide was encountered by conjugation to either of the macrobicyclic chelators (IC50 ~ 5-10 nM) and high yields and radiochemical purities (>95%) were achieved in all cases by incubation at 95ºC. In vivo, they display identical tumor uptake after 1h, but differ significantly after 22 hrs, where the DOTA-AE105 uptake remains surprisingly high. Importantly, the more stable of the new uPAR PET tracers, 64Cu-CB-TE2A-PA-AE105, exhibits a significantly reduced liver uptake compared to 64Cu-DOTA-AE105 as well as 64Cu-CB-TE2A-AE105, (p<0.0001), emphasizing that our new in vitro stability measurements by mass spectrometry predicts in vivo stability in mice. Specificity of the best performing ligand, 64Cu-CB-TE2A-PA-AE105 was finally confirmed in vivo using a non-binding 64Cu-labeled peptide as control (64Cu-CB-TE2A-PA-AE105mut). This control PET-tracer revealed significantly reduced tumor uptake (p<0.0001), but identical hepatic uptake compared to its active counterpart (64Cu-CB-TE2A-PA-AE105) after 1h. In conclusion, our new approach using in-source laser-induced reduction of Cu(II)-chelated PET-ligands provides useful

  8. Investigation of the coincidence resolving time performance of a PET scanner based on liquid xenon: a Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Gomez-Cadenas, J. J.; Benlloch-Rodríguez, J. M.; Ferrario, P.; Monrabal, F.; Rodríguez, J.; Toledo, J. F.

    2016-09-01

    The measurement of the time of flight of the two 511 keV gammas recorded in coincidence in a PET scanner provides an effective way of reducing the random background and therefore increases the scanner sensitivity, provided that the coincidence resolving time (CRT) of the gammas is sufficiently good. The best commercial PET-TOF system today (based in LYSO crystals and digital SiPMs), is the VEREOS of Philips, boasting a CRT of 316 ps (FWHM). In this paper we present a Monte Carlo investigation of the CRT performance of a PET scanner exploiting the scintillating properties of liquid xenon. We find that an excellent CRT of 70 ps (depending on the PDE of the sensor) can be obtained if the scanner is instrumented with silicon photomultipliers (SiPMs) sensitive to the ultraviolet light emitted by xenon. Alternatively, a CRT of 160 ps can be obtained instrumenting the scanner with (much cheaper) blue-sensitive SiPMs coated with a suitable wavelength shifter. These results show the excellent time of flight capabilities of a PET device based in liquid xenon.

  9. An assessment of the impact of the pet trade on five CITES-Appendix II case studies - Boa constrictor imperator

    USGS Publications Warehouse

    Montgomery, Chad E.; Boback, Scott M.; Reed, Robert N.; Frazier, Julius A.

    2015-01-01

    Boa constrictor is a wide ranging snake species that is common in the pet trade and is currently listed in CITES Appendix II. Hog Island boas, or Cayos Cochinos boas, are a dwarf, insular race of Boa constrictor imperator endemic to the Cayos Cochinos Archipelago, Honduras. Cayos Cochinos boas are prized in the international pet trade for their light pink dorsal coloration, as well as for being much smaller and more docile than mainland boas (Porras, 1999; Russo, 2007). The boa population in the Cayos Cochinos was heavily exploited for the pet trade from 1979 to 1993, and researchers reported finding no boas on the islands during a five day herpetological survey trip in the early 1990s (Wilson and CruzDiaz, 1993), leading to the speculation that the population had been extirpated (e.g., Russo, 2007). The Cayos Cochinos Archipelago Natural Marine Monument has been managed by the Honduran Coral Reef Foundation since 1994 and prohibits removal of boas from the area. Poaching for the pet trade continues today, although at a lower level. Due to the endemic nature of this island morph of B. c. imperator it is imperative that we understand the dynamics of the populations and the ongoing threats that could negatively impact their long-term survival.

  10. PET Imaging of Angiogenesis

    PubMed Central

    Niu, Gang; Chen, Xiaoyuan

    2009-01-01

    Synopsis Angiogenesis is a highly-controlled process that is dependent on the intricate balance of both promoting and inhibiting factors, involved in various physiological and pathological processes. A comprehensive understanding of the molecular mechanisms that regulate angiogenesis has resulted in the design of new and more effective therapeutic strategies. Due to insufficient sensitivity to detect therapeutic effects by using standard clinical endpoints or by looking for physiological improvement, a multitude of imaging techniques have been developed to assess tissue vasculature on the structural, functional and molecular level. Imaging is expected to provide a novel approach to noninvasively monitor angiogenesis, to optimize the dose of new antiangiogenic agents and to assess the efficacy of therapies directed at modulation of the angiogenic process. All these methods have been successfully used preclinically and will hopefully aid in antiangiogenic drug development in animal studies. In this review article, the application of PET in angiogenesis imaging at both functional and molecular level will be discussed. For PET imaging of angiogenesis related molecular markers, we emphasize integrin αvβ3, VEGF/VEGFR, and MMPs. PMID:20046926

  11. 11C-Acetate PET/CT Imaging in Localized Prostate Cancer: A study with MRI and Histopathologic Correlation

    PubMed Central

    Mena, Esther; Turkbey, Baris; Mani, Haresh; Adler, Stephen; Valera, Vladimir A.; Bernardo, Marcelino; Shah, Vijay; Pohida, Thomas; McKinney, Yolanda; Kwarteng, Gideon; Daar, Dagane; Lindenberg, Maria L.; Eclarinal, Philip; Wade, Revia; Linehan, W. Marston; Merino, Maria J.; Pinto, Peter A.; Choyke, Peter L.; Kurdziel, Karen A.

    2012-01-01

    This work characterizes the uptake of 11C-Acetate in prostate cancer (PCa), benign prostate hyperplasia (BPH) and normal prostate tissue in comparison with multi-parametric MRI, whole mount histopathology and clinical markers, to evaluate its potential utility for delineating intra-prostatic tumors in a population of patients with localized PCa. METHODS 39 men with presumed localized PCa underwent dynamic/static abdomen-pelvic 11C-Acetate PET/CT for 30-minutes and 3T multi-parametric (MP) MRI prior to prostatectomy. PET/CT images were registered to MRI using pelvic bones for initial rotation-translation, followed by manual adjustments to account for prostate motion and deformation from the MRI endorectal coil. Whole-mount pathology specimens were sectioned using an MRI-based patient specific mold resulting in improved registration between the MRI, PET and pathology. 11C-Acetate PET standardized uptake values were compared with MP-MRI and pathology. RESULTS 11C-Acetate uptake was rapid but reversible, peaking at 3–5 minutes post-injection and reaching a relative plateau at ~10 minutes. The average SUVmax(10–12min) of tumors was significantly higher than that of normal prostate tissue (4.4±2.05, range 1.8–9.2 vs. 2.1±0.94, range 0.7–3.4; p<0.001); however it was not significantly different from benign prostatic hyperplasia (4.8±2.01; range 1.8–8.8). A sector-based comparison with histopathology, including all tumors > 0.5 cm, revealed a sensitivity and specificity of 61.6 % and 80.0 % for 11C-Acetate PET/CT, and 82.3% and 95.1% for MRI, respectively. Considering only tumors >0.9 cm the 11C-Acetate accuracy was comparable to that of MRI. In a small cohort (n=9), 11C-Acetate uptake was independent of fatty acid synthase expression based on immunohistochemistry. CONCLUSION 11C-Acetate PET/CT demonstrates higher uptake in tumor foci than normal prostate tissue; however 11C-Acetate uptake in tumors is similar to BPH nodules. While 11C-Acetate PET/CT is not

  12. [18F]fallypride dopamine D2 receptor studies using delayed microPET scans and a modified Logan plot

    PubMed Central

    Tantawy, Mohammed N.; Jones, Carrie K.; Baldwin, Ronald M.; Ansari, M. Sib; Conn, P. Jeffrey; Kessler, Robert M.; Peterson, Todd E.

    2009-01-01

    [18F]fallypride PET studies can be used to estimate the non-displaceable binding potential (BPND) in vivo of dopamine D2/D3 receptor-rich regions of the brain. These studies often take considerable time, up to two or more hours, limiting the throughput. In this work, we investigated whether limited-duration scans performed subsequent to tracer administration yielded stable BPND estimates. In particular, we applied a modified version of the Logan plot method on the last 60 min of 120 min data and compared the results to those from analysis of the full data set. Methods Fourteen male Sprague-Dawley rats were injected with [18F]fallypride intravenously while under isoflurane anesthesia and dynamic data were acquired on the microPET Focus 220 for 120 min. The distribution volume ratio (DVR = BPND + 1) was calculated from a Logan plot using 120 min of data and from a modified version using only the last 60 min. Three of these rats were imaged again on a second day to test the reproducibility. A two-tissue compartment model also was used to fit the time activity curves (TACs) of the 120 min scans to estimate the parameters K1, k2, kon, k4, and Bmax. These parameters then were used to simulate similar TACs while changing kon to reflect changes in the dopaminergic system. The simulated TACs were used as a means for exploring the differences in DVR estimates between the last 60 min only and the full 120 min of simulated data. Results The average DVR from the full 120 min scans was 13.8 ± 0.9 whereas the average distribution volume ratio estimated from only the last 60 min of data (DVR′) was 16.3 ± 1.0. The distribution volume ratio estimates showed good reproducibility in the three rats (mean DVR = 13.8 ± 1.5 on Day 1 and DVR = 13.8 ± 0.9 on Day 2). The simulations showed that the relationship between DVR′ and DVR estimates follows a semi-linear form with varying kon. Conclusion Although the BPND estimates are slightly overestimated in a delayed scan mode (i.e. no

  13. A feasibility study of a PET/MRI insert detector using strip-line and waveform sampling data acquisition

    NASA Astrophysics Data System (ADS)

    Kim, H.; Chen, C.-T.; Eclov, N.; Ronzhin, A.; Murat, P.; Ramberg, E.; Los, S.; Wyrwicz, A. M.; Li, L.; Kao, C.-M.

    2015-06-01

    We are developing a time-of-flight Positron Emission Tomography (PET) detector by using silicon photo-multipliers (SiPM) on a strip-line and high speed waveform sampling data acquisition. In this design, multiple SiPMs are connected on a single strip-line and signal waveforms on the strip-line are sampled at two ends of the strip to reduce readout channels while fully exploiting the fast time response of SiPMs. In addition to the deposited energy and time information, the position of the hit SiPM along the strip-line is determined by the arrival time difference of the waveform. Due to the insensitivity of the SiPMs to magnetic fields and the compact front-end electronics, the detector approach is highly attractive for developing a PET insert system for a magnetic resonance imaging (MRI) scanner to provide simultaneous PET/MR imaging. To investigate the feasibility, experimental tests using prototype detector modules have been conducted inside a 9.4 T small animal MRI scanner (Bruker BioSpec 94/30 imaging spectrometer). On the prototype strip-line board, 16 SiPMs (5.2 mm pitch) are installed on two strip-lines and coupled to 2×8 LYSO scintillators (5.0×5.0×10.0 mm3 with 5.2 mm pitch). The outputs of the strip-line boards are connected to a Domino-Ring-Sampler (DRS4) evaluation board for waveform sampling. Preliminary experimental results show that the effect of interference on the MRI image due to the PET detector is negligible and that PET detector performance is comparable with the results measured outside the MRI scanner.

  14. A feasibility study of a PET/MRI insert detector using strip-line and waveform sampling data acquisition.

    PubMed

    Kim, H; Chen, C-T; Eclov, N; Ronzhin, A; Murat, P; Ramberg, E; Los, S; Wyrwicz, Alice M; Li, Limin; Kao, C-M

    2015-06-01

    We are developing a time-of-flight Positron Emission Tomography (PET) detector by using silicon photo-multipliers (SiPM) on a strip-line and high speed waveform sampling data acquisition. In this design, multiple SiPMs are connected on a single strip-line and signal waveforms on the strip-line are sampled at two ends of the strip to reduce readout channels while fully exploiting the fast time response of SiPMs. In addition to the deposited energy and time information, the position of the hit SiPM along the strip-line is determined by the arrival time difference of the waveform. Due to the insensitivity of the SiPMs to magnetic fields and the compact front-end electronics, the detector approach is highly attractive for developing a PET insert system for a magnetic resonance imaging (MRI) scanner to provide simultaneous PET/MR imaging. To investigate the feasibility, experimental tests using prototype detector modules have been conducted inside a 9.4 Tesla small animal MRI scanner (Bruker BioSpec 94/30 imaging spectrometer). On the prototype strip-line board, 16 SiPMs (5.2 mm pitch) are installed on two strip-lines and coupled to 2 × 8 LYSO scintillators (5.0 × 5.0 × 10.0 mm(3) with 5.2 mm pitch). The outputs of the strip-line boards are connected to a Domino-Ring-Sampler (DRS4) evaluation board for waveform sampling. Preliminary experimental results show that the effect of interference on the MRI image due to the PET detector is negligible and that PET detector performance is comparable with the results measured outside the MRI scanner.

  15. A feasibility study of a PET/MRI insert detector using strip-line and waveform sampling data acquisition

    PubMed Central

    Kim, H.; Chen, C.-T.; Eclov, N.; Ronzhin, A.; Murat, P.; Ramberg, E.; Los, S.; Wyrwicz, Alice M.; Li, Limin; Kao, C.-M.

    2014-01-01

    We are developing a time-of-flight Positron Emission Tomography (PET) detector by using silicon photo-multipliers (SiPM) on a strip-line and high speed waveform sampling data acquisition. In this design, multiple SiPMs are connected on a single strip-line and signal waveforms on the strip-line are sampled at two ends of the strip to reduce readout channels while fully exploiting the fast time response of SiPMs. In addition to the deposited energy and time information, the position of the hit SiPM along the strip-line is determined by the arrival time difference of the waveform. Due to the insensitivity of the SiPMs to magnetic fields and the compact front-end electronics, the detector approach is highly attractive for developing a PET insert system for a magnetic resonance imaging (MRI) scanner to provide simultaneous PET/MR imaging. To investigate the feasibility, experimental tests using prototype detector modules have been conducted inside a 9.4 Tesla small animal MRI scanner (Bruker BioSpec 94/30 imaging spectrometer). On the prototype strip-line board, 16 SiPMs (5.2 mm pitch) are installed on two strip-lines and coupled to 2 × 8 LYSO scintillators (5.0 × 5.0 × 10.0 mm3 with 5.2 mm pitch). The outputs of the strip-line boards are connected to a Domino-Ring-Sampler (DRS4) evaluation board for waveform sampling. Preliminary experimental results show that the effect of interference on the MRI image due to the PET detector is negligible and that PET detector performance is comparable with the results measured outside the MRI scanner. PMID:25937685

  16. Joint Segmentation of Anatomical and Functional Images: Applications in Quantification of Lesions from PET, PET-CT, MRI-PET, and MRI-PET-CT Images

    PubMed Central

    Bagci, Ulas; Udupa, Jayaram K.; Mendhiratta, Neil; Foster, Brent; Xu, Ziyue; Yao, Jianhua; Chen, Xinjian; Mollura, Daniel J.

    2013-01-01

    We present a novel method for the joint segmentation of anatomical and functional images. Our proposed methodology unifies the domains of anatomical and functional images, represents them in a product lattice, and performs simultaneous delineation of regions based on random walk image segmentation. Furthermore, we also propose a simple yet effective object/background seed localization method to make the proposed segmentation process fully automatic. Our study uses PET, PET-CT, MRI-PET, and fused MRI-PET-CT scans (77 studies in all) from 56 patients who had various lesions in different body regions. We validated the effectiveness of the proposed method on different PET phantoms as well as on clinical images with respect to the ground truth segmentation provided by clinicians. Experimental results indicate that the presented method is superior to threshold and Bayesian methods commonly used in PET image segmentation, is more accurate and robust compared to the other PET-CT segmentation methods recently published in the literature, and also it is general in the sense of simultaneously segmenting multiple scans in real-time with high accuracy needed in routine clinical use. PMID:23837967

  17. TU-AB-BRA-05: Repeatability of [F-18]-NaF PET Imaging Biomarkers for Bone Lesions: A Multicenter Study

    SciTech Connect

    Lin, C; Bradshaw, T; Perk, T; Harmon, S; Jeraj, R; Liu, G

    2015-06-15

    Purpose: Quantifying the repeatability of imaging biomarkers is critical for assessing therapeutic response. While therapeutic efficacy has been traditionally quantified by SUV metrics, imaging texture features have shown potential for use as quantitative biomarkers. In this study we evaluated the repeatability of quantitative {sup 18}F-NaF PET-derived SUV metrics and texture features in bone lesions from patients in a multicenter study. Methods: Twenty-nine metastatic castrate-resistant prostate cancer patients received whole-body test-retest NaF PET/CT scans from one of three harmonized imaging centers. Bone lesions of volume greater than 1.5 cm{sup 3} were identified and automatically segmented using a SUV>15 threshold. From each lesion, 55 NaF PET-derived texture features (including first-order, co-occurrence, grey-level run-length, neighbor gray-level, and neighbor gray-tone difference matrix) were extracted. The test-retest repeatability of each SUV metric and texture feature was assessed with Bland-Altman analysis. Results: A total of 315 bone lesions were evaluated. Of the traditional SUV metrics, the repeatability coefficient (RC) was 12.6 SUV for SUVmax, 2.5 SUV for SUVmean, and 4.3 cm{sup 3} for volume. Their respective intralesion coefficients of variation (COVs) were 12%, 17%, and 6%. Of the texture features, COV was lowest for entropy (0.03%) and highest for kurtosis (105%). Lesion intraclass correlation coefficient (ICC) was lowest for maximum correlation coefficient (ICC=0.848), and highest for entropy (ICC=0.985). Across imaging centers, repeatability of texture features and SUV varied. For example, across imaging centers, COV for SUVmax ranged between 11–23%. Conclusion: Many NaF PET-derived SUV metrics and texture features for bone lesions demonstrated high repeatability, such as SUVmax, entropy, and volume. Several imaging texture features demonstrated poor repeatability, such as SUVtotal and SUVstd. These results can be used to establish

  18. Evaluation of prefrontal—hippocampal effective connectivity following 24 hours of estrogen infusion: An FDG-PET study

    PubMed Central

    Ottowitz, William E.; Siedlecki, Karen L.; Lindquist, Martin A.; Dougherty, Darin D.; Fischman, Alan J.; Hall, Janet E.

    2009-01-01

    Summary Although several functional neuroimaging studies have addressed the relevance of hormones to cerebral function, none have evaluated the effects of hormones on network effective connectivity. Since estrogen enhances synaptic connectivity and has been shown to drive activity across neural systems, and because the hippocampus and prefrontal cortex (PFC) are putative targets for the effects of estrogen, we hypothesized that effective connectivity between these regions would be enhanced by an estrogen challenge. In order to test this hypothesis, FDG-PET scans were collected in eleven postmenopausal women at baseline and 24 h after a graded estrogen infusion. Subtraction analysis (SA) was conducted to identify sites of increased cerebral glucose uptake (CMRglc) during estrogen infusion. The lateral PFC and hippocampus were a priori sites for activation; SA identified the right superior frontal gyrus (RSFG; MNI coordinates 18, 60, 28) (SPM2, Wellcome Dept. of Cognitive Neurology, London, UK) as a site of increased CMRglc during estrogen infusion relative to baseline. Omnibus covariate analysis conducted relative to the RSFG identified the right hippocampus (MNI coordinates: 32, −32, −6) and right middle frontal gyrus (RMFG; MNI coordinates: 40, 22, 52) as sites of covariance. Path analysis (Amos 5.0 software) revealed that the path coefficient for the RSFG to RHIP path differed from zero only during E2 infusion (p < 0.05); moreover, the magnitude of the path coefficient for the RHIP to RMFG path showed a significant further increase during the estrogen infusion condition relative to baseline [Δχ2 = 4.05, Δd.f. = 1, p = 0.044]. These findings are consistent with E2 imparting a stimulatory effect on effective connectivity within prefrontal—hippocampal circuitry. This holds mechanistic significance for resting state network interactions and may hold implications for mood and cognition. PMID:18977091

  19. Black Cohosh has Central Opioid Activity in Postmenopausal Women: Evidence from Naloxone Blockade and PET Neuroimaging Studies

    PubMed Central

    Reame, Nancy E; Lukacs, Jane L; Padmanabhan, Vasantha; Eyvazzadeh, Aimee D.; Smith, Yolanda R.; Zubieta, Jon-Kar

    2010-01-01

    Objective To test whether black cohosh (BC) exhibits an action on the central endogenous opioid system in postmenopausal women. Design A mechanistic study conducted in the same individuals of LH pulsatility with a saline/naloxone (NAL) challenge (n=6) and PET imaging with [11C]carfentanil, a selective μ-opioid receptor radioligand (n= 5), before and after 12 weeks of unblinded treatment with a popular black cohosh daily supplement. Results Black cohosh treatment for 12 weeks at a standard dose (Remifemin, 40 mg/day) had no effect on spontaneous LH pulsatility or estrogen concentrations. With NAL blockade, there was an unexpected suppression of mean LH pulse frequency (saline vs NAL = 9.0+.6 vs 6.0+.7 pulses/16 hrs; p= 0.056), especially during sleep when the mean interpulse interval (IPI) was prolonged by approximately 90 minutes (SAL night IPI = 103± 9 mins vs NAL night IPI = 191± 31min, p = 0.03). There were significant increases in μ-opioid receptor binding potential (BP) in the posterior and subgenual cingulate, temporal and orbitofrontal cortex, thalamus and nucleus accumbens ranging from 10% to 61 % across regions - brain regions involved in emotional and cognitive function. In contrast, BP reductions of lesser magnitude were observed in regions known to be involved in the placebo response (anterior cingulate and anterior insular cortex). Conclusion Using two different challenge paradigms for the examination of central opioid function, a neuropharmacologic action of black cohosh treatment was demonstrated in postmenopausal women. PMID:18521048

  20. The neural correlates of spatial language in English and American Sign Language: a PET study with hearing bilinguals.

    PubMed

    Emmorey, Karen; Grabowski, Thomas; McCullough, Stephen; Ponto, Laura L B; Hichwa, Richard D; Damasio, Hanna

    2005-02-01

    Rather than specifying spatial relations with a closed-class set of prepositions, American Sign Language (ASL) encodes spatial relations using space itself via classifier constructions. In these constructions, handshape morphemes specify object type, and the position of the hands in signing space schematically represents the spatial relation between objects. A [15O]water PET study was conducted to investigate the neural regions engaged during the production of English prepositions and ASL locative classifier constructions in hearing subjects with deaf parents (ASL-English bilinguals). Ten subjects viewed line drawings depicting a spatial relation between two objects and were asked to produce either an ASL locative classifier construction or an English preposition that described the spatial relation. The comparison task was to name the figure object (colored red) in either ASL or in English. Describing spatial relations in either ASL or English engaged parietal cortex bilaterally. However, an interaction analysis revealed that right superior parietal cortex was engaged to a greater extent for ASL than for English. We propose that right parietal cortex is involved in the visual-motoric transformation required for ASL. The production of both English prepositions and ASL nouns engaged Broca's area to a greater extent than ASL classifier constructions. We suggest that Broca's area is not engaged because these constructions do not involve retrieval of the name of an object or the name of a spatial relation. Finally, under the same task conditions, only left parietal activation was observed for monolingual English speakers producing spatial prepositions (H. Damasio et al., 2001, NeuroImage, 13). We conclude that the right hemisphere activation observed for ASL-English bilinguals was due to their life-long experience with spatial language in ASL.

  1. An update on the role of PET/CT and PET/MRI in ovarian cancer.

    PubMed

    Khiewvan, Benjapa; Torigian, Drew A; Emamzadehfard, Sahra; Paydary, Koosha; Salavati, Ali; Houshmand, Sina; Werner, Thomas J; Alavi, Abass

    2017-02-08

    This review article summarizes the role of PET/CT and PET/MRI in ovarian cancer. With regard to the diagnosis of ovarian cancer, the presence of FDG uptake within the ovary of a postmenopausal woman raises the concern for ovarian cancer. Multiple studies show that FDG PET/CT can detect lymph node and distant metastasis in ovarian cancer with high accuracy and may, therefore, alter the management to obtain better clinical outcomes. Although PET/CT staging is superior for N and M staging of ovarian cancer, its role is limited for T staging. Additionally, FDG PET/CT is of great benefit in evaluating treatment response and has prognostic value in patients with ovarian cancer. FDG PET/CT also has value to detect recurrent disease, particularly in patients with elevated serum CA-125 levels and negative or inconclusive conventional imaging test results. PET/MRI may beneficial for tumor staging because MRI has higher soft tissue contrast and no ionizing radiation exposure compared to CT. Some non-FDG PET radiotracers such as (18)F-fluorothymidine (FLT) or (11)C-methionine (MET) have been studied in preclinical and clinical studies as well and may play a role in the evaluation of patients with ovarian cancer.

  2. PET/MR in children. Initial clinical experience in paediatric oncology using an integrated PET/MR scanner.

    PubMed

    Hirsch, Franz Wolfgang; Sattler, Bernhard; Sorge, Ina; Kurch, Lars; Viehweger, Adrian; Ritter, Lutz; Werner, Peter; Jochimsen, Thies; Barthel, Henryk; Bierbach, Uta; Till, Holger; Sabri, Osama; Kluge, Regine

    2013-07-01

    Use of PET/MR in children has not previously been reported, to the best of our knowledge. Children with systemic malignancies may benefit from the reduced radiation exposure offered by PET/MR. We report our initial experience with PET/MR hybrid imaging and our current established sequence protocol after 21 PET/MR studies in 15 children with multifocal malignant diseases. The effective dose of a PET/MR scan was only about 20% that of the equivalent PET/CT examination. Simultaneous acquisition of PET and MR data combines the advantages of the two previously separate modalities. Furthermore, the technique also enables whole-body diffusion-weighted imaging (DWI) and statements to be made about the biological cellularity and nuclear/cytoplasmic ratio of tumours. Combined PET/MR saves time and resources. One disadvantage of PET/MR is that in order to have an effect, a significantly longer examination time is needed than with PET/CT. In our initial experience, PET/MR has turned out to be an unexpectedly stable and reliable hybrid imaging modality, which generates a complementary diagnostic study of great additional value.

  3. Determination of dietary starch in animal feeds and pet food by an enzymatic-colorimetric method: collaborative study.

    PubMed

    Hall, Mary Beth

    2015-01-01

    Starch, glycogen, maltooligosaccharides, and other α-1,4- and α-1,6-linked glucose carbohydrates, exclusive of resistant starch, are collectively termed "dietary starch". This nutritionally important fraction is increasingly measured for use in diet formulation for animals as it can have positive or negative effects on animal performance and health by affecting energy supply, glycemic index, and formation of fermentation products by gut microbes. AOAC Method 920.40 that was used for measuring dietary starch in animal feeds was invalidated due to discontinued production of a required enzyme. As a replacement, an enzymatic-colorimetric starch assay developed in 1997 that had advantages in ease of sample handling and accuracy compared to other methods was considered. The assay was further modified to improve utilization of laboratory resources and reduce time required for the assay. The assay is quasi-empirical: glucose is the analyte detected, but its release is determined by run conditions and specification of enzymes. The modified assay was tested in an AOAC collaborative study to evaluate its accuracy and reliability for determination of dietary starch in animal feedstuffs and pet foods. In the assay, samples are incubated in screw cap tubes with thermostable α-amylase in pH 5.0 sodium acetate buffer for 1 h at 100°C with periodic mixing to gelatinize and partially hydrolyze α-glucan. Amyloglucosidase is added, and the reaction mixture is incubated at 50°C for 2 h and mixed once. After subsequent addition of water, mixing, clarification, and dilution as needed, free + enzymatically released glucose are measured. Values from a separate determination of free glucose are subtracted to give values for enzymatically released glucose. Dietary starch equals enzymatically released glucose multiplied by 162/180 (or 0.9) divided by the weight of the as received sample. Fifteen laboratories that represented feed company, regulatory, research, and commercial feed

  4. Complex-1 activity and 18F-DOPA uptake in genetically engineered mouse model of Parkinson's disease and the neuroprotective role of coenzyme Q10.

    PubMed

    Sharma, Sushil K; El Refaey, Hesham; Ebadi, Manuchair

    2006-06-15

    Regional distribution of coenzyme Q10 and mitochondrial complex-1 activity were estimated in the brains of control-(C57BL/6), metallothionein knock out-, metallothionein transgenic-, and homozygous weaver mutant mice; and human dopaminergic (SK-N-SH) cells with a primary objective to determine the neuroprotective potential of coenzyme Q10 in Parkinson's disease. Complex-1 activity as well as coenzyme Q10 were significantly higher in the cerebral cortex as compared to the striatum in all the genotypes examined. Complex-1 activity and coenzyme Q10 were significantly reduced in weaver mutant mice and metallothionein knock out mice, but were significantly increased in metallothionein transgenic mice. The reduced complex-1 activity and 18F-DOPA uptake occurred concomitantly with negligible differences in the coenzyme Q10 between in the cerebral cortex and striatum of weaver mutant mice. Administration of coenzyme Q10 increased complex-1 activity and partially improved motoric performance in weaver mutant mice. Direct exposure of rotenone also reduced coenzyme Q10, complex-1 activity, and mitochondrial membrane potential in SK-N-SH cells. Rotenone-induced down-regulation of complex-1 activity was attenuated by coenzyme Q10 treatment, suggesting that complex-1 may be down regulated due to depletion of coenzyme Q10 in the brain. Therefore, metallothionein-induced coenzyme Q10 synthesis may provide neuroprotection by augmenting mitochondrial complex-1 activity in Parkinson's disease.

  5. Pet Meds Sending Kids to the ER

    MedlinePlus

    ... study authors said just one poison center in Ohio received more than 1,400 calls for poisoning ... and Policy at Nationwide Children's Hospital in Columbus, Ohio. "However, pets often require medications to keep them ...

  6. Autism spectrum disorder and pet therapy.

    PubMed

    Siewertsen, Caitlin M; French, Emma D; Teramoto, Masaru

    2015-01-01

    Autism Spectrum Disorder (ASD) encompasses a wide range of social and mental afflictions that are difficult to treat. Due to a lack of established treatments for ASD, alternative therapies have been the primary form of intervention. One of these alternatives is pet therapy, a field that has experienced growing interest and has recently accumulated studies that investigate its efficacy. This article reviews and summarizes that effectiveness as well as the findings and limitations associated with pet therapy for ASD. The majority of research on ASD and pet therapy has examined children and has primarily used dogs and horses for therapy. Studies have shown positive effects for the therapy, including high satisfaction rates among the participants' families. Major limitations of studies in the current literature include the lack of control groups and small sample sizes. Future research should incorporate better study designs and large samples to validate pet therapy as an appropriate treatment for ASD.

  7. Pet RX: Implications for Good Health.

    ERIC Educational Resources Information Center

    Wilkes, C. Newton; And Others

    1989-01-01

    Studies reveal that potential health values exist in use of pets in the rehabilitation process. Animal therapy can be a salutary form of rehabilitation if the program is organized, supervised, and implemented in a professional manner. (JD)

  8. PET Imaging of Skull Base Neoplasms.

    PubMed

    Mittra, Erik S; Iagaru, Andrei; Quon, Andrew; Fischbein, Nancy

    2007-10-01

    The utility of 18-F-fluorodeoxyglucose-positron emission tomography (PET) and PET/CT for the evaluation of skull base tumors is incompletely investigated, as a limited number of studies specifically focus on this region with regard to PET imaging. Several patterns can be ascertained, however, by synthesizing the data from various published reports and cases of primary skull base malignancies, as well as head and neck malignancies that extend secondarily to the skull base, including nasopharyngeal carcinoma, nasal cavity and paranasal sinus tumors, parotid cancers, and orbital tumors.

  9. Postapplication Fipronil Exposure Following Use on Pets.

    PubMed

    Cochran, R C; Yu, Liu; Krieger, R I; Ross, J H

    2015-01-01

    Fipronil is a pyrazole acaricide and insecticide that may be used for insect, tick, lice, and mite control on pets. Residents' short-term and long-term postapplication exposures to fipronil, including secondary environmental exposures, were estimated using data from chemical-specific studies. Estimations of acute (24-h) absorbed doses for residents were based on U.S. Environmental Protection Agency (U.S. EPA) 2012 standard operating procedures (SOPs) for postapplication exposure. Chronic exposures were not estimated for residential use, as continuous, long-term application activities were unlikely to occur. Estimated acute postapplication absorbed doses were as high as 0.56 μg/kg-d for toddlers (1-2 yr) in households with treated pets based on current U.S. EPA SOPs. Acute toddler exposures estimated here were fivefold larger in comparison to adults. Secondary exposure from the household environment in which a treated pet lives that is not from contacting the pet, but from contacting the house interior to which pet residues were transferred, was estimated based on monitoring socks worn by pet owners. These secondary exposures were more than an order of magnitude lower than those estimated from contacting the pet and thus may be considered negligible.

  10. Novel system using microliter order sample volume for measuring arterial radioactivity concentrations in whole blood and plasma for mouse PET dynamic study

    NASA Astrophysics Data System (ADS)

    Kimura, Yuichi; Seki, Chie; Hashizume, Nobuya; Yamada, Takashi; Wakizaka, Hidekatsu; Nishimoto, Takahiro; Hatano, Kentaro; Kitamura, Keishi; Toyama, Hiroshi; Kanno, Iwao

    2013-11-01

    This study aimed to develop a new system, named CD-Well, for mouse PET dynamic study. CD-Well allows the determination of time-activity curves (TACs) for arterial whole blood and plasma using 2-3 µL of blood per sample; the minute sample size is ideal for studies in small animals. The system has the following merits: (1) measures volume and radioactivity of whole blood and plasma separately; (2) allows measurements at 10 s intervals to capture initial rapid changes in the TAC; and (3) is compact and easy to handle, minimizes blood loss from sampling, and delay and dispersion of the TAC. CD-Well has 36 U-shaped channels. A drop of blood is sampled into the opening of the channel and stored there. After serial sampling is completed, CD-Well is centrifuged and scanned using a flatbed scanner to define the regions of plasma and blood cells. The length measured is converted to volume because the channels have a precise and uniform cross section. Then, CD-Well is exposed to an imaging plate to measure radioactivity. Finally, radioactivity concentrations are computed. We evaluated the performance of CD-Well in in vitro measurement and in vivo 18F-fluorodeoxyglucose and [11C]2-carbomethoxy-3β-(4-fluorophenyl) tropane studies. In in vitro evaluation, per cent differences (mean±SE) from manual measurement were 4.4±3.6% for whole blood and 4.0±3.5% for plasma across the typical range of radioactivity measured in mouse dynamic study. In in vivo studies, reasonable TACs were obtained. The peaks were captured well, and the time courses coincided well with the TAC derived from PET imaging of the heart chamber. The total blood loss was less than 200 µL, which had no physiological effect on the mice. CD-Well demonstrates satisfactory performance, and is useful for mouse PET dynamic study.

  11. Large Variation in Brain Exposure of Reference CNS Drugs: a PET Study in Nonhuman Primates

    PubMed Central

    Varnäs, Katarina; Lundquist, Stefan; Nakao, Ryuji; Amini, Nahid; Takano, Akihiro; Finnema, Sjoerd J.; Halldin, Christer; Farde, Lars

    2015-01-01

    Background: Positron emission tomography microdosing of radiolabeled drugs allows for noninvasive studies of organ exposure in vivo. The aim of the present study was to examine and compare the brain exposure of 12 commercially available CNS drugs and one non-CNS drug. Methods: The drugs were radiolabeled with 11C (t 1/2 = 20.4 minutes) and examined using a high resolution research tomograph. In cynomolgus monkeys, each drug was examined twice. In rhesus monkeys, a first positron emission tomography microdosing measurement was repeated after preadministration with unlabeled drug to examine potential dose-dependent effects on brain exposure. Partition coefficients between brain and plasma (K P) were calculated by dividing the AUC0-90 min for brain with that for plasma or by a compartmental analysis (V T). Unbound K P (K P u,u) was obtained by correction for the free fraction in brain and plasma. Results: After intravenous injection, the maximum radioactivity concentration (C max, %ID) in brain ranged from 0.01% to 6.2%. For 10 of the 12 CNS drugs, C max, %ID was >2%, indicating a preferential distribution to brain. A lower C max, %ID was observed for morphine, sulpiride, and verapamil. K P ranged from 0.002 (sulpiride) to 68 (sertraline) and 7 of 13 drugs had K P u,u close to unity. For morphine, sulpiride, and verapamil, K P u,u was <0.3, indicating impaired diffusion and/or active efflux. Brain exposure at microdosing agreed with pharmacological dosing conditions for the investigated drugs. Conclusions: This study represents the largest positron emission tomography study on brain exposure of commercially available CNS drugs in nonhuman primates and may guide interpretation of positron emission tomography microdosing data for novel drug candidates. PMID:25813017

  12. Feasibility study of an avalanche photodiode readout for a high resolution PET with nsec time resolution

    SciTech Connect

    Schmelz, C.; Ziegler, S.; Bradbury, S.M.; Holl, I.; Lorenz, E.; Renker, D.

    1995-08-01

    A feasibility study for a high resolution positron emission tomograph, based on 9.5 x 4 x 4 mm{sup 3} LSO crystals viewed by 3 mm diameter avalanche photodiodes, has been carried out. Using a Na{sup 22} source the authors determined a spatial resolution of 2.3 {+-} 0.1 mm, an energy resolution around 15 % and a time resolution of 2.6 nsec. Possible configurations for larger scale tests and a tomograph are given.

  13. My Pet Rock

    ERIC Educational Resources Information Center

    Lark, Adam; Kramp, Robyne; Nurnberger-Haag, Julie

    2008-01-01

    Many teachers and students have experienced the classic pet rock experiment in conjunction with a geology unit. A teacher has students bring in a "pet" rock found outside of school, and the students run geologic tests on the rock. The tests include determining relative hardness using Mohs scale, checking for magnetization, and assessing luster.…

  14. Improving Instruction through PET.

    ERIC Educational Resources Information Center

    Evans, Pamela Roland

    1982-01-01

    Outlines the content and training methods used in the Program for Effective Teaching (PET), the successful staff development program of Newport News (Virginia). PET promotes application of five instructional skills: selecting learning objectives, teaching to the objectives, establishing learner focus, monitoring learner progress, and enhancing…

  15. Mobile PET Center Project

    NASA Astrophysics Data System (ADS)

    Ryzhikova, O.; Naumov, N.; Sergienko, V.; Kostylev, V.

    2017-01-01

    Positron emission tomography is the most promising technology to monitor cancer and heart disease treatment. Stationary PET center requires substantial financial resources and time for construction and equipping. The developed mobile solution will allow introducing PET technology quickly without major investments.

  16. Pharmaceutical development of novel lactate-based 6-fluoro-l-DOPA formulations.

    PubMed

    Denora, Nunzio; Lopedota, Angela; de Candia, Modesto; Cellamare, Saverio; Degennaro, Leonardo; Luisi, Renzo; Mele, Antonietta; Tricarico, Domenico; Cutrignelli, Annalisa; Laquintana, Valentino; Altomare, Cosimo D; Franco, Massimo; Dimiccoli, Vincenzo; Tolomeo, Anna; Scilimati, Antonio

    2017-03-01

    6-[(18)F]fluoro-l-dihydroxyphenylalanine ((18)F-DOPA) is a diagnostic positron emission tomography (PET) agent, which has been used for decades in imaging the loss of dopaminergic neurons in Parkinson's disease, and more recently to detect, stage and restage neuroendocrine tumors (NETs) and to search for recurrence of viable glioma tissue. The commercially available (18)F-DOPA PET radiopharmaceutical for diagnostic use in European Union countries, is formulated in an aqueous solution of acetic acid (1.05mg/mL) and has the disadvantages that, immediately before injection, the pH must be adjusted to 4.0-5.0 by the addition of a sterile solution of sodium bicarbonate (84mg/mL) causing a light and transient burning sensation at the injection site. To overcome these drawbacks, preformulation studies were accomplished to confirm that F-DOPA degradation was affected by pH. Hence, two formulations of F-DOPA, namely ND1 and ND2, were prepared maintaining the pH=5.0 using 1mM l-(+)-lactate buffer, excluding oxygen, and incorporating in the formula the chelating agent Na2EDTA (1mM). F-DOPA oxygen exposure, the presence of free metal cations in formulation and high pH values seem to promote F-DOPA degradation. The resulting formulations proved to guarantee the chemical stability of F-DOPA in solution at pH5.0, value also compatible with the direct infusion. In vitro cell viability tests on mouse skeletal muscle fibers, renal tsa201 and neuronal SH-SY5Y cell lines, and in vivo studies in rats reported elsewhere, showed cell tolerability to the new F-DOPA formulations providing the basis for their further in vivo evaluation.

  17. PET with radiolabeled aminoacid.

    PubMed

    Crippa, F; Alessi, A; Serafini, G L

    2012-04-01

    Since the clinical introduction of FDG, neuroimaging has been the first area of PET application in oncology. Later, while FDG-PET became progressively a key imaging modality in the management of the majority of malignancies outside the brain, its neuro-oncologic indications faced some limitations because of the unfavourable characteristics of FDG as brain tumor-seeking agent. PET applications in neuro-oncology have received new effectiveness by the advent of positron-emission labelled amino acids, so that it has been coined the term "Amino acid PET" to differentiate this imaging tool from FDG-PET. Radiolabeled amino acids are a very interesting class of PET tracers with great diagnostic potential in neuro-oncology because of their low uptake in normal brain and, conversely, high uptake in most brain tumors including low-grade gliomas. The present article surveys the results obtained using L-[methyl-11C]Methionine (MET), that has been the ancestor of PET amino acid tracers and is still the most popular amino acid imaging modality in oncology, and stresses the important role that this diagnostic modality can play in the evaluation of brain tumors. However, the use of MET is restricted to PET centers with an in-house cyclotron and radiochemistry facility, because of the short half-life (20 min) of 11C. The promising results of MET have stimulated the development of 18F-labelled aminoacid tracers, particularly O-(2-18F-fluoeoethyl1)-L-tyrosine (FET), that has the same properties of MET and, thanks to the longer half-life of 18F (about 110 min), allows a distribution strategy from a production tracer site to user satellite PET centers. Considering a more widespread use of Amino acid PET, together with the recent development of integrated PET-MRI imaging systems, and the oncoming clinical validation of other interesting PET tracers, i.e. FMISO or 18F-FAZA for hypoxia imaging and FLT for tumor proliferation imaging, it can be reasonably expected that metabolic imaging

  18. Imaging corn plants with PhytoPET, a modular PET system for plant biology

    SciTech Connect

    Lee, S.; Kross, B.; McKisson, J.; McKisson, J. E.; Weisenberger, A. G.; Xi, W.; Zorn, C.; Bonito, G.; Howell, C. R.; Reid, C. D.; Crowell, A.; Cumberbatch, L. C.; Topp, C.; Smith, M. F.

    2013-11-01

    PhytoPET is a modular positron emission tomography (PET) system designed specifically for plant imaging. The PhytoPET design allows flexible arrangements of PET detectors based on individual standalone detector modules built from single Hamamatsu H8500 position sensitive photomultiplier tubes and pixelated LYSO arrays. We have used the PhytoPET system to perform preliminary corn plant imaging studies at the Duke University Biology Department Phytotron. Initial evaluation of the PhytoPET system to image the biodistribution of the positron emitting tracer {sup 11}C in corn plants is presented. {sup 11}CO{sub 2} is loaded into corn seedlings by a leaf-labeling cuvette and translocation of {sup 11}C-sugars is imaged by a flexible arrangement of PhytoPET modules on each side. The PhytoPET system successfully images {sup 11}C within corn plants and allows for the dynamic measurement of {sup 11}C-sugar translocation from the leaf to the roots.

  19. Hemiballism-hemichorea induced by ketotic hyperglycemia: case report with PET study and review of the literature

    PubMed Central

    2014-01-01

    Hemiballism-hemichorea (HB-HC) is commonly used to describe the basal ganglion dysfunction in non-ketotic hyperglycemic elderly patients. Here we report two elderly female patients with acute onset of involuntary movements induced by hyperglycemia with positive urine ketones. We described the computed tomography and magnetic resonance imaging findings in these two patients, which is similar to that of non-ketotic hyperglycemic HB-HC patients. FDG-PET was performed and the glucose metabolism in the corresponding lesion in these two patients was contradictory with each other. We tried to clarify the underlying mechanisms of HB-HC and explain the contradictory neuroradiological findings in FDG-PET as being performed at different clinical stages. PMID:25031834

  20. A PET study of cerebellar metabolism in normal and abnormal states

    SciTech Connect

    Kushner, M.; Alavi, A.; Chawluk, J.; Silver, F.; Dann, R.; Rosen, M.; Reivich, M.

    1985-05-01

    The authors studied cerebellar metabolism under varying conditions of sensory stimulation. Cerebellar glucose consumption was measured by positron emission scanning and 18F-fluorodeoxyglucose in 64 subjects. Cerebellar metabolism relative to the whole brain (CM), and the asymmetry of metabolism between the cerebellar hemispheres (CA) was determined. The lowest CM occurred with maximal sensory deprivation, eyes and ears closed, (CM=96%, n=6). CM increased nonsignificantly with visual stimulation (CM=99%,n=17) and was highest for auditory stimulation (CM=104%,n=10,p<.05). CA was unaffected by sensory input. Under ambient conditions the CM values were 101%, 113% and 135% respectively for young controls (n=9, age=22), old controls (n=8, age=61) and Alzheimer patients (SDAT, n=14, age=69). This difference was significant for SDAT vs young and old controls and was nearly significant for young vs old controls.

  1. Serotonin transporter occupancy with TCAs and SSRIs: a PET study in patients with major depressive disorder.

    PubMed

    Lundberg, Johan; Tiger, Mikael; Landén, Mikael; Halldin, Christer; Farde, Lars

    2012-09-01

    The aim of the present clinical positron emission tomography study was to examine if the 5-HTT is a common target, both for tricyclic antidepressants (TCAs) and selective serotonin reuptake inhibitors (SSRIs). Serotonin transporter (5-HTT) occupancy was estimated during treatment with TCA, SSRI and mirtazapine in 20 patients in remission from depression. The patients were recruited from out-patient units and deemed as responders to antidepressive treatment. The radioligand [¹¹C]MADAM was used to determine the 5-HTT binding potential. The mean 5-HTT occupancy was 67% (range 28-86%). There was no significant difference in 5-HTT occupancy between TCA (n=5) and SSRI (n=14). 5-HTT affinity correlated with the recommended clinical dose. Mirtazapine did not occupy the serotonin transporter. The results support that TCAs and SSRIs have a shared mechanism of action by inhibition of 5-HTT.

  2. Does pet arrival trigger prosocial behaviors in individuals with autism?

    PubMed

    Grandgeorge, Marine; Tordjman, Sylvie; Lazartigues, Alain; Lemonnier, Eric; Deleau, Michel; Hausberger, Martine

    2012-01-01

    Alteration of social interactions especially prosocial behaviors--an important aspect of development--is one of the characteristics of autistic disorders. Numerous strategies or therapies are used to improve communication skills or at least to reduce social impairments. Animal-assisted therapies are used widely but their relevant benefits have never been scientifically evaluated. In the present study, we evaluated the association between the presence or the arrival of pets in families with an individual with autism and the changes in his or her prosocial behaviors. Of 260 individuals with autism--on the basis of presence or absence of pets--two groups of 12 individuals and two groups of 8 individuals were assigned to: study 1 (pet arrival after age of 5 versus no pet) and study 2 (pet versus no pet), respectively. Evaluation of social impairment was assessed at two time periods using the 36-items ADI-R algorithm and a parental questionnaire about their child-pet relationships. The results showed that 2 of the 36 items changed positively between the age of 4 to 5 (t(0)) and time of assessment (t(1)) in the pet arrival group (study 1): "offering to share" and "offering comfort". Interestingly, these two items reflect prosocial behaviors. There seemed to be no significant changes in any item for the three other groups. The interactions between individuals with autism and their pets were more--qualitatively and quantitatively--reported in the situation of pet arrival than pet presence since birth. These findings open further lines of research on the impact of pet's presence or arrival in families with an individual with autism. Given the potential ability of individuals with autism to develop prosocial behaviors, related studies are needed to better understand the mechanisms involved in the development of such child-pet relationship.

  3. Study of PET scanner designs using clinical metrics to optimize the scanner axial FOV and crystal thickness

    NASA Astrophysics Data System (ADS)

    Surti, S.; Werner, M. E.; Karp, J. S.

    2013-06-01

    The aim of this study is to understand the trade-off between crystal thickness and scanner axial field-of-view FOV (AFOV) for clinical PET imaging. Clinical scanner design has evolved towards 20-25 mm thick crystals and 16-22 cm long scanner AFOV, as well as time-of-flight (TOF) imaging. While Monte Carlo studies demonstrate that longer AFOV and thicker crystals will lead to higher scanner sensitivity, cost has prohibited the building of commercial scanners with >22 cm AFOV. In this study, we performed a series of system simulations to optimize the use of a given amount of crystal material by evaluating the impact on system sensitivity and noise equivalent counts (NEC), as well as image quality in terms of lesion detectability. We evaluated two crystal types (LSO and LaBr3) and fixed the total crystal volume used for each type (8.2 L of LSO and 17.1 L of LaBr3) while varying the crystal thickness and scanner AFOV. In addition, all imaging times were normalized so that the total scan time needed to scan a 100 cm long object with multiple bed positions was kept constant. Our results show that the highest NEC cm-1 in a 35 cm diameter ×70 cm long line source cylinder is achieved for an LSO scanner with 10 mm long crystals and AFOV of 36 cm, while for LaBr3 scanners, the highest NEC cm-1 is obtained with 20 mm long crystals and an AFOV of 38 cm. Lesion phantom simulations show that the best lesion detection performance is achieved in scanners with long AFOV (≥36 cm) and using thin crystals (≤10 mm of LSO and ≤20 mm of LaBr3). This is due to a combination of improved NEC, as well as improved lesion contrast estimation due to better spatial resolution in thinner crystals. Alternatively, for lesion detection performance similar to that achieved in standard clinical scanner designs, the long AFOV scanners can be used to reduce the total scan time without increasing the amount of crystal used in the scanner. In addition, for LaBr3 based scanners, the reduced lesion

  4. Study of PET scanner designs using clinical metrics to optimize the scanner axial FOV and crystal thickness

    PubMed Central

    Surti, S; Werner, M E; Karp, J S

    2013-01-01

    The aim of this study is to understand the trade-off between crystal thickness and scanner axial FOV (AFOV) for clinical PET imaging. Clinical scanner design has evolved towards 20–25 mm thick crystals and 16–22 cm long scanner AFOV, as well as time-of-flight (TOF) imaging. While Monte Carlo studies demonstrate that longer AFOV and thicker crystals will lead to higher scanner sensitivity, cost has prohibited the building of commercial scanners with > 22 cm AFOV. In this study, we performed a series of system simulations to optimize the use of a given amount of crystal material by evaluating the impact on system sensitivity and NEC, as well image quality in terms of lesion detectability. We evaluated two crystal types (LSO and LaBr3) and fixed the total crystal volume used for each type (8.2 liters of LSO and 17.1 liters of LaBr3) while varying the crystal thickness and scanner AFOV. In addition, all imaging times were normalized so that the total scan time needed to scan a 100 cm long object with multiple bed positions was kept constant. Our results show that the highest NEC/cm in a 35 cm diameter×70 cm long line source cylinder is achieved for an LSO scanner with 10 mm long crystals and AFOV of 36 cm while for LaBr3 scanners, the highest NEC/cm is obtained with 20 mm long crystals and an AFOV of 38 cm. Lesion phantom simulations show best lesion detection performance is achieved in scanners with long AFOV (≥ 36 cm) and using thin crystals (≤ 10 mm of LSO and ≤ 20 mm of LaBr3). This is due to a combination of improved NEC, as well as improved lesion contrast estimation due to better spatial resolution in thinner crystals. Alternatively, for lesion detection performance similar to that achieved in standard clinical scanner designs, the long AFOV scanners can be used to reduce the total scan time without increasing the amount of crystal used in the scanner. In addition, for LaBr3 based scanners, the reduced lesion contrast relative to LSO based scanners

  5. Personalizing NSCLC therapy by characterizing tumors using TKI-PET and immuno-PET.

    PubMed

    Bahce, I; Yaqub, M; Smit, E F; Lammertsma, A A; van Dongen, G A M S; Hendrikse, N H

    2016-05-31

    Non-small cell lung cancer (NSCLC) therapy has entered a rapidly advancing era of precision medicine with an ever increasing number of drugs directed against a variety of specific tumor targets. Amongst these new agents, tyrosine kinase inhibitors (TKIs) and monoclonal antibodies (mAbs) are most frequently used. However, as only a sensitive subgroup of patients benefits from targeting drugs, predictive biomarkers are needed. Positron emission tomography (PET) may offer such a biomarker for predicting therapy efficacy. Some of the TKIs and mAbs that are in clinical use can be radioactively labeled and used as tracers. PET can visualize and quantify tumor specific uptake of radiolabeled targeting drugs, allowing for characterization of their pharmacokinetic behavior. In this review, the clinical potential of PET using radiolabeled TKIs (TKI-PET) and mAbs (immuno-PET) in NSCLC is discussed, and an overview is provided of the most relevant preclinical and clinical studies.

  6. 18F-FDG PET/CT can predict survival of advanced hepatocellular carcinoma patients: A multicenter retrospective cohort study.

    PubMed

    Na, Sae Jung; Oh, Jin Kyoung; Hyun, Seung Hyup; Lee, Jeong Won; Hong, Il Ki; Song, Bong-Il; Kim, Tae-Sung; Eo, Jae Seon; Lee, Sung Won; Yoo, Ie Ryung; Chung, Yong An; Yun, Mijin

    2016-10-27

    Barcelona Clinic Liver Cancer (BCLC) stage C hepatocellular carcinoma (HCC) consists of a heterogeneous group of patients with a wide range of survival times, requiring further prognostic stratification to facilitate treament allocation. We evaluated the prognostic value of (18)F-flurodeoxyglucose ((18)F-FDG) uptake on positron emission tomography/computed tomography (PET/CT) at the time of presentation in patients with BCLC stage C HCC.

  7. Response to Deep Brain Stimulation in Three Brain Targets with Implications in Mental Disorders: A PET Study in Rats

    PubMed Central

    Casquero-Veiga, Marta; Hadar, Ravit; Pascau, Javier; Winter, Christine; Desco, Manuel; Soto-Montenegro, María Luisa

    2016-01-01

    Objective To investigate metabolic changes in brain networks by deep brain stimulation (DBS) of the medial prefrontal cortex (mPFC), nucleus accumbens (NAcc) and dorsomedial thalamus (DM) using positron emission tomography (PET) in naïve rats. Methods 43 male Wistar rats underwent stereotactic surgery and concentric bipolar platinum-iridium electrodes were bilaterally implanted into one of the three brain sites. [18F]-fluoro-2-deoxy-glucose-PET (18FDG-PET) and computed tomography (CT) scans were performed at the 7th (without DBS) and 9th day (with DBS) after surgery. Stimulation period matched tracer uptake period. Images were acquired with a small-animal PET-CT scanner. Differences in glucose uptake between groups were assessed with Statistical Parametric Mapping. Results DBS induced site-specific metabolic changes, although a common increased metabolic activity in the piriform cortex was found for the three brain targets. mPFC-DBS increased metabolic activity in the striatum, temporal and amygdala, and reduced it in the cerebellum, brainstem (BS) and periaqueductal gray matter (PAG). NAcc-DBS increased metabolic activity in the subiculum and olfactory bulb, and decreased it in the BS, PAG, septum and hypothalamus. DM-DBS increased metabolic activity in the striatum, NAcc and thalamus and decreased it in the temporal and cingulate cortex. Conclusions DBS induced significant changes in 18FDG uptake in brain regions associated with the basal ganglia-thalamo-cortical circuitry. Stimulation of mPFC, NAcc and DM induced different patterns of 18FDG uptake despite interacting with the same circuitries. This may have important implications to DBS research suggesting individualized target selection according to specific neural modulatory requirements. PMID:28033356

  8. PET/MRI for the Evaluation of Patients With Lymphoma: Initial Observations

    PubMed Central

    Heacock, Laura; Weissbrot, Joseph; Raad, Roy; Campbell, Naomi; Friedman, Kent P.; Ponzo, Fabio; Chandarana, Hersh

    2015-01-01

    OBJECTIVE The objective of our study was to assess the role of recently introduced hybrid PET/MRI in the evaluation of lymphoma patients using PET/CT as a reference standard. SUBJECTS AND METHODS In this prospective study 28 consecutive lymphoma patients (18 men, 10 women; mean age, 53.6 years) undergoing clinically indicated PET/ CT were subsequently imaged with PET/MRI using residual FDG activity from the PET/ CT study. Blinded readers evaluated PET/CT (reference standard), PET/MRI, and diffusion-weighted imaging (DWI) studies separately; for each study, they assessed nodal and extranodal involvement. Each FDG-avid nodal station was marked and compared on DWI, PET/MRI, and PET/CT. Modified Ann Arbor staging was performed and compared between PET/MRI and PET/CT. The maximum standardized uptake value (SUVmax) on PET/MRI for FDG-avid nodal lesions was compared with the SUVmax on PET/CT. The apparent diffusion coefficient (ADC) for FDG-avid nodal lesions was compared to SUVmax on PET/MRI. RESULTS Fifty-one FDG-avid nodal groups were identified on PET/CT in 13 patients. PET/MRI identified 51 of these nodal groups with a sensitivity of 100%. DWI identified 32 nodal groups for a sensitivity of 62.7%. PET/MRI staging and PET/CT staging were concordant in 96.4% of patients. For the one patient with discordant staging results, disease was correctly upstaged to stage IV on the basis of the PET/MRI finding of bone marrow involvement, which was missed on PET/CT. DWI staging was concordant with PET/CT staging in 64.3% of the patients. The increased staging accuracy of PET/MRI relative to DWI was significant (p = 0.004). SUVmax measured on PET/MRI and PET/CT showed excellent statistically significant correlation (r = 0.98, p < 0.001). There was a poor negative correlation between ADC and SUVmax (r = −0.036, p = 0.847). CONCLUSION PET/MRI can be used to assess disease burden in lymphoma with sensitivity similar to PET/CT and can be a viable alternative for lymphoma staging and

  9. Preliminary Study of Pet Owner Adherence in Behaviour, Cardiology, Urology, and Oncology Fields.

    PubMed

    Talamonti, Zita; Cassis, Chiara; Brambilla, Paola G; Scarpa, Paola; Stefanello, Damiano; Cannas, Simona; Minero, Michela; Palestrini, Clara

    2015-01-01

    Successful veterinary treatment of animals requires owner adherence with a prescribed treatment plan. The aim of our study was to evaluate and compare the level of adherence of the owners of patients presented for behavioural, cardiological, urological, and oncological problems. At the end of the first examination, each owner completed a questionnaire. Then, the owners were called four times to fill out another questionnaire over the phone. With regard to the first questionnaire, statistically significant data concern behavioral medicine and cardiology. In the first area the owner's worry decreases during the follow-up and the number of owners who would give away the animal increases. In cardiology, owners who think that the pathology harms their animal's quality of life decreased significantly over time. With regard to the 9 additional follow-up questions, in behavioural medicine and urology the owner's discomfort resulting from the animal's pathology significantly decreases over time. Assessment of adherence appears to be an optimal instrument in identifying the positive factors and the difficulties encountered by owners during the application of a treatment protocol.

  10. Amygdala and anterior cingulate cortex activation during affective startle modulation: a PET study of fear.

    PubMed

    Pissiota, Anna; Frans, Orjan; Michelgård, Asa; Appel, Lieuwe; Långström, Bengt; Flaten, Magne Arve; Fredrikson, Mats

    2003-09-01

    The human startle response is modulated by emotional experiences, with startle potentiation associated with negative affect. We used positron emission tomography with 15O-water to study neural networks associated with startle modulation by phobic fear in a group of subjects with specific snake or spider phobia, but not both, during exposure to pictures of their feared and non-feared objects, paired and unpaired with acoustic startle stimuli. Measurement of eye electromyographic activity confirmed startle potentiation during the phobic as compared with the non-phobic condition. Employing a factorial design, we evaluated brain correlates of startle modulation as the interaction between startle and affect, using the double subtraction contrast (phobic startle vs. phobic alone) vs. (non-phobic startle vs. non-phobic alone). As a result of startle potentiation, a significant increase in regional cerebral blood flow was found in the left amygdaloid-hippocampal region, and medially in the affective division of the anterior cingulate cortex (ACC). These results provide evidence from functional brain imaging for a modulatory role of the amygdaloid complex on startle reactions in humans. They also point to the involvement of the affective ACC in the processing of startle stimuli during emotionally aversive experiences. The co-activation of these areas may reflect increased attention to fear-relevant stimuli. Thus, we suggest that the amygdaloid area and the ACC form part of a neural system dedicated to attention and orientation to danger, and that this network modulates startle during negative affect.

  11. Neural substrates of human facial expression of pleasant emotion induced by comic films: a PET Study.

    PubMed

    Iwase, Masao; Ouchi, Yasuomi; Okada, Hiroyuki; Yokoyama, Chihiro; Nobezawa, Shuji; Yoshikawa, Etsuji; Tsukada, Hideo; Takeda, Masaki; Yamashita, Ko; Takeda, Masatoshi; Yamaguti, Kouzi; Kuratsune, Hirohiko; Shimizu, Akira; Watanabe, Yasuyoshi

    2002-10-01

    Laughter or smile is one of the emotional expressions of pleasantness with characteristic contraction of the facial muscles, of which the neural substrate remains to be explored. This currently described study is the first to investigate the generation of human facial expression of pleasant emotion using positron emission tomography and H(2)(15)O. Regional cerebral blood flow (rCBF) during laughter/smile induced by visual comics and the magnitude of laughter/smile indicated significant correlation in the bilateral supplementary motor area (SMA) and left putamen (P < 0.05, corrected), but no correlation in the primary motor area (M1). In the voluntary facial movement, significant correlation between rCBF and the magnitude of EMG was found in the face area of bilateral M1 and the SMA (P < 0.001, uncorrected). Laughter/smile, as opposed to voluntary movement, activated the visual association areas, left anterior temporal cortex, left uncus, and orbitofrontal and medial prefrontal cortices (P < 0.05, corrected), whereas voluntary facial movement generated by mimicking a laughing/smiling face activated the face area of the left M1 and bilateral SMA, compared with laughter/smile (P < 0.05, corrected). We demonstrated distinct neural substrates of emotional and volitional facial expression and defined cognitive and experiential processes of a pleasant emotion, laughter/smile.

  12. A critical period of brain development: studies of cerebral glucose utilization with PET.

    PubMed

    Chugani, H T

    1998-01-01

    Studies with positron emission tomography indicate that the human brain undergoes a period of postnatal maturation that is much more protracted than previously suspected. In the newborn, the highest degree of glucose metabolism (representative of functional activity) is in primary sensory and motor cortex, cingulate cortex, thalamus, brain stem, cerebellar vermis, and hippocampal region. At 2 to 3 months of age, glucose utilization increases in the parietal, temporal, and primary visual cortex; basal ganglia; and cerebellar hemispheres. Between 6 and 12 months, glucose utilization increases in frontal cortex. These metabolic changes correspond to the emergence of various behaviors during the first year of life. The measurement of absolute rates of glucose utilization during development indicates that the cerebral cortex undergoes a dynamic course of metabolic maturation that persists until ages 16-18 years. Initially, there is a rise in the rates of glucose utilization from birth until about age 4 years, at which time the child's cerebral cortex uses over twice as much glucose as that of adults. From age 4 to 10 years, these very high rates of glucose consumption are maintained, and only after then is there a gradual decline of glucose metabolic rates to reach adult values by age 16-18 years. Correlations between glucose utilization rates and synaptogenesis are discussed, and the argument is made that these findings have important implications with respect to human brain plasticity following injury as well as to "critical periods" of maximal learning capacity.

  13. Synthesis and radiopharmaceutical preparation of (ethylenediamine) (1-carbon-11-malonate) platinum(II) for PET studies

    SciTech Connect

    De Spiegeleer, B.; Goethals, P.; Slegers, G.; Gillis, E.; Van den Bossche, W.; De Moerloose, P.

    1988-06-01

    Interest in the distribution, biotransformation, and mechanism of action of anticancer platinum complexes has led to the microscale, semi-automated and remote-controlled synthesis of (ethylenediamine) (1-(/sup 11/C)malonate) platinum(II) (( /sup 11/C)Ptenmal, EDMAL, JM40) from cyclotron-produced (/sup 11/C)cyanide. Carbon-11 cyanoacetate is produced by reacting (/sup 11/C)cyanide with bromoacetate. After hydrolysis, the resulting (/sup 11/C)malonic acid is purified and complexed to (diaquo) (ethylenediamine) platinum(II). Each step of the synthesis was optimized by studying the influence of different variables like reaction time and temperature, pH, necessary purification of intermediates, concentration and ratios of the reactants. Purification of the endproduct is achieved using preparative high performance liquid chromatography. The total incorporation of the (/sup 11/C)cyanide in the final product was 17-40%. After approximately 1 hr, approximately 40 mCi of (/sup 11/C)Ptenmal are produced in 10 ml sterile and isotonic dextrose solution ready for i.v. injection. The specific activity is approximately 200 mCi/mumol at EOB.

  14. Imaging studies for evaluating impact of position sampling techniques in PET scanners

    PubMed Central

    Surti, Suleman; Werner, Matthew E.; Karp, Joel S.

    2011-01-01

    Previously we have evaluated two crystal calibration techniques that can be applied to pixelated detector designs to improve system spatial resolution without detector motion. The inter-crystal positioning technique utilizes sub-sampling in the crystal flood map to better sample the Compton scatter events in the detector. The Compton scatter rejection technique, on the other hand, rejects those events that are located further from individual crystal centers in the flood map. Here we performed imaging studies with a Mini Deluxe hot rod phantom and a hot sphere phantom (sphere diameters of 4.95 and 7.86-mm with 6:1 uptake relative to background) using the standard crystal calibration technique, as well as the inter-crystal and Compton rejection calibration techniques. Our results show improved separation of 1.6-mm diameter hot rods with the two new crystal calibration techniques that is consistent with improved spatial resolution. For the hot sphere phantom the contrast recovery is improved with both the inter-crystal and Compton rejection calibration techniques over the standard calibration technique. The only drawback of the inter-crystal calibration technique is the increase in the number of possible lines-of-response (LORs) (factor of 16) that may slow image reconstruction. With the Compton rejection calibration technique, loss of counts leads to increased noise in the images. PMID:21547006