Sample records for fe al ca

  1. Solid-State Reaction Between Fe-Al-Ca Alloy and Al2O3-CaO-FeO Oxide During Heat Treatment at 1473 K (1200 °C)

    NASA Astrophysics Data System (ADS)

    Liu, Chengsong; Yang, Shufeng; Li, Jingshe; Ni, Hongwei; Zhang, Xueliang

    2017-04-01

    The aim of this study was to control the physicochemical characteristics of inclusions in steel through appropriate heat treatment. Using a confocal scanning laser microscope (CSLM) and pipe furnace, the solid-state reactions between Fe-Al-Ca alloy and Al2O3-CaO-FeO oxide during heat treatment at 1473 K (1200 °C) and the influence of these reactions on the compositions of and phases in the alloy and oxide were investigated by the diffusion couple method. Suitable pretreatment of the oxide using a CSLM and production of the diffusion couple of Fe-Al-Ca alloy and Al2O3-CaO-FeO oxide gave good contact between the alloy and oxide. The diffusion couple was then sealed in a quartz tube with a piece of Ti foil to lower oxygen partial pressure and a block of Fe-Al-Ca alloy was introduced to conduct heat treatment experiments. Solid-state reactions between the alloy and oxide during heat treatment at 1473 K (1200 °C) were analyzed and discussed. A dynamic model to calculate the width of the particle precipitation zone based on the Wagner model of internal oxidation of metal was proposed. This model was helpful to understand the solid-state reaction mechanism between Fe-Al-Ca alloy and Al2O3-CaO-FeO oxide.

  2. Phase Diagram of the Al-Ca-Fe-Si System and Its Application for the Design of Aluminum Matrix Composites

    NASA Astrophysics Data System (ADS)

    Belov, Nikolay A.; Naumova, Evgeniya A.; Akopyan, Torgom K.; Doroshenko, Vitaliy V.

    2018-05-01

    The phase composition of aluminum alloys in the Al-Ca-Fe-Si system, including the distribution of phases in the solid state and solidification reactions, has been studied. It is shown that the addition of iron and silicon to Al-Ca alloys leads to the formation of ternary Al2CaSi2 and Al10CaFe2 compounds. The equilibrium between these compounds implies the occurrence of the quaternary L → Al + Al4Ca + Al2CaSi2 + Al10CaFe2 eutectic reaction. The alloys near this eutectic have the best structure, which is typical of aluminum matrix composites. It is shown that Al-Ca alloys can have high manufacturability during both shape casting and rolling. This is due to the combination of a narrow temperature range of solidification and a favorable morphology for the eutectic, which has a fine structure. The combination of the mechanical and physical properties of the Al-Ca eutectic-based alloys significantly exceed those of branded alloys based on aluminum-silicon eutectics.

  3. Investigations on FCAM-III (Ca2.38Mg2.09Fe3+10.61Fe2+1.59Al9.33O36): A new homologue of the aenigmatite structure-type in the system CaO-MgO-Fe2O3-Al2O3

    NASA Astrophysics Data System (ADS)

    Zöll, Klaus; Kahlenberg, Volker; Krüger, Hannes; Tropper, Peter

    2018-02-01

    In the course of a systematic study of a part of the quaternary system Fe2O3-CaO-Al2O3-MgO (FCAM) the previously unknown compound Ca2.38Mg2.09Fe3+10.61Fe2+1.59Al9.33O36 (FCAM-III) has been synthesized. By analogy with the so-called SFCA series [1-5], our investigation in the system of FCAM shows the existence of a stoichiometric homologous series M14+6nO20+8n, where M = Fe, Ca, Al, Mg and n = 1 or 2. In air, we can prove the formation of coexisting FCAM-III and FCAM-I solid solutions at 1400 °C. By increasing the temperature up to 1425 °C FCAM-I disappears completely and FCAM-III co-exists with magnesiumferrite and a variety of calcium iron oxides. At 1450 °C FCAM-III breaks down to a mixture of FCAM-I again as well as magnesioferrite and melt. Small single-crystals of FCAM-III up to 35 μm in size could be retrieved from the 1425 °C experiment and were subsequently characterized using electron microprobe analysis and synchroton X-ray single-crystal diffraction. Finally the Fe2+/Fetot ratio was calculated from the total iron content based on the crystal-chemical formula obtained from EMPA measurements and charge balance considerations. FCAM-III or Ca2.38Mg2.09Fe3+10.61Fe2+1.59Al9.33O36 has a triclinic crystal structure (space group P 1 ̅). The basic crystallographic data are: a = 10.223(22) Å, b = 10.316(21) Å, c = 14.203(15) Å, α = 93.473(50)°, β = 107.418(67)°, γ = 109.646(60)°, V = 1323.85(2) ų, Z = 1. Using Schreinemaker's technique to analyze the phase relations in the system Fe2O3-CaO-Al2O3-MgO it was possible to obtain the semi-quantitative stability relations between the participating phases and construct a topologically correct phase sequence as a function of T and fO2. The analysis shows that Ca2Al0.5Fe1.5O5 (C2A0.25F0.75) and CaAl1.5Fe2.5O7 (CA0.75F1.25) with higher calculated Fe2+ contents are preferably formed at lower oxygen fugacity and react to CaAl0.5Fe1.5O4 (CA0.25F0.75) by increasing fO2. Spinel-type magnesium-aluminium-ferrite (Mg,Fe2+)Fe3+1.25Al0.75O4 or (MA0.375F0.625) is the typical phase which occurs at high temperature (1400 °C).

  4. The structural role and homogeneous redox equilibria of iron in peraluminous, metaluminous and peralkaline silicate melts

    NASA Astrophysics Data System (ADS)

    Dickenson, M. P.; Hess, P. C.

    1986-02-01

    The compositional dependence of the redox ratio (FeO/FeO1.5) has been experimentally determined in K2O-Al2O3-SiO2-Fe2O3-FeO (KASFF) and K2O-CaO-Al2O3-SiO2-Fe2O3-FeO (KCASFF) silicate melts. Compositions were equilibrated at 1,450° C in air, with 78 mol % SiO2. KASFF melts have from 1 to 5 mol % Fe2O3 and include both peraluminous (K2OAl2O3) compositions. KCASFF melts have 1 mol % Fe2O3 encompassing peraluminous, metaluminous (CaO+K2O>Al2O3) and peralkaline compositions. Peralkaline KASFF melts with 1 mol % Fe2O3 have low and constant values for the redox ratio, whereas in peraluminous melts the redox ratio increases with increasing (K2O/Al2O3). Increasing total iron concentration increases the redox ratio in peraluminous melts and slightly decreases the redox ratio in peralkaline melts. Substituting CaO for K2O at fixed total iron (1 mol %) increases the redox ratio in both peraluminous and metaluminous KCASFF melts; however, the redox ratio in peralkaline KCASFF melts is not affected by this exchange. These data indicate that Fe3+ is in four-fold coordination, with K+ or Ca2+ providing local charge balance. The tetrahedral ferric species is most stable in peralkaline melts and least stable in peraluminous melts, due to the competition between Al3+ and Fe3+ for charge balancing cations in the latter melt. Tetrahedral Fe3+ is also less stable when Ca2+ provides local charge balance. The data are consistent with a network modifying role for Fe2+ in the melt. The data are interpreted to reflect the effects of melt composition on the partitioning of K+ and Ca2+ and Fe3+ and Al3+ between various species in the melt. These relationships are discussed in terms of homogeneous equilibria between various iron-bearing and iron-free melt species. The results also reflect the effect of liquid composition on the exchange potentials μFe3+ Al-1 and μCa0.5K-1. The exchange potentials are relatively constant in peralkaline melts, but decrease in metaluminous and peraluminous melts as both (CaO+K2O)/(CaO+K2O+Al2O3) and K2O/CaO decrease. These qualitative observations imply that minerals exhibiting these exchanges will also be similarly affected as liquid composition changes.

  5. CaFeAl mixed oxide derived heterogeneous catalysts for transesterification of soybean oil to biodiesel.

    PubMed

    Lu, Yongsheng; Zhang, Zaiwu; Xu, Yunfeng; Liu, Qiang; Qian, Guangren

    2015-08-01

    CaAl layered double oxides (LDO) were prepared by co-precipitation and calcined at 750°C, and then applied to biodiesel production by transesterification reaction between methanol and soybean oil. Compared with characteristics of CaFe/LDO and CaAl/LDO, CaFeAl/LDO had the best performance based on prominent catalytic activity and stability, and achieved over 90% biodiesel yield, which stayed stable (over 85%) even after 8 cycles of reaction. The optimal catalytic reaction condition was 12:1M-ratio of methanol/oil, reaction temperatures of 60°C, 270rpm stirring rate, 60min reaction time, and 6% weight-ratio of catalyst/oil. In addition, the CaFeAl/LDO catalyst is insoluble in both methanol and methyl esters and can be easily separated for further reaction, turning it into an excellent alternative for biodiesel synthesis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Observations of Al, Fe and Ca(+) in Mercury's Exosphere

    NASA Technical Reports Server (NTRS)

    Bida, Thomas A.; Killen, Rosemary M.

    2011-01-01

    We report 5-(sigma) tangent column detections of Al and Fe, and strict 3-(sigma) tangent column upper limits for Ca(+) in Mercury's exosphere obtained using the HIRES spectrometer on the Keck I telescope. These are the first direct detections of Al and Fe in Mercury's exosphere. Our Ca(-) observation is consistent with that reported by The Mercury Atmospheric and Surface Composition Spectrometer (MASCS) on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft.

  7. The evaluation of the statistical monomineral thermobarometric methods for the reconstruction of the lithospheric mantle structure

    NASA Astrophysics Data System (ADS)

    Ashchepkov, I.; Vishnyakova, E.

    2009-04-01

    The modified versions of the thermobarometers for the mantle assemblages were revised sing statistical calibrations on the results of Opx thermobarometry. The modifications suggest the calculation of the Fe# of coexisting olivine Fe#Ol according to the statistical approximations by the regressions obtained from the xenoliths from kimberlite data base including >700 associations. They allow reproduces the Opx based TP estimates and to receive the complete set of the TP values for mantle xenoliths and xenocrysts. For GARNET Three variants of barometer give similar results. The first is published (Ashchepkov, 2006). The second is calculating the Al2O3 from Garnet for Orthopyroxene according to procedure: xCrOpx=Cr2O3/CaO)/FeO/MgO/500 xAlOpx=1/(3875*(exp(Cr2O3^0.2/CaO)-0.3)*CaO/989+16)-XcrOpx Al2O3=xAlOp*24.64/Cr2O3^0.2*CaO/2.+FeO*(ToK-501)/1002 And then it suppose using of the Al2O3 in Opx barometer (McGregor, 1974). The third variant is transformation of the G. Grutter (2006) method by introducing of the influence of temperature. P=40+(Cr2O3)-4.5)*10/3-20/7*CaO+(ToC)*0.0000751*MgO)*CaO+2.45*Cr2O3*(7-xv(5,8)) -Fe*0.5 with the correction for P>55: P=55+(P-55)*55/(1+0.9*P) Average from this three methods give appropriate values comparable with determined with (McGregor,1974) barometer. Temperature are estimating according to transformed Krogh thermometer Fe#Ol_Gar=Fe#Gar/2+(T(K)-1420)*0.000112+0.01 For the deep seated associations P>55 kbar T=T-(0.25/(0.4-0.004*(20-P))-0.38/Ca)*275+51*Ca*Cr2-378*CaO-0.51)-Cr/Ca2*5+Mg/(Fe+0.0001)*17.4 ILMENITE P= ((TiO2-23.)*2.15-(T0-973)/20*MgO*Cr2O3 and next P=(60-P)/6.1+P ToK is determined according to (Taylor et al , 1998) Fe#Ol_Chr =(Fe/(Fe+Mg)ilm -0.35)/2.252-0.0000351*(T(K)-973) CHROMITE The equations for PT estimates with chromite compositions P=Cr/(Cr+Al)*T(K)/14.+Ti*0.10 with the next iteration P=-0.0053*P^2+1.1292*P+5.8059 +0.00135*T(K)*Ti*410-8.2 For P> 57 P=P+(P-57)*2.75 Temperature estimates are according to the O'Neill- Wall, 1987 The Fe#Ol values are estimated according to three iterations Fe#Ol_Chr=(Fe/Fe+Mg)/4.5-(P-32)*0.00115-0.03 Fe#Ol_Chr =( Fe#Ol -0.074)*0.45+0.086 Fe#Ol _Chr= Fe#Ol -( Fe#Ol -0.06)*(T(K)-1300)*0.000115+0.01 CLINOPYROXENE (Ash2009)=0.32 (1-0.2*Na/Al+0.012*Fe/Na)*Kd ^(3/4)*ToK/(1+Fe)-35*ln(1273/ToK)*(Al+Ti+2.5Na+1.5Fe3+)+(0.9-CaO)*10+Na20/Al2O3* ToK /200 with the second iteration P=(0.0000002* P4 +0.000002+P^3-0.0027*P^2+1.2241*P) The TP estimates were statistically tested wit the available experimental results in peridotite (315 runs) and eclogite (302 runs) system and show good agreement with the TP conditions of runs. The methods are joined together with the other 40 thermometers and 30 barometers for mantle associations in the FORTRAN program allowing simultaneous calculations of 10 pairs of T and P and write the matrix of calculated TPFO2 values together with the compositions of minerals or their formula coefficients. Grant RBRF 05-05-64718.

  8. Disappearance of superconductivity in the solid solution between (Ca4Al2O6)(Fe2As2) and (Ca4Al2O6)(Fe2P2) superconductors.

    PubMed

    Shirage, Parasharam M; Kihou, Kunihiro; Lee, Chul-Ho; Takeshita, Nao; Eisaki, Hiroshi; Iyo, Akira

    2012-09-19

    The effect of alloying the two perovskite-type iron-based superconductors (Ca(4)Al(2)O(6))(Fe(2)As(2)) and (Ca(4)Al(2)O(6))(Fe(2)P(2)) was examined. While the two stoichiometric compounds possess relatively high T(c)'s of 28 and 17 K, respectively, their solid solutions of the form (Ca(4)Al(2)O(6))(Fe(2)(As(1-x)P(x))(2)) do not show superconductivity over a wide range from x = 0.50 to 0.95. The resultant phase diagram is thus completely different from those of other typical iron-based superconductors such as BaFe(2)(As,P)(2) and LaFe(As,P)O, in which superconductivity shows up when P is substituted for As in the non-superconducting "parent" compounds. Notably, the solid solutions in the non-superconducting range exhibit resistivity anomalies at temperatures of 50-100 K. The behavior is reminiscent of the resistivity kink commonly observed in various non-superconducting parent compounds that signals the onset of antiferromagnetic/orthorhombic long-range order. The similarity suggests that the suppression of the superconductivity in the present case also has a magnetic and/or structural origin.

  9. Authigenic apatite and octacalcium phosphate formation due to adsorption-precipitation switching across estuarine salinity gradients

    NASA Astrophysics Data System (ADS)

    Oxmann, J. F.; Schwendenmann, L.

    2015-02-01

    Mechanisms governing phosphorus (P) speciation in coastal sediments remain largely unknown due to the diversity of coastal environments and poor analytical specificity for P phases. We investigated P speciation across salinity gradients comprising diverse ecosystems in a P-enriched estuary. To determine P load effects on P speciation we compared the high P site with a low P site. Octacalcium phosphate (OCP), authigenic apatite (carbonate fluorapatite, CFAP) and detrital apatite (fluorapatite) were quantitated in addition to Al/Fe-bound P (Al/Fe-P) and Ca-bound P (Ca-P). Gradients in sediment pH strongly affected P fractions across ecosystems and independent of the site-specific total P status. We found a pronounced switch from adsorbed Al/Fe-P to mineral Ca-P with decreasing acidity from land to sea. This switch occurred at near-neutral sediment pH and has possibly been enhanced by redox-driven phosphate desorption from iron oxyhydroxides. The seaward decline in Al/Fe-P was counterbalanced by the precipitation of Ca-P. Correspondingly, two location-dependent accumulation mechanisms occurred at the high P site due to the switch, leading to elevated Al/Fe-P at pH < 6.6 (landward; adsorption) and elevated Ca-P at pH > 6.6 (seaward; precipitation). Enhanced Ca-P precipitation by increased P loads was also evident from disproportional accumulation of metastable Ca-P (Ca-Pmeta) at the high P site. Here, sediments contained on average 6-fold higher Ca-Pmeta levels compared with the low P site, although these sediments contained only 2-fold more total Ca-P than the low P sediments. Phosphorus species distributions indicated that these elevated Ca-Pmeta levels resulted from transformation of fertilizer-derived Al/Fe-P to OCP and CFAP in nearshore areas. Formation of CFAP as well as its precursor, OCP, results in P retention in coastal zones and can thus lead to substantial inorganic P accumulation in response to anthropogenic P input.

  10. Calcium phosphate formation due to pH-induced adsorption/precipitation switching along salinity gradients

    NASA Astrophysics Data System (ADS)

    Oxmann, J. F.; Schwendenmann, L.

    2014-07-01

    Mechanisms governing phosphorus (P) speciation in coastal sediments remain unknown due to the diversity of coastal environments and poor analytical specificity for P phases. We investigated P speciation along salinity gradients comprising diverse ecosystems in a P-enriched estuary. To determine P load effects on P speciation we compared the high P site with a P-unenriched site. To improve analytical specificity, octacalcium phosphate (OCP), authigenic apatite (carbonate fluorapatite; CFAP) and detrital apatite (fluorapatite) were quantitated in addition to Al/Fe-bound P (Al/Fe-P) and Ca-bound P (Ca-P). Sediment pH primarily affected P fractions across ecosystems and independent of the P status. Increasing pH caused a pronounced downstream transition from adsorbed Al/Fe-P to mineral Ca-P. Downstream decline in Al/Fe-P was counterbalanced by the precipitation of Ca-P. This marked upstream-to-downstream switch occurred at near-neutral sediment pH and was enhanced by increased P loads. Accordingly, the site comparison indicated two location-dependent accumulation mechanisms at the P-enriched site, which mainly resulted in elevated Al/Fe-P at pH < 6.6 (upstream; adsorption) and elevated Ca-P at pH > 6.6 (downstream; precipitation). Enhanced Ca-P precipitation by increased loads was also evident from disproportional accumulation of metastable Ca-P (Ca-PMmeta). The average Ca-Pmeta concentration was six-fold, whereas total Ca-P was only twofold higher at the P-enriched site compared to the P-unenriched site. Species concentrations showed that these largely elevated Ca-Pmeta levels resulted from transformation of fertilizer-derived Al/Fe-P to OCP and CFAP due to decreasing acidity from land to the sea. Formation of OCP and CFAP results in P retention in coastal zones, which may lead to substantial inorganic P accumulation by anthropogenic P input in near-shore sediments.

  11. Effect of MgO on Liquidus Temperatures in the ZnO-"FeO"-Al2O3-CaO-SiO2-MgO System in Equilibrium with Metallic Iron

    NASA Astrophysics Data System (ADS)

    Zhao, Baojun; Hayes, Peter C.; Jak, Evgueni

    2011-06-01

    The phase equilibria in the ZnO-"FeO"-Al2O3-CaO-SiO2-MgO system have been determined experimentally in equilibrium with metallic iron. Synthetic slags were equilibrated at a high temperature, quenched, and then the compositions of the phases in equilibrium were measured using electron probe X-ray microanalysis. Pseudoternary sections of the form ZnO-"FeO"-(Al2O3 + CaO + SiO2) for CaO/SiO2 = 0.71, (CaO + SiO2)/Al2O3 = 5 and fixed MgO concentrations of 2, 4, and 6 wt pct have been constructed. Wustite (Fe2+,Mg,Zn)O and spinel (Fe2+,Mg,Zn)O·(Al,Fe3+)2O3 are the major primary phases in the temperature and composition ranges investigated. The liquidus temperatures are increased by 140 K in the wustite primary phase field and by 70 K in the spinel primary phase field with the addition of 6 wt pct MgO in the slag. The partitioning of MgO and ZnO between the solid and liquid phases has been discussed.

  12. Phase Equilibria Studies in the System ZnO-``FeO''-Al2O3-CaO-SiO2 Relevant to Imperial Smelting Furnace Slags: Part I

    NASA Astrophysics Data System (ADS)

    Zhao, Baojun; Hayes, Peter C.; Jak, Evgueni

    2010-04-01

    The phase equilibria and liquidus temperatures in the system ZnO-“FeO”-Al2O3-CaO-SiO2 in equilibrium with metallic iron have been determined experimentally in the temperature range of 1423 K to 1553 K. The experimental conditions were focused on the composition range relevant to Imperial Smelting Furnace slags. The results are presented in the form of a pseudo-ternary section ZnO-“FeO”-(CaO + SiO2 + Al2O3) in which CaO/SiO2 = 0.93 and (CaO + SiO2)/Al2O3 = 7.0. It was found that wustite and spinel are the major primary phases and that zincite and melilite are also present in the composition range investigated. Wustite (Fe2+,Zn)O and spinel (Fe2+,Zn)O (A1,Fe3+)2O3 solid solutions are formed in this system, and the ZnO concentration in the spinel phase is found to be much greater than in the liquid phase.

  13. Effect of citric acid and rhizosphere bacteria on metal plaque formation and metal accumulation in reeds in synthetic acid mine drainage solution.

    PubMed

    Guo, Lin; Cutright, Teresa J

    2014-06-01

    Many of regions in the world have been affected by acid mine drainage (AMD). The study assessed the effect of rhizosphere bacteria and citric acid (CA) on the metal plaque formation and heavy metal uptake in Phragmites australis cultured in synthetic AMD solution. Mn and Al plaque were not formed, but Fe plaque which was mediated by rhizosphere iron oxidizing bacteria (Fe(II)OB) was observed on the root system of reeds. Fe plaque did not significantly influence the uptake of Fe, Al and Mn into tissues of reeds. CA significantly (p<0.01) inhibited the growth of Fe(II)OB and decreased the formation of Fe plaque. CA also significantly improved (p<0.05) the accumulation of Fe, Mn and Al in all the tissues of reeds. Roots and rhizomes were the main organs to store metals. The roots contained 0.08±0.01mg/g Mn, 2.39±0.26mg/g Fe and 0.19±0.02mg/g Al, while the shoots accumulated 0.04±0.00mg/g Mn, 0.20±0.01mg/g Fe, 0.11±0.00mg/g Al in reeds cultured in solution amended with 2.101g/l CA and without inoculation of rhizosphere bacteria. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Oxidation Studies of SiAlON/MgAlON Ceramics with Fe2O3 and CaO Impurities, Part I: Kinetics

    NASA Astrophysics Data System (ADS)

    Li, Peng; Zhang, Mei; Teng, Lidong; Seetharaman, Seshadri

    2013-02-01

    T he oxidation behaviors of composites SiAlON/MgAlON phases (β-SiAlON, 15R-SiAlON and MgAlON) synthesized from the residue during the leaching treatment of salt cake and corresponding synthetic samples were investigated in air by thermogravimetric measurements. Combined kinetics, viz. linear law + arctan law + parabolic law, are used to describe the kinetics of oxidation in isothermal mode. The oxidation studies reveal the effects of impurities, namely, Fe2O3 and CaO, present in the salt cake residue. The addition of Fe2O3 results in a lower activation energy and more aggressive oxidation. The addition of CaO caused the shrinkage during the synthesis and liquid formation during the oxidation above 1673 K (1400 °C). The impurities of CaO and Fe2O3 in the leaching residue can result in an aggressive oxidation at low temperature and a protective oxidation at temperatures above the eutectic point.

  15. Effect of Heat Treatment Parameters on the Characteristics of Thin Wall Austempered Ductile Iron Casting

    NASA Astrophysics Data System (ADS)

    Upadhyaya, Rajat; Singh, K. K.; Kumar, Rajeev

    2018-03-01

    The technology of thin parts is necessary steps to designers for energy consuming equipment to choose accurate material based on material properties. Here austempering treatment process was utilized to acquire thin wall austempered ductile iron castings. The plate thickness (2-5) mm were austenitized at 900 °C for, 30 minutes took after by holding at 350°C, 400°C and 450°C inoculated by Ce-Ca-Al-S-O-FeSi,Zr-Mn-Ca-Al-Ba-FeSi and Sr-Al-Ca-FeSi at 0.2wt%,0.4wt% and 0.6wt% for 2,5 and 10 minutes for every temperature.The austempered samples are comparatively harder than the as-cast ductile iron plates. The micro hardness(HV20) also decreases with increase in austempering temperature for a given austempering time for thinner plates and also the micro hardness(HV20) is more for the samples treated at 350°C than those treated at 400°C and 450°C at 0.4wt% for a given austempering time. The yield strength and ultimate tensile strength of 2 mm thin wall austempered ductile iron are higher and ductility and impact strength are lower than that of as-cast 2 mm thin plate ductile iron inoculated by Ce-Ca-Al-S-O-FeSi compare to Zr-Mn-Ca-Al-Ba-FeSi and Sr-Al-Ca-FeSi at 0.4wt%. This may be attributed to the change in the structure change from ferrite-pearlite to austenite-bainite.

  16. Tululite, Ca14(Fe3+,Al)(Al,Zn,Fe3+,Si,P,Mn,Mg)15O36: a new Ca zincate-aluminate from combustion metamorphic marbles, central Jordan

    NASA Astrophysics Data System (ADS)

    Khoury, Hani N.; Sokol, Ella V.; Kokh, Svetlana N.; Seryotkin, Yurii V.; Nigmatulina, Elena N.; Goryainov, Sergei V.; Belogub, Elena V.; Clark, Ian D.

    2016-02-01

    Tululite (Ca14(Fe3+,Al)(Al,Zn,Fe3+,Si,P,Mn,Mg)15O36 (the hypothetical end-member formula Ca14{Fe3+O6}[SiO4][Zn5Al9]O26) (IMA2014-065) is a new natural Ca zincate-aluminate, identified in medium-temperature (800-850 °C) combustion metamorphic (CM) spurrite-fluorellestadite marbles from central Jordan. The type locality (Tulul Al Hammam area) is situated in the northern part of the Siwaqa complex, the largest area of the "Mottled Zone" Formation in the Dead Sea region. The marbles originated from bitumen-rich chalky marine sediments of the Maastrichtian-Paleogene Muwaqqar Chalk Marl Formation, which have low clay content (and, consequently, low Al) and high Zn, Cd, and U enrichments. The bulk CM rocks derived from the low-Al protolith have unusually high (Zn + Cd)/Al ratios ( 0.2) and, as a result, a mineralogy with negligibly small percentages of Ca aluminates having low Ca:Al molar ratios (minerals of mayenite supergroup, Ca:Al = 6:7) common to most of calcareous CM rocks in the Mottled Zone. Instead, the mineral assemblage of the Zn-rich marbles contains tululite, with high Ca:Al = 2.55 molar ratios and Zn substituting for a large portion of Al (Zn:Al = 1.1). Tululite occurs in thin clusters as irregular grains with indented outlines (20-100 μm in size), having typical open-work textures associated with rock-forming calcite, fluorellestadite, spurrite, and accessory Zn-rich periclase, lime-monteponite solid solutions, calcium uranates, and zincite. Marbles also bear brownmillerite, dorrite, fluormayenite, high-fluorine Ca aluminate, and lakargiite. Secondary phases are brucite, gel-like calcium silicate hydrates and calcium silicate aluminate hydrates, including Zn- and U-bearing and Cd-rich compounds, Si-bearing hydrated compounds after calcium uranates, and basic Cd chlorides. The empirical formula of the holotype tululite (a mean of 32 analyses) is (Ca13.29Cd0.75)Σ14.04(Al5.46Zn5.20Fe3+ 2.23Si0.95Mn3+ 1.01Mg0.78P0.41)Σ16.04O36. Tululite is cubic, space group F23; a = 14.9346(4) Å; V = 3331.07(15) Å3, Z = 4. The strongest lines of the X-ray powder-diffraction pattern [ d, Å - ( I obs )] are: 2.874(57), 2.640 (100), 2.524(42), 2.278(41), 1.760(54), 1.725(25), 1.524(33), 1.500(33). The crystal structure was solved from single-crystal X-ray diffraction data and refined to wR2 = 0.0672 on the basis of 913 unique reflections with I 0 > 2σ( I). Tululite belongs to a group of compounds with the general formula Ca14 MT 15O35+ x (0 ≤ x ≤ 1), and is a new structure type. The tetrahedral framework of tululite structure is formed by T7O13 secondary building units (SBU), which consist of four corner-linked tetrahedra sharing a common oxygen atom and three tetrahedra sharing two O atoms with the neighbor SBU. Ca2+ cations occupy three positions; two of them also contain a minor amount of Cd2+. The Ca sites surround an island (Fe3+,Al)O6 octahedron and a (Si,P)O4 tetrahedron in the centers of framework cages at the junction of eight SBUs. The (Fe3+,Al)O6 octahedron is coordinated by fourteen Ca positions into a 6-capped cube, whereas the (Si,P)O4 tetrahedron is coordinated by six Ca positions into a regular octahedron. The structural formula of tululite is Ca14{Fe3+O6}M1[(Si,P)O4]T1[(Al,Zn)7O13]2 T2-T4. The mineral is yellow with greenish tint, transparent with vitreous luster, non-fluorescent under ultraviolet light, and showing neither parting nor cleavage; Mohs hardness is 6.5. The density calculated on the basis of the empirical formula is 3.826 g/cm3. Its Raman spectrum shows strong bands at 522, 550 and 636 cm-1 and weak bands at 199, 260, 295, 456, and 754 cm-1.

  17. Reduction of CaO and MgO Slag Components by Al in Liquid Fe

    NASA Astrophysics Data System (ADS)

    Mu, Haoyuan; Zhang, Tongsheng; Fruehan, Richard J.; Webler, Bryan A.

    2018-05-01

    This study documents laboratory-scale observations of reactions between Fe-Al alloys (0.1 to 2 wt pct Al) with slags and refractories. Al in steels is known to reduce oxide components in slag and refractory. With continued development of Al-containing Advanced High-Strength Steel (AHSS) grade, the effects of higher Al must be examined because reduction of components such as CaO and MgO could lead to uncontrolled modification of non-metallic inclusions. This may lead to castability or in-service performance problems. In this work, Fe-Al alloys and CaO-MgO-Al2O3 slags were melted in an MgO crucible and samples were taken at various times up to 60 minutes. Inclusions from these samples were characterized using an automated scanning electron microscope equipped with energy dispersive x-ray analysis (SEM/EDS). Initially Al2O3 inclusions were modified to MgAl2O4, then MgO, then MgO + CaO-Al2O3-MgO liquid inclusions. Modification of the inclusions was faster at higher Al levels. Very little Ca modification was observed except at 2 wt pct Al level. The thermodynamic feasibility of inclusion modification and some of the mass transfer considerations that may have led to the differences in the Mg and Ca modification behavior were discussed.

  18. Effects of Al2O3 and CaO/SiO2 Ratio on Phase Equilbria in the ZnO-"FeO"-Al2O3-CaO-SiO2 System in Equilibrium with Metallic Iron

    NASA Astrophysics Data System (ADS)

    Zhao, Baojun; Hayes, Peter C.; Jak, Evgueni

    2011-02-01

    The phase equilibria and liquidus temperatures in the ZnO-"FeO"-Al2O3-CaO-SiO2 system in equilibrium with metallic iron have been determined experimentally in the temperature range 1383 K to 1573 K (1150 °C to 1300 °C). The experimental conditions were selected to characterize lead blast furnace and imperial smelting furnace slags. The results are presented in a form of pseudoternary sections ZnO-"FeO"-(Al2O3 + CaO + SiO2) with fixed CaO/SiO2 and (CaO + SiO2)/Al2O3 ratios. It was found that wustite and spinel are the major primary phases in the composition range investigated. Effects of Al2O3 concentration as well as the CaO/SiO2 ratio on the primary phase field, the liquidus temperature, and the partitioning of ZnO between liquid and solid phases have been discussed for zinc-containing slags.

  19. Crystal chemistry and oxidation state of Fe-rich prehnite from a hydrothermally altered dolerite

    NASA Astrophysics Data System (ADS)

    Nagashima, Mariko; Iwasa, Kiyoka; Akasaka, Masahide

    2018-04-01

    Fe-rich prehnite, Ca2(Al,Fe)(AlSi3)O10(OH)2, in a hydrothermally altered dolerite sill from Mitsu, Shimane Peninsula, Japan, was studied using 57Fe Mössbauer spectroscopy and X-ray Rietveld method to determine the oxidation state and distribution of Fe within the prehnite and to clarify its structural properties. Prehnite shows two modes of occurrence: a druse and vein mineral (prehnite I) associated with Fe-rich pumpellyite and laumontite and a replacement of primary plagioclase (prehnite II). The Fe contents of prehnite I and II are 0.33-0.44 and 0.01-0.46 Fe3+ atoms per formula unit, respectively. The Mössbauer spectrum of prehnite II consists of one doublet with isomer shift ( IS) = 0.364 mm/s and quadrupole splitting ( QS) = 0.284 mm/s assigned to Fe3+ at the octahedral M site. In contrast, the Mössbauer spectrum of prehnite I consists of two doublets assigned to Fe3+ at the M site ( IS = 0.369 mm/s and QS = 0.299 mm/s) and Fe2+ at the seven coordinated A site ( IS = 1.05 and QS = 2.78 mm/s). According to X-ray Rietveld refinements with Pmna and Pma2 space groups, the fitting with Pma2 gave more reduced reliability factors than those using Pmna for both specimens, implying ordering of Al and Si at the tetrahedral T2 sites. Determined T2-O bond lengths at the Al-rich and Si-rich T2 sites, 1.71-1.72 and 1.62-1.64 Å, respectively, also indicate the ordered arrangement of Al and Si at the T2 sites. Refined site occupancies at the A and M sites are represented as A (Ca0.993(9)Fe2 + 0.007) M (Al0.666(6)Fe3 + 0.334) for prehnite I, and A Ca1.0 M (Al0.865(5)Fe3 + 0.135) for prehnite II, respectively. The existence of Fe2+ in the A site filling Ca deficiency in prehnite I is consistent with the result from the Mössbauer analysis.

  20. Soft X-ray spectromicroscopy study of mineral-organic matter associations in pasture soil clay fractions.

    PubMed

    Chen, Chunmei; Dynes, James J; Wang, Jian; Karunakaran, Chithra; Sparks, Donald L

    2014-06-17

    There is a growing acceptance that associations with soil minerals may be the most important overarching stabilization mechanism for soil organic matter. However, direct investigation of organo-mineral associations has been hampered by a lack of methods that can simultaneously characterize organic matter (OM) and soil minerals. In this study, STXM-NEXAFS spectroscopy at the C 1s, Ca 2p, Fe 2p, Al 1s, and Si 1s edges was used to investigate C associations with Ca, Fe, Al, and Si species in soil clay fractions from an upland pasture hillslope. Bulk techniques including C and N NEXAFS, Fe K-edge EXAFS spectroscopy, and XRD were applied to provide additional information. Results demonstrated that C was associated with Ca, Fe, Al, and Si with no separate phase in soil clay particles. In soil clay particles, the pervasive C forms were aromatic C, carboxyl C, and polysaccharides with the relative abundance of carboxyl C and polysaccharides varying spatially at the submicrometer scale. Only limited regions in the soil clay particles had aliphatic C. Good C-Ca spatial correlations were found for soil clay particles with no CaCO3, suggesting a strong role of Ca in organo-mineral assemblage formation. Fe EXAFS showed that about 50% of the total Fe in soils was contained in Fe oxides, whereas Fe-bearing aluminosilicates (vermiculite and Illite) accounted for another 50%. Fe oxides in the soil were mainly crystalline goethite and hematite, with lesser amounts of poorly crystalline ferrihydrite. XRD revealed that soil clay aluminosilicates were hydroxy-interlayered vermiculite, Illite, and kaolinite. C showed similar correlation with Fe to Al and Si, implying a similar association of Fe oxides and aluminosilicates with organic matter in organo-mineral associations. These direct microscopic determinations can help improve understanding of organo-mineral interactions in soils.

  1. Ferric iron partitioning between plagioclase and silicate liquid: thermodynamics and petrological applications

    NASA Astrophysics Data System (ADS)

    Sugawara, Toru

    2001-06-01

    A series of Fe and Mg partition experiments between plagioclase and silicate liquid were performed in the system SiO2-Al2O3-Fe2O3-FeO-MgO-CaO-Na2O under oxygen fugacities from below the IW buffer up to that of air. A thermodynamic model of plagioclase solid solution for the (CaAl,NaSi,KSi)(Fe3+,Al3+)Si2O8-Ca(Fe2+,Mg)Si3O8 system is proposed and is calibrated by regression analysis based on new and previously reported experimental data of Fe and Mg partitioning between plagioclase and silicate liquid, and reported thermodynamic properties of end members, ternary feldspar and silicate liquid. Using the derived thermodynamic model, FeOt, MgO content and Mg/(Fet+Mg) in plagioclase can be predicted from liquid composition with standard deviations of +/-0.34 wt% (relative error =9%) and +/-0.08 wt% (14%) and +/-0.7 (8%) respectively. Calculated Fe3+-Al exchange chemical potentials of plagioclase, $μ { Fe{ 3 + } ( {Al} ){ - 1} }{ Pl} agree with those calculated using reported thermodynamic models for multicomponent spinel, μ { Fe{ 3 + } ( {Al} ){ - 1} }{ Sp} and clinopyroxene, μ { Fe{ 3 + } ( {Al} ){ - 1} }{ Cpx} $ . The FeOt content of plagioclase coexisting with spinel or clinopyroxene is affected by Fe3+/(Fe3++Al) and Mg/(Fe+Mg) of spinel or clinopyroxene and temperature, while it is independent of the anorthite content of plagioclase. Three oxygen barometers based on the proposed model are investigated. Although the oxygen fugacities predicted by the plagioclase-liquid oxygen barometer are scattered, this study found that plagioclase-spinel-clinopyroxene-oxygen and plagioclase-olivine-oxygen equilibria can be used as practical oxygen barometers. As a petrological application, prediction of plagioclase composition and fO2 are carried out for the Upper Zone of the Skaergaard intrusion. The estimated oxygen fugacities are well below QFM buffer and consistent with the estimation of oxidization states in previous studies.

  2. Observations of the Minor Species Al, Fe and Ca(+) in Mercury's Exosphere

    NASA Technical Reports Server (NTRS)

    Bida, Thomas A.; Killen, Rosemary M.

    2011-01-01

    We report the first detections of Al and Fe, and strict upper limits for Ca(+) in the exosphere of Mercury, using the HIRES spectrometer at the Keck I telescope. We report observed 4-sigma tangent columns of 1.5x10(exp 7) Al atoms per square centimeter at an altitude of 1220 km (1.5 Mercury radii (R(sub M)) from planet center), and that for Fe of 1.6 x 10 per square centimeter at an altitude of 950 km (1.4 R(sub M)). The observed 3-sigma Ca(+) column was 3.9x10(exp 6) ions per square centimeter at an altitude of 1630 km (1.67 R(sub M). A simple model for zenith column abundances of the neutral species were 9.5 x 10(exp 7) Al per square centimeter, and 3.0 x 10(exp 8) Fe per square centimeter. The observations appear to be consistent with production of these species by impact vaporization with a large fraction of the ejecta in molecular form. The scale height of the Al gas is consistent with a kinetic temperature of 3000 - 9000 K while that of Fe is 10500 K. The apparent high temperature of the Fe gas would suggest that it may be produced by dissociation of molecules. A large traction of both Al and Fe appear to condense in a vapor cloud at low altitudes.

  3. Raman spectroscopy of garnet-group minerals

    USGS Publications Warehouse

    Mingsheng, P.; Mao, Ho-kwang; Dien, L.; Chao, E.C.T.

    1994-01-01

    The Raman spectra of the natural end members of the garnet-group minerals, which include pyrope, almandine and spessarite of Fe-Al garnet series and grossularite, andradite and uvarovite of Ca-Fe garnet series, have been studied. Measured Raman spectra of these minerals are reasonably and qualitatively assigned to the internal modes, translational and rotatory modes of SiO4 tetrahedra, as well as the translational motion of bivalent cations in the X site. The stretch and rotatory Alg modes for the Fe-Al garnet series show obvious Raman shifts as compared with those for the Ca-Fe garnet series, owing to the cations residing in the X site connected with SiO4 tetrahedra by sharing the two edges. The Raman shifts of all members within either of the series are attributed mainly to the properties of cations in the X site for the Fe-Al garnet series and in the Y site for the Ca-Fe garnet series. ?? 1994 Institute of Geochemistry, Chinese Academy of Sciences.

  4. Implication of the monomineral eclogite thermobarometry for the reconstruction of the PT conditions and origin of mantle eclogites in the structure of Siberian and other cratons.

    NASA Astrophysics Data System (ADS)

    Ashchepkov, Igor; Logvinova, Alla; Spetsius, Zdislav; Ntaflos, Theodoros; Ravi, Subramanaian; Vladykin, Nikolai; Stegnitsky, Yuri; Babushkina, Svetlana; Ovchinnikov, Yuri

    2016-04-01

    Enhanced monomineral thermobarometry for clinopyroxenes and garnet (Ashchepkov et al., 2015) allow reconstruction of thermal conditions for the mantle eclogitic xenoliths and xenocrysts of omphacites and pyrope almandine garnets of eclogitic and megacrystic types. Three common groups according to Dawson,(1977) A. Mg - eclogites; B. common subduction-related basaltic eclogites and C. Na-Fe- rich eclogites. In addition group D compile Ca-Al rich varieties (Spetsius et al., 2008; Viljoen et al., 2010). We subdivided these groups and their positions in mantle lithosphere sections beneath the most studied pipes in Yakutia and most interesting localities Worldwide. Group A including Al-rich and low groups are restites or cumulates from the ancient komatiitic basalts or boninites. The Fe# for olivine in equilibrium is 0.05 -0.11 using melt -solid partition coefficient ~0.33 for Fe (Albarede, 1992). For the group B Fe# of the omphacites are ~ 0.11- 0.23 and they could be only cumulates from melted subducted MORB basalts or reactional products. The higher values of Fe -Na-Al rich group C (Fe# ~0.25-0.4) could relate to the subducted basalts or Al - rich sediments (Spetsius et al., 2008) or Mg-rich crustal rocks which were subducted without much melting. Group D Ca-rich eclogites are commonly low Fe but subduction related varieties (Dongre et al., 2015) could be higher in Fe and Na. Partition coefficients of the trace elements between Gar and Cpx for most mantle eclogites relate to equilibration with the melts and REE patterns show different inclinations, while crustal eclogites which re-equilibrated in the solid state often show the same inclinations. Groups A1: a Cr-bearing group formed after crystallization of partial melts produced by volatile fluxes generated by ancient subduction (Heaman et al., 2006; Smart et al., 2009); A2 - low - Al cumulates and restites from komatiitic melts (Aulbach et al., 2011); A3 - low-Cr group which could be restites (Wyman and Kerrich, 2009) or deep cumulates from tonalite- trondhjemite or Mg-rich boninitic arc magmas (Horodytskyi et al., 2007; Barth et al., 2002); A4 a group derived by crystallization of differentiated protokimberlite melts (Haggerty et al., 1979; Kamenetsky et al., 2009). The largest group B with Fe# (~ 0.15-0.25, moderate in Al and Na values, commonly reveal Eu anomalies. The GrB1 interpreted as subducted metagrabbro close to MORB (Jagoutz et al., 1974; Beard et al., 1996; Pearson, 1995; Snyder et al., 1997) reacted with oceanic water (Neal et al., 1990). Enriched Group B2 eclogites are thought to be products of fluid melting of ancient oceanic crust and interaction with peridotites during subduction (Aulbach et al., 2007). Group B3 eclogites (>3 GPa) may be basaltic cumulates derived from plume or ancient arc magmas in cratonic margins (Wyman and Kerrich, 2009); those near Moho may be eclogitized lower crustal cumulates (Shu et al., 2014). Group B4 eclogites are results of hybridization of subducted basalts with protokimberlite and other plume melts (Shatsky et al., 2008 -2015). High-Fe -Na Group C1 eclogites (Fe# > 0.27) may be subducted Fe- basalts; Ca-enriched varieties may be meta-tonalites or trondhjemites (Group C2) (Barth et al., 2002) and those which are very rich in Al could be metasediments (Group C3) (Mazzone and Haggerty, 1989). High -Ca- Al GrD1 are rare high-Ca and low-Fe varieties, commonly Al-rich and kyanite-bearing (sometimes with coesite) (grosspydites) which may be originally carbonate metasomatites (Smyth, 1977) or metapelites (Liou et al., 2014); Group GrD3 eclogites are high-Ca and moderate-Fe and may be ancient Mg-granites (Barth et al., 2002; Jacob et al., 2003) . According to the thermobarometry GrA eclogites are distributed mostly in the lower (L) and- middle parts of SCLM and correspond to low - temperature thermal gradients. GrB2 eclogites form trends of increasing Fe# for garnets and omphacites with decreasing pressure. This could be due to the progressive melting of subducted basalts (Rosenthal et al., 2014) or an opposite due to crystallization of evolving partial melts from primary eclogites. In USCLM the GrB3 omphacites show reactional trends with decreasing Fe# upward or an opposite progressive rise due to magmatic differentiation. GrC dominate the middle part of the SCLM (3-4 GPa) and mostly correspond to the layer originated in the Early Archean time at 3.5-4.0 GPa possibly due to subduction of the tonalitic crust and related metasediments. CrD1 -rich grosspyditic varieties from India, Siberia and South Africa are relatively low-Fe and Al-rich and possibly are metasomatites or products of interaction of sediments and peridotites. The other Ca- rich varieties most likely are subducted anorthosites or rare granites. Supported by the RFBR grants: 05-05-64718, 03-05-64146, 11 -05-00060, 11-05-91060-PICS, 16-05-00841, 16-05-00860 and projects 77-2, 65-03, 02-05 UIGGM SB RAS and ALROSA Stock Company

  5. Crystallization of belite–melilite clinker minerals in the presence of liquid phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurokawa, Daisuke, E-mail: daisuke_kurokawa@taiheiyo-cement.co.jp; Department of Materials Science and Engineering, Nagoya Institute of Technology, Nagoya 466-8555; Yoshida, Hideto

    2014-06-01

    Crystallization of belite–melilite clinker minerals was studied from the view point of a high temperature equilibrium. Ca{sub 2}SiO{sub 4}–Ca{sub 2}Al{sub 2}SiO{sub 7} and Ca{sub 2}SiO{sub 4}–Ca{sub 2}AlFeSiO{sub 7} clinkers were synthesized at 1330 °C–1650 °C. The constituent phases were determined by X-ray powder diffractometry and optical microscopy. Chemical compositions of the individual clinker minerals were determined using an electron probe microanalyzer. We established the two types of P{sub 2}O{sub 5}-bearing pseudobinary phase diagrams in the systems Ca{sub 2}SiO{sub 4}–Ca{sub 2}Al{sub 2}SiO{sub 7} at 1505 °C–1650 °C and Ca{sub 2}SiO{sub 4}–Ca{sub 2}(Al,Fe){sub 2}SiO{sub 7} at 1330 °C–1550 °C. In the lattermore » system, the liquid phase appeared at 1390 °C, which is approximately 150 °C lower than the temperature of liquid formation in the former system. The melilite phenocrysts larger than 50 μm were observed not only in the slowly cooled Ca{sub 2}SiO{sub 4}–Ca{sub 2}(Al,Fe){sub 2}SiO{sub 7} clinker but also in commercial belite–melilite clinkers. These crystals would be nucleated and grown from a liquid phase which was formed at relatively low temperatures.« less

  6. Ca-Al-rich chondrules and inclusions in ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Bischoff, A.; Keil, K.

    1983-01-01

    Ca-Al-rich objects, hitherto mostly found in carbonaceous chondrites, are shown to be widespread, albeit rare, constituents of type 3 ordinary chondrites. Widespread occurrence and textural similarities of Ca-Al-rich chondrules to common, Mg-Fe-rich chondrules suggest that they formed by related processes. It is suggested in this article that Ca-Al-rich chondrules were formed by total melting and crystallization of heterogeneous, submillimeter- to submillimeter-sized dustballs made up of mixtures of high-temperature, Ca-Al-rich and lower-temperature, Na-K-rich components.

  7. Phase Equilibria in the System "FeO"-CaO-SiO2-Al2O3-MgO at Different CaO/SiO2 Ratios

    NASA Astrophysics Data System (ADS)

    Jang, Kyoung-oh; Ma, Xiaodong; Zhu, Jinming; Xu, Haifa; Wang, Geoff; Zhao, Baojun

    2017-06-01

    The "FeO"-containing slags play an important role in the operation of an ironmaking blast furnace (BF), in particular the primary slags such as the system "FeO"-CaO-SiO2-Al2O3-2 mass pct MgO with CaO/SiO2 weight ratios of 1.3, 1.5, and 1.8 saturated with metallic iron. To investigate the characteristics of such a slag system and its behavior in BF, the phase equilibria and liquidus temperatures in the slag system have been experimentally determined using the high-temperature equilibration and quenching technique followed by an electron probe X-ray microanalysis (EPMA). Isotherms between 1553 K and 1603 K (1280 °C and 1330 °C) were determined in the primary phase fields of dicalcium silicate, melilite, spinel, and monoxide [(Mg,Fe2+)O]. Pseudo-ternary phase diagrams of (CaO + SiO2)-Al2O3-"FeO" with a fixed MgO concentration at 2 mass pct and at CaO/SiO2 ratios of 1.3, 1.5, and 1.8 have been discussed, respectively, simplifying the complexity of the slag system for easy understanding and applying in BF operation. It was found that the liquidus temperatures increase in melilite and spinel primary phase fields, but decrease in dicalcium silicate and monoxide primary phase fields with increasing Al2O3/(CaO + SiO2) ratio. In addition, the liquidus temperatures decrease with increasing "FeO" concentration in dicalcium silicate and melilite primary phase fields, while showing an increasing trend in the spinel and monoxide primary phase fields. The data resulted from this study can be used to improve and optimize currently available database of thermodynamic models used in FactSage.

  8. Reference spectra of important adsorbed organic and inorganic phosphate binding forms for soil P speciation using synchrotron-based K-edge XANES spectroscopy.

    PubMed

    Prietzel, Jörg; Harrington, Gertraud; Häusler, Werner; Heister, Katja; Werner, Florian; Klysubun, Wantana

    2016-03-01

    Direct speciation of soil phosphorus (P) by linear combination fitting (LCF) of P K-edge XANES spectra requires a standard set of spectra representing all major P species supposed to be present in the investigated soil. Here, available spectra of free- and cation-bound inositol hexakisphosphate (IHP), representing organic P, and of Fe, Al and Ca phosphate minerals are supplemented with spectra of adsorbed P binding forms. First, various soil constituents assumed to be potentially relevant for P sorption were compared with respect to their retention efficiency for orthophosphate and IHP at P levels typical for soils. Then, P K-edge XANES spectra for orthophosphate and IHP retained by the most relevant constituents were acquired. The spectra were compared with each other as well as with spectra of Ca, Al or Fe orthophosphate and IHP precipitates. Orthophosphate and IHP were retained particularly efficiently by ferrihydrite, boehmite, Al-saturated montmorillonite and Al-saturated soil organic matter (SOM), but far less efficiently by hematite, Ca-saturated montmorillonite and Ca-saturated SOM. P retention by dolomite was negligible. Calcite retained a large portion of the applied IHP, but no orthophosphate. The respective P K-edge XANES spectra of orthophosphate and IHP adsorbed to ferrihydrite, boehmite, Al-saturated montmorillonite and Al-saturated SOM differ from each other. They also are different from the spectra of amorphous FePO4, amorphous or crystalline AlPO4, Ca phosphates and free IHP. Inclusion of reference spectra of orthophosphate as well as IHP adsorbed to P-retaining soil minerals in addition to spectra of free or cation-bound IHP, AlPO4, FePO4 and Ca phosphate minerals in linear combination fitting exercises results in improved fit quality and a more realistic soil P speciation. A standard set of P K-edge XANES spectra of the most relevant adsorbed P binding forms in soils is presented.

  9. Effect of the CaO/SiO2 mass ratio and FeO content on the viscosity of CaO-SiO2-"FeO"-12wt%ZnO-3wt%Al2O3 slags

    NASA Astrophysics Data System (ADS)

    Lü, Jian-fang; Jin, Zhe-nan; Yang, Hong-ying; Tong, Lin-lin; Chen, Guo-bao; Xiao, Fa-xin

    2017-07-01

    An effective process for recycling lead from hazardous waste cathode ray tubes (CRTs) funnel glass through traditional lead smelting has been presented previously. The viscous behavior of the molten high lead slag, which is affected by the addition of funnel glass, plays a critical role in determining the production efficiency. Therefore, the viscosities of the CaO-SiO2-"FeO"-12wt%ZnO-3wt%Al2O3 slags were measured in the current study using the rotating spindle method. The slag viscosity decreases as the CaO/SiO2 mass ratio is increased from 0.8 to 1.2 and also as the FeO content is increased from 8wt% to 20wt%. The breaking temperature of the slag is lowered substantially by the addition of FeO, whereas the influence of the CaO/SiO2 mass ratio on the breaking temperature is complex. The structural analysis of quenched slags using Fourier transform infrared (FTIR) spectroscopy and Raman spectroscopy reveals that the silicate network structure is depolymerized with increasing CaO/SiO2 mass ratio or increasing FeO content. The [FeO6]-octahedra in the slag melt increase as the CaO/SiO2 mass ratio or the FeO content increases. This increase can further decrease the degree of polymerization (DOP) of the slag. Furthermore, the activation energy for viscous flow decreases both with increasing CaO/SiO2 mass ratio and increasing FeO content.

  10. The Partial Molar Volume and Compressibility of the FeO Component in Model Basalts (Mixed CaAl2Si2O8-CaMgSi2O6-CaFeSi2O6 Liquids) at 0 GPa: evidence of Fe2+ in 6-fold coordination

    NASA Astrophysics Data System (ADS)

    Guo, X.; Lange, R. A.; Ai, Y.

    2010-12-01

    FeO is an important component in magmatic liquids and yet its partial molar volume at one bar is not as well known as that for Fe2O3 because of the difficulty of performing double-bob density measurements under reducing conditions. Moreover, there is growing evidence from spectroscopic studies that Fe2+ occurs in 4, 5, and 6-fold coordination in silicate melts, and it is expected that the partial molar volume and compressibility of the FeO component will vary accordingly. We have conducted both density and relaxed sound speed measurements on four liquids in the An-Di-Hd (CaAl2Si2O8-CaMgSi2O6-CaFeSi2O6) system: (1) Di-Hd (50:50), (2) An-Hd (50:50), (3) An-Di-Hd (33:33:33) and (4) Hd (100). Densities were measured between 1573 and 1838 K at one bar with the double-bob Archimedean method using molybdenum bobs and crucibles in a reducing gas (1%CO-99%Ar) environment. The sound speeds were measured under similar conditions with a frequency-sweep acoustic interferometer, and used to calculate isothermal compressibility. All the density data for the three multi-component (model basalt) liquids were combined with density data on SiO2-Al2O3-CaO-MgO-K2O-Na2O liquids (Lange, 1997) in a fit to a linear volume equation; the results lead to a partial molar volume (±1σ) for FeO =11.7 ± 0.3(±1σ) cm3/mol at 1723 K. This value is similar to that for crystalline FeO at 298 K (halite structure; 12.06 cm3/mol), which suggests an average Fe2+ coordination of ~6 in these model basalt compositions. In contrast, the fitted partial molar volume of FeO in pure hedenbergite liquid is 14.6 ± 0.3 at 1723 K, which is consistent with an average Fe2+ coordination of 4.3 derived from EXAFS spectroscopy (Rossano, 2000). Similarly, all the compressibility data for the three multi-component liquids were combined with compressibility data on SiO2-Al2O3-CaO-MgO liquids (Ai and Lange, 2008) in a fit to an ideal mixing model for melt compressibility; the results lead to a partial molar compressibility (±1σ) for FeO = 2.4 (± 0.3) 10-2 GPa-1 at 1723 K. In contrast, the compressibility of FeO in pure hedenbergite liquid is more than twice as large: 6.3 (± 0.2) 10-2 GPa-1. When these results are combined with density and sound speed data on CaO-FeO-SiO2 liquids at one bar (Guo et al., 2009), a systematic and linear variation between the partial molar volume and compressibility of the FeO component is obtained, which appears to track changes in the average Fe2+ coordination in these liquids. Therefore, the three most important conclusions of this study are: (1) ideal mixing of volume and compressibility does not occur for all FeO-bearing magmatic liquids, owing to changes in Fe2+ coordination, (2) the partial molar volume and compressibility of FeO varies linearly and systematically with Fe2+ coordination, and (3) ideal mixing of volume and compressibility does occur among the three mixed An-Di-Hd liquids, presumably because of a common, average Fe2+ coordination of ~6.

  11. On the labyrinthine world of arsenites: a single-crystal neutron and X-ray diffraction study of cafarsite

    NASA Astrophysics Data System (ADS)

    Gatta, G. Diego; Rotiroti, Nicola; Cámara, Fernando; Meven, Martin

    2018-03-01

    The crystal chemistry of a cafarsite sample from the fengitic orthogneisses of the Mt. Leone-Arbola nappe (Lower Penninic), forming the central body of Mount Cervandone and cropping out both in Switzerland and Italy (Alpe Devero area, Verbano-Cusio-Ossola province), was investigated by electron microprobe analysis in wavelength-dispersive mode (EPMA-WDS), single-crystal Raman spectroscopy, and single-crystal X-ray and neutron diffraction at 293 K. The sample of cafarsite of this study was found experimentally to be anhydrous and the chemical formula obtained on the basis of the EPMA-WDS data and structural refinements is the following: Ca1,Ca2 (Ca15.56Na0.44)Σ16 Fe1 (Na0.53Fe2+ 0.17REE0.30)Σ1.00 Mn1,Ti,Fe2 (Ti7.46Fe3+ 4.47Fe2+ 3.20Mn2+ 0.85Al0.11) Σ16.11 As1,As2,As3 (AsO3)28 F F, with the general chemical formula Ca16(Na,Fe2+,REE)(Ti, Fe3+,Fe2+,Mn2+,Al)16(AsO3)28F [or Ca16(Na,Fe2+,REE)(Ti,Fe3+,Al)12(Fe2+,Mn)4(AsO3)28F]. Our experimental findings show that fluorine, which was unconsidered in the previous studies, is a key element. The anhydrous nature of this sample is also confirmed by its Raman spectrum, which does not show any evidence of active bands ascribable to the O-H stretching region. The X-ray and neutron structure refinements provide a structure model that is partially in agreement with the previous experimental findings. The space group (i.e. Pn3) and the unit-cell constant [i.e. 15.9507(4) Å] are conform to the literature data, but the structure of cafarsite, here refined, contains the following building units: three independent AsO3 groups (trigonal pyramids), one CaO6F polyhedron, one CaO8 polyhedron, two independent (Ti,Fe)O6 octahedra, one (Na,Fe,REE)O8 polyhedron, and one (Mn,Fe)O6 octahedron. Connections among polyhedra are mainly due to edge- or vertex-sharing; the AsO3 groups are not connected to each other.

  12. Structure refinements of members in the brownmillerite solid solution series Ca{sub 2}Al{sub x}(Fe{sub 0.5}Mn{sub 0.5}){sub 2-x}O{sub 5+{delta}} with 1/2{<=}x{<=}4/3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoeber, Stefan, E-mail: stefan.stoeber@geo.uni-halle.de; Redhammer, Guenther; Schorr, Susan

    2013-01-15

    Four different brownmillerite solid solutions Ca{sub 2}Al{sub x}(Fe{sub 0.5}Mn{sub 0.5}){sub 2-x}O{sub 5+{delta}} with 1/2{<=}x{<=}4/3 were synthesized by a solid oxide ceramic method. The phases crystallize either in a primitive centered orthorhombic cell with space group Pnma or in a body centered cell with space group I2mb dependent on the aluminum concentration present in the solid solution. Mn{sup 3+} ions occupy exclusively site 4a coordinated by six oxygen anions. Increasing Mn{sup 3+} concentrations cause a remarkable distortion of the octahedron and indirectly of the tetrahedron, resulting in twisted and tilted octahedral layers as well as buckled tetrahedral chains. The influences aremore » discussed on the site 4a of trivalent manganese due to its Jahn-Teller activity, with regard to the occupation of octahedron and tetrahedron with different sized iron and aluminum ions. - Graphical Abstract: The coupled substitution Fe{sup 3+}>Mn{sup 3+}+Fe{sup 3+} <=>2 Al{sup 3+} in brownmillerite phases (Ca{sub 2}(Fe{sub 0.5}Mn{sub 0.5}){sub 2-x}Al{sub x}O{sub 5+{delta}}) changes predominantly their structural properties, which is essential for the hydration performance of the calcium aluminate cement, where brownmillerites occur as clinker phases. Highlights: Black-Right-Pointing-Pointer We present structural data of four Ca-Al-Fe-Mn-brownmillerites. Black-Right-Pointing-Pointer Mn{sup 3+}-ions occupy exclusively the octahedrally coordinated site 0,0,0. Black-Right-Pointing-Pointer Bonds and angles of the octahedrally coordinated site are distorted strongly. Black-Right-Pointing-Pointer Mn{sup 3+}-ions influence indirectly the shape of the tetrahedron. Black-Right-Pointing-Pointer Mn{sup 3+}-ions stabilize Pnma instead of I2mb in Ca-Al-Fe-Mn-brownmillerites.« less

  13. Cation-induced coagulation of aquatic plant-derived dissolved organic matter: Investigation by EEM-PARAFAC and FT-IR spectroscopy.

    PubMed

    Liu, Shasha; Zhu, Yuanrong; Liu, Leizhen; He, Zhongqi; Giesy, John P; Bai, Yingchen; Sun, Fuhong; Wu, Fengchang

    2018-03-01

    Complexation and coagulation of plant-derived dissolved organic matter (DOM) by metal cations are important biogeochemical processes of organic matter in aquatic systems. Thus, coagulation and fractionation of DOM derived from aquatic plants by Ca(II), Al(III), and Fe(III) ions were investigated. Metal ion-induced removal of DOM was determined by analyzing dissolved organic carbon in supernatants after addition of these metal cations individually. After additions of metal ions, both dissolved and coagulated organic fractions were characterized by use of fluorescence excitation emission matrix-parallel factor (EEM-PARAFAC) analysis and Fourier transform infrared (FT-IR) spectroscopy. Addition of Ca(II), Fe(III) or Al(III) resulted in net removal of aquatic plant-derived DOM. Efficiencies of removal of DOM by Fe(III) or Al(III) were greater than that by Ca(II). However, capacities to remove plant-derived DOM by the three metals were less than which had been previously reported for humic materials. Molecular and structural features of plant-derived DOM fractions in associations with metal cations were characterized by changes in fluorescent components and infrared absorption peaks. Both aromatic and carboxylic-like organic matters could be removed by Ca(II), Al(III) or Fe(III) ions. Whereas organic matters containing amides were preferentially removed by Ca(II), and phenolic materials were selectively removed by Fe(III) or Al(III). These observations indicated that plant-derived DOM might have a long-lasting effect on water quality and organisms due to its poor coagulation with metal cations in aquatic ecosystems. Plant-derived DOM is of different character than natural organic matter and it is not advisable to attempt removal through addition of metal salts during treatment of sewage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Calcium Treatment for FeSi-killed Fe-13 Pct Cr Stainless Steel with Various Top Slag Compositions

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Wang, Lijun; Zhai, Jun; Li, Jianmin; Chou, Kuochih

    2018-02-01

    Calcium treatment of Fe-13 pct Cr stainless steel, with inclusion modification as its main purpose, was evaluated on a laboratory scale. The stability diagram of Ca-Al was obtained using the FactSage software and could be divided into three parts based on the [Al] content: the ultra-low-Al region, the low-Al region, and the medium-high-Al region. Each of these regions required different amounts of calcium for inclusion modification. The ferrosilicon deoxidation product could be modified into low melting temperature inclusions by a CaO-SiO2 top slag in the ultra-low-Al region ([Al] content less than 40 ppm). Calcium treatment was necessary to modify the ferrosilicon deoxidation product into low melting temperature inclusions in the low-Al region ([Al] content from 40 to 100 ppm) for the CaO-SiO2-Al2O3 top slag. Calcium addition has a "liquid window" where adding calcium can accelerate inclusion modification. Adding calcium for 15 and 30 minutes resulted in complete modification times of 45 and 60 minutes, respectively, which indicates that early calcium treatment can produce plastic inclusions sooner. The relationship between the steel and inclusion content was determined by fitting the experimental data in the low-Al region. An appropriate range of T.Ca/T.O (total calcium content/total oxygen content) for inclusion modification is 0.99 to 1.44.

  15. Synthesis, characterization of double perovskite Ca{sub 2}MSbO{sub 6} (M = Dy, Fe, Cr, Al) materials via sol–gel auto-combustion and their catalytic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feraru, S.; Samoila, P.; Borhan, A.I.

    2013-10-15

    Double perovskite-type oxide Ca{sub 2}MSbO{sub 6} materials, where M = Dy, Fe, Cr, and Al, were prepared by using the sol–gel auto-combustion method. The role of different B-site cations on their synthesis, structures, morphologies and catalytic properties was investigated. The progress of double-perovskite type structure formation and the disappearance of the organic phases were monitored by infrared absorption spectroscopy (FTIR). Double perovskite oxide structures were evaluated using X-ray diffraction (XRD), while the microstructure of obtained compounds was studied using scanning electron microscopy (SEM). Also, BET surface areas were measured at the liquid nitrogen temperature by nitrogen adsorption. Catalytic properties ofmore » the obtained compounds were evaluated by test reaction of hydrogen peroxide decomposition. - Highlights: • Ca{sub 2}MSbO{sub 6} double perovskites were obtained by sol–gel auto-combustion method. • Ca{sub 2}MSbO{sub 6} (M = Dy, Fe, Cr and Al) as catalysts in H{sub 2}O{sub 2} decomposition • Strong relationship between particles' shape, BET area and catalytic performance • Ca{sub 2}FeSbO{sub 6} spherical grains show superior catalytic activity.« less

  16. Effect of Sulfur on Liquidus Temperatures in the ZnO-"FeO"-Al2O3-CaO-SiO2-S System in Equilibrium with Metallic Iron

    NASA Astrophysics Data System (ADS)

    Zhao, Baojun; Hayes, Peter C.; Jak, Evgueni

    2011-10-01

    The phase equilibria in the ZnO-"FeO"-Al2O3-CaO-SiO2-S system have been determined experimentally in equilibrium with metallic iron. A pseudoternary section of the form ZnO-"FeO"-(Al2O3+CaO+SiO2) for CaO/SiO2 = 0.71 (weight), (CaO+SiO2)/Al2O3 = 5.0 (weight), and fixed 2.0 wt pct S concentration has been constructed. It was found that the addition of 2.0 wt pct S to the liquid extends the spinel primary phase field significantly and decreases the size of the wustite primary phase field. The liquidus temperature in the wustite primary phase field is decreased by approximately 80 K and the liquidus temperature in the spinel primary phase field is decreased by approximately 10 K with addition of 2.0 wt pct S in the composition range investigated. It was also found that iron-zinc sulfides are present in some samples in the spinel primary phase field, which are matte appearing at low zinc concentrations and sphalerite (Zn,Fe)S at higher zinc concentrations. The presence of sulfur in the slag has a minor effect on the partitioning of ZnO between the wustite and liquid phases but no effect on the partitioning of ZnO between the spinel and liquid phases.

  17. Cubic structure and canted antiferromagnetism of CaMn7O12 doped with trivalent cations (Fe, Al, Cr)

    NASA Astrophysics Data System (ADS)

    Motin Seikh, Md.; Caignaert, V.; Lebedev, O. I.; Raveau, B.

    2014-02-01

    In this study, we show the dramatic effect of the doping of the octahedral sites with M3+ cations (Fe3+, Al3+ and Cr3+) upon the structure and magnetism of the rhombohedral double perovskite CaMn7O12. In the oxides CaMn7-xMxO12, charge ordering between Mn3+ and Mn4+ octahedral sites is destroyed leading to the cubic structure (Im-3), whereas the initial magnetic properties (TN~90 K) have disappeared leading to canted antiferromagnetism (TN≈50-70 K) for small x values (x ~0.2-1). A spin glass like behaviour is also observed for larger values (x~1) in the case of Fe substitution.

  18. Crystal structure of the mineral (Na,Ca,K)2(Ca,Na)4(Mg,Fe)5(Mg,Fe,Ti)5[Si12Al4O44](F,O)4: a triclinic representative of the amphibole family

    NASA Astrophysics Data System (ADS)

    Rastsvetaeva, R. K.; Aksenov, S. M.

    2012-05-01

    A mineral belonging to the amphibole family found at the Rothenberg paleovolcano (Eifel, Germany) was studied by single-crystal X-ray diffraction. The triclinic pseudomonoclinic unit-cell parameters are a = 5.3113(1) Å, b = 18.0457(3) Å; c = 9.8684(2) Å, α = 90.016(2)°, β = 105.543(4)°, γ = 89.985(2)°. The structure was solved by direct methods in sp. gr. P1 and refined to the R factor of 2.7% based on 6432 reflections with | F| > 3σ( F) taking into account twinning. The mineral with the idealized formula (Na,Ca,K)2(Ca,Na)4(Mg,Fe)5(Mg,Fe,Ti)5[Si12Al4O44](F,O)4 has some symmetry and structural features that distinguish it from other minerals of this family.

  19. Lunar highland rocks - Element partitioning among minerals. II - Electron microprobe analyses of Al, P, Ca, Ti, Cr, Mn and Fe in olivine

    NASA Technical Reports Server (NTRS)

    Smith, J. V.; Hansen, E. C.; Steele, I. M.

    1980-01-01

    Lunar olivines from anorthosites, granulitic impactites, and rocks in the Mg-rich plutonic trend were subjected to electron probe measurements for Al, P, Ca, Ti, Cr and Mn, which show that the FeO/MnO ratio for lunar olivines lies between 80 and 110 with little difference among the rock types. The low values of Ca in lunar olivines indicate slow cooling to subsolidus temperatures, with blocking temperatures of about 750 C for 67667 and 1000 C for 60255,73-alpha determined by the Finnerty and Boyd (1978) experiments. An important paradox is noted in the low Ti content of Fe-rich olivines from anorthosites, although both Ti and Fe tend to become enriched in liquid during fractional distillation. Except for Ca and Mn, olivine from anorthosites has lower minor element values than other rock types. Formation from a chemically distinct system is therefore implied.

  20. The effect of H2O gas on volatilities of planet-forming major elements. I - Experimental determination of thermodynamic properties of Ca-, Al-, and Si-hydroxide gas molecules and its application to the solar nebula

    NASA Technical Reports Server (NTRS)

    Hashimoto, Akihiko

    1992-01-01

    The vapor pressures of Ca(OH)2(g), Al(OH)3(g), and Si(OH)4(g) molecules in equilibrium with solid calcium-, aluminum, and silicon-oxides, respectively, were determined, and were used to derive the heats of formation and entropies of these species, which are expected to be abundant under the currently postulated physical conditions in the primordial solar nebula. These data, in conjunction with thermodynamic data from literature, were used to calculate the relative abundances of M, MO(x), and M(OH)n gas species and relative volatilities of Fe, Mg, Si, Ca, and Al for ranges of temperature, total pressure, and H/O abundance ratio corresponding to the plausible ranges of physical conditions in the solar nebula. The results are used to explain how Ca and Al could have evaporated from Ca,Al-rich inclusions in carbonaceous chondrites, while Si, Mg, and Fe condensed onto them during the preaccretion alteration of CAIs.

  1. Investigations on the Crystal Structure and the Stability Field of FCAM-I (Ca3MgAl6Fe10O28), an Iso-structure to SFCA-I

    NASA Astrophysics Data System (ADS)

    Zöll, Klaus; Manninger, Tanja; Kahlenberg, Volker; Krüger, Hannes; Tropper, Peter

    2017-08-01

    In a study on parts of the system Fe2O3-CaO-Al2O3-MgO, the previously unknown compound Ca3MgAl6Fe10O28 or FCAM-I (iso-structural with SFCA-I) has been synthesized. The two principal aims of our investigations have been (i) analysis of the stability field of the new phase as a function of T and fO2 and (ii) determination of its crystal structure. Two experimental series in air and under controlled oxygen fugacity via the hematite-magnetite buffer were conducted. Pure polycrystalline FCAM-I has been obtained at 1463.15 K (1190 °C) in air. While increasing the temperature from 1573.15 K to 1673.15 K (1300 °C to 1400 °C), the FCAM-I phase breaks down forming a variety of new compounds depending on T and fO2. Ca3MgAl6Fe10O28 has a triclinic crystal structure (space group P \\overline{1} ). Basic crystallographic data are as follows: a = 10.2980(4) Å, b = 10.4677(4) Å, c = 11.6399(4) Å, α = 94.363(3)°, β = 111.498(3)°, γ = 109.744(3)°, V = 1069.81(7) Å3, Z = 2.

  2. The high-pressure phase transitions of hydroxides

    NASA Astrophysics Data System (ADS)

    Nishi, M.; Kuwayama, Y.; Tsuchiya, J.; Tsuchiya, T.; Irifune, T.

    2017-12-01

    The discovery of new high-pressure hydrous minerals has important implications for understanding the structure, dynamics, and evolution of the Earth, since hydrogen significantly affects the physical properties and stabilities of Earth's constituent minerals. Whereas hydrous minerals commonly dehydrate under pressures of around a few tens of gigapascals (GPa) and at temperature around 1,500 K, those with CaCl2-type crystal structure, MgSiO4H2 phase H, δ-AlOOH and ɛ-FeOOH, are known to be stable at pressures corresponding to the lower mantle. However, although the CaCl2-type hydroxides were suggested to form a solid solution owing to their similar crystal structure, there are few experimental studies on the stability of the hydroxide in such multicomponent. Moreover, ab initio calculations have predicted that some CaCl2-type hydroxides transform to pyrite-type structure at higher pressures. Here, we conducted high pressure-temperature experiments on pure AlOOH, FeOOH, and their solid solutions, with the aid of these first-principles predictions. We use in situ X-ray measurements in conjunction with a multi-anvil apparatus to study the high-pressure behaviour of hydroxides in the multicomponent system under middle lower mantle conditions. Solid solutions in wide compositional ranges between CaCl2-type δ-AlOOH and ɛ-FeOOH were recognized from X-ray diffraction patterns. Also, unit cell volume of FeOOH and (Al,Fe)OOH significantly decreased accompanied with the spin transition of iron at 50 GPa. Thus, the wide compositional ranges in CaCl2-type hydroxide are maintained beyond the depth of the middle lower mantle, where the spin transition of iron occurs. We used a laser-heated diamond anvil cell in order to study the stability of AlOOH and FeOOH at higher pressures above 70 GPa. We observed that ɛ-FeOOH transforms to the pyrite-type structure at above 80 GPa, which is consistent with the theoretical prediction. At conditions above 190 GPa and 2,500 K, we observed the phase transition of δ-AlOOH to its higher pressure phase at above 170 GPa although further experimental study should be required to determine the precise structure. Based on these experimental and theoretical results, the stability and phase transitions of hydrous phases in the lower mantle will be discussed.

  3. A Structural Molar Volume Model for Oxide Melts Part III: Fe Oxide-Containing Melts

    NASA Astrophysics Data System (ADS)

    Thibodeau, Eric; Gheribi, Aimen E.; Jung, In-Ho

    2016-04-01

    As part III of this series, the model is extended to iron oxide-containing melts. All available experimental data in the FeO-Fe2O3-Na2O-K2O-MgO-CaO-MnO-Al2O3-SiO2 system were critically evaluated based on the experimental condition. The variations of FeO and Fe2O3 in the melts were taken into account by using FactSage to calculate the Fe2+/Fe3+ distribution. The molar volume model with unary and binary model parameters can be used to predict the molar volume of the molten oxide of the Li2O-Na2O-K2O-MgO-CaO-MnO-PbO-FeO-Fe2O3-Al2O3-SiO2 system in the entire range of compositions, temperatures, and oxygen partial pressures from Fe saturation to 1 atm pressure.

  4. Compositional variation in minerals of the chevkinite group

    USGS Publications Warehouse

    Macdonald, R.; Belkin, H.E.

    2002-01-01

    The composition of chevkinite and perrierite, the most common members of the chevkinite group, is closely expressed by the formula A4BC2D2Si4O22, where A = (La,Ce,Ca,Sr,Th), B = Fe2+, C = (Fe2+,Fe3+,Ti,Al,Zr,Nb) and D = Ti. The A site is dominated by a strong negative correlation between (Ca+Sr) and the REE. Chondrite-normalized REE patterns are very variable, e.g. in LREE/HREE and Eu/Eu*. The C site is dominated by Ti, Al and Fe2+, in very variable proportions. Most chevkinites and perrierites are close to stoichiometric, with cation sums between 12.9 and 13.5, compared to the theoretical 13. There is no single, generally applicable charge balancing substitution scheme in the group; however, the general relationship (Ca+Sr)A + TiC + REEA + M3C+2+ defines a linear array with r2 = 0.91. Chevkinite and perrierite are shown to be compositionally distinct on the basis of CaO, FeO* Al2O3 and Ce2O3 abundances. Chevkinite forms mainly in chemically evolved parageneses, such as syenites, rhyolites and fenites associated with carbonatite complexes. Perrierite is more commonly recorded from igneous rocks of mafic to intermediate composition. The compositional characteristics and possible structural formulae of other members of the chevkinite group are reviewed briefly.

  5. First-principles calculations for XAS of infinite-layer iron oxides

    NASA Astrophysics Data System (ADS)

    Kodera, Mitsuru; Shishidou, Tatsuya; Oguchi, Tamio

    2011-03-01

    The oxygen defect perovskite SrFe O3 - x shows various properties such as the giant magnetoresistance effect and the thermoelectric effect. It had been believed that the oxygen content in SrFe O3 - x changes up to x = 0.5 . Recently, Tsujimoto et al . have succeeded in synthesizing the infinite-layer iron oxide SrFe O2 . SrFe O2 has a square-planar oxygen coordination, while the iron oxides usually have the tetrahedral and octahedral coordination. CaFe O2 has also infinite layer structure and the same magnetic ordering as SrFe O2 . However, it is suggested that the oxygen coordination of CaFe O2 is different from that of SrFe O2 . In order to investigate the electronic structure of iron in (Ca, Sr) Fe O2 , the x-ray absorption spectroscopy (XAS) spectrum has been measured. In this work, we perform the calculation for XAS spectrum near the Fe-K edge of (Ca, Sr) Fe O2 using the first-principles calculations. We compare the results with the experiment and discuss the electronic structure of iron in (Ca, Sr) Fe O2 .

  6. High-pressure X-ray diffraction and Raman spectroscopy of CaFe2O4-type β-CaCr2O4

    NASA Astrophysics Data System (ADS)

    Zhai, Shuangmeng; Yin, Yuan; Shieh, Sean R.; Shan, Shuangming; Xue, Weihong; Wang, Ching-Pao; Yang, Ke; Higo, Yuji

    2016-04-01

    In situ high-pressure synchrotron X-ray diffraction and Raman spectroscopic studies of orthorhombic CaFe2O4-type β-CaCr2O4 chromite were carried out up to 16.2 and 32.0 GPa at room temperature using multi-anvil apparatus and diamond anvil cell, respectively. No phase transition was observed in this study. Fitting a third-order Birch-Murnaghan equation of state to the P-V data yields a zero-pressure volume of V 0 = 286.8(1) Å3, an isothermal bulk modulus of K 0 = 183(5) GPa and the first pressure derivative of isothermal bulk modulus K 0' = 4.1(8). Analyses of axial compressibilities show anisotropic elasticity for β-CaCr2O4 since the a-axis is more compressible than the b- and c-axis. Based on the obtained and previous results, the compressibility of several CaFe2O4-type phases was compared. The high-pressure Raman spectra of β-CaCr2O4 were analyzed to determine the pressure dependences and mode Grüneisen parameters of Raman-active bands. The thermal Grüneisen parameter of β-CaCr2O4 is determined to be 0.93(2), which is smaller than those of CaFe2O4-type CaAl2O4 and MgAl2O4.

  7. Chemistry of impact events on Mercury

    NASA Astrophysics Data System (ADS)

    Berezhnoy, Alexey A.

    2018-01-01

    Based on the equilibrium thermochemical approach and quenching theory, formation of molecules and dust grains in impact-produced clouds formed after collisions between meteoroids and Mercury is considered. Based on observations of Al, Fe, and Mn atoms in the exosphere of Mercury and new results of studies of the elemental composition of the surface of Mercury, quenching temperatures and pressures of main chemical reactions and condensation of dust particles were estimated. The behavior of the main Na-, K-, Ca-, Fe-, Al-, Mn-, Mg-, Si-, Ti, Ni-, Cr-, Co, Zn-, O-, H-, S-, C-, Cl-, N-, and P-containing species delivered to the Hermean exosphere during meteoroid impacts was studied. The importance of meteoroid bombardment as a source of Na, K, Ca, Fe, Al, Mn, Mg, and O atoms in the exosphere of Mercury is discussed.

  8. Contribution of native phosphorous-solubilizing bacteria of acid soils on phosphorous acquisition in peanut (Arachis hypogaea L.).

    PubMed

    Pradhan, Madhusmita; Sahoo, Ranjan Kumar; Pradhan, Chinmay; Tuteja, Narendra; Mohanty, Santanu

    2017-11-01

    The present investigation analyzes the in vitro P solubilization [Ca-P, Al-P, Fe(II)-P, and Fe(III)-P] efficiency of native PSB strains from acid soils of Odisha and exploitation of the same through biofertilization in peanut (Arachis hypogaea L.) growth and P acquisition. One hundred six numbers of soil samples with pH ≤ 5.50 were collected from five districts of Odisha viz., Balasore, Cuttack, Khordha, Keonjhar, and Mayurbhanj. One bacterial isolate from each district were selected and analyzed for their P solubilization efficiency in National Botanical Research Institute Phosphate broths with Ca, Al, and Fe-complexed phosphates. CTC12 and KHD08 transformed more amount of soluble P from Ca-P (CTC12 393.30 mg/L; KHD08 465.25 mg/L), Al-P (CTC12 40.00 mg/L; KHD08 34.50 mg/L), Fe(III)-P (CTC12 175.50 mg/L; KHD08 168.75 mg/L), and Fe(II)-P (CTC12 47.40 mg/L; KHD08 42.00 mg/L) after 8 days of incubation. The bioconversion of P by all the five strains in the broth medium followed the order Ca-P > Fe(III)-P > Fe(II)-P > Al-P. The identified five strains were Bacillus cereus BLS18 (KT582541), Bacillus amyloliquefaciens CTC12 (KT633845), Burkholderia cepacia KHD08 (KT717633), B. cepacia KJR03 (KT717634), and B. cepacia K1 (KM030037) and further studied for biofertilization effects on peanut. CTC12 and KHD08 enhanced the soil available P around 65 and 58% and reduced the amount of each Al 3+ about 79 and 81%, respectively, over the uninoculated control pots in the peanut rhizosphere. Moreover, all tested PSB strains could be able to successfully mobilize P from inorganic P fractions (non-occluded Al-P and Fe-P). The strains CTC12 and KHD08 increased the pod yield (114 and 113%), shoot P (92 and 94%), and kernel P (100 and 101%), respectively, over the control. However, B. amyloliquefaciens CTC12 and B. cepacia KHD08 proved to be the potent P solubilizers in promoting peanut growth and yield.

  9. Colloid formation and metal transport through two mixing zones affected by acid mine drainage near Silverton, Colorado

    USGS Publications Warehouse

    Schemel, L.E.; Kimball, B.A.; Bencala, K.E.

    2000-01-01

    Stream discharges and concentrations of dissolved and colloidal metals (Al, Ca, Cu, Fe, Mg, Mn, Pb, and Zn), SO4, and dissolved silica were measured to identify chemical transformations and determine mass transports through two mixing zones in the Animas River that receive the inflows from Cement and Mineral Creeks. The creeks were the dominant sources of Al, Cu, Fe, and Pb, whereas the upstream Animas River supplied about half of the Zn. With the exception of Fe, which was present in dissolved and colloidal forms, the metals were dissolved in the acidic, high-SO4 waters of Cement Creek (pH 3.8). Mixing of Cement Creek with the Animas River increased pH to near-neutral values and transformed Al and some additional Fe into colloids which also contained Cu and Pb. Aluminium and Fe colloids had already formed in the mildly acidic conditions in Mineral Creek (pH 6.6) upstream of the confluence with the Animas River. Colloidal Fe continued to form downstream of both mixing zones. The Fe- and Al-rich colloids were important for transport of Cu, Pb, and Zn, which appeared to have sorbed to them. Partitioning of Zn between dissolved and colloidal phases was dependent on pH and colloid concentration. Mass balances showed conservative transports for Ca, Mg, Mn, SO4, and dissolved silica through the two mixing zones and small losses (< 10%) of colloidal Al, Fe and Zn from the water column.

  10. Crystal structure of the mineral (Na,Ca,K){sub 2}(Ca,Na){sub 4}(Mg,Fe){sub 5}(Mg,Fe,Ti){sub 5}[Si{sub 12}Al{sub 4}O{sub 44}](F,O){sub 4}: a triclinic representative of the amphibole family

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rastsvetaeva, R. K., E-mail: rast@ns.crys.ras.ru; Aksenov, S. M.

    2012-05-15

    A mineral belonging to the amphibole family found at the Rothenberg paleovolcano (Eifel, Germany) was studied by single-crystal X-ray diffraction. The triclinic pseudomonoclinic unit-cell parameters are a = 5.3113(1) Angstrom-Sign , b = 18.0457(3) Angstrom-Sign ; c = 9.8684(2) Angstrom-Sign , {alpha} = 90.016(2) Degree-Sign , {beta} = 105.543(4) Degree-Sign , {gamma} = 89.985(2) Degree-Sign . The structure was solved by direct methods in sp. gr. P1 and refined to the R factor of 2.7% based on 6432 reflections with |F| > 3{sigma}(F) taking into account twinning. The mineral with the idealized formula (Na,Ca,K){sub 2}(Ca,Na){sub 4}(Mg,Fe){sub 5}(Mg,Fe,Ti){sub 5}[Si{sub 12}Al{sub 4}O{submore » 44}](F,O){sub 4} has some symmetry and structural features that distinguish it from other minerals of this family.« less

  11. Observations of the minor species Al and Fe in Mercury's exosphere

    NASA Astrophysics Data System (ADS)

    Bida, Thomas A.; Killen, Rosemary M.

    2017-06-01

    We report here on the first observational evidence of Al and Fe in the exosphere of Mercury, based on measurements of resolved emission lines of these metals with Keck-1/HIRES. Al emission was observed on two separate runs, in 2008 and 2013, with tangent column densities of 3.1 ± 1.0 and 4.0 ± 1.5 × 107 Al atoms cm-2 at altitudes of 1185 and 1870 km (1.5 and 1.75 RM). The Al radiative intensity was seen to increase where the slit crossed the planetary penumbral shadow, and then decrease monotonically with altitude. Fe emission has been observed once, in 2009, indicating an extended source. We also present observed 3-σ Ca+ upper limits near Mercury's equatorial anti-solar limb, from which an abundance limit of 4.0 × 106 cm-2 at 1650 km altitude is derived for the Ca ion. A simple model for zenith column abundances of the neutral species yields 1.9-5.2 × 107 Al cm-2, and 8.2 × 108 Fe cm-2. The observations appear to be consistent with production of these species by impact vaporization, with a large fraction of the Al ejecta in molecular form, and that for Fe in mixed atomic and molecular forms. The scale height of the Al gas is consistent with a kinetic temperature of 6100-8000 K. The apparent high temperature and low density of the Al gas would suggest that it may be produced by dissociation of molecules.

  12. The Universal Cpx Jd-Di barometer for mantle peridotite eclogite and pyroxenites and it using for the mantle petrology

    NASA Astrophysics Data System (ADS)

    Ashchepkov, Igor

    2015-04-01

    The Jd-Di exchange in clinopyroxenes used for the calibration of pyroxene barometer (Ashchepkov, 2000;2002; Ashchepkov et al 2010;2011;2012) was transformed to make one universal equation for mantle peridotite eclogites and pyroxenites. The original barometer (Ashchepkov, 2002) calibrated on pressures produced by Opx barometry (McGregor , 1974) was transformed (Ashchepkov et al ., 2004; 2010; 2011) to satisfy the increasing data bases for the mantle xenoliths and experimental values 530 in peridotitic and 650 in elcogitic systems . The obtained difference Pd =Pcpx- Pexp were studied for the dependence on each component and their combination . Instead of the common activities we used the temperature-dependent empirical equations. The three separate equations for the common peridotites, pyroxenites and eclogites (Ashchepkov et al., 2010) were checked and complex To and Al-Na-Fe dependent universal coefficients were received. The KD is determined as follows: KD=Na/AlCr*Mg/Ca The logarithmic dependence between P and KD was transformed to a linear one. Final pressure equations are: AlCr=(Al-0.01) *((T-600)/700)**0.75+Cr*(ToK-100)/1000+(4*Ti-0.0125)/ (T0-801)*650 +0.55*((Fe-0.23) *(T0-900)/10000-K) P=0.26*(5+12*(Al+0.30*Na)KD* ToK**0.75 /(1+Fe+ Fe*(ToK-600)/1000)-ln(1273/ ToK))*40*(7*Na-Al-15*Ti+10*Cr+Mg/4)+7.5*Si-20*( Al*Na*Mg/Ca/(Al-2*Ti+Na-2*Fe/(Fe+Mg))+50*(Na+0.1*Al-2*Ti+0.05*Mg-0.22*Ca-0.7*Na)/Ca). Obtained equation in combination with the (Nimis,Taylor, 2000) thermometer allow to reconstruct position of the magma feeder systems of the alkali basaltic magma withing the mantle diapirs in modern platforms like in Vitim plateau (Ashchepkov et al., 2011) and now was applicated to reconstruct the deep seated magma conduits beneath the mountain collision systems, island arcs ocean plateaus etc. This equation allows to receive the positions of the major groups of eclogites mantle sections and to find out the regularities of their behavior. The Fe rich eclogites commonly trace he boundary between the lower upper part of subcontinental lithospheric mantle (SCLM) at 3 -4 GPa marking pyroxenite eclogites layer. Ca- rich eclogites and especially grospydites in SCLM beneath Precambrian kimberlites occurs near pyroxenite layer but in younger mantle sections they became common in the lower parts marking presence of the subducted sediments. The Mg Cr- less group eclogites commonly diamondiferous and referring to the ancient island arc complexes are also common in the middle part of mantle sections and near 5-6 GPa. The group is often dominated in the young kimberlites and sometimes is highly diamondiferous. Commonly P-Fe# for eclogites in the lower SCLM part show rising Fe# with decreasing pressures which very of then reflect the differentiation of the magmatic systems commonly rather significant. Commonly the Fe#-values for the eclogites show that they can't be simple subucted oceanic basalts but material remelted not only during the low angle "hot"subduction but also under the influence of the kimberlite melts including protokimberlite magmas. The Mg - rich and Fe rich pyroxenites also show the extending in pressures trends which suggest the anatexic melting under the influence of volatiles or under the plum magma hybridization. RBRF grants 05-05-64718, 03-05-64146; 11 -05-00060a; 11-05-91060-PICS. Projects 77-2, 65-03, 02-05 IGM SD RAS and ALROSA Stock Company.

  13. Synthesis and characterization of polycrystalline brownmillerite cobalt doped Ca2Fe2O5

    NASA Astrophysics Data System (ADS)

    Dhankhar, Suchita; Bhalerao, Gopal; Baskar, K.; Singh, Shubra

    2016-05-01

    Brownmillerite compounds with general formula A2BB'O5 (BB' = Mn, Al, Fe, Co) have attracted attention in wide range of applications such as in solid oxide fuel cell, oxygen separation membrane and photocatalysis. Brownmillerite compounds have unique structure with alternate layers of BO6 octahedral layers and BO4 tetrahedral layers. Presence of dopants like Co in place of Fe increases oxygen vacancies. In the present work we have synthesized polycrystalline Ca2Fe2O5 and Ca2Fe1-xCoxO5 (x = 0.01, 0.03) by citrate combustion route. The as prepared samples were characterized by XRD using PANalytical X'Pert System, DRS (Diffuse reflectance spectroscopy) and SEM (Scanning electron microscopy).

  14. Petrography, mineralogy, and Mg isotope composition of VICTA: A vigarano CaAl4O7-bearing type A inclusion

    NASA Technical Reports Server (NTRS)

    Greenwood, R. C.; Morse, A.; Long, J. V. P.

    1993-01-01

    Thermodynamic calculations predict that Ca-dialuminate (CaAl4O7) condenses from a cooling gas of solar composition after hibonite and before melilite. Although Ca-dialuminate has now been recorded from Ca Al-rich inclusions (CAI's) in at least 9 meteorites, compared to hibonite it is a relatively rare phase. As pointed out by Michel-Levy et al., the absence of Ca-dialuminate from most hibonite-bearing inclusions poses a serious problem for the condensation model of CAI formation. Here we describe an inclusion which contains abundant CA-dialuminate partially altered to a hercynite-rich (FeAl2O4) assemblage. The evidence from VICTA indicates that compared to all other phases in type A inclusions, Ca-dialuminate is the most susceptible to secondary alteration; a feature which may explain its restricted occurrence. Unaltered Ca-dialuminate and melilite in VICTA display excess Mg-26 indicative of in situ decay of Al-26.

  15. 59Ni Production Rates in Mesosiderites Measured with Accelerator Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Fink, D.; Tuniz, C.; Herzog, G. F.; Albrecht, A.; Fifield, L. K.; Allan, G. L.; Paul, M.

    1993-07-01

    The cosmogenic radionuclide ^59Ni (t(sub)1/2 = 76 ky) has great potential as a monitor of thermal neutrons in metal-rich extraterrestrial materials. In deep samples from larger meteoroids (which can support a big neutron flux) containing >1% or so of nickel, thermal neutron capture on ^58Ni (sigma(sub)th = 4.6 b) is the dominant production mechanism. Near the surface of mm-size bodies production occurs via primary proton, fast neutron, and alpha reaction channels on Fe, Co, and Ni. We have applied AMS to the measurement of ^59Ni activities (see ref [1] for details) in four samples from the metal phase of the mesosiderites Estherville (fall, 1879) and Budulan, a find. The activities range from 1.5 to 3.5 dpm/g-Ni. Related work is described in refs. [2,3]. To discuss neutron fluxes in Budulan, we must correct the measured ^59Ni activities for terrestrial age. By using measured ^41Ca activities (13-19 dpm/kg-Fe [4]) and a maximum production rate, P(sub)Fe(^41Ca), in stony irons of 21 dpm/kg-Fe [5] we deduce a maximum terrestrial age of 35 ky. After correction for this terrestrial age and normalization to L-chondritic composition [6], the production rates of ^59Ni, P(sub)Fe(^59Ni), range from 5-13 dpm/g-Ni; these values are 2-3 times greater than those reported in [7] for large irons and ~10 times those for chondrites. References [4,8] present ^41Ca data in the silicate and metal phases from the same Estherville and Budulan samples. If thermal neutron production were solely responsible for P(sub)Fe(^59Ni) and P(sub)Sil(^41Ca) (the latter corrected for spallation of oxidized iron in pyroxene), then the thermal neutron fluxes, phi, inferred from each nuclide in a sample should be the same. We deduce ratios of phi(^59Ni)/phi(^41Ca) that range from 0.75 to 1.65. Differences in epithermal yields can account for only a minor fraction of this variation as the ratio of the total resonant neutron absorption integrals for ^40Ca and ^58Ni is within 10% of the ratio of the thermal neutron cross-sections alone. A twofold change in Budulan's terrestrial age alters the flux ratio by 10% at most. Like ^41Ca [9,10], P(sub)Fe(^59Ni) can be used to estimate shielding depths and lower limits on the pre-atmospheric radius. Calculations by [11] give a maximum value for P(sub)Fe(^59Ni) of 22 atoms/min/g-Ni at the center of an L-chondrite with a radius of 300 g/cm^2. The ^10Be and ^26Al activities in Estherville [5] and respective semi-empirical production rate formulas [12] set a maximum meteoroid radius of 300 g/cm^2. Our measured value for ^59Ni implies a lower radius limit of 150 g/cm^2 and shielding depths of 60-150 g/cm^2. Similarly for Budulan, we suggest a radius of 200 < R < 400 g/cm^2 and shielding depths from 40-200 g/cm^2. We infer that the above samples originated at relatively large depths (except for perhaps Budulan-2428) in meteoroids with preatmospheric radii > 30 cm, assuming a mesosiderite density of 5.5 g/cm^3. Interestingly, those samples (Budulan-2357 and Estherville-3311) having ^41Ca production rates that indicate a higher degree of shielding, have flux ratios equal to or less than 1; the other two samples have ^41Ca contents typical of near-surface exposure and have ratios phi(^59Ni)/phi(^41Ca) larger than unity. This correlation indicates that P(sub)59 from fast neutron reactions on ^60,61Ni enhances ^59Ni production at near surface regions. References: [1] Paul M. et al. (1993) Nucl. Inst. Meth., submitted. [2] Kutschera W. et al. (1992) Nucl. Inst. Meth., in press. [3] Klein J. et al.(1993) Meteoritics (this issue). [4] Albrecht A. et al. (1992) LPS XXIII, 5-6. [5] Vogt S. et al. (1991) Meteoritics, 26, 403. [6] Fink D. et al.(1992) LPS XXIII, 355-356. [7] Honda et al. (1967) Handb. Physik. 46(2), 613-632. [8] Fink D. et al. (1991) EPSL, 107, 115-128. [9] Fink D. et al. (1990) Nucl. Inst. Meth., B47, 79-96. [10] Klein J. et al. (1991) Meteoritics, 26, 358. [11] Spergel M. et al.(1986) Proc. LPS 16th; J. Geophys. Res., 91, D483-D494. [12] Graf et al. (1992) GCA, 54, 2521-2534.

  16. Removal of metals from landfill leachate by sorption to activated carbon, bone meal and iron fines.

    PubMed

    Modin, Hanna; Persson, Kenneth M; Andersson, Anna; van Praagh, Martijn

    2011-05-30

    Sorption filters based on granular activated carbon, bone meal and iron fines were tested for their efficiency of removing metals from landfill leachate. Removal of Al, As, Ca, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Mo, Ni, Pb, Sr and Zn were studied in a laboratory scale setup. Activated carbon removed more than 90% of Co, Cr, Cu, Fe, Mn and Ni. Ca, Pb, Sr and Zn were removed but less efficiently. Bone meal removed over 80% of Cr, Fe, Hg, Mn and Sr and 20-80% of Al, Ca, Cu, Mo, Ni, Pb and Zn. Iron fines removed most metals (As, Ca, Co, Cr, Cu, Fe, Mg, Mn, Pb, Sr and Zn) to some extent but less efficiently. All materials released unwanted substances (metals, TOC or nutrients), highlighting the need to study the uptake and release of a large number of compounds, not only the target metals. To remove a wide range of metals using these materials two or more filter materials may need to be combined. Sorption mechanisms for all materials include ion exchange, sorption and precipitation. For iron fines oxidation of Fe(0) seems to be important for metal immobilisation. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Observations of the Minor Species Al and Fe in Mercury's Exosphere

    NASA Technical Reports Server (NTRS)

    Bida, Thomas A.; Killen, Rosemary M.

    2016-01-01

    We report here on the first observational evidence of Al and Fe in the exosphere of Mercury, based on measurements of resolved emission lines of these metals with Keck-1/HIRES. Al emission was observed on two separate runs, in 2008 and 2013, with tangent column densities of 3.1 +/- 1.0 and 4.0 +/-1.5 x 10(exp 7) Al atoms cm(exp - 2) at altitudes of 1185 and 1870 km (1.5 and 1.75 R(sub M). The Al radiative intensity was seen to increase where the slit crossed the planetary penumbral shadow, and then decrease monotonically with altitude. Fe emission has been observed once, in 2009, indicating an extended source. We also present observed 3- Sigma Ca(+) upper limits near Mercury's equatorial anti-solar limb, from which an abundance limit of 4.0 x 10(exp 6) cm(exp -2) at 1650 km altitude is derived for the Ca ion. A simple model for zenith column abundances of the neutral species yields 1.9 -5.2 x 10(exp 7) Al cm(exp -2) , and 8.2 x 10(exp 8) Fe cm(exp -2) . The observations appear to be consistent with production of these species by impact vaporization, with a large fraction of the Al ejecta in molecular form, and that for Fe in mixed atomic and molecular forms. The scale height of the Al gas is consistent with a kinetic temperature of 6100-8000 K. The apparent high temperature and low density of the Al gas would suggest that it may be produced by dissociation of molecules.

  18. Creation of a 3Mn/1Fe cluster in the oxygen-evolving complex of photosystem II and investigation of its functional activity

    DOE PAGES

    Semin, B. K.; Davletshina, L. N.; Seibert, M.; ...

    2017-11-11

    Extraction of Mn cations from the oxygen-evolving complex (OEC) of Ca-depleted PSII membranes (PSII[-Ca,4Mn]) by reductants like hydroquinone (H 2Q) occurs with lower efficiency at acidic pH (2Mn/reaction center [RC] are extracted at pH 5.7) than at neutral pH (3Mn/RC are extracted at pH 6.5) [Semin et al. Photosynth. Res. 125 (2015) 95]. Fe(II) also extracts Mn cations from PSII(-Ca,4Mn), but only 2Mn/RC at pH 6.5, forming a heteronuclear 2Mn/2Fe cluster [Semin and Seibert, J. Bioenerg. Biomembr. 48 (2016) 227]. Here we investigated the efficiency of Mn extraction by Fe(II) at acidic pH and found that Fe(II) cations can extractmore » only 1Mn/RC from PSII(-Ca,4Mn) membranes at pH 5.7, forming a 3Mn/1Fe cluster.« less

  19. Creation of a 3Mn/1Fe cluster in the oxygen-evolving complex of photosystem II and investigation of its functional activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semin, B. K.; Davletshina, L. N.; Seibert, M.

    Extraction of Mn cations from the oxygen-evolving complex (OEC) of Ca-depleted PSII membranes (PSII[-Ca,4Mn]) by reductants like hydroquinone (H 2Q) occurs with lower efficiency at acidic pH (2Mn/reaction center [RC] are extracted at pH 5.7) than at neutral pH (3Mn/RC are extracted at pH 6.5) [Semin et al. Photosynth. Res. 125 (2015) 95]. Fe(II) also extracts Mn cations from PSII(-Ca,4Mn), but only 2Mn/RC at pH 6.5, forming a heteronuclear 2Mn/2Fe cluster [Semin and Seibert, J. Bioenerg. Biomembr. 48 (2016) 227]. Here we investigated the efficiency of Mn extraction by Fe(II) at acidic pH and found that Fe(II) cations can extractmore » only 1Mn/RC from PSII(-Ca,4Mn) membranes at pH 5.7, forming a 3Mn/1Fe cluster.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, S.H.; Song, B.

    The reoxidation behavior of steels by slag in the secondary steelmaking process was addressed by investigating the thermodynamic equilibria between the liquid iron containing Mn and P and CaO-MgO-SiO{sub 2}-Al{sub 2}O{sub 3}-P{sub 2}O{sub 5}-MnO-Fe{sub t}O ladle slag at 1873 K. The activity coefficient of Fe{sub t}O shows a maximum value in the vicinity of the basicity ((X{sub CaO} + X{sub MgO} + X{sub MnO})/(X{sub SiO{sub 2}} + X{sub Al{sub 2}O{sub 3}} + XP{sub 2}O{sub 5})) = 2.5 at the specific mole fraction range of Fe{sub t}O, while that of MnO seems to increase gradually with increasing the basicity. However, themore » values of {gamma}{sub Fe{sub t}O} and {gamma}{sub MnO} showed minima with respect to P{sub 2}O{sub 5} content of slag. In addition, the values of {gamma}{sub Fe{sub t}O} and {gamma}{sub MnO} increased as (pct CaO)/(pct Al{sub 2}O{sub 3}) ratio increased at given SiO{sub 2}, MgO, and P{sub 2}O{sub 5} contents. The conversion equations between the Fe{sub t}O and MnO activities and their calculated activities via regular solution model were derived by the correlation between the measured and calculated activities over the limited ranges of Fe{sub t}O and MnO contents. The regular solution model was used to estimate the oxygen potential in the slag. For MgO saturated slags, a{sub Fe{sub t}O{sub (l)}} = 0.864a{sub FeO{sub (R.S.)}}, a{sub MnO{sub (l)}} = 6.38a{sub MnO{sub (R.S.)}}. For Al{sub 2}O{sub 3} saturated slags, a{sub Fe{sub t}O{sub (l)}} = 2.086a{sub FeO{sub (R.S.)}}, a{sub MnO{sub (l)}} = 14.39a{sub MnO{sub (R.S.)}}.« less

  1. Dissolved organic matter degradation by sunlight coagulates organo-mineral colloids and produces low-molecular weight fraction of metals in boreal humic waters

    NASA Astrophysics Data System (ADS)

    Oleinikova, Olga V.; Drozdova, Olga Yu.; Lapitskiy, Sergey A.; Demin, Vladimir V.; Bychkov, Andrey Yu.; Pokrovsky, Oleg S.

    2017-08-01

    Photochemical degradation of dissolved organic matter (DOM) is recognized as the major driver of CO2 emission to the atmosphere from the inland waters of high latitudes. In contrast to numerous studies of photo-induced DOM transformation, the behavior of trace element (TE) during photodegradation of boreal DOM remains virtually unknown. Towards a better understanding of concentration, size fractionation and speciation change of DOM and TE in boreal waters subjected to solar radiation, we conducted on-site photo-degradation experiments in stream and bog water collected from a pristine zone of the Northern Karelia (Russian subarctic). The removal of Fe and Al occurred only in the bog water (90% and 50% respectively, over 5 days of reaction), whereas no detectable decrease of dissolved (<0.22 μm) Al and Fe concentration was observed in the boreal stream. A number of low-soluble TE linked to Fe-rich organo-mineral colloids followed the behavior of Fe during bog water exposure to sunlight: Al, P, Ti, V, Cr, As, Y, Zr, REEs, Hf, Th, Pb and U. The second group of elements (Li, B, Mg, Ca, Sr, Ba, Na, K, Rb, Si, Mn, Ni, Cu, Co, Cd, Sb) was indifferent to photodegradation of DOM and exhibited a non-systematic variation (±10-15% from the control) of <0.22 μm fraction in the course of sunlight exposure. The bog water insolation yielded a factor of 3 ± 1 increase of low molecular weight (LMW < 1 kDa) fraction of organic carbon, Al, Fe, U, Mg, Ca, Mn, Co, Ni, Sr, Cd and Ba after 200 h of sunlight exposure compared to the dark control. The LMW< 1 kDa fraction was preferentially enriched in Fe, Al, Ca, Mg and other divalent metals relative to Corg. The climate warming leading to water temperature rise in the boreal zone will intensify the Fe and Al hydroxide coagulation while increasing the production of LMW organic ligands and free metals and metal - organic complexes.

  2. Chevkinite-group minerals from granulite-facies metamorphic rocks and associated pegmatites of East Antarctica and South India

    USGS Publications Warehouse

    Belkin, H.E.; Macdonald, R.; Grew, E.S.

    2009-01-01

    Electron microprobe data are presented for chevkinite-group minerals from granulite-facies rocks and associated pegmatites of the Napier Complex and Mawson Station charnockite in East Antarctica and from the Eastern Ghats, South India. Their compositions conform to the general formula for this group, viz. A4BC2D2Si4O22 where, in the analysed specimens A = (rare-earth elements (REE), Ca, Y, Th), B = Fe2+, Mg, C = (Al, Mg, Ti, Fe2+, Fe3+, Zr) and D = Ti and plot within the perrierite field of the total Fe (as FeO) (wt.%) vs. CaO (wt.%) discriminator diagram of Macdonald and Belkin (2002). In contrast to most chevkinite-group minerals, the A site shows unusual enrichment in the MREE and HREE relative to the LREE and Ca. In one sample from the Napier Complex, Y is the dominant cation among the total REE + Y in the A site, the first reported case of Y-dominance in the chevkinite group. The minerals include the most Al-rich yet reported in the chevkinite group (49.15 wt.% Al2O3), sufficient to fill the C site in two samples. Conversely, the amount of Ti in these samples does not fill the D site, and, thus, some of the Al could be making up the deficiency at D, a situation not previously reported in the chevkinite group. Fe abundances are low, requiring Mg to occupy up to 45% of the B site. The chevkinite-group minerals analysed originated from three distinct parageneses: (1) pegmatites containing hornblende and orthopyroxene or garnet; (2) orthopyroxene-bearing gneiss and granulite; (3) highly aluminous paragneisses in which the associated minerals are relatively magnesian or aluminous. Chevkinite-group minerals from the first two parageneses have relatively high FeO content and low MgO and Al2O3 contents; their compositions plot in the field for mafic and intermediate igneous rocks. In contrast, chevkinite-group minerals from the third paragenesis are notably more aluminous and have greater Mg/Fe ratios. ?? 2009 The Mineralogical Society.

  3. Chevkinite-group minerals from granulite-facies metamorphic rocks and associated pegmatites of East Antarctica and South India

    USGS Publications Warehouse

    Belkin, Harvey E.; Macdonald, R.; Grew, E.S.

    2009-01-01

    Electron microprobe data are presented for chevkinite-group minerals from granulite-facies rocks and associated pegmatites of the Napier Complex and Mawson Station charnockite in East Antarctica and from the Eastern Ghats, South India. Their compositions conform to the general formula for this group, viz. A4BC2D2Si4O22 where, in the analysed specimens A = (rare-earth elements (REE), Ca, Y, Th), B = Fe2+, Mg, C = (Al, Mg, Ti, Fe2+, Fe3+, Zr) and D = Ti and plot within the perrierite field of the total Fe (as FeO) (wt.%) vs. CaO (wt.%) discriminator diagram of Macdonald and Belkin (2002). In contrast to most chevkinite-group minerals, the A site shows unusual enrichment in the MREE and HREE relative to the LREE and Ca. In one sample from the Napier Complex, Y is the dominant cation among the total REE + Y in the A site, the first reported case of Y-dominance in the chevkinite group. The minerals include the most Al-rich yet reported in the chevkinite group (≤9.15 wt.% Al2O3), sufficient to fill the C site in two samples. Conversely, the amount of Ti in these samples does not fill the D site, and, thus, some of the Al could be making up the deficiency at D, a situation not previously reported in the chevkinite group. Fe abundances are low, requiring Mg to occupy up to 45% of the B site. The chevkinite-group minerals analysed originated from three distinct parageneses: (1) pegmatites containing hornblende and orthopyroxene or garnet; (2) orthopyroxene-bearing gneiss and granulite; (3) highly aluminous paragneisses in which the associated minerals are relatively magnesian or aluminous. Chevkinite-group minerals from the first two parageneses have relatively high FeO content and low MgO and Al2O3 contents; their compositions plot in the field for mafic and intermediate igneous rocks. In contrast, chevkinite-group minerals from the third paragenesis are notably more aluminous and have greater Mg/Fe ratios

  4. Feruvite from the Sullivan Pb-Zn-Ag deposit, British Columbia

    USGS Publications Warehouse

    Jiang, S.-Y.; Palmer, M.R.; McDonald, A.M.; Slack, J.F.; Leitch, C.H.B.

    1996-01-01

    Feruvite, an uncommon Ca- and Fe2+-rich tourmaline species, has been discovered in the footwall of the Sullivan Pb-Zn-Ag deposit (British Columbia) near gabbro sills and dikes. Its chemical composition varies according to occurrence: feruvite from the shallow footwall has lower Ca, higher Al, and higher X-site vacancies than that from the deep footwall. The major chemical substitution involved in the feruvite is the exchange vector CaMgO???-1Al-1(OH)-1. The most important factor controlling feruvite formation at Sullivan is likely the reaction of Fe-rich hydrothermal fluids with Ca-rich minerals in gabbro and host rocks. This reaction led to the breakdown of Ca-rich minerals (plagioclase and hornblende), with release of Ca to solution and its incorporation into feruvite. This process probably postdated the main stages of formation of fine-grained, intermediate schorl-dravite in the tourmalinite pipe in the footwall, and is attributed to postore intrusion of gabbro and associated albite-chlorite-pyrite alteration.

  5. Discovery of a hexagonal ultradense hydrous phase in (Fe,Al)OOH

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Yuan, Hongsheng; Meng, Yue; Mao, Ho-kwang

    2018-03-01

    A deep lower-mantle (DLM) water reservoir depends on availability of hydrous minerals which can store and transport water into the DLM without dehydration. Recent discoveries found hydrous phases AlOOH (Z = 2) with a CaCl2-type structure and FeOOH (Z = 4) with a cubic pyrite-type structure stable under the high-pressure–temperature (P-T) conditions of the DLM. Our experiments at 107–136 GPa and 2,400 K have further demonstrated that (Fe,Al)OOH is stabilized in a hexagonal lattice. By combining powder X-ray-diffraction techniques with multigrain indexation, we are able to determine this hexagonal hydrous phase with a = 10.5803(6) Å and c = 2.5897(3) Å at 110 GPa. Hexagonal (Fe,Al)OOH can transform to the cubic pyrite structure at low T with the same density. The hexagonal phase can be formed when δ-AlOOH incorporates FeOOH produced by reaction between water and Fe, which may store a substantial quantity of water in the DLM.

  6. Characterisation of iron inclusion during the formation of calcium sulfoaluminate phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Idrissi, M., E-mail: mari_idrissi@yahoo.f; Diouri, A.; Damidot, D.

    The iron distribution among the sulfoaluminate clinker phases and its ability to enter the calcium sulfoaluminate lattice in solid solution can have a significant influence on manufacturing process and reactivity of calcium sulfoaluminate (CSA) cements. X-ray diffraction (XRD) analysis, Moessbauer spectroscopy, scanning electron microscopy (SEM) equipped with an energy dispersive X-ray analysis system (EDAX) and infrared spectroscopy were used to identify the mineralogical conditions of iron inclusion during the formation of calcium sulfoaluminate (C{sub 4}A{sub 3}S) phase from different mixtures in the CaO-Al{sub 2}O{sub 3}-Fe{sub 2}O{sub 3}-SO{sub 3} system. The mixtures, heated in a laboratory electric oven, contained stoichiometric amountsmore » of reagent grade CaCO{sub 3}, Al{sub 2}O{sub 3}, Fe{sub 2}O{sub 3} and CaSO{sub 4.2}H{sub 2}O for the synthesis of Ca{sub 4}Al{sub (6-2x)}Fe{sub 2x}SO{sub 16}, where x, comprised between 0 and 3, is the mole number of Al{sub 2}O{sub 3} substituted by Fe{sub 2}O{sub 3}. With x increasing from 0 to 1.5, both the iron content of C{sub 4}A{sub 3}S phase and the amounts of side components such as C{sub 2}F and CS increased. For x values included in the range of 1.5-3.0, at temperatures higher than 1200 {sup o}C, melting phenomena were observed and, instead of the C{sub 4}A{sub 3}S solid solution, ferritic phases and anhydrite were formed.« less

  7. [Spatial heterogeneity of surface soil mineral components in a small catchment in Karst peak-cluster depression area, South China].

    PubMed

    Gao, Peng; Fu, Tong-Gang; Wang, Ke-Lin; Chen, Hong-Song; Zeng, Fu-Ping

    2013-11-01

    A total of 163 soil samples (0-20 cm layer) were collected from the grid sampling plots (80 m x 80 m) in Huanjiang Observation and Research Station of Karst Ecosystem in a small catchment in Karst cluster-peak depression area, South China. By using classical statistics and geostatistics, the spatial heterogeneity of mineral components (SiO2, Fe2O3, CaO, MgO, Al2O3, MnO, and TiO2) in the soils were studied. The contents of the seven soil mineral components in the study area differed greatly, being in the order of SiO2 > Al2O3 > CaO > MgO > Fe2O3 > TiO2 > MnO, and the variance coefficients also varied obviously, in the order of CaO > MgO > Fe2O3 > TiO2 > SiO2 > Al2O3 > MnO. The seven mineral components accounted for 69.4% of the total soil mass. The spatial patterns and the fittest models of the seven soil mineral components differed from each other. All the seven soil mineral components had a strong spatial autocorrelation, with shorter variation ranges and stronger spatial dependence. The Kriging contour maps indicated that the distribution patterns of soil SiO2, Fe2O3, Al2O3, MnO, and TiO2 were similar, being higher in south and east, lower in north and west, higher in depression, and lower in slope, while the distribution patterns of soil CaO and MgO were in adverse. Natural conditions (vegetation, bare rock rate, slope degree, and slope aspect, etc. ) and human disturbance were the most important factors affecting the spatial patterns of the soil mineral components.

  8. Geochemistry and mineralogy of fly-ash from the Mae Moh lignite deposit, Thailand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, B.R.; Powell, M.A.; Fyfe, W.S.

    The concentration of 21 elements in fly ash from three boilers (75 MW, 150 MW, and 300 MW) at the EGAT power plant, Mae Moh, Thailand, were determined by INAA. The concentration of 10 major elements was determined by XRF. As, Co, Cr, Ni, Mo, and Sb generally increase in concentration going from bottom ash (BA) through the sequence of electrostatic precipitator ashes (ESPA) and reach maxima of As (352 ppm), Co (45 ppm), Cr (105 ppm), Mo (32 ppm), Ni (106 ppm), and Sb (15 ppm) in the ESPA. Ce, Cs, Fe, Hf, La, Sc, Ta, Tb, and Ybmore » did not exhibit concentration trends or are variable except in the case of one boiler, which showed an increase going from BA to ESPA. Only Br decreased in composition going from BA to ESPA. Rb, Sm, U, and Th showed marked variation in trends. The major elements identified by EDS were Al, Si, S, K, Ca, Fe, and Ba, with minor amounts of Mg, Na, Ti, Mn, and Sr. Al, Si, K, and Ca occur together and are present in most of the fly-ash particles. Ba was found as a major component with Ca, Al, and Si. Fe and Ca are usually associated with sulfur. Some small spheres (< 5 {mu}m) are comprised almost entirely of Fe (probably as oxide). Symplectite textures are noted in high-Fe phases. All elements except Br are significantly enriched in the fly ash relative to the coal, which contains 35% ash. Particle chemistry is consistent with the major mineral phases identified by XRD, which include: quartz, magnetite, mullite, gehlenite, anorthite, hematite, anhydrite, and clinopyroxene.« less

  9. Evidence from an Ice Core of a Large Impact Circa 1443 A.D.

    NASA Astrophysics Data System (ADS)

    Abbott, D.; Biscaye, P.; Cole-Dai, J.; Breger, D.

    2005-12-01

    Published data on melt water from the Siple Dome ice core show distinct anomalies at 1443.16 A.D. The Ca value is 111 ppb, over 9 times the next highest Ca value between 850-1760 A.D. The K value is 20 ppb, about 1.4 times the next highest K value. The Ca anomaly may be due to partial dissolution of CaCO3 microfossils from the 24 km Mahuika bolide impact crater on the southern New Zealand shelf. Deep-sea samples of the Mahuika ejecta layer contain >98% carbonate microfossils. The Mahuika impact may have produced tsunami runups of 130 meters in Jervis Bay, Australia. The Australian megatsunami deposits date to 1450±50 A.D. We analyzed the melt water from 8 ice-core samples from the West Antarctic Siple Dome ice core that date from 1440-1448 A.D. The 1443 A.D. level contained a peak in K of 53 ppb as compared to a background of ~6-7 ppb. Ca was high at 26 ppb but this is not as pronounced as reported earlier. We extracted solid material from the melt water. Except for the 1443 A.D. horizon and one fractured grain at the 1442 A.D. level, most samples were barren except for typical dust. At the 1443 A.D. level, we found 5 carbonate microfossils (coccoliths?) from 5 to 20 microns across. Two were round and solid. One microfossil appeared either caught during mitosis or broken during deformation and elongation. Another carbonate microfossil was unbroken, but appeared deformed into a square. We found a Cu grain with a small amount of oxygen. It is most likely a grain of native copper with an oxidized surface. Deformed microfossils and native minerals are both characteristic of bolide impacts. We also found many microcrystalline magnetite cubes, with an average crystal size of 0.3 microns or less. The high magnetic susceptibility of impact ejacta layers is caused by microcrystalline magnetite. We found a grain of conchoidally fractured feldspar ~15 microns long. A semi-quantitive EDAX analysis found 21% Si, 55% O, 9% Al, 5% Na, 3% K, 2% Fe, and 1% Ca (atomic %), well within the range of K-feldspar compositions. Because Fe does not fit into the feldspar structure, its occurrence implies either that the Fe-bearing feldspar is a glass, or that the Fe is in microcracks within the grain. As ice is not Fe-rich, the former is more likely. Because conchoidal fracture is characteristic of glass, this suggests that the feldspar is a glass (maskelynite) derived from an impact onto continental crust. We also found Al Fe oxide, Ti Al oxide, and amphibole. A semi-quantitative EDAX analysis of the latter found 53% O, 20% Si, 5% Na, 4% Al, Mg, and Fe, 3% Ca, and 0.5% K (atomic %) with trace Ti, S and Cl, close to the composition of the alkali amphibole richterite, which forms in contact metamorphosed limestones (skarns). The Al Fe oxide is most likely hercynite, a spinel that forms in contact metamorphic aureoles in silica-poor environments. All mineral grains had distinct edges. We also found radiating, fibrous crystals of a Ca Na silicate. An EDAX analysis of the mineral found 59% O, 13% Ca, 8% Si, 3% Na, and 1% Mg (atomic %). The Ca Na silicate is most likely pectolite (NaCa2Si3O8), which has radiating, fibrous crystals and forms in skarns. The presence of minerals characteristic of contact metamorphism is important as we have found abundant skarn facies minerals in the Mahuika ejecta layer within deep sea sediment. Thus, our data taken together are most consistent with an impact ejecta layer within the Siple Dome ice core that comes from the Mahuika impact event about 4044 kilometers away; providing a well-constrained date for the event around 1443 A.D.

  10. [Transformation and mobility of arsenic in the rhizosphere and non-rhizosphere soils at different growth stages of rice].

    PubMed

    Yang, Wen-Tao; Wang, Ying-Jie; Zhou, Hang; Yi, Kai-Xin; Zeng, Min; Peng, Pei-Qin; Liao, Bo-Han

    2015-02-01

    Speciation and bioavailability of arsenic in the rhizosphere and non-rhizosphere soils at different growth stages (tillering stage, jointing stage, booting stage, filling stage and maturing stage) of rice (Oryza sativa L.) were studied using toxicity characteristic leaching procedure (TCLP) and arsenic speciation analysis. Pot experiments were conducted and the soil samples were taken from a certain paddy soil in Hunan Province contaminated by mining industry. The results showed that: (1) With the extension of rice growth period, pH values and TCLP extractable arsenic levels in the rhizosphere and non-rhizosphere soils increased gradually. Soil pH and TCLP extractable arsenic levels in non-rhizosphere soils were higher than those in the rhizosphere soils at the same growth stage. (2) At the different growth stages of rice, contents of exchangeable arsenic (AE-As) in rhizosphere and non-rhizosphere soils were lower than those before the rice planting, and increased gradually with the extension of the rice growing period. Contents of Al-bound arsenic (Al-As), Fe-bound arsenic (Fe-As) and Ca-bound arsenic (Ca-As) increased gradually after rice planting, but not significantly. Residual arsenic (O-As) and total arsenic (T-As) decreased gradually after rice planting, by 37.30% and 14.69% in the rhizosphere soils and by 31.38% and 8.67% in the non-rhizosphere soils, respectively. (3) At the different growth stages of rice, contents of various forms of arsenic in the soils were in the following order: residual arsenic (O-As) > Fe-bound arsenic ( Fe-As) > Al-bound arsenic (Al-As) > Ca-bound arsenic (Ca-As) > exchangeable arsenic (AE-As). In the pH range of 5.0- 5.8, significant positive linear correlations were found between most forms of arsenic or TCLP extractable arsenic levels and pH values, while the Ca-bound arsenic was poorly correlated with pH values in the rhizosphere soils.

  11. Molecular field coefficients and cation distribution of substituted yttrium iron garnets

    NASA Astrophysics Data System (ADS)

    Röschmann, P.; Hansen, P.

    1981-10-01

    The saturation magnetization Ms(T) of Ga, Al, Sc, and CaVBi substituted Y3Fe5O12 (YIG) single crystals and of polycrystalline Ca/Ge and Ca/Ti substituted YIG has been investigated for 4.2 K ⩽T⩽TC. The samples were repeatedly annealed and quenched at different equilibrium temperatures 773 K⩽Te ⩽1523 K. The attained site exchange of Fe and the substituents between the a and d sites resulted in considerable changes of Ms(T). From a fit of the Néel molecular field theory to the Ms(T) data the dependence of the magnetic moments at T = 0 K and of the molecular field coefficients on the amount of nonmagnetic substitutions on the a and d sites were determined. It turned out that ion-specific sets of equations are required accounting for the ''particular ion effect'' of different cation species. The cation distributions inferred from the magnetic data have been analyzed along with a thermodynamic equilibrium model. The derived site stabilizing energies for the mixed Fe-Ga and Fe-Al garnets agree well with recently reported data. New results are presented for the site stabilizing energies in Ca/Ge:YIG and for the substituents Sc and Ti with octahedral site preference.

  12. Iron Redox Systematics of Shergottites and Martian Magmas

    NASA Technical Reports Server (NTRS)

    Righter, Kevin; Danielson, L. R.; Martin, A. M.; Newville, M.; Choi, Y.

    2010-01-01

    Martian meteorites record a range of oxygen fugacities from near the IW buffer to above FMQ buffer [1]. In terrestrial magmas, Fe(3+)/ SigmaFe for this fO2 range are between 0 and 0.25 [2]. Such variation will affect the stability of oxides, pyroxenes, and how the melt equilibrates with volatile species. An understanding of the variation of Fe(3+)/SigmaFe for martian magmas is lacking, and previous work has been on FeO-poor and Al2O3-rich terrestrial basalts. We have initiated a study of the iron redox systematics of martian magmas to better understand FeO and Fe2O3 stability, the stability of magnetite, and the low Ca/high Ca pyroxene [3] ratios observed at the surface.

  13. Synthesis and characterization of polycrystalline brownmillerite cobalt doped Ca{sub 2}Fe{sub 2}O{sub 5}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhankhar, Suchita; Baskar, K.; Singh, Shubra, E-mail: shubra6@gmail.com

    2016-05-23

    Brownmillerite compounds with general formula A{sub 2}BB’O{sub 5} (BB’ = Mn, Al, Fe, Co) have attracted attention in wide range of applications such as in solid oxide fuel cell, oxygen separation membrane and photocatalysis. Brownmillerite compounds have unique structure with alternate layers of BO{sub 6} octahedral layers and BO{sub 4} tetrahedral layers. Presence of dopants like Co in place of Fe increases oxygen vacancies. In the present work we have synthesized polycrystalline Ca{sub 2}Fe{sub 2}O{sub 5} and Ca{sub 2}Fe{sub 1-x}Co{sub x}O{sub 5} (x = 0.01, 0.03) by citrate combustion route. The as prepared samples were characterized by XRD using PANalyticalmore » X’Pert System, DRS (Diffuse reflectance spectroscopy) and SEM (Scanning electron microscopy).« less

  14. Modeling the global emission, transport and deposition of trace elements associated with mineral dust

    DOE PAGES

    Zhang, Y.; Mahowald, N.; Scanza, R. A.; ...

    2015-10-12

    Trace element deposition from desert dust has important impacts on ocean primary productivity, the quantification of which could be useful in determining the magnitude and sign of the biogeochemical feedback on radiative forcing. However, the impact of elemental deposition to remote ocean regions is not well understood and is not currently included in global climate models. In this study, emission inventories for eight elements primarily of soil origin, Mg, P, Ca, Mn, Fe, K, Al, and Si are determined based on a global mineral data set and a soil data set. The resulting elemental fractions are used to drive themore » desert dust model in the Community Earth System Model (CESM) in order to simulate the elemental concentrations of atmospheric dust. Spatial variability of mineral dust elemental fractions is evident on a global scale, particularly for Ca. Simulations of global variations in the Ca / Al ratio, which typically range from around 0.1 to 5.0 in soils, are consistent with observations, suggesting that this ratio is a good signature for dust source regions. The simulated variable fractions of chemical elements are sufficiently different; estimates of deposition should include elemental variations, especially for Ca, Al and Fe. The model results have been evaluated with observations of elemental aerosol concentrations from desert regions and dust events in non-dust regions, providing insights into uncertainties in the modeling approach. The ratios between modeled and observed elemental fractions range from 0.7 to 1.6, except for Mg and Mn (3.4 and 3.5, respectively). Using the soil database improves the correspondence of the spatial heterogeneity in the modeling of several elements (Ca, Al and Fe) compared to observations. Total and soluble dust element fluxes to different ocean basins and ice sheet regions have been estimated, based on the model results. The annual inputs of soluble Mg, P, Ca, Mn, Fe and K associated with dust using the mineral data set are 0.30 Tg, 16.89 Gg, 1.32 Tg, 22.84 Gg, 0.068 Tg, and 0.15 Tg to global oceans and ice sheets.« less

  15. Development and quality assessments of commercial heat production of ATF FeCrAl tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, Yukinori

    2015-09-01

    Development and quality assessment of the 2 nd generation ATF FeCrAl tube production with commercial manufacturers were conducted. The manufacturing partners include Sophisticated Alloys, Inc. (SAI), Butler, PA for FeCrAl alloy casting via vacuum induction melting, Oak Ridge National Laboratory (ORNL) for extrusion process to prepare the master bars/tubes to be tube-drawn, and Rhenium Alloys, Inc. (RAI), North Ridgeville, OH, for tube-drawing process. The masters bars have also been provided to Los Alamos National Laboratory (LANL) who works with Century Tubes, Inc., (CTI), San Diego, CA, as parallel tube production effort under the current program.

  16. [Characterization and optimization of the NaOH-EDTA extracts for solution 31P-NMR analysis of organic phosphorus in river sediments].

    PubMed

    Zhang, Wen-Qiang; Shan, Bao-Qing; Zhang, Hong; Tang, Wen-Zhong

    2014-01-01

    Optimization and mechanism of NaOH-EDTA extraction solutions were studied in phosphorus (P) pollution river sediments, which were Fe, Al-rich sediment, by solution 31P nuclear magnetic resonance spectroscopy (31P-NMR). Different proportions of NaOH and EDTA showed different extraction efficiency on total P (TP) and organic P (Po) in the sediment. The concentration of Po in NaOH + EDTA extract was higher than that in NaOH extract. The mechanism was that the TP and Po were released under the conditions of EDTA chelating with Fe and Al. The concentration of TP and Po were the highest in 1.00 mol x L(-1) NaOH +75 mmol x L(-1) EDTA extract and 0.25 mol x L(-1) NaOH + 50 mmol x L(-1) EDTA extract, which were 3.88 mg x g(-1) and 0.24 mg x g(-1), respectively. The extractions of Fe, Mn, Ca, Mg, Al were increasing as the EDTA increased under the same NaOH concentration. Extraction efficiency of Fe, Mn, Ca showed negative correlation with the pH of the extracting solution (P < 0.01). Exponential relationship was found between the extraction of Al and the pH of the extraction solution (P < 0.01) because of the AlO2- and EDTA-Al complex. The quality of spectra of NaOH-EDTA extract was better than that of NaOH extract. Six P species were detected in different extractions, including phosphonates, orthophosphate, pyrophosphate, orthophosphate monoesters, phospholipids and deoxyribonucleic acids. Therefore, 0. 25 mol x L(-1) NaOH + 50 mmol x L(-1) EDTA was the optimization extraction solution for Po analysis in Fe and Al-rich river sediment by 31P-NMR.

  17. Structural classification of RAO3( MO) n compounds ( R =Sc, In, Y, or lanthanides; A =Fe(III), Ga, Cr, or Al; M =divalent cation; n = 1-11)

    NASA Astrophysics Data System (ADS)

    Kimizuka, Noboru; Mohri, Takahiko

    1989-01-01

    A series of new compounds RAO3( MO) n ( n = 1-11) having spinel, YbFe 2O 4, or InFeO 3(ZnO) n types of structures were newly synthesized ( R =Sc, In, Y, Lu, Yb, Tm, or Er; A =Fe(III), Ga, Cr, or Al; M =Mg, Mn, Fe(II), Co, Ni, Zn, or Cd) at elevated temperatures. The conditions of synthesis and the lattice constants for these compounds are reported. The stacking sequences of the InO 1.5, (FeZn)O 2.5, and ZnO layers for InFeO 3(ZnO) 10 and the TmO 1.5, (AlZn)O 2.5, and ZnO layers for TmAlO 3(ZnO) 11 are presented, respectively. The crystal structures of the( RAO3) m( MO) n phases ( R =Sc, In, Y, or lanthanide elements; A =Fe(III), Ga, Cr, or Al; M =divalent cation elements; m and n =integer) are classified into four crystal structure types (K 2NiF 4, CaFe 2O 4, YbFe 2O 4, and spinel), based upon the constituent cations R, A, and M

  18. Disproportionation of marokite at high pressures and temperatures with geophysical implications

    NASA Astrophysics Data System (ADS)

    Liu, Lin-gun

    1983-07-01

    Natural marokite (CaMn 2O 4) has been studied at high pressures and temperatures using a diamond-anvil press coupled with laser heating in the pressure range 100-250 kbar. A mixture of marokite, CaMnO 3 (perovskite) and MnO (rocksalt) has been observed in all runs in the above pressure range by X-ray diffraction study of the quenched samples. It was interpreted that marokite disproportionates into the mixture CaMnO 3 (perovskite) + MnO (rocksalt) at pressures below 100 kbar. A general comparison of the molar volume for all known compounds having the marokite-related structures (including CaFe 2O 4 and CaTi 2O 4) with those for a mixture of perovskite plus rocksalt structures suggested that the mixture is more stable than the marokite-related structures at high pressures, as confirmed by the present experimental result. The CaFe 2O 4-modification of common nepheline (NaAlSiO 4) is also suggested to be unstable relative to the component oxides of α-NaAlO 2 + SiO 2 (stishovite) at high pressures.

  19. Metallic elements occurrences within metallic fragments in the municipal waste incineration bottom ash

    NASA Astrophysics Data System (ADS)

    Kowalski, Piotr; Kasina, Monika; Michalik, Marek

    2017-04-01

    Bottom ash (BA) from municipal solid waste incineration (MSWI) is composed of grainy ash material, residual components and metallic fragments (from few µm up to 3-5 cm). Its mineral and chemical composition is related to the composition of the waste stream in the incinerator operational area. Wide use of thermal techniques in management of solid waste makes important the studies on valuable components and their distribution within the material in terms of their further processing. By using various valorization or extraction techniques it is possible to extend the range of its possible further application. To investigate metallic elements distribution within metallic fragments of the MSWI BA material produced in municipal waste incineration plant in Poland were collected in 2015 and 2016. BA and its components were investigated using spectroscopic methods of chemical analysis: ICP-OES, ICP-MS, LECO and EDS (used for microanalysis during SEM observations). BA is a material rich in Si (22.5 wt%), Ca (13.4 wt%), Fe (4 wt%), Al (5.2 wt%) and Na (3.5 wt%), composed of equal part of amorphous (silicate glass dominated) and crystalline phase (rich in silicates, aluminosilicates, oxides of non- and metallic elements and sulphates). The content of metallic elements (Al, Fe, Mg, Ti, Mn, Cr, Ni, Sc, Mo, Cu, Pb, Zn, Sn) is 11.5 wt% with domination of Al (5.2 wt%) and Fe (4 wt%) and elevated values of Mg (1 wt%), Ti (0.54 wt%), Cu (0.26 wt%) and Zn (0.27 wt%) (Kowalski et al., 2016). They were mostly concentrated in the form of metallic fragments, mainly as metallic inclusions in the size of 1-20 µm and separated metallic grains in the size of 50-300 µm. Metallic fragments present in the BA are characterized by their composition heterogeneity and various oxygen content. Fragments are rarely composed of single metallic element and usually in their composition up to few main elements dominated over others. The most common were Fe-, Al- and Zn-rich fragments forming respectively 70%, 15% and 5% of the total amount of fragments. Fe occurred mainly as component of metallic inclusions and separate grains. Al was mostly present in metallic fragments on grains boundaries and also and as separate grains (often oxidised), moreover Al was important component of aluminosilicates and amorphous phase. Zn-rich metallic fragments were mostly in the form of separate grains. In complex composition of metallic fragments some regularities in elements co-occurrences were observed: Fe often co-existed with Si, Ca, P, Al and Ti; Al co-occurred with Fe, Si and Ca; Zn co-existed with Ca, Al and Si. Forms and composition of metallic fragments allows to evaluate them as potential polymetallic resource, however an economically reasonable extraction techniques must be applied. Acknowledgment Research was funded by Polish National Science Centre (NCN). Scientific grant No. UMO-2014/15/B/ST10/04171. Reference Kowalski, P.R., Kasina, M. and Michalik M.: Metallic elements fractionation in municipal solid waste incineration residues, Energy Procedia, 97, 31-36, doi: 10.1016/j.egypro.2016.10.013, 2016.

  20. Amoeboid olivine aggregates with low-Ca pyroxenes: a genetic link between refractory inclusions and chondrules?

    NASA Astrophysics Data System (ADS)

    Krot, Alexander N.; Petaev, Michail I.; Yurimoto, Hisayoshi

    2004-04-01

    Amoeboid olivine aggregates (AOAs) in primitive (unmetamorphosed and unaltered) carbonaceous chondrites are uniformly 16O-enriched (Δ 17O ˜ -20‰) and consist of forsterite (Fa <2), FeNi-metal, and a refractory component (individual CAIs and fine-grained minerals interspersed with forsterite grains) composed of Al-diopside, anorthite, ±spinel, and exceptionally rare melilite (Åk <15); some CAIs in AOAs have compact, igneous textures. Melilite in AOAs is replaced by a fine-grained mixture of spinel, Al-diopside, and anorthite. Spinel is corroded by anorthite or by Al-diopside. In ˜10% of > 500 AOAs studied in the CR, CV, CM, CO, CH, CB, and ungrouped carbonaceous chondrites Acfer 094, Adelaide, and LEW85332, forsterite is replaced to a various degree by low-Ca pyroxene. There are three major textural occurrences of low-Ca pyroxene in AOAs: (i) thin (<10 μm) discontinuous layers around forsterite grains or along forsterite grain boundaries in AOA peripheries; (ii) haloes and subhedral grains around FeNi-metal nodules in AOA peripheries, and (iii) thick (up to 70 μm) continuous layers with abundant tiny inclusions of FeNi-metal grains around AOAs. AOAs with low-Ca pyroxene appear to have experienced melting of various degrees. In the most extensively melted AOA in the CV chondrite Leoville, only spinel grains are relict; forsterite, anorthite and Al-diopside were melted. This AOA has an igneous rim of low-Ca pyroxene with abundant FeNi-metal nodules and is texturally similar to Type I chondrules. Based on these observations and thermodynamic analysis, we conclude that AOAs are aggregates of relatively low temperature solar nebular condensates originated in 16O-rich gaseous reservoir(s), probably CAI-forming region(s). Some of the CAIs were melted before aggregation into AOAs. Many AOAs must have also experienced melting, but of a much smaller degree than chondrules. Before and possibly after aggregation, melilite and spinel reacted with the gaseous SiO and Mg to form Ca-Tschermakite (CaAl 2SiO 6)-diopside (CaMgSi 2O 6) solid solution and anorthite. Solid or incipiently melted olivine in some AOAs reacted with gaseous SiO in the CAI- or chondrule-forming regions to form low-Ca pyroxene: Mg 2SiO 4 + SiO (g) + H 2O (g) = Mg 2Si 2O 6 + H 2(g). Some low-Ca pyroxenes in AOAs may have formed by oxidation of Si-bearing FeNi-metal: Mg 2SiO 4 + Si (in FeNi) + 2H 2O (g) = Mg 2Si 2O 6 + 2H 2(g) and by direct gas-solid condensation: Mg (g) + SiO (g) +H 2O (g) = Mg 2Si 2O 6(s) + H 2(g) from fractionated (Mg/Si ratio < solar) nebular gas. Although bulk compositions of AOAs are rather similar to those of Type I chondrules, on the projection from spinel onto the plane Ca 2SiO 4-Mg 2SiO 4-Al 2O 3, these objects plot on different sides of the anorthite-forsterite thermal divide, suggesting that Type I chondrules cannot be produced from AOAs by an igneous fractionation. Formation of low-Ca pyroxene by reaction of AOAs with gaseous SiO and by melting of silica-rich dust accreted around AOAs moves bulk compositions of the AOAs towards chondrules, and provide possible mechanisms of transformation of refractory materials into chondrules or chondrule precursors. The rare occurrences of low-Ca pyroxene in AOAs may indicate that either AOAs were isolated from the hot nebular gas before condensation of low-Ca pyroxene or that condensation of low-Ca pyroxene by reaction between forsterite and gaseous SiO was kinetically inhibited. If the latter is correct, then the common occurrences of pyroxene-rich Type I chondrules may require either direct condensation of low-Ca pyroxenes or SiO 2 from fractionated nebular gas or condensation of gaseous SiO into chondrule melts.

  1. Short-term low-severity spring grassland fire impacts on soil extractable elements and soil ratios in Lithuania.

    PubMed

    Pereira, Paulo; Cerda, Artemi; Martin, Deborah; Úbeda, Xavier; Depellegrin, Daniel; Novara, Agata; Martínez-Murillo, Juan F; Brevik, Eric C; Menshov, Oleksandr; Comino, Jesus Rodrigo; Miesel, Jessica

    2017-02-01

    Spring grassland fires are common in boreal areas as a consequence of slash and burn agriculture used to remove dry grass to increase soil nutrient properties and crop production. However, few works have investigated fire impacts on these grassland ecosystems, especially in the immediate period after the fire. The objective of this work was to study the short-term impacts of a spring grassland fire in Lithuania. Four days after the fire we established a 400m 2 sampling grid within the burned area and in an adjacent unburned area with the same topographical, hydrological and pedological characteristics. We collected topsoil samples immediately after the fire (0months), 2, 5, 7 and 9months after the fire. We analysed soil pH, electrical conductivity (EC), major nutrients including calcium (Ca), magnesium (Mg), sodium (Na), and potassium (K), and the minor elements aluminium (Al), manganese (Mn), iron (Fe) and zinc (Zn). We also calculated the soil Na and K adsorption ratio (SPAR), Ca:Mg and Ca:Al. The results showed that this low-severity grassland fire significantly decreased soil pH, Al, and Mn but increased EC, Ca, Mg, and K,. There was no effect on Na, Fe, and Zn. There was a decrease of EC, Ca, Mg, and Na from 0months after the fire until 7months after the fire, with an increase during the last sampling period. Fire did not significantly affect SPAR. Ca:Mg decreased significantly immediately after the fire, but not to critical levels. Ca:Al increased after the fire, reducing the potential effects of Al on plants. Overall, fire impacts were mainly limited to the immediate period after the fire. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Creation of a 3Mn/1Fe cluster in the oxygen-evolving complex of photosystem II and investigation of its functional activity.

    PubMed

    Semin, B К; Davletshina, L N; Seibert, M; Rubin, A B

    2018-01-01

    Extraction of Mn cations from the oxygen-evolving complex (OEC) of Ca-depleted PSII membranes (PSII[-Ca,4Mn]) by reductants like hydroquinone (H 2 Q) occurs with lower efficiency at acidic pH (2Mn/reaction center [RC] are extracted at pH5.7) than at neutral pH (3Mn/RC are extracted at pH6.5) [Semin et al. Photosynth. Res. 125 (2015) 95]. Fe(II) also extracts Mn cations from PSII(-Ca,4Mn), but only 2Mn/RC at pH6.5, forming a heteronuclear 2Mn/2Fe cluster [Semin and Seibert, J. Bioenerg. Biomembr. 48 (2016) 227]. Here we investigated the efficiency of Mn extraction by Fe(II) at acidic pH and found that Fe(II) cations can extract only 1Mn/RC from PSII(-Ca,4Mn) membranes at pH 5.7, forming a 3Mn/1Fe cluster. Also we found that the presence of Fe cations in a heteronuclear cluster (2Mn/2Fe) increases the resistance of the remaining Mn cations to H 2 Q action, since H 2 Q can extract Mn cations from homonuclear Mn clusters of PSII(-Ca,4Mn) and PSII(-Ca,2Mn) membranes but not from the heteronuclear cluster in PSII(-Ca,2Mn,2Fe) membranes. H 2 Q also cannot extract Mn from PSII membranes obtained by incubation of PSII(-Ca,4Mn) membranes with Fe(II) cations at pH5.7, which suggests the formation of a heteronuclear 3Mn/1Fe cluster in the OEC. Functional activity of PSII with a 3Mn/1Fe cluster was investigated. PSII preparations with a 3Mn/1Fe cluster in the OEC are able to photoreduce the exogenous electron acceptor 2,6-dichlorophenolindophenol, possibly due to incomplete oxidation of water molecules as is the case with PSII(-Ca,2Mn,2Fe) samples. However, in the contrast to PSII(-Ca,2Mn,2Fe) samples PSII(-Ca,3Mn,1Fe) membranes can evolve O 2 at a low rate in the presence of exogenous Ca 2+ (at about 27% of the rate of O 2 evolution in native PSII membranes). The explanation for this phenomenon (either water splitting and production of molecular O 2 by the 3Mn/1Fe cluster or apparent O 2 evolution due to minor contamination of PSII(3Mn,1Fe) samples with PSII(-Ca,4Mn) membranes) is discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Mg, Al, Si, Ca, Ti, Fe, and Ni abundance for a sample of solar analogues

    NASA Astrophysics Data System (ADS)

    López-Valdivia, Ricardo; Bertone, Emanuele; Chávez, Miguel

    2017-05-01

    We report on the determination of chemical abundances of 38 solar analogues, including 11 objects previously identified as super-metal-rich stars. We have measured the equivalent widths for 34 lines of 7 different chemical elements (Mg, Al, Si, Ca, Ti, Fe and Ni) in high-resolution (R ˜ 80 000) spectroscopic images, obtained at the Observatorio Astrofísico Guillermo Haro (Sonora, Mexico), with the Cananea High-resolution Spectrograph. We derived chemical abundances using atlas12 model atmospheres and the Fortran code moog. We confirmed the super-metallicity status of six solar analogues. Within our sample, BD+60 600 is the most metal rich star ([Fe/H] = +0.35 dex), while for HD 166991, we obtained the lowest iron abundance ([Fe/H] = -0.53 dex). We also computed the so-called [Ref] index for 25 of our solar analogues, and we found that BD+60 600 ([Ref] = +0.42) and BD+28 3198 ([Ref] = +0.34) are good targets for exoplanet search.

  4. Leather material found on a 6th B.C. Chinese bronze sword: A technical study

    NASA Astrophysics Data System (ADS)

    Luo, Wugan; Si, Yi; Wang, Hongmin; Qin, Ying; Huang, Fengchun; Wang, Changsui

    2011-09-01

    During July to November, 2006, an important archaeological excavation was conducted in Yun country, Hubei province, southern China. Chinese archaeologists found some remnant of leather materials, covered with red pigments, on a 6th century B.C. Chinese bronze sword. To understand the technology/ies that may have been utilized for manufacturing the leathers, a combined of Raman spectroscopy, FT-IR and XRF was thus applied to the remnant of leather materials. Raman analyses showed that red pigment on the leather was cinnabar (HgS). FT-IR and XRF analyses indicated that the content of some elements, such as Ca (existing as CaCO 3) and Fe (existing as Fe 2O 3), were much higher than those in the surrounding grave soil. The results inferred an application of lime depilation and retting, and the Fe-Al compound salt as tanning agent. And it was furthermore implicated that the Fe-Al salt tanning technique had been developed in the middle and late Spring and Autumn Period of China.

  5. AFLOWLIB.ORG: a Distributed Materials Properties Repository from High-throughput Ab initio Calculations

    DTIC Science & Technology

    2011-11-15

    uncle) fcc (uncle) hcp (uncle) phase-diagram Ag Al Al Au Au Bi Bi Ca Ca Cd Cd Ce Ce Co Co Cr Cr Cu Cu Fe Fe Ga Ga Gd Gd Ge Ge Hf...Hf Hg Hg In In Ir Ir La La Li Li Mg Mg Mn Mn Mo Mo Na Na Nb Nb Ni Ni Os Os Pb Pb Pd Pd Pt Pt Rb Rb Re Re Rh Rh Ru Ru Sb Sb Sc...2 S. Curtarolo, A. N. Kolmogorov, and F. H. Cocks, High-throughput ab initio analysis of the Bi-In, Bi- Mg , Bi-Sb, In- Mg , In-Sb, and Mg -Sb systems

  6. Menzerite-(Y) a New Species {(Y REE)(Ca Fe2plus)2}[(Mg Fe2plus)(Fe3plus Al)](Si3)O12 from a Felsic Granulite Parry Sound Ontario and a New Garnet End-member (Y2Ca)Mg2(SiO4)3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E Grew; J Marsh; M Yates

    2011-12-31

    Menzerite-(Y), a new mineral species, forms reddish brown cores, n = 1.844 (20), up to 70 {micro}m across, rimmed successively by euhedral almandine containing up to 2.7 wt% Y{sub 2}O{sub 3} and by K-feldspar in a felsic granulite on Bonnet Island in the interior Parry Sound domain, Grenville Orogenic Province, Canada. It is named after Georg Menzer (1897-1989), the German crystallographer who solved the crystal structure of garnet. Single-crystal X-ray-diffraction results yielded space group Ia3d, a = 11.9947(6) {angstrom}. An electron-microprobe analysis of the grain richest in Y (16.93 wt% Y{sub 2}O{sub 3}) gave the following formula, normalized to eightmore » cations and 12 oxygen atoms: {l_brace}Y{sub 0.83}Gd{sub 0.01}Dy{sub 0.05}Ho{sub 0.02}Er{sub 0.07}Tm{sub 0.01}Yb{sub 0.06}Lu{sub 0.02}Ca{sub 1.37}Fe{sub 0.49}{sup 2+}Mn{sub 0.07}{r_brace} [Mg{sub 0.55}Fe{sub 0.42}{sup 2+}Fe{sub 0.58}{sup 3+}Al{sub 0.35} V{sub 0.01}Sc{sub 0.01}Ti{sub 0.08}](Si{sub 2.82}Al{sub 0.18})O{sub 12}, or {l_brace}(Y,REE)(Ca,Fe{sup 2+}){sub 2}{r_brace}[(Mg,Fe{sup 2+})(Fe{sup 3+},Al)](Si{sub 3})O{sub 12}. Synchrotron micro-XANES data gave Fe{sup 3+}/{Sigma}Fe = 0.56(10) versus 0.39(2) calculated from stoichiometry. The scattering power refined at the octahedral Y site, 17.68 epfu, indicates that a relatively light element contributes to its occupancy. Magnesium, as determined by electron-microprobe analyses, would be a proper candidate. In addition, considering the complex occupancy of this site, the average Y-O bond length of 2.0244(16) {angstrom} is in accord with a partial occupancy by Mg. The dominance of divalent cations with Mg > Fe{sup 2+} and the absence of Si at the octahedral Y site (in square brackets) are the primary criteria for distinguishing menzerite-(Y) from other silicate garnet species; the menzerite-(Y) end-member is {l_brace}Y{sub 2}Ca{r_brace}[Mg{sub 2}](Si{sub 3})O{sub 12}. The contacts of menzerite-(Y) with almandine are generally sharp and, in places, cuspate. It is interpreted to have equilibrated with ferrosilite, augite, quartz, oligoclase, allanite-(Ce), magnetite, ilmenite and fluorapatite, in the absence of almandine, on the prograde path at 7-8.5 kbar and T {approx} 700-800 C, and subsequently dissolved incongruently in an anatectic melt to form almandine, most likely, at P {approx} 8.5-9.5 kbar and T {approx} 800-850 C.« less

  7. AAuAl (A = Ca, Sc, and Ti): Peierls Distortion, Atomic Coloring, and Structural Competition

    DOE PAGES

    Pham, Joyce; Miller, Gordon J.

    2018-04-02

    Using density functional theory, the crystal structure variation of AAuAl (A = Ca, Sc, and Ti) from orthorhombic Co 2Si-type to distorted hexagonal Fe 2P-type and then Ni 2In-type structures is shown to correlate with their electronic structures and valence electron counts, sizes of the active metals A, and site preferences for Au and Al atoms, which are arranged to maximize Au–Al nearest neighbor contacts. An evaluation of chemical pressure imposed by the varying A metals using total energy vs volume calculations indicates that larger unit cell volumes favor the orthorhombic structure, whereas smaller volumes favor the hexagonal structures. Themore » electronic origin of the Mg 2Ga-type crystal structure of ScAuAl, refined as a distorted Fe 2P-type supercell doubled along the c-axis, indicates a Peierls-type distortion mechanism of the Au chains along the c-axis.« less

  8. AAuAl (A = Ca, Sc, and Ti): Peierls Distortion, Atomic Coloring, and Structural Competition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pham, Joyce; Miller, Gordon J.

    Using density functional theory, the crystal structure variation of AAuAl (A = Ca, Sc, and Ti) from orthorhombic Co 2Si-type to distorted hexagonal Fe 2P-type and then Ni 2In-type structures is shown to correlate with their electronic structures and valence electron counts, sizes of the active metals A, and site preferences for Au and Al atoms, which are arranged to maximize Au–Al nearest neighbor contacts. An evaluation of chemical pressure imposed by the varying A metals using total energy vs volume calculations indicates that larger unit cell volumes favor the orthorhombic structure, whereas smaller volumes favor the hexagonal structures. Themore » electronic origin of the Mg 2Ga-type crystal structure of ScAuAl, refined as a distorted Fe 2P-type supercell doubled along the c-axis, indicates a Peierls-type distortion mechanism of the Au chains along the c-axis.« less

  9. Antiferromagnetic spin fluctuations and unconventional nodeless superconductivity in an iron-based new superconductor (Ca4Al2O(6-y))(Fe2As2): 75As nuclear quadrupole resonance study.

    PubMed

    Kinouchi, H; Mukuda, H; Yashima, M; Kitaoka, Y; Shirage, P M; Eisaki, H; Iyo, A

    2011-07-22

    We report 75As nuclear quadrupole resonance studies on (Ca4Al2O(6-y))(Fe2As2) with T(c) = 27  K. Measurement of nuclear-spin-relaxation rate 1/T1 has revealed a significant development of two-dimensional antiferromagnetic spin fluctuations down to T(c) in association with the smallest As-Fe-As bond angle. Below T(c), the temperature dependence of 1/T1 without any trace of the coherence peak is well accounted for by a nodeless s(±)-wave multiple-gaps model. From the fact that its T(c) is comparable to T(c) = 28  K in the optimally doped LaFeAsO(1-y) in which antiferromagnetic spin fluctuations are not dominant, we remark that antiferromagnetic spin fluctuations are not a unique factor for enhancing T(c) among Fe-based superconductors, but a condition for optimizing superconductivity should be addressed from the lattice structure point of view.

  10. Essential trace elements in amyotrophic lateral sclerosis (ALS): Results in a population of a risk area of Italy.

    PubMed

    Forte, Giovanni; Bocca, Beatrice; Oggiano, Riccardo; Clemente, Simonetta; Asara, Yolande; Sotgiu, Maria Alessandra; Farace, Cristiano; Montella, Andrea; Fois, Alessandro Giuseppe; Malaguarnera, Michele; Pirina, Pietro; Madeddu, Roberto

    2017-09-01

    Sardinian (Italy) island population has a uniquely high incidence of amyotrophic lateral sclerosis (ALS). Essential trace element levels in blood, hair, and urine of ALS Sardinian patients were investigated in search of valid biomarkers to recognize and predict ALS. Six elements (Ca, Cu, Fe, Mg, Se, and Zn) were measured in 34 patients compared to 30 age- and sex-matched healthy controls by a validated method. Levels of Ca and Cu in blood and of Se and Zn in hair were significantly higher in ALS than in controls, while urinary excretion of Mg and Se was significantly decreased. The selected cut-off concentrations for these biomarkers may distinguish patients with or without ALS with sufficient sensitivity and specificity. Many positive (as Se-Cu and Se-Zn) and negative associations (as Ca-Mg and Ca-Zn) between elements suggested that multiple metals involved in multiple mechanisms have a role in the ALS degeneration.

  11. New calibration of Ji - Di clinopyroxene barometer for Eclogites, pyroxenites and peridotites and eclogite - pyroxenite mantle geotherms.

    NASA Astrophysics Data System (ADS)

    Ashchepkov, Igor; Vishnyakova, Elena

    2010-05-01

    Checking the universe clinopyroxene JD-Di barometer on the experimental system showed that it better to use the separate schemes for the eclogite and peridotite systems. The clinopyroxene barometer based on the internal exchange of Jd-Di components for the Al. It allow using the temperature calculated with the (Krogh, 1988) method for the The barometer was calibrated on the 200 experimental runs for the eclogitic system (Yaxley,Brey,2004; Spandler ea, 2008; Konzett ea, 2008; Hanrahan ea, 2009 and references there in). It reproduces the pressure range to 120 kbar with the r= 0.91 (S=8) for 180 experimental runs. P(Ash2010 Ecl)=0.32 (1-0.215*Na/Al+0.012*Fe/Na)*Kd^3/4*ToK/(1+Fe)*(1+5*Fe)- 35*ln(1273/ToK)*(Al+Ti+2.5Na+1.5Fe3+)+(0.9-xx(2,8))*10+xx(2,9)/xx(2,3)* ToK /200-1.5 P1=(0.00004*P^3-0.0091*P^2+1.3936*P)*1.05 Where KD = Na*Mg/xAlCr*/Ca; XAlCr= Al+Cr+4*Ti-K-(Fe-0.21)*0.75 The tests on the natural associations form the eclogitic xenoliths with and without the diamonds and omphacite diamond inclusions (Taylor ea, 2006; Shatsky ea, 2008; Jacob ea, 2009) have shown very good agreement with the position of the Graphite -Diamond (Kennedy, Kennedy, 1977) boundary and to the conductive geotherms which are close to 34-36mvm-2 geotherms while for the South Africa they are more close to 40mvm-2 geotherms. For the zonal omphacites it produces the range of the nearly equal pressures or more rarely advective paths. The levels of the maximum enrichments in eclogites which are close to 50-60 kabr beneath 360ma Siberian kimberlites coincides with the levels of heating according to the monomineral and polymineral thermobarometry. South Africa eclogite geotherms often split into 2-3 branches: subductional (35) conductive (40) for Paleozoic-Mesozoic mantle lithosphere and the hottest advective close o 45 mv/m-2. For the pyroxenite compositions the barometer was rearranged to by the adding the temperature influence on Al , Ta, Fe exactly in KD as following: P(Ash2010 Per-Pxt)=0.275*(1-0.17*Na/Al+0.0115*Fe/Na)*Kd^3/4*ToK/(1+Fe)* (1+5*Fe*(ToK-600)/50)-35*ln(1273/ToK)*(Al+Ti+2.5Na+1.5Fe3+)+(0.9-xx(2,8))*10+xx(2,9)/xx(2,3)* ToK /300-4*(Fe*33.2-4) -(Al-5.5)*( ToK -1300)/70-( ToK -1200)*0.015 with the second correction P=P*0.65+10+Mg*Al*( ToK -1400)/500 Where KD = Na*Mg/xAlCr*/Ca; XAlCr= Al*((T0-800)/800)**0.25+Cr-K+(4*Ti-0.0125)/(T0-600)*400+(Fe-0.21)*(T0-600)/14000 This equations reproduces the experimental pressures for 300 experimental runs with the R=0.84 and for the best set of the experimental data (Walter, 1999; Taylor ea 1998; Brey Kohler, 1990; 2009) with the E=0.95 (s=7) within the 100 kbar interval. They allow to work with the wide range of the pyroxenite compositions giving the practically coinciding PT parameters with the pressures determined for ilmenites and chromites as well as the (Brey, Kohler, 1900) pressure estimates. The PT parameters reconstructed for the mantle lithosphere beneath > 120 pipes from Yakutia , Baltica, Africa , North America and other world wide kimberlites have shown very good coincidence with the estimates from the other methods of monomineral (Nimis, Taylor, 2000; McGregor, 1974; Ashchepkov ea. 2009 ) and Gar-Opx barometers (Brey, Kohler, 1900; Nickel, Green, 1975). For the garnet and spinel xenoliths of the alkali basalts representing fertile or regenerated peridotites with high Al content of the clinopyroxenes the modified equation allows to determine the pressures together for megacrysts, pyroxeniets and peridotites using the following equation P=0.035*Kd*ToK)/(1+3.5*Fe)- 50*ln(1273/(ToK-100)*(Al+5*Na-Ti+2*Cr) -(Na-0.050)*(ToK-1200)*(Ca-0.85)/7000+5 Where KD = Na*Mg/xAlCr*/Ca; xAlCr= (Al+Si-2)*((ToK-700)/900)^0.35+Cr+Fe3-K +(4*Ti-0.0125)/(ToK-600)*700 +(Fe-0.21)*(ToK-400)/17000 This equations also very good reproduce the experimental runs in the pressure interval from 10 to 80 kbar but better to 50 kbars (R=0.92) (S=5) for 170 experimental runs (Putirka ea, 1996; Fallon ea, 1999; Taylor ea, 1998; Drapper Green, 1997; Lambart ea 2009) in this pressure range.

  12. Sustainable synthesis of metals-doped ZnO nanoparticles from zinc-bearing dust for photodegradation of phenol.

    PubMed

    Wu, Zhao-Jin; Huang, Wei; Cui, Ke-Ke; Gao, Zhi-Fang; Wang, Ping

    2014-08-15

    A novel strategy of waste-cleaning-waste is proposed in the present work. A metals-doped ZnO (M-ZnO, M = Fe, Mg, Ca and Al) nanomaterial has been prepared from a metallurgical zinc-containing solid waste "fabric filter dust" by combining sulfolysis and co-precipitation processes, and is found to be a favorable photocatalyst for photodegradation of organic substances in wastewater under visible light irradiation. All the zinc and dopants (Fe, Mg, Ca and Al) for preparing M-ZnO are recovered from the fabric filter dust, without any addition of chemical as elemental source. The dust-derived M-ZnO samples deliver single phase indexed as the hexagonal ZnO crystal, with controllable dopants species. The photocatalytic activity of the dust-derived M-ZnO samples is characterized by photodegradation of phenol aqueous solution under visible light irradiation, giving more prominent photocatalytic behaviors than undoped ZnO. Such enhancements may be attributed to incorporation of the dust-derived metal elements (Fe, Mg, Ca and Al) into ZnO structure, which lead to the modification of band gap and refinement of grain size. The results show a feasibility to utilize the industrial waste as a resource of photodegradating organic substances in wastewater treatments. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Trace metal concentrations in tropical mangrove sediments, NE Brazil.

    PubMed

    Miola, Brígida; Morais, Jáder Onofre de; Pinheiro, Lidriana de Souza

    2016-01-15

    Sediment cores were taken from the mangroves of the Coreaú River estuary off the northeast coast of Brazil. They were analyzed for grain size, CaCO3, organic matter, and trace metal (Cd, Pb, Zn, Cu, Al, and Fe) contents. Mud texture was the predominant texture. Levels of trace metals in surface sediments indicated strong influence of anthropogenic processes, and diagenetic processes controlled the trace metal enrichment of core sediments of this estuary. The positive relationships between trace metals and Al and Fe indicate that Cu, Zn, Pb, and Cd concentrations are associated mainly with Al and Fe oxy-hydroxides and have natural sources. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Biogeochemistry of Mariana Islands coastal sediments: terrestrial influence on /gd13, Ash, CaCO3, Al, Fe, Si and P

    NASA Astrophysics Data System (ADS)

    Matson, Ernest A.

    1989-01-01

    Stable C isotope ratios (δ13C-PDB), percentages of organic matter, and HCl insoluble ash and soluble carbonates, extractable Fe, Al, Si and P were used to determine the distribution and accumulation of terrestrial material in reef-flat moats and lagoons of two high islands (Guam and Saipan) in the western tropical Pacific. Carbonate sediments of a reef-flat moat infiltrated by seepage of aquifer waters (but without surface runoff) were depleted in both P (by 38%) and 13C (by 41%) and enriched in Si (by 100%) relative to offshore lagoon sediments. Iron and ash accumulated in depositional regimes regardless of the occurrence of runoff but was depleted from coarse-grained carbonates in turbulent regimes. Aluminum (>ca. 10 to 20 μmol g-1), Fe (>ca. 1 to 3 μmol g-1) and ash (>0.5%) indicated terrigenous influence which was corroborated by depletions in both 13C and P. Low-salinity geochemical segregation, natural biochemical accumulation, as well as long-shore currents and eddies help sequester these materials nearshore.

  15. Chemical composition and evolution of tourmaline-supergroup minerals from the Sb hydrothermal veins in Rožňava area, Western Carpathians, Slovakia

    NASA Astrophysics Data System (ADS)

    Bačík, Peter; Dikej, Jakub; Fridrichová, Jana; Miglierini, Marcel; Števko, Martin

    2017-09-01

    Tourmaline-supergroup minerals are common gangue minerals in Sb-hydrothermal veins on Betliar - Straková, Čučma - Gabriela and Rožňava - Peter-Pavol vein deposits in the Rožňava area, Slovakia. Tourmaline-supergroup minerals form relatively large prismatic to radial aggregates of parallel black to greyish-black crystals. Tourmaline-supergroup minerals from Betliar - Straková and Rožňava - Peter-Pavol are almost homogeneous with intermediate schorl-dravite composition. Čučma - Gabriela tourmaline have distinct zoning with massive core of the schorlitic-to-feruvitic shifting to schorlitic-to-dravitic composition, and dravitic to magnesio-foititic rim. The tourmaline composition is influenced by two main substitutions, namely Ca(Mg,Fe)Na-1Al-1 and X □AlNa-1(Mg,Fe)-1. Betliar - Straková and Rožňava - Peter-Pavol tourmaline-supergroup minerals exhibit only small extents of the X □AlNa-1(Mg,Fe)-1 substitution. This substitution shifts the composition to magnesio-foitite in Čučma - Gabriela tourmaline. The decrease of Al in the core of Čučma - Gabriela tourmaline crystals is caused by extensive Ca(Mg,Fe)Na-1Al-1 substitution. The unit-cell dimensions of all investigated tourmaline-supergroup minerals indicate an octahedral disorder with the Z (Fe3++Mg) proportion calculated from empirical equations varying between 0.85 and 0.87 apfu (atoms per formula unit). Based on Mössbauer spectra, the Z Fe3+ content varied between 0.25 apfu in Betliar - Straková tourmaline and 0.45 apfu in Čučma - Gabriela sample. Based on Fe/(Fe + Mg) ratio, Betliar - Straková tourmaline is slightly enriched in Fe compared to Rožňava - Peter-Pavol, suggesting the impact of the host-rock composition; first are grown in Fe-richer acidic metarhyolitic rocks, latter in metapelites. In Čučma - Gabriela, the variations in Fe/(Fe + Mg) are very likely reflecting the change in fluid composition. Magnesio-foitite is the product of second-stage crystallization forming rims and crack fills. The relatively low Fe3+/Fe2+ ratio suggests only minor proportion of meteoric fluids forming tourmaline.

  16. Determining baseline element composition of lichens. I. Parmelia sulcata at Theodore Roosevelt national park, North Dakota

    USGS Publications Warehouse

    Gough, L.P.; Severson, R.C.; Jackson, L.L.

    1988-01-01

    Element-concentration baselines are given for Parmelia sulcata and associated soils. Parmelia chlorochroa was found sporadically and therefore only representative concentration ranges are reported for this species. Element data include (1) for lichens; Al, As, Ba, B, Ca, Cr, Cu, Fe, Hg, Mn, Ni, P, Sr, S, Ti, V, Y, and Zn; and (2) for soils: Al, Ba, Be, Ca, Cs, Cr, Cu, Fe, Hg, Mg, Mn, Ni, Nb, P, Pb, Sr, S, Ti, V, Y, and Zn. Very little (usually 7.2 km); thus, P sulcata is, in general, chemically similar throughout the park. This same uniformity was found for soil geochemistry. Numerous samples collected at close intervals would be required, therefore, to produce detailed element-concentration maps for P. sulcata and soils. No instances of elemental phytotoxic conditions were found; however, P. sulcata apparently possesses large concentrations of Ba, Cu, Fe, Pb, S, V, and possibly Zn.

  17. The effects of minor elements in La0.6Sr0.4Co0.2Fe0.8O3-δ cathodes on oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Oishi, Junya; Otomo, Junichiro; Oshima, Yoshito; Koyama, Michihisa

    2015-03-01

    It is known that the minor elements affect the performance of solid oxide fuel cell (SOFC). In this study, we focus on the influence of minor elements on the SOFC cathode properties. The Ca, Ba, Al, and Si, which originate from raw materials and production processes for SOFC cathodes, are investigated as minor elements that may have effect on the properties of La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) cathode. To examine the effects of minor elements on the cathode properties, Ca, Ba, Al, and Si with a controlled concentration are added to the LSCF reference sample. Conductivity relaxation measurements are conducted to determine the chemical diffusion coefficient (Dchem) and surface exchange coefficient (ktr), which governs the overpotential characteristics of the LSCF cathode. The results show that Al and Si have negative effects on both Dchem and ktr while Ca and Ba do not alter Dchem and show weakly positive effects on ktr. The effects of Ca and Ba for the cathode properties are discussed on the basis of XPS measurements.

  18. Literature Survey on Decorporation of Radionuclides from the Human Body

    DTIC Science & Technology

    2002-04-01

    66 8. Adverse Health Effects Associated with... effects ........................................... 66 Table 11- Common foods with chelating effects ...Mn Tetracycline Fe, MR, Mn, Mo, Al, Ca Table 11- Common foods with chelating effects Foodstuff Chelate Cq hhPe 1314 99 M. 75’s Eggs 59Fe Soybean 65Zn

  19. Metals geochemistry and mass export from the Mississippi-Atchafalaya River system to the Northern Gulf of Mexico.

    PubMed

    Reiman, Jeremy H; Xu, Y Jun; He, Songjie; DelDuco, Emily M

    2018-08-01

    Discharging 680 km 3 of freshwater annually to the Northern Gulf of Mexico (NGOM), the Mississippi-Atchafalaya River System (MARS) plays a significant role in transporting major and trace elements to the ocean. In this study, we analyzed total recoverable concentrations of thirty-one metals from water samples collected at five locations along the MARS during 2013-2016 to quantify their seasonal mass exports. The Atchafalaya River flows through a large swamp floodplain, allowing us to also test the hypothesis that floodplains function as a sink for metals. We found that the seven major elements (Ca, Na, Mg, Si, K, Al, and Fe) constituted 99% of the total annual mass load of metals (7.38 × 10 7 tons) from the MARS. Higher concentrations of Al, Ba, B, Ca, Fe, Mg, Mn, Ag, and Ti were found in the Mississippi River, while significantly higher Si and Na concentrations were found in the Atchafalaya River. Significant relationships were found between daily discharge and daily loads of Ba, Ca, Fe, K, Sr, and Ti in both rivers, while significant relationships were also found for Al, Mg, Mn, V, and Zn in the Atchafalaya River and B in the Mississippi River. Overall, the Mississippi River contributed 64-76% of the total annual loading of metals from the MARS to the NGOM. Daily loads of Al, Ba, B, Fe, Li, Mn, P, K, Si, Ag, Ti, V, and Zn regularly decreased upstream to downstream in the Atchafalaya River, partially accepting the initial hypothesis on metals transport in river floodplains. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Analysis of charcoal blast furnace slags by laser-induced breakdown spectroscopy

    DOE PAGES

    Bhatt, Chet R.; Goueguel, Christian L.; Jain, Jinesh C.; ...

    2017-09-22

    Laser-induced breakdown spectroscopy (LIBS) was used for the analysis of charcoal blast furnace slags. Plasma was generated by an application of a 1064 nm wavelength Nd:YAG laser beam to the surface of pellets created from the slags. The presence of Al, Ca, Fe, K, Mg, Mn, and Si was determined by identifying their characteristic spectral signatures. Multivariate analysis was performed for the quantification of these elements. The predicted LIBS results were found in agreement with the inductively coupled plasma optical emission spectrometry analysis. The limit of detection for Al, Ca, Fe, K, Mg, Mn, and Si was calculated to bemore » 0.10%, 0.22%, 0.02%, 0.01%, 0.01%, 0.005%, and 0.18%, respectively.« less

  1. Analysis of charcoal blast furnace slags by laser-induced breakdown spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatt, Chet R.; Goueguel, Christian L.; Jain, Jinesh C.

    Laser-induced breakdown spectroscopy (LIBS) was used for the analysis of charcoal blast furnace slags. Plasma was generated by an application of a 1064 nm wavelength Nd:YAG laser beam to the surface of pellets created from the slags. The presence of Al, Ca, Fe, K, Mg, Mn, and Si was determined by identifying their characteristic spectral signatures. Multivariate analysis was performed for the quantification of these elements. The predicted LIBS results were found in agreement with the inductively coupled plasma optical emission spectrometry analysis. The limit of detection for Al, Ca, Fe, K, Mg, Mn, and Si was calculated to bemore » 0.10%, 0.22%, 0.02%, 0.01%, 0.01%, 0.005%, and 0.18%, respectively.« less

  2. Activity coefficients of NiO and CoO in CaO-Al2O3-SiO2 slag and their application to the recycling of Ni-Co-Fe-based end-of-life superalloys via remelting

    NASA Astrophysics Data System (ADS)

    Lu, Xin; Miki, Takahiro; Nagasaka, Tetsuya

    2017-01-01

    To design optimal pyrometallurgical processes for nickel and cobalt recycling, and more particularly for the end-of-life process of Ni-Co-Fe-based end-of-life (EoL) superalloys, knowledge of their activity coefficients in slags is essential. In this study, the activity coefficients of NiO and CoO in CaO-Al2O3-SiO2 slag, a candidate slag used for the EoL superalloy remelting process, were measured using gas/slag/metal equilibrium experiments. These activity coefficients were then used to consider the recycling efficiency of nickel and cobalt by remelting EoL superalloys using CaO-Al2O3-SiO2 slag. The activity coefficients of NiO and CoO in CaO-Al2O3-SiO2 slag both show a positive deviation from Raoult's law, with values that vary from 1 to 5 depending on the change in basicity. The activity coefficients of NiO and CoO peak in the slag with a composition near B = (%CaO)/(%SiO2) = 1, where B is the basicity. We observed that controlling the slag composition at approximately B = 1 effectively reduces the cobalt and nickel oxidation losses and promotes the oxidation removal of iron during the remelting process of EoL superalloys.

  3. Slags in a Large Variation Range of Oxygen Potential Based on the Ion and Molecule Coexistence Theory

    NASA Astrophysics Data System (ADS)

    Yang, Xue-Min; Li, Jin-Yan; Zhang, Meng; Chai, Guo-Min; Zhang, Jian

    2014-12-01

    A thermodynamic model for predicting sulfide capacity of CaO-FeO-Fe2O3-Al2O3-P2O5 slags in a large variation range of oxygen potential corresponding to mass percentage of FetO from 1.88 to 55.50 pct, i.e., IMCT- model, has been developed by coupling with the deduced desulfurization mechanism of the slags based on the ion and molecule coexistence theory (IMCT). The developed IMCT- model has been verified through comparing the determined sulfide capacity after Ban-ya et al.[20] with the calculated by the developed IMCT- model and the calculated by the reported sulfide capacity models such as the KTH model. Mass percentage of FetO as 6.75 pct corresponding to the mass action concentration of FetO as 0.0637 or oxygen partial as 2.27 × 10-6 Pa is the criterion for distinguishing reducing and oxidizing zones for the slags. Sulfide capacity of the slags in reducing zone is controlled by reaction ability of CaO regardless of slag oxidization ability. However, sulfide capacity of the slags in oxidizing zone shows an obvious increase tendency with the increasing of slag oxidization ability. Sulfide capacity of the slags in reducing zone keeps almost constant with variation of the simplified complex basicity (pct CaO)/((pct Al2O3) + (pct P2O5)), or optical basicity, or the mass action concentration ratios of N FeO/ N CaO, , , and . Sulfide capacity of the slags in oxidizing zone shows an obvious increase with the increasing of the simplified complex basicity (pct CaO)/((pct Al2O3) + (pct P2O5)) or optical basicity, or the aforementioned mass action concentration ratios. Thus, the aforementioned mass action concentration ratios and the corresponding mass percentage ratios of various iron oxides to basic oxide CaO are recommended to represent the comprehensive effect of various iron oxides and basic oxide CaO on sulfide capacity of the slags.

  4. Vapor pressures and evaporation coefficients for melts of ferromagnesian chondrule-like compositions

    NASA Astrophysics Data System (ADS)

    Fedkin, A. V.; Grossman, L.; Ghiorso, M. S.

    2006-01-01

    To determine evaporation coefficients for the major gaseous species that evaporate from silicate melts, the Hertz-Knudsen equation was used to model the compositions of residues of chondrule analogs produced by evaporation in vacuum by Hashimoto [Hashimoto A. (1983) Evaporation metamorphism in the early solar nebula-evaporation experiments on the melt FeO-MgO-SiO 2-CaO-Al 2O 3 and chemical fractionations of primitive materials. Geochem. J. 17, 111-145] and Wang et al. [Wang J., Davis A. M., Clayton R. N., Mayeda T. K., Hashimoto A. (2001) Chemical and isotopic fractionation during the evaporation of the FeO-MgO-SiO 2-CaO-Al 2O 3-TiO 2 rare earth element melt system. Geochim. Cosmochim. Acta 65, 479-494], in vacuum and in H 2 by Yu et al. [Yu Y., Hewins R. H., Alexander C. M. O'D., Wang J. (2003) Experimental study of evaporation and isotopic mass fractionation of potassium in silicate melts. Geochim. Cosmochim. Acta 67, 773-786], and in H 2 by Cohen et al. [Cohen B. A., Hewins R. H., Alexander C. M. O'D. (2004) The formation of chondrules by open-system melting of nebular condensates. Geochim. Cosmochim. Acta 68, 1661-1675]. Vapor pressures were calculated using the thermodynamic model of Ghiorso and Sack [Ghiorso M. S., Sack R. O. (1995) Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib. Mineral. Petrol. 119, 197-212], except for the late, FeO-free stages of the Wang et al. (2001) and Cohen et al. (2004) experiments, where the CMAS activity model of Berman [Berman R. G. (1983) A thermodynamic model for multicomponent melts, with application to the system CaO-MgO-Al 2O 3-SiO 2. Ph.D. thesis, University of British Columbia] was used. From these vapor pressures, evaporation coefficients ( α) were obtained that give the best fits to the time variation of the residue compositions. Evaporation coefficients derived for Fe (g), Mg (g), and SiO (g) from the Hashimoto (1983) experiments are similar to those found by Alexander [Alexander C. M. O'D. (2004) Erratum. Meteoritics Planet. Sci. 39, 163] in his EQR treatment of the same data and also adequately describe the FeO-bearing stages of the Wang et al. (2001) experiments. From the Yu et al. (2003) experiments at 1723 K, αNa = 0.26 ± 0.05, and αK = 0.13 ± 0.02 in vacuum, and αNa = 0.042 ± 0.020, and αK = 0.017 ± 0.002 in 9 × 10 -5 bar H 2. In the FeO-free stages of the Wang et al. (2001) experiments, αMg and αSiO are significantly different from their respective values in the FeO-bearing portions of the same experiments and from the vacuum values obtained at the same temperature by Richter [Richter F. M., Davis A. M., Ebel D. S., Hashimoto A. (2002) Elemental and isotopic fractionation of Type B calcium-, aluminum-rich inclusions: experiments, theoretical considerations, and constraints on their thermal evolution. Geochim. Cosmochim. Acta 66, 521-540] for CMAS compositions much lower in MgO. When corrected for temperature, the values of αMg and αSiO that best describe the FeO-free stages of the Wang et al. (2001) experiments also adequately describe the FeO-free stage of the Cohen et al. (2004) H 2 experiments, but αFe that best describes the FeO-bearing stage of the latter experiment differs significantly from the temperature-corrected value derived from the Hashimoto (1983) vacuum data.

  5. ``Amarna blue'' painted on ancient Egyptian pottery

    NASA Astrophysics Data System (ADS)

    Uda, M.; Nakamura, M.; Yoshimura, S.; Kondo, J.; Saito, M.; Shirai, Y.; Hasegawa, S.; Baba, Y.; Ikeda, K.; Ban, Y.; Matsuo, A.; Tamada, M.; Sunaga, H.; Oshio, H.; Yamashita, D.; Nakajima, Y.; Utaka, T.

    2002-04-01

    "Amarna blue" pigments (18 Dynasty, c. 1400 BC) painted on pottery fragments were investigated using the PIXE, XRF and XRD methods in laboratories and also using a portable type of X-ray spectrometer at the sites of excavation. On the blue-colored part enrichment of Na, Al, S, Cl, Ca, Mn, Co, Ni and Zn was found using X-ray spectroscopy, and CaSO 4, NaCl and Co(M)Al 2O 4, M denoting Mn, Fe, Ni and Zn, were found by the help of X-ray diffraction. This means that Amarna blue is a mixture of CaSO 4 and Co(M)Al 2O 4, at least in part.

  6. Use of Industrial Waste (Al-Dross, Red Mud, Mill Scale) as Fluxing Agents in the Sulfurization of Fe-Ni-Cu-Co Alloy by Carbothermic Reduction of Calcium Sulfate

    NASA Astrophysics Data System (ADS)

    Heo, Jung Ho; Jeong, Eui Hyuk; Nam, Chul Woo; Park, Kyung Ho; Park, Joo Hyun

    2018-06-01

    The use of industrial waste [mill scale (MS), red mud (RM), Al-dross (AD)] as fluxing agents in the sulfurization of Fe-Ni-Cu-Co alloy to matte (Fe-Ni-Cu-Co-S) by carbothermic reduction of CaSO4 was investigated at 1673 K (1400 °C). The sulfurization efficiency (SE) was 76 (± 2) pct at RM or AD single fluxing. However, SE drastically increased to approximately 89 pct at a `5AD + 5MS' combination, which was equivalent to reagent-grade chemical `5Al2O3 + 5Fe2O3' fluxing (SE = 88 pct). The present results can be used to improve the cost-effective recovery of rare metals (Ni and Co) from deep sea manganese nodules.

  7. Use of Industrial Waste (Al-Dross, Red Mud, Mill Scale) as Fluxing Agents in the Sulfurization of Fe-Ni-Cu-Co Alloy by Carbothermic Reduction of Calcium Sulfate

    NASA Astrophysics Data System (ADS)

    Heo, Jung Ho; Jeong, Eui Hyuk; Nam, Chul Woo; Park, Kyung Ho; Park, Joo Hyun

    2018-03-01

    The use of industrial waste [mill scale (MS), red mud (RM), Al-dross (AD)] as fluxing agents in the sulfurization of Fe-Ni-Cu-Co alloy to matte (Fe-Ni-Cu-Co-S) by carbothermic reduction of CaSO4 was investigated at 1673 K (1400 °C). The sulfurization efficiency (SE) was 76 (± 2) pct at RM or AD single fluxing. However, SE drastically increased to approximately 89 pct at a `5AD + 5MS' combination, which was equivalent to reagent-grade chemical `5Al2O3 + 5Fe2O3' fluxing (SE = 88 pct). The present results can be used to improve the cost-effective recovery of rare metals (Ni and Co) from deep sea manganese nodules.

  8. Accumulation of elements by edible mushroom species II. A comparison of aluminium, barium and nutritional element contents.

    PubMed

    Mleczek, Mirosław; Siwulski, Marek; Stuper-Szablewska, Kinga; Sobieralski, Krzysztof; Magdziak, Zuzanna; Goliński, Piotr

    2013-01-01

    The aim of the study was to compare accumulation efficiency of Al, Ba and nutritional elements (Ca, Fe, K, Mg, Mn, Na) exhibited by six edible mushrooms collected in particular regions of Poland during the last 20 years. The studied mushroom species were Boletus edulis, Cantharellus cibarius, Lactarius deliciosus, Leccinum aurantiacum, Suillus luteus and Xerocomus badius. The highest and the lowest concentrations of the elements in tested mushroom species were 11 - 410, 34 - 337, 16785 - 34600, 140 - 607, 12 - 75 and 16 - 143 mg kg(-1)d.m., respectively. The highest average concentrations of Al, Mg and Mn were observed in Suillus luteus fruiting bodies, while for Ba, Ca, K and Na it was in Lactarius deliciosus. BCF >1 was found for K and Mg in all tested mushroom species and additionally for the highest Ca and Na concentrations of all tested mushroom species except for C. cibarius and S. luteus, respectively. For the other tested elements (Al, Ba, Fe and Mn) BCF values < 1 were recorded.

  9. Specific binding of trivalent metal ions to λ-carrageenan.

    PubMed

    Cao, Yiping; Li, Shugang; Fang, Yapeng; Nishinari, Katsuyoshi; Phillips, Glyn O; Lerbret, Adrien; Assifaoui, Ali

    2018-04-01

    Carrageenans are a family of sulphated cell wall polysaccharides extracted from seaweeds and are widely used in different industrial sectors. Relative to κ-carrageenan (κ-car) and ι-carrageenan (ι-car), the ionic binding behavior of λ-carrageenan (λ-car) is far less studied. In this work, the interaction and binding behavior between λ-car and metal ions of different valency (Na + , K + , Mg 2+ , Ca 2+ , Fe 2+ , Fe 3+ , Al 3+ , Cr 3+ ) have been investigated. In contrast to the non-specific interaction of the monovalent and divalent cations, specific binding has been identified between λ-car and Fe 3+ /Al 3+ . The specific binding could lead to either precipitation or gelation of λ-car, depending on the way of introducing Fe 3+ /Al 3+ ions. Fe 3+ and Al 3+ exhibit the same binding stoichiometry of [M 3+ ]/[repeating unit] = 1.0, with the former having a relatively larger binding constant. Cr 3+ , though having very similar physical properties with Fe 3+ /Al 3+ , is incapable of binding specifically to Cr 3+ . The phenomena could not be interpreted in terms of counterion condensation, and are rather attributable to a mechanism in which hexa-coordination of Fe 3+ /Al 3+ and entropy-driven cation dehydration play crucial roles in driving the binding of the trivalent metal ions to λ-car. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Vitality and chemistry of roots of red spruce in forest floors of stands with a gradient of soil Al/Ca ratios in the northeastern United States

    Treesearch

    Philip M. Wargo; Kristiina Vogt; Daniel Vogt; Quintaniay Holifield; Joel Tilley; Gregory Lawrence; Mark David

    2003-01-01

    Number of living root tips per branch, percent dead roots, percent mycorrhizae and mycorrhizal morphotype, response of woody roots to wounding and colonization by fungi, and concentrations of starch, soluble sugars, phenols, percent C and N and C/N ratio, and Al, Ca, Fe, K, Mg, Mn, and P were measured for 2 consecutive years in roots of red spruce (Picea...

  11. Formation and composition of the moon

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.

    1977-01-01

    Many of the properties of the Moon, including the enrichment in Ca, Al, Ti, U, Th, Ba, Sr, and the REE and the depletion in Fe, Rb, K, Na, and other volatiles can be understood if the Moon represents a high-temperature condensate from the solar nebula. Thermodynamic calculations show that Ca-, Al-, and Ti-rich compounds condense first in a cooling nebula. The initial high temperature mineralogy is gehlenite, spinel, perovskite, Ca-Al-rich pyroxenes, and anorthite. Inclusions in carbonaceous chondrites such as the Allende meteorite are composed primarily of these minerals and, in addition, are highly enriched in refractories such as REE relative to carbonaceous chondrites. These inclusions can yield basalt and anorthosite in the proportions required to eliminate the europium anomaly, leaving a residual spinel-melilite interior. A deep interior high in Ca-Al does not imply an unacceptable mean density or moment of inertia for the Moon. The inferred high-U content of the lunar interior, both from the Allende analog and the high heat flow, indicates a high-temperature interior. The model is consistent with extensive early melting, with shallow melting at 3 AE, and with presently high deep internal temperatures. It is predicted that the outer 250 km is rich in plagioclase and FeO. The low iron content of the interior in this model raises the interior temperatures estimated from electrical conductivity by some 800 C.

  12. Ca-Fe and Alkali-Halide Alteration of an Allende Type B CAI: Aqueous Alteration in Nebular or Asteroidal Settings

    NASA Technical Reports Server (NTRS)

    Ross, D. K.; Simon, J. I.; Simon, S. B.; Grossman, L.

    2012-01-01

    Ca-Fe and alkali-halide alteration of CAIs is often attributed to aqueous alteration by fluids circulating on asteroidal parent bodies after the various chondritic components have been assembled, although debate continues about the roles of asteroidal vs. nebular modification processes [1-7]. Here we report de-tailed observations of alteration products in a large Type B2 CAI, TS4 from Allende, one of the oxidized subgroup of CV3s, and propose a speculative model for aqueous alteration of CAIs in a nebular setting. Ca-Fe alteration in this CAI consists predominantly of end-member hedenbergite, end-member andradite, and compositionally variable, magnesian high-Ca pyroxene. These phases are strongly concentrated in an unusual "nodule" enclosed within the interior of the CAI (Fig. 1). The Ca, Fe-rich nodule superficially resembles a clast that pre-dated and was engulfed by the CAI, but closer inspection shows that relic spinel grains are enclosed in the nodule, and corroded CAI primary phases interfinger with the Fe-rich phases at the nodule s margins. This CAI also contains abundant sodalite and nepheline (alkali-halide) alteration that occurs around the rims of the CAI, but also penetrates more deeply into the CAI. The two types of alteration (Ca-Fe and alkali-halide) are adjacent, and very fine-grained Fe-rich phases are associated with sodalite-rich regions. Both types of alteration appear to be replacive; if that is true, it would require substantial introduction of Fe, and transport of elements (Ti, Al and Mg) out of the nodule, and introduction of Na and Cl into alkali-halide rich zones. Parts of the CAI have been extensively metasomatized.

  13. EXPLORING ANTICORRELATIONS AND LIGHT ELEMENT VARIATIONS IN NORTHERN GLOBULAR CLUSTERS OBSERVED BY THE APOGEE SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mészáros, Szabolcs; Martell, Sarah L.; Shetrone, Matthew

    We investigate the light-element behavior of red giant stars in northern globular clusters (GCs) observed by the SDSS-III Apache Point Observatory Galactic Evolution Experiment. We derive abundances of 9 elements (Fe, C, N, O, Mg, Al, Si, Ca, and Ti) for 428 red giant stars in 10 GCs. The intrinsic abundance range relative to measurement errors is examined, and the well-known C–N and Mg–Al anticorrelations are explored using an extreme-deconvolution code for the first time in a consistent way. We find that Mg and Al drive the population membership in most clusters, except in M107 and M71, the two mostmore » metal-rich clusters in our study, where the grouping is most sensitive to N. We also find a diversity in the abundance distributions, with some clusters exhibiting clear abundance bimodalities (for example M3 and M53) while others show extended distributions. The spread of Al abundances increases significantly as cluster average metallicity decreases as previously found by other works, which we take as evidence that low metallicity, intermediate mass AGB polluters were more common in the more metal-poor clusters. The statistically significant correlation of [Al/Fe] with [Si/Fe] in M15 suggests that {sup 28}Si leakage has occurred in this cluster. We also present C, N, and O abundances for stars cooler than 4500 K and examine the behavior of A(C+N+O) in each cluster as a function of temperature and [Al/Fe]. The scatter of A(C+N+O) is close to its estimated uncertainty in all clusters and independent of stellar temperature. A(C+N+O) exhibits small correlations and anticorrelations with [Al/Fe] in M3 and M13, but we cannot be certain about these relations given the size of our abundance uncertainties. Star-to-star variations of α-element (Si, Ca, Ti) abundances are comparable to our estimated errors in all clusters.« less

  14. Exploring Anticorrelations and Light Element Variations in Northern Globular Clusters Observed by the APOGEE Survey

    NASA Astrophysics Data System (ADS)

    Mészáros, Szabolcs; Martell, Sarah L.; Shetrone, Matthew; Lucatello, Sara; Troup, Nicholas W.; Bovy, Jo; Cunha, Katia; García-Hernández, Domingo A.; Overbeek, Jamie C.; Allende Prieto, Carlos; Beers, Timothy C.; Frinchaboy, Peter M.; García Pérez, Ana E.; Hearty, Fred R.; Holtzman, Jon; Majewski, Steven R.; Nidever, David L.; Schiavon, Ricardo P.; Schneider, Donald P.; Sobeck, Jennifer S.; Smith, Verne V.; Zamora, Olga; Zasowski, Gail

    2015-05-01

    We investigate the light-element behavior of red giant stars in northern globular clusters (GCs) observed by the SDSS-III Apache Point Observatory Galactic Evolution Experiment. We derive abundances of 9 elements (Fe, C, N, O, Mg, Al, Si, Ca, and Ti) for 428 red giant stars in 10 GCs. The intrinsic abundance range relative to measurement errors is examined, and the well-known C-N and Mg-Al anticorrelations are explored using an extreme-deconvolution code for the first time in a consistent way. We find that Mg and Al drive the population membership in most clusters, except in M107 and M71, the two most metal-rich clusters in our study, where the grouping is most sensitive to N. We also find a diversity in the abundance distributions, with some clusters exhibiting clear abundance bimodalities (for example M3 and M53) while others show extended distributions. The spread of Al abundances increases significantly as cluster average metallicity decreases as previously found by other works, which we take as evidence that low metallicity, intermediate mass AGB polluters were more common in the more metal-poor clusters. The statistically significant correlation of [Al/Fe] with [Si/Fe] in M15 suggests that 28Si leakage has occurred in this cluster. We also present C, N, and O abundances for stars cooler than 4500 K and examine the behavior of A(C+N+O) in each cluster as a function of temperature and [Al/Fe]. The scatter of A(C+N+O) is close to its estimated uncertainty in all clusters and independent of stellar temperature. A(C+N+O) exhibits small correlations and anticorrelations with [Al/Fe] in M3 and M13, but we cannot be certain about these relations given the size of our abundance uncertainties. Star-to-star variations of α-element (Si, Ca, Ti) abundances are comparable to our estimated errors in all clusters.

  15. Structural classification of RAO/sub 3/(MO)/sub n/ compounds (R = Sc, In, Y, or lanthanides; A = Fe(III), Ga, Cr, or Al; M = divalent cation; n = 1-11)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimizuka, N.; Mohri, T.

    A series of new compounds (RAO/sub 3/MO)/sub n/ (n = 1-11) having spinel, YbFe/sub 2/O/sub 4/, or InFeO/sub 3/(ZnO)/sub n/ types of structures were newly synthesized (R = Sc, In, Y, Lu, Yb, Tm, or Er; A = Fe(III), Ga, Cr, or Al; M = Mg, Mn, Fe(II), Co, Ni, Zn, or Cd) at elevated temperatures. The conditions of synthesis and the lattice constants for these compounds are reported. The stacking sequences of the InO/sub 1.5/, (FeZn)O/sub 2.5/, and ZnO layers for InFeO/sub 3/(ZnO)/sub 10/ and the TmO/sub 1.5/, (AlZn)O/sub 2.5/, and ZnO layers for TmAlO/sub 3/(ZnO)/sub 11/ are presented,more » respectively. The crystal structures of the (RAO/sub 3/)/sub m/(MO)/sub n/ phases R = Sc, In, Y, or lanthanide elements; A = Fe(III), Ga, Cr, or Al; M = divalent cation elements; m and n = integer are classified into four crystal structure types (K/sub 2/NiF/sub 4/, CaFe/sub 2/O/sub 4/, YbFe/sub 2/O/sub 4/, and spinel), based upon the constituent cations R, A, and M.« less

  16. Leather material found on a 6th B.C. Chinese bronze sword: a technical study.

    PubMed

    Luo, Wugan; Si, Yi; Wang, Hongmin; Qin, Ying; Huang, Fengchun; Wang, Changsui

    2011-09-01

    During July to November, 2006, an important archaeological excavation was conducted in Yun country, Hubei province, southern China. Chinese archaeologists found some remnant of leather materials, covered with red pigments, on a 6th century B.C. Chinese bronze sword. To understand the technology/ies that may have been utilized for manufacturing the leathers, a combined of Raman spectroscopy, FT-IR and XRF was thus applied to the remnant of leather materials. Raman analyses showed that red pigment on the leather was cinnabar (HgS). FT-IR and XRF analyses indicated that the content of some elements, such as Ca (existing as CaCO3) and Fe (existing as Fe2O3), were much higher than those in the surrounding grave soil. The results inferred an application of lime depilation and retting, and the Fe-Al compound salt as tanning agent. And it was furthermore implicated that the Fe-Al salt tanning technique had been developed in the middle and late Spring and Autumn Period of China. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Adsorption of CO on oxide and water ice surfaces - Implications for the Martian atmosphere

    NASA Technical Reports Server (NTRS)

    Leu, M.-T.; Blamont, J. E.; Anbar, A. D.; Keyser, L. F.; Sander, S. P.

    1992-01-01

    The adsorption of carbon monoxide (CO) on water ice and on the oxides Fe2O3, Fe3O4, Al2O3, SiO2, CaO, MgO, and TiO2 (rutile and anatase) has been investigated in a flow reactor. A mass spectrometer was employed as a detector to monitor the temporal concentrations of CO. Adsorption coefficients as large as 1 x 10 exp -4 were measured for CO on TiO2 solids in helium at 196 K. The fractional surface coverage for CO on TiO2 solids in helium was also determined to be approximately 10 percent at 196 K. The upper limits of the fractional surface coverage for the other oxides (Fe2O3, Fe3O4, Al2O3, SiO2, CaO, and MgO) and water ice were also measured to be less than 1 percent. The implications for the stability of CO2 in the Martian atmosphere and the 'CO hole' observed by the Phobos/ISM experiment are discussed.

  18. Evaluation of elemental enrichments in surface sediments off southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Chen-Tung; Kandasamy, Selvaraj

    2008-05-01

    Surface slices of 20 sediment cores, off southwestern Taiwan, and bed sediment of River Kaoping were measured for major and trace elements (Al, As, Ca, Cd, Cl, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, Pb, S, Si, Ti, V, and Zn) to evaluate the geochemical processes responsible for their distribution, including elemental contamination. Major element/Al ratio and mean grain size indicate quartz-dominated, coarse grained sediments that likely derived from sedimentary rocks of Taiwan and upper crust of Yangtze Craton. Bi-plot of SiO2 versus Fe2O{3/T} suggests the possible iron enrichment in sediments of slag dumping sites. Highest concentrations of Cr, Mn, P, S, and Zn found in sediments of dumping sites support this. Correlation analysis shows dual associations, detrital and organic carbon, for Cr, P, S, and V with the latter association typical for sediments in dumping sites. Normalization of trace elements to Al indicates high enrichment factors (>2) for As, Cd, Pb, and Zn, revealing contamination. Factor analysis extracted four geochemical associations with the principal factor accounted for 25.1% of the total variance and identifies the combined effects of dumped iron and steel slag-induced C-S-Fe relationship owing to authigenic precipitation of Fe-Mn oxyhydroxides and/or metal sulfides, and organic matter complexation of Fe, Mn, Ca, Cr, P, and V. Factors 2, 3, and 4 reveal detrital association (Ti, Al, Ni, Pb, Cu, and V), effect of sea salt (Cl, Mg, Na, and K) and anthropogenic component (As and Zn)-carbonate link, respectively, in the investigated sediments.

  19. Experimental cation redistribution in the tourmaline lucchesiite, CaFe2 + 3Al6(Si6O18)(BO3)3(OH)3O

    NASA Astrophysics Data System (ADS)

    Bosi, Ferdinando; Skogby, Henrik; Hålenius, Ulf; Ciriotti, Marco E.

    2018-02-01

    Natural Mg-rich lucchesiite was thermally treated in air and hydrogen atmosphere up to 800 °C to study potential changes in Fe-, Mg- and Al ordering over the octahedrally coordinated Y- and Z-sites, and to explore possible applications to intracrystalline geothermometry based on tourmaline. Overall, the experimental data (structural refinement, Mössbauer, infrared and optical absorption spectroscopy) show that thermal treatment of lucchesiite results in an increase of Fetot contents at Z balanced by an increase of Mg and Al at Y. This process is accompanied by a significant deprotonation of the O3 anion site. The Fe order-disorder reaction depends more on temperature, than on redox conditions. During heat treatment in H2, reduction of Fe3+ to Fe2+ was not observed despite strongly reducing conditions, indicating that the f O2 conditions do not exclusively control the Fe oxidation state at the present experimental conditions. On the basis of this and previous studies, the intersite order-disorder process induced by thermal treatment indicates that Fe redistribution is an important factor for Fe-Mg-Al-exchange and is significant at temperatures around 800 °C. As a result, Fe-Mg-Al intersite order-disorder is sensitive to temperature variations, whereas geothermometers based solely on Mg-Al order-disorder appear insensitive and involve large uncertainties. The presented findings are important for interpretation of the post-crystallization history of both tourmaline and tourmaline host rocks, and indicate that successful tourmaline geothermometers may be developed by thermal calibration of the Fe-Mg-Al order-disorder reaction.

  20. Abundances in metal-rich stars. Detailed abundance analysis of 47 G and K dwarf stars with [Me/H] > 0.10 dex

    NASA Astrophysics Data System (ADS)

    Feltzing, S.; Gustafsson, B.

    1998-04-01

    We have derived elemental abundances of O, Na, Mg, Al, Si, Ca, Ti, Cr, Mn, Fe, Co, Ni as well as for a number of s-elements for 47 G and K dwarf, with [Me/H]>0.1 dex. The selection of stars was based on their kinematics as well as on their uvby-beta photometry. One sample of stars on rather eccentric orbits traces the chemical evolution interior to the solar orbit and another, on circular orbits, the evolution around the solar orbit. A few Extreme Population I stars were included in the latter sample. The stars have -0.1 dex < [Fe/H] < 0.42 dex. The spectroscopic [Fe/H] correlate well with the [Me/H] derived from uvby-beta photometry. We find that the elemental abundances of Mg, Al, Si, Ca, Ti, Cr and Ni all follow [Fe/H]. Our data put further constraints on models of galactic chemical evolution, in particular of Cr, Mn and Co which have not previously been studied for dwarf stars with [Me/H] >0.1 dex. The increase in [Na/Fe] and [Al/Fe] as a function of [Fe/H] found previously by \\cite[Edvardsson et al. (1993a)]{Edv93} has been confirmed for [Na/Fe]. This upturning relation, and the scatter around it, are shown not to be due to a mixture of populations with different mean distances to the galactic centre. We do not confirm the same trend for aluminium, which is somewhat surprising since both these elements are thought to be produced in the same environments in the pre-supernova stars. Nor have we been able to trace any tendency for relative abundances of O, Si, and Ti relative to Fe to vary with the stellar velocities, i.e. the stars present mean distance to the galactic centre. These results imply that there is no significant difference in the chemical evolution of the different stellar populations for stars with [Me/H]>0.1 dex. We find that [O/Fe] continue to decline with increasing [Fe/H] and that oxygen and europium correlate well. However [Si/Fe] and [Ca/Fe] seem to stay constant. A real (``cosmic'') scatter in [Ti/Fe] at given [Fe/H] is suggested as well as a decreasing abundance of the s-elements relative to iron for the most metal-rich dwarf stars. We discuss our results in the context of recent models of galactic chemical evolution. In our sample we have included a few very metal rich stars, sometimes called SMR (super metal rich) stars. We find these stars to be among the most iron-rich in our sample but far from as metal-rich as indicated by their photometric metallicities. SMR stars on highly eccentric orbits, alleged to trace the evolution of the chemical evolution in the galactic Bulge, have previously been found overabundant in O, Mg and Si. We have included three such stars from the study by \\cite[Barbuy & Grenon (1990)]{Bar90}. We find them to be less metal rich and the other elemental abundances remain puzzling. Detailed spectroscopic abundance analyses of K dwarf stars are rare. Our study includes 5 K dwarf stars and has revealed what appears to be a striking example of overionization. The overionization is especially prominent for Ca, Cr and Fe. The origin of this apparent overionization is not clear and we discuss different explanations in some detail. Based on observations at the McDonald Observatory.

  1. Effects of four different phosphorus-locking materials on sediment and water quality in Xi'an moat.

    PubMed

    Wang, Guanbai; Wang, Yi; Guo, Yu; Peng, Dangcong

    2017-01-01

    To lower phosphorus concentration in Xi'an moat, four different phosphorus-locking materials, namely, calcium nitrate, sponge-iron, fly ash, and silica alumina clay, were selected in this experiment to study their effects on water quality and sediment. Results of the continuous 68-day experiment showed that calcium nitrate was the most effective for controlling phosphorus concentration in overlying and interstitial water, where the efficiency of locking phosphorus was >97 and 90 %, respectively. Meanwhile, the addition of calcium nitrate caused Fe/Al-bound phosphorus (Fe/Al-P) content in sediment declining but Ca-bound phosphorus (Ca-P) and organic phosphorus (OP) content ascending. The phosphorus-locking efficiency of sponge-iron in overlying and interstitial water was >72 and 66 %, respectively. Meanwhile, the total phosphorus (TP), OP, Fe/Al-P, and Ca-P content in sediment increased by 33.8, 7.7, 23.1, and 23.1 %, respectively, implying that under the action of sponge-iron, the locked phosphorus in sediment was mainly inorganic form and the phosphorus-locking efficiency of sponge-iron could be stable and persistent. In addition, the phosphorus-locking efficiency of fly ash was transient and limited, let alone silica alumina clay had almost no capacity for phosphorus-locking efficiency. Therefore, calcium nitrate and sponge-iron were excellent phosphorus-locking agents to repair the seriously polluted water derived from an internal source.

  2. Survey on composition and bioconcentration potential of 12 metallic elements in King Bolete (Boletus edulis) mushroom that emerged at 11 spatially distant sites.

    PubMed

    Falandysz, Jerzy; Frankowska, Aneta; Jarzynska, Grazyna; Dryzałowska, Anna; Kojta, Anna K; Zhang, Dan

    2011-01-01

    This paper provides data on baseline concentrations, interrelationships and bioconcentration potential of 12 metallic elements by King Bolete collected from 11 spatially distant sites across Poland. There are significant differences in concentrations of metals (Al, Ba, Ca, Cd, Cu, Fe, K, Mg, Mn, Na, Sr, Zn) and their bioconcentration potential in King Bolete Boletus edulis at 11 spatially distant sites surveyed across Poland. These have resulted from significant geographical differences in trace metal concentrations in a layer (0-10 cm) of organic and mineral soil underneath to fruiting bodies and possible local bioavailabilities of macro- (Ca, K, Mg, Na) and trace metals (Al, Ba, Cd, Cu, Fe, Mn, Sr, Zn) to King Bolete. The use of highly appreciated wild-grown edible King Bolete mushroom has established a baseline measure of regional minerals status, heavy metals pollution and assessment of intake rates for wild mushroom dish fanciers against which future changes can be compared. Data on Cd, Cu and Zn from this study and from literature search can be useful to set the maximum limit of these metals in King Bolete collected from uncontaminated (background) areas. In this report also reviewed are data on Al, Ba, Ca, Cd, Cu, Fe, K, Mg, Mn, Na, Sr and Zn accumulation in King Bolete.

  3. Solubility of polyvalent cations in fogwater at an urban site in Strasbourg (France)

    NASA Astrophysics Data System (ADS)

    Millet, M.; Wortham, H.; Mirabel, Ph.

    The concentrations in the soluble and total (soluble + insoluble) fractions of Mg, Ca, Fe, Mn, Zn, Al, Cd and Pb have been analysed by "inductively coupled plasma (ICP)" in 14 fog events collected in 1992 at an urban site in France (Strasbourg). For each fog event, two droplet size categories (2-6 μm and 5-8 μm) have been collected separately. For the analysis of the polyvalent cations in the soluble and total fractions, an analytical procedure using ICP and filtration on cellulose/PVC filters has been developed. The study of the solubility of some polyvalent cations has shown that two of the most important factors controlling the partitioning between the soluble and insoluble fraction are the nature of the particles and the pH of the fogwater. The influence of pH depended on the element. The solubility of Pb, Cd, Al, Fe, Mg, and Ca were pH dependent whereas, Zn and Mn solubility varied but no relationship with pH existed, ranging between 25 and 100% and 10 and 100%, respectively. On the other hand, Mg, Pb and Ca were predominantly present in the soluble phase, whereas Al was prevalent in the insoluble fraction. In the case of Cd and Fe., the presence in the soluble or insoluble phase depended largely on the fogwater pH.

  4. Component mobility at 900 °C and 18 kbar from experimentally grown coronas in a natural gabbro

    NASA Astrophysics Data System (ADS)

    Keller, Lukas M.; Wunder, Bernd; Rhede, Dieter; Wirth, Richard

    2008-09-01

    Several approximately 100-μm-wide reaction zones were grown under experimental conditions of 900 °C and 18 kbar along former olivine-plagioclase contacts in a natural gabbro. The reaction zone comprises two distinct domains: (i) an irregularly bounded zone with idiomorphic grains of zoisite and minor corundum and kyanite immersed in a melt developed at the plagioclase side and (ii) a well-defined reaction band comprising a succession of mineral layers forming a corona structure around olivine. Between the olivine and the plagioclase reactant phases we observe the following layer sequence: olivine|pyroxene|garnet|partially molten domain|plagioclase. Within the pyroxene layer two micro-structurally distinct layers comprising enstatite and clinopyroxene can be discerned. Chemical potential gradients persisted for the CaO, Al 2O 3, SiO 2, MgO and FeO components, which drove diffusion of Ca, Al and Si bearing species from the garnet-matrix interface to the pyroxene-olivine interface and diffusion of Mg- and Fe-bearing species in the opposite direction. The systematic mineralogical organization and chemical zoning across the corona suggest that the olivine corona was formed by a "diffusion-controlled" reaction. We estimate a set of diffusion coefficients and conclude that LAlAl < LCaCa < ( LSiSi, LFeFe) < LMgMg during reaction rim growth.

  5. Geochemical behaviour of PM10 aerosol constituents under the influence of succeeding anticyclonic/cyclonic situations: case of Sfax City, southern Tunisia.

    PubMed

    Bahloul, Moez; Chabbi, Iness; Dammak, Rim; Amdouni, Ridha; Medhioub, Khaled; Azri, Chafai

    2015-12-01

    The present study investigates the geochemical behaviour of PM10 aerosol constituents (Cl, Na, Si, Al, Ca, Fe, Mg, Mn, Pb, Zn, S) at Sfax City (Tunisia) under succeeding meteorological conditions, including short-lived anticyclonic, cyclonic and prolonged anticyclonic situations. The results revealed daily total concentrations fluctuating between 4.07 and 88.51 μg/m(3). The highest level recorded was noted to occur under the effect of the short-lived anticyclonic situation characterized by low wind speeds. It was 1.5 times higher than those recorded during cyclonic and long-lived anticyclonic situations characterized by moderate to high wind speeds. During the cyclonic situation, the marked increase of (Na and Cl) concentrations is associated with relatively high sea wind speeds (6 to 9 m/s), which are in turn responsible for a slight increase of crustal elements such as Al, Ca, Si, Fe and Mg, by the entrainment in the air of dust from roads and undeveloped areas. During the two anticyclonic situations, the simultaneous increase (due to communal transport) of crustal (Ca, Si, Al, Fe, Mg) and man-made (Mn, S, Pb, Zn) elements was noted to be associated with the dominance of terrigenious wind flows with speeds varying between 1.5 and 4 m/s. However, the significant contribution rates observed for Cl under the prevalence of such winds as compared to other crustal elements such as Fe suggested the influence of the sebkhas of Southern Tunisia.

  6. Mineral sulphide-lime reactions and effect of CaO/C mole ratio during carbothermic reduction of complex mineral sulphides

    NASA Astrophysics Data System (ADS)

    Hara, Yotamu Stephen Rainford

    2014-01-01

    Mineral sulphide (MS)-lime (CaO) ion exchange reactions (MS + CaO = MO + CaS) and the effect of CaO/C mole ratio during carbothermic reduction (MS + CaO + C = M + CaS + CO(g)) were investigated for complex froth flotation mineral sulphide concentrates. Phases in the partially and fully reacted samples were characterised by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The primary phases during mineral sulphide-lime ion exchange reactions are Fe3O4, CaSO4 Cu2S, and CaS. A complex liquid phase of Ca2CuFeO3S forms during mineral sulphide-lime exchange reactions above 1173 K. The formation mechanisms of Ca2CuFeO3S liquid phase are determined by characterising the partially reacted samples. The reduction rate and extent of mineral sulphides in the presence of CaO and C increase with the increase in CaO/C ratio. The metallic phases are surrounded by the CaS rich phase at CaO/C > 1, but the metallic phases and CaS are found as separate phases at CaO/C < 1. Experimental results show that the stoichiometric ratio of carbon should be slightly higher than that of CaO. The reactions between CaO and gangue minerals (SiO2 and Al2O3) are only observed at CaO/C > 1 and the reacted samples are excessively sintered.

  7. RFe{sub 2}Mg{sub x}Al{sub 8−x} (R=La–Nd and Sm; x≈0.8): Flux synthesis, structure, magnetic and electrical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Xiaowei; Chai, Ping; Chen, Banghao

    2015-09-15

    Single crystals of Mg-substituted CeFe{sub 2}Al{sub 8} type intermetallics RFe{sub 2}Mg{sub x}Al{sub 8–x} (R=La–Nd and Sm; x≤1) were grown by reacting iron and rare earth metals in 1:1 Mg/Al mixed flux. The structure features mono-capped and bi-capped trigonal prismatic FeAl{sub 6} units. Electronic structure calculations indicate that magnesium substitution reduces the valence electron count, shifting the Fermi level away from a pseudo-gap. This changes the electronic nature of the cerium analog; the previously reported ternary CeFe{sub 2}Al{sub 8} shows strong hybridization between the cerium states and the conduction electrons, resulting in no magnetic moment on Ce atoms. On the othermore » hand, magnetic susceptibility measurements on CeFe{sub 2}Mg{sub x}Al{sub 8–x} indicates a localized moment on cerium. The newly synthesized Pr, Nd and Sm analogs exhibit antiferromagnetic ordering at 2.8 K, 7.8 K and 12 K respectively. Solid state {sup 27}Al NMR of LaFe{sub 2}Mg{sub x}Al{sub 8–x} exhibits a broad Knight shift at ~1200 ppm, consistent with the metallic behavior shown by electrical resistivity data. - Graphical abstract: Mg substitution into CeFe{sub 2}Al{sub 8} modifies cerium valence due to changing valence electron count. - Highlights: • RFe{sub 2}Mg{sub x}Al{sub 8−x} (R=La–Nd, Sm) grow as large crystals from reactions in Mg/Al flux. • Products are magnesium-substituted variants of CeFe{sub 2}Al{sub 8}, with CaCo{sub 2}Al{sub 8} structure. • Ce magnetic moment in CeFe{sub 2}Mg{sub x}Al{sub 8−x} varies from that in CeFe{sub 2}Al{sub 8} due to VEC change. • Antiferromagnetic ordering observed for Pr, Nd, Sm analogs of RFe{sub 2}Mg{sub x}Al{sub 8−x}.« less

  8. Perrierite-(La), (La,Ce,Ca)4(Fe2+,Mn)(Ti,Fe3+,Al)4(Si2O7)2O8, a new mineral species from the Eifel volcanic district, Germany

    NASA Astrophysics Data System (ADS)

    Chukanov, N. V.; Blass, G.; Pekov, I. V.; Belakovskiy, D. I.; Van, K. V.; Rastsvetaeva, R. K.; Aksenov, S. M.

    2012-12-01

    Non-metamict perrierite-(La) discovered in the Dellen pumice quarry, near Mendig, in the Eifel volcanic district, Rheinland-Pfalz, Germany has been approved as a new mineral species (IMA no. 2010-089). The mineral was found in the late assemblage of sanidine, phlogopite, pyrophanite, zirconolite, members of the jacobsite-magnetite series, fluorcalciopyrochlore, and zircon. Perrierite-(La) occurs as isolated prismatic crystals up to 0.5 × 1 mm in size within cavities in sanidinite. The new mineral is black with brown streak; it is brittle, with the Mohs hardness of 6 and distinct cleavage parallel to (001). The calculated density is 4.791 g/cm3. The IR spectrum does not contain absorption bands that correspond to H2O and OH groups. Perrierite-(La) is biaxial (-), α = 1.94(1), β = 2.020(15), γ = 2.040(15), 2 V meas = 50(10)°, 2 V calc = 51°. The chemical composition (electron microprobe, average of seven point analyses, the Fe2+/Fe3+ ratio determined from the X-ray structural data, wt %) is as follows: 3.26 CaO, 22.92 La2O3, 19.64 Ce2O3, 0.83 Pr2O2, 2.09 Nd2O3, 0.25 MgO, 2.25 MnO, 3.16 FeO, 5.28 Fe2O3, 2.59 Al2O3, 16.13 TiO2, 0.75 Nb2O5, and 20.06 SiO2, total is 99.21. The empirical formula is (La1.70Ce1.45Nd0.15Pr0.06Ca0.70)Σ4.06(Fe{0.53/2+}Mn0.38Mg0.08)Σ0.99(Ti2.44Fe{0.80/3+}Al0.62Nb0.07)Σ3.93Si4.04O22. The simplified formula is (La,Ce,Ca)4(Fe2+,Mn)(Ti,Fe3+,Al)4(Si2O7)2O8. The crystal structure was determined by a single crystal. Perrierite-(La) is monoclinic, space group P21/ a, and the unit-cell dimensions are as follows: a =13.668(1), b = 5.6601(6), c = 11.743(1) Å, β = 113.64(1)°; V = 832.2(2) Å3, Z = 2. The strong reflections in the X-ray powder diffraction pattern are [ d, Å ( I, %) ( hkl)]: 5.19 (40) (110), 3.53 (40) (overline 3 11), 2.96 (100) (overline 3 13, 311), 2.80 (50) (020), 2.14 (50) (overline 4 22, overline 3 15, 313), 1.947 (50) (024, 223), 1.657 (40) (overline 4 07, overline 4 33, 331). The holotype specimen of perrierite-(La) is deposited at the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, Russia, with the registration number 4059/1.

  9. Geochemical interactions between constituents in acidic groundwater and alluvium in an aquifer near Globe, Arizona

    USGS Publications Warehouse

    Stollenwerk, Kenneth G.

    1994-01-01

    Acidic water from a copper-mining area has contaminated an alluvial aquifer and stream near Globe, Arizona. The most contaminated groundwater has a pH of 3.3, and contains about 100 mmol/1 SO4, 50 mmol/1 Fe, 11 mmol/1 Al and 3 mmol/1 Cu. Reactions between alluvium and acidic groundwater were first evaluated in laboratory column experiments. A geochemical model was developed and used in the equilibrium speciation program, MINTEQA2, to simulate breakthrough curves for different constituents from the column. The geochemical model was then used to simulate the measured changes in concentration of aqueous constituents along a flow path in the aquifer.The pH was predominantly controlled by reaction with carbonate minerals. Where carbonates had been dissolved, adsorption of H+ by iron oxides was used to simulate pH. Acidic groundwater contained little or no dissolved oxygen, and most aqueous Fe was present as Fe(II). In the anoxic core of the plume, Fe(II) was oxidized by MnO2 to Fe(III), which then precipitated as Fe(OH)3. Attenuation of aqueous Cu, Co, Mn, Ni and Zn was a function of pH and could be quantitatively modeled with the diffuse-layer, surface complexation model in MINTEQA2. Aluminum precipitated as amorphous Al(OH)3 at pH < 4.7 and as AlOHSO4 at pH < 4.7. Aqueous Ca and SO4were close to equilibrium with gypsum.After the alluvium in the column had reached equilibrium with acidic groundwater, uncontaminated groundwater was eluted through the column to evaluate the effect of reactants on groundwater remediation. The concentration of Fe, Mn, Cu, Co, Ni and Zn rapidly decreased to the detection limits within a few pore volumes. All of the gypsum that had precipitated initially redissolved, resulting in elevated Ca and SO4concentrations for about 5 pore volumes. Aluminum and pH exhibited the most potential for continued adverse effects on groundwater quality. As H+ desorbed from Fe(OH)3, pH remained below 4.5 for more than 20 pore volumes, resulting in dissolution of AlOHSO4 and elevated aqueous Al.

  10. Silicon and Manganese Partition Between Slag and Metal Phases and Their Activities Pertinent to Ferromanganese and Silicomanganese Production

    NASA Astrophysics Data System (ADS)

    Cengizler, Hakan; Eric, R. Hurman

    Equilibrium between MnO-CaO-MgO-SiO2-Al2O3 slags and carbon saturated Mn-Si-Fe-C alloys was investigated under CO at 1500oC. Manganese and silicon activities were obtained by using the present data and the previously determined MnO and SiO2 activities of the slag. Quadratic multi-coefficient regression equations were developed for activity coefficients of manganese and silicon. The conclusions of this work are:(i)increase in the basicity and the CaO/Al2O3 ratios decreases the Mn distribution ratio,(ii)increase in the silica concentration and the MgO/CaO ratio increases the Mn distribution ratio, iii)carbon and manganese as well as carbon and silicon of the metal phase are inversely proportional,(iv)as Mn/Fe and Mn/Si ratio increases in the metal the carbon solubility increases,(v)decrease in the basicity increases the silicon content of the metal and (vi)increase in the silica content of the slag increases the silicon content of the metal and this effect is more pronounced at the higher Mn/Fe and Mn/Si ratios.

  11. Crystallization control for remediation of an FetO-rich CaO-SiO2-Al2O3-MgO EAF waste slag.

    PubMed

    Jung, Sung Suk; Sohn, Il

    2014-01-01

    In this work, the crystallization behavior of synthesized FetO-rich electric arc furnace (EAF) waste slags with a basicity range of 0.7 to 1.08 was investigated. Crystal growth in the melts was observed in situ using a confocal laser scanning microscope, and a delayed crystallization for higher-basicity samples was observed in the continuous cooling transformation and time temperature transformation diagrams. This result is likely due to the polymerization of the melt structure as a result of the increased number of network-forming FeO4 and AlO4 units, as suggested by Raman analysis. The complex incorporation of Al and Fe ions in the form of AlO4 and FeO4 tetrahedral units dominant in the melt structure at a higher basicity constrained the precipitation of a magnetic, nonstoichiometric, and Fe-rich MgAlFeO4 primary phase. The growth of this spinel phase caused a clear compositional separation from amorphous phase during isothermal cooling at 1473 K leading to a clear separation between the primary and amorphous phases, allowing an efficient magnetic separation of Fe compounds from the slag for effective remediation and recycling of synthesized EAF waste slags for use in higher value-added ordinary Portland cement.

  12. Melts in the Deep Earth: Calculating the Densities of CaO-FeO-MgO-Al2O3-SiO2 Liquids

    NASA Astrophysics Data System (ADS)

    Thomas, C.; Guo, X.; Agee, C. B.; Asimow, P. D.; Lange, R. A.

    2012-12-01

    We present new equation of state (EOS) measurements for hedenbergite (Hd, CaFeSi2O6) and forsterite (Fo, Mg2SiO4) liquids. These liquid EOS add to the basis set in the CaO-FeO-MgO-Al2O3-SiO2 (CMASF) oxide space at elevated temperatures and pressures; other liquids include: enstatite (En, MgSiO3), anorthite (An, CaAl2Si2O8), diopside (Di, CaMgSi2O6), and fayalite (Fa, Fe2SiO4). The Hd EOS measurement was a multi-technique collaboration using 1-atm double-bob Archimedean, ultrasonic, sink/float, and shock wave techniques. Un-weighted linear fitting of the shock data in shock velocity (US)-particle velocity (up) space defines a pre-heated (1400 °C) Hugoniot US = 2.628(0.024) + 1.54(0.01)up km/s. The slope corresponds to a K' of 5.16(0.04), consistent with piston-cylinder and multi-anvil sink/float experiments. The intercept is fixed at the ultrasonic sound speed (Co) since the unconstrained intercept is within the stated error. This behavior demonstrates consistency across methods and that the liquid is relaxed during shock compression. Shock compression of pre-heated (2000°C) single crystal Fo gives an un-weighted linear Hugoniot of US = 2.674(0.188) + 1.64(0.06)up km/s. The unconstrained Co falls below estimates based on extrapolation in both temperature and composition from two published partial molar sound speed models, 3.195m/s [1] and 3.126 m/s [2]. The shock-derived Co indicates that dC/dT is negative for Fo liquid, contrary to the positive [1] and zero [2] temperature dependences derived over relatively narrow temperature intervals. CMASF liquid isentropes were calculated using five end-members (En, Fo, Fa, An, Di). For modeling crystallization of a fictive magma ocean, we examined two liquids: peridotite [3] (P=.33En+.56Fo+.07Fa+.03An+.007Di) and simplified chondrite [4] (Ch=.62En+.24Fo+.08Fa+.04An+.02Di). Each end-member is defined by a 3rd or 4th order Birch-Murnaghan isentrope, Mie-Grüneisen thermal pressure and a constant heat capacity. The volumes are assumed to ideally mix allowing for interpolation between end-member compositions. Results show the chondrite critical isentrope intersecting its liquidus at the core-mantle boundary with a potential temperature (TP) of 2400 K, whereas the peridotite critical isentrope has a TP of 2800 K and first crystallizes at 85 GPa. An identical calculation fails to recover the Hd isentrope (Hd = Di+0.5Fa-0.5Fo). This failure is likely due to the very different partial molar volumes of FeO in Hd and Fa, which have average Fe2+ coordination states of ~4.5 and ~6, respectively [5]. Consequently the simple ideal model is likely to only support mixing among like-coordinated Fe2+ liquids. We hope to further investigate this hypothesis for linear-mixing by constraining the EOS of An-Hd (50:50), and An-Di-Hd (33:33:33) melts using pre-heated shock wave techniques. [1] Ghiorso & Kress (2004) AJS 304, 679-751.[2] Ai & Lange(2008) JGR 113,B04203.[3] Fiquet et al. (2010) Science 329, 1516-1518.[4]Andrault et al. (2011) EPSL 304, 251-259.[5]Lange et al. (2012) Goldschmidt meeting, abstract.

  13. Exposure of women to trace elements through the skin by direct contact with underwear clothing.

    PubMed

    Nguyen, Thao; Saleh, Mahmoud A

    2017-01-02

    Heavy metals pose a potential danger to human health when present in textile materials. In the present study, inductive coupled plasma mass spectrometry (ICPMS) was used to determine the concentrations and the identity of extractable inorganic elements from different brands of women undergarments. A total of 120 samples consisting of 63 cottons, 44 nylons and 13 polyesters manufactured in 14 different countries having different colors were analyzed for their extractable metals contents. Elements analyzed were Ag, Al, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Li, Mg, Mn, Na, Ni, Pb, Sb, Se, Sr, Ti, V and Zn. Cotton undergarments were rich in Al, Fe and Zn, nylon undergarments had high levels of Cr, Cu and Al, while polyester fabrics contained higher levels of Ni and Fe compared to cotton or nylon. With respect to manufacturing countries, China, Egypt and India showed the highest concentrations of metals in all fabrics. With respect to the color, black garments were characteristic by high concentration of Fe, blue colors with Cu, brown garments with Fe and Cu, green garments with Cu and Fe, pink garments with Al, purple garments with Al and Cu and red garments with Cr, Zn and Al. The consumer should be made aware of the potential dangers of these metals in their clothing.

  14. Phase relations of aluminous silica to 120 GPa and lowermost mantle dynamics

    NASA Astrophysics Data System (ADS)

    Tronnes, R. G.; Andrault, D.; Konopkova, Z.; Morgenroth, W.; Liermann, H.-P.

    2012-04-01

    Basalts have 3-10 times higher concentrations of Al, Ti, Ca and Na and more than 5 times lower concentration of Mg than peridotite. The resulting lower mantle basaltic mineralogy has no ferropericlase and low proportion of Mg-perovskite and post-perovskite with high Fe/Mg-ratio. Oversaturation of silica and alumina produces separate silica-dominated phases and Al-rich phases (NAL and Ca-ferrite phases). At pressures of 60-100 GPa common basalts crystallize 15-20% CaCl2-structured silica, 15-25% Ca-ferrite, 35-40% Mg-perovskite and 20-30% Ca-perovskite. The Fe-rich Mg-perovskite makes basaltic material denser than peridotite throughout the lower mantle below 720 km depth, with important implications for mantle dynamics. Partial separation of subducted basaltic crust from depleted lithosphere may occur within the strongly heterogeneous D" zone. The silica-dominated phases have considerable solubility of alumina [1]. At 3500-4000 K the transition from the CaCl2-phase to seifertite (a-PbO2-structure) of pure SiO2 occurs at 130-140 GPa, with a dp/dT-slope of about 10 MPa/K [2]. The transition pressure is reduced with Al-saturation. We investigated silica with 4 and 6 wt% alumina to 120 GPa, using LH-DAC at the Extreme Conditions Beamline (P02.2) at PETRA-III, DESY. Powdered glass mixed with 10-15 wt% Pt-powder was compressed and heated in NaCl pressure media in Re-gaskets. To delineate the phase transition, the samples were compressed incrementally with intermittent laser heating. Slow reaction rates required 20-40 min heating at 3500-4000 K for each heating step. The XRD data and pressure estimates were acquired repeatedly during heating and after quenching to room temperature. The first crystallization of seifertite at 3500-4000 K was recorded at about 118 and 108 GPa in samples with 4 and 6 wt% AlO1.5, respectively. The CaCl2-structured silica phase crystallized along with seifertite, consistent with a binary phase loop trending towards lower pressure with increasing Al-content. Due to the presence of the Al-rich Ca-ferrite phase (near the MgAl2O4-NaAlSiO4-join) in natural basaltic compositions, the Al-solubility limits for the silica-dominated phases in basaltic lithologies may be similar to those in the binary system SiO2-AlO1.5. Phase transitions in response to increasing pressure are generally associated with densification. Because of the strong partitioning of light and voluminous AlO1.5 into seifertite, however, the densification effect is more than offset by the lighter alumina component. The unit cell data of ref. [1] indicate a volume increase of about 3.8% associated with the transition. The associated density reduction would be strongly dependent on the substitution mechanism. O-vacancy and cation (3Si4+ → 4Al3+) substitutions yield density reductions of 5.4% and 1.9%, respectively [1]. The large density reduction accompanying the seifertite transition may limit the role of gravitational accretion of evolved MORB to the LLSVPs. Segregation of Fe-rich picritic, komatiitic or peridotitic rocks with no separate silica phase may be more likely. Deep-mantle cumulates and solidified melts of peridotitic to komatiitic composition were mostly produced in the Hadean and early Archean, indicating that the antipodal and near-equatorial LLSVPs, stabilized by Earth's rotation, could also represent ancient structures.

  15. Rhodolith-forming coralline red algae from New Caledonia (SW Pacific) record half a century of sea-surface temperature variations and mining history

    NASA Astrophysics Data System (ADS)

    Darrenougue, N.; De Deckker, P.; Eggins, S. M.; Payri, C. E.; Fallon, S. J.

    2011-12-01

    We present a continuous, high-resolution tropical record of Mg/Ca and trace elements back to the 1960s, using laser ablation ICP-MS on rhodoliths (i.e. free living forms of coralline red algae) of the species Sporolithon durum. The analysed rhodoliths are composed entirely of branched system forming mostly spherical specimens of 8-10 cm in diameter. Chronology was constrained by 20 radiocarbon dates calibrated with the 1960s-70s atomic bomb-spike curve, in conjunction with commonly used growth band counting and Mg/Ca minima-maxima peaks. Mg/Ca variations are reproducible between different branches of a single specimen as well as between three distinct rhodoliths from the same site in the SW lagoon of New Caledonia. All records present a significant correlation with the local sea-surface temperatures at a monthly to inter-annual resolution (respectively, 0.59< r <0.70 and 0.62< r <0.72; p<0.0001), thus confirming the global potential of coralline red algae for palaeo-temperature reconstructions, as suggested by recent studies from the North Atlantic and North Pacific Oceans (e.g. Halfar et al. 2000, Kamenos et al. 2008, Hetzinger et al., 2009). Compared to the youngest part of the record, Mn/Ca, Fe/Ca and Ni/Ca ratios present significantly higher values for the period prior to 1980, which corresponds to the high production period of an open-air, Ni-extraction mine located in the water catchment area of the Coulée River, ~10km from the studied rhodolith bed. The mining production at the site ceased in 1981. After that date, Mn, Fe and Ni concentrations in the rhodoliths show a steady decline. Co/Ca, however, shows no such trend, indicating different behaviour and availability for these metals, all related to the weathering of exposed laterite formations. Average metal records corrected from the anthropogenic mining effect (except for Co/Ca) present significant correlations with the inter-annual local rainfall signal (r=0.62, r=0.60, r=0.48; p<0.0001 for Mn/Ca, Fe/Ca and Ni/Ca, respectively) for most of the studied period, in accordance with a freshwater-derived origin of the metals at the study site. This also suggests a potential use of metal concentrations in rhodoliths as an indirect tracer for local rainfall patterns.

  16. Effect of Fe2O3 on the crystallization behavior of glass-ceramics produced from naturally cooled yellow phosphorus furnace slag

    NASA Astrophysics Data System (ADS)

    Liu, Hong-pan; Huang, Xiao-feng; Ma, Li-ping; Chen, Dan-li; Shang, Zhi-biao; Jiang, Ming

    2017-03-01

    CaO-Al2O3-SiO2 (CAS) glass-ceramics were prepared via a melting method using naturally cooled yellow phosphorus furnace slag as the main raw material. The effects of the addition of Fe2O3 on the crystallization behavior and properties of the prepared glass-ceramics were studied by differential thermal analysis, X-ray diffraction, and scanning electron microscopy. The crystallization activation energy was calculated using the modified Johnson-Mehl-Avrami equation. The results show that the intrinsic nucleating agent in the yellow phosphorus furnace slag could effectively promote the crystallization of CAS. The crystallization activation energy first increased and then decreased with increasing amount of added Fe2O3. At 4wt% of added Fe2O3, the crystallization activation energy reached a maximum of 676.374 kJ·mol-1. The type of the main crystalline phase did not change with the amount of added Fe2O3. The primary and secondary crystalline phases were identified as wollastonite (CaSiO3) and hedenbergite (CaFe(Si2O6)), respectively.

  17. Iron [Fe(0)]-rich substrate based on iron-carbon micro-electrolysis for phosphorus adsorption in aqueous solutions.

    PubMed

    Deng, Shihai; Li, Desheng; Yang, Xue; Xing, Wei; Li, Jinlong; Zhang, Qi

    2017-02-01

    The phosphorus (P) adsorption properties of an iron [Fe(0)]-rich substrate (IRS) composed of iron scraps and activated carbon were investigated based on iron-carbon micro-electrolysis (IC-ME) and compared to the substrates commonly used in constructed wetlands (CWs) to provide an initial characterization of the [Fe(0)]-rich substrate. The results showed that P was precipitated by Fe(III) dissolved from the galvanic cell reactions in the IRS and the reaction was suppressed by the pH and stopped when the pH exceeded 8.90 ± 0.09. The adsorption capacity of the IRS decreased by only 4.6% in the second round of adsorption due to Fe(0) consumption in the first round. Substrates with high Ca- and Mg-oxide contents and high Fe- and Al-oxide contents had higher P adsorption capacities at high and low pH values, respectively. Substrates containing high Fe and Al concentrations and low Ca concentrations were more resistant to decreases in the P adsorption capacity resulting from organic matter (OM) accumulation. The IRS with an iron scrap to activated carbon volume ratio of 3:2 resulted in the highest P adsorption capacity (9.34 ± 0.14 g P kg -1 ), with minimal pH change and strong adaptability to OM accumulation. The Fe(0)-rich substrate has the considerable potential for being used as a CW substrate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Crystal structure of a birefringent andradite-grossular from Crowsnest Pass, Alberta, Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antao, Sytle M.; Klincker, Allison M.

    2014-02-20

    The structure of a birefringent andradite–grossular sample was refined using single-crystal X-ray diffraction (SCD) and synchrotron high-resolution powder X-ray diffraction (HRPXRD) data. Electron-microprobe results indicate a homogeneous composition of {Ca 2.88Mn 2+ 0.06Mg 0.04Fe 2+ 0.03} Σ3[Fe 3+ 1.29Al 0.49Ti 4+ 0.17Fe 2+ 0.06] Σ2(Si 2.89Al 0.11) Σ3O 12. The Rietveld refinement reduced χ 2 = 1.384 and overall R (F 2) = 0.0315. The HRPXRD data show that the sample contains three phases. For phase-1, the weight %, unit-cell parameter (Å), distances (Å), and site occupancy factor (sof) are 62.85(7)%, a = 12.000 06(2), average = 2.4196, Fe–O =more » 1.9882(5), Si–O = 1.6542(6) Å, Ca(sof) = 0.970(2), Fe(sof) = 0.763(1), and Si(sof) = 0.954(2). The corresponding data for phase-2 are 19.14(9)%, a = 12.049 51(2), average = 2.427, Fe–O = 1.999(1), Si–O = 1.665(1) Å, Ca(sof) = 0.928(4), Fe(sof) = 0.825(3), and Si(sof) = 0.964(4). The corresponding data for phase-3 are 18.01(9)%, a = 12.019 68(3), average = 2.424, Fe–O = 1.992(2), Si–O = 1.658(2) Å, Ca(sof) = 0.896(5), Fe(sof) = 0.754(4), and Si(sof) = 0.936(5). The fine-scale coexistence of the three phases causes strain that arises from the unit-cell and bond distances differences, and gives rise to strain-induced birefringence. The results from the SCD are similar to the dominant phase-1 obtained by the HRPXRD, but the SCD misses the minor phases.« less

  19. Concentration and emission sources of airborne metals in particulate matter in the industrial district of Médio Paraíba, state of Rio de Janeiro, Brazil.

    PubMed

    Loyola, Josiane; de Almeida, Pierre Batista; Quiterio, Simone Lorena; Sousa, Célia Regina; Arbilla, Graciela; Escaleira, Viviane; de Carvalho, Maria Isabel; dos Santos Amaral Gomes da Silva, Alzira

    2006-11-01

    Total suspended particles and 12 airborne metals were determined in 4 sampling sites in the industrial region of Médio Paraíba, Brazil. The geometrical means for the four sampling locals were (in units of microg/m3): 65.9 in Barra Mansa, 57.3 in Jardim Paraíba (Volta Redonda), 41.7 in Resende, and 48.9 in Volta Grande (Volta Redonda). These values are lower than levels previously determined in urban and industrial locals of the Metropolitan Area of Rio de Janeiro. For metals, the higher concentrations were obtained for Ca, Zn, Al, Fe, and Mg. Ca, Zn, and Al levels are higher than those determined in other industrial areas. These three metals are used in steel manufacturing, the main economical activity of the region. Enrichment factors for Zn, Cu, Cd, and Pb are higher than 10, suggesting an industrial input. Statistical analysis show a high correlation among Ca, Mg, Zn, Cr, Al, Mn, and Fe, all of them used as raw materials in steel manufacturing and/or accumulated as industrial blast furnace slag and steelworks slag.

  20. Hematite (α-Fe2O3) - A potential Ce4+ carrier in red mud.

    PubMed

    Bolanz, Ralph M; Kiefer, Stefan; Göttlicher, Jörg; Steininger, Ralph

    2018-05-01

    Cerium is the most abundant rare earth element (REE) within the waste product of alumina production (red mud), but its speciation in this complex material is still barely understood. Previous studies showed evidence for a correlation between Ce and the main constituent of red mud, iron oxides, which led us to investigate the most abundant iron oxide in red mud, hematite, as possible carrier phase for Ce. Synthetic hematite can incorporate up to 1.70±0.01wt% Ce, which leads to a systematical increase of all unit cell parameters. Investigations by extended X-ray absorption fine structure spectroscopy suggest an incorporation of Ce 4+ O 6 into the hematite structure by a novel atomic arrangement, fundamentally different from the close-range order around Fe 3+ in hematite. Samples of red mud were taken in Lauta (Saxony), Germany and analyzed by powder X-ray diffraction, inductively coupled plasma mass and optical emission spectrometry, electron microprobe analysis and X-ray absorption near-edge structure spectroscopy. Red mud samples consist of hematite (Fe 2 O 3 ) (34-58wt%), sodalite (Na 8 Al 6 Si 6 O 24 Cl 2 ) (4-30wt%), gibbsite (Al(OH) 3 ) (0-25wt%), goethite (FeOOH) (10-23wt%), böhmite (AlOOH) (0-11wt%), rutile (TiO 2 ) (4-8wt%), cancrinite (Na 6 Ca 2 Al 6 Si 6 O 24 (CO 3 ) 2 ) (0-5wt%), nordstrandite (Al(OH) 3 ) (0-5wt%) and quartz (SiO 2 ) (0-4wt%). While the main elemental composition is Fe>Al>Na>Ti>Ca (Si not included), the average concentration of REE is 1109±6mg/kg with an average Ce concentration of 464±3mg/kg. The main carrier of Ce was located in the Fe-rich fine-grained fraction of red mud (0.10wt% Ce 2 O 3 ), while other potential Ce carriers like monazite, lead oxides, secondary Ce-minerals and particles of potentially anthropogenic origin are of subordinated relevance. Cerium in red mud occurs predominantly as Ce 4+ , which further excludes Ce 3+ minerals as relevant sources. Copyright © 2017. Published by Elsevier B.V.

  1. Influence of Climate and Lithology on Soil Phosphorus

    NASA Astrophysics Data System (ADS)

    Wilson, S. G.; Margenot, A. J.; O'Geen, A. T.; Dahlgren, R. A.

    2016-12-01

    Climate and lithology are master variables of pedogenesis. We hypothesize that differences in parent material composition will influence the outcome of soil P fractionation, in concert with climate and the relative degree of chemical weathering. Here, we investigate a novel climo-lithosequence to elucidate the influence of lithology and climate on P dynamics. Three climosequences (elevational transects) spanning four climatic zones (Blue-Oak, Ponderosa Pine, White fir and Red fir), and three bedrock lithologies (basalt, andesite and granodiorite) were investigated across the Sierra Nevada and southern Cascades. Replicate soil samples were collected by genetic horizon at twelve sites (4 climate zones x 3 lithologies) and characterized by a modified Hedley P fractionation method to quantify P into operationally defined pools. Initial results from the fractionation of andesite and basalt transects (granodiorite forthcoming) show large climatic and lithologic effects on soil P fractions, suggesting that the distribution of soil P and the trajectory of P transformations are significantly influenced by lithology as well as climate. For example, in the climatic zone of least weathering (Red fir), all soil P fractions showed significant lithologic effects. In contrast, with increased weathering, parent material effects on soil P fractions become progressively muted, so that in the zone of most intense weathering (Ponderosa Pine), soil P fractions such as Ca-Pi (1 M HCl-Pi) and labile-Pi (Resin Pi + NaHCO3-Pi), no longer show an influence from lithology. Additionally, significant climatic effects were noted for labile-Pi, Ca-Pi and Fe/Al-Pi (0.1 M NaOH-Pi). A strong positive correlation was observed between poorly crystalline Fe/Al-(hydr)oxides (oxalate extractable Fe and Al) and Fe/Al-Pi (p<0.0001). Conversely, a strong negative correlation was observed between crystalline Fe-oxides (inferred by citrate-dithionite extractable Fe) and Fe/Al-Pi (p<0.0001). Results suggest that P dynamics in soils are strongly influenced not only by climate and the relative degree of chemical weathering, but also lithology, especially during the early stages of pedogenesis. Therefore, parent material and climate may interact more strongly than previously thought to regulate P biogeochemistry.

  2. Vitality and chemistry of roots of red spruce in forest floors of stands with a gradient of soil Al/Ca ratios in the northeastern United States

    USGS Publications Warehouse

    Wargo, P.M.; Vogt, K.; Vogt, D.; Holifield, Q.; Tilley, J.; Lawrence, G.; David, M.

    2003-01-01

    Number of living root tips per branch, percent dead roots, percent mycorrhizae and mycorrhizal morphotype, response of woody roots to wounding and colonization by fungi, and concentrations of starch, soluble sugars, phenols, percent C and N and C/N ratio, and Al Ca, Fe, K, Mg, Mn, and P were measured for 2 consecutive years in roots of red spruce (Picea rubens Sarg.) in stands in the northeastern United States (nine in 1993 and two additional in 1994) dominated by red spruce and with a gradient of forest floor exchangeable Al/Ca ratios. Root vitality was measured for nonwoody and coarse woody roots; chemical variables were measured for nonwoody (<1 mm), fine woody (1 to <2 mm), and coarse woody (2 to <5 mm) roots. There were significant differences among sites for all variables, particularly in 1993, although few were related to the Al/Ca ratio gradient. Percent mycorrhizae decreased, while some morphotypes increased or decreased as the Al/Ca ratio increased. In nonwoody roots, N increased as the Al/Ca ratio increased. Most sampled trees appeared to be in good or fair health, suggesting that an adverse response of these root variables to high Al concentrations may be apparent only after a significant change in crown health.

  3. Dissolution kinetics of a lunar glass simulant at 25 degrees C: the effect of pH and organic acids

    NASA Technical Reports Server (NTRS)

    Eick, M. J.; Grossl, P. R.; Golden, D. C.; Sparks, D. L.; Ming, D. W.

    1996-01-01

    The dissolution kinetics of a simulated lunar glass were examined at pH 3, 5, and 7. Additionally, the pH 7 experiments were conducted in the presence of citric and oxalic acid at concentrations of 2 and 20 mM. The organic acids were buffered at pH 7 to examine the effect of each molecule in their dissociated form. At pH 3, 5, and 7, the dissolution of the synthetic lunar glass was observed to proceed via a two-stage process. The first stage involved the parabolic release of Ca, Mg, Al, and Fe, and the linear release of Si. Dissolution was incongruent, creating a leached layer rich in Si and Ti which was verified by transmission electron microscopy (TEM). During the second stage the release of Ca, Mg, Al, and Fe was linear. A coupled diffusion/surface dissolution model was proposed for dissolution of the simulated lunar glass at pH 3, 5, and 7. During the first stage the initial release of mobile cations (i.e., Ca, Mg, Al, Fe) was limited by diffusion through the surface leached layer of the glass (parabolic release), while Si release was controlled by the hydrolysis of the Si-O-Al bonds at the glass surface (linear release). As dissolution continued, the mobile cations diffused from greater depths within the glass surface. A steady-state was then reached where the diffusion rate across the increased path lengths equalled the Si release rate from the surface. In the presence of the organic acids, the dissolution of the synthetic lunar glass proceeded by a one stage process. The release of Ca, Mg, Al, and Fe followed a parabolic relationship, while the release of Si was linear. The relative reactivity of the organic acids used in the experiments was citrate > oxalate. A thinner leached layer rich in Si/Ti, as compared to the pH experiments, was observed using TEM. Rate data suggest that the chemisorption of the organic anion to the surface silanol groups was responsible for enhanced dissolution in the presence of the organic acids. It is proposed that the increased rate of Si release is responsible for the one stage parabolic release of mobile cations and the relatively thin leached layer compared to experiments at pH 3 and 5.

  4. Tetragonal Almandine, (Fe,Mg,Ca,Na)3(Al,Si,Mg)2Si3O12, a New High-Pressure Mineral from the Shergotty Impact on Mars: an Integrated FESEM-EPMA-Synchrotron Diffraction Investigation

    NASA Astrophysics Data System (ADS)

    Ma, C.; Tschauner, O. D.

    2016-12-01

    The combination of FESEM-EDS-EBSD, EPMA, and synchrotron microdiffraction is developing into a powerful tool for identification of micron-scale minerals in rocks such as high-pressure phases in shocked meteorites. During a nanomineralogy investigation of the Shergotty meteorite using this approach, we have identified a new shock-induced high-pressure silicate, majoritic almandine with a tetragonal I41/a structure, in an impact melt pocket. The Shergotty meteorite, which fell in the Gaya district, Bihar, India in 1865, is a Martian basaltic shergottite with shock features. Tetragonal almandine in Shergotty occurs as aggregates of subhedral crystals, 0.8 - 2.5 µm in diameter, along with stishovite in the central region of a shock melt pocket, showing an empirical formula of (Fe1.16Ca0.75Mg0.61Na0.42Mn0.03K0.01)(Al1.16Si0.63Mg0.19Ti0.02)Si3O12. Its general formula is (Fe,Mg,Ca,Na)3(Al,Si,Mg)2Si3O12. EBSD indicated this phase has a garnet-related structure. Synchrotron X-ray diffraction revealed that this garnet has actually a tetragonal structure (I41/a) with unit cell dimensions: a = 11.585(9) Å, c = 11.63(4) Å, V = 1561(7) Å3, and Z = 8. Tetragonal almandine is the polymorph of cubic almandine, a new high-pressure garnet mineral, formed by shock metamorphism via the Shergotty impact event on Mars. It apparently crystallized from Fe-rich shock-induced melt under high-pressure and high-temperature conditions.

  5. Influence of substrate type on transport properties of superconducting FeSe0.5Te0.5 thin films

    NASA Astrophysics Data System (ADS)

    Yuan, Feifei; Iida, Kazumasa; Langer, Marco; Hänisch, Jens; Ichinose, Ataru; Tsukada, Ichiro; Sala, Alberto; Putti, Marina; Hühne, Ruben; Schultz, Ludwig; Shi, Zhixiang

    2015-06-01

    FeSe0.5Te0.5 thin films were grown by pulsed laser deposition on CaF2, LaAlO3 and MgO substrates and structurally and electro-magnetically characterized in order to study the influence of the substrate on their transport properties. The in-plane lattice mismatch between FeSe0.5Te0.5 bulk and the substrate shows no influence on the lattice parameters of the films, whereas the type of substrate affects the crystalline quality of the films and, therefore, the superconducting properties. The film on MgO showed an extra peak in the angular dependence of critical current density Jc(θ) at θ = 180° (H||c), which arises from c-axis defects as confirmed by transmission electron microscopy. In contrast, no Jc(θ) peaks for H||c were observed in films on CaF2 and LaAlO3. Jc(θ) can be scaled successfully for both films without c-axis correlated defects by the anisotropic Ginzburg-Landau approach with appropriate anisotropy ratio γJ. The scaling parameter γJ is decreasing with decreasing temperature, which is different from what we observed in FeSe0.5Te0.5 films on Fe-buffered MgO substrates.

  6. A Reaction Between High Mn-High Al Steel and CaO-SiO2-Type Molten Mold Flux: Part I. Composition Evolution in Molten Mold Flux

    NASA Astrophysics Data System (ADS)

    Kim, Min-Su; Lee, Su-Wan; Cho, Jung-Wook; Park, Min-Seok; Lee, Hae-Geon; Kang, Youn-Bae

    2013-04-01

    In order to elucidate the reaction mechanism between high Mn-high Al steel such as twin-induced plasticity steel and molten mold flux composed mainly of CaO-SiO2 during continuous casting process, a series of laboratory-scale experiments were carried out in the present study. Molten steel and molten flux were brought to react in a refractory crucible in a temperature range between 1713 K to 1823 K (1440 °C to 1550 °C) and composition evolution in the steel and the flux was analyzed using inductively coupled plasma atomic emission spectroscopy, X-ray fluorescence, and electron probe microanalysis. The amount of SiO2 in the flux was significantly reduced by Al in the steel; thus, Al2O3 was accumulated in the flux as a result of a chemical reaction, 4[Al] + 3(SiO2) = 3[Si] + 2(Al2O3). In order to find a major factor which governs the reaction, a number of factors ((pct CaO/pct SiO2), (pct Al2O3), [pct Al], [pct Si], and temperature) were varied in the experiments. It was found that the above chemical reaction was mostly governed by [pct Al] in the molten steel. Temperature had a mild effect on the reaction. On the other hand, (pct CaO/pct SiO2), (pct Al2O3), and [pct Si] did not show any noticeable effect on the reaction. Apart from the above reaction, the following reactions are also thought to happen simultaneously: 2[Mn] + (SiO2) = [Si] + 2(MnO) and 2[Fe] + (SiO2) = [Si] + 2(FeO). These oxide components were subsequently reduced by Al in the molten steel. Na2O in the molten flux was gradually decreased and the decrease was accelerated by increasing [pct Al] and temperature. Possible reactions affecting the Al2O3 accumulation are summarized.

  7. Formation and composition of the moon. [carbonaceous meteorites

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.

    1974-01-01

    Many of the properties of the moon are discussed including the enrichment in Ca, Al, Ti, U, Th, Ba, Sr and the REE and the depletion in Fe, Rb, K, Na and other volatiles which could be understood if the moon represents a high temperature condensate from the solar nebula. Thermodynamic calculations show that Ca, Al and Ti rich compounds condense first in a cooling nebula. The initial high temperature mineralogy is gehlenite, spinel, perovskite, Ca-Al-rich pyroxenes and anorthite. Inclusions in Type III carbonaceous chondrites such as the Allende meteorite are composed primarily of these minerals and, in addition, are highly enriched in refractories such as REE relative to carbonaceous chondrites. These inclusions can yield basalt and anorthosite in the proportions required to eliminate the europium anomaly, leaving a residual spinel-melilite interior.

  8. Thermal infrared emission spectroscopy of the pyroxene mineral series

    NASA Astrophysics Data System (ADS)

    Hamilton, Victoria E.

    2000-04-01

    The thermal infrared emissivity spectra of coarse particulate samples of compositions in the pyroxene series display reststrahlen features (absorptions) that distinguish not only orthorhombic from monoclinic structures, but also major end-members within the two structural groups, as well as minerals within solid solution series. The exact number of reststrahlen features observed and their positions are dependent on mineral structure and cation occupancy of the M1 and M2 sites. End-member quadrilateral pyroxenes (Mg2Si2O6-Fe2Si2O6-Ca[Mg,Fe]Si2O6) are easily distinguished from each other and from minerals in the nonquadrilateral series (NaFeSi2O6-Na[Al,Fe]Si2O6-LiAlSi2O6). Furthermore, among quadrilateral pyroxenes, variations in Mg/(Mg+Fe) are linearly correlated with several band locations, as are variations in Ca content in high-Ca clinopyroxenes. In both quadrilateral and nonquadrilateral compositions, Christiansen feature positions are also diagnostic. No correlations with minor constituents (of the order of 0.05 atoms per formula unit) were observed. The detailed spectral characteristics of pyroxenes and their variability as a function of structure and cation occupancy are presented here with determinative curves for the identification of pyroxene composition. These data have important implications for the interpretation of spectral data from both laboratory and remote sensing instruments because they should permit a more detailed determination of pyroxene composition in measured unknown pure mineral and bulk compositions dominated by surface scattering, i.e., all particulates greater than ~65 μm, and solid samples.

  9. Pigmented Creatine Deposits in Amyotrophic Lateral Sclerosis Central Nervous System Tissues Identified by Synchrotron Fourier Transform Infrared Microspectroscopy and X-ray Fluorescence Spectromicroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kastyak, M.; Szczerbowska-Boruchowska, M; Adamek, D

    2010-01-01

    Amyotrophic Lateral Sclerosis (ALS) is an untreatable, neurodegenerative disease of motor neurons characterized by progressive muscle atrophy, limb paralysis, dysarthria, dysphagia, dyspnae and finally death. Large motor neurons in ventral horns of spinal cord and motor nuclei in brainstem, large pyramidal neurons of motor cortex and/or large myelinated axons of corticospinal tracts are affected. In recent synchrotron Fourier Transform Infrared microspectroscopy (sFTIR) studies of ALS CNS autopsy tissue, we discovered a small deposit of crystalline creatine, which has a crucial role in energy metabolism. We have now examined unfixed, snap frozen, post-autopsy tissue sections of motor cortex, brain stem, spinalmore » cord, hippocampus and substantia nigra from six ALS and three non-degenerated cases with FTIR and micro-X-ray fluorescence (XRF). Heterogeneous pigmented deposits were discovered in spinal cord, brain stem and motor neuron cortex of two ALS cases. The FTIR signature of creatine has been identified in these deposits and in numerous large, non-pigmented deposits in four of the ALS cases. Comparable pigmentation and creatine deposits were not found in controls or in ALS hippocampus and substantia nigra. Ca, K, Fe, Cu and Zn, as determined by XRF, were not correlated with the pigmented deposits; however, there was a higher incidence of hot spots (Ca, Zn, Fe and Cu) in the ALS cases. The identity of the pigmented deposits remains unknown, although the absence of Fe argues against both erythrocytes and neuromelanin. We conclude that elevated creatine deposits may be indicators of dysfunctional oxidative processes in some ALS cases.« less

  10. Environmentally-relevant concentrations of Al(III) and Fe(III) cations induce aggregation of free DNA by complexation with phosphate group.

    PubMed

    Qin, Chao; Kang, Fuxing; Zhang, Wei; Shou, Weijun; Hu, Xiaojie; Gao, Yanzheng

    2017-10-15

    Environmental persistence of free DNA is influenced by its complexation with other chemical species and its aggregation mechanisms. However, it is not well-known how naturally-abundant metal ions, e.g., Al(III) and Fe(III), influence DNA aggregation. This study investigated aggregation behaviors of model DNA from salmon testes as influenced by metal cations, and elucidated the predominant mechanism responsible for DNA aggregation. Compared to monovalent (K + and Na + ) and divalent (Ca 2+ and Mg 2+ ) cations, Al(III) and Fe(III) species in aqueous solution caused rapid DNA aggregations. The maximal DNA aggregation occurred at 0.05 mmol/L Al(III) or 0.075 mmol/L Fe(III), respectively. A combination of atomic force microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy revealed that Al(III) and Fe(III) complexed with negatively charged phosphate groups to neutralize DNA charges, resulting in decreased electrostatic repulsion and subsequent DNA aggregation. Zeta potential measurements and molecular computation further support this mechanism. Furthermore, DNA aggregation was enhanced at higher temperature and near neutral pH. Therefore, DNA aggregation is collectively determined by many environmental factors such as ion species, temperature, and solution pH. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Bonanza: An extremely large dust grain from a supernova

    NASA Astrophysics Data System (ADS)

    Gyngard, Frank; Jadhav, Manavi; Nittler, Larry R.; Stroud, Rhonda M.; Zinner, Ernst

    2018-01-01

    We report the morphology, microstructure, and isotopic composition of the largest SiC stardust grain known to have condensed from a supernova. The 25-μm diameter grain, termed Bonanza, was found in an acid-resistant residue of the Murchison meteorite. Grains of such large size have neither been observed around supernovae nor predicted to form in stellar environments. The large size of Bonanza has allowed the measurement of the isotopic composition of more elements in it than any other previous presolar grain, including: Li, B, C, N, Mg, Al, Si, S, Ca, Ti, Fe, and Ni. Bonanza exhibits large isotopic anomalies in the elements C, N, Mg, Si, Ca, Ti, Fe, and Ni typical of an astrophysical origin in ejecta of a Type II core-collapse supernova and comparable to those previously observed for other presolar SiC grains of type X. Additionally, we extracted multiple focused ion beam lift-out sections from different regions of the grain. Our transmission electron microscopy demonstrates that the crystalline order varies at the micrometer scale, and includes rare, higher order polytype domains (e.g., 15 R). Analyses with STEM-EDS show Bonanza contains a heterogeneous distribution of subgrains with sizes ranging from <10 nm to >100 nm of Ti(N, C); Fe, Ni-rich grains with variable Fe:Ni; and (Al, Mg)N. Bonanza also has the highest ever inferred initial 26Al/27Al ratio, consistent with its supernova origin. This unique grain affords us the largest expanse of data, both microstructurally and isotopically, to compare with detailed calculations of nucleosynthesis and dust condensation in supernovae.

  12. Spectral Exploration of Calcium Accumulation in Organic Matter in Gray Desert Soil from Northwest China

    PubMed Central

    Wang, Ping; Ma, Yucui; Wang, Xihe; Jiang, Hong; Liu, Hua; Ran, Wei; Shen, Qirong

    2016-01-01

    Little attention has been paid to the accumulation of soil organic matter (SOM) in the fringes of the mid-latitude desert. In this paper, soil samples from a long-term field experiment conducted from 1990 to 2013 at a research station in Urumqi, China by different fertilizer treatments, were used to determine soil properties and soil dissolved organic matter (DOM) by chemical analysis, fluorescence excitation emission matrix (EEM) spectroscopy, and high resolution-transmission electron microscopy (HR-TEM). The binding features of DOM under the addition of Ca2+ were analyzed using a two-dimensional (2D) Fourier transform infrared (FTIR) spectrometer further to explore the response of the DOM to increasing concentrations of Ca2+. Long-term application of chemical fertilizers and goat manure increased soil organic carbon (SOC) by 1.34- and 1.86-fold, respectively, relative to the non-fertilized control (8.95g.kg-1). Compared with the control, application of chemical fertilizers and manure significantly increased the concentrations of Ca, Mg, Si, humic and fulvic acid-like substances in DOM but decreased the amounts of trivalent metals (Al and Fe) and protein-like substances. Although crystalline Al/Fe nanoparticles and amorphous or short-range-order Si/Al nanoparticles existed in all DOM samples, crystalline Ca/Si nanoparticles were predominant in the samples treated with goat manure. Although organic matter and Si-O-containing nanoparticles were involved in the binding of Ca2+ to DOM, application of chemical fertilizers weakened Ca2+ association with components of the amide II group (1510 cm-1) and Si-O linkage (1080 cm-1), whereas application of goat manure enhanced the affinity of Ca2+ for Si-O linkage. Our results suggested that the enrichment of Ca in gray desert soil possibly helps accumulate SOM by forming crystalline Ca/Si nanoparticles in addition to Ca2+ and organic matter complexes. PMID:26751962

  13. Spectral Exploration of Calcium Accumulation in Organic Matter in Gray Desert Soil from Northwest China.

    PubMed

    Wang, Ping; Ma, Yucui; Wang, Xihe; Jiang, Hong; Liu, Hua; Ran, Wei; Shen, Qirong

    2016-01-01

    Little attention has been paid to the accumulation of soil organic matter (SOM) in the fringes of the mid-latitude desert. In this paper, soil samples from a long-term field experiment conducted from 1990 to 2013 at a research station in Urumqi, China by different fertilizer treatments, were used to determine soil properties and soil dissolved organic matter (DOM) by chemical analysis, fluorescence excitation emission matrix (EEM) spectroscopy, and high resolution-transmission electron microscopy (HR-TEM). The binding features of DOM under the addition of Ca(2+) were analyzed using a two-dimensional (2D) Fourier transform infrared (FTIR) spectrometer further to explore the response of the DOM to increasing concentrations of Ca(2+). Long-term application of chemical fertilizers and goat manure increased soil organic carbon (SOC) by 1.34- and 1.86-fold, respectively, relative to the non-fertilized control (8.95 g.kg(-1)). Compared with the control, application of chemical fertilizers and manure significantly increased the concentrations of Ca, Mg, Si, humic and fulvic acid-like substances in DOM but decreased the amounts of trivalent metals (Al and Fe) and protein-like substances. Although crystalline Al/Fe nanoparticles and amorphous or short-range-order Si/Al nanoparticles existed in all DOM samples, crystalline Ca/Si nanoparticles were predominant in the samples treated with goat manure. Although organic matter and Si-O-containing nanoparticles were involved in the binding of Ca(2+) to DOM, application of chemical fertilizers weakened Ca(2+) association with components of the amide II group (1510 cm(-1)) and Si-O linkage (1080 cm(-1)), whereas application of goat manure enhanced the affinity of Ca(2+) for Si-O linkage. Our results suggested that the enrichment of Ca in gray desert soil possibly helps accumulate SOM by forming crystalline Ca/Si nanoparticles in addition to Ca(2+) and organic matter complexes.

  14. [Short-term responses of foliar multi-element stoichiometry and nutrient resorption of slash pine to N addition in subtropical China].

    PubMed

    Chen, Wei Wei; Kou, Liang; Jiang, Lei; Gao, Wen Long; Yang, Hao; Wang, Hui Min; Li, Sheng Gong

    2017-04-18

    We conducted a field experiment with three levels of N addition (0, 40 and 120 kg N·hm -2 ·a -1 ) in a Pinus elliottii plantation in subtropical China and collected green and senesced needles of P. elliottii at the peak (July) and the end (October) of each growing season in 2014 and 2015 for clarifying effects of nitrogen additions on concentrations of nine elements (C, N, P, K, Ca, Mg, Al, Fe and Mn) in the green and senesced needles and their corresponding resorption efficiency and resorption proficiency. Our results showed that N addition had positive effects on concentrations of N, Al and Mn, negative effects on the P concentration and the Ca concentration in 2014, and neutral effects on concentrations of C, K, Mg and Fe in green needles. N addition signifi-cantly increased foliar N/P. These stoichiometric responses were N level-dependent (stronger at high N rate). N addition significantly decreased N resorption efficiency in 2015 and increased that of K in 2014. Compared with the resorption efficiency, resorption proficiency responded more strongly to increased available N. N addition significantly decreased resorption proficiency of N, and increased that of P, K, and the concentration of Fe in senesced needles, however, there were no significant effects on the concentrations of Ca, Mg, Al and Mn in senesced needles. We concluded that responses of foliar stoichiometry to N addition were element-specific, and plants might cope with changing environments via adjusting internal nutrient cycle (resorption). The elevated foliar N/P and K/P suggested a shift from N and P co-limitation to P limitation with N additions, and increased concentrations of Al and Mn might imply potential toxicity of metal ions to P. elliottii.

  15. Time-series analysis of two hydrothermal plumes at 9°50'N East Pacific Rise reveals distinct, heterogeneous bacterial populations.

    PubMed

    Sylvan, J B; Pyenson, B C; Rouxel, O; German, C R; Edwards, K J

    2012-03-01

    We deployed sediment traps adjacent to two active hydrothermal vents at 9°50'N on the East Pacific Rise (EPR) to assess the variability in bacterial community structure associated with plume particles on the timescale of weeks to months, to determine whether an endemic population of plume microbes exists, and to establish ecological relationships between bacterial populations and vent chemistry. Automated rRNA intergenic spacer analysis (ARISA) indicated that there are separate communities at the two different vents and temporal community variations between each vent. Correlation analysis between chemistry and microbiology indicated that shifts in the coarse particulate (>1 mm) Fe/(Fe+Mn+Al), Cu, V, Ca, Al, (232) Th, and Ti as well as fine-grained particulate (<1 mm) Fe/(Fe+Mn+Al), Fe, Ca, and Co are reflected in shifts in microbial populations. 16S rRNA clone libraries from each trap at three time points revealed a high percentage of Epsilonproteobacteria clones and hyperthermophilic Aquificae. There is a shift toward the end of the experiment to more Gammaproteobacteria and Alphaproteobacteria, many of whom likely participate in Fe and S cycling. The particle-attached plume environment is genetically distinct from the surrounding seawater. While work to date in hydrothermal environments has focused on determining the microbial communities on hydrothermal chimneys and the basaltic lavas that form the surrounding seafloor, little comparable data exist on the plume environment that physically and chemically connects them. By employing sediment traps for a time-series approach to sampling, we show that bacterial community composition on plume particles changes on timescales much shorter than previously known. © 2012 Blackwell Publishing Ltd.

  16. Properties of ceramics prepared using dry discharged waste to energy bottom ash dust.

    PubMed

    Bourtsalas, Athanasios; Vandeperre, Luc; Grimes, Sue; Themelis, Nicolas; Koralewska, Ralf; Cheeseman, Chris

    2015-09-01

    The fine dust of incinerator bottom ash generated from dry discharge systems can be transformed into an inert material suitable for the production of hard, dense ceramics. Processing involves the addition of glass, ball milling and calcining to remove volatile components from the incinerator bottom ash. This transforms the major crystalline phases present in fine incinerator bottom ash dust from quartz (SiO(2)), calcite (CaCO(3)), gehlenite (Ca(2)Al(2)SiO(7)) and hematite (Fe(2)O(3)), to the pyroxene group minerals diopside (CaMgSi(2)O(6)), clinoenstatite (MgSi(2)O(6)), wollastonite (CaSiO(3)) together with some albite (NaAlSi(3)O(8)) and andradite (Ca(3)Fe(2)Si(3)O(12)). Processed powders show minimal leaching and can be pressed and sintered to form dense (>2.5 g cm(-3)), hard ceramics that exhibit low firing shrinkage (<7%) and zero water absorption. The research demonstrates the potential to beneficially up-cycle the fine incinerator bottom ash dust from dry discharge technology into a raw material suitable for the production of ceramic tiles that have potential for use in a range of industrial applications. © The Author(s) 2015.

  17. Subsolidus and melting phase relations in the system CaCO3-MgCO3-FeCO3 at 35 kbar: from experiments to predictions based on a thermodynamic model

    NASA Astrophysics Data System (ADS)

    Franzolin, E.; Schmidt, M. W.; Poli, S.

    2009-12-01

    At convergent margins volatile components, most notably CO2 and H2O, stored in oceanic sediments and MORB are recycled into the mantle. Mafic protoliths become enriched in CO2 and H2O, stored in carbonates and hydrous phases, by hydrothermal alteration. As carbonates are more refractory than hydrous phases, CO2 is more likely to survive in the oceanic lithosphere beyond sub-arc depths [1,2]. Despite the main role of carbonates on cycling crustal and atmospheric CO2 into the mantle, experimental data within the system CaCO3-MgCO3-FeCO3 are scarce. To bridge this gap, piston-cylinder experiments have been performed at 35 kbar, 900-1100 °C to determine subsolidus relations, and up to 1300 °C to constrain melting relations. Pure synthetic calcite, natural magnesite and synthetic siderite have been mixed in different proportions in double Pt-C capsules, to avoid major siderite oxidation. Subsolidus experiments reveal the presence of two miscibility gaps at 900 °C: the solvus dolomite-calcite, which closes at XMgCO3 ~ 0.7, and the solvus dolomite-magnesite, which ranges to the Fe-side of the ternary. Increasing the temperature, the two miscibility gaps became narrower until complete solid solutions between CaCO3-Ca0.5Mg0.5CO3 at 1100 °C, and between CaCO3-FeCO3 at 1000 °C, are observed. The system is characterized by strong compositional asymmetry, thermodynamically described with a van Laar macroscopic formalism [3], and by R-3<=>R-3c phase transitions due to cation disordering, treated by redefining the compositional space with an independent set of end-members that describe both composition and states of ordering. The result is a solid solution model able to reproduce both the phase relations experimentally observed at 35 kbar and those experimentally determined and naturally observed at lower pressure [4-5]. Our model can be reliable extended to pressures of the breakdown of dolomite, e.g. 5-6 GPa, 600-1000 °C. Melting experiments carried out at 1250 °C along the join CaCO3-MgCO3, yield an eutectic at a slightly lower temperature at XCa ~ 0.7; the eutectic temperature decreases with the Fe content in the bulk. The 2-phase field calcite (XCa~0.75) + liquid, broadens with the increase of XFe in the system. Along the join CaMg(CO3)2-CaFe(CO3)2, melting takes place at XFe ~ 0.2, producing Ca enriched melt + Mg enriched dolomite. The new subsolidus and melting data and the ternary thermodynamic solid solution model, have been combined to predict the fate of FeO and CO2 rich systems (i.e. BIF associated with Fe-shale, high-Fe altered basalts and Fe-enriched carbonated metapelites), recycled back into the mantle during the history of the Earth. [1] Kerrick&Connolly, EPSL, 2001, 189, 19-29. [2] Poli et al., EPSL, 2009, 278, 350-360. [3] Holland&Powell, Contr. Min. Pet., 2003, 145, 492-501. [4] Goldsmith et al., Journ. of Geol., 1962, 70, 659-688. [5] Rosenberg, Am. Min., 1967, 52, 787-796.

  18. Influence of ultrasonic energy on dispersion of aggregates and released amounts of organic matter and polyvalent cations

    NASA Astrophysics Data System (ADS)

    Kaiser, M.; Kleber, M.; Berhe, A. A.

    2010-12-01

    Aggregates play important roles in soil carbon storage and stabilization. Identification of scale-dependent mechanisms of soil aggregate formation and stability is necessary to predict and eventually manage the flow of carbon through terrestrial ecosystems. Application of ultrasonic energy is a common tool to disperse soil aggregates. In this study, we used ultra sonic energy (100 to 2000 J cm-3) to determine the amount of polyvalent cations and organic matter involved in aggregation processes in three arable and three forest soils that varied in soil mineral composition. To determine the amount of organic matter and cations released after application of different amount of ultrasonic energy, we removed the coarse fraction (>250 µm). The remaining residue (<250 µm) was mixed with water and ultrasonically dispersed by application of 100, 200, 400, 500, 1000, 1500 and 2000 J cm-3 energy. After centrifugation the supernatant was filtered and the solid residue freeze dried before we analyzed the amounts of water-extracted organic carbon (OC), Fe, Al, Ca, Mn, and Mg in the filtrates. The extracted OM and solid residues were further characterized by Fourier Transformed Infra Red spectroscopy and Scanning Electron Microscopy. Our results show a linear increase in amount of dissolved OC with increasing amounts of ultra sonic energy up to 1500 J cm-3 indicating maximum dispersion of soil aggregates at this energy level independent from soil type or land use. In contrast to Mn, and Mg, the amounts of dissolved Ca, Fe, and Al increase with increasing ultra sonic energy up to 1500 J cm-3. At 1500 J cm-3, the absolute amounts of OC, Ca, Fe, and Al released were specific for each soil type, likely indicating differences in type of OM-mineral interactions involved in micro-scaled aggregation processes. The amounts of dissolved Fe, and Al released after an application of 1500 J cm-3 are not related to oxalate- and dithionite- extractable, or total Al content indicating less disintegration of pedogenic oxides or clay minerals due to high levels of ultrasonic energy.

  19. On the entropy of glaucophane Na2Mg3Al2Si8O22(OH)2

    USGS Publications Warehouse

    Robie, R.A.; Hemingway, B.S.; Gillet, P.; Reynard, B.

    1991-01-01

    The heat capacity of glaucophane from the Sesia-Lanza region of Italy having the approximate composition (Na1.93Ca0.05Fe0.02) (Mg2.60Fe0.41) (Al1.83Fe0.15Cr0.01) (Si7.92Al0.08)O22(OH)2 was measured by adiabatic calorimetry between 4.6 and 359.4 K. After correcting the Cp0data to values for ideal glaucophane, Na2Mg3Al2Si8O22(OH)2 the third-law entropy S2980-S00was calculated to be 541.2??3.0 J??mol-1??K-1. Our value for S2980-S00is 12.0 J??mol-1??K-1 (2.2%) smaller than the value of Likhoydov et al. (1982), 553.2??3.0, is within 6.2 J??mol-1??K-1 of the value estimated by Holland (1988), and agrees remarkably well with the value calculated by Gillet et al. (1989) from spectroscopic data, 539 J??mol-1??K-1. ?? 1991 Springer-Verlag.

  20. Ultrabasic-basic change over primary inclusions in lower-mantle diamonds: Mineralogical and experimental evidence for crucial role of stishovite paradox

    NASA Astrophysics Data System (ADS)

    Litvin, Yuriy; Spivak, Anna

    2017-04-01

    Melting relations of the lower-mantle magmatic system MgO - FeO - CaO - SiO2 are characterized by peritectic reaction of bridgmanite (Mg,Fe)SiO3 and melt with formation of Fe-rich phases of periclase-wustite solid solutions (MgO•FeO)ss and stishovite SiO2. The reaction proceeds also in melts-solutions of lower-mantle diamond-parental system MgO - FeO - CaO - SiO2 - (Mg-Fe-Ca-Na-carbonate) - C. Xenoliths of lower mantle rocks were never found among the deep mantle derived materials. Estimation of lower-mantle mineralogy as ferropericlase+ bridgmanite+ Ca-perovskite association is inferred from high-pressure subsolidus experiments with ultrabasic pyrolite composition (Akaogi, 2007). The paradoxical in situ paragenesis of stishovite and ferropericlase as primary inclusions in lower-mantle diamonds (Kaminsky, 2012) takes its explanation from the bridgmanite peritectic reaction (effect of "stishovite paradox") (Litvin et al., 2014). Based on the data for inclusions, physico-chemical study on syngenesis of diamonds and primary inclusions has experimentally revealed the ferropericlase-bridgmanite-Ca-perovskite-stishovite-magnesiowustite-(Mg-Fe-Ca-Na-carbonate)-carbon compositions of the lower-mantle diamond-forming system .(Litvin et al., 2016). The generalized diagram of diamong-forming media characterizes the variable compositions of growths melts for diamonds and paragenetic phases and their genetic relationships with lower mantle matter, and it is the reason for genetic classifying primary inclusions. Fractional ultrabasic-basic evolution and continuous paragenetic transition from ultrabasic bridgmanite-ferropericlase to basic stishovite-magnesiowustite assemblages in the of lower-mantle diamond-parental melts-solutions are providing by the physico-chemical mechanism of stishovite paradox. References Akaogi M. (2007). Phase transformations of minerals in the transition zone and upper part of the lower mantle. In Advances in High-Pressure Mineralogy (Ohtani E., ed.). Geol. Soc. Am. Spec. Paper 421, 1-13. Kaminsky F.V. (2012). Mineralogy of the lower mantle: a review of "supper-deep" mineral inclusions in diamonds. Earth Sci. Rev. 110, 127-147. Litvin Yu.A., Spivak A.V., Solopova N.A., Dubrovinsky L.S. (2014). On origin of lower-mantle diamonds and their primary inclusions. Phys. Earth Planet. Inter. 228, 176-185. Litvin Yu.A., Spivak A.V., Dubrovinsky L.S. (2016). Magmatic evolution of the material of the Earth's lower mantle: stishovite paradox and origin of superdeep diamonds (experiments at 24-26 GPa). Geochemistry Internat. 54(11, 936-947.)

  1. Thermodynamic effects of calcium and iron oxides on crystal phase formation in synthetic gasifier slags containing from 0 to 27wt.% V 2O 3

    DOE PAGES

    Nakano, Jinichiro; Duchesne, Marc; Bennett, James; ...

    2014-11-15

    Thermodynamic phase equilibria in synthetic slags (Al 2O 3–CaO–FeO–SiO 2–V 2O 3) were investigated with 0–27 wt.% vanadium oxide corresponding to industrial coal–petroleum coke (petcoke) feedstock blends in a simulated gasifier environment. Samples encompassing coal–petcoke mixed slag compositions were equilibrated at 1500 °C in a 64 vol.% CO/36 vol.% CO 2 atmosphere (Po 2 ≈ 10 –8 atm at 1500 °C) for 72 h, followed by rapid water quench, then analyzed by inductively coupled plasma optical emission spectrometry, X-ray diffractometry, and scanning electron microscopy with wavelength dispersive spectroscopy. With increasing CaO content, FeO content, or both; the slag homogeneity regionmore » expanded and a composition range exhibiting crystals was reduced. The mullite (Al 6Si 2O 13) crystalline phase was not present in the slags above 9 wt.% FeO while the karelianite (V 2O 3) crystalline phase was always present in compositions studied if a sufficient amount of vanadium existed in the slag. Furthermore, based on the present experimental equilibrium evaluation, a set of isothermal phase diagrams showing effects of CaO and FeO on thermodynamic phase stabilities in the vanadium-bearing slags is proposed. Some uses of the diagrams for potential industrial practice are discussed.« less

  2. Ca. 2.7 Ga ferropicritic magmatism: A record of Fe-rich heterogeneities during Neoarchean global mantle melting

    NASA Astrophysics Data System (ADS)

    Milidragovic, Dejan; Francis, Don

    2016-07-01

    Although terrestrial picritic magmas with FeOTOT ⩾13 wt.% are rare in the geological record, they were relatively common ca. 2.7 Ga during the Neoarchean episode of enhanced global growth of continental crust. Recent evidence that ferropicritic underplating played an important role in the ca. 2.74-2.70 Ga reworking of the Ungava craton provides the impetus for a comparison of ca. 2.7 Ga ferropicrite occurrences in the global Neoarchean magmatic record. In addition to the Fe-rich plutons of the Ungava craton, volumetrically minor ferropicritic flows, pyroclastic deposits, and intrusive rocks form parts of the Neoarchean greenstone belt stratigraphy of the Abitibi, Wawa, Wabigoon and Vermillion domains of the southern and western Superior Province. Neoarchean ferropicritic rocks also occur on five other Archean cratons: West Churchill, Slave, Yilgarn, Kaapvaal, and Karelia; suggesting that ca. 2.7 Ga Fe-rich magmatism was globally widespread. Neoarchean ferropicrites form two distinct groups in terms of their trace element geochemistry. Alkaline ferropicrites have fractionated REE profiles and show no systematic HFSE anomalies, broadly resembling the trace element character of modern-day ocean island basalt (OIB) magmas. Magmas parental to ca. 2.7 Ga alkaline ferropicrites also had high Nb/YPM (>2), low Al2O3/TiO2 (<8) and Sc/Fe (⩽3 × 10-4) ratios, and were enriched in Ni relative to primary pyrolite mantle-derived melts. The high Ni contents of the alkaline ferropicrites coupled with the low Sc/Fe ratios are consistent with derivation from olivine-free garnet-pyroxenite sources. The second ferropicrite group is characterized by decisively non-alkaline primary trace element profiles that range from flat to LREE-depleted, resembling Archean tholeiitic basalts and komatiites. In contrast to the alkaline ferropicrites, the magmas parental to the subalkaline ferropicrites had flat HREE, lower Nb/YPM (<2), higher Al2O3/TiO2 (8-25) and Sc/Fe (⩾4 × 10-4) ratios, and were depleted in Ni relative to melts of pyrolitic peridotite; suggesting they were derived from garnet-free peridotite sources. Neodymium isotopic evidence indicates that the source of alkaline ferropicrites was metasomatically enriched shortly before magma generation (⩽3.0 Ga), but the subalkaline ferropicrites do not show evidence of precursor metasomatism. The metasomatic enrichment of the alkaline ferropicrite sources may have been accompanied by conversion of Fe-rich peridotite to secondary garnet-pyroxenite. Melting experiments on ;pyrolitic; compositions and consideration of the dependence of the density of silicate liquids on pressure and temperature, suggest that ferropicrites cannot originate by melting of normal terrestrial mantle (Mg-number = 0.88-0.92) at high pressures and temperatures. The geochemical similarity between the subalkaline ferropicrites and the shergottite-nakhlite-chassigny (SNC) and howardite-eucrite-diogenite (HED) differentiated meteorites suggests, however, that the Fe-rich mantle may originate from the infall of Fe-rich chondritic meteorites. The occurrence of ca. 2.7 Ga Fe-rich rocks on at least six cratons that are commonly coeval with the more ubiquitous komatiites and Mg-tholeiites is consistent with the existence of heterogeneous Fe-rich ;plums; throughout the Neoarchean mantle. The paucity of ferropicrites in the post-2.7 Ga geological record suggests that majority of these Fe-rich plums have been melted out during the global Neoarchean melting of the mantle.

  3. The CaO orange system in meteor spectra

    NASA Astrophysics Data System (ADS)

    Berezhnoy, A. A.; Borovička, J.; Santos, J.; Rivas-Silva, J. F.; Sandoval, L.; Stolyarov, A. V.; Palma, A.

    2018-02-01

    The CaO orange band system was simulated in the region 5900-6300 Å and compared with the experimentally observed spectra of Benešov bolide wake. The required vibronic Einstein emission coefficients were estimated by means of the experimental radiative lifetimes under the simplest Franck-Condon approximation. A moderate agreement was achieved, and the largest uncertainties come from modeling shape of FeO orange bands. Using a simple model the CaO column density in the wake of the Benešov bolide at the height of 29 km was estimated as (5 ± 2) × 1014 cm-2 by a comparison of the present CaO spectra with the AlO bands nicely observed at 4600-5200 Å in the same spectrum. The obtained CaO content is in a good agreement with the quenching model developed for the impact-produced cloud, although future theoretical and experimental studies of both CaO and FeO orange systems contribution would be needed to confirm these results.

  4. Normal and outlying populations of the Milky Way stellar halo at [Fe/H] <–2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, Judith G.; Christlieb, Norbert; Thompson, Ian

    2013-11-20

    From detailed abundance analysis of >100 Hamburg/ESO candidate extremely metal-poor (EMP) stars we find 45 with [Fe/H] < –3.0 dex. We identify a heretofore unidentified group: Ca-deficient stars with sub-solar [Ca/Fe] ratios and the lowest neutron-capture abundances; the Ca-deficient group comprises ∼10% of the sample, excluding Carbon stars. Our radial velocity distribution shows that the carbon-enhanced stars with no s-process enhancements, CEMP-no, and which do not show C{sub 2} bands are not preferentially binary systems. Ignoring Carbon stars, approximately 15% of our sample are strong (≥5σ) outliers in one or more elements between Mg and Ni; this rises to ∼19%more » if very strong (≥10σ) outliers for Sr and Ba are included. Examples include: HE0305–0554 with the lowest [Ba/H] known; HE1012–1540 and HE2323–0256, two (non-velocity variable) C-rich stars with very strong [Mg,Al/Fe] enhancements; and HE1226–1149, an extremely r-process rich star.« less

  5. The structural behavior of ferric and ferrous iron in aluminosilicate glass near meta-aluminosilicate joins

    NASA Astrophysics Data System (ADS)

    Mysen, Bjorn O.

    2006-05-01

    Iron-57 resonant absorption Mössbauer spectroscopy was used to describe the redox relations and structural roles of Fe 3+ and Fe 2+ in meta-aluminosilicate glasses. Melts were formed at 1500 °C in equilibrium with air and quenched to glass in liquid H 2O with quenching rates exceeding 200 °C/s. The aluminosilicate compositions were NaAlSi 2O 6, Ca 0.5AlSi 2O 6, and Mg 0.5AlSi 2O 6. Iron oxide was added in the form of Fe 2O 3, NaFeO 2, CaFe 2O 4, and MgFe 2O 4 with total iron oxide content in the range ˜0.9 to ˜5.6 mol% as Fe 2O 3. The Mössbauer spectra, which were deconvoluted by assuming Gaussian distributions of the hyperfine field, are consistent with one absorption doublet of Fe 2+ and one of Fe 3+. From the area ratios of the Fe 2+ and Fe 3+ absorption doublets, with corrections for differences in recoil-fractions of Fe 3+ and Fe 2+, the Fe 3+/ΣFe is positively correlated with increasing total iron content and with decreasing ionization potential of the alkali and alkaline earth cation. There is a distribution of hyperfine parameters from the Mössbauer spectra of these glasses. The maximum in the isomer shift distribution function of Fe 3+, δFe 3+, ranges from about 0.25 to 0.49 mm/s (at 298 K relative to Fe metal) with the quadrupole splitting maximum, ΔFe 3+, ranging from ˜1.2 to ˜1.6 mm/s. Both δFe 3+ and δFe 2+ are negatively correlated with total iron oxide content and Fe 3+/ΣFe. The dominant oxygen coordination number Fe 3+ changes from 4 to 6 with decreasing Fe 3+/ΣFe. The distortion of the Fe 3+-O polyhedra of the quenched melts (glasses) decreases as the Fe 3+/ΣFe increases. These polyhedra do, however, coexist with lesser proportions of polyhedra with different oxygen coordination numbers. The δFe 2+ and ΔFe 2+ distribution maxima at 298 K range from ˜0.95 to 1.15 mm/s and 1.9 to 2.0 mm/s, respectively, and decrease with increasing Fe 3+/ΣFe. We suggest that these hyperfine parameter values for the most part are more consistent with Fe 2+ in a range of coordination states from 4- to 6-fold. The lower δFe 2+-values for the most oxidized melts are consistent with a larger proportion of Fe 2+ in 4-fold coordination compared with more reduced glasses and melts.

  6. Occurrence of phosphorus, iron, aluminum, silica, and calcium in a eutrophic lake during algae bloom sedimentation.

    PubMed

    Li, Guolian; Xie, Fazhi; Zhang, Jin; Wang, Jingrou; Yang, Ying; Sun, Ruoru

    2016-09-01

    Phosphorus (P) in a water body is mainly controlled by the interaction between surface sediment and the overlying water column after the complete control of external pollution. Significant enhancement of P in a water body would cause eutrophication of lakes. Thus, a better understanding is needed of the occurrences of P between the sediment and water column in eutrophic lakes. Here, we measured total phosphorus (TP) and major elements (Fe, Al, Ca, Mn, Si) in the water column, and total nitrogen, organic matter, TP and major oxides (Fe 2 O 3 , Al 2 O 3 , CaO, SiO 2 ) in surface sediment of Chaohu Lake, a continuously eutrophic lake. The results showed that the rank of TP levels was western lake > eastern lake > southern lake. There were significantly positive correlations between TP (including water TP and sedimentary TP) and Fe, Al, Mn, while the correlation coefficients between water TP and sedimentary TP were -0.43, -0.41 and 0.18 for the western, eastern and southern lake respectively. The negative and significant correlations of water TP and sedimentary TP may indicate that the risk of sedimentary P release was great in the western and eastern lake during algae bloom sedimentation, while the southern lake showed weak P exchange between the sediment and water column.

  7. Mineralogical and chemical characterization of iron-, manganese-, and copper-containing synthetic hydroxyapatites.

    PubMed

    Sutter, B; Ming, D W; Clearfield, A; Hossner, L R

    2003-01-01

    The National Aeronautics and Space Administration's (NASA) Advanced Life Support (ALS) Program is evaluating the use of Fe-, Mn-, and Cu-containing synthetic hydroxyapatite (SHA) as a slow release fertilizer for crops that might be grown on the International Space Station or at Lunar and Martian outposts. Separate Fe-, Mn-, and Cu-containing SHA materials along with a transition-metal free SHA (pure-SHA) were synthesized using a precipitation method. Chemical and mineralogical analyses determined if and how Fe, Mn, and Cu were incorporated into the SHA structure. X-ray diffraction (XRD), Rietveld refinement, and transmission electron microscopy (TEM) confirmed that SHA materials with the apatite structure were produced. Chemical analyses indicated that the metal containing SHA materials were deficient in Ca relative to pure-SHA. The shift in the infrared PO4-mu 3 vibrations, smaller unit cell parameters, smaller particle size, and greater structural strain for Fe-, Mn-, and Cu-containing SHA compared with pure-SHA suggested that Fe, Mn, and Cu were incorporated into SHA structure. Rietveld analyses revealed that Fe, Mn, and Cu substituted into the Ca2 site of SHA. An Fe-rich phase was detected by TEM analyses and backscattered electron microscopy in the Fe-containing SHA material with the greatest Fe content. The substitution of metals into SHA suggests that metal-SHA materials are potential slow-release sources of micronutrients for plant uptake in addition to Ca and P.

  8. Mineralogical and chemical characterization of iron-, manganese-, and copper-containing synthetic hydroxyapatites

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Ming, D. W.; Clearfield, A.; Hossner, L. R.

    2003-01-01

    The National Aeronautics and Space Administration's (NASA) Advanced Life Support (ALS) Program is evaluating the use of Fe-, Mn-, and Cu-containing synthetic hydroxyapatite (SHA) as a slow release fertilizer for crops that might be grown on the International Space Station or at Lunar and Martian outposts. Separate Fe-, Mn-, and Cu-containing SHA materials along with a transition-metal free SHA (pure-SHA) were synthesized using a precipitation method. Chemical and mineralogical analyses determined if and how Fe, Mn, and Cu were incorporated into the SHA structure. X-ray diffraction (XRD), Rietveld refinement, and transmission electron microscopy (TEM) confirmed that SHA materials with the apatite structure were produced. Chemical analyses indicated that the metal containing SHA materials were deficient in Ca relative to pure-SHA. The shift in the infrared PO4-mu 3 vibrations, smaller unit cell parameters, smaller particle size, and greater structural strain for Fe-, Mn-, and Cu-containing SHA compared with pure-SHA suggested that Fe, Mn, and Cu were incorporated into SHA structure. Rietveld analyses revealed that Fe, Mn, and Cu substituted into the Ca2 site of SHA. An Fe-rich phase was detected by TEM analyses and backscattered electron microscopy in the Fe-containing SHA material with the greatest Fe content. The substitution of metals into SHA suggests that metal-SHA materials are potential slow-release sources of micronutrients for plant uptake in addition to Ca and P.

  9. Composition and Elution Behavior of Various Elements from Printed Circuit Boards, Cathode-ray Tube Glass, and Liquid-crystal Displays in Waste Consumer Electronics.

    PubMed

    Inaba, Kazuho; Murata, Tomoyoshi; Yamamura, Shigeki; Nagano, Masaaki; Iwasaki, Kazuhiro; Nakajima, Daisuke; Takigami, Hidetaka

    2018-01-01

    The contents and elution behavior of metals in consumer electronics parts were determined so as to understand their maximum environmental risk. Elements contained most in printed-circuit boards were Cu, Si, Br, Ca, Al, Sn, Pb, Sb, Ba, Fe, Ni, Ti, and Zn; in cathode-ray tube glass were Si, Pb, Ba, Sr, Zn, Zr, Ca, and Sb; in arsenic contained liquid-crystal displays were Si, Ca, Sr, Ba, As, and Fe; and in antimony contained liquid-crystal displays were Si, Ba, Ca, Sb, Sr, Fe, and Sn. The elements eluted most from printed-circuit boards were Zn, Pb, and Cu; from cathode-ray tube glass were Pb, Zn, B, Ba, and Si; and from liquid-crystal displays were B and Si, and the toxic As and Sb. The amount eluted was greatest at acidic pH. It was revealed that officially recommended 6-h-shaking with a pure water test was insufficient to understand the real environmental risk of waste electronics.

  10. The Trace Metal Geochemistry of Suspended Oceanic Particulate Matter

    DTIC Science & Technology

    1989-08-01

    hydrothermal plumes (e.g. TAG, Mid-Atlantic Ridge, 26° N , Nelson et al., 1986; Chapter 6) rise to discrete depth zones of neutral buoyancy...samples from in and near TAG hydrothermal plume . 179 Al vs. Fe (w mat particulate) Ca (A MCOS) s. Fe (P mass Par tla ate) *oI 3c 31 a Sa 2 3 04~ a 21 a...104 42. R.M. Gordon, J.H. Martin and G.A. Knauer, Iron ’ n north- east Pacific waters, Nature 299, 611-612, 1982. 43. J.K.B. Bishop and P.E.

  11. Iron deposition as acidic groundwater encounters carbonates in the alluvium of Pinal Creek, Arizona, U.S.A.

    USGS Publications Warehouse

    Lind, Carol J.; Oscarson, R.L.

    1997-01-01

    In a column experiment, acidic groundwater from Pinal Creek Arizona, a Cu mining area, was eluted through a composited alluvial sample obtained from a core that had been removed from a well downgradient of the acidic groundwater. The minerals present in typical grains and flakes in the alluvium before and after the elution were determined by X-ray diffraction (XRD), scanning electron microscopy, and energy dispersive multichannel analyses (EDX). The concentrations of Fe, Ti, Mn, Si, Al, Na, Ca, K, Mg and S in these grains and flakes and in their microcrystalline surface coatings were measured by EDX. In addition to magnetite, hematite, and Fe-Ti oxides, Fe was most concentrated in micas (especially biotite-like flakes) and in the microcrystalline coatings. The measured elements in these microcrystalline coatings were primarily K, Fe, Al, and Si. The microcrystalline coatings on the mica flakes also contained Mg. The approximate 1:3 Mg:Si atomic ratios (ARs) of the biotite-like flakes both before and after the elution would suggest that the Fe deposited during the elution had not substituted for Mg in these flakes. As a result of the elution, assuming no loss of Si, the averaged recorded Fe:Si AR of the microcrystalline coatings increased from (0,46 to 0.58):3.00. Iron deposition on the typical grains and flakes may relate to the presence of Fe in the particle on which it is deposited or to the presence of Fe in the microcrystalline surface coatings before elution. The data here are not sufficient for a statistical evaluation, but elution caused the following trends: (1) The Fe:Si A R increased in the (K,Fe,Al,Si)-microcrystalline surface coatings; (2) For the mica flakes, there was more than a 2-fold increase in the Fe:Si AR for the microcrystalline surface coatings of the Fe-rich biotite-like flakes but no measurable increase of the Fe:Si AR for the microcrystalline surface coatings of the muscovite-like flakes that contained 3-5 times less Fe; (3) Also for the biotite-like flakes, the increase in Fe:Si AR was greater in the flakes that had a higher Fe:Si AR; (4) The Fe deposition on the Fe-rich microcrystalline surface coatings of the feldspar was much greater than on the Fe-poor, beige quartz and feldspar grains that, prior to elution, had only CaSO4 microcrystalline coatings; and (5) No Fe was deposited on Fe-poor grains with no microcrystalline surface coating.

  12. Aleutian tholeiitic and calc-alkaline magma series I: The mafic phenocrysts

    NASA Astrophysics Data System (ADS)

    Kay, S. Mahlburg; Kay, Robert W.

    1985-07-01

    Diagnostic mafic silicate assemblages in a continuous spectrum of Aleutian volcanic rocks provide evidence for contrasts in magmatic processes in the Aleutian arc crust. Tectonic segmentation of the arc exerts a primary control on the variable mixing, fractional crystallization and possible assimilation undergone by the magmas. End members of the continuum are termed calc-alkaline (CA) and tholeiitic (TH). CA volcanic rocks (e.g., Buldir and Moffett volcanoes) have low FeO/MgO ratios and contain compositionally diverse phenocryst populations, indicating magma mixing. Their Ni and Cr-rich magnesian olivine and clinopyroxene come from mantle-derived mafic olivine basalts that have mixed with more fractionated magmas at mid-to lower-crustal levels immediately preceding eruption. High-Al amphibole is associated with the mafic end member. In contrast, TH lavas (e.g., Okmok and Westdahl volcanoes) have high FeO/MgO ratios and contain little evidence for mixing. Evolved lavas represent advanced stages of low pressure crystallization from a basaltic magma. These lavas contain groundmass olivine (FO 40 50) and lack Ca-poor pyroxene. Aleutian volcanic rocks with intermediate FeO/MgO ratios are termed transitional tholeiitic (TTH) and calc-alkaline (TCA). TCA magmas are common (e.g., Moffett, Adagdak, Great Sitkin, and Kasatochi volcanoes) and have resulted from mixing of high-Al basalt with more evolved magmas. They contain amphibole (high and low-Al) or orthopyroxene or both and are similar to the Japanese hypersthene-series. TTH magmas (e.g., Okmok and Westdahl) contain orthopyroxene or pigeonite or both, and show some indication of upper crustal mixing. They are mineralogically similar to the Japanese pigeonite-series. High-Al basalt lacks Mg-rich mafic phases and is a derivative magma produced by high pressure fractionation of an olivine tholeiite. The low pressure mineral assemblage of high-Al basalt results from crystallization at higher crustal levels.

  13. The CR (Renazzo-type) carbonaceous chondrite group and its implications

    NASA Technical Reports Server (NTRS)

    Weisberg, Michael K.; Prinz, Martin; Clayton, Robert N.; Mayeda, Toshiko K.

    1993-01-01

    A petrologic, geochemical, and oxygen isotropic study of the CR chondrites including Renazzo, Al Rais, El Djouf 001 and the paired Acfer meteorites, EET87770 and the paired samples, MAC87320, Y790112, Y793495, and Y791498 is presented. It is concluded that the CR group is characterized by abundant large multilayered, Fe, Ni metal-rich, type I chondrules; abundant matrix and dark inclusions; unique assemblages of serpentine and chlorite-rich phyllosilicates and Ca-carbonates; Ca-carbonate rims on chondrules; abundant Fe, Ni metal with a positive Ni vs. Co trend and a solar Ni:Co ratio; and amoeboid olivine aggregates with Mn-rich and Mn-poor forsterite.

  14. EVIDENCE FOR GAS FROM A DISINTEGRATING EXTRASOLAR ASTEROID

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, S.; Jura, M.; Zuckerman, B.

    We report high-resolution spectroscopic observations of WD 1145+017—a white dwarf that was recently found to be transitted by multiple asteroid-sized objects within its tidal radius. We discovered numerous circumstellar absorption lines with linewidths of ∼300 km s{sup −1} from Mg, Ca, Ti, Cr, Mn, Fe, and Ni, possibly from several gas streams produced by collisions among the actively disintegrating objects. The atmosphere of WD 1145+017 is polluted with 11 heavy elements, including O, Mg, Al, Si, Ca, Ti, V:, Cr, Mn, Fe, and Ni. Evidently, we are witnessing the active disintegration and subsequent accretion of an extrasolar asteroid.

  15. Mineral composition of lunar late mare volcanism revealed from Kaguya SP data

    NASA Astrophysics Data System (ADS)

    Kato, S.; Morota, T.; Yamaguchi, Y.; Watanabe, S.; Otake, H.; Ohtake, M.; Nimura, T.

    2017-12-01

    Lunar mare basalts provide insights into the composition and thermal history of the lunar mantle. According to previous studies of crater counting analysis using remote sensing data, the ages of mare basalts suggest a first peak of magma activity at 3.2-3.8 Ga and a second peak at 2 Ga. To understand the mechanism for causing the second peak and its magma source is essential to constrain the thermal history of the lunar mantle. In our previous study [Kato et al., 2017], we reassess the correlation between the titanium contents and the eruption ages of mare basalt units using the compositional and chronological data updated by SELENE (Kaguya). The results show a rapid increase in mean titanium content near 2.3 Ga in the Procellarum KREEP Terrane (PKT), where the latest eruptions are concentrated. Moreover, the high-titanium basaltic eruptions are correlated with the second peak in volcanic activity at 2 Ga. Here we designate volcanisms before and after 2.3 Ga as Phase-1 and Phase-2 volcanism. To understand the mechanism of Phase-2 mare volcanism and its magma source, determining the mineral components and elemental compositions of mare basalts in the PKT is important. Nimura [2011] improved the modified Gaussian model (MGM) [Sunshine et al., 1990] by obtaining the relations between chemical compositions of minerals (the ratio of Fe/(Fe+Mg) in olivine and the ratios of Ca/(Ca+Fe+Mg) and Fe/(Ca+Fe+Mg) in pyroxene) and absorption band parameters (center, width and strength ratio of Gaussian curves). In this study, we re-derived the relations using experimental spectral data and applied the method to spectral data of mare basalts obtained by Kaguya Spectral Profiler (SP) to estimate the mineral components and elemental compositions of lunar mare basalts.

  16. Temperature and composition dependencies of trace element partitioning - Olivine/melt and low-Ca pyroxene/melt

    NASA Technical Reports Server (NTRS)

    Colson, R. O.; Mckay, G. A.; Taylor, L. A.

    1988-01-01

    This paper presents a systematic thermodynamic analysis of the effects of temperature and composition on olivine/melt and low-Ca pyroxene/melt partitioning. Experiments were conducted in several synthetic basalts with a wide range of Fe/Mg, determining partition coefficients for Eu, Ca, Mn, Fe, Ni, Sm, Cd, Y, Yb, Sc, Al, Zr, and Ti and modeling accurately the changes in free energy for trace element exchange between crystal and melt as functions of the trace element size and charge. On the basis of this model, partition coefficients for olivine/melt and low-Ca pyroxene/melt can be predicted for a wide range of elements over a variety of basaltic bulk compositions and temperatures. Moreover, variations in partition coeffeicients during crystallization or melting can be modeled on the basis of changes in temperature and major element chemistry.

  17. Heterogeneous Distribution of Chromium on Mercury

    NASA Astrophysics Data System (ADS)

    Nittler, L. R.; Boujibar, A.; Crapster-Pregont, E.; Frank, E. A.; McCoy, T. J.; McCubbin, F. M.; Starr, R. D.; Vander Kaaden, K. E.; Vorburger, A.; Weider, S. Z.

    2018-05-01

    Mercury's surface has an average Cr/Si ratio of 0.003 (Cr 800 ppm), with at least a factor of 2 systematic uncertainty. Cr is heterogeneously distributed and correlated with Mg, Ca, S, and Fe and anti-correlated with Al.

  18. Characteristics and environmental aspects of slag: a review

    USGS Publications Warehouse

    Piatak, Nadine M.; Parsons, Michael B.; Seal, Robert R.

    2015-01-01

    The composition of ferrous slag is dominated by Ca and Si. Steel slag may contain significant Fe, whereas Mg and Al may be significant in Fe slag. Calcium-rich olivine-group silicates, melilite-group silicates that contain Al or Mg, Ca-rich glass, and oxides are the most commonly reported major phases in ferrous slag. Calcite and trace amounts of a variety of sulfides, intermetallic compounds, and pure metals are typically also present. The composition of non-ferrous slag, most commonly from base-metal production, is dominated by Fe and Si with significant but lesser amounts of Al and Ca. Silicates in the olivine, pyroxene, and melilite groups, as well as glass, spinels, and SiO2 (i.e., quartz and other polymorphs) are commonly found in non-ferrous slag. Sulfides and intermetallic compounds are less abundant than the silicates and oxides. The concentrations of some elements exceed generic USEPA soil screening levels for human contact based on multiple exposure pathways; these elements include Al, Cr, Cu, Fe, Mn, Pb, and Zn based on bulk chemical composition. Each slag type usually contains a specific suite of elements that may be of environmental concern. In general, non-ferrous slag may have a higher potential to negatively impact the environment compared to ferrous slag, and is thus a less attractive material for reuse, based on trace element chemistry, principally for base metals. However, the amount of elements released into the environment is not always consistent with bulk chemical composition. Many types of leaching tests have been used to help predict slag’s long-term environmental behavior. Overall, ferrous slags produce an alkaline leachate due to the dissolution of Ca oxides and silicates derived from compounds originally added as fluxing agents, such as lime. Ferrous slag leachate is commonly less metal-rich than leachate from non-ferrous slag generated during base metal extraction; the latter leachate may even be acidic due to the oxidation of sulfides. Because of its characteristics, ferrous slag is commonly used for construction and environmental applications, whereas both non-ferrous and ferrous slag may be reprocessed for secondary metal recovery. Both types of slag have been a source of some environmental contamination. Research into the environmental aspects of slag will continue to be an important topic whether the goal is its reuse, recycling, or remediation.

  19. Constraints on Metal Oxide and Metal Hydroxide Abundances in the Winds of AGB Stars: Potential Detection of FeO in R Dor

    NASA Astrophysics Data System (ADS)

    Decin, L.; Danilovich, T.; Gobrecht, D.; Plane, J. M. C.; Richards, A. M. S.; Gottlieb, C. A.; Lee, K. L. K.

    2018-03-01

    Using the Atacama Large Millimeter/submillimeter Array (ALMA), we observed the stellar wind of two oxygen-rich asymptotic giant branch stars, IK Tau and R Dor, between 335 and 362 GHz. One aim was to detect metal oxides and metal hydroxides (AlO, AlOH, FeO, MgO, and MgOH), some of which are thought to be direct precursors of dust nucleation and growth. We report on the potential first detection of FeO (v = 0, Ω = 4, J = 11–10) in R Dor (mass-loss rate \\dot{M} ∼ 1 × 10‑7 M ⊙ yr‑1). The presence of FeO in IK Tau (\\dot{M} ∼ 5 × 10‑6 M ⊙ yr‑1) cannot be confirmed, due to a blend with 29SiS, a molecule that is absent in R Dor. The detection of AlO in R Dor and of AlOH in IK Tau was reported earlier by Decin et al. All other metal oxides and hydroxides, as well as MgS, remain undetected. We derive a column density N(FeO) of 1.1 ± 0.9 × 1015 cm‑2 in R Dor, or a fractional abundance [FeO/H] ∼ 1.5 × 10‑8 accounting for non-local thermodynamic equilibrium effects. The derived fractional abundance [FeO/H] is a factor ∼20 larger than conventional gas-phase chemical-kinetic predictions. This discrepancy may be partly accounted for by the role of vibrationally excited OH in oxidizing Fe, or it may be evidence for other currently unrecognized chemical pathways producing FeO. Assuming a constant fractional abundance w.r.t. H2, the upper limits for the other metals are [MgO/H2] < 5.5 × 10‑10 (R Dor) and <7 × 10‑11 (IK Tau), [MgOH/H2] < 9 × 10‑9 (R Dor) and <1 × 10‑9 (IK Tau), [CaO/H2] < 2.5 × 10‑9 (R Dor) and <1 × 10‑10 (IK Tau), [CaOH/H2] < 6.5 × 10‑9 (R Dor) and <9 × 10‑10 (IK Tau), and [MgS/H2] < 4.5 × 10‑10 (R Dor) and <6 × 10‑11 (IK Tau). The retrieved upper-limit abundances for these latter molecules are in accord with the chemical model predictions.

  20. High strength kiloampere Bi 2Sr 2CaCu 2O x cables for high-field magnet applications

    DOE PAGES

    Shen, Tengming; Li, Pei; Jiang, Jianyi; ...

    2015-04-17

    Multifilamentary Ag-sheathed Bi 2Sr 2CaCu 2O x (Bi-2212) wire can carry sufficient critical current density J c for the development of powerful superconducting magnets. But, the range of its applications is limited by the low mechanical strength of the Ag/Bi-2212 strand. A potential solution is to cable Ag/Bi-2212 wire with high-strength materials that are compatible with the Bi-2212 heat treatment in an oxygen atmosphere. Past attempts have not always been successful, because the high-strength materials reacted with Bi-2212 wires, significantly reducing their J c. We examined the nature of reactions occurring when Ag/Bi-2212 wires are heat-treated in direct contact withmore » several commonly used high-strength alloys and a new Fe-Cr-Al alloy. INCONEL X750 and INCONEL 600 resulted in significant J c loss, whereas Ni80-Cr caused little or no J c loss; however, all of them formed chromium oxide that subsequently reacted with silver, creating cracks in the silver sheath. We found that Fe-Cr-Al did not show significant reactions with Ag/Bi-2212 strands. Scanning electron microscopy (SEM) and energy dispersive x-ray (EDS) examinations revealed that the Fe-Cr-Al alloy benefits from the formation of a uniform, crack-free, continuous alumina layer on its surface that does not react with Ag and that helps minimize the Cu loss found with INCONEL X750 and INCONEL 600. We then fabricated prototype 6-around-1 cables with six Bi-2212 strands twisted and transposed around an Fe-Cr-Al alloy core coated with TiO 2. After standard 1 bar melt processing, the cable retained 100% of the total current-carrying capability of its strands, and, after a 10 bar overpressure processing, the cable reached a total current of 1025 A at 4.2 K and 10 T. Tensile tests showed that Fe-Cr-Al becomes brittle after being cooled to 4.2 K, whereas INCONEL X750 remains ductile and retains a modulus of 183 GPa. Finally. we proposed new cable designs that take advantage of the chemical compatibility of Fe-Cr-Al and high strength of INCONEL X750 for various high-field magnet applications.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antao, Sytle M.; Cruickshank, Laura A.

    The crystal structure of an optically anisotropic kimzeyite garnet from Magnet Cove, Arkansas, USA, where it was first discovered, was refined with the Rietveld method, cubic space group, Ia\\overline 3 d, and monochromatic [λ = 0.41422 (2) Å] synchrotron high-resolution powder X-ray diffraction (HRPXRD) data. The Rietveld refinement reduced χ 2and overallR(F 2) values are 1.840 and 0.0647, respectively. The sample, with the general garnet formula [8]X 3 [6]Y 2 [4]Z 3 [4]O 12, contains an intergrowth of two cubic phases that occur initially as oscillatory growth zoning, and patchy intergrowths arise later from fluid-enhanced dissolution and re-precipitation. The twomore » compositions obtained with electron-probe microanalyses (EPMA) are Ca 3.00(Zr 1.31Ti 4+ 0.46Fe 3+ 0.22Mn 3+ 0.01) Σ2[Al 0.76Fe 3+ 1.01Si 1.23] Σ3O 12for phase 1aand Ca 2.99(Zr 1.48Ti 4+ 0.37Fe 3+ 0.15) Σ2[Al 0.87Fe 3+ 0.98Si 1.15] Σ3O 12for phase 1b. The weight percentage, unit-cell parameter (Å), distances (Å), and site occupancy factors (s.o.f.s) for phase 1aare as follows: 42.6 (2)%,a= 12.46553 (3) Å, average = 2.482,Y—O = 2.059 (2),Z—O = 1.761 (2) Å, Ca (Xs.o.f.) = 0.960 (4), Zr (Ys.o.f.) = 0.809 (3), and Fe (Zs.o.f.) = 0.623 (2). The corresponding values for phase 1bare 57.4 (2)%,a= 12.47691 (2) Å, average = 2.482,Y—O = 2.062 (1),Z—O = 1.762 (1) Å, Ca (Xs.o.f.) = 0.957 (3), Zr (Ys.o.f.) = 0.828 (2) and Fe (Zs.o.f.) = 0.617 (2). The main structural differences between the two phases are in the unit-cell parameter, Δa= 0.01138 Å,Y(s.o.f.), andY—O distance. Structural mismatch between the two cubic phases in a crystal gives rise to strain-induced optical anisotropy.« less

  2. Discovery of composite diopside-magnetite lamellae in discrete olivine crytals from Colorado Plateau diatremes: indication of former hydrous ringwoodite

    NASA Astrophysics Data System (ADS)

    Sakamaki, K.; Sato, Y.; Marshall, E. W., IV; Ogasawara, Y.

    2016-12-01

    We investigate composite diopside (Di) + magnetite (Mt) lamellae in olivine crystals from Oligocene diatremes of serpentinized ultramafic microbreccia located at Buell Park (AZ) and Green Knobs (NM) in the Colorado Plateau, and propose their genesis as breakdown products of precursor hydrous ringwoodite (γ-olivine) lamellae coexisting with α-olivine host. Among a hundred olivines (2-5 mm across, Fo89-93 in mol%) from both localities, the Di + Mt composite lamellae are recognized in only 15 of relatively Fe-rich grains (Fo89-91.5). The olivine host contains minor amounts of Ca (< 0.01 wt% CaO), Mn, Ni, and Co. Lamellar Di (Di95) contains minor amounts of Al, Na, Cr, Mn, and Ni. Lamellar Mt contains Cr (5.0-43.0 wt% Cr2O3) with minor amounts of Si, Ti, Al, Mn, Ni, and Co. The area fractions of olivine host and the lamellae in a typical grain (sample no. BP02-3) were measured at 98.8 % of the host and 1.2 % of the lamellae that are composed of Di:Mt = 85:15 to 53:47, average 66:34. The estimated average CaO content in a lamella reaches 17 wt% and the reintegrated CaO in the host and the lamellae is 0.22 wt%.We propose that Fe3+ in lamellar Mt was produced by dehydration of hydrous precursor phase via the reaction, Fe2+ + OH- = Fe3+ + O2- + 1/2H2. Converting Fe3+ into Fe2+ in the precursor phase based on this reaction, the composition satisfies the stoichiometry of olivine (X2TO4). Thus, the pre-existing phase certainly is of hydrous and contains Ca and other components with olivine stoichiometry. The most likely phase is lamellar hydrous ringwoodite. The precursor phase, hydrous ringwoodite, might have occurred as lamellae with α-olivine host and have probably decomposed by the following reaction, (1+X+Y+Z) hydrous ringwoodite → α-olivine + X Di + Y Mt + Z H2 (where X:Y:Z=2:1:1). The composite Di-Mt lamellae after hydrous ringwoodite lamellae in α-olivine host certainly suggest the materials originated from a deep mantle setting at least 300 km.

  3. Calcium deficiency and CaCO/sub 3/ on micronutrient status of plants grown in solution culture. [Lycopersicon esculentum, Phaseolus vulgaris

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, A.; Cha, J.W.; Alexander, G.V.

    Plants were grown in solution culture with different levels of Ca to further evaluate Ca relationships to trace metal uptake and to toxicity of trace metals. When tomato plants (Lycopersicon esculentum L., Tropic) were grown at a low level of Ca, the Zn, Cu, Fe, Mn, Al, and Ti concentrations of leaves, stems, and roots were considerably increased. The use of an excess of CaCO/sub 3/ which increased pH did not influence the trace metal concentrations of plants any more than did Ca/sup + +/. In a factorial experiment with bush beans (Phaseolus vulgaris L. C.V. Improved Tendergreen) with Camore » (10/sup -4/, 10/sup -2/, 10/sup -2/N) and Ni (0, 2 x 10/sup -6/ M, 2 x 10/sup -5/ M), Ni phytotoxicity and Ni uptake were decreased somewhat at the highest Ca level. High Ni tended to decrease the Ca concentration in leaves. High Ca and Ni both tended to decrease Fe, Cu, Zn, and Mn concentrations in leaves. The Ni had some interactions on the P concentrations of shoots.« less

  4. Origin, speciation, and fluxes of trace-element gases at Augustine volcano, Alaska: Insights into magma degassing and fumarolic processes

    NASA Astrophysics Data System (ADS)

    Symonds, Robert B.; Reed, Mark H.; Rose, William I.

    1992-02-01

    Thermochemical modeling predicts that trace elements in the Augustine gas are transported from near-surface magma as simple chloride (NaCl, KCl, FeCl 2, ZnCl 2, PbCl 2, CuCl, SbCl 3, LiCl, MnCl 2, NiCl 2, BiCl, SrCl 2), oxychloride (MoO 2Cl 2), sulfide (AsS), and elemental (Cd) gas species. However, Si, Ca, Al, Mg, Ti, V, and Cr are actually more concentrated in solids, beta-quartz (SiO 2), wollastonite (CaSiO 3), anorthite (CaAl 2Si 2O 8), diopside (CaMgSi 2O 6), sphene (CaTiSiO 5), V 2O 3(c), and Cr 2O 3(c), respectively, than in their most abundant gaseous species, SiF 4, CaCl 2, AlF 2O, MgCl 2 TiCl 4, VOCl 3, and CrO 2Cl 2. These computed solids are not degassing products, but reflect contaminants in our gas condensates or possible problems with our modeling due to "missing" gas species in the thermochemical data base. Using the calculated distribution of gas species and the COSPEC SO 2 fluxes, we have estimated the emission rates for many species (e.g., COS, NaCl, KCl, HBr, AsS, CuCl). Such forecasts could be useful to evaluate the effects of these trace species on atmospheric chemistry. Because of the high volatility of metal chlorides (e.g., FeCl 2, NaCl, KCl, MnCl 2, CuCl), the extremely HCl-rich Augustine volcanic gases are favorable for transporting metals from magma. Thermochemical modeling shows that equilibrium degassing of magma near 870°C can account for the concentrations of Fe, Na, K, Mn, Cu, Ni and part of the Mg in the gases escaping from the dome fumaroles on the 1986 lava dome. These calculations also explain why gases escaping from the lower temperature but highly oxidized moat vents on the 1976 lava dome should transport less Fe, Na, K, Mn and Ni, but more Cu; oxidation may also account for the larger concentrations of Zn and Mo in the moat gases. Nonvolatile elements (e.g., Al, Ca, Ti, Si) in the gas condensates came from eroded rock particles that dissolved in our samples or, for Si, from contamination from the silica sampling tube. Only a very small amount of rock contamination occurred (water/rock ratios between 10 4 and 10 6). Erosion is more prevalent in the pyroclastic flow fumaroles than in the summit vents, reflecting physical differences in the fumarole walls: ash vs. lava. Trace element contents of volcanic gases show enormous variability because of differences in the intensive parameters of degassing magma and variable amounts of wall rock erosion in volcanic fumaroles.

  5. Oxic limestone drains for treatment of dilute, acidic mine drainage

    USGS Publications Warehouse

    Cravotta, Charles A.

    1998-01-01

    Limestone treatment systems can be effective for remediation of acidic mine drainage (AMD) that contains moderate concentrations of dissolved O2 , Fe3+ , or A13+ (1‐5 mg‐L‐1 ). Samples of water and limestone were collected periodically for 1 year at inflow, outflow, and intermediate points within underground, oxic limestone drains (OLDs) in Pennsylvania to evaluate the transport of dissolved metals and the effect of pH and Fe‐ and Al‐hydrolysis products on the rate of limestone dissolution. The influent was acidic and relatively dilute (pH <4; acidity < 90 mg‐L‐1 ) but contained 1‐4 mg‐L‐1 Of O2 , Fe3+ , A13+ , and Mn2+ . The total retention time in the OLDs ranged from 1.0 to 3.1 hours. Effluent remained oxic (02 >1 mg‐L‐1 ) but was near neutral (pH = 6.2‐7.0); Fe and Al decreased to less than 5% of influent concentrations. As pH increased near the inflow, hydrous Fe and Al oxides precipitated in the OLDs. The hydrous oxides, nominally Fe(OH)3 and AI(OH)3, were visible as loosely bound, orange‐yellow coatings on limestone near the inflow. As time elapsed, Fe(OH)3 and AI(OH)3 particles were transported downflow. During the first 6 months of the experiment, Mn 2+ was transported conservatively through the OLDs; however, during the second 6 months, concentrations of Mn in effluent decreased by about 50% relative to influent. The accumulation of hydrous oxides and elevated pH (>5) in the downflow part of the OLDs promoted sorption and coprecipitation of Mn as indicated by its enrichment relative to Fe in hydrous‐oxide particles and coatings on limestone. Despite thick (~1 mm) hydrous‐oxide coatings on limestone near the inflow, CaCO3 dissolution was more rapid near the inflow than at downflow points within the OLD where the limestone was not coated. The rate of limestone dissolution decreased with increased residence time, pH, and concentrations of Ca2+ and HCO3‐ and decreased PCO2. The following overall reaction shows alkalinity as an ultimate product of the iron hydrolysis reaction in an OLD:Fe2+ + 0.25 O2 +CaCO3 + 2.5 H2O --> Fe(OH)3 + 2 Ca2+ + 2 HCO3-where 2 moles of CaCO3 dissolve for each mole of Fe(OH)3 produced. Hence, in an OLD, rapidly dissolving limestone surfaces are not stable substrates for Fe(OH)3 attachment and armoring. Because overall efficiency is increased by combining neutralization and hydrolysis reactions, an OLD followed by a settling pond requires less land area than needed for a two‐stage treatment system consisting of an anoxic limestone drain an oxidation‐settling pond or wetland. To facilitate removal of hydrous‐oxide sludge, a perforated‐pipe subdrain can be installed within an OLD.

  6. 10 CFR Appendix E to Part 835 - Values for Establishing Sealed Radioactive Source Accountability and Radioactive Material Posting...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...+05 C-14 4.6E+06 Na-22 1.9E+01 Al-26 1.5E+01 Si-32 4.9E+04 S-35 2.4E+06 Cl-36 5.2E+05 K-40 2.7E+02 Ca-41 9.3E+06 Ca-45 1.1E+06 Sc-46 6.2E+01 Ti-44 1.5E+02 V-49 1.0E+08 Mn-53 7.5E+07 Mn-54 6.5E+01 Fe-55 2.9E+06 Fe-59 1.9E+02 Fe-60 8.1E+03 Co-56 3.9E+01 Co-57 2.3E+02 Co-58 1.3E+02 Co-60 1.7E+01 Ni-59 3.2E...

  7. 10 CFR Appendix E to Part 835 - Values for Establishing Sealed Radioactive Source Accountability and Radioactive Material Posting...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...+05 C-14 4.6E+06 Na-22 1.9E+01 Al-26 1.5E+01 Si-32 4.9E+04 S-35 2.4E+06 Cl-36 5.2E+05 K-40 2.7E+02 Ca-41 9.3E+06 Ca-45 1.1E+06 Sc-46 6.2E+01 Ti-44 1.5E+02 V-49 1.0E+08 Mn-53 7.5E+07 Mn-54 6.5E+01 Fe-55 2.9E+06 Fe-59 1.9E+02 Fe-60 8.1E+03 Co-56 3.9E+01 Co-57 2.3E+02 Co-58 1.3E+02 Co-60 1.7E+01 Ni-59 3.2E...

  8. 10 CFR Appendix E to Part 835 - Values for Establishing Sealed Radioactive Source Accountability and Radioactive Material Posting...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...+05 C-14 4.6E+06 Na-22 1.9E+01 Al-26 1.5E+01 Si-32 4.9E+04 S-35 2.4E+06 Cl-36 5.2E+05 K-40 2.7E+02 Ca-41 9.3E+06 Ca-45 1.1E+06 Sc-46 6.2E+01 Ti-44 1.5E+02 V-49 1.0E+08 Mn-53 7.5E+07 Mn-54 6.5E+01 Fe-55 2.9E+06 Fe-59 1.9E+02 Fe-60 8.1E+03 Co-56 3.9E+01 Co-57 2.3E+02 Co-58 1.3E+02 Co-60 1.7E+01 Ni-59 3.2E...

  9. Physical conditions in CaFe interstellar clouds

    NASA Astrophysics Data System (ADS)

    Gnaciński, P.; Krogulec, M.

    2008-01-01

    Interstellar clouds that exhibit strong Ca I and Fe I lines are called CaFe clouds. Ionisation equilibrium equations were used to model the column densities of Ca II, Ca I, K I, Na I, Fe I and Ti II in CaFe clouds. We find that the chemical composition of CaFe clouds is solar and that there is no depletion into dust grains. CaFe clouds have high electron densities, n_e≈1 cm-3, that lead to high column densities of neutral Ca and Fe.

  10. Effects of Fe-Enrichment on the Equation of State and Stability of (Mg,Fe)SiO3 Perovskite and Post-Perovskite

    NASA Astrophysics Data System (ADS)

    Dorfman, S. M.; Holl, C. M.; Meng, Y.; Prakapenka, V.; Duffy, T. S.

    2010-12-01

    Fe-enrichment in the deep lower mantle has been proposed as an explanation for seismic anomalies such as large low shear velocity provinces (LLSVPs) and ultralow velocity zones (ULVZs). In order to resolve the effect of Fe on the stability and equation of state of the lower mantle’s dominant constituent, (Mg,Fe)SiO3 perovskite, we have studied Fe-rich natural orthopyroxenes, (Mg0.61Fe0.37Ca0.02)SiO3 and (Mg0.25Fe0.70Ca0.05)SiO3 (compositions determined by microprobe analysis), at lower mantle P-T conditions. Pyroxene starting materials were mixed with Au (pressure calibrant and laser absorber) and loaded with NaCl or Ne (pressure medium and thermal insulator) in a symmetric diamond anvil cell. X-ray diffraction experiments at pressures up to 122 GPa with in-situ laser heating were performed at the GSECARS (13-ID-D) and HPCAT (16-ID-B) sectors of the Advanced Photon Source. Heating samples to 2000 K produced single-phase orthorhombic GdFeO3-type perovskite at 63 GPa for the Mg# 61 composition and at 72 GPa for the Mg# 25 composition. At lower pressures (56 GPa for Mg# 61, 67 GPa for Mg# 25), heating both compositions resulted in a mixture of perovskite, SiO2 and (Mg,Fe)O. These measurements provide new constraints on the dependence of (Mg,Fe)SiO3 perovskite stability on pressure and composition. Upon further compression to 93 GPa and higher pressures with laser heating, Mg# 25 perovskite transformed to a two-phase mixture of perovskite and post-perovskite. This is consistent with previous findings that Fe substitution destabilizes (Mg,Fe)SiO3 perovskite relative to (Mg,Fe)SiO3 post-perovskite (Mao et al. 2004, Caracas and Cohen 2005). The bulk modulus at 80 GPa (K80) is ~550 GPa for both Fe-rich perovskites, comparable to values measured for MgSiO3 perovskite (Lundin et al. 2008). However, the volume of Fe-rich perovskites increases linearly with Fe-content. The (Mg0.25Fe0.70Ca0.05)SiO3 perovskite is 3% greater at 80 GPa than V80 for the Mg end-member, corresponding to a 20% density difference. This volume difference arises from variations in the a (2% larger than Fe-free perovskite) and c (1% larger) lattice parameters. Volumes under compression show no evidence of a discontinuity in the range measured; any magnetic spin transition in the Fe is either gradual or has too weak an effect on volume to be observed.

  11. Determination of element/Ca ratios in foraminifera and corals using cold- and hot-plasma techniques in inductively coupled plasma sector field mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lo, Li; Shen, Chuan-Chou; Lu, Chia-Jung; Chen, Yi-Chi; Chang, Ching-Chih; Wei, Kuo-Yen; Qu, Dingchuang; Gagan, Michael K.

    2014-02-01

    We have developed a rapid and precise procedure for measuring multiple elements in foraminifera and corals by inductively coupled plasma sector field mass spectrometry (ICP-SF-MS) with both cold- [800 W radio frequency (RF) power] and hot- (1200 W RF power) plasma techniques. Our quality control program includes careful subsampling protocols, contamination-free workbench spaces, and refined plastic-ware cleaning process. Element/Ca ratios are calculated directly from ion beam intensities of 24Mg, 27Al, 43Ca, 55Mn, 57Fe, 86Sr, and 138Ba, using a standard bracketing method. A routine measurement time is 3-5 min per dissolved sample. The matrix effects of nitric acid, and Ca and Sr levels, are carefully quantified and overcome. There is no significant difference between data determined by cold- and hot-plasma methods, but the techniques have different advantages. The cold-plasma technique offers a more stable plasma condition and better reproducibility for ppm-level elements. Long-term 2-sigma relative standard deviations (2-RSD) for repeat measurements of an in-house coral standard are 0.32% for Mg/Ca and 0.43% for Sr/Ca by cold-plasma ICP-SF-MS, and 0.69% for Mg/Ca and 0.51% for Sr/Ca by hot-plasma ICP-SF-MS. The higher sensitivity and enhanced measurement precision of the hot-plasma procedure yields 2-RSD precision for μmol/mol trace elements of 0.60% (Mg/Ca), 9.9% (Al/Ca), 0.68% (Mn/Ca), 2.7% (Fe/Ca), 0.50% (Sr/Ca), and 0.84% (Ba/Ca) for an in-house foraminiferal standard. Our refined ICP-SF-MS technique, which has the advantages of small sample size (2-4 μg carbonate consumed) and fast sample throughput (5-8 samples/hour), should open the way to the production of high precision and high resolution geochemical records for natural carbonate materials.

  12. Normal and Outlying Populations of the Milky Way Stellar Halo at [Fe/H] <-2

    NASA Astrophysics Data System (ADS)

    Cohen, Judith G.; Christlieb, Norbert; Thompson, Ian; McWilliam, Andrew; Shectman, Stephen; Reimers, Dieter; Wisotzki, Lutz; Kirby, Evan

    2013-11-01

    From detailed abundance analysis of >100 Hamburg/ESO candidate extremely metal-poor (EMP) stars we find 45 with [Fe/H] < -3.0 dex. We identify a heretofore unidentified group: Ca-deficient stars with sub-solar [Ca/Fe] ratios and the lowest neutron-capture abundances; the Ca-deficient group comprises ~10% of the sample, excluding Carbon stars. Our radial velocity distribution shows that the carbon-enhanced stars with no s-process enhancements, CEMP-no, and which do not show C2 bands are not preferentially binary systems. Ignoring Carbon stars, approximately 15% of our sample are strong (>=5σ) outliers in one or more elements between Mg and Ni; this rises to ~19% if very strong (>=10σ) outliers for Sr and Ba are included. Examples include: HE0305-0554 with the lowest [Ba/H] known; HE1012-1540 and HE2323-0256, two (non-velocity variable) C-rich stars with very strong [Mg,Al/Fe] enhancements; and HE1226-1149, an extremely r-process rich star. Based in part on observations obtained in part at the W. M. Keck Observatory, which is operated jointly by the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration.

  13. Identification of soil P fractions that are associated with P loss from surface runoff under various cropping systems and fertilizer rates on sloped farmland

    PubMed Central

    Li, Xinghua; Wang, Baona; Yang, Tewu; Zhu, Duanwei; Nie, Zhongnan; Xu, Junchi

    2017-01-01

    Soil phosphorus (P) fractions and runoff P concentration were measured to understand the fate of soil P entering surface runoff water during summer cropping season of different double cropping systems under two fertilizer regimes. The dominant form of runoff P was particulate P (PP). Runoff total P (TP) was higher at the vegetative growth stage and lower at the crop reproductive stage. TP and PP were derived mainly from soil Olsen-P, Al-P and Fe-P and amounts increased with sediment content in runoff water. Runoff P discharge was closely related to the changes in soil P forms. Soil Olsen-P, mainly consisting of some Ca2-P and Al-P, was increased by elevating fertilizer rate. Along with crop growth, there were active interconversions among Olsen-P, Org-P, Fe-P and O-Al-P in the soil, and some available P converted into Ca10-P, with O-Fe-P possibly being a transitional form for this conversion. The oilseed rape/corn system had less runoff TP at the early stage, and wheat/sweet potato system had a lower runoff P at the late stage. Intercropping corn with sweet potato in the field with oilseed rape as a previous crop may be helpful for alleviating runoff P load during the summer in this region. PMID:28650990

  14. Identification of soil P fractions that are associated with P loss from surface runoff under various cropping systems and fertilizer rates on sloped farmland.

    PubMed

    Li, Xinghua; Wang, Baona; Yang, Tewu; Zhu, Duanwei; Nie, Zhongnan; Xu, Junchi

    2017-01-01

    Soil phosphorus (P) fractions and runoff P concentration were measured to understand the fate of soil P entering surface runoff water during summer cropping season of different double cropping systems under two fertilizer regimes. The dominant form of runoff P was particulate P (PP). Runoff total P (TP) was higher at the vegetative growth stage and lower at the crop reproductive stage. TP and PP were derived mainly from soil Olsen-P, Al-P and Fe-P and amounts increased with sediment content in runoff water. Runoff P discharge was closely related to the changes in soil P forms. Soil Olsen-P, mainly consisting of some Ca2-P and Al-P, was increased by elevating fertilizer rate. Along with crop growth, there were active interconversions among Olsen-P, Org-P, Fe-P and O-Al-P in the soil, and some available P converted into Ca10-P, with O-Fe-P possibly being a transitional form for this conversion. The oilseed rape/corn system had less runoff TP at the early stage, and wheat/sweet potato system had a lower runoff P at the late stage. Intercropping corn with sweet potato in the field with oilseed rape as a previous crop may be helpful for alleviating runoff P load during the summer in this region.

  15. Assessment of Young Dong tributary and Imgok Creek impacted by Young Dong coal mine, South Korea.

    PubMed

    Lee, Byung-Tae; Ranville, James F; Wildeman, Thomas R; Jang, Min; Shim, Yon Sik; Ji, Won Hyun; Park, Hyun Sung; Lee, Hyun Ju

    2012-01-01

    An initial reclamation of the Young Dong coal mine site, located in northeastern South Korea, was completed in 1995. Despite the filling of the adit with limestone, acid rock drainage (ARD) enters Young Dong tributary and is then discharged to Imgok Creek. This ARD carries an average of 500 mg CaCO(3)/l of mineral acidity, primarily as Fe(II) and Al. Before spring runoff, the flow of Imgok Creek is 3.3-4 times greater than that of the tributary and has an alkalinity of 100 mg CaCO(3)/l, which is sufficient to eliminate the mineral acidity and raise the pH to about 6.5. From April through September 2008, there were at least two periods of high surface flow that affects the flow of ARD from the adit. Flow of ARD reaches 2.8 m(3)/min during spring runoff. This raised the concentrations of Fe and Al in the confluence with Imgok Creek. However, by 2 km downstream the pH of the Imgok Creek is 6.5 and only dissolved Fe is above the Korean drinking water criteria (0.30 mg/l). This suggests only a minor impact of Young Dong Creek water on Imgok Creek. Acid digestion of the sediments in Imgok Creek and Young Dong Tributary reveals considerable abundances of heavy metals, which could have a long-term impact on water quality. However, several water-based leaching tests, which better simulate the bioavailable metals pool, released only Al, Fe, Mn, and Zn at concentrations exceeding the criteria for drinking water or aquatic life.

  16. Phase Equilibria of ``Cu2O''-``FeO''-CaO-MgO-Al2O3 Slags at PO2 of 10-8.5 atm in Equilibrium with Metallic Copper for a Copper Slag Cleaning Production

    NASA Astrophysics Data System (ADS)

    Henao, Hector M.; Pizarro, Claudio; Font, Jonkion; Moyano, Alex; Hayes, Peter C.; Jak, Evgueni

    2010-12-01

    Limited data are available on phase equilibria of the multicomponent slag system at the oxygen partial pressures used in the copper smelting, converting, and slag-cleaning processes. Recently, experimental procedures have been developed and have been applied successfully to characterize several complex industrial slags. The experimental procedures involve high-temperature equilibration on a substrate and quenching followed by electron probe X-ray microanalysis. This technique has been used to construct the liquidus for the “Cu2O”-“FeO”-SiO2-based slags with 2 wt pct of CaO, 0.5 wt pct of MgO, and 4.0 wt pct of Al2O3 at controlled oxygen partial pressures in equilibrium with metallic copper. The selected ranges of compositions and temperatures are directly relevant to the copper slag-cleaning processes. The new experimental equilibrium results are presented in the form of ternary sections and as a liquidus temperature vs Fe/SiO2 weight ratio diagram. The experimental results are compared with the FactSage thermodynamic model calculations.

  17. Cathodoluminescence microscopy and spectroscopy of forsterite from Kaba meteorite: An application to the study of hydrothermal alteration of parent body

    NASA Astrophysics Data System (ADS)

    Gucsik, Arnold; Endo, Taro; Nishido, Hirotsugu; Ninagawa, Kiyotaka; Kayama, Masahiro; Bérczi, Szaniszló; Nagy, Szabolcs; Ábrahám, Péter; Kimura, Yuki; Miura, Hitoshi; Gyollai, Ildikó; Simonia, Irakli; Rózsa, Péter; Posta, József; Apai, Dániel; Mihályi, Krisztián; Nagy, Mihály; Ott, Ulrich

    2013-12-01

    Highly forsteritic olivine (Fo: 99.2-99.7) in the Kaba meteorite emits bright cathodoluminescence (CL). CL spectra of red luminescent forsterite grains have two broad emission bands at approximately 630 nm (impurity center of divalent Mn ions) in the red region and above 700 nm (trivalent Cr ions) in the red-IR region. The cores of the grains show CL blue luminescence giving a characteristic broad band emission at 400 nm, also associated with minor red emissions related to Mn and Cr ions. CL color variation of Kaba forsterite is attributed to structural defects. Electron probe microanalyzer (EPMA) analysis shows concentrations of Ca, Al, and Ti in the center of the forsterite grain. The migration of diffusible ions of Mn, Cr, and Fe to the rim of the Kaba meteoritic forsterite was controlled by the hydrothermal alteration at relatively low temperature (estimated at about 250 °C), while Ca and Al ions might still lie in the core. A very unusual phase of FeO (wüstite) was also observed, which may be a terrestrial alteration product of FeNi-metal.

  18. Oxygen isotope geochemistry of the amphiboles: isotope effects of cation substitutions in minerals

    NASA Astrophysics Data System (ADS)

    Kohn, Matthew J.; Valley, John W.

    1998-06-01

    The occurrence of coexisting amphiboles in rocks and the likelihood of concurrent isotope closure allows equilibrium oxygen isotope fractionations among the amphiboles to be recovered from natural samples. Oxygen isotope analyses of mineral separates using laser fluorination show that coexisting amphiboles increasingly partition 18O in the order: hornblende ≪ gedrite < cummingtonite ≤ anthophyllite. The observed fractionations at ˜575°C are: Δ(Ged-Hbl) = 0.8‰, Δ(Cum-Hbl) = 0.9, Δ(Cum-Ged) = 0.2, Δ(Ath-Ged) = 0.3, and Δ(Ath-Hbl) > 0.9. Previously published data for hornblende, actinolite, glaucophane, and garnet show that Δ(Act-Hbl) ˜ 0.2, Δ(Gln-Grt) ≫ 1, and Δ(Hbl-Grt) ˜ 0. Thus, glaucophane strongly partitions 18O relative to the calcic amphiboles. The fractionation between two amphiboles of arbitrary composition can be predicted from the known fractionations for mica endmembers, pyroxene endmembers, and exchange components such as CaAl(NaSi) -1, NaAl(CaMg) -1, CaMg -1, MgFe -1, FeMn -1, KNa -1, KAl( Si) -1, and Fe 3+Al -1. Applications of the exchange component method reproduce measured amphibole fractionations to within ±0.1 to ±0.2‰, whereas other predictive methods cause misfit for typical metamorphic hornblende of ≥0.5‰ at 575°C. Although the isotope effects of cation exchanges may be small at high-T, they magnify dramatically for minerals formed in surficial, diagenetic, and low-T metamorphic environments. Different composition clays are predicted to have equilibrium δ 18O differences of 2-9‰. If the isotope fractionation can be determined for one mineral endmember, then calibrated exchanges allow accurate prediction of the isotope fractionations for intermediate compositions of most ortho-, ring-, chain-, and sheet-silicates.

  19. Vertical distribution and retention mechanism of nitrogen and phosphorus in soils with different macrophytes of a natural river mouth wetland.

    PubMed

    Huang, Wei; Chen, Qiuwen; Ren, Kuixiao; Chen, Kaining

    2015-03-01

    Wetland vegetation can improve water quality through several processes including direct assimilation and the indirect effects of sedimentation and mineralization. This research takes the Zhucao River mouth of Daxi reservoir as a study case to investigate the vertical distribution of nitrogen and phosphorus in the soil of a natural wetland covered by different plants prior to any restoration action. There are four native emergent macrophytes (Typha latifolia L., Polygonum hydropiper L., Juncus effuses L., Phragmites communis L.) in the wetland. The total nitrogen (TN) and nitrate contents decreased with the soil depth for all vegetation types, and the mean TN and nitrate concentrations were higher in vegetative soil than in bare ground. The maximum TN concentration was found in the surface soil (0-2 cm) covered by P. communis. Ammonium decreased with the soil depth in vegetative areas, while it increased with soil depth in bare ground. The rank order of P fractions was organic P (OP) > P associated with Ca (Ca-P) > P associated with Fe/Al (Fe/Al-P). Total phosphorus (TP) and OP showed vertical profiles similar to that of TN. The mean concentrations of TP, Ca-P and Fe/Al-P were higher in vegetative soil than in bare ground. The maximum mean TP was also found in soil covered by P. communis. Loss on ignition (LOI) was significantly correlated with TN and TP (P < 0.05). Organic matter accumulation may be the main pathway to retain nitrogen and phosphorus in the wetland. Nitrogen and phosphorus sequestration in P. communis soil was the highest of the four dominant plants. The results could support the restoration of other degraded river mouth wetlands of the reservoir.

  20. Evaluation of potable groundwater quality in some villages of Adilabad in Andhra Pradesh, India.

    PubMed

    Rasheed, M A; Radha, B Anu; Rao, P L Srinivasa; Lakshmi, M; Chennaiah, J Bala; Dayal, A M

    2012-07-01

    Reconnaissance hydrochemical survey was conducted in some villages of Adilabad district, Andhra Pradesh to assess the quality of groundwater, which is mainly used for drinking purpose. The study consists of the determination of physico-chemical properties, trace metals, heavy metals and rare earth elements in water samples. The data showed the variation of the investigated parameters in samples as follows: pH 6.92 to 8.32, EC 192 to 2706 microS cm(-1), TDS 129.18 to 1813.02 ppm. The pH of the waters was within the permissible limits whereas EC and TDS were above the permissible limits of World Health Organization (WHO). Total 27 elements (Li, Be, B, Na, Mg, Al, Si, K, Ca, V, Cr, Mn, Fe, Ni, Co, Cu, Zn, As, Se, Rb, Sr, Mo, Ag, Cd, Sb, Ba and Pb) were analyzed using Inductively Coupled Plasma-Mass Spectrometer (ICP-MS). The concentration of elements in water samples ranged between 0.063 to 0.611 mg l(-1) for B, 11.273 to 392 mg l(-)1 for Na, 5.871 to 77.475 mg l(-1) for Mg, 0.035 to 1.905 mg l(-1) for Al, 0.752 to 227.893 mg l(-1) for K, 11.556 to 121.655 mg l(-1) for Ca and 0.076 to 0.669 mg l(-1) for Fe respectively. The concentrations of Na, Mg, Al, K, Ca, and Fe exceeded the permissible limits of WHO and BIS guidelines for drinking water quality. In the present study, Bhimavaram, Kazipalli, Kannepalli and Chennur areas of the Adilabad are especially prone to geogenic contamination. Overall water quality was found unsatisfactory for drinking purposes.

  1. Thermal equation of state of CaFe 2O 4-type MgAl 2O 4

    NASA Astrophysics Data System (ADS)

    Sueda, Yuichiro; Irifune, Tetsuo; Sanehira, Takeshi; Yagi, Takehiko; Nishiyama, Norimasa; Kikegawa, Takumi; Funakoshi, Ken-ichi

    2009-05-01

    In situ X-ray diffraction measurements of CaFe 2O 4-type MgAl 2O 4 have been conducted at pressures up to 42 GPa and temperatures to 2400 K using Kawai-type multianvil apparatus with sintered diamond anvils. Additional measurements have also been conducted at pressures to 12 GPa using diamond anvil cell with helium as a pressure medium at room temperature, and at temperatures to 836 K at the ambient pressure using a high-temperature X-ray diffractometer. The analysis of room-temperature data yielded V0 = 240.1(2) Å 3, K0 = 205(6) GPa, and K0=4.1(3). A fit of the present data to high-temperature Birch-Murnaghan equation of state (EOS) yielded (∂ K0/∂ T) P = -0.030(2) GPa/K and α0 = a0 + b0T with values of a0 = 1.96(13) × 10 -5 K -1 and b0 = 1.64(24) × 10 -8 K -2. The present data set was also fitted to Mie-Grüneisen-Debye (MGD) EOS and we obtained γ0 = 1.73(7), q = 2.03(37), and θ0 = 1546(104) K. Density changes of MORB have been estimated using the newly obtained thermoelastic parameters, assuming that the Al-rich phase in this composition possesses the CaFe 2O 4-type structure under the lower mantle P, T conditions. The calculated densities along geotherms for the normal mantle and subducting cold slabs are both significantly higher than those of typical seismological models, confirming the conclusion of some recent results on MORB by laser-heated diamond anvil cell experiments.

  2. Post-magmatic solid solutions of CaCeAl2(Fe3+ 2/3□1/3)[Si2O7][SiO4]O(OH), allanite-(Ce) and REE-bearing epidote in miarolitic pegmatites of Permian Baveno granite (Verbania, central-southern alps, Italy)

    NASA Astrophysics Data System (ADS)

    Guastoni, Alessandro; Nestola, Fabrizio; Schiazza, Mariangela

    2017-06-01

    CaCeAl2(Fe3+ 2/3□1/3)[Si2O7][SiO4]O(OH), allanite-(Ce) and rare earth element (REE)-bearing epidote occur as globular aggregates and platy prismatic crystals in miarolitic cavities in a niobium, yttrium, fluorine (NYF) granitic pegmatite at Baveno, Verbania, Southern Alps, Italy. These samples were investigated by means of an electron probe micro-analyser (EPMA) and single-crystal X-ray diffraction. Our EPMA results show that the globular aggregates have the highest REE content in the core portion and decreases to REE-bearing epidote towards the rim whereas the prismatic crystals are characterized by marked oscillatory zoning that have the highest REE contents at the rim of the crystal. The unit-cell parameters of "allanites" have an intermediate unit-cell between CaCeAl2(Fe3+ 2/3□1/3)[Si2O7][SiO4]O(OH), allanite-(Ce) and REE-free epidote, because reflect the strong chemical heterogeneity of the samples which form complete solid solutions. Hydrothermal fluids control the activity and precipitation of incompatible elements like high field strength elements (HFSE), Sc and REE by hydrous F-rich fluids below the critical temperature which allow to deposit accessory minerals in the cavities with decreasing temperature. The source of REE and Y are the sheet and REE-silicates like siderophyllite-annite, and gadolinite-(Y) which underwent partial to complete decomposition by the activity of aggressive F-rich hydrothermal fluids.

  3. Controls of bedrock geochemistry on soil and plant nutrients in Southeastern Utah

    USGS Publications Warehouse

    Neff, J.C.; Reynolds, R.; Sanford, R.L.; Fernandez, D.; Lamothe, P.

    2006-01-01

    The cold deserts of the Colorado Plateau contain numerous geologically and geochemically distinct sedimentary bedrock types. In the area near Canyonlands National Park in Southeastern Utah, geochemical variation in geologic substrates is related to the depositional environment with higher concentrations of Fe, Al, P, K, and Mg in sediments deposited in alluvial or marine environments and lower concentrations in bedrock derived from eolian sand dunes. Availability of soil nutrients to vegetation is also controlled by the formation of secondary minerals, particularly for P and Ca availability, which, in some geologic settings, appears closely related to variation of CaCO3 and Ca-phosphates in soils. However, the results of this study also indicate that P content is related to bedrock and soil Fe and Al content suggesting that the deposition history of the bedrock and the presence of P-bearing Fe and Al minerals, is important to contemporary P cycling in this region. The relation between bedrock type and exchangeable Mg and K is less clear-cut, despite large variation in bedrock concentrations of these elements. We examined soil nutrient concentrations and foliar nutrient concentration of grasses, shrubs, conifers, and forbs in four geochemically distinct field sites. All four of the functional plant groups had similar proportional responses to variation in soil nutrient availability despite large absolute differences in foliar nutrient concentrations and stoichiometry across species. Foliar P concentration (normalized to N) in particular showed relatively small variation across different geochemical settings despite large variation in soil P availability in these study sites. The limited foliar variation in bedrock-derived nutrients suggests that the dominant plant species in this dryland setting have a remarkably strong capacity to maintain foliar chemistry ratios despite large underlying differences in soil nutrient availability. ?? 2006 Springer Science+Business Media, Inc.

  4. Synthesis and equation of state of post-perovskites in the (Mg,Fe)[subscript 3]Al[subscript 2]Si[subscript 3]O[subscript 12] system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shieh, Sean R.; Dorfman, Susannah M.; Kubo, Atsushi

    The formation and properties of the post-perovskite (CaIrO{sub 3}-type) phase were studied in Fe-rich compositions along the pyrope-almandine ((Mg,Fe){sub 3}Al{sub 2}Si{sub 3}O{sub 12}) join. Natural and synthetic garnet starting materials with almandine fractions from 38 to 90 mol% were studied using synchrotron X-ray diffraction in the laser-heated diamond anvil cell. Single-phase post-perovskite could be successfully synthesized from garnet compositions at pressures above 148 GPa and temperatures higher than 1600 K. In some cases, evidence for a minor amount of Al{sub 2}O{sub 3} post-perovskite was observed for Alm38 and Alm54 compositions in the perovskite + post-perovskite two-phase region. Pressure-volume data formore » the post-perovskite phases collected during decompression show that incorporation of Fe leads to a systematic increase of unit cell volume broadly similar to the variation observed in the (Mg,Fe)SiO{sub 3} system. The presence of Al{sub 2}O{sub 3} increases the stability of perovskite relative to post-perovskite, requiring higher pressures (> 148 GPa) for synthesis of pure post-perovskites. Our data together with those of Tateno et al. (2005) also suggest that in the Al-rich system the presence of Fe has no strong effect on the pressure required to synthesize the pure post-perovskite phase, but the two-phase perovskite and post-perovskite region may be broad and its width dependent on Fe content. Our results suggest that any regions highly enriched in Al{sub 2}O{sub 3} may consist of either the perovskite phase or a mixture of perovskite and post-perovskite phases throughout the entire thickness of the D* region. The observed synthesis pressures (> 148 GPa) for a pure post-perovskite phase are beyond that at the Earth's core-mantle boundary ({approx} 135 GPa).« less

  5. Valency and spin states of substituent cations in Bi2.15Sr1.85CaCu2O8+δ

    NASA Astrophysics Data System (ADS)

    Benseman, T. M.; Cooper, J. R.; Zentile, C. L.; Lemberger, L.; Balakrishnan, G.

    2011-10-01

    We studied the valency and spin behavior of M = Mn, Fe, Co, Li, and Al in the high-temperature superconducting compound Bi2.15Sr1.85Ca(Cu1-zMz)2O8+δ (Bi-2212) for small values of z. Mn, Fe, and Co retain their magnetic moments, and our thermopower and magnetic susceptibility data imply ionization states Mn3+, Fe2+, and Co2+, while Li and Al are accommodated in the charge reservoir layers. Single-crystal studies show that the susceptibility of Co2+ ions in Bi-2212 is strongly anisotropic, with a weak anisotropy detected for Mn3+ and none for Fe2+. Fits to a pseudogap formula for a pure Bi-2212 crystal suggest that the spin susceptibility of the host compound is more anisotropic than previously realized. Data in the superconducting state allow us to compare the pair-breaking properties of the different impurities. Several aspects of the data, including the stronger suppression of the superconducting transition temperature Tc by Co compared with Fe for underdoped and optimally doped samples, show that the d-level structure of the magnetic ions and multiorbital effects are important. We also find that the temperatures of the magnetization crossing points are equal to the low-field Tc values to within 1% or 2%. This agrees with a 2D thermodynamic fluctuation argument given by Junod

  6. New Polymorph of Fe3O4 Stable at Core-Mantle Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Greenberg, E.; Prakapenka, V. B.

    2017-12-01

    Magnetite Fe3O4 (and its high-pressure polymorphs) is one of the most studied iron bearing minerals. One reason for the interest in magnetite is that it contains both Fe2+ and Fe3+, which is especially important for understanding the physical and chemical properties of Earth's deep interior. Early studies on magnetite debated the nature of the structural phase transition at 35 GPa [1-4]. This high-pressure structure was shown to be of the CaTi2O4-type [5], but with Fe3+ occupying multiple sites. Furthermore, at pressures above 65 GPa a second structural transition to a Pmma space group was shown to take place [5], similar to that in Fe3-xTixO4 solid solution [6]. Other studies have focused on the P-T stability of Fe3O4. Early studies by Lazor et al. [7] predicted that Fe3O4 might disproportionate into FeO and h-Fe2O3 at 50 GPa. Other studies suggested that the high-pressure phase should be stable up to 100 GPa [3]. A more recent experimental study by Ricolleau and Fei [8] revealed that Fe3O4 is stable at least up to 103 GPa. Thus far, structural studies of Fe3O4 have been limited to pressures below 105 GPa. We have studied Fe3O4 up to pressures of 175 GPa and temperatures above 4000K, using diamond anvil cells in combination with synchrotron x-ray diffraction and an online pulsed laser-heating system to study the stability of Fe3O4 at relevant pressure-temperature conditions. Our results show that Fe3O4 is stable up to at least 176 GPa and 4200 K. We have discovered a new polymorph of Fe3O4 at these high P-T conditions. This new phase is stable in the pressure range of at least 100

  7. Iron Stable Isotopes, Magmatic Differentiation and the Oxidation State of Mariana Arc Magmas

    NASA Astrophysics Data System (ADS)

    Williams, H. M.; Prytulak, J.; Plank, T. A.; Kelley, K. A.

    2014-12-01

    Arc magmas are widely considered to be oxidized, with elevated ferric iron contents (Fe3+/ΣFe) relative to mid-ocean ridge lavas (1, 2). However, it is unclear whether the oxidized nature of arc basalts is a primary feature, inherited from the sub-arc mantle, or the product of magmatic differentiation and/or post eruptive alteration processes (3). Iron stable isotopes can be used to trace the distribution of Fe during melting and magmatic differentiation processes (4, 5). Here we present Fe isotope data for well-characterized samples (6-8) from islands of the Central Volcanic Zone (CVZ) of the intra-oceanic Mariana Arc to explore the effect of magmatic differentiation processes on Fe isotope systematics. The overall variation in the Fe isotope compositions (δ57Fe) of samples from the CVZ islands ranges from -0.10 ±0.04 to 0.29 ± 0.01 ‰. Lavas from Anatahan are displaced to lower overall δ57Fe values (range -0.10 ±0.04 to 0.18 ±0.01 ‰) relative to other CVZ samples. Fe isotopes in the Anatahan suite (range -0.10 ±0.04 to 0.18 ±0.01 ‰) are positively correlated with SiO2 and negatively correlated with Ca, Fe2O3(t), Cr and V and are displaced to lower overall δ57Fe values relative to other CVZ samples. These correlations can be interpreted in terms of clinopyroxene and magnetite fractionation, with magnetite saturation throughout the differentiation sequence. Magnetite saturation is further supported by negative correlations between V, Fe2O3(t), Cr and MgO (for MgO <3.5 wt%). The early saturation of magnetite in the Anatahan and CVZ lavas is likely to be a function of high melt water content (9, 10) and potentially elevated melt oxidation state. Future work will focus on determining the relationships between mineral Fe isotope partitioning effects and melt composition and oxidation state. 1. R. Arculus, Lithos (1994). 2. K. A. Kelley et al., Science (2009). 3. C.-T. A. Lee et al., J. Pet. (2005). 4. N. Dauphas et al., EPSL (2014). 5. P. A. Sossi et al., CMP (2012). 6. T. Elliott et al., JGR (1997). 7. J. A. Wade et al.. JVGR (2005). 8. J. Woodhead, Chem. Geol. (1989). 9. K. A. Kelley et al., J. Pet. (2010). 10. T. Sisson et al., CMP (1993).

  8. Long-term product consistency test of simulated 90-19/Nd HLW glass

    NASA Astrophysics Data System (ADS)

    Gan, X. Y.; Zhang, Z. T.; Yuan, W. Y.; Wang, L.; Bai, Y.; Ma, H.

    2011-01-01

    Chemical durability of 90-19/Nd glass, a simulated high-level waste (HLW) glass in contact with the groundwater was investigated with a long-term product consistency test (PCT). Generally, it is difficult to observe the long term property of HLW glass due to the slow corrosion rate in a mild condition. In order to overcome this problem, increased contacting surface ( S/ V = 6000 m -1) and elevated temperature (150 °C) were employed to accelerate the glass corrosion evolution. The micro-morphological characteristics of the glass surface and the secondary minerals formed after the glass alteration were analyzed by SEM-EDS and XRD, and concentrations of elements in the leaching solution were determined by ICP-AES. In our experiments, two types of minerals, which have great impact on glass dissolution, were found to form on 90-19/Nd HLW glass surface when it was subjected to a long-term leaching in the groundwater. One is Mg-Fe-rich phyllosilicates with honeycomb structure; the other is aluminosilicates (zeolites). Mg and Fe in the leaching solution participated in the formation of phyllosilicates. The main components of phyllosilicates in alteration products of 90-19/Nd HLW glass are nontronite (Na 0.3Fe 2Si 4O 10(OH) 2·4H 2O) and montmorillonite (Ca 0.2(Al,Mg) 2Si 4O 10(OH) 2·4H 2O), and those of aluminosilicates are mordenite ((Na 2,K 2,Ca)Al 2Si 10O 24·7H 2O)) and clinoptilolite ((Na,K,Ca) 5Al 6Si 30O 72·18H 2O). Minerals like Ca(Mg)SO 4 and CaCO 3 with low solubility limits are prone to form precipitant on the glass surface. Appearance of the phyllosilicates and aluminosilicates result in the dissolution rate of 90-19/Nd HLW glass resumed, which is increased by several times over the stable rate. As further dissolution of the glass, both B and Na in the glass were found to leach out in borax form.

  9. Characterization of elemental release during microbe granite interactions at T = 28 °C

    NASA Astrophysics Data System (ADS)

    Wu, Lingling; Jacobson, Andrew D.; Hausner, Martina

    2008-02-01

    This study used batch reactors to characterize the mechanisms and rates of elemental release (Al, Ca, K, Mg, Na, F, Fe, P, Sr, and Si) during interaction of a single bacterial species ( Burkholderia fungorum) with granite at T = 28 °C for 35 days. The objective was to evaluate how actively metabolizing heterotrophic bacteria might influence granite weathering on the continents. We supplied glucose as a C source, either NH 4 or NO 3 as N sources, and either dissolved PO 4 or trace apatite in granite as P sources. Cell growth occurred under all experimental conditions. However, solution pH decreased from ˜7 to 4 in NH 4-bearing reactors, whereas pH remained near-neutral in NO 3-bearing reactors. Measurements of dissolved CO 2 and gluconate together with mass-balances for cell growth suggest that pH lowering in NH 4-bearing reactors resulted from gluconic acid release and H + extrusion during NH 4 uptake. In NO 3-bearing reactors, B. fungormum likely produced gluconic acid and consumed H + simultaneously during NO 3 utilization. Over the entire 35-day period, NH 4-bearing biotic reactors yielded the highest release rates for all elements considered. However, chemical analyses of biomass show that bacteria scavenged Na, P, and Sr during growth. Abiotic control reactors followed different reaction paths and experienced much lower elemental release rates compared to biotic reactors. Because release rates inversely correlate with pH, we conclude that proton-promoted dissolution was the dominant reaction mechanism. Solute speciation modeling indicates that formation of Al-F and Fe-F complexes in biotic reactors may have enhanced mineral solubilities and release rates by lowering Al and Fe activities. Mass-balances further reveal that Ca-bearing trace phases (calcite, fluorite, and fluorapatite) provided most of the dissolved Ca, whereas more abundant phases (plagioclase) contributed negligible amounts. Our findings imply that during the incipient stages of granite weathering, heterotrophic bacteria utilizing glucose and NH 4 only moderately elevate silicate weathering reactions that consume atmospheric CO 2. However, by enhancing the dissolution of non-silicate, Ca-bearing trace minerals, they could contribute to high Ca/Na ratios commonly observed in granitic watersheds.

  10. Effects of acidic solutions on element dynamics in the monsoon evergreen broad-leaved forest at Dinghushan, China. Part 2: dynamics of Fe, Cu, Mn and Al.

    PubMed

    Liu, Juxiu; Zhou, Guoyi; Zhang, Deqiang

    2007-05-01

    Soil metal dynamics are affected by acid deposition. Little knowledge is available about the process in the lateritic soils under the monsoon forest in south China. Samplings of Acmera acuminatissima, Cryptocarya concinna and Schima superba were grown from October, 2000 to July, 2002 in pots with a natural acid lateritic forest soil from Dinghushan. Pots were watered weekly with an acid solution (pH 3.05, 3.52, 4.00 or 4.40) or with tap water. Fe, Mn, Cu and Al were measured in soils, leachates and sapling leaves. Soil extractable Fe and leachate Al and Mn concentrations increased with a decreasing treatment pH. Soil reactive Al exhibited the opposite trend and decreased over time. The Ca/Al and Mg/ (Al+Mn) ratios did not decrease in the leaves of Schima superba, but decreased with a decreasing treatment pH for Cryptocaria concinna. Both ratios only decreased in the pH 3.05 treatment for Acmena Cu will not be toxic for plants since soil extractable Cu was not high and Fe will not be toxic either given that its root uptake was inhibited by Mn. Acid rains will lead to increased Mn and Al mobility in soil. Cryptocaria concinna will be the most sensible species to these changes (nutrient deficiency and direct Mn toxicity), while Schima superba should retain a good growth.

  11. Study of new sheep bone and Zn/Ca ratio around TiAlV screw: PIXE RBS analysis

    NASA Astrophysics Data System (ADS)

    Guibert, G.; Munnik, F.; Langhoff, J. D.; Von Rechenberg, B.; Buffat, Ph. A.; Laub, D.; Faber, L.; Ducret, F.; Gerber, I.; Mikhailov, S.

    2008-03-01

    This study reports on in vivo particle induced X-ray emission (PIXE) measurements combined with Rutherford backscattering spectroscopy (RBS) analyses of new remodeled sheep bone formed around TiAlV screws. The implants (screws) were anodized by a modified TiMax™ process. The interface between the implant and the bone was carefully investigated. [Zn]/[Ca] in-depth composition profiles as well as Ca, Fe elemental maps were recorded. The thickness of new bone formed around the screw reached 300-400 μm. Osteon and Osteoid phases were identified in the new bone. A higher [Zn]/[Ca] ratio was observed in the new bone as compared to the mature bone. Blood vessels were observed in the bone in close contact with the screw. This study shows the potential of ion beam analysis for biological and biomedical characterization.

  12. Modelling Equilibrium and Fractional Crystallization in the System MgO-FeO-CaO-Al2O3-SiO2

    NASA Technical Reports Server (NTRS)

    Herbert, F.

    1985-01-01

    A mathematical modelling technique for use in petrogenesis calculations in the system MgO-FeO-CaO-Al2O3-SiO2 is reported. Semiempirical phase boundary and elemental distribution information was combined with mass balance to compute approximate equilibrium crystallization paths for arbitrary system compositions. The calculation is applicable to a range of system compositions and fractionation calculations are possible. The goal of the calculation is the computation of the composition and quantity of each phase present as a function of the degree of solidification. The degree of solidification is parameterized by the heat released by the solidifying phases. The mathematical requirement for the solution of this problem is: (1) An equation constraining the composition of the magma for each solid phase in equilibrium with the liquidus phase, and (2) an equation for each solid phase and each component giving the distribution of that element between that phase and the magma.

  13. Influence of herbicide structure, clay acidity, and humic acid coating on acetanilide herbicide adsorption on homoionic clays.

    PubMed

    Liu, Weiping; Gan, Jianying; Yates, Scott R

    2002-07-03

    Adsorption of chloroacetanilide herbicides on homoionic montmorillonite was studied by coupling batch equilibration and FT-IR analysis. Adsorption decreased in the order metolachlor > acetochlor > alachlor > propachlor on Ca(2+)- or Mg(2+)-saturated clays and in the order metolachlor > alachlor > acetachlor > propachlor on Al(3+)- or Fe(3+)-saturated clays. FT-IR spectra showed that the carbonyl group of the herbicide molecule was involved in bonding. For the same herbicide, adsorption of alachlor, acetachlor, and metolachlor on clay followed the order Ca(2+) approximately Mg(2+) < Al(3+) < or = Fe(3+), which coincided with the increasing acidity of homoionic clays. Adsorption of propachlor, however, showed an opposite dependence, suggesting a different governing interaction. In clay and humic acid mixtures, herbicide adsorption was less than that expected from independent additive adsorption by the individual constituents, and the deviation was dependent on the clay-to-humic acid ratio, with the greatest deviation consistently occurring at a 60:40 clay-to-humic acid ratio.

  14. High soil Mn and Al, as well as low leaf P concentration may explain for low natural rubb rubber productivity on a tropical acid soil Vietnam

    USDA-ARS?s Scientific Manuscript database

    Acid soils have been reported to restrict crop growth and productivity by creating unhealthy conditions for crops including deficiencies of K, Ca, Mg, and P and toxicities of Al, Mn and Fe. The current study was conducted with natural rubber (NR, Hevea brasiliensis Mu¨ll. Arg) plantations grown on a...

  15. In vitro and in vivo evaluation of potential aluminum chelators.

    PubMed

    Graff, L; Muller, G; Burnel, D

    1995-10-01

    The potential for aluminium (Al) chelation by different compounds was determined using 2 in vitro techniques. The formation of stable complexes with Al in an aqueous solution was evaluated using pulse polarography. This technique allowed the influence of temperature and calcium (Ca) to be studied for each compound. Certain compounds (EDDHA, HAES, citric acid and HBED) showed great chelation in the absence of Ca2+ at a temperature of 37 +/- 1 C. An ultrafiltration technique combined with Al determination by atomic emission spectroscopy allowed the efficiency of different substances to complex Al that were previously bound to serum proteins to be estimated. The kinetics of chelation and minimum efficient concentration have been determined for all products studied. EDDHA had chelation potential similar to DFO. The real efficacies of the compounds were studied in vivo to compare the effectiveness of repeated administrations of the best chelating agents (EDDHA, DFO, HAES and tartaric acid) on the distribution and excretion of Al after repeated i.p. administrations to rats. Intraperitoneal EDDHA significantly increased urinary metal (Al, Ca, Cu, Fe and Zn) excretion. These excretions may be correlated to a renal toxic potential property.

  16. Adaptation Reactions of Siderophilic Cyanobacteria to High and Low Levels Of Environmental Iron: Implications for Biosphere History

    NASA Technical Reports Server (NTRS)

    Brown, I. I.; Bryant, D.; Sarkisova, S.; Shen, G.; Garrison, D.; McKay, D. S.

    2009-01-01

    Of all extant environments, iron-depositing hot springs may constitute the most appropriate natural models (Pierson and Parenteau, 2000) for analysis of the ecophysiology of ancient cyanobacteria (CB) which may have emerged in association with hydrothermal activity (Brown et al., 2007) and elevated levels of environmental Fe (Rouxel et al., 2005). Elevated environmental Fe2+ posed a significant challenge to the first oxygenic phototrophs - CB - because reduced Fe2+ induces toxic Fenton reactions (Wiedenheft et al., 2005). Ancient CB could have also been stressed by occasional migrations from the Fe2+-rich Ocean to the basaltic land which was almost devoid of dissolved Fe2+. That is why the study of the adaptation reactions of siderophilic CB, which inhabit iron-depositing hot springs, to up and down shifts in levels of dissolved Fe may shed light on the paleophysiology of ancient oxygenic prokaryotes. Methods. Siderophilic CB (Brown et al., 2007) were cultivated in media with different concentrations of added Fe3+. In some cases basaltic rocks were used as a source of Fe and trace elements. The processes of Fe mineralization and rock dissolution were studied using TEM, SEM and EDS techniques. Fluorescence spectroscopy was used for checking chlorophyll-protein complexes. Results. It was found that five siderophilic isolates Chroogloeocystis siderophila, JSC-1, JSC-3, JSC-11 and JSC-12 precipitated Fe-bearing phases on the exopolymeric sheaths of their cells if [Fe3+] was approx. 400-600 M (high Fe). Same [Fe3+] was most optimal one for the cultures proliferation rate (Brown et al., 2005; Brown et al., 2007). Higher concentrations of Fe3+ repressed the growth of some siderophilic CB (Brown et al., 2005). No mineralized Fe3+ was observed on the sheath of freshwater isolates Synechocystis sp. PCC 6803 and Phormidium aa. Scanning TEM in conjunction with thin-window energy dispersive X-ray spectroscopy (EDS) revealed intracellular Fe-rich phases within all three isolates studied JSC-1, JSC-3 and JSC-11. The elemental composition of the Fe-rich precipitates indicates P, Fe, and O as the major elements with minor amounts of Al and Ca. It was also found that the PSI:PSII ratio is higher in JSC-1 and JSC-3 isolates than in CB without detectable ability to mineralize Fe. SEM-EDS studies of the interaction of siderophilic cyanobacteria with Fe-rich minerals and rocks revealed, for the first time, their ability to leach ilmenite, olivine, FeS, ZnS and ferrosilicates, perhaps because the cyanobacteria studied can secrete 2-oxo-glutarate and malate which possess chelating properties. The draft of Cyanobacterium JSC-1 is currently being completed. This will help to verify the molecular mechanisms of Fe mineralization and Fe-rich minerals by siderophilic CB. Conclusions. The results obtained suggest that colloidal Fe3+ is transported in CB cytoplasm most likely through ABC-type Fe3+ transport system (Braun et al., 2004). The prevalence of PSI components over PSII in some species of siderophilic CB may indirectly support the Y. Cohen s hypothesis that PSI in cyanobacteria can be involved in Fe2+ oxidation (Cohen, 1984; 1989). The ability of siderophilic CB to mineralize Fe within their cytoplasms could be a protective survival mechanism induced by high levels of [Fe2+] and UV radiation, while the ability to leach Fe-rich minerals could have supported the expansion of ancient CB onto basaltic land.

  17. Improving the characteristics of foundry alloys AlSiCuMg during manufacturing

    NASA Astrophysics Data System (ADS)

    Fragoso, Bruno Filipe Marques

    As piroxenas sao um vasto grupo de silicatos minerais encontrados em muitas rochas igneas e metamorficas. Na sua forma mais simples, estes silicatos sao constituidas por cadeias de SiO3 ligando grupos tetrahedricos de SiO4. A formula quimica geral das piroxenas e M2M1T2O6, onde M2 se refere a catioes geralmente em uma coordenacao octaedrica distorcida (Mg2+, Fe2+, Mn2+, Li+, Ca2+, Na+), M1 refere-se a catioes numa coordenacao octaedrica regular (Al3+, Fe3+, Ti4+, Cr3+, V3+, Ti3+, Zr4+, Sc3+, Zn2+, Mg2+, Fe2+, Mn2+), e T a catioes em coordenacao tetrahedrica (Si4+, Al3+, Fe3+). As piroxenas com estrutura monoclinica sao designadas de clinopiroxenes. A estabilidade das clinopyroxenes num espectro de composicoes quimicas amplo, em conjugacao com a possibilidade de ajustar as suas propriedades fisicas e quimicas e a durabilidade quimica, tem gerado um interesse mundial devido a suas aplicacoes em ciencia e tecnologia de materiais. Este trabalho trata do desenvolvimento de vidros e de vitro-cerâmicos baseadas de clinopiroxenas para aplicacoes funcionais. O estudo teve objectivos cientificos e tecnologicos; nomeadamente, adquirir conhecimentos fundamentais sobre a formacao de fases cristalinas e solucoes solidas em determinados sistemas vitro-cerâmicos, e avaliar a viabilidade de aplicacao dos novos materiais em diferentes areas tecnologicas, com especial enfase sobre a selagem em celulas de combustivel de oxido solido (SOFC). Com este intuito, prepararam-se varios vidros e materiais vitro-cerâmicos ao longo das juntas Enstatite (MgSiO3) - diopsidio (CaMgSi2O6) e diopsidio (CaMgSi2O6) - Ca - Tschermak (CaAlSi2O6), os quais foram caracterizados atraves de um vasto leque de tecnicas. Todos os vidros foram preparados por fusao-arrefecimento enquanto os vitro-cerâmicos foram obtidos quer por sinterizacao e cristalizacao de fritas, quer por nucleacao e cristalizacao de vidros monoliticos. Estudaram-se ainda os efeitos de varias substituicoes ionicas em composicoes de diopsidio contendo Al na estrutura, sinterizacao e no comportamento durante a cristalizacao de vidros e nas propriedades dos materiais vitro-cerâmicos, com relevância para a sua aplicacao como selantes em SOFC. Verificou-se que Foi observado que os vidros/vitro-cerâmicos a base de enstatite nao apresentavam as caracteristicas necessarias para serem usados como materiais selantes em SOFC, enquanto as melhores propriedades apresentadas pelos vitro-cerâmicos a base de diopsidio qualificaram-nos para futuros estudos neste tipo de aplicacoes. Para alem de investigar a adequacao dos vitro-cerâmicos a base de clinopyroxene como selantes, esta tese tem tambem como objetivo estudar a influencia dos agentes de nucleacao na nucleacao em volume dos vitro-cerâmicos resultantes a base de diopsidio, de modo a qualifica-los como potenciais materiais hopedeiros de residuos nucleares radioactivos.

  18. ESCA studies of lunar surface chemistry. [Electron Spectroscopic Chemical Analysis

    NASA Technical Reports Server (NTRS)

    Housley, R. M.; Grant, R. W.

    1975-01-01

    We have used ESCA to compare the composition of the natural exterior surface in lunar fines samples with that of the interior surface exposed by crushing. Even though the exterior surfaces have been exposed to air a significant amount of Fe in them is reduced. In addition, Ca, Al, and Mg are strongly depleted in exterior surfaces relative to Si, Ti, and Fe. Preferential sputtering by the solar wind is a possible explanation for these changes.

  19. Mechanism research on arsenic removal from arsenopyrite ore during a sintering process

    NASA Astrophysics Data System (ADS)

    Cheng, Ri-jin; Ni, Hong-wei; Zhang, Hua; Zhang, Xiao-kun; Bai, Si-cheng

    2017-04-01

    The mechanism of arsenic removal during a sintering process was investigated through experiments with a sintering pot and arsenic-bearing iron ore containing arsenopyrite; the corresponding chemical properties of the sinter were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES), X-ray diffraction (XRD), and scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectroscopy (EDS). The experimental results revealed that the reaction of arsenic removal is mainly related to the oxygen atmosphere and temperature. During the sintering process, arsenic could be removed in the ignition layer, the sinter layer, and the combustion zone. A portion of FeAsS reacted with excess oxygen to generate FeAsO4, and the rest of the FeAsS reacted with oxygen to generate As2O3(g) and SO2(g). A portion of As2O3(g) mixed with Al2O3 or CaO, which resulted in the formation of arsenates such as AlAsO4 and Ca3(AsO4)2, leading to arsenic residues in sintering products. The FeAsS component in the blending ore was difficult to decompose in the preliminary heating zone, the dry zone, or the bottom layer because of the relatively low temperatures; however, As2O3(g) that originated from the high-temperature zone could react with metal oxides, resulting in the formation of arsenate residues.

  20. The effect of iron content and dissolved O2 on dissolution rates of clinopyroxene at pH 5.8 and 25°C: Preliminary results

    USGS Publications Warehouse

    Hoch, A.R.; Reddy, M.M.; Drever, J.I.

    1996-01-01

    Dissolution experiments using augite (Mg0.87Ca0.85Fe0.19Na0.09Al0.03Si2O6) and diopside (Mg0.91Ca0.93Fe0.07Na0.03Al0.03Si2O6) were conducted in flow-through reactors (5-ml/h flow rate). A pH of 5.8 was maintained by bubbling pure CO2 through a solution of 0.01 M KHCO3 at 25°C. Two experiments were run for each pyroxene type. In one experiment dissolved O2 concentration in reactors was 0.6 (±0.1) ppm and in the second dissolved O2 was 1.5 (±0.1) ppm. After 60 days, augite dissolution rates (based on Si release) were approximately three times greater in the 1.5 ppm. dissolved O2 experiments than in the sealed experiments. In contrast, diopside dissolution rates were independent of dissolved O2 concentrations. Preliminary results from the augite experiments suggest that dissolution rate is directly related to oxidation of iron. This effect was not observed in experiments performed on iron-poor diopside. Additionally, dissolution rates of diopside were much slower than those of augite, again suggesting a relationship between Fe content, Fe oxidation and dissolution rates.

  1. Fe Isotope Composition of Neoproterozoic Post-Glacial "Cap Dolostones"

    NASA Astrophysics Data System (ADS)

    Halverson, G. P.

    2005-12-01

    The largest variations in the Fe isotope composition in the geological record are found in sedimentary rocks, presumably as the result of redox transformations of iron during mineral precipitation, microbial processing, and diagenesis (Johnson et al., Cont. Min. Petrol., 2003). Systematic trends in the variability of the Fe isotope composition of sulfide minerals formed in ancient marine black shales broadly mirror patterns in sulfur isotope data (Δ33S, Δ34S), which are consistent with geological and other geochemical evidence for the progressive oxidation of the earth's surface during the Precambrian (Rouxel et al., Science, 2005). Therefore, the record of the Fe isotope composition of minerals formed in the marine environment appears to be a promising proxy for the redox evolution of the ocean. We have developed a method to extract the marine Fe isotope composition from carbonates in an attempt to establish higher resolution records of changes in marine redox changes than permitted by black shale geochemistry. We have applied this method to the study of ca. 635 Ma iron-rich dolostones, which are found in Neoproterozoic successions worldwide and immediately post-date a purported snowball (Marinoan) glaciation during which time the deep ocean is thought to have become anoxic (Hoffman et al., Science, 1998), allowing its Fe isotopic composition to evolve towards the composition of relatively light (δ57Fe vs. IRMM-14 ~ -0.6‰) hydrothermal iron (Beard et al., Geology, 2003). Fe isotope compositions were measured relative to IRMM-14 in medium-resolution mode on a Neptune MC-ICP-MS with a long-term external (2σ) reproducibility of < 0.04‰/amu. Preliminary data on dolomite samples from Svalbard, northern Namibia and northwest Canada show a range in δ57Fe values from -0.65 to 0.04‰, similar to the range found in siderite and Fe-rich dolomite in ancient BIFs (Johsnon et al., 2003) and to values for the Namibian cap dolostone reported by Leighton et al. (Goldschmidt abstract, 2005), but distinctly lower than altered dolostones (δ57Fe = 0.10 - 1.02‰) in a Jurassic, organic-rich mudstone (Matthews et al., GCA, 2004). It is difficult to conclude at this time whether or not the relatively low δ57Fe composition of the cap dolostones is consistent with the Beard et al. (Geology, 2003) hypothesis due to large uncertainties in the solution-mineral fractionation factors for carbonates, the potential effects of diagenesis and biological influences on dolomite precipitation, and the possibility that the Marinoan deep ocean was euxinic.

  2. The flat bottomed lines of Vega

    NASA Astrophysics Data System (ADS)

    Monier, R.; Gebran, M.; Royer, F.; Kılıcoǧlu, T.

    2017-12-01

    Using one high dispersion high quality spectrum of Vega (HR7001, A0V) obtained with the échelle spectrograph SOPHIE at Observatoire de Haute Provence, we have measured the centroids of 149 flat bottomed lines. The model atmosphere and spectrum synthesis modeling of the spectrum of Vega allows us to provide identifications for all these lines. Most of these lines are due to C I, O I, Mg I, Al I, Ca I, Sc II,Ti II, Cr I, Cr II, Mn I, Fe I, Fe II, Sr II, Ba II, the large majority being due to neutral species, in particular Fe I.

  3. Synthesis of the new compound CaFe(CO 3) 2 and experimental constraints on the (Ca,Fe)CO 3 join

    NASA Astrophysics Data System (ADS)

    Davidson, Paula M.; Symmes, Gregory H.; Cohen, Barbara A.; Reeder, Richard J.; Lindsley, Donald H.

    1993-12-01

    Synthesis of the new (disordered) compound CaFe(CO 3) 2 has been achieved with the use of Fe-substituted CaCO 3(Cc ss) + Ca-substituted FeCO 3(Sid ss) as starting materials, and high CO 2 pressures. High pressure (20-30 kbar) is needed to stabilize FeCO 3 to sufficiently high temperatures for disordered CaFe(CO 3) 2 to form. Experiments provide reversed compositions of coexisting disordered phases in the CaFe join and locate the solvus temperature for CaFe(C) 3) 2 between 815 and 845°C at 30 kbars. Calculated phase relations predict that the stability of ordered CaFe(CO 3) 2 is limited to T < ˜450°C by the breakdown to Cc ss + Sid ss. A comparison of the unit-cell volume measured for disordered CaFe(CO 3) 2 vs. that estimated for ordered CaFe(CO 3) 2 suggests that increasing pressure stabilizes the disordered phase.

  4. Refinement of the crystal structures of synthetic nickel- and cobalt-bearing tourmalines

    NASA Astrophysics Data System (ADS)

    Rozhdestvenskaya, I. V.; Setkova, T. V.; Vereshchagin, O. S.; Shtukenberg, A. G.; Shapovalov, Yu. B.

    2012-01-01

    The crystal structures of synthetic tourmalines with a unique composition containing 3 d elements (Ni, Fe, and Co) have been refined: (Ca0.12▭0.88)(Al1.69Ni{0.81/2+}Fe{0.50/2+})(Al5.40Fe{0.60/3+})(Si5.82Al0.18O18)(BO3)3(OH)3.25O0.75 I, a = 15.897(5), c = 7.145(2) Å, V = 1564(1) Å; Na0.91(Ni{1.20/2+}Cr{0.96/3+}Al0.63Fe{0.18/2+}Mg0.03)(Al4.26Ni{1.20/2+}Cr{0.48/3+}Ti0.06)(Si5.82Al0.18)O18(BO3)3(OH)3.73O0.27 II, a = 15.945(5), c = 7.208(2) Å, V = 1587(1) Å3 and Na0.35(Al1.80Co{1.20/2+})(Al5.28Co{0.66/2+}Ti0.06)(Si5.64B0.36)O18(BO3)3(OH)3.81O0.19 III, a = 15.753(8), c = 7.053(3) Å, V = 1516(2) Å3. The reliability factors are R 1 = 0.038-0.057 and wR 2 = 0.041-0.060. It is found that 3 d elements occupy both Y- and Z positions in all structures. The excess positive charge is compensated for due to the incorporation of divalent oxygen anions into the O3(V)+O1(W) positions.

  5. Preclinical Studies of Signaling Pathways in a Mutant Mouse Model of Hormone-Refractory Prostate Cancer

    DTIC Science & Technology

    2011-02-01

    uro - genital mesenchyme (Lamm et al. 2002; Freestone et al. 2003; Berman et al. 2004); and loss...recombination with rodent embryonic uro - genital mesenchyme and grafting into immunodeficient recipients (Hayward et al. 2001; Gao et al. 2004a; Jiang et al...M y c d ri v en b y A R R 2 P B p ro m o te r; H i- M y c an d lo w -M y c d if fe r in la te n cy . P h en o ty p e: P IN an d ad en o ca rc in o m

  6. Iron Spin Crossover in the New Hexagonal Aluminous (NAL) Phase

    NASA Astrophysics Data System (ADS)

    Hsu, H.

    2017-12-01

    The new hexagonal aluminous (NAL) phase, chemical formula AB2C6O12 (A = Na+, K+, Ca2+; B = Mg2+, Fe2+, Fe3+; C = Al3+, Si4+, Fe3+), is considered a major component ( 20 vol%) of mid-ocean ridge basalt (MORB) at lower-mantle conditions. Given that MORB can be transported back into the Earth's lower mantle via subduction, a thorough knowledge of the NAL phase is essential to fully understand the fate of subducted MORB and its role in mantle dynamics and heterogeneity. In this presentation, the complicated spin crossover of the Fe-bearing NAL phase will be discussed based on a series of first-principles calculations [1], in which the local density approximation + self-consistent Hubbard U (LDA+Usc) method was adopted. As revealed by these calculations, only the ferric iron (Fe3+) substituting Al/Si in the octahedral (C) site undergoes a crossover from the high-spin (HS) to the low-spin (LS) state at 40 GPa, while iron substituting Mg in the trigonal-prismatic (B) site remains in the HS state, regardless of its oxidation state (Fe2+ or Fe3+). The volume/elastic anomalies, iron nuclear quadrupole splittings, and crystal field spltting determined by calculations are in great agreement with experiments [2,3]. The calculations further predict that the HS-LS transition pressure of the NAL phase barely increases with temperature due to the three nearly degenerate LS states of Fe3+, suggesting that the elastic anomalies of this mineral can occur at the top lower mantle. [1] H. Hsu, Phys. Rev. B 95, 020406(R) (2017). [2] Y. Wu et al. Earth Planet. Sci. Lett. 434, 91-100 (2016). [3] S. S. Lobanov et al., J. Geophys. Res. Solid Earth 122, 3565 (2017).

  7. Characterizing the composition and evolution of and urban particles in Chongqing (China) during summertime

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Yang, Fumo; Mi, Tian; Cao, Junji; Shi, Guangming; Huang, Rujin; Wang, Huanbo; Chen, Jun; Lou, Shengrong; Wang, Qiyuan

    2017-05-01

    Urban particles were investigated using a single particle aerosol mass spectrometer (SPAMS) in Chongqing during the summertime (from 07/05/2014 to 08/06/2014). Chemical composition, mixing state, and atmospheric behavior of urban particles were studied. The major particle types include ECOC (Elemental-Carbon-Organic-Carbon 20.6%), OC (20.1%), KSec (K-Secondary) (13.3%), BB (Biomass burning, 11.9%), NaK (sodium-potassium-rich, 7.3%), Al-rich (4.0%), Fe-rich (3.2%), Ca-rich (1.4%), Ca-EC (1.6%), and NaKPb (0.5%). EC, ECOC, OC, and Ca-EC were prevalent in the condensation mode (< 0.7 μm), while KSec, EC, NaK were significant in both the droplet mode (0.7-1.1 μm) and coarse mode. Increases in aged groups such as EC, KSec, and NaK were observed in the afternoon. Case studies suggested that wet scavenging (rain) rates of different single particle types followed an order of NaKPb > Fe-rich > EC > Ca-EC > Ca-rich > KSec > OC > NaK > ECOC > Al-rich > BB. Increased number fraction of EC and KSec were correlated with the increase of odd oxygen (Ox = O3 + NO2). EC, OC, and ECOC were enriched at higher relative humidity. The findings of this study on the mixing state, temporal variation, processing, and evolution of single particles provide new insight into the atmospheric behavior and impacts of urban particles.

  8. Color removal from dye-containing wastewater by magnesium chloride.

    PubMed

    Gao, Bao-Yu; Yue, Qin-Yan; Wang, Yan; Zhou, Wei-Zhi

    2007-01-01

    Color removal by MgCl(2) when treating synthetic waste containing pure dyes was studied. The color removal efficiency of MgCl(2)/Ca(OH)(2) was compared with that of Al(2)(SO(4))(3), polyaluminum chloride (PAC) and FeSO(4)/Ca(OH)(2). The mechanism of color removal by MgCl(2) was also investigated. The experimental results show that the color removal efficiency of MgCl(2) is related to the type of dye and depends on the pH of the waste and the dosage of the coagulants used. Treatment of waste containing reactive dye or dispersed dye with MgCl(2) yielded an optimum color removal ratio when the pH of the solution was equal to or above 12.0. For both the reactive and dispersed dye waste, MgCl(2)/Ca(OH)(2) was shown to be superior to MgCl(2)/NaOH, Al(2)(SO(4))(3), PAC and FeSO(4)/Ca(OH)(2) for color removal. A magnesium hydroxide precipitate formed at pH values greater than 12.0, which provided a large adsorptive surface area and a positive electrostatic surface charge, enabling it to remove the dyes through charge neutralization and an adsorptive coagulating mechanism. So, the MgCl(2)/Ca(OH)(2) system is a viable alternative to some of the more conventional forms of chemical treatment, especially for treating actual textile waste with high natural pH.

  9. Nepheline structural and chemical dependence on melt composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcial, José; Crum, Jarrod; Neill, Owen

    Nepheline crystallizes upon slow-cooling in some melts concentrated in Na2O and Al2O3, which can result in a residual glass phase of low chemical durability. Nepheline can incorporate many components often found in high-level waste radioactive borosilicate glass, including glass network ions (e.g., Si, Al, Fe), alkali metals (e.g., Cs, K, Na, and possibly Li), alkaline-earth metals (e.g., Ba, Sr, Ca, Mg), and transition metals (e.g., Mn, and possibly Cr, Zn, Ni). When crystallized from melts of different compositions, nepheline chemistry varies as a function of starting glass composition. Five simulated high level nuclear waste borosilicate glasses shown to crystallize largemore » fractions of nepheline on slow cooling, were selected for study. These melts constituted a range of Al2O3, B2O3, CaO, Na2O, K2O, Fe2O3, and SiO2 compositions. Compositional analyses of nepheline crystals in glass by electron probe micro-analysis (EPMA) indicate that boron is unlikely to be present in any significant concentration, if at all, in nepheline. Also, several models are presented for calculating the fraction of vacancies in the nepheline structure.« less

  10. Producing Martian Lithologies with Geophysically-Constrained Martian Mantle Compositions

    NASA Astrophysics Data System (ADS)

    Minitti, M. E.; Fei, Y.; Bertka, C. M.

    2008-12-01

    The Martian meteorites, rocks measured by the Mars Exploration Rovers (MER) and lithologies detected by orbital assets represent a diversity of igneous rocks that collectively provide insight into the formation and evolution of Mars. Experimental studies aimed at reproducing the observed igneous lithologies have met with varying degrees of success [e.g., 1,2,3], No study has yet been able to reproduce both Martian meteorite parent magmas and the basalts measured by MER at Gusev Crater [e.g., 1,3]. We attempted a different approach to successfully reproducing Martian igneous lithologies by using geophysical constraints on Martian bulk Fe (wt.%), Fe/Si and mantle Mg# [4,5] to identify mixtures of chondrite compositions that formed plausible Martian mantle compositions. We identified two candidate chondrite mixtures for Mars, CM+L and H+L. We synthesized the CM+L and H+L compositions from oxide, carbonate and phosphate powders and fixed them at an oxygen fugacity below the magnetite-wüstite buffer (MW-1). We conducted experiments at 2 GPa (corresponding to ~150 km in the Martian mantle) between 1300-1600 °C for 4-48 hours in the end-loaded piston cylinder apparatus at the Geophysical Laboratory. Thusfar, we have also conducted experiments at 4 GPa (corresponding to ~320 km in the Martian mantle) between 1425-1475 °C for 210-240 minutes in a Walker-type multi-anvil apparatus at the Geophysical Laboratory. We utilized an 18/11 (octahedron edge length/truncated edge length, in mm) assembly. In both assembly types, the sample was contained within a graphite capsule welded into a Pt tube. We analyzed the experiment products in electron probes at either the Geophysical Laboratory or Arizona State University. Fe and Mg contents of olivine, orthopyroxene and melt were used to assess the attainment of equilibrium for each run product. No significant difference exists between the CM+L and H+L experiment products. The near-solidus phase assemblage of the 2-GPa experiments is ol+opx+cpx. Melts at 2 GPa have MgO, FeO, and Mg# values that either overlap those of Martian meteorite parent melts or are capable of reproducing Martian meteorite parent melt compositions through low-pressure olivine fractionation. The 2- GPa melts do not, however, have CaO/Al2O3 values that intersect those of the Martian meteorite parent magmas. This finding mirrors the inability of previous studies [e.g., 1] to form the Martian meteorites. However, the 2-GPa products can lead to Gusev-like basalts via a two-step process. 20-25% melting yields basalt compositions from which subsequent low pressure olivine fractionation leads to basalts with MgO, FeO, CaO and Al2O3 contents and Mg# and CaO/Al2O3 values like those of the Gusev basalts. The near-solidus phase assemblage of the 4-GPa experiments is ol+opx+cpx+garnet. The melt composition resulting from ~20% melting of the CM+L mantle composition has MgO, FeO, CaO and Al2O3 contents and Mg# and CaO/Al2O3 values that fall among Martian meteorite parent magma compositions. Thus, the geophysically-constrained mantle compositions are capable of producing melts with Gusev and Martian meteorite parent magma affinities by simply shifting the pressure of melting. [1] Bertka C.M. and Holloway J.R. (1994) CMP 115, 313-322. [2] Agee C.B. and Draper D.S. (2005) LPSC XXXVI, #1434. [3] Monders A. et al. (2007) MaPS, 42, 131-148. [4] Bertka C.M. and Fei Y. (1998) Science, 281, 1838-1840. [5] Bertka C.M. and Fei Y. (1998) EPSL, 157:79-88.

  11. Dissolution kinetics of iron-, manganese-, and copper-containing synthetic hydroxyapatites

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Hossner, L. R.; Ming, D. W.

    2005-01-01

    Micronutrient-substituted synthetic hydroxyapatite (SHA) is being evaluated by the National Aeronautics and Space Administration's (NASA) Advanced Life Support (ALS) Program for crop production on long-duration human missions to the International Space Station or for future Lunar or Martian outposts. The stirred-flow technique was utilized to characterize Ca, P, Fe, Mn, and Cu release characteristics from Fe-, Mn-, and Cu-containing SHA in deionized (DI) water, citric acid, and diethylene-triamine-pentaacetic acid (DTPA). Initially, Ca and P release rates decreased rapidly with time and were controlled by a non-SHA calcium phosphate phase(s) with low Ca/P solution molar ratios (0.91-1.51) relative to solid SHA ratios (1.56-1.64). At later times, Ca/P solution molar ratios (1.47-1.79) were near solid SHA ratios and release rates decreased slowly indicating that SHA controlled Ca and P release. Substituted SHA materials had faster dissolution rates relative to unsubstituted SHA. The initial metal release rate order was Mn >> Cu > Fe which followed metal-oxide/phosphate solubility suggesting that poorly crystalline metal-oxides/phosphates were dominating metal release. Similar metal release rates for all substituted SHA (approximately 0.01 cmol kg-1 min-1) at the end of the DTPA experiment indicated that SHA dissolution was supplying the metals into solution and that poorly crystalline metal-oxide/phosphates were not controlling metal release. Results indicate that non-SHA Ca-phosphate phases and poorly crystalline metal-oxide/phosphates will contribute Ca, P, and metals. After these phases have dissolved, substituted SHA will be the source of Ca, P, and metals for plants.

  12. A Geochemical and Mineralogical Model for Formation of Layered Sulfate Deposits at Meridiani Planum by Hydrothermal Acid-sulfate Alteration of Pyroclastic Basalt

    NASA Astrophysics Data System (ADS)

    McCollom, T. M.; Hynek, B. M.

    2012-12-01

    The Mars Exploration Rover (MER) Opportunity has extensively characterized sulfate-rich, hematite-bearing bedrock exposed at Meridiani Planum, Mars. Based on various measurements, the mineral composition of the bedrocks has been interpreted to include: amorphous silica/glass/phyllosilicates, Mg-, Ca-, and Fe-bearing sulfates including jarosite, minor amounts of igneous phases including plagioclase, pyroxene, olivine, and magnetite, and hematite [1,2]. Chemically, the bedrocks closely resemble the composition of pristine martian basalt with addition of S and O, and minor variations of Mg and Cl with depth [3,4]. Based on these and other observations, the MER team has proposed that the bedrocks represent chemically altered siliciclastic sediments combined with sulfate salts formed by evaporation of sulfate-bearing fluids, modified by transport and multiple stages of infiltrating groundwater [3,5]. Several alternative scenarios have been proposed for the origin of the rocks including large impacts [6], evaporating glacial deposits [7], acid-fog alteration [8], and hydrothermal acid-sulfate alteration of basalt [4]. In order to further evaluate the potential contribution of hydrothermal proceeses to the deposits, we performed numerical geochemical models of acid-sulfate alteration of martian basalt based on constraints provided by recent laboratory experiments. Experimental studies of alteration of basalt conducted in our lab [9] indicate that the initial stages of acid-sulfate alteration of pyroclastic basalt are characterized by rapid decomposition of igneous crystalline phases including plagioclase, pyroxene, and olivine, while the glass (and igneous phases protected within the glass) remain unreactive. Elements released by dissolving minerals are precipitated primarily as amorphous silica and Ca-, Al-, Fe- and Mg-bearing sulfates, while precipitation of phyllosilicates and Fe-oxides/oxyhydroxides (FeOx) is kinetically inhibited. Based on these constraints, models of acid-sulfate alteration of martian pyroclastic basalt predict that the early stages of alteration will produce amorphous silica, anhydrite (or gypsum at lower temperature), Fe-bearing natroalunite, and kieserite as predominant secondary phases, along with relict glass and silicates protected within the glass. Hematite may form with continued heating through partial decomposition of Fe-bearing natroalunite [9], and some of the glass phase may partially devitrify to form minor phyllosilicates such as nontronite and nanophase Fe oxides. The resulting rock would have a chemical and mineralogical composition closely resembling that observed at Meridiani Planum. We conclude that hydrothermal acid-sulfate alteration of pyroclastic basalt provides the most parsimonious explanation for the composition of the sulfate deposits. References: [1] Glotch et al., JGR (2006). [2] Klingelhöfer et al. Science (2004). [3] McLennan et al., EPSL (2005). [4] McCollom & Hynek, Nature (2005). [5] Squyres et al. Science (2006). [6] Knauth et al. Nature (2005). [7] Niles & Michalski, Nat. Geosci. (2009). [8] Berger et al. Am. Mineral. (2009). [9] McCollom et al. JGR-Planets (submitted ms.)

  13. Diverse Aqueous Conditions on Mars from New Orbital Detections of Carbonate and Sulfate

    NASA Astrophysics Data System (ADS)

    Wray, James J.; Squyres, S. W.

    2010-10-01

    Diverse aqueous environments on ancient Mars have been a key inference from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on NASA's Mars Reconnaissance Orbiter, which has identified many alteration minerals in a range of settings [e.g., 1-4]. Here we report two new minerals detected using CRISM. In the southern highlands northwest of the Hellas basin, a mid-sized crater exposes carbonate in its central uplift. Spectral absorptions at 1, 2.33, and 2.53 microns are most consistent with Fe-carbonate, distinct from the Mg-carbonates identified from orbit by [5]. Fe-carbonate is associated with Mg-phyllosilicate in fractured materials formerly buried kilometers beneath the surface, and--like the Mg/Fe-carbonate found by the Spirit rover [6]--suggests a reducing, neutral-to-alkaline alteration environment. One of the largest phyllosilicate exposures on Mars occurs in the Mawrth Vallis region [e.g., 7]. We identify bassanite (Ca-sulfate hemihydrate) in layers underlying the phyllosilicate-bearing beds [8], a stratigraphy distinct from that predicted by global models of martian aqueous history [9]. Bassanite could have formed via acid-sulfate alteration of Ca-carbonate, through dehydration of gypsum, or under hydrothermal conditions [10]. These detections expand the known mineralogic diversity of Mars and the range of environments to explore for past habitability. [1] Mustard, J. F. et al. (2008) Nature 454, 305-309. [2] Murchie, S. L. et al. (2009) J. Geophys. Res. 114, E00D06. [3] Ehlmann, B. L. et al. (2009) J. Geophys. Res. 114, E00D08. [4] Wray, J. J. et al. (2009) Geology 37, 1043-1046. [5] Ehlmann, B. L. et al. (2008) Science 322, 1828-1832. [6] Morris, R. V. et al. Science, in press, doi:10.1126/science.1189667. [7] Poulet, F. et al. (2005) Nature 438, 623-627. [8] Wray, J. J. et al. Icarus, in press, doi:10.1016/j.icarus.2010.06.001. [9] Bibring, J.-P. et al. (2006) Science 312, 400-404. [10] Vaniman, D. T. et al. (2009) LPSC 40, 1654.

  14. Impact of chemical amendment of dairy cattle slurry on phosphorus, suspended sediment and metal loss to runoff from a grassland soil.

    PubMed

    Brennan, R B; Fenton, O; Grant, J; Healy, M G

    2011-11-01

    Emerging remediation technologies such as chemical amendment of dairy cattle slurry have the potential to reduce phosphorus (P) solubility and consequently reduce P losses arising from land application of dairy cattle slurry. The aim of this study was to determine the effectiveness of chemical amendment of slurry to reduce incidental losses of P and suspended sediment (SS) from grassland following application of dairy cattle slurry and to examine the effect of amendments on metal concentrations in runoff water. Intact grassed-soil samples were placed in two laboratory runoff boxes, each 200-cm-long by 22.5-cm-wide by 5-cm-deep, before being amended with dairy cattle slurry (the study control) and slurry amended with either: (i) alum, comprising 8% aluminium oxide (Al(2)O(3)) (1.11:1 aluminium (Al):total phosphorus (TP) of slurry) (ii) poly-aluminium chloride hydroxide (PAC) comprising 10% Al(2)O(3) (0.93:1 Al:TP) (iii) analytical grade ferric chloride (FeCl(2)) (2:1 Fe:TP), (iv) and lime (Ca(OH)(2)) (10:1 Ca:TP). When compared with the study control, PAC was the most effective amendment, reducing dissolved reactive phosphorus (DRP) by up to 86% while alum was most effective in reducing SS (88%), TP (94%), particulate phosphorus (PP) (95%), total dissolved phosphorus (TDP) (81%), and dissolved unreactive phosphorus (DUP) (86%). Chemical amendment of slurry did not appear to significantly increase losses of Al and Fe compared to the study control, while all amendments increased Ca loss compared to control and grass-only treatment. While chemical amendments were effective, the reductions in incidental P losses observed in this study were similar to those observed in other studies where the time from slurry application to the first rainfall event was increased. Timing of slurry application may therefore be a much more feasible way to reduce incidental P losses. Future work must examine the long-term effects of amendments on P loss to runoff and not only incidental losses. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. A Comparative Cathodoluminescence Emission Study of Feldspathic Glasses in SNC Meteorites and Quenched Melts of These Glasses

    NASA Astrophysics Data System (ADS)

    Kubny, A.; Jagoutz, E.

    2001-12-01

    In this study the cathodoluminescence (electron-excited luminescence) emission spectra were measured in the range 200 to 900 nm of individual feldspathic glass grains in the SNC meteorites Shergotty 101, Shergotty 232, ALHA 84001, EETA 79001-47, EETA 79001-276, and Dar al Gani 476 and those of quenched melts of the feldspathic glass grains. The quenching experiments of the original feldspathic glasses were conducted at 1500° C and atmospheric pressure. The aim of this CL emission study was the characterization of feldspathic glasses of SNC meteorites by comparison of the diagnostic spectral features of the feldspathic glasses of SNC meteorites with those of their quenched melts. In the CL emission spectra of the studied feldspathic glasses generally broad bands in the blue (ca. 460 nm), green (ca. 560 nm), and red (ca. 700 nm) can appear. These emission bands are assigned to structural defects (Al-O--Al centers), and the structural incorporation of Mn2+ and Fe3+ , respectively. The blue emission band at about 460 nm attributed to Al-O--Al centers is observed in the spectra of the original feldspathic glasses whereas it is not present (or only in low relative intensity) in the spectra of the quenched melts. The green emission band at 550 to 575 nm assigned to electronic transitions of Mn2+ in M sites is observed in the spectra of the original feldspathic glasses. It is shifted to longer wavelengths of 590 to 605 nm in the spectra of the quenched melts. The occurrence of the red emission band at about 700 nm attributed to electronic transition of Fe3+ in the spectra of the quenched melts of the feldspathic glasses indicates the presence of structural units which allow the occupancy of Fe3+ on tetrahedral sites. The results obtained by CL emission spectroscopy confirm results of Raman spectroscopic studies that the stuctures of feldspathic glasses of the studied SNC meteorites are modified by melting and quenching at atmospheric pressure. Additionally, comparison with published work on CL emission of shocked oligoclases shows that the feldspathic glasses of the studied SNC meteorites are not diaplectic but melt glasses.

  16. Retention Mechanisms of Citric Acid in Ternary Kaolinite-Fe(III)-Citrate Acid Systems Using Fe K-edge EXAFS and L3,2-edge XANES Spectroscopy

    PubMed Central

    Yang, Jianjun; Wang, Jian; Pan, Weinan; Regier, Tom; Hu, Yongfeng; Rumpel, Cornelia; Bolan, Nanthi; Sparks, Donald

    2016-01-01

    Organic carbon (OC) stability in tropical soils is strongly interlinked with multivalent cation interaction and mineral association. Low molecular weight organic acids (LMWOAs) represent the readily biodegradable OC. Therefore, investigating retention mechanisms of LMWOAs in mineral-cation-LMWOAs systems is critical to understanding soil C cycling. Given the general acidic conditions and dominance of kaolinite in tropical soils, we investigated the retention mechanisms of citric acid (CA) in kaolinite-Fe(III)-CA systems with various Fe/CA molar ratios at pH ~3.5 using Fe K-edge EXAFS and L3,2-edge XANES techniques. With Fe/CA molar ratios >2, the formed ferrihydrite mainly contributed to CA retention through adsorption and/or coprecipitation. With Fe/CA molar ratios from 2 to 0.5, ternary complexation of CA to kaolinite via a five-coordinated Fe(III) bridge retained higher CA than ferrihydrite-induced adsorption and/or coprecipitation. With Fe/CA molar ratios ≤0.5, kaolinite-Fe(III)-citrate complexation preferentially occurred, but less CA was retained than via outer-sphere kaolinite-CA complexation. This study highlighted the significant impact of varied Fe/CA molar ratios on CA retention mechanisms in kaolinite-Fe(III)-CA systems under acidic conditions, and clearly showed the important contribution of Fe-bridged ternary complexation on CA retention. These findings will enhance our understanding of the dynamics of CA and other LMWOAs in tropical soils. PMID:27212680

  17. Retention mechanisms of citric acid in ternary kaolinite-Fe(III)-citrate acid systems using Fe K-edge EXAFS and L 3,2-edge XANES spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Jianjun; Wang, Jian; Pan, Weinan

    Organic carbon (OC) stability in tropical soils is strongly interlinked with multivalent cation interaction and mineral association. Low molecular weight organic acids (LMWOAs) represent the readily biodegradable OC. Therefore, investigating retention mechanisms of LMWOAs in mineral-cation-LMWOAs systems is critical to understanding soil C cycling. Given the general acidic conditions and dominance of kaolinite in tropical soils, we investigated the retention mechanisms of citric acid (CA) in kaolinite-Fe(III)-CA systems with various Fe/CA molar ratios at pH ~3.5 using Fe K-edge EXAFS and L- 3,2-edge XANES techniques. With Fe/CA molar ratios >2, the formed ferrihydrite mainly contributed to CA retention through adsorptionmore » and/or coprecipitation. With Fe/CA molar ratios from 2 to 0.5, ternary complexation of CA to kaolinite via a five-coordinated Fe(III) bridge retained higher CA than ferrihydrite-induced adsorption and/or coprecipitation. With Fe/CA molar ratios ≤ 0.5, kaolinite-Fe(III)-citrate complexation preferentially occurred, but less CA was retained than via outer-sphere kaolinite-CA complexation. This study highlighted the significant impact of varied Fe/CA molar ratios on CA retention mechanisms in kaolinite-Fe(III)-CA systems under acidic conditions, and clearly showed the important contribution of Fe-bridged ternary complexation on CA retention. In conclusion, these findings will enhance our understanding of the dynamics of CA and other LMWOAs in tropical soils.« less

  18. Retention mechanisms of citric acid in ternary kaolinite-Fe(III)-citrate acid systems using Fe K-edge EXAFS and L 3,2-edge XANES spectroscopy

    DOE PAGES

    Yang, Jianjun; Wang, Jian; Pan, Weinan; ...

    2016-05-23

    Organic carbon (OC) stability in tropical soils is strongly interlinked with multivalent cation interaction and mineral association. Low molecular weight organic acids (LMWOAs) represent the readily biodegradable OC. Therefore, investigating retention mechanisms of LMWOAs in mineral-cation-LMWOAs systems is critical to understanding soil C cycling. Given the general acidic conditions and dominance of kaolinite in tropical soils, we investigated the retention mechanisms of citric acid (CA) in kaolinite-Fe(III)-CA systems with various Fe/CA molar ratios at pH ~3.5 using Fe K-edge EXAFS and L- 3,2-edge XANES techniques. With Fe/CA molar ratios >2, the formed ferrihydrite mainly contributed to CA retention through adsorptionmore » and/or coprecipitation. With Fe/CA molar ratios from 2 to 0.5, ternary complexation of CA to kaolinite via a five-coordinated Fe(III) bridge retained higher CA than ferrihydrite-induced adsorption and/or coprecipitation. With Fe/CA molar ratios ≤ 0.5, kaolinite-Fe(III)-citrate complexation preferentially occurred, but less CA was retained than via outer-sphere kaolinite-CA complexation. This study highlighted the significant impact of varied Fe/CA molar ratios on CA retention mechanisms in kaolinite-Fe(III)-CA systems under acidic conditions, and clearly showed the important contribution of Fe-bridged ternary complexation on CA retention. In conclusion, these findings will enhance our understanding of the dynamics of CA and other LMWOAs in tropical soils.« less

  19. High-resolution mapping of elemental abundances of the lunar regolith

    NASA Astrophysics Data System (ADS)

    Wöhler, Christian; Berezhnoy, Alexey; Evans, Richard

    Many attempts have been made to derive elemental abundances of the lunar surface from mul-tispectral images (cf. e.g. [1]). The gamma ray spectrometer on board the Lunar Prospector spacecraft (LP GRS) provided the first "direct" global measurements of lunar elemental abun-dances including Fe, Th (15 km surface resolution), Ti, K, Sm (60 km), Al, O, Si, Mg, Ca, and U (150 km). In this study we rely on the elemental abundance estimation method intro-duced in [2], which is based on spectral features derived from the Clementine UVVIS+NIR data set and estimates the abundances of Ca, Al, Fe, Mg, Ti, and O by applying a second order polynomial regression model with the corresponding LP GRS abundances as "ground truth". The regarded spectral features are the continuum slope, the FWHM of the ferrous absorption trough near 1000 nm after continuum division, and the absorption wavelengths and relative absorption depths (cf. [2,3] for details). A petrographic analysis is performed based on the abundances of the key elements Al, Fe, and Mg [4]. The relative abundances of the endmem-bers mare basalt, Mg-rich rock, and ferroan anorthosite are estimated using Fe-Mg and Al-Mg diagrams, where the endmember compositions are determined based on the three-endmember plane fitted in Al-Fe-Mg space to the elemental abundances at 150 km resolution obtained with the regression model. The root-mean-square deviation from the three-endmember plane is only 0.3 wt percent. Our petrographic map shows Mg-rich rocks in the Mare Frigoris region, on the edges of large maria, in the South Pole Aitken basin, and in some cryptomaria such as the Schiller-Schickard basin. The presence of Mg-rich rocks in Mare Frigoris explains the Fe and Ti depletion discussed in [5]. Furthermore, our analysis confirms that the basalts of eastern mare Frigoris have an atypically high Al content [6]. The region south of Lichtenberg and around Seleucus and Briggs in northwestern Oceanus Procellarum is characterised by comparably large deviations from the three-endmember plane in Al-Fe-Mg space of 1 wt percent and more. These anomalous basalts have low ages of 1.7-2.8 Ga [7]. They are characterised by secondary absorption features near 1100 nm and high 2000/1500 spectral ratios, indicating a high olivine content. Anomalous material in lunar craters is generally interpreted as being excavated during crater formation from the lower lunar crust or upper mantle (cf. e.g. [8]). For the highland crater Tycho, our method reveals mafic units in the northern crater wall and in the central peaks and Mg-rich rock in the southwestern crater wall and distributed throughout the crater floor. This material is interpreted in [9] as anorthositic gabbro with a low Fe content and a mafic mineral assemblage dominated by high-Ca pyroxene. Our petrographic map of Copernicus shows the central peaks as small regions composed of the mare basalt endmember (interpreted as gabbroic material) with admixed troctolite (western peak) and mainly troctolite (eastern peak), respectively [8]. For the central peaks of the crater Bullialdus, our technique clearly reveals the Mg-rich rock component, which is interpreted as norite in [10]. We present very high resolution petrographic maps derived from newly released Selene multi-spectral data of the central peaks of Copernicus and Bullialdus. For the pyroclastic deposits (LPDs) on the floor of Alphonsus, our technique indicates high Mg/Al ratios between 1.4 (eastern LPDs) and 2.5 (western LPD) [11]. The secondary absorption near 1100 nm and the high 2000/1500 ratio suggest the presence of a major olivine component. As a general result, we show that our regression-based elemental abundance estimation method allows the detection of the main lunar terrain classes and rock types on small spatial scales based on multispectral imagery in the visible and near-infrared domain. [1] Lucey et al. (2000), JGR 105(E8), 20297-20306. [2] Wühler et al. (2009), EPSC 2009, 263. [3] Evans et al. (2009) LPSC XXXX, 1093. [4] Berezhnoy et al. (2005), PSS 53, 1097-1108. [5] Taylor et al. (1996), LPSC XXVII, 1317-1318. [6] Kramer et al. (2009), LPSC XXXX, 2369. [7] Hiesinger et al. (2003), JGR 108(E7), 5065-5091. [8] Pieters and Tompkins (1999), LPSC XXX, 1286. [9] Lucey et al. (2002), LPSC XXXIII, 1056. [10] Tompkins et al. (1994), Icarus 110(2), 261-274. [11] Schonfeld and Bielefeld (1978), LPSC V, 3037-3048.

  20. Quantum-chemical modeling of smectite clays

    NASA Technical Reports Server (NTRS)

    Aronowitz, S.; Coyne, L.; Lawless, J.; Rishpon, J.

    1982-01-01

    A self-consistent charge extended Hueckel program is used in modeling isomorphic substitution of Al(3+) by Na(+), K(+), Mg(2+), Fe(2+), and Fe(3+) in the octahedral layer of a dioctahedral smectite clay, such as montmorillonite. Upon comparison of the energies involved in the isomorphic substitution, it is found that the order for successful substitution is as follows: Al(3+), Fe(3+), Mg(2+), Fe(2+), Na(+), which is equivalent to Ca(2+), and then K(+). This ordering is found to be consistent with experimental observation. The calculations also make it possible to determine the possible penetration of metal ions into the clay's 2:1 crystalline layer. For the cases studied, this type of penetration can occur at elevated temperatures into regions where isomorphic substitution has occurred with metal ions that bear a formal charge of less than 3+. The computed behavior of the electronic structure in the presence of isomorphic substitution is found to be similar to behavior associated with semiconductors.

  1. Determining the Differential Emission Measure from EIS, XRT, and AIA

    NASA Technical Reports Server (NTRS)

    Winebarger, Amy R.; Warren, H.P.; Schmelz, J.

    2010-01-01

    This viewgraph presentation determines the Differential Emission Measure (DEM) from the EUV Imaging Spectrometer (EIS), X Ray Telescope (XRT), and Atmospheric Imaging Array (AIA). Common observations with Fe, Si, and Ca EIS lines are shown along with observations with Al-mesh, Ti-poly Al-thick and Be-thick XRT filters. Results from these observations are shown to determine what lines and filters are important to better constrain the hot component.

  2. Applications of biotite inclusion composition to zircon provenance determination

    NASA Astrophysics Data System (ADS)

    Bell, Elizabeth A.; Boehnke, Patrick; Mark Harrison, T.

    2017-09-01

    Detrital zircons are the only confirmed surviving remnants of >4.03 Ga crust while younger detrital zircons provide a parallel record of more recent crustal evolution to that preserved in crystalline rocks. Zircons often preserve inclusions that may provide clues as to the origins of out-of-context grains in the sedimentary record. Previous studies have established that inclusions of biotite in magmatic zircon are compositionally well-matched to biotite in the source rock matrix, although a direct application to ancient detrital zircons has not been made. A number of studies have documented variations in the Fe, Mg, and Al contents of magmatic biotite from different source rocks and tectonic settings, suggesting that biotite inclusions may indeed serve as provenance indicators for detrital zircons. Consistent with earlier studies, we find that the FeO*/MgO ratio of magmatic biotite from continental arcs, collisional, and within-plate settings varies with relative oxidation state as well as whole-rock FeO*/MgO, while its Al2O3/(FeO* + MgO) varies with whole-rock A/CNK (molar Al/(2 ṡ Ca + Na + K)). Biotite from oxidized metaluminous and reduced S-type granitoids can be readily distinguished from each other using FeO*/MgO and Al2O3/(FeO* + MgO), while biotite from reduced I-type and oxidized peraluminous granites may in some cases be more ambiguous. Biotite from peralkaline and reduced A-type granites are also distinguishable from all other categories by Al2O3/(FeO* + MgO) and FeO*/MgO, respectively. Biotite inclusions in Hadean zircons from Jack Hills, Western Australia indicate a mixture of metaluminous and reduced S-type host rocks, while inclusions in 3.6-3.8 Ga detrital zircons from the Nuvvuagittuq Supracrustal Belt indicate more oxidized peraluminous magmas. These results highlight the diversity of felsic materials on the early Earth and suggest that biotite inclusions are applicable to zircon provenance throughout the sedimentary record.

  3. Alumovesuvianite, Ca19Al(Al,Mg)12Si18O69(OH)9, a new vesuvianite-group member from the Jeffrey mine, asbestos, Estrie region, Québec, Canada

    NASA Astrophysics Data System (ADS)

    Panikorovskii, Taras L.; Chukanov, Nikita V.; Aksenov, Sergey M.; Mazur, Anton S.; Avdontseva, Evgenia Yu; Shilovskikh, Vladimir V.; Krivovichev, Sergey V.

    2017-12-01

    Alumovesuvianite (IMA 2016-014), ideally Ca19Al(Al,Mg)12Si18O69(OH)9, is a new vesuvianite-group member found in the rodingite zone at the contact of a gabbroid rock with host serpentinite in the abandoned Jeffrey mine, Asbestos, Estrie Region, Québec, Canada. It occurs as prismatic tetragonal crystals up to 4 × 4 × 6 mm3 in size encrusting walls of cavities in a granular diopside. Associated minerals are diopside, grossular and prehnite. Single crystals of alumovesuvianite are transparent colorless or light pink with a vitreous lustre. The dominant crystal forms are {100}, {110}, {210}, {111}, {101} and {001}. The Mohs hardness is 6.5. The specific gravitiy is D meas = 3.31(1) g/cm3 and D calc = 3.36 g/cm3, respectively. The mineral is optically uniaxial (-), ω = 1.725(2), ɛ = 1.722(2). The chemical composition, determined by SEM-WDS (wavelength-dispersive spectroscopy on a scanning electron microscope; all oxides except H2O) and TG (thermogravimety; H2O) analysis, is: SiO2 37.1 wt%, Al2O3 18.8 wt%, CaO 36.6 wt%, MgO 2.48 wt%, Mn2O3 0.67 wt%, Fe2O3 0.22 wt%, H2O 2.61 wt%, total 98.5 wt%. The empirical formula based on 19 Ca atoms per formula unit and taking into account the MAS-NMR (magic-angle spinning nuclear magnetic resonance) data, is: Ca19.00(Al0.92Fe3+ 0.08)Σ1.00(Al9.83Mg1.80Mn3+ 0.25)Σ11.88Si17.98O69.16(OH)8.44. The most intense IR absorption bands lie in the ranges 412-609, 897-1024, and 3051-3671 cm-1. The eight strongest lines of the powder X-ray diffraction pattern are ( I-d(Å)- hkl): 22-2.96-004, 100-2.761-432, 61-2.612-224, 25-2.593-600, 20-1.7658-831, 20-1.6672-734, 21-1.6247-912, and 22-1.3443-880. Alumovesuvianite is tetragonal, space group P4/ n, unit-cell parameters refined from the powder data are a = 15.5603(5) Å, c = 11.8467(4) Å, V = 2868.3(4) Å3, Z = 2. The crystal structure has been refined to R 1 = 0.036 for 3098 unique observed reflections with | F o| ≥ 4σ F . The structure refinement provides the < Y1A-O > bond length of 1.916 Å and the scattering factor for the Y1 site of 16 e - , which is in good agreement with the total occupancy of this site as (Al0.73Mn3+ 0.20Fe3+ 0.07)Σ1.00 and is confirmed by the 27Al MAS NMR data. Alumovesuvianite is a new member of the vesuvianite group with Al3+ as a dominant cation in the Y1 site. The name alumovesuvianite is given to highlight the species-defining role of Al.

  4. Representative composition of the Murray Formation, Gale Crater, Mars, as refined through modeling utilizing Alpha Particle X-ray Spectrometer observations

    NASA Astrophysics Data System (ADS)

    VanBommel, Scott; Gellert, Ralf; Berger, Jeff; Desouza, Elstan; O'Connell-Cooper, Catherine; Thompson, Lucy; Boyd, Nicholas

    2017-04-01

    The Murray formation[1] in Gale Crater is distinctly characterized by depleted MgO and CaO, an elevated Fe/Mn ratio, and enrichments in SiO2, K2O, and Ge, compared to average Mars. Supported by observations with Curiosity's Alpha Particle X-ray Spectrometer[2], this pattern is consistent over several kilometers. However, intermixed dust, Ca-, and Mg-sulfates introduce chemical heterogeneities into the APXS field of view. Better constraints on the composition of what is characteristic of the Murray formation is achieved by applying a least-squares deconvolution[3] to a selection of APXS Murray targets. We subtract the composition of known additions (dust[4], MgSO4, CaSO4) to derive a more-representative Murray composition. Slight variations within Murray are then probed by modeling each target as a mixture of dust, sulfates and the derived representative Murray. The derived composition for what is representative of Murray has several key deviations from the straightforward average of Murray targets. The subtraction of known dust, Mg-, and Ca-sulfate additions suggests further depletion in MgO and CaO in Murray and also suggests a significant decrease in SO3 concentration compared to the average of Murray targets. While veins and concretions are contaminants when considering the composition of the bulk rock, the subtraction of Mg- or Ca-sulfate is independent of sulfate form. Sulfates within the bulk rock (detrital or cements) have been observed in the Murray formation. These sulfates are important and discussed further in [5]. Modeling APXS Murray targets as a mixture of dust, MgSO4, CaSO4, and representative Murray, provides insight into potential subtle variations within the surprisingly consistent Murray formation. For example, the high SiO2 in Buckskin, (sol 1057-1091) is not simply a mixture of representative Murray with sulfates and dust. The elevated Ni (and MgSO4) of Morrison (sol ˜775), the elevated Al2O3 of Mojave (sol ˜800-900), and the gradually increasing Fe/Mn ratio (by decreasing Mn with near-constant FeO) all stand out from this modeling. The constant CaO, after the impact of CaSO4 is removed, as well as the steady SiO2, TiO2, and FeO, aside from Buckskin, are also clearly visible. Along the traverse up Mount Sharp, there also is an apparent downward trend in Mn and Zn and an increasing trend in Cl and Br. The chemical homogeneity of the Murray formation encountered at Gale Crater provides an opportunity to test existing algorithms in new ways. This homogeneity along the traverse is a major finding in itself, however, removing signals of known additions and deriving a composition representative of the Murray formation, is important as it permits the potential to detect and quantify faint variations within the Murray formation as Curiosity continues up Mount Sharp. References: [1] Grotzinger et al. (2015) Science, 350 (6257). [2] Gellert and Clark (2015) Elements, 11, 39-44. [3] VanBommel et al. (2016) XRS, 45(3), 155-161. [4] Berger et al. (2016) GRL, 43 67-75. [5] Thompson et al. (2017) LPSC XLVIII 3020. Acknowledgements: This work has been supported by the Canadian Space Agency (CSA) under contract 9F052-14-0592. The MSL APXS is financed and managed by the CSA with MacDonald Dettwiler and Associates as the primary contractor to build the instrument. Funding is provided by the CSA and NASA. Much appreciation goes to JPL for their support, dedication, and invaluable expertise.

  5. Universal single grain amphibole thermobarometer for mantle rocks - preliminary calibration.

    NASA Astrophysics Data System (ADS)

    Ashchepkov, Igor

    2017-04-01

    Calibration of S-Al- K-Na-Ca distribution in the structure of the mantle amphiboles (Cr- hornblende, pargasite, kaersutite) using experimental data (Niida, Green, 1999; Wallace Green, 1991, Conceicao, Green, 2004; Medard et al, 2006; Safonov, Butvina, 2013; 2016; Pirard, Hermann, 2015 etc) allows to obtain an equation for pressure estimates in 0.5 - 4.5 GPa interval. Regression calculated pressures with experimental values (R 0.82) and precision 5 kbar allow to use barometer for a wide range of mantle rocks from peridotite to pyroxenites and megacrystals. For the higher pressures (Cr- pargasite richterite) calibration is carried by the cross- correlations with the estimates calculated for the natural associations obtained using clino- and orthopyroxene. IT was used KD =Si/(8-Al-2.2*Ti)*(Na+K))/Ca for the following equation: P(GPa)=0.0035*(4+K/(Na+K))*2*Mg)/Fe+3.75*(K+Na)/Ca))*KD*ToK**0.75/ (1+3.32*Fe)-ln(1273/ToK*5*(8*Mg-Al*2 +3*Ti+8*Cr+3*K)/10 Th advantage of this barometer comparing with the previous (Ridolfi, Renzulli, 2012) is that is working with all mantle amphibole types. For the calculations of the PT parameters of the natural xenocrysts it was used monomineral version of Gar-Amph termometer (Ravna et al., 2000) in combination with the received barometer. Contents of Ca- Mg and Fe in associated garnets were calculated usinf the regressions obtained from natural and experimental associations. Aplication of the mantle amphibole thermobarometry for the reconstruction of sections of the cratonic mantle lithosphere of Yakutia show that amphibloles are distributed in various parts of mantle sections in deifferent mantle terranes of Yakutia. The most abundant amphoboles from Alakite region are distributed within all mantle section. In the SCLM beneat Yubileyaya pipe thehalf of them belong to the spinel garnet facie refering to the upper pyroxenitic suit and Cr- hornblende - mica viens. The second group reffer to the eclogite pyroxenite layer in the middle part of SCLM and the third group refer to richterites form the depleted manle peridotites. In SCLM beneat the Sytykanskaya they are more frequent and trace through all the mantle layers. In SCLM beneat the Aykhal they mostly are from the lower and in Komsomolskaya from the middle SCLM parts. In Daldyn field rare amdphibles from Dalnaya are Fe- enriched pargasites belonging to the Ilm bearing peridotites in middle SCLM part as well as in SCLM beneath thr Udachnaya. But there are Fe- low amphiboles substitutng the orthopyroxenes. In Zarnitsa the Cr - hornblendes occur in shallow garnet pyroxenites. One deep seated richterite substitute garnet grains. Rare amphiboles were detedted in Mirninsky filed in Internatiolnaya pipe and reffer to the resorbed and deformed granets from the Garnet -Spinel facies and from 4.0 GPa boundary. Amphiboles are frequent in the SCLM from the northern part of Siberian craton. In SCLM beneath the Kharmai the Fe- encriched varietes are from the Moho boundary. Common Cr-pargasite occurs to 3 GPa in Obnazhennay, pipe, Kharamai field In mantle SCLM beneath Obnazhennaya pipe and circum Anabr region friquent Cr- pargasies and horblendes refer to the relatively hot branch of mantle lithosphere and probably corresponds to the Triassic mantle reactivation. Mantle Cr- hornbleneds occurs on most upper part of the mantle column beneath Quaternary mujeritic Bartoy vocanoes in Transbaikal. The pargasites and kaersutites in this locality refer to more heated conditions and could be found to 2.0 GPa. Grant RFBR 16.-05-000860

  6. Characterisation of iron-rich atmospheric submicrometre particles in the roadside environment

    NASA Astrophysics Data System (ADS)

    Sanderson, P.; Su, S. S.; Chang, I. T. H.; Delgado Saborit, J. M.; Kepaptsoglou, D. M.; Weber, R. J. M.; Harrison, Roy M.

    2016-09-01

    Human exposure to ambient metallic nanoparticles is an area of great interest owing to their potential health impacts. Ambient metallic nanoparticles found in the roadside environment are contributed by combustion engines and wear of brakes, tyres and road surfaces. Submicrometre atmospheric particles collected at two UK urban sites have been subject to detailed characterisation. It is found that many metallic nanoparticles collected from roadside sampling sites are rich in iron. The Fe-rich nanoparticles can be classified into (1) high Fe content (ca 90 wt%) with each alloying element less than 1 wt%; and (2) moderate Fe content (<75 wt%) with high manganese and silicon content. Both clusters contain a variable mix of minor constituents, Mn, S and Si being most important in the high-Fe group. The moderate Fe group also contains Zn, Cu, Ba, Al and Ca. The Fe-rich nanoparticles exhibit primary particle sizes ranging between 20 and 30 nm, although some much larger particles up to around 100 nm can also be observed, along with some very small particles of 10 nm or less. These tend to agglomerate forming clusters ranging from ∼200 nm to 1 μm in diameter. The iron-rich particles observed are oxides, taking the form of spheres or multifaceted regular polyhedra. Analysis by EELS shows that both high- and moderate-Fe groups include particles of FeO, Fe3O4, α-Fe2O3 and γ-Fe2O3 of which γ-Fe2O3 is the most prominent. Internal mixing of different Fe-oxides is not observed.

  7. Thermobarometry of mafic igneous rocks based on clinopyroxene-liquid equilibria, 0 30 kbar

    NASA Astrophysics Data System (ADS)

    Putirka, K.; Johnson, Marie; Kinzler, Rosamond; Longhi, John; Walker, David

    1996-02-01

    Models for estimating the pressure and temperature of igneous rocks from co-existing clino-pyroxene and liquid compositions are calibrated from existing data and from new data obtained from experiments performed on several mafic bulk compositions (from 8 30 kbar and 1100 1475° C). The resulting geothermobarometers involve thermodynamic expressions that relate temperature and pressure to equilibrium constants. Specifically, the jadeite (Jd; NaAlSi2O6) diopside/hedenbergite (DiHd; Ca(Mg, Fe) Si2O6) exchange equilibrium between clinopyroxene and liquid is temperature sensitive. When compositional corrections are made to the calibrated equilibrium constant the resulting geothermometer is (i) 104 T=6.73-0.26* ln [Jdpx*Caliq*FmliqDiHdpx*Naliq*Alliq] -0.86* ln [MgliqMgliq+Feliq]+0.52*ln [Caliq] an expression which estimates temperature to ±27 K. Compared to (i), the equilibrium constant for jadeite formation is more sensitive to pressure resulting in a thermobarometer (ii) P=-54.3+299* T104+36.4* T104 ln [Jdpx[Siliq]2*Naliq*Alliq] +367*[Naliq*Alliq] which estimates pressure to ± 1.4 kbar. Pressure is in kbar, T is in Kelvin. Quantities such as Naliq represent the cation fraction of the given oxide (NaO0.5) in the liquid and Fm=MgO+FeO. The mole fractions of Jd and diopside+hedenbergite (DiHd) components are calculated from a normative scheme which assigns the lesser of Na or octahedral Al to form Jd; any excess AlVI forms Calcium Tschermak’s component (CaTs; CaAlAlSiO6); Ca remaining after forming CaTs and CaTiAl2O6 is taken as DiHd. Experimental data not included in the regressions were used to test models (i) and (ii). Error on predictions of T using model (i) is ±40 K. A pressure-dependent form of (i) reduces this error to ±30 K. Using model (ii) to predict pressures, the error on mean values of 10 isobaric data sets (0 25 kbar, 118 data) is ±0.3 kbar. Calculating thermodynamic properties from regression coefficients in (ii) gives VJd f of 23.4 ±1.3 cm3/mol, close to the value anticipated from bar molar volume data (23.5 cm3/mol). Applied to clinopyroxene phenocrysts from Mauna Kea, Hawaii lavas, the expressions estimate equilibration depths as great as 40 km. This result indicates that transport was sufficiently rapid that at least some phenocrysts had insufficient time to re-equilibrate at lower pressures.

  8. In situ DRIFTS study of O3 adsorption on CaO, γ-Al2O3, CuO, α-Fe2O3 and ZnO at room temperature for the catalytic ozonation of cinnamaldehyde

    NASA Astrophysics Data System (ADS)

    Wu, Jianfeng; Su, Tongming; Jiang, Yuexiu; Xie, Xinling; Qin, Zuzeng; Ji, Hongbing

    2017-08-01

    In situ DRIFTS were conducted to identify adsorbed ozone and/or adsorbed oxygen species on CaO, ZnO, γ-Al2O3, CuO and α-Fe2O3 surfaces at room temperature. Samples were characterized by means of TG, XRD, N2 adsorption-desorption, pyridine-IR, nitrobenzene-IR, chloroform-IR, and CO2-TPD. Pyridine-DRIFTS measurements evidence two kinds of acid sites in all the samples. Nitrobenzene, chloroform-DRIFTS, and CO2-TPD reveal that there are large amounts of medium-strength base sites on all the metal oxides, and only CaO, ZnO, and γ-Al2O3 have strong base sites. And the benzaldehyde selectivity was increased in the same order of the alkalinity of the metal oxides. With weaker sites, ozone molecules form coordinative complexes bound via the terminal oxygen atom, observed by vibrational frequencies at 2095-2122 and 1026-1054 cm-1. The formation of ozonide O3- at 790 cm-1, atomic oxygen at 1317 cm-1, and superoxide O2- at 1124 cm-1 was detected; these species are believed to be intermediates of O3 decomposition on strong acid/base sites. The adsorption of ozone on metal oxides is a weak adsorption, and other gases, such as CO2, will compete with O3 adsorption. The mechanism of cinnamaldehyde ozonation at room temperature over CaO shows that cinnamaldehyde can not only be oxidized into cinnamic acid, but also be further oxidized into benzaldehyde, benzoic acid, maleic anhydride, and ultimately mineralized to CO2 in the presence of O3.

  9. 47,49Ti NMR: hyperfine interactions in oxides and metals.

    PubMed

    Bastow, T J; Gibson, M A; Forwood, C T

    1998-10-01

    A 47,49Ti NMR characterisation is given of various polymorphs of TiO2 (anatase, rutile and brookite), Ti2O3, perovskites CaTiO3 and BaTiO3, FeTiO3, TiB2, titanium metal, the titanium aluminides Ti3Al, TiAl, TiAl2, TiAl3, and TiAg. Values of chemical or Knight shift, nuclear quadrupole coupling constant and asymmetry parameter were derived from the (1/2, -1/2) powder lineshapes. For TiB2, titanium metal, TiAl, and TiAl3, where +/- (1/2, 3/2), and higher satellite transitions were observed, a value for the axial component of the Knight shift was obtained.

  10. Major and trace elements in Boletus aereus and Clitopilus prunulus growing on volcanic and sedimentary soils of Sicily (Italy).

    PubMed

    Alaimo, M G; Dongarrà, G; La Rosa, A; Tamburo, E; Vasquez, G; Varrica, D

    2018-08-15

    The aim of this study was to determine and compare the content of 28 elements (Ag, Al, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, Pb, Rb, Sb, Se, Sr, Tl, U, V and Zn) in fruiting bodies of Boletus aereus Bull. and Clitopilus prunulus P. Kumm collected from eleven unpolluted sites of Sicily (Italy) and, also to relate the abundance of chemical elements in soil with their concentration in mushrooms. Median concentrations of the most abundant elements in Boletus aereus ranged from 31,290 μg/g (K) to 107 μg/g (Zn) in caps and from 24,009 μg/g (K) to 57 μg/g (Zn) in stalks with the following abundance order: K > Na > Ca > Mg > Fe > Al > Rb > Zn. The same elements, in the whole fruiting body of Clitopilus prunulus samples, varied in the range 54,073-92 μg/g following the abundance order: K > Na > Mg > Ca > Fe > Al > Rb > Zn. Metal contents in Boletus aereus and in the whole fruiting body of Clitopilus prunulus, collected from the same sampling sites, showed statistically significant differences for most elements. In particular, Clitopilus prunulus contained around two to four times more Co, Cr, Fe, Mg, Mo, Pb, U and V than caps and stalks of Boletus aereus species which, in turn, was from two to four times more enriched in Cu, Se and Tl. Thus, the elemental content of Boletus aereus and Clitopilus prunulus appeared to be species-dependent. The distribution of chemical elements in Boletus aereus was not uniform throughout the whole fruiting body as most elements were significantly bioconcentrated in caps. Furthermore, the fruit bodies of Boletus aereus from the volcanic soil differed both in major and minor elements concentrations from those collected from sedimentary soils. Cadmium and lead concentrations were below the threshold limits for wild mushrooms proposed by EU Directives (2008 and 2015). The elemental content was not significantly influenced by soil pH. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Trace elements in urban and suburban rainfall, Mersin, Northeastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Özsoy, Türkan; Örnektekin, Sermin

    2009-10-01

    Spatial/temporal variabilities of rainwater constituents are examined based on soluble/insoluble trace elements, pH and electrical conductivity measurements in rainfall sampled during December 2003-May 2005 at two urban and two suburban sites in Mersin, an industrialized city of 850,000 inhabitants on the southern coast of Turkey. In the analyses, backward air mass trajectories for rainy days were used in addition to factor analyses, enrichment factors, phase distributions and correlations between trace elements. The pH varied from 4.8 to 8.5 with an average value of 6.2, reflecting a mainly alkaline regime. Mean concentrations of trace elements collected from urban and suburban sites are spatially variable. Based on the overall data, total concentrations of trace elements were ordered as Ca > Na > Fe > Al > Mg > K > Zn > Mn > Sr > Pb > Ni > Cr > Ba > Cu > Co > Cd. Mainly terrigeneous (Ca, Fe, Al) and, to a lesser extent, sea salt particles (Na, Mg) were shown to be the major source of trace elements. Excluding major cations, the solubilities of trace elements were found to be ordered as Sr > Zn > Ba > Mn > Cu > Ni > Cr > Fe > Al, confirming the lower solubility of crustal elements. Cd, Co and Pb were excluded from the above evaluation because of the low numbers of soluble samples allowing quantitative measurements. The solubilities of Al, Fe, Mn and particularly of Ni were found to be considerably lower than those reported for various sites around the world, most likely due to the effect of pH. During the entire sampling period, a total of 28 dust transport episodes associated with 31 red rain events were identified. Extremely high mean concentration ratios of Al (8.2), Fe (14.4) and Mn (13.1) were observed in red rain, compared to normal rain. The degree of this enhancement displayed a decrease from crustal to anthropogenic origin elements and the lowest enhancements were found for anthropogenic origin elements of Zn and Cd (both having a ratio of 1.1). Aerosol dust was found to be the main source of almost all analyzed elements in Mersin precipitation, regardless that they are crustal or anthropic derived elements. The magnitude of crustal source contribution to trace element budget of precipitation was at its highest levels for crustal originated elements, most probably due to much higher scavenging ratios of crustal elements compared to anthropogenic ones.

  12. Impact of NLTE on research of early chemical enrichment of the dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Mashonkina, Lyudmila

    2015-08-01

    The individual stars observed in the dwarf galaxies orbiting the Milky Way are presumably red giants. Their chemical abundances are commonly determined under the classical LTE assumption, despite its validity is questionable for atmospheres of giant, in particular, metal-poor stars. Exactly metal-poor objects are important for understanding the early chemical enrichment processes of the host galaxy and the onset of star formation. We selected a sample of the -4 < [Fe/H] < -2 stars in the dwarf spheroidal (dSph) galaxies Sculptor, Sextans, and Fornax and the ultra-faint galaxies Bootes I and Segue I, with the high-resolution observational data available, and revised abundances of up to 12 chemical species based on the non-local thermodynamic equilibrium (NLTE) line formation. Stellar parameters taken from the literature were checked through the NLTE analysis of lines of iron observed in the two ionisation stages, Fe I and Fe II. For the Scl, Sex, and Fnx stars, with effective temperatures and surface gravities derived from the photometry and known distance (Jablonka et al. 2015; Tafelmeyer et al. 2010), the Fe I/Fe II ionisation equilibrium was found to be fulfilled, when applying a scaling factor of SH = 0.5 to the Drawinian rates of Fe+H collisions. Pronounced NLTE effects were calculated for lines of Na I and Al I resulting in up to 0.5 dex lower [Na/Fe] ratios and up to 0.65 dex higher [Al/Fe] ratios compared with the corresponding LTE values. For the six Scl stars, the scatter of data on Mg/Na is much smaller in NLTE, with the mean [Mg/Na] = 0.61 +- 0.11, than LTE, where [Mg/Na] = 0.42 +- 0.21. We computed a grid of the NLTE abundance corrections for an extensive list of the Ca I, Ti I-Ti II, and Fe I lines in the MARCS models of cool giants, 4000 K <= Teff <= 4750 K, 0.5 <= log g <= 2.5, -4 <= [M/H] <= 0.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fan; Parker, Jack C.; Brooks, Scott C

    This study investigated sorption of uranium and technetium onto aluminum and iron hydroxides during titration of a contaminated groundwater using both Na hydroxide and carbonate as titrants. The contaminated groundwater has a low pH of 3.8 and high concentrations of NO3-, SO42-, Al, Ca, Mg, Mn, trace metals such as Ni and Co, and radionuclides such as U and Tc. During titration, most Al and Fe were precipitated out at pH above ~4.5. U as well as Tc was found to be removed from aqueous phase at pH below ~5.5, but to some extent released at higher pH values. Anmore » earlier geochemical equilibrium reaction path model that considered aqueous complexation and precipitation/dissolution reactions predicted mineral precipitation and adequately described concentration variations of Al, Fe and some other metal cations, but failed to predict sulfate, U and Tc concentrations during titration. Previous studies have shown that Fe- and Al-oxyhydroxides strongly sorb dissolved sulfate, U and Tc species. Therefore, an anion exchange model was developed for the sorption of sulfate, U and Tc onto Al and Fe hydroxides. With the additional consideration of the anion exchange reactions, concentration profiles of sulfate, U and Tc were more accurately predicted. Results of this study indicate that consideration of complex reactions such as sorption/desorption on mixed mineral phases, in addition to hydrolysis and precipitation, could improve the prediction of various contaminants during pre- and post-groundwater treatment practices.« less

  14. Contents and composition of organic matter in subsurface soils affected by land use and soil mineralogy

    NASA Astrophysics Data System (ADS)

    Ellerbrock, Ruth H.; Kaiser, Michael

    2010-05-01

    Land use and mineralogy affect the ability of surface as well as subsurface soils to sequester organic carbon and their contribution to mitigate the greenhouse effect. This study aimed to investigate the long-term impact of land use (i.e., arable and forest) and soil mineralogy on contents and composition of soil organic matter (SOM) from subsurface soils. Seven soils different in mineralogy (Albic and Haplic Luvisol, Colluvic and Haplic Regosol, Haplic and Vertic Cambisol, Haplic Stagnosol) were selected within Germany. Soil samples were taken from forest and adjacent arable sites. First, particulate and water soluble organic matter were separated from the subsurface soil samples. From the remaining solid residues the OM(PY) fractions were separated, analyzed for its OC content (OCPY) and characterized by FTIR spectroscopy. For the arable subsurface soils multiple regression analyses indicate significant positive relationships between the soil organic carbon contents and the contents of i) exchangeable Ca and oxalate soluble Fe, and Alox contents. Further for the neutral arable subsurface soils the contents OCPY weighted by its C=O contents were found to be related to the contents of Ca indicating interactions between OM(PY) and Ca cations. For the forest subsurface soils (pH <5) the OCPY contents were positively related with the contents of Na-pyrophosphate soluble Fe and Al. For the acidic forest subsurface soils such findings indicate interactions between OM(PY) and Fe3+ and Al3+ cations. The effects of land use and soil mineralogy on contents and composition of SOM and OM(PY) will be discussed.

  15. Determination of some enzymes and macro- and microelements in stallion seminal plasma and their correlations to semen quality.

    PubMed

    Pesch, Sandra; Bergmann, Martin; Bostedt, Hartwig

    2006-07-15

    Seminal plasma is very important for sperm metabolism as well as sperm function and survival and transport in the female genital tract. Analysis of enzyme activities and concentrations of elements can estimate integrity and function of sperm cell membranes. In man much data are available about biochemical analyses of seminal plasma. However, not many studies have been conducted in horses yet. We collected ejaculates from 72 stallions, measured the volume, obtained seminal plasma by centrifugation and examined spermatozoa with light microscopy for motility, concentration, for dead sperm and morphology. Of seminal plasma fluid, we measured activities of aspartate-amino-transferase (AST), gamma-glutamyl-transferase (GGT), alkaline phosphatase (AlP), acid phosphatase (AcP) and lactate-dehydrogenase (LDH) as well as concentrations of sodium (Na(+)), potassium (K(+)), total and ionised calcium (Ca(TOTAL)/Ca(2+)), magnesium (Mg(2+)), phosphate (P), chloride (Cl), copper (Cu), iron (Fe) and zinc (Zn). In addition, correlations among different parameters in light microscopy and seminal plasma were statistically examined by using the Spearman rank correlation coefficient. Median enzyme activities for AST, GGT, AlP, AcP and LDH were 80.0, 7,500, 30,200, 20.0, 81.0 IU/L, respectively. Concentrations of Na(+), K(+), Ca(TOTAL), Ca(2+), Mg(2+), P, Cl were 110.5, 22.1, 2.9, 1.7, 3.1, 1.1 and 114.5 mmol/L, and of microelements Cu, Fe and Zn were 17.8, 1.9 and 13.2 micromol/L, respectively. Furthermore, we found significant correlations between semen volume as well as sperm concentration and AST, GGT, AlP, AcP and LDH as well as Fe and Zn. This made us propose a primary testicular and epididymal origin of these parameters. Significant correlation between GGT and motility may be a sign for its function for cell protection against free radicals. LDH activity significantly correlates with motility and progressive motility, live:dead-ratio and pathomorphology. In our study, LDH seems to be the most predictive enzyme for semen quality. This is the first report about GGT, AcP and LDH activities as well as iron in equine seminal plasma.

  16. Leaf elemental analysis in mycorrhizal post oak seedlings

    NASA Astrophysics Data System (ADS)

    Boling, B. C.; Naab, F. U.; Smith, D.; Duggan, J. L.; McDaniel, F. D.

    2006-09-01

    Growth and element assimilation was investigated in the leaves of post oak seedlings exposed to four different treatment combinations of fertilization and ectomycorrhizal inoculation. Element concentration was analyzed via particle-induced X-ray emission spectrometry (PIXE). PIXE detected 10 of the 13 essential macro and micronutrients: P, S, Mg, Ca, K, Cu, Zn, Mn, Fe and Cl. Mean growth and dry weight was significantly different across the treatment groups as well as the mean concentration of Mg, Al, S, K, Ca, Fe, Cu and Zn. The data suggest that fertilization rather than mycorrhizal inoculation had a stronger influence on nutrient uptake. This study is the first to analyze element concentration in post oak and to investigate the potential benefits of mycorrhizal symbiosis in post oak seedlings in terms of nutrient uptake.

  17. Fluor-ferro-leakeite, NaNa2(FC2+2Fe3+2Li)Si8O22F2, a new alkali amphibole from the Canada Pinabete pluton, Questa, New Mexico, U.S.A.

    USGS Publications Warehouse

    Hawthorne, F.C.; Oberti, R.; Ungaretti, L.; Ottolini, L.; Grice, Joel D.; Czamanske, G.K.

    1996-01-01

    Fluor-ferro-leakeite is a new amphibole species from the Canada Pinabete pluton, Questa, New Mexico, U.S.A.; it occurs in association with quartz, alkali feldspar, acmite, ilmenite, and zircon. It forms as anhedral bluish black crystals elongated along c and up to 1 mm long. It is brittle, H = 6, Dmeas = 3.37 g/cm3, Dcalc = 3.34 g/cm3. In plane-polarized light, it is strongly pleochroic, X = very dark indigo blue, Y = gray blue, Z = yellow green; X ??? c = 10?? (in ??obtuse), Y = b, Z ??? a = 4?? (in ?? obtuse), with absorption X > Y > Z. Fluor-ferro-leakeite is biaxial positive, ?? = 1.675(2), ??= 1.683(2), ?? = 1.694(1); 2V = 87(2)??; dispersion is not visible because of the strong absorption. Fluor-ferro-leakeite is monoclinic, space group C2/m, a = 9.792(1), b = 17.938(1), c = 5.3133(4) A??, ??= 103.87(7)??, V = 906.0(1) A??3, Z = 2. The ten strongest X-ray diffraction lines in the powder pattern are [d(I,hkl)]: 2.710(100,151), 2.536(92,202), 3.404(57,131), 4.481(54,040), 8.426(45,110), 2.985(38,241), 2.585(38,061), 3.122(29,310), 2.165(26,261), and 1.586(25,403). Analysis by a combination of electron microprobe, ion microprobe, and crystal-structure refinement (Hawthorne et al. 1993) gives SiO2 51.12, Al2O3 1.13, TiO2 0.68, Fe2O3 16.73, FeO 8.87, MgO 2.02, MnO 4.51, ZnO 0.57, CaO 0.15, Na2O 9.22, K2O 1.19, Li2O 0.99, F 2.87, H2Ocalc 0.60, sum 99.44 wt%. The formula unit, calculated on the basis of 23 O atoms, is (K0.23Na0.76)(Na1.97Ca0.03)(Mg 0.46Fe2+1.4Mn2+0.59Zn0.07Fe3+1.93-Ti 0.08Al0.02Li0.61])(Si7.81Al 0.19)O22(F1.39OH0.61). A previous crystal-structure refinement (Hawthorne et al. 1993) shows Li to be completely ordered at the M3 site. Fluor-ferro-leakeite, ideally NaNa2(Fe2+2Fe3+2Li)Si8O22F2, is related to leakeite, NaNa2(Mg2Fe3+3Li)Si 8O22(OH)2, by the substitutions Fe2+ ??? Mg and F ??? OH.

  18. Influence of solution acidity and CaCl2 concentration on the removal of heavy metals from metal-contaminated rice soils.

    PubMed

    Kuo, S; Lai, M S; Lin, C W

    2006-12-01

    Soil washing is considered a useful technique for remediating metal-contaminated soils. This study examined the release edges of Cd, Zn, Ni, Cr, Cu or Pb in two contaminated rice soils from central Taiwan. The concentrations exceeding the trigger levels established by the regulatory agency of Taiwan were Cu, Zn, Ni and Cr for the Ho-Mei soil and Pb for the Nan-Tou soil. Successive extractions with HCl ranging from 0 to 0.2 M showed increased release of the heavy metals with declining pH, and the threshold pH value below which a sharp increase in the releases of the heavy metals was highest for Cd, Zn, and Ni (pH 4.6 to 4.9), intermediate for Pb and Cu (3.1 to 3.8) and lowest for Fe (2.1), Al (2.2) and Cr (1.7) for the soils. The low response slope of Ni and Cr particularly for the rice soils make soil washing with the acid up to the highest concentration used ineffective to reduce their concentrations to below trigger levels. Although soil washing with 0.1 M HCl was moderately effective in reducing Cu, Pb, Zn and Cd, which brought pH of the soils to 1.1+/-0.1 (S.D.), the concurrent release of large quantities of Fe and Al make this remediation technique undesirable for the rice soils containing high clay. Successive washings with 0.01 M HCl could be considered an alternative as the dissolution of Fe and Al was minimal, and between 46 to 64% of Cd, Zn, and Cu for the Ho-Mei soil and 45% of Pb in the Na-Tou soil were extracted after four successive extractions with this dilute acid solution. The efficacy of Cd extraction improved if CaCl2 was added to the acid solution. The correlation analysis revealed that Cr extracted was highly correlated (P < 0.001) with Fe extracted, whereas the Cu, Ni, Zn, Cd or Pb extracted was better correlated (P < 0.001) with Al than with Fe extracted. It is possible that the past seasonal soil flooding and drainage in the soils for rice production was conducive to incorporating Cr within the structure of Fe oxide, thereby making them extremely insoluble even in 0.2 M HCl solution. The formation of solid solution of Ni with Al oxide was also possible, making it far less extractable than Cd, Zn, Cu, or Pb with the acid concentrations used.

  19. Chemical Composition by the APXS along the Downhill Traverse of the Mars Exploration Rover Spirit at Gusev Crater

    NASA Technical Reports Server (NTRS)

    Bruckner, J.; Dreibus, G.; Gellert, R.; Clark, B.C.; Cohen, B.; McCoy, T.; Ming, D.W.; Mittlefehldt, D.W.; Yen, A.; Athena Science Team

    2006-01-01

    The Alpha Particle X-ray Spectrometer (APXS) onboard the Mars Exploration Rover Spirit continues to determine the elemental composition of samples at Gusev Crater. Starting around sol 600 the rover descended Husband Hill, which is part of the Columbia Hills, visited the inner basin with a large dune field, called 'El Dorado', and parked at Low Ridge to conserve energy during the martian winter. Many unique samples were discovered by the instruments onboard Spirit during her downhill traverse. Here, we report only on the chemical data obtained by the APXS. The compositions of some of the soil samples are comparable to the mean soil determined along the earlier traverse. However, a light-toned subsurface sample (disturbed by the rover wheels), called Dead Sea Samra , showed the highest sulfur content of all soil samples, the lowest Na, Mg, Al, Cl, K, Ca, Ti, Mn, and Zn, among the lowest Si and P, and among the highest Cr, Fe and Ni. Assuming ferric sulfate as a major mineral, large amounts of a pure silica phase must be present. Color and quantity of Dead Sea Samra resemble somewhat an earlier soil called Paso Robles , though the latter is a mixture of sulfates with phosphate-rich soil. Manganese in Dead Sea Samra is so low that the Fe/Mn ratio exceeds 300, a value that has never been found previously on Mars (Fe/Mn ratio of 46 for Gusev basalts), indicating that only Fe(3+) occurs. The dune field El Dorado contained granulated material that exhibited the highest Mg and Ni concentrations and the lowest S and Cl compared to all other soils implying an enrichment of olivine-rich sands. Two outcrops, called Algonquin and Comanche , revealed compositions that differ significantly from those of earlier outcrops as they have the highest concentrations of Mg, Fe, and Ni (except for Ni in Independence) and the lowest of Al, K (detection limit), Ca, and Ti of all brushed and almost all abraded rocks. Normative estimates assign them the highest olivine contents ever found for martian rocks and a very mafic nature based on their high Mg/(Mg+Fe) and low Al, Ca and Na. Their significantly high Ni contents point to a different source than the Gusev plains basalts. The elemental compositions of samples encountered during the downhill traverse revealed a larger chemical diversity of the Columbia Hills than the uphill trek already published.

  20. Laser-Induced Breakdown Spectroscopy of Trace Metals

    NASA Technical Reports Server (NTRS)

    Simons, Stephen (Technical Monitor); VanderWal, Randall L.; Ticich, Thomas M.; West, Joseph R., Jr.

    2004-01-01

    An alternative approach for laser-induced breakdown spectroscopy (LIBS) determination of trace metal determination in liquids is demonstrated. The limits of detection (LOD) for the technique ranged from 10 ppb to 10 ppm for 15 metals metals (Mg, Al, Si, Ca, Ti, Cr, Fe, Co, Ni, Cu, Zn, As, Cd, Hg, Pb) tested.

  1. Electron impact excitation coefficients for laboratory and astrophysical plasmas

    NASA Technical Reports Server (NTRS)

    Davis, J.; Kepple, P. C.; Blaha, M.

    1976-01-01

    Electron impact excitation rate coefficients have been obtained for a number of transitions in highly ionized ions of interest to astrophysical and laboratory plasmas. The calculations were done using the method of distorted waves. Results are presented for various transitions in highly ionized Ne, Na, Al, Si, A, Ca, Ni and Fe.

  2. TOTAL AND BIOAVAILABLE METALS AT MARINA SEDIMENTS IN LAKE TEXOMA

    EPA Science Inventory

    Total and bioavailable metals in sediments were measured at marina areas in Lake Texoma during the fall of 2001. The metals most often found in the highest concentrations in sediments were Ca (56811 mg/kg) and Al (31095 mg/kg), followed by Fe (19393 mg/kg), K (6089 mg/kg), and Mg...

  3. Anode materials for lithium ion batteries

    DOEpatents

    Abouimrane, Ali; Amine, Khalil

    2017-04-11

    An electrochemical device includes a composite material of general Formula (1-x)J-(x)Q wherein: J is a metal carbon alloy of formula Sn.sub.zSi.sub.z'Met.sub.wMet'.sub.w'C.sub.t; Q is a metal oxide of formula A.sub..gamma.M.sub..alpha.M'.sub..alpha.'O.sub..beta.; and wherein: A is Li, Na, or K; M and M' are individually Ge, Mo, Al, Ga, As, Sb, Te, Ti, Ta, Zr, Ca, Mg, Sr, Ba, Li, Na, K, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Nb, Rt, Ru or Cd; Met and Met' are individually Ge, Mo, Al, Ga, As, Sb, Te, Ti, Ta, Zr, Ca, Mg, Sr, Ba, Li, Na, K, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Nb, Rt, Ru or Cd; 0

  4. The application of Westcott Formalism k0 NAA method to estimate short and medium lived elements in some Ghanaian herbal medicines complemented by AAS

    NASA Astrophysics Data System (ADS)

    Ayivor, J. E.; Okine, L. K. N.; Dampare, S. B.; Nyarko, B. J. B.; Debrah, S. K.

    2012-04-01

    The epithermal neutron shape factor, α of the inner and outer irradiation sites of the Ghana Research Reactor-1 (GHARR-1) was determined obtaining results of 0.105 for the inner (Channel 1) Irradiation site and 0.020 for the outer (channel 6) irradiation site. The neutron temperatures for the inner and outer irradiation sites were 27 °C and 20 °C, respectively. The α values used in Westcott Formalism k0 INAA was applied to determine multi elements in 13 Ghanaian herbal medicines used by the Centre for Scientific Research into Plant Medicine (CSRPM) for the management of various diseases complemented by Atomic Absorption Spectrometry. They are namely Mist. Antiaris, Mist. Enterica, Mist. Morazia, Mist. Nibima, Mist. Modium, Mist. Ninger, Mist Sodenia, Mist. Tonica, Chardicca Powder, Fefe Powder, Olax Powder, Sirrapac powder and Lippia Tea. Concentrations of Al, As, Br, K, Cl, Cu, Mg, Mn, Na and V were determined by short and medium irradiations at a thermal neutron flux of 5×1011 ncm-2 s-1. Fe, Cr, Pb, Co, Ni, Sn, Ca, Ba, Li and Sb were determined using Atomic Absorption Spectrometry (AAS). Ba, Cu, Li and V were present at trace levels whereas Al, Cl, Na, Ca were present at major levels. K, Br, Mg, Mn, Co, Ni, Fe and Sb were also present at minor levels. Arsenic was not detected in all samples. Standard Reference material, IAEA-V-10 Hay Powder was simultaneously analysed with samples. The precision and accuracy of the method using real samples and standard reference materials were evaluated and within ±10% of the reported value. Multivariate analytical techniques, such as cluster analysis (Q-mode and R-mode CA) and principal component analysis (PCA)/factor analysis (FA), have been applied to evaluate the chemical variations in the herbal medicine dataset. All the 13 samples may be grouped into 2 statistically significant clusters (liquid based and powdered herbal medicines), reflecting the different chemical compositions. R-mode CA and PCA suggest common sources for Co, Mg, Fe, Ca, Cr, Ni, Sn, Li and Sb and Na, V, Cl, Mn, Al, Br and K. The PCA/FA identified 3 dominant factors as responsible for the data structure, explaining 84.5% of the total variance in the dataset.

  5. GPU-Accelerated Optical Coherence Tomography Signal Processing and Visualization

    NASA Astrophysics Data System (ADS)

    Darbrazi, Seyed Hamid Hosseiny

    As piroxenas sao um vasto grupo de silicatos minerais encontrados em muitas rochas igneas e metamorficas. Na sua forma mais simples, estes silicatos sao constituidas por cadeias de SiO3 ligando grupos tetrahedricos de SiO4. A formula quimica geral das piroxenas e M2M1T2O6, onde M2 se refere a catioes geralmente em uma coordenacao octaedrica distorcida (Mg2+, Fe2+, Mn2+, Li+, Ca2+, Na+), M1 refere-se a catioes numa coordenacao octaedrica regular (Al3+, Fe3+, Ti4+, Cr3+, V3+, Ti3+, Zr4+, Sc3+, Zn2+, Mg2+, Fe2+, Mn2+), e T a catioes em coordenacao tetrahedrica (Si4+, Al3+, Fe3+). As piroxenas com estrutura monoclinica sao designadas de clinopiroxenes. A estabilidade das clinopyroxenes num espectro de composicoes quimicas amplo, em conjugacao com a possibilidade de ajustar as suas propriedades fisicas e quimicas e a durabilidade quimica, tem gerado um interesse mundial devido a suas aplicacoes em ciencia e tecnologia de materiais. Este trabalho trata do desenvolvimento de vidros e de vitro-cerâmicos baseadas de clinopiroxenas para aplicacoes funcionais. O estudo teve objectivos cientificos e tecnologicos; nomeadamente, adquirir conhecimentos fundamentais sobre a formacao de fases cristalinas e solucoes solidas em determinados sistemas vitro-cerâmicos, e avaliar a viabilidade de aplicacao dos novos materiais em diferentes areas tecnologicas, com especial enfase sobre a selagem em celulas de combustivel de oxido solido (SOFC). Com este intuito, prepararam-se varios vidros e materiais vitro-cerâmicos ao longo das juntas Enstatite (MgSiO3) - diopsidio (CaMgSi2O6) e diopsidio (CaMgSi2O6) - Ca - Tschermak (CaAlSi2O6), os quais foram caracterizados atraves de um vasto leque de tecnicas. Todos os vidros foram preparados por fusao-arrefecimento enquanto os vitro-cerâmicos foram obtidos quer por sinterizacao e cristalizacao de fritas, quer por nucleacao e cristalizacao de vidros monoliticos. Estudaram-se ainda os efeitos de varias substituicoes ionicas em composicoes de diopsidio contendo Al na estrutura, sinterizacao e no comportamento durante a cristalizacao de vidros e nas propriedades dos materiais vitro-cerâmicos, com relevância para a sua aplicacao como selantes em SOFC. Verificou-se que Foi observado que os vidros/vitro-cerâmicos a base de enstatite nao apresentavam as caracteristicas necessarias para serem usados como materiais selantes em SOFC, enquanto as melhores propriedades apresentadas pelos vitro-cerâmicos a base de diopsidio qualificaram-nos para futuros estudos neste tipo de aplicacoes. Para alem de investigar a adequacao dos vitro-cerâmicos a base de clinopyroxene como selantes, esta tese tem tambem como objetivo estudar a influencia dos agentes de nucleacao na nucleacao em volume dos vitro-cerâmicos resultantes a base de diopsidio, de modo a qualifica-los como potenciais materiais hopedeiros de residuos nucleares radioactivos.

  6. Albumin and fibronectin adsorption and osteoblast adhesion on titanium oxides

    NASA Astrophysics Data System (ADS)

    Freitas, Susana Maria Ribeiro e. Sousa Mendes de

    As piroxenas sao um vasto grupo de silicatos minerais encontrados em muitas rochas igneas e metamorficas. Na sua forma mais simples, estes silicatos sao constituidas por cadeias de SiO3 ligando grupos tetrahedricos de SiO4. A formula quimica geral das piroxenas e M2M1T2O6, onde M2 se refere a catioes geralmente em uma coordenacao octaedrica distorcida (Mg2+, Fe2+, Mn2+, Li+, Ca2+, Na+), M1 refere-se a catioes numa coordenacao octaedrica regular (Al3+, Fe3+, Ti4+, Cr3+, V3+, Ti3+, Zr4+, Sc3+, Zn2+, Mg2+, Fe2+, Mn2+), e T a catioes em coordenacao tetrahedrica (Si4+, Al3+, Fe3+). As piroxenas com estrutura monoclinica sao designadas de clinopiroxenes. A estabilidade das clinopyroxenes num espectro de composicoes quimicas amplo, em conjugacao com a possibilidade de ajustar as suas propriedades fisicas e quimicas e a durabilidade quimica, tem gerado um interesse mundial devido a suas aplicacoes em ciencia e tecnologia de materiais. Este trabalho trata do desenvolvimento de vidros e de vitro-cerâmicos baseadas de clinopiroxenas para aplicacoes funcionais. O estudo teve objectivos cientificos e tecnologicos; nomeadamente, adquirir conhecimentos fundamentais sobre a formacao de fases cristalinas e solucoes solidas em determinados sistemas vitro-cerâmicos, e avaliar a viabilidade de aplicacao dos novos materiais em diferentes areas tecnologicas, com especial enfase sobre a selagem em celulas de combustivel de oxido solido (SOFC). Com este intuito, prepararam-se varios vidros e materiais vitro-cerâmicos ao longo das juntas Enstatite (MgSiO3) - diopsidio (CaMgSi2O6) e diopsidio (CaMgSi2O6) - Ca - Tschermak (CaAlSi2O6), os quais foram caracterizados atraves de um vasto leque de tecnicas. Todos os vidros foram preparados por fusao-arrefecimento enquanto os vitro-cerâmicos foram obtidos quer por sinterizacao e cristalizacao de fritas, quer por nucleacao e cristalizacao de vidros monoliticos. Estudaram-se ainda os efeitos de varias substituicoes ionicas em composicoes de diopsidio contendo Al na estrutura, sinterizacao e no comportamento durante a cristalizacao de vidros e nas propriedades dos materiais vitro-cerâmicos, com relevância para a sua aplicacao como selantes em SOFC. Verificou-se que Foi observado que os vidros/vitro-cerâmicos a base de enstatite nao apresentavam as caracteristicas necessarias para serem usados como materiais selantes em SOFC, enquanto as melhores propriedades apresentadas pelos vitro-cerâmicos a base de diopsidio qualificaram-nos para futuros estudos neste tipo de aplicacoes. Para alem de investigar a adequacao dos vitro-cerâmicos a base de clinopyroxene como selantes, esta tese tem tambem como objetivo estudar a influencia dos agentes de nucleacao na nucleacao em volume dos vitro-cerâmicos resultantes a base de diopsidio, de modo a qualifica-los como potenciais materiais hopedeiros de residuos nucleares radioactivos.

  7. Birefringence and Bragg grating control in femtosecond laser written optical circuits

    NASA Astrophysics Data System (ADS)

    Fernandes, Luis A.

    As piroxenas sao um vasto grupo de silicatos minerais encontrados em muitas rochas igneas e metamorficas. Na sua forma mais simples, estes silicatos sao constituidas por cadeias de SiO3 ligando grupos tetrahedricos de SiO4. A formula quimica geral das piroxenas e M2M1T2O6, onde M2 se refere a catioes geralmente em uma coordenacao octaedrica distorcida (Mg2+, Fe2+, Mn2+, Li+, Ca2+, Na+), M1 refere-se a catioes numa coordenacao octaedrica regular (Al3+, Fe3+, Ti4+, Cr3+, V3+, Ti3+, Zr4+, Sc3+, Zn2+, Mg2+, Fe2+, Mn2+), e T a catioes em coordenacao tetrahedrica (Si4+, Al3+, Fe3+). As piroxenas com estrutura monoclinica sao designadas de clinopiroxenes. A estabilidade das clinopyroxenes num espectro de composicoes quimicas amplo, em conjugacao com a possibilidade de ajustar as suas propriedades fisicas e quimicas e a durabilidade quimica, tem gerado um interesse mundial devido a suas aplicacoes em ciencia e tecnologia de materiais. Este trabalho trata do desenvolvimento de vidros e de vitro-cerâmicos baseadas de clinopiroxenas para aplicacoes funcionais. O estudo teve objectivos cientificos e tecnologicos; nomeadamente, adquirir conhecimentos fundamentais sobre a formacao de fases cristalinas e solucoes solidas em determinados sistemas vitro-cerâmicos, e avaliar a viabilidade de aplicacao dos novos materiais em diferentes areas tecnologicas, com especial enfase sobre a selagem em celulas de combustivel de oxido solido (SOFC). Com este intuito, prepararam-se varios vidros e materiais vitro-cerâmicos ao longo das juntas Enstatite (MgSiO3) - diopsidio (CaMgSi2O6) e diopsidio (CaMgSi2O6) - Ca - Tschermak (CaAlSi2O6), os quais foram caracterizados atraves de um vasto leque de tecnicas. Todos os vidros foram preparados por fusao-arrefecimento enquanto os vitro-cerâmicos foram obtidos quer por sinterizacao e cristalizacao de fritas, quer por nucleacao e cristalizacao de vidros monoliticos. Estudaram-se ainda os efeitos de varias substituicoes ionicas em composicoes de diopsidio contendo Al na estrutura, sinterizacao e no comportamento durante a cristalizacao de vidros e nas propriedades dos materiais vitro-cerâmicos, com relevância para a sua aplicacao como selantes em SOFC. Verificou-se que Foi observado que os vidros/vitro-cerâmicos a base de enstatite nao apresentavam as caracteristicas necessarias para serem usados como materiais selantes em SOFC, enquanto as melhores propriedades apresentadas pelos vitro-cerâmicos a base de diopsidio qualificaram-nos para futuros estudos neste tipo de aplicacoes. Para alem de investigar a adequacao dos vitro-cerâmicos a base de clinopyroxene como selantes, esta tese tem tambem como objetivo estudar a influencia dos agentes de nucleacao na nucleacao em volume dos vitro-cerâmicos resultantes a base de diopsidio, de modo a qualifica-los como potenciais materiais hopedeiros de residuos nucleares radioactivos.

  8. Single Point Incremental Forming and Multi-Stage Incremental Forming on Aluminium Alloy 1050

    NASA Astrophysics Data System (ADS)

    Suriyaprakan, Premika

    As piroxenas sao um vasto grupo de silicatos minerais encontrados em muitas rochas igneas e metamorficas. Na sua forma mais simples, estes silicatos sao constituidas por cadeias de SiO3 ligando grupos tetrahedricos de SiO4. A formula quimica geral das piroxenas e M2M1T2O6, onde M2 se refere a catioes geralmente em uma coordenacao octaedrica distorcida (Mg2+, Fe2+, Mn2+, Li+, Ca2+, Na+), M1 refere-se a catioes numa coordenacao octaedrica regular (Al3+, Fe3+, Ti4+, Cr3+, V3+, Ti3+, Zr4+, Sc3+, Zn2+, Mg2+, Fe2+, Mn2+), e T a catioes em coordenacao tetrahedrica (Si4+, Al3+, Fe3+). As piroxenas com estrutura monoclinica sao designadas de clinopiroxenes. A estabilidade das clinopyroxenes num espectro de composicoes quimicas amplo, em conjugacao com a possibilidade de ajustar as suas propriedades fisicas e quimicas e a durabilidade quimica, tem gerado um interesse mundial devido a suas aplicacoes em ciencia e tecnologia de materiais. Este trabalho trata do desenvolvimento de vidros e de vitro-cerâmicos baseadas de clinopiroxenas para aplicacoes funcionais. O estudo teve objectivos cientificos e tecnologicos; nomeadamente, adquirir conhecimentos fundamentais sobre a formacao de fases cristalinas e solucoes solidas em determinados sistemas vitro-cerâmicos, e avaliar a viabilidade de aplicacao dos novos materiais em diferentes areas tecnologicas, com especial enfase sobre a selagem em celulas de combustivel de oxido solido (SOFC). Com este intuito, prepararam-se varios vidros e materiais vitro-cerâmicos ao longo das juntas Enstatite (MgSiO3) - diopsidio (CaMgSi2O6) e diopsidio (CaMgSi2O6) - Ca - Tschermak (CaAlSi2O6), os quais foram caracterizados atraves de um vasto leque de tecnicas. Todos os vidros foram preparados por fusao-arrefecimento enquanto os vitro-cerâmicos foram obtidos quer por sinterizacao e cristalizacao de fritas, quer por nucleacao e cristalizacao de vidros monoliticos. Estudaram-se ainda os efeitos de varias substituicoes ionicas em composicoes de diopsidio contendo Al na estrutura, sinterizacao e no comportamento durante a cristalizacao de vidros e nas propriedades dos materiais vitro-cerâmicos, com relevância para a sua aplicacao como selantes em SOFC. Verificou-se que Foi observado que os vidros/vitro-cerâmicos a base de enstatite nao apresentavam as caracteristicas necessarias para serem usados como materiais selantes em SOFC, enquanto as melhores propriedades apresentadas pelos vitro-cerâmicos a base de diopsidio qualificaram-nos para futuros estudos neste tipo de aplicacoes. Para alem de investigar a adequacao dos vitro-cerâmicos a base de clinopyroxene como selantes, esta tese tem tambem como objetivo estudar a influencia dos agentes de nucleacao na nucleacao em volume dos vitro-cerâmicos resultantes a base de diopsidio, de modo a qualifica-los como potenciais materiais hopedeiros de residuos nucleares radioactivos.

  9. Magnetism at the nanoscale: Nanoparticles, nanowires, nanotubes and their ordered arrays

    NASA Astrophysics Data System (ADS)

    Proenca, Mariana Jesus Paiva

    As piroxenas sao um vasto grupo de silicatos minerais encontrados em muitas rochas igneas e metamorficas. Na sua forma mais simples, estes silicatos sao constituidas por cadeias de SiO3 ligando grupos tetrahedricos de SiO4. A formula quimica geral das piroxenas e M2M1T2O6, onde M2 se refere a catioes geralmente em uma coordenacao octaedrica distorcida (Mg2+, Fe2+, Mn2+, Li+, Ca2+, Na+), M1 refere-se a catioes numa coordenacao octaedrica regular (Al3+, Fe3+, Ti4+, Cr3+, V3+, Ti3+, Zr4+, Sc3+, Zn2+, Mg2+, Fe2+, Mn2+), e T a catioes em coordenacao tetrahedrica (Si4+, Al3+, Fe3+). As piroxenas com estrutura monoclinica sao designadas de clinopiroxenes. A estabilidade das clinopyroxenes num espectro de composicoes quimicas amplo, em conjugacao com a possibilidade de ajustar as suas propriedades fisicas e quimicas e a durabilidade quimica, tem gerado um interesse mundial devido a suas aplicacoes em ciencia e tecnologia de materiais. Este trabalho trata do desenvolvimento de vidros e de vitro-cerâmicos baseadas de clinopiroxenas para aplicacoes funcionais. O estudo teve objectivos cientificos e tecnologicos; nomeadamente, adquirir conhecimentos fundamentais sobre a formacao de fases cristalinas e solucoes solidas em determinados sistemas vitro-cerâmicos, e avaliar a viabilidade de aplicacao dos novos materiais em diferentes areas tecnologicas, com especial enfase sobre a selagem em celulas de combustivel de oxido solido (SOFC). Com este intuito, prepararam-se varios vidros e materiais vitro-cerâmicos ao longo das juntas Enstatite (MgSiO3) - diopsidio (CaMgSi2O6) e diopsidio (CaMgSi2O6) - Ca - Tschermak (CaAlSi2O6), os quais foram caracterizados atraves de um vasto leque de tecnicas. Todos os vidros foram preparados por fusao-arrefecimento enquanto os vitro-cerâmicos foram obtidos quer por sinterizacao e cristalizacao de fritas, quer por nucleacao e cristalizacao de vidros monoliticos. Estudaram-se ainda os efeitos de varias substituicoes ionicas em composicoes de diopsidio contendo Al na estrutura, sinterizacao e no comportamento durante a cristalizacao de vidros e nas propriedades dos materiais vitro-cerâmicos, com relevância para a sua aplicacao como selantes em SOFC. Verificou-se que Foi observado que os vidros/vitro-cerâmicos a base de enstatite nao apresentavam as caracteristicas necessarias para serem usados como materiais selantes em SOFC, enquanto as melhores propriedades apresentadas pelos vitro-cerâmicos a base de diopsidio qualificaram-nos para futuros estudos neste tipo de aplicacoes. Para alem de investigar a adequacao dos vitro-cerâmicos a base de clinopyroxene como selantes, esta tese tem tambem como objetivo estudar a influencia dos agentes de nucleacao na nucleacao em volume dos vitro-cerâmicos resultantes a base de diopsidio, de modo a qualifica-los como potenciais materiais hopedeiros de residuos nucleares radioactivos.

  10. Seismic assessment of reinforced concrete frame structures with a new flexibility based element

    NASA Astrophysics Data System (ADS)

    Arede, Antonio Jose Coelho Dias

    As piroxenas sao um vasto grupo de silicatos minerais encontrados em muitas rochas igneas e metamorficas. Na sua forma mais simples, estes silicatos sao constituidas por cadeias de SiO3 ligando grupos tetrahedricos de SiO4. A formula quimica geral das piroxenas e M2M1T2O6, onde M2 se refere a catioes geralmente em uma coordenacao octaedrica distorcida (Mg2+, Fe2+, Mn2+, Li+, Ca2+, Na+), M1 refere-se a catioes numa coordenacao octaedrica regular (Al3+, Fe3+, Ti4+, Cr3+, V3+, Ti3+, Zr4+, Sc3+, Zn2+, Mg2+, Fe2+, Mn2+), e T a catioes em coordenacao tetrahedrica (Si4+, Al3+, Fe3+). As piroxenas com estrutura monoclinica sao designadas de clinopiroxenes. A estabilidade das clinopyroxenes num espectro de composicoes quimicas amplo, em conjugacao com a possibilidade de ajustar as suas propriedades fisicas e quimicas e a durabilidade quimica, tem gerado um interesse mundial devido a suas aplicacoes em ciencia e tecnologia de materiais. Este trabalho trata do desenvolvimento de vidros e de vitro-cerâmicos baseadas de clinopiroxenas para aplicacoes funcionais. O estudo teve objectivos cientificos e tecnologicos; nomeadamente, adquirir conhecimentos fundamentais sobre a formacao de fases cristalinas e solucoes solidas em determinados sistemas vitro-cerâmicos, e avaliar a viabilidade de aplicacao dos novos materiais em diferentes areas tecnologicas, com especial enfase sobre a selagem em celulas de combustivel de oxido solido (SOFC). Com este intuito, prepararam-se varios vidros e materiais vitro-cerâmicos ao longo das juntas Enstatite (MgSiO3) - diopsidio (CaMgSi2O6) e diopsidio (CaMgSi2O6) - Ca - Tschermak (CaAlSi2O6), os quais foram caracterizados atraves de um vasto leque de tecnicas. Todos os vidros foram preparados por fusao-arrefecimento enquanto os vitro-cerâmicos foram obtidos quer por sinterizacao e cristalizacao de fritas, quer por nucleacao e cristalizacao de vidros monoliticos. Estudaram-se ainda os efeitos de varias substituicoes ionicas em composicoes de diopsidio contendo Al na estrutura, sinterizacao e no comportamento durante a cristalizacao de vidros e nas propriedades dos materiais vitro-cerâmicos, com relevância para a sua aplicacao como selantes em SOFC. Verificou-se que Foi observado que os vidros/vitro-cerâmicos a base de enstatite nao apresentavam as caracteristicas necessarias para serem usados como materiais selantes em SOFC, enquanto as melhores propriedades apresentadas pelos vitro-cerâmicos a base de diopsidio qualificaram-nos para futuros estudos neste tipo de aplicacoes. Para alem de investigar a adequacao dos vitro-cerâmicos a base de clinopyroxene como selantes, esta tese tem tambem como objetivo estudar a influencia dos agentes de nucleacao na nucleacao em volume dos vitro-cerâmicos resultantes a base de diopsidio, de modo a qualifica-los como potenciais materiais hopedeiros de residuos nucleares radioactivos.

  11. Viscoelastic nanocapsules under flow in microdevices

    NASA Astrophysics Data System (ADS)

    Cordeiro, Ana Lucinda Teixeira

    As piroxenas sao um vasto grupo de silicatos minerais encontrados em muitas rochas igneas e metamorficas. Na sua forma mais simples, estes silicatos sao constituidas por cadeias de SiO3 ligando grupos tetrahedricos de SiO4. A formula quimica geral das piroxenas e M2M1T2O6, onde M2 se refere a catioes geralmente em uma coordenacao octaedrica distorcida (Mg2+, Fe2+, Mn2+, Li+, Ca2+, Na+), M1 refere-se a catioes numa coordenacao octaedrica regular (Al3+, Fe3+, Ti4+, Cr3+, V3+, Ti3+, Zr4+, Sc3+, Zn2+, Mg2+, Fe2+, Mn2+), e T a catioes em coordenacao tetrahedrica (Si4+, Al3+, Fe3+). As piroxenas com estrutura monoclinica sao designadas de clinopiroxenes. A estabilidade das clinopyroxenes num espectro de composicoes quimicas amplo, em conjugacao com a possibilidade de ajustar as suas propriedades fisicas e quimicas e a durabilidade quimica, tem gerado um interesse mundial devido a suas aplicacoes em ciencia e tecnologia de materiais. Este trabalho trata do desenvolvimento de vidros e de vitro-cerâmicos baseadas de clinopiroxenas para aplicacoes funcionais. O estudo teve objectivos cientificos e tecnologicos; nomeadamente, adquirir conhecimentos fundamentais sobre a formacao de fases cristalinas e solucoes solidas em determinados sistemas vitro-cerâmicos, e avaliar a viabilidade de aplicacao dos novos materiais em diferentes areas tecnologicas, com especial enfase sobre a selagem em celulas de combustivel de oxido solido (SOFC). Com este intuito, prepararam-se varios vidros e materiais vitro-cerâmicos ao longo das juntas Enstatite (MgSiO3) - diopsidio (CaMgSi2O6) e diopsidio (CaMgSi2O6) - Ca - Tschermak (CaAlSi2O6), os quais foram caracterizados atraves de um vasto leque de tecnicas. Todos os vidros foram preparados por fusao-arrefecimento enquanto os vitro-cerâmicos foram obtidos quer por sinterizacao e cristalizacao de fritas, quer por nucleacao e cristalizacao de vidros monoliticos. Estudaram-se ainda os efeitos de varias substituicoes ionicas em composicoes de diopsidio contendo Al na estrutura, sinterizacao e no comportamento durante a cristalizacao de vidros e nas propriedades dos materiais vitro-cerâmicos, com relevância para a sua aplicacao como selantes em SOFC. Verificou-se que Foi observado que os vidros/vitro-cerâmicos a base de enstatite nao apresentavam as caracteristicas necessarias para serem usados como materiais selantes em SOFC, enquanto as melhores propriedades apresentadas pelos vitro-cerâmicos a base de diopsidio qualificaram-nos para futuros estudos neste tipo de aplicacoes. Para alem de investigar a adequacao dos vitro-cerâmicos a base de clinopyroxene como selantes, esta tese tem tambem como objetivo estudar a influencia dos agentes de nucleacao na nucleacao em volume dos vitro-cerâmicos resultantes a base de diopsidio, de modo a qualifica-los como potenciais materiais hopedeiros de residuos nucleares radioactivos.

  12. Stellar activity in high-precision photometric and spectroscopic transit observations

    NASA Astrophysics Data System (ADS)

    Oshagh, Mahmoudreza

    As piroxenas sao um vasto grupo de silicatos minerais encontrados em muitas rochas igneas e metamorficas. Na sua forma mais simples, estes silicatos sao constituidas por cadeias de SiO3 ligando grupos tetrahedricos de SiO4. A formula quimica geral das piroxenas e M2M1T2O6, onde M2 se refere a catioes geralmente em uma coordenacao octaedrica distorcida (Mg2+, Fe2+, Mn2+, Li+, Ca2+, Na+), M1 refere-se a catioes numa coordenacao octaedrica regular (Al3+, Fe3+, Ti4+, Cr3+, V3+, Ti3+, Zr4+, Sc3+, Zn2+, Mg2+, Fe2+, Mn2+), e T a catioes em coordenacao tetrahedrica (Si4+, Al3+, Fe3+). As piroxenas com estrutura monoclinica sao designadas de clinopiroxenes. A estabilidade das clinopyroxenes num espectro de composicoes quimicas amplo, em conjugacao com a possibilidade de ajustar as suas propriedades fisicas e quimicas e a durabilidade quimica, tem gerado um interesse mundial devido a suas aplicacoes em ciencia e tecnologia de materiais. Este trabalho trata do desenvolvimento de vidros e de vitro-cerâmicos baseadas de clinopiroxenas para aplicacoes funcionais. O estudo teve objectivos cientificos e tecnologicos; nomeadamente, adquirir conhecimentos fundamentais sobre a formacao de fases cristalinas e solucoes solidas em determinados sistemas vitro-cerâmicos, e avaliar a viabilidade de aplicacao dos novos materiais em diferentes areas tecnologicas, com especial enfase sobre a selagem em celulas de combustivel de oxido solido (SOFC). Com este intuito, prepararam-se varios vidros e materiais vitro-cerâmicos ao longo das juntas Enstatite (MgSiO3) - diopsidio (CaMgSi2O6) e diopsidio (CaMgSi2O6) - Ca - Tschermak (CaAlSi2O6), os quais foram caracterizados atraves de um vasto leque de tecnicas. Todos os vidros foram preparados por fusao-arrefecimento enquanto os vitro-cerâmicos foram obtidos quer por sinterizacao e cristalizacao de fritas, quer por nucleacao e cristalizacao de vidros monoliticos. Estudaram-se ainda os efeitos de varias substituicoes ionicas em composicoes de diopsidio contendo Al na estrutura, sinterizacao e no comportamento durante a cristalizacao de vidros e nas propriedades dos materiais vitro-cerâmicos, com relevância para a sua aplicacao como selantes em SOFC. Verificou-se que Foi observado que os vidros/vitro-cerâmicos a base de enstatite nao apresentavam as caracteristicas necessarias para serem usados como materiais selantes em SOFC, enquanto as melhores propriedades apresentadas pelos vitro-cerâmicos a base de diopsidio qualificaram-nos para futuros estudos neste tipo de aplicacoes. Para alem de investigar a adequacao dos vitro-cerâmicos a base de clinopyroxene como selantes, esta tese tem tambem como objetivo estudar a influencia dos agentes de nucleacao na nucleacao em volume dos vitro-cerâmicos resultantes a base de diopsidio, de modo a qualifica-los como potenciais materiais hopedeiros de residuos nucleares radioactivos.

  13. Starch and polyethylene based bone-analogue composite biomaterials

    NASA Astrophysics Data System (ADS)

    Reis, Rui Luis Goncalves dos

    As piroxenas sao um vasto grupo de silicatos minerais encontrados em muitas rochas igneas e metamorficas. Na sua forma mais simples, estes silicatos sao constituidas por cadeias de SiO3 ligando grupos tetrahedricos de SiO4. A formula quimica geral das piroxenas e M2M1T2O6, onde M2 se refere a catioes geralmente em uma coordenacao octaedrica distorcida (Mg2+, Fe2+, Mn2+, Li+, Ca2+, Na+), M1 refere-se a catioes numa coordenacao octaedrica regular (Al3+, Fe3+, Ti4+, Cr3+, V3+, Ti3+, Zr4+, Sc3+, Zn2+, Mg2+, Fe2+, Mn2+), e T a catioes em coordenacao tetrahedrica (Si4+, Al3+, Fe3+). As piroxenas com estrutura monoclinica sao designadas de clinopiroxenes. A estabilidade das clinopyroxenes num espectro de composicoes quimicas amplo, em conjugacao com a possibilidade de ajustar as suas propriedades fisicas e quimicas e a durabilidade quimica, tem gerado um interesse mundial devido a suas aplicacoes em ciencia e tecnologia de materiais. Este trabalho trata do desenvolvimento de vidros e de vitro-cerâmicos baseadas de clinopiroxenas para aplicacoes funcionais. O estudo teve objectivos cientificos e tecnologicos; nomeadamente, adquirir conhecimentos fundamentais sobre a formacao de fases cristalinas e solucoes solidas em determinados sistemas vitro-cerâmicos, e avaliar a viabilidade de aplicacao dos novos materiais em diferentes areas tecnologicas, com especial enfase sobre a selagem em celulas de combustivel de oxido solido (SOFC). Com este intuito, prepararam-se varios vidros e materiais vitro-cerâmicos ao longo das juntas Enstatite (MgSiO3) - diopsidio (CaMgSi2O6) e diopsidio (CaMgSi2O6) - Ca - Tschermak (CaAlSi2O6), os quais foram caracterizados atraves de um vasto leque de tecnicas. Todos os vidros foram preparados por fusao-arrefecimento enquanto os vitro-cerâmicos foram obtidos quer por sinterizacao e cristalizacao de fritas, quer por nucleacao e cristalizacao de vidros monoliticos. Estudaram-se ainda os efeitos de varias substituicoes ionicas em composicoes de diopsidio contendo Al na estrutura, sinterizacao e no comportamento durante a cristalizacao de vidros e nas propriedades dos materiais vitro-cerâmicos, com relevância para a sua aplicacao como selantes em SOFC. Verificou-se que Foi observado que os vidros/vitro-cerâmicos a base de enstatite nao apresentavam as caracteristicas necessarias para serem usados como materiais selantes em SOFC, enquanto as melhores propriedades apresentadas pelos vitro-cerâmicos a base de diopsidio qualificaram-nos para futuros estudos neste tipo de aplicacoes. Para alem de investigar a adequacao dos vitro-cerâmicos a base de clinopyroxene como selantes, esta tese tem tambem como objetivo estudar a influencia dos agentes de nucleacao na nucleacao em volume dos vitro-cerâmicos resultantes a base de diopsidio, de modo a qualifica-los como potenciais materiais hopedeiros de residuos nucleares radioactivos.

  14. Clinopyroxene based glasses and glass-ceramics for functional applications

    NASA Astrophysics Data System (ADS)

    Goel, Ashutosh

    As piroxenas sao um vasto grupo de silicatos minerais encontrados em muitas rochas igneas e metamorficas. Na sua forma mais simples, estes silicatos sao constituidas por cadeias de SiO3 ligando grupos tetrahedricos de SiO4. A formula quimica geral das piroxenas e M2M1T2O6, onde M2 se refere a catioes geralmente em uma coordenacao octaedrica distorcida (Mg2+, Fe2+, Mn2+, Li+, Ca2+, Na+), M1 refere-se a catioes numa coordenacao octaedrica regular (Al3+, Fe3+, Ti4+, Cr3+, V3+, Ti3+, Zr4+, Sc3+, Zn2+, Mg2+, Fe2+, Mn2+), e T a catioes em coordenacao tetrahedrica (Si4+, Al3+, Fe3+). As piroxenas com estrutura monoclinica sao designadas de clinopiroxenes. A estabilidade das clinopyroxenes num espectro de composicoes quimicas amplo, em conjugacao com a possibilidade de ajustar as suas propriedades fisicas e quimicas e a durabilidade quimica, tem gerado um interesse mundial devido a suas aplicacoes em ciencia e tecnologia de materiais. Este trabalho trata do desenvolvimento de vidros e de vitro-cerâmicos baseadas de clinopiroxenas para aplicacoes funcionais. O estudo teve objectivos cientificos e tecnologicos; nomeadamente, adquirir conhecimentos fundamentais sobre a formacao de fases cristalinas e solucoes solidas em determinados sistemas vitro-cerâmicos, e avaliar a viabilidade de aplicacao dos novos materiais em diferentes areas tecnologicas, com especial enfase sobre a selagem em celulas de combustivel de oxido solido (SOFC). Com este intuito, prepararam-se varios vidros e materiais vitro-cerâmicos ao longo das juntas Enstatite (MgSiO3) - diopsidio (CaMgSi2O6) e diopsidio (CaMgSi2O6) - Ca - Tschermak (CaAlSi2O6), os quais foram caracterizados atraves de um vasto leque de tecnicas. Todos os vidros foram preparados por fusao-arrefecimento enquanto os vitro-cerâmicos foram obtidos quer por sinterizacao e cristalizacao de fritas, quer por nucleacao e cristalizacao de vidros monoliticos. Estudaram-se ainda os efeitos de varias substituicoes ionicas em composicoes de diopsidio contendo Al na estrutura, sinterizacao e no comportamento durante a cristalizacao de vidros e nas propriedades dos materiais vitro-cerâmicos, com relevância para a sua aplicacao como selantes em SOFC. Verificou-se que Foi observado que os vidros/vitro-cerâmicos a base de enstatite nao apresentavam as caracteristicas necessarias para serem usados como materiais selantes em SOFC, enquanto as melhores propriedades apresentadas pelos vitro-cerâmicos a base de diopsidio qualificaram-nos para futuros estudos neste tipo de aplicacoes. Para alem de investigar a adequacao dos vitro-cerâmicos a base de clinopyroxene como selantes, esta tese tem tambem como objetivo estudar a influencia dos agentes de nucleacao na nucleacao em volume dos vitro-cerâmicos resultantes a base de diopsidio, de modo a qualifica-los como potenciais materiais hopedeiros de residuos nucleares radioactivos.

  15. Tungsten solution kinetics and amorphization of nickel in mechanically alloyed Ni-W alloys

    NASA Technical Reports Server (NTRS)

    Aning, A. O.; Wang, Z.; Courtney, T. H.

    1993-01-01

    The kinetics of solution of W, and the subsequent amorphization of Ni, in mechanically alloyed Ni-W alloys has been investigated. As W is a highly abrasive material in the energy intensive devices used for mechanical alloying, we studied the above reactions in different mills. One used hardened steel balls as the grinding media, and the other Al2O3. Abrasion is common to both mills, but Fe wear debris from the hardened steel enters into solution in the Ni rich phases whereas Al2O3 debris is present as small dispersoids. The kinetics of W solution and those of subsequent amorphization do not appear strongly affected by the Fe in solution or the Al2O3 dispersoid. Tungsten dissolves in crystalline Ni in amounts in excess of the equilibrium solubility during alloying. Amorphization of the Ni phase occurs if the W content in this phase exceeds ca. 28 at. pct.

  16. Correlations between elements in the fur of wild animals.

    PubMed

    Długaszek, Maria; Kopczyński, Krzysztof

    2014-07-01

    There is little data on the elemental composition of wild animals fur. In the paper, an attempt has been made to evaluate the concentration of elements in the fur of roe deer, wild boar and hare. The contents of following elements: calcium (Ca), magnesium (Mg), zinc (Zn), copper (Cu), iron (Fe), manganese (Mn), lead (Pb), cadmium (Cd), aluminium (Al), chromium (Cr), nickel (Ni) were determined by atomic absorption spectrometry method. Their content was in the range 0.01 (Cd) to 1,519 (Ca) μg/g. Correlations between the content of Mn, Al, Ca, Pb, Cr, Ni in the fur of animals, liver and muscle tissues were found. Thus it can be assumed that the fur of wild animals can provide an information on the bioavailability of elements and environmental exposure and can be considered as an useful biomarker in animals and environmental studies, although research on this subject should be continued.

  17. Spinel and orthopyroxene exsolved from clinopyroxene in the Haladala pluton in the middle Tianshan (Xinjiang, China)

    NASA Astrophysics Data System (ADS)

    Zhu, Yongfeng; Chen, Jing; Xue, Yunxin; Feng, Wanyi; Jiang, Jiuyang

    2017-12-01

    The Haladala pluton, consisting of troctolite, olivine gabbro and gabbro with zircon SHRIMP U-Pb age of 309 ± 2 Ma (MSWD = 0.72), intruded the Devonian-Carboniferous arc segments in the middle Tianshan. Amphibole, coexisting with magnetite, amphibole, and phlogopite, crystallized in a magma chamber at depth of 20 km (6.9-7.4 kbar, 934-943 °C) based on various thermobaramoters. Two kinds of exsolution textures (spinel rods in clinopyroxene, orthopyroxene lamellae in clinopyroxene) occur in troctolite and olivine gabbro. We describe oriented spinel rods and orthopyroxene lamellae exsolved from the host clinopyroxene based on optical and high-resolution transmission electron microscope (HRTEM) observations. The spinel rods (100) are parallel to their host clinopyroxene (010). Orthopyroxene lamellae (010) are coherent and strictly parallel to their host clinopyroxene (010). Exsolution of spinel rods from the host clinopyroxene is controlled by the reaction of (Ca0.5M2+ 0.5)Fe3+[AlSiO6]in clinopyroxene → (Ca0.86-0.17M2+ 0.14-0.17)(M2 + 1.00-0.96Al0-0.04)[Al0.17-0.10Si1.83-1.90O6] + Fe3O4 + O2.

  18. Mineral Composition of Wild and Cultivated Blueberries.

    PubMed

    Dróżdż, Paulina; Šėžienė, Vaida; Pyrzynska, Krystyna

    2018-01-01

    The concentrations of 13 elements (Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, and Zn) were determined in several samples of native (wild) naturally growing and cultivated blueberry fruits. The total metal contents after mineralization were analyzed by inductively coupled plasma optical emission spectrometry. Reliability of the procedure was checked by the analysis of the certified reference materials Mixed Polish Herbs (INGT-MPH-2) and Leaves of Poplar (NCS DC 73350). In the fruits collected in the forest (wild blueberries), higher contents of Ca, Na, and Mg as well as Mn and Zn were observed. Similar levels of Cu, Cr, Fe, and Ni were detected in both wild-growing and cultivated plants. The significantly higher content of Fe and Cd in cultivated blueberries was connected with the content of these metals in soil samples collected from the same places. The metal extraction efficiency by hot water varied widely for the different blueberries (wild or cultivated) as well as their form (fresh or dried).

  19. Equilibrium coexistence of three amphiboles

    USGS Publications Warehouse

    Robinson, P.; Jaffe, H.W.; Klein, C.; Ross, M.

    1969-01-01

    Electron probe and wet chemical analyses of amphibole pairs from the sillimanite zone of central Massachusetts and adjacent New Hampshire indicated that for a particular metamorphic grade there should be a restricted composition range in which three amphiboles can coexist stably. An unequivocal example of such an equilibrium three amphibole rock has been found in the sillimanite-orthoclase zone. It contains a colorless primitive clinoamphibole, space group P21/m, optically and chemically like cummingtonite with blue-green hornblende exsolution lamellae on (100) and (-101) of the host; blue-green hornblende, space group C2/m, with primitive cummingtonite exsolution lamellae on (100) and (-101) of the host; and pale pinkish tan anthophyllite, space group Pnma, that is free of visible exsolution lamellae but is a submicroscopic intergrowth of two orthorhombic amphiboles. Mutual contacts and coarse, oriented intergrowths of two and three host amphiboles indicate the three grew as an equilibrium assemblage prior to exsolution. Electron probe analyses at mutual three-amphibole contacts showed little variation in the composition of each amphibole. Analyses believed to represent most closely the primary amphibole compositions gave atomic proportions on the basis of 23 oxygens per formula unit as follows: for primitive cummingtonite (Na0.02Ca0.21- Mn0.06Fe2+2.28Mg4.12Al0.28) (Al0.17Si7.83), for hornblende (Na0.35Ca1.56Mn0.02Fe1.71Mg2.85Al0.92) (Al1.37Si6.63), and for anthophyllite (Na0.10Ca0.06Mn0.06Fe2.25Mg4.11Al0.47) (Al0.47Si7.53). The reflections violating C-symmetry, on X-ray single crystal photographs of the primitive cummingtonite, are weak and diffuse, and suggest a partial inversion from a C-centered to a primitive clinoamphibole. Single crystal photographs of the anthophyllite show split reflections indicating it is an intergrowth of about 80% anthophyllite and about 20% gedrite which differ in their b crystallographic dimensions. Split reflections are characteristic of all analyzed orthorhombic amphiboles so far examined from Massachusetts and New Hampshire except the most aluminous gedrites, and the relative intensity of the gedrite reflections is roughly proportional to the degree of Na and Al substitution. Thin sections of a few of these anthophyllite specimens show lamellae parallel to (010) that are just resolved with a high power objective. ?? 1969 Springer-Verlag.

  20. Complex, Precision Cast Columbium Alloy Gas Turbine Engine Nozzles Coated to Resist Oxidation.

    DTIC Science & Technology

    1980-04-01

    Microstructures of Sprayed Specimens 64 Table 19 NS-4 Coated C129Y Alloy Specimens Weight Bisque Weight Sintered Weight Silicided Weight Pre-Oxidized...choice of another alloy , while perhaps assisting in the foundry process , would not have yielded a mechanical property data base with advantage over...Mo 250 ppm max; Fe 30 ppm max; Al , Ca, C, Si, Cr, Ni, Cu , Mn, Mg and Sn 10 ppm max each). Molybdenum វim powder (02 2000 ppm max; W 250 ppm max; Fe

  1. X-ray diffraction and spectroscopic study of wiluite: implications for the vesuvianite-group nomenclature

    NASA Astrophysics Data System (ADS)

    Panikorovskii, Taras L.; Mazur, Anton S.; Bazai, Ayya V.; Shilovskikh, Vladimir V.; Galuskin, Evgeny V.; Chukanov, Nikita V.; Rusakov, Vyacheslav S.; Zhukov, Yurii M.; Avdontseva, Evgenia Yu.; Aksenov, Sergey M.; Krivovichev, Sergey V.

    2017-09-01

    Two wiluite samples from the Wiluy River, Yakutia, Russia have been investigated by means of single-crystal and powder X-ray diffraction, electron microprobe analysis, 1H, 27Al, 11B, and 29Si magic-angle spinning nuclear magnetic resonance (MAS NMR), thermogravimetric analysis (DSC/TGA), X-ray photoelectron spectroscopy (XPS) at the Si2p, Ca2p, Al2p, Mg1s, B1s and Fe2p core levels, 57Fe Mössbauer spectroscopy, infrared (IR) spectroscopy and optical measurements. The crystal structures have been refined in the P4/ nnc space group [ a = 15.7027(3), c = 11.7008(3) Å, V = 2885.1(1) Å3 for 1 and a = 15.6950(2), c = 11.6787(4) Å, V = 2876.9(1) Å3 for 2] to R 1 = 0.022 and R 1 = 0.021, respectively. In the crystal structure of wiluite, five-coordinated Y1 site is predominantly occupied by Mg. IR spectra of wiluite substantially different from those of vesuvianite, in particular, by the presence of additional bands in the range 1080‒1415 cm-1, which correspond to symmetric B‒O stretching vibrations of the BO 3 3- and BO 4 5- groups. According to the MAS NMR data, tetrahedrally coordinated T1 site is occupied by B3+ with minor amounts of Al3+. The general formula of wiluite can be written as follows ( Z = 2): Ca19Mg(Al,Mg,Fe,Ti,Mn)12(B,Al,◻)5(Si2O7)4(SiO4)10(O,OH)9O2-3. The diversity of vesuvianite-group minerals is largely determined by the population of the Y1 sites. However, wiluite is characterized by the presence of additional T1 and T2 sites and should be considered as special among other vesuvianite-group minerals. The reasonability of subdivision of the wiluite subgroup within the vesuvianite group is discussed.

  2. Elevated levels of ferrimagnetic metals in foodchains supporting the Guam cluster of neurodegeneration: do metal nucleated crystal contaminants [corrected] evoke magnetic fields that initiate the progressive pathogenesis of neurodegeneration?

    PubMed

    Purdey, Mark

    2004-01-01

    Elevated levels of aluminium (Al), strontium (Sr), barium (Ba), iron (Fe), manganese (Mn) cations - combined with deficiencies of magnesium (Mg)/calcium (Ca) - have been observed in the foodchains that traditionally support the Chamorro populations affected by high incidence clusters of Alzheimer (AD), Parkinson-like (PD), motor neurone diseases and multiple sclerosis on the island of Guam. Soils drawn from the cluster region demonstrated an excessive fivefold increase in 'magnetic susceptibility' readings in relation to soils from disease free adjoining regions. A multifactorial aetiological hypothesis is proposed that pivots upon the combined exposure to high levels of natural/industrial sources of ferrimagnetic/ferroelectric compounds incorporating Al, Fe, Mn, Sr, Ba (e.g., via yam/seafood consumption or exposure to world war 2 (WW2) munitions) and to low levels of Mg/Ca in all S. Pacific locations where these clusters of neurodegenerative disease have simultaneously erupted. Once gut/blood brain barrier permeability is impaired, the increased uptake of Al, Fe, Sr, Ba, or Mn into the Mg/Ca depleted brain leads to rogue metal substitutions at the Mg/Ca vacated binding domains on various enzyme/proteoglycan groups, causing a broad ranging disruption in Mg/Ca dependent systems - such as the glutamine synthetase which prevents the accumulation of neurotoxic glutamate. The rogue metals chelate sulphate, disrupting sulphated-proteoglycan mediated inhibition of crystal proliferation, as well as its regulation of the Fibroblast growth factor receptor complex which disturbs the molecular conformation of those receptors and their regulation of transphosphorylation between intracellular kinase domains; ultimately collapsing proteoglycan mediated cell-cell signalling pathways which maintain the growth and structural integrity of the neuronal networks. The depression of Mg/Ca dependent systems in conjunction with the progressive ferrimagnetisation of the CNS due to an overload of rogue ferroelectric/ferrimagnetic metal contaminants, enables 'seeding' of metal-protein crystalline arrays that can proliferate in the proteoglycan depleted brain. The resulting magnetic field emissions initiate a free radical mediated progressive pathogenesis of neurodegeneration. The co-clustering of these various types of disease in select geographical pockets around the world suggests that all of these conditions share a common early life exposure to ferromagnetic metal nucleating agents in their multifactorial aetiology. Factors such as individual genetics, the species of metal involved, etc., dictate which specific class of disease will emerge as a delayed neurotoxic response to these environmental insults.

  3. Donnan membrane speciation of Al, Fe, trace metals and REEs in coastal lowland acid sulfate soil-impacted drainage waters.

    PubMed

    Jones, Adele M; Xue, Youjia; Kinsela, Andrew S; Wilcken, Klaus M; Collins, Richard N

    2016-03-15

    Donnan dialysis has been applied to forty filtered drainage waters collected from five coastal lowland acid sulfate soil (CLASS) catchments across north-eastern NSW, Australia. Despite having average pH values<3.9, 78 and 58% of Al and total Fe, respectively, were present as neutral or negatively-charged species. Complementary isotope dilution experiments with (55)Fe and (26)Al demonstrated that only soluble (i.e. no colloidal) species were present. Trivalent rare earth elements (REEs) were also mainly present (>70%) as negatively-charged complexes. In contrast, the speciation of the divalent trace metals Co, Mn, Ni and Zn was dominated by positively-charged complexes and was strongly correlated with the alkaline earth metals Ca and Mg. Thermodynamic equilibrium speciation calculations indicated that natural organic matter (NOM) complexes dominated Fe(III) speciation in agreement with that obtained by Donnan dialysis. In the case of Fe(II), however, the free cation was predicted to dominate under thermodynamic equilibrium, whilst our results indicated that Fe(II) was mainly present as neutral or negatively-charged complexes (most likely with sulfate). For all other divalent metals thermodynamic equilibrium speciation calculations agreed well with the Donnan dialysis results. The proportion of Al and REEs predicted to be negatively-charged was also grossly underestimated, relative to the experimental results, highlighting possible inaccuracies in the stability constants developed for these trivalent Me(SO4)2(-) and/or Me-NOM complexes and difficulties in modeling complex environmental samples. These results will help improve metal mobility and toxicity models developed for CLASS-affected environments, and also demonstrate that Australian CLASS environments can discharge REEs at concentrations an order of magnitude greater than previously reported. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Coupled extremely light Ca and Fe isotopes in peridotites

    NASA Astrophysics Data System (ADS)

    Zhao, Xinmiao; Zhang, Zhaofeng; Huang, Shichun; Liu, Yufei; Li, Xin; Zhang, Hongfu

    2017-07-01

    Large metal stable isotopic variations have been observed in both extraterrestrial and terrestrial samples. For example, Ca exhibits large mass-dependent isotopic variation in terrestrial igneous rocks and mantle minerals (on the order of ∼2‰ variation in 44Ca/40Ca). A thorough assessment and understanding of such isotopic variations in peridotites provides important constraints on the evolution and compositon of the Earth's mantle. In order to better understand the Ca and Fe isotopic variations in terrestrial silicate rocks, we report Ca isotopic compositions in a set of peridotitic xenoliths from North China Craton (NCC), which have been studied for Fe isotopes. These NCC peridotites have large Ca and Fe isotopic variations, with δ44/40Ca ranging from -0.08 to 0.92 (delta value relative to SRM915a) and δ57/54Fe (delta value relative to IRMM-014) ranging from -0.61 to 0.16, and these isotopic variations are correlated with large Mg# (100 × Mg/(Mg + Fe) molar ratio) variation, ranging from 80 to 90. Importantly, NCC Fe-rich peridotites have the lowest 44Ca/40Ca and 57Fe/54Fe ratios in all terrestrial silicate rocks. In contrast, although ureilites, mantle rocks from a now broken differentiated asteroid(s), have large Mg# variation, from 70 to 92, they have very limited δ57Fe/54Fe variation (0.03-0.21, delta value relative to IRMM-014). Our model calculations show that the coupled extremely light Ca-Fe isotopic signatures in NCC Fe-rich peridotites most likely reflect kinetic isotopic fractionation during melt-peridotite reaction on a timescale of several to 104 years. In addition, our new data and compiled literature data show a possible compositional effect on the inter-mineral Ca isotopic fractionation between co-existing clinopyroxene and orthopyroxene pairs.

  5. Characterization of iron, manganese, and copper synthetic hydroxyapatites by electron paramagnetic resonance spectroscopy

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Wasowicz, T.; Howard, T.; Hossner, L. R.; Ming, D. W.

    2002-01-01

    The incorporation of micronutrients (e.g., Fe, Mn, Cu) into synthetic hydroxyapatite (SHA) is proposed for slow release of these nutrients to crops in NASA's Advanced Life Support (ALS) program for long-duration space missions. Separate Fe3+ (Fe-SHA), Mn2+ (Mn-SHA), and Cu2+ (Cu-SHA) containing SHA materials were synthesized by a precipitation method. Electron paramagnetic resonance (EPR) spectroscopy was used to determine the location of Fe3+, Mn2+, and Cu2+ ions in the SHA structure and to identify other Fe(3+)-, Mn(2+)-, and Cu(2+)-containing phases that formed during precipitation. The EPR parameters for Fe3+ (g=4.20 and 8.93) and for Mn2+ (g=2.01, A=9.4 mT, D=39.0 mT and E=10.5 mT) indicated that Fe3+ and Mn2+ possessed rhombic ion crystal fields within the SHA structure. The Cu2+ EPR parameters (g(z)=2.488, A(z)=5.2 mT) indicated that Cu2+ was coordinated to more than six oxygens. The rhombic environments of Fe3+ and Mn2+ along with the unique Cu2+ environment suggested that these metals substituted for the 7 or 9 coordinate Ca2+ in SHA. The EPR analyses also detected poorly crystalline metal oxyhydroxides or metal-phosphates associated with SHA. The Fe-, Mn-, and Cu-SHA materials are potential slow release sources of Fe, Mn, and Cu for ALS and terrestrial cropping systems.

  6. Characterization of Carbonate Crust from Deep-sea Methane Seeps on the Northern US Atlantic Margin.

    NASA Astrophysics Data System (ADS)

    Gabitov, R. I.; Borrelli, C.; Buettner, J.; Testa, M.; Garner, B.; Weremeichik, J.; Thomas, J. B.; Wahidi, M.; Thirumalai, R. V. K. G.; Kirkland, B. L.; Skarke, A. D.

    2017-12-01

    Authigenic carbonate minerals widely occur at the seafloor as carbonate crusts and are often directly linked to microbial activity, about which promotion of carbonate crystal growth and geochemistry are not entirely understood. To evaluate a potential metabolic contribution, studies were conducted on carbonate crust collected from a methane seep and on precipitation experiments which produced inorganic aragonite crystallized at high pressure. Among the samples collected during a NSF sponsored cruise to the North Atlantic Continental Margin of the United States (off of New England) in July-August 2016, we analyzed one carbonate crust sample (AD4835 BB-4522) collected at 39.805860; -69.592593 and at a depth of 1419.6 m. In this crust sample, two textural types of aragonite were identified: 1) groundmass consisting of fine grey crystals (<1 µm in size); 2) veins consisting of white acicular crystals (up to 100 µm in width). In addition, large equant quartz crystals (>100 µm, 24.9 wt%), feldspar (5.6 wt%), and dolomite (3.6 wt%), and trace amount of troilite were identified using XRD, SEM, and optical microscopy. The sample was cut into slabs parallel to crust growth assuming the crust grew in a downward direction. Concentrations of Na, Mg, Al, Si, S, K, Ca, Mn, Fe, Sr, Zr, Ba, and U were measured in the direction parallel to growth of the crust using LA-ICP-MS. Proportions of Si, Al, (Na+K), Mg, S, and Fe in the groundmass suggest the occurrence of sub-micron inclusions of alkali feldspar, and potentially pyroxene, Fe oxide, and Fe sulfide, which were impossible to avoid with the instrument's spatial resolution. The occurrence of micro non-carbonate inclusions causes high elemental concentrations compared to the values expected for aragonite crystallized from seawater. White aragonite acicular crystals were free of silicate and sulfide inclusions, and therefore, yielded lower concentrations of all measured elements except Sr compared to the groundmass. Analyzed Mg and Sr are consistent with published data for deep-sea corals. Also, Sr is similar to experimental data on inorganic aragonite. Mg/Ca, Sr/Ca, Ba/Ca, and U/Ca of the fluid from which acicular aragonite grew were calculated based on partition coefficients from inorganic aragonite precipitated at 100 bars.

  7. Lack of Evidence of In-Situ Decay of Aluminum-26 in a FeO-Poor Ferromagnesian Crystalline Silicate Particle, Pyxie, from Comet Wild 2

    NASA Technical Reports Server (NTRS)

    Nakashima, D.; Ushikubo, T.; Weisberg, M. K.; Zolensky, M. E.; Ebel, D. S.; Kita, N. T.

    2014-01-01

    One of the important discoveries from the Stardust mission is the observation of crystalline silicate particles that resemble Ca, Al-rich inclusions (CAIs) and chondrules in carbonaceous chondrites], which suggests radial transport of high temperature solids from the inner to the outer solar nebula regions and capture by accreting cometary objects. The Al-Mg isotope analyses of CAI-like and type II chondrule-like particles revealed no excess of Mg-26 derived from in-situ decay of Al-26 (Tau)(sub 1/2) = 0.705Myr; ), suggesting late formation of these particles. However, the number of Wild 2 particles analyzed for Al-Mg isotopes is still limited (n = 3). In order to better understand the timing of the formation of Wild 2 particles and possible radial transport in the protoplanetary disk, we performed SIMS (Secondary Ion Mass Spectrometer) Al-Mg isotope analyses of plagioclase in a FeO-poor ferromagnesian Wild 2 particle, which is the most abundant type among crystalline Wild 2 particles.

  8. The Thermal History of Enstatite Chondrites

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Benoit, P. H.; Sears, D. W. G.

    1992-07-01

    In an attempt to decipher the complicated thermal history of the enstatite chondrites, the CaS enstatite (Larimer and Buseck, 1974; Fogel et al., 1989), cubic sulfide (Skinner and Luce, 1971) and sphalerite (Kissin, 1989; El Goresy and Ehlers, 1989) systems have been applied, but the results have not been straightforward. The CaS-En thermometer gives metamorphic temperatures which appear reasonable, but which do not correlate well with petrologic type. The cubic sulfides yield reasonable temperatures for the EH chondrites, but the values for EL chondrites are very low. To some extent, the problem has been the lack of low petrologic type EL chondrites. Here we discuss data for the recently discovered EL3 chondrites (Chang et al., 1992) and we examine the applicability of the Fe-Ni-P system for thermometry. The CaS-En thermometer uses three reactions including equilibria between metal, CaS, SiO2, enstatite and FeS. The method is crucially dependent on the activity coefficients for Si and CaSiO3 which are in solid solutions with metal and enstatite, respectively. The cubic sulfide thermometer uses the solubility of FeS in MgS and MnS, while the ZnS thermometer (which is pressure-dependent) uses the solubility of FeS in ZnS. Current equilibration temperature estimates for enstatite chondrites including the EL3 chondrites are listed in Table 1. Table 1. Estimates of equilibration temperatures (degrees C) for enstatite chondrites.* Petrologic type EH EL System 3 4 5 6 3 4 5 6 En-CaS 1030 950 830 - 830 - - 1025 Cubic sulf 400 680 600 - <<400 - - <400 ZnS 410 (1859)+ - - 500 - - 550 Fe-Ni-P <450 500 550 - <<450 - - <450 *Literature data (see text), present data (bold type). +Heavily shocked. In an attempt to use the Fe-Ni-P system as a thermometer for enstatite chondrites, we used the phase diagram of Doan and Goldstein (1970). Like the other systems, this required extrapolation to lower temperatures (Fig. 1). The temperatures calculated from this system mirror those of the sulfides, suggesting major differences in the thermal history of the EL and EH chondrites. Two points may be made from the data in Table 1. The EH3 and EL3 chondrites have similar En-CaS equilibration temperatures to those of the higher petrologic types which we suspect reflect pre-metamorphic equilibria. Second, both the cubic sulfides and the phosphides yield metamorphic temperatures for the EH chondrites which are similar to those for ordinary chondrites, while EL chondrites yield very low temperatures. The EL chondrite parent body must have cooled at especially slow rates, perhaps because it was much larger than the EH parent body, or maybe the cooling rate on EL body was governed by the attenuation of the heat source rather than burial depth. Chang Y., Benoit P.H. and Sears D.W.G. (1992) Lunar and Planet. Sci. 23, 217-218. Doan A.S. and Goldstein J.I. (1970) Met. Trans. 1, 1759-1767. El Goresy A. and Ehlers K (1989) Geochim. Cosmochim. Acta 53, 1657-1668. Fogel R.A., Hess P.C. and Rutherford M.C. (1989) Geochim. Cosmochim. Acta 53, 2735-2746. Kissin S.A.(1989) Geochim. Cosmochim. Acta 53, 1649-1655. Larimer J.W. and Buseck P.R. (1974) Geochim. Cosmochim. Acta 38, 471-477. Skinner B.J. and Luce F.D. (1971) Amer. Min. 56, 1269-1296. Figure 1, which in the hard copy appears here, shows isotherm from the Fe-Ni-P phase diagram with data for enstatite chondrites superimposed.

  9. The influence of microtopography on soil nutrients in created mitigation wetlands

    USGS Publications Warehouse

    Moser, K.F.; Ahn, C.; Noe, G.B.

    2009-01-01

    This study explores the relationship between microtopography and soil nutrients (and trace elements), comparing results for created and reference wetlands in Virginia, and examining the effects of disking during wetland creation. Replicate multiscale tangentially conjoined circular transects were used to quantify microtopography both in terms of elevation and by two microtopographic indices. Corresponding soil samples were analyzed for moisture content, total C and N, KCl-extractable NH4-N and NO3-N, and Mehlich-3 extractable P, Ca, Mg, K, Al, Fe, and Mn. Means and variances of soil nutrient/element concentrations were compared between created and natural wetlands and between disked and nondisked created wetlands. Natural sites had higher and more variable soil moisture, higher extractable P and Fe, lower Mn than created wetlands, and comparatively high variability in nutrient concentrations. Disked sites had higher soil moisture, NH4-N, Fe, and Mn than did nondisked sites. Consistently low variances (Levene test for inequality) suggested that nondisked sites had minimal nutrient heterogeneity. Across sites, low P availability was inferred by the molar ratio (Mehlich-3 [P/(Al + Fe)] < 0.06); strong intercorrelations among total C, total N, and extractable Fe, Al, and P suggested that humic-metal-P complexes may be important for P retention and availability. Correlations between nutrient/element concentrations and microtopographic indices suggested increased Mn and decreased K and Al availability with increased surface roughness. Disking appears to enhance water and nutrient retention, as well as nutrient heterogeneity otherwise absent from created wetlands, thus potentially promoting ecosystem development. ?? 2008 Society for Ecological Restoration International.

  10. The effects of sorting by aeolian processes on the geochemical characteristics of surface materials: a wind tunnel experiment

    NASA Astrophysics Data System (ADS)

    Wang, Xunming; Lang, Lili; Hua, Ting; Zhang, Caixia; Li, Hui

    2018-03-01

    The geochemical characteristics of aeolian and surface materials in potential source areas of dust are frequently employed in environmental reconstructions as proxies of past climate and as source tracers of aeolian sediments deposited in downwind areas. However, variations in the geochemical characteristics of these aeolian deposits that result from near-surface winds are currently poorly understood. In this study, we collected surface samples from the Ala Shan Plateau (a major potential dust source area in Central Asia) to determine the influence of aeolian processes on the geochemical characteristics of aeolian transported materials. Correlation analyses show that compared with surface materials, the elements in transported materials (e.g., Cu, As, Pb, Mn, Zn, Al, Ca, Fe, Ga, K, Mg, P, Rb, Co, Cr, Na, Nb, Si, and Zr) were subjected to significant sorting by aeolian processes, and the sorting also varied among different particle size fractions and elements. Variations in wind velocity were significantly correlated with the contents of Cr, Ga, Sr, Ca, Y, Nd, Zr, Nb, Ba, and Al, and with the Zr/Al, Zr/Rb, K/Ca, Sr/Ca, Rb/Sr, and Ca/Al ratios. Given the great variation in the geochemical characteristics of materials transported under different aeolian processes relative to those of the source materials, these results indicate that considerable uncertainty may be introduced to analyses by using surface materials to trace the potential source areas of aeolian deposits that accumulate in downwind areas.

  11. Trace elements distribution in hawksbill turtle (Eretmochelys imbricata) and green turtle (Chelonia mydas) tissues on the northern coast of Bahia, Brazil.

    PubMed

    de Macêdo, Gustavo R; Tarantino, Taiana B; Barbosa, Isa S; Pires, Thaís T; Rostan, Gonzalo; Goldberg, Daphne W; Pinto, Luis Fernando B; Korn, Maria Graças A; Franke, Carlos Roberto

    2015-05-15

    Concentrations of elements (As, Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Mo, Na, Ni, Pb, Sb, Se, Sr, V, Zn) were determined in liver, kidneys and bones of Eretmochelys imbricata and Chelonia mydas specimens found stranded along the northern coast of Bahia, Brazil. Results showed that the concentrations of Cd, Cu, Ni and Zn in the liver and kidneys of juvenile C. mydas were the highest found in Brazil. We also observed a significant difference (p<0.05) on the bioaccumulation of trace elements between the two species: Al, Co, Mo, Na and Se in the liver; Al, Cr, Cu, K, Mo, Ni, Pb, Sr and V in the kidneys; and Al, Ba, Ca, Cd, Mn, Ni, Pb, Se, Sr and V in the bones. This study represents the first report on the distribution and concentration of trace elements in E. imbricata in the Brazilian coast. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Crystal chemistry of a Ba-dominant analogue of hydrodelhayelite and natural ion-exchange transformations in double- and triple-layer phyllosilicates in post-volcanic systems of the Eifel region, Germany

    NASA Astrophysics Data System (ADS)

    Zubkova, N. V.; Chukanov, N. V.; Pekov, I. V.; Turchkova, A. G.; Lykova, I. S.; Schüller, W.; Ternes, B.; Pushcharovsky, D. Yu.

    2016-12-01

    A Ba-dominant (Ba > K) analogue of hydrodelhayelite (BDAH) from Löhley (Eifel Mts., Rhineland-Palatinate, Germany) and Ba-enriched varieties of related double- and triple-layer phyllosilicates from Eifel are studied. The crystal structure of BDAH was solved by direct methods and refined to R = 0.0698 [1483 unique reflections with I > 2σ( I)]. It is orthorhombic, Pmmn, a = 23.9532(9), b = 7.0522(3), c = 6.6064(3) Å, V = 1115.97(8) Å3, Z = 2. The structure is based upon delhayelite-type double-layer tetrahedral blocks [(Al,Si)4Si12O34(OH,O)4] connected by chains of (Ca,Fe)-centered octahedra. Ba2+ and subordinate K+ occur at partially vacant sites in zeolitic channels within the tetrahedral blocks. The crystal-chemical formula of BDAH is: (Ba0.42K0.34□0.24)(Ca0.88Fe0.12)2(□0.90Mg0.10)2[Si6(Al0.5Si0.5)2O17(OH0.71O0.29)2]ṡ6H2O. The formation of BDAH and Ba-rich varieties of altered delhayelite/fivegite, günterblassite and hillesheimite is considered as a result of leaching of Na, Cl, F and, partially, K and Ca accompanied with hydration and the capture of Ba as a result of natural ion exchange. These minerals are structurally a "bridge" between single-layer phyllosilicates and zeolites having the open three-dimensional tetrahedral Al-Si-O frameworks.

  13. Prediction of the thermodynamic properties of metal-arsenate and metal-arsenite aqueous complexes to high temperatures and pressures and some geological consequences

    NASA Astrophysics Data System (ADS)

    Marini, Luigi; Accornero, Marina

    2007-07-01

    The standard thermodynamic properties at 25°C, 1 bar (Δ G {f/o}, Δ H {f/o}, S o, C {P/o}, V o, ω) and the coefficients of the revised Helgeson-Kirkham-Flowers equations of state were evaluated for several aqueous complexes formed by dissolved metals and either arsenate or arsenite ions. The guidelines of Shock and Helgeson (Geochim Cosmochim Acta 52:2009-2036, 1988) and Sverjensky et al. (Geochim Cosmochim Acta 61:1359-1412, 1997) were followed and corroborated with alternative approaches, whenever possible. The SUPCRT92 computer code was used to generate the log K of the destruction reactions of these metal-arsenate and metal-arsenite aqueous complexes at pressures and temperatures required by the EQ3/6 software package, version 7.2b. Apart from the AlAsO{4/o} and FeAsO{4/o} complexes, our log K at 25°C, 1 bar are in fair agreement with those of Whiting (MS Thesis, Colorado School of Mines, Golden, CO, 1992). Moreover, the equilibrium constants evaluated in this study are in good to fair agreement with those determined experimentally for the Ca-dihydroarsenate and Ca-hydroarsenate complexes at 40°C (Mironov et al., Russ J Inorg Chem 40:1690, 1995) and for Fe(III)-hydroarsenate complex at 25°C (Raposo et al., J Sol Chem 35:79-94, 2006), whereas the disagreement with the log K measured for the Ca-arsenate complex at 40°C (Mironov et al., Russ J Inorg Chem 40:1690, 1995) might be due to uncertainties in this measured value. The implications of aqueous complexing between dissolved metals and arsenate/arsenite ions were investigated for seawater, high-temperature geothermal liquids and acid mine drainage and aqueous solutions deriving from mixing of acid mine waters and surface waters.

  14. Light, alpha, and Fe-peak element abundances in the galactic bulge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Christian I.; Rich, R. Michael; Kobayashi, Chiaki

    2014-10-01

    We present radial velocities and chemical abundances of O, Na, Mg, Al, Si, Ca, Cr, Fe, Co, Ni, and Cu for a sample of 156 red giant branch stars in two Galactic bulge fields centered near (l, b) = (+5.25,–3.02) and (0,–12). The (+5.25,–3.02) field also includes observations of the bulge globular cluster NGC 6553. The results are based on high-resolution (R ∼ 20,000), high signal-to-noise ration (S/N ≳ 70) FLAMES-GIRAFFE spectra obtained through the European Southern Observatory archive. However, we only selected a subset of the original observations that included spectra with both high S/N and that did notmore » show strong TiO absorption bands. This work extends previous analyses of this data set beyond Fe and the α-elements Mg, Si, Ca, and Ti. While we find reasonable agreement with past work, the data presented here indicate that the bulge may exhibit a different chemical composition than the local thick disk, especially at [Fe/H] ≳ –0.5. In particular, the bulge [α/Fe] ratios may remain enhanced to a slightly higher [Fe/H] than the thick disk, and the Fe-peak elements Co, Ni, and Cu appear enhanced compared to the disk. There is also some evidence that the [Na/Fe] (but not [Al/Fe]) trends between the bulge and local disk may be different at low and high metallicity. We also find that the velocity dispersion decreases as a function of increasing [Fe/H] for both fields, and do not detect any significant cold, high-velocity populations. A comparison with chemical enrichment models indicates that a significant fraction of hypernovae may be required to explain the bulge abundance trends, and that initial mass functions that are steep, top-heavy (and do not include strong outflow), or truncated to avoid including contributions from stars >40 M {sub ☉} are ruled out, in particular because of disagreement with the Fe-peak abundance data. For most elements, the NGC 6553 stars exhibit abundance trends nearly identical to comparable metallicity bulge field stars. However, the star-to-star scatter and mean [Na/Fe] ratios appear higher in the cluster, perhaps indicating additional self-enrichment.« less

  15. Cation-induced coagulation of aquatic plant-derived dissolved organic matter: Investigation by EEM-PARAFAC and FT-IR spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Interaction and coagulation of plant-derived dissolved organic matter (DOM) by metal cations are important biogeochemical processes of organic matter in lake systems. Thus, coagulation and fractionation of plant-derived DOM by di- and tri-valent Ca, Al, and Fe ions were investigated. Metal ion-induc...

  16. Apatite-hosted melt inclusions in Damiao massif anorthosite complex, North China

    NASA Astrophysics Data System (ADS)

    Wang, M.; Veksler, I. V.; Zhang, Z.

    2014-12-01

    Models for the nelsonite formation are currently highly contentious, with liquid immiscibility and fractional crystallization as frequently proposed formation mechanisms. The nelsonites in the Damiao massif anorthosite complex in the North China Craton and experimental evidence are revisited for the existence of silica-free CaO-FeO-Fe2O3-TiO2-P2O5 immiscible nelsonitic liquids. Our results of differential scanning calorimetry (DSC) demonstrate that nelsonite with the composition of one-third apatite and two-thirds Fe-Ti oxides by weight completely melts well above 1450 ºC, which is in good agreement with numerous experimental studies of the CaO-P2O5-FexO system in connection to metallurgy. Thus, the composition cannot be molten at temperatures relevant for crystallization of the Damiao magma. A review of experimental studies of liquid immiscibility and analyses of natural immiscible glasses show that all the liquids on the Fe- and P-rich side of the miscibility gap have at least 20 wt. % of aluminosilicate components. Main results of this study come from the analyses of apatite-hosted melt inclusions in Damiao nelsonite. The inclusions range from ~3 to 200 μm in diameter. They are ubiquitous and meet all the morphological criteria of primary melt inclusions crystallised into assemblages of daughter minerals. Almost all of them contain vermiculite and chlorite, and some contain biotite, amphibole, phlogopite and Fe-Ti oxides. Out of dozens analysed inclusions, only three have high contents of SiO2 (62.1-73.8 wt. %) and low contents of FeO (0.25-2.35 wt. %). Bulk compositions of other inclusions show large variations in SiO2 (20.79-50.16 wt. %) and FeOt (13.44-32.78 wt. %). With a few exceptions, the inclusions are very low in CaO (0.04-1.51 wt. %, and high in Al2O3 (10-21.17 wt. %). Despite the high Fe content, the compositions differ from those of the typical immiscible Fe-rich melts. It appears that the cumulus apatite crystallised from Fe-rich, hydrated silicate melt. We propose that the inclusions at Damiao record a trend of intercumulus melt evolution, which was strongly affected by separation of a hydrothermal fluid phase and the losses of alkali and Ca silicate components from the melt into the fluid.

  17. Trace elements records from vermetids aragonite as millennial paleo-oceanographic archives in the South-East Mediterranean

    NASA Astrophysics Data System (ADS)

    Jacobson, Yitzhak; Yam, Ruth; Shemesh, Aldo

    2017-04-01

    The Mediterranean Sea is a region under high anthropogenic stress, thus a hotspot for climate change studies. Natural conditions, such as SST, productivity, precipitation and dust fluxes along with human induced activity affect seawater chemistry. We study millennial variability of trace elements in East Mediterranean Sea high-resolution records, in attempt to connect them to environmental factors. The Mediterranean reef builder Vermetid, D. petraeum is a sessile gastropod, secreting its aragonite shells in tidal zones. Cores of Vermetid reefs from the South Eastern Mediterranean (Israel) were previously analyzed by Sisma?Ventura et al. (2014) to reconstruct seawater surface temperature (SST) and δ13C of dissolved inorganic carbon (DIC). In this study we analyzed trace elements of these vermetid cores, and reconstructed millennial records of elements to calcium (el/Ca) molar ratios. Vermetid trace element contents from recent decades are mostly in agreement with known values for marine biogenic aragonites from corals and mollusk. We divide vermetid trace element records into three element groups: 1) Sr and U are related to SST and DIC. These elements correlate with major climatic events of the last millennium, such as the Medieval Warm Period (900-1300 AD) and the Little Ice Age (1450-1850 AD). 2) Pb and Cd are related to anthropogenic pollution and demonstrate industrial sourced trends throughout the anthropocene (since 1750 AD). 3) Terrogenous elements, including Fe, Al, Mn and V. Al in seawater and sediments has been used to trace water masses and land derived sediment source. We observe a major change in average vermetid Al/Fe ratios from 0.5 to 2.5 over the recorded period (n=72). This vermetid Al/Fe change points at a possible shift from Nilotic sediments (0.1-0.5 Al/Fe molar ratio) to Saharan dust ratio (2-4 Al/Fe molar ratio). Mn and V show a similar variability to Fe. Understanding the variability of vermetid TE can help us interpret the relative dominance of different climate systems and anthropogenic processes on the East Mediterranean environment.

  18. Diffusion in coronas around clinopyroxene: modelling with local equilibrium and steady state, and a non-steady-state modification to account for zoned actinolite-hornblende

    NASA Astrophysics Data System (ADS)

    Ashworth, J. R.; Birdi, J. J.; Emmett, T. F.

    1992-01-01

    Retrograde coronas of Caledonian age, between clinopyroxene and plagioclase in the Jotun Nappe Complex, Norway, illustrate the effects of diffusion kinetics on mineral distributions among layers and on the compositions of hornblende-actinolite. One corona type comprises a symplectite of epidote + quartz adjacent to plagioclase, and a less well-organized intergrowth of amphibole + quartz replacing clinopyroxene. The observed mineral proportions imply an open-system reaction, but the similarity of Al/Si ratios in reactant plagioclase and product symplectite indicates approximate conservation of Al2O3 and SiO2. The largest inferred open-system flux is a loss of CaO, mostly derived from consumption of clinopyroxene. The approximate layer structure, Pl|Ep + Qtz|Hbl + Qtz|Act±Hbl + Qtz|Cpx, is modelled using the theory of steady-state diffusion-controlled growth with local equilibrium. To obtain a solution, it is necessary to use a reactant plagioclase composition which takes into account aluminous (epidote) inclusions. The results indicate that, in terms of Onsager diffusion coefficients L ii , Ca is more mobile than AL ( L CaCa/ L AlAl≳3.) (where ≳ means greater than or approximately equal to). This behaviour of Ca is comparable with that of Mg in previously studied coronas around olivine. Si is non-diffusing in the present modelling, because of silica saturation. Oxidation of some Fe2+ to Fe3+ occurs within the corona. Mg diffuses towards its source (clinopyroxene) to maintain local equilibrium. Other coronas consist of two layers, hornblende adjacent to plagioclase and zoned amphibole + quartz adjacent to clinopyroxene. In the zoned layer, actinolitic hornblende forms relict patches, separated from quartz blebs by more aluminous hornblende. A preliminary steady-state, local-equilibrium model of grain-boundary diffusion explains the formation of low-Al and high-Al layers as due to Al immobility. Zoning and replacement are qualitatively explained in terms of evolution of actinolite to more stable aluminous compositions. This is modelled by a non-steady-state modification of the theory, retaining local equilibrium in grain boundaries while relatively steep zoning profiles develop in grain interiors through slow intracrystalline diffusion. Replacement of actinolite by hornblende does not require a change in P- T conditions if actinolite is a kinetically determined, non-equilibrium product. The common preservation of a sharp contact between hornblende and actionolite layers may be explained by ineffectiveness of intracrystalline diffusion: according to the theory, given sufficient grain-boundary Al flux, a metastable actinolite + quartz layer in contact with hornblende may be diffusionally stable and may continue to grow in a steady state.

  19. Influence of marine, terrestrial and anthropogenic sources on ionic and metallic composition of rainwater at a suburban site (northwest coast of Spain)

    NASA Astrophysics Data System (ADS)

    Moreda-Piñeiro, Jorge; Alonso-Rodríguez, Elia; Moscoso-Pérez, Carmen; Blanco-Heras, Gustavo; Turnes-Carou, Isabel; López-Mahía, Purificación; Muniategui-Lorenzo, Soledad; Prada-Rodríguez, Darío

    2014-05-01

    In the present research, the rainwater chemistry of soluble (SF) and non-soluble (NSF) fractions is studied over a one a half year period (from March 2011 to August 2012) at a suburban site (Oleiros, A Coruña, Spain). The monthly rainfall in this region during the studied period ranged from 10 to 137 mm, while the NSF ranged from 0.9 to 54 mg L-1. More rainfall occurs within October-January. Eighteen samples, which provide information pertaining to the monthly variation in chemistry, were analyzed. Trace metals (Al, As, Ba, Co, Cu, Cr, Fe, Mn, Ni, Pb, Sr, V, Zn) were enclosed in the study of both fractions of the rainwater. Major inorganic ions (Cl-, NO3-, SO42-, Na+, K+, Ca2+, Mg2+ and NH4+) were also enclosed in the study of the SF of the rainwater. After partition coefficients analysis, univariate and principal components analysis (PCA) and air mass back trajectories analysis, three sources were found for the ionic and metal composition of the SF of rainwater; terrestrial (Ca2+, non sea salt SO42-, Al and Fe), marine (Mg2+, Na+, Cl-) and anthropogenic (K+, NH4+, NO3-, Fe, Mn, Pb, Sr, V and Zn). Results also suggest ubiquitous sources for Ba, Co, Cu, Cr and Ni. One source (terrestrial) was found for NSF of rainwater.

  20. Synthetic and natural chromium-bearing spinels: an optical spectroscopy study

    NASA Astrophysics Data System (ADS)

    Taran, M. N.; Parisi, F.; Lenaz, D.; Vishnevskyy, A. A.

    2014-09-01

    Four samples of synthetic chromium-bearing spinels of (Mg, Fe2+)(Cr, Fe3+)2O4 composition and four samples of natural spinels of predominantly (Mg, Fe2+)(Al, Cr)2O4 composition were studied at ambient conditions by means of optical absorption spectroscopy. Synthetic end-member MgCr2O4 spinel was also studied at pressures up to ca. 10 GPa. In both synthetic and natural samples, chromium is present predominantly as octahedral Cr3+ seen in the spectra as two broad intense absorption bands in the visible range caused by the electronic spin-allowed 4 A 2 g → 4 T 2 g and 4 A 2 g → 4 T 1 g transitions (U- and Y-band, respectively). A distinct doublet structure of the Y-band in both synthetic and natural spinels is related to trigonal distortion of the octahedral site in the spinel structure. A small, if any, splitting of the U-band can only be resolved at curve-fitting analysis. In all synthetic high-chromium spinels, a couple of relatively narrow and weak bands of the spin-allowed transitions 4 A 2 g → 2 E g and 4 A 2 g → 2 T 1 g of Cr3+, intensified by exchange-coupled interaction between Cr3+ and Fe3+ at neighboring octahedral sites of the structure, appear at ~14,400 and ~15,100 cm-1. A vague broad band in the range from ca. 15,000 to 12,000 cm-1 in synthetic spinels is tentatively attributed to IVCr2+ + VICr3+ → IVCr3+ + VICr2+ intervalence charge-transfer transition. Iron, mainly as octahedral Fe3+, causes intense high-energy absorption edge in near UV-range (ligand-metal charge-transfer O2- → Fe3+, Fe2+ transitions). As tetrahedral Fe2+, it appears as a strong infrared absorption band at around 4,850 cm-1 caused by electronic spin-allowed 5 E → 5 T 2 transitions of IVFe2+. From the composition shift of the U-band in natural and synthetic MgCr2O4 spinels, the coefficient of local structural relaxation around Cr3+ in spinel MgAl2O4-MgCr2O4 system was evaluated as ~0.56(4), one of the lowest among (Al, Cr)O6 polyhedra known so far. The octahedral modulus of Cr3+ in MgCr2O4, derived from pressure-induced shift of the U-band of Cr3+, is ~313 (50) GPa, which is nearly the same as in natural low-chromium Mg, Al-spinel reported by Langer et al. (1997). Calculated from the results of the curve-fitting analysis, the Racah parameter B of Cr3+ in natural and synthetic MgCr2O4 spinels indicates that Cr-O-bonding in octahedral sites of MgCr2O4 has more covalent character than in the diluted natural samples. Within the uncertainty of determination in synthetic MgAl2O4 spinel, B does not much depend on pressure.

  1. Volatilization, transport and sublimation of metallic and non-metallic elements in high temperature gases at Merapi Volcano, Indonesia

    USGS Publications Warehouse

    Symonds, R.B.; Rose, William I.; Reed, M.H.; Lichte, F.E.; Finnegan, David L.

    1987-01-01

    Condensates, silica tube sublimates and incrustations were sampled from 500-800??C fumaroles and lava samples were collected at Merapi Volcano, Indonesia in Jan.-Feb., 1984. With respect to the magma, Merapi gases are enriched by factors greater than 105 in Se, Re, Bi and Cd; 104-105 in Au, Br, In, Pb and W; 103-104 in Mo, Cl, Cs, S, Sn and Ag; 102-103 in As, Zn, F and Rb; and 1-102 in Cu, K, Na, Sb, Ni, Ga, V, Fe, Mn and Li. The fumaroles are transporting more than 106 grams/day ( g d) of S, Cl and F; 104-106 g/d of Al, Br, Zn, Fe, K and Mg; 103-104 g d of Pb, As, Mo, Mn, V, W and Sr; and less than 103 g d of Ni, Cu, Cr, Ga, Sb, Bi, Cd, Li, Co and U. With decreasing temperature (800-500??C) there were five sublimate zones found in silica tubes: 1) cristobalite and magnetite (first deposition of Si, Fe and Al); 2) K-Ca sulfate, acmite, halite, sylvite and pyrite (maximum deposition of Cl, Na, K, Si, S, Fe, Mo, Br, Al, Rb, Cs, Mn, W, P, Ca, Re, Ag, Au and Co); 3) aphthitalite (K-Na sulfate), sphalerite, galena and Cs-K. sulfate (maximum deposition of Zn, Bi, Cd, Se and In; higher deposition of Pb and Sn); 4) Pb-K chloride and Na-K-Fe sulfate (maximum deposition of Pb, Sn and Cu); and 5) Zn, Cu and K-Pb sulfates (maximum deposition of Pb, Sn, Ti, As and Sb). The incrustations surrounding the fumaroles are also chemically zoned. Bi, Cd, Pb, W, Mo, Zn, Cu, K, Na, V, Fe and Mn are concentrated most in or very close to the vent as expected with cooling, atmospheric contamination and dispersion. The highly volatile elements Br, Cl, As and Sb are transported primarily away from high temperature vents. Ba, Si, P, Al, Ca and Cr are derived from wall rock reactions. Incomplete degassing of shallow magma at 915??C is the origin of most of the elements in the Merapi volcanic gas, although it is partly contaminated by particles or wall rock reactions. The metals are transported predominantly as chloride species. As the gas cools in the fumarolic environment, it becomes saturated with sublimate phases that fractionate from the gas in the order of their equilibrium saturation temperatures. Devolatilization of a cooling batholith could transport enough acids and metals to a hydrothermal system to play a significant role in forming an ore deposit. However, sublimation from a high temperature, high velocity carrier gas is not efficient enough to form a large ore deposit. Re, Se, Cd and Bi could be used as supporting evidence for magmatic fluid transport in an ore deposit. ?? 1987.

  2. New Evidence for the Origin of White Matrix in Tieschitz

    NASA Astrophysics Data System (ADS)

    Hutchison, R.

    1992-07-01

    In Tieschitz, an unequilibrated ordinary chondrite, chondrules, and inclusions have rims of fine-grained, opaque matrix. Between the larger objects, channels <~20 micrometers wide may be filled with Na- and Al-rich, nepheline-normative white matrix. Christophe Michel-Levy (1976) suggested that white matrix was formed by the partial solution and redeposition of chondrule mesostases, but this was disputed by Hutchison et al. (1979), because silica undersaturated white matrix commonly abuts low-Ca pyroxene, with no sign of reaction. Such materials should be incompatible at low pressure and elevated temperature. Alexander et al. (1989) found material resembling white matrix in two Sharps chondrules, but did not find it elsewhere. Furthermore, the major minerals of white matrix are still unidentified. In a thick polished section, the analytical scanning electron microscope revealed several porphyritic chondrules with mesostases composed of two types of material with different electron back-scattering properties. One type lacks internal boundaries and appears brighter than the other, which is blocky on a 5-micrometer scale; the latter resembles white matrix. Bright mesostasis has higher SiO2, TiO2, FeO, MgO, and CaO compared with the dark, blocky material, which is richer in Al2O3 and the alkalis (Table 1, cf nos. 3 and 5). A porphyritic olivine (PO) chondrule 1 mm in diameter has zoned phenocrysts of Fo(sub)90-75 (Table 1 ) and mesostasis containing Ca-pyroxene dendrites of uniform composition close to Wo(sub)38En(sub)42 and with a high MnO/FeO ratio of ~0.07. Both types of mesostasis are present and in contact. Pyroxene dendrites extend across contacts without structural or compositional change. Furthermore, at its contact with a 0.6-mm barred pyroxene chondrule, the PO chondrule is slightly indented and needles of Ca-pyroxene radiate from the point of contact into bright mesostasis. The evidence indicates that in the PO chondrule a single generation of dendritic Ca pyroxene crystallized from bright mesostasis. The pyroxene resisted later alteration (H2O, Cl?) that transformed some of the bright mesostasis into white matrix material. It is concluded that white matrix formed from chondrule mesostases by secondary metasomatism that caused depletion in Si, Ti, Fe, Mg, and Ca and enrichment in Al, Na, K (and Cl?), possibly from opaque matrix, which in Tieschitz is not enriched in these elements over bulk meteorite (Alexander et al., 1989). Christophe Michel-Levy (1976) was largely correct. The metasomatism probably occurred on the parent body, which is compatible with the textural observations that many chondrules aggregated when hot and plastic. TABLE 1: EDS analyses, 15 kV, 1 x 10^-9Amp 1 2 3 4 5 6 SiO2 41.1 38.3 63.3 53.7 53.3 50.8 TiO2 -- -- 0.44 0.41 -- 0 51 Al2O3 -- -- 10.1 1.80 21.1 2.06 Cr2O3 0.10 -- 0.09 0-94 0.15 1.31 FeO 9.6 22.2 8.8 10.5 1.90 10.5 MnO 0.33 0.65 0.20 0.68 -- 0.87 MgO 49.7 38.7 4.8 13.5 1.08 13.1 CaO 0.09 0.12 2.80 16.4 0.80 16.4 Na2O -- -- 7.8 0.95 10 0 1 62 SUM 100.9 100.0 98.2 98.9 *89.3 97.2 Comp. Fo90 Fo75 Wo37En43 Wo38En42 *Includes 0.63%K(sub)2O and 0.28%Cl. 1,2 Olivine core and rim. 3 Bright mesostasis. 4 Px in 3. 5 Blocky mesostasis. 6 Px in 5. REFERENCES: Alexander, C. M. O'D., Hutchison, R. and Barber, D.J. (1989) Earth Planet. Sci. Lett. 95 1, 87-207. Christophe Michel-Levy, M. (1976) Earth Planet. Sci. Lett. 30, 143-150. Hutchison, R., Bevan, A.W.R., Agrell, S.O. and Ashworth, J.R. (1979) Nature 280, 116-119.

  3. Chemical zoning and homogenization of olivines in ordinary chondrites and implications for thermal histories of chondrules

    NASA Technical Reports Server (NTRS)

    Miyamoto, Masamichi; Mckay, David S.; Mckay, Gordon A.; Duke, Michael B.

    1986-01-01

    The extent and degree of homogenization of chemical zoning of olivines in type 3 ordinary chondrites is studied in order to obtain some constraints on cooling histories of chondrites. Based on Mg-Fe and CaO zoning, olivines in type 3 chondrites are classified into four types. A single chondrule usually contains olivines with the same type of zoning. Microporphyritic olivines show all four zoning types. Barred olivines usually show almost homogenized chemical zoning. The cooling rates or burial depths needed to homogenize the chemical zoning are calculated by solving the diffusion equation, using the zoning profiles as an initial condition. Mg-Fe zoning of olivine may be altered during initial cooling, whereas CaO zoning is hardly changed. Barred olivines may be homogenized during initial cooling because their size is relatively small. To simulated microporphyritic olivine chondrules, cooling from just below the liquidus at moderately high rates is preferable to cooling from above the liquidus at low rates. For postaccumulation metamorphism of type 3 chondrites to keep Mg-Fe zoning unaltered, the maximum metamorphic temperature must be less than about 400 C if cooling rates based on Fe-Ni data are assumed. Calculated cooling rates for both Fa and CaO homogenization are consistent with those by Fe-Ni data for type 4 chondrites. A hot ejecta blanket several tens of meters thick on the surface of a parent body is sufficient to homogenize Mg-Fe zoning if the temperature of the blanket is 600-700 C. Burial depths for petrologic types of ordinary chondrites in a parent body heated by Al-26 are broadly consistent with those previously proposed.

  4. Reassessment of the volkonskoite-chromian smectite nomenclature problem.

    USGS Publications Warehouse

    Foord, Eugene E.; Starkey, Harry C.; Taggart, Joseph E.; Shawe, Daniel R.

    1987-01-01

    The name volkonskoite was first used in 1830 to describe a bright blue-green, chromium-bearing clay material from the Okhansk region, west of the Ural Mountains, U.S.S.R. Since that time, the name has been applied to numerous members of the smectite group of clay minerals, although the reported chromium content has ranged from 1% to about 30% Cr2O3. The name has also been applied to some chromian chlorites. Because volkonskoite has been used for materials that differ not only in their chromium content but also in their basic structure, the species status of the mineral has been unclear.To resolve this uncertainty, two specimens of volkonskoite from (1) Mount Efimiatsk, the type locality in the Soviet Union (USNM 16308) and (2) the Okhansk region in the Perm Basin, U.S.S.R. (USNM R4820), were examined by several mineralogical techniques. Neotype sample 16308 has the following structural formula:(Ca0.11Mg0.11Fe2+0.03K0.02)(Cr1.18Mg0.78Fe3+0.29Ca0.02)(Si3.50Al0.51)O10(OH)2 ⋅3.64H2O.Sample R4820 has the following structural formula:(Ca0.25Mg0.05Fe2+0.01K0.03Mn0.01)(Cr1.07Mg0.75Fe3+0.35(Si3.59Al0.43)O10(OH)2 ⋅4.22H2O.Mössbauer spectroscopy indicates that 91% and 98% of the iron is present as Fe3+ in samples 16308 and R4820, respectively. X-ray powder diffraction patterns of both samples have broad lines corresponding to minerals of the smectite group.On the basis of these data, volkonskoite appears to be a dioctahedral member of the smectite group that contains chromium as the dominant cation in the octahedral layer. Smectites containing less than this amount of octahedral chromium should not be called volkonskoite, but should be named by chemical element adjectives, e.g., chromian montmorillonite, chromian nontronite.

  5. Timescales between mantle metasomatism and kimberlite ascent indicated by diffusion profiles in garnet crystals from peridotite xenoliths

    NASA Astrophysics Data System (ADS)

    Jollands, Michael C.; Hanger, Brendan J.; Yaxley, Gregory M.; Hermann, Jörg; Kilburn, Matthew R.

    2018-01-01

    Rare garnet crystals from a peridotite xenolith from the Wesselton kimberlite, South Africa, have distinct zones related to two separate episodes of mantle metasomatism. The garnet cores were firstly depleted through melt extraction, then equilibrated during metasomatism by a potentially diamond-forming carbonate-bearing or proto-kimberlitic fluid at 1100-1300 °C and 4.5-5.5 GPa. The garnet rim chemistry, in contrast, is consistent with later overgrowth in equilibrium with a kimberlite at around 1025 ± 25 °C and 4.2 ± 0.5 GPa. This suggests that the rock was physically moved upwards by up to tens of kilometres between the two metasomatic episodes. Preserved high Ca, Al and Cr contents in orthopyroxenes suggest this uplift was tectonic, rather than magmatic. Diffusion profiles were measured over the transitions between garnet cores and rims using electron microprobe (Mg, Ca, Fe for modelling, plus Cr, Mn, Ti, Na, Al) and nano Secondary Ion Mass Spectrometry (NanoSIMS; 89Y, along with 23Na, Ca, Cr, Fe, Mn and Ti) analyses. The short profile lengths (generally <10 μm) and low Y concentrations (0.2-60 ppm) make the NanoSIMS approach preferable. Diffusion profiles at the interface between the zones yield constraints on the timescale between the second metasomatic event and eruption of the kimberlite magma that brought the xenolith to the surface. The time taken to form the diffusion profiles is on the order of 25 days to 400 yr, primarily based on modelling of Y diffusion along with Ca, Fe and Mg (multicomponent diffusion) profiles. These timescales are too long to be produced by the interaction of the mantle xenolith with the host kimberlite magma during a single-stage ascent to the crust (hours to days). The samples offer a rare opportunity to study metasomatic processes associated with failed eruption attempts in the cratonic lithosphere.

  6. Distribution and Phase Association of Some Major and Trace Elements in the Arabian Gulf Sediments

    NASA Astrophysics Data System (ADS)

    Basaham, A. S.; El-Sayed, M. A.

    1998-02-01

    Twenty-four sediment samples were collected from the Arabian Gulf (ROPME Sea) and analysed for their grain size distribution and carbonate contents as well as the major elements Ca, Mg, Fe and Al and macro and trace elements Mn, Sr, Ba, Zn, Cu, Cr, V, Ni and Hg. Concentration of trace elements are found comparable to previous data published for samples taken before and after the Gulf War, and reflect the natural background level. Grain size analyses, aluminium and carbonate measurements support the presence of two major sediment types: (1) a terrigenous, fine-grained and Al rich type predominating along the Iranian side; and (2) a coarse-grained and carbonate rich type predominating along the Arabian side of the Gulf. Investigation of the correlation of the elements analysed with the sediment type indicates that they could be grouped under two distinct associations: (1) carbonate association including Ca and Sr; and (2) terrigenous association comprising Al, Fe, Mg, Ba, Mn, Zn, Cu, Cr, V, Ni and Hg. Element/Al ratios calculated for the mud non-carbonate fraction indicate that the Euphrates and Tigris rivers have minor importance as sediment sources to the Gulf. Most of the elements have exceptionally high aluminium ratios in sediments containing more than 85-90% carbonate. These sediments are restricted to the southern and south-eastern part of the area where depth is shallow and temperature and salinity are high. Both biological accumulation and chemical and biochemical coprecipitation could be responsible for this anomaly.

  7. [Responses of microbial biomass P to the changes of organic C and P in paddy soils under different fertilization systems].

    PubMed

    Chen, An-Lei; Wang, Kai-Rong; Xie, Xiao-Li; Liu, Ying-Xin

    2007-12-01

    Based on a fifteen years field experiment in double rice-cropping region of subtropical China, the responses of microbial biomass P (MB-P) to organic C and P in red paddy soils under different fertilization systems were investigated. The results indicated that a long-term input of organic carbon sources and the increasing soil organic carbon made soil microbial biomass remain at a high level (MB-C > 800 mg x kg(-1)), being a main reason of the increase of MB-P. Under long-term zero chemical P fertilization, there was a significant decrease in soil total P (P < 0.05), but soil organic P increased by 29.3% on average. The inorganic P forms in deficit were mainly Al-P, Fe-P, Ca-P and O-P, with the lowest content of Al-P (only 0.5 mg x kg(-1) on average). The content of soil MB-P under zero chemical P fertilization was much higher than that of Olsen-P. Correlation analysis showed that there was a significant relationship (P < 0.05) between MB-P and Al-P, from which, it was deduced that the utilization of Al-P, Fe-P, Ca-P and O-P by soil microbes could be the key approach of promoting these P forms transformed into available P. Chemical P fertilization combined with organic nutrient recycling could not only enlarge the soil P pool, but also improve the P availability.

  8. Pb, Cu, and Zn distributions at humic acid-coated metal-oxide surfaces

    NASA Astrophysics Data System (ADS)

    Wang, Yingge; Michel, F. Marc; Choi, Yongseong; Eng, Peter J.; Levard, Clement; Siebner, Hagar; Gu, Baohua; Bargar, John R.; Brown, Gordon E.

    2016-09-01

    Mineral surfaces are often coated by natural organic matter (NOM), which has a major influence on metal-ion sorption and sequestration because of the abundance of binding sites in such coatings and the changes they cause in local nanoscale environments. The effects of NOM coatings on mineral surfaces are, however, still poorly understood at the molecular level due to the complexity of these systems. In this study, we have applied long-period X-ray standing wave-fluorescence yield (LP-XSW-FY) spectroscopy to measure the partitioning of naturally present Cu(II) (0.0226%), Zn(II) (0.009%), and Pb(II) (∼0.0004%) between Elliott Soil Humic Acid (ESHA) coatings and three model single-crystal metal-oxide substrates: α-Al2O3 (0 0 0 1), α-Al2O3 (1 -1 0 2), and α-Fe2O3 (0 0 0 1). The competitive sorption effects among these metal ions for binding sites in the ESHA coatings and on the metal-oxide surfaces were investigated as a function of reaction time, calcium content, and solution pH. Pb(II) ions present in the ESHA coatings were found to redistribute to reactive α-Al2O3 (1 -1 0 2) and α-Fe2O3 (0 0 0 1) surfaces after 3 h of reaction (pH = 6.0, [Ca(II)] = 2 mM). Pb(II) partitioning onto these reactive metal-oxide surfaces increased with increasing reaction time (up to 7 d). In addition, the partitioning of Cu(II) and Zn(II) from the ESHA coating to the α-Fe2O3 (0 0 0 1) substrate increased slightly with reaction time (2.4% and 3.7% for Cu(II) and Zn(II), respectively, after 3 h and 6.4% and 7.7% for Cu(II) and Zn(II), respectively, after 72 h of reaction time). However, no changes in the partitioning of Cu(II) and Zn(II) onto the α-Al2O3 (1 -1 0 2) surface were observed with increasing reaction time, suggesting that these ions strongly complex with functional groups in the ESHA coatings. Similar results were obtained for Cu(II) and Zn(II) on the ESHA-coated α-Al2O3 (1 -1 0 2) surfaces in samples without the addition of calcium. However, the amounts of Pb(II) mobilized from the ESHA coatings onto the α-Al2O3 (1 -1 0 2) surfaces increased from 40% (no added Ca) to 58% (with 2 mM Ca) after 72 h of reaction time, possibly due to displacement of Pb(II) by Ca(II) from binding sites in the ESHA coatings. In contrast, Pb(II), Cu(II), and Zn(II) present in the ESHA coatings were found to be unreactive with the α-Al2O3 (0 0 0 1) surface. The observed reactivities of the three ESHA-coated metal-oxide surfaces with respect to metal-ion sorption are consistent with the trend observed for the uncoated metal-oxide surfaces: α-Fe2O3 (0 0 0 1) > α-Al2O3 (1 -1 0 2) > α-Al2O3 (0 0 0 1). In addition, Pb(II) partitioning onto α-Al2O3 (1 -1 0 2) surfaces increased with increasing pH from 4.0 to 9.0 as a result of the increasingly negative surface charge. These results show that intrinsic properties (nature of binding sites, binding affinities, and surface charge) of the ESHA coatings and metal-oxide surfaces, as well as external parameters such as pH and competing ions, are key factors governing the distribution and speciation of metal ions at complex NOM/mineral interfaces.

  9. Physical versus chemical effects on bacterial and bromide transport as determined from on site sediment column pulse experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, James A.; Mailloux, Brian J.; Onstott, Tullis C.

    2005-02-01

    Twenty eight bacterial and Br transport experiments were performed in the field to determine the effects of physical and chemical heterogeneity of the aquifer sediment. The experiments were performed using groundwater from two field locations to examine the effects of groundwater chemistry on transport. Groundwater was extracted from multilevel samplers and pumped through 7 cm long columns of intact sediment or re-packed sieved and coated or uncoated sediment from the underlying aquifer. Two bacterial strains, Comamonas sp. DA001 and Paenibacillus polymyxa FER-02, were injected along with Br into the influent end of the columns to examine the effect of cellmore » morphology and surface properties on bacterial transport. The effect of column sediment grain size and mineral coatings coupled with groundwater geochemistry were also delineated. Significant irreversible attachment of DA001 was observed in the Fe oxyhydroxide coated columns, but only in the sub-oxic groundwater where the concentrations of dissolved organic carbon (DOC) were ca. 1 ppm. In the oxic groundwater where DOC was ca. 8 ppm, little attachment of DA001 to the Fe oxyhydroxide coated columns was observed. This indicates that DOC can significantly reduce bacterial attachment due electrostatic interactions. The larger and more negatively charged FER-02 displayed increasing attachment with decreasing grain size regardless of DOC concentration, and modeling of FER-02 attachment revealed that the presence of Fe and Al coatings on the sediment also promoted attachment. Finally, the presence of Al coatings and Al containing minerals appeared to significantly retard the Br tracer regardless of the concentration of DOC. These findings suggest that DOC in shallow oxic groundwater aquifers can significantly enhance the transport of bacteria by reducing attachment to Fe, Mn and Al oxyhydroxides. This effect is profound for weakly charged, hydrophilic bacteria and may contribute to differences in observations between laboratory experiments verses field-scale investigations particularly if the groundwater pH remains circum-neutral and Fe oxyhydroxide phases exist. These observations validate the novel approach taken in the experiments outlined here of performing laboratory-scale experiments on site to facilitate the use of fresh groundwater and thus be more representative of in situ groundwater conditions.« less

  10. Effect of adsorbed metals ions on the transport of Zn- and Ni-EDTA complexes in a sand and gravel aquifer

    USGS Publications Warehouse

    Kent, D.B.; Davis, J.A.; Anderson, L.C.D.; Rea, B.A.; Coston, J.A.

    2002-01-01

    Adsorption, complexation, and dissolution reactions strongly influenced the transport of metal ions complexed with ethylenediaminetetraacetic acid (EDTA) in a predominantly quartz-sand aquifer during two tracer tests conducted under mildly reducing conditions at pH 5.8 to 6.1. In tracer test M89, EDTA complexes of zinc (Zn) and nickel (Ni), along with excess free EDTA, were injected such that the lower portion of the tracer cloud traveled through a region with adsorbed manganese (Mn) and the upper portion of the tracer cloud traveled through a region with adsorbed Zn. In tracer test S89, Ni- and Zn-EDTA complexes, along with excess EDTA complexed with calcium (Ca), were injected into a region with adsorbed Mn. The only discernable chemical reaction between Ni-EDTA and the sediments was a small degree of reversible adsorption leading to minor retardation. In the absence of adsorbed Zn, the injected Zn was displaced from EDTA complexes by iron(III) [Fe(III)] dissolved from the sediments. Displacement of Zn by Fe(III) on EDTA became increasingly thermodynamically favorable with decreasing total EDTA concentration. The reaction was slow compared to the time-scale of transport. Free EDTA rapidly dissolved aluminum (Al) from the sediments, which was subsequently displaced slowly by Fe. In the portion of tracer cloud M89 that traveled through the region contaminated with adsorbed Zn, little displacement of Zn complexed with EDTA was observed, and Al was rapidly displaced from EDTA by Zn desorbed from the sediments, in agreement with equilibrium calculations. In tracer test S89, desorption of Mn dominated over the more thermodynamically favorable dissolution of Al oxyhydroxides. Comparison with results from M89 suggests that dissolution of Al oxyhydroxides in coatings on these sediment grains by Ca-EDTA was rate-limited whereas that by free EDTA reached equilibrium on the time-scale of transport. Rates of desorption are much faster than rates of dissolution of Fe oxyhydroxides from sediment-grain surfaces and, therefore, adsorbed metal ions can strongly influence the speciation of ligands like EDTA in soils and sediments, especially over small temporal and spatial scales. Copyright ?? 2002 Elsevier Science Ltd.

  11. Enhanced magnetism of perovskite oxides, Sr(Sn,Fe)O3- δ , by substitution of nonmagnetic Ca and Ti ions

    NASA Astrophysics Data System (ADS)

    Nomura, Kiyoshi; Suzuki, Shigeyo; Mizunuma, Tomoya; Koike, Yuya; Okazawa, Atsushi

    2017-11-01

    Magnetic properties of perovskite oxides, SrSn1- x Fe x O3- δ ( x ≤ 0.15), substituted with nonmagnetic Ca and Ti ions were studied. XRD patterns showed the orthorhombic structure (close to tetragonal) of (Sr1- y Ca y )(Sn1- x Fe x )O3- δ and Sr(Sn1- x- y Fe x Ti y )O3- δ . The cell volumes decreased with the increase of Ca and Ti doping rates. Although Ti-substituted Sr(Sn, Fe)O3- δ showed small saturation magnetizations as compared with non-Ti substituted one, the magnetization increased a little with Ti doping rates up to 15%. On the other hand, all Ca-substituted Sr(Sn, Fe)O3- δ showed larger saturation magnetization than non-Ca substituted one. Two doublets of Fe3+ and a doublet of Fe4+ were observed in Mössbauer spectra of Ca-substituted Sr(Sn, Fe)O3- δ with weak ferromagnetism, and two sextets of high spin Fe3+ were additionally observed in Mössbauer spectra of Ca-doped Sr(Sn, Fe)O3- δ with relatively strong ferromagnetism. When Sr(Sn, Fe)O3- δ were further codoped with Ca and Ti ions, they showed the stable and enhanced ferromagnetic properties. It is considered that magnetic polarons among high spin Fe3+ species are overlapped by shrinking or deforming the crystal structure of perovskite oxides. That is the magnetism induced by a chemical pressure of perovskite oxides.

  12. Ferromagnetic and photocatalytic behaviors observed in Ca-doped BiFeO3 nanofibres

    NASA Astrophysics Data System (ADS)

    Feng, Yan-Nan; Wang, Huan-Chun; Luo, Yi-Dong; Shen, Yang; Lin, Yuan-Hua

    2013-04-01

    Ca-doped BiFeO3 nanofibres have been fabricated by electrospinning method. Our results indicate that phase transition from space group R3c to C222 can be observed by the Ca doping. These BiFeO3 nanofibres show obvious room temperature ferromagnetic behaviors, and saturation magnetization can be enhanced with the Ca-doping concentration increasing, which could be correlated with the variation of the ratio of Fe2+/Fe3+ valence state. The BiFeO3 nanofibres show obvious photocatalytic performance and can be improved by the Ca-doping.

  13. Evidence of degassing-induced oxidation of relatively oxidized K-rich magmas caused by degassing of dissolved SO­42- (S6+) component in the melt to SO2 (S4+) in the gas phase

    NASA Astrophysics Data System (ADS)

    Pu, X.; Lange, R. A.; Moore, G. M.

    2016-12-01

    Near Volcán Colima in the Mexican volcanic arc, nine cones erupted minette, leucite basanite and basanite. These K-rich lavas have high post-eruptive Fe3+/FeT ratios (≤0.63) and sulfur contents (≤ 1004 ppm) (Carmichael et al., 2006). Olivine-hosted melt inclusions record ≤ 6.2wt% H2O and ≤ 6700ppm sulfur (Vigouroux et al., 2008). Here, we test whether the post-eruptive Fe3+/FeT ratios, measured by titration on fresh lavas, reflect magmatic values or a change in oxidation state during degassing. To constrain pre-eruptive fO2 (ilmenite is absent), the most Mg-rich olivine analyzed in each sample, together with a Fe-Mg KD (olivine-melt) of 0.355 (from hydrous experiments of Righter and Carmichael (1996) on a minette and the Jayasuriya et al. (2004) model to relate melt Fe2+/Fe3+ ratio to melt temperature and fO2), were used to obtain the Fe3+/FeT ratio at the onset of olivine crystallization. The resulting Fe3+/FeT ratios (0.31-0.41) and ΔNNO values (1.2-2.4) for the nine K-rich magmas are systematically lower than the post-eruptive values, which suggests that degassing induced oxidation may have occurred. In addition, the pre-eruptive Fe3+/FeT ratios and ΔNNO values are higher than those (0.19-0.31 and -0.2 to +1.2, respectively) documented for calc-alkaline basalts from Michoacán-Guanajuato Volcanic Field (MGVF) using a similar method (Pu et al., 2016). Because a similar increase between pre- and post-eruptive Fe3+/FeT ratios is not found in the MGVF samples, we infer that the increase between the pre- and post-eruptive Fe3+/FeT ratios in the K-rich samples is caused by the relatively high solubility of sulfate (S6+ in CaSO4 component) in the relatively oxidized (ΔNNO ≤ 2.4) potassic melts, which then degassed as S4+ (SO2). We deduce that oxidation caused by degassing of sulfur can only occur in melts that were already relatively oxidized, because the degassing-induced oxidation process requires an initial high concentration of sulfate in the melt phase.

  14. Soil nutrient bioavailability and nutrient content of pine trees (Pinus thunbergii) in areas impacted by acid deposition in Korea.

    PubMed

    Yang, Jae E; Lee, Wi-Young; Ok, Yong Sik; Skousen, Jeffrey

    2009-10-01

    Acid deposition has caused detrimental effects on tree growth near industrial areas of the world. Preliminary work has indicated that concentrations of NO(3-), SO(4)(2-), F( - ) and Al in soil solutions were 2 to 33 times higher in industrial areas compared to non-industrial areas in Korea. This study evaluated soil nutrient bioavailability and nutrient contents of red pine (Pinus thunbergii) needles in forest soils of industrial and non-industrial areas of Korea. Results confirm that forest soils of industrial areas have been acidified mainly by deposition of sulfate, resulting in increases of Al, Fe and Mn and decreases of Ca, Mg and K concentrations in soils and soil solutions. In soils of industrial areas, the molar ratios of Ca/Al and Mg/Al in forest soils were <2, which can lead to lower levels and availability of nutrients for tree growth. The Ca/Al molar ratio of Pinus thunbergii needles on non-industrial sites was 15, while that of industrial areas was 10. Magnesium concentrations in needles of Pinus thunbergii were lower in soils of industrial areas and the high levels of acid cations such as Al and Mn in these soils may have antagonized the uptake of base cations like Mg. Continued acidification can further reduce uptake of base cations by trees. Results show that Mg deficiency and high concentrations of Al and Mn in soil solution can be limiting factors for Pinus thunbergii growth in industrial areas of Korea.

  15. Treatment of mining acidic leachates with indigenous limestone, Zimapan Mexico.

    PubMed

    Labastida, I; Armienta, M A; Lara-Castro, R H; Aguayo, A; Cruz, O; Ceniceros, N

    2013-11-15

    An experimental study to evaluate the potential of using indigenous limestones in a passive system to treat acid mine drainage, at a mining zone of Mexico was carried out. Chemical and mineralogical characteristics of four types of native rocks (KIT1, KIT2, KSS, QZ) showed distinct CaCO3 contents. Synthetic aqueous leachates from an old tailings impoundment had a pH of 2.18, 34 mg/L As, 705 mg/L Fetotal, and 3975 mg/L SO4(2-). To evaluate dissolution behavior of rocks, kinetic batch experiments with an acid Fe-rich solution were performed. Decaying kinetic constants adjusting H(+) concentration to a first order exponential process were: KIT1 (k = 2.89), KIT2 (k = 0.89) and KSS (k = 0.47). Infrared spectrum and XRD of precipitates showed schwertmannite formation. To determine As and heavy metals (Fe, Cd, Zn, Al) removal from the synthetic leachates, batch experiments using KIT1 were developed. Arsenic decreased from 34.00 mg/L to 0.04 mg/L, Fe and Al were totally removed, and concentrations of Zn and Cd decreased 88% and 91% respectively. Analyses by IR and SEM-EDS indicate that co-precipitation with Fe-Hydroxides formed upon leachate interaction with limestone is the main As removal process. Chamosite, identified by XRD may participate in the removal of Al, SiO2 and a fraction of Fe. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. [Determination of multi-element contents in gypsum by ICP-AES].

    PubMed

    Guo, Zhong-bao; Bai, Yong-zhi; Cui, Jin-hua; Mei, Yi-fei; Ma, Zhen-zhu

    2014-08-01

    The content of multi-element in gypsum was determined by ICP-AES. The sample was pretreated by acid-soluble method or alkali-fusion method. Acid-soluble method is suitable for the determination of CaO, SOs, Al2O3, Fe2O3, MgO, K2O, Na2O, TiO2, P2O5, MnO, SrO and BaO. Alkali-fusion method is suitable for the determination of CaO, SO3, SiO2, Al2O3, Fe2O3, MgO, TiO2, P2O5, MnO, SrO, BaO and B2O3. Different series standard solutions were prepared considering the properties and content of elements and solution matrix. The limit of detection and quantification were confirmed for each element under their best analysis spectral lines. The recoveries of the two pretreatment methods were from 93% to 110%, besides that for TiO2 was 81%-87% as pretreated by acid-soluble method. All RSDs (n=6) of tests were from 0.70%-3.42%. The accuracies of CaO and SO3 with ICP-AES method were less than the chemical analysis method. The determination of CaO and SO3 with ICP-AES method is only suitable for the case of low accuracy requirement. The results showed that the method can be used for the determination of multi-element contents in gypsum, with simple operation, fast analysis and reliable results. Total elements can be analysed with both acid-soluble method and alkali-fusion method.

  17. Magnetism and electronic structures of novel layered CaFeAs{sub 2} and Ca{sub 0.75}(Pr/La){sub 0.25}FeAs{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Yi-Na; Zou, Liang-Jian, E-mail: zou@theory.issp.ac.cn; University of Science and Technology of China, Hefei, Anhui 230026

    2015-05-07

    The magnetic and electronic properties of the parent material CaFeAs{sub 2} of new superconductors are investigated using first-principles calculations. We predict that the ground state of CaFeAs{sub 2} is a spin-density-wave (SDW)-type striped antiferromagnet driven by Fermi surface nesting. The magnetic moment around each Fe atom is about 2.1 μ{sub B}. We also present electronic and magnetic structures of electron-doped phase Ca{sub 0.75}(Pr/La){sub 0.25}FeAs{sub 2}, the SDW order was suppressed by La/Pr substitution. The As in arsenic layers is negative monovalent and acts as blocking layers enhancing two-dimensional character by increasing the spacing distance between the FeAs layers. This favorsmore » strong antiferromagnetic fluctuations mediated pairing, implying higher T{sub c} in Ca{sub 0.75}(Pr/La){sub 0.25}FeAs{sub 2} than Ca{sub 0.75}(Pr/La){sub 0.25}Fe{sub 2}As{sub 2}.« less

  18. Particulate matter and polycyclic aromatic hydrocarbons from forest fires: impacts on air quality and occupational risks assessment

    NASA Astrophysics Data System (ADS)

    Oliveira, Marta Madalena Marques de

    As piroxenas sao um vasto grupo de silicatos minerais encontrados em muitas rochas igneas e metamorficas. Na sua forma mais simples, estes silicatos sao constituidas por cadeias de SiO3 ligando grupos tetrahedricos de SiO4. A formula quimica geral das piroxenas e M2M1T2O6, onde M2 se refere a catioes geralmente em uma coordenacao octaedrica distorcida (Mg2+, Fe2+, Mn2+, Li+, Ca2+, Na+), M1 refere-se a catioes numa coordenacao octaedrica regular (Al3+, Fe3+, Ti4+, Cr3+, V3+, Ti3+, Zr4+, Sc3+, Zn2+, Mg2+, Fe2+, Mn2+), e T a catioes em coordenacao tetrahedrica (Si4+, Al3+, Fe3+). As piroxenas com estrutura monoclinica sao designadas de clinopiroxenes. A estabilidade das clinopyroxenes num espectro de composicoes quimicas amplo, em conjugacao com a possibilidade de ajustar as suas propriedades fisicas e quimicas e a durabilidade quimica, tem gerado um interesse mundial devido a suas aplicacoes em ciencia e tecnologia de materiais. Este trabalho trata do desenvolvimento de vidros e de vitro-cerâmicos baseadas de clinopiroxenas para aplicacoes funcionais. O estudo teve objectivos cientificos e tecnologicos; nomeadamente, adquirir conhecimentos fundamentais sobre a formacao de fases cristalinas e solucoes solidas em determinados sistemas vitro-cerâmicos, e avaliar a viabilidade de aplicacao dos novos materiais em diferentes areas tecnologicas, com especial enfase sobre a selagem em celulas de combustivel de oxido solido (SOFC). Com este intuito, prepararam-se varios vidros e materiais vitro-cerâmicos ao longo das juntas Enstatite (MgSiO3) - diopsidio (CaMgSi2O6) e diopsidio (CaMgSi2O6) - Ca - Tschermak (CaAlSi2O6), os quais foram caracterizados atraves de um vasto leque de tecnicas. Todos os vidros foram preparados por fusao-arrefecimento enquanto os vitro-cerâmicos foram obtidos quer por sinterizacao e cristalizacao de fritas, quer por nucleacao e cristalizacao de vidros monoliticos. Estudaram-se ainda os efeitos de varias substituicoes ionicas em composicoes de diopsidio contendo Al na estrutura, sinterizacao e no comportamento durante a cristalizacao de vidros e nas propriedades dos materiais vitro-cerâmicos, com relevância para a sua aplicacao como selantes em SOFC. Verificou-se que Foi observado que os vidros/vitro-cerâmicos a base de enstatite nao apresentavam as caracteristicas necessarias para serem usados como materiais selantes em SOFC, enquanto as melhores propriedades apresentadas pelos vitro-cerâmicos a base de diopsidio qualificaram-nos para futuros estudos neste tipo de aplicacoes. Para alem de investigar a adequacao dos vitro-cerâmicos a base de clinopyroxene como selantes, esta tese tem tambem como objetivo estudar a influencia dos agentes de nucleacao na nucleacao em volume dos vitro-cerâmicos resultantes a base de diopsidio, de modo a qualifica-los como potenciais materiais hopedeiros de residuos nucleares radioactivos.

  19. Reciprocal interaction between human microvascular endothelial cells and mesenchymal stem cells on macroporous granules of nanostructured-hydroxyapatite agglomerates

    NASA Astrophysics Data System (ADS)

    Laranjeira, Marta de Sousa

    As piroxenas sao um vasto grupo de silicatos minerais encontrados em muitas rochas igneas e metamorficas. Na sua forma mais simples, estes silicatos sao constituidas por cadeias de SiO3 ligando grupos tetrahedricos de SiO4. A formula quimica geral das piroxenas e M2M1T2O6, onde M2 se refere a catioes geralmente em uma coordenacao octaedrica distorcida (Mg2+, Fe2+, Mn2+, Li+, Ca2+, Na+), M1 refere-se a catioes numa coordenacao octaedrica regular (Al3+, Fe3+, Ti4+, Cr3+, V3+, Ti3+, Zr4+, Sc3+, Zn2+, Mg2+, Fe2+, Mn2+), e T a catioes em coordenacao tetrahedrica (Si4+, Al3+, Fe3+). As piroxenas com estrutura monoclinica sao designadas de clinopiroxenes. A estabilidade das clinopyroxenes num espectro de composicoes quimicas amplo, em conjugacao com a possibilidade de ajustar as suas propriedades fisicas e quimicas e a durabilidade quimica, tem gerado um interesse mundial devido a suas aplicacoes em ciencia e tecnologia de materiais. Este trabalho trata do desenvolvimento de vidros e de vitro-cerâmicos baseadas de clinopiroxenas para aplicacoes funcionais. O estudo teve objectivos cientificos e tecnologicos; nomeadamente, adquirir conhecimentos fundamentais sobre a formacao de fases cristalinas e solucoes solidas em determinados sistemas vitro-cerâmicos, e avaliar a viabilidade de aplicacao dos novos materiais em diferentes areas tecnologicas, com especial enfase sobre a selagem em celulas de combustivel de oxido solido (SOFC). Com este intuito, prepararam-se varios vidros e materiais vitro-cerâmicos ao longo das juntas Enstatite (MgSiO3) - diopsidio (CaMgSi2O6) e diopsidio (CaMgSi2O6) - Ca - Tschermak (CaAlSi2O6), os quais foram caracterizados atraves de um vasto leque de tecnicas. Todos os vidros foram preparados por fusao-arrefecimento enquanto os vitro-cerâmicos foram obtidos quer por sinterizacao e cristalizacao de fritas, quer por nucleacao e cristalizacao de vidros monoliticos. Estudaram-se ainda os efeitos de varias substituicoes ionicas em composicoes de diopsidio contendo Al na estrutura, sinterizacao e no comportamento durante a cristalizacao de vidros e nas propriedades dos materiais vitro-cerâmicos, com relevância para a sua aplicacao como selantes em SOFC. Verificou-se que Foi observado que os vidros/vitro-cerâmicos a base de enstatite nao apresentavam as caracteristicas necessarias para serem usados como materiais selantes em SOFC, enquanto as melhores propriedades apresentadas pelos vitro-cerâmicos a base de diopsidio qualificaram-nos para futuros estudos neste tipo de aplicacoes. Para alem de investigar a adequacao dos vitro-cerâmicos a base de clinopyroxene como selantes, esta tese tem tambem como objetivo estudar a influencia dos agentes de nucleacao na nucleacao em volume dos vitro-cerâmicos resultantes a base de diopsidio, de modo a qualifica-los como potenciais materiais hopedeiros de residuos nucleares radioactivos.

  20. Analysis of vegetation dynamics using time-series vegetation index data from Earth observation satellites

    NASA Astrophysics Data System (ADS)

    Rodrigues, Arlete da Silva

    As piroxenas sao um vasto grupo de silicatos minerais encontrados em muitas rochas igneas e metamorficas. Na sua forma mais simples, estes silicatos sao constituidas por cadeias de SiO3 ligando grupos tetrahedricos de SiO4. A formula quimica geral das piroxenas e M2M1T2O6, onde M2 se refere a catioes geralmente em uma coordenacao octaedrica distorcida (Mg2+, Fe2+, Mn2+, Li+, Ca2+, Na+), M1 refere-se a catioes numa coordenacao octaedrica regular (Al3+, Fe3+, Ti4+, Cr3+, V3+, Ti3+, Zr4+, Sc3+, Zn2+, Mg2+, Fe2+, Mn2+), e T a catioes em coordenacao tetrahedrica (Si4+, Al3+, Fe3+). As piroxenas com estrutura monoclinica sao designadas de clinopiroxenes. A estabilidade das clinopyroxenes num espectro de composicoes quimicas amplo, em conjugacao com a possibilidade de ajustar as suas propriedades fisicas e quimicas e a durabilidade quimica, tem gerado um interesse mundial devido a suas aplicacoes em ciencia e tecnologia de materiais. Este trabalho trata do desenvolvimento de vidros e de vitro-cerâmicos baseadas de clinopiroxenas para aplicacoes funcionais. O estudo teve objectivos cientificos e tecnologicos; nomeadamente, adquirir conhecimentos fundamentais sobre a formacao de fases cristalinas e solucoes solidas em determinados sistemas vitro-cerâmicos, e avaliar a viabilidade de aplicacao dos novos materiais em diferentes areas tecnologicas, com especial enfase sobre a selagem em celulas de combustivel de oxido solido (SOFC). Com este intuito, prepararam-se varios vidros e materiais vitro-cerâmicos ao longo das juntas Enstatite (MgSiO3) - diopsidio (CaMgSi2O6) e diopsidio (CaMgSi2O6) - Ca - Tschermak (CaAlSi2O6), os quais foram caracterizados atraves de um vasto leque de tecnicas. Todos os vidros foram preparados por fusao-arrefecimento enquanto os vitro-cerâmicos foram obtidos quer por sinterizacao e cristalizacao de fritas, quer por nucleacao e cristalizacao de vidros monoliticos. Estudaram-se ainda os efeitos de varias substituicoes ionicas em composicoes de diopsidio contendo Al na estrutura, sinterizacao e no comportamento durante a cristalizacao de vidros e nas propriedades dos materiais vitro-cerâmicos, com relevância para a sua aplicacao como selantes em SOFC. Verificou-se que Foi observado que os vidros/vitro-cerâmicos a base de enstatite nao apresentavam as caracteristicas necessarias para serem usados como materiais selantes em SOFC, enquanto as melhores propriedades apresentadas pelos vitro-cerâmicos a base de diopsidio qualificaram-nos para futuros estudos neste tipo de aplicacoes. Para alem de investigar a adequacao dos vitro-cerâmicos a base de clinopyroxene como selantes, esta tese tem tambem como objetivo estudar a influencia dos agentes de nucleacao na nucleacao em volume dos vitro-cerâmicos resultantes a base de diopsidio, de modo a qualifica-los como potenciais materiais hopedeiros de residuos nucleares radioactivos.

  1. Biological effects of polyacrylic acid-coated and non-coated superparamagnetic iron oxide nanoparticles in in vitro and in vivo experimental models

    NASA Astrophysics Data System (ADS)

    Couto, Diana Manuel Mocho de Bastos

    As piroxenas sao um vasto grupo de silicatos minerais encontrados em muitas rochas igneas e metamorficas. Na sua forma mais simples, estes silicatos sao constituidas por cadeias de SiO3 ligando grupos tetrahedricos de SiO4. A formula quimica geral das piroxenas e M2M1T2O6, onde M2 se refere a catioes geralmente em uma coordenacao octaedrica distorcida (Mg2+, Fe2+, Mn2+, Li+, Ca2+, Na+), M1 refere-se a catioes numa coordenacao octaedrica regular (Al3+, Fe3+, Ti4+, Cr3+, V3+, Ti3+, Zr4+, Sc3+, Zn2+, Mg2+, Fe2+, Mn2+), e T a catioes em coordenacao tetrahedrica (Si4+, Al3+, Fe3+). As piroxenas com estrutura monoclinica sao designadas de clinopiroxenes. A estabilidade das clinopyroxenes num espectro de composicoes quimicas amplo, em conjugacao com a possibilidade de ajustar as suas propriedades fisicas e quimicas e a durabilidade quimica, tem gerado um interesse mundial devido a suas aplicacoes em ciencia e tecnologia de materiais. Este trabalho trata do desenvolvimento de vidros e de vitro-cerâmicos baseadas de clinopiroxenas para aplicacoes funcionais. O estudo teve objectivos cientificos e tecnologicos; nomeadamente, adquirir conhecimentos fundamentais sobre a formacao de fases cristalinas e solucoes solidas em determinados sistemas vitro-cerâmicos, e avaliar a viabilidade de aplicacao dos novos materiais em diferentes areas tecnologicas, com especial enfase sobre a selagem em celulas de combustivel de oxido solido (SOFC). Com este intuito, prepararam-se varios vidros e materiais vitro-cerâmicos ao longo das juntas Enstatite (MgSiO3) - diopsidio (CaMgSi2O6) e diopsidio (CaMgSi2O6) - Ca - Tschermak (CaAlSi2O6), os quais foram caracterizados atraves de um vasto leque de tecnicas. Todos os vidros foram preparados por fusao-arrefecimento enquanto os vitro-cerâmicos foram obtidos quer por sinterizacao e cristalizacao de fritas, quer por nucleacao e cristalizacao de vidros monoliticos. Estudaram-se ainda os efeitos de varias substituicoes ionicas em composicoes de diopsidio contendo Al na estrutura, sinterizacao e no comportamento durante a cristalizacao de vidros e nas propriedades dos materiais vitro-cerâmicos, com relevância para a sua aplicacao como selantes em SOFC. Verificou-se que Foi observado que os vidros/vitro-cerâmicos a base de enstatite nao apresentavam as caracteristicas necessarias para serem usados como materiais selantes em SOFC, enquanto as melhores propriedades apresentadas pelos vitro-cerâmicos a base de diopsidio qualificaram-nos para futuros estudos neste tipo de aplicacoes. Para alem de investigar a adequacao dos vitro-cerâmicos a base de clinopyroxene como selantes, esta tese tem tambem como objetivo estudar a influencia dos agentes de nucleacao na nucleacao em volume dos vitro-cerâmicos resultantes a base de diopsidio, de modo a qualifica-los como potenciais materiais hopedeiros de residuos nucleares radioactivos.

  2. Impact evaluation of the large scale integration of electric vehicles in the security of supply

    NASA Astrophysics Data System (ADS)

    Bremermann, Leonardo Elizeire

    As piroxenas sao um vasto grupo de silicatos minerais encontrados em muitas rochas igneas e metamorficas. Na sua forma mais simples, estes silicatos sao constituidas por cadeias de SiO3 ligando grupos tetrahedricos de SiO4. A formula quimica geral das piroxenas e M2M1T2O6, onde M2 se refere a catioes geralmente em uma coordenacao octaedrica distorcida (Mg2+, Fe2+, Mn2+, Li+, Ca2+, Na+), M1 refere-se a catioes numa coordenacao octaedrica regular (Al3+, Fe3+, Ti4+, Cr3+, V3+, Ti3+, Zr4+, Sc3+, Zn2+, Mg2+, Fe2+, Mn2+), e T a catioes em coordenacao tetrahedrica (Si4+, Al3+, Fe3+). As piroxenas com estrutura monoclinica sao designadas de clinopiroxenes. A estabilidade das clinopyroxenes num espectro de composicoes quimicas amplo, em conjugacao com a possibilidade de ajustar as suas propriedades fisicas e quimicas e a durabilidade quimica, tem gerado um interesse mundial devido a suas aplicacoes em ciencia e tecnologia de materiais. Este trabalho trata do desenvolvimento de vidros e de vitro-cerâmicos baseadas de clinopiroxenas para aplicacoes funcionais. O estudo teve objectivos cientificos e tecnologicos; nomeadamente, adquirir conhecimentos fundamentais sobre a formacao de fases cristalinas e solucoes solidas em determinados sistemas vitro-cerâmicos, e avaliar a viabilidade de aplicacao dos novos materiais em diferentes areas tecnologicas, com especial enfase sobre a selagem em celulas de combustivel de oxido solido (SOFC). Com este intuito, prepararam-se varios vidros e materiais vitro-cerâmicos ao longo das juntas Enstatite (MgSiO3) - diopsidio (CaMgSi2O6) e diopsidio (CaMgSi2O6) - Ca - Tschermak (CaAlSi2O6), os quais foram caracterizados atraves de um vasto leque de tecnicas. Todos os vidros foram preparados por fusao-arrefecimento enquanto os vitro-cerâmicos foram obtidos quer por sinterizacao e cristalizacao de fritas, quer por nucleacao e cristalizacao de vidros monoliticos. Estudaram-se ainda os efeitos de varias substituicoes ionicas em composicoes de diopsidio contendo Al na estrutura, sinterizacao e no comportamento durante a cristalizacao de vidros e nas propriedades dos materiais vitro-cerâmicos, com relevância para a sua aplicacao como selantes em SOFC. Verificou-se que Foi observado que os vidros/vitro-cerâmicos a base de enstatite nao apresentavam as caracteristicas necessarias para serem usados como materiais selantes em SOFC, enquanto as melhores propriedades apresentadas pelos vitro-cerâmicos a base de diopsidio qualificaram-nos para futuros estudos neste tipo de aplicacoes. Para alem de investigar a adequacao dos vitro-cerâmicos a base de clinopyroxene como selantes, esta tese tem tambem como objetivo estudar a influencia dos agentes de nucleacao na nucleacao em volume dos vitro-cerâmicos resultantes a base de diopsidio, de modo a qualifica-los como potenciais materiais hopedeiros de residuos nucleares radioactivos.

  3. Cofortification of ferric pyrophosphate and citric acid/trisodium citrate into extruded rice grains doubles iron bioavailability through in situ generation of soluble ferric pyrophosphate citrate complexes.

    PubMed

    Hackl, Laura; Cercamondi, Colin I; Zeder, Christophe; Wild, Daniela; Adelmann, Horst; Zimmermann, Michael B; Moretti, Diego

    2016-05-01

    Iron fortification of rice is a promising strategy for improving iron nutrition. However, it is technically challenging because rice is consumed as intact grains, and ferric pyrophosphate (FePP), which is usually used for rice fortification, has low bioavailability. We investigated whether the addition of a citric acid/trisodium citrate (CA/TSC) mixture before extrusion increases iron absorption in humans from FePP-fortified extruded rice grains. We conducted an iron absorption study in iron-sufficient young women (n = 20), in which each participant consumed 4 different meals (4 mg Fe/meal): 1) extruded FePP-fortified rice (No CA/TSC); 2) extruded FePP-fortified rice with CA/TSC added before extrusion (CA/TSC extruded); 3) extruded FePP-fortified rice with CA/TSC solution added after cooking and before consumption (CA/TSC solution); and 4) nonextruded rice fortified with a FeSO4 solution added after cooking and before consumption (reference). Iron absorption was calculated from erythrocyte incorporation of stable iron isotopes 14 d after administration. In in vitro experiments, we assessed the soluble and dialyzable iron from rice meals in which CA/TSC was added at different preparation stages and from meals with different iron:CA:TSC ratios. Fractional iron absorption was significantly higher from CA/TSC-extruded meals (3.2%) than from No CA/TSC (1.7%) and CA/TSC solution (1.7%; all P < 0.05) and was not different from the FeSO4 reference meal (3.4%). In vitro solubility and dialyzability were higher in CA/TSC-extruded rice than in rice with No CA/TSC and CA/TSC solution, and solubility increased with higher amounts of added CA and TSC in extruded rice. Iron bioavailability nearly doubled when CA/TSC was extruded with FePP into fortified rice, resulting in iron bioavailability comparable to that of FeSO4 We attribute this effect to an in situ generation of soluble FePP citrate moieties during extrusion and/or cooking because of the close physical proximity of FePP and CA/TSC in the extruded rice matrix. This trial was registered at clinicaltrials.gov as NCT02176759. © 2016 American Society for Nutrition.

  4. Preparation of glass-ceramics from molten steel slag using liquid-liquid mixing method.

    PubMed

    Zhang, Kai; Liu, Jianwen; Liu, Wanchao; Yang, Jiakuan

    2011-10-01

    A novel approach to prepare glass-ceramics from molten steel slag (MSS) was proposed. In laboratory, the water-quenched steel slag was melted at 1350 °C to simulate the MSS. A mixture of additive powders in wt.% (55 quartz powder, 5 Na2O, 16 emery powder, 15 CaO, 8 MgO, 1 TiO2) were melted into liquid at 1350 °C separately. Then the MSS and the molten additives were mixed homogeneously in order to obtain parent glass melt. The proportion of MSS in the melt was 50 wt.%. The melt was subsequently cast, annealed, heat-treated and transformed into glass-ceramics. Their microstructure and crystallization behavior were analyzed. The samples exhibited excellent properties and displayed bulk crystallization. The major crystallized phase was diopside ((Fe0.35Al0.20Mg0.44)Ca0.96(Fe0.08Si0.70Al0.20)2O6.12), which was uniformly distributed in the microstructure. The novel approach may help iron and steel industry achieve zero disposal of steel slag with utilization of the heat energy of the MSS. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Thermodynamic modeling of non-ideal mineral-fluid equilibria in the system Si-Al-Fe-Mg-Ca-Na-K-H-O-Cl at elevated temperatures and pressures: Implications for hydrothermal mass transfer in granitic rocks

    NASA Astrophysics Data System (ADS)

    Dolejš, David; Wagner, Thomas

    2008-01-01

    We present the results of thermodynamic modeling of fluid-rock interaction in the system Si-Al-Fe-Mg-Ca-Na-H-O-Cl using the GEM-Selektor Gibbs free energy minimization code. Combination of non-ideal mixing properties in solids with multicomponent aqueous fluids represents a substantial improvement and it provides increased accuracy over existing modeling strategies. Application to the 10-component system allows us to link fluid composition and speciation with whole-rock mineralogy, mass and volume changes. We have simulated granite-fluid interaction over a wide range of conditions (200-600 °C, 100 MPa, 0-5 m Cl and fluid/rock ratios of 10-2-104) in order to explore composition of magmatic fluids of variable salinity, temperature effects on fluid composition and speciation and to simulate several paths of alteration zoning. At low fluid/rock ratios (f/r) the fluid composition is buffered by the silicate-oxide assemblage and remains close to invariant. This behavior extends to a f/r of 0.1 which exceeds the amount of exsolved magmatic fluids controlled by water solubility in silicate melts. With increasing peraluminosity of the parental granite, the Na-, K- and Fe-bearing fluids become more acidic and the oxidation state increases as a consequence of hydrogen and ferrous iron transfer to the fluid. With decreasing temperature, saline fluids become more Ca- and Na-rich, change from weakly acidic to alkaline, and become significantly more oxidizing. Large variations in Ca/Fe and Ca/Mg ratios in the fluid are a potential geothermometer. The mineral assemblage changes from cordierite-biotite granites through two-mica granites to chlorite-, epidote- and zeolite-bearing rocks. We have carried out three rock-titration simulations: (1) reaction with the 2 m NaCl fluid leads to albitization, chloritization and desilication, reproducing essential features observed in episyenites, (2) infiltration of a high-temperature fluid into the granite at 400 °C leads to hydrolytic alteration commencing with alkali-feldspar breakdown and leading to potassic, phyllic and argillic assemblages; this is associated with reduction and iron metasomatism as observed in nature and (3) interaction with a multicomponent fluid at 600 °C produces sodic-calcic metasomatism. Na, Ca and Fe are the most mobile elements whereas immobility of Al is limited by f/r ∼ 400. All simulations predict a volume decrease by 3.4-5.4%, i.e., porosity formation at f/r < 30. At higher fluid/rock ratios simulation (2) produces a substantial volume increase (59%) due to mineral precipitation, whereas simulation (3) predicts a volume decrease by 49% at the advanced albitization-desilication stage. Volume changes closely correlate with mass changes of SiO2 and are related to silica solubility in fluids. The combined effects of oxygen fugacity, fluid acidity and pH for breakdown of aqueous metal complexes and precipitation of ore minerals were evaluated by means of reduced activity products. Sharp increases in saturation indexes for oxidative breakdown occur at each alteration zone whereas reductive breakdown or involvement of other chloride complexes favor precipitation at high fluid/rock ratios only. Calculations of multicomponent aqueous-solid equilibria at high temperatures and pressures are able to accurately predict rock mineralogy and fluid chemistry and are applicable to diverse reactive flow processes in the Earth's crust.

  6. Sulfur Speciation in the Martian Regolith Component in Shergottite Glasses

    NASA Technical Reports Server (NTRS)

    Rao, M. N.; Nyquist, Laurence E.; Sutton, S.; Huth, J.

    2009-01-01

    We have shown that Gas-Rich Impact-Melt (GRIM) glasses in Shergotty, Zagami, and EET79001 (Lith A and Lith B) contain Martian regolith components that were molten during impact and quenched into glasses in voids of host rock materials based on neutron-capture isotopes, i.e., Sm-150 excesses and Sm-149 deficits in Sm, and Kr-80 excesses produced from Br [1, 2]. These GRIM glasses are rich in S-bearing secondary minerals [3.4]. Evidence for the occurrence of CaSO4 and S-rich aluminosilicates in these glasses is provided by CaO-SO3 and Al2O3-SO3 correlations, which are consistent with the finding of gypsum laths protruding from the molten glass in EET79001 (Lith A) [5]. However, in the case of GRIM glasses from EET79001 (Lith B), Shergotty and Zagami, we find a different set of secondary minerals that show a FeO-SO3 correlation (but no MgOSO3 correlation), instead of CaO-SO3 and Al2O3-SO3 correlations observed in Lith A. These results might indicate different fluidrock interactions near the shergottite source region on Mars. The speciation of sulfur in these salt assemblages was earlier studied by us using XANES techniques [6], where we found that Lith B predominantly contains Fe-sulfide globules (with some sulfate). On the other hand, Lith A showed predominantly Casulfite/ sulfate with some FeS. Furthermore, we found Fe to be present as Fe2+ indicating little oxidation, if any, in these glasses. To examine the sulfide-sulfate association in these glasses, we studied their Fe/Ni ratios with a view to find diagnostic clues for the source fluid. The Fe-sulfide mineral (Fe(0.93)Ni(0.3)S) in EET79001, Lith A is pyrrhotite [7, 8]. It yields an Fe/Ni ratio of 31. In Shergotty, pyrrhotite occurs with a molar ratio of Fe:S of 0.94 and a Ni abundance of 0.12% yielding a Fe/Ni ratio of approx.500 [8]. In this study, we determined a NiO content of approx.0.1% and FeO/NiO ratio of approx.420 in S-rich globules in #507 (EET79001, Lith B) sample using FE-SEM. In the same sample (bulk), using EMPA, we determined a FeO/NiO ratio of approx.700 (raster mode). Using similar techniques, we determined a NiO content of approx.0.015% and a FeO/NiO ratio of approx.800 in #506 (EET79001, Lith A). Moreover, a NiO content of approx.150 ppm and 6.1% FeO were found in Lith A GRIM glasses using neutron activation analysis [9] yielding a FeO/NiO ratio of approx.420. The FeO/NiO ratios in secondary mineral phases in S-rich pockets of EET79001 (Lith A/B) and Shergotty are high (approx.400) compared to the FeO/NiO ratio of 31 in Lith A pyrrhotite. These results suggest similar kind of fluids interacted with different rock materials to yield the observed variations in GRIM glasses in EET79001 Lith A and B.

  7. Linking Barbados Mineral Dust Aerosols to North African Sources Using Elemental Composition and Radiogenic Sr, Nd, and Pb Isotope Signatures

    NASA Astrophysics Data System (ADS)

    Bozlaker, Ayse; Prospero, Joseph M.; Price, Jim; Chellam, Shankararaman

    2018-01-01

    Large quantities of African dust are carried across the Atlantic to the Caribbean Basin and southern United States where it plays an important role in the biogeochemistry of soils and waters and in air quality. Dusts' elemental and isotopic composition was comprehensively characterized in Barbados during the summers of 2013 and 2014, the season of maximum dust transport. Although total suspended insoluble particulate matter (TSIP) mass concentrations varied significantly daily and between the two summers, the abundances (μg element/g TSIP) of 50 elements during "high-dust days" (HDD) were similar. Aerosols were regularly enriched in Na, Cu, Zn, As, Se, Mo, Cd, Sn, Sb, and W relative to the upper continental crust. Enrichment of these elements, many of which are anthropogenically emitted, was significantly reduced during HDD, attributed to mixing and dilution with desert dust over source regions. Generally, Ti/Al, Si/Al, Ca/Al, Ti/Fe, Si/Fe, and Ca/Fe ratios during HDD differed from their respective values in hypothesized North African source regions. Nd isotope composition was relatively invariant for "low-dust days" (LDD) and HDD. In contrast, HDD-aerosols were more radiogenic exhibiting higher 87Sr/86Sr, 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios compared to LDD. Generally, Barbados aerosols' composition ranged within narrow limits and was much more homogeneous than that of hypothesized African source soils. Our results suggest that summertime Barbados aerosols are dominated by a mixture of particles originating from sources in the Sahara-Sahel regions. The Bodélé Depression, long suspected as a major source, appears to be an insignificant contributor of summertime western Atlantic dust.

  8. Automated spectroscopic abundances of A and F-type stars using echelle spectrographs. II. Abundances of 140 A-F stars from ELODIE

    NASA Astrophysics Data System (ADS)

    Erspamer, D.; North, P.

    2003-02-01

    Using the method presented in Erspamer & North (\\cite{erspamer}, hereafter Paper I), detailed abundances of 140 stars are presented. The uncertainties characteristic of this method are presented and discussed. In particular, we show that for a S/N ratio higher than 200, the method is applicable to stars with a rotational velocity as high as 200 km s-1. There is no correlation between abundances and Vsin i, except a spurious one for Sr, Sc and Na which we explain by the small number of lines of these elements combined with a locally biased continuum. Metallic giants (Hauck \\cite{hauck}) show larger abundances than normal giants for at least 8 elements: Al, Ca, Ti, Cr, Mn, Fe, Ni and Ba. The anticorrelation for Na, Mg, Si, Ca, Fe and Ni with Vsin i suggested by Varenne & Monier (\\cite{varenne99}) is not confirmed. The predictions of the Montréal models (e.g. Richard et al. \\cite{richard01}) are not fulfilled in general. However, a correlation between left [(Fe)/(H)right ] and log g is found for stars of 1.8 to 2.0 M_sun. Various possible causes are discussed, but the physical reality of this correlation seems inescapable. Based on observations collected at the 1.93 m telescope at the Observatoire de Haute-Provence (St-Michel l'Observatoire, France) and CORALIE. Based on observations collected at the Swiss 1.2 m Leonard Euler telescopes at the European Southern Observatory (La Silla, Chile). Tables 5 and 6 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u.strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/398/1121

  9. Recycling of Sustainable Co-Firing Fly Ashes as an Alkali Activator for GGBS in Blended Cements

    PubMed Central

    Wu, Yann-Hwang; Huang, Ran; Tsai, Chia-Jung; Lin, Wei-Ting

    2015-01-01

    This study investigates the feasibility of co-firing fly ashes from different boilers, circulating fluidized beds (CFB) or stokers as a sustainable material in alkali activators for ground granulated blast-furnace slag (GGBS). The mixture ratio of GGBS and co-firing fly ashes is 1:1 by weight. The results indicate that only CF fly ash of CFB boilers can effectively stimulate the potential characteristics of GGBS and provide strength as an alkali activator. CF fly ash consists of CaO3 (48.5%), SiO2 (21.1%), Al2O3 (13.8%), SO3 (10.06%), Fe2O3 (2.25%) and others (4.29%). SA fly ash consists of Al2O3 (19.7%), SiO2 (36.3%), Fe2O3 (28.4%) and others (15.6%). SB fly ash consists of Al2O3 (15%), SiO2 (25.4%), Zn (20.6%), SO3 (10.9%), Fe2O3 (8.78%) and others (19.32%). The mixtures of SA fly ash and SB fly ash with GGBS, respectively, were damaged in the compressive strength test during seven days of curing. However, the built up strength of the CF fly ash and GGBS mixture can only be maintained for 7–14 days, and the compressive strength achieves 70% of that of a controlled group (cement in hardening cement paste). The strength of blended CF fly ash and GGBS started to decrease after 28 days, and the phenomenon of ettrigite was investigated due to the high levels of sulfur content. The CaO content in sustainable co-firing fly ashes must be higher than a certain percentage in reacting GGBS to ensure the strength of blended cements. PMID:28787970

  10. High Temperature Oxidation of Hot-Dip Aluminized T92 Steels

    NASA Astrophysics Data System (ADS)

    Abro, Muhammad Ali; Hahn, Junhee; Lee, Dong Bok

    2018-03-01

    The T92 steel plate was hot-dip aluminized, and oxidized in order to characterize the high-temperature oxidation behavior of hot-dip aluminized T92 steel. The coating consisted of Al-rich topcoat with scattered Al3Fe grains, Al3Fe-rich upper alloy layer with scattered (Al, Al5Fe2, AlFe)-grains, and Al5Fe2-rich lower alloy layer with scattered (Al5Fe2, AlFe)-grains. Oxidation at 800 °C for 20 h formed (α-Al2O3 scale)/(AlFe layer)/(AlFe3 layer)/(α-Fe(Al) layer), while oxidation at 900 °C for 20 h formed (α-Al2O3 scale plus some Fe2O3)/(AlFe layer)/(AlFe3 layer)/(α-Fe(Al) layer) from the surface. During oxidation, outward migration of all substrate elements, inward diffusion of oxygen, and back and forth diffusion of Al occurred according to concentration gradients. Also, diffusion transformed and broadened AlFe and AlFe3 layers dissolved with some oxygen and substrate alloying elements. Hot-dip aluminizing improved the high-temperature oxidation resistance of T92 steel through preferential oxidation of Al at the surface.

  11. High Temperature Oxidation of Hot-Dip Aluminized T92 Steels

    NASA Astrophysics Data System (ADS)

    Abro, Muhammad Ali; Hahn, Junhee; Lee, Dong Bok

    2018-05-01

    The T92 steel plate was hot-dip aluminized, and oxidized in order to characterize the high-temperature oxidation behavior of hot-dip aluminized T92 steel. The coating consisted of Al-rich topcoat with scattered Al3Fe grains, Al3Fe-rich upper alloy layer with scattered (Al, Al5Fe2, AlFe)-grains, and Al5Fe2-rich lower alloy layer with scattered (Al5Fe2, AlFe)-grains. Oxidation at 800 °C for 20 h formed (α-Al2O3 scale)/(AlFe layer)/(AlFe3 layer)/(α-Fe(Al) layer), while oxidation at 900 °C for 20 h formed (α-Al2O3 scale plus some Fe2O3)/(AlFe layer)/(AlFe3 layer)/(α-Fe(Al) layer) from the surface. During oxidation, outward migration of all substrate elements, inward diffusion of oxygen, and back and forth diffusion of Al occurred according to concentration gradients. Also, diffusion transformed and broadened AlFe and AlFe3 layers dissolved with some oxygen and substrate alloying elements. Hot-dip aluminizing improved the high-temperature oxidation resistance of T92 steel through preferential oxidation of Al at the surface.

  12. A chemically activated graphene-encapsulated LiFePO4 composite for high-performance lithium ion batteries.

    PubMed

    Ha, Jeonghyun; Park, Seung-Keun; Yu, Seung-Ho; Jin, Aihua; Jang, Byungchul; Bong, Sungyool; Kim, In; Sung, Yung-Eun; Piao, Yuanzhe

    2013-09-21

    A composite of modified graphene and LiFePO4 has been developed to improve the speed of charging-discharging and the cycling stability of lithium ion batteries using LiFePO4 as a cathode material. Chemically activated graphene (CA-graphene) has been successfully synthesized via activation by KOH. The as-prepared CA-graphene was mixed with LiFePO4 to prepare the composite. Microscopic observation and nitrogen sorption analysis have revealed the surface morphologies of CA-graphene and the CA-graphene/LiFePO4 composite. Electrochemical properties have also been investigated after assembling coin cells with the CA-graphene/LiFePO4 composite as a cathode active material. Interestingly, the CA-graphene/LiFePO4 composite has exhibited better electrochemical properties than the conventional graphene/LiFePO4 composite as well as bare LiFePO4, including exceptional speed of charging-discharging and excellent cycle stability. That is because the CA-graphene in the composite provides abundant porous channels for the diffusion of lithium ions. Moreover, it acts as a conducting network for easy charge transfer and as a divider, preventing the aggregation of LiFePO4 particles. Owing to these properties of CA-graphene, LiFePO4 could demonstrate enhanced and stably long-lasting electrochemical performance.

  13. High-Resolution Spectroscopic Study of Extremely Metal-Poor Star Candidates from the SkyMapper Survey

    NASA Astrophysics Data System (ADS)

    Jacobson, Heather R.; Keller, Stefan; Frebel, Anna; Casey, Andrew R.; Asplund, Martin; Bessell, Michael S.; Da Costa, Gary S.; Lind, Karin; Marino, Anna F.; Norris, John E.; Peña, José M.; Schmidt, Brian P.; Tisserand, Patrick; Walsh, Jennifer M.; Yong, David; Yu, Qinsi

    2015-07-01

    The SkyMapper Southern Sky Survey is carrying out a search for the most metal-poor stars in the Galaxy. It identifies candidates by way of its unique filter set which allows for estimation of stellar atmospheric parameters. The set includes a narrow filter centered on the Ca ii K 3933 Å line, enabling a robust estimate of stellar metallicity. Promising candidates are then confirmed with spectroscopy. We present the analysis of Magellan Inamori Kyocera Echelle high-resolution spectroscopy of 122 metal-poor stars found by SkyMapper in the first two years of commissioning observations. Forty-one stars have [{Fe}/{{H}}]≤slant -3.0. Nine have [{Fe}/{{H}}]≤slant -3.5, with three at [{Fe}/{{H}}]∼ -4. A 1D LTE abundance analysis of the elements Li, C, Na, Mg, Al, Si, Ca, Sc, Ti, Cr, Mn, Co, Ni, Zn, Sr, Ba, and Eu shows these stars have [X/Fe] ratios typical of other halo stars. One star with low [X/Fe] values appears to be “Fe-enhanced,” while another star has an extremely large [Sr/Ba] ratio: \\gt 2. Only one other star is known to have a comparable value. Seven stars are “CEMP-no” stars ([{{C}}/{Fe}]\\gt 0.7, [{Ba}/{Fe}]\\lt 0). 21 stars exhibit mild r-process element enhancements (0.3≤slant [{Eu}/{Fe}]\\lt 1.0), while four stars have [{Eu}/{Fe}]≥slant 1.0. These results demonstrate the ability to identify extremely metal-poor stars from SkyMapper photometry, pointing to increased sample sizes and a better characterization of the metal-poor tail of the halo metallicity distribution function in the future. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  14. Stardust (Comet 81P/Wild-2) Samples and Early Solar Sys-tem Processes

    NASA Astrophysics Data System (ADS)

    Ebel, Denton S.; Weisberg, M. K.; Connolly, H. C.; Zolensky, M.; Mineralogy/Petrology Preliminary Examination Subteam, Stardust

    2006-12-01

    Dust particles from comet 81P/Wild-2 were captured in silica aerogel (also as impact debris on Al-foil strips) at 6.1 km/s relative velocity by the Stardust spacecraft on 2-Jan-2004, and returned to Earth 15-Jan-2006 [1]. A pre-liminary examination team (PET) of 150 are preparing reports on a subset of samples [2, 3, e.g., 4]. PET investigations in a short time on a limited number of <10 micron grains show that olivine, pyroxene, FeNi-metal and sulfide are common. Olivine and low-Ca pyroxene are unequilibrated in Mg/(Fe+Mg). Some for-sterite is low-iron, Mn-enriched as also found in some in-terplanetary dust particles (IDPs), and in matrix and amoe-boid olivine aggregates in CR carbonaceous chondrites (CC)[5]. Diopside and melilite are found, similar to those in spinel-pyroxene aggregates in CM chondrites and in re-fractory IDPs[6,7]. FeNi-metal and Fe-Ni, Fe-Ni-Cu and Fe-Zn sulfides are observed, and the highly reduced phase osbornite (TiN). Hydrous silicates and carbonates are not observed. A primary result is the preponderance of high temperature and reduced crystalline phases. These may form from amorphous precursors heated near the sun[8], or by viscosity-related processes farther out in the disk[9]. Silicate, metal and sulfide compositions are consistent with chondrites, particularly the CR clan. A better comparison may perhaps be made to anhydrous IDPs, which probably sample outer regions of the Solar System. The isotopic homogeneity of the grains will have important implications for mixing in the early disk. References: [1] Brownlee et al. (2004) Science 304, 1764.[2] ftp://ftp.lpi.usra.edu/pub/outgoing/lpsc2006/full101.pdf [3] Zolensky et al. (2006) LPSC XXXVII #1203. [4] Zolensky et al. (2006, in prep.) Science. [5] Weisberg et al. (2004) MaPS 39, 1741. [6] McKeegan (1987) Science 237, 1468. [7] Zolensky (1987) Science 237, 1466. [8] Scott and Krot (2005) Chondrules and the Protoplanetary Disk, 15-54. [9] Joung et al. (2004) ApJ 606, 532.

  15. Hydrothermal Rock-Fluid Interactions in 15-year-old Submarine Basaltic Tuff at Surtsey Volcano, Iceland

    NASA Astrophysics Data System (ADS)

    Jackson, M. D.; Couper, S.; Li, Y.; Stan, C. V.; Tamura, N.; Stefansson, A.; Moore, J. G.; Wenk, H. R.

    2016-12-01

    Basaltic tephra at Surtsey volcano, produced by 1963-1967 eruptions in the offshore SE Icelandic rift zone, record the complex interplay of factors that determine rates of palagonitization and crystallization of authigenic minerals in seafloor basalts worldwide. We investigate how formation of nanocrystalline clay mineral in fresh sideromelane glass influenced crystallization of mineral cements in submarine tuff from a 181 m core drilled in 1979. Synchrotron-based microdiffraction and microfluorescence maps (2x5 µm X-ray beam spot size) at beamline 12.3.2, Advanced Light Source, SEM-EDS compositional analyses, and fluid geochemical models compare processes in lapilli-sized glass fragments, vitric cementing matrix, and fine ash accretions. In lapilli at 137.9 m (100°C), nanocrystalline clay mineral in gel-palagonite has asymetric 14.9-12.6 Å (001) reflections, with Fe and Ti enrichment relative to Si, Al and Ca, compared with adjacent sideromelane. Neighboring fibro-palagonite has symmetric (001) and greater Fe and Ti enrichment. Al-tobermorite, a rare calcium-silicate-hydrate, crystallized in nearby vesicles. The 11.30-11.49 Å (002) interlayer and Ca/(Si+Al) ratio of 0.9-1.0 record release of Si, Al, and Ca in a chemical system relatively isolated from submarine hydrothermal fluid flow. In vitric matrix relatively open to fluid flow, however, phillipsite zeolite cement predominates. Al-tobermorite formed at 88.45 m (130°C) and 102.6 m (140°C), but is associated with fibro-palagonite and analcite, reflecting more rapid palagonitization, and changing cation solubility and pH at higher temperature. Tubular palagonite microstructures show nanocrystalline clay mineral with (001) preferred orientations that wrap around relict microchannels, produced perhaps through biogenic activity. Nanocrystalline clay mineral d-spacings suggest similarities with nontronite, but zeolite in palagonite diffraction patterns and 6-9 wt% MgO suggest a polycrystalline composite with smectite mineral precursor(s). Fifteen years after eruption, Al-tobermorite-zeolite assemblages varied with porosity, pH, and reactive rock mass/liquid volume ratio in submillimeter-scale hydrothermal environments. This initial phase of alteration is rarely preserved in older palagonitized rift zone basalts.

  16. Reduction of Mn-oxides by ferrous iron in a flow system: column experiment and reactive transport modeling

    NASA Astrophysics Data System (ADS)

    Postma, D.; Appelo, C. A. J.

    2000-04-01

    The reduction of Mn-oxide by Fe2+ was studied in column experiments, using a column filled with natural Mn-oxide coated sand. Analysis of the Mn-oxide indicated the presence of both Mn(III) and Mn(IV) in the Mn-oxide. The initial exchange capacity of the column was determined by displacement of adsorbed Ca2+ with Mg2+. Subsequently a FeCl2 solution was injected into the column causing the reduction of the Mn-oxide and the precipitation of Fe(OH)3. Finally the exchange capacity of the column containing newly formed Fe(OH)3 was determined by injection of a KBr solution. During injection of the FeCl2 solution into the column, an ion distribution pattern was observed in the effluent that suggests the formation of separate reaction fronts for Mn(III)-oxide and Mn(IV)-oxide travelling at different velocities through the column. At the proximal reaction front, Fe2+ reacts with MnO2 producing Fe(OH)3, Mn2+ and H+. The protons are transported downstream and cause the disproportionation of MnOOH at a separate reaction front. Between the two Mn reaction fronts, the dissolution and precipitation of Fe(OH)3 and Al(OH)3 act as proton buffers. Reactive transport modeling, using the code PHREEQC 2.0, was done to quantify and analyze the reaction controls and the coupling between transport and chemical processes. A model containing only mineral equilibria constraints for birnessite, manganite, gibbsite, and ferrihydrite, was able to explain the overall reaction pattern with the sequential appearance of Mn2+, Al3+, Fe3+, and Fe2+ in the column outlet solution. However, the initial breakthrough of a peak of Ca2+ and the observed pH buffering indicated that exchange processes were of importance as well. The amount of potential exchangers, such as birnessite and ferrihydrite, did vary in the course of the experiment. A model containing surface complexation coupled to varying concentrations of birnessite and ferrihydrite and a constant charge exchanger in addition to mineral equilibria provided a satisfactory description of the distribution of all solutes in time and space. However, the observed concentration profiles are more gradual than indicated by the equilibrium model. Reaction kinetics for the dissolution of MnO2 and MnOOH and dissolution of Al(OH)3 were incorporated in the model, which explained the shape of the breakthrough curves satisfactorily. The results of this study emphasize the importance of understanding the interplay between chemical reactions and transport in addition to interactions between redox, proton buffering, and adsorption processes when dealing with natural sediments. Reactive transport modeling is a powerful tool to analyze and quantify such interactions.

  17. Coexisting cummingtonite and aluminous hornblende from garnet amphibolite, Boehls Butte area, Idaho, USA

    USGS Publications Warehouse

    Hietanen, A.

    1973-01-01

    Electron microprobe analyses of green hornblende and coexisting cummingtonite from garnet amphibolite show identical Fe/Mg ratios ( = 0.9). Cummingtonite is iron-magnesium silicate with very little calcium and aluminum and practically no alkalies. In contrast, the hornblende has 1.5 tetrahedral Al, 0.9 octahedral Al and a considerable amount of Ca and alkalies. Comparison with the hornblendes from the Sierra Nevada shows a higher relative amount of tschemakite molecule in the hornblendes from Idaho where pressures during the recrystallization were higher. ?? 1973.

  18. Elemental concentration analysis in brain structures from young, adult and old Wistar rats by total reflection X-ray fluorescence with synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Serpa, R. F. B.; de Jesus, E. F. O.; Anjos, M. J.; do Carmo, M. G. T.; Moreira, S.; Rocha, M. S.; Martinez, A. M. B.; Lopes, R. T.

    2006-11-01

    The knowledge of the spatial distribution and the local concentration of trace elements in tissues are of great importance since trace elements are involved in a number of metabolic and physiological processes in the human body, and their deficiency and excess may lead to different metabolic disorders. In this way, the main goal of this work is to compare the elemental concentration in different brain structures, namely temporal cortex, entorhinal cortex, visual cortex and hippocampus, from Wistar female rats ( n = 15) with different ages: 2, 8 and 48 weeks. The measurements were performed at the Synchrotron Light Brazilian Laboratory, Campinas, São Paulo, Brazil. In the entorhinal cortex, the following elements decreased with age: Zn, S, Cl, K, Ca and Br. In the temporal cortex, Ca, Fe and Br levels increased with aging and on the other hand, P, S, Cl, K and Rb levels decreased with aging. In the visual cortex almost all the elements decreased with aging: Cl, Ca, Fe, Ni and Zn. In the hippocampus, in turn, most of the elements identified, increased with aging: Al, P, S, K, Fe, Cu, Zn and Rb. The increase of Fe with aging in the hippocampus is an important fact that will be studied, since it is involved in oxidative stress. It is believed that oxidative stress is the one of the main causes responsible for neuronal death in Parkinson's disease.

  19. Binder-jetting 3D printing and alloy development of new biodegradable Fe-Mn-Ca/Mg alloys.

    PubMed

    Hong, Daeho; Chou, Da-Tren; Velikokhatnyi, Oleg I; Roy, Abhijit; Lee, Boeun; Swink, Isaac; Issaev, Ilona; Kuhn, Howard A; Kumta, Prashant N

    2016-11-01

    3D printing of various biomaterials including titanium and stainless steel has been studied for treating patients with cranio-maxillofacial bone defect. The potential long term complications with use of inert biometals have opened the opportunities for use of biodegradable metals in the clinical arena. The authors previously reported that binder-jet 3D printing technique enhanced the degradation rates of biodegradable Fe-Mn alloy by creating engineered micropores rendering the system attractive as biodegradable implantable devices. In the present study, the authors employed CALPHAD modeling to systematically study and modify the Fe-Mn alloy composition to achieve enhanced degradation rates. Accordingly, Ca and Mg addition to Fe-35wt% Mn solid solution predicted increase in degradation rates. In order to validate the CALPHAD results, Fe - (35-y)wt% Mn - ywt% X (X=Ca, Mg, and y=0, 1, 2) were synthesized by using high energy mechanical alloying (HEMA). Sintered pellets of Fe-Mn-Ca and Fe-Mn-Mg were then subjected to potentiodynamic polarization (PDP) and live/dead cell viability tests. Sintered pellets of Fe-Mn, Fe-Mn-Ca, and Fe-Mn-Mg also exhibited MC3T3 murine pre-osteoblast cells viability in the live/dead assay results. Fe-Mn and Fe-Mn-1Ca were thus accordingly selected for 3D printing and the results further confirmed enhanced degradation of Ca addition to 3D printed constructs validating the theoretical and alloy development studies. Live/dead and MTT cell viability results also confirmed good cytocompatibility of the 3D-printed Fe-Mn and Fe-Mn-1Ca constructs. Bone grafting is widely used for the treatment of cranio-maxillofacial bone injuries. 3D printing of biodegradable Fe alloy is anticipated to be advantageous over current bone grafting techniques. 3D printing offers the fabrication of precise and tailored bone grafts to fit the patient specific bone defect needs. Biodegradable Fe alloy is a good candidate for 3D printing synthetic grafts to regenerate bone tissue without eliciting complications. CALPHAD theoretical models were used to develop new Fe-Mn-Ca/Mg alloys to enhance the degradation rates of traditional Fe-Mn alloys. In vitro experimental results also showed enhanced degradation rates and good cytocompatibility of sintered Fe-Mn-Ca/Mg compacts. 3D printing of Fe-Mn and Fe-Mn-1Ca alloys further demonstrated their feasibility as potentially viable bone grafts for the future. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. STM/STS study of superconducting properties in Ca10(Pt4As8)(Fe2As2)5

    NASA Astrophysics Data System (ADS)

    Kim, Jisun; Nam, Hyoungdo; Li, Guorong; Karki, Amar; Shih, Chih-Kang; Zhang, Jiandi; Jin, Rongying; Plummer, E. W.

    2014-03-01

    Newly discovered iron-based superconductor, Ca10(Pt4As8)(Fe2As2)5 (Tc = 34 K) is studied using scanning tunneling microscopy/spectroscopy (STM/S). Given the symmetry of the crystal structure, several surface terminations are expected with roughly same probability: 1) Ca or partial Ca layer on top Fe2As2; 2) Ca or partial Ca layer on top Pt4As8 layer; 3) A Fe2As2 layer, and; 4) A Pt4As8layer.Surprisingly,Fe2As2 related layers (1 & 3) are rarely observed (less than 1%). Instead, we observe Pt4As8 layers separated by unit-cell-high (~ 1 nm) steps accompanied with Ca or partial Ca layer on top Pt4As8 layer (1 - 2 Å step height). Scanning tunneling spectroscopy reveals different spectra for each surface, with superconducting coherence peaks seen only on Ca layers. We argue that intermediary layers are proximity-coupled to superconducting Fe2As2 layers. The results from Ca10(Pt4As8)(Fe2As2)5 are discussed with the properties observed in other iron-based superconductors. Funded by NSF

  1. Comparative Study of Electronic Structure and Magnetic Properties of Osmate Double Perovskites: Ca2FeOsO6 versus Ca2Co(Ni)OsO6

    NASA Astrophysics Data System (ADS)

    Samanta, Kartik; Saha-Dasgupta, Tanusri

    2018-04-01

    Employing density functional theory, we study the trend in the electronic and magnetic properties of 3d-5d double perovskites, upon varying the 3d element for a fixed choice of 5d element, namely Ca2BOsO6 (B = Fe/Co/Ni). While all three compounds are reported to be ferrimagnets, the magnetic transition temperature of Ca2FeOsO6 is reported to be 2-2.4 times larger than that of Ca2CoOsO6 or Ca2NiOsO6. Our first-principles study provides microscopic insight into this trend. This trend is found to be caused by the downward shift in the position of d level energies of the B site element with respect to that of the Os t2g level upon moving across the 3d series from Fe to Co and Ni. This in turn changes the nominal valence of the Os ion from 5+ in Ca2FeOsO6 to 6+ in Ca2CoOsO6 and Ca2NiOsO6, resulting in differing superexchange paths between Ca2FeOsO6 and Ca2Co(Ni)OsO6, and additionally enabling the hybridization-mechanism-driven magnetism in Ca2FeOsO6. These together significantly enhance the magnetic transition temperature in Ca2FeOsO6 compared with that in Ca2Co(Ni)OsO6.

  2. Ab Initio Study of the Structure and Stability of High-Pressure Iron-Bearing Dolomite

    NASA Astrophysics Data System (ADS)

    Solomatova, N. V.; Asimow, P. D.

    2016-12-01

    Carbon is subducted into the mantle primarily in the form of metasomatically calcium-enriched basaltic rock, calcified serpentinites and carbonaceous ooze, all of which often contain dolomite. End-member CaMg(CO3)2 dolomite typically breaks down upon compression into two carbonates at 5-6 GPa in the temperature range of 800-1200 K [1]. However, high-pressure X-ray diffraction experiments have recently shown that the presence of iron may be sufficient to stabilize high-pressure dolomite over single-cation carbonates above 35 GPa [2,3]. The structure and equation of state of high-pressure dolomite phases have been debated, creating a need for theoretical calculations. Using density functional theory interfaced with a genetic algorithm that predicts crystal structures (USPEX), we have found a monoclinic phase with space group C2/c. The C2/c structure has a lower energy than previously reported dolomite structures at relevant pressures. It is possible that this phase is not achieved experimentally due to a large energy barrier and a correspondingly large required volume drop, resulting in the transformation to metastable dolomite II. We calculate the equation of state of trigonal dolomite, dolomite III and monoclinic C2/c dolomite to 80 GPa with 0 and 50 mol% CaFe(CO3)2 and compare their enthalpies to single-carbonate assemblages. Although end-member C2/c CaMg(CO3)2 dolomite is not stable relative to single-cation carbonates, C2/c CaMg0.5Fe0.5(CO3)2 is preferred over single-cation carbonates at high pressures. Thus, iron-bearing C2/c dolomite may be an important host phase for carbon in slabs subducted into the lower mantle. [1] Shirasaka, M., et al. (2002) American Mineralogist, 87, 922-930. [2] Mao, Z. et al. (2011) Geophysical Research Letters, 38. [3] Merlini, M. et al. (2012) Proceedings of the National Academy of Sciences, 109, 13509-13514.

  3. Elemental and carbonaceous characterization of TSP and PM10 during Middle Eastern dust (MED) storms in Ahvaz, Southwestern Iran.

    PubMed

    Shahsavani, Abbas; Yarahmadi, Maryam; Hadei, Mostafa; Sowlat, Mohammad Hossein; Naddafi, Kazem

    2017-08-21

    Middle Eastern dust (MED) storms carry large amounts of dust particles to the Southern and Western cities of Iran. This study aimed to characterize the elemental and carbonaceous composition of total suspended particles (TSP) and PM 10 in Ahvaz, Iran. TSP and PM 10 samples were collected using two separate high-volume air samplers. The sampling program was performed according to EPA guidelines and resulted in 72 samples. Twenty-eight elements and two carbonaceous components in TSP and PM 10 were measured. Over the entire study period, the mean concentration (SD) of TSP and PM 10 was 1548.72 μg/m 3 (1965.11 μg/m 3 ) and 1152.35 μg/m 3 (1510.34 μg/m 3 ), respectively. The order of concentrations of major species were Si > Al > Ca > OC > Na > B > Zn > Mn > K > Mg and Si > Ca > Al > Na > OC > B > K > Mn > Cu > Mg for TSP and PM 10 , respectively. Almost all elements (except for Cd, Cr, and Cu) and carbonaceous components (except for organic carbon) had dust days/non-dust days (DD/NDD) ratios higher than 1, implying that all components are somehow affected by dust storms. Crustal elements constituted the major portion of particles for both TSP and PM 10 in both DDs and NDDs. The enrichment factor of elements such as Ca, Fe, K, Mg, Na, and Ti was near unity. Species such as Al, Ca, Fe, K, Na, Si, and EC had high correlation coefficients in both TSP and PM 10 (except for EC). In conclusion, Ahvaz is exposed to high concentrations of TSP and PM 10 during the MED period. Immediate actions must be planned to decrease the high concentrations of particulate matter in Ahvaz's ambient air.

  4. A case of Alzheimer's disease in magmatic crystals

    NASA Astrophysics Data System (ADS)

    Costa Rodriguez, F.; Bouvet de Maisonneuve, C.

    2012-12-01

    The reequilibration of chemical zoning in crystals from volcanic rocks is increasingly used to determine the duration of the processes involved in their origin, residence and transport. There now exist a good number of determinations of diffusion coefficients in olivine (Fe-Mg, Mn, Ca, Ni, Cr), plagioclase (CaAl-NaSi, Mg, Sr, Ba, REE), pyroxenes (Fe-Mg, Mn, Ca, REE) and quartz (Ti), but most studies have used a single element or component in a single mineral group. Although this is a good approach, it can only access a limited range of time scales, typically the short-term memory of the crystal. In other words, for process durations that are longer than the combination of the diffusivity and diffusion distance (and for a constant boundary), the long-term memory of the crystal might have been lost. This could explain why most time determinations of magmatic processes from volcanic rocks give times of about < 100 years, and why these are shorter than the thousands of years obtained from U-Th series disequilibrium isotopes. We have done a series of numerical calculations and natural observation to determine the time windows that can be accessed with different elements and minerals, and how they may affect the time scales and interpretations of processes that the crystals might be recording. We have looked at two end-members representative of mafic and silicic magmas by changing the temperature and mineral compositions. 3 dimensional calculations of diffusion reequilibration at the center of a 1 x 0.5 x 0.5 mm crystal and using a constant boundary as first case. We find that for mafic magma and olivine, 90 % of equilibration of Fe-Mg, Mn, and Ni occurs in a few decades, but gradients in Ca and Cr persist for a few thousand years. These results can for example explain the large ranges of Ca and Cr contents at a given Fe/Mg of olivine, and why apparently contradictory times can be obtained from elements with different diffusivities in the same crystal. At the same time these findings also highlight that there is a long-term memory of the crystal that is typically not accessed by current studies. However, unraveling this memory is more complex because it seems unrealistic to assume a constant composition at the boundary for hundreds or thousands of years, and because crystals can be growing and dissolving multiple times. Additional models considering growth and a variable boundary show that a significant part of the memory is lost by multiple changes in concentration being superimposed at the crystal rim. Here we also report a case where accessing the older history of the crystals might be possible by a combination of X-Ray element maps plus multiple element zoning traverses (Fe-Mg, Ca, Mn, Ni, Al, P, Cr) in olivine from Llaima volcano (Chile). Element distributions reveal that the crystals had an early history of fast growth. The delicate structures of P zoning have been used to recognize any crystal dissolution. Cr, Fe-Mg, Ni, Mn are zoned but the times obtained from Cr are 4 x longer than those of the other elements. Our interpretation is that the Cr zoning records the older memory of the crystal since eruption but that of Fe-Mg has lost part of the memory due to multiple changes at the rim or complete homogenization of the crystal. Thus using multiple elements and minerals allow accessing the long and short term memory of the crystals and associated magma.

  5. Changes in macrominerals, trace elements and pigments content during lettuce (Lactuca sativa L.) growth: influence of soil composition.

    PubMed

    Pinto, Edgar; Almeida, Agostinho A; Aguiar, Ana A R M; Ferreira, Isabel M P L V O

    2014-01-01

    Changes in macrominerals, trace elements and photosynthetic pigments were monitored at 5 stages of lettuce growth. Plants were grown in three experimental agriculture greenhouse fields (A1, A2 and A3). Soil composition was also monitored to understand its influence on lettuce composition. In general, the content of macrominerals, trace elements, chlorophylls and carotenoids decreased during lettuce growth and consequently, high nutritional value was observed at younger stages. A2 lettuces showed an increase of Fe, Al, Cr, V and Pb due to the different soil physicochemical parameters. Multiple linear regression analysis with stepwise variable selection, indicated that soil characteristics, namely, pH(CaCl2) for Fe and Cr, silt and fine-sand for Al and V, OM for Al and Pb, coarse-sand and CEC for Cr, had a key role determining element bioavailability and plant mineral content. Thus, lettuce nutritional value was strongly dependent of growth stage and soil characteristics. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Mercury's Magma Ocean

    NASA Astrophysics Data System (ADS)

    Parman, S. W.; Parmentier, E. M.; Wang, S.

    2016-12-01

    The crystallization of Mercury's magma ocean (MMO) would follow a significantly different path than the terrestrial or lunar magma ocean. Evidence from the MESSENGER mission [1] indicates that Mercury's interior has an oxygen fugacity (fO2) orders of magnitude lower any other terrestrial planet (3-8 log units below the iron-wustite buffer = IW-3 to IW-8; [2]). At these conditions, silicate melts and minerals have negligible Fe contents. All Fe is present in sulfides or metal. Thus, the build up of Fe in the last dregs of the lunar magma ocean, that is so important to its evolution, would not happen in the MMO. There would be no overturn or plagioclase flotation crust. Sulfur solubility in silicate melts increases dramatically at low fO2, from 1 wt% at IW-3 to 8wt% at IW-8 [3]. Thus it is possible, perhaps probable, that km-thick layers of sulfide formed during MMO crystallization. Some of the sulfides (e.g. CaS) have high partition coefficients for trace elements and so could control the spatial distribution of radioactive heat producing elements such as U, Th and K. This in turn would have first order effects on the thermal and chemical evolution of the planet. The distribution of the sulfide layers depend upon the density of the sulfides that form in the MMO. At such low fO2, S forms compounds with a range of elements not typical for other planets: Ca, Mg, Na, K. The densities of these sulfides vary widely, with Mg and Ca-rich sulfides being more dense than estimated MMO densities, and Na and K-rich sulfides being less dense than the MMO. Thus sulfide sinking and floating may produce substantial chemical layering on Mercury, potentially including an Mg-Ca rich deep layer and a Na-K rich shallow layer or possibly floatation crust. The total amount of S in the MMO depends on the fO2 and the bulk S content of Mercury, both of which are poorly constrained. In the most extreme case, if the MMO had an fO2of IW-8 and was sulfide saturated from the start, a total equivalent layer of sulfide up to 50 km could form (Figure 1). [1] Nittler et al (2011) Science 333: 847-1850., [2] Zolotov et al (2013), JGR 118: 138-146. [3] Berthet et al (2009) GCA 73: 6402-6420.

  7. Preliminary Results from the Viking X-ray Fluorescence Experiment: The First Sample from Chryse Planitia, Mars.

    PubMed

    Toulmin, P; Clark, B C; Baird, A K; Keil, K; Rose, H J

    1976-10-01

    Iron, calcium, aluminum, silicon, and sulfur are major elements in the first surface sample of Mars that has been analyzed by the Viking x-ray fluorescence spectrometer. Titanium is present in minor quantities. This is consistent with the sample being a mixture of fine silicate and oxide mineral grains, with a significant proportion of sulfates, possibly hydrated. Ferric oxide is regarded as the red pigmenting agent on the martian surface, but if it coats silicate grains, the coatings must be very thin (

  8. Preliminary results from the Viking X-ray fluorescence experiment - The first sample from Chryse Planitia, Mars

    NASA Technical Reports Server (NTRS)

    Toulmin, P., III; Rose, H. J., Jr.; Clark, B. C.; Baird, A. K.; Keil, K.

    1976-01-01

    Iron, calcium, aluminum, silicon, and sulfur are major elements in the first surface sample of Mars that has been analyzed by the Viking X-ray fluorescence spectrometer. Titanium is present in minor quantities. This is consistent with the sample's being a mixture of fine silicate and oxide mineral grains, with a significant proportion of sulfates, possibly hydrated. Ferric oxide is regarded as the red pigmenting agent on the Martian surface, but if it coats silicate grains, the coatings must be very thin or discontinuous. A high abundance of Fe, relatively low abundances of Al, Rb, Sr, and Zr, and a high Ca/K ratio are distinctive features of the spectra. Preliminary determinations indicate the following abundances (as percentages by weight): Fe, 14 plus or minus 2; Ti, less than 1; S, 2 to 5; the Ca/K ratio by weight is greater than 5.

  9. Preliminary results from the viking x-ray fluorescence experiment: The first sample from chryse planitia, Mars

    USGS Publications Warehouse

    Toulmin, P.; Clark, B. C.; Baird, A.K.; Keil, Klaus; Rose, H.J.

    1976-01-01

    Iron, calcium, aluminum, silicon, and sulfur are major elements in the first surface sample of Mars that has been analyzed by the Viking x-ray fluorescence spectrometer. Titanium is present in minor quantities. This is consistent with the sample being a mixture of fine silicate and oxide mineral grains, with a significant proportion of sulfates, possibly hydrated. Ferric oxide is regarded as the red pigmenting agent on the martian surface, but if it coats silicate grains, the coatings must be very thin (??? 2 micrometers) or discontinuous. A high abundance of Fe, relatively low abundances of Al, Rb, Sr, and Zr, and a high Ca/K ratio are distinctive features of the spectra. Preliminary determinations indicate the following abundances (as percentages by weight): Fe, 14 ?? 2; Ti < 1; S, 2 to 5; the Ca/K ratio by weight is greater than 5.

  10. Geochemical modeling of leaching of Ca, Mg, Al, and Pb from cementitious waste forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martens, E., E-mail: evelien.martens@csiro.a; Jacques, D.; Van Gerven, T.

    2010-08-15

    Results from extraction tests on cement-waste samples were simulated with a thermodynamic equilibrium model using a consistent database, to which lead data were added. Subsequent diffusion tests were modeled by means of a 3D diffusive transport model combined with the geochemical model derived from the extraction tests. Modeling results of the leached major element concentrations for both uncarbonated and (partially) carbonated samples agreed well with the extraction test using the set of pure minerals and solid solutions present in the database. The observed decrease in Ca leaching with increasing carbonation level was qualitatively predicted. Simulations also revealed that Pb leachingmore » is not controlled by dissolution/precipitation only. The addition of the calcite-cerrusite solid solution and adsorption reactions on amorphous Fe- and Al-oxides improved the predictions and are considered to control the Pb leaching during the extractions tests. The dynamic diffusive leaching tests were appropriately modeled for Na, K, Ca and Pb.« less

  11. Element-based prognostics of occupational pneumoconiosis using micro-proton-induced X-ray emission analysis.

    PubMed

    He, Xiaodong; Shen, Hao; Chen, Zidan; Rong, Caicai; Ren, Minqin; Hou, Likun; Wu, Chunyan; Mao, Ling; Lu, Quan; Su, Bo

    2017-12-01

    Pneumoconiosis is an occupational disease accompanied by long-term lung impairment, for which prediction of prognosis is poorly understood because of the complexity of the inhaled particles. Micro-proton-induced X-ray emission (micro-PIXE) analysis, which is advantageous for high-sensitivity, two-dimensional element mapping of lung tissues, was used to investigate element-based predictive factors of prognosis in Chinese patients with welder's and coal miner's pneumoconiosis. Chest radiographs and lung function tests showed that most of the coal miners deteriorated, whereas symptoms in some welders were alleviated after 5 yr, as determined by comparing percent vital capacity (%VC) and forced expiratory volume in the 1st second over forced vital capacity (FEV1.0/FVC) to values taken at the initial diagnosis. Micro-PIXE analysis suggested that the most abundant particulates in welder's pneumoconiosis were Fe, Mn, and Ti (metallic oxide),which were accompanied by particulates containing Si, Al, and Ca (aluminum silicate) or only Si (SiO 2 ); the most abundant particulates in coal miner's pneumoconiosis were composed of C, Si, Al, K, and Ti, which were accompanied by particulates containing Ca or Fe. Particulates containing Al, Si, S, K, Ca, and Ti (orthoclase and anorthite) were correlated with severity of fibrosis. Multivariable linear regression suggested that long-term FEV1.0/FVC decrease was independently associated with Si and smoking index, whereas %VC decrease was associated with Si and Ti. A risk index comprised of these factors was developed to predict the prognosis of pneumoconiosis. Micro-PIXE analysis is feasible for the evaluation of elemental composition and dust exposure, especially for patients whose exposure is mixed or uncertain. Copyright © 2017 the American Physiological Society.

  12. Bioleaching of Ilmenite and Basalt in the Presence of Iron-oxidizing and Iron-scavenging Bacteria

    NASA Astrophysics Data System (ADS)

    Navarrete, J. U.; Cappelle, I.; Borrok, D.; Isru-Bio Team

    2010-12-01

    Understanding the biogeochemical processes that control mineral weathering rates is not only important for Earth systems, but may be a useful for developing technologies for the in-situ utilization of resources from other planets, moons, and asteroids. Traditional techniques that may be used to extract metals like iron, titanium, and aluminum from planetary rocks have large energy and/or hardware requirements that may not always be feasible. In this study, we performed biotic and abiotic leaching experiments with basalt and ilmenite (FeTiO3) to determine whether bacteria increased elemental leaching rates. Our secondary objectives were (1) to determine whether Acidithiobacillus ferrooxidans, an Fe-oxidizing bacterial strain, could grow on the low concentrations of ferrous Fe generated by the available substrates, and (2) to determine whether Pseudomonas mendocina, a heterotrophic Fe-scavenging bacteria, could grow on the low concentrations of nutrient elements generated by the available substrates. Experimental results demonstrate that the Fe(II) leached from ilmenite was rapidly depleted and replaced by Fe(III) in the presence of the Fe-oxidizing bacteria. The Fe in the abiotic control system remained as Fe(II) over the entire duration of the experiment. This suggests that the bacteria were able to grow using the Fe(II) from ilmenite (and the metal-free growth media) as a substrate. The iron-oxidizing bacteria were also able to grow in the presence of basaltic rock types; however the elemental release rates of Si, Ca, and Al in the presence of A. ferrooxidans were actually the same or lower than those from the abiotic control experiments. This may be attributable to the metabolically active bacteria creating a thick altered layer at the mineral surface that decreased the rate of diffusion or it may be caused in part by adsorption or precipitation of Fe(III) onto the existing mineral surfaces. Blending of the basaltic rock with ilmenite to further stimulate the bacterial metabolisms by providing additional Fe(II) resulted in a slight increase in Si, Ca, and Al release rates. For example, Si was released at an initial rate of 6.6e-12 mol/m2*s in the biotic experiments, while Si leached from the abiotic control at a rate of 4.0e-12mol/m2*s. Additional experiments utilizing P. mendocina, a heterotrophic organism capable of using siderophores to scavenge Fe from refractory minerals, are underway. Results from these experiments will be presented and compared to the results obtained for the iron-oxidizing systems.

  13. Peridotite carbonation at the leading edge of the mantle wedge: OmDP Site BT1

    NASA Astrophysics Data System (ADS)

    Kelemen, P. B.; Godard, M.; Johnson, K. T. M.; Okazaki, K.; Manning, C. E.; Urai, J. L.; Michibayashi, K.; Harris, M.; Coggon, J. A.; Teagle, D. A. H.; Phase I Science Party, T. O. D. P.

    2017-12-01

    Hole BT1B sampled 3 layers of carbonated peridotite (listvenite, 0-80, 100-180, 185-197 m) separated by 2 layers of carbonate-bearing serpentinite (80-100, 180-185 m), underlain by 100 m metasediment and metabasalt. Listvenites (magnesite and/or dolomite + quartz + Fe-oxyhydroxides + chromian spinel ± fuchsite rocks) replacing mantle peridotite at and near the base of the Samail ophiolite (Stanger 85, Wilde ea 02, Nasir ea 07, Falk & Kelemen 15: FK15) reveal processes of carbon transfer into the mantle wedge (Kelemen & Manning 15) and suggest methods for CO2 capture and storage (Kelemen ea 11). Near BT1, 10 to 200 m thick tabular listvenites interlayered with partly serpentinized harzburgite have contacts parallel to the basal thrust. Imprecise Rb/Sr and 40Ar/39Ar ages indicate listvenite formed during obduction (FK15). Listvenite-peridotite contacts are gradational over 1-2 m. The listvenite matrix is microcrystalline quartz + magnesite. Quartz recrystallized from opal as in listvenites worldwide (Akbulut ea 06, Boschi ea 09, Jurkovic ea 12, Aftabi & Zarrinkoub 13, Posukhova ea 13, Ulrich ea 14) consistent with 80-120°C from clumped isotopes and phase equilibria (FK15). Thus listvenite formed - and deformed ductilely - at low T. Ubiquitous carbonate-rich veins locally comprise >10% of core sections; many have antitaxial textures consistent with expansion due to crystallization pressure. Carbonate-rich veins cut serpentinite and listvenite; veins formed a mesh, followed by replacement of mesh cores. Despite variability in and around veins, average Mg/Si, Fe/Si, Al/Si, Fe/Mg, and Cr/Al in listvenite (75 whole rocks, 7712 XRF scanner points) are indistinguishable from average Samail peridotite. CaO (average 5 wt%, range 0-40) and strongly correlated Sr were added to peridotite, most likely from subducting sediment. Rare core with >10 vol% dolomite has higher Fe/Mg than peridotite, but the same Mg/Si. Thus Mg, Si, Al and Cr, plus Fe in most rocks, were largely immobile on a 1-10 m scale during introduction of C, O, lesser Ca, minor Fe, and fluid mobile trace elements (Godard ea AGU 17) during transformation of Mg-silicates to carbonate + quartz. With prior and coeval serpentinization, this implies 80% solid volume expansion compared to unaltered peridotite, in a zone >200 m thick at the leading edge of the mantle wedge.

  14. The laser microprobe mass analyser for determining partitioning of minor and trace elements among intimately associated macerals: an example from the Swallow Wood coal bed, Yorkshire, UK

    USGS Publications Warehouse

    Lyons, P.C.; Morelli, J.J.; Hercules, D.M.; Lineman, D.; Thompson-Rizer, C. L.; Dulong, F.T.

    1990-01-01

    A study of the elemental composition of intimately associated coal macerals in the English Swallow Wood coal bed was conducted using a laser microprobe mass analyser, and indicated a similar trace and minor elemental chemistry in the vitrinite and cutinite and a different elemental signature in the fusinite. Three to six sites were analysed within each maceral during the study by laser micro mass spectrometry (LAMMS). Al, Ba, Ca, Cl, Cr, Dy, F, Fe, Ga, K, Li, Mg, Na, S, Si, Sr, Ti, V, and Y were detected by LAMMS in all three macerals but not necessarily at each site analysed. The signal intensities of major isotopic peaks were normalized to the signal intensity of the m z 85 peak (C7H) to determine the relative minor- and trace-element concentrations among the three dominant macerals. The vitrinite and the cutinite were depleted in Ba, Ca, Dy, Li, Mg, Sr, and Y relative to their concentrations observed in the fusinite. The cutinite was distinguished over vitrinite by less Ti, V, Cr and Ca, and K Ca $ ??1 (relative signal intensities). The fusinite, relative to the cutinite and vitrinite, was relatively depleted in Cr, Sc, Ti, and V. The fusinite, as compared with both the cutinite and vitrinite, was relatively enriched in Ba, Ca, Dy, Li, Mg, Sr, and Y, and also showed the most intense m z 64, 65, 66 signals (possibly S2+, HS2+, H2S2+, respectively). The LAMMS data indicate a common source for most elements and selective loss from the maceral precursors in the peat or entrapment of certain elements as mineral matter, most likely during the peat stage or during early diagenesis. The relatively high amounts of Ba, Ca, Dy, Li, Mg, Sr, and Y in the fusinite are consistent with micron and submicron mineral-matter inclusions such as carbonates and Ca-Al phosphates (probably crandallite group minerals). Mineralogical data on the whole coal, the LAMMS chemistry of the vitrinite and cutinite, and scanning electron microscopy/energy dispersive X-ray analysis (SEM/EDAX) of the elements in the macerals are consistent with the presence of micron and submicron inclusions of clays such as kaolinite, illite, and Ca-rich or Ca-bearing minerals (e.g. calcite, Ca-Al phosphates, and illite) which are different in kind and proportions in the three macerals. The variance as measured by the F-statistic for all three macerals indicates generally a nonuniform distribution of minor and trace elements in all three macerals, thus supporting a mineral-matter (inorganic) origin of the elements analysed. Exceptions are Al, K, Fe, Ga, and Sr in the vitrinite and cutinite, which is consistent with organic complexing or a uniform distribution of micron or submicron mineral matter such as illite and phosphate(s). ?? 1990.

  15. Cuprian fraipontite and sauconite from the Defiance-Silver Bill mines, Gleeson, Arizona.

    USGS Publications Warehouse

    Foord, E.E.; Taggart, J.E.; Conklin, N.M.

    1983-01-01

    XRD studies have shown the fine-grained, light blue-green mineral previously identified as turquoise or chrysocolla to be the rare species fraipontite + or - admixed sauconite. Composite microprobe and XRF analyses gave SiO2 24.8, Al2O3 17.3, CaO 0.34, CuO 5.2, ZnO 40.95, H2O (ign. loss, 900oC) 12.8, = 101.39, yielding the formula (Zn1.84Al0.77Cu0.24box 0.13- Ca0.02)3.00(Si1.51Al0.49)2.00O5(OH)4. Semiquantitative emission spectrographic analysis showed Fe 0.007, Mg 0.01, Ca 0.07, Si 10, Al major, Na 0.015, Zn major, Cu 5%; Mn 15, B 150, Be 7, Ni 50, Pb 15, Sc 15, Ga 70 and Ag 1 ppm. It has a 5.331(8), b 9.23(1), c 7.275(6) A, beta 104.15o; H. 3.5-4; Dcalc 3.44, Dobs. 3.08- 3.10; mean refr. ind. approx 1.61. Much of the fraipontite is admixed with sauconite, which may be forming from the fraipontite. XRF analysis of this material gave SiO2 32.8, Al2O3 10.9, MgO < 0.1, CaO 1.51, Na2O < 0.2, K2O < 0.02, TiO2 < 0.02, P2O5 < 0.02, MnO < 0.02, CuO 4.65, ZnO 39.9, ign. loss 13.9, = 103.7.-G.W.R.

  16. Chemical profile of size-fractionated soils collected in a semiarid industrial area of Argentina

    NASA Astrophysics Data System (ADS)

    Morales Del Mastro, Anabella; Pereyra, Marcelo; Londonio, Agustín; Pereyra, Victoria; Rebagliati, Raúl Jiménez; Dawidowski, Laura; Gómez, Darío; Smichowski, Patricia

    2014-12-01

    A study was undertaken to assess the chemical profile of soil collected in Bahía Blanca (Argentina). In this industrial city, semiarid soils are affected by different industrial and agricultural activities, the presence of a saltpeter extraction facility, traffic and increasing urbanization. Sixteen soil samples (superficial and sub-superficial) were collected. Samples were sieved in two fractions (A < 37 μm, and 37 < B < 50 μm) before elemental analysis. Major, minor and trace elements namely, Al, As, Ba, Ca, Cd, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Ti, V and Zn were determined by inductively coupled plasma optical emission spectrometry (ICP OES). Anions (Cl-, F-, SO42-) and cations (K+, Na+ and NH4+) were determined by high performance liquid chromatography (HPLC) after an aqueous extraction. As expected, crustal elements namely, Al, Ca, Fe, Mg and Ti exhibited the highest concentrations. Mean elemental concentration ranged from <0.3 μg g-1 (Sb) to 14.6 ± 0.6% (Ca). Ions concentrations in the soluble fraction measured at mg g-1 levels were in the order Cl- > Na+ ≅ SO42- > K+ > NO3-. Three indicators, namely, (i) coefficient of variation, (ii) coefficient of divergence and (iii) ratio of elemental concentration with respect to Ca were used to assess chemical, spatial and inter-profile variability. Chloride > Ca > Na+ > Mo > SO42-, dominated the variability indicating that these are key chemical markers for future assessment of crustal contribution to airborne particles in the area. The ratios Xi/Ca allowed discriminating the soil of the semi-arid region surrounding Bahía Blanca. The chemical profiles obtained in this study, particularly those of topsoil, will be a key input to characterize soil resuspension and its contribution to airborne particulate matter in a forthcoming receptor model analysis.

  17. Petrology and Geochemistry of D'Orbigny, Geochemistry of Sahara 99555, and the Origin of Angrites

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, David W.; Killgore, Marvin; Lee, Michael T.

    2001-01-01

    We have done detailed petrologic study of the angrite, D'Orbigny, and geochemical study of it and Sahara 99555. D'Orbigny is an igneous-textured rock composed of Ca-rich olivine, Al-Ti-diopside-hedenbergite, subcalcic kirschsteinite, two generations of hercynitic spinel and anorthite, with the mesostasis phases ulv6spinel, Ca-phosphate, a silicophosphate phase and Fe-sulfide. We report an unknown Fe-Ca-Al-Ti-silicate phase in the mesostasis not previously found in angrites. One hercynitic spinel is a large, rounded homogeneous grain of a different composition than the euhedral and zoned grains. We believe the former is a xenocryst, the first such described from angrites. The mafic phases are highly zoned; mg# of cores for olivine are approx.64, and for clinopyroxene approx.58, and both are zoned to Mg-free rims. The Ca content of olivine increases with decreasing mg#, until olivine with approx.20 mole% Ca is overgrown by subcalcic kirschsteinite with Ca approx.30-35 mole%. Detailed zoning sequences in olivine-subcalcic kirschsteinite and clinopyroxene show slight compositional reversals. There is no mineralogic control that can explain these reversals, and we believe they were likely caused by local additions of more primitive melt during crystallization of D'Orbigny. D'Orbigny is the most ferroan angrite with a bulk rock mg# of 32. Compositionally, it is virtually identical to Sahara 99555; the first set of compositionally identical angrites. Comparison with the other angrites shows that there is no simple petrogenetic sequence, partial melting with or without fractional crystallization, that can explain the angrite suite. Angra dos Reis remains a very anomalous angrite. Angrites show no evidence for the brecciation, shock, or impact or thermal metamorphism that affected the HED suite and ordinary chondrites. This suggests the angrite parent body may have followed a fundamentally different evolutionary path than did these other parent bodies.

  18. Orientation relationship of eutectoid FeAl and FeAl2.

    PubMed

    Scherf, A; Kauffmann, A; Kauffmann-Weiss, S; Scherer, T; Li, X; Stein, F; Heilmaier, M

    2016-04-01

    Fe-Al alloys in the aluminium range of 55-65 at.% exhibit a lamellar microstructure of B2-ordered FeAl and triclinic FeAl 2 , which is caused by a eutectoid decomposition of the high-temperature Fe 5 Al 8 phase, the so-called ∊ phase. The orientation relationship of FeAl and FeAl 2 has previously been studied by Bastin et al. [ J. Cryst. Growth (1978 ▸), 43 , 745] and Hirata et al. [ Philos. Mag. Lett. (2008 ▸), 88 , 491]. Since both results are based on different crystallographic data regarding FeAl 2 , the data are re-evaluated with respect to a recent re-determination of the FeAl 2 phase provided by Chumak et al. [ Acta Cryst. (2010 ▸), C 66 , i87]. It is found that both orientation relationships match subsequent to a rotation operation of 180° about a 〈112〉 crystallographic axis of FeAl or by applying the inversion symmetry of the FeAl 2 crystal structure as suggested by the Chumak data set. Experimental evidence for the validity of the previously determined orientation relationships was found in as-cast fully lamellar material (random texture) as well as directionally solidified material (∼〈110〉 FeAl || solidification direction) by means of orientation imaging microscopy and global texture measurements. In addition, a preferential interface between FeAl and FeAl 2 was identified by means of trace analyses using cross sectioning with a focused ion beam. On the basis of these habit planes the orientation relationship between the two phases can be described by ([Formula: see text]01) FeAl || (114)[Formula: see text] and [111] FeAl || [1[Formula: see text]0][Formula: see text]. There is no evidence for twinning within FeAl lamellae or alternating orientations of FeAl lamellae. Based on the determined orientation and interface data, an atomistic model of the structure relationship of Fe 5 Al 8 , FeAl and FeAl 2 in the vicinity of the eutectoid decomposition is derived. This model is analysed with respect to the strain which has to be accommodated at the interface of FeAl and FeAl 2 .

  19. The Effect of Spatial Heterogeneities on Nucleation Kinetics in Amorphous Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Shen, Ye

    The mechanical property of the Al based metallic glass could be enhanced significantly by introducing the high number density of Al-fcc nanocrystals (1021 ˜1023 m-3) to the amorphous matrix through annealing treatments, which motivates the study of the nucleation kinetics for the microstructure control. With the presence of a high number density (1025 m-3) of aluminum-like medium range order (MRO), the Al-Y-Fe metallic glass is considered to be spatially heterogeneous. Combining the classical nucleation theory with the structural configuration, a MRO seeded nucleation model has been proposed and yields theoretical steady state nucleation rates consistent with the experimental results. In addition, this model satisfies all the thermodynamic and kinetic constraints to be reasonable. Compared with the Al-Y-Fe system, the primary crystallization onset temperature decreases significantly and the transient delay time (tau) is shorter in the Al-Y-Fe-Pb(In) systems because the insoluble Pb and In nanoparticles in the amorphous matrix served as extrinsic spatial heterogeneity to provide the nucleation sites for Al-fcc precipitation and the high-resolution transmission electron microscopy (HRTEM) images of the Pb-Al interface revealed a good wetting behavior between the Al and Pb nanoparticles. The study of the transient delay time (tau) could provide insight on the transport behavior during the nucleation and a more convenient approach to evaluate the delay time has been developed by measuring the Al-Y-Fe amorphous alloy glass transition temperature (Tg) shift with the increasing annealing time (tannealing) in FlashDSC. The break point in the Tg vs. log(tannealing) plot has been identified to correspond to the delay time by the TEM characterization. FlashDSC tests with different heating rates and different compositions (Al-Y-Fe-Pb and Zn-Mg-Ca-Yb amorphous alloys) further confirmed the break point and delay time relationship. The amorphous matrix composition and the enthalpy analysis indicates that there are different mechanisms leading to the Tg shift before and after the break point. Before the break point, Tg shifts solely due to the increased glass stability through a relaxation process. However, after the break point, Tg shifts to higher temperatures because of both the relaxation and the composition change effects.

  20. Solubility of copper in silicate melts as function of oxygen and sulfur fugacities, temperature, and silicate composition

    NASA Astrophysics Data System (ADS)

    Holzheid, A.; Lodders, K.

    2001-06-01

    The solubility of Cu in silicate melts coexisting with liquid Cu(Fe) metal and liquid Cu(Fe) sulfide was determined experimentally at oxygen fugacities ranging from 10 -9.1 to 10 -13.6 bar and sulfur fugacities ranging from 10 -2.5 to 10 -6.3 bar at 1300°C. An iron oxide-free silicate of anorthite-diopside eutectic composition and a synthetic MgO-rich basaltic silicate (FeO-bearing) were used in the partitioning experiments. In S-containing systems, some of the metal reacted to metal sulfide. The silicates in the four systems investigated (Fe-free and S-free; Fe-containing and S-free; Fe-free and S-containing; Fe-containing and S-containing) had different colors depending on the dissolved Cu species and the presence of iron and/or sulfur. Irrespective of the presence of sulfur, the solubility of Cu in the silicate increases with increasing oxygen fugacity and metal/silicate partition coefficients for Cu decrease. Increasing the temperature from 1300°C to 1514°C increases the Cu solubility (decreases the metal/silicate partition coefficient) at an oxygen fugacity 0.5 log units below the iron-wüstite (IW) equilibrium in the Fe-free, S-free and Fe-containing, S-free systems. We infer the presence of monovalent Cu + ("CuO 0.5") in the silicate melt on the basis of the solubility of Cu as function of oxygen fugacity. Experiments containing iron yield a formal valence of ˜0.5 for Cu at very low oxygen fugacities, which is not observed in Fe-free systems. The low formal valence is explained by redox reactions between iron and copper in the silicate melts. There is no evidence for sulfidic dissolution of Cu in the silicates but sulfur has indirect effects on Cu partitioning. Iron metal/silicate partition coefficients depend on oxygen fugacity and on sulfur fugacity. Sulfidic dissolution of iron and oxide-sulfide exchange reactions with Cu cause a small increase in Cu metal/silicate partition coefficients. We derive an activity coefficient (γ CuO 0.5) of 10 ± 1 for liquid CuO 0.5 at 1300°C for the silicate melts used here. A comparison with literature data shows that log γ CuO 0.5 increases in proportion to the mass percentages [CaO +(Al 2O 3)/2] in silicate melts. We recommend the following equations for Cu metal/silicate and sulfide/silicate partitioning for geochemical and cosmochemical modeling if silicate composition and the activity of Cu in the metal or sulfide is known: log D met/sil = -0.48 - 0.25 · log fO 2 - log γ Cu metal + 0.02 · [CaO + (Al 2O 3)/2; wt%] silicate logD sul/sil=+0.76-0.25 · logfO 2+0.25logfS 2-logγ CS 0.5,sulfide +0.02 · [CaO+Al 2O 3/2;wt%] silicate. The derived Cu metal/silicate and metal/sulfide partition coefficients are applied to core formation in the Earth and Mars. The observed Cu abundances in the Earth cannot be easily explained by simple core-mantle equilibrium, but the observed Cu abundances for Mars are consistent with core-mantle equilibrium at low pressure and temperatures.

  1. Excessive vitamin D content of a standard iron-deficient diet for rats.

    PubMed

    Triggs, S M; Bailey-Wood, R

    1976-03-01

    1. The observation that thyroid C cell hyperplasia occurred in rats given the iron-deficient diet described by McCall, Newman, O'Brien, Valberg & Witts (1962) prompted a closer study of the preparation and constituents of this diet. 2. It became apparent that there was a discrepancy between the amounts of fat-soluble vitamins in the dietary formulation reported and the supposed final content of the diet. A diet prepared as described by McCall et al. (1962) contains 1000 mug (40 000 i.u.) ergocalciferol and 10 mug (14 500 i.u.) retinyl palmitate/kg. 3. An experiment was designed to study the effect of Fe-deficient and Fe-supplemented, high-vitamin-D diets, and an Fe-supplemented, normal-vitamin-D diet, on thyroid C cell volume and serum calcium concentration. 4. Thyroid C cell volumes and serum Ca concentrations were significantly higher in both groups given excess vitamin D than in the group given the Fe-supplemented, normal-vitamin-D diet. It is evident therefore, that hypervitaminosis D was the cause of the morphological and biochemical changes found in rats given the McCall et al. (1962) diet.

  2. Crystalline and Electronic Structures and Magnetic and Electrical Properties of La-Doped Ca2Fe2O5 Compounds

    NASA Astrophysics Data System (ADS)

    Phan, T. L.; Tho, P. T.; Tran, N.; Kim, D. H.; Lee, B. W.; Yang, D. S.; Thiet, D. V.; Cho, S. L.

    2018-01-01

    Brownmillerite Ca2Fe2O5 has been observed to exhibit many outstanding properties that are applicable to ecotechnology. However, very little work on doped Ca2Fe2O5 compounds has been carried out to widen their application scope. We present herein a detailed study of the crystalline/geometric and electronic structures and magnetic and electrical properties of Ca2- x La x Fe2O5 ( x = 0 to 1) prepared by conventional solid-state reaction. X-ray diffraction patterns indicated that the compounds with x = 0 to 0.05 exhibited brownmillerite-type single phase. La doping with higher content ( x ≥ 0.1) stimulated additive formation of Grenier- (LaCa2Fe3O8) and perovskite-type (LaFeO3) phases. Extended x-ray absorption fine structure spectroscopy at the Fe K-edge and electron spin resonance spectroscopy revealed presence of Fe3+ in the parent Ca2Fe2O5 ( x = 0) and both Fe3+ and Fe4+ in the doped compounds ( x ≥ 0.05). The Fe4+ content tended to increase with increasing x. This stimulates ferromagnetic exchange interactions between Fe3+ and Fe4+ ions and directly influences the magnetic properties of Ca2- x La x Fe2O5. Electrical resistivity ( ρ) measurements in the temperature range of T = 20 K to 400 K revealed that all the compounds exhibit insulator behavior; the ρ( T) data for x ≥ 0.1 could be described based on the adiabatic small polaron hopping model.

  3. Thermodynamic properties of chlorite and berthierine derived from calorimetric measurements

    NASA Astrophysics Data System (ADS)

    Blanc, Philippe; Gailhanou, Hélène; Rogez, Jacques; Mikaelian, Georges; Kawaji, Hitoshi; Warmont, Fabienne; Gaboreau, Stéphane; Grangeon, Sylvain; Grenèche, Jean-Marc; Vieillard, Philippe; Fialips, Claire I.; Giffaut, Eric; Gaucher, Eric C.; Claret, F.

    2014-09-01

    In the context of the deep waste disposal, we have investigated the respective stabilities of two iron-bearing clay minerals: berthierine ISGS from Illinois [USA; (Al0.975FeIII0.182FeII1.422Mg0.157Li0.035Mn0.002)(Si1.332Al0.668)O5(OH)4] and chlorite CCa-2 from Flagstaff Hill, California [USA; (Si2.633Al1.367)(Al1.116FeIII0.215Mg2.952FeII1.712Mn0.012Ca0.011)O10(OH)8]. For berthierine, the complete thermodynamic dataset was determined at 1 bar and from 2 to 310 K, using calorimetric methods. The standard enthalpies of formation were obtained by solution-reaction calorimetry at 298.15 K, and the heat capacities were measured by heat-pulse calorimetry. For chlorite, the standard enthalpy of formation is measured by solution-reaction calorimetry at 298.15 K. This is completing the entropy and heat capacity obtained previously by Gailhanou et al. (Geochim Cosmochim Acta 73:4738-4749, 2009) between 2 and 520 K, by using low-temperature adiabatic calorimetry and differential scanning calorimetry. For both minerals, the standard entropies and the Gibbs free energies of formation at 298.15 K were then calculated. An assessment of the measured properties could be carried out with respect to literature data. Eventually, the thermodynamic dataset allowed realizing theoretical calculations concerning the berthierine to chlorite transition. The latter showed that, from a thermodynamic viewpoint, the main factor controlling this transition is probably the composition of the berthierine and chlorite minerals and the nature of the secondary minerals rather than temperature.

  4. [Determination of 22 inorganic elements in different parts of Lantana camara by ICP-OES].

    PubMed

    Zhou, Wei-ming; Wang, Ru-yi; Chen, Liu-sheng; Huang, Chuan-bin

    2014-09-01

    To determine the contents of 22 inorganic elements in different parts of Lantana camara by inductively coupled plasma optical emission spectroscopy (ICP-OES). HNO3-H2 02 digested system was used to completely decomposed the organic compounds effectually by microwave digestion. 22 inorganic elements such as K, Ca, Mg, Fe, Al, Na, Zn, Mn and Cr were determined by ICP-OES under set up working conditions. The contents of K, Ca and Mg were the most in different parts of Lantana camrnara; The contents of K, Ca, Mg, Mn, Sr and Cu in the leaves of Lantana camara were more than that in the root and the branch. The contents of Fe and Na in the root of Lantana camara were more than that in the leaves and the branch. The contents of Pb and Cd were higher than the national standard and Cr had high content in different parts of Lantana camara. The determination method is quick, easy and accurate with high sensitivity,which can determine the contents of 22 inorganic elements accurately in different parts of Lantana camara.

  5. Synthesis and characterization of intercalated few-layer graphenes

    NASA Astrophysics Data System (ADS)

    Sato, Shogo; Ichikawa, Hiroaki; Iwata, Nobuyuki; Yamamoto, Hiroshi

    2014-02-01

    Toward achieving room-temperature superconductivity, FeCl3-intercalated few-layer graphenes (FeCl3-FLGs) and Ca-intercalated few-layer graphenes (Ca-FLGs) were synthesized. FeCl3-FLGs were synthesized by the two-zone method and Ca-FLGs were synthesized using Ca-Li alloy. The Raman spectra of the FeCl3-FLGs showed a lower-intensity peak at 1607 cm-1 than that of the corresponding bare G. The peak at 1607 cm-1 suggested that the sample was stage 4-5 FeCl3-FLGs. The room-temperature electrical resistivity of FeCl3-FLGs was 2.65 × 10-5 Ω·m, which linearly decreased with decreasing temperature with a marked change occurring at approximately 200 K. From a XRD pattern of Ca-FLGs, we concluded that Ca is intercalated in FLGs. The room-temperature resistivity of Ca-FLGs was 3.45 × 10-5 Ω·m, which increased with decreasing temperature.

  6. Enhanced degradation of trichloroethene by calcium peroxide activated with Fe(III) in the presence of citric acid

    PubMed Central

    ZHANG, Xiang; GU, Xiaogang; LU, Shuguang; MIAO, Zhouwei; XU, Minhui; FU, Xiaori; DANISH, Muhammad; Brusseau, Mark L.; QIU, Zhaofu; SUI, Qian

    2017-01-01

    Trichloroethene (TCE) degradation by Fe(III)-activated calcium peroxide (CP) in the presence of citric acid (CA) in aqueous solution was investigated. The results demonstrated that the presence of CA enhanced TCE degradation significantly by increasing the concentration of soluble Fe(III) and promoting H2O2 generation. The generation of HO• and O2−• in both the CP/Fe(III) and CP/Fe(III)/CA systems was confirmed with chemical probes. The results of radical scavenging tests showed that TCE degradation was due predominantly o direct oxidation by HO•, while O2−• strengthened the generation of HO• by promoting Fe(III) transformation in the CP/Fe(III)/CA system. Acidic pH conditions were favorable for TCE degradation, and the TCE degradation rate decreased with increasing pH. The presence of Cl−, HCO3−, and humic acid (HA) inhibited TCE degradation to different extents for the CP/Fe(III)/CA system. Analysis of Cl− production suggested that TCE degradation in the CP/Fe(III)/CA system occurred through a dechlorination process. In summary, this study provided detailed information for the application of CA-enhanced Fe(III)-activated calcium peroxide for treating TCE contaminated groundwater. PMID:28959499

  7. Water vapor effect on high-temperature oxidation behavior of Fe3Al intermetallics

    PubMed Central

    Chevalier, Sebastian; Juzon, Pitor; Przybylski, Kazimierz; Larpin, Jean-Pierre

    2009-01-01

    Fe3Al intermetallics (Fe3Al, Fe3Al-Zr, Fe3Al-Zr,Mo and Fe3Al-Zr, Mo, Nb) were oxidized at 950 °C in dry and humid (11 vol% water) synthetic air. Thermogravimetric measurements showed that the oxidation rates of the tested intermetallics were lower in humid air than in dry air (especially for Fe3Al-Zr, Mo and Fe3Al-Zr, Mo, Nb). The addition of small amounts of Zr, Mo or Nb improved the kinetics compared with that of the undoped Fe3Al. Fe3Al showed massive spallation, whereas Fe3Al-Zr, Fe3Al-Zr, Mo and Fe3Al-Zr, Mo, Nb produced a flat, adherent oxide layer. The rapid transformation of transient alumina into alpha alumina may explain the decrease in the oxidation rate in humid air. PMID:27877306

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudraswami, N. G.; Prasad, M. Shyam; Dey, S.

    Most dust-sized cosmic particles undergo ablation and chemical alteration during atmospheric entry, which alters their original properties. A comprehensive understanding of this process is essential in order to decipher their pre-entry characteristics. The purpose of the study is to illustrate the process of vaporization of different elements for various entry parameters. The numerical results for particles of various sizes and various zenith angles are treated in order to understand the changes in chemical composition that the particles undergo as they enter the atmosphere. Particles with large sizes (> few hundred μ m) and high entry velocities (>16 km s{sup −1})more » experience less time at peak temperatures compared to those that have lower velocities. Model calculations suggest that particles can survive with an entry velocity of 11 km s{sup −1} and zenith angles (ZA) of 30°–90°, which accounts for ∼66% of the region where particles retain their identities. Our results suggest that the changes in chemical composition of MgO, SiO{sub 2}, and FeO are not significant for an entry velocity of 11 km s{sup −1} and sizes <300 μ m, but the changes in these compositions become significant beyond this size, where FeO is lost to a major extent. However, at 16 km s{sup −1} the changes in MgO, SiO{sub 2}, and FeO are very intense, which is also reflected in Mg/Si, Fe/Si, Ca/Si, and Al/Si ratios, even for particles with a size of 100 μ m. Beyond 400 μ m particle sizes at 16 km s{sup −1}, most of the major elements are vaporized, leaving the refractory elements, Al and Ca, suspended in the troposphere.« less

  9. Mineralogical, geochemical, and magnetic signatures of surface sediments from the Canadian Beaufort Shelf and Amundsen Gulf (Canadian Arctic)

    NASA Astrophysics Data System (ADS)

    Gamboa, Adriana; Montero-Serrano, Jean-Carlos; St-Onge, Guillaume; Rochon, André; Desiage, Pierre-Arnaud

    2017-02-01

    Mineralogical, geochemical, magnetic, and siliciclastic grain-size signatures of 34 surface sediment samples from the Mackenzie-Beaufort Sea Slope and Amundsen Gulf were studied in order to better constrain the redox status, detrital particle provenance, and sediment dynamics in the western Canadian Arctic. Redox-sensitive elements (Mn, Fe, V, Cr, Zn) indicate that modern sedimentary deposition within the Mackenzie-Beaufort Sea Slope and Amundsen Gulf took place under oxic bottom-water conditions, with more turbulent mixing conditions and thus a well-oxygenated water column prevailing within the Amundsen Gulf. The analytical data obtained, combined with multivariate statistical (notably, principal component and fuzzy c-means clustering analyses) and spatial analyses, allowed the division of the study area into four provinces with distinct sedimentary compositions: (1) the Mackenzie Trough-Canadian Beaufort Shelf with high phyllosilicate-Fe oxide-magnetite and Al-K-Ti-Fe-Cr-V-Zn-P contents; (2) Southwestern Banks Island, characterized by high dolomite-K-feldspar and Ca-Mg-LOI contents; (3) the Central Amundsen Gulf, a transitional zone typified by intermediate phyllosilicate-magnetite-K-feldspar-dolomite and Al-K-Ti-Fe-Mn-V-Zn-Sr-Ca-Mg-LOI contents; and (4) mud volcanoes on the Canadian Beaufort Shelf distinguished by poorly sorted coarse-silt with high quartz-plagioclase-authigenic carbonate and Si-Zr contents, as well as high magnetic susceptibility. Our results also confirm that the present-day sedimentary dynamics on the Canadian Beaufort Shelf is mainly controlled by sediment supply from the Mackenzie River. Overall, these insights provide a basis for future studies using mineralogical, geochemical, and magnetic signatures of Canadian Arctic sediments in order to reconstruct past variations in sediment inputs and transport pathways related to late Quaternary climate and oceanographic changes.

  10. Ablation and Chemical Alteration of Cosmic Dust Particles during Entry into the Earth’s Atmosphere

    NASA Astrophysics Data System (ADS)

    Rudraswami, N. G.; Shyam Prasad, M.; Dey, S.; Plane, J. M. C.; Feng, W.; Carrillo-Sánchez, J. D.; Fernandes, D.

    2016-12-01

    Most dust-sized cosmic particles undergo ablation and chemical alteration during atmospheric entry, which alters their original properties. A comprehensive understanding of this process is essential in order to decipher their pre-entry characteristics. The purpose of the study is to illustrate the process of vaporization of different elements for various entry parameters. The numerical results for particles of various sizes and various zenith angles are treated in order to understand the changes in chemical composition that the particles undergo as they enter the atmosphere. Particles with large sizes (> few hundred μm) and high entry velocities (>16 km s‑1) experience less time at peak temperatures compared to those that have lower velocities. Model calculations suggest that particles can survive with an entry velocity of 11 km s‑1 and zenith angles (ZA) of 30°–90°, which accounts for ∼66% of the region where particles retain their identities. Our results suggest that the changes in chemical composition of MgO, SiO2, and FeO are not significant for an entry velocity of 11 km s‑1 and sizes <300 μm, but the changes in these compositions become significant beyond this size, where FeO is lost to a major extent. However, at 16 km s‑1 the changes in MgO, SiO2, and FeO are very intense, which is also reflected in Mg/Si, Fe/Si, Ca/Si, and Al/Si ratios, even for particles with a size of 100 μm. Beyond 400 μm particle sizes at 16 km s‑1, most of the major elements are vaporized, leaving the refractory elements, Al and Ca, suspended in the troposphere.

  11. Discovery of Ahrensite γ-Fe2SiO4 and Tissintite (Ca,Na,[])AlSi2O6, Two New Shock-induced Minerals from the Tissint Martian Meteorite: a Nanomineralogy Investigation

    NASA Astrophysics Data System (ADS)

    Ma, C.; Tschauner, O. D.; Liu, Y.; Sinogeikin, S. V.; Zhuravlev, K. K.; Prakapenka, V.; Dera, P. K.; Taylor, L. A.

    2013-12-01

    The recent Martian meteorite fall, Tissint, is a fresh olivine-phyric shergottite, with strong shock features. During our nano-mineralogy investigation of the Tissint meteorite with a combined analytical scanning electron microscope and synchrotron diffraction approach, two new shock-induced minerals have been discovered; these provide new insights into understanding shock conditions and impact processes on Mars. Ahrensite (IMA 2013-028), the Fe-analogue (γ-Fe2SiO4) of ringwoodite, is a new high-pressure mineral identified in Tissint. Both ahrensite and ringwoodite occur in Tissint as fine-grained polycrystalline aggregates in the rims of olivines around some shock-melt pockets. The morphology and texture of these silicate-spinels suggest formation by a solid-state transformation from Fe-rich olivine. Associated with the ahrensite and ringwoodite, inside melt pockets, often resides a thin layer of vitrified silicate-perovskite and magnesio-wüstite or wüstite. Such transitions represent a unique pressure and temperature gradient. Tissintite (IMA 2013-027), (Ca,Na,[])AlSi2O6 with the C2/c clinopyroxene structure, is a new jadeite-like mineral in Tissint. It appears as fine-grained aggregates within plagioclase glass, inside many shock-melt pockets. Both ahrensite and tissintite are high-pressure minerals formed by shock during the impact event(s) on Mars that excavated and ejected the rock off Mars. We will discuss the path of structure analysis for both new-mineral cases. Such novel methodology be utilized for many cases of mineralogical phase identification or structure analysis; this demonstrates how nano-mineralogy can be addressed and how it may play a unique role in meteorite and Mars rock research, in general.

  12. Triticale (XTriticosecale W.) Heavy Metal Upptake as a Possibility of Food Chain Pollution in a Long-Term Field Experiment in Hungary

    NASA Astrophysics Data System (ADS)

    László Phd, M., ,, Dr.

    2009-04-01

    Some trace elements are dangerous because they tend to bioaccumulate in food chain. Bioaccumulation means an increase in the concentration of a chemical in a biological organism over time, compared to the chemical's concentration in they environment. Compounds accumulate in living things any time they are taken up and stored faster han they are broken down (metabolize) or extreted. Triticale is the stabilized man-made hybrid of wheat (Triticum eastivum L.) and rye (Secale cereale L.). Wheat-rye hybrids date back to 1875, it was only in 1953 that the first North American triticale breeding programme was initiated at the University Manitoba. Globally, triticale is used primary for livestock feed today. NPKCaMg fertilization effects were estimated on trace element bioavailability by Triticale in a long-term field experiment on a Haplic Luvisol (acidic sandy brown forest soil) at Nyírlugos in East-Hungary in 1998. Soil geochemical parameters were as follow: humus 0.6%, pH (H2O) 5.8, pH (KCl) 4.6, total N 32.8 mg . kg-1, AL (ammonium lactate soluble)- P2O5 43 mg . kg-1, AL-K2O 52 mg . kg-1. The experiments involved 32 NPKCaMg treatments and their combinations in 4 replications giving a total of 128 plots from 1980. N levels were 0, 50, 100, 150 kg . ha-1 . yr-1, P2O5 and K2O 0, 60, 120, 180 kg . ha-1 . yr-1, CaCO3 0, 250, 500, 1000 kg . ha-1 . yr-1 and MgCO3 doses were 0, 140, 280 kg . ha-1 . yr-1. Plot brutto size was 50 m2. The main results were as follows. Main soil chemical parameters depend on NPKCaMg treatments. Soil pH (H2O) and pH (KCl) values ranged from 4.6 to 6.3 and from 3.5 to 5.8 indicating wide range from extremely acidic to slightly acidic. Ca, Fe, Mg, Mn and Al element concentrations shown a large variability too in interaction with fertilization doses and pH values (Ca 36-594 mg . kg-1, Fe 61-90 mg . kg-1, Mg 5-42 mg . kg-1, Mn 16-36 mg . kg-1, Al 79-118 mg . kg-1). The better soil pH (H2O), pH (KCl) and Ca parameters resulted by NPKCaMg combinations [pH (H2O) 6.3, pH (KCl) 5.8, Ca 596 mg . kg-1]. Fe, Zn, B, Pb, Cr and Cd leaf+straw status was not influenced hardly by N treatments, but in case of the leaf+straw Co, concentration was significantly increasing. NP combination effects on Fe, Zn, B, Co, Pb, Cr and Cd were similar to N fertilization. Fe leafe+straw contents decreased strongly by NK effects. NPK and NPKCaMg nutrition growing up Pb accumulation to 1.5 mg . kg-1 [cereal average content (CAC) 0.3-0.6 mg . kg-1]. The experimental Zn, Cr, and Cd leaf+straw values not were on higher level than the CAC. The yield ranged from 0.9 t . ha-1 to 7.9 t . ha-1 on dependence of fertilization treatments. The NPKCaMg combinations yielded more around 9 times than the non fertilized plots. Fe, Zn, B, Co, Al, Sr and Cu grain status was not influenced significantly by N and NK treatments. The NP combination effects on Fe, Zn, B, Co, Al and Cu were similar to N fertilization, but in case of the Sr, concentration was dramatically increasing. Triticale seed Zn values not were on higher level than the CAC. Fe actual transfer index (ATI)(Márton, 2004) values are shown N and NPKCaMg fertilization plus effects on Fe translocation from soils to triticale grain. The Al ATI datas were on low level. These results shown Triticale have ability to Co, Pb and Sr accumulation from soil to crop and food chain to a different degree. Key words: trace element, bioavailability, Haplic Luvisol, triticale Introduction: Triticale is the stabilized man-made hybrid of wheat (Triticum eastivum L.) and rye (Secale cereale L.). Wheat-rye hybrids date back to 1875, it was only in 1953 that the first North American triticale breeding programme was initiated at the University Manitoba. Globally, triticale is used primary for livestock feed (Oelke et al. 1989). In Mexico, which grows the crop triticale is used mostly for whole-grain triticale breads and tortillas. In the US, triticale is harvested mostly for forage but there is a small market for pancake mixes and crackers due to a savory, nutty flavor. Etanol plants will pay a premium for triticale over barley since it has more starch and no hull, making alcohol production more efficient. Germany, France, China, Poland and Hungary account for nearly 90 percent of world triticale production (Donald et al. 2001). Heavy metals are dangerous because they tend to bioaccumulate in food chain. Bioaccumulation means an increase in the concentration of a chemical in a biological organism over time, compared to the chemical`s concentration in they environment. Compounds accumulate in living things any time they are taken up and stored faster han they are broken down (metabolize) or extreted. Crops have ability to heavy metal accumulation from fertilizers such as Cd, Pb, Cu, Zn etc. to a different degree (Lee et al. 2001, Scholz and Ellerbrock 2004). The main purposes of this study was to determine the triticale toxic element upptake by the soil, triticale leaf+straw and grain element concentrations on acid sandy soil in a long-term field fertilization experiment at Nyirlugos, Hungary in 1998. Material and Methods: Field experiments were carried out on an acidic sandy brown forest soil at Nyírlugos in East-Hungary from 1962 to 2005. Soil geochemical parameters were as follow: humus 0.6%, pH (H2O) 5.8, pH (KCl) 4.6, total N 32.8 mg/kg, AL (ammonium lactate soluble)- P2O5 43 mg/kg, AL-K2O 52 mg/kg. The experiments involved 32 NPKCaMg treatments in 4 replications giving a total of 128 plots. N levels were 0, 50, 100, 150 kg/ha/yr, P2O5 and K2O 0, 60, 120, 180 kg/ha/yr, CaCO3 0, 250, 500, 1000 kg/ha/yr and MgCO3 doses were 0, 140, 280 kg/ha/yr. Plot brutto size was 50 m2. Composite soil samples consisting of 25 subsamples collected at before flowering time from the ploughed layer of each plot. The so-called "mobile" fraction was extracted by ammonium-acetate+EDTA (AAc+EDTA, Lakanen and Ervio 1971) and the heavy metal determination by ICP-AES technic. Plant leaf+straw and seed samples taken at before flowering and at harvest time. Total element content measured after microwave digestion using cc. HNO3 + cc. H2O2 by ICP-AES technic. Actual translocation indexes (ATI=plant metal c./soil metal c.) determinated by Márton 2004. Datamatrixes estimated by SPSS biometrichal method. Results: Depend on NPKCaMg treatments soil pH (H2O) and pH (KCl) values ranged from 4.6 to 6.3 and from 3.5 to 5.8 indicating wide range from extremely acidic to slightly acidic. Ca, Fe, Mg, Mn and Al element concentrations shown a large variability too in interaction with fertilization doses and pH values (Ca 36-594 mg/kg, Fe 61-90 mg/kg, Mg 5-42 mg/kg, Mn 16-36 mg/kg, Al 79-118 mg/kg). The better soil pH (H2O), pH (KCl) and Ca parameters resulted by NPKCaMg combinations [pH (H2O) 6.3, pH (KCl) 5.8, Ca 596 mg/kg]. Fe, Zn, B, Co, Pb, Cr, and Cd element contents of triticale leaf+straw before flowering time presented in Table 2. Fe, Zn, B, Pb, Cr and Cd leaf+straw status was not influenced hardly by N treatments, but in case of the leaf+straw Co, concentration was significantly increasing. NP combination effects on Fe, Zn, B, Co, Pb, Cr and Cd were similar to N fertilization. Fe leafe+straw contents decreased strongly by NK effects. NPK and NPKCaMg nutrition growing up Pb accumulation to 1.5 mg/kg [cereal average content (CAC) 0.3-0.6 mg/kg. The experimental Zn, Cr, and Cd leaf+straw values not were on higher level than the CAC. The yield ranged from 0.9 t/ha to 7.9 t/ha on dependence of fertilization treatments. The NPKCaMg combinations yielded more around 9 times than the non fertilized plots. Fe, Zn, B, Co, Al, Sr and Cu grain status was not influenced significantly by N and NK treatments. The NP combination effects on Fe, Zn, B, Co, Al and Cu were similar to N fertilization, but in case of the Sr, concentration was dramatically increasing. Triticale seed Zn values not were on higher level than the CAC. Conclusions: Depend on NPKCaMg treatments soil pH (H2O) and pH (KCl) values ranged from 4.6-6.3 and 3.5-5.8 indicating wide range from extremely acidic to slightly acidic. The leaf+straw Co concentrations increased hardly by N treatment effects. NPK and NPKCaMg nutrition growing up Pb accumulation to 1.5 mg/kg [cereal average content (CAC) 0.3-0.6 mg/kg) in leaf+straw. The NPKCaMg combinations yielded more around 9 times than the non fertilized plots. The NP combination effects in case of the grain Sr concentration was dramatically increasing. These experimental results have demonstrated that triticale has a gerat ability to leaf+straw`s Co, Pb and grain`s Sr bioaccumulation. By this way Co, Pb and Sr can be enter to food chain. Acknowledgements: This study was supported by Applied Geochemistry and Geochemical Engineering School of Civil, Urban and Geosystem Engineering College of Engineering Seoul National University Seoul, Research Institute for Soil Sience and Agricultural Chemistry of the Hungarian Academy of Sciences Budapest and No.: E-2/04 Hungarian & Spanish International Project by Hungarian Technology & Sciences Foundation, Budapest. References Donald, S., Murray, McL., Trevor, S., Patricia, J. 2001. Triticale. Food and Rural Development Lacombe. Alberta Lee, C. G., Chon, H. T., Jung, M. C. 2001. Heavy metal contamination in the vicinity of the Daduk Au-Ag-Pb-Zn mine in Korea. Applied Geochemistry, 16:1377-1386. Márton, L. 2004. Research report for 2004. RISSAC-HAS, Budapest Oelke, E. A., Oplinger, E. S., Brinkman M. A. 1989. Alternative field crops manual. University Minnesota, University Visconsin. St. Paul, Madison Scholz, V., Ellerbrock, R. 2004. Environment friendly and energetically efficient cultivation of energy plants on sandy soil. IAB, ZAL. Potsdam

  13. Efficiency of several leaching reagents on removal of Cu, Pb, Cd, and Zn from highly contaminated paddy soil.

    PubMed

    Gao, Ruili; Zhu, Pengfei; Guo, Guangguang; Hu, Hongqing; Zhu, Jun; Fu, Qingling

    2016-11-01

    The efficiency of five different single leaching reagents (tartaric acid (TA), citric acid (CA), CaCl 2 , FeCl 3 , EDTA) and two different composite leaching reagents (CA + FeCl 3 , CA + EDTA) on removing Cu, Pb, Zn, and Cd from contaminated paddy soil in Hunan Province (in China) was studied. The results indicated that the efficiencies of CA, FeCl 3 , and EDTA on extracting Cu, Pb, Cd, and Zn from soil were greater than that of TA and CaCl 2 , and their extraction efficiencies were EDTA ≥ FeCl 3 > CA. The efficiencies of CA + FeCl 3 on extracting Cu, Pb, Cd, and Zn were higher than that of single CA or FeCl 3 . The 25 mmol L -1 CA + 20 mmol L -1 FeCl 3 was a promising composite leaching reagent for paddy soil, and it could remove Cu (57.6 %), Pb (59.3 %), Cd (84.8 %), and Zn (28.0 %), respectively. With the same amount of leaching reagent, the efficiency of continuous leaching by several times was higher than that by once. In addition, the easily reducible and oxidizable fractions of heavy metals showed significant decrease during the process of leaching.

  14. Effect of Initial FeO Content and CaO:SiO2 Ratio on the Reduction Smelting Kinetics of the CaO-SiO2-MgOsatd.-FeO Slag System

    NASA Astrophysics Data System (ADS)

    Kim, Jong Bae; Sohn, Il

    2018-02-01

    The effect of the initial FeO content and CaO:SiO2 ratio (CaO mass pct/SiO2 mass pct) on the reduction smelting of FeO with carbon flake addition is investigated in the CaO-MgOsatd.-SiO2-FeO slag system at 1823 K (1550 °C). Carbon rapidly reacted with FeO in the molten slag, causing both foaming and compositional changes in the slag. As FeO is reduced, the MgO saturation is modified, and solid precipitants, including MgO and other complex oxides, were observed, which significantly affected the slag properties, including the viscosity and foaming behavior. The solid-phase fraction and viscosity were estimated from changes in the measured FeO content over time using the thermochemical software FactSage. The iron recovery, which is distinguished from the amount of reduced Fe droplets, showed opposite behavior to the measured maximum foaming height and modified foaming index. According to the FeO mass transfer coefficient considering slag foaming at various initial FeO contents and CaO:SiO2 ratios, the reduction rate was optimal at higher initial FeO contents and a CaO:SiO2 ratio of 2.0, which did not correspond to the optimal iron recovery at an initial FeO content of 44 mass pct and above and a CaO:SiO2 ratio of 1.2. The results showed that slag foaming may increase the reduction kinetics, but the slag composition needs to be optimized for greater iron recovery.

  15. Effect Of Soil Properties On The Geochemical Speciation Of Arsenic In Contaminated Soils: A Greenhouse Study

    NASA Astrophysics Data System (ADS)

    Sharma, S.; Sarkar, D.; Datta, R.

    2005-05-01

    Land-applied arsenical pesticides have contributed elevated soil arsenic (As) levels. Many baseline risk assessments As-contaminated sites assume that all As present in the soil is bioavailable, thereby potentially overestimating the actual health risk. However, risk from As exposure is associated only with those forms of As that are potentially extractable by the human gastrointestinal juices. It has been demonstrated that As may exist in several geochemical forms depending on soil chemical properties, which may or may not be bioavailable. The current study aims at addressing the issue of soil variability on As bioavailability as a function of soil physico-chemical properties in a greenhouse setting involving dynamic interactions between soil, water and plants. Four different soils were chosen based on their potential differences with respect to As reactivity: Immokalee, an acid sand with low extractable Fe/Al, having minimal arsenic retention capacity; Millhopper, an acid sandy loam with high extractable Fe/Al oxides; Pahokee Muck soil with 85% soil organic matter (SOM) as well as high Fe/Al content; and Orelia soil with high clay and Fe/Al content. Soils were amended with sodium arsenate (675 and 1500 mg/Kg). Rice (Oryza sativa) was used as the test crop. A sequential extraction scheme was employed to identify the geochemical forms of As in soils (soluble, exchangeable, organic, Fe/Al-bound, Ca/Mg-bound, residual) immediately after spiking; after 3 mo; and after 6 mo of equilibration time. Concentrations of these As forms were correlated with the in-vitro bioavailable As fractions to identify those As fractions that are most likely to be bioavailable. Results from this study showed that there was little to no plant growth in the contaminated soils. Sequential extractions of the soil indicated that arsenic is strongly adsorbed onto soil amorphous iron/aluminum oxides, and the degree of arsenic retention is a direct function of equilibration time.

  16. Source spectral index of heavy cosmic ray nuclei

    NASA Technical Reports Server (NTRS)

    Engelmann, J. J.; Ferrando, P.; Koch-Miramond, L.; Masse, P.; Soutoul, A.; Webber, W. R.

    1985-01-01

    From the energy spectra of the heavy nuclei observed by the French-Danish experiment on HEAO-3, the source spectra of the mostly primary nuclei (C, O, Ne, Mg, Si, Ca and Fe) in the framework of an energy dependent leaky box model (Engelmann, et al., 1985) were derived. The energy dependence of the escape length was derived from the observed B/C and sub-iron/iron ratios and the presently available cross sections for C and Fe on H nuclei (Koch-Miramond, et al., 1983). A good fit to the source energy spectra of all these nuclei was obtained by a power law in momentum with an exponent gamma = -2.4+0.05 for the energy range 1 to 25GeV/n (Engelmann, et al., 1985). Comparison with data obtained at higher energy suggested a progressive flattening of these spectra. More accurate spectral indices are sought by using better values of the escape length based on the latest cross section measurements (Webber 1984, Soutoul, et al., this conference). The aim is also to extend the analysis to lower energies down to 0.4GeV/n (kinetic energy observed near Earth), using data obtained by other groups. The only nuclei for which a good data base is possessed in a broad range of energies are O and Fe, so the present study is restricted to these two elements.

  17. EFFECT OF Mg AND TEMPERATURE ON Fe-Al ALLOY LAYER IN Fe/(Zn-6%Al-x%Mg) SOLID-LIQUID DIFFUSION COUPLES

    NASA Astrophysics Data System (ADS)

    Liang, Liu; Liu, Ya-Ling; Liu, Ya; Peng, Hao-Ping; Wang, Jian-Hua; Su, Xu-Ping

    Fe/(Zn-6%Al-x%Mg) solid-liquid diffusion couples were kept at various temperatures for different periods of time to investigate the formation and growth of the Fe-Al alloy layer. Scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and X-ray diffraction (XRD) were used to study the constituents and morphology of the Fe-Al alloy layer. It was found that the Fe2Al5Znx phase layer forms close to the iron sheet and the FeAl3Znx phase layer forms near the side of the melted Zn-6%Al-3%Mg in diffusion couples. When the Fe/(Zn-6%Al-3%Mg) diffusion couple is kept at 510∘C for more than 15min, a continuous Fe-Al alloy layer is formed on the interface of the diffusion couple. Among all Fe/(Zn-6%Al-x%Mg) solid-liquid diffusion couples, the Fe-Al alloy layer on the interface of the Fe/(Zn-6% Al-3% Mg) diffusion couple is the thinnest. The Fe-Al alloy layer forms only when the diffusion temperature is above 475∘. These results show that the Fe-Al alloy layer in Fe/(Zn-6%Al-x%Mg) solid-liquid diffusion couples is composed of Fe2Al5Znx and FeAl3Znx phase layers. Increasing the diffusing temperature and time period would promote the formation and growth of the Fe-Al alloy layer. When the Mg content in the Fe/(Zn-6%Al-x%Mg) diffusion couples is 3%, the growth of the Fe-Al alloy layer is inhibited. These results may explain why there is no obvious Fe-Al alloy layer formed on the interface of steel with a Zn-6%Al-3%Mg coating.

  18. Trace Element Compositions of Pallasite Olivine Grains and Pallasite Origin

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, David W.; Herrin, J. S.

    2010-01-01

    Pallasites are mixtures of metal with magnesian olivine. Most have similar metal compositions and olivine oxygen isotopic compositions; these are the main-group pallasites (PMG). The Eagle Station grouplet of pallasites (PES) have distinctive metal and olivine compositions and oxygen isotopic compositions. Pallasites are thought to have formed at the core-mantle boundary of their parent asteroids by mixing molten metal with solid olivine of either cumulatic or restitic origin. We have continued our investigation of pallasite olivines by doing in situ trace element analyses in order to further constrain their origin. We determined Al, P, Ca, Ga and first row transition element contents of olivine grains from suite of PMG and PES by LA-ICP-MS at JSC. Included in the PMG suite are some that have anomalous metal compositions (PMG-am) and atypically ferroan olivines (PMG-as). Our EMPA work has shown that there are unanticipated variations in olivine Fe/Mn, even within those PMG that have uni-form Fe/Mg. Manganese is homologous with Fe2+, and thus can be used the same way to investigate magmatic fractionation processes. It has an advantage for pallasite studies in that it is unaffected by redox exchange with the metal. PMG can be divided into three clusters on the basis of Mn/Mg; low, medium and high that can be thought of as less, typically and more fractionated in an igneous sense. The majority of PMG have medium Mn/Mg ratios. PMG-am occur in all three clusters; there does not seem to be any relationship between putative olivine igneous fractionation and metal composition. The PMG-as and one PMG-am make up the high Mn/Mg cluster; no PMG are in this cluster. The high Mn/Mg cluster ought to be the most fractionated (equivalent to the most Fe-rich in igneous suites), yet they have among the lowest contents of incompatible lithophile elements Al and Ti and the two PMG-as in this cluster also have low Ca and Sc contents. This is inconsistent with simple igneous fractionation on a single, initially homogeneous parent asteroid. For Al and Ti, the low and high Mn/Mg clusters have generally uniform contents, while the medium cluster has wide ranges. This is also true of analyses of duplicate grains from the medium cluster pallasites which can have very different Al and Ti contents. Those from the low and high clusters do not. These observations suggest that pallasite olivines are not cumulates, but rather are restites from high degrees of melting. The moderately siderophile elements P and Ga show wide ranges in the high Mn/Mg cluster, but very uniform compositions in the medium cluster, opposite the case for Al and Ti. There is no correlation of P or Ga and Fe/Mn as might be expected if redox processes controlled the contents of moderately siderophile elements in the olivines. The lack of correlation of P could reflect equilibration with phosphates, although there is no correlation of Ca with P as might be expected

  19. Deposition of vaporized species onto glassy fallout from a near-surface nuclear test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weisz, David G.; Jacobsen, Benjamin; Marks, Naomi E.

    In a near-surface nuclear explosion where the resultant fireball can interact with the surface, vaporized materials from the nuclear device can be incorporated into molten soil and other carrier materials from that surface. This mixed material becomes a source of glassy fallout upon quenching and is locally deposited. Fallout formation models have been proposed; however, the specific mechanisms and physical conditions by which soil and other carrier materials interact in the fireball, as well as the subsequent incorporation of device materials with carrier materials, are not well constrained. We observe a surface deposition layer preserved at interfaces where two aerodynamicmore » fallout glasses agglomerated and fused, and characterized 11 such boundaries using spatial analyses to better understand the vaporization and condensation behavior of species in the fireball. Using nanoscale secondary ion mass spectrometry (NanoSIMS), we identify higher enrichments of uranium from the device ( 235U/ 238U ratio >7.5) in 8 of the interface layers. Major element analysis of the interfaces reveals the deposition layer to be enriched in Fe, Ca, Mg, Mn, and Na-bearing species and depleted in Ti and Al-bearing species. Most notably, the Fe and Ca-bearing species are enriched approximately 50% at the interface layer relative to the average concentrations measured within the fallout glasses, while Ti and Al-bearing species are depleted by approximately 20%. SiO 2 is found to be relatively invariable across the samples and interfaces (~3% standard deviation). The notable depletion of Al, a refractory oxide abundant in the soil, together with the enrichment of 235U and Fe, suggests an anthropogenic source of the enriched species or an unexpected vaporization/condensation behavior. The presence of both refractory (e.g., Ca and U) and volatile (e.g., Na) species approximately co-located in most of the observed layers (within 1.5 μm) suggests a continuous condensation process may also be occurring. Lastly, these fallout formation processes deviate from historical models of fallout formation, and have not been previously recognized in the literature.« less

  20. Deposition of vaporized species onto glassy fallout from a near-surface nuclear test

    NASA Astrophysics Data System (ADS)

    Weisz, David G.; Jacobsen, Benjamin; Marks, Naomi E.; Knight, Kim B.; Isselhardt, Brett H.; Matzel, Jennifer E.; Weber, Peter K.; Prussin, Stan G.; Hutcheon, Ian D.

    2017-03-01

    In a near-surface nuclear explosion where the resultant fireball can interact with the surface, vaporized materials from the nuclear device can be incorporated into molten soil and other carrier materials from that surface. This mixed material becomes a source of glassy fallout upon quenching and is locally deposited. Fallout formation models have been proposed; however, the specific mechanisms and physical conditions by which soil and other carrier materials interact in the fireball, as well as the subsequent incorporation of device materials with carrier materials, are not well constrained. We observe a surface deposition layer preserved at interfaces where two aerodynamic fallout glasses agglomerated and fused, and characterized 11 such boundaries using spatial analyses to better understand the vaporization and condensation behavior of species in the fireball. Using nanoscale secondary ion mass spectrometry (NanoSIMS), we identify higher enrichments of uranium from the device (235U/238U ratio >7.5) in 8 of the interface layers. Major element analysis of the interfaces reveals the deposition layer to be enriched in Fe, Ca, Mg, Mn, and Na-bearing species and depleted in Ti and Al-bearing species. Most notably, the Fe and Ca-bearing species are enriched approximately 50% at the interface layer relative to the average concentrations measured within the fallout glasses, while Ti and Al-bearing species are depleted by approximately 20%. SiO2 is found to be relatively invariable across the samples and interfaces (∼3% standard deviation). The notable depletion of Al, a refractory oxide abundant in the soil, together with the enrichment of 235U and Fe, suggests an anthropogenic source of the enriched species or an unexpected vaporization/condensation behavior. The presence of both refractory (e.g., Ca and U) and volatile (e.g., Na) species approximately co-located in most of the observed layers (within 1.5 μm) suggests a continuous condensation process may also be occurring. These fallout formation processes deviate from historical models of fallout formation, and have not been previously recognized in the literature.

  1. Deposition of vaporized species onto glassy fallout from a near-surface nuclear test

    DOE PAGES

    Weisz, David G.; Jacobsen, Benjamin; Marks, Naomi E.; ...

    2016-10-29

    In a near-surface nuclear explosion where the resultant fireball can interact with the surface, vaporized materials from the nuclear device can be incorporated into molten soil and other carrier materials from that surface. This mixed material becomes a source of glassy fallout upon quenching and is locally deposited. Fallout formation models have been proposed; however, the specific mechanisms and physical conditions by which soil and other carrier materials interact in the fireball, as well as the subsequent incorporation of device materials with carrier materials, are not well constrained. We observe a surface deposition layer preserved at interfaces where two aerodynamicmore » fallout glasses agglomerated and fused, and characterized 11 such boundaries using spatial analyses to better understand the vaporization and condensation behavior of species in the fireball. Using nanoscale secondary ion mass spectrometry (NanoSIMS), we identify higher enrichments of uranium from the device ( 235U/ 238U ratio >7.5) in 8 of the interface layers. Major element analysis of the interfaces reveals the deposition layer to be enriched in Fe, Ca, Mg, Mn, and Na-bearing species and depleted in Ti and Al-bearing species. Most notably, the Fe and Ca-bearing species are enriched approximately 50% at the interface layer relative to the average concentrations measured within the fallout glasses, while Ti and Al-bearing species are depleted by approximately 20%. SiO 2 is found to be relatively invariable across the samples and interfaces (~3% standard deviation). The notable depletion of Al, a refractory oxide abundant in the soil, together with the enrichment of 235U and Fe, suggests an anthropogenic source of the enriched species or an unexpected vaporization/condensation behavior. The presence of both refractory (e.g., Ca and U) and volatile (e.g., Na) species approximately co-located in most of the observed layers (within 1.5 μm) suggests a continuous condensation process may also be occurring. Lastly, these fallout formation processes deviate from historical models of fallout formation, and have not been previously recognized in the literature.« less

  2. Authigenesis of trace metals in energetic tropical shelf environments

    USGS Publications Warehouse

    Breckel, E.J.; Emerson, S.; Balistrieri, L.S.

    2005-01-01

    We evaluated authigenic changes of Fe, Mn, V, U, Mo, Cd and Re in suboxic, periodically remobilized, tropical shelf sediments from the Amazon continental shelf and the Gulf of Papua. The Cd/Al, Mo/Al, and U/Al ratios in Amazon shelf sediments were 82%, 37%, and 16% less than those in Amazon River suspended sediments, respectively. Very large depletions of U previously reported in this environment were not observed. The Cd/Al ratios in Gulf of Papua sediments were 76% lower than measurements made on several Papua New Guinea rivers, whereas U/Al ratios in the shelf sediments were enriched by approximately 20%. Other metal/Al ratios in the Papua New Guinea river suspended sediments and continental shelf sediments were not distinguishably different. Comparison of metal/Al ratios to grain size distributions in Gulf of Papua samples indicates that our observations cannot be attributed to differences in grain size between the river suspended sediments and continental shelf sediments. These two shelves constitute a source of dissolved Cd to the world ocean equal to 29-100% of the dissolved Cd input from rivers, but only 3% of the dissolved Mo input and 4% of the dissolved U input. Release of Cd, Mo, and U in tropical shelf sediments is likely a result of intense Fe and Mn oxide reduction in pore waters and resuspension of the sediments. Since we do not observe depletions of particulate Fe and Mn in the shelf sediments most of these dissolved metals must reoxidize in the overlying waters and reprecipitate. As Cd exhibits the largest losses on these tropical shelves, we examined the ability of newly formed Fe and Mn oxides to adsorb dissolved Cd using a geochemical diffuse double-layer surface complexation model and found the oxide surfaces are relatively ineffective at readsorbing Cd in seawater due to surface-site competition by Mg and Ca. If the remobilization and reoxidation of Fe and Mn occurs frequently enough before sediment is buried significant amounts of Cd may be removed from the oxide surfaces. Because a much greater percentage of Mn than Fe becomes remobilized in these shelf sediments, metals closely associated with Mn oxides (like Cd) are more likely to show losses during deposition. ?? 2005 Elsevier Ltd. All rights reserved.

  3. Sampling and major element chemistry of the recent (A.D. 1631-1944) Vesuvius activity

    USGS Publications Warehouse

    Belkin, H.E.; Kilburn, C.R.J.; de Vivo, B.

    1993-01-01

    Detailed sampling of the Vesuvius lavas erupted in the period A.D. 1631-1944 provides a suite of samples for comprehensive chemical analyses and related studies. Major elements (Si, Ti, Al, Fetotal, Mn, Mg, Ca, Na, K and P), volatile species (Cl, F, S, H2O+, H2O- and CO2), and ferrous iron (Fe2+) were determined for one hundred and forty-nine lavas and five tephra from the A.D. 1631-1944 Vesuvius activity. The lavas represent a relatively homogeneous suite with respect to SiO2, TiO2, FeOtotal, MnO and P2O5, but show systematic variations among MgO, K2O, Na2O, Al2O3 and CaO. The average SiO2 content is 48.0 wt.% and the rocks are classified as tephriphonolites according to their content of alkalis. All of the lavas are silica-undersaturated and are nepheline, leucite, and olivine normative. There is no systematic variation in major-element composition with time, over the period A.D. 1631-1944. The inter-eruption and intra-eruption compositional differences are the same magnitude. The lavas are highly porphyritic with clinopyroxene and leucite as the major phases. Fractionation effects are not reflected in the silica content of the lavas. The variability of MgO, K2O, Na2O, and CaO can be modelled as a relative depletion or accumulation of clinopyroxene. ?? 1993.

  4. Is Eruption Style Linked to Magma Residence Time at Kilauea Volcano? Results from Chemical Zoning in Olivine

    NASA Astrophysics Data System (ADS)

    Lynn, K. J.; Costa Rodriguez, F.; Shea, T.; Garcia, M. O.

    2015-12-01

    Kilauea is generally characterized by its modern effusive activity, but the past 2500 years were dominated by cycles of explosive and effusive eruptions lasting 100's of years (Swanson et al. 2012). These different eruption styles may reflect variable volatile contents in the source that control magma ascent rate and storage durations (e.g., Sides et al. 2014). A detailed petrological study of the dominantly explosive Keanakako'i tephras (1500-1820 CE) was undertaken to better understand the storage and transport conditions preceding high-energy eruptions. Here, we focus on preliminary results for olivine from the 1500 CE Basal Reticulite (>600 m fountain; May et al. 2015). Olivine major (Fe, Mg), minor (Mn, Ca, Ni) and trace (Li, Na, Al, P, Sc, Ti, V, Cr, Co, Zn) element traverses and 2D maps were collected for 10 crystals and reveal two major populations. The dominant population has homogeneous Fo89 and Fo87 cores with thin (3-12 μm) rims of intermediate composition (Fo87.5-88.5). Normal, reverse, and complex trace element zoning (Al, P, Ti, Cr) is prominent in these otherwise homogenous (Fo, Ni, Ca, Mn) crystals. 2D maps reveal early skeletal growth and the progressive decrease of Cr from core to rim suggests olivine and Cr-spinel crystallization, which should produce significant Fo zoning. Absence of Fo zoning could imply significant storage time in a reservoir allowing homogenization. The majority of rim compositions are out of equilibrium with adhering glass, and Fe-Mg modeling indicates that their residence within the carrier melt was of a few days. A second population consists of strongly zoned (normal and reverse) crystals with a wide range of core Fo (78 to 89) and Fo82-84 rims. Timescales from Fe-Mg zoning are up to 1 year, and may record storage histories before interaction with the carrier melt. The diversity in olivine zoning suggests at least two stages of magma mixing, and a more complex evolution for the magmas that fed the reticulite eruptions than a simple closed-system and fast transport of a volatile-rich magma from the source to the surface.

  5. Optical study of Dirac fermions and related phonon anomalies in the antiferromagnetic compound CaFeAsF

    NASA Astrophysics Data System (ADS)

    Xu, B.; Xiao, H.; Gao, B.; Ma, Y. H.; Mu, G.; Marsik, P.; Sheveleva, E.; Lyzwa, F.; Dai, Y. M.; Lobo, R. P. S. M.; Bernhard, C.

    2018-05-01

    We performed optical studies on CaFeAsF single crystals, a parent compound of the 1111-type iron-based superconductors that undergoes a structural phase transition from tetragonal to orthorhombic at Ts=121 K and a magnetic one to a spin density wave (SDW) state at TN=110 K. In the low-temperature optical conductivity spectrum, after the subtraction of a narrow Drude peak, we observe a pronounced singularity around 300 cm-1 that separates two regions of quasilinear conductivity. We outline that these characteristic absorption features are signatures of Dirac fermions, similar to what was previously reported for the BaFe2As2 system [Z.-G. Chen et al., Phys. Rev. Lett. 119, 096401 (2017), 10.1103/PhysRevLett.119.096401]. In support of this interpretation, we show that for the latter system this singular feature disappears rapidly upon electron and hole doping, as expected if it arises from a van Hove singularity in between two Dirac cones. Finally, we show that one of the infrared-active phonon modes (the Fe-As mode at 250 cm-1) develops a strongly asymmetric line shape in the SDW state and note that this behavior can be explained in terms of a strong coupling with the Dirac fermions.

  6. Characteristics of Catalytic Gasification of Natural Coke with H2O in a Fluidized Bed

    NASA Astrophysics Data System (ADS)

    Lin, L. S.; Zhao, C. S.; Wang, S.; Zhu, G.; Xiang, W. G.

    The experimental investigation on gasification characteristics of natural coke from Peicheng, Jiangsu with steam were conducted in a fluidized bed gasifier setup. The effects of several parameters, in terms of the catalyst type, the catalyst mixed manner and the dosage of catalyst over coke on the yield, the components, the heating value of fuel gas and the carbon conversion rate were examined. Results indicate that the fluidized bed gasification technology could overcome the shortcomings of natural coke. Ca-, Fe- and Cu-based nitrates could improve the gasification reaction effectively with a little difference, they could be listed in a descending sequence as follows: Cu-based>Fe-based>Ca-based according to their catalytic effect. The influences of Fe/Ca ratio and Cu/Ca ratio on gasification are similar, gas yield, carbon conversion rate and gas heating value per hour increase as Fe/Ca ratio or Cu/Ca ratio increases, but all of them go up first and then drop with decrease in Fe/Cu ratio. When the dosage of Ca-, Fe- and Cu-based nitrates mixed with the ratio of Ca/Fe/Cu= 10/35/55 is 3%, the best catalytic effect is achieved.

  7. Fabrication of CaFe2O4 nanofibers via electrospinning method with enhanced visible light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Wang, Jianmin; Wang, Yunan; Liu, Yinglei; Li, Song; Cao, Feng; Qin, Gaowu

    CaFe2O4 nanofibers with diameters of about 130nm have been fabricated via a facile electrospinning method. The structures, morphologies and optical properties of the obtained CaF2O4 nanofibers have been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and UV-Visible UV-Vis diffuse reflectance spectrum. The photocatalytic activities of the CaFe2O4 nanofibers are evaluated by the photo-degradation of Methyl orange (MO). The results show that the CaFe2O4 nanofibers (72%) exhibit much higher photocatalytic performance than the CaFe2O4 powders (27%) prepared by conventional method under visible light irradiation. The enhanced photocatalytic performance of CaFe2O4 nanofibers could be attributed to the large surface area, high photogenerated charge carriers density and low charge transfer resistance, as revealed by photoelectrochemical measurement. And fundamentally, it could be attributed to the decreased particle size and the fibrous nanostructure. This work not only provides an efficient way to improve the photocatalytic activity of CaFe2O4, but also provides a new method for preparing materials with nanofibrous structure.

  8. 2:1 Charge disproportionation in perovskite-structure oxide La{sub 1/3}Ca{sub 2/3}FeO{sub 3} with unusually-high-valence Fe{sup 3.67+}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Haichuan; Hosaka, Yoshiteru; Seki, Hayato

    La{sub 1/3}Ca{sub 2/3}FeO{sub 3} with unusually-high-valence Fe{sup 3.67+} was synthesized at a high pressure and high temperature. The compound crystallizes in a √2a×2a×√2a perovskite cell in which the La and Ca ions at the A site are disordered. At 217 K the Fe{sup 3.67+} shows charge disproportionation to Fe{sup 3+} and Fe{sup 5+} in a ratio of 2:1, and this disproportionation is accompanied by transitions in magnetic and transport properties. The charge-disproportionated Fe{sup 3+} and Fe{sup 5+} are arranged along the <111> direction of the cubic perovskite cell. The local electronic and magnetic environments of Fe in La{sub 1/3}Ca{sub 2/3}FeO{submore » 3} are quite similar to those of Fe in La{sub 1/3}Sr{sub 2/3}FeO{sub 3}, and the 2:1 charge disproportionation pattern of Fe{sup 3+} and Fe{sup 5+} in La{sub 1/3}Ca{sub 2/3}FeO{sub 3} is also the same as that in La{sub 1/3}Sr{sub 2/3}FeO{sub 3}. - Graphical abstract: The perovskite-structure oxide La{sub 1/3}Ca{sub 2/3}FeO{sub 3} with unusually-high-valence Fe{sup 3.67+} shows charge disproportionation to Fe{sup 3+} and Fe{sup 5+} in a ratio of 2:1, and the charge-disproportionated Fe{sup 3+} and Fe{sup 5+} are arranged along the <111> direction of the cubic perovskite cell. - Highlights: • La{sub 1/3}Ca{sub 2/3}FeO{sub 3} with unusually-high-valence Fe{sup 3.67+} was synthesized at a high pressure and high temperature. • At 217 K the Fe{sup 3.67+} shows charge disproportionation (CD) to Fe{sup 3+} and Fe{sup 5+} in a ratio of 2:1. • The charge-disproportionated Fe{sup 3+} and Fe{sup 5+} are arranged along the <111> direction of the cubic perovskite cell. • The disproportionation is accompanied by transitions in magnetic and transport properties.« less

  9. Recurring Slope Lineae (RSL) and Chloride Hydrates within Mars Subsurface

    NASA Astrophysics Data System (ADS)

    Lu, Y.; Wang, A.

    2012-12-01

    RSL is an important phenomenon revealed by HiRISE-MRO observations on Mars (McEwen et al., 2011). The RSL form and grow on some equator-facing slopes during warm seasons on Mars when temperature (T in afternoon) is in the range of ~250-300K. We hypothesize that chloride hydrates may exist in some areas within the subsurface of southern hemisphere on Mars, and the deliquescence of these chloride hydrates at elevated temperature may have produced large quantity of brine that caused the RSL observed by HiRISE team. This hypothesis is based on three lines of reasoning: (1) chlorine (Cl) is found to be broadly distributed on Mars (GRS-ODY) and has been detected in the chemistry of every surface samples during all Mars surface exploration missions (Vikings, Pathfinder, Spirit, Opportunity, and Phoenix). In addition, the existence of chlorides in martian southern hemisphere was suggested by a set of THEMIS-ODY data analyses (Osterloo et al., 2008, 2010). In terrestrial saline playas, large amounts of chlorides invariably appears in the precipitates from salty brines (Zheng et al., 2009, Wang et al., 2009), although the precipitation sequence of chlorides on Mars might be different from that on Earth (Tosca et al., 2008, McLennan et al., 2012). (2) A subsurface layer when enriched with ice, or hydrous sulfates or chloride hydrates (all have high thermal inertia) and covered by a dry layer of surface soils (very low thermal inertia) will be able to maintain a lower Tmax and a much smaller delta-T that are not affected by the large temperature variations at Mars surface during diurnal and seasonal cycles (Mellon, 2004). (3) Chloride hydrates (such as MgCl2.12H2O, FeCl2.6H2O, CaCL2.6H2O, etc) would form from Cl-bearing brine at low T; they would be stable in a large T range (beyond room T in lab) and their deliquescence would occur abruptly at elevated temperatures (Baumgartner & Bakker 2009, and many others). We have started a systematic laboratory investigation on the thermodynamics and kinetics properties of chloride hydrates. The goals are to determine (1) the stability fields of Mg-, Fe2+-, Fe3+-, Ca-, Al-, Na-chloride hydrates in RH-T space, especially the phase boundaries of hydrates-deliquescence; (2) the rate of their dehydration, and especially the rate of their deliquescence as function of T, P, and PH2O; (3) the RH level that each chloride hydrate can maintain in an enclosure at T relevant to those within Mars subsurface. We will report the experimental results from (3), and will compare them with a similar set of data from hydrous sulfates (Mg, Fe, Ca, Al). The criticality of learning the property (3) is that the deliquescence of a hydrous salt at a T only occurs when RH is higher than a threshold. For example, deliquescence of ferricopiapite would happen when RH > 75% at 0°C. If the environmental RH is lower, the dehydration of hydrous salt will go through solid-solid phase transition, instead of deliquescence, such that water would be released to the atmosphere and brine would not form. It is possible that deliquescence of both hydrous sulfates and chlorides (as well as the melting of Cl-enriched brines) contributed the RSL. Our working hypothesis favors chloride hydrates because dry chloride (after releasing water) in RSL would not be visible by Vis-NIR spectroscopy, which is consistent with the mission observations.

  10. Chemical composition of Martian fines

    NASA Technical Reports Server (NTRS)

    Clark, B. C.; Baird, A. K.; Weldon, R. J.; Tsusaki, D. M.; Schnabel, L.; Candelaria, M. P.

    1982-01-01

    Of the 21 samples acquired for the Viking X-ray fluorescence spectrometer, 17 were analyzed to high precision. Compared to typical terrestrial continental soils and lunar mare fines, the Martian fines are lower in Al, higher in Fe, and much higher in S and Cl concentrations. Protected fines at the two lander sites are almost indistinguishable, but concentration of the element S is somewhat higher at Utopia. Duricrust fragments, successfully acquired only at the Chryse site, invariably contained about 50% higher S than fines. No elements correlate positively with S, except Cl and possibly Mg. A sympathetic variation is found among the triad Si, Al, Ca; positive correlation occurs between Ti and Fe. Sample variabilities are as great within a few meters as between lander locations (4500 km apart), implying the existence of a universal Martian regolith component of constant average composition. The nature of the source materials for the regolith fines must be mafic to ultramafic.

  11. Influence of substrate material and surface finishing on the morphology of the calcium-phosphate coating.

    PubMed

    Leitão, E; Barbosa, M A; de Groot, K

    1997-07-01

    The formation of an apatite-like layer was achieved by immersing Ti-6A1-4V, Ti-Al-2.5Fe, and 316 L stainless-steel substrata in Hank's balanced salt solution (HBSS). The layer was characterized by surface analysis techniques, namely X-ray microanalysis and X-ray diffraction, and the morphology was observed by scanning electron microscopy and atomic force microscopy. The concentrations of Ca and P were monitored as a function of time. The morphology of the precipitate layer seems to be dependent both on the type of metal substrate and its surface finish. Polished Ti-6A1-4V and Ti-Al-2.5Fe surfaces exhibit a plate precipitate morphology, whereas rougher surfaces show scattered crystal-like precipitation. The results suggest that the layer produced by immersion of polished titanium alloys in HBSS is constituted by an amorphous apatite.

  12. The effect of annealing on structure and hardness of (Fe-Cr)-50 at.% Al coatings synthesized by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Ciswandi, Aryanto, Didik; Irmaniar, Tjahjono, Arif; Sudiro, Toto

    2018-05-01

    In this research, the deposition of (Fe-Cr)-50at.% Al coatings on low carbon steel was carried out by a mechanical alloying (MA) technique. The MA was performed in a shaker mill for 4 hours. Two types of Fe-Cr powders as starting material were used, high purity Fe-Cr powders: (Fe-12.5Cr)-50Al and (Fe-25Cr)-50Al, and Fe-Cr lump powder: (50FeCr)-50Al (in at.%). The coated samples were then annealed in a vacuum furnace at 700°C for 1h. The characterizations of coating structure before and after annealing were studied by XRD and SEM-EDX, while the coating hardness was measured by micro-Vickers hardness tester. Before annealing, all of coating composition were composed mainly of (Fe,Cr)Al phase. After annealing, the FeAl and Fe0.99Cr0.02Al0.99 intermetallic phases was formed in the (Fe-12.5Cr)-50Al and (Fe-25Cr)-50Al coatings. In addition, Fe2CrAlwas also found in the (Fe-25Cr)-50Al coating. Whilethe AlCr2 intermetallic phase was detected as the main phase of (50FeCr)-50Al coating. The cross-sectional microstructure showed that the (Fe-12.5Cr)-50Al and (Fe-25Cr)-50Al coatings have a smoother structure compared to (50FeCr)-50Al coating. The annealing led to intermetallic phase formation and an increasing coating hardness.

  13. Compositions of HIMU, EM1, and EM2 from Global Trends between Radiogenic Isotopes and Major Elements in Ocean Island Basalts

    NASA Astrophysics Data System (ADS)

    Jackson, M. G.; Dasgupta, R.

    2008-12-01

    Sr and Pb isotopes exhibit global trends with the concentrations of major elements (SiO2, TiO2, FeO, Al2O3 and K2O) and major elements ratios (CaO/Al2O3 and K2O/TiO2) in the shield-stage lavas from 18 oceanic hotspots (including Hawaii, Iceland, Galapagos, Cook-Australs, St. Helena, Cape Verde, Cameroon, Canary, Madeira, Comoros, Azores, Samoa, Society, Marquesas, Mascarene, Kerguelen, Pitcairn, and Selvagen). Based on the relationships between major elements and isotopes in ocean island basalts (OIBs), we find that the lavas derived from the mantle end members, HIMU (or high 'ì' = 238U/204Pb), EM1 (enriched mantle 1), EM2 (enriched mantle 2), and DMM (depleted MORB [mid-ocean ridge basalt] mantle) exhibit distinct major element characteristics: When compared to oceanic hotspots globally, the hotspots with a HIMU (radiogenic Pb-isotopes and low 87Sr/86Sr) component, such as St. Helena and Cook-Australs, exhibit high CaO/Al2O3, FeOT, and TiO2 and low SiO2 and Al2O3. EM1 (enriched mantle 1; intermediate 87Sr/86Sr and low 206Pb/204Pb; sampled by hotspots like Pitcairn and Kerguelen) and EM2 (enriched mantle 2; high 87Sr/86Sr and intermediate 206Pb/204Pb; sampled by hotspots like Samoa and Societies) exhibit higher K2O concentrations and K2O/TiO2 weight ratios than HIMU lavas. EM1 lavas exhibit the lowest CaO/Al2O3 in the OIB dataset, and this sets EM1 apart from EM2. A plot of CaO/Al2O3 vs K2O/TiO2 perfectly resolves the four mantle end member lavas. Melting processes (pressure, temperature and degree of melting) fail to provide an explanation for the full spectrum of major element concentrations in OIBs. Such processes also fail to explain the correlations between major elements and radiogenic isotopes. Instead, a long, time integrated history of various parent- daughter elements appears to be coupled to major element and/or volatile heterogeneity in the mantle source. End member lava compositions are compared with experimental partial melt compositions to place constraints on the lithological characteristics of the mantle end members.

  14. Compositions of HIMU, EM1, and EM2 from global trends between radiogenic isotopes and major elements in ocean island basalts

    NASA Astrophysics Data System (ADS)

    Jackson, Matthew G.; Dasgupta, Rajdeep

    2008-11-01

    Sr and Pb isotopes exhibit global trends with the concentrations of major elements (SiO 2, TiO 2, FeO, Al 2O 3 and K 2O) and major elements ratios (CaO/Al 2O 3 and K 2O/TiO 2) in the shield-stage lavas from 18 oceanic hotspots (including Hawaii, Iceland, Galapagos, Cook-Australs, St. Helena, Cape Verde, Cameroon, Canary, Madeira, Comoros, Azores, Samoa, Society, Marquesas, Mascarene, Kerguelen, Pitcairn, and Selvagen). Based on the relationships between major elements and isotopes in ocean island basalts (OIBs), we find that the lavas derived from the mantle end members, HIMU (or high 'μ' = 238U/ 204Pb), EM1 (enriched mantle 1), EM2 (enriched mantle 2), and DMM (depleted MORB [mid-ocean ridge basalt] mantle) exhibit distinct major element characteristics: When compared to oceanic hotspots globally, the hotspots with a HIMU (radiogenic Pb-isotopes and low 87Sr/ 86Sr) component, such as St. Helena and Cook-Australs, exhibit high CaO/Al 2O 3, FeO T, and TiO 2 and low SiO 2 and Al 2O 3. EM1 (enriched mantle 1; intermediate 87Sr/ 86Sr and low 206Pb/ 204Pb; sampled by hotspots like Pitcairn and Kerguelen) and EM2 (enriched mantle 2; high 87Sr/ 86Sr and intermediate 206Pb/ 204Pb; sampled by hotspots like Samoa and Societies) exhibit higher K 2O concentrations and K 2O/TiO 2 weight ratios than HIMU lavas. EM1 lavas exhibit the lowest CaO/Al 2O 3 in the OIB dataset, and this sets EM1 apart from EM2. A plot of CaO/Al 2O 3 vs K 2O/TiO 2 perfectly resolves the four mantle end member lavas. Melting processes (pressure, temperature and degree of melting) fail to provide an explanation for the full spectrum of major element concentrations in OIBs. Such processes also fail to explain the correlations between major elements and radiogenic isotopes. Instead, a long, time integrated history of various parent-daughter elements appears to be coupled to major element and/or volatile heterogeneity in the mantle source. End member lava compositions are compared with experimental partial melt compositions to place constraints on the lithological characteristics of the mantle end members.

  15. Ehimeite, NaCa2Mg4CrSi6Al2O22(OH)2: The first Cr-dominant amphibole from the Akaishi Mine, Higashi-Akaishi Mountain, Ehime Prefecture, Japan

    NASA Astrophysics Data System (ADS)

    Nishio-Hamane, Daisuke; Ohnishi, Masayuki; Minakawa, Tetsuo; Yamaura, Jun-Ichi; Saito, Shohei; Kadota, Ryo

    The first Cr-dominant amphibole, ehimeite, ideally NaCa2Mg4CrSi6Al2O22(OH)2, has been found in a chromitite deposit in the Akaishi Mine, Higashi-Akaishi Mountain, Ehime Prefecture, Japan. Ehimeite occurs as prismatic crystals of up to 1.5 cm in length and 0.5 cm in width and is found in association with chromite, kämmererite (Cr-rich clinochlore), Cr-poor clinochlore, phlogopite, and uvarovite. It is transparent, emerald green to pale green in color with pale green streaks, and has a vitreous luster. Optically, it is biaxial positive with α = 1.644(2), β = 1.647(2), γ = 1.659(2), and 2Vcalc. = 53°. It has a Mohs’ hardness of 6 and densities of 3.08(3) g/cm3 (measured using heavy liquids) and 3.121 g/cm3 (calculated from powder diffraction data and the empirical formula). The empirical formula is (Na0.88K0.07)Σ0.95(Ca1.89Na0.02Mg0.09)Σ2.00(Mg4.03Cr0.62Al0.19Fe3+0.07Fe2+0.07Ti0.03)Σ5.00(Si6.14Al1.86)Σ8.00O22(OH)2 on the basis of O = 22 and OH = 2, and ehimeite mainly forms a solid solution, NaCa2Mg4(Cr, Al)Si6Al2O22(OH)2, with pargasite. It has a monoclinic unit cell with a = 9.9176(14) Å, b = 18.0009(12) Å, c = 5.2850(7) Å, β = 105.400(7)°, V = 909.6 (17) Å3, and Z = 2, and it belongs to the space group C2/m, as refined from powder XRD data. The eight strongest lines in the powder XRD pattern [d (Å), I/I0, hkl] are (3.370, 58, 150), (2.932, 43, 221), (2.697, 81, 151), (2.585, 50, 061), (2.546, 100, 202), (2.346, 42, 351), (2.156, 35, 261), and (1.514, 55, 263). The crystal structure has been refined to R1 = 0.0488 using single-crystal XRD data. It has been concluded that ehimeite in the Akaishi Mine was formed by the reaction of chromitite and the metamorphic fluid in the retrograde stage of serpentinization during the Sanbagawa metamorphism.

  16. Exploration of alloy surface and slurry modification to improve oxidation life of fused silicide coated niobium alloys

    NASA Technical Reports Server (NTRS)

    Levine, S. R.; Grisaffe, S. J.

    1972-01-01

    Edge and surface modifications of niobium alloys were investigated prior to coating with Si-20Cr-20Fe and slurry composition modification for performance in a 1370 C ambient pressure slow cycle test. The best coating obtained was Si-20Cr-20Mn with an average life of 63 cycles, compared to 40 for Si-20Cr-20Fe on FS-85 (100 percent improvement in weight parity life). Edge beading extended the lives of Si-20Cr-20Fe-coated Cb-752 and FS-85 to 57 and 41 cycles respectively (50 and 20 percent improvements in weight parity life respectively). W, Al2O3 and ZrO2(CaO) surface modifications altered coating crack frequency and microstructure and increased life somewhat.

  17. Effects of cation contaminants in conductive TiO2 ceramics

    NASA Astrophysics Data System (ADS)

    Yan, M. F.; Rhodes, W. W.

    1982-12-01

    Ten cation contaminants, namely Al, Ga, Co, Fe, Mg, Zn, Zr, Ca, Sr, and Ba were investigated for their effects on the electrical properties, microstructures, and discoloration of conductive TiO2 ceramics. It was found that Al, Ga, Co, Fe, and Mg cause discoloration and increase the electrical resistivity by a factor of 104 to 106 in Nb-doped TiO2 ceramics. The other dopants do not introduce such changes in TiO2. The electrical properties, microstructures, and discoloration were measured in specimens of AlxNb0.007Ti0.993-xO2 with 0≤x≤0.01. When the Al content exceeds a critical value, ranging from 0.48% at 1400 °C to 0.25% at 1200 °C, the electrical resistivities and grain size increase rapidly, and the specimen is discolored from the original black to an ivory white color. Color boundary migration induced by Al diffusion in Nb-doped TiO2 was quantitatively measured. From the kinetics of the boundary migration, the Al diffusivity (D) was calculated to be D=2.67 exp(-53.3 kcal/mole/RT) cm2/s in the temperature range of 1200 to 1400 °C. The rapid diffusion of the small cations, namely Al, Ga, Co, Fe, and Mg, results from an interstitial diffusion mechanism. However, other cations, having a radius larger than the interstitial channel (˜0.77 Å radius), cannot diffuse by this mechanism. Defect reactions are proposed to explain the increase in the electrical resistivity and microstructural changes due to Al diffusion. These defect reactions also show that the problem of acceptor contamination cannot be avoided by adding an excess quantity of donor dopant if the solubility of the donor is much less than that of the acceptor contaminant.

  18. Photocatalytic activity of Fe-doped CaTiO₃ under UV-visible light.

    PubMed

    Yang, He; Han, Chong; Xue, Xiangxin

    2014-07-01

    The photocatalytic degradation of methylene blue (MB) over Fe-doped CaTiO₃ under UV-visible light was investigated. The as-prepared samples were characterized using X-ray diffraction (XRD), scanning electron microscope (SEM) equipped with an energy dispersive spectrometer (EDS) system, Fourier transform infrared spectra (FT-IR), and UV-visible diffuse reflectance spectroscopy (DRS). The results show that the doping with Fe significantly promoted the light absorption ability of CaTiO₃ in the visible light region. The Fe-doped CaTiO₃ exhibited higher photocatalytic activity than CaTiO₃ for the degradation of MB. However, the photocatalytic activity of the Fe-doped CaTiO₃ was greatly influenced by the calcination temperature during the preparation process. The Fe-doped CaTiO₃ prepared at 500°C exhibited the best photocatalytic activity, with degradation of almost 100% MB (10ppm) under UV-visible light for 180 min. Copyright © 2014. Published by Elsevier B.V.

  19. Quantitative evaluation of the effect of H2O degassing on the oxidation state of magmas

    NASA Astrophysics Data System (ADS)

    Lange, R. A.; Waters, L.

    2014-12-01

    The extent to which degassing of the H2O component affects the oxidation state of hydrous magmas is widely debated. Several researchers have examined how degassing of mixed H-C-O-S-Cl fluids may change the Fe3+/FeT ratio of various magmas, whereas our focus is on the H2O component. There are two ways that degassing of H2O by itself may cause oxidation: (1) the reaction: H2O (melt) + 2FeO (melt) = H2 (fluid) + Fe2O3 (melt), and/or (2) if dissolved water preferentially enhances the activity of ferrous vs. ferric iron in magmatic liquids. In this study, a comparison is made between the pre-eruptive oxidation states of 14 crystal-poor, jet-black obsidian samples (obtained from two Fe-Ti oxides) and their post-eruptive values (analyzed with the Wilson 1960 titration method tested against USGS standards). The obsidians are from Medicine Lake (CA), Long Valley (CA), and the western Mexican arc; all have low FeOT (1.1-2.1 wt%), rendering their Fe2+/Fe3+ ratios highly sensitive to the possible effects of substantial H2O degassing. The Fe-Ti oxide thermometer/oxybarometer of Ghiorso and Evans, (2008) gave temperatures for the 14 samples that range for 720 to 940°C and ΔNNO values of -0.9 to +1.4. With temperature known, the plagioclase-liquid hygrometer was applied and show that ≤ 6.5 wt% H2O was dissolved in the melts prior to eruption. In addition, pre-eruptive Cl and S concentrations were constrained on the basis of apatite analyses (Webster et al., 2009) and sulfur concentrations needed for saturation with pyrrhotite (Clemente et al., 2004), respectively. Maximum pre-eruptive chlorine and sulfur contents are 6000 and 200 ppm, respectively. After eruption, the rhyolites lost nearly all of their volatiles. Our results indicate no detectable change between pre- and post-eruptive Fe2+ concentrations, with an average deviation of ± 0.1 wt % FeO. Although degassing of large concentrations of S and/or Cl may affect the oxidation state of magmas, at the pre-eruptive levels in these 14 rhyolitic magmas, no effect is detected. Therefore, it can be robustly concluded that degassing of substantial amounts of the H2O component (≤ 6.5 wt%), by itself, does not induce oxidation in erupted magmas, particularly those more iron-rich than rhyolites (e.g., arc basalts).

  20. Microprocessor Realization of a Linear Predictive Vocoder. Appendix C. LPCM Detail Drawings and Layouts

    DTIC Science & Technology

    1977-02-07

    CHG12 1 Dr.%VC 8 DB ILA8 DC1II 29 FTLE: FDS TAPIRWLST Al 1/19/77 16:1~2 H.I.T. LINCOLN LAB3ORATORY 1 DB116 DB16 D11G12 1 DI)V8 DD V,"R DWl 1 DBV16 DBV...5 CD27 CA27 CDC.6 CAC6 "F23 CD25 CA25 CD%.4 CAt4 IN ,7 F2’ C!ൠ CA24 CDV3 CA.^ ELI 11 CI)22 CA23 CP,2 CA,2 1D1.. CA22 CDI CA. 1 "FH𔃼 CD39 CA38 CD17...FC17 FE22 ,26 FC19 UE24 1 ’P27 FC19 F21 1 IP 29 FA V7 EF21 1 !p33* FA10 FF12" I %P32 FG𔄀 EE1 1 IP3 FG ’i^7 EF15 1 ’P 34 FGF12 Ffl2 1 1115FG ’ 1 F12

  1. AL(0) in municipal waste incinerator ash

    NASA Astrophysics Data System (ADS)

    Stipp, S. L.; Ronsbo, J. G.; Zunic, T. B.; Christensen, T. H.

    2003-04-01

    Disposal of municipal waste is a challenge to society. Waste volume is substantially decreased by incineration but residual ash usually contains a number of toxic components which must be immobilised to insure environmental protection. One element, chromium, is mobile and toxic in its oxidised state as Cr(VI) but it can be reduced to Cr(III) and immobilised. Reduction can be promoted by ash treatment with Fe(0) or Fe(II), but recent evidence shows that at least some Cr(VI) is reduced spontaneously in the ash. Aspects of ash behaviour suggest metallic aluminium as the reducing agent, but no direct evidence of Al(0) has been found until now. We examined filter ash from an energy-producing, municipal-waste incinerator (Vest-forbrænding) near Copenhagen. X-ray diffraction (XRD) identified expected salts of Na, K and Ca such as halite, sylvite, calcite, anhydrite and gypsum as well as quartz, feldspar and some hematite. Wave-dispersive electron microprobe produced elemen-tal maps of the ash; Al-rich areas were analysed quantitatively by comparison with standards. We identified metallic Al particles, averaging 50 to 100 micrometers in di-ameter, often with a fractured, glassy border of aluminum oxide. The particles were porous, explaining fast Cr(VI) reduction and they contained thin exsolution lamellae of Al-alloys of Pb and Cu or Mn, Fe and Ag, which provide clues of the Al(0) origin in the waste. Sometimes Al(0) occurred inside glassy globes of Al2O3. Time-of-flight secondary ion mass spectroscopy (TOF-SIMS) and X-ray photoelectron spectroscopy (XPS) proved that surface Al concentrations on ash particles were below detection, confirming reactivity of the Al(0) bulk. The persistence of reduced Al through the highly oxidising combustion procedure comes as a surprise and is a benefit in the immobilisation of Cr(VI) from municipal-waste incineration residues.

  2. Simultaneous X-ray and neutron diffraction Rietveld refinements of nanophase iron substituted hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Kyriacou, Andreas

    The effect of Fe substitution on the crystal structure of hydroxyapatite (HAp) is studied by applying simultaneous Rietveld refinements of powder x-ray and neutron diffraction patterns. Fe is one of the trace elements replacing Ca in HAp, which is the major mineral phase in bones and teeth. The morphology and magnetic properties of the Fe-HAp system are also studied by transmission electron microscopy and magnetization measurements. Samples of Ca(5-x)Fex(PO4)3OH with 0 ≤ x ≤ 0.3 were prepared. Single phase HAp was identified in x-ray diffraction patterns (XRD) of samples with x < 0.1 inferring that the solubility limits are less than 0.1. Hematite (alpha-Fe2O3) is identified as a secondary phase for higher Fe content. The refined parameters show that Fe is incorporated in the HAp structure by replacing Ca in the two crystallographic sites with a preference at the Ca2 site. This preference explains the small effect of the Fe substitution on the lattice constants of HAp. The overall decrease of the lattice constants is explained by the ionic size difference of Ca and Fe. The increasing trend of the a-lattice constant with x in the Fe substituted samples is attributed to a lattice relaxation caused by the substitution of the 4- and 6-fold Fe at the 7- and 9-fold Ca1 and Ca2 sites. This Ca local geometry reduction is indicated by a slight increase of the Ca1-O3 and Ca2-O1 bond lengths. Above the solubility limit x = 0.05, the Fe is partitioned in and out of the HAp structure with increasing nominal Fe content x. The excess Fe is oxidized to hematite. The TEM analysis and magnetic measurements support the results of the simultaneous Rietveld refinements. The TEM images show no significant effect on the morphology and size of the HAp particles upon Fe incorporation. The particles are either spheres or short rods of dimensions 20--60 nm. Hematite particles are imaged in the samples with x exceeding the solubility limit. These particles are spheres, about 15 nm in diameter and are more resistant to electron beam damage. Magnetic measurements reveal a transition of the diamagnetic pure HAp to paramagnetic Fe substituted HAp.

  3. Melting mode and source lithology inferred from trace element systematic in historical olivine from Lanzarote, Canary Islands

    NASA Astrophysics Data System (ADS)

    Gómez-Ulla, Alejandra; Sigmarsson, Olgeir; Guðfinnsson, Guðmundur H.

    2017-04-01

    Trace element concentrations and ratios in olivine phenocrysts, such as fractionation-corrected Ni x (FeO/MgO) and Fe/Mn, have been shown useful as probes of pyroxenite derived component in mixtures of primary mantle melts (e.g. Sobolev et al., 2007). For instance, higher Ni and lower Mn and Ca contents are expected in partial melts of pyroxenite compared to those of lherzolite. We have measured trace element concentrations in olivine from 1730-1736 AD (Timanfaya) and 1824 AD eruptions in Lanzarote (Canary Islands), which erupted mafic and mantle nodule bearing magmas, ranging in composition from highly silica-undersaturated basanite through alkali basalt to tholeiite. The early basanite exhibit the largest olivine trace element variation covering the range of those from MORB and OIB worldwide, whereas later erupted tholeiite have values typical from pyroxenite derived melts. The Fo value decreased systematically with time during the 1730-36 eruption and the proportion of silica-saturated primary melt increased in the parental magma mixture with time. At the end of the eruption, tholeiite magmas crystallized olivine with, increasing concentrations of Mn and Ca and higher Ca/Al at relatively uniform Ni x (FeO/MgO) and Fe/Mn, all of which is readily explained by increased decompression melting at lower temperature. The basanite from the eruption that took place in 1824 AD has olivine with even higher Fo value and trace element variability similar those of the Timanfaya basanite. The fact that the Lanzarote basanite contain olivine with trace element systematic spanning that of MORB and pyroxenite melt can be explained by CO2-flux melting of a lithologically heterogeneous source, generating the diverse compositions. Initial reactive porous flow through depleted oceanic lithosphere and equilibration with dunitic restite of percolating pyroxenite melt may have amplified the observed Ni depletion in olivine of the earliest basanite. The fact that olivine compositions and basanite magma were reproduced approximately a century later may reflect episodic carbonatic fluxing in the slowly uprising Canarian mantle plume.

  4. [Physico-chemical characteristics of ambient particles settling upon leaf surface of six conifers in Beijing].

    PubMed

    Wang, Lei; Hasi, Eerdun; Liu, Lian-You; Gao, Shang-Yu

    2007-03-01

    The study on the density of ambient particles settling upon the leaf surface of six conifers in Beijing, the micro-configurations of the leaf surface, and the mineral and element compositions of the particles showed that at the same sites and for the same tree species, the density of the particles settling upon leaf surface increased with increasing ambient pollution, but for various tree species, it differed significantly, with the sequence of Sabina chinensis and Platycladus orientalis > Cedrus deodara and Pinus bungeana > P. tabulaeformis and Picea koraiensis. Due to the effects of road dust, low height leaf had a larger density of particles. The density of the particles was smaller in summer than in winter because of the rainfall and new leaf growth. The larger the roughness of leaf surface, the larger density of the particles was. In the particles, the overall content of SiO2, CaCO3, CaMg(CO3,), NaCl, 2CaSO4 . H2O, CaSO4 . 2H2O and Fe2O3 was about 10%-30%, and the main minerals were montmorillonite, illite, kaolinite and feldspar. The total content of 21 test elements in the particles reached 16%-37%, among which, Ca, Al, Fe, Mg, K, Na and S occupied 97% or more, while the others were very few and less affected by sampling sites and tree species.

  5. Evidence for Differential Comminution/Aeolian Sorting and Chemical Weathering of Martian Soils Preserved in Mars Meteorite EET79001

    NASA Technical Reports Server (NTRS)

    Rao, M. N.; McKay, David S.

    2004-01-01

    Impact-melt glasses containing Martian atmospheric gases in Mars meteorite EET79001 are formed from Martian soil fines that had undergone meteoroid-comminution and aeolian sorting accompanied by chemical weathering near Mars surface. Using SiO2 and SO3 as proxy for silicates and salts respectively in Mars soils, we find that SiO2 and SO3 correlate negatively with FeO and MgO and positively with Al2O3 and CaO in these glasses, indicating that the mafic and felsic components are depleted and enriched relative to the bulk host (Lith A/B) respectively as in the case of Moon soils. Though the overall pattern of mineral fractionation is similar between the soil fines on Mars and Moon, the magnitudes of the enrichments/depletions differ between these sample-suites because of pervasive aeolian activity on Mars. In addition to this mechanical processing, the Martian soil fines, prior to impact-melting, have undergone acid-sulfate dissolution under oxidizing/reducing conditions. The S03 content in EET79001,507 (Lith B) glass is approx.18% compared to < 2% in EET79001, 506 (Lith A). SiO2 and SO3 negatively correlate with each other in ,507 glasses similar to Pathfinder soils. The positive correlation found between FeO and SO3 in ,507 glasses as well as Pathfinder rocks and soils is consistent with the deposition of ferric-hydroxysulfate on regolith grains in an oxidizing environment. As in the case of Pathfinder soils, the Al 2O3 vs SiO2 positive correlation and FeO VS S102 negative correlation observed in ,507 glasses indicate that SiO2 from the regolith is mobilized as soluble silicic acid at low pH. The large off-set in the end-member FeO abundance ( SO3=0) between Pathfinder soil-free rock and sulfur-free rock in ,507 glass precursors suggests that the soils comprising the ,507 glasses contain much larger proportion of fine-grained Martian soil fraction that registers strong mafic depletion relative to Lith B. This inference is strongly supported by the Al2O3 - SO3 negative correlation observed in both ,507 glasses and pathfinder soils. Furthermore, the flat MgO-SO3 correlation observed in the case of ,507 glasses shows that the solubilized MgSO4 is mobilized by the aqueous solutions leaving behind the rock-residue with approx.2-3% MgO. This value is similar to the approx.2% MgO found for the soil-free rock at the Pathfinder site. The EET79001 ,506 glasses, in contrast, show that Al2O3 and CaO positively correlate with SO3 indicating that Al is precipitated as amorphous hydroxysulfate at relatively high pH. The FeO - SO3 negative correlation observed in ,506 glasses yields an end-member FeO abundance of approx.21% for the sulfur-free rock, which is consistent with the 22% FeO deduced for the Viking soil-free rock. Further, the FeO and MgO negative correlation with S03 observed in ,506 glasses indicates that the divalent Fe and Mg released from ferromagnesian minerals by acid sulfate dissolution are mobilized away from the reaction sites as soluble sulfates under reducing environment. A similar negative correlation between FeO and SO3 and a positive correlation between Al2O3 and SO3 found in Viking soils suggest that they also had undergone acid-sulfate dissolution under relatively reducing conditions.

  6. Microstructure and Properties of Fe3Al-Fe3AlC x Composite Prepared by Reactive Liquid Processing

    NASA Astrophysics Data System (ADS)

    Verona, Maria Nalu; Setti, Dalmarino; Paredes, Ramón Sigifredo Cortés

    2018-04-01

    A Fe3Al-Fe3AlC x composite was prepared using reactive liquid processing (RLP) through controlled mixture of carbon steel and aluminum in the liquid state. The microstructure and phases of the composite were assessed using X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, optical microscopy, and differential scanning calorimetry. In addition, the density, hardness, microhardness, and elastic modulus were evaluated. The Fe3Al-Fe3AlC x composite consisted of 65 vol pct Fe3Al and 35 vol pct Fe3AlC x ( κ). The κ phase contained 10.62 at. pct C, resulting in the stoichiometry Fe3AlC0.475. The elastic modulus of the Fe3Al-Fe3AlC0.475 composite followed the rule of mixtures. The RLP technique was shown to be capable of producing Fe3Al-Fe3AlC0.475 with a microstructure and properties similar to those achieved using other processing techniques reported in the literature.

  7. Control of sinter quality for blast furnaces of SAIL through characterization of high temperature properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, U.N.; Thakur, B.; Mediratta, S.R.

    1996-12-31

    Quality of blast furnace (BF) burden materials and their performance inside the furnace have attracted increased importance worldwide. High productivity, low fuel rate and stable operation of BF can be achieved by suitably controlling the quality of input materials particularly that of sinter which is the main constituent of the burden. Reduction Degradation Index (RDI), Reducibility Index (RI) and Softening-melting characteristics are some of the quality indicators of sinter. The effect of chemical composition of sinter in the ranges of CaO/SiO{sub 2} 1.4--2.0, FeO 4.0--8.0, Al{sub 2}O{sub 3} 1.3--2.0 and MgO 1.2--2.0 on the above mentioned properties have been reportedmore » in literature. Due to the peculiarity of Indian raw materials, i.e., high ash content of coke and high Al{sub 2}O{sub 3} content of iron ore, the sinter composition varies over a wide range of CaO/SiO{sub 2} 2.0--2.5, FeO 8--11%, Al{sub 2}O{sub 3} 2--4% and MgO 2--5% in different plants of SAIL. This paper discusses the effect of above constituents in higher ranges as compared to earlier study on RDI, RI and Softening-melting properties so that sinter composition can be optimized for achieving desirable properties for better BF performance.« less

  8. A newly developed Fe-doped calcium sulfide nanoparticles with magnetic property for cancer hyperthermia

    NASA Astrophysics Data System (ADS)

    Wu, Steven Yueh-Hsiu; Tseng, Ching-Li; Lin, Feng-Huei

    2010-05-01

    In this study, a magnetic iron-doped calcium sulfide (Fe-CaS) nanoparticle was newly developed and studied for the purpose of hyperthermia due to its promising magnetic property, adequate biodegradation rate, and relatively good biocompatibility. Fe-CaS nanoparticles were synthesized by a wet chemical co-precipitation process with heat treatment in a N2 atmosphere, and were subsequently cooled in N2 and exposed to air at a low temperature. The crystal structure of the Fe-CaS nanoparticles was similar to that of the CaS, which was identified by an X-ray diffractometer (XRD). The particle size was less than 40 nm based on a Debye-Scherrer equation and transmission electron microscope (TEM) examination. Magnetic properties obtained from the SQUID magnetometer demonstrated that the synthesized CaS was a diamagnetic property. Once the Fe ions were doped, the synthesized Fe-CaS converted into paramagnetism which showed no hysteresis loop. Having been heated above 600 °C in N2, the Fe-CaS showed a promising magnetic property to produce enough energy to increase the temperature for hyperthermia. 10 mg/ml of the Fe-CaS was able to generate heat to elevate the media temperature over 42.5 °C within 6 min. The area of the hysteresis loop increased with the increasing of the treated temperature, especially at 800 °C for 1 h. This is because more Fe ions replaced Ca ions in the lattice at the higher heat treatment temperature. The heat production was also increasing with the increasing of heat treatment temperature, which resulted in an adequate specific absorption ratio (SAR) value, which was found to be 45.47 W/g at 37 °C under an alternative magnetic field of f = 750 KHz , H = 10 Oe. The in vitro biocompatibility test of the synthesized Fe-CaS nanoparticles examined by the LDH assay showed no cytotoxicity to 3T3 fibroblast. The result of in vitro cell hyperthermia shows that under magnetic field the Fe-CaS nanoparticles were able to generate heat and kill the CT-26 cancer cells significantly. We believe that the developed Fe-CaS nanoparticles have great potential as thermo-seeds for cancer hyperthermia in the near future.

  9. Geochemistry and mineralogy of the older (> 40 ka) ignimbrites in the Campanian Plain, southern Italy

    NASA Astrophysics Data System (ADS)

    Belkin, Harvey E.; Raia, Federica; Rolandi, Giuseppe; Jackson, John C.; de Vivo, Benedetto

    2010-05-01

    The Campanian Plain in southern Italy has been volcanically active during the last 600 ka. The largest and best known eruption at 39 ka formed the Campanian Ignimbrite (CI), which has the largest volume (~310 km3) and the greatest areal extent. However, significant, but scattered deposits of older ignimbrites underlie the CI and document a long history of trachytic eruptions. We examined the geochemistry and mineralogy of 11 older ignimbrite strata by optical petrography, electron microprobe, scanning electron microscope, X-ray diffraction, and various whole-rock geochemical techniques. Strata at Durazzano (116.1 ka), Moschiano (184.7 ka), Seiano Valley A (245.9 ka), Seiano Valley B (289.6 ka), Taurano 7 (205.6 and 210.4 ka), Taurano 9 (183.8 ka), and Taurano 14 (157.4 ka) have been previously dated by the 40Ar/39Ar technique (Rolandi et al., 2003, Min. & Pet., 79) on hand-picked sanidine. The older ignimbrites are trachytic, but are highly altered with LOI from 8 to 17 wt%. Whole-rock compositions reflect variable element mobility during weathering; TiO2, Al2O3, Fe-oxide, and CaO tend to be enriched relative to average CI composition, whereas Na2O and K2O are depleted. X-ray diffraction identified major chabazite, kaolinite, and illite-smectite alteration products in some samples. The phenocryst mineralogy in all of the strata is typical for trachyte magma and consists of plagioclase (~An80 to ~An40), potassium feldspar (~Or50 to ~Or80), biotite (TiO2 = ~4.6 wt%, BaO = ~0.70 wt%, F = ~0.65 wt%), diopside (~Ca47Mg48Fe5 to ~Ca48Mg34Fe18), titanomagnetite, and uncommon Ca-amphibole. Relatively immobile trace elements Zr, Hf, Nb, and Th display similar abundance, linear trends, and ratios as those measured in the Campanian Ignimbrite: Th/Hf = ~4, Zr/Hf = ~50, and Zr/Nb = ~6. The similarity of trace element systematics and phenocryst mineralogy among the Campanian Ignimbrite and the older ignimbrites suggests that the magmagenesis processes and parental source have been relatively constant during the long period of trachyte volcanism in the Campanian Plain.

  10. Influence of liquid structure on diffusive isotope separation in molten silicates and aqueous solutions

    NASA Astrophysics Data System (ADS)

    Watkins, James M.; DePaolo, Donald J.; Ryerson, Frederick J.; Peterson, Brook T.

    2011-06-01

    Molecular diffusion in natural volcanic liquids discriminates between isotopes of major ions (e.g., Fe, Mg, Ca, and Li). Although isotope separation by diffusion is expected on theoretical grounds, the dependence on mass is highly variable for different elements and in different media. Silicate liquid diffusion experiments using simple liquid compositions were carried out to further probe the compositional dependence of diffusive isotopic discrimination and its relationship to liquid structure. Two diffusion couples consisting of the mineral constituents anorthite (CaAl 2Si 2O 8; denoted AN), albite (NaAlSi 3O 8; denoted AB), and diopside (CaMgSi 2O 6; denoted DI) were held at 1450 °C for 2 h and then quenched to ambient pressure and temperature. Major-element as well as Ca and Mg isotope profiles were measured on the recovered quenched glasses. In both experiments, Ca diffuses rapidly with respect to Si. In the AB-AN experiment, D Ca/ D Si ≈ 20 and the efficiency of isotope separation for Ca is much greater than in natural liquid experiments where D Ca/ D Si ≈ 1. In the AB-DI experiment, D Ca/ D Si ≈ 6 and the efficiency of isotope separation is between that of the natural liquid experiments and the AB-AN experiment. In the AB-DI experiment, D Mg/ D Si ≈ 1 and the efficiency of isotope separation for Mg is smaller than it is for Ca yet similar to that observed for Mg in natural liquids. The results from the experiments reported here, in combination with results from natural volcanic liquids, show clearly that the efficiency of diffusive separation of Ca isotopes is systematically related to the solvent-normalized diffusivity - the ratio of the diffusivity of the cation ( D Ca) to the diffusivity of silicon ( D Si). The results on Ca isotopes are consistent with available data on Fe, Li, and Mg isotopes in silicate liquids, when considered in terms of the parameter D cation/ D Si. Cations diffusing in aqueous solutions display a similar relationship between isotopic separation efficiency and Dcation/D, although the efficiencies are smaller than in silicate liquids. Our empirical relationship provides a tool for predicting the magnitude of diffusive isotopic effects in many geologic environments and a basis for a more comprehensive theory of isotope separation in liquid solutions. We present a conceptual model for the relationship between diffusivity and liquid structure that is consistent with available data.

  11. Detection of Labile Low-Molecular-Mass Transition Metal Complexes in Mitochondria

    PubMed Central

    McCormick, Sean P.; Moore, Michael J.; Lindahl, Paul A.

    2015-01-01

    Liquid chromatography was used with an on-line inductively coupled plasma mass spectrometer to detect low-molecular-mass (LMM) transition metal complexes in mitochondria isolated from fermenting yeast cells, human Jurkat cells, and mouse brain and liver. These complexes constituted 20 – 40% of total mitochondrial Mn, Fe, Zn, and Cu ions. The major LMM Mn complex in yeast mitochondria had a mass of ca. 1100 Da and a concentration of ~ 2 μM. Mammalian mitochondria contained a second Mn species with a mass of ca. 2000 Da at a comparable concentration. The major Fe complex in mitochondria isolated from exponentially growing yeast cells had a mass of ca. 580 Da; the concentration of Fe580 in mitochondria was ca. 100 μM. When mitochondria were isolated from fermenting cells in post-exponential phase, the mass of the dominant LMM Fe complex was ca. 1100 Da. Upon incubation, the intensity of Fe1100 declined and Fe580 increased, suggesting that the two are interrelated. Mammalian mitochondria contained Fe580 and 2 other Fe species (Fe2000 and Fe1100) at concentrations of ca. 50 μM each. The dominant LMM Zn species in mitochondria had a mass of ca. 1200 Da and a concentration of ca. 110 μM. Mammalian mitochondria contained a second major LMM Zn species at 1500 Da. The dominant LMM Cu species in yeast mitochondria had a mass of ca. 5000 Da and a concentration in yeast mitochondria of ca. 16 μM; Cu5000 was not observed in mammalian mitochondria. The dominant Co species in mitochondria, Co1200, had a concentration of 20 nM and was probably a cobalamin. Mammalian but not yeast mitochondria contained a LMM Mo species, Mo730, at ca. 1 μM concentration. Increasing Mn, Fe, Cu, and Zn concentrations 10 fold in the medium increased the concentration of the same element in the corresponding isolated mitochondria. Treatment with metal chelators confirmed that these LMM species were labile. The dominant S species at 1100 Da was not free GSH or GSSG. PMID:26018429

  12. Chemical abundances in the globular clusters NGC6229 and NGC6779

    NASA Astrophysics Data System (ADS)

    Khamidullina, D. A.; Sharina, M. E.; Shimansky, V. V.; Davoust, E.

    2014-10-01

    Long-slit medium-resolution spectra of the Galactic globular clusters (GCs) NGC6229 and NGC6779, obtained with the CARELEC spectrograph at the 1.93-m telescope of the Haute-Provence observatory, have been used to determine the age, helium abundance (Y), and metallicity [Fe/H] as well as the first estimate of the abundances of C, N, O, Mg, Ca, Ti, and Cr for these objects. We solved this task by comparing the observed spectra and the integrated synthetic spectra, calculated with the use of the stellar atmosphere models with the parameters preset for the stars from these clusters. The model mass estimates, T eff, and log g were derived by comparing the observed "color-magnitude" diagrams and the theoretical isochrones. The summing-up of the synthetic blanketed stellar spectra was conducted according to the Chabrier mass function. To test the accuracy of the results, we estimated the chemical abundances, [Fe/H], log t, and Y for the NGC5904 and NGC6254 clusters, which, according to the literature, are considered to be the closest analogues of the two GCs of our study. Using the medium-resolution spectra from the library of Schiavon et al., we obtained for these two clusters a satisfactory agreement with the reported estimates for all the parameters within the errors. We derived the following cluster parameters. NGC6229: [Fe/H] = -1.65 dex, t = 12.6 Gyr, Y = 0.26, [ α/Fe] = 0.28 dex; NGC6779: [Fe/H] = -1.9 dex, t = 12.6 Gyr, Y = 0.23, [ α/Fe] = 0.08 dex; NGC5904: [Fe/H] = -1.6 dex, t = 12.6 Gyr, Y = 0.30, [ α/Fe] = 0.35 dex; NGC6254: [Fe/H] = -1.52 dex, t = 11.2 Gyr, Y = 0.30, [ α/Fe] = 0.025 dex. The value [ α/Fe] denotes the average of the Ca and Mg abundances.

  13. The Interface Structure of FeSe Thin Film on CaF2 Substrate and its Influence on the Superconducting Performance.

    PubMed

    Qiu, Wenbin; Ma, Zongqing; Patel, Dipak; Sang, Lina; Cai, Chuanbing; Shahriar Al Hossain, Mohammed; Cheng, Zhenxiang; Wang, Xiaolin; Dou, Shi Xue

    2017-10-25

    The investigations into the interfaces in iron selenide (FeSe) thin films on various substrates have manifested the great potential of showing high-temperature-superconductivity in this unique system. In present work, we obtain FeSe thin films with a series of thicknesses on calcium fluoride (CaF 2 ) (100) substrates and glean the detailed information from the FeSe/CaF 2 interface by using scanning transmission electron microscopy (STEM). Intriguingly, we have found the universal existence of a calcium selenide (CaSe) interlayer with a thickness of approximate 3 nm between FeSe and CaF 2 in all the samples, which is irrelevant to the thickness of FeSe layers. A slight Se deficiency occurs in the FeSe layer due to the formation of CaSe interlayer. This Se deficiency is generally negligible except for the case of the ultrathin FeSe film (8 nm in thickness), in which the stoichiometric deviation from FeSe is big enough to suppress the superconductivity. Meanwhile, in the overly thick FeSe layer (160 nm in thickness), vast precipitates are found and recognized as Fe-rich phases, which brings about degradation in superconductivity. Consequently, the thickness dependence of superconducting transition temperature (T c ) of FeSe thin films is investigated and one of our atmosphere-stable FeSe thin film (127 nm) possesses the highest T c onset /T c zero as 15.1 K/13.4 K on record to date in the class of FeSe thin film with practical thickness. Our results provide a new perspective for exploring the mechanism of superconductivity in FeSe thin film via high-resolution STEM. Moreover, approaches that might improve the quality of FeSe/CaF 2 interfaces are also proposed for further enhancing the superconducting performance in this system.

  14. Structural and Microstructural Correlations of Physical Properties in Natural Almandine-Pyrope Solid Solution: Al70Py29

    NASA Astrophysics Data System (ADS)

    Sibi, N.; Subodh, G.

    2017-12-01

    Garnets are naturally occurring minerals with the general formula X3Y2Z3O12 having various applications. In the present study, the structural and physical properties of a garnet mineral obtained from Indian Rare Earth Ltd., Manavalakurichi, Tamil Nadu, India were comprehensively investigated. The compositional analysis using electron probe micro analysis (EPMA) revealed that the mineral belongs to almandine-pyrope solid solution (Al70Py29) with the chemical formula (Fe1.72Mg0.8Mn0.01Ca0.02) (Fe0.04Al2.36) Si2.93O12. Rietveld refinement of the x-ray diffraction pattern confirms that the space group is Ia{ - }\\overline{3} d with refined cubic lattice parameter a = 11.550(4) Å. The refined occupancy values of multiple cations in the dodecahedral and octahedral sites are in agreement with the EPMA data. Fourier transform infrared and FT Raman spectra show bands corresponding to almandine-pyrope solid solution. Peak splitting of IR and Raman bands confirms presence of multiple cations in the dodecahedral site. Thermogravimetric/differential thermal analysis shows that the mineral is stable up to 600°C in spite of the presence of Fe2+ ions. Low temperature magnetic susceptibility data is in agreement with the amount of Fe2+ ions present in the mineral. The dielectric constant of the mineral varied from 6 to 16.5 when sintered at temperatures ranging from 600°C to 1250°C.

  15. Porous, S-bearing silica in metal-sulfide nodules and in the interchondrule clastic matrix in two EH3 chondrites

    NASA Astrophysics Data System (ADS)

    Lehner, S. W.; Németh, P.; Petaev, M. I.; Buseck, P. R.

    2017-11-01

    Two new occurrences of porous, S-bearing, amorphous silica are described within metal-sulfide nodules (MSN) and as interchondrule patches in EH3 chondrites SAH 97072 and ALH 84170. This porous amorphous material, which was first reported from sulfide-bearing chondrules, consists of sinewy SiO2-rich areas containing S with minor Na or Ca as well as Fe, Mg, and Al. Some pores contain minerals including pyrite, pyrrhotite, and anhydrite. Most pores appear vacant or contain unidentified material that is unstable under analytical conditions. Niningerite, olivine, enstatite, albite, and kumdykolite occur enclosed within porous silica patches. Porous silica is commonly interfingered with cristobalite suggesting its amorphous structure resulted from high-temperature quenching. We interpret the S-bearing porous silica to be a product of silicate sulfidation, and the Na, Ca, Fe, Mg, and Al detectable within this material are chemical residues of sulfidized silicates and metal. The occurrence of porous silica in the cores of MSN, which are considered to be pre-accretionary objects, suggests the sulfidizing conditions occurred prior to final parent-body solidification. Ubiquitous S-bearing porous silica among sulfide-bearing chondrules, MSN, and in the interchondrule clastic matrix, suggests that similar sulfidizing conditions affected all the constituents of these EH3 chondrites.

  16. Application of artificial neural network in precise prediction of cement elements percentages based on the neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Eftekhari Zadeh, E.; Feghhi, S. A. H.; Roshani, G. H.; Rezaei, A.

    2016-05-01

    Due to variation of neutron energy spectrum in the target sample during the activation process and to peak overlapping caused by the Compton effect with gamma radiations emitted from activated elements, which results in background changes and consequently complex gamma spectrum during the measurement process, quantitative analysis will ultimately be problematic. Since there is no simple analytical correlation between peaks' counts with elements' concentrations, an artificial neural network for analyzing spectra can be a helpful tool. This work describes a study on the application of a neural network to determine the percentages of cement elements (mainly Ca, Si, Al, and Fe) using the neutron capture delayed gamma-ray spectra of the substance emitted by the activated nuclei as patterns which were simulated via the Monte Carlo N-particle transport code, version 2.7. The Radial Basis Function (RBF) network is developed with four specific peaks related to Ca, Si, Al and Fe, which were extracted as inputs. The proposed RBF model is developed and trained with MATLAB 7.8 software. To obtain the optimal RBF model, several structures have been constructed and tested. The comparison between simulated and predicted values using the proposed RBF model shows that there is a good agreement between them.

  17. Nitridation of a Super-Ferritic Stainless Steel for PEMFC Bipolar Plate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, H.; Turner, J. A.; Brady, M. P.

    2007-01-01

    AL29-4C alloy nitrided in pure nitrogen resulted in a nitrogen-modified oxide surface, which is the same as AISI446 nitrided under identical conditions. When the alloy was nitrided 24h at 900 C in N2-4H2, XRD and XPS analysis indicated that the surface layer consisted of a nitride outer layer ({approx}0.20 {micro}m) and an oxide inner layer ({approx} 0.82 {micro}m). According to XPS, the nitride outer layer is composed of CrN and [Cr(N),Fe]2N1-x, with much more Cr2N than Fe2N. Mn is migrated and enriched in the oxide inner layer and combined with chromium oxide.AL29-4C alloy nitrided in N2-4H2 resulted in low ICRmore » and excellent corrosion resistance in simulated PEMFC environments. Current was at ca. -3.0 {micro}A/cm2 in the PEMFC anode environment, and at ca. 0.3 {approx} 0.5 {micro}A/cm2 in the cathode environment. This is considered to be rather stable. After being polarized in a PEMFC environment, the ICR increased slightly compared with the as-nitrided sample, but was still rather low.« less

  18. [Influence of mineral matter on sulfur conversion in coal during combustion].

    PubMed

    Wei, Li-hong; Jiang, Xiu-min; Li, Ai-min

    2006-09-01

    Three species micro-pulverized coals(Hegang, Tiefa, Zhungeer coal) were studied, the mineral matters (MgO, CaO, Al2O3 and Fe3O4) were respectively added to the coals. The combustion of samples were studied to investigate the effect of mineral matter on transformation of sulfur during combustion by the combined of DTG and GC-MS, the flowmeter 50 mL/min, heating rate 20 degrees C/ min, oxygen volume percentage 20% . The SO2 release curve of primitive micro-pulverized coal appear three peaks during the combustion, but the demineralized sample appear two peaks. The species of coal has effect on temperature of the maximum release rate of SOz, the release rate of SO2 of Hegang coal is even in three temperature ranges, Tiefa coal appear maximum value about 500 degrees C and Zhungeer coal about 200 degrees C which probably due to the different amount of all kinds of sulfur in primitive coal sample. The mineral matter (MgO, CaO, Al2O3 and Fe3O4) have sulfur retention and catalyzing effect on SO2 the combustion of coal. The amount and species of mineral matter and species of coal determine the sulfur retention effect.

  19. Toxic and essential mineral elements content of black tea leaves and their tea infusions consumed in Iran.

    PubMed

    Salahinejad, Maryam; Aflaki, Fereydoon

    2010-04-01

    The metal contents of eleven black tea samples, four cultivated in Iran and seven imported, and their tea infusions were determined. Twelve elements consisting toxic metals (Al, As, Pb, Cr, Cd, and Ni) and essential mineral elements (Fe, Zn, Cu, Mn, Ca, and Mg) were analyzed using inductively coupled plasma atomic emission spectroscopy (ICP-AES). Al, Ca, Mg, and Mn ranged in black tea leaves at mg g(-1) levels, while Cr, Fe, Ni, Cu, Zn were at microg g(-1) levels. Analysis of variance showed no statistically significant differences among most elements determined in cultivated and imported black teas in Iran except for Ni and Cu. The extraction efficiency of each element into tea infusions was evaluated. The solubility of measured metals in infusion extracts varied widely and ranged from 0 to 59.3%. Among the studied elements, Cr, Pb, and Cd showed the lowest rates of solubility and Ni had the highest rates of solubility. The amount of toxic metals and essential mineral elements that one may take up through consumption of black tea infusion was estimated. The amount of realizing each element into tea infusions and acceptable daily intake, for safety consumption of black tea, was compared.

  20. Abundances and distribution of minerals and elements in high-alumina coal fly ash from the Jungar Power Plant, Inner Mongolia, China

    USGS Publications Warehouse

    Dai, S.; Zhao, L.; Peng, S.; Chou, C.-L.; Wang, X.; Zhang, Y.; Li, D.; Sun, Y.

    2010-01-01

    The fly ash from the Jungar Power Plant, Inner Mongolia, China, is unique because it is highly enriched in alumina (Al2O3>50%). The fly ash mainly consists of amorphous glass and mullite and trace amounts of corundum, quartz, char, calcite, K-feldspar, clay minerals, and Fe-bearing minerals. The mullite content in fly ash is as high as 37.4% because of high boehmite and kaolinite contents in feed coal. Corundum is a characteristic mineral formed during the combustion of boehmite-rich coal.Samples from the economizer were sieved into six size fractions (<120, 120-160, 160-300, 300-360, 360-500, and >500 mesh) and separated into magnetic, mullite+corundum+quartz (MCQ) and glass phases for mineralogical and chemical analysis. The corundum content increases but amorphous glass decreases with decreasing particle size. Fractions of small particle sizes are relatively high in mullite, probably because mullite was formed from fine clay mineral particles under high-temperature combustion condition. Similarly, fine corundum crystals formed in the boiler from boehmite in feed coal. The magnetic phase consists of hematite, magnetite, magnesioferrite, and MgFeAlO4 crystals. The MCQ phase is composed of 89% mullite, 6.1% corundum, 4.5% quartz, and 0.5% K-feldspar.Overall, the fly ash from the power plant is significantly enriched in Al2O3 with an average of 51.9%, but poor in SiO2, Fe2O3, CaO, MgO, Na2O, P2O5, and As. Arsenic, TiO2, Th, Al2O3, Bi, La, Ga, Ni, and V are high in mullite, and the magnetic matter is enriched in Fe2O3, CaO, MnO, TiO2, Cs, Co, As, Cd, Ba, Ni, Sb, MgO, Zn, and V. The remaining elements are high in the glass fraction. The concentration of K2O, Na2O, P2O5, Nb, Cr, Ta, U, W, Rb, and Ni do not clearly vary with particle size, while SiO2 and Hg decrease and the remaining elements clearly increase with decreasing particle size. ?? 2009 Elsevier B.V.

  1. Spatial Associations and Chemical Composition of Organic Carbon Sequestered in Fe, Ca, and Organic Carbon Ternary Systems.

    PubMed

    Sowers, Tyler D; Adhikari, Dinesh; Wang, Jian; Yang, Yu; Sparks, Donald L

    2018-05-25

    Organo-mineral associations of organic carbon (OC) with iron (Fe) oxides play a major role in environmental OC sequestration, a process crucial to mitigating climate change. Calcium has been found to have high coassociation with OC in soils containing high Fe content, increase OC sorption extent to poorly crystalline Fe oxides, and has long been suspected to form bridging complexes with Fe and OC. Due to the growing realization that Ca may be an important component of C cycling, we launched a scanning transmission X-ray microscopy (STXM) investigation, paired with near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, in order to spatially resolve Fe, Ca, and OC relationships and probe the effect of Ca on sorbed OC speciation. We performed STXM-NEXAFS analysis on 2-line ferrihydrite reacted with leaf litter-extractable dissolved OC and citric acid in the absence and presence of Ca. Organic carbon was found to highly associate with Ca ( R 2 = 0.91). Carboxylic acid moieties were dominantly sequestered; however, Ca facilitated the additional sequestration of aromatic and phenolic moieties. Also, C NEXAFS revealed polyvalent metal ion complexation. Our results provide evidence for the presence of Fe-Ca-OC ternary complexation, which has the potential to significantly impact how organo-mineral associations are modeled.

  2. CO2 release from variable carbonate compositions via thermal breakdown and magmatic assimilation at mid-crustal depths

    NASA Astrophysics Data System (ADS)

    Carter, L. B.; Dasgupta, R.

    2017-12-01

    Assimilation of crustal limestone in intruding magma has been found to release potentially significant [1-2] but varying amounts of CO2 to the exogenic system depending on pressure, temperature and magma composition [3-4]. However, most natural carbonates range from impure calcite to dolomite or ankerite and their behavior during hydrothermal processes and magma intrusion are less known [2,5-6]. We experimentally investigated both the thermal stability and reactions with hydrous basaltic and dacitic magmas at 800-1200 °C at 0.5 GPa for 3 Fe-bearing dolomite-calcite solid solutions. Dolomite breaks down into Fe-Mg oxides and CO2 at ≤800 °C. With increasing carbonate Ca/Mg, higher temperature is needed to reach similar decarbonation levels and the transition from Fe-dolomite + Mg-calcite as stable carbonate phases to only the latter. In the presence of magmas, carbonate is Mg-calcite or calcite, in addition to minerals seen in previous pure dolomite studies and natural systems [2-4,7-9], including ferropericlase, diopside, olivine with dolomite, anorthite with calcic carbonate, and wollastonite with rhyolitic melts. Thermal breakdown and assimilation increase with Mg/Ca ratios in the starting carbonate (<50% breakdown & <60% assimilation, respectively). At identical conditions, dolomite assimilation by dacite can release 4 times as much CO2 as limestone, surpassing basalt-dolomite. Though greater than other dacite-carbonate reactions, basalt releases a similar amount regardless of carbonate composition. With Mg/Ca≥0.48, release of CO2 from destabilization even at low temperature (≥900 °C) exceeds that from assimilation (≥1000 °C). Thus magma-carbonate interaction may have contributed several times the current arc output [10] to Earth's past atmosphere, which necessitates cataloging carbonate compositions globally for consideration in climate modeling. [1] Aiuppa et al. 2017 ESciRev (168)24-47; [2] Lee and Lackey 2015 Elem (11)125-130; [3] Carter and Dasgupta 2015 EPSL (427) 202-214; [4] Carter and Dasgupta 2016 G3 (17)3893-3916; [5] Warren 2000 ESciRev (52)1:81; [6] Franzolin et al. 2011 CMP (161)213-227; [7] Jolis et al. 2013 CMP (166)1335-1353; [8] Iacono-Marziano et al. 2008 CMP (155)719-738; [9] Mollo et al. 2010 Lithos (114)503-514; [10] Burton et al 2013 RevMinGeochem (75) 323-254.

  3. Major, minor, trace and rare earth elements in sediments of the Bijagós archipelago, Guinea-Bissau.

    PubMed

    Carvalho, Lina; Figueira, Paula; Monteiro, Rui; Reis, Ana Teresa; Almeida, Joana; Catry, Teresa; Lourenço, Pedro Miguel; Catry, Paulo; Barbosa, Castro; Catry, Inês; Pereira, Eduarda; Granadeiro, José Pedro; Vale, Carlos

    2018-04-01

    Sixty sediment samples from four sites in the Bijagós archipelago were characterized for fine fraction, loss on ignition, major, minor and trace elemental composition (Al, Fe, Ca, Mg, Ti, P, Zr, Mn, Cr, Sr, Ba, B, V, Li, Zn, Ni, Pb, As, Co, U, Cu, Cs and Cd), and the elements of the La-Lu series. Element concentrations were largely explained by the Al content and the proportion of fine fraction content, with the exception of Ca and Sr. Sediments showed enhanced Ti, U, Cr, As and Cd concentrations with respect to estimated upper crust values, most likely mirroring a regional signature. Rare earth elements were in deficit relatively to the North American Shale Composite (NASC), mainly in coarser material. No pronounced Ce-anomaly was observed, while Eu-anomalies were positive in most analyzed sediments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The Giant Branch of omega Centauri. IV. Abundance Patterns Based on Echelle Spectra of 40 Red Giants

    NASA Astrophysics Data System (ADS)

    Norris, John E.; Da Costa, G. S.

    1995-07-01

    Abundances of some 20 elements have been determined for a (biased) sample of 40 red giants having Mv < -1.5 in the chemically inhomogeneous globular cluster ω Centauri. The results are based on high-resolution, high signal-to-noise echelle spectra and permit one to examine the roles of primordial enrichment and stellar evolutionary mixing effects in the cluster. Our basic conclusions are as follows (1) There is an abundance range -1.8 < [Fe/H] < -0.8, and even more metal rich stars may exist in the cluster. (2) For the α (Mg, Si, Ca, Ti) and iron peak (Cr, Ni) elements and Sc and V, [metal/Fe] is flat as a function of [Fe/H] and is consistent with primordial enrichment from stars having mass greater than 10 Msun, as has been found for field halo stars. (3) There is a large scatter in the abundances of C, N, and 0. The bulk of the stars have -0.9 < [C/Fe] < -0.3 and [O/Fe] ˜ 0.3, as is found at the red giant branch tip in other "normal" (showing no spread in [Fe/H]) clusters of similar abundance, while there also exists a group of CN-strong stars having [C/Fe] ˜ -0.7 and [O/Fe] ˜ -0.5. Nitrogen appears to be enhanced in all of these carbon-depleted stars. These results are most readily explained in terms of evolutionary mixing effects not predicted by standard stellar evolution calculations and are consistent with the earlier suggestions of Cohen & Bell (1986) and Paltoglou & Norris (1989) concerning processing in both the CN and ON cycles in the stars being observed. In contrast, the group of CO-strong stars first identified by Persson et al. (1980) has [C/Fe] ˜ 0.0, [O/Fe] ˜ 0.4, and [N/Fe] ˜ 0.4 (or 0.9 if the nitrogen scale of Brown and Wallerstein is correct) and is suggestive of primordial enrichment of carbon and/or nitrogen from intermediate- and possibly low-mass stars, tempered by later stellar evolutionary effects. (4) [Na/Fe] and [Al/Fe] are anticorrelated with [O/Fe], and there is a positive correlation between [Na/Fe] and [Al/Fe], all of which are most readily explained in terms of evolutionary mixing effects as first suggested by Denisenkov & Denisenkova (1990). Such an explanation is supported by the similar ([Na/Fe], [O/Fe]) anticorrelation reported by Kraft et al. (1993) in the "normal" globular clusters. (5) For the heavy neutron-addition elements (in particular Y, Ba, La, and Nd) [heavy metal/Fe] rises as [Fe/H] increases, in sharp contrast with what is found in the "normal" clusters, while the relative abundances as a function of atomic number are suggestive of s-processing. The increase in [heavy metal/Fe] with [Fe/H] appears independent of the abundance of C, N, O, Na and Al and is most naturally explained as a primordial effect. Guided by the predictions of existing (somewhat uncertain) stellar evolution calculations, we suggest that this results from primordial enrichment from stars having mass as low as 1-3 Msun. (6) If the preceding suggestion is correct, chemical enrichment in ω Cen occurred over an extended period, perhaps ≥1 Gyr.

  5. Experimental investigation of Fe3+-rich majoritic garnet and its effect on majorite geobarometer

    NASA Astrophysics Data System (ADS)

    Tao, Renbiao; Fei, Yingwei; Bullock, Emma S.; Xu, Cheng; Zhang, Lifei

    2018-03-01

    Majoritic garnet [(Ca, Mg, Fe2+)3(Fe3+, Al, Si)2(SiO4)3] is one of the predominant and important constituents of upper mantle peridotite and ultra-deep subducted slabs. Majoritic substitution in garnet depends on pressure, and it has been used to estimate the formation pressure of natural majoritic garnet. Ferric iron (Fe3+) substitution occurs in natural majoritic garnets from mantle diamonds and shocked meteorites. However, available majorite geobarometers were developed without considering the effect of Fe3+ substitution in the structure. In this study, we systematically synthesized Fe3+- bearing majoritic garnets from 6.5 GPa to 15 GPa to evaluate the effect of Fe3+ on the majorite geobarometer. The Fe3+ contents of synthetic majoritic garnets were analyzed using the "Flank method" with the electron probe microanalyzer (EPMA). The results were compared with those based on the charge balance calculations. From the known synthesis pressures and measured Fe3+ contents, we developed a new majorite geobarometer for Fe3+-bearing majoritic garnets. Our results show that the existing majorite geobarometer, which does not take into account the Fe3+ substitution, could underestimate the formation pressure of majoritic garnets, especially for samples with a high majoritic component.

  6. Formation of unusual Cr5+ charge state in CaCr0.5Fe0.5O3 perovskite

    NASA Astrophysics Data System (ADS)

    Dai, Jian-Hong; Zhao, Qing; Sun, Qian; Zhang, Shuo; Wang, Xiao; Shen, Xu-Dong; Liu, Zhe-Hong; Shen, Xi; Yu, Ri-Cheng; Chan, Ting-Shan; Li, Lun-Xiong; Zhou, Guang-Hui; Yang, Yi-feng; Jin, Chang-Qing; Long, You-Wen

    2018-03-01

    A new oxide CaCr0.5Fe0.5O3 was prepared under high pressure and temperature conditions. It crystallizes in a B-site disordered Pbnm perovskite structure. The charge combination is determined to be Cr5+/Fe3+ with the presence of unusual Cr5+ state in octahedral coordination, although Cr4+ and Fe4+ occur in the related perovskites CaCrO3 and CaFeO3. The randomly distributed Cr5+ and Fe3+ spins lead to short-range ferromagnetic coupling, whereas an antiferromagnetic phase transition takes place near 50 K due to the Fe3+–O–Fe3+ interaction. In spite of the B-site Cr5+/Fe3+ disorder, the compound exhibits electrical insulating behavior. First-principles calculations further demonstrate the formation of {CaCr}}0.55+{Fe}}0.53+{{{O}}}3 charge combination, and the electron correlation effect of Fe3+ plays an important role for the insulting ground state. CaCr0.5Fe0.5O3 provides the first Cr5+ perovskite system with octahedral coordination, opening a new avenue to explore novel transition-metal oxides with exotic charge states. Project supported by the National Natural Science Foundation of China (Grant Nos. 11574378, 51772324, and 61404052),the National Basic Research Program of China (Grant No. 2014CB921500), and the Chinese Academy of Sciences (Grant Nos. YZ201555, QYZDB-SSW-SLH013, GJHZ1773, and XDB07030300).

  7. Empirical calibration of the near-infrared CaII triplet - IV. The stellar population synthesis models

    NASA Astrophysics Data System (ADS)

    Vazdekis, A.; Cenarro, A. J.; Gorgas, J.; Cardiel, N.; Peletier, R. F.

    2003-04-01

    We present a new evolutionary stellar population synthesis model, which predicts spectral energy distributions for single-age single-metallicity stellar populations (SSPs) at resolution 1.5 Å (FWHM) in the spectral region of the near-infrared CaII triplet feature. The main ingredient of the model is a new extensive empirical stellar spectral library that has been recently presented by Cenarro et al., which is composed of more than 600 stars with an unprecedented coverage of the stellar atmospheric parameters. Two main products of interest for stellar population analysis are presented. The first is a spectral library for SSPs with metallicities -1.7 < [Fe/H] < +0.2, a large range of ages (0.1-18 Gyr) and initial mass function (IMF) types. They are well suited to modelling galaxy data, since the SSP spectra, with flux-calibrated response curves, can be smoothed to the resolution of the observational data, taking into account the internal velocity dispersion of the galaxy, allowing the user to analyse the observed spectrum in its own system. We also produce integrated absorption-line indices (namely CaT*, CaT and PaT) for the same SSPs in the form of equivalent widths. We find the following behaviour for the CaII triplet feature in old-aged SSPs: (i) the strength of the CaT* index does not change much with time for all metallicities for ages larger than ~3 Gyr; (ii) this index shows a strong dependence on metallicity for values below [M/H]~-0.5 and (iii) for larger metallicities this feature does not show a significant dependence either on age or on the metallicity, being more sensitive to changes in the slope of power-like IMF shapes. The SSP spectra have been calibrated with measurements for globular clusters by Armandroff & Zinn, which are well reproduced, probing the validity of using the integrated CaII triplet feature for determining the metallicities of these systems. Fitting the models to two early-type galaxies of different luminosities (NGC 4478 and 4365), we find that the CaII triplet measurements cannot be fitted unless a very dwarf-dominated IMF is imposed, or if the Ca abundance is even lower than the Fe abundance. More details can be found in work by Cenarro et al.

  8. Microstructure and mechanical properties of Al-3Fe alloy processed by equal channel angular extrusion

    NASA Astrophysics Data System (ADS)

    Fuxiao, Yu; Fang, Liu; Dazhi, Zhao; Toth, Laszlo S.

    2014-08-01

    Al-Fe alloys are attractive for applications at temperatures beyond those normally associated with the conventional aluminum alloys. Under proper solidification condition, a full eutectic microstructure can be generated in Al-Fe alloys at Fe concentration well in excess of the eutectic composition of 1.8 wt.% Fe. The microstructure in this case is characterized by the metastable regular eutectic Al-Al6Fe fibers of nano-scale in diameter, instead of the equilibrium eutectic Al-Al3Fe phase. In this study, the microstructure and mechanical properties of the Al-3Fe alloy with metastable Al6Fe particles deformed by equal channel angular extrusion were investigated. Severe plastic deformation results in a microstructure consisting of submicron equiaxed Al grains with a uniform distribution of submicron Al6Fe particles on the grain boundaries. The room temperature tensile properties of the alloy with this microstructure will be presented.

  9. Metal transports and enrichments in iron depositions hosted in basaltic rocks. II: Metal rich fluids and Fe origin

    NASA Astrophysics Data System (ADS)

    Zhang, Ronghua; Zhang, Xuetong; Hu, Shumin

    2015-12-01

    This study focuses on revealing the mechanism of metal transport, enrichment and Fe origin of iron deposition during water basalt interactions occurred in basaltic rocks. Observations of the iron deposits (anhydrite-magnetite-pyroxene type deposits) hosted in K-rich basaltic rocks in the Mesozoic volcanic area of the Middle-Lower Yangtze River valley, China, indicate that the mechanism of metal transport and enrichment for those deposits are significant objective to scientists, and the Fe origin problem is not well resolved. Here the metal transport, enrichment and iron origin have been investigated in high temperature experiments of water basaltic interactions. These deposits were accompanying a wide zone with metal alteration. The effects of hydrothermal alteration on major rock-forming element concentrations in basaltic rock were investigated by systematically comparing the chemical compositions of altered rocks with those of fresh rocks. In the deposits, these metals are distributed throughout altered rocks that exhibit vertical zoning from the deeper to the shallow. Then, combined with the investigations of the metal-alterations, we performed kinetic experiments of water-basaltic rock interactions using flow-through reactors in open systems at temperatures from 20 °C to 550 °C, 23-34 MPa. Release rates for the rock-forming elements from the rocks have been measured. Experiments provide the release rates for various elements at a large temperature range, and indicate that the dissolution rates (release rates) for various elements vary with temperature. Si, Al, and K have high release rates at temperatures from 300 °C to 500 °C; the maximum release rates (RMX) for Si are reached at temperatures from 300 °C to 400 °C. The RMXs for Ca, Mg, and Fe are at low temperatures from 20 °C to 300 °C. Results demonstrate that Fe is not released from 400 °C to 550 °C, and indicate that when deep circling fluids passed through basaltic rocks, Fe was not mobile, and fixed in the rocks at temperatures from 400 °C to 550 °C. Significance of the results is to provide evidence that the Fe of ores originated from basalt, and Fe-oxides precipitated across the critical state of water. Simultaneously, Ca, Mg and Fe are fixed in the deeper altered rocks (mafic minerals). But, Fe was dissolved at relatively low temperatures (100-300 °C). Si, Al, and K were easily mobile from basalt by upward flowing fluids from 300 °C to 400 °C and transported to the upper part (silicified and argillized rock).

  10. Raman spectroscopic study of ancient South African domestic clay pottery

    NASA Astrophysics Data System (ADS)

    Legodi, M. A.; de Waal, D.

    2007-01-01

    The technique of Raman spectroscopy was used to examine the composition of ancient African domestic clay pottery of South African origin. One sample from each of four archaeological sites including Rooiwal, Lydenburg, Makahane and Graskop was studied. Normal dispersive Raman spectroscopy was found to be the most effective analytical technique in this study. XRF, XRD and FT-IR spectroscopy were used as complementary techniques. All representative samples contained common features, which were characterised by kaolin (Al 2Si 2O 5(OH) 5), illite (KAl 4(Si 7AlO 20)(OH) 4), feldspar (K- and NaAlSi 3O 8), quartz (α-SiO 2), hematite (α-Fe 2O 3), montmorillonite (Mg 3(Si,Al) 4(OH) 2·4.5H 2O[Mg] 0.35), and calcium silicate (CaSiO 3). Gypsum (CaSO 4·2H 2O) and calcium carbonates (most likely calcite, CaCO 3) were detected by Raman spectroscopy in Lydenburg, Makahane and Graskop shards. Amorphous carbon (with accompanying phosphates) was observed in the Raman spectra of Lydenburg, Rooiwal and Makahane shards, while rutile (TiO 2) appeared only in Makahane shard. The Raman spectra of Lydenburg and Rooiwal shards further showed the presence of anhydrite (CaSO 4). The results showed that South African potters used a mixture of clays as raw materials. The firing temperature for most samples did not exceed 800 °C, which suggests the use of open fire. The reddish brown and grayish black colours were likely due to hematite and amorphous carbon, respectively.

  11. Mineralogy of metasomatic rocks and geochronology of the Olhovka porphyry-copper deposit, Chukotka, Russia

    NASA Astrophysics Data System (ADS)

    Rogacheva, Lyuba; Baksheev, Ivan

    2010-05-01

    The Olkhovka porphyry-copper deposit located on the border of foreland of the Okhotsk-Chukotka volcanic belt (OCVB) and a ledge composed of the Late Jurassic-Early Cretaceous Uda-Murgal arc (J3-K1) rocks is hosted by monzonite stock attributed to the Upper Cretaceous Kavralyan complex - K2) We estimated age of the Olkhovka monzonite by Rb-Sr and U-Pb methods. Rb-Sr age was determine om the basis of isotopic analysis of 8 monomineralic samples (potassium feldspar, plagioclase, amphibole, and dark mica). Isochron constructed on the basis of Rb-Sr data corresponds to the age of 78 + 2.6 Ma (MSWD=0.23). The Rb-Sr age is supported by U-Pb data derived from zircon of the same rock. One hundred and three single crystals of zircon were analyzed. Uranium content ranges from 52.66 ppm to 579.64 ppm; U/Th isotopic ratio varies from 0.567 to 1.746; age is 78.02+0.65 Ma (MSWD = 2.8). Monzonite is propylitized in variable degree. Propylite is composed of actinolite, chlorite, albite, quartz, and calcite. Propylite are cut by quartz-tourmaline veins. In addition, quartz-tourmaline metasomatic rock was identified in rhyolite ignimbrite out of the stock. Microscopically, tourmaline crystals of both types are oscilatory zoned that is caused by variable Fe content. Tourmalines of both assemblages can be classified as intermediate member of the schorl ("oxy-schorl")-dravite ("oxy-dravite") series. The Fetot/ (Fetot+Mg) varies from 0.31 to 0.95 in propylitic tourmaline and from 0.11 to 0.49, in quartz-tourmaline altered rocks from ignimbrite. Despite similar composition of both tourmalines, the major isomorphic substitutions in them are different. In propylite tourmaline, it is Fe → Al, whereas in the second case, it is Fe → Mg with certain effect of the Fe → Al type. Fe → Al isomorphic substitution is typical of porphyry style deposits (Baksheev et al., 2009 [1]). Therefore, we can conclude that quartz-tourmaline alteration in ignimbrite does not related to the formation of the deposit. Chlorite from propylitized monzonite occurs as flakes up to few hundred microns in size. The mineral is associated with muscovite and actinolite. The Fetot/ (Fetot+Mg) ratio ranges from 0.27 to 0.46 that allowing attribution this chlorite to Fe-rich clinochlore. White mica studied here belongs to muscovite ( 3.04-3.33 apfu Si). Amphiboles evolved from primary magnesihorblende (6.86 apfu Si, 0.48 apfu Na, 1.72 apfu Ca, Mg# 0.71) through early metasomatic actinolite hornblende (7.54 apfu Si, 0.18 apfu Na, 1.81 apfu Ca, Mg# 0.71) to late metasomatic actinolite (7.76 apfu Si, 0.07 apfu Na, 1.74 apfu Ca, Mg# 0.69). Thus, we obtained first data on age of monzonite stock, which hosts porphyry-copper deposit. Monzonite is of rather young age probably corresponding to the final stage of the OCVB evolution (Tikhomirov et al., 2006 [2]), . Mineralogy and chemical composition of minerals from propylite were studied. In general chemical data are consistent with those from other porphyry-copper deposits. References: [1] Baksheev I.A, TikhomirovP.L., Yapaskurt, V.O., Vigasina M.F., Prokofev V.Yu.&. Ustinov V.I. (2009): Tourmaline of the Mramorny tin cluster, Chukotka Peninsula, Russia. Canad. Mineral. 47 (5), 1177-1194. [2] P.L Tikhomirov, V.V. Akinin V.O. Ispolatov P. Alexsandr et al. Age of north part of OCVB: New Ar-Ar and U-Pb geochronology data. (2006) Stratigrafiya. Geologicheskaya korrelyatsiya.14. 5. 81-95 in russian.

  12. Mass and number size distributions of particulate matter components: comparison of an industrial site and an urban background site.

    PubMed

    Taiwo, Adewale M; Beddows, David C S; Shi, Zongbo; Harrison, Roy M

    2014-03-15

    Size-resolved composition of particulate matter (PM) sampled in the industrial town of Port Talbot (PT), UK was determined in comparison to a typical urban background site in Birmingham (EROS). A Micro-Orifice Uniform Deposit Impactor (MOUDI) sampler was deployed for two separate sampling campaigns with the addition of a Grimm optical spectrometer at the PT site. MOUDI samples were analysed for water-soluble anions (Cl(-), NO₃(-) and SO₄(2-)) and cations (Na(+), NH4(+), K(+), Mg(2+) and Ca(2+)) and trace metals (Al, V, Cr, Mn, Fe, Cu, Zn, Sb, Ba and Pb). The PM mass distribution showed a predominance of fine particle (PM₂.₅) mass at EROS whereas the PT samples were dominated by the coarse fraction (PM₂.₅₋₁₀). SO₄(2-), Cl(-), NH4(+), Na(+), NO₃(-), and Ca(2+) were the predominant ionic species at both sites while Al and Fe were the metals with highest concentrations at both sites. Mean concentrations of Cl(-), Na(+), K(+), Ca(2+), Mg(2+), Cr, Mn, Fe and Zn were higher at PT than EROS due to industrial and marine influences. The contribution of regional pollution by sulphate, ammonium and nitrate was greater at EROS relative to PT. The traffic signatures of Cu, Sb, Ba and Pb were particularly prominent at EROS. Overall, PM at EROS was dominated by secondary aerosol and traffic-related particles while PT was heavily influenced by industrial activities and marine aerosol. Profound influences of wind direction are seen in the 72-hour data, especially in relation to the PT local sources. Measurements of particle number in 14 separate size bins plotted as a function of wind direction and speed are highly indicative of contributing sources, with local traffic dominant below 0.5 μm, steelworks emissions from 0.5 to 15 μm, and marine aerosol above 15 μm. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. CO2 sensing of La0.875Ca0.125FeO3 in wet vapor: a comparison of experimental results and first-principles calculations.

    PubMed

    Wang, Xiaofeng; Chen, Yanping; Qin, Hongwei; Li, Ling; Shi, Changmin; Liu, Liang; Hu, Jifan

    2015-05-28

    Experimental results show that with an increase of relative humidity, the resistance of La0.875Ca0.125FeO3 decreases at room temperature but increases at higher temperatures (140-360 °C). The humid effect at room temperature is due to the movement of H(+) or H3O(+) inside of the condensed water layer on the surface of La0.875Ca0.125FeO3. Regarding the humid effect at high temperatures, the density functional theory (DFT) calculations show that H2O can be adsorbed onto the La0.875Ca0.125FeO3 surface in the molecular and dissociative adsorption configurations, where the La0.875Ca0.125FeO3 surface gains some electrons from H2O or its dissociative products, consistent with our observation. Experimental results also show that CO2 sensing response at high temperatures decreases with an increase of room-temperature relative humidity. DFT calculations indicate that CO2 adsorbed onto the La0.875Ca0.125FeO3(010) surface, where high concentration oxygen adsorption occurs without water adsorption nearby, releases some electrons into the semiconductor surface, playing the role of a donor. The interaction between CO2 and the local La0.875Ca0.125FeO3(010) surface with pre-adsorption of H2O nearby results in some electron transfer from the La0.875Ca0.125FeO3 surface to CO2, which is responsible for the weakening of CO2 response at high temperatures for La0.875Ca0.125FeO3 with an increase of room-temperature relative humidity.

  14. Magnetic solid base catalyst CaO/CoFe2O4 for biodiesel production: Influence of basicity and wettability of the catalyst in catalytic performance

    NASA Astrophysics Data System (ADS)

    Zhang, Pingbo; Han, Qiuju; Fan, Mingming; Jiang, Pingping

    2014-10-01

    A novel magnetic solid base catalyst CaO/CoFe2O4 was successfully prepared with CoFe2O4 synthesized by hydrothermal method as the magnetic core and applied to the transesterification of soybean oil for the production of biodiesel. The magnetic solid base catalysts were characterized by a series of techniques including CO2-TPD, powder XRD, TGA, TEM and the contact angle measurement of the water droplet. It was demonstrated that CaO/CoFe2O4 has stronger magnetic strength indicating perfect utility for repeated use and better basic strength. Compared with CaO/ZnFe2O4 and CaO/MnFe2O4, solid base catalyst CaO/CoFe2O4 has better catalytic performance, weaker hydroscopicity and stronger wettability, demonstrating that catalytic performance was relative to both basicity of catalyst and the full contact between the catalyst and the reactants, but the latter was a main factor in the catalytic system.

  15. [Effects of phosphorus sources on phosphorus fractions in rhizosphere soil of wild barley genotypes with high phosphorus utilization efficiency].

    PubMed

    Cai, Qiu-Yan; Zhang, Xi-Zhou; Li, Ting-Xuan; Chen, Guang-Deng

    2014-11-01

    High P-efficiency (IS-22-30, IS-22-25) and low P-efficiency (IS-07-07) wild barley cultivars were chosen to evaluate characteristics of phosphorus uptake and utilization, and properties of phosphorus fractions in rhizosphere and non-rhizosphere in a pot experiment with 0 (CK) and 30 mg P · kg(-1) supplied as only Pi (KH2PO4), only Po (phytate) or Pi + Po (KH2PO4+ phytate). The results showed that dry matter and phosphorus accumulation of wild barley in the different treatments was ranked as Pi > Pi + Po > Po > CK. In addition, dry matter yield and phosphorus uptake of wild barley with high P-efficiency exhibited significantly greater than that with low P-efficiency. The concentration of soil available phosphorus was significantly different after application of different phosphorus sources, which was presented as Pi > Pi + Po > Po. The concentration of soil available phosphorus in high P-efficiency wild barley was significantly higher than that of low P-efficiency in the rhizosphere soil. There was a deficit in rhizosphere available phosphorus of high P-efficiency wild barley, especially in Pi and Pi+Po treatments. The inorganic phosphorus fractions increased with the increasing Pi treatment, and the concentrations of inorganic phosphorus fractions in soil were sorted as follows: Ca10-P > O-P > Fe-P > Al-P > Ca2-P > Ca8-P. The contents of Ca2-P and Ca8-P for high P-efficiency wild barley showed deficits in rhizosphere soil under each phosphorus source treatment. In addition, enrichment of Al-P and Fe-P was observed in Pi treatment in rhizosphere soil. The concentrations of organic phosphorus fractions in soil were sorted as follows: moderate labile organic phosphorus > moderate resistant, resistant organic phosphorus > labile organic phosphorus. The labile and moderate labile organic phosphorus enriched in rhizosphere soil and the greatest enrichment appeared in Pi treatment. Furthermore, the concentrations of moderate resistant organic phosphorus and resistant organic phosphorus decreased in rhizosphere soil. The concentrations of labile and moderate labile organic phosphorus in rhizosphere soil of high P-efficiency wild barley were significantly higher than that of low P-efficiency wild barley in each phosphorus source treatment. However, moderate resistant organic phosphorus and resistant organic phosphorus concentrations had no significant difference between the two genotypes. Wild barley with high P-efficiency demonstrated a greater ability of mobilization and uptake Ca2-P, Ca8-P, Al-P and labile organic phosphorus than that with low P-efficiency under Pi deficiency.

  16. Provenance of the Neogene Surma Group from the Chittagong Tripura Fold Belt, southeast Bengal Basin, Bangladesh: Constraints from whole-rock geochemistry and detrital zircon U-Pb ages

    NASA Astrophysics Data System (ADS)

    Rahman, M. Julleh Jalalur; Xiao, Wenjiao; McCann, Tom; Songjian, Ao

    2017-10-01

    Miocene Surma Group from the Chittagong Tripura Fold Belt (CTFB), southeast Bengal Basin has been analyzed to evaluate their provenance, tectonic settings and paleoweathering conditions. The sandstones show moderate to high contents of SiO2 (65-80%; 75% on average), and Al2O3 (9.94% on average), with Fe2O3 (total Fe as Fe2O3) + MgO contents of 5.1%, TiO2 (0.57% on average). Compared to the upper continental crust (UCC), the sandstones are depleted in CaO (1.49%) and enriched in Al2O3, Fe2O3 and Na2O. The Neogene shales of the Surma Group are in fair concurrence when compared to the NASC (North American Shale Composite), UCC (the upper continental crust) with the exception of the low content of CaO but when compared with the PAAS (Post-Archaean Australian Shale), the Neogene shales are a little more depleted in Al2O3 content. Sandstones and shales have Eu/Eu∗ ∼0.61 and ∼0.65, (La/Lu)N ∼9.06 and ∼8.70, La/Sc- ∼3.90 and ∼2.86, Th/Sc ∼1.19 and ∼1.41, La/Co- ∼3.69 and ∼2.42, Th/Co ∼1.08 and ∼1.20 and Cr/Th ∼7.90 and ∼5.88 ratios as well as Chondrite-normalized REE patterns with flat HREE, LREE enrichment, and negative Eu anomalies indicate the derivation from predominantly felsic sources subjected to low to moderate chemical weathering [Chemical index of alteration (CIA) values of sandstones- 31.11-74.46, av. 60.08); shales- 43.96-73.07, av. 61.80]. Integrated geochemical and zircon U-Pb studies reveal that main sediment input might have been from the Himalaya with mixing influence from the east of the Indo-Burman Ranges in an active margin setting at the convergence of the Indian and Burmese plates.

  17. Fe²⁺ block and permeation of CaV3.1 (α1G) T-type calcium channels: candidate mechanism for non-transferrin-mediated Fe²⁺ influx.

    PubMed

    Lopin, Kyle V; Gray, I Patrick; Obejero-Paz, Carlos A; Thévenod, Frank; Jones, Stephen W

    2012-12-01

    Iron is a biologically essential metal, but excess iron can cause damage to the cardiovascular and nervous systems. We examined the effects of extracellular Fe²⁺ on permeation and gating of Ca(V)3.1 channels stably transfected in HEK293 cells, by using whole-cell recording. Precautions were taken to maintain iron in the Fe²⁺ state (e.g., use of extracellular ascorbate). With the use of instantaneous I-V currents (measured after strong depolarization) to isolate the effects on permeation, extracellular Fe²⁺ rapidly blocked currents with 2 mM extracellular Ca²⁺ in a voltage-dependent manner, as described by a Woodhull model with K(D) = 2.5 mM at 0 mV and apparent electrical distance δ = 0.17. Extracellular Fe²⁺ also shifted activation to more-depolarized voltages (by ∼10 mV with 1.8 mM extracellular Fe²⁺) somewhat more strongly than did extracellular Ca²⁺ or Mg²⁺, which is consistent with a Gouy-Chapman-Stern model with surface charge density σ = 1 e(-)/98 Ų and K(Fe) = 4.5 M⁻¹ for extracellular Fe²⁺. In the absence of extracellular Ca²⁺ (and with extracellular Na⁺ replaced by TEA), Fe²⁺ carried detectable, whole-cell, inward currents at millimolar concentrations (73 ± 7 pA at -60 mV with 10 mM extracellular Fe²⁺). With a two-site/three-barrier Eyring model for permeation of Ca(V)3.1 channels, we estimated a transport rate for Fe²⁺ of ∼20 ions/s for each open channel at -60 mV and pH 7.2, with 1 μM extracellular Fe²⁺ (with 2 mM extracellular Ca²⁺). Because Ca(V)3.1 channels exhibit a significant "window current" at that voltage (open probability, ∼1%), Ca(V)3.1 channels represent a likely pathway for Fe²⁺ entry into cells with clinically relevant concentrations of extracellular Fe²⁺.

  18. Longitudinal spin Seebeck effect in various garnet ferrites

    NASA Astrophysics Data System (ADS)

    Uchida, K.; Nonaka, T.; Kikkawa, T.; Kajiwara, Y.; Saitoh, E.

    2013-03-01

    The longitudinal spin Seebeck effect (LSSE) is investigated in various garnet ferrites Y3-xRxFe5-yMyO12 (R=Gd, Ca; M=Al, Mn, V, In, Zr) by means of the inverse spin Hall effect in Pt films. The magnitude of the LSSE voltage in the Pt/Y3-xRxFe5-yMyO12 samples is found to be enhanced with increasing concentration of Fe in the garnet ferrites, which can be explained by a change in the spin-mixing conductance at the Pt/Y3-xRxFe5-yMyO12 interfaces. We also investigate the dependence of the LSSE voltage on macroscopic magnetic parameters of Y3-xRxFe5-yMyO12. The experimental results show that the LSSE voltage in the Pt/Y3-xRxFe5-yMyO12 samples has a positive correlation with the Curie temperature and the saturation magnetization, but no clear correlation with the gyromagnetic ratio and the Gilbert damping constant of the samples.

  19. Effects of a low severity prescribed fire on water-soluble elements in ash from a cork oak (Quercus suber) forest located in the northeast of the Iberian Peninsula

    USGS Publications Warehouse

    Pereira, P.; beda, X.; Martin, D.; Mataix-Solera, J.; Guerrero, C.

    2011-01-01

    Wildfire is the major disturbance in Mediterranean forests. Prescribed fire can be an alternative to reduce the amount of fuel and hence decrease the wildfire risk. However the effects of prescribed fire must be studied, especially on ash properties, because ash is an important nutrient source for ecosystem recovery. The aim of this study is to determine the effects of a low severity prescribed fire on water-soluble elements in ash including pH, electrical conductivity (EC), calcium (Ca), magnesium (Mg), sodium (Na), potassium (K), aluminum (Al), manganese (Mn), iron (Fe), zinc (Zn), silica (SiO2) and total sulphur (TS). A prescribed fire was conducted in a cork oak (Quercus suber) (Q.S) forest located in the northeast part of the Iberian Peninsula. Samples were collected from a flat plot of 40??70m mainly composed of Q.S and Quercus robur (Q.R) trees. In order to understand the effects of the prescribed fire on the soluble elements in ash, we conducted our data analysis on three data groups: all samples, only Q.S samples and only Q.R samples. All three sample groups exhibited a significant increase in pH, EC (p<0.001), water-soluble Ca, Mg, Na, SiO2 and TS and a decrease in water-soluble Mn, Fe and Zn. Differences were identified between oak species for water-soluble K, Al and Fe. In Q.S samples we registered a significant increase in the first two elements p<0.001 and p<0.01, respectively, and a non-significant impact in the third, at p<0.05. In Q.R data we identified a non-significant impact on water-soluble K and Al and a significant decrease in water-soluble Fe (p<0.05). These differences are probably due to vegetation characteristics and burn severity. The fire induced a higher variability in the ash soluble elements, especially in Q.S samples, that at some points burned with higher severity. The increase of pH, EC, Ca, Mg, Na and K will improve soil fertility, mainly in the study area where soils are acidic. The application of this low severity prescribed fire will improve soil nutrient status without causing soil degradation and thus is considered to be a good management strategy. ?? 2010 Elsevier Inc.

  20. Characteristics of anthropogenic magnetic materials in roadside dusts in Seoul, Korea using thermo-magnetic behaviors and electron microscope observations

    NASA Astrophysics Data System (ADS)

    Kim, W.; Doh, S.; Park, Y.

    2006-12-01

    It has been previously reported that magnetic concentration parameter (e.g., magnetic susceptibility) has a close affinity with heavy metal concentration in roadside dust of the Seoul metropolitan area. Magnetic concentration and magnetic particle size show systematic seasonal fluctuations (high and large during winter; low and small in summer) because of seasonal influx variation of anthropogenic magnetic materials. These observations suggest that magnetic parameters could be utilized as a proxy method of assessing heavy metal pollution in urban areas. In order to characterize anthropogenic magnetic materials and to find their potential sources, magnetic extracts from roadside dusts of Seoul metropolitan area were subject to SEM observation, elemental analysis (EDS), and thermo-magnetic experiments. Magnetic materials from vehicle emission and abraded brake lining were also observed for the comparison. The magnetic particles can be classified based on the morphology and elemental composition of the particles. Magnetic spherules are the most frequently observed type of particle throughout the study area. These particles are often associated with the elemental C and Al-Ca-Na-Si materials, and are believed to be the product of fossil fuel combustions in power plants, industries, and domestic heating systems. Aggregates of iron-oxides and Fe-C-S materials are probably originated from vehicle emission, while aggregates of pure Fe and Al-Ca-Fe-K-Mg-Si materials appear to be derived from abrasion of motor vehicle brake system. These aggregates are frequently observed in industrial sections of the city as well as areas of heavy traffic. Angular magnetic particles accompanied by silicates are only observed in park area and probably formed by natural process such as pedogenesis or weathering. Thermo-magnetic experiments indicate that the major magnetic phase in the studied samples is magnetite. Two distinctive behaviors observed are the presence of low Curie temperature magnetic phase and under- recover of susceptibility on cooling. It is considered that Fe-C-S magnetic aggregates possibly behaved like pyrrhotite, and thus recognized as low Curie temperature magnetic phase. A factor causing under-recover of susceptibility is attributed to some of magnetic spherules associated with C and Al-Ca-Na-Si materials which possibly behaved like iron-oxide containing impurities. Overall, this study shows that the magnetic methods in conjunction with SEM observations and elemental analyses for urban roadside dust can be used as a powerful tool for assessment of pollution features in an urban area in terms of source and spatial distribution of anthropogenic magnetic materials and associated heavy metals.

  1. Effects of a low severity prescribed fire on water-soluble elements in ash from a cork oak (Quercus suber) forest located in the northeast of the Iberian Peninsula.

    PubMed

    Pereira, Paulo; Ubeda, Xavier; Martin, Deborah; Mataix-Solera, Jorge; Guerrero, César

    2011-02-01

    Wildfire is the major disturbance in Mediterranean forests. Prescribed fire can be an alternative to reduce the amount of fuel and hence decrease the wildfire risk. However the effects of prescribed fire must be studied, especially on ash properties, because ash is an important nutrient source for ecosystem recovery. The aim of this study is to determine the effects of a low severity prescribed fire on water-soluble elements in ash including pH, electrical conductivity (EC), calcium (Ca), magnesium (Mg), sodium (Na), potassium (K), aluminum (Al), manganese (Mn), iron (Fe), zinc (Zn), silica (SiO(2)) and total sulphur (TS). A prescribed fire was conducted in a cork oak (Quercus suber) (Q.S) forest located in the northeast part of the Iberian Peninsula. Samples were collected from a flat plot of 40×70m mainly composed of Q.S and Quercus robur (Q.R) trees. In order to understand the effects of the prescribed fire on the soluble elements in ash, we conducted our data analysis on three data groups: all samples, only Q.S samples and only Q.R samples. All three sample groups exhibited a significant increase in pH, EC (p<0.001), water-soluble Ca, Mg, Na, SiO(2) and TS and a decrease in water-soluble Mn, Fe and Zn. Differences were identified between oak species for water-soluble K, Al and Fe. In Q.S samples we registered a significant increase in the first two elements p<0.001 and p<0.01, respectively, and a non-significant impact in the third, at p<0.05. In Q.R data we identified a non-significant impact on water-soluble K and Al and a significant decrease in water-soluble Fe (p<0.05). These differences are probably due to vegetation characteristics and burn severity. The fire induced a higher variability in the ash soluble elements, especially in Q.S samples, that at some points burned with higher severity. The increase of pH, EC, Ca, Mg, Na and K will improve soil fertility, mainly in the study area where soils are acidic. The application of this low severity prescribed fire will improve soil nutrient status without causing soil degradation and thus is considered to be a good management strategy. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Geochemistry and genesis of the angrites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mittlefehldt, D.W.; Lindstrom, M.M.

    1990-11-01

    The angrites Angra dos Reis, LEW86010, and LEW87051 are petrologically and compositionally similar achondrites. All angrites have high FeO/MnO ratios of 80-94 and very low CI normalized Na/Sm ratios of 0.001-0.003. High abundances of oxidized Fe and low abundances of moderately volatile Na most likely resulted from parent body processes, such as magmatic outgassing, rather than nebular processes. All angrites have fractionated Ca/Al ratios, with Angra dos Reis exhibiting the most extreme ratio (3.1 {times} CI). For Angra dos Reis, cumulus material may be the cause of the high Ca/Al ratio. Refractory element abundances of LEW86010 and LEW87051 show similarmore » patterns, while Angra dos Reis has both greater enrichments in these elements and more fractionated patterns. Compositional and petrologic constraints indicate that LEW86010 and LEW87051 are related via olivine control. The refractory element abundances and mg{number sign} of LEW86010 can be approximated by removal of olivine from LEW87051, suggesting that LEW86010 may be a residual melt from a LEW87051-like precursor. Alternatively, LEW87051 may have formed via olivine accumulation from a LEW86010-like precursor. The differences between the LEW86010-LEW87051 duo and Angra dos Reis suggest that either the angrite parent body was heterogeneous or that Angra dos Reis was formed on a separate parent body. Based on FeO/MnO ratios and normative mineralogies, the angrite parent body(ies) may be similar in bulk composition to one of the carbonaceous chondrite groups, particularly CI-CM-CO.« less

  3. The influence of Ca substitution on LaFeO3 nanoparticles in terms of structural and magnetic properties.

    PubMed

    Lin, Qing; Xu, Jianmei; Yang, Fang; Yang, Xingxing; He, Yun

    2018-01-01

    The nanocrystalline structure of La 1 -x Ca x FeO 3 was prepared by a sol-gel method involving an auto-combustion process. The incorporation of rare-earths in LaFeO 3 induces strain in magnetic properties, especially in terms of the following parameters: replacement amount, oxygen partial pressure, and calcination temperature. To determine the effects of the amount of Ca 2+ ion doping agent and the calcination temperature on the microstructure, particle morphology, and magnetic properties of LaFeO 3 crystal, we performed the following respective analytical methods: X-ray powder diffraction, Fourier-transform infrared (FT-IR) spectroscopy, scanning electron microscopy, and vibrating sample magnetometer tests. The orthorhombic structure of LaFeO 3 perovskite did not change even when it was doped with Ca 2+ ions, and its space group continued to be Pnma (No.62). FT-IR spectra confirmed that the main band appearing at 568 cm -1 is due to the antisymmetric stretching vibration of Fe-O-Fe bonds in FeO 6 . The introduction of Ca inhibits the growth of grains but the morphology of particles is improved. With an increasing concentration of Ca 2+ ions, magnetic behavior of the samples also witnessed an increasing trend in a proportionate manner. With an increase in calcination temperature, the enclosed area of the magnetic hysteresis curve of the sample reduced remarkably. The growth of nanoparticles can be restrained with an increase of Ca content that is used as doping agent. The magnetic behavior of La 1 -x Ca x FeO 3 tilts towards G-type antiferromagnetism; the magnetic orientation is achieved from the super exchange interaction of Fe 3+ ions with oxygen ions.

  4. Fractional iron solubility of aerosol particles enhanced by biomass burning and ship emission in Shanghai, East China.

    PubMed

    Fu, H B; Shang, G F; Lin, J; Hu, Y J; Hu, Q Q; Guo, L; Zhang, Y C; Chen, J M

    2014-05-15

    In terms of understanding Fe mobilization from aerosol particles in East China, the PM2.5 particles were collected in spring at Shanghai. Combined with the backtrajectory analysis, the PM2.5/PM10 and Ca/Al ratios, a serious dust-storm episode (DSE) during the sampling was identified. The single-particle analysis showed that the major iron-bearing class is the aluminosilicate dust during DSE, while the Fe-bearing aerosols are dominated by coal fly ash, followed by a minority of iron oxides during the non-dust storm days (NDS). Chemical analyses of samples showed that the fractional Fe solubility (%FeS) is much higher during NDS than that during DSE, and a strong inverse relationship of R(2)=0.967 between %FeS and total atmospheric iron loading were found, suggested that total Fe (FeT) is not controlling soluble Fe (FeS) during the sampling. Furthermore, no relationship between FeS and any of acidic species was established, suggesting that acidic process on aerosol surfaces are not involved in the trend of iron solubility. It was thus proposed that the source-dependent composition of aerosol particles is a primary determinant for %FeS. Specially, the Al/Fe ratio is poorly correlated (R(2)=0.113) with %FeS, while the apparent relationship between %FeS and the calculated KBB(+)/Fe ratio (R(2)=0.888) and the V/Fe ratio (R(2)=0.736) were observed, reflecting that %FeS could be controlled by both biomass burning and oil ash from ship emission, rather than mineral particles and coal fly ash, although the latter two are the main contributors to the atmospheric Fe loading during the sampling. Such information can be useful improving our understanding on iron solubility on East China, which may further correlate with iron bioavailability to the ocean, as well as human health effects associated with exposure to fine Fe-rich particles in densely populated metropolis in China. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. 57Fe Mössbauer study of stoichiometric iron-based superconductor CaKFe 4As 4: a comparison to KFe 2As 2 and CaFe 2As 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bud’ko, Sergey L.; Kong, Tai; Meier, William R.

    57Fe Mössbauer spectra at different temperatures between ~5 and ~300 K were measured on an oriented mosaic of single crystals of CaKFe 4 As 4. The data indicate that is a well formed compound with narrow spectral lines, no traces of other, Fe – containing, secondary phases in the spectra and no static magnetic order. There is no discernible feature at the superconducting transition temperature in any of the hyperfine parameters. The temperature dependence of the quadrupole splitting approximately follows the empirical ‘ T 3/2 law’. Furthermore, the hyperfine parameters of CaKFe 4 As 4 are compared with those formore » measured in this work, and the literature data for CaFe 2 As 2, and were found to be in between those for these two, ordered, 122 compounds, in agreement with the gross view of CaKFe 4 As 4 as a structural analog of KFe 2 As 2 and CaFe 2 As 2 that has alternating Ca- and K-layers in the structure.« less

  6. 57Fe Mössbauer study of stoichiometric iron-based superconductor CaKFe 4As 4: a comparison to KFe 2As 2 and CaFe 2As 2

    DOE PAGES

    Bud’ko, Sergey L.; Kong, Tai; Meier, William R.; ...

    2017-07-06

    57Fe Mössbauer spectra at different temperatures between ~5 and ~300 K were measured on an oriented mosaic of single crystals of CaKFe 4 As 4. The data indicate that is a well formed compound with narrow spectral lines, no traces of other, Fe – containing, secondary phases in the spectra and no static magnetic order. There is no discernible feature at the superconducting transition temperature in any of the hyperfine parameters. The temperature dependence of the quadrupole splitting approximately follows the empirical ‘ T 3/2 law’. Furthermore, the hyperfine parameters of CaKFe 4 As 4 are compared with those formore » measured in this work, and the literature data for CaFe 2 As 2, and were found to be in between those for these two, ordered, 122 compounds, in agreement with the gross view of CaKFe 4 As 4 as a structural analog of KFe 2 As 2 and CaFe 2 As 2 that has alternating Ca- and K-layers in the structure.« less

  7. Studies of structure of calcium-iron phosphate glasses by infrared, Raman and UV-Vis spectroscopies

    NASA Astrophysics Data System (ADS)

    Li, H. J.; Liang, X. F.; Yu, H. J.; Yang, D. Q.; Yang, S. Y.

    2016-06-01

    Glasses in the ternary CaO-Fe2O3-P2O5 system were prepared and studied by means of density, differential scanning calorimetry, infrared, Raman and UV-Vis spectroscopies. The results showed that density and molar volume in the glass system decreased with increasing substitution of CaO for Fe2O3. The variation of glass transition temperature and thermal stability was strictly related to the nature of bonding in the vitreous network. Spectroscopic analysis showed that substitution of CaO for Fe2O3 induced an evolution of structural units from pyrophosphate to metaphosphate species indicating the polymerization of phosphate chains and the decrease of non-bridging oxygen concentrations. With increasing substitution of CaO for Fe2O3 The P-O-Ca linkage and (P-O- Ca2+ -O-P) chains participated in the glass network by replacing P-O-Fe bonds. The absorption band of the P-O-Ca stretching mode in the glasses with high CaO content (≥32 mol%) was assigned at around 1084 cm-1. The absorption edge would fall in the region between 332 and 420 nm which are the absorption bands of Fe3+ ions.

  8. Coexistence of Cu, Fe, Pb, and Zn oxides and chlorides as a determinant of chlorinated aromatics generation in municipal solid waste incinerator fly ash.

    PubMed

    Fujimori, Takashi; Tanino, Yuta; Takaoka, Masaki

    2014-01-01

    We investigated chemical determinants of the generation of chlorinated aromatic compounds (aromatic-Cls), such as polychlorinated biphenyls (PCBs) and chlorobenzenes (CBzs), in fly ash from municipal solid waste incineration. The influences of the following on aromatic-Cls formation in model fly ash (MFA) were systematically examined quantitatively and statistically: (i) inorganic chlorides (KCl, NaCl, CaCl2), (ii) base materials (SiO2, Al2O3, CaCO3), (iii) metal oxides (CuO, Fe2O3, PbO, ZnO), (iv) metal chlorides (CuCl2, FeCl3, PbCl2, ZnCl2), and (v) "coexisting multi-models." On the basis of aromatic-Cls concentrations, the ∑CBzs/∑PCBs ratio, and the similarity between distribution patterns, MFAs were categorized into six groups. The results and analysis indicated that the formation of aromatic-Cls depended strongly on the "coexistence condition", namely multimodels composed of not only metal chlorides, but also of metal oxides. The precise replication of metal chloride to oxide ratios, such as the precise ratios of Cu-, Fe-, Pb-, and Zn-chlorides and oxides, may be an essential factor in changing the thermochemical formation patterns of aromatic-Cls. Although CuCl2 acted as a promoter of aromatic-Cls generation, statistical analyses implied that FeCl3 also largely influenced the generation of aromatic-Cls under mixture conditions. Various additional components of fly ash were also comprehensively analyzed.

  9. Chemical removal of nitrate from water by aluminum-iron alloys.

    PubMed

    Xu, Jie; Pu, Yuan; Qi, Wei-Kang; Yang, Xiao Jin; Tang, Yang; Wan, Pingyu; Fisher, Adrian

    2017-01-01

    Zero-valent iron has been intensively investigated in chemical reduction of nitrate in water, but the reduction requires acidic or weak acidic pH conditions and the product of the reduction is exclusively ammonium, an even more toxic substance. Zero-valent aluminum is a stronger reductant than iron, but its use for the reduction of aqueous nitrate requires considerably alkaline pH conditions. In this study, aluminum-iron alloys with an iron content of 10%, 20% and 58% (termed Al-Fe10, Al-Fe20 and Al-Fe58, respectively) were investigated for the reduction of aqueous nitrate. Al-Fe alloys were efficient to reduce nitrate in water in an entire pH range of 2-12 and the reduction proceeded in a pseudo-first order at near neutral pH conditions. The observed reaction rate constant (K obs ) of Al-Fe10 was 3 times higher than that of Fe and the K obs of Al-Fe20 doubled that of Al-Fe10. The nitrogen selectivity of the reduction by Al-Fe10, Al-Fe20 and Al-Fe58 was 17.6%, 23.9% and 40.3%, respectively at pH 7 and the nitrogen selectivity by Al-Fe20 increased from 18.9% at pH 2-60.3% at pH 12. The enhanced selectivity and reactivity of Al-Fe alloys were likely due to the presence of an intermetallic Al-Fe compound (Al 13 Fe 4 ). Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Rapid removal of chloroform, carbon tetrachloride and trichloroethylene in water by aluminum-iron alloy particles.

    PubMed

    Xu, Jie; Pu, Yuan; Yang, Xiao Jin; Wan, Pingyu; Wang, Rong; Song, Peng; Fisher, Adrian

    2017-09-05

    Water contamination with chlorinated hydrocarbons such as chloroform (CHCl 3 ), carbon tetrachloride (CCl 4 ) and trichloroethylene (TCE) is one of the major public health concerns. In this study, we explored the use of aluminum-iron alloys particles in millimeter scale for rapid removal of CHCl 3 , CCl 4 and TCE from water. Three types of Al-Fe alloy particles containing 10, 20 and 58 wt% of Fe (termed as Al-Fe10, Al-Fe20 and Al-Fe58) were prepared and characterized by electrochemical polarization, X-ray diffraction and energy dispersive spectrometer. For concentrations of 30-180 μg/L CHCl 3 , CCl 4 and TCE, a removal efficiency of 45-64% was achieved in a hydraulic contact time of less than 3 min through a column packed with 0.8-2 mm diameter of Al-Fe alloy particles. The concentration of Al and Fe ions released into water was less than 0.15 and 0.05 mg/L, respectively. Alloying Al with Fe enhances reactivity towards chlorinated hydrocarbons' degradation and the enhancement is likely the consequence of galvanic effects between different phases (Al, Fe and intermetallic Al-Fe compounds such as Al 13 Fe 4 , Fe 3 Al and FeAl 2 ) and catalytic role of these intermetallic Al-Fe compounds. The results demonstrate that the use of Al-Fe alloy particles offers a viable and green option for chlorinated hydrocarbons' removal in water treatment.

  11. The Eclogite-Garnetite transformation in the MORB + H 2O system

    NASA Astrophysics Data System (ADS)

    Okamoto, Kazuaki; Maruyama, Shigenori

    2004-08-01

    To decipher phase relations of oceanic crust in the coldest slab at the mantle transition zone, multi-anvil experiments were conducted in the MORB+H 2O system at pressures of 10-19 GPa, and temperatures of 700-1500 °C. Garnet and stishovite were recognized in all run charges. Above 15 GPa, garnet drastically increases NaSi (Na 2MSi 5O 12) component (M = Ca, Mg, Fe 2+), jadeite occurs instead of omphacite. Na-, K-hollandite containing 7 mol% NaAlSi 3O 8 and Ca-perovskite with 60 mol% CaTiO 3, were observed at P>17 GPa. With decomposition of omphacite and increase of modal ratio of garnet, there is a sharp increase of density at 440 km. The density increase due to appearance of Ca-perovskite at 570 km, is estimated approximately 100 km shallower than that of previous estimation.

  12. Enhanced phosphate removal from wastewater by using in situ generated fresh trivalent Fe composition through the interaction of Fe(II) on CaCO3.

    PubMed

    Li, Yujie; He, Xiaoman; Hu, Huimin; Zhang, Tingting; Qu, Jun; Zhang, Qiwu

    2018-05-21

    Excessive existences of nutrients such as phosphate in the aqueous environment remain as a heavy concern although many researches have been reported for dealing with their removal. Based on the understanding toward the interactions of Fe compounds with phosphate and carbonate from many available researches, we designed a very simple and efficient approach for phosphate removal by using in situ generated fresh trivalent Fe composition through the interaction of Fe(II) as FeSO 4 on CaCO 3 . Addition and agitation of Fe(II) and CaCO 3 simultaneously to phosphate solution allowed an amorphous Fe(III)-P or Ca-Fe(III)-P precipitation, with a phosphate removal rate close to 100%, to reduce the residual phosphorus concentration less than 0.03 mg/L from 100 mg/L, reaching the discharge limit, even with the addition amounts of CaCO 3 as low as a stoichiometric ratio of CaCO 3 /PO 4 3- at 0.9 and ratio of Fe(II)/PO 4 3- at 1.5, and the percent of P 2 O 5 in the precipitate was as high as 19.4% enough as phosphate source for fertilizer production. Different from the alkaline process with enough OH - group, the slow hydrolysis of CaCO 3 resulting in low concentration of OH - group for the formation of Fe(OH) 2 , which was oxidized soon by air into trivalent Fe, achieved a continuous generation of fresh ferric composition for phosphate precipitation and could avoid its rapid formation and subsequent transformation into stable FeOOH of large particle size to lose the activity. These results based on the synergistic effect of using CaCO 3 and Fe(II) together may have applications in the treatment of eutrophic wastewater through a process with many advantages of easy operation and low-cost besides the high removal efficiency with phosphate percentage inside the precipitate high enough to serve for fertilizer production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Origin of Ti-rich garnets in the groundmass of Wajrakarur field kimberlites, southern India: insights from EPMA and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Dongre, Ashish N.; Viljoen, K. S.; Rao, N. V. Chalapathi; Gucsik, A.

    2016-04-01

    Although Ti-rich garnets are commonly encountered in the groundmass of many alkaline igneous rocks, they are comparatively rare in kimberlites. Here we report on the occurrence of Ti-rich garnets in the groundmass of the P-15 and KL-3 kimberlites from the diamondiferous Wajrakarur field in the Eastern Dharwar craton of southern India. These garnets contain considerable Ti (11.7-23.9 wt.% TiO2), Ca (31.3-35.8 wt.% CaO), Fe (6.8-15.5 wt.% FeOT) and Cr (0.04-9.7 wt.% Cr2O3), but have low Al (0.2-5.7 wt.% Al2O3). In the case of the P-15 kimberlite they display a range in compositions from andradite to schorlomite, with a low proportion of grossular (andradite(17.7-49.9)schorlomite(34.6-49.5)-grossular(3.7-22.8)-pyrope(1.9-10.4)). A few grains also contain significant chromium and represent a solid solution between schorlomite and uvarovite. The Ti-rich garnets in the KL-3 kimberlite, in contrast, are mostly schorlomitic (54.9-90.9 mol %) in composition. The Ti-rich garnets in the groundmass of these two kimberlites are intimately associated with chromian spinels, perhaps suggesting that the garnet formed through the replacement of spinel. From the textural evidence, it appears unlikely that the garnets could have originated through secondary alteration, but rather seem to have formed through a process in which early magmatic spinels have reacted with late circulating, residual fluids in the final stages of crystallization of the kimberlite magma. Raman spectroscopy provides evidence for low crystallinity in the spinels which is likely to be a result of their partial transformation into andradite during their reaction with a late-stage magmatic (kimberlitic) fluid. The close chemical association of these Ti-rich garnets in TiO2-FeO-CaO space with those reported from ultramafic lamprophyres (UML) is also consistent with results predicted by experimental studies, and possibly implies a genetic link between kimberlite and UML magmas. The occurrence of Ti-rich garnets of similar composition in the Swartruggens orangeite on the Kaapvaal craton in South Africa, as well as in other kimberlites with an orangeitic affinity (e.g. the P-15 kimberlite on the Eastern Dharwar craton in southern India), is inferred to be a reflection of the high Ca- and high Ti-, and the low Al-nature, of the parent magma (i.e. Group II kimberlites).

  14. [Determination of 22 inorganic elements in different parts of Lantana camara by ICP-OES].

    PubMed

    Zhou, Wei-ming; Wang, Ru-yi; Chen, Liu-sheng; Huang, Chuan-bin

    2014-10-01

    To determine the contents of 22 inorganic elements in different parts of Lantana camara by inductively coupled plasma optical emission spectroscopy (ICP-OES). HNO3-H2O2 digested system was used to completely decompose the organic compounds effectually by microwave digestion. The 22 inorganic elements such as K, Ca, Mg, Fe, Al, Na, Zn, Mn and Cr were determined by ICP-OES under set up working conditions. The contents of K, Ca and Mg were the most in different parts of Lantana camara; The contents of K, Ca, Mg, Mn, Sr and Cu in the leaf were more those that in the root and branch; The contents of Fe, Na, Cr and Ni in the root were more than those in the leaf and branch; The contents of Mn, Zn, Sr and Cu in the branch were more than those in the root and the leaf; The contents of Pb and Cd were higher than the national standard and Cr had high content in different parts of Lantana camara. The determination method is quick, easy and accurate with high sensitivity, which can determine the contents of 22 inorganic elements accurately in different parts of Lantana camara.

  15. Medium-resolution Spectroscopy of Red Giant Branch Stars in ω Centauri

    NASA Astrophysics Data System (ADS)

    An, Deokkeun; Lee, Young Sun; In Jung, Jae; Rey, Soo-Chang; Rhee, Jaehyon; Lee, Jae-Woo; Lee, Young-Wook; Joe, Young Hoon

    2017-10-01

    We present [Fe/H] and [Ca/Fe] of ˜600 red giant branch (RGB) members of the globular cluster Omega Centauri (ω {Cen}). We collect medium-resolution (R˜ 2000) spectra using the Blanco 4 m telescope at the Cerro Tololo Inter-American Observatory equipped with Hydra, the fiber-fed multi-object spectrograph. We demonstrate that blending of stellar light in optical fibers severely limits the accuracy of spectroscopic parameters in the crowded central region of the cluster. When photometric temperatures are taken in the spectroscopic analysis, our kinematically selected cluster members, excluding those that are strongly affected by flux from neighboring stars, include relatively fewer stars at intermediate metallicity ([{Fe}/{{H}}]˜ -1.5) than seen in the previous high-resolution survey for brighter giants in Johnson & Pilachowski. As opposed to the trend of increasing [Ca/Fe] with [Fe/H] found by those authors, our [Ca/Fe] estimates, based on Ca II H & K measurements, show essentially the same mean [Ca/Fe] for most of the metal-poor and metal-intermediate populations in this cluster, suggesting that mass- or metallicity-dependent SN II yields may not be necessary in their proposed chemical evolution scenario. Metal-rich cluster members in our sample show a large spread in [Ca/Fe], and do not exhibit a clear bimodal distribution in [Ca/Fe]. We also do not find convincing evidence for a radial metallicity gradient among RGB stars in ω {Cen}.

  16. Variations in iron and calcium abundances during solar flares

    NASA Astrophysics Data System (ADS)

    Antonucci, E.; Martin, R.

    1995-07-01

    Evidence for variations in iron and calcium abundances during the impulsive phase of solar flares has been obtained by analyzing the Ca XIX and Fe XXV spectra, detected with the Bent Crystal Spectrometer of the Solar Maximum Mission. The plasma thermal conditions have been investigated by considering different temperature indicators: namely, the temperatures TCa and TFe, derived from the intensity ratios of the dielectronic recombination satellites to the resonance line, and the temperature TCaFe, calculated from the ratio of the resonance lines of Ca XIX and Fe XXV, which is also depending on the Fe/Ca abundance ratio. The observed values of TCa and TFe can be ascribed to the specific characteristics of the plasma therma distribution, the corresponding values of TCaFe can be explained by allowing also for variations in the Fe/Ca abundance ratio relative to the photospheric ratio by a factor within 0.2 and 2.4. According to the observed abundance variations, the events analyzed can be divided in Ca-rich and Fe-rich flares.

  17. Fe-Al interface intermixing and the role of Ti, V, and Zr as a stabilizing interlayer at the interface

    NASA Astrophysics Data System (ADS)

    Priyantha, W.; Smith, R. J.; Chen, H.; Kopczyk, M.; Lerch, M.; Key, C.; Nachimuthu, P.; Jiang, W.

    2009-03-01

    Fe-Al bilayer interfaces with and without interface stabilizing layers (Ti, V, Zr) were fabricated using dc magnetron sputtering. Intermixing layer thickness and the effectiveness of the stabilizing layer (Ti, V, Zr) at the interface were studied using Rutherford backscattering spectrometry (RBS) and x-ray reflectometry (XRR). The result for the intermixing thickness of the AlFe layer is always higher when Fe is deposited on Al as compared to when Al is deposited on Fe. By comparing measurements with computer simulations, the thicknesses of the AlFe layers were determined to be 20.6 Å and 41.1 Å for Al/Fe and Fe/Al bilayer systems, respectively. The introduction of Ti and V stabilizing layers at the Fe-Al interface reduced the amount of intermixing between Al and Fe, consistent with the predictions of model calculations. The Zr interlayer, however, was ineffective in stabilizing the Fe-Al interface in spite of the chemical similarities between Ti and Zr. In addition, analysis suggests that the Ti interlayer is not effective in stabilizing the Fe-Al interface when the Ti interlayer is extremely thin (˜3 Å) for these sputtered metallic films.

  18. Influence of testing environment on the room temperature ductility of FeAl alloys

    NASA Technical Reports Server (NTRS)

    Gaydosh, D. J.; Nathal, M. V.

    1990-01-01

    The effects of testing atmospheres (air, O2, N2, and vacuum) on the room-temperature ductility of Fe-40Al, Fe-40Al-0.5B, and Fe-50Al alloys were investigated. The results confirmed the decrease in room-temperature ductility of Fe-rich FeAl alloys by the interaction of the aluminide with water vapor, reported previously by Liu et al. (1989). The highest ductilities were measured in the atmosphere with the lowest moisture levels, i.e., in vacuum. It was found that significant ductility is still restricted to Fe-rich alloys (Fe-40Al), as the Fe-50Al alloy remained brittle under all testing conditions. It was also found that slow cooling after annealing was beneficial, and the effect was additive to the environmental effect. The highest ductility measurements in this study were 9 percent elongation in furnace-cooled Fe-40Al and in Fe-40Al-0.5B, when tested in vacuum.

  19. Impact of iron chelators on short-term dissolution of basaltic glass

    NASA Astrophysics Data System (ADS)

    Perez, Anne; Rossano, Stéphanie; Trcera, Nicolas; Verney-Carron, Aurélie; Huguenot, David; van Hullebusch, Eric D.; Catillon, Gilles; Razafitianamaharavo, Angelina; Guyot, François

    2015-08-01

    Although microorganisms seem to play an important role in the alteration processes of basaltic glasses in solution, the elementary mechanisms involved remain unclear in particular with regard to the role of organic ligands excreted by the cells. Two glasses, one with Fe and one without Fe were synthesized to model basaltic glass compositions. Fe in the glass was mostly Fe(III) for enhancing interaction with siderophores, yet with small but significant amounts of Fe(II) (between 10% and 30% of iron). The prepared samples were submitted to abiotic alteration experiments in buffered (pH 6.4) diluted solutions of metal-specific ligands, namely oxalic acid (OA, 10 mM), desferrioxamine (DFA, 1 mM) or 2,2‧-bipyridyl (BPI, 1 mM). Element release from the glass into the solution after short term alteration (maximum 1 week) was measured by ICP-OES, and normalized mass losses and relative release ratios (with respect to Si) were evaluated for each element in each experimental condition. The presence of organic ligands had a significant effect on the dissolution of both glasses. Trivalent metals chelators (OA, DFA) impacted on the release of Fe3+ and Al3+, and thus on the global dissolution of both glasses, enhancing all release rates and dissolution stoichiometry (release rates were increased up to 7 times for Al or Fe). As expected, the mostly divalent metal chelator BPI interacted preferentially with Ca2+, Mg2+ and Fe2+. This study thus allows to highlight the central roles of iron and aluminium in interaction with some organic ligands in the alteration processes of basaltic glasses. It thus provides a step toward understanding the biological contribution of this fundamental geological process.

  20. Magnetite as the indicator of ore genesis for the Huangshaping polymetallic deposit, southern Hunan Province, China

    NASA Astrophysics Data System (ADS)

    Ding, T.; Ma, D.; Lu, J.; Zhang, R.

    2017-12-01

    Huangshaping polymetallic deposit, located in southern Hunan Province, China, hosts abundant W-Mo-Pb-Zn mineralization which linked with the skarn system located between late Mesozoic high-K calc-alkaline to shoshonitic granitoids and the Carboniferous carbonate in this deposit. In this study, concentrations of trace and minor elements of the magnetites from different skarn stages are obtained by in situ LA-ICP-MS analysis, in order to further understand the polymetallic mineralization processes within this deposit. The generally high concentrations of spinel elements, including Mg, Al, Ti, Mn, V, Cr, Co, Ni, Ga, Ge, and Sn, in all magnetites from this deposit suggest that these elements are incorporated into magnetite lattice by substituting Fe3+ and/or Fe2+. However, the various concentrations of Na, Si, K, Ca, and W elements in magnetites, combining the abnormal time-resolved analytical signals of LA-ICP-MS analyses, suggest that these elements are significantly affected by the fluid inclusions in magnetites. Two groups of magnetites can be further distinguished based on their trace and minor elements concentrations: Group-1 magnetites, including those in medium grain garnets and calcite, have obvious lower Na, Si, K, Ca, Sn, W, but higher Mg, Al, Ti, V, Co, Ni, Zn concentrations compared with Group-2 magnetites, which including those in coarse grain garnets, tremolite, and bulk magnetite ores. This suggests that the hydrothermal fluids where Group-2 magnetites precipitated are evolved magmatic fluids which have undergone the crystal fractionation during the early skarn stages (eg. Garnet and tremolite), the high Na, Si, K, and Ca in the hydrothermal fluids probably result from the dissolution of the host rocks, such as limestone, sandstone, and evaporite horizons in this deposit. However, the Group-1 magnetites probably precipitated in the hydrothermal fluids with low salinity, which result the low Na, Si, K, and Ca in these magnitites. Furthermore, these fluids might have undergone large scale circulation, the extraction from Zn-rich metamorphic basement and Mg, Al-rich strata probably have provided abundant Mg, Al, Zn in the hydrothermal fluids where Group-1 magnetites precipitated. As a conclusion, this study suggests that the compositions of magnetites can be the proxies of ore genesis.

  1. A comparison of the techniques of PIXE, PIGE and INAA by reference to the elemental analysis of porcine brain samples

    NASA Astrophysics Data System (ADS)

    Stedman, J. D.; Spyrou, N. M.

    1994-12-01

    The trace element concentrations in porcine brain samples as determined by particle-induced X-ray emission (PIXE) analysis, instrumental neutron activation analysis (INAA) and particle-induced gamma-ray emission (PIGE) analysis are compared. The matrix composition was determined by Rutherford backscattering (RBS). Al, Si, P, S, Cl, K, Ca, Mn, Fe and Cd were determined by PIXE analysis Na, K, Sc, Fe, Co, Zn, As, Br, Rb, and Cs by INAA and Na, Mg and Fe by PIGE analysis. The bulk elements C, N, O, Na Cl and S were found by RBS analysis. Elemental concentrations are obtained using the comparator method of analysis rather than an absolute method, the validity which is examined by comparing the elemental concentrations obtained in porcine brain using two separate certified reference materials.

  2. Characterization of Three Carbon- and Nitrogen-Rich Particles from Comet 81P/WILD

    NASA Technical Reports Server (NTRS)

    Gallien, J.-P.; Khodja, H.; Herzog, G. F.; Taylor, S.; Koepsell, E.; Daghlian, C. P.; Flynn, G. J.; Sitnitsky, I.; Lanzirotti, A.; Sutton, S. R.; hide

    2007-01-01

    Comets may sample the early solar system s complement of volatile-forming elements - including C and N - more fully and reliably than do the terrestrial planets or asteroids. Until recently, all elemental analyses of unambiguously cometary material were carried out remotely. The return of the Stardust mission makes it possible to analyze documented material from P81/Wild 2 in the laboratory Wild 2 particles fragmented when they stopped in the aerogel collectors. We have studied three fragments thought to be rich in C and N by using several techniques: FTIR to characterize organic matter; synchrotron-induced x-ray fluorescence (SXRF) to determine Fe and certain element/Fe ratios; SEM to image sample morphology and to detect semiquantitatively Mg, Al, Si, Ca, and Fe; and nuclear reaction analysis (NRA) to measure C, N, O, and Si.

  3. Geochronological, geochemical and Sr-Nd-Hf isotopic constraints on the petrogenesis of Late Cretaceous A-type granites from the Sibumasu Block, Southern Myanmar, SE Asia

    NASA Astrophysics Data System (ADS)

    Jiang, Hai; Li, Wen-Qian; Jiang, Shao-Yong; Wang, He; Wei, Xiao-Peng

    2017-01-01

    The Late Cretaceous to Paleogene granitoids occur widespread in the Sibumasu block within Myanmar (SE Asia), which show a close association with tin-tungsten mineralization. However, the precise timing, petrogenesis and tectonic significance of these granitoids are poorly constrained so far. In this study, we present a detailed study on geochronology, elemental and Sr-Nd-Hf isotopic geochemistry for the Hermyingyi and Taungphila granites in southern Myanmar, with the aim of determining their petrogenesis and tectonic implications. LA-ICP-MS U-Pb dating of zircon grains from the two granites yield ages of 69-70 Ma, indicating a Late Cretaceous magmatic event. These granitic rocks are weakly peraluminous and belong to the high-K calc-alkaline series. They are both characterized by high SiO2, K2O + Na2O, FeOT/(FeOT + MgO) and Ga/Al ratios and low Al2O3, CaO, MgO, P2O5 and TiO2 contents, enriched in Rb, Th, U and Y, but depleted in Ba, Sr, P, and Eu, suggesting an A-type granite affinity. Moreover, they display prominent tetrad REE patterns and non-CHARAC trace element behavior, which are common in late magmatic differentiates with strong hydrothermal interaction or deuteric alteration. The granites belong to A2-type and probably formed at a high temperature and anhydrous condition. They have zircon εHf(t) values from - 12.4 to - 10.0 and whole-rock εNd(t) values from - 11.3 to - 10.6, with Paleoproterozoic TDM2 ages (1741-1922 Ma) for both Hf and Nd isotopes. Geochemical and isotopic data suggest that these A-type granites were derived from partial melting of the Paleoproterozoic continental crust dominated by metaigneous rocks with tonalitic to granodioritic compositions, without significant input of mantle-derived magma and followed by subsequent fractional crystallization. By integrating all available data for the regional tectonic evolution in SE Asia and adjacent regions, we attribute the formation of the Late Cretaceous A-type granites to a back-arc extension in the hinterland behind the subduction zone, which is induced by the rollback of the flat Neo-Tethyan subducting slab around ca. 70 Ma. Table 2 Major (wt.%) and trace element (ppm) compositions from the Hermyingyi and Taungphila granites. LOI is loss on ignition; A/CNK = Al2O3/(CaO + Na2O + K2O) (molar ratio); FeOT = FeO + Fe2O3 × 0.8998. Eu/Eu* is a measure of the Eu anomaly when compare to Sm and Gd. Eu/Eu* = EuN/[(SmN) × (GdN)]0.5. Table 3 Sr-Nd isotopic compositions of the Hermyingyi and Taungphila granites. Table 4 Hf isotopic compositions of zircons from the Hermyingyi and Taungphila granites. (176Lu/177Hf)CHUR = 0.0032, (176Hf/177Hf)CHUR,0 = 0.282772 (Blichert-Toft and Albarède, 1997); (176Lu/177Hf)DM = 0.0384, (176Hf/177Hf)DM,0 = 0.28325 (Griffin et al., 2000); λ = 1.867 × 10- 11/year (Soderlund et al., 2004).

  4. A first principles study on newly proposed (Ca/Sr/Ba)Fe2Bi2 compounds with their parent compounds

    NASA Astrophysics Data System (ADS)

    Sundareswari, M.; Jayalakshmi, D. S.; Viswanathan, E.

    2016-02-01

    The structural, electronic, bonding and magnetic properties of newly proposed iron-based compounds viz., CaFe2Bi2, SrFe2Bi2, BaFe2Bi2 with their Fermi surface topology are reported here for the first time by means of first principles calculation. All these properties of newly proposed compounds are compared and analysed along with their respective parent compounds namely (Ca,Sr,Ba)Fe2As2.

  5. Crystal Phases Formed in a CaO-Fe2O3 System Under a High Cooling Rate in Air

    NASA Astrophysics Data System (ADS)

    Kashiwaya, Yoshiaki

    2017-12-01

    A CaO-Fe2O3 system is a fundamental binary system for the iron ore sintering process. Although the basic reactions have been investigated since the 1960s, melting and solidification caused by the combustion of coke results in an unstable state owing to extreme temperature variations. In this study, using a hot thermocouple method, samples of 10 pct CaO-90 pct Fe2O3 and 20 pct CaO-80 pct Fe2O3 were melted on a thermocouple and quenched with several techniques. The obtained samples were precisely examined by XRD. It was found that the sample containing 10 pct CaO-90 pct Fe2O3 changed to 10 pct CaO-13 pct FeO-77 pct Fe2O3 under an oxygen partial pressure ( P_{{{O}2 }} ) of 0.21 during melting. For the 10 pct CaO sample, the crystal phases found at a low cooling rate (509 K/s) were WFss, C4WF8 (C: CaO, W: FeO, F: Fe2O3), and C2W4F9. When the sample composition was 20 pct CaO, the precipitated crystal phases were C4WF4, C4F7, and C4WF8. On the other hand, the crystal phases for high cooling rates (1590 and 7900 K/s) with 10 pct CaO were WFss (solid solution of WF and F), F, and C2W4F9. The formation of the equilibrium phases WFss, F, C4WF4, and C4WF8 can be understood by examining the isothermal section of the phase diagrams, while the unstable phases C2W4F9 and C4F7 are discussed on the basis of the reactions under an equilibrium state.

  6. Activation Thermodynamics and H/D Kinetic Isotope Effect of the Hox to HredH+ Transition in [FeFe] Hydrogenase.

    PubMed

    Ratzloff, Michael W; Wilker, Molly B; Mulder, David W; Lubner, Carolyn E; Hamby, Hayden; Brown, Katherine A; Dukovic, Gordana; King, Paul W

    2017-09-20

    Molecular complexes between CdSe nanocrystals and Clostridium acetobutylicum [FeFe] hydrogenase I (CaI) enabled light-driven control of electron transfer for spectroscopic detection of redox intermediates during catalytic proton reduction. Here we address the route of electron transfer from CdSe→CaI and activation thermodynamics of the initial step of proton reduction in CaI. The electron paramagnetic spectroscopy of illuminated CdSe:CaI showed how the CaI accessory FeS cluster chain (F-clusters) functions in electron transfer with CdSe. The H ox →H red H + reduction step measured by Fourier-transform infrared spectroscopy showed an enthalpy of activation of 19 kJ mol -1 and a ∼2.5-fold kinetic isotope effect. Overall, these results support electron injection from CdSe into CaI involving F-clusters, and that the H ox →H red H + step of catalytic proton reduction in CaI proceeds by a proton-dependent process.

  7. Guanosine 5′-monophosphate-chelated calcium and iron feed additives maintains egg production and prevents Salmonella Gallinarum in experimentally infected layers

    PubMed Central

    Noh, Hye-Ji; Kim, HeeKyong; Heo, Su Jeong; Cho, Hyang Hyun

    2017-01-01

    We evaluated the effects of guanosine 5′-monophosphate (GMP)-chelated calcium and iron (CaFe-GMP) on health and egg quality in layers experimentally infected with Salmonella Gallinarum. In this study, a CaFe-GMP feed additive was added to a commercial layer feed and fed to layers over a four-week period. All were inoculated with Salmonella Gallinarum. Body weight, mortality, clinical symptoms, and poultry production including feed intake, egg production, egg loss, and feed conversion rate were observed, and Salmonella Gallinarum was re-isolated from the liver, spleen, and cecum of the layers. All tested internal organs for the CaFe-GMP additive group exhibited significantly lower re-isolation numbers of Salmonella Gallinarum and less severe pathological changes than those in the control group, indicating that the CaFe-GMP feed supplement induced bacterial clearance and increased resistance to Salmonella Gallinarum. Additionally, due to the inhibitory action of CaFe-GMP on the growth of Salmonella Gallinarum, the CaFe-GMP additive group exhibited better egg production, including a higher laying rate and fewer broken eggs. The results suggest that a 0.16% CaFe-GMP additive may help prevent salmonellosis in the poultry industry. PMID:28057911

  8. Metal concentrations of wild edible mushrooms from Turkey.

    PubMed

    Sarikurkcu, Cengiz; Tepe, Bektas; Solak, Mehmet Halil; Cetinkaya, Serap

    2012-01-01

    In the present study, the contents of Zn, Fe, Cu, Mn, Co, Ni, Pb, Cd, Cr, Al, Ca, Mg, and K in Agaricus campestris, Agrocybe cylindracea, Collybia dryophila, Helvella leucopus, Russula delica, Tricholoma auratum, Amanita ovoidea, Melanoleuca excissa, Rhizopogon roseolus, Russula chloroides, Volvoriella gloiocephala, Lyophyllum decastes, Morcella angusticeps, Morchella esculenta and Morcella eximia collected from Isparta, Mugla, and Osmaniye provinces (Turkey) were determined by inductively coupled plasma optical emission spectrometry (ICP-OES) after microwave digestion. The intake of heavy metals (Pb, Cd) and other metals (Fe, Cu, Zn) by consumption of 30 g dry weight of mushrooms daily poses no risk at all except in A. cylindracea and H. leucopus (for Cd) for the consumer.

  9. Phase stability and large in-plane resistivity anisotropy in the 112-type iron-based superconductor Ca 1 - x La x FeAs 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Chang-Jong; Birol, Turan; Kotliar, Gabriel

    The recently discovered high-T c superconductor Ca 1-xLa xFeAs 2 is a unique compound not just because of its low-symmetry crystal structure but also because of its electronic structure, which hosts Dirac-like metallic bands resulting from (spacer) zigzag As chains. We present a comprehensive first-principles theoretical study of the electronic and crystal structures of Ca 1-xLa xFeAs 2. After discussing the connection between the crystal structure of the 112 family, which Ca 1-xLa xFeAs 2 is a member of, with the other known structures of Fe pnictide superconductors, we check the thermodynamic phase stability of CaFeAs 2, and similar hyphotheticalmore » compounds SrFeAs 2 and BaFeAs 2 which, we find, are slightly higher in energy. We calculate the optical conductivity of Ca 1-xLa xFeAs 2 using the DFT+DMFT method and predict a large in-plane resistivity anisotropy in the normal phase, which does not originate from electronic nematicity, but is enhanced by the electronic correlations. In particular, we predict a 0.34 eV peak in the yy component of the optical conductivity of the 30% La-doped compound, which corresponds to coherent interband transitions within a fast-dispersing band arising from the zigzag As chains, which are unique to this compound. We also study the Landau free energy for Ca 1-xLa xFeAs 2 including the order parameter relevant for the nematic transition and find that the free energy does not have any extra terms that could induce ferro-orbital order. This explains why the presence of As chains does not broaden the nematic transition in Ca 1-xLa xFeAs 2.« less

  10. Phase stability and large in-plane resistivity anisotropy in the 112-type iron-based superconductor Ca 1 - x La x FeAs 2

    DOE PAGES

    Kang, Chang-Jong; Birol, Turan; Kotliar, Gabriel

    2017-01-17

    The recently discovered high-T c superconductor Ca 1-xLa xFeAs 2 is a unique compound not just because of its low-symmetry crystal structure but also because of its electronic structure, which hosts Dirac-like metallic bands resulting from (spacer) zigzag As chains. We present a comprehensive first-principles theoretical study of the electronic and crystal structures of Ca 1-xLa xFeAs 2. After discussing the connection between the crystal structure of the 112 family, which Ca 1-xLa xFeAs 2 is a member of, with the other known structures of Fe pnictide superconductors, we check the thermodynamic phase stability of CaFeAs 2, and similar hyphotheticalmore » compounds SrFeAs 2 and BaFeAs 2 which, we find, are slightly higher in energy. We calculate the optical conductivity of Ca 1-xLa xFeAs 2 using the DFT+DMFT method and predict a large in-plane resistivity anisotropy in the normal phase, which does not originate from electronic nematicity, but is enhanced by the electronic correlations. In particular, we predict a 0.34 eV peak in the yy component of the optical conductivity of the 30% La-doped compound, which corresponds to coherent interband transitions within a fast-dispersing band arising from the zigzag As chains, which are unique to this compound. We also study the Landau free energy for Ca 1-xLa xFeAs 2 including the order parameter relevant for the nematic transition and find that the free energy does not have any extra terms that could induce ferro-orbital order. This explains why the presence of As chains does not broaden the nematic transition in Ca 1-xLa xFeAs 2.« less

  11. Tourmalines from the siderite-quartz-sulphide hydrothermal veins, Gemeric unit, western Carpathians, Slovakia: crystal chemistry and evolution

    NASA Astrophysics Data System (ADS)

    Bačík, P.; Uher, P.; Dikej, J.; Puškelová, Ľ.

    2018-02-01

    Tourmaline is an important gangue mineral in a large number of Cretaceous siderite-quartz-sulphide hydrothermal veins in the Gemeric Unit, Slovak Ore Mountains, Slovakia, such as Dobšiná, Vlachovo, Rožňavské Bystré, Hnilčík, Rakovnica, Novoveská Huta, Gretla, Rudňany, and Bindt. In this study we combine by electron microprobe analysis, powder X-ray diffraction, Mössbauer and optical emission spectroscopy to determine the range of tourmaline compositions in the deposits and constrain the mechanisms of its precipitation. Selected samples from the mentioned deposits belong mostly to the alkali group, schorl to dravite series, rarely dominant X-site vacant foititic tourmaline (Vlachovo and Bindt) and oxy-dravite compositions (Hnilčík) were detected. Rim zones of some schorlitic tourmalines show high concentrations of Ti (up to 2.35 wt.% TiO2, 0.30 apfu; Rožňavské Bystré). The chemical composition is mostly controlled by alkali-deficient X □AlNa-1(Mg,Fe2+)-1 and proton-deficient AlO(Mg,Fe2+)-1(OH)-1 substitutions. Titanium is incorporated into the structure by Y Ti Y (Mg,Fe) Y Al-2, Y Ti Z Mg Y Al-1 Z Al-1, Y TiO( Y AlOH), and X Ca Y Ti Z MgO2 X □-1 Y,Z Al-2(OH)-2 substitutions. Along trace elements, Sr and V attain concentrations of 80-450 and 70-320 ppm, respectively. The unit-cell parameter a varies between 15.960 and 15.985 Å; variations in c are larger, between 7.177 and 7.236 Å indicating the presence of Fe3+ and Mg2+ at Z site. Mössbauer spectroscopy has shown variable Fe3+ proportions (0.17 -0.55 apfu) in all samples. The gathered dataset suggests some qualitative considerations on the mechanisms controlling tourmaline compositions at the regional scale. The highest Fe3+ concentrations occur in samples from Rudňany and Gretla in the external part of Gemeric unit, suggesting higher oxidation during longer transport of fluids. We propose that the determined XFe in the samples are correlated with the compositions of the host rocks, as schorlitic to foititic tourmalines occur in veins located in the meta-rhyolites host, and tourmalines with the highest Mg contents occur in metabasalts.

  12. Comprehensive Utilization of Iron and Phosphorus from High-Phosphorus Refractory Iron Ore

    NASA Astrophysics Data System (ADS)

    Sun, Yongsheng; Zhang, Qi; Han, Yuexin; Gao, Peng; Li, Guofeng

    2018-02-01

    An innovative process of coal-based reduction followed by magnetic separation and dephosphorization was developed to simultaneously recover iron and phosphorus from one typical high-phosphorus refractory iron ore. The experimental results showed that the iron minerals in iron ore were reduced to metallic iron during the coal-based reduction and the phosphorus was enriched in the metallic iron phase. The CaO-SiO2-FeO-Al2O3 slag system was used in the dephosphorization of metallic iron. A hot metal of 99.17% Fe and 0.10% P was produced with Fe recovery of 84.41%. Meanwhile, a dephosphorization slag of 5.72% P was obtained with P recovery of 67.23%. The contents of impurities in hot metal were very low, and it could be used as feedstock for steelmaking after a secondary refining. Phosphorus in the dephosphorization slag mainly existed in the form of a 5CaO·P2O5·SiO2 solid solution where the P2O5 content is 13.10%. At a slag particle size of 20.7 μm (90% passing), 94.54% of the P2O5 could be solubilized in citric acid, indicating the slag met the feedstock requirements in phosphate fertilizer production. Consequently, the proposed process achieved simultaneous Fe and P recovery, paving the way to comprehensive utilization of high-phosphorus refractory iron ore.

  13. Viscosity of TiO2-FeO-Ti2O3-SiO2-MgO-CaO-Al2O3 for High-Titania Slag Smelting Process

    NASA Astrophysics Data System (ADS)

    Hu, Kai; Lv, Xuewei; Li, Shengping; Lv, Wei; Song, Bing; Han, Kexi

    2018-05-01

    The present study demonstrates the dependence of viscosity on chemical composition and temperature of high-titania slag, a very important raw material for producing titanium dioxide. The results indicated that completely molten high-titania slag exhibits a viscosity of less than 1 dPa s with negligible dependence on temperature. However, it increases dramatically with decreasing temperature slightly below the critical temperature, i.e., the solidus temperature of the slag. Above the critical temperature, the slag samples displayed the same order of viscosity at 0.6 dPa s, regardless of their compositional variation. However, the FeO, CaO, and MgO were confirmed to decrease viscosity, while SiO2 and Ti2O3 increase it. The apparent activation energy for viscosity-temperature relation and liquidus temperature based on experiments and thermodynamic calculations are also presented. Conclusively, the critical temperatures of the slags are on average 15 K below their corresponding calculated liquidus temperatures. The increase in FeO content was found to considerably lower the critical temperature, while the increase in both Ti2O3 and TiO2 contents increases it. The main phases of the slag in solid state, as indicated by X-ray diffraction, are (Fe, Mg) x Ti y O5 (x + y = 3, pseudobrookite) and rutile.

  14. Retention and loss of water extractable carbon in soils: effect of clay properties.

    PubMed

    Nguyen, Trung-Ta; Marschner, Petra

    2014-02-01

    Clay sorption is important for organic carbon (C) sequestration in soils, but little is known about the effect of different clay properties on organic C sorption and release. To investigate the effect of clay content and properties on sorption, desorption and loss of water extractable organic C (WEOC), two experiments were conducted. In experiment 1, a loamy sand alone (native) or mixed with clay isolated from a surface or subsoil (78 and 96% clay) resulting in 90, 158 and 175 g clay kg(-1) soil. These soil treatments were leached with different WEOC concentrations, and then CO2 release was measured for 28 days followed by leaching with reverse osmosis water at the end of experiment. The second experiment was conducted to determine WEOC sorption and desorption of clays isolated from the loamy sand (native), surface soil and subsoil. Addition of clays isolated from surface and subsoil to sandy loam increased WEOC sorption and reduced C leaching and cumulative respiration in percentage of total organic C and WEOC added when expressed per g soil and per g clay. Compared to clays isolated from the surface and subsoil, the native clay had higher concentrations of illite and exchangeable Ca(2+), total organic C and a higher CEC but a lower extractable Fe/Al concentration. This indicates that compared to the clay isolated from the surface and the subsoil, the native clay had fewer potential WEOC binding sites because it had lower Fe/Al content thus lower number of binding sites and the existing binding sites are already occupied native organic matter. The results of this study suggest that in the soils used here, the impact of clay on WEOC sorption and loss is dependent on its indigenous organic carbon and Fe and/or Al concentrations whereas clay mineralogy, CEC, exchangeable Ca(2+) and surface area are less important. © 2013.

  15. Hourly elemental concentrations in PM2.5 aerosols sampled simultaneously at urban background and road site

    NASA Astrophysics Data System (ADS)

    Dall'Osto, M.; Querol, X.; Amato, F.; Karanasiou, A.; Lucarelli, F.; Nava, S.; Calzolai, G.; Chiari, M.

    2012-08-01

    Hourly-resolved aerosol chemical speciation data can be a highly powerful tool to determine the source origin of atmospheric pollutants in urban Environments. Aerosol mass concentrations of seventeen elements (Na, Mg, Al, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Sr and Pb) were obtained by time (1 h) and size (PM2.5 particulate matter <2.5 μm) resolved Particle Induced X-ray Emission (PIXE) measurements. In the Marie Curie FP7-EU framework of SAPUSS (Solving Aerosol Problems by Using Synergistic Strategies), the unique approach used is the simultaneous PIXE measurements at two monitoring sites: urban background (UB) and a street canyon traffic road site (RS). Elements related to primary non exhaust traffic emission (Fe, Cu), dust resuspension (Ca) and anthropogenic Cl were found enhanced at the RS, whereas industrial related trace metals (Zn, Pb, Mn) were found at higher concentrations at the more ventilated UB site. When receptor modelling was performed with positive matrix factorization (PMF), nine different aerosol sources were identified at both sites: three types of regional aerosols (secondary sulphate (S) - 27%, biomass burning (K) - 5%, sea salt (Na-Mg) - 17%), three types of dust aerosols (soil dust (Al-Ti) - 17%, urban crustal dust (Ca) - 6%, and primary traffic non exhaust brake dust (Fe-Cu) - 7%), and three types industrial aerosol plumes-like events (shipping oil combustion (V-Ni) - 17%, industrial smelters (Zn-Mn) - 3%, and industrial combustion (Pb-Cl) - 5%). The validity of the PMF solution of the PIXE data is supported by strong correlations with external single particle mass spectrometry measurements. Beside apportioning the aerosol sources, some important air quality related conclusions can be drawn about the PM2.5 fraction simultaneously measured at the UB and RS sites: (1) the regional aerosol sources impact both monitoring sites at similar concentrations regardless their different ventilation conditions; (2) by contrast, local industrial aerosol plumes associated with shipping oil combustion and smelters activities have a higher impact on the more ventilated UB site; (3) a unique source of Pb-Cl (associated with industrial combustion emissions) is found a to be the major (82%) source of Cl in the urban agglomerate; (4) PM2.5 traffic brake dust (Fe-Cu) is mainly primarily emitted and not resuspended, whereas PM2.5 urban crustal dust (Ca) is found mainly resuspended by both traffic vortex and sea breeze; (5) urban dust (Ca) is found the aerosol source most affected by land wetness, reduced by a factor of eight during rainy days and suggesting that wet roads may be a solution for reducing dust concentrations in road sites, far more effective than street sweeping activities.

  16. Influence of soil chemistry on metal and bioessential element concentrations in nymphal and adult periodical cicadas (Magicicada spp.).

    PubMed

    Robinson, G R; Sibrell, P L; Boughton, C J; Yang, L H

    2007-03-15

    Metal and bioessential element concentrations were measured in three species of 17-year periodical cicadas (Magicicada spp.) to determine how cicada tissue chemistry is affected by soil chemistry, measure the bioavailability of metals from both uncontaminated and lead-arsenate-pesticide contaminated soils, and assess the potential risks of observed metal contamination for wildlife. Periodical cicada nymphs feed on root xylem fluids for 13 or 17 years of underground development. The nymphs then emerge synchronously at high densities, before leaving their nymphal keratin exoskeleton and molting into their adult form. Cicadas are an important food source for birds and animals during emergence events, and influence nutrient cycles in woodland ecosystems. Nymphal exoskeletons and whole adult cicadas were sampled in Clarke and Frederick Counties, Virginia and Berkeley and Jefferson Counties, West Virginia during the Brood X emergence in May and June, 2004. Elements, such as Al, Fe, and Pb, are strongly enriched in the nymphal exoskeleton relative to the adult body; Cu and Zn are enriched in bodies. Concentrations of Fe and Pb, when normalized to relatively inert soil constituents such as Al and Ce, are similar in both the molt exoskeleton and their host soil, implying that passive assimilation through prolonged soil contact (adhesion or adsorption) might control these metal concentrations. Normalized concentrations of bioessential elements, such as S, P, K, Ca, Mn, Cu, Zn, and Mo, and chalcophile (sulfur-loving) elements, such as As, Se, and Au, indicate strong enrichment in cicada tissues relative to soil, implying selective absorption and retention by xylem fluids, the cicada nymphs themselves, or both. Element enrichment patterns in cicada tissues are similar to enrichment patterns observed in xylem fluids from tree roots. Chalcophile elements and heavy metals accumulate in keratin-rich tissues and may bind to sulfhydryl groups. Metal concentrations in the nymphal exoskeleton show a positive correlation with soil metal concentrations, with Au exhibiting particularly strong enrichment in the exoskeleton relative to soil concentrations. Metal concentrations in adult bodies do not correlate with soil chemistry. Bioessential elements S, Ca, Mn, Fe, and Zn differed by sex in adults, whereas Na, Mg, K, Ca, Mn, Fe, Zn, and As differed by species. Body concentrations of Ca differed by site conditions (orchard or reference setting). The high Pb contents of orchard soils contaminated by arsenical pesticide residues might inhibit Ca uptake by cicada nymphs. The adult cicadas contain concentrations of metals similar to, or less than, other invertebrates, such as earthworms. There does not appear to be a dietary threat to birds or other consumers of adult cicadas based on Maximum Tolerable Dietary Level (MTDL) Guidelines developed for agricultural animals.

  17. Influence of soil chemistry on metal and bioessential element concentrations in nymphal and adult periodical cicadas (Magicicada spp.)

    USGS Publications Warehouse

    Robinson, G.R.; Sibrell, P.L.; Boughton, C.J.; Yang, L.H.

    2007-01-01

    Metal and bioessential element concentrations were measured in three species of 17-year periodical cicadas (Magicicada spp.) to determine how cicada tissue chemistry is affected by soil chemistry, measure the bioavailability of metals from both uncontaminated and lead-arsenate-pesticide contaminated soils, and assess the potential risks of observed metal contamination for wildlife. Periodical cicada nymphs feed on root xylem fluids for 13 or 17??years of underground development. The nymphs then emerge synchronously at high densities, before leaving their nymphal keratin exoskeleton and molting into their adult form. Cicadas are an important food source for birds and animals during emergence events, and influence nutrient cycles in woodland ecosystems. Nymphal exoskeletons and whole adult cicadas were sampled in Clarke and Frederick Counties, Virginia and Berkeley and Jefferson Counties, West Virginia during the Brood X emergence in May and June, 2004. Elements, such as Al, Fe, and Pb, are strongly enriched in the nymphal exoskeleton relative to the adult body; Cu and Zn are enriched in bodies. Concentrations of Fe and Pb, when normalized to relatively inert soil constituents such as Al and Ce, are similar in both the molt exoskeleton and their host soil, implying that passive assimilation through prolonged soil contact (adhesion or adsorption) might control these metal concentrations. Normalized concentrations of bioessential elements, such as S, P, K, Ca, Mn, Cu, Zn, and Mo, and chalcophile (sulfur-loving) elements, such as As, Se, and Au, indicate strong enrichment in cicada tissues relative to soil, implying selective absorption and retention by xylem fluids, the cicada nymphs themselves, or both. Element enrichment patterns in cicada tissues are similar to enrichment patterns observed in xylem fluids from tree roots. Chalcophile elements and heavy metals accumulate in keratin-rich tissues and may bind to sulfhydryl groups. Metal concentrations in the nymphal exoskeleton show a positive correlation with soil metal concentrations, with Au exhibiting particularly strong enrichment in the exoskeleton relative to soil concentrations. Metal concentrations in adult bodies do not correlate with soil chemistry. Bioessential elements S, Ca, Mn, Fe, and Zn differed by sex in adults, whereas Na, Mg, K, Ca, Mn, Fe, Zn, and As differed by species. Body concentrations of Ca differed by site conditions (orchard or reference setting). The high Pb contents of orchard soils contaminated by arsenical pesticide residues might inhibit Ca uptake by cicada nymphs. The adult cicadas contain concentrations of metals similar to, or less than, other invertebrates, such as earthworms. There does not appear to be a dietary threat to birds or other consumers of adult cicadas based on Maximum Tolerable Dietary Level (MTDL) Guidelines developed for agricultural animals.

  18. Aluminum exclusion from root zone and maintenance of nutrient uptake are principal mechanisms of Al tolerance in Pisum sativum L.

    PubMed

    Kichigina, Natalia E; Puhalsky, Jan V; Shaposhnikov, Aleksander I; Azarova, Tatiana S; Makarova, Natalia M; Loskutov, Svyatoslav I; Safronova, Vera I; Tikhonovich, Igor A; Vishnyakova, Margarita A; Semenova, Elena V; Kosareva, Irina A; Belimov, Andrey A

    2017-10-01

    Our study aimed to evaluate intraspecific variability of pea ( Pisum sativum L.) in Al tolerance and to reveal mechanisms underlying genotypic differences in this trait. At the first stage, 106 pea genotypes were screened for Al tolerance using root re-elongation assay based on staining with eriochrome cyanine R. The root re-elongation zone varied from 0.5 mm to 14 mm and relationships between Al tolerance and provenance or phenotypic traits of genotypes were found. Tolerance index (TI), calculated as a biomass ratio of Al-treated and non-treated contrasting genotypes grown in hydroponics for 10 days, varied from 30% to 92% for roots and from 38% to 90% for shoots. TI did not correlate with root or shoot Al content, but correlated positively with increasing pH and negatively with residual Al concentration in nutrient solution in the end of experiments. Root exudation of organic acid anions (mostly acetate, citrate, lactate, pyroglutamate, pyruvate and succinate) significantly increased in several Al-treated genotypes, but did not correlate with TI. Al-treatment decreased Ca, Co, Cu, K, Mg, Mn, Mo, Ni, S and Zn contents in roots and/or shoots, whereas contents of several elements (P, B, Fe and Mo in roots and B and Fe in shoots) increased, suggesting that Al toxicity induced substantial disturbances in uptake and translocation of nutrients. Nutritional disturbances were more pronounced in Al sensitive genotypes. In conclusion, pea has a high intraspecific variability in Al tolerance and this trait is associated with provenance and phenotypic properties of plants. Transformation of Al to unavailable (insoluble) forms in the root zone and the ability to maintain nutrient uptake are considered to be important mechanisms of Al tolerance in this plant species.

  19. Electrically induced fluorescence Fe3+ sensing behavior of nanostructured Tiron doped polypyrrole.

    PubMed

    Tavoli, Farnaz; Alizadeh, Naader

    2016-11-23

    Nanostructured polypyrrole (PPy) film doped with Tiron was electrodeposited from aqueous solution on the surface of transparent electrode and used for sensitive, selective and rapid electrically controlled fluorescence detection of Fe 3+ in aqueous media. The fluorescence intensity of PPy-Tiron film decreases linearly in the presence of Fe 3+ by applying negative potential over a concentration range from 5.0 × 10 -8 to 1.0 × 10 -6  mol L -1 , with a relatively fast response time of less than 30 s at pH 7.4. The detection is not affected by the coexistence of other competitive metal ions such as Al 3+ , Ce 3+ , Tl 3+ , La 3+ , Bi 3+ , Cr 2+ , Mn 2+ , Fe 2+ , Co 2+ , Ni 2+ , Cu 2+ , Zn 2+ , Cd 2+ , Hg 2+ , Pb 2+ , Na + , K + , Mg 2+ , Ca 2+ , Sr 2+ and Ba 2+ . The proposed electro-fluorescence sensor has a potential application to the determination of Fe 3+ in environmental and biological systems. The fluorescent thin film sensor was also used as a novel probe for Fe 3+ /Fe 2+ speciation in aqueous solution. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Phase constitution characteristics of the Fe-Al alloy layer in the HAZ of calorized steel pipe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Yajiang; Zou Zengda; Wei Xing

    1997-09-01

    Mechanical properties of the welding region and phase constitution characteristics in the iron-aluminum (Fe-Al) alloy layer of calorized steel pipes were researched by means of metallography, which included the use of scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron probe microanalysis (EPMA) and an X-ray diffractometer. Experimental results indicated that the Fe-Al alloy layer of calorized steel pipe was mainly composed of an FeAl phase, an Fe{sub 3}Al phase and an {alpha}-Fe(Al) solid solution, and the microhardness in the Fe-Al coating was 600--310 HM from the surface layer to the inside. There were no higher aluminum content phases, suchmore » as brittle FeAl{sub 2}, Fe{sub 2}Al{sub 5} and FeAl{sub 3}. By controlling the aluminizing process parameters, the ability to bear deformation and weld-ability of the calorized steel pipe were remarkably improved.« less

  1. Elements and inorganic ions as source tracers in recent Greenland snow

    NASA Astrophysics Data System (ADS)

    Lai, Alexandra M.; Shafer, Martin M.; Dibb, Jack E.; Polashenski, Chris M.; Schauer, James J.

    2017-09-01

    Atmospheric transport of aerosols leads to deposition of impurities in snow, even in areas of the Arctic as remote as Greenland. Major ions (e.g. Na+, Ca2+, NH4+, K+, SO42-) are frequently used as tracers for common aerosol sources (e.g. sea spray, dust, biomass burning, anthropogenic emissions). Trace element data can supplement tracer ion data by providing additional information about sources. Although many studies have considered either trace elements or major ions, few have reported both. This study determined total and water-soluble concentrations of 31 elements (Al, As, Ca, Cd, Ce, Co, Cr, Dy, Eu, Fe, Gd, K, La, Mg, Mn, Na, Nb, Nd, Pb, Pr, S, Sb, Si, Sm, Sn, Sr, Ti, V, U, Y, Zn) in shallow snow pits at 22 sampling sites in Greenland, along a transect from Summit Station to sites in the northwest. Black carbon (BC) and inorganic ions were measured in colocated samples. Sodium, which is typically used as a tracer of sea spray, did not appear to have any non-marine sources. The rare earth elements, alkaline earth elements (Mg, Ca, Sr), and other crustal elements (Fe, Si, Ti, V) were not enriched above crustal abundances relative to Al, indicating that these elements are primarily dust sourced. Calculated ratios of non-sea salt Ca (nssCa) to estimated dust mass affirm the use of nssCa as a dust tracer, but suggest up to 50% uncertainty in that estimate in the absence of other crustal element data. Crustal enrichment factors indicated that As, Cd, Pb, non-sea-salt S, Sb, Sn, and Zn were enriched in these samples, likely by anthropogenic sources. Principal component analysis indicated more than one crustal factor, and a variety of factors related to anthropogenically enriched elements. Analysis of trace elements alongside major tracer ions does not change interpretation of ion-based source attribution for sources that are well-characterized by ions, but is valuable for assessing uncertainty in source attribution and identifying sources not represented by major ions.

  2. The Influence of Non-spectral Matrix Effects on the Accuracy of Isotope Ratio Measurement by MC-ICP-MS

    NASA Astrophysics Data System (ADS)

    Barling, J.; Shiel, A.; Weis, D.

    2006-12-01

    Non-spectral interferences in ICP-MS are caused by matrix elements effecting the ionisation and transmission of analyte elements. They are difficult to identify in MC-ICP-MS isotopic data because affected analyses exhibit normal mass dependent isotope fractionation. We have therefore investigated a wide range of matrix elements for both stable and radiogenic isotope systems using a Nu Plasma MC-ICP-MS. Matrix elements commonly enhance analyte sensitivity and change the instrumental mass bias experienced by analyte elements. These responses vary with element and therefore have important ramifications for the correction of data for instrumental mass bias by use of an external element (e.g. Pb and many non-traditional stable isotope systems). For Pb isotope measurements (Tl as mass bias element), Mg, Al, Ca, and Fe were investigated as matrix elements. All produced signal enhancement in Pb and Tl. Signal enhancement varied from session to session but for Ca and Al enhancement in Pb was less than for Tl while for Mg and Fe enhancement levels for Pb and Tl were similar. After correction for instrumental mass fractionation using Tl, Mg effected Pb isotope ratios were heavy (e.g. ^{208}Pb/204Pbmatrix > ^{208}Pb/204Pbtrue) for both moderate and high [Mg] while Ca effected Pb showed little change at moderate [Ca] but were light at high [Ca]. ^{208}Pb/204Pbmatrix - ^{208}Pb/204Pbtrue for all elements ranged from +0.0122 to - 0.0177. Isotopic shifts of similar magnitude are observed between Pb analyses of samples that have seen either one or two passes through chemistry (Nobre Silva et al, 2005). The double pass purified aliquots always show better reproducibility. These studies show that the presence of matrix can have a significant effect on the accuracy and reproducibility of replicate Pb isotope analyses. For non-traditional stable isotope systems (e.g. Mo(Zr), Cd(Ag)), the different responses of analyte and mass bias elements to the presence of matrix can result in del/amu for measured & mass bias corrected data that disagree outside of error. Either or both values can be incorrect. For samples, unlike experiments, the correct del/amu is not known in advance. Therefore, for sample analyses to be considered accurate, both measured and exponentially corrected del/amu should agree.

  3. Optimization of the crystal growth of the superconductor CaKFe4As4 from solution in the FeAs -CaFe2As2-KFe2As2 system

    NASA Astrophysics Data System (ADS)

    Meier, W. R.; Kong, T.; Bud'ko, S. L.; Canfield, P. C.

    2017-06-01

    Measurements of the anisotropic properties of single crystals play a crucial role in probing the physics of new materials. Determining a growth protocol that yields suitable high-quality single crystals can be particularly challenging for multicomponent compounds. Here we present a case study of how we refined a procedure to grow single crystals of CaKFe4As4 from a high temperature, quaternary liquid solution rich in iron and arsenic ("FeAs self-flux"). Temperature dependent resistance and magnetization measurements are emphasized, in addition to the x-ray diffraction, to detect intergrown CaKFe4As4 , CaFe2As2 , and KFe2As2 within what appear to be single crystals. Guided by the rules of phase equilibria and these data, we adjusted growth parameters to suppress formation of the impurity phases. The resulting optimized procedure yielded phase-pure single crystals of CaKFe4As4 . This optimization process offers insight into the growth of quaternary compounds and a glimpse of the four-component phase diagram in the pseudoternary FeAs -CaFe2As2-KFe2As2 system.

  4. Substituting Fe for two of the four Mn ions in photosystem II-effects on water-oxidation.

    PubMed

    Semin, Boris K; Seibert, Michael

    2016-06-01

    We have investigated the interaction of Fe(II) cations with Ca-depleted PSII membranes (PSII[-Ca,4Mn]) in the dark and found that Fe(II) incubation removes 2 of 4 Mn ions from the tetranuclear Mn cluster of the photosynthetic O2-evolving complex (OEC). The reduction of Mn ions in PSII(-Ca,4Mn) by Fe(II) and the concomitant release of two Mn(II) cations is accompanied by the binding of newly generated Fe(III) in at least one vacated Mn site. Flash-induced chlorophyll (Chl) fluorescence yield measurements of this new 2Mn/nFe cluster (PSII[-Ca,2Mn,nFe]) show that charge recombination in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) occurs between Qa (-) and the remaining Mn/Fe cluster (but not YZ (●)) in the OEC, and extraction of 2 Mn occurs uniformly in all PSII complexes. No O2 evolution is observed, but the heteronuclear metal cluster in PSII(-Ca,2Mn,nFe) samples is still able to supply electrons for reduction of the exogenous electron acceptor, 2,6-dichlorophrenolindophenol, by photooxidizing water and producing H2O2 in the absence of an exogenous donor as seen previously with PSII(-Ca,4Mn). Selective extraction of Mn or Fe cations from the 2Mn/nFe heteronuclear cluster demonstrates that the high-affinity Mn-binding site is occupied by one of the iron cations. It is notable that partial water-oxidation function still occurs when only two Mn cations are present in the PSII OEC.

  5. Effects of Al content and annealing on the phases formation, lattice parameters, and magnetization of A l x F e 2 B 2 ( x = 1.0 , 1.1 , 1.2 ) alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levin, E. M.; Jensen, B. A.; Barua, R.

    AlFe 2B 2 is a ferromagnet with the Curie temperature around 300 K and has the potential to be an outstanding rare-earth free candidate for magnetocaloric applications. However, samples prepared from the melt contain additional phases which affect the functional response of the AlFe 2B 2 phase. Here, we report on the effects of Al content in samples with the initial (nominal) composition of Al xFe 2B 2 where x=1.0, 1.1, and 1.2 prepared by arc-melting followed by suction casting and annealing. The as-cast Al xFe 2B 2 alloys contain AlFe 2B 2 as well as additional phases including themore » primary solidifying FeB and Al 13Fe 4 compounds which are ferromagnetic and paramagnetic, respectively, at 300 K. The presence of these phases makes it difficult to extract the intrinsic magnetic properties of AlFe 2B 2 phase. Annealing of Al xFe 2B 2 alloys at 1040°C for 3 days allows for reaction of the FeB with Al 13Fe 4 to form the AlFe 2B 2 phase, significantly reduces the amount of additional phases, and results in nearly pure AlFe 2B2 phase as confirmed with XRD, magnetization, scanning electron microscopy, and electronic transport. The values of the magnetization, effective magnetic moment per Fe atom, specific heat capacity, electrical resistivity and Seebeck coefficient for the AlFe 2B 2 compound have been established.« less

  6. Effects of Al content and annealing on the phases formation, lattice parameters, and magnetization of A l x F e 2 B 2 ( x = 1.0 , 1.1 , 1.2 ) alloys

    DOE PAGES

    Levin, E. M.; Jensen, B. A.; Barua, R.; ...

    2018-03-26

    AlFe 2B 2 is a ferromagnet with the Curie temperature around 300 K and has the potential to be an outstanding rare-earth free candidate for magnetocaloric applications. However, samples prepared from the melt contain additional phases which affect the functional response of the AlFe 2B 2 phase. Here, we report on the effects of Al content in samples with the initial (nominal) composition of Al xFe 2B 2 where x=1.0, 1.1, and 1.2 prepared by arc-melting followed by suction casting and annealing. The as-cast Al xFe 2B 2 alloys contain AlFe 2B 2 as well as additional phases including themore » primary solidifying FeB and Al 13Fe 4 compounds which are ferromagnetic and paramagnetic, respectively, at 300 K. The presence of these phases makes it difficult to extract the intrinsic magnetic properties of AlFe 2B 2 phase. Annealing of Al xFe 2B 2 alloys at 1040°C for 3 days allows for reaction of the FeB with Al 13Fe 4 to form the AlFe 2B 2 phase, significantly reduces the amount of additional phases, and results in nearly pure AlFe 2B2 phase as confirmed with XRD, magnetization, scanning electron microscopy, and electronic transport. The values of the magnetization, effective magnetic moment per Fe atom, specific heat capacity, electrical resistivity and Seebeck coefficient for the AlFe 2B 2 compound have been established.« less

  7. Atrazine sorption by hydroxy-interlayered clays and their organic complexes.

    PubMed

    Indraratne, Srimathie P; Farenhorst, Annemieke; Goh, Tee Boon

    2008-01-01

    This study examined the sorption of atrazine by hydroxy-Fe interlayered montmorillonite (FeMt) and its hydroquinone (FeMtHQ), citrate (FeMtCt) and catechol (FeMtCC) complexes as well as by hydroxy-Al interlayered montmorillonite (AlMt) and its hydroquinone (AlMtHQ) and citrate (AlMtCt) complexes. Found among the clays were sorption distribution coefficients (K(d)) ranging from 24 to 123 mL g(-1) and maximum sorption (M) ranging from 2.2 to 16.8 microg g(-1). Both K(d) and M decreased in the order of FeMtCC > FeMtHQ > AlMtHQ > (AlMt = FeMt) > (AlMtCt = FeMtCt). The pH was negatively correlated with both K(d) (r = -0.90, p < 0.001) and M (r = -0.81, p < 0.001). When interlayered clays were associated with humified material (FeMtCC, FeMtHQ, AlMtHQ), both K(d) (r > 0.96, p < 0.01) and M (r > 0.94, p < 0.01) were highly positively correlated with total organic C and alkali-soluble C. However, clays with non-humified organic compounds (FeMtCt and AlMtCt) sorbed less atrazine than clays without any organic C (FeMt and AlMt). This suggests that functional groups of Fe-OH and Al-OH in FeMt and AlMt reduced the available sorption sites for atrazine by making complexes with citrate ions while forming FeMtCt and AlMtCt. The atrazine was sorbed through the hydrophobic interactions with organic compound surfaces as well as through H-bonding and ionic bonding with clay-mineral surfaces.

  8. Recycling of electronic waste: Printed wiring boards

    NASA Astrophysics Data System (ADS)

    Luyima, Alex

    Pyrolysis and leaching are the dominant techniques applied in the recycling of waste printed wiring boards (PWBs). Waste PWB pyrolysis is a highly polluting technology and produces brominated pyrolysis oils in addition to hydrogen bromide (HBr) gas. Moreover, leaching as a treatment process of waste PWBs is not well investigated. In this work, the pyrolysis of waste PWBs has been studied with the aim of reducing the amount of brominated oils and HBr gas evolved. The effects of powder inorganic chemicals (CaO, CaCO3, Fe 2O3, Al2O3, Y-Zeolite, and ZSM-5) additions on the pyrolysis of waste PWBs has been studied through experiments using a thermogravimetric-differential thermal analyzer connected to a mass spectrometer (TG-DTA-MS) and in a tube furnace at 900 °C. It has been shown that the kinetic models by Friedman, Flynn-Wall-Ozawa, and Kissinger are applicable to waste PWB pyrolysis at temperatures below 400 °C. Moreover, CaO, CaCO3, Fe2O3, Y-Zeolite, and ZSM-5 show a potential to reduce the amount of HBr gas evolved during pyrolysis in TG-DTA-MS. However, in the tube furnace pyrolysis experiments, CaO and CaCO3 were found to be the most effective chemical additions, with more than 90% reduction in total bromine (HBr and other brominated gases) evolved. It has also been demonstrated that the sequential leaching of waste PWBs with hydrochloric acid, nitric acid and aqua regia is capable of selective recovery of base and precious metals contained in waste PWBs.

  9. Chemistry and phytotoxicity of arsenic in soils. II. Effects of time and phosphorus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woolson, E.A.; Axley, J.H.; Kearney, P.C.

    Arsenate from sodium arsenate changes to less soluble compounds in soils with time. To study these changes, the arsenic soluble in 1N NH/sub 4/Cl, 0.5N NH/sub 4/F, 0.1N NaOH, and 0.5N H/sub 2/SO/sub 4/ solutions was determined. These dissolved arsenates, were designated as WS-As (water soluble, Al-As, Fe-As, or Ca-As, respectively. The percent of WS-As present was proportional to As added and inversely proportional to time, and to the Fe and Al content. Fe-As was the predominant form of As in Hagerstown silty clay loam while Al-As predominated in Lakeland loamy sand. Growth of corn (Zea mays) increased with increasemore » in time of As incubation in the soil before planting. Arsenic phytotoxicity and As in the plant were altered by P additions. Arsenic residues in the Lakeland soil became more phytotoxic, while residues in the Hagerstown soil became less phytotoxic with P additions. This plant response was related to the availability of As and P in these soils. Leaching with 0.05 M KH/sub 2/PO/sub 4/ removed 77% of the total As from a contaminated Dunkirk fine sand. The distribution of the forms of As in this soil changed during leaching. 26 references, 3 figures, 4 tables.« less

  10. Long-term impact of primary domestic sewage on metal/loid accumulation in drainage ditch sediments, plants and water: Implications for phytoremediation and restoration.

    PubMed

    Kumwimba, Mathieu Nsenga; Zhu, Bo; Suanon, Fidèle; Muyembe, Diana Kavidia; Dzakpasu, Mawuli

    2017-03-01

    We evaluate the long-term performance of a vegetated drainage ditch (VDD) treating domestic sewage with respect to heavy metal/metalloid (HM/M) accumulation in sediments, plants and water. VDD sediment contained significantly higher macro and trace elements compared to an agricultural ditch (AD) sediment. However, concentrations of HM/Ms in VDD sediment were below the ranges considered toxic to plants. Most HM/Ms were efficiently removed in the VDD, whereby removal efficiencies varied between 11% for Al and 89% for K. Accumulation of HM/Ms varied among species and plant parts, although sequestration by plants represents only a small proportion (<1%) of the inflow load. Accumulation of Al, As, Cd, Pb, Cr, Fe and Ni in VDD plants were mostly distributed in the roots, indicating an exclusive strategy for metal tolerance. The opposite was found for Zn, Cu, K, Ca, P, K, Na, N and Mg, which were accumulated either in the stems or leaves. Overall, concentrations of metals in sediment showed significant positive correlations with those in ditch plants. None of the studied species were identified as metal hyper-accumulators (i.e. >10,000mgkg -1 of Zn or Mn). Nevertheless, the high translocation factor (TF) values for Mn, Ni, Cu, Zn, Na, Mg, P, K and Ca in the ditch plants make them suitable for phytoextraction from water/soil, while the low TF values for Pb, Cd, As, Fe, Cr and Al make them suitable for their phytostabilization. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. TEM/STEM study of Zircaloy-2 with protective FeAl(Cr) layers under simulated BWR environment and high-temperature steam exposure

    NASA Astrophysics Data System (ADS)

    Park, Donghee; Mouche, Peter A.; Zhong, Weicheng; Mandapaka, Kiran K.; Was, Gary S.; Heuser, Brent J.

    2018-04-01

    FeAl(Cr) thin-film depositions on Zircaloy-2 were studied using transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) with respect to oxidation behavior under simulated boiling water reactor (BWR) conditions and high-temperature steam. Columnar grains of FeAl with Cr in solid solution were formed on Zircaloy-2 coupons using magnetron sputtering. NiFe2O4 precipitates on the surface of the FeAl(Cr) coatings were observed after the sample was exposed to the simulated BWR environment. High-temperature steam exposure resulted in grain growth and consumption of the FeAl(Cr) layer, but no delamination at the interface. Outward Al diffusion from the FeAl(Cr) layer occurred during high-temperature steam exposure (700 °C for 3.6 h) to form a 100-nm-thick alumina oxide layer, which was effective in mitigating oxidation of the Zircaloy-2 coupons. Zr intermetallic precipitates formed near the FeAl(Cr) layer due to the inward diffusion of Fe and Al. The counterflow of vacancies in response to the Al and Fe diffusion led to porosity within the FeAl(Cr) layer.

  12. Extraction processes for the production of aluminum, titanium, iron, magnesium, and oxygen and nonterrestrial sources

    NASA Technical Reports Server (NTRS)

    Rao, D. B.; Choudary, U. V.; Erstfeld, T. E.; Williams, R. J.; Chang, Y. A.

    1979-01-01

    The suitability of existing terrestrial extractive metallurgical processes for the production of Al, Ti, Fe, Mg, and O2 from nonterrestrial resources is examined from both thermodynamic and kinetic points of view. Carbochlorination of lunar anorthite concentrate in conjunction with Alcoa electrolysis process for Al; carbochlorination of lunar ilmenite concentrate followed by Ca reduction of TiO2; and subsequent reduction of Fe2O3 by H2 for Ti and Fe, respectively, are suggested. Silicothermic reduction of olivine concentrate was found to be attractive for the extraction of Mg becaue of the technological knowhow of the process. Aluminothermic reduction of olivine is the other possible alternative for the production of magnesium. The large quantities of carbon monoxide generated in the metal extraction processes can be used to recover carbon and oxygen by a combination of the following methods: (1) simple disproportionation of CO,(2) methanation of CO and electrolysis of H2O, and (3) solid-state electrolysis of gas mixtures containing CO, CO2, and H2O. The research needed for the adoption of earth-based extraction processes for lunar and asteroidal minerals is outlined.

  13. High resolution CCD spectra of stars in globular clusters. Part 2: Metals and CNO in M71

    NASA Technical Reports Server (NTRS)

    Leep, E. M.; Oke, J. B.; Wallerstein, G.

    1986-01-01

    Palomar coude CCD spectra of resolution 0.3 and 0.6 has been used to redetermine abundances in five stars of the relatively metal rich globular cluster M71. The (Fe/H) value is restricted to the limits of -0.6 to -1.0. The largest source of uncertainty is a systematic difference in f-values between those derived via the Holweger-Muller (1974) solar model and the Bell et al. (1976) solar model. If we use absolute f-values measured by the Oxford group (Blackwell et al. 1982) we find Fe/H to lie in the range of -0.6 to -0.75, i.e., as given by using the Bell et al. solar model. The relative abundances of the light elements, i.e., Na through Ca and probably including Ti show an average excess relative to iron of 0.4 dex. The effect of this difference on metal indices derived from broad- and narrow- band photometry is discussed. For three stars we find O/H = -0.6 using absolute f-values. For CN an analysis of individual rotational lines of the 2-0 band of the red system yields lines in the (C/H,N/H) plane that are consistent with either an original C/Fe = N/Fe = 0 or a modest increase in N relative to C due to CN burning and mixing. A search for C-13N was not successful and an uncertain lower limit of C-12/C-13 near 10 was obtained.

  14. Chemical characterization of atmospheric dust from a weekly time series in the north Red Sea between 2006 and 2010

    NASA Astrophysics Data System (ADS)

    Torfstein, Adi; Teutsch, Nadya; Tirosh, Ofir; Shaked, Yeala; Rivlin, Tanya; Zipori, Assaf; Stein, Mordechai; Lazar, Boaz; Erel, Yigal

    2017-08-01

    Atmospheric dust loads and chemical compositions serve as a key link between global climate patterns and marine biogeochemical cycles. The primary source of atmospheric dust in the world today is the Sahara-Arabian desert belt. Although this source was also active during the Quaternary, the interpretation of paleo-dust records and their effects on marine ecosystems is complicated by the scarcely reported atmospheric load patterns of bioavailable phases (i.e., water and acid leachable phases) and present-day contamination of anthropogenic components. This study reports a multi-annual time series of atmospheric dust loads (2006-2016) and their chemical compositions (2006-2010) collected in the north Gulf of Aqaba (north Red Sea) at a weekly to bi-weekly resolution. Major and trace element abundances in each sample are reported for three fractions: water-soluble salts, carbonates and oxides (weak acid leach), and Al-silicates. Dust loads vary seasonally from low values in late summer (∼20-30 μg m-3) to higher values in the fall, and highest values in late winter and early spring (∼150-250 μg m-3). Major and trace element abundances allow to distinguish between the sources and chemical compositions that dominate high and low dust loads in each season. The water leachable fraction (L0) is relatively enriched in Na, Ca, K and Mg, the acid-leachable fraction (L1) is enriched in Ca as well as Na, Al, Mg, Zn, Cd and Pb, and the silicate residue (L2) in Al and Fe. High dust loads occurring mainly during winter and spring months are characterized by low Mg/Ca (L1, L2), low K/Al and Na/Al (L1) and high Ca/Al (L1), high Mg/Al (L2) and relatively un-weathered (L2) contents. High dust load intervals during winter months are characterized by low passing air masses originating from the Sahara, while the ambient winter dust (low dust load) is associated with proximal source regions from the East Sahara and Arabian Peninsula. During late winter and spring months, high dust loads originate from central and west Sahara and to a lesser extent from north Sahara. Low dust loads characterize the summer with limited compositional variability relative to winter-spring months. Summer dust is generally characterized by high K/Al (L1) ratios relative to late winter and spring. It is also relatively high in anthropogenic trace elements in the L0 and L1 fractions (e.g., Zn/Al, Pb/Al, Cr/Al, Ni/Al and V/Al), whereby back trajectories indicate the source of these components is primarily from south and east Europe. The total load (ng m-3) of anthropogenic trace elements however, remains higher during winter and spring, stemming from the overall significantly higher dust loads characterizing this time window. The temporal load patterns of important micronutrients such as Fe, Cd, Zn, Cu, Ni and others in the bio-available phases (L0, L1) are not correlated with major nutrients or Chlorophyll-a sea surface concentrations, suggesting that the atmospheric dust plays a limited role in driving primary productivity in the oligotrophic surface waters of the Gulf of Aqaba. On a wider scale, the results provide unique chemical fingerprinting of Sahara-Arabian dust that can be applied to reconstruct past trends in dust loads recorded in deep-sea cores and other geological archives from this and other regions.

  15. Tuning the reactivity of Al/Fe{sub 2}O{sub 3} nanoenergetic materials via an approach combining soft template self-assembly with sol–gel process process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Tianfu; Wang, Zhen; Li, Guoping

    2015-10-15

    A bottom-up approach combining soft template self-assembly with sol–gel process, was adopted to prepare the assembled Al/Fe{sub 2}O{sub 3} nanoenergetic materials, assembly-Al/Fe{sub 2}O{sub 3} sample. The other two unassembled Al/Fe{sub 2}O{sub 3}a nanoenergetic materials, sol–gel–Al/Fe{sub 2}O{sub 3} sample and mixing-Al/Fe{sub 2}O{sub 3} sample, were prepared by sol–gel method and physical mixing method respectively. The assembly process within the preparation of the assembly-Al/Fe{sub 2}O{sub 3} sample was analyzed through the changes in the average hydrodynamic diameters of the particles and the micelles in solution. SEM, EDS and TEM tests were performed to demonstrate a significant improvement regarding to dispersity and arrangementsmore » of the Al and Fe{sub 2}O{sub 3} particles in the assembled samples, compared to that of the unassembled Al/Fe{sub 2}O{sub 3} samples. DSC test was employed to characterize the reactivity of the samples. The heat release of the assembled Al/Fe{sub 2}O{sub 3} sample was 2088 J/g, about 400 and 990 J/g more than that of the sol–gel–Al/Fe{sub 2}O{sub 3} sample and mixing-Al/Fe{sub 2}O{sub 3} sample, respectively. - Graphical abstract: Modified aluminum (Al) nanoparticles with hydrophobic surface assembled into the Brij S10 micelle in Fe(III) sol, then the well dispersed system was transformed into Al/Fe{sub 2}O{sub 3} nanoenergetic materials with high reactivity. - Highlights: • An approach combining soft template self-assembly with sol–gel process was adopted. • The aggregation of Al nanoparticles in the final product was reduced significantly. • The reactivity of Al/Fe{sub 2}O{sub 3} nanoenergetic materials was improved to a large extent.« less

  16. Silicate minerals for CO2 scavenging from biogas in Autogenerative High Pressure Digestion.

    PubMed

    Lindeboom, Ralph E F; Ferrer, Ivet; Weijma, Jan; van Lier, Jules B

    2013-07-01

    Autogenerative High Pressure Digestion (AHPD) is a novel concept that integrates gas upgrading with anaerobic digestion by selective dissolution of CO2 at elevated biogas pressure. However, accumulation of CO2 and fatty acids after anaerobic digestion of glucose resulted in pH 3-5, which is incompatible with the commonly applied high-rate methanogenic processes. Therefore, we studied the use of wollastonite, olivine and anorthosite, with measured composition of CaSi1.05O3.4, Mg2Fe0.2Ni0.01Si1.2O5.3 and Na0.7Ca1K0.1Mg0.1Fe0.15Al3.1Si4O24, respectively, to scavenge CO2 during batch AHPD of glucose. Depending on the glucose to mineral ratio the pH increased to 6.0-7.5. Experiments with wollastonite showed that Ca(2+)-leaching was caused by volatile fatty acid (VFA) production during glucose digestion. At 1, 3 and 9 bar, the CH4 content reached 74%, 86% and 88%, respectively, indicating CO2 scavenging. Fixation of produced CO2 by CaCO3 precipitation in the sludge was confirmed by Fourier Transferred-InfraRed, Combined Field emission Scanning Electron Microscopy-Energy-dispersive X-ray spectroscopy and Thermogravimetric Analysis-Mass Spectroscopy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Oxygen fugacity profile of the oceanic upper mantle and the depth of redox melting beneath ridges

    NASA Astrophysics Data System (ADS)

    Davis, F. A.; Cottrell, E.

    2014-12-01

    Oxygen fugacity (fO2) of a mantle mineral assemblage, controlled primarily by Fe redox chemistry, sets the depth of the diamond to carbonated melt reaction (DCO3). Near-surface fO2 recorded by primitive MORB glasses and abyssal peridotites anchor the fO2 profile of the mantle at depth. If the fO2-depth relationship of the mantle is known, then the depth of the DCO3 can be predicted. Alternatively, if the DCO3 can be detected geophysically, then its depth can be used to infer physical and chemical characteristics of upwelling mantle. We present an expanded version of a model of the fO2-depth profile of adiabatically upwelling mantle first presented by Stagno et al. (2013), kindly provided by D. Frost. The model uses a chemical mass balance and empirical fits to experimental data to calculate compositions and modes of mantle minerals at specified P, T, and bulk Fe3+/ƩFe. We added P and T dependences to the partitioning of Al and Ca to better simulate the mineralogical changes in peridotite at depth and included majorite component in garnet to increase the depth range of the model. We calculate fO2 from the mineral assemblages using the grt-ol-opx oxybarometer (Stagno et al., 2013). The onset of carbonated melting occurs at the intersection of a Fe3+/ƩFe isopleth with the DCO3. Upwelling mantle is tied to the DCO3 until all native C is oxidized to form carbonated melts by reduction of Fe3+ to Fe2+. The depth of intersection of a parcel of mantle with the DCO3 is a function of bulk Fe3+/ƩFe, potential temperature, and bulk composition. We predict that fertile mantle (PUM) along a 1400 °C adiabat, with 50 ppm bulk C, and Fe3+/ƩFe = 0.05 after C oxidation begins redox melting at a depth of 250 km. The model contextualizes observations of MORB redox chemistry. Because fertile peridotite is richer in Al2O3, the Fe2O3-bearing components of garnet are diluted leading to lower fO2 at a given depth compared to refractory mantle under the same conditions. This may indicate that the negativecorrelation observed between enrichment and fO2 at ridges (Cottrell and Kelley, 2013) is a consequence of the increased fertility of remixing recycled crust into the mantle. Addition of reduced C to the mantle during subduction can also explain this observation. Geophysical detection of the depth of the DCO3 may resolve these hypotheses.

  18. Effects of an Al3+- and Mg2+-containing antacid, ferrous sulfate, and calcium carbonate on the absorption of nemonoxacin (TG-873870) in healthy Chinese volunteers

    PubMed Central

    Zhang, Yi-fan; Dai, Xiao-jian; Wang, Ting; Chen, Xiao-yan; Liang, Li; Qiao, Hua; Tsai, Cheng-yuan; Chang, Li-wen; Huang, Ping-ting; Hsu, Chiung-yuan; Chang, Yu-ting; Tsai, Chen-en; Zhong, Da-fang

    2014-01-01

    Aim: To evaluate the effects of an Al3+- and Mg2+-containing antacid, ferrous sulfate, and calcium carbonate on the absorption of nemonoxacin in healthy humans. Methods: Two single-dose, open-label, randomized, crossover studies were conducted in 24 healthy male Chinese volunteers (12 per study). In Study 1, the subjects orally received nemonoxacin (500 mg) alone, or an antacid (containing 318 mg of Al3+ and 496 mg of Mg2+) plus nemonoxacin administered 2 h before, concomitantly or 4 h after the antacid. In Study 2, the subjects orally received nemonoxacin (500 mg) alone, or nemonoxacin concomitantly with ferrous sulfate (containing 60 mg of Fe2+) or calcium carbonate (containing 600 mg of Ca2+). Results: Concomitant administration of nemonoxacin with the antacid significantly decreased the area under the concentration-time curve from time 0 to infinity (AUC0–∞) for nemonoxacin by 80.5%, the maximum concentration (Cmax) by 77.8%, and urine recovery (Ae) by 76.3%. Administration of nemonoxacin 4 h after the antacid decreased the AUC0–∞ for nemonoxacin by 58.0%, Cmax by 52.7%, and Ae by 57.7%. Administration of nemonoxacin 2 h before the antacid did not affect the absorption of nemonoxacin. Administration of nemonoxacin concomitantly with ferrous sulfate markedly decreased AUC0–∞ by 63.7%, Cmax by 57.0%, and Ae by 59.7%, while concomitant administration of nemonoxacin with calcium carbonate mildly decreased AUC0–∞ by 17.8%, Cmax by 14.3%, and Ae by 18.4%. Conclusion: Metal ions, Al3+, Mg2+, and Fe2+ markedly decreased the absorption of nemonoxacin in healthy Chinese males, whereas Ca2+ had much weaker effects. To avoid the effects of Al3+ and Mg2+-containing drugs, nemonoxacin should be administered ≥2 h before them. PMID:25327812

  19. Upper mantle fluids evolution, diamond formation, and mantle metasomatism

    NASA Astrophysics Data System (ADS)

    Huang, F.; Sverjensky, D. A.

    2017-12-01

    During mantle metasomatism, fluid-rock interactions in the mantle modify wall-rock compositions. Previous studies usually either investigated mineral compositions in xenoliths and xenocrysts brought up by magmas, or examined fluid compositions preserved in fluid inclusions in diamonds. However, a key study of Panda diamonds analysed both mineral and fluid inclusions in the diamonds [1] which we used to develop a quantitative characterization of mantle metasomatic processes. In the present study, we used an extended Deep Earth Water model [2] to simulate fluid-rock interactions at upper mantle conditions, and examine the fluids and mineral assemblages together simultaneously. Three types of end-member fluids in the Panda diamond fluid inclusions include saline, rich in Na+K+Cl; silicic, rich in Si+Al; and carbonatitic, rich in Ca+Mg+Fe [1, 3]. We used the carbonatitic end-member to represent fluid from a subducting slab reacting with an excess of peridotite + some saline fluid in the host environment. During simultaneous fluid mixing and reaction with the host rock, the logfO2 increased by about 1.6 units, and the pH increased by 0.7 units. The final minerals were olivine, garnet and diamond. The Mg# of olivine decreased from 0.92 to 0.85. Garnet precipitated at an early stage, and its Mg# also decreased with reaction progress, in agreement with the solid inclusions in the Panda diamonds. Phlogopite precipitated as an intermediate mineral and then disappeared. The aqueous Ca, Mg, Fe, Si and Al concentrations all increased, while Na, K, and Cl concentrations decreased during the reaction, consistent with trends in the fluid inclusion compositions. Our study demonstrates that fluids coming from subducting slabs could trigger mantle metasomatism, influence the compositions of sub-lithospherc cratonic mantle, precipitate diamonds, and change the oxygen fugacity and pH of the upper mantle fluids. [1] Tomlinson et al. EPSL (2006); [2] Sverjensky, DA et al., GCA (2014), Huang, F, Ph. D. thesis, Johns Hopkins University, (2017); [3] Shirey et al., Rev. Mineral. Geochem. (2013)

  20. Method for treating rare earth-transition metal scrap

    DOEpatents

    Schmidt, Frederick A.; Peterson, David T.; Wheelock, John T.; Jones, Lawrence L.

    1992-12-29

    Rare earth-transition metal (e.g., iron) scrap (e.g., Nd-Fe-B scrap) is flux (slag) remelted to reduce tramp non-metallic impurities, such as oxygen and nitrogen, and metallic impurities, such as Li, Na, Al, etc., picked up by the scrap from previous fabrication operations. The tramp impurities are reduced to concentrations acceptable for reuse of the treated alloy in the manufacture of end-use articles, such as permanent magnets. The scrap is electroslag or inductoslag melted using a prefused, rare earth fluoride-bearing flux of CaF.sub.2, CaCl.sub.2 or mixtures thereof or the slag resulting from practice of the thermite reduction process to make a rare earth-iron alloy.

Top