Sample records for fe atoms form

  1. The Chemistry of Meteoric Iron

    NASA Astrophysics Data System (ADS)

    Self, D. E.; Plane, J. M. C.

    About 120 tonnes of interplanetary dust enters the earth's atmosphere each day. Iron comprises a large fraction of this dust (12% by mass), and ablation of the particles gives rise to the layer of Fe atoms that occurs globally in the mesosphere around 85 km. Previous work in our laboratory has shown that Fe reacts rapidly with O3 to form FeO, which in turn reacts with O3, O2 and H2O to form FeO2, FeO3 and Fe(OH)2, respectively. The purpose of the present study was to determine which of these com- pounds provide stable reservoirs for iron below the atomic Fe layer, and hence form the "building blocks" of meteoric smoke particles which are implicated in phenomena lower in the atmosphere (e.g., noctilucent clouds and polar stratospheric ozone deple- tion). The reactions of these iron compounds were studied in a fast flow tube using the pulsed laser ablation of a rotating iron rod as the source of Fe atoms in the up- stream section of the tube. Iron compounds were produced by adding reactants further down the tube, and finally atomic O or H was added through a movable injector. At the downstream end of the tube, atomic Fe was detected by laser induced fluorescence at 248 nm. The following reactions were studied: FeO + O, FeO2 + O, FeO3 + O, FeO2 + O3, FeO3 + H2O, FeO3 + H, Fe(OH)2 + H, and FeOH + H. It is clear that the iron reservoir around 80 km is FeO3, which reacts very slowly with atomic O, in agreement with the requirements of a recent atmospheric model. However, Fe(OH)2 and FeO(OH), which are thermodynamically the most stable of these Fe species and eventually form from FeO3, are the likely building blocks of meteoric smoke.

  2. Adsorption behavior of Fe atoms on a naphthalocyanine monolayer on Ag(111) surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Ling -Hao; Wu, Rong -Ting; Bao, De -Liang

    2015-05-29

    Adsorption behavior of Fe atoms on a metal-free naphthalocyanine (H 2Nc) monolayer on Ag(111) surface at room temperature has been investigated using scanning tunneling microscopy combined with density functional theory (DFT) based calculations. We found that the Fe atoms adsorbed at the centers of H 2Nc molecules and formed Fe-H 2Nc complexes at low coverage. DFT calculations show that the configuration of Fe at the center of a molecule is the most stable site, in good agreement with the experimental observations. After an Fe-H 2Nc complex monolayer was formed, the extra Fe atoms self-assembled to Fe clusters of uniform sizemore » and adsorbed dispersively at the interstitial positions of Fe-H 2Nc complex monolayer. Furthermore, the H 2Nc monolayer grown on Ag(111) could be a good template to grow dispersed magnetic metal atoms and clusters at room temperature for further investigation of their magnetism-related properties.« less

  3. Local structure study of (In{sub 0.95−x}Fe{sub x}Cu{sub 0.05}){sub 2}O{sub 3} thin films using x-ray absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Yuan; Xing, Yaya; Ma, Guanxiong

    2015-07-15

    The (In{sub 0.95−x}Fe{sub x}Cu{sub 0.05}){sub 2}O{sub 3} (x = 0.06, 0.08, 0.15, and 0.20) films prepared by RF-magnetron sputtering were investigated by the combination of x-ray absorption spectroscopy (XAS) at Fe, Cu, and O K-edge. Although the Fe and O K-edge XAS spectra show that the Fe atoms substitute for the In sites of In{sub 2}O{sub 3} lattice for all the films, the Cu K-edge XAS spectra reveal that the codoped Cu atoms are separated to form the Cu metal clusters. After being annealed in air, the Fe atoms are still substitutionally incorporated into the In{sub 2}O{sub 3} lattice, while the Cumore » atoms form the CuO secondary phases. With the increase of Fe concentration, the bond length R{sub Fe-O} shortens and the Debye–Waller factor σ{sup 2}{sub Fe-O} increases in the first coordination shell of Fe, which are attributed to the relaxation of oxygen environment around the substitutional Fe ions. The forming of Cu relating secondary phases in the films is due to high ionization energy of Cu atoms, leading that the Cu atoms are energetically much harder to be oxidized to substitute for the In sites of In{sub 2}O{sub 3} lattice than Fe atoms. These results provide new experimental guidance in the preparation of the codoped In{sub 2}O{sub 3} based dilute magnetic oxides.« less

  4. Identification of O-rich structures on platinum(111)-supported ultrathin iron oxide films

    DOE PAGES

    Merte, Lindsay R.; Bai, Yunhai; Zeuthen, Helene; ...

    2016-01-06

    Using high-resolution scanning tunneling microscopy (STM) we have studied the oxidation of ultrathin FeO films grown on Pt(111). At the initial stage of the FeO film oxidation by atomic oxygen exposure, we identified three distinct types of line defects, all of which form boundaries between FeO domains of opposite orientation. Two types of line defects appearing bright ( type-i) and dark ( type-ii) in the STM images at typical scanning parameters are “metallic”, whereas the third line defect exhibits nonmetallic behavior ( type-iii). Atomic-scale structure models of these line defects are proposed, with type-i defects exhibiting 4-fold coordinated Fe atoms,more » type-ii exhibiting 2-fold coordinated O atoms, and type-iii exhibiting tetrahedrally-coordinated Fe atoms. In addition, FeO 2 trilayer islands are formed upon oxidation, which appear at FCC-type domains of the moiré structure. At high scanning bias, distinct protrusions on the trilayer islands are observed over surface O ions, which are assigned to H adatoms. The experimental data are supported by density functional theory (DFT) calculations, in which bare and hydroxylated FeO 2 trilayer islands are compared. Finally, we compare the formation of O-rich features on continuous FeO films using atomic oxygen with the oxidation of Pt(111)-supported FeO islands accomplished by O 2 exposure.« less

  5. Mössbauer study of oxide films of Fe-, Sn-, Cr- doped zirconium alloys during corrosion in autoclave

    NASA Astrophysics Data System (ADS)

    Filippov, V. P.; Bateev, A. B.; Lauer, Yu. A.

    2016-12-01

    Mössbauer investigations were used to compare iron atom states in oxide films of binary Zr-Fe, ternary Zr-Fe-Cu and quaternary Zr-Fe-Cr-Sn alloys. Oxide films are received in an autoclave at a temperature of 350-360 °C and at pressure of 16.8 MPa. The corrosion process decomposes the intermetallic precipitates in alloys and forms metallic iron with inclusions of chromium atoms α-Fe(Cr), α-Fe(Cu), α-Fe 2O3 and Fe 3O4 compounds. Some iron ions are formed in divalent and in trivalent paramagnetic states. The additional doping influences on corrosion kinetics and concentration of iron compounds and phases formed in oxide films. It was shown the correlation between concentration of iron in different chemical states and corrosion resistance of alloys.

  6. Structural and magnetic properties of FeGen-/0 (n = 3-12) clusters: Mass-selected anion photoelectron spectroscopy and density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Deng, Xiao-Jiao; Kong, Xiang-Yu; Liang, Xiaoqing; Yang, Bin; Xu, Hong-Guang; Xu, Xi-Ling; Feng, Gang; Zheng, Wei-Jun

    2017-12-01

    The structural, electronic, and magnetic properties of FeGen-/0 (n = 3-12) clusters were investigated by using anion photoelectron spectroscopy in combination with density functional theory calculations. For both anionic and neutral FeGen (n = 3-12) clusters with n ≤ 7, the dominant structures are exohedral. The FeGe8-/0 clusters have half-encapsulated boat-shaped structures, and the opening of the boat-shaped structure is gradually covered by the additional Ge atoms to form Gen cage from n = 9 to 11. The structures of FeGe10-/0 can be viewed as two Ge atoms symmetrically capping the opening of the boat-shaped structure of FeGe8, and those of FeGe12-/0 are distorted hexagonal prisms with the Fe atom at the center. Natural population analysis shows that there is an electron transfer from the Ge atoms to the Fe atom at n = 8-12. The total magnetic moment of FeGen-/0 and local magnetic moment of the Fe atom have not been quenched.

  7. Structural determination of Bi-doped magnetite multifunctional nanoparticles for contrast imaging.

    PubMed

    Laguna-Marco, M A; Piquer, C; Roca, A G; Boada, R; Andrés-Vergés, M; Veintemillas-Verdaguer, S; Serna, C J; Iadecola, A; Chaboy, J

    2014-09-14

    To determine with precision how Bi atoms are distributed in Bi-doped iron oxide nanoparticles their structural characterization has been carried out by X-ray absorption spectroscopy (XAS) recorded at the K edge of Fe and at the L3 edge of Bi. The inorganic nanoparticles are nominally hybrid structures integrating an iron oxide core and a bismuth oxide shell. Fe K-edge XAS indicates the formation of a structurally ordered, non-stoichiometric magnetite (Fe3-δO4) phase for all the nanoparticles. The XAS spectra show that, in the samples synthesized by precipitation in aqueous media and laser pyrolysis, the Bi atoms neither enter into the iron oxide spinel lattice nor form any other mixed Bi-Fe oxides. No modification of the local structure around the Fe atoms induced by the Bi atoms is observed at the Fe K edge. In addition, contrary to expectations, our results indicate that the Bi atoms do not form a well-defined Bi oxide structure. The XAS study at the Bi L3 edge indicates that the environment around Bi atoms is highly disordered and only a first oxygen coordination shell is observed. Indefinite [BiO6-x(OH)x] units (isolated or aggregated forming tiny amorphous clusters) bonded through hydroxyl bridges to the nanoparticle, rather than a well defined Bi2O3 shell, surround the nanoparticle. On the other hand, the XAS study indicates that, in the samples synthesized by thermal decomposition, the Bi atoms are embedded in a longer range ordered structure showing the first and second neighbors.

  8. Study the Polyol Process of Preparing the ru Doped FePt Nanoparticles

    NASA Astrophysics Data System (ADS)

    Lee, Chih-Hao; Hsu, Jen-Ho; Su, Hui-Chia; Huang, Tzu Wen

    The structure of Ru doped FePt nanoparticles using polyol process was studied. The particle size grown is around 5 nm, and a shell structure might be formed. By selecting the time and temperature of adding the Ru precursors into solution, three different processes to synthesize the FePtRu particles were studied resulting in different growing mechanics. The possible models during the reaction process are also discussed. The phase transition temperature for the as-grown FCC FePt nanoparticle to transform into L10 FePt nanoparticle is about 823 K which is about the same as the one without doping Ru atoms. From the XAS study of each element, the possible scenario is that: although Ru atoms with the size close to the Pt, they do not totally replace the Pt sites in the FePt alloy. Instead, most of Ru formed a shell outside the FePt nanoparticles and Fe atoms are replaced.

  9. Changes in the state of iron atoms in Zr alloys during corrosion tests in an autoclave

    NASA Astrophysics Data System (ADS)

    Filippov, V. P.; Bateev, A. B.; Lauer, Yu. A.; Kargin, N. I.; Petrov, V. I.

    2014-04-01

    Mössbauerinvestigations were carried out on oxide films formed on specimens of zirconium alloys Zr-1.0 %wtFe-1.2 %wtSn-0.5 %wtCr subjected to corrosion in steam-water environment at a temperature of 360 °C and at a pressure of 16.8 MPa with lithium and boron additions, and on Zr-1.4 %wtFe-0.7 %wtCr corroded in steam-water environment at 350 °C and 16.8 MPa as well as in steam-water environment at 500 °C and 10 MPa. In the metal part of the samples, under the oxide film, the iron atoms are in form of intermetallic precipitates of Zr(Fe, Cr)2. The corrosion process decomposes the intermetallic precipitates and particles are formed of metallic iron with inclusions of chromium atoms -Fe(Cr), α-Fe2O3 and Fe3O4 compounds. Part of the iron ions are in divalent and part in trivalent paramagnetic states. It is proposed that some part of the iron containing oxide precipitates in the oxide film may be in the form of nanoparticles which pass from the superparamagnetic to the ferromagnetic state with decreasing temperature.

  10. Oxygen evolution on a SrFeO3 anode - Mechanistic considerations from molecular orbital theory

    NASA Technical Reports Server (NTRS)

    Mehandru, S. P.; Anderson, Alfred B.

    1989-01-01

    Various pathways proposed in the literature for the evolution of O2 in electrochemical oxidations are explored using the atom superposition and electron delocalization molecular orbital (ASED-MO) theory and the cluster models of the SrFeO3 surface as a prototype material. Calculations indicate that oxygen atoms can be easily formed on the (100) surface as well as on the edge cation sites of a SrFeO3 anode by the discharge of OH(-), followed by its deprotonation and electron transfer to the electrode. The O atoms can form O2 on the edge and corner sites, where the Fe(4+) is coordinated to four and three bulk oxygen anions, respectively. The calculations strongly disfavor mechanisms involving coupling of oxygen atoms adsorbed on different cations as well as a mechanism featuring an ozone intermediate.

  11. Quantitative characterization of the atomic-scale structure of oxyhydroxides in rusts formed on steel surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saito, M.; Suzuki, S.; Kimura, M.

    Quantitative X-ray structural analysis coupled with anomalous X-ray scattering has been used for characterizing the atomic-scale structure of rust formed on steel surfaces. Samples were prepared from rust layers formed on the surfaces of two commercial steels. X-ray scattered intensity profiles of the two samples showed that the rusts consisted mainly of two types of ferric oxyhydroxide, {alpha}-FeOOH and {gamma}-FeOOH. The amounts of these rust components and the realistic atomic arrangements in the components were estimated by fitting both the ordinary and the environmental interference functions with a model structure calculated using the reverse Monte Carlo simulation technique. The twomore » rust components were found to be the network structure formed by FeO{sub 6} octahedral units, the network structure itself deviating from the ideal case. The present results also suggest that the structural analysis method using anomalous X-ray scattering and the reverse Monte Carlo technique is very successful in determining the atomic-scale structure of rusts formed on the steel surfaces.« less

  12. Fullerene-like boron clusters stabilized by an endohedrally doped iron atom: B(n)Fe with n = 14, 16, 18 and 20.

    PubMed

    Tam, Nguyen Minh; Pham, Hung Tan; Duong, Long Van; Pham-Ho, My Phuong; Nguyen, Minh Tho

    2015-02-07

    Stabilized fullerene and tubular forms can be produced in boron clusters Bn in small sizes from n∼ 14 to 20 upon doping by transition metal atoms. B14Fe and B16Fe are stable tubes whereas B18Fe and B20Fe are stable fullerenes. Their formation and stability suggest the use of dopants to induce different growth paths leading to larger cages, fullerenes and tubes of boron.

  13. Iron hydrides formation in interstellar clouds

    NASA Astrophysics Data System (ADS)

    Bar-Nun, A.; Pasternak, M.; Barrett, P. H.

    1980-07-01

    A recent Moessbauer study with Fe-57 in a solid hydrogen or hydrogen-argon matrix demonstrated the formation of an iron hydride molecule (FeH2) at 2.5-5 K. Following this and other studies, the possible existence of iron hydride molecules in interstellar clouds is proposed. In clouds, the iron hydrides FeH and FeH2 would be formed only on grains, by encounters of H atoms or H2 molecules with Fe atoms which are adsorbed on the grains. The other transition metals, Sc, Ti, V, Cr, Mn, Co, N, Cd and also Cu and Ca form hydrides of the type M-H, which could be responsible, at least in part, for the depletion of these metals in clouds.

  14. The role of Ag buffer layer in Fe islands growth on Ge (111) surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Tsu-Yi, E-mail: phtifu@phy.ntnu.edu.tw; Wu, Jia-Yuan; Jhou, Ming-Kuan

    2015-05-07

    Sub-monolayer iron atoms were deposited at room temperature on Ge (111)-c(2 × 8) substrates with and without Ag buffer layers. The behavior of Fe islands growth was investigated by using scanning tunneling microscope (STM) after different annealing temperatures. STM images show that iron atoms will cause defects and holes on substrates at room temperature. As the annealing temperature rises, iron atoms pull out germanium to form various kinds of alloyed islands. However, the silver layer can protect the Ag/Ge(111)-(√3×√3) reconstruction from forming defects. The phase diagram shows that ring, dot, and triangular defects were only found on Ge (111)-c(2 × 8) substrates. The kindsmore » of islands found in Fe/Ge system are similar to Fe/Ag/Ge system. It indicates that Ge atoms were pulled out to form islands at high annealing temperatures whether there was a Ag layer or not. But a few differences in big pyramidal or strip islands show that the silver layer affects the development of islands by changing the surface symmetry and diffusion coefficient. The structure characters of various islands are also discussed.« less

  15. Phenomenological model of spin crossover in molecular crystals as derived from atom-atom potentials.

    PubMed

    Sinitskiy, Anton V; Tchougréeff, Andrei L; Dronskowski, Richard

    2011-08-07

    The method of atom-atom potentials, previously applied to the analysis of pure molecular crystals formed by either low-spin (LS) or high-spin (HS) forms (spin isomers) of Fe(II) coordination compounds (Sinitskiy et al., Phys. Chem. Chem. Phys., 2009, 11, 10983), is used to estimate the lattice enthalpies of mixed crystals containing different fractions of the spin isomers. The crystals under study were formed by LS and HS isomers of Fe(phen)(2)(NCS)(2) (phen = 1,10-phenanthroline), Fe(btz)(2)(NCS)(2) (btz = 5,5',6,6'-tetrahydro-4H,4'H-2,2'-bi-1,3-thiazine), and Fe(bpz)(2)(bipy) (bpz = dihydrobis(1-pyrazolil)borate, and bipy = 2,2'-bipyridine). For the first time the phenomenological parameters Γ pertinent to the Slichter-Drickamer model (SDM) of several materials were independently derived from the microscopic model of the crystals with use of atom-atom potentials of intermolecular interaction. The accuracy of the SDM was checked against the numerical data on the enthalpies of mixed crystals. Fair semiquantitative agreement with the experimental dependence of the HS fraction on temperature was achieved with use of these values. Prediction of trends in Γ values as a function of chemical composition and geometry of the crystals is possible with the proposed approach, which opens a way to rational design of spin crossover materials with desired properties. This journal is © the Owner Societies 2011

  16. Crystal structure, phase transition and structural deformations in iron borate (Y0.95Bi0.05)Fe3(BO3)4 in the temperature range 90-500 K.

    PubMed

    Smirnova, Ekaterina S; Alekseeva, Olga A; Dudka, Alexander P; Artemov, Vladimir V; Zubavichus, Yan V; Gudim, Irina A; Bezmaterhykh, Leonard N; Frolov, Kirill V; Lyubutin, Igor S

    2018-04-01

    An accurate X-ray diffraction study of (Y 0.95 Bi 0.05 )Fe 3 (BO 3 ) 4 single crystals in the temperature range 90-500 K was performed on a laboratory diffractometer and used synchrotron radiation. It was established that the crystal undergoes a diffuse structural phase transition in the temperature range 350-380 K. The complexity of localization of such a transition over temperature was overcome by means of special analysis of systematic extinction reflections by symmetry. The transition temperature can be considered to be T str ≃ 370 K. The crystal has a trigonal structure in the space group P3 1 21 at temperatures of 90-370 K, and it has a trigonal structure in the space group R32 at 375-500 K. There is one type of chain formed by the FeO 6 octahedra along the c axis in the R32 phase. When going into the P3 1 21 phase, two types of nonequivalent chains arise, in which Fe atoms are separated from the Y atoms by a different distance. Upon lowering the temperature from 500 to 90 K, a distortion of the Y(Bi)O 6 , FeO 6 , B(2,3)O 3 coordination polyhedra is observed. The distances between atoms in helical Fe chains and Fe-O-Fe angles change non-uniformly. A sharp jump in the equivalent isotropic displacement parameters of O1 and O2 atoms within the Fe-Fe chains and fluctuations of the equivalent isotropic displacement parameters of B2 and B3 atoms were observed in the region of structural transition as well as noticeable elongation of O1, O2, B2, B3, Fe1, Fe2 atomic displacement ellipsoids. It was established that the helices of electron density formed by Fe, O1 and O2 atoms may be structural elements determining chirality, optical activity and multiferroicity of rare-earth iron borates. Compression and stretching of these helices account for the symmetry change and for the manifestation of a number of properties, whose geometry is controlled by an indirect exchange interaction between iron cations that compete with the thermal motion of atoms in the structure. Structural analysis detected these changes as variations of a number of structural characteristics in the c unit-cell direction, that is, the direction of the helices. Structural results for the local surrounding of the atoms in (Y 0.95 Bi 0.05 )Fe 3 (BO 3 ) 4 were confirmed by EXAFS and Mössbauer spectroscopies.

  17. Interfacial Microstructure and Its Influence on Resistivity of Thin Layers Copper Cladding Steel Wires

    NASA Astrophysics Data System (ADS)

    Li, Hongjuan; Ding, Zhimin; Zhao, Ruirong

    2018-04-01

    The interfacial microstructure and resistivity of cold-drawn and annealed thin layers copper cladding steel (CCS) wires have been systematically investigated by the methods of scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and resistivity testing. The results showed that the Cu and Fe atoms near interface diffused into each other matrixes. The Fe atoms diffused into Cu matrixes and formed a solid solution. The mechanism of solid solution is of substitution type. When the quantity of Fe atoms exceeds the maximum solubility, the supersaturated solid solution would form Fe clusters and decompose into base Cu and α-Fe precipitated phases under certain conditions. A few of α-Fe precipitates was observed in the copper near Cu/Fe interfaces of cold-drawn CCS wires, with 1-5 nm in size. A number of α-Fe precipitates of 1-20 nm in size can be detected in copper near Cu/Fe interfaces of CCS wires annealed at 850°C. When annealing temperature was less than 750°C, the resistivity of CCS wires annealed was lower than that of cold-drawn CCS wires. However, when annealing temperature was above 750°C, the resistivity of CCS wires was greater than that of cold-drawn CCS wires and increased with rising the annealing temperature. The relationship between nanoscale α-Fe precipitation and resistivity of CCS wires has been well discussed.

  18. Observation of hidden atomic order at the interface between Fe and topological insulator Bi2Te3.

    PubMed

    Sánchez-Barriga, Jaime; Ogorodnikov, Ilya I; Kuznetsov, Mikhail V; Volykhov, Andrey A; Matsui, Fumihiko; Callaert, Carolien; Hadermann, Joke; Verbitskiy, Nikolay I; Koch, Roland J; Varykhalov, Andrei; Rader, Oliver; Yashina, Lada V

    2017-11-22

    To realize spintronic devices based on topological insulators (TIs), well-defined interfaces between magnetic metals and TIs are required. Here, we characterize atomically precisely the interface between the 3d transition metal Fe and the TI Bi 2 Te 3 at different stages of its formation. Using photoelectron diffraction and holography, we show that after deposition of up to 3 monolayers Fe on Bi 2 Te 3 at room temperature, the Fe atoms are ordered at the interface despite the surface disorder revealed by our scanning-tunneling microscopy images. We find that Fe occupies two different sites: a hollow adatom deeply relaxed into the Bi 2 Te 3 quintuple layers and an interstitial atom between the third (Te) and fourth (Bi) atomic layers. For both sites, our core-level photoemission spectra and density-functional theory calculations demonstrate simultaneous chemical bonding of Fe to both Te and Bi atoms. We further show that upon deposition of Fe up to a thickness of 20 nm, the Fe atoms penetrate deeper into the bulk forming a 2-5 nm interface layer containing FeTe. In addition, excessive Bi is pushed down into the bulk of Bi 2 Te 3 leading to the formation of septuple layers of Bi 3 Te 4 within a distance of ∼25 nm from the interface. Controlling the magnetic properties of the complex interface structures revealed by our work will be of critical importance when optimizing the efficiency of spin injection in TI-based devices.

  19. Experimental investigation of inhomogeneities, nanoscopic phase separation, and magnetism in arc melted Fe-Cu metals with equal atomic ratio of the constituents

    NASA Astrophysics Data System (ADS)

    Hassnain Jaffari, G.; Aftab, M.; Anjum, D. H.; Cha, Dongkyu; Poirier, Gerald; Ismat Shah, S.

    2015-12-01

    Composition gradient and phase separation at the nanoscale have been investigated for arc-melted and solidified with equiatomic Fe-Cu. Diffraction studies revealed that Fe and Cu exhibited phase separation with no trace of any mixing. Microscopy studies revealed that immiscible Fe-Cu form dense bulk nanocomposite. The spatial distribution of Fe and Cu showed existence of two distinct regions, i.e., Fe-rich and Cu-rich regions. Fe-rich regions have Cu precipitates of various sizes and different shapes, with Fe forming meshes or channels greater than 100 nm in size. On the other hand, the matrix of Cu-rich regions formed strips with fine strands of nanosized Fe. Macromagnetic response of the system showed ferromagnetic behavior with a magnetic moment being equal to about 2.13 μB/ Fe atom and a bulk like negligible value of coercivity over the temperature range of 5-300 K. Anisotropy constant has been calculated from various laws of approach to saturation, and its value is extracted to be equal to 1350 J/m3. Inhomogeneous strain within the Cu and Fe crystallites has been calculated for the (unannealed) sample solidified after arc-melting. Annealed sample also exhibited local inhomogeneity with removal of inhomogeneous strain and no appreciable change in magnetic character. However, for the annealed sample phase separated Fe exhibited homogenous strain.

  20. Iron state in iron nanoparticles with and without zirconium

    NASA Astrophysics Data System (ADS)

    Filippov, V. P.; Khasanov, A. M.; Lauer, Yu. A.

    2017-11-01

    Mössbauer and X-ray methods are used for investigations of structure, stability and characteristics of pure-iron grain and two iron-zirconium alloys such as Fe + 5 wt.% Zr and Fe + 10 wt.% Zr. The used powder was ground for 24 h in a SPEX Model 8000 mill shaker. Complex nanoparticles are found, which change their properties under milling. Mössbauer spectral parameters are obtained for investigated materials. Milling results in formation of nanosized particles with two states of iron atoms: one main part is pure α-Fe and another part of iron atoms displaced in grain boundaries or defective zones in which hyperfine magnetic splitting decrease to ˜ 30.0 T. In alloys with Zr three iron states are formed in each alloy, main part of iron is in the form of α-Fe and another two states depend on the concentration of Zr and represent iron in grain boundaries with Zr atoms in nearest neighbor. The changing of iron states is discussed.

  1. Photoelectron spectroscopic study of the anionic transition metalorganic complexes [Fe(1,2)(COT)](-) and [Co(COT)](-).

    PubMed

    Li, Xiang; Eustis, Soren N; Bowen, Kit H; Kandalam, Anil

    2008-09-28

    The gas-phase, iron and cobalt cyclooctatetraene cluster anions, [Fe(1,2)(COT)](-) and [Co(COT)](-), were generated using a laser vaporization source and studied using mass spectrometry and anion photoelectron spectroscopy. Density functional theory was employed to compute the structures and spin multiplicities of these cluster anions as well as those of their corresponding neutrals. Both experimental and theoretically predicted electron affinities and photodetachment transition energies are in good agreement, authenticating the structures and spin multiplicities predicted by theory. The implied spin magnetic moments of these systems suggest that [Fe(COT)], [Fe(2)(COT)], and [Co(COT)] retain the magnetic moments of the Fe atom, the Fe(2) dimer, and the Co atom, respectively. Thus, the interaction of these transition metal, atomic and dimeric moieties with a COT molecule does not quench their magnetic moments, leading to the possibility that these combinations may be useful in forming novel magnetic materials.

  2. Point defect induced segregation of alloying solutes in α-Fe

    NASA Astrophysics Data System (ADS)

    You, Yu-Wei; Zhang, Yange; Li, Xiangyan; Xu, Yichun; Liu, C. S.; Chen, J. L.; Luo, G.-N.

    2016-10-01

    Segregation of alloying solute toward clusters and precipitates can result in hardening and embrittlement of ferritic and ferritic/martensitic steels in aging nuclear power plants. Thus, it is essential to study the segregation of solute in α-Fe. In this study, the segregation of eight kinds of alloying solutes (Al, Si, P, S, Ga, Ge, As, Se) in defect-free system and at vacancy, divacancy, and self-interstitial atom in α-Fe has been systematically studied by first-principles calculations. We find that it is energetically favorable for multiple solute S or Se atoms to segregate in defect-free system to form solute clusters, whereas it is very difficult for the other solute atoms to form the similar clusters. With the presence of vacancy and divacancy, the segregation of all the solutes are significantly promoted to form vacancy-solute and divacancy-solute clusters. The divacancy-solute cluster is more stable than the vacancy-solute cluster. The most-stable self-interstitial atom 〈110〉 dumbbell is also found to tightly bind with multiple solute atoms. The 〈110〉-S is even more stable than divacancy-S cluster. Meanwhile, the law of mass action is employed to predict the concentration evolution of vacancy-Si, vacancy-P, and vacancy-S clusters versus temperature and vacancy concentration.

  3. Complexation facilitated reduction of aromatic N-oxides by aqueous Fe(II)-tiron complex: reaction kinetics and mechanisms.

    PubMed

    Chen, Yiling; Zhang, Huichun

    2013-10-01

    Rapid reduction of carbadox (CDX), olaquindox and several other aromatic N-oxides were investigated in aqueous solution containing Fe(II) and tiron. Consistent with previous work, the 1:2 Fe(II)-tiron complex, FeL2(6-), is the dominant reactive species as its concentration linearly correlates with the observed rate constant kobs under various conditions. The N-oxides without any side chains were much less reactive, suggesting direct reduction of the N-oxides is slow. UV-vis spectra suggest FeL2(6-) likely forms 5- or 7-membered rings with CDX and olaquindox through the N and O atoms on the side chain. The formed inner-sphere complexes significantly facilitated electron transfer from FeL2(6-) to the N-oxides. Reduction products of the N-oxides were identified by HPLC/QToF-MS to be the deoxygenated analogs. QSAR analysis indicated neither the first electron transfer nor N-O bond cleavage is the rate-limiting step. Calculations of the atomic spin densities of the anionic N-oxides confirmed the extensive delocalization between the aromatic ring and the side chain, suggesting complex formation can significantly affect the reduction kinetics. Our results suggest the complexation facilitated N-oxide reduction by Fe(II)-tiron involves a free radical mechanism, and the subsequent deoxygenation might also benefit from the weak complexation of Fe(II) with the N-oxide O atom.

  4. Fine structure of Fe-Co-Ga and Fe-Cr-Ga alloys with low Ga content

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleinerman, Nadezhda M., E-mail: kleinerman@imp.uran.ru; Serikov, Vadim V., E-mail: kleinerman@imp.uran.ru; Vershinin, Aleksandr V., E-mail: kleinerman@imp.uran.ru

    2014-10-27

    Investigation of Ga influence on the structure of Fe-Cr and Fe-Co alloys was performed with the use of {sup 57}Fe Mössbauer spectroscopy and X-ray diffraction methods. In the alloys of the Fe-Cr system, doping with Ga handicaps the decomposition of solid solutions, observed in the binary alloys, and increases its stability. In the alloys with Co, Ga also favors the uniformity of solid solutions. The analysis of Mössbauer experiments gives some grounds to conclude that if, owing to liquation, clusterization, or initial stages of phase separation, there exist regions enriched in iron, some amount of Ga atoms prefer to entermore » the nearest surroundings of iron atoms, thus forming binary Fe-Ga regions (or phases)« less

  5. Formation process and mechanism of iron-nitride compounds on Si(1 1 1)-7 × 7-CH3OH surface

    NASA Astrophysics Data System (ADS)

    Li, Wenxin; Ding, Wanyu; Ju, Dongying; Tanaka, Ken-ichi; Komori, Fumio

    2018-07-01

    Fe atoms were deposited on Si(1 1 1)-7 × 7 restructured surface, which had been covered by CH3OH molecules. A newly formed surface is stabilized by a quasi-potential made by breaking, and adsorbed atoms or molecules can be stabilized by forming "quasi-compounds". Then, aim to greatly enhance the magnetic properties of the memory units, nitriding experiments were implemented on the existing Fe compounds. With the in-situ observation of STM, a series of Fe3N structures make up the newly emerged iron-nitride compounds, showing good linear characteristics. By adjusting the concentration, this study further explored its formation process and compounds models.

  6. Structure of the orthorhombic form of Mn(2)Al(7), Fe(2)Al(7), and (Mn(0.7)Fe(0.3))(2)Al(7) that by twinning produces grains with decagonal point-group symmetry.

    PubMed

    Pauling, L

    1988-04-01

    Analysis of electron diffraction photographs of grains of Mn(2)Al(7), Fe(2)Al(7), and (Mn(0.7)Fe(0.3))(2)Al(7) leads to the conclusion that they are 5-fold twins of a 1664-atom orthorhombic crystal with a = 32.86 A, b = 31.23 A, and c = 24.80 A and with 16 icosahedral clusters of 104 atoms in positions shifted by small amounts from those of the cubic beta-tungsten structure.

  7. Structure of the orthorhombic form of Mn2Al7, Fe2Al7, and (Mn0.7Fe0.3)2Al7 that by twinning produces grains with decagonal point-group symmetry

    PubMed Central

    Pauling, Linus

    1988-01-01

    Analysis of electron diffraction photographs of grains of Mn2Al7, Fe2Al7, and (Mn0.7Fe0.3)2Al7 leads to the conclusion that they are 5-fold twins of a 1664-atom orthorhombic crystal with a = 32.86 Å, b = 31.23 Å, and c = 24.80 Å and with 16 icosahedral clusters of 104 atoms in positions shifted by small amounts from those of the cubic β-tungsten structure. PMID:16593921

  8. Fe embedded in ice: The impacts of sublimation and energetic particle bombardment

    NASA Astrophysics Data System (ADS)

    Frankland, Victoria L.; Plane, John M. C.

    2015-05-01

    Icy particles containing a variety of Fe compounds are present in the upper atmospheres of planets such as the Earth and Saturn. In order to explore the role of ice sublimation and energetic ion bombardment in releasing Fe species into the gas phase, Fe-dosed ice films were prepared under UHV conditions in the laboratory. Temperature-programmed desorption studies of Fe/H2O films revealed that no Fe atoms or Fe-containing species co-desorbed along with the H2O molecules. This implies that when noctilucent ice cloud particles sublimate in the terrestrial mesosphere, the metallic species embedded in them will coalesce to form residual particles. Sputtering of the Fe-ice films by energetic Ar+ ions was shown to be an efficient mechanism for releasing Fe into the gas phase, with a yield of 0.08 (Ar+ energy=600 eV). Extrapolating with a semi-empirical sputtering model to the conditions of a proton aurora indicates that sputtering by energetic protons (>100 keV) should also be efficient. However, the proton flux in even an intense aurora will be too low for the resulting injection of Fe species into the gas phase to compete with that from meteoric ablation. In contrast, sputtering of the icy particles in the main rings of Saturn by energetic O+ ions may be the source of recently observed Fe+ in the Saturnian magnetosphere. Electron sputtering (9.5 keV) produced no detectable Fe atoms or Fe-containing species. Finally, it was observed that Fe(OH)2 was produced when Fe was dosed onto an ice film at 140 K (but not at 95 K). Electronic structure theory shows that the reaction which forms this hydroxide from adsorbed Fe has a large barrier of about 0.7 eV, from which we conclude that the reaction requires both translationally hot Fe atoms and mobile H2O molecules on the ice surface.

  9. Structure and magnetism of new rare-earth-free intermetallic compounds: Fe 3+xCo 3-xTi 2 (0 ≤ x ≤ 3)

    DOE PAGES

    Balasubramanian, Balamurugan; Das, Bhaskar; Nguyen, Manh Cuong; ...

    2016-11-28

    Here, we report the fabrication of a set of new rare-earth-free magnetic compounds, which form the Fe 3Co 3Ti 2-type hexagonal structure with P-6m2 symmetry. Neutron powder diffraction shows a significant Fe/Co anti-site mixing in the Fe 3Co 3Ti 2 structure, which has a strong effect on the magnetocrystalline anisotropy as revealed by first-principle calculations. Increasing substitution of Fe atoms for Co in the Fe 3Co 3Ti 2 lattice leads to the formation of Fe 4Co 2Ti 2, Fe 5CoTi, and Fe 6Ti 2 with significantly improved permanent-magnet properties. A high magnetic anisotropy (13.0 Mergs/cm 3) and saturation magnetic polarizationmore » (11.4 kG) are achieved at 10 K by altering the atomic arrangements and decreasing Fe/Co occupancy disorder.« less

  10. Autonomous Repair Mechanism of Creep Damage in Fe-Au and Fe-Au-B-N Alloys

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Kwakernaak, C.; Tichelaar, F. D.; Sloof, W. G.; Kuzmina, M.; Herbig, M.; Raabe, D.; Brück, E.; van der Zwaag, S.; van Dijk, N. H.

    2015-12-01

    The autonomous repair mechanism of creep cavitation during high-temperature deformation has been investigated in Fe-Au and Fe-Au-B-N alloys. Combined electron-microscopy techniques and atom probe tomography reveal how the improved creep properties result from Au precipitation within the creep cavities, preferentially formed on grain boundaries oriented perpendicular to the applied stress. The selective precipitation of Au atoms at the free creep cavity surface results in pore filling, and thereby, autonomous repair of the creep damage. The large difference in atomic size between the Au and Fe strongly hampers the nucleation of precipitates in the matrix. As a result, the matrix acts as a reservoir for the supersaturated solute until damage occurs. Grain boundaries and dislocations are found to act as fast transport routes for solute gold from the matrix to the creep cavities. The mechanism responsible for the self-healing can be characterized by a simple model for cavity growth and cavity filling.

  11. Role of chalcogen vapor annealing in inducing bulk superconductivity in Fe1 +yTe1 -xSex

    NASA Astrophysics Data System (ADS)

    Lin, Wenzhi; Ganesh, P.; Gianfrancesco, Anthony; Wang, Jun; Berlijn, Tom; Maier, Thomas A.; Kalinin, Sergei V.; Sales, Brian C.; Pan, Minghu

    2015-02-01

    Recent investigations have shown that Fe1 +yTe1 -xSex can be made superconducting by annealing it in Se and O vapors. The current lore is that these chalcogen vapors induce superconductivity by removing the magnetic excess Fe atoms. To investigate this phenomenon, we performed a combination of magnetic susceptibility, specific heat, and transport measurements together with scanning tunneling microscopy and spectroscopy and density functional theory calculations on Fe1 +yTe1 -xSex treated with Te vapor. We conclude that the main role of the Te vapor is to quench the magnetic moments of the excess Fe atoms by forming FeTem (m ≥1 ) complexes. We show that the remaining FeTem complexes are still damaging to the superconductivity and therefore that their removal potentially could further improve superconductive properties in these compounds.

  12. Fabrication of Mg-X-O (X = Fe, Co, Ni, Cr, Mn, Ti, V, and Zn) barriers for magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Yakushiji, K.; Kitagawa, E.; Ochiai, T.; Kubota, H.; Shimomura, N.; Ito, J.; Yoda, H.; Yuasa, S.

    2018-05-01

    We fabricated magnetic tunnel junctions with a 3d-transition material(X)-doped MgO (Mg-X-O) barrier, and evaluated the effect of the doping on magnetoresistance (MR) and microstructure. Among the variations of X (X = Fe, Co, Ni, Cr, Mn, Ti, V, and Zn), X = Fe and Mn showed a high MR ratio of more than 100%, even at a low resistance-area product of 3 Ωμm2. The microstructure analysis revealed that (001) textured orientation formed for X = Fe and Mn despite substantial doping (about 10 at%). The elemental mappings indicated that Fe atoms in the Mg-Fe-O barrier were segregated at the interfaces, while Mn atoms were evenly involved in the Mg-Mn-O barrier. This suggests that MgO has high adaptability for Fe and Mn dopants in terms of high MR ratio.

  13. Influence of the "surface effect" on the segregation parameters of S in Fe(100): A multi-scale modelling and Auger Electron Spectroscopy study

    NASA Astrophysics Data System (ADS)

    Barnard, P. E.; Terblans, J. J.; Swart, H. C.

    2015-12-01

    The article takes a new look at the process of atomic segregation by considering the influence of surface relaxation on the segregation parameters; the activation energy (Q), segregation energy (ΔG), interaction parameter (Ω) and the pre-exponential factor (D0). Computational modelling, namely Density Functional Theory (DFT) and the Modified Darken Model (MDM) in conjunction with Auger Electron Spectroscopy (AES) was utilized to study the variation of the segregation parameters for S in the surface region of Fe(100). Results indicate a variation in each of the segregation parameters as a function of the atomic layer under consideration. Values of the segregation parameters varied more dramatically as the surface layer is approached, with atomic layer 2 having the largest deviations in comparison to the bulk values. This atomic layer had the highest Q value and formed the rate limiting step for the segregation of S towards the Fe(100) surface. It was found that the segregation process is influenced by two sets of segregation parameters, those of the surface region formed by atomic layer 2, and those in the bulk material. This article is the first to conduct a full scale investigation on the influence of surface relaxation on segregation and labelled it the "surface effect".

  14. Realisation of magnetically and atomically abrupt half-metal/semiconductor interface: Co2FeSi0.5Al0.5/Ge(111)

    PubMed Central

    Nedelkoski, Zlatko; Kuerbanjiang, Balati; Glover, Stephanie E.; Sanchez, Ana M.; Kepaptsoglou, Demie; Ghasemi, Arsham; Burrows, Christopher W.; Yamada, Shinya; Hamaya, Kohei; Ramasse, Quentin M.; Hasnip, Philip J.; Hase, Thomas; Bell, Gavin R.; Hirohata, Atsufumi; Lazarov, Vlado K.

    2016-01-01

    Halfmetal-semiconductor interfaces are crucial for hybrid spintronic devices. Atomically sharp interfaces with high spin polarisation are required for efficient spin injection. In this work we show that thin film of half-metallic full Heusler alloy Co2FeSi0.5Al0.5 with uniform thickness and B2 ordering can form structurally abrupt interface with Ge(111). Atomic resolution energy dispersive X-ray spectroscopy reveals that there is a small outdiffusion of Ge into specific atomic planes of the Co2FeSi0.5Al0.5 film, limited to a very narrow 1 nm interface region. First-principles calculations show that this selective outdiffusion along the Fe-Si/Al atomic planes does not change the magnetic moment of the film up to the very interface. Polarized neutron reflectivity, x-ray reflectivity and aberration-corrected electron microscopy confirm that this interface is both magnetically and structurally abrupt. Finally, using first-principles calculations we show that this experimentally realised interface structure, terminated by Co-Ge bonds, preserves the high spin polarization at the Co2FeSi0.5Al0.5/Ge interface, hence can be used as a model to study spin injection from half-metals into semiconductors. PMID:27869132

  15. Polarization effects in silver delafossite systems

    NASA Astrophysics Data System (ADS)

    Panapitiya, Gihan; Lewis, James P.

    Delafossites are a promising class of materials which has applications in catalysis and optoelectronic devices. Even though much work has been carried out on the cuprate family of delafossites, little is known about the structural and electronic properties of it's silver counterpart. In this work, we present a computational study for two delafossite oxides of the form AgB1 - x FexO2 (For B = Al,Ga). A large number of structures are studied by varying the Fe alloying percentage(x) from 0 to 5 and by choosing the impurity sites randomly. We find that the local structural changes occurring at the vicinity of Fe atoms in these two systems have opposite trends with regard to the O-O distance. The reason for this difference in the trends is identified as the polarization effects on the inter-atomic distances caused by the displacements in O atoms resulting from the incorporation of Fe in sites, previously occupied by either Al or Ga. We believe that these effects are mediated by the differences in the atomic radii of Fe, Al and Ga. Higher alloying levels coupled with nearest neighbor Fe atoms can intensify these distortions in the structure creating deformations in the O-Ag-O bonds, which are directly related to the formation of the conduction band edge in these systems.

  16. Missing Fe: hydrogenated iron nanoparticles

    NASA Astrophysics Data System (ADS)

    Bilalbegović, G.; Maksimović, A.; Mohaček-Grošev, V.

    2017-03-01

    Although it was found that the FeH lines exist in the spectra of some stars, none of the spectral features in the interstellar medium (ISM) have been assigned to this molecule. We suggest that iron atoms interact with hydrogen and produce Fe-H nanoparticles which sometimes contain many H atoms. We calculate infrared spectra of hydrogenated iron nanoparticles using density functional theory methods and find broad, overlapping bands. Desorption of H2 could induce spinning of these small Fe-H dust grains. Some of hydrogenated iron nanoparticles possess magnetic and electric moments and should interact with electromagnetic fields in the ISM. FenHm nanoparticles could contribute to the polarization of the ISM and the anomalous microwave emission. We discuss the conditions required to form FeH and FenHm in the ISM.

  17. Paramagnetic Gd IIIFe III heterobimetallic complexes of DTPA-bis-salicylamide

    NASA Astrophysics Data System (ADS)

    Aime, S.; Botta, M.; Fasano, M.; Terreno, E.

    1993-08-01

    The reaction between DTPA (diethylenetriaminepenta-acetic acid)-anhydride and p-aminosalicylic acid (PAS) affords a novel ligand, [DTPA(PAS) 2], able to form stable heterobimetallic complexes with Gd 3+ and Fe 3+ ions. The lanthanide ion occupies an internal coordination cage formed by three nitrogen atoms, two carboxylate and two carboxoamido groups of the ligand, whereas the outer salicylic moieties form stable chelate rings with Fe III ions. The stoichiometry of the resulting heterobimetallic complexes, established by measurements of water proton relaxation enhancement, is [(H 2O)-Gd-DTPA(PAS) 2] 2-Fe(H 2O) 2 or [(H 2O)-Gd-DTPA(PAS) 2] 3-Fe depending on the pH of the aqueous solution. The individual contributions to the observed relaxation enhancement from Gd 3+ and Fe 3+ paramagnetic ions have been clearly distinguished and analysed.

  18. The role of phase separation for self-organized surface pattern formation by ion beam erosion and metal atom co-deposition

    NASA Astrophysics Data System (ADS)

    Hofsäss, H.; Zhang, K.; Pape, A.; Bobes, O.; Brötzmann, M.

    2013-05-01

    We investigate the ripple pattern formation on Si surfaces at room temperature during normal incidence ion beam erosion under simultaneous deposition of different metallic co-deposited surfactant atoms. The co-deposition of small amounts of metallic atoms, in particular Fe and Mo, is known to have a tremendous impact on the evolution of nanoscale surface patterns on Si. In previous work on ion erosion of Si during co-deposition of Fe atoms, we proposed that chemical interactions between Fe and Si atoms of the steady-state mixed Fe x Si surface layer formed during ion beam erosion is a dominant driving force for self-organized pattern formation. In particular, we provided experimental evidence for the formation of amorphous iron disilicide. To confirm and generalize such chemical effects on the pattern formation, in particular the tendency for phase separation, we have now irradiated Si surfaces with normal incidence 5 keV Xe ions under simultaneous gracing incidence co-deposition of Fe, Ni, Cu, Mo, W, Pt, and Au surfactant atoms. The selected metals in the two groups (Fe, Ni, Cu) and (W, Pt, Au) are very similar regarding their collision cascade behavior, but strongly differ regarding their tendency to silicide formation. We find pronounced ripple pattern formation only for those co deposited metals (Fe, Mo, Ni, W, and Pt), which are prone to the formation of mono and disilicides. In contrast, for Cu and Au co-deposition the surface remains very flat, even after irradiation at high ion fluence. Because of the very different behavior of Cu compared to Fe, Ni and Au compared to W, Pt, phase separation toward amorphous metal silicide phases is seen as the relevant process for the pattern formation on Si in the case of Fe, Mo, Ni, W, and Pt co-deposition.

  19. Role of chalcogen vapor annealing in inducing bulk superconductivity in Fe 1+yTe 1-xSe x [How does annealing in chalcogen vapor induce superconductivity in Fe 1+yTe -xSe x?

    DOE PAGES

    Lin, Wenzhi; Ganesh, P.; Gianfrancesco, Anthony; ...

    2015-02-27

    Recent investigations have shown that Fe 1+yTe 1-xSe x can be made superconducting by annealing it in Se and O vapors. The current lore is that these chalcogen vapors induce superconductivity by removing the magnetic excess Fe atoms. To investigate this phenomenon we performed a combination of magnetic susceptibility, specific heat and transport measurements together with scanning tunneling microscopy and spectroscopy and density functional theory calculations on Fe 1+yTe 1-xSe x treated with Te vapor. We conclude that the main role of the Te vapor is to quench the magnetic moments of the excess Fe atoms by forming FeTe mmore » (m ≥ 1) complexes. We show that the remaining FeTe m complexes are still damaging to the superconductivity and therefore that their removal potentially could further improve superconductive properties in these compounds.« less

  20. Composition formulas of Fe-based transition metals-metalloid bulk metallic glasses derived from dual-cluster model of binary eutectics.

    PubMed

    Naz, Gul Jabeen; Dong, Dandan; Geng, Yaoxiang; Wang, Yingmin; Dong, Chuang

    2017-08-22

    It is known that bulk metallic glasses follow simple composition formulas [cluster](glue atom) 1 or 3 with 24 valence electrons within the framework of the cluster-plus-glue-atom model. Though the relevant nearest-neighbor cluster can be readily identified from a devitrification phase, the glue atoms remains poorly defined. The present work is devoted to understanding the composition rule of Fe-(B,P,C) based multi-component bulk metallic glasses, by introducing a cluster-based eutectic liquid model. This model regards a eutectic liquid to be composed of two stable liquids formulated respectively by cluster formulas for ideal metallic glasses from the two eutectic phases. The dual cluster formulas are first established for binary Fe-(B,C,P) eutectics: [Fe-Fe 14 ]B 2 Fe + [B-B 2 Fe 8 ]Fe ≈ Fe 83.3 B 16.7 for eutectic Fe 83 B 17 , [P-Fe 14 ]P + [P-Fe 9 ]P 2 Fe≈Fe 82.8 P 17.2 for Fe 83 P 17 , and [C-Fe 6 ]Fe 3  + [C-Fe 9 ]C 2 Fe ≈ Fe 82.6 C 17.4 for Fe 82.7 C 17.3 . The second formulas in these dual-cluster formulas, being respectively relevant to devitrification phases Fe 2 B, Fe 3 P, and Fe 3 C, well explain the compositions of existing Fe-based transition metals-metalloid bulk metallic glasses. These formulas also satisfy the 24-electron rule. The proposition of the composition formulas for good glass formers, directly from known eutectic points, constitutes a new route towards understanding and eventual designing metallic glasses of high glass forming abilities.

  1. Study of crystallization mechanisms of Fe nanoparticle

    NASA Astrophysics Data System (ADS)

    Kien, P. H.; Trang, G. T. T.; Hung, P. K.

    2017-06-01

    In this paper, the nanoparticle (NP) Fe was investigated by means of molecular dynamics simulation. The crystallization mechanism was studied through the time evolution of crystal cluster and potential energies of different atom types. The simulation shows that the NP was crystallized into bcc crystal structure when it was annealed at 900 K for long times. At early stage of the annealing, small nuclei form in different places of NP and dissolve for short times. After long times some nuclei form and gather nearby which create the stable clusters in the core of NP. After that the crystal clusters grow in the direction to cover the core and then to spread into the surface of NP. Analyzing the energies of different type atoms, we found that the crystal growth is originated from specific atomic arrangement in the boundary region of crystal clusters.

  2. Uncertainties in Atomic Data and Their Propagation Through Spectral Models. I.

    NASA Technical Reports Server (NTRS)

    Bautista, M. A.; Fivet, V.; Quinet, P.; Dunn, J.; Gull, T. R.; Kallman, T. R.; Mendoza, C.

    2013-01-01

    We present a method for computing uncertainties in spectral models, i.e., level populations, line emissivities, and emission line ratios, based upon the propagation of uncertainties originating from atomic data.We provide analytic expressions, in the form of linear sets of algebraic equations, for the coupled uncertainties among all levels. These equations can be solved efficiently for any set of physical conditions and uncertainties in the atomic data. We illustrate our method applied to spectral models of Oiii and Fe ii and discuss the impact of the uncertainties on atomic systems under different physical conditions. As to intrinsic uncertainties in theoretical atomic data, we propose that these uncertainties can be estimated from the dispersion in the results from various independent calculations. This technique provides excellent results for the uncertainties in A-values of forbidden transitions in [Fe ii]. Key words: atomic data - atomic processes - line: formation - methods: data analysis - molecular data - molecular processes - techniques: spectroscopic

  3. Controlled soft-template synthesis of ultrathin C@FeS nanosheets with high-Li-storage performance.

    PubMed

    Xu, Chen; Zeng, Yi; Rui, Xianhong; Xiao, Ni; Zhu, Jixin; Zhang, Wenyu; Chen, Jing; Liu, Weiling; Tan, Huiteng; Hng, Huey Hoon; Yan, Qingyu

    2012-06-26

    We report a facile approach to prepare carbon-coated troilite FeS (C@FeS) nanosheets via surfactant-assisted solution-based synthesis. 1-Dodecanethiol is used as both the sulfur source and the surfactant, which may form different-shaped micelles to direct the growth of nanostructures. Under appropriate growth conditions, the iron and sulfur atoms react to form thin layers of FeS while the hydrocarbon tails of 1-dodecanethiol separate the thin FeS layers, which turn to carbon after annealing in Ar. Such an approach can be extended to grow C@FeS nanospheres and nanoplates by modifying the synthesis parameters. The C@FeS nanosheets display excellent Li storage properties with high specific capacities and stable charge/discharge cyclability, especially at fast charge/discharge rates.

  4. Pure iron grains are rare in the universe.

    PubMed

    Kimura, Yuki; Tanaka, Kyoko K; Nozawa, Takaya; Takeuchi, Shinsuke; Inatomi, Yuko

    2017-01-01

    The abundant forms in which the major elements in the universe exist have been determined from numerous astronomical observations and meteoritic analyses. Iron (Fe) is an exception, in that only depletion of gaseous Fe has been detected in the interstellar medium, suggesting that Fe is condensed into a solid, possibly the astronomically invisible metal. To determine the primary form of Fe, we replicated the formation of Fe grains in gaseous ejecta of evolved stars by means of microgravity experiments. We found that the sticking probability for the formation of Fe grains is extremely small; only a few atoms will stick per hundred thousand collisions so that homogeneous nucleation of metallic Fe grains is highly ineffective, even in the Fe-rich ejecta of type Ia supernovae. This implies that most Fe is locked up as grains of Fe compounds or as impurities accreted onto other grains in the interstellar medium.

  5. Pure iron grains are rare in the universe

    PubMed Central

    Kimura, Yuki; Tanaka, Kyoko K.; Nozawa, Takaya; Takeuchi, Shinsuke; Inatomi, Yuko

    2017-01-01

    The abundant forms in which the major elements in the universe exist have been determined from numerous astronomical observations and meteoritic analyses. Iron (Fe) is an exception, in that only depletion of gaseous Fe has been detected in the interstellar medium, suggesting that Fe is condensed into a solid, possibly the astronomically invisible metal. To determine the primary form of Fe, we replicated the formation of Fe grains in gaseous ejecta of evolved stars by means of microgravity experiments. We found that the sticking probability for the formation of Fe grains is extremely small; only a few atoms will stick per hundred thousand collisions so that homogeneous nucleation of metallic Fe grains is highly ineffective, even in the Fe-rich ejecta of type Ia supernovae. This implies that most Fe is locked up as grains of Fe compounds or as impurities accreted onto other grains in the interstellar medium. PMID:28116359

  6. Iron-embedded C2N monolayer: a promising low-cost and high-activity single-atom catalyst for CO oxidation.

    PubMed

    He, B L; Shen, J S; Tian, Z X

    2016-09-21

    An Fe-embedded C2N monolayer as a promising single-atom catalyst for CO oxidation by O2 has been investigated based on first-principles calculations. It is found that the single Fe atom can be strongly trapped in the cavity of the C2N monolayer with a large adsorption energy of 4.55 eV and a high diffusion barrier of at least 3.00 eV to leave the cavity, indicating that Fe should exist in the isolated single-atom form. Due to the localized metal 3d orbitals near the Fermi level, the embedded Fe single-atom catalyst has a high chemical activity for the adsorption of CO and O2 molecules. CO oxidation by O2 on the catalyst would proceed via a two-step mechanism. The first step of the CO oxidation reaction has been studied via the Langmuir-Hinshelwood and Eley-Rideal mechanisms with energy barriers of 0.46 and 0.65 eV, respectively. The second step of the CO oxidation reaction follows the Eley-Rideal mechanism with a much smaller energy barrier of 0.24 eV. For both the steps, the CO2 molecules produced are weakly adsorbed on the substrates, suggesting that the proposed catalyst will not be poisoned by the generated CO2. Our results indicate that the Fe-embedded C2N monolayer is a promising single-atom catalyst for CO oxidation by O2 at low temperatures.

  7. The chromium doping of Ni{sub 3}Fe alloy and restructuring of grain boundary ensemble at the phase transition A1→L1{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perevalova, Olga; Konovalova, Elena, E-mail: knv123@yandex.ru; Koneva, Nina

    2016-01-15

    The grain boundary structure of the Ni{sub 3}(Fe,Cr) alloy is studied in states with a short and long-range order formed at the phase transition A1→L1{sub 2}. It is found that the new boundaries of general and special types are formed during an ordering annealing, wherein the special boundaries share increases. The spectrum of special boundaries is changed due to decreasing of ∑3 boundary share. It leads to weakening of the texture in the alloy with atomic long-range order. The features of change of the special boundaries spectrum at the phase transition A1→L1{sub 2} in the Ni{sub 3}(Fe,Cr) alloy are determinedmore » by decreasing of the stacking fault energy and the atomic mean square displacement at the chromium doping.« less

  8. Electron and Oxygen Atom Transfer Chemistry of Co(II) in a Proton Responsive, Redox Active Ligand Environment.

    PubMed

    Cook, Brian J; Pink, Maren; Pal, Kuntal; Caulton, Kenneth G

    2018-05-21

    The bis-pyrazolato pyridine complex LCo(PEt 3 ) 2 serves as a masked form of three-coordinate Co II and shows diverse reactivity in its reaction with several potential outer sphere oxidants and oxygen atom transfer reagents. N-Methylmorpholine N-oxide (NMO) oxidizes coordinated PEt 3 from LCo(PEt 3 ) 2 , but the final cobalt product is still divalent cobalt, in LCo(NMO) 2 . The thermodynamics of a variety of oxygen atom transfer reagents, including NMO, are calculated by density functional theory, to rank their oxidizing power. Oxidation of LCo(PEt 3 ) 2 with AgOTf in the presence of LiCl as a trapping nucleophile forms the unusual aggregate [LCo(PEt 3 ) 2 Cl(LiOTf) 2 ] 2 held together by Li + binding to very nucleophilic chloride on Co(III) and triflate binding to those Li + . In contrast, Cp 2 Fe + effects oxidation to trivalent cobalt, to form (HL)Co(PEt 3 ) 2 Cl + ; proton and the chloride originate from solvent in a rare example of CH 2 Cl 2 dehydrochlorination. An unexpected noncomplementary redox reaction is reported involving attack by 2e reductant PEt 3 nucleophile on carbon of the 1e oxidant radical Cp 2 Fe + , forming a P-C bond and H + ; this reaction competes in the reaction of LCo(PEt 3 ) 2 with Cp 2 Fe + .

  9. Microstructural evolution and magnetic properties of ultrafine solute-atom particles formed in a Cu75-Ni20-Fe5 alloy on isothermal annealing

    NASA Astrophysics Data System (ADS)

    Kim, Jun-Seop; Takeda, Mahoto; Bae, Dong-Sik

    2016-12-01

    Microstructural features strongly affect magnetism in nano-granular magnetic materials. In the present work we have investigated the relationship between the magnetic properties and the self-organized microstructure formed in a Cu75-Ni20-Fe5 alloy comprising ferromagnetic elements and copper atoms. High resolution transmission electron microscopy (HRTEM) observations showed that on isothermal annealing at 873 K, nano-scale solute (Fe,Ni)-rich clusters initially formed with a random distribution in the Cu-rich matrix. Superconducting quantum interference device (SQUID) measurements revealed that these ultrafine solute clusters exhibited super-spinglass and superparamagnetic states. On further isothermal annealing the precipitates evolved to cubic or rectangular ferromagnetic particles and aligned along the <100> directions of the copper-rich matrix. Electron energy-band calculations based on the first-principle Korringa-Kohn-Rostocker (KKR) method were also implemented to investigate both the electronic structure and the magnetic properties of the alloy. Inputting compositions obtained experimentally by scanning transmission electron microscopy-electron dispersive X-ray spectroscopy (STEM-EDS) analysis, the KKR calculation confirmed that ferromagnetic precipitates (of moment 1.07μB per atom) formed after annealing for 2 × 104 min. Magneto-thermogravimetric (MTG) analysis determined with high sensitivity the Curie temperatures and magnetic susceptibility above room temperature of samples containing nano-scale ferromagnetic particles.

  10. Theoretical study of negatively charged Fe(-)-(H2O)(n ≤ 6) clusters.

    PubMed

    Castro, Miguel

    2012-06-14

    Interactions of a singly negatively charged iron atom with water molecules, Fe(-)-(H(2)O)(n≤6), in the gas phase were studied by means of density functional theory. All-electron calculations were performed using the B3LYP functional and the 6-311++G(2d,2p) basis set for the Fe, O, and H atoms. In the lowest total energy states of Fe(-)-(H(2)O)(n), the metal-hydrogen bonding is stronger than the metal-oxygen one, producing low-symmetry structures because the water molecules are directly attached to the metal by basically one of their hydrogen atoms, whereas the other ones are involved in a network of hydrogen bonds, which together with the Fe(δ-)-H(δ+) bonding accounts for the nascent hydration of the Fe(-) anion. For Fe(-)-(H(2)O)(3≤n), three-, four-, five-, and six-membered rings of water molecules are bonded to the metal, which is located at the surface of the cluster in such a way as to reduce the repulsion with the oxygen atoms. Nevertheless, internal isomers appear also, lying less than 3 or 5 kcal/mol for n = 2-3 or n = 4-6. These results are in contrast with those of classical TM(+)-(H(2)O)(n) complexes, where the direct TM(+)-O bonding usually produces high symmetry structures with the metal defining the center of the complex. They show also that the Fe(-) anions, as the TM(+) ions, have great capability for the adsorption of water molecules, forming Fe(-)-(H(2)O)(n) structures stabilized by Fe(δ-)-H(δ+) and H-bond interactions.

  11. Atomization methods for forming magnet powders

    DOEpatents

    Sellers, Charles H.; Branagan, Daniel J.; Hyde, Timothy A.

    2000-01-01

    The invention encompasses methods of utilizing atomization, methods for forming magnet powders, methods for forming magnets, and methods for forming bonded magnets. The invention further encompasses methods for simulating atomization conditions. In one aspect, the invention includes an atomization method for forming a magnet powder comprising: a) forming a melt comprising R.sub.2.1 Q.sub.13.9 B.sub.1, Z and X, wherein R is a rare earth element; X is an element selected from the group consisting of carbon, nitrogen, oxygen and mixtures thereof; Q is an element selected from the group consisting of Fe, Co and mixtures thereof; and Z is an element selected from the group consisting of Ti, Zr, Hf and mixtures thereof; b) atomizing the melt to form generally spherical alloy powder granules having an internal structure comprising at least one of a substantially amorphous phase or a substantially nanocrystalline phase; and c) heat treating the alloy powder to increase an energy product of the alloy powder; after the heat treatment, the alloy powder comprising an energy product of at least 10 MGOe. In another aspect, the invention includes a magnet comprising R, Q, B, Z and X, wherein R is a rare earth element; X is an element selected from the group consisting of carbon, nitrogen, oxygen and mixtures thereof; Q is an element selected from the group consisting of Fe, Co and mixtures thereof; and Z is an element selected from the group consisting of Ti, Zr, Hf and mixtures thereof; the magnet comprising an internal structure comprising R.sub.2.1 Q.sub.13.9 B.sub.1.

  12. Fe atom exchange between aqueous Fe2+ and magnetite.

    PubMed

    Gorski, Christopher A; Handler, Robert M; Beard, Brian L; Pasakarnis, Timothy; Johnson, Clark M; Scherer, Michelle M

    2012-11-20

    The reaction between magnetite and aqueous Fe(2+) has been extensively studied due to its role in contaminant reduction, trace-metal sequestration, and microbial respiration. Previous work has demonstrated that the reaction of Fe(2+) with magnetite (Fe(3)O(4)) results in the structural incorporation of Fe(2+) and an increase in the bulk Fe(2+) content of magnetite. It is unclear, however, whether significant Fe atom exchange occurs between magnetite and aqueous Fe(2+), as has been observed for other Fe oxides. Here, we measured the extent of Fe atom exchange between aqueous Fe(2+) and magnetite by reacting isotopically "normal" magnetite with (57)Fe-enriched aqueous Fe(2+). The extent of Fe atom exchange between magnetite and aqueous Fe(2+) was significant (54-71%), and went well beyond the amount of Fe atoms found at the near surface. Mössbauer spectroscopy of magnetite reacted with (56)Fe(2+) indicate that no preferential exchange of octahedral or tetrahedral sites occurred. Exchange experiments conducted with Co-ferrite (Co(2+)Fe(2)(3+)O(4)) showed little impact of Co substitution on the rate or extent of atom exchange. Bulk electron conduction, as previously invoked to explain Fe atom exchange in goethite, is a possible mechanism, but if it is occurring, conduction does not appear to be the rate-limiting step. The lack of significant impact of Co substitution on the kinetics of Fe atom exchange, and the relatively high diffusion coefficients reported for magnetite suggest that for magnetite, unlike goethite, Fe atom diffusion is a plausible mechanism to explain the rapid rates of Fe atom exchange in magnetite.

  13. Coupling between magnetic and optical properties of stable Au-Fe solid solution nanoparticles

    NASA Astrophysics Data System (ADS)

    de Julián Fernández, C.; Mattei, G.; Paz, E.; Novak, R. L.; Cavigli, L.; Bogani, L.; Palomares, F. J.; Mazzoldi, P.; Caneschi, A.

    2010-04-01

    Au-Fe nanoparticles constitute one of the simplest prototypes of a multifunctional nanomaterial that can exhibit both magnetic and optical (plasmonic) properties. This solid solution, not feasible in the bulk phase diagram in thermal equilibrium, can be formed as a nanostructure by out-of-equilibrium processes. Here, the novel magnetic, optical and magneto-optical properties of ion-implanted Au-Fe solid solution nanoparticles dispersed in a SiO2 matrix are investigated and correlated. The surface plasmon resonance of the Au-Fe nanoparticles with almost equicomposition is strongly damped when compared to pure Au and to Au-rich Au-Fe nanoparticles. In all cases, the Au atoms are magnetically polarized, as measured by x-ray magnetic circular dichroism, and ferromagnetically coupled with Fe atoms. Although the chemical stability of Au-Fe nanoparticles is larger than that of Fe nanoparticles, both the magnetic moment per Fe atom and the order temperature are smaller. These results suggest that electronic and magnetic properties are more influenced by the hybridization of the electronic bands in the Au-Fe solid solution than by size effects. On the other hand, the magneto-optical transitions allowed in the vis-nIR spectral regions are very similar. In addition, we also observe, after studying the properties of thermally treated samples, that the Au-Fe alloy is stabilized, not by surface effects, but by the combination of the out-of-equilibrium nature of the ion implantation technique and by changes in the properties due to size effects.

  14. Coupling between magnetic and optical properties of stable Au-Fe solid solution nanoparticles.

    PubMed

    de Julián Fernández, C; Mattei, G; Paz, E; Novak, R L; Cavigli, L; Bogani, L; Palomares, F J; Mazzoldi, P; Caneschi, A

    2010-04-23

    Au-Fe nanoparticles constitute one of the simplest prototypes of a multifunctional nanomaterial that can exhibit both magnetic and optical (plasmonic) properties. This solid solution, not feasible in the bulk phase diagram in thermal equilibrium, can be formed as a nanostructure by out-of-equilibrium processes. Here, the novel magnetic, optical and magneto-optical properties of ion-implanted Au-Fe solid solution nanoparticles dispersed in a SiO(2) matrix are investigated and correlated. The surface plasmon resonance of the Au-Fe nanoparticles with almost equicomposition is strongly damped when compared to pure Au and to Au-rich Au-Fe nanoparticles. In all cases, the Au atoms are magnetically polarized, as measured by x-ray magnetic circular dichroism, and ferromagnetically coupled with Fe atoms. Although the chemical stability of Au-Fe nanoparticles is larger than that of Fe nanoparticles, both the magnetic moment per Fe atom and the order temperature are smaller. These results suggest that electronic and magnetic properties are more influenced by the hybridization of the electronic bands in the Au-Fe solid solution than by size effects. On the other hand, the magneto-optical transitions allowed in the vis-nIR spectral regions are very similar. In addition, we also observe, after studying the properties of thermally treated samples, that the Au-Fe alloy is stabilized, not by surface effects, but by the combination of the out-of-equilibrium nature of the ion implantation technique and by changes in the properties due to size effects.

  15. Aqueous formation and manipulation of the iron-oxo Keggin ion

    NASA Astrophysics Data System (ADS)

    Sadeghi, Omid; Zakharov, Lev N.; Nyman, May

    2015-03-01

    There is emerging evidence that growth of synthetic and natural phases occurs by the aggregation of prenucleation clusters, rather than classical atom-by-atom growth. Ferrihydrite, an iron oxyhydroxide mineral, is the common form of Fe3+ in soils and is also in the ferritin protein. We isolated a 10 angstrom discrete iron-oxo cluster (known as the Keggin ion, Fe13) that has the same structural features as ferrihydrite. The stabilization and manipulation of this highly reactive polyanion in water is controlled exclusively by its counterions. Upon dissolution of Fe13 in water with precipitation of its protecting Bi3+-counterions, it rapidly aggregates to ~22 angstrom spherical ferrihydrite nanoparticles. Fe13 may therefore also be a prenucleation cluster for ferrihydrite formation in natural systems, including by microbial and cellular processes.

  16. High-temperature thermogravimetric analysis and differential scanning calorimetry of nanocomposites (FeCoZr)x(CaF2)100-x

    NASA Astrophysics Data System (ADS)

    Bondariev, Vitalii

    2016-09-01

    In this work thermogravimetric-DTG/DSC analysis result for samples of nanocomposite metal-dielectric (FeCoZr)x(CaF2)100-x are presents. Series of samples with, metallic phase content x = 24 - 68 at.% were produced by ionbeam sputtering method in mixed atmosphere of gas argon and oxygen. Study of thermal properties, phase shifts and process of change in mass of nanocomposites were performed using the thermoanalytical system TGA/DSC-1/1600 HF (MettlerToledoInstruments). High-precision weight has a weighing range 1μg - 1g with an accuracy 1μg. The furnace makes it possible to regulate the temperature in range from room temperature to 1600°C and heating rate is 0.01 - 150°C min. After analysis of the results established that initial and final mass of samples of the nanocomposite (FeCoZr)x(CaF2)100-x are different, namely the sample mass is increased by 2 - 20%. It is related to the oxidation of metallic phase particles of nanocomposite. DTG and DSC analysis demonstrated that oxidation of metallic phase is held in two steps, at first oxidized iron atoms, and followed oxidation of the cobalt atoms, what can be seen on the waveform in the form of two humps and whereby oxides Fe2O3, Fe3O4, Co2O3, Co3O4 are formed. Oxide coatings on the surface of atoms represents an additional barrier to electron transfer charges. When a voltage is applied to the layer of the nanocomposite are three possible ways to transfer of charges between atoms and particles of metal, whereby each has its own relaxation time.

  17. The Role of Iron In Sporadic E Layers

    NASA Astrophysics Data System (ADS)

    Vondrak, T.; Woodcock, K. R. I.; Plane, J. M. C.

    Sporadic E layers in the lower thermosphere are mostly composed of metallic ions, of which Fe+ is the most abundant. Because dielectric recombination (Fe+ + elec- tron) is very slow, the lifetime of Fe+ above about 100 km is at least several days. However, below this height molecular ions such as FeO+, FeO2+ and FeN2+ form in- creasingly rapidly through reactions with O3, O2 and N2, respectively. These undergo rapid dissociative recombination with electrons, causing Fe+ to be neutralised increas- ingly rapidly as a sporadic E layer descends. Indeed, this is the most likely mechanism for the formation of the sporadic neutral Fe layers that are observed by lidar. However, atomic O plays a very important role in reducing these molecular ions back to Fe+, competing with dissociative recombination and thus slowing the rate at which Fe+ is neutralised and a sporadic E layer dissipates. This paper will discuss a laboratory and modelling study of the reactions of FeO+, FeO2+ and FeN2+ with atomic O. These reactions were studied (for the first time) in a fast flow tube, using the pulsed laser ablation of a rotating iron rod as the source of Fe+ ions in the upstream section of the tube. Reactants were then added to produce molecular ions, and atomic O further downstream through a movable injector. Fe+ and the molecular ions were detected at the downstream end of the tube using a two-stage quadrupole mass spectrometer. The spectroscopy of the FeO+ ion, observed by laser induced fluorescence, will also be discussed as a candidate for future ground-based lidar studies of the ion chemistry of the lower thermosphere.

  18. Single Atomic Iron Catalysts for Oxygen Reduction in Acidic Media: Particle Size Control and Thermal Activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hanguang; Hwang, Sooyeon; Wang, Maoyu

    It remains a grand challenge to replace platinum group metal (PGM) catalysts with earth-abundant materials for the oxygen reduction reaction (ORR) in acidic media, which is crucial for large-scale deployment of proton exchange membrane fuel cells (PEMFCs). Here, we report a high-performance atomic Fe catalyst derived from chemically Fe-doped zeolitic imidazolate frameworks (ZIFs) by directly bonding Fe ions to imidazolate ligands within 3D frameworks. Although the ZIF was identified as a promising precursor, the new synthetic chemistry enables the creation of well-dispersed atomic Fe sites embedded into porous carbon without the formation of aggregates. The size of catalyst particles ismore » tunable through synthesizing Fe-doped ZIF nanocrystal precursors in a wide range from 20 to 1000 nm followed by one-step thermal activation. Similar to Pt nanoparticles, the unique size control without altering chemical properties afforded by this approach is able to increase the number of PGM-free active sites. The best ORR activity is measured with the catalyst at a size of 50 nm. Further size reduction to 20 nm leads to significant particle agglomeration, thus decreasing the activity. Using the homogeneous atomic Fe model catalysts, we elucidated the active site formation process through correlating measured ORR activity with the change of chemical bonds in precursors during thermal activation up to 1100 °C. The critical temperature to form active sites is 800 °C, which is associated with a new Fe species with a reduced oxidation number (from Fe3+ to Fe2+) likely bonded with pyridinic N (FeN4) embedded into the carbon planes. Further increasing the temperature leads to continuously enhanced activity, linked to the rise of graphitic N and Fe–N species. The new atomic Fe catalyst has achieved respectable ORR activity in challenging acidic media (0.5 M H2SO4), showing a half-wave potential of 0.85 V vs RHE and leaving only a 30 mV gap with Pt/C (60 μgPt/cm2). Enhanced stability is attained with the same catalyst, which loses only 20 mV after 10 000 potential cycles (0.6–1.0 V) in O2 saturated acid. The high-performance atomic Fe PGM-free catalyst holds great promise as a replacement for Pt in future PEMFCs.« less

  19. Single Atomic Iron Catalysts for Oxygen Reduction in Acidic Media: Particle Size Control and Thermal Activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hanguang; Hwang, Sooyeon; Wang, Maoyu

    It remains a grand challenge to replace platinum group metal (PGM) catalysts with earth-abundant materials for the oxygen reduction reaction (ORR) in acidic media, which is crucial for large-scale deployment of proton exchange membrane fuel cells (PEMFCs). We report a high-performance atomic Fe catalyst derived from chemically Fe-doped zeolitic imidazolate frameworks (ZIFs) by directly bonding Fe ions to imidazolate ligands within 3D frameworks. Although the ZIF was identified as a promising precursor, the new synthetic chemistry enables the creation of well-dispersed atomic Fe sites embedded into porous carbon without the formation of aggregates. The size of catalyst particles is tunablemore » through synthesizing Fe-doped ZIF nanocrystal precursors in a wide range from 20 to 1000 nm followed by one-step thermal activation. Similar to Pt nanoparticles, the unique size control without altering chemical properties afforded by this approach is able to increase the number of PGM-free active sites. The best ORR activity is measured with the catalyst at a size of 50 nm. Further size reduction to 20 nm leads to significant particle agglomeration, thus decreasing the activity. In using the homogeneous atomic Fe model catalysts, we elucidated the active site formation process through correlating measured ORR activity with the change of chemical bonds in precursors during thermal activation up to 1100 °C. The critical temperature to form active sites is 800 °C, which is associated with a new Fe species with a reduced oxidation number (from Fe 3+ to Fe 2+) likely bonded with pyridinic N (FeN 4) embedded into the carbon planes. Further increasing the temperature leads to continuously enhanced activity, linked to the rise of graphitic N and Fe–N species. The new atomic Fe catalyst has achieved respectable ORR activity in challenging acidic media (0.5 M H 2SO 4), showing a half-wave potential of 0.85 V vs RHE and leaving only a 30 mV gap with Pt/C (60 μg Pt/cm 2). Finally, enhanced stability is attained with the same catalyst, which loses only 20 mV after 10 000 potential cycles (0.6–1.0 V) in O 2 saturated acid. The high-performance atomic Fe PGM-free catalyst holds great promise as a replacement for Pt in future PEMFCs.« less

  20. Single Atomic Iron Catalysts for Oxygen Reduction in Acidic Media: Particle Size Control and Thermal Activation

    DOE PAGES

    Zhang, Hanguang; Hwang, Sooyeon; Wang, Maoyu; ...

    2017-09-13

    It remains a grand challenge to replace platinum group metal (PGM) catalysts with earth-abundant materials for the oxygen reduction reaction (ORR) in acidic media, which is crucial for large-scale deployment of proton exchange membrane fuel cells (PEMFCs). We report a high-performance atomic Fe catalyst derived from chemically Fe-doped zeolitic imidazolate frameworks (ZIFs) by directly bonding Fe ions to imidazolate ligands within 3D frameworks. Although the ZIF was identified as a promising precursor, the new synthetic chemistry enables the creation of well-dispersed atomic Fe sites embedded into porous carbon without the formation of aggregates. The size of catalyst particles is tunablemore » through synthesizing Fe-doped ZIF nanocrystal precursors in a wide range from 20 to 1000 nm followed by one-step thermal activation. Similar to Pt nanoparticles, the unique size control without altering chemical properties afforded by this approach is able to increase the number of PGM-free active sites. The best ORR activity is measured with the catalyst at a size of 50 nm. Further size reduction to 20 nm leads to significant particle agglomeration, thus decreasing the activity. In using the homogeneous atomic Fe model catalysts, we elucidated the active site formation process through correlating measured ORR activity with the change of chemical bonds in precursors during thermal activation up to 1100 °C. The critical temperature to form active sites is 800 °C, which is associated with a new Fe species with a reduced oxidation number (from Fe 3+ to Fe 2+) likely bonded with pyridinic N (FeN 4) embedded into the carbon planes. Further increasing the temperature leads to continuously enhanced activity, linked to the rise of graphitic N and Fe–N species. The new atomic Fe catalyst has achieved respectable ORR activity in challenging acidic media (0.5 M H 2SO 4), showing a half-wave potential of 0.85 V vs RHE and leaving only a 30 mV gap with Pt/C (60 μg Pt/cm 2). Finally, enhanced stability is attained with the same catalyst, which loses only 20 mV after 10 000 potential cycles (0.6–1.0 V) in O 2 saturated acid. The high-performance atomic Fe PGM-free catalyst holds great promise as a replacement for Pt in future PEMFCs.« less

  1. From solid solution to cluster formation of Fe and Cr in α-Zr

    NASA Astrophysics Data System (ADS)

    Burr, P. A.; Wenman, M. R.; Gault, B.; Moody, M. P.; Ivermark, M.; Rushton, M. J. D.; Preuss, M.; Edwards, L.; Grimes, R. W.

    2015-12-01

    To understand the mechanisms by which the re-solution of Fe and Cr additions increase the corrosion rate of irradiated Zr alloys, the solubility and clustering of Fe and Cr in model binary Zr alloys was investigated using a combination of experimental and modelling techniques - atom probe tomography (APT), x-ray diffraction (XRD), thermoelectric power (TEP) and density functional theory (DFT). Cr occupies both interstitial and substitutional sites in the α-Zr lattice; Fe favours interstitial sites, and a low-symmetry site that was not previously modelled is found to be the most favourable for Fe. Lattice expansion as a function of Fe and Cr content in the α-Zr matrix deviates from Vegard's law and is strongly anisotropic for Fe additions, expanding the c-axis while contracting the a-axis. Matrix content of solutes cannot be reliably estimated from lattice parameter measurements, instead a combination of TEP and APT was employed. Defect clusters form at higher solution concentrations, which induce a smaller lattice strain compared to the dilute defects. In the presence of a Zr vacancy, all two-atom clusters are more soluble than individual point defects and as many as four Fe or three Cr atoms could be accommodated in a single Zr vacancy. The Zr vacancy is critical for the increased apparent solubility of defect clusters; the implications for irradiation induced microstructure changes in Zr alloys are discussed.

  2. Unusual high B{sub s} for Fe-based amorphous powders produced by a gas-atomization technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshida, K.; Bito, M.; Kageyama, J.

    2016-05-15

    Fe-based alloy powders with a high Fe content of about 81 at.% were produced by a gas-atomization technique. Powders of Fe{sub 81}Si{sub 1.9}B{sub 5.7}P{sub 11.4} (at.%) alloy showed a good glass forming ability and exhibited unusual high saturation magnetic flux density of 1.57 T. The core-loss property at a frequency of 100 kHz for the compacted core made of the Fe{sub 81}Si{sub 1.9}B{sub 5.7}P{sub 11.4} powder is evaluated to be less than 500 kW/m{sup 3} under a maximum induction of 100 mT. Moreover, good DC-superposition characteristic of the core was also confirmed. These results suggest that the present Fe-based alloymore » powder is promising for low-loss magnetic-core materials and expected to contribute in miniaturization of electric parts in the near future.« less

  3. NASA Astrophysics Data System (ADS)

    Yao, Jinhuan; Li, Yanwei; Li, Xuanhai; Le, Shiru

    2014-07-01

    The geometric structure, electronic structure, and stability of In-substituted ZnFe2O4 (Zn7InFe16O32 and Zn8Fe15InO32) are investigated by the density functional theory at generalized gradient approximation level. Compared with the perfect ZnFe2O4 (Zn8Fe16O32), the unit cell volume of In-substituted ZnFe2O4 increases and the structure deforms slightly. The formation energy of In substitution for Zn is smaller than that of In substitution for Fe, indicating that Zn7InFe16O32 is easier to be formed than Zn8Fe15InO32. In substitution changes the properties of ZnFe2O4 from semiconducting character to metallic character. For ZnFe2O4 and In-substituted ZnFe2O4, the strength of O-Zn bond is stronger than O-Fe bond and both of them have a covalent bond character. The strength of O-In bond is similar to that of O-Zn bond in Zn7InFe16O32, but weaker than O-Fe in Zn8Fe15InO32. In substitution for Zn causes the strength of O-Fe bonds around In atom to weaken. In substitution for Fe causes the strength of O-Zn bonds around In atom to weaken obviously, while the strength of O-Fe bonds strengthen slightly.

  4. The effects of glass doping, temperature and time on the morphology, composition, and iron redox of spinel crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matyas, Josef; Amonette, James E.; Kukkadapu, Ravi K.

    2014-10-31

    Precipitation of large crystals/agglomerates of spinel and their accumulation in the pour spout riser of a Joule-heated ceramic melter during idling can plug the melter and prevent pouring of molten glass into canisters. Thus, there is a need to understand the effects of spinel-forming components, temperature, and time on the growth of crystals in connection with an accumulation rate. In our study, crystals of spinel [Fe, Ni, Mn, Zn, Sn][Fe, Cr]₂O₄ were precipitated from simulated high-level waste borosilicate glasses containing different concentrations of Ni, Fe, and Cr by heat treating at 850 and 900°C for different times. These crystals weremore » extracted from the glasses and analyzed with scanning electron microscopy and image analysis for size and shape, with inductively coupled plasma-atomic emission spectroscopy and atom probe tomography for concentration of spinel-forming components, and with wet colorimetry and Mössbauer spectroscopy for Fe²⁺/Fe total ratio. High concentrations of Ni, Fe, and Cr in glasses resulted in the precipitation of crystals larger than 100 µm in just two days. Crystals were a solid solution of NiFe₂O₄, NiCr₂O₄, and -Fe₂O₃ (identified only in the high-Ni-Fe glass) and also contained small concentrations of less than 1 at% of Li, Mg, Mn, and Al.« less

  5. Hydrogenases and H(+)-reduction in primary energy conservation.

    PubMed

    Vignais, Paulette M

    2008-01-01

    Hydrogenases are metalloenzymes subdivided into two classes that contain iron-sulfur clusters and catalyze the reversible oxidation of hydrogen gas (H(2)[Symbol: see text]left arrow over right arrow[Symbol: see text]2H(+)[Symbol: see text]+[Symbol: see text]2e(-)). Two metal atoms are present at their active center: either a Ni and an Fe atom in the [NiFe]hydrogenases, or two Fe atoms in the [FeFe]hydrogenases. They are phylogenetically distinct classes of proteins. The catalytic core of [NiFe]hydrogenases is a heterodimeric protein associated with additional subunits in many of these enzymes. The catalytic core of [FeFe]hydrogenases is a domain of about 350 residues that accommodates the active site (H cluster). Many [FeFe]hydrogenases are monomeric but possess additional domains that contain redox centers, mostly Fe-S clusters. A third class of hydrogenase, characterized by a specific iron-containing cofactor and by the absence of Fe-S cluster, is found in some methanogenic archaea; this Hmd hydrogenase has catalytic properties different from those of [NiFe]- and [FeFe]hydrogenases. The [NiFe]hydrogenases can be subdivided into four subgroups: (1) the H(2) uptake [NiFe]hydrogenases (group 1); (2) the cyanobacterial uptake hydrogenases and the cytoplasmic H(2) sensors (group 2); (3) the bidirectional cytoplasmic hydrogenases able to bind soluble cofactors (group 3); and (4) the membrane-associated, energy-converting, H(2) evolving hydrogenases (group 4). Unlike the [NiFe]hydrogenases, the [FeFe]hydrogenases form a homogeneous group and are primarily involved in H(2) evolution. This review recapitulates the classification of hydrogenases based on phylogenetic analysis and the correlation with hydrogenase function of the different phylogenetic groupings, discusses the possible role of the [FeFe]hydrogenases in the genesis of the eukaryotic cell, and emphasizes the structural and functional relationships of hydrogenase subunits with those of complex I of the respiratory electron transport chain.

  6. Specific features of the atomic structure of metallic layers of multilayered (CoFeZr/SiO2)32 and (CoFeZr/ a-Si)40 nanostructures with different interlayers

    NASA Astrophysics Data System (ADS)

    Domashevskaya, E. P.; Guda, A. A.; Chernyshev, A. V.; Sitnikov, V. G.

    2017-02-01

    Multilayered nanostructures (MN) were prepared by ion-beam successive sputtering from two targets, one of which was a metallic Co45Fe45Zr10 alloy plate and another target was a quartz (SiO2) or silicon plate on the surface of a rotating glass-ceramic substrate in an argon atmosphere. The Co and Fe K edges X-ray absorption fine structure of XANES in the (CoFeZr/SiO2)32 sample with oxide interlayers was similar to XANES of metallic Fe foil. This indicated the existence in metallic layers of multilayered CoFeZr nanocrystals with a local environment similar to the atomic environment in solid solutions on the base of bcc Fe structure, which is also confirmed by XRD data. XANES near the Co and Fe K edges absorption in another multilayered nanostructure with silicon interlayers (CoFeZr/ a-Si)40 differs from XANES of MN with dielectric SiO2 interlayer, which demonstrates a dominant influence of the Fe-Si and Co-Si bonds in the local environment of 3 d Co and Fe metals when they form CoFeSi-type silicide phases in thinner bilayers of this MN.

  7. Orbital occupancy evolution across spin- and charge-ordering transitions in YBaFe2O5

    NASA Astrophysics Data System (ADS)

    Lindén, J.; Lindroos, F.; Karen, P.

    2017-08-01

    Thermal evolution of the Fe2+-Fe3+ valence mixing in YBaFe2O5 is investigated using Mössbauer spectroscopy. In this high-spin double-cell perovskite, the d6 and d5 Fe states differ by the single minority-spin electron which then controls all the spin- and charge-ordering transitions. Orbital occupancies can be extracted from the spectra in terms of the dxz , dz2 and either dx2-y2 (Main Article) or dxy (Supplement) populations of this electron upon conserving its angular momentum. At low temperatures, the minority-spin electrons fill up the ordered dxz orbitals of Fe2+, in agreement with the considerable orthorhombic distortion of the structure. Heating through the Verwey transition supplies 93% of the mixing entropy, at which point the predominantly mixing electron occupies mainly the dx2-y2 /dxy orbitals weakly bonding the two Fe atoms that face each other across the bases of their coordination pyramids. This might stabilize a weak coulombic checkerboard order suggested by McQueeney et alii in Phys. Rev. B 87(2013)045127. When the remaining 7% of entropy is supplied at a subsequent transition, the mixing electron couples the two Fe atoms predominantly via their dz2 orbitals. The valence mixing concerns more than 95% of the Fe atoms present in the crystalline solid; the rest is semi-quantitatively interpreted as domain walls and antiphase boundaries formed upon cooling through the Néel and Verwey-transition temperatures, respectively.

  8. Change In The Electronic Structure And Optical Absorption Of Cuprate Delafossites Via B-site Alloying

    NASA Astrophysics Data System (ADS)

    Beesley, Ramon; Panapitiya, Gihan; Lewis, James; Lewis Group Team

    Delafossite oxides are a family of materials with the form ABO2 , where the A-site is a monovalent cation (Cu , Ag , Au) and the B-site is a trivalent cation (Ga , Al , In). Delafossites typically have a wide optical band gap, this band gap may be tuned by adding a second B-site element forming an AB(1- x) 1B(x)2O2 alloy. We investigate changes in the electronic structure of CuAlO2 , CuGaO2 , and CuInO2 when alloyed with CuFeO2 . Using the FIREBALL program to optimize the atomic structure, calculate the total and partial density of states, calculate the valence band edge for each alloy level, and investigate the clustering factor of the second B-site atom, it is found that alloying with Fe creates midgap states caused by Fe - O interactions. From the partial density of state, each type of atoms contribution to the change in the valence band edge can be seen. Observed changes to the materials include increased optical absorption in the visible range, and symmetry breaking because of the deformation in the crystal structure. The CuFeO2 alloying percentages range from 0-5%. We are synthesizing these alloys to experimentally verify the changes in the optical absorption spectra.

  9. Determining the composition of small features in atom probe: bcc Cu-rich precipitates in an Fe-rich matrix.

    PubMed

    Morley, A; Sha, G; Hirosawa, S; Cerezo, A; Smith, G D W

    2009-04-01

    Aberrations in the ion trajectories near the specimen surface are an important factor in the spatial resolution of the atom probe technique. Near the boundary between two phases with dissimilar evaporation fields, ion trajectory overlaps may occur, leading to a biased measurement of composition in the vicinity of this interface. In the case of very small second-phase precipitates, the region affected by trajectory overlaps may extend to the centre of the precipitate prohibiting a direct measurement of composition. A method of quantifying the aberrant matrix contribution and thus estimating the underlying composition is presented. This method is applied to the Fe-Cu-alloy system, where the precipitation of low-nanometre size Cu-rich precipitates is of considerable technical importance in a number of materials applications. It is shown definitively that there is a non-zero underlying level of Fe within precipitates formed upon thermal ageing, which is augmented and masked by trajectory overlaps. The concentration of Fe in the precipitate phase is shown to be a function of ageing temperature. An estimate of the underlying Fe level is made, which is at lower levels than commonly reported by atom probe investigations.

  10. Reaction of cyanide with cytochrome ba3 from Thermus thermophilus: spectroscopic characterization of the Fe(II)a3-CN.Cu(II)B-CN complex suggests four 14N atoms are coordinated to CuB.

    PubMed Central

    Surerus, K K; Oertling, W A; Fan, C; Gurbiel, R J; Einarsdóttir, O; Antholine, W E; Dyer, R B; Hoffman, B M; Woodruff, W H; Fee, J A

    1992-01-01

    Cytochrome ba3 from Thermus thermophilus reacts slowly with excess HCN at pH 7.4 to create a form of the enzyme in which CuA, cytochrome b, and CuB remain oxidized, while cytochrome a3 is reduced by one electron, presumably with the formation of cyanogen. We have examined this form of the enzyme by UV-visible, resonance Raman, EPR, and electron nuclear double resonance spectroscopies in conjunction with permutations of 13C- and 15N-labeled cyanide. The results support a model in which one CN- binds through the carbon atom to ferrous a3, supporting a low-spin (S = 0) configuration on the Fe; bridging by this cyanide to the CuB is weak or absent. Four 14N atoms, presumably donated by histidine residues of the protein, provide a strong equatorial ligand field about CuB; a second CN- is coordinated through the carbon atom to CuB in an axial position. PMID:1314380

  11. Investigations into the mechanism of material removal and surface modification at atomic scale on stainless steel using molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Ranjan, Prabhat; Balasubramaniam, R.; Jain, V. K.

    2018-06-01

    A molecular dynamics simulation (MDS) has been carried out to investigate the material removal phenomenon of chemo-mechanical magnetorheological finishing (CMMRF) process. To understand the role of chemical assisted mechanical abrasion in CMMRF process, material removal phenomenon is subdivided into three different stages. In the first stage, new atomic bonds viz. Fe-O-Si is created on the surface of the workpiece (stainless steel). The second stage deals with the rupture of parent bonds like Fe-Fe on the workpiece. In the final stage, removal of material from the surface in the form of dislodged debris (cluster of atoms) takes place. Effects of process parameters like abrasive particles, depth of penetration and initial surface condition on finishing force, potential energy (towards secondary phenomenon such as chemical instability of the finished surface) and material removal at atomic scale have been investigated. It was observed that the type of abrasive particle is one of the important parameters to produce atomically smooth surface. Experiments were also conducted as per the MDS to generate defect-free and sub-nanometre-level finished surface (Ra value better than 0.2 nm). The experimental results reasonably agree well with the simulation results.

  12. Crystal structure of the co-crystal fac-tri-aqua-tris(thio-cyanato-κN)iron(III)-2,3-di-methyl-pyrazine (1/3).

    PubMed

    Kucheriv, Olesia I; Shylin, Sergii I; Ilina, Tetiana A; Dechert, Sebastian; Gural'skiy, Il'ya A

    2015-04-01

    In the crystal of the title compound, [Fe(NCS)3(H2O)3]·3C6H8N2, the Fe(III) cation is located on a threefold rotation axis and is coordinated by three N atoms of the thiocyanate anions and three water mol-ecules in a fac arrangement, forming a slightly distorted N3O3 octa-hedron. Stabilization within the crystal structure is provided by O-H⋯N hydrogen bonds; the H atoms from coordinating water mol-ecules act as donors to the N atoms of guest 2,3-di-methyl-pyrazine mol-ecules, leading to a three-dimensional supra-molecular framework.

  13. The influence of Ga additions on electric and magnetic properties of Co{sub 47}Fe{sub 21}B{sub 21}Si{sub 5}Nb{sub 6} alloy in crystal and liquid states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sidorov, V., E-mail: vesidor@mail.ru; Rojkov, I.; Mikhailov, V.

    2015-08-17

    The influence of small additions of gallium on electric resistivity and magnetic susceptibility of the bulk glass forming Co{sub 47}Fe{sub 20.9}B{sub 21.2}Si{sub 4.6}Nb{sub 6.3} alloy was studied in a wide temperature range up to 1830 K. Gallium atoms were found to increase resistivity but decrease susceptibility of the alloy. The suppositions about clusters surrounding Ga atoms in the melt and new GFA criterion are given.

  14. Investigation of iron adsorption on composite transition metal carbides in steel by first-principles calculation

    NASA Astrophysics Data System (ADS)

    Xiong, Hui-Hui; Gan, Lei; Tong, Zhi-Fang; Zhang, Heng-Hua; Zhou, Yang

    2018-05-01

    The nucleation potential of transition metal (TM) carbides formed in steel can be predicted by the behavior of iron adsorption on their surface. Therefore, Fe adsorption on the (001) surface of (A1-xmx)C (A = Nb, Ti, m = Mo, V) was investigated by the first-principles method to reveal the initialization of Fe nucleation. The Mulliken population and partial density of state (PDOS) were also calculated and analyzed in this work. The results show that Fe adsorption depends on the composition and configuration of the composite carbides. The adsorption energy (Wads) of Fe on most of (A1-xmx)C is larger than that of Fe on pure TiC or NbC. The maximum Wads is found for Fe on (Nb0.5Mo0.5)C complex carbide, indicating that this carbide has the high nucleation capacity at early stage. The Fe adsorption could be improved by the segregation of Cr and Mn atoms on the surfaces of (Nb0.5Mo0.5)C and (Ti0.5Mo0.5)C. The PDOS analysis of (Cr, Mn)-doped systems further explains the strong interactions between Fe and Cr or Mn atoms.

  15. Microwave absorbing performance enhancement of Fe75Si15Al10 composites by selective surface oxidation

    NASA Astrophysics Data System (ADS)

    Zhang, Nan; Wang, Xin; Liu, Tao; Xie, Jianliang; Deng, Longjiang

    2017-09-01

    An excessively large dielectric constant is a challenge to improve the performances of the Fe-based absorbing material. Here, we propose a selective surface oxidation method to reduce the permittivity without sacrificing the permeability, by annealing under 5%H2—95%N2 (H2/N2). It is found that a thin layer of aluminum and silicon oxides formed on the surface of Fe75Si15Al10 particles during annealing in the range of 500-780 °C under H2/N2, thereby leading to an obvious decrease of permittivity of the Fe75Si15Al10 composite. According to Gibbs free energy, aluminum and silicon oxides are formed and iron oxides are reduced during annealing under H2/N2 at above 500 °C. Interestingly, the XPS result shows that the atomic ratio of Fe decreases significantly on the particle surface, which infers that the reduced Fe atoms diffuse to the interior of the particles. The surface oxide layer can protect the inner part of the alloy from further oxidation, which contributes to a high permeability. Meanwhile, the XRD result shows the formation of DO3-type ordering, which leads to the promotion of permeability. The two reasons lead to the improvement of permeability of the Fe75Si15Al10 composite after annealing. The composite is confirmed to have high permeability and low permittivity, exhibiting better electromagnetic wave absorption properties.

  16. Molecular layers of ZnPc and FePc on Au(111) surface: Charge transfer and chemical interaction

    NASA Astrophysics Data System (ADS)

    Ahmadi, Sareh; Shariati, M. Nina; Yu, Shun; Göthelid, Mats

    2012-08-01

    We have studied zinc phthalocyanine (ZnPc) and iron phthalocyanine (FePc) thick films and monolayers on Au(111) using photoelectron spectroscopy and x-ray absorption spectroscopy. Both molecules are adsorbed flat on the surface at monolayer. ZnPc keeps this orientation in all investigated coverages, whereas FePc molecules stand up in the thick film. The stronger inter-molecular interaction of FePc molecules leads to change of orientation, as well as higher conductivity in FePc layer in comparison with ZnPc, which is reflected in thickness-dependent differences in core-level shifts. Work function changes indicate that both molecules donate charge to Au; through the π-system. However, the Fe3d derived lowest unoccupied molecular orbital receives charge from the substrate when forming an interface state at the Fermi level. Thus, the central atom plays an important role in mediating the charge, but the charge transfer as a whole is a balance between the two different charge transfer channels; π-system and the central atom.

  17. Theoretical electron-impact-ionization cross section for Fe11+ forming Fe12+

    NASA Astrophysics Data System (ADS)

    Kwon, Duck-Hee; Savin, Daniel Wolf

    2012-08-01

    We have calculated cross sections for electron impact ionization (EII) of P-like Fe11+ forming Si-like Fe12+. We have used the flexible atomic code (FAC) and a distorted-wave (DW) approximation. Particular attention has been paid to the ionization through the 3l→nl' and 2l→nl' excitation autoionization (EA) channels. We compare our results to previously published FAC DW results and recent experimental results. We find that the previous discrepancy between theory and experiment at the EII threshold can be accounted for by the 3l→nl' EA channels which were not included in the earlier calculations. At higher energies the discrepancy previously seen between theory and experiment for the magnitude of the 2l→nl'(n≥4) EA remains, though the difference has been reduced by our newer results. The resulting Maxwellian rate coefficient derived from our calculations lies within 11% of the experimentally derived rate coefficient in the temperature range where Fe11+ forms in collisional ionization equilibrium.

  18. Chemistry of impact events on Mercury

    NASA Astrophysics Data System (ADS)

    Berezhnoy, Alexey A.

    2018-01-01

    Based on the equilibrium thermochemical approach and quenching theory, formation of molecules and dust grains in impact-produced clouds formed after collisions between meteoroids and Mercury is considered. Based on observations of Al, Fe, and Mn atoms in the exosphere of Mercury and new results of studies of the elemental composition of the surface of Mercury, quenching temperatures and pressures of main chemical reactions and condensation of dust particles were estimated. The behavior of the main Na-, K-, Ca-, Fe-, Al-, Mn-, Mg-, Si-, Ti, Ni-, Cr-, Co, Zn-, O-, H-, S-, C-, Cl-, N-, and P-containing species delivered to the Hermean exosphere during meteoroid impacts was studied. The importance of meteoroid bombardment as a source of Na, K, Ca, Fe, Al, Mn, Mg, and O atoms in the exosphere of Mercury is discussed.

  19. Isolation and Characterization of a Dihydroxo-Bridged Iron(III,III)(μ-OH)2 Diamond Core Derived from Dioxygen

    PubMed Central

    Coggins, Michael K.; Toledo, Santiago; Kovacs, Julie A.

    2013-01-01

    Dioxygen addition to coordinatively unsaturated [Fe(II)(OMe2N4(6-Me-DPEN))](PF6) (1) is shown to afford a complex containing a dihydroxo-bridged Fe(III)2(μ-OH)2 diamond core, [FeIII(OMe2N4(6-Me-DPEN))]2(μ-OH)2(PF6)2•(CH3CH2CN)2 (2). The diamond core of 2 resembles the oxidized methane monooxygenase (MMOox) resting state, as well as the active site product formed following H-atom abstraction from Tyr-OH by ribonucleotide reductase (RNR). The Fe-OH bond lengths of 2 are comparable with those of the MMOHox suggesting that MMOHox contains a Fe(III)2(μ-OH)2 as opposed to Fe(III)2(μ-OH)(μ-OH2) diamond core as had been suggested. Isotopic labeling experiments with 18O2 and CD3CN indicate that the oxygen and proton of the μ-OH bridges of 2 are derived from dioxygen and acetonitrile. Deuterium incorporation (from CD3CN) suggests that an unobserved intermediate capable of abstracting a H-atom from CH3CN forms en route to 2. Given the high C–H bond dissociation energy (BDE= 97 kcal/mol) of acetonitrile, this indicates that this intermediate is a potent oxidant, possibly a high-valent iron oxo. Consistent with this, iodosylbenzene (PhIO) also reacts with 1 in CD3CN to afford the deuterated Fe(III)2(μ-OD)2 derivative of 2. Intermediates are not spectroscopically observed in either reaction (O2 and PhIO) even at low-temperatures (−80 °C), indicating that this intermediate has a very short life-time, likely due to its highly reactive nature. Hydroxo-bridged 2 was found to stoichiometrically abstract hydrogen atoms from 9,10-dihydroanthracene (C-H BDE= 76 kcal/mol) at ambient temperatures. PMID:24229319

  20. Low Temperature Diffusion Transformations in Fe-Ni-Ti Alloys During Deformation and Irradiation

    NASA Astrophysics Data System (ADS)

    Sagaradze, Victor; Shabashov, Valery; Kataeva, Natalya; Kozlov, Kirill; Arbuzov, Vadim; Danilov, Sergey; Ustyugov, Yury

    2018-03-01

    The deformation-induced dissolution of Ni3Ti intermetallics in the matrix of austenitic alloys of Fe-36Ni-3Ti type was revealed in the course of their cascade-forming neutron irradiation and cold deformation at low temperatures via employment of Mössbauer method. The anomalous deformation-related dissolution of the intermetallics has been explained by the migration of deformation-induced interstitial atoms from the particles into a matrix in the stress field of moving dislocations. When rising the deformation temperature, this process is substituted for by the intermetallics precipitation accelerated by point defects. A calculation of diffusion processes has shown the possibility of the realization of the low-temperature diffusion of interstitial atoms in configurations of the crowdions and dumbbell pairs at 77-173 K. The existence of interstitial atoms in the Fe-36Ni alloy irradiated by electrons or deformed at 77 K was substantiated in the experiments of the electrical resistivity measurements.

  1. The structural and electronic properties of metal atoms adsorbed on graphene

    NASA Astrophysics Data System (ADS)

    Liu, Wenjiang; Zhang, Cheng; Deng, Mingsen; Cai, Shaohong

    2017-09-01

    Based on density functional theory (DFT), we studied the structural and electronic properties of seven different metal atoms adsorbed on graphene (M + graphene). The geometries, adsorption energies, density of states (DOS), band structures, electronic dipole moment, magnetic moment and work function (WF) of M + graphene were calculated. The adsorption energies ΔE indicated that Li, Na, K, Ca and Fe adsorbed on graphene were tending to form stable structures. However, diffusion would occur on Cu and Ag adsorbed on graphene. In addition, the electronic structure near the Fermi level of graphene was significantly affected by Fe (Cu and Ag), compared with Li (Na, K and Ca). The electronic dipole moment and magnetic moment of M + graphene were sensitive to the adsorbed metal atoms. Moreover, we found electropositive (electronegative) adsorption can decrease (increase) the WF of the surface. Specially, the WF of Ag + graphene and Fe + graphene would increase because surface dipole moment make a contribution to electron.

  2. Surface structure of MgO underlayer with Ti diffusion for (002) oriented L10 FePt-based heat assisted magnetic recording media

    NASA Astrophysics Data System (ADS)

    Hinata, Sintaro; Jo, Shin; Saito, Shin

    2018-05-01

    Surface morphology of the MgO layer and magnetic properties of FePt-C layer deposited on the MgO were investigated for the FePt-based heat assisted magnetic recording media. Stacking structure of the underlayer for the FePt-C layer was MgO (0-5 nm)/Cr80Mn20 (0-30 nm)/Cr50Ti50 (0-50 nm)/glass sub.. Surface observation result for the MgO film by using an atomic force microscope revealed the existence of nodules with a height of about 2 nm and a network-like convex structure with a height difference of about sub nm (boundary wall, BW) on the MgO crystal grain boundary. Density of the nodules largely depends on the surface roughness of the CrTi layer, RaCrTi and it is suppressed from 10 to 2/0.5 μm2 by reducing RaCrTi from 420 to 260 pm. Height of the BW depends on thickness of the MgO layer, tMgO and it can be suppressed by reducing tMgO to less than 4 nm. From the cross-sectional energy dispersive x-ray mapping, it is clarified that the BW is formed by atomic diffusion of Ti atoms from CrTi layer due to the substrate heating process, and a compound consists of Mg, Ti and O atoms. This BW can be used as a template to magnetically isolate the FePt column in the FePt-based granular film, such as FePt-SiO2, if the size of the BW is reduced to less than 10 nm. M-H loop of the FePt-C granular film deposited on the underlayer showed that the nodule and BW induce oxidation of the FePt grains, and reduction of intergranular exchange coupling.

  3. Spin switch in iron phthalocyanine on Au(111) surface by hydrogen adsorption

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Li, Xiaoguang; Zheng, Xiao; Yang, Jinlong

    2017-10-01

    The manipulation of spin states at the molecular scale is of fundamental importance for the development of molecular spintronic devices. One of the feasible approaches for the modification of a molecular spin state is through the adsorption of certain specific atoms or molecules including H, NO, CO, NH3, and O2. In this paper, we demonstrate that the local spin state of an individual iron phthalocyanine (FePc) molecule adsorbed on an Au(111) surface exhibits controllable switching by hydrogen adsorption, as evidenced by using first-principles calculations based on density functional theory. Our theoretical calculations indicate that different numbers of hydrogen adsorbed at the pyridinic N sites of the FePc molecule largely modify the structural and electronic properties of the FePc/Au(111) composite by forming extra N-H bonds. In particular, the adsorption of one or up to three hydrogen atoms induces a redistribution of charge (spin) density within the FePc molecule, and hence a switching to a low spin state (S = 1/2) from an intermediate spin state (S = 1) is achieved, while the adsorption of four hydrogen atoms distorts the molecular conformation by increasing Fe-N bond lengths in FePc and thus breaks the ligand field exerted on the Fe 3d orbitals via stronger hybridization with the substrate, leading to an opposite switching to a high-spin state (S = 2). These findings obtained from the theoretical simulations could be useful for experimental manipulation or design of single-molecule spintronic devices.

  4. Dose dependence of radiation damage in nano-structured amorphous SiOC/crystalline Fe composite

    DOE PAGES

    Su, Qing; Price, Lloyd; Shao, Lin; ...

    2015-10-29

    Here, through examination of radiation tolerance properties of amorphous silicon oxycarbide (SiOC) and crystalline Fe composite to averaged damage levels, from approximately 8 to 30 displacements per atom (dpa), we demonstrated that the Fe/SiOC interface and the Fe/amorphous Fe xSi yO z interface act as efficient defect sinks and promote the recombination of vacancies and interstitials. For thick Fe/SiOC multilayers, a clear Fe/SiOC interface remained and no irradiation-induced mixing was observed even after 32 dpa. For thin Fe/SiOC multilayers, an amorphous Fe xSi yO z intermixed layer was observed to form at 8 dpa, but no further layer growth wasmore » observed for higher dpa levels.« less

  5. The effect of Fe-coverage on the structure, morphology and magnetic properties of α-FeSi2 nanoislands.

    PubMed

    Tripathi, J K; Garbrecht, M; Kaplan, W D; Markovich, G; Goldfarb, I

    2012-12-14

    Self-assembled α-FeSi(2) nanoislands were formed using solid-phase epitaxy of low (~1.2 ML) and high (~21 ML) Fe coverages onto vicinal Si(111) surfaces followed by thermal annealing. At a resulting low Fe-covered Si(111) surface, we observed in situ, by real-time scanning tunneling microscopy and surface electron diffraction, the entire sequence of Fe-silicide formation and transformation from the initially two-dimensional (2 × 2)-reconstructed layer at 300 °C into (2 × 2)-reconstructed nanoislands decorating the vicinal step-bunch edges in a self-ordered fashion at higher temperatures. In contrast, the silicide nanoislands at a high Fe-covered surface were noticeably larger, more three-dimensional, and randomly distributed all over the surface. Ex situ x-ray photoelectron spectroscopy and high-resolution transmission electron microscopy indicated the formation of an α-FeSi(2) island phase, in an α-FeSi(2){112} // Si{111} orientation. Superconducting quantum interference device magnetometry showed considerable superparamagnetism, with ~1.9 μ(B)/Fe atom at 4 K for the low Fe-coverage, indicating stronger ferromagnetic coupling of individual magnetic moments, as compared to high Fe-coverage, where the calculated moments were only ~0.8 μ(B)/Fe atom. Such anomalous magnetic behavior, particularly for the low Fe-coverage case, is radically different from the non-magnetic bulk α-FeSi(2) phase, and may open new pathways to high-density magnetic memory storage devices.

  6. Probing Single Pt Atoms in Complex Intermetallic Al13Fe4.

    PubMed

    Yamada, Tsunetomo; Kojima, Takayuki; Abe, Eiji; Kameoka, Satoshi; Murakami, Yumi; Gille, Peter; Tsai, An Pang

    2018-03-21

    The atomic structure of a 0.2 atom % Pt-doped complex metallic alloy, monoclinic Al 13 Fe 4 , was investigated using a single crystal prepared by the Czochralski method. High-angle annular dark-field scanning transmission electron microscopy showed that the Pt atoms were dispersed as single atoms and substituted at Fe sites in Al 13 Fe 4 . Single-crystal X-ray structural analysis revealed that the Pt atoms preferentially substitute at Fe(1). Unlike those that have been reported, Pt single atoms in the surface layers showed lower activity and selectivity than those of Al 2 Pt and bulk Pt for propyne hydrogenation, indicating that the active state of a given single-atom Pt site is strongly dominated by the bonding to surrounding Al atoms.

  7. Experimental and theoretical identification of the Fe(vii) oxidation state in FeO4.

    PubMed

    Lu, Jun-Bo; Jian, Jiwen; Huang, Wei; Lin, Hailu; Li, Jun; Zhou, Mingfei

    2016-11-16

    The experimentally known highest oxidation state of iron has been determined to be Fe(vi) so far. Here we report a combined matrix-isolation infrared spectroscopic and theoretical study of two interconvertible iron oxide anions: a dioxoiron peroxide complex [(η 2 -O 2 )FeO 2 ] - with a C 2v -structure and a tetroxide FeO 4 - with a D 2d tetrahedral structure, which are formed by co-condensation of laser-ablated iron atoms and electrons with O 2 /Ar mixtures at 4 K. Quantum chemistry theoretical studies indicate that the Jahn-Teller distorted tetroxide FeO 4 - anion is a d 1 species with hereto the highest iron formal oxidation state Fe(vii).

  8. Atomic level structural modulation during the structural relaxation and its effect on magnetic properties of Fe81Si4B10P4Cu1 nanocrystalline alloy

    NASA Astrophysics Data System (ADS)

    Cao, C. C.; Zhu, L.; Meng, Y.; Zhai, X. B.; Wang, Y. G.

    2018-06-01

    The evolution of local structure and defects in the Fe81Si4B10P4Cu1 amorphous alloy during the structural relaxation has been investigated by Mössbauer spectroscopy, positron annihilation lifetime spectroscopy and transmission electron microscopy to explore their effects on magnetic properties of the nanocrystalline. The atomic rearrangements at the early stage of the structural relaxation cause the density increase of the amorphous matrix, but the subsequent atomic rearrangements contribute to the transformation of Fe3B-like atomic arrangements to FeB-like ones with the temperature increasing. As the structural relaxation processes, the released Fe atoms both from Fe3B- and Fe3P-like atomic arrangements result in the formation of new Fe clusters and the increase of Fe-Fe coordination number in the existing Fe clusters and the nucleation sites for α-Fe gradually increase, both of which promote the crystallization. However, the homogeneity of amorphous matrix will be finally destroyed under excessive relaxation temperature, which coarsens nanograins during the crystallization instead. Therefore, soft magnetic properties of the Fe81Si4B10P4Cu1 nanocrystalline alloy can be improved by pre-annealing the amorphous precursor at an appropriate temperature due to the atomic level structural optimization.

  9. Structure refinement of the δ1p phase in the Fe-Zn system by single-crystal X-ray diffraction combined with scanning transmission electron microscopy.

    PubMed

    Okamoto, Norihiko L; Tanaka, Katsushi; Yasuhara, Akira; Inui, Haruyuki

    2014-04-01

    The structure of the δ1p phase in the iron-zinc system has been refined by single-crystal synchrotron X-ray diffraction combined with scanning transmission electron microscopy. The large hexagonal unit cell of the δ1p phase with the space group of P63/mmc comprises more or less regular (normal) Zn12 icosahedra, disordered Zn12 icosahedra, Zn16 icosioctahedra and dangling Zn atoms that do not constitute any polyhedra. The unit cell contains 52 Fe and 504 Zn atoms so that the compound is expressed with the chemical formula of Fe13Zn126. All Fe atoms exclusively occupy the centre of normal and disordered icosahedra. Iron-centred normal icosahedra are linked to one another by face- and vertex-sharing forming two types of basal slabs, which are bridged with each other by face-sharing with icosioctahedra, whereas disordered icosahedra with positional disorder at their vertex sites are isolated from other polyhedra. The bonding features in the δ1p phase are discussed in comparison with those in the Γ and ζ phases in the iron-zinc system.

  10. A Six-Coordinate Peroxynitrite Low-Spin Iron(III) Porphyrinate Complex—The Product of the Reaction of Nitrogen Monoxide (·NO (g)) with a Ferric-Superoxide Species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Savita K.; Schaefer, Andrew W.; Lim, Hyeongtaek

    Peroxynitrite ( –OON=O, PN) is a reactive nitrogen species (RNS) which can effect deleterious nitrative or oxidative (bio)chemistry. It may derive from reaction of superoxide anion (O 2 •–) with nitric oxide (·NO) and has been suggested to form an as-yet unobserved bound heme-iron-PN intermediate in the catalytic cycle of nitric oxide dioxygenase (NOD) enzymes, which facilitate a ·NO homeostatic process, i.e., its oxidation to the nitrate anion. Here, a discrete six-coordinate low-spin porphyrinate-Fe III complex [(P Im)Fe III( –OON=O)] (P Im; a porphyrin moiety with a covalently tethered imidazole axial “base” donor ligand) has been identified and characterized bymore » various spectroscopies (UV–vis, NMR, EPR, XAS, resonance Raman) and DFT calculations, following its formation at –80 °C by addition of ·NO (g) to the heme-superoxo species, [(P Im)Fe III(O 2 •–)]. DFT calculations confirm that is a six-coordinate low-spin species with the PN ligand coordinated to iron via its terminal peroxidic anionic O atom with the overall geometry being in a cis-configuration. Complex thermally transforms to its isomeric low-spin nitrato form [(P Im)Fe III(NO 3 –)]. While previous (bio)chemical studies show that phenolic substrates undergo nitration in the presence of PN or PN-metal complexes, in the present system, addition of 2,4-di- tert-butylphenol ( 2,4DTBP) to complex does not lead to nitrated phenol; the nitrate complex still forms. Furthermore, DFT calculations reveal that the phenolic H atom approaches the terminal PN O atom (farthest from the metal center and ring core), effecting O–O cleavage, giving nitrogen dioxide (·NO 2) plus a ferryl compound [(P Im)Fe IV=O] (7); this rebounds to give [(P Im)Fe III(NO 3 –)].The generation and characterization of the long sought after ferriheme peroxynitrite complex has been accomplished.« less

  11. Modeling the formation of strong couples in high temperature liquid

    NASA Astrophysics Data System (ADS)

    Yaghmaee, M. S.; Shokri, B.

    2007-07-01

    The study of atomic/molecular level interactions in the liquid state of materials not only helps us to understand the extreme behavior of such complex liquid phases (different from what we observe from ideal systems), but also helps us to analyze and design the advanced materials. For this reason, the model of an ideally associated mixture has been applied to describe the equilibrium state on the example of an Fe-rich corner of the quaternary Fe-Al-N-B system. This model is able to formulate and analyze the state of liquid systems, which are rich in one component and which also have other components that develop strong interactions among each other, leading to the formation of some couples in the system. These couples could be as small as a two-atom structure (such as simple compounds in a metallic system), but they could also become larger up to nanoscale due to higher stoichiometric morphologies that form nanoscale clusters. The solubility of AlN, BN, and N2 gases in the liquid phase of the ternary Fe-Al-N and Fe-B-N systems has been calculated and fitted to experimental results. There is a deviation between our calculated boundary curves fitted with experimental result and those extrapolated curves from the concept of solubility product, which may only be attributed to the misleading concept of solubility product that ignores couple formation in the liquid. Applying this model to the Fe-Al-N-B liquid system, we found that at relatively low boron content (i.e., 20-30ppm) and soluble aluminum content exceeding 250ppm, more than 90% of the steel making practice with nitrogen content (i.e., maximum of 120ppm) is complexed into AlN and BN couples at temperatures falling in the range of 1823-1923K. The model describing the liquid quaternary Fe-Al-N-B system provides us a tool to determine the equilibrium quantity of the considered constituents (free atoms and couples) formed in the liquid, as a function of macroscopic composition and temperature. This algorithm can be used generally for high temperature multicomponent liquid systems, which have the tendency to form strong couples or nanoclusters.

  12. A Six-Coordinate Peroxynitrite Low-Spin Iron(III) Porphyrinate Complex—The Product of the Reaction of Nitrogen Monoxide (·NO (g)) with a Ferric-Superoxide Species

    DOE PAGES

    Sharma, Savita K.; Schaefer, Andrew W.; Lim, Hyeongtaek; ...

    2017-11-01

    Peroxynitrite ( –OON=O, PN) is a reactive nitrogen species (RNS) which can effect deleterious nitrative or oxidative (bio)chemistry. It may derive from reaction of superoxide anion (O 2 •–) with nitric oxide (·NO) and has been suggested to form an as-yet unobserved bound heme-iron-PN intermediate in the catalytic cycle of nitric oxide dioxygenase (NOD) enzymes, which facilitate a ·NO homeostatic process, i.e., its oxidation to the nitrate anion. Here, a discrete six-coordinate low-spin porphyrinate-Fe III complex [(P Im)Fe III( –OON=O)] (P Im; a porphyrin moiety with a covalently tethered imidazole axial “base” donor ligand) has been identified and characterized bymore » various spectroscopies (UV–vis, NMR, EPR, XAS, resonance Raman) and DFT calculations, following its formation at –80 °C by addition of ·NO (g) to the heme-superoxo species, [(P Im)Fe III(O 2 •–)]. DFT calculations confirm that is a six-coordinate low-spin species with the PN ligand coordinated to iron via its terminal peroxidic anionic O atom with the overall geometry being in a cis-configuration. Complex thermally transforms to its isomeric low-spin nitrato form [(P Im)Fe III(NO 3 –)]. While previous (bio)chemical studies show that phenolic substrates undergo nitration in the presence of PN or PN-metal complexes, in the present system, addition of 2,4-di- tert-butylphenol ( 2,4DTBP) to complex does not lead to nitrated phenol; the nitrate complex still forms. Furthermore, DFT calculations reveal that the phenolic H atom approaches the terminal PN O atom (farthest from the metal center and ring core), effecting O–O cleavage, giving nitrogen dioxide (·NO 2) plus a ferryl compound [(P Im)Fe IV=O] (7); this rebounds to give [(P Im)Fe III(NO 3 –)].The generation and characterization of the long sought after ferriheme peroxynitrite complex has been accomplished.« less

  13. Formation of β-FeSi 2 thin films by partially ionized vapor deposition

    NASA Astrophysics Data System (ADS)

    Harada, Noriyuki; Takai, Hiroshi

    2003-05-01

    The partially ionized vapor deposition (PIVD) is proposed as a new method to realize low temperature formation of β-FeSi 2 thin films. In this method, Fe is evaporated by E-gun and a few percents of Fe atoms are ionized. We have investigated influences of the ion content and the accelerating voltage of Fe ions on the structural properties of β-FeSi 2 films deposited on Si substrates. It was confirmed that β-FeSi 2 can be formed on Si(1 0 0) substrate by PIVD even at substrate temperature as low as 350, while FeSi by the conventional vacuum deposition. It was concluded that the influence of Fe ions on preferential orientation of β-FeSi 2 depends strongly on the content and the acceleration energy of ions.

  14. Core–Shell to Doped Quantum Dots: Evolution of the Local Environment Using XAFS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saha, Avijit; Chattopadhyay, Soma; Shibata, Tomohiro

    2016-09-30

    Internal structure study at an atomic level is a challenging task with far reaching consequences to its material properties, specifically in the field of transition metal doping in quantum dots. Diffusion of transition metal ions in and out of quantum dots forming magnetic clusters has been a major bottleneck in this class of materials. Diffusion of the magnetic ions from the core into the nonmagnetic shell in a core/shell heterostructure architecture to attain uniform doping has been recently introduced and yet to be understood. In this work, we have studied the local structure variation of Fe as a function ofmore » CdS matrix thickness and annealing time during the overcoating of Fe 3O 4 core with CdS using X-ray absorption spectroscopy. The data reveals that Fe 3O 4 core initially forms a core/shell structure with CdS followed by alloying at the interface eventually completely diffusing all the way through the CdS matrix to form homogeneously Fe-doped CdS QDs with excellent control over size and size distribution. Study of Fe K-edge shows a complete change of Fe local environment from Fe–O to FeS.« less

  15. Self-assembly of endohedral metallofullerenes: a decisive role of cooling gas and metal-carbon bonding

    NASA Astrophysics Data System (ADS)

    Deng, Qingming; Heine, Thomas; Irle, Stephan; Popov, Alexey A.

    2016-02-01

    The endohedral metallofullerene (EMF) self-assembly process in Sc/carbon vapor in the presence and absence of an inert cooling gas (helium) is systematically investigated using quantum chemical molecular dynamics simulations. It is revealed that the presence of He atoms accelerates the formation of pentagons and hexagons and reduces the size of the self-assembled carbon cages in comparison with analogous He-free simulations. As a result, the Sc/C/He system simulations produce a larger number of successful trajectories (i.e. leading to Sc-EMFs) with more realistic cage-size distribution than simulations of the Sc/C system. The main Sc encapsulation mechanism involves nucleation of several hexagons and pentagons with Sc atoms already at the early stages of carbon vapor condensation. In such proto-cages, both Sc-C σ-bonds and coordination bonds between Sc atoms and the π-system of the carbon network are present. Sc atoms are thus rather labile and can move along the carbon network, but the overall bonding is sufficiently strong to prevent dissociation even at temperatures around 2000 kelvin. Further growth of the fullerene cage results in the encapsulation of one or two Sc atoms within the fullerene. In agreement with experimental studies, an extension of the simulations to Fe and Ti as the metal component showed that Fe-EMFs are not formed at all, whereas Ti is prone to form Ti-EMFs with small cage sizes, including Ti@C28-Td and Ti@C30-C2v(3).The endohedral metallofullerene (EMF) self-assembly process in Sc/carbon vapor in the presence and absence of an inert cooling gas (helium) is systematically investigated using quantum chemical molecular dynamics simulations. It is revealed that the presence of He atoms accelerates the formation of pentagons and hexagons and reduces the size of the self-assembled carbon cages in comparison with analogous He-free simulations. As a result, the Sc/C/He system simulations produce a larger number of successful trajectories (i.e. leading to Sc-EMFs) with more realistic cage-size distribution than simulations of the Sc/C system. The main Sc encapsulation mechanism involves nucleation of several hexagons and pentagons with Sc atoms already at the early stages of carbon vapor condensation. In such proto-cages, both Sc-C σ-bonds and coordination bonds between Sc atoms and the π-system of the carbon network are present. Sc atoms are thus rather labile and can move along the carbon network, but the overall bonding is sufficiently strong to prevent dissociation even at temperatures around 2000 kelvin. Further growth of the fullerene cage results in the encapsulation of one or two Sc atoms within the fullerene. In agreement with experimental studies, an extension of the simulations to Fe and Ti as the metal component showed that Fe-EMFs are not formed at all, whereas Ti is prone to form Ti-EMFs with small cage sizes, including Ti@C28-Td and Ti@C30-C2v(3). Electronic supplementary information (ESI) available: Additional information on metal-carbon bonding and MD simulations. See DOI: 10.1039/c5nr08645k

  16. On stoichiometry and intermixing at the spinel/perovskite interface in CoFe2O4/BaTiO3 thin films.

    PubMed

    Tileli, Vasiliki; Duchamp, Martial; Axelsson, Anna-Karin; Valant, Matjaz; Dunin-Borkowski, Rafal E; Alford, Neil McN

    2015-01-07

    The performance of complex oxide heterostructures depends primarily on the interfacial coupling of the two component structures. This interface character inherently varies with the synthesis method and conditions used since even small composition variations can alter the electronic, ferroelectric, or magnetic functional properties of the system. The focus of this article is placed on the interface character of a pulsed laser deposited CoFe2O4/BaTiO3 thin film. Using a range of state-of-the-art transmission electron microscopy methodologies, the roles of substrate morphology, interface stoichiometry, and cation intermixing are determined on the atomic level. The results reveal a surprisingly uneven BaTiO3 substrate surface formed after the film deposition and Fe atom incorporation in the top few monolayers inside the unit cell of the BaTiO3 crystal. Towards the CoFe2O4 side, a disordered region extending several nanometers from the interface was revealed and both Ba and Ti from the substrate were found to diffuse into the spinel layer. The analysis also shows that within this somehow incompatible composite interface, a different phase is formed corresponding to the compound Ba2Fe3Ti5O15, which belongs to the ilmenite crystal structure of FeTiO3 type. The results suggest a chemical activity between these two oxides, which could lead to the synthesis of complex engineered interfaces.

  17. High-resolution studies of the Majorana atomic chain platform

    NASA Astrophysics Data System (ADS)

    Feldman, Benjamin E.; Randeria, Mallika T.; Li, Jian; Jeon, Sangjun; Xie, Yonglong; Wang, Zhijun; Drozdov, Ilya K.; Andrei Bernevig, B.; Yazdani, Ali

    2017-03-01

    Ordered assemblies of magnetic atoms on the surface of conventional superconductors can be used to engineer topological superconducting phases and realize Majorana fermion quasiparticles (MQPs) in a condensed matter setting. Recent experiments have shown that chains of Fe atoms on Pb generically have the required electronic characteristics to form a one-dimensional topological superconductor and have revealed spatially resolved signatures of localized MQPs at the ends of such chains. Here we report higher-resolution measurements of the same atomic chain system performed using a dilution refrigerator scanning tunnelling microscope (STM). With significantly better energy resolution than previous studies, we show that the zero-bias peak (ZBP) in Fe chains has no detectable splitting from hybridization with other states. The measurements also reveal that the ZBP exhibits a distinctive `double eye’ spatial pattern on nanometre length scales. Theoretically we show that this is a general consequence of STM measurements of MQPs with substantial spectral weight in the superconducting substrate, a conclusion further supported by measurements of Pb overlayers deposited on top of the Fe chains. Finally, we report experiments performed with superconducting tips in search of the particle-hole symmetric MQP signature expected in such measurements.

  18. Atom exchange between aqueous Fe(II) and structural Fe in clay minerals.

    PubMed

    Neumann, Anke; Wu, Lingling; Li, Weiqiang; Beard, Brian L; Johnson, Clark M; Rosso, Kevin M; Frierdich, Andrew J; Scherer, Michelle M

    2015-03-03

    Due to their stability toward reductive dissolution, Fe-bearing clay minerals are viewed as a renewable source of Fe redox activity in diverse environments. Recent findings of interfacial electron transfer between aqueous Fe(II) and structural Fe in clay minerals and electron conduction in octahedral sheets of nontronite, however, raise the question whether Fe interaction with clay minerals is more dynamic than previously thought. Here, we use an enriched isotope tracer approach to simultaneously trace Fe atom movement from the aqueous phase to the solid ((57)Fe) and from the solid into the aqueous phase ((56)Fe). Over 6 months, we observed a significant decrease in aqueous (57)Fe isotope fraction, with a fast initial decrease which slowed after 3 days and stabilized after about 50 days. For the aqueous (56)Fe isotope fraction, we observed a similar but opposite trend, indicating that Fe atom movement had occurred in both directions: from the aqueous phase into the solid and from the solid into aqueous phase. We calculated that 5-20% of structural Fe in clay minerals NAu-1, NAu-2, and SWa-1 exchanged with aqueous Fe(II), which significantly exceeds the Fe atom layer exposed directly to solution. Calculations based on electron-hopping rates in nontronite suggest that the bulk conduction mechanism previously demonstrated for hematite1 and suggested as an explanation for the significant Fe atom exchange observed in goethite2 may be a plausible mechanism for Fe atom exchange in Fe-bearing clay minerals. Our finding of 5-20% Fe atom exchange in clay minerals indicates that we need to rethink how Fe mobility affects the macroscopic properties of Fe-bearing phyllosilicates and its role in Fe biogeochemical cycling, as well as its use in a variety of engineered applications, such as landfill liners and nuclear repositories.

  19. Two molecular wheels 12-MC-6 complexes: Synthesis, structure and magnetic property of [Co(μ{sub 2}-SEt){sub 2}]{sub 6} and [Fe(μ{sub 2}-SEt){sub 2}]{sub 6}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jing; Jian, Fangfang, E-mail: ffj2003@163169.net; Huang, Baoxin

    2013-08-15

    The syntheses and structures of two ethyl mercaptan molecular wheels complexes, [M(μ{sub 2}-SCH{sub 2}CH{sub 3}){sub 2}]{sub 6} (M=Fe, Co), have been reported. Each metal atom is surrounded by four S atoms of the μ{sub 2}-SCH{sub 2}CH{sub 3} ligands in a distorted square plane fashion. The edge-sharing S{sub 4} square planes connect with each other to form a ring. Six metal atoms are located at the vertices of an almost hexagon, with M···M separations in the range of 2.903(1)∼2.936(2) Å for Fe and 2.889(2)∼2.962(2) Å for Co. The diameter of the ring, defined as the average distance between two opposing metalmore » atoms, is 5.850(1) Å for Fe and 5.780(1) Å for Co, respectively. The magnetic property behaves of cobalt(II) cluster complex is studied. Highlights: • Two new ethyl mercaptan cyclic hexanuclear complexes were reported. • The crystal structures shown center formation of M{sub 6}S{sub 12} molecular wheels. • The Co{sub 6} ring cluster complex represents as weak ferromagnet.« less

  20. Irradiation-induced formation of a spinel phase at the FeCr/MgO interface

    DOE PAGES

    Xu, Yun; Yadav, Satyesh Kumar; Aguiar, Jeffery A.; ...

    2015-04-27

    Oxide dispersion strengthened ferritic/martensitic alloys have attracted significant attention for their potential uses in future nuclear reactors and storage vessels, as the metal/oxide interfaces act as stable high-strength sinks for point defects while also dispersing helium. Here, in order to unravel the evolution and interplay of interface structure and chemistry upon irradiation in these types of materials, an atomically sharp FeCr/MgO interface was synthesized at 500 °C and separately annealed and irradiated with Ni 3+ ions at 500 °C. After annealing, a slight enrichment of Cr atoms was observed at the interface, but no other structural changes were found. However,more » under irradiation, sufficient Cr diffuses across the interface into the MgO to form a Cr-enriched transition layer that contains spinel precipitates. First-principles calculations indicate that it is energetically favorable to incorporate Cr, but not Fe, substitutionally into MgO. Furthermore, our results indicate that irradiation can be used to form new phases and complexions at interfaces, which may have different radiation tolerance than the pristine structures.« less

  1. Atom probe tomography of intermetallic phases and interfaces formed in dissimilar joining between Al alloys and steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemmens, B.

    While Si additions to Al are widely used to reduce the thickness of the brittle intermetallic seam formed at the interface during joining of Al alloys to steel, the underlying mechanisms are not clarified yet. The developed approach for the site specific atom probe tomography analysis revealed Si enrichments at grain and phase boundaries between the θ (Fe{sub 4}Al{sub 13}) and η (Fe{sub 2}Al{sub 5}) phase, up to about ten times that of the concentration in Al. The increase in Si concentration could play an important role for the growth kinetics of the intermetallic phases formed for example in hot-dipmore » aluminizing of steel. - Highlights: •Si additions to Al reduce thickness of intermetallic seam in joining with steel. •Approach developed for the site specific APT analysis of the intermetallic seam •Si enrichment at grain and phase boundaries possibly affects growth of intermetallics.« less

  2. Structural investigation of the (010) surface of the Al13 Fe4 catalyst.

    PubMed

    Ledieu, J; Gaudry, É; Loli, L N Serkovic; Villaseca, S Alarcón; de Weerd, M-C; Hahne, M; Gille, P; Grin, Y; Dubois, J-M; Fournée, V

    2013-02-15

    We have investigated the structure of the Al(13)Fe(4)(010) surface using both experimental and ab initio computational methods. The results indicate that the topmost surface layers correspond to incomplete puckered (P) planes present in the bulk crystal structure. The main building block of the corrugated termination consists of two adjacent pentagons of Al atoms, each centered by a protruding Fe atom. These motifs are interconnected via additional Al atoms referred to as "glue" atoms which partially desorb above 873 K. The surface structure of lower atomic density compared to the bulk P plane is explained by a strong Fe-Al-Fe covalent polar interaction that preserves intact clusters at the surface. The proposed surface model with identified Fe-containing atomic ensembles could explain the Al(13)Fe(4) catalytic properties recently reported in line with the site-isolation concept [M. Armbrüster et al., Nat. Mater. 11, 690 (2012)].

  3. Sulfur Adsorption on the Goethite (110) Surface

    NASA Astrophysics Data System (ADS)

    Simonetti, S.; Damiani, D.; Brizuela, G.; Juan, A.

    The electronic structure of S adsorption on goethite (110) surface has been studied by ASED-MO cluster calculations. For S location, the most exposed surface atoms of goethite surface were selected. The calculations show that the surface offers several places for S adsorption. The most energetically stable system corresponds to S location above H atom. We studied in detail the configurations that correspond to the higher OP values. For these configurations, the H-S and Fe-S computed distances are 2.1 and 3.7 Å, respectively. The H-S and Fe-S are mainly bonding interaction with OP values of 0.156 and 0.034, respectively. The Fe-S interaction mainly involves Fe 3dx2-y2 atomic orbitals with lesser participation of Fe 4py and Fe 3dyz atomic orbitals. The O-S interaction shows the same bonding and antibonding contributions giving a small OP value. The O-S interaction involves O 2p orbitals. There is an electron transfer to the Fe atom from the S atom. On the other hand, there is an electron transfer to S atom from the H and O atoms, respectively.

  4. Molecule-assisted ferromagnetic atomic chain formation

    NASA Astrophysics Data System (ADS)

    Kumar, Manohar; Sethu, Kiran Kumar Vidya; van Ruitenbeek, Jan M.

    2015-06-01

    One dimensional systems strongly enhance the quantum character of electron transport. Such systems can be realized in 5 d transition metals Au, Pt, and Ir, in the form of suspended monatomic chains between bulk leads. Atomic chains between ferromagnetic leads would open up many perspectives in the context of spin-dependent transport and spintronics, but the evidence suggests that for pure metals only the mentioned three 5 d metals are susceptible to chain formation. It has been argued that the stability of atomic chains made up from ferromagnetic metals is compromised by the same exchange interaction that produces the local moments. Here we demonstrate that magnetic atomic chains can be induced to form in break junctions under the influence of light molecules. Explicitly, we find deuterium assisted chain formation in the 3 d ferromagnetic transition metals Fe and Ni. Chain lengths up to eight atoms are formed upon stretching the ferromagnetic atomic contact in deuterium atmosphere at cryogenic temperatures. From differential conductance spectra vibronic states of D2 can be identified, confirming the presence of deuterium in the atomic chains. Shot noise spectroscopy indicates the presence of weakly spin polarized transmission channels.

  5. Iron's Role in Aluminum: A Powder Metallurgy and Sustainability Approach

    NASA Astrophysics Data System (ADS)

    Saller, Brandon Dale

    The family of Al-Fe alloys is both scientifically and technologically interesting for several reasons. First, the low equilibrium solid solubility (0.03 at.%) and diffusivity of Fe in Al suggest that the alloys containing these two elements should be thermally stable. Many studies have tried to extend this low solubility value via non-equilibrium processing routes. Second, published results suggest that there is a range of intermetallic phases, including the metastable orthorhombic Al6Fe and the equilibrium monoclinic Al13Fe4, for example, the formation of which depends on solidification and subsequent processing conditions. Third, from a sustainability standpoint, both Al and Fe are present in bauxite (aluminum ore), however up to 40 wt.% Fe-oxide present in bauxite is discarded as a waste product, creating red mud pits. In order to understand the multiple facets and implications of iron's role in aluminum, a systematic investigation was performed into the precipitates that form as a function of thermal exposure and their subsequent effect on the tensile behavior of the alloy. In this study, Al-2at.% Fe and Al-5at.% Fe powders were synthesized via helium gas atomization and argon gas atomization, respectively. Cooling rates upwards of 106 K/s were achieved resulting in an intermetallic-free starting structure. Powders were subsequently severely plastically deformed via either cryomilling or high-pressure torsion to obtain nanostructured/ultrafine-grained powder or a consolidated specimen, respectively. Characterization via electron microscopy established a map of the powder microstructure as a function of atomization cooling rate. In addition, electron backscatter diffraction revealed a large number of low-angle grain boundaries, which influenced nucleation and precipitation of the metastable Al6Fe phase. X-ray diffraction and atom probe tomography results provide the most comprehensive evidence to date of forcing of 2at.% Fe into solution with the Al matrix via cryomilling. With respect to the powder, a differential scanning calorimetry and activation energy analysis elucidated the formation and phase transformation temperatures of the relevant intermetallic phases, and the microstructural factors that influenced them. With an understanding of the fundamental science behind the intermetallic formation in the Al-Fe system, the composition of helium atomized Al-2at.% Fe was chosen combined with high-pressure torsion processing to yield a bulk alloy that demonstrated an ultimate tensile strength of 488 MPa. This strength was achieved via a combination of two mechanisms: grain refinement (Hall-Petch) and dislocation-Al6Fe interactions (Orowan strengthening), with notable thermal stability present up until 450°C. Finally, the potential for Al-Fe as a sustainable alloy was studied and a link established between current environmental literature and metallurgy literature on the potential for incorporation of Fe into Al to create a structural alloy.

  6. Metastable bcc phase formation in 3d ferromagnetic transition metal thin films sputter-deposited on GaAs(100) substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minakawa, Shigeyuki, E-mail: s-minakawa@futamoto.elect.chuo-u.ac.jp; Ohtake, Mitsuru; Futamoto, Masaaki

    2015-05-07

    Co{sub 100−x}Fe{sub x} and Ni{sub 100−y}Fe{sub y} (at. %, x = 0–30, y = 0–60) films of 10 nm thickness are prepared on GaAs(100) substrates at room temperature by using a radio-frequency magnetron sputtering system. The detailed growth behavior is investigated by in-situ reflection high-energy electron diffraction. (100)-oriented Co and Ni single-crystals with metastable bcc structure are formed in the early stage of film growth, where the metastable structure is stabilized through hetero-epitaxial growth. With increasing the thickness up to 2 nm, the Co and the Ni films start to transform into more stable hcp and fcc structures through atomic displacements parallel to bcc(110) slide planes,more » respectively. The stability of bcc phase is improved by adding a small volume of Fe atoms into a Co film. The critical thickness of bcc phase formation is thicker than 10 nm for Co{sub 100−x}Fe{sub x} films with x ≥ 10. On the contrary, the stability of bcc phase for Ni-Fe system is less than that for Co-Fe system. The critical thicknesses for Ni{sub 100−y}Fe{sub y} films with y = 20, 40, and 60 are 1, 3, and 5 nm, respectively. The Co{sub 100−x}Fe{sub x} single-crystal films with metastable bcc structure formed on GaAs(100) substrates show in-plane uniaxial magnetic anisotropies with the easy direction along GaAs[011], similar to the case of Fe film epitaxially grown on GaAs(100) substrate. A Co{sub 100−x}Fe{sub x} film with higher Fe content shows a higher saturation magnetization and a lower coercivity.« less

  7. Snoek Relaxation in Fe-Cr Alloys and Interstitial-Substitutional Interaction

    NASA Astrophysics Data System (ADS)

    Golovin, I. S.; Blanter, M. S.; Schaller, R.

    1997-03-01

    The internal friction (IF) spectra of -Fe, Fe-Cr ferritic alloys and Cr have been investigated in a frequency range of 0.01 to 10 Hz. A Snoek-type relaxation was found in all the investigated C doped Fe-Cr alloys, starting from pure Fe and finishing with pure Cr. The temperature location of the Snoek peak (Tmax) in -Fe was found to be 315 K (1 Hz). The activation energy deduced from the T - f shift was 0.81 eV. Tmax in Cr was 433 K with an activation energy of 1.11 eV. The Snoek-type peaks in Fe-Cr alloys are much wider than in pure Fe or pure Cr. The temperature location of the peak versus chromium content curve exhibits a maximum in the vicinity of 35 wt% Cr (Tmax was 573 to 578 K, f 1.2 Hz and the activation energy was about 1.45 eV). It is important that Cr atoms in α-Fe have a more pronounced influence on the temperature location of the peak than Fe atoms have in chromium. A new model based on the atomic interactions is proposed to explain the influence of composition on Snoek peak location. The internal friction has been simulated by a Monte Carlo method, using C-C and C-substitutional atom (s) interaction energies. A model of long-range strain-induced (elastic) interaction supplemented by the chemical interaction in the two nearest coordination shells around an immobile substitutional atom was used for the C-s interaction. The interatomic interaction was supposed to affect IF by changing both the carbon atom arrangement (short-range order) and the energy of C atoms in octahedral interstices, and therefore the activation energy of IF. The peak temperatue calculated coincides well with the experimental ones if the value for the chemical interaction in the first coordination shell (Hchem) for C-Cr in Fe is - 0.15 eV and for C-Fe in Cr +0.15 eV. The difference in the influence of Cr in α-Fe and Fe in Cr is accounted for by a difference in the elastic and chemical interaction both between the carbon atoms and the substitutional atoms. The relaxation process in chromium Fe-based alloys is due to the carbon atom diffusion under stress between octahedral interstices of first and second coordination shells around the Cr atoms, and in Cr-based alloys, between second and third shells around the Fe atoms.

  8. Iron catalyst chemistry in modeling a high-pressure carbon monoxide nanotube reactor

    NASA Technical Reports Server (NTRS)

    Scott, Carl D.; Povitsky, Alexander; Dateo, Christopher; Gokcen, Tahir; Willis, Peter A.; Smalley, Richard E.

    2003-01-01

    The high-pressure carbon monoxide (HiPco) technique for producing single-wall carbon nanotubes (SWNTs) is analyzed with the use of a chemical reaction model coupled with flow properties calculated along streamlines, calculated by the FLUENT code for pure carbon monoxide. Cold iron pentacarbonyl, diluted in CO at about 30 atmospheres, is injected into a conical mixing zone, where hot CO is also introduced via three jets at 30 degrees with respect to the axis. Hot CO decomposes the Fe(CO)5 to release atomic Fe. Then iron nucleates and forms clusters that catalyze the formation of SWNTs by a disproportionation reaction (Boudouard) of CO on Fe-containing clusters. Alternative nucleation rates are estimated from the theory of hard sphere collision dynamics with an activation energy barrier. The rate coefficient for carbon nanotube growth is estimated from activation energies in the literature. The calculated growth was found be about an order of magnitude greater than measured, regardless of the nucleation rate. A study of cluster formation in an incubation zone prior to injection into the reactor shows that direct dimer formation from Fe atoms is not as important as formation via an exchange reaction of Fe with CO in FeCO.

  9. Iron catalyst chemistry in modeling a high-pressure carbon monoxide nanotube reactor.

    PubMed

    Scott, Carl D; Povitsky, Alexander; Dateo, Christopher; Gökçen, Tahir; Willis, Peter A; Smalley, Richard E

    2003-01-01

    The high-pressure carbon monoxide (HiPco) technique for producing single-wall carbon nanotubes (SWNTs) is analyzed with the use of a chemical reaction model coupled with flow properties calculated along streamlines, calculated by the FLUENT code for pure carbon monoxide. Cold iron pentacarbonyl, diluted in CO at about 30 atmospheres, is injected into a conical mixing zone, where hot CO is also introduced via three jets at 30 degrees with respect to the axis. Hot CO decomposes the Fe(CO)5 to release atomic Fe. Then iron nucleates and forms clusters that catalyze the formation of SWNTs by a disproportionation reaction (Boudouard) of CO on Fe-containing clusters. Alternative nucleation rates are estimated from the theory of hard sphere collision dynamics with an activation energy barrier. The rate coefficient for carbon nanotube growth is estimated from activation energies in the literature. The calculated growth was found be about an order of magnitude greater than measured, regardless of the nucleation rate. A study of cluster formation in an incubation zone prior to injection into the reactor shows that direct dimer formation from Fe atoms is not as important as formation via an exchange reaction of Fe with CO in FeCO.

  10. First principle study of the electronic and magnetic properties of a single iron atomic chain encapsulated in boron nitrite nanotubes

    NASA Astrophysics Data System (ADS)

    Fathalian, Ali; Jalilian, Jaafar; Shahidi, Sahar

    2011-11-01

    The electronic and magnetic properties for a single Fe atom chain wrapped in armchair (n,n) boron nitride nanotubes (BNNTs) ( 4≤n≤6) are investigated through the density functional theory. By increasing the nanotube diameter, the magnetic moments, total magnetic moments and spin polarization of Fe@(n,n) systems are increased. We have calculated the majority and minority density of states (DOS) of armchair Fe@(6,6) BNNT. Our results show that the magnetic moment of the system come mostly from the Fe atom chain. The magnetic moment on an Fe atom, the total magnetic moment and spin polarization decrease by increasing the axial separation of the Fe atom chain for the Fe@(6,6) system. The Fe@(6,6) BNNT can be used in the magnetic nanodevices because of higher magnetic moment and spin polarization.

  11. The Iron Project

    NASA Technical Reports Server (NTRS)

    Pradhan, Anil K.

    2000-01-01

    Recent advances in theoretical atomic physics have enabled large-scale calculation of atomic parameters for a variety of atomic processes with high degree of precision. The development and application of these methods is the aim of the Iron Project. At present the primary focus is on collisional processes for all ions of iron, Fe I - FeXXVI, and other iron-peak elements; new work on radiative processes has also been initiated. Varied applications of the Iron Project work to X-ray astronomy are discussed, and more general applications to other spectral ranges are pointed out. The IP work forms the basis for more specialized projects such as the RmaX Project, and the work on photoionization/recombination, and aims to provide a comprehensive and self-consistent set of accurate collisional and radiative cross sections, and transition probabilities, within the framework of relativistic close coupling formulation using the Breit-Pauli R-Matrix method. An illustrative example is presented of how the IP data may be utilized in the formation of X-ray spectra of the K alpha complex at 6.7 keV from He-like Fe XXV.

  12. Ultra-reduced phases in Apollo 16 regolith: Combined field emission electron probe microanalysis and atom probe tomography of submicron Fe-Si grains in Apollo 16 sample 61500

    NASA Astrophysics Data System (ADS)

    Gopon, Phillip; Spicuzza, Michael J.; Kelly, Thomas F.; Reinhard, David; Prosa, Ty J.; Fournelle, John

    2017-09-01

    The lunar regolith contains a variety of chemically reduced phases of interest to planetary scientists and the most common, metallic iron, is generally ascribed to space weathering processes (Lucey et al. ). Reports of silicon metal and iron silicides, phases indicative of extremely reducing conditions, in lunar samples are rare (Anand et al. ; Spicuzza et al. ). Additional examples of Fe-silicides have been identified in a survey of particles from Apollo 16 sample 61501,22. Herein is demonstrated the utility of low keV electron probe microanalysis (EPMA), using the Fe Ll X-ray line, to analyze these submicron phases, and the necessity of accounting for carbon contamination. We document four Fe-Si and Si0 minerals in lunar regolith return material. The new Fe-Si samples have a composition close to (Fe,Ni)3Si, whereas those associated with Si0 are close to FeSi2 and Fe3Si7. Atom probe tomography of (Fe,Ni)3Si shows trace levels of C (60 ppma and nanodomains enriched in C, Ni, P, Cr, and Sr). These reduced minerals require orders of magnitude lower oxygen fugacity and more reducing conditions than required to form Fe0. Documenting the similarities and differences in these samples is important to constrain their formation processes. These phases potentially formed at high temperatures resulting from a meteorite impact. Whether carbon played a role in achieving the lower oxygen fugacities—and there is evidence of nearby carbonaceous chondritic material—it remains to be proven that carbon was the necessary component for the unique existence of these Si0 and iron silicide minerals.

  13. Spectroscopic and Computational Investigation of Iron(III) Cysteine Dioxygenase: Implications for the Nature of the Putative Superoxo-Fe(III) Intermediate

    PubMed Central

    2015-01-01

    Cysteine dioxygenase (CDO) is a mononuclear, non-heme iron-dependent enzyme that converts exogenous cysteine (Cys) to cysteine sulfinic acid using molecular oxygen. Although the complete catalytic mechanism is not yet known, several recent reports presented evidence for an Fe(III)-superoxo reaction intermediate. In this work, we have utilized spectroscopic and computational methods to investigate the as-isolated forms of CDO, as well as Cys-bound Fe(III)CDO, both in the absence and presence of azide (a mimic of superoxide). An analysis of our electronic absorption, magnetic circular dichroism, and electron paramagnetic resonance data of the azide-treated as-isolated forms of CDO within the framework of density functional theory (DFT) computations reveals that azide coordinates directly to the Fe(III), but not the Fe(II) center. An analogous analysis carried out for Cys-Fe(III)CDO provides compelling evidence that at physiological pH, the iron center is six coordinate, with hydroxide occupying the sixth coordination site. Upon incubation of this species with azide, the majority of the active sites retain hydroxide at the iron center. Nonetheless, a modest perturbation of the electronic structure of the Fe(III) center is observed, indicating that azide ions bind near the active site. Additionally, for a small fraction of active sites, azide displaces hydroxide and coordinates directly to the Cys-bound Fe(III) center to generate a low-spin (S = 1/2) Fe(III) complex. In the DFT-optimized structure of this complex, the central nitrogen atom of the azide moiety lies within 3.12 Å of the cysteine sulfur. A similar orientation of the superoxide ligand in the putative Fe(III)-superoxo reaction intermediate would promote the attack of the distal oxygen atom on the sulfur of substrate Cys. PMID:25093959

  14. Structural Investigation of the (010) Surface of the Al13Fe4 Catalyst

    NASA Astrophysics Data System (ADS)

    Ledieu, J.; Gaudry, É.; Loli, L. N. Serkovic; Villaseca, S. Alarcón; de Weerd, M.-C.; Hahne, M.; Gille, P.; Grin, Y.; Dubois, J.-M.; Fournée, V.

    2013-02-01

    We have investigated the structure of the Al13Fe4(010) surface using both experimental and ab initio computational methods. The results indicate that the topmost surface layers correspond to incomplete puckered (P) planes present in the bulk crystal structure. The main building block of the corrugated termination consists of two adjacent pentagons of Al atoms, each centered by a protruding Fe atom. These motifs are interconnected via additional Al atoms referred to as “glue” atoms which partially desorb above 873 K. The surface structure of lower atomic density compared to the bulk P plane is explained by a strong Fe-Al-Fe covalent polar interaction that preserves intact clusters at the surface. The proposed surface model with identified Fe-containing atomic ensembles could explain the Al13Fe4 catalytic properties recently reported in line with the site-isolation concept [M. Armbrüster , Nat. Mater. 11, 690 (2012)NMAACR1476-1122].

  15. Site occupancy of interstitial deuterium atoms in face-centred cubic iron

    PubMed Central

    Machida, Akihiko; Saitoh, Hiroyuki; Sugimoto, Hidehiko; Hattori, Takanori; Sano-Furukawa, Asami; Endo, Naruki; Katayama, Yoshinori; Iizuka, Riko; Sato, Toyoto; Matsuo, Motoaki; Orimo, Shin-ichi; Aoki, Katsutoshi

    2014-01-01

    Hydrogen composition and occupation state provide basic information for understanding various properties of the metal–hydrogen system, ranging from microscopic properties such as hydrogen diffusion to macroscopic properties such as phase stability. Here the deuterization process of face-centred cubic Fe to form solid-solution face-centred cubic FeDx is investigated using in situ neutron diffraction at high temperature and pressure. In a completely deuterized specimen at 988 K and 6.3 GPa, deuterium atoms occupy octahedral and tetrahedral interstitial sites with an occupancy of 0.532(9) and 0.056(5), respectively, giving a deuterium composition x of 0.64(1). During deuterization, the metal lattice expands approximately linearly with deuterium composition at a rate of 2.21 Å3 per deuterium atom. The minor occupation of the tetrahedral site is thermally driven by the intersite movement of deuterium atoms along the ‹111› direction in the face-centred cubic metal lattice. PMID:25256789

  16. The role of rare-earth dopants in tailoring the magnetism and magnetic anisotropy in Fe4N

    NASA Astrophysics Data System (ADS)

    Li, Zirun; Mi, Wenbo; Bai, Haili

    2018-05-01

    The magnetism and magnetic anisotropy of the rare-earth (RE) atom-substituted Fe4N are investigated by first-principles calculations. It is found that the substitution of one RE atom results in an antiferromagnetic coupling with the Fe atoms. The 4f-3d exchange interaction has an important influence on the density of states of Fe near the Fermi level. PrFe3N and NdFe3N with a tetragonal structure exhibit giant magnetic anisotropy energy larger than 5 meV/atom. The magnetic anisotropy depends on the distribution of partial states of d or f orbital near the Fermi level. As Eu substitutes Fe in Fe4N, the magnetic moment of Eu3FeN even exceeds 23 μB. Our theoretical predictions point out the possibilities of tuning the magnetism and magnetic anisotropy of Fe4N upon RE doping.

  17. Size-dependent quantum diffusion of Gd atoms within Fe nano-corrals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, J.; Cao, R. X.; Miao, B. F.

    2013-12-01

    We systematically studied the size-dependent quantum diffusion of Gd atoms within Fe circular quantum corrals on Ag(111). By varying the size of the quantum corrals, different types of patterns are observed inside the corrals, including a single dot and circular orbits for the diffusion of Gd adatoms. In addition, the motion of the adatoms also forms circular-like orbits outside the corral. Via quantitative analysis, we confirm that the regions with adatoms' high visiting probability are consistent with the positions of the local electronic density-of-states maxima, both inside and outside the corrals within a < 0.2 nm offset. The results agreemore » well with kinetic Monte Carlo simulations that utilize the experimentally determined interaction between Gd and Fe circular corrals. These findings demonstrate that one can engineer adatom motion by controlling the size of the quantum corrals.« less

  18. Cubic martensite in high carbon steel

    NASA Astrophysics Data System (ADS)

    Chen, Yulin; Xiao, Wenlong; Jiao, Kun; Ping, Dehai; Xu, Huibin; Zhao, Xinqing; Wang, Yunzhi

    2018-05-01

    A distinguished structural characteristic of martensite in Fe-C steels is its tetragonality originating from carbon atoms occupying only one set of the three available octahedral interstitial sites in the body-centered-cubic (bcc) Fe lattice. Such a body-centered-tetragonal (bct) structure is believed to be thermodynamically stable because of elastic interactions between the interstitial carbon atoms. For such phase stability, however, there has been a lack of direct experimental evidence despite extensive studies of phase transformations in steels over one century. In this Rapid Communication, we report that the martensite formed in a high carbon Fe-8Ni-1.26C (wt%) steel at room temperature induced by applied stress/strain has actually a bcc rather than a bct crystal structure. This finding not only challenges the existing theories on the stability of bcc vs bct martensite in high carbon steels, but also provides insights into the mechanism for martensitic transformation in ferrous alloys.

  19. Density functional theory calculations on transition metal atoms adsorbed on graphene monolayers

    NASA Astrophysics Data System (ADS)

    Dimakis, Nicholas; Flor, Fernando Antonio; Salgado, Andres; Adjibi, Kolade; Vargas, Sarah; Saenz, Justin

    2017-11-01

    Transition metal atom adsorption on graphene monolayers has been elucidated using periodic density functional theory under hybrid and generalized gradient approximation functionals. More specifically, we examined the adsorption of Cu, Fe, Zn, Ru, and Os on graphene monolayers by calculating, among others, the electronic density-of-states spectra of the adatom-graphene system and the overlap populations of the adatom with the nearest adsorbing graphene carbon atoms. These calculations reveal that Cu form primarily covalent bonds with graphene atoms via strong hybridization between the adatom orbitals and the sp band of the graphene substrate, whereas the interaction of the Ru and Os with graphene also contain ionic parts. Although the interaction of Fe with graphene atoms is mostly covalent, some charge transfer to graphene is also observed. The interaction of Zn with graphene is weak. Mulliken population analysis and charge contour maps are used to elucidate charge transfers between the adatom and the substrate. The adsorption strength is correlated with the metal adsorption energy and the height of the metal adatom from the graphene plane for the geometrically optimized adatom-graphene system. Our analysis shows that show that metal adsorption strength follows the adatom trend Ru ≈ Os > Fe > Cu > Zn, as verified by corresponding changes in the adsorption energies. The increased metal-carbon orbital overlap for the Ru relative to Os adatom is attributed to hybridization defects.

  20. Physical properties of FePt nanocomposite doped with Ag atoms: First-principles study

    NASA Astrophysics Data System (ADS)

    Jia, Yong-Fei; Shu, Xiao-Lin; Xie, Yong; Chen, Zi-Yu

    2014-07-01

    L10 FePt nanocomposite with high magnetocrystalline anisotropy energy has been extensively investigated in the fields of ultra-high density magnetic recording media. However, the order—disorder transition temperature of the nanocomposite is higher than 600 °C, which is a disadvantage for the use of the material due to the sustained growth of FePt grain under the temperature. To address the problem, addition of Ag atoms has been proposed, but the magnetic properties of the doped system are still unclear so far. Here in this paper, we use first-principles method to study the lattice parameters, formation energy, electronic structure, atomic magnetic moment and order—disorder transition temperature of L10 FePt with Ag atom doping. The results show that the formation energy of a Ag atom substituting for a Pt site is 1.309 eV, which is lower than that of substituting for an Fe site 1.346 eV. The formation energy of substituting for the two nearest Pt sites is 2.560 eV lower than that of substituting for the further sites 2.621 eV, which indicates that Ag dopants tend to segregate L10 FePt. The special quasirandom structures (SQSs) for the pure FePt and the FePt doped with two Ag atoms at the stable Pt sites show that the order—disorder transition temperatures are 1377 °C and 600 °C, respectively, suggesting that the transition temperature can be reduced with Ag atom, and therefore the FePt grain growth is suppressed. The saturation magnetizations of the pure FePt and the two Ag atoms doped FePt are 1083 emu/cc and 1062 emu/cc, respectively, indicating that the magnetic property of the doped system is almost unchanged.

  1. Trivalent Actinide Uptake by Iron (Hydr)oxides.

    PubMed

    Finck, Nicolas; Nedel, Sorin; Dideriksen, Knud; Schlegel, Michel L

    2016-10-04

    The retention of Am(III) by coprecipitation with or adsorption onto preformed magnetite was investigated by X-ray diffraction (XRD), solution chemistry, and X-ray absorption spectroscopy (XAS). In the coprecipitation experiment, XAS data indicated the presence of seven O atoms at 2.44(1) Å, and can be explained by an Am incorporation at Fe structural sites at the magnetite surface. Next-nearest Fe were detected at distances suggesting that Am and Fe polyhedra share corners in geometries ranging from bent to close to linear Am-O-Fe bonds. After aging for two years, the coordination number and the distance to the first O shell significantly decreased, and atomic shells were detected at higher distances. These data suggest a structural reorganization and an increase in structural order around sorbed Am. Upon contact with preformed Fe 3 O 4 , Am(III) forms surface complexes with cosorbed Fe at the surface of magnetite, a possible consequence of the high concentration of dissolved Fe. In a separate experiment, chloride green rust (GR) was synthesized in the presence of Am(III), and subsequently converted to Fe(OH) 2 (s) intermixed with magnetite. XAS data indicated that the actinide is successively located first at octahedral brucite-like sites in the GR precursor, then in Fe(OH) 2 (s), an environment markedly distinct from that of Am(III) in Fe 3 O 4 . The findings indicate that the magnetite formation pathway dictates the magnitude of Am(III) incorporation within this solid.

  2. Direct quantitative identification of the “surface trans-effect”

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deimel, Peter S.; Bababrik, Reda M.; Wang, Bin

    The strong parallels between coordination chemistry and adsorption on metal surfaces, with molecules and ligands forming local bonds to individual atoms within a metal surface, have been established over many years of study. The recently proposed “surface trans-effect” (STE) appears to be a further manifestation of this analogous behaviour, but so far the true nature of the modified molecule–metal surface bonding has been unclear. The STE could play an important role in determining the reactivities of surface-supported metal–organic complexes, influencing the design of systems for future applications. However, the current understanding of this effect is incomplete and lacks reliable structuralmore » parameters with which to benchmark theoretical calculations. Using X-ray standing waves, we demonstrate that ligation of ammonia and water to iron phthalocyanine (FePc) on Ag(111) increases the adsorption height of the central Fe atom; dispersion corrected density functional theory calculations accurately model this structural effect. The calculated charge redistribution in the FePc/H 2O electronic structure induced by adsorption shows an accumulation of charge along the σ-bonding direction between the surface, the Fe atom and the water molecule, similar to the redistribution caused by ammonia. Finally, this apparent σ-donor nature of the observed STE on Ag(111) is shown to involve bonding to the delocalised metal surface electrons rather than local bonding to one or more surface atoms, thus indicating that this is a true surface trans-effect.« less

  3. Direct quantitative identification of the “surface trans-effect”

    DOE PAGES

    Deimel, Peter S.; Bababrik, Reda M.; Wang, Bin; ...

    2016-06-09

    The strong parallels between coordination chemistry and adsorption on metal surfaces, with molecules and ligands forming local bonds to individual atoms within a metal surface, have been established over many years of study. The recently proposed “surface trans-effect” (STE) appears to be a further manifestation of this analogous behaviour, but so far the true nature of the modified molecule–metal surface bonding has been unclear. The STE could play an important role in determining the reactivities of surface-supported metal–organic complexes, influencing the design of systems for future applications. However, the current understanding of this effect is incomplete and lacks reliable structuralmore » parameters with which to benchmark theoretical calculations. Using X-ray standing waves, we demonstrate that ligation of ammonia and water to iron phthalocyanine (FePc) on Ag(111) increases the adsorption height of the central Fe atom; dispersion corrected density functional theory calculations accurately model this structural effect. The calculated charge redistribution in the FePc/H 2O electronic structure induced by adsorption shows an accumulation of charge along the σ-bonding direction between the surface, the Fe atom and the water molecule, similar to the redistribution caused by ammonia. Finally, this apparent σ-donor nature of the observed STE on Ag(111) is shown to involve bonding to the delocalised metal surface electrons rather than local bonding to one or more surface atoms, thus indicating that this is a true surface trans-effect.« less

  4. Approach to magnetic neutron capture therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuznetsov, Anatoly A.; Podoynitsyn, Sergey N.; Filippov, Victor I.

    2005-11-01

    Purpose: The method of magnetic neutron capture therapy can be described as a combination of two methods: magnetic localization of drugs using magnetically targeted carriers and neutron capture therapy itself. Methods and Materials: In this work, we produced and tested two types of particles for such therapy. Composite ultradispersed ferro-carbon (Fe-C) and iron-boron (Fe-B) particles were formed from vapors of respective materials. Results: Two-component ultradispersed particles, containing Fe and C, were tested as magnetic adsorbent of L-boronophenylalanine and borax and were shown that borax sorption could be effective for creation of high concentration of boron atoms in the area ofmore » tumor. Kinetics of boron release into the physiologic solution demonstrate that ultradispersed Fe-B (10%) could be applied for an effective magnetic neutron capture therapy. Conclusion: Both types of the particles have high magnetization and magnetic homogeneity, allow to form stable magnetic suspensions, and have low toxicity.« less

  5. Observations of the minor species Al and Fe in Mercury's exosphere

    NASA Astrophysics Data System (ADS)

    Bida, Thomas A.; Killen, Rosemary M.

    2017-06-01

    We report here on the first observational evidence of Al and Fe in the exosphere of Mercury, based on measurements of resolved emission lines of these metals with Keck-1/HIRES. Al emission was observed on two separate runs, in 2008 and 2013, with tangent column densities of 3.1 ± 1.0 and 4.0 ± 1.5 × 107 Al atoms cm-2 at altitudes of 1185 and 1870 km (1.5 and 1.75 RM). The Al radiative intensity was seen to increase where the slit crossed the planetary penumbral shadow, and then decrease monotonically with altitude. Fe emission has been observed once, in 2009, indicating an extended source. We also present observed 3-σ Ca+ upper limits near Mercury's equatorial anti-solar limb, from which an abundance limit of 4.0 × 106 cm-2 at 1650 km altitude is derived for the Ca ion. A simple model for zenith column abundances of the neutral species yields 1.9-5.2 × 107 Al cm-2, and 8.2 × 108 Fe cm-2. The observations appear to be consistent with production of these species by impact vaporization, with a large fraction of the Al ejecta in molecular form, and that for Fe in mixed atomic and molecular forms. The scale height of the Al gas is consistent with a kinetic temperature of 6100-8000 K. The apparent high temperature and low density of the Al gas would suggest that it may be produced by dissociation of molecules.

  6. Cobalt and iron segregation and nitride formation from nitrogen plasma treatment of CoFeB surfaces

    NASA Astrophysics Data System (ADS)

    Mattson, E. C.; Michalak, D. J.; Veyan, J. F.; Chabal, Y. J.

    2017-02-01

    Cobalt-iron-boron (CoFeB) thin films are the industry standard for ferromagnetic layers in magnetic tunnel junction devices and are closely related to the relevant surfaces of CoFe-based catalysts. Identifying and understanding the composition of their surfaces under relevant processing conditions is therefore critical. Here we report fundamental studies on the interaction of nitrogen plasma with CoFeB surfaces using infrared spectroscopy, x-ray photoemission spectroscopy, and low energy ion scattering. We find that, upon exposure to nitrogen plasma, clean CoFeB surfaces spontaneously reorganize to form an overlayer comprised of Fe2N3 and BN, with the Co atoms moved well below the surface through a chemically driven process. Subsequent annealing to 400 °C removes nitrogen, resulting in a Fe-rich termination of the surface region.

  7. Modelling and Microstructural Characterization of Sintered Metallic Porous Materials

    PubMed Central

    Depczynski, Wojciech; Kazala, Robert; Ludwinek, Krzysztof; Jedynak, Katarzyna

    2016-01-01

    This paper presents selected characteristics of the metallic porous materials produced by the sintering of metal powders. The authors focus on materials produced from the iron powder (Fe) of ASC 100.29 and Distaloy SE. ASC 100.29 is formed by atomization and has a characteristic morphology. It consists of spherical particles of different sizes forming agglomerates. Distaloy SE is also based on the sponge-iron. The porous material is prepared using the patented method of sintering the mixture of iron powder ASC 100.29, Fe(III) oxide, Distaloy SE and Fe(III) oxide in the reducing atmosphere of dissociated ammonia. As a result, the materials with open pores of micrometer sizes are obtained. The pores are formed between iron particles bonded by diffusion bridges. The modelling of porous materials containing diffusion bridges that allows for three-dimensional (3D) imaging is presented. PMID:28773690

  8. Matrix Infrared Spectra of Manganese and Iron Isocyanide Complexes.

    PubMed

    Chen, Xiuting; Li, Qingnuan; Andrews, Lester; Gong, Yu

    2017-11-22

    Mono and diisocyanide complexes of manganese and iron were prepared via the reactions of laser-ablated manganese and iron atoms with (CN) 2 in an argon matrix. Product identifications were performed based on the characteristic infrared absorptions from isotopically labeled (CN) 2 experiments as compared with computed values for both cyanides and isocyanides. Manganese atoms reacted with (CN) 2 to produce Mn(NC) 2 upon λ > 220 nm irradiation, during which MnNC was formed mainly as a result of the photoinduced decomposition of Mn(NC) 2 . Similar reaction products FeNC and Fe(NC) 2 were formed during the reactions of Fe and (CN) 2 . All the product molecules together with the unobserved cyanide isomers were predicted to have linear geometries at the B3LYP level of theory. The cyanide complexes of manganese and iron were computed to be more stable than the isocyanide isomers with energy differences between 0.4 and 4 kcal/mol at the CCSD(T) level. Although manganese and iron cyanide molecules are slightly more stable according to the theory, no absorption can be assigned to these isomers in the region above the isocyanides possibly due to their low infrared intensities.

  9. Atom probe study of B2 order and A2 disorder of the FeCo matrix in an Fe-Co-Mo-alloy.

    PubMed

    Turk, C; Leitner, H; Schemmel, I; Clemens, H; Primig, S

    2017-07-01

    The physical and mechanical properties of intermetallic alloys can be tailored by controlling the degree of order of the solid solution by means of heat treatments. FeCo alloys with an appropriate composition exhibit an A2-disorder↔B2-order transition during continuous cooling from the disordered bcc region. The study of atomic order in intermetallic alloys by diffraction and its influence on the material properties is well established, however, investigating magnetic FeCo-based alloys by conventional methods such as X-ray diffraction is quite challenging. Thus, the imaging of ordered FeCo-nanostructures needs to be done with high resolution techniques. Transmission electron microscopy investigations of ordered FeCo domains are difficult, due to the chemical and physical similarity of Fe and Co atoms and the ferromagnetism of the samples. In this work it will be demonstrated, that the local atomic arrangement of ordered and disordered regions in an industrial Fe-Co-Mo alloy can be successfully imaged by atom probe measurements supported by field ion microscopy and transmission Kikuchi diffraction. Furthermore, a thorough atom probe parameter study will be presented and field evaporation artefacts as a function of crystallographic orientation in Fe-Co-samples will be discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. DFT+U Study of Chemical Impurities in PuO 2

    DOE PAGES

    Hernandez, Sarah C.; Holby, Edward F.

    2016-05-24

    In this paper, we employ density functional theory to explore the effects of impurities in the fluorite crystal structure of PuO 2. The impurities that were considered are known impurities that exist in metallic δ-phase Pu, including H, C, Fe, and Ga. These impurities were placed at various high-symmetry sites within the PuO 2 structure including an octahedral interstitial site, an interstitial site with coordination to two neighboring O atoms, an O substitutional site, and a Pu substitutional site. Incorporation energies were calculated to be energetically unfavorable for all sites except the Pu substitutional site. When impurities were placed inmore » a Pu substitutional site, complexes incorporating the impurities and O formed within the PuO 2 structure. The observed defect-oxygen structures were OH, CO 3, FeO 5, and GaO 3. The presence of these defects led to distortion of the surrounding O atoms within the structure, producing long-range disorder of O atoms. In contrast, perturbations of Pu atoms had a relatively short-range effect on the relaxed structures. These effects are demonstrated via radial distribution functions for O and Pu vacancies. Calculated electronic structure revealed hybridization of the impurity atom with the O valence states and a relative decrease in the Pu 5f states. Minor differences in band gaps were observed for the defected PuO 2 structures containing H, C, and Ga. Finally, Fe-containing structures, however, were calculated to have a significantly decreased band gap, where the implementation of a Hubbard U parameter on the Fe 3d orbitals will maintain the calculated PuO 2 band gap.« less

  11. First-principles study of the stability, magnetic and electronic properties of Fe and Co monoatomic chains encapsulated into copper nanotube

    NASA Astrophysics Data System (ADS)

    Ma, Liang-Cai; Ma, Ling; Zhang, Jian-Min

    2017-07-01

    By using first-principles calculations based on density-functional theory, the stability, magnetic and electronic properties of Fe and Co monoatomic chains encapsulated into copper nanotube are systematically investigated. The binding energies of the hybrid structures are remarkably higher than those of corresponding freestanding TM chains, indicating the TM chains are significantly stabilized after encapsulating into copper nanotube. The formed bonds between outer Cu and inner TM atoms show some degree of covalent bonding character. The magnetic ground states of Fe@CuNW and Co@CuNW hybrid structures are ferromagnetic, and both spin and orbital magnetic moments of inner TM atoms have been calculated. The magnetocrystalline anisotropy energies (MAE) of the hybrid structures are enhanced by nearly fourfold compared to those of corresponding freestanding TM chains, indicating that the hybrid structures can be used in ultrahigh density magnetic storage. Furthermore, the easy magnetization axis switches from that along the axis in freestanding Fe chain to that perpendicular to the axis in Fe@CuNT hybrid structure. The large spin polarization at the Fermi level also makes the hybrid systems interesting as good potential materials for spintronic devices.

  12. Ab initio studies on the adsorption and implantation of Al and Fe to nitride materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riedl, H., E-mail: helmut.riedl@tuwien.ac.at; Zálešák, J.; Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, A-8700 Leoben

    2015-09-28

    The formation of transfer material products on coated cutting and forming tools is a major failure mechanism leading to various sorts of wear. To describe the atomistic processes behind the formation of transfer materials, we use ab initio to study the adsorption energy as well as the implantation barrier of Al and Fe atoms for (001)-oriented surfaces of TiN, Ti{sub 0.50}Al{sub 0.50}N, Ti{sub 0.90}Si{sub 0.10}N, CrN, and Cr{sub 0.90}Si{sub 0.10}N. The interactions between additional atoms and nitride-surfaces are described for pure adhesion, considering no additional stresses, and for the implantation barrier. The latter, we simplified to the stress required tomore » implant Al and Fe into sub-surface regions of the nitride material. The adsorption energies exhibit pronounced extrema at high-symmetry positions and are generally highest at nitrogen sites. Here, the binary nitrides are comparable to their ternary counterparts and the average adhesive energy is higher (more negative) on CrN than TiN based systems. Contrary, the implantation barrier for Al and Fe atoms is higher for the ternary systems Ti{sub 0.50}Al{sub 0.50}N, Ti{sub 0.90}Si{sub 0.10}N, and Cr{sub 0.90}Si{sub 0.10}N than for their binary counterparts TiN and CrN. Based on our results, we can conclude that TiN based systems outperform CrN based systems with respect to pure adhesion, while the Si-containing ternaries exhibit higher implantation barriers for Al and Fe atoms. The data obtained are important to understand the atomistic interaction of metal atoms with nitride-based materials, which is valid not just for machining operations but also for any combination such as interfaces between coatings and substrates or multilayer and phase arrangements themselves.« less

  13. Vertical Alignment of Single-Walled Carbon Nanotubes on Nanostructure Fabricated by Atomic Force Microscope

    DTIC Science & Technology

    2009-12-16

    decreased by iron sintering into the Si substrate and forming metal silicide [26, 27]. To avoid the iron sintering into the Si substrate, we deposited... metal catalysts onto the Si substrate selectively by lithographic lift-off, soft lithography, offset printing, or micro-contact printing (µCP). The...Experiment 1. Preparation of Fe-Mo catalyst solution An Fe-Mo bimetallic catalyst solution was prepared by ultrasonication for 30 min using an

  14. CO adsorption on small Au{sub n} (n = 1–4) structures supported on hematite. II. Adsorption on the O-rich termination of α-Fe{sub 2}O{sub 3}(0001) surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pabisiak, Tomasz; Kiejna, Adam, E-mail: kiejna@ifd.uni.wroc.pl; Winiarski, Maciej J.

    2016-01-28

    The adsorption of small Au{sub n} (n = 1–4) nanostructures on oxygen terminated α-Fe{sub 2}O{sub 3}(0001) surface was investigated using density functional theory in the generalized gradient approximation of Perdew-Burke-Ernzerhof (PBE) form with Hubbard correction U, accounting for strong electron correlations (PBE+U). The structural, energetic, and electronic properties were examined for two classes of the adsorbed Au{sub n} nanostructures with vertical and flattened configurations. Similarly to the Fe-terminated α-Fe{sub 2}O{sub 3}(0001) surface considered in Part I, the flattened configurations were found energetically more favored than vertical ones. The binding of Au{sub n} to the O-terminated surface is much stronger thanmore » to the Fe-termination. The adsorption bonding energy of Au{sub n} and the work function of the Au{sub n}/α-Fe{sub 2}O{sub 3}(0001) systems decrease with the increased number of Au atoms in a structure. All of the adsorbed Au{sub n} structures are positively charged. The bonding of CO molecules to the Au{sub n} structures is distinctly stronger than on the Fe-terminated surface; however, it is weaker than the binding to the bare O-terminated surface. The CO molecule binds to the Au{sub n}/α-Fe{sub 2}O{sub 3}(0001) system through a peripheral Au atom partly detached from the Au{sub n} structure. The results of this work indicate that the most energetically favored sites for adsorption of a CO molecule on the Au{sub n}/α-Fe{sub 2}O{sub 3}(0001) systems are atoms in the Au{sup 0.5+} oxidation state.« less

  15. Bacterially-mediated precipitation of ferric iron during the leaching of basaltic rocks

    NASA Astrophysics Data System (ADS)

    Schnittker, K.; Navarrete, J. U.; Cappelle, I. J.; Borrok, D. M.

    2011-12-01

    The bacterially-mediated oxidation of ferrous [Fe(II)] iron in environments where its oxidation is otherwise unfavorable (i.e., acidic and/or anaerobic conditions) results in the formation of ferric iron [Fe(III)] precipitates. The mineralogy and morphologies of these precipitates are dictated by solution biochemistry. In this study, we evaluated Fe(III) precipitates that formed during aerobic bioleaching experiments with Acidithiobacillus ferrooxidans and ilmenite (FeTiO3) and Lunar or Martian basaltic stimulant rocks. Growth media was supplied to support the bacteria; however, all the Fe(II) for chemical energy was supplied by the mineral or rock. During the experiments, the bacteria actively oxidized Fe(II) to Fe(III), resulting in the formation of white and yellow-colored precipitates. In our initial experiments with both ilmentite and basalt, High-Resolution Scanning Electron Microscopic (HRSEM) analysis indicated that the precipitates where small (diameters were less than 5μm and mostly nanometer-scaled), white, and exhibited a platy texture. Networks of mineralized bacterial biofilm were also abundant. In these cases the white precipitates coated the bacteria, forming rod-shaped minerals 5-10μm long by about 1μm in diameter. Many of the rod-shaped minerals formed elongated chains. Energy Dispersive Spectra (EDS) analysis showed that the precipitates were largely composed of Fe and phosphorous (P) with an atomic Fe:P ratio of ˜1. Limited sulfur (S) was also identified as part of the agglomerated precipitates with an atomic Fe:S ratio that ranged from 5 to 10. Phosphorous and S were introduced into the system in considerable amounts as part of the growth media. Additional experiments were performed where we altered the growth media to lower the amount of available P by an order of magnitude. In this case, the experimental behavior remained the same, but the precipitates were more yellow or orange in color relative to those in the experiments using the original growth media. HRSEM/EDS analysis confirmed the presence of minerals with much higher Fe:P ratios (˜2) and much smaller Fe:S ratios (˜0.15). This suggests that the change in growth media chemistry was reflected in precipitates that were rich in S and poorer in P. X-ray diffraction analysis of these precipitates is currently underway. Our results have implications for the interpretation of solution chemistries and precipitation mechanisms associated with biologically-mediated Fe(III)-minerals on Earth, but might also provide insights into possible biosignatures in extraterrestrial systems.

  16. Study on Emission Spectral Lines of Iron, Fe in Laser-Induced Breakdown Spectroscopy (LIBS) on Soil Samples

    NASA Astrophysics Data System (ADS)

    Idris, Nasrullah; Lahna, Kurnia; Fadhli; Ramli, Muliadi

    2017-05-01

    In this work, LIBS technique has been used for detection of heavy metal especially iron, Fe in soil sample. As there are a large number of emission spectral lines due to Fe and other constituents in soil, this study is intended to identify emission spectral lines of Fe and finally to find best fit emission spectral lines for carrying out a qualitative and quantitative analysis. LIBS apparatus used in this work consists of a laser system (Neodymium Yttrium Aluminum Garnet, Nd-YAG: Quanta Ray; LAB SERIES; 1,064 nm; 500 mJ; 8 ns) and an optical multichannel analyzer (OMA) system consisting of a spectrograph (McPherson model 2061; 1,000 mm focal length; f/8.6 Czerny- Turner) and an intensified charge coupled device (ICCD) 1024x256 pixels (Andor I*Star). The soil sample was collected from Banda Aceh city, Aceh, Indonesia. For spectral data acquisition, the soil sample has been prepared by a pressing machine in the form of pellet. The laser beam was focused using a high density lens (f=+150 mm) and irradiated on the surface of the pellet for generating luminous plasma under 1 atmosphere of air surrounding. The plasma emission was collected by an optical fiber and then sent to the optical multichannel analyzer (OMA) system for acquisition of the emission spectra. It was found that there are many Fe emission lines both atomic lines (Fe I) and ionic lines (Fe II) appeared in all detection windows in the wavelength regions, ranging from 200 nm to 1000 nm. The emission lines of Fe with strong intensities occurs together with emission lines due to other atoms such as Mg, Ca, and Si. Thus, the identification of emission lines from Fe is complicated by presence of many other lines due to other major and minor elements in soil. Considering the features of the detected emission lines, several emission spectral lines of Fe I (atomic emission line), especially Fe I 404.58 nm occurring at visible range are potential to be good candidate of analytical lines in relation to detection heavy metal pollution, Fe, in soil sample.

  17. Computational thermodynamics aided design of novel ferritic alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ying; Chen, Tianyi; Tan, Lizhen

    With the aid of computational thermodynamics, Ni was identified to suppress the liquidus temperature of Fe 2Zr and four Fe-Cr-Ni-Zr alloys were designed to study the Ni effect on the phase stability of Fe 2Zr laves_phase. These alloys were fabricated through traditional arc-metling, followed by annealing at 1000 C for 336 hours and 700 C for 1275 hours. The microstructure were examined and characterized by SEM BSE image, EDS compositional mapping and point scan, XRD and TEM analysis. The major results were summarized below: 1)For investigated alloys with 12wt% Cr, 3~6wt% Zr and 3~9 wt%Ni, the phases in equilibrium withmore » the BCC phase are C15_Laves phase, Fe 23Zr 6 phase. The volume fraction of intermetallic phases increases with Ni and Zr contents. 2)Instead of (Fe,Cr) 2Zr C14_Laves phase, Ni stabilizes the C15_Laves structure in Fe-Cr-Ni-Zr alloys by substituting Fe and Cr atoms with Ni atoms in the first sublattice. 3)Fe 23Zr 6, that is metastable in the Fe-Cr-Zr ternary, is also stabilized by Ni addition. 4)Ni 7Zr 2 phase was observed in samples with high Ni/Zr ratio. Extensive solubility of Fe was identified in the phase. The microstructural and composition results obtained from this study will be incorportated into the the Fe-Cr-Ni-Zr database. The current samples will be subjected to ion irradiaition to be compared with those results for Fe-Cr-Zr alloys. Additional alloys will be designed to form (Fe,Cr,Ni) 2Zr nanoprecipitates for further studies.« less

  18. The chemical phenol extraction of intermetallic particles from casting AlSi5Cu1Mg alloy.

    PubMed

    Mrówka-Nowotnik, G; Sieniawski, J; Nowotnik, A

    2010-03-01

    This paper presents a chemical extraction technique for determination of intermetallic phases formed in the casting AlSi5Cu1Mg aluminium alloy. Commercial aluminium alloys contain a wide range of intermetallic particles that are formed during casting, homogenization and thermomechanical processing. During solidification, particles of intermetallics are dispersed in interdendritic spaces as fine primary phases. Coarse intermetallic compounds that are formed in this aluminium alloy are characterized by unique atomic arrangement (crystallographic structure), morphology, stability, physical and mechanical properties. The volume fraction, chemistry and morphology of the intermetallics significantly affect properties and material behaviour during thermomechanical processing. Therefore, accurate determination of intermetallics is essential to understand and control microstructural evolution in Al alloys. Thus, in this paper it is shown that chemical phenol extraction method can be applied for precise qualitative evaluation. The results of optical light microscopy LOM, scanning electron microscopy SEM and X-ray diffraction XRD analysis reveal that as-cast AlSi5Cu1Mg alloy contains a wide range of intermetallic phases such as Al(4)Fe, gamma- Al(3)FeSi, alpha-Al(8)Fe(2)Si, beta-Al(5)FeSi, Al(12)FeMnSi.

  19. Development and validation of spectrophotometric, atomic absorption and kinetic methods for determination of moxifloxacin hydrochloride.

    PubMed

    Abdellaziz, Lobna M; Hosny, Mervat M

    2011-01-01

    Three simple spectrophotometric and atomic absorption spectrometric methods are developed and validated for the determination of moxifloxacin HCl in pure form and in pharmaceutical formulations. Method (A) is a kinetic method based on the oxidation of moxifloxacin HCl by Fe(3+) ion in the presence of 1,10 o-phenanthroline (o-phen). Method (B) describes spectrophotometric procedures for determination of moxifloxacin HCl based on its ability to reduce Fe (III) to Fe (II), which was rapidly converted to the corresponding stable coloured complex after reacting with 2,2' bipyridyl (bipy). The formation of the tris-complex formed in both methods (A) and (B) were carefully studied and their absorbance were measured at 510 and 520 nm respectively. Method (C) is based on the formation of ion- pair associated between the drug and bismuth (III) tetraiodide in acidic medium to form orange-red ion-pair associates. This associate can be quantitatively determined by three different procedures. The formed precipitate is either filtered off, dissolved in acetone and quantified spectrophotometrically at 462 nm (Procedure 1), or decomposed by hydrochloric acid, and the bismuth content is determined by direct atomic absorption spectrometric (Procedure 2). Also the residual unreacted metal complex in the filtrate is determined through its metal content using indirect atomic absorption spectrometric technique (procedure 3). All the proposed methods were validated according to the International Conference on Harmonization (ICH) guidelines, the three proposed methods permit the determination of moxifloxacin HCl in the range of (0.8-6, 0.8-4) for methods A and B, (16-96, 16-96 and 16-72) for procedures 1-3 in method C. The limits of detection and quantitation were calculated, the precision of the methods were satisfactory; the values of relative standard deviations did not exceed 2%. The proposed methods were successfully applied to determine the drug in its pharmaceutical formulations without interference from the common excipients. The results obtained by the proposed methods were comparable with those obtained by the reference method.

  20. Development and Validation of Spectrophotometric, Atomic Absorption and Kinetic Methods for Determination of Moxifloxacin Hydrochloride

    PubMed Central

    Abdellaziz, Lobna M.; Hosny, Mervat M.

    2011-01-01

    Three simple spectrophotometric and atomic absorption spectrometric methods are developed and validated for the determination of moxifloxacin HCl in pure form and in pharmaceutical formulations. Method (A) is a kinetic method based on the oxidation of moxifloxacin HCl by Fe3+ ion in the presence of 1,10 o-phenanthroline (o-phen). Method (B) describes spectrophotometric procedures for determination of moxifloxacin HCl based on its ability to reduce Fe (III) to Fe (II), which was rapidly converted to the corresponding stable coloured complex after reacting with 2,2′ bipyridyl (bipy). The formation of the tris-complex formed in both methods (A) and (B) were carefully studied and their absorbance were measured at 510 and 520 nm respectively. Method (C) is based on the formation of ion- pair associated between the drug and bismuth (III) tetraiodide in acidic medium to form orange—red ion-pair associates. This associate can be quantitatively determined by three different procedures. The formed precipitate is either filtered off, dissolved in acetone and quantified spectrophotometrically at 462 nm (Procedure 1), or decomposed by hydrochloric acid, and the bismuth content is determined by direct atomic absorption spectrometric (Procedure 2). Also the residual unreacted metal complex in the filtrate is determined through its metal content using indirect atomic absorption spectrometric technique (procedure 3). All the proposed methods were validated according to the International Conference on Harmonization (ICH) guidelines, the three proposed methods permit the determination of moxifloxacin HCl in the range of (0.8–6, 0.8–4) for methods A and B, (16–96, 16–96 and 16–72) for procedures 1–3 in method C. The limits of detection and quantitation were calculated, the precision of the methods were satisfactory; the values of relative standard deviations did not exceed 2%. The proposed methods were successfully applied to determine the drug in its pharmaceutical formulations without interference from the common excipients. The results obtained by the proposed methods were comparable with those obtained by the reference method. PMID:22219661

  1. Fe-Mg substitution in aluminate spinels: effects on elastic properties investigated by Brillouin scattering

    NASA Astrophysics Data System (ADS)

    Bruschini, Enrico; Speziale, Sergio; Bosi, Ferdinando; Andreozzi, Giovanni B.

    2018-03-01

    We investigated by a multi-analytical approach (Brillouin scattering, X-ray diffraction and electron microprobe) the dependence of the elastic properties on the chemical composition of six spinels in the series (Mg1-x ,Fe x )Al2O4 (0 ≤ x ≤ 0.5). With the exception of C 12, all the elastic moduli (C 11, C 44, K S0 and G) are insensitive to chemical composition for low iron concentration, while they decrease linearly for higher Fe2+ content. Only C 12 shows a continuous linear increase with increasing Fe2+ across the whole compositional range under investigation. The high cation disorder showed by the sample with x = 0.202 has little or no influence on the elastic parameters. The range 0.202 < x < 0.388 bounds the percolation threshold (p c) for nearest neighbor interaction of Fe in the cation sublattices of the spinel structure. Below x = 0.202, the iron atoms are diluted in the system and far from each other, and the elastic moduli are nearly constant. Above x = 0.388, Fe atoms form extended interconnected clusters and show a cooperative behavior thus affecting the single-crystal elastic moduli. The elastic anisotropy largely increases with the introduction of Fe2+ in substitution of magnesium in spinel. This behavior is different with respect to other spinels containing transition metals such as Mn2+ and Co2+.

  2. Abacavir and warfarin modulate allosterically kinetics of NO dissociation from ferrous nitrosylated human serum heme-albumin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ascenzi, Paolo; National Institute for Infectious Diseases I.R.C.C.S. 'Lazzaro Spallanzani', Via Portuense 292, I-00149 Roma; Imperi, Francesco

    Human serum albumin (HSA) participates to heme scavenging, in turn HSA-heme binds gaseous diatomic ligands at the heme-Fe-atom. Here, the effect of abacavir and warfarin on denitrosylation kinetics of HSA-heme-Fe(II)-NO (i.e., k{sub off}) is reported. In the absence of drugs, the value of k{sub off} is (1.3 {+-} 0.2) x 10{sup -4} s{sup -1}. Abacavir and warfarin facilitate NO dissociation from HSA-heme-Fe(II)-NO, the k{sub off} value increases to (8.6 {+-} 0.9) x 10{sup -4} s{sup -1}. From the dependence of k{sub off} on the drug concentration, values of the dissociation equilibrium constant for the abacavir and warfarin binding to HSA-heme-Fe(II)-NOmore » (i.e., K = (1.2 {+-} 0.2) x 10{sup -3} M and (6.2 {+-} 0.7) x 10{sup -5} M, respectively) were determined. The increase of k{sub off} values reflects the stabilization of the basic form of HSA-heme-Fe by ligands (e.g., abacavir and warfarin) that bind to Sudlow's site I. This event parallels the stabilization of the six-coordinate derivative of the HSA-heme-Fe(II)-NO atom. Present data highlight the allosteric modulation of HSA-heme-Fe(II) reactivity by heterotropic effectors.« less

  3. Magnetic properties of Mg12O12 nanocage doped with transition metal atoms (Mn, Fe, Co and Ni): DFT study

    NASA Astrophysics Data System (ADS)

    Javan, Masoud Bezi

    2015-07-01

    Binding energy of the Mg12O12 nanocage doped with transition metals (TM=Mn, Fe, Co and Ni) in endohedrally, exohedrally and substitutionally forms were studied using density functional theory with the generalized gradient approximation exchange-correlation functional along 6 different paths inside and outside of the Mg12O12 nanocage. The most stable structures were determined with full geometry optimization near the minimum of the binding energy curves of all the examined paths inside and outside of the Mg12O12 nanocage. The results reveal that for all stable structures, the Ni atom has a larger binding energy than the other TM atoms. It is also found that for all complexes additional peaks contributed by TM-3d, 4s and 4p states appear in the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) gap of the host MgO cluster. The mid-gap states are mainly due to the hybridization between TM-3d, 4s and 4p orbitals and the cage π orbitals. The magnetic moment of the endohedrally doped TM atoms in the Mg12O12 are preserved to some extent due to the interaction between the TM and Mg12O12 nanocage, in contrast to the completely quenched magnetic moment of the Fe and Ni atoms in the Mg11(TM)O12 complexes. Furthermore, charge population analysis shows that charge transfer occurs from TM atom to the cage for endohedrally and substitutionally doping.

  4. Asymmetric angular dependence of spin-transfer torques in CoFe/Mg-B-O/CoFe magnetic tunnel junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Ling, E-mail: lingtang@zjut.edu.cn; Xu, Zhi-Jun, E-mail: xzj@zjut.edu.cn; Zuo, Xian-Jun

    Using a first-principles noncollinear wave-function-matching method, we studied the spin-transfer torques (STTs) in CoFe/Mg-B-O/CoFe(001) magnetic tunnel junctions (MTJs), where three different types of B-doped MgO in the spacer are considered, including B atoms replacing Mg atoms (Mg{sub 3}BO{sub 4}), B atoms replacing O atoms (Mg{sub 4}BO{sub 3}), and B atoms occupying interstitial positions (Mg{sub 4}BO{sub 4}) in MgO. A strong asymmetric angular dependence of STT can be obtained both in ballistic CoFe/Mg{sub 3}BO{sub 4} and CoFe/Mg{sub 4}BO{sub 4} based MTJs, whereas a nearly symmetric STT curve is observed in the junctions based on CoFe/Mg{sub 4}BO{sub 3}. Furthermore, the asymmetry ofmore » the angular dependence of STT can be suppressed significantly by the disorder of B distribution. Such skewness of STTs in the CoFe/Mg-B-O/CoFe MTJs could be attributed to the interfacial resonance states induced by the B diffusion into MgO spacer.« less

  5. Methanogenic heterodisulfide reductase (HdrABC-MvhAGD) uses two noncubane [4Fe-4S] clusters for reduction.

    PubMed

    Wagner, Tristan; Koch, Jürgen; Ermler, Ulrich; Shima, Seigo

    2017-08-18

    In methanogenic archaea, the carbon dioxide (CO 2 ) fixation and methane-forming steps are linked through the heterodisulfide reductase (HdrABC)-[NiFe]-hydrogenase (MvhAGD) complex that uses flavin-based electron bifurcation to reduce ferredoxin and the heterodisulfide of coenzymes M and B. Here, we present the structure of the native heterododecameric HdrABC-MvhAGD complex at 2.15-angstrom resolution. HdrB contains two noncubane [4Fe-4S] clusters composed of fused [3Fe-4S]-[2Fe-2S] units sharing 1 iron (Fe) and 1 sulfur (S), which were coordinated at the CCG motifs. Soaking experiments showed that the heterodisulfide is clamped between the two noncubane [4Fe-4S] clusters and homolytically cleaved, forming coenzyme M and B bound to each iron. Coenzymes are consecutively released upon one-by-one electron transfer. The HdrABC-MvhAGD atomic model serves as a structural template for numerous HdrABC homologs involved in diverse microbial metabolic pathways. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  6. Atomic-Scale Structure of the Hematite α-Fe2O3(11̅02) “R-Cut” Surface

    PubMed Central

    2017-01-01

    The α-Fe2O3(11̅02) surface (also known as the hematite r-cut or (012) surface) was studied using low-energy electron diffraction (LEED), X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), scanning tunneling microscopy (STM), noncontact atomic force microscopy (nc-AFM), and ab initio density functional theory (DFT)+U calculations. Two surface structures are stable under ultrahigh vacuum (UHV) conditions; a stoichiometric (1 × 1) surface can be prepared by annealing at 450 °C in ≈10–6 mbar O2, and a reduced (2 × 1) reconstruction is formed by UHV annealing at 540 °C. The (1 × 1) surface is close to an ideal bulk termination, and the undercoordinated surface Fe atoms reduce the surface bandgap by ≈0.2 eV with respect to the bulk. The work function is measured to be 5.7 ± 0.2 eV, and the VBM is located 1.5 ± 0.1 eV below EF. The images obtained from the (2 × 1) reconstruction cannot be reconciled with previously proposed models, and a new “alternating trench” structure is proposed based on an ordered removal of lattice oxygen atoms. DFT+U calculations show that this surface is favored in reducing conditions and that 4-fold-coordinated Fe2+ cations at the surface introduce gap states approximately 1 eV below EF. The work function on the (2 × 1) termination is 5.4 ± 0.2 eV. PMID:29492182

  7. Structural and Antioxidant Properties of Compounds Obtained from Fe2+ Chelation by Juglone and Two of Its Derivatives: DFT, QTAIM, and NBO Studies

    PubMed Central

    Tamafo Fouegue, Aymard Didier; Bikélé Mama, Désiré; Nkungli, Nyiang Kennet; Younang, Elie

    2016-01-01

    The chelating ability of juglone and two of its derivatives towards Fe2+ion and the antioxidant activity (AOA) of the resulting chelates and complexes (in the presence of H2O and CH3OH as ligands) in gas phase is reported via bond dissociation enthalpy, ionization potential, proton dissociation enthalpy, proton affinity, and electron transfer enthalpy. The DFT/B3LYP level of theory associated with the 6-31+G(d,p) and 6-31G(d) Pople-style basis sets on the atoms of the ligands and the central Fe(II), respectively, was used. Negative chelation free energies obtained revealed that juglone derivatives possessing the O-H substituent (L2) have the greatest ability to chelate Fe2+ ion. Apart from 1B, thermodynamic descriptors of the AOA showed that the direct hydrogen atom transfer is the preferred mechanism of the studied molecules. NBO analysis showed that the Fe-ligand bonds are all formed through metal to ligand charge transfer. QTAIM studies revealed that among all the Fe-ligand bonds, the O1-Fe bond of 1A is purely covalent. The aforementioned results show that the ligands can be used to fight against Fe(II) toxicity, thus preserving human health, and fight against the deterioration of industrial products. In addition, most of the complexes studied have shown a better AOA than their corresponding ligands. PMID:27774044

  8. rac-(S,S)-Bis(1-ferrocenylbut-3-en-yl) ether.

    PubMed

    Xie, Hao-Jun; Zhao, Chun-Zheng; Sun, Jun; Chen, Si; Wang, Jian-Jun

    2013-01-01

    The title complex, [Fe2(C5H5)2(C18H20O)], formed by dehydration of 1-ferrocenylbut-3-en-1-ol, crystallizes as a racemic compound. The central C-O-C fragment, in which the C atoms are the chiral centers, is characterized by an angle of 116.26 (10)° at the O atom. One ferrocene group shows a staggered conformation whereas the other shows an eclipsed conformation.

  9. Hierarchical Cu precipitation in lamellated steel after multistage heat treatment

    NASA Astrophysics Data System (ADS)

    Liu, Qingdong; Gu, Jianfeng

    2017-09-01

    The hierarchical distribution of Cu-rich precipitates (CRPs) and related partitioning and segregation behaviours of solute atoms were investigated in a 1.54 Cu-3.51 Ni (wt.%) low-carbon high-strength low-alloy (HSLA) steel after multistage heat treatment by using the combination of electron backscatter diffraction (EBSD), transmission electron microscopy (TEM) and atom probe tomography (APT). Intercritical tempering at 725 °C of as-quenched lathlike martensitic structure leads to the coprecipitation of CRPs at the periphery of a carbide precipitate which is possibly in its paraequilibrium state due to distinct solute segregation at the interface. The alloyed carbide and CRPs provide constituent elements for each other and make the coprecipitation thermodynamically favourable. Meanwhile, austenite reversion occurs to form fresh secondary martensite (FSM) zone where is rich in Cu and pertinent Ni and Mn atoms, which gives rise to a different distributional morphology of CRPs with large size and high density. In addition, conventional tempering at 500 °C leads to the formation of nanoscale Cu-rich clusters in α-Fe matrix. As a consequence, three populations of CRPs are hierarchically formed around carbide precipitate, at FSM zone and in α-Fe matrix. The formation of different precipitated features can be turned by controlling diffusion pathways of related solute atoms and further to tailor mechanical properties via proper multistage heat treatments.

  10. Observations of the Minor Species Al and Fe in Mercury's Exosphere

    NASA Technical Reports Server (NTRS)

    Bida, Thomas A.; Killen, Rosemary M.

    2016-01-01

    We report here on the first observational evidence of Al and Fe in the exosphere of Mercury, based on measurements of resolved emission lines of these metals with Keck-1/HIRES. Al emission was observed on two separate runs, in 2008 and 2013, with tangent column densities of 3.1 +/- 1.0 and 4.0 +/-1.5 x 10(exp 7) Al atoms cm(exp - 2) at altitudes of 1185 and 1870 km (1.5 and 1.75 R(sub M). The Al radiative intensity was seen to increase where the slit crossed the planetary penumbral shadow, and then decrease monotonically with altitude. Fe emission has been observed once, in 2009, indicating an extended source. We also present observed 3- Sigma Ca(+) upper limits near Mercury's equatorial anti-solar limb, from which an abundance limit of 4.0 x 10(exp 6) cm(exp -2) at 1650 km altitude is derived for the Ca ion. A simple model for zenith column abundances of the neutral species yields 1.9 -5.2 x 10(exp 7) Al cm(exp -2) , and 8.2 x 10(exp 8) Fe cm(exp -2) . The observations appear to be consistent with production of these species by impact vaporization, with a large fraction of the Al ejecta in molecular form, and that for Fe in mixed atomic and molecular forms. The scale height of the Al gas is consistent with a kinetic temperature of 6100-8000 K. The apparent high temperature and low density of the Al gas would suggest that it may be produced by dissociation of molecules.

  11. Accelerated Oxygen Atom Transfer and C-H Bond Oxygenation by Remote Redox Changes in Fe 3Mn-Iodosobenzene Adducts

    DOE PAGES

    de Ruiter, Graham; Carsch, Kurtis M.; Gul, Sheraz; ...

    2017-03-24

    In this paper, we report the synthesis, characterization, and reactivity of [LFe 3(PhPz) 3OMn( sPhIO)][OTf] x (3: x=2; 4: x=3), where 4 is one of very few examples of iodosobenzene–metal adducts characterized by X-ray crystallography. Access to these rare heterometallic clusters enabled differentiation of the metal centers involved in oxygen atom transfer (Mn) or redox modulation (Fe). Specifically, 57Fe Mössbauer and X-ray absorption spectroscopy provided unique insights into how changes in oxidation state (Fe III 2Fe IIMn II vs. Fe III 3Mn II) influence oxygen atom transfer in tetranuclear Fe 3Mn clusters. Finally, in particular, a one-electron redox change atmore » a distal metal site leads to a change in oxygen atom transfer reactivity by ca. two orders of magnitude.« less

  12. Accelerated Oxygen Atom Transfer and C-H Bond Oxygenation by Remote Redox Changes in Fe3 Mn-Iodosobenzene Adducts.

    PubMed

    de Ruiter, Graham; Carsch, Kurtis M; Gul, Sheraz; Chatterjee, Ruchira; Thompson, Niklas B; Takase, Michael K; Yano, Junko; Agapie, Theodor

    2017-04-18

    We report the synthesis, characterization, and reactivity of [LFe 3 (PhPz) 3 OMn( s PhIO)][OTf] x (3: x=2; 4: x=3), where 4 is one of very few examples of iodosobenzene-metal adducts characterized by X-ray crystallography. Access to these rare heterometallic clusters enabled differentiation of the metal centers involved in oxygen atom transfer (Mn) or redox modulation (Fe). Specifically, 57 Fe Mössbauer and X-ray absorption spectroscopy provided unique insights into how changes in oxidation state (Fe III 2 Fe II Mn II vs. Fe III 3 Mn II ) influence oxygen atom transfer in tetranuclear Fe 3 Mn clusters. In particular, a one-electron redox change at a distal metal site leads to a change in oxygen atom transfer reactivity by ca. two orders of magnitude. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Dynamical Negative Differential Resistance in Antiferromagnetically Coupled Few-Atom Spin Chains

    NASA Astrophysics Data System (ADS)

    Rolf-Pissarczyk, Steffen; Yan, Shichao; Malavolti, Luigi; Burgess, Jacob A. J.; McMurtrie, Gregory; Loth, Sebastian

    2017-11-01

    We present the appearance of negative differential resistance (NDR) in spin-dependent electron transport through a few-atom spin chain. A chain of three antiferromagnetically coupled Fe atoms (Fe trimer) was positioned on a Cu2 N /Cu (100 ) surface and contacted with the spin-polarized tip of a scanning tunneling microscope, thus coupling the Fe trimer to one nonmagnetic and one magnetic lead. Pronounced NDR appears at the low bias of 7 mV, where inelastic electron tunneling dynamically locks the atomic spin in a long-lived excited state. This causes a rapid increase of the magnetoresistance between the spin-polarized tip and Fe trimer and quenches elastic tunneling. By varying the coupling strength between the tip and Fe trimer, we find that in this transport regime the dynamic locking of the Fe trimer competes with magnetic exchange interaction, which statically forces the Fe trimer into its high-magnetoresistance state and removes the NDR.

  14. Iron(II)-Catalyzed Iron Atom Exchange and Mineralogical Changes in Iron-rich Organic Freshwater Flocs: An Iron Isotope Tracer Study.

    PubMed

    ThomasArrigo, Laurel K; Mikutta, Christian; Byrne, James; Kappler, Andreas; Kretzschmar, Ruben

    2017-06-20

    In freshwater wetlands, organic flocs are often found enriched in trace metal(loid)s associated with poorly crystalline Fe(III)-(oxyhydr)oxides. Under reducing conditions, flocs may become exposed to aqueous Fe(II), triggering Fe(II)-catalyzed mineral transformations and trace metal(loid) release. In this study, pure ferrihydrite, a synthetic ferrihydrite-polygalacturonic acid coprecipitate (16.7 wt % C), and As- (1280 and 1230 mg/kg) and organic matter (OM)-rich (18.1 and 21.8 wt % C) freshwater flocs dominated by ferrihydrite and nanocrystalline lepidocrocite were reacted with an isotopically enriched 57 Fe(II) solution (0.1 or 1.0 mM Fe(II)) at pH 5.5 and 7. Using a combination of wet chemistry, Fe isotope analysis, X-ray absorption spectroscopy (XAS), 57 Fe Mössbauer spectroscopy and X-ray diffraction, we followed the Fe atom exchange kinetics and secondary mineral formation over 1 week. When reacted with Fe(II) at pH 7, pure ferrihydrite exhibited rapid Fe atom exchange at both Fe(II) concentrations, reaching 76 and 89% atom exchange in experiments with 0.1 and 1 mM Fe(II), respectively. XAS data revealed that it transformed into goethite (21%) at the lower Fe(II) concentration and into lepidocrocite (73%) and goethite (27%) at the higher Fe(II) concentration. Despite smaller Fe mineral particles in the coprecipitate and flocs as compared to pure ferrihydrite (inferred from Mössbauer-derived blocking temperatures), these samples showed reduced Fe atom exchange (9-30% at pH 7) and inhibited secondary mineral formation. No release of As was recorded for Fe(II)-reacted flocs. Our findings indicate that carbohydrate-rich OM in flocs stabilizes poorly crystalline Fe minerals against Fe(II)-catalyzed transformation by surface-site blockage and/or organic Fe(II) complexation. This hinders the extent of Fe atom exchange at mineral surfaces and secondary mineral formation, which may consequently impair Fe(II)-activated trace metal(loid) release. Thus, under short-term Fe(III)-reducing conditions facilitating the fast attainment of solid-solution equilibria (e.g., in stagnant waters), Fe-rich freshwater flocs are expected to remain an effective sink for trace elements.

  15. Ferromagnetic Coupling of Mononuclear Fe Centers in a Self-Assembled Metal-Organic Network on Au(111)

    NASA Astrophysics Data System (ADS)

    Umbach, T. R.; Bernien, M.; Hermanns, C. F.; Krüger, A.; Sessi, V.; Fernandez-Torrente, I.; Stoll, P.; Pascual, J. I.; Franke, K. J.; Kuch, W.

    2012-12-01

    The magnetic state and magnetic coupling of individual atoms in nanoscale structures relies on a delicate balance between different interactions with the atomic-scale surroundings. Using scanning tunneling microscopy, we resolve the self-assembled formation of highly ordered bilayer structures of Fe atoms and organic linker molecules (T4PT) when deposited on a Au(111) surface. The Fe atoms are encaged in a three-dimensional coordination motif by three T4PT molecules in the surface plane and an additional T4PT unit on top. Within this crystal field, the Fe atoms retain a magnetic ground state with easy-axis anisotropy, as evidenced by x-ray absorption spectroscopy and x-ray magnetic circular dichroism. The magnetization curves reveal the existence of ferromagnetic coupling between the Fe centers.

  16. Direct in situ observations of single Fe atom catalytic processes and anomalous diffusion at graphene edges

    PubMed Central

    Zhao, Jiong; Deng, Qingming; Avdoshenko, Stanislav M.; Fu, Lei; Eckert, Jürgen; Rümmeli, Mark H.

    2014-01-01

    Single-atom catalysts are of great interest because of their high efficiency. In the case of chemically deposited sp2 carbon, the implementation of a single transition metal atom for growth can provide crucial insight into the formation mechanisms of graphene and carbon nanotubes. This knowledge is particularly important if we are to overcome fabrication difficulties in these materials and fully take advantage of their distinct band structures and physical properties. In this work, we present atomically resolved transmission EM in situ investigations of single Fe atoms at graphene edges. Our in situ observations show individual iron atoms diffusing along an edge either removing or adding carbon atoms (viz., catalytic action). The experimental observations of the catalytic behavior of a single Fe atom are in excellent agreement with supporting theoretical studies. In addition, the kinetics of Fe atoms at graphene edges are shown to exhibit anomalous diffusion, which again, is in agreement with our theoretical investigations. PMID:25331874

  17. Dirac State in the FeB2 Monolayer with Graphene-Like Boron Sheet.

    PubMed

    Zhang, Haijun; Li, Yafei; Hou, Jianhou; Du, Aijun; Chen, Zhongfang

    2016-10-12

    By introducing the commonly utilized Fe atoms into a two-dimensional (2D) honeycomb boron network, we theoretically designed a new Dirac material of FeB 2 monolayer with a Fermi velocity in the same order of graphene. The electron transfer from Fe atoms to B networks not only effectively stabilizes the FeB 2 networks but also leads to the strong interaction between the Fe and B atoms. The Dirac state in FeB 2 system primarily arises from the Fe d orbitals and hybridized orbital from Fe-d and B-p states. The newly predicted FeB 2 monolayer has excellent dynamic and thermal stabilities and is also the global minimum of 2D FeB 2 system, implying its experimental feasibility. Our results are beneficial to further uncovering the mechanism of the Dirac cones and providing a feasible strategy for Dirac materials design.

  18. Helium behavior in oxide dispersion strengthened (ODS) steel: Insights from ab initio modeling

    NASA Astrophysics Data System (ADS)

    Sun, Dan; Li, Ruihuan; Ding, Jianhua; Huang, Shaosong; Zhang, Pengbo; Lu, Zheng; Zhao, Jijun

    2018-02-01

    Using first-principles calculations, we systemically investigate the energetics and stability behavior of helium (He) atoms and small Hen (n = 2-4) clusters inside oxide dispersion strengthened (ODS) steel, as well as the incorporation of large amount of He atoms inside Y2O3 crystal. From the energetic point of view, He atom inside Y2O3 cluster is most stable, followed by the interstitial sites at the α-Fe/Y2O3 interface, and the tetrahedral interstitial sites inside α-Fe region. We further consider Hen (n = 2-4) clusters at the tetrahedral interstitial site surrounded by four Y atoms, which is the most stable site in the ODS steel model. The incorporation energies of all these Hen clusters are lower than that of single He atom in α-Fe, while the binding energy between two He atoms is relatively small. With insertion of 15 He atoms into 80-atom unit cell of Y2O3 crystal, the incorporation energy of He atoms is still lower than that of He4 cluster in α-Fe crystal. These theoretical results suggest that He atoms tend to aggregate inside Y2O3 clusters or at the α-Fe/Y2O3 interface, which is beneficial to prevent the He embrittlement in ODS steels.

  19. Allotropic forms of carbon in the Invar Fe-Ni-C alloy before and after plastic deformation by upsetting

    NASA Astrophysics Data System (ADS)

    Nadutov, V. M.; Vashchuk, D. L.; Karbivskii, V. L.; Volosevich, P. Yu.; Davydenko, O. A.

    2018-04-01

    The effect of cold plastic deformation by upsetting (e = 1.13) on structure and hybridised bonds of carbon in the fcc Invar Fe-30.9%Ni-1.23% C alloy was studied by means of X-ray phase analysis and X-ray photoelectron spectroscopy. Carbon precipitates along grain boundaries and inside of grains in the alloy after annealing and plastic deformation were revealed. The presence of mainly sp2- and sp3-hybridised C-C bonds attributing to graphite and amorphous carbon as well as the carbon bonds with impurity atoms and metallic Fe and Ni atoms in austenitic phase were revealed in the annealed and deformed alloy. It was shown for the first time that plastic deformation of the alloy results in partial destruction of the graphite crystal structure, increasing the relative part of amorphous carbon, and redistribution of carbon between structural elements as well as in a solid solution of austenitic phase.

  20. On the Highest Oxidation States of Metal Elements in MO4 Molecules (M = Fe, Ru, Os, Hs, Sm, and Pu).

    PubMed

    Huang, Wei; Xu, Wen-Hua; Schwarz, W H E; Li, Jun

    2016-05-02

    Metal tetraoxygen molecules (MO4, M = Fe, Ru, Os, Hs, Sm, Pu) of all metal atoms M with eight valence electrons are theoretically studied using density functional and correlated wave function approaches. The heavier d-block elements Ru, Os, Hs are confirmed to form stable tetraoxides of Td symmetry in (1)A1 electronic states with empty metal d(0) valence shell and closed-shell O(2-) ligands, while the 3d-, 4f-, and 5f-elements Fe, Sm, and Pu prefer partial occupation of their valence shells and peroxide or superoxide ligands at lower symmetry structures with various spin couplings. The different geometric and electronic structures and chemical bonding types of the six iso-stoichiometric species are explained in terms of atomic orbital energies and orbital radii. The variations found here contribute to our general understanding of the periodic trends of oxidation states across the periodic table.

  1. Binding of dinitrogen to an iron-sulfur-carbon site

    NASA Astrophysics Data System (ADS)

    Čorić, Ilija; Mercado, Brandon Q.; Bill, Eckhard; Vinyard, David J.; Holland, Patrick L.

    2015-10-01

    Nitrogenases are the enzymes by which certain microorganisms convert atmospheric dinitrogen (N2) to ammonia, thereby providing essential nitrogen atoms for higher organisms. The most common nitrogenases reduce atmospheric N2 at the FeMo cofactor, a sulfur-rich iron-molybdenum cluster (FeMoco). The central iron sites that are coordinated to sulfur and carbon atoms in FeMoco have been proposed to be the substrate binding sites, on the basis of kinetic and spectroscopic studies. In the resting state, the central iron sites each have bonds to three sulfur atoms and one carbon atom. Addition of electrons to the resting state causes the FeMoco to react with N2, but the geometry and bonding environment of N2-bound species remain unknown. Here we describe a synthetic complex with a sulfur-rich coordination sphere that, upon reduction, breaks an Fe-S bond and binds N2. The product is the first synthetic Fe-N2 complex in which iron has bonds to sulfur and carbon atoms, providing a model for N2 coordination in the FeMoco. Our results demonstrate that breaking an Fe-S bond is a chemically reasonable route to N2 binding in the FeMoco, and show structural and spectroscopic details for weakened N2 on a sulfur-rich iron site.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Sandra D.; Liu, Jia; Arey, Bruce W.

    The distribution of iron resulting from the autocatalytic interaction of aqueous Fe(II) with the hematite (001) surface was directly mapped in three dimensions (3D) for the first time, using iron isotopic labelling and atom probe tomography (APT). Analyses of the mass spectrum showed that natural abundance ratios in 56Fe-dominant hematite are recovered at depth with good accuracy, whereas at the relict interface with 57Fe(II) solution evidence for hematite growth by oxidative adsorption of Fe(II) was found. 3D reconstructions of the isotope positions along the surface normal direction showed a zone enriched in 57Fe, which was consistent with an average netmore » adsorption of 3.2 – 4.3 57Fe atoms nm–2. Statistical analyses utilizing grid-based frequency distribution analyses show a heterogeneous, non-random distribution of oxidized Fe on the (001) surface, consistent with Volmer-Weber-like island growth. The unique 3D nature of the APT data provides an unprecedented means to quantify the atomic-scale distribution of sorbed 57Fe atoms and the extent of segregation on the hematite surface. This new ability to spatially map growth on single crystal faces at the atomic scale will enable resolution to long-standing unanswered questions about the underlying mechanisms for electron and atom exchange involved in a wide variety of redox-catalyzed processes at this archetypal and broadly relevant interface.« less

  3. Uric acid-derived Fe3C-containing mesoporous Fe/N/C composite with high activity for oxygen reduction reaction in alkaline medium

    NASA Astrophysics Data System (ADS)

    Ma, Jun; Xiao, Dejian; Chen, Chang Li; Luo, Qiaomei; Yu, Yue; Zhou, Junhao; Guo, Changding; Li, Kai; Ma, Jie; Zheng, Lirong; Zuo, Xia

    2018-02-01

    In this work, a category of Fe3C-containing Fe/N/C mesoporous material has been fabricated by carbonizing the mixture of uric acid, Iron (Ⅲ) chloride anhydrous and carbon support (XC-72) under different pyrolysis temperature. Of all these samples, pyrolysis temperature (800 °C) becomes the most crucial factor in forming Fe3C active sites which synergizes with high content of graphitic N to catalyze oxygen reduction reaction (ORR). X-ray absorption fine structure spectroscopy (XAFS) is used to exhibit that the space structure around Fe atoms in the catalyst. This kind of catalyst possesses comparable ORR properties with commercial 20% Pt/C (onset potential is 0 V vs. Ag/AgCl in 0.1 M KOH), the average transfer electron number is 3.84 reflecting the 4-electron process. Moreover, superior stability and methanol tolerance deserve to be mentioned.

  4. Effect of Ni on Fe FeS phase relations at high pressure and high temperature

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Fei, Yingwei

    2008-04-01

    A series of melting experiments in the Fe-rich portion of the Fe-Ni-S system have been conducted at 19-23 GPa and 800-1100 °C. The solubility of S in the Fe-Ni solid alloy and the eutectic melting in the Fe-Ni-S system were determined as a function of Ni content. The maximum S solubility in the Fe-Ni alloy is 2.7 wt.% at 20 GPa and the eutectic temperature. The eutectic melting temperature in the Fe-Ni(5wt.%)-S system is ~ 1000 °C lower than the melting point of pure Fe at 20 GPa. We also found that Ni can substitute Fe in the Fe 3S structure to form (Fe,Ni) 3S solid solutions up to at least a Fe/Ni atomic ratio of 0.5. Similar to melting behavior in the Fe-FeS system, the eutectic melting relations in the Fe-Ni-S system could produce inner and outer cores with the right light element balance to account for the density difference between the solid inner core and the liquid outer core.

  5. Molybdenum L-Edge XAS Spectra of MoFe Nitrogenase

    PubMed Central

    Bjornsson, Ragnar; Delgado-Jaime, Mario U; Lima, Frederico A; Sippel, Daniel; Schlesier, Julia; Weyhermüller, Thomas; Einsle, Oliver; Neese, Frank; DeBeer, Serena

    2015-01-01

    A molybdenum L-edge X-ray absorption spectroscopy (XAS) study is presented for native and oxidized MoFe protein of nitrogenase as well as Mo-Fe model compounds. Recently collected data on MoFe protein (in oxidized and reduced forms) is compared to previously published Mo XAS data on the isolated FeMo cofactor in NMF solution and put in context of the recent Mo K-edge XAS study, which showed a MoIII assignment for the molybdenum atom in FeMoco. The L3-edge data are interpreted within a simple ligand-field model, from which a time-dependent density functional theory (TDDFT) approach is proposed as a way to provide further insights into the analysis of the molybdenum L3-edges. The calculated results reproduce well the relative spectral trends that are observed experimentally. Ultimately, these results give further support for the MoIII assignment in protein-bound FeMoco, as well as isolated FeMoco. PMID:26213424

  6. Atomic structures of B20 FeGe thin films grown on the Si(111) surface

    NASA Astrophysics Data System (ADS)

    Kim, Wondong; Noh, Seungkyun; Yoon, Jisoo; Kim, Young Heon; Lee, Inho; Kim, Jae-Sung; Hwang, Chanyong

    We investigated the growth and atomic structures of FeGe thin films on the Si (111) surface by using scanning tunneling microscopy (STM) and transmission electron microscopy (TEM). The 2 5nm- thick FeGe thin films were prepared on the clean Si(111) 7x7 surface by co-deposition of Fe and Ge from separated electron-beam evaporators. With direct deposition on the substrate at the temperature above 550 K, the surface of FeGe films was not smooth and consisted of coarse grains. By the combination of room-temperature annealing and post-annealing process around 800 K, the structure of FeGe thin films evolved into the well crystalized structures. Atom-resolved STM images revealed that there are at least four different surface terminations. We constructed atomic models for each surface terminations based on the bulk atomic arrangement of a B20 chiral structure and confirmed that the observed STM images are successfully reproduced by using computational simulations employing Vienna Ab Initio Simulation package (VASP) with a B20 chiral structure model. TEM cross-sectional images also support our atomic models by revealing clearly the characteristic zigzag features of B20 structures of FeGe(111) thin films.

  7. First principles calculations of the magnetic and hyperfine properties of Fe/N/Fe and Fe/O/Fe multilayers in the ground state of cohesive energy

    NASA Astrophysics Data System (ADS)

    dos Santos, A. V.; Samudio Pérez, C. A.; Muenchen, D.; Anibele, T. P.

    2015-01-01

    The ground state properties of Fe/N/Fe and Fe/O/Fe multilayers were investigated using the first principles calculations. The calculations were performed using the Linearized Augmented Plane Wave (LAPW) method implemented in the Wien2k code. A supercell consisting of one layer of nitride (or oxide) between two layers of Fe in the bcc structure was used to model the structure of the multilayer. The research in new materials also stimulated theoretical and experimental studies of iron-based nitrides due to their variety of structural and magnetic properties for the potential applications as in high strength steels and for high corrosion resistance. It is obvious from many reports that magnetic iron nitrides such as γ-Fe4N and α-Fe16N2 have interesting magnetic properties, among these a high magnetisation saturation and a high density crimp. However, although Fe-N films and multilayers have many potential applications, they can be produced in many ways and are being extensively studied from the theoretical point of view there is no detailed knowledge of their electronic structure. Clearly, efforts to understand the influence of the nitrogen atoms on the entire electronic structure are needed as to correctly interpret the observed changes in the magnetic properties when going from Fe-N bulk compounds to multilayer structures. Nevertheless, the N atoms are not solely responsible for electronics alterations in solid compounds. Theoretical results showed that Fe4X bulk compounds, where X is a variable atom with increasing atomic number (Z), the nature of bonding between X and adjacent Fe atoms changes from more covalent to more ionic and the magnetic moments of Fe also increase for Z=7, i.e. N. This is an indicative that atoms with a Z number higher than 7, i.e., O, can produce several new alterations in the entire magnetic properties of Fe multilayers. This paper presents the first results of an ab-initio electronic structure calculations, performed for Fe-N and Fe-O multilayers. Firstly, the formation energy and the cohesive energy of the multilayers are discussed. For optimised values, the cohesive energy of the multilayers to obtain the lattice parameters at the equilibrium ground state was used, i.e. a new methodology for this calculus was applied. Secondly, the magnetic properties and hyperfine interactions (magnetic field, electric field gradient and the isomer shift) of the iron atoms of the multilayers are discussed.

  8. Effect of atomic composition on the compressive strain and electrocatalytic activity of PtCoFe/sulfonated graphene

    NASA Astrophysics Data System (ADS)

    Lohrasbi, Elaheh; Javanbakht, Mehran; Mozaffari, Sayed Ahmad

    2017-06-01

    The aim of this work is improvement of the stability and durability of sulfonated graphene supported PtCoFe electrocatalyst (PtCoFe/SG) for application in proton exchange membrane fuel cells (PEMFCs). The durability investigation of PtCoFe/SG is evaluated by a repetitive potential cycling test. The compressive strain in the lattice of PtCoFe/SG towards the electrocatalytic oxygen reduction reaction is studied. The synthesized electrocatalysts are examined physically and electrochemically for their structure, morphology and electrocatalytic performance. It is shown that presence of SO3sbnd groups on the graphene cause better adsorption of PtCoFe nanoparticles on the support and increase stability of electrocatalysts. Also, it is shown that Co:Fe atomic ratio in the synthesized electrocatalysts plays important role in their electrocatalytic performance. In the optimum Co:Fe atomic ratio, the compressive strain goes through the ideal value of the binding energy; further increase in Co/Fe atomic fraction introduces the excessive compressive strain and the activity of electrocatalyst decreases. The electrocatalyst synthesized in the optimum conditions is utilized as cathode in PEMFC. The power density of the PEMFC in low metal loading (0.1 mg cm-2 Pt) reaches to a maximum of 530 mW cm-2 at 75 °C. It suggests that PtCoFe/SG with 7:3 Co:Fe atomic ratio promises to improve the power density of PEMFCs.

  9. Origin of high thermoelectric performance of FeNb1−xZr/HfxSb1−ySny alloys: A first-principles study

    PubMed Central

    Zhang, Xiwen; Wang, Yuanxu; Yan, Yuli; Wang, Chao; Zhang, Guangbiao; Cheng, Zhenxiang; Ren, Fengzhu; Deng, Hao; Zhang, Jihua

    2016-01-01

    The previous experimental work showed that Hf- or Zr-doping has remarkably improved the thermoelectric performance of FeNbSb. Here, the first-principles method was used to explore the possible reason for such phenomenon. The substitution of X (Zr/Hf) atoms at Nb sites increases effective hole-pockets, total density of states near the Fermi level (EF), and hole mobility to largely enhance electrical conductivity. It is mainly due to the shifting the EF to lower energy and the nearest Fe atoms around X atoms supplying more d-states to hybrid with X d-states at the vicinity of the EF. Moreover, we find that the X atoms indirectly affect the charge distribution around Nb atoms via their nearest Fe atoms, resulting in the reduced energy difference in the valence band edge, contributing to enhanced Seebeck coefficients. In addition, the further Bader charge analysis shows that the reason of more holes by Hf-doping than Zr in the experiment is most likely derived from Hf atoms losing less electrons and the stronger hybridization between Hf atoms and their nearest Fe atoms. Furthermore, we predict that Hf/Sn co-doping may be an effective strategy to further optimize the thermoelectric performance of half-Heusler (HH) compounds. PMID:27604826

  10. Redetermination of clinobaryl­ite, BaBe2Si2O7

    PubMed Central

    Domizio, Adrien J. Di; Downs, Robert T.; Yang, Hexiong

    2012-01-01

    Clinobaryl­ite, ideally BaBe2Si2O7 (chemical name barium diberyllium disilicate), is a sorosilicate mineral and dimorphic with baryl­ite. It belongs to a group of compounds characterized by the general formula BaM 2+ 2Si2O7, with M 2+ = Be, Mg, Fe, Mn, Zn, Co, or Cu, among which the Be-, Fe-, and Cu-members have been found in nature. The crystal structure of clinobaryl­ite has been re-examined in this study based on single-crystal X-ray diffraction data collected from a natural sample from the type locality (Khibiny Massif, Kola Peninsula, Russia). The structure of clinobaryl­ite can be considered as a framework of BeO4 and SiO4 tetra­hedra, with one of the O atoms coordinated to two Be and one Si, one coordinated to two Si, and two O atoms coordinated to one Si and one Be atom. The BeO4 tetra­hedra share corners, forming chains parallel to the c axis, which are inter­linked by the Si2O7 units oriented parallel to the a axis. The Ba2+ cations (site symmetry m..) are in the framework channels and are coordinated by eleven O atoms in form of an irregular polyhedron. The Si—Obr (bridging O atom, at site symmetry m..) bond length, the Si—Onbr (non-bridging O atoms) bond lengths, and the Si—O—Si angle within the Si2O7 unit are in marked contrast to the corresponding values determined in the previous study [Krivovichev et al. (2004 ▶). N. Jb. Miner. Mh. pp. 373–384]. PMID:23125568

  11. Redetermination of clinobaryl-ite, BaBe(2)Si(2)O(7).

    PubMed

    Domizio, Adrien J Di; Downs, Robert T; Yang, Hexiong

    2012-10-01

    Clinobaryl-ite, ideally BaBe(2)Si(2)O(7) (chemical name barium diberyllium disilicate), is a sorosilicate mineral and dimorphic with baryl-ite. It belongs to a group of compounds characterized by the general formula BaM(2+) (2)Si(2)O(7), with M(2+) = Be, Mg, Fe, Mn, Zn, Co, or Cu, among which the Be-, Fe-, and Cu-members have been found in nature. The crystal structure of clinobaryl-ite has been re-examined in this study based on single-crystal X-ray diffraction data collected from a natural sample from the type locality (Khibiny Massif, Kola Peninsula, Russia). The structure of clinobaryl-ite can be considered as a framework of BeO(4) and SiO(4) tetra-hedra, with one of the O atoms coordinated to two Be and one Si, one coordinated to two Si, and two O atoms coordinated to one Si and one Be atom. The BeO(4) tetra-hedra share corners, forming chains parallel to the c axis, which are inter-linked by the Si(2)O(7) units oriented parallel to the a axis. The Ba(2+) cations (site symmetry m..) are in the framework channels and are coordinated by eleven O atoms in form of an irregular polyhedron. The Si-O(br) (bridging O atom, at site symmetry m..) bond length, the Si-O(nbr) (non-bridging O atoms) bond lengths, and the Si-O-Si angle within the Si(2)O(7) unit are in marked contrast to the corresponding values determined in the previous study [Krivovichev et al. (2004 ▶). N. Jb. Miner. Mh. pp. 373-384].

  12. Controlling ferromagnetism of (In,Fe)As semiconductors by electron doping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dang Vu, Nguyen; Fukushima, Tetsuya; Katayama-Yoshida, Hiroshi

    2014-02-21

    Based on experimental results, using the Korringa-Kohn-Rostoker coherent potential approximation (KKR-CPA) method and Monte Carlo simulation, we study the mechanism of ferromagnetic behavior of (In,Fe)As. We show that with doped Be atoms occupying in interstitial sites, chemical pair interactions between atoms and magnetic exchange interactions between Fe atoms change due to electron concentration. Therefore, by controlling the doping process, magnetic behavior of (In,Fe)As is controlled and ferromagnetism is observed in this semiconductor.

  13. Achievement of high coercivity in sintered R-Fe-B magnets based on misch-metal by dual alloy method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niu, E, E-mail: niue@aphy.iphy.ac.cn; Wang, Zhen-Xi; Beijing Zhong Ke San Huan Research, No.10 Chuangxin Road, Changping District, Beijing 102200

    2014-03-21

    The R-Fe-B (R, rare earth) sintered magnets prepared with different ratio of alloys of MM-Fe-B (MM, misch-metal) and Nd-Fe-B by dual alloy method were investigated. As expected, the high ratio of MM-Fe-B alloy degrades the hard magnetic properties heavily with intrinsic coercivity lower than 5 kOe. When the atomic ratio MM/R ≤ 21.5% the magnetic properties can reach a practical level of B{sub r} ≥ 12.1 kGs, H{sub cj} ≥ 10.7 kOe, and (BH){sub max} ≥ 34.0 MGOe. And the effect of H{sub cj} enhancement by the grain boundary diffusion process is obvious when MM/R ≤ 21.5%. It is revealed that the decrement of intrinsic magnetic properties of R{sub 2}Fe{submore » 14}B matrix phase is not the main reason of the degradation of the magnets with high MM ratio. The change of deteriorated microstructure together with phase component plays fundamental roles in low H{sub cj}. In high MM ratio magnets, (a) after annealing, Ce atoms inside main phase are inclined to be segregated in the outer layer of the main phase grains; (b) there is no thin layer of Ce-rich phase as an analogue of Nd-rich phase to separate main phase grains; (c) excessive Ce tends to form CeFe{sub 2} grains.« less

  14. Statistical model and first-principles simulation on concentration of HenV cluster and He bubble formation in α-Fe and W

    NASA Astrophysics Data System (ADS)

    Liu, Yue-Lin; Yu, Yang; Dai, Zhen-Hong

    2015-01-01

    Using first-principles calculations, we investigate the stabilities of He and Hen-vacancy (HenV) clusters in α-Fe and W. Vacancy formation energies are 2.08 eV in α-Fe and 3.11 eV in W, respectively. Single He in both α-Fe and W prefers to occupy the tetrahedral interstitial site. We recalculated the He solution energy considering the effect of zero-point energy (ZPE). The ZPEs of He in α-Fe and W at the tetrahedral (octahedral) interstitial site are 0.072 eV (0.031 eV) and 0.078 eV (0.034 eV), respectively. The trapping energies of single He at vacancy in α-Fe and W are -2.39 eV and -4.55 eV, respectively. By sequentially adding He into vacancy, a monovacancy trap up to 10 He atoms distributing in the vacancy vicinity. Based on the above results combined with statistical model, we evaluate the concentrations of all relevant HenV clusters as a function of He chemical potential. The critical HenV concentration is found to be ∼10-40 (atomic) at the critical temperature T = 600 K in α-Fe and T = 1600 K in W, respectively. Beyond the critical HenV concentrations, considerable HenV aggregate to form HenVm clusters. By further growing of HenVm, the HenVm clusters grow bigger resulting in the larger He bubble formation.

  15. An atom probe perspective on phase separation and precipitation in duplex stainless steels

    NASA Astrophysics Data System (ADS)

    Guo, Wei; Garfinkel, David A.; Tucker, Julie D.; Haley, Daniel; Young, George A.; Poplawsky, Jonathan D.

    2016-06-01

    Three-dimensional chemical imaging of Fe-Cr alloys showing Fe-rich (α)/Cr-rich (α‧) phase separation is reported using atom probe tomography techniques. The extent of phase separation, i.e., amplitude and wavelength, has been quantitatively assessed using the Langer-Bar-on-Miller, proximity histogram, and autocorrelation function methods for two separate Fe-Cr alloys, designated 2101 and 2205. Although the 2101 alloy possesses a larger wavelength and amplitude after annealing at 427 °C for 100-10 000 h, it exhibits a lower hardness than the 2205 alloy. In addition to this phase separation, ultra-fine Ni-Mn-Si-Cu-rich G-phase precipitates form at the α/α‧ interfaces in both alloys. For the 2101 alloy, Cu clusters act to form a nucleus, around which a Ni-Mn-Si shell develops during the precipitation process. For the 2205 alloy, the Ni and Cu atoms enrich simultaneously and no core-shell chemical distribution was found. This segregation phenomenon may arise from the exact Ni/Cu ratio inside the ferrite. After annealing for 10 000 h, the number density of the G-phase within the 2205 alloy was found to be roughly one order of magnitude higher than in the 2101 alloy. The G-phase precipitates have an additional deleterious effect on the thermal embrittlement, as evaluated by the Ashby-Orowan equation, which explains the discrepancy between the hardness and the rate of phase separation with respect to annealing time (Gladman T 1999 Mater. Sci. Tech. Ser. 15 30-36). ).

  16. Electrical transport properties in Fe-Cr nanocluster-assembled granular films

    NASA Astrophysics Data System (ADS)

    Wang, Xiong-Zhi; Wang, Lai-Sen; Zhang, Qin-Fu; Liu, Xiang; Xie, Jia; Su, A.-Mei; Zheng, Hong-Fei; Peng, Dong-Liang

    2017-09-01

    The Fe100-xCrx nanocluster-assembled granular films with Cr atomic fraction (x) ranging from 0 to 100 were fabricated by using a plasma-gas-condensation cluster deposition system. The TEM characterization revealed that the uniform Fe clusters were coated with a Cr layer to form a Fe-Cr core-shell structure. Then, the as-prepared Fe100-xCrx nanoclusters were randomly assembled into a granular film in vacuum environments with increasing the deposition time. Because of the competition between interfacial resistance and shunting effect of Cr layer, the room temperature resistivity of the Fe100-xCrx nanocluster-assembled granular films first increased and then decreased with increasing the Cr atomic fraction (x), and revealed a maximum of 2 × 104 μΩ cm at x = 26 at.%. The temperature-dependent longitudinal resistivity (ρxx), magnetoresistance (MR) effect and anomalous Hall effect (AHE) of these Fe100-xCrx nanocluster-assembled granular films were also studied systematically. As the x increased from 0 to 100, the ρxx of all samples firstly decreased and then increased with increasing the measuring temperature. The dependence of ρxx on temperature could be well addressed by a mechanism incorporated for the fluctuation-induced-tunneling (FIT) conduction process and temperature-dependent scattering effect. It was found that the anomalous Hall effect (AHE) had no legible scaling relation in Fe100-xCrx nanocluster-assembled granular films. However, after deducting the contribution of tunneling effect, the scaling relation was unambiguous. Additionally, the Fe100-xCrx nanocluster-assembled granular films revealed a small negative magnetoresistance (MR), which decreased with the increase of x. The detailed physical mechanism of the electrical transport properties in these Fe100-xCrx nanocluster-assembled granular films was also studied.

  17. Technetium incorporation into goethite (α-FeOOH): An atomic-scale investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Frances N.; Taylor, Christopher D.; Um, Wooyong

    2015-11-17

    During the processing of low-activity radioactive waste to generate solid waste forms (e.g., glass), technetium-99 (Tc) is of concern because of its volatility. A variety of materials are under consideration to capture Tc from waste streams, including the iron oxyhydroxide, goethite (α-FeOOH), which was experimentally shown to sequester Tc(IV). This material could ultimately be incorporated into glass or other low-temperature waste form matrices. However, questions remain regarding the incorporation mechanism for Tc(IV) in goethite, which has implications for predicting the long-term stability of Tc in waste forms under changing conditions. Here, quantum-mechanical calculations were used to evaluate the energy ofmore » five different charge-compensated Tc(IV) incorporation scenarios in goethite. The two most stable incorporation mechanisms involve direct substitution of Tc(IV) onto Fe(III) lattice sites and charge balancing either by removing one nearby H+ (i.e., within 5 Å), or by creating an Fe(III) vacancy when substituting 3 Tc(IV) for 4 Fe(III), with the former being preferred over the latter relative to gas-phase ions. When corrections for hydrated references phases are applied, the Fe(III)-vacancy mechanism becomes more energetically competitive. Calculated incorporation energies and optimized bond-lengths are presented. Proton movement is observed to satisfy under-coordinated bonds surrounding vacancies in the goethite structure.« less

  18. Local Energies and Energy Fluctuations — Applied to the High Entropy Alloy CrFeCoNi

    NASA Astrophysics Data System (ADS)

    Fukushima, Tetsuya; Katayama-Yoshida, Hiroshi; Sato, Kazunori; Ogura, Masako; Zeller, Rudolf; Dederichs, Peter H.

    2017-11-01

    High entropy alloys show a variety of fascinating properties like high hardness, wear resistance, corrosion resistance, etc. They are random solid solutions of many components with rather high concentrations. We perform ab-initio calculations for the high entropy alloy CrFeCoNi, which equal concentration of 25% for each element. By the KKRnano program package, which is based on an order-N screened Korringa-Kohn-Rostoker Green's function method, we consider a face-centered cubic (FCC) supercell with 1372 randomly distributed elements, and in addition also smaller supercells with 500 and 256 atoms. It is found from our calculations that the local moments of the Cr atoms show a large environmental variation, ranging from -1.70 μB to +1.01 μB with an average of about -0.51 μB. We present a new method to calculate "local energies" of all atoms. This is based on the partitioning of the whole space into Voronoi cells and allows to calculate the energetic contribution of each atomic cell to the total energy of the supercell. The supercell calculations show very large variations of the local energies, analogous to the variations of the local moments. This shows that the random solid solution is not stable and has a tendency to form an L12-structure with the Cr-atoms ordered at the corner of the cube and the elements Fe, Co, and Ni randomly distributed on the three other FCC sublattices. For this structure the variation of the local moments are much smaller.

  19. Local configurations and atomic intermixing in as-quenched and annealed Fe1-xCrx and Fe1-xMox ribbons

    NASA Astrophysics Data System (ADS)

    Stanciu, A. E.; Greculeasa, S. G.; Bartha, C.; Schinteie, G.; Palade, P.; Kuncser, A.; Leca, A.; Filoti, G.; Birsan, A.; Crisan, O.; Kuncser, V.

    2018-04-01

    Local atomic configuration, phase composition and atomic intermixing in Fe-rich Fe1-xCrx and Fe1-xMox ribbons (x = 0.05, 0.10, 0.15), of potential interest for high-temperature applications and nuclear devices, are investigated in this study in relation to specific processing and annealing routes. The Fe-based thin ribbons have been prepared by induction melting, followed by melt spinning and further annealed in He at temperatures up to 1250 °C. The complex structural, compositional and atomic configuration characterisation has been performed by means of X-ray diffraction (XRD), transmission Mössbauer spectroscopy and differential scanning calorimetry (TG-DSC). The XRD analysis indicates the formation of the desired solid solutions with body-centred cubic (bcc) structure in the as-quenched state. The Mössbauer spectroscopy results have been analysed in terms of the two-shell model. The distribution of Cr/Mo atoms in the first two coordination spheres is not homogeneous, especially after annealing, as supported by the short-range order parameters. In addition, high-temperature annealing treatments give rise to oxidation of Fe (to haematite, maghemite and magnetite) at the surface of the ribbons. Fe1-xCrx alloys are structurally more stable than the Mo counterpart under annealing at 700 °C. Annealing at 1250 °C in He enhances drastically the Cr clustering around Fe nuclei.

  20. Local ordering and magnetism in Ga{sub 0.9}Fe{sub 3.1}N

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burghaus, Jens; Sougrati, Moulay T., E-mail: moulay-tahar.sougrati@univ-montp2.fr; Moechel, Anne

    Prior investigations of the ternary nitride series Ga{sub 1-x}Fe{sub 3+x}N (0{<=}x{<=}1) have indicated a transition from ferromagnetic {gamma}'-Fe{sub 4}N to antiferromagnetic 'GaFe{sub 3}N'. The ternary nitride 'GaFe{sub 3}N' has been magnetically and spectroscopically reinvestigated in order to explore the weakening of the ferromagnetic interactions through the gradual incorporation of gallium into {gamma}'-Fe{sub 4}N. A hysteretic loop at RT reveals the presence of a minority phase of only 0.1-0.2 at%, in accord with the sound two-step synthesis. The composition of the gallium-richest phase 'GaFe{sub 3}N' was clarified by Prompt Gamma-ray Activation Analysis and leads to the berthollide formula Ga{sub 0.91(1)}Fe{sub 3.09(10)}N{submore » 1.05(7)}. Magnetic measurements indicate a transition around 8 K, further supported by Moessbauer spectral data. The weakening of the ferromagnetic coupling through an increasing gallium concentration is explained by a simple Stoner argument. In Ga{sub 0.9}Fe{sub 3.1}N, the presence of iron on the gallium site affects the magnetism by the formation of 13-atom iron clusters. - Graphical Abstract: The crystal structure of GaFe{sub 3}N with green nitrogen atoms in the very center, red iron atoms at the face centers, and gray gallium atoms at the corner positions. Highlights: > Almost phase-pure synthesis of Ga{sub 0.9}Fe{sub 3.1}N. > Prompt gamma-ray activation analysis yields precise composition. > Magnetic ordering of the facial Fe atoms at the lowest temperatures. > Moessbauer spectroscopy suggests percolation or RKKY-type interaction. > Fe{sub 13} clusters due to berthollide character.« less

  1. Structural characterization of a non-heme iron active site in zeolites that hydroxylates methane

    DOE PAGES

    Snyder, Benjamin E. R.; Bottger, Lars H.; Bols, Max L.; ...

    2018-04-02

    Iron-containing zeolites exhibit unprecedented reactivity in the low-temperature hydroxylation of methane to form methanol. Reactivity occurs at a mononuclear ferrous active site, α-Fe(II), that is activated by N 2O to form the reactive intermediate α-O. This has been defined as an Fe(IV)=O species. Using nuclear resonance vibrational spectroscopy coupled to X-ray absorption spectroscopy, we probe the bonding interaction between the iron center, its zeolite lattice-derived ligands, and the reactive oxygen. α-O is found to contain an unusually strong Fe(IV)=O bond resulting from a constrained coordination geometry enforced by the zeolite lattice. As a result, density functional theory calculations clarify howmore » the experimentally determined geometric structure of the active site leads to an electronic structure that is highly activated to perform H-atom abstraction.« less

  2. Structural characterization of a non-heme iron active site in zeolites that hydroxylates methane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snyder, Benjamin E. R.; Bottger, Lars H.; Bols, Max L.

    Iron-containing zeolites exhibit unprecedented reactivity in the low-temperature hydroxylation of methane to form methanol. Reactivity occurs at a mononuclear ferrous active site, α-Fe(II), that is activated by N 2O to form the reactive intermediate α-O. This has been defined as an Fe(IV)=O species. Using nuclear resonance vibrational spectroscopy coupled to X-ray absorption spectroscopy, we probe the bonding interaction between the iron center, its zeolite lattice-derived ligands, and the reactive oxygen. α-O is found to contain an unusually strong Fe(IV)=O bond resulting from a constrained coordination geometry enforced by the zeolite lattice. As a result, density functional theory calculations clarify howmore » the experimentally determined geometric structure of the active site leads to an electronic structure that is highly activated to perform H-atom abstraction.« less

  3. Effects of Pd substitution on the thermoelectric and electronic properties of delafossite Cu{sub 1−x}Pd{sub x}FeO{sub 2} (x=0.01, 0.03 and 0.05)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruttanapun, Chesta, E-mail: chesta.ruttanapun@gmail.com

    Cu{sub (1−x)}Pd{sub (x)}FeO{sub 2} (x=0.01, 0.03 and 005) delafossite was prepared by solid state reactions and was calcined/sintered at 1050 °C. The effect of Pd{sup 2+} substitution for the Cu{sup 1+} sites on the thermoelectric and electronic properties of Cu{sub (1−x)}Pd{sub (x)}FeO{sub 2} were investigated. The crystal structure, oxygen decomposition, thermoelectric and electronic properties were characterized by X-ray diffraction, thermogravimetric analysis, X-ray photoelectron spectroscopy (XPS), Seebeck coefficient, electrical conductivity and thermal conductivity measurements. The characterization showed that Cu{sub (1−x)}Pd{sub (x)}FeO{sub 2} formed a hexagonal delafossite structure with R3−m symmetry. The existence of Pd{sup 2+}, Cu{sup 1+}, Cu{sup 2+}, Fe{sup 3+},more » Fe{sup 4+} and O was revealed from the XPS results. Confirmation of Pd{sup 2+} substitution for the Cu{sup 1+} sites occurred by increasing the c-axis in the lattice parameter with a Pd content. The O content intercalated at the center of the triangular Cu acted as a support to produce Cu{sup 2+} ions and was reduced with an increasing Pd content. The mixed valencies of Cu{sup 1+}/Cu{sup 2+} and Cu{sup 1+}/Pd{sup 2+} in the Cu layer changed the electrical conductivity and the Fe{sup 3+}/Fe{sup 4+} mixed valencies in the FeO{sub 6} layer caused the Seebeck coefficient to increase. Both the electrical conductivity and Seebeck coefficient for Pd contents of x=0.01 and 0.03 were higher than that of non-doped CuFeO{sub 2}. The low thermal conductivity of Cu{sub (1−x)}Pd{sub (x)}FeO{sub 2} resulted from the substitution of Pd, which has a large atomic mass, into structure. The Jonker plot indicated that the electronic properties displayed a degenerate density of states and that Cu{sub (1−x)}Pd{sub (x)}FeO{sub 2} was a semiconductor. A high ZT value of 0.055 was obtained for a Pd content of 0.03 at 950 K. The Pd{sup 2+} substitution for the Cu{sup 1+} sites influenced the thermoelectric and electronic properties of the delafossite Cu{sub (1−x)}Pd{sub (x)}FeO{sub 2} samples. - Graphical abstract: Cu{sub (1−x)}Pd{sub (x)}FeO{sub 2} (x=0.01, 0.03 and 005) delafossite was prepared by solid state reactions. The characterization showed that Cu{sub (1−x)}Pd{sub (x)}FeO{sub 2} formed a hexagonal delafossite structure with R3−m symmetry. The existence of Pd{sup 2+}, Cu{sup 1+}, Cu{sup 2+}, Fe{sup 3+}, Fe{sup 4+} and O was revealed from the XPS results. The O content intercalated at the center of the triangular Cu acted as a support to produce Cu{sup 2+} ions and was reduced with an increasing Pd content. The mixed valencies of Cu{sup 1+}/Cu{sup 2+} and Cu{sup 1+}/Pd{sup 2+} in the Cu layer changed the electrical conductivity and the Fe{sup 3+}/Fe{sup 4+} mixed valencies in the FeO{sub 6} layer caused the Seebeck coefficient to increase. Both the electrical conductivity and Seebeck coefficient for Pd contents of x=0.01 and 0.03 were higher than that of non-doped CuFeO{sub 2}. The low thermal conductivity of Cu{sub (1−x)}Pd{sub (x)}FeO{sub 2} resulted from the substitution of Pd, which has a large atomic mass, into structure. A high ZT value of 0.055 was obtained for a Pd content of 0.03 at 950 K. The Pd{sup 2+} substitution for the Cu{sup 1+} sites influenced the thermoelectric and electronic properties of the delafossite Cu{sub (1−x)}Pd{sub (x)}FeO{sub 2} samples. - Highlights: • New compound of Cu{sub 1−x}Pd{sub x}FeO{sub 2} (x=0.01, 0.03 and 0.05) forms phase of delafossite. • The compound displays p-type thermoelectric materials. • The Pd-substituted for Cu{sup 1+} sites forms Pd{sup 2+}. • Mixed valencies of Cu{sup +}/Cu{sup 2+}, Cu{sup +}/Pd{sup 2+} and Fe{sup 3+}/Fe{sup 4+} appear in the compound. • Large atomic mass of Pd-substituted causes low thermal conductivity.« less

  4. Spin-polarized currents generated by magnetic Fe atomic chains.

    PubMed

    Lin, Zheng-Zhe; Chen, Xi

    2014-06-13

    Fe-based devices are widely used in spintronics because of high spin-polarization and magnetism. In this work, freestanding Fe atomic chains, the thinnest wires, were used to generate spin-polarized currents due to the spin-polarized energy bands. By ab initio calculations, the zigzag structure was found to be more stable than the wide-angle zigzag structure and had a higher ratio of spin-up and spin-down currents. By our theoretical prediction, Fe atomic chains have a sufficiently long thermal lifetime only at T ≦̸ 150 K, while C atomic chains are very stable even at T = 1000 K. This means that the spintronic devices based on Fe chains could work only at low temperatures. A system constructed by a short Fe chain sandwiched between two graphene electrodes could be used as a spin-polarized current generator, while a C chain could not be used in this way. The present work may be instructive and meaningful to further practical applications based on recent technical developments on the preparation of metal atomic chains (Proc. Natl. Acad. Sci. USA 107 9055 (2010)).

  5. Ferromagnetic properties of manganese doped iron silicide

    NASA Astrophysics Data System (ADS)

    Ruiz-Reyes, Angel; Fonseca, Luis F.; Sabirianov, Renat

    We report the synthesis of high quality Iron silicide (FeSi) nanowires via Chemical Vapor Deposition (CVD). The materials exhibits excellent magnetic response at room temperature, especially when doped with manganese showing values of 2.0 X 10-04 emu for the FexMnySi nanowires. SEM and TEM characterization indicates that the synthesized nanowires have a diameter of approximately 80nm. MFM measurements present a clear description of the magnetic domains when the nanowires are doped with manganese. Electron Diffraction and XRD measurements confirms that the nanowires are single crystal forming a simple cubic structure with space group P213. First-principle calculations were performed on (111) FeSi surface using the Vienna ab initio simulation package (VASP). The exchange correlations were treated under the Ceperley-Alder (CA) local density approximation (LDA). The Brillouin Zone was sampled with 8x8x1 k-point grid. A total magnetic moment of about 10 μB was obtained for three different surface configuration in which the Iron atom nearest to the surface present the higher magnetization. To study the effect of Mn doping, Fe atom was replaced for a Mn. Stronger magnetization is presented when the Mn atom is close to the surface. The exchange coupling constant have been evaluated calculating the energy difference between the ferromagnetic and anti-ferromagnetic configurations.

  6. The formation of magnetic silicide Fe3Si clusters during ion implantation

    NASA Astrophysics Data System (ADS)

    Balakirev, N.; Zhikharev, V.; Gumarov, G.

    2014-05-01

    A simple two-dimensional model of the formation of magnetic silicide Fe3Si clusters during high-dose Fe ion implantation into silicon has been proposed and the cluster growth process has been computer simulated. The model takes into account the interaction between the cluster magnetization and magnetic moments of Fe atoms random walking in the implanted layer. If the clusters are formed in the presence of the external magnetic field parallel to the implanted layer, the model predicts the elongation of the growing cluster in the field direction. It has been proposed that the cluster elongation results in the uniaxial magnetic anisotropy in the plane of the implanted layer, which is observed in iron silicide films ion-beam synthesized in the external magnetic field.

  7. Iron films deposited on porous alumina substrates

    NASA Astrophysics Data System (ADS)

    Yamada, Yasuhiro; Tanabe, Kenichi; Nishida, Naoki; Kobayashi, Yoshio

    2016-12-01

    Iron films were deposited on porous alumina substrates using an arc plasma gun. The pore sizes (120 - 250 nm) of the substrates were controlled by changing the temperature during the anodic oxidation of aluminum plates. Iron atoms penetrated into pores with diameters of less than 160 nm, and were stabilized by forming γ-Fe, whereas α-Fe was produced as a flat plane covering the pores. For porous alumina substrates with pore sizes larger than 200 nm, the deposited iron films contained many defects and the resulting α-Fe had smaller hyperfine magnetic fields. In addition, only a very small amount of γ-Fe was obtained. It was demonstrated that the composition and structure of an iron film can be affected by the surface morphology of the porous alumina substrate on which the film is grown.

  8. A Framework to Learn Physics from Atomically Resolved Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlcek, L.; Maksov, A.; Pan, M.

    Here, we present a generalized framework for physics extraction, i.e., knowledge, from atomically resolved images, and show its utility by applying it to a model system of segregation of chalcogen atoms in an FeSe 0.45Te 0.55 superconductor system. We emphasize that the framework can be used for any imaging data for which a generative physical model exists. Consider that a generative physical model can produce a very large number of configurations, not all of which are observable. By applying a microscope function to a sub-set of this generated data, we form a simulated dataset on which statistics can be computed.

  9. Atomic-absorption determination of rhodium in chromite concentrates

    USGS Publications Warehouse

    Schnepfe, M.M.; Grimaldi, F.S.

    1969-01-01

    Rhodium is determined in chromite concentrates by atomic absorption after concentration either by co-precipitation with tellurium formed by the reduction of tellurite with tin(II) chloride or by fire assay into a gold bead. Interelement interferences in the atomic-absorption determination are removed by buffering the solutions with lanthanum sulphate (lanthanum concentration 1%). Substantial amounts of Ag, Al, Au, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ho, Hg, K, La, Mg, Mn, Mo, Na, Ni, Pb, Te, Ti, V, Y, Zn and platinum metals can be tolerated. A lower limit of approximately 0.07 ppm Rh can be determined in a 3-g sample. ?? 1969.

  10. Superoxide reductase from the syphilis spirochete Treponema pallidum: crystallization and structure determination using soft X-rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santos-Silva, Teresa; Trincão, José; Carvalho, Ana L.

    2005-11-01

    Superoxide reductase is a non-haem iron-containing protein involved in resistance to oxidative stress. The oxidized form of the protein has been crystallized and its three-dimensional structure solved. A highly redundant X-ray diffraction data set was collected on a rotating-anode generator using Cu Kα X-ray radiation. Four Fe atoms were located in the asymmetric unit corresponding to four protein molecules arranged as a dimer of homodimers. Superoxide reductase is a 14 kDa metalloprotein containing a catalytic non-haem iron centre [Fe(His){sub 4}Cys]. It is involved in defence mechanisms against oxygen toxicity, scavenging superoxide radicals from the cell. The oxidized form of Treponemamore » pallidum superoxide reductase was crystallized in the presence of polyethylene glycol and magnesium chloride. Two crystal forms were obtained depending on the oxidizing agents used after purification: crystals grown in the presence of K{sub 3}Fe(CN){sub 6} belonged to space group P2{sub 1} (unit-cell parameters a = 60.3, b = 59.9, c = 64.8 Å, β = 106.9°) and diffracted beyond 1.60 Å resolution, while crystals grown in the presence of Na{sub 2}IrCl{sub 6} belonged to space group C2 (a = 119.4, b = 60.1, c = 65.6 Å, β = 104.9°) and diffracted beyond 1.55 Å. A highly redundant X-ray diffraction data set from the C2 crystal form collected on a copper rotating-anode generator (λ = 1.542 Å) clearly defined the positions of the four Fe atoms present in the asymmetric unit by SAD methods. A MAD experiment at the iron absorption edge confirmed the positions of the previously determined iron sites and provided better phases for model building and refinement. Molecular replacement using the P2{sub 1} data set was successful using a preliminary trace as a search model. A similar arrangement of the four protein molecules could be observed.« less

  11. Magnetism of CrO overlayers on Fe(001)bcc surface: first principles calculations

    NASA Astrophysics Data System (ADS)

    Félix-Medina, Raúl Enrique; Leyva-Lucero, Manuel Andrés; Meza-Aguilar, Salvador; Demangeat, Claude

    2018-04-01

    Riva et al. [Surf. Sci. 621, 55 (2014)] as well as Calloni et al. [J. Phys.: Condens. Matter 26, 445001 (2014)] have studied the oxydation of Cr films deposited on Fe(001)bcc through low-energy electron diffraction, Auger electron spectroscopy and scanning tunneling microscopy. In the present work we perform a density functional approach within Quantum Expresso code in order to study structural and magnetic properties of CrO overlayers on Fe(001)bcc. The calculations are performed using DFT+U. The investigated systems include O/Cr/Fe(001)bcc, Cr/O/Fe(001)bcc, Cr0.25O0.75/Fe(001)bcc, as well as the O coverage Ox/Cr/Fe(001)bcc (x = 0.25; 0.50). We have found that the ordered CrO overlayer presents an antiferromagnetic coupling between Cr and Fe atoms. The O atoms are located closer to the Fe atoms of the surface than the Cr atoms. The ground state of the systems O/Cr/Fe(001)bcc and Cr/O/Fe(001)bcc corresponds to the O/Cr/Fe(001)bcc system with a magnetic coupling c(2 × 2). The effect of the O monolayer on Cr/Fe(001)bcc changes the ground state from p(1 × 1) ↓ to c(2 × 2) and produces an enhancement of the magnetic moments. The Ox overlayer on Cr/Fe(001)bcc produces an enhancement of the Cr magnetic moments.

  12. A density-functional study of the phase diagram of cementite-type (Fe,Mn)3C at absolute zero temperature.

    PubMed

    Von Appen, Jörg; Eck, Bernhard; Dronskowski, Richard

    2010-11-15

    The phase diagram of (Fe(1-x) Mn(x))(3)C has been investigated by means of density-functional theory (DFT) calculations at absolute zero temperature. The atomic distributions of the metal atoms are not random-like as previously proposed but we find three different, ordered regions within the phase range. The key role is played by the 8d metal site which forms, as a function of the composition, differing magnetic layers, and these dominate the physical properties. We calculated the magnetic moments, the volumes, the enthalpies of mixing and formation of 13 different compositions and explain the changes of the macroscopic properties with changes in the electronic and magnetic structures by means of bonding analyses using the Crystal Orbital Hamilton Population (COHP) technique. 2010 Wiley Periodicals, Inc.

  13. Morphological characteristics of mechanochemically synthesized Fe/Ti composites

    NASA Astrophysics Data System (ADS)

    Grigor'eva, T. F.; Kovaleva, S. A.; Kiseleva, T. Yu.; Vosmerikov, S. V.; Devyatkina, E. T.; Pastukhov, E. A.; Lyakhov, N. Z.

    2016-08-01

    The joint mechanical activation of chemically interacting iron and titanium has been studied by X-ray diffraction and atomic force microscopy. It is shown that chemically interacting metals Fe and Ti do not form any intermetallic compounds or solid solutions upon intense mechanical activation in a high-energy planetary mill. The products of mechanical activation are Fe/Ti mechanocomposites, in which titanium is distributed over the iron grain surface. An increase in the mechanical activation time leads to the agglomeration of powders and the formation of particles with a wide size range (5-25 μm). The iron crystallite sizes and the level of microstresses are reduced, indicating a decrease in the particle strength.

  14. 1,1'-Bis[bis-(4-meth-oxy-phen-yl)phosphan-yl]ferrocene.

    PubMed

    Ren, Xinfeng; Wang, Le; Li, Ya

    2012-07-01

    In the crystal structure of the title substituted ferrocene complex, [Fe(C₁₉H₁₈O₂P)₂], the Fe(II) atom lies on a twofold rotation axis, giving an eclipsed cyclo-penta-dienyl conformation with a ring centroid separation of 3.292 (7) Å and an Fe-C bond-length range of 2.0239 (15)-2.0521 (15) Å. In the ligand, the cyclo-penta-dienyl ring forms dihedral angles of 60.36 (6) and 82.93 (6)° with the two benzene rings of the diphenyl-phosphine group, while the dihedral angle between the benzene rings is 67.4 (5)°.

  15. Tuning the oxidative power of free iron-sulfur clusters.

    PubMed

    Lang, Sandra M; Zhou, Shaodong; Schwarz, Helmut

    2017-03-15

    The gas-phase reactions between a series of di-iron sulfur clusters Fe 2 S x + (x = 1-3) and the small alkenes C 2 H 4 , C 3 H 6 , and C 4 H 8 have been investigated by means of Fourier-transform ion-cyclotron resonance mass spectrometry. For all studied alkenes, the reaction efficiency is found to increase in the order Fe 2 S + < Fe 2 S 2 + < Fe 2 S 3 + . In particular, Fe 2 S + and Fe 2 S 2 + only form simple association products, whereas the sulfur-rich Fe 2 S 3 + is able to dehydrogenate propene and 2-butene via desulfurization of the cluster and formation of H 2 S. This indicates an increased propensity to induce oxidation reactions, i.e. oxidative power, of Fe 2 S 3 + that is attributed to an increased formal oxidation state of the iron atoms. Furthermore, the ability of Fe 2 S 3 + to activate and dissociate the C-H bonds of the alkenes is observed to increase with increasing size of the alkene and thus correlates with the alkene ionization energy.

  16. Enhanced Azo-Dyes Degradation Performance of Fe-Si-B-P Nanoporous Architecture

    PubMed Central

    Weng, Nan; Wang, Feng; Qin, Fengxiang; Tang, Wanying; Dan, Zhenhua

    2017-01-01

    Nanoporous structures were fabricated from Fe76Si9B10P5 amorphous alloy annealed at 773 K by dealloying in 0.05 M H2SO4 solution, as a result of preferential dissolution of α-Fe grains in form of the micro-coupling cells between α-Fe and cathodic residual phases. Nanoporous Fe-Si-B-P powders exhibit much better degradation performance to methyl orange and direct blue azo dyes compared with gas-atomized Fe76Si9B10P5 amorphous powders and commercial Fe powders. The degradation reaction rate constants of nanoporous powders are almost one order higher than those of the amorphous counterpart powders and Fe powders, accompanying with lower activation energies of 19.5 and 26.8 kJ mol−1 for the degradation reactions of methyl orange and direct blue azo dyes, respectively. The large surface area of the nanoporous structure, and the existence of metalloids as well as residual amorphous phase with high catalytic activity are responsible for the enhanced azo-dyes degradation performance of the nanoporous Fe-Si-B-P powders. PMID:28846622

  17. Kinetic Monte Carlo Study of Li Intercalation in LiFePO4.

    PubMed

    Xiao, Penghao; Henkelman, Graeme

    2018-01-23

    Even as a commercial cathode material, LiFePO 4 remains of tremendous research interest for understanding Li intercalation dynamics. The partially lithiated material spontaneously separates into Li-poor and Li-rich phases at equilibrium. Phase segregation is a surprising property of LiFePO 4 given its high measured rate capability. Previous theoretical studies, aiming to describe Li intercalation in LiFePO 4 , include both atomic-scale density functional theory (DFT) calculations of static Li distributions and entire-particle-scale phase field models, based upon empirical parameters, studying the dynamics of the phase separation. Little effort has been made to bridge the gap between these two scales. In this work, DFT calculations are used to fit a cluster expansion for the basis of kinetic Monte Carlo calculations, which enables long time scale simulations with accurate atomic interactions. This atomistic model shows how the phases evolve in Li x FePO 4 without parameters from experiments. Our simulations reveal that an ordered Li 0.5 FePO4 phase with alternating Li-rich and Li-poor planes along the ac direction forms between the LiFePO 4 and FePO 4 phases, which is consistent with recent X-ray diffraction experiments showing peaks associated with an intermediate-Li phase. The calculations also help to explain a recent puzzling experiment showing that LiFePO 4 particles with high aspect ratios that are narrower along the [100] direction, perpendicular to the [010] Li diffusion channels, actually have better rate capabilities. Our calculations show that lateral surfaces parallel to the Li diffusion channels, as well as other preexisting sites that bind Li weakly, are important for phase nucleation and rapid cycling performance.

  18. Reduced-temperature crystallization of thin amorphous Fe80B20 films studied via empirical modeling of extended x-ray absorption fine structure

    NASA Astrophysics Data System (ADS)

    Harris, V. G.; Oliver, S. A.; Ayers, J. D.; Das, B. N.; Koon, N. C.

    1996-04-01

    The evolution of the local atomic environment around Fe atoms in very thin (15 nm), amorphous, partially crystallized and fully crystallized films of Fe80B20 was studied using extended x-ray absorption fine structure (EXAFS) measurements. The relative atomic fraction of each crystalline phase present in the annealed samples was extracted from the Fe EXAFS data by a least-squares fitting procedure, using data collected from t-Fe3B, t-Fe2B, and α-Fe standards. The type and relative fraction of the crystallization products follows the trends previously measured in Fe80B20 melt-spun ribbons, except for the fact that crystallization temperatures are ≊200 K lower than those measured in bulk equivalents. This greatly reduced crystallization temperature may arise from the dominant role of surface nucleation sites in the crystallization of very thin amorphous films.

  19. Local oxidation using scanning probe microscope for fabricating magnetic nanostructures.

    PubMed

    Takemura, Yasushi

    2010-07-01

    Local oxidation technique using atomic force microscope (AFM) was studied. The local oxidation of ferromagnetic metal thin films was successfully performed by AFM under both contact and dynamic force modes. Modification of magnetic and electrical properties of magnetic devices fabricated by the AFM oxidation was achieved. Capped oxide layers deposited on the ferromagnetic metal films are advantageous for stable oxidation due to hydrophilic surface of oxide. The oxide layer is also expected to prevent magnetic devices from degradation by oxidation of ferromagnetic metal. As for modification of magnetic property, the isolated region of CoFe layer formed by nanowires of CoFe-oxide exhibited peculiar characteristic attributed to the isolated magnetization property and pinning of domain wall during magnetization reversal. Temperature dependence of current-voltage characteristic of the planar-type tunnel junction consisting of NiFe/NiFe-oxide/NiFe indicated that the observed current was dominated by intrinsic tunneling current at the oxide barrier.

  20. Superconducting and Magnetic Properties of Vanadium/iron Superlattices.

    NASA Astrophysics Data System (ADS)

    Wong, Hong-Kuen

    A novel ultrahigh vacuum evaporator was constructed for the preparation of superlattice samples. The thickness control was much better than an atomic plane. With this evaporator we prepared V/Fe superlattice samples on (0001) sapphire substrates with different thicknesses. All samples showed a good bcc(110) structure. Mossbauer experiments showed that the interface mixing extended a distance of about one atomic plane indicating an almost rectangular composition profile. Because of this we were able to prepare samples with layer thickness approaching one atomic plane. Even with ultrathin Fe layers, the samples are ferromagnetic, at least at lower temperatures. Superparamagnetism and spin glass states were not seen. In the absence of an external field, the magnetic moments lie close to the film plane. In addition to this shape anisotropy, there is some uniaxial anisotropy. No magnetic dead layers have been observed. The magnetic moments within the Fe layers vary little with the distance from the interfaces. At the interfaces the Fe moment is reduced and an antiparallel moment is induced on the vanadium atoms. It is observed that ultrathin Fe layers behave in a 2D fashion when isolated by sufficiently thick vanadium layers; however, on thinning the vanadium layers, a magnetic coupling between the Fe layers has been observed. We also studied the superconducting properties of V/Fe sandwiches and superlattices. In both cases, the Fe layer, a strong pair-breaker, suppresses the superconducting transition temperature consistent with the current knowledge of the magnetic proximity effect. For the sandwiches with thin (thick) vanadium layers, the temperature dependence of the upper critical fields is consistent with the simple theory for a 2D (3D) superconductor. For the superlattices, when the vanadium layer is on the order of the BCS coherence length and the Fe layer is only a few atomic planes thick, a 2D-3D crossover has been observed in the temperature dependence of the parallel upper critical field. This implies the coexistence of superconductivity and ferromagnetism. We observe three dimensional behavior for thinner Fe layers ((TURN)1 atomic plane) and two dimensional behavior for thicker Fe layers (greater than 10 atomic planes).

  1. Geometric and electronic structure contributions to function in non-heme iron enzymes.

    PubMed

    Solomon, Edward I; Light, Kenneth M; Liu, Lei V; Srnec, Martin; Wong, Shaun D

    2013-11-19

    Mononuclear non-heme Fe (NHFe) enzymes play key roles in DNA repair, the biosynthesis of antibiotics, the response to hypoxia, cancer therapy, and many other biological processes. These enzymes catalyze a diverse range of oxidation reactions, including hydroxylation, halogenation, ring closure, desaturation, and electrophilic aromatic substitution (EAS). Most of these enzymes use an Fe(II) site to activate dioxygen, but traditional spectroscopic methods have not allowed researchers to insightfully probe these ferrous active sites. We have developed a methodology that provides detailed geometric and electronic structure insights into these NHFe(II) active sites. Using these data, we have defined a general mechanistic strategy that many of these enzymes use: they control O2 activation (and limit autoxidation and self-hydroxylation) by allowing Fe(II) coordination unsaturation only in the presence of cosubstrates. Depending on the type of enzyme, O2 activation either involves a 2e(-) reduced Fe(III)-OOH intermediate or a 4e(-) reduced Fe(IV)═O intermediate. Nuclear resonance vibrational spectroscopy (NRVS) has provided the geometric structure of these intermediates, and magnetic circular dichroism (MCD) has defined the frontier molecular orbitals (FMOs), the electronic structure that controls reactivity. This Account emphasizes that experimental spectroscopy is critical in evaluating the results of electronic structure calculations. Therefore these data are a key mechanistic bridge between structure and reactivity. For the Fe(III)-OOH intermediates, the anticancer drug activated bleomycin (BLM) acts as the non-heme Fe analog of compound 0 in heme (e.g., P450) chemistry. However BLM shows different reactivity: the low-spin (LS) Fe(III)-OOH can directly abstract a H atom from DNA. The LS and high-spin (HS) Fe(III)-OOHs have fundamentally different transition states. The LS transition state goes through a hydroxyl radical, but the HS transition state is activated for EAS without O-O cleavage. This activation is important in one class of NHFe enzymes that utilizes a HS Fe(III)-OOH intermediate in dioxygenation. For Fe(IV)═O intermediates, the LS form has a π-type FMO activated for attack perpendicular to the Fe-O bond. However, the HS form (present in the NHFe enzymes) has a π FMO activated perpendicular to the Fe-O bond and a σ FMO positioned along the Fe-O bond. For the NHFe enzymes, the presence of π and σ FMOs enables enzymatic control in determining the type of reactivity: EAS or H-atom extraction for one substrate with different enzymes and halogenation or hydroxylation for one enzyme with different substrates.

  2. Single Atomic Iron Catalysts for Oxygen Reduction in Acidic Media: Particle Size Control and Thermal Activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hanguang; Hwang, Sooyeon; Wang, Maoyu

    To significantly reduce the cost of proton exchange membrane (PEM) fuel cells, current Pt must be replaced by platinum-metal-group (PGM)-free catalysts for the oxygen reduction reaction (ORR) in acid. We report here a new class of high-performance atomic iron dispersed carbon catalysts through controlled chemical doping of iron ions into zinc-zeolitic imidazolate framework (ZIF), a type of metal-organic framework (MOF). The novel synthetic chemistry enables accurate size control of Fe-doped ZIF catalyst particles with a wide range from 20 to 1000 nm without changing chemical properties, which provides a great opportunity to increase the density of active sites that ismore » determined by the particle size. We elucidated the active site formation mechanism by correlating the chemical and structural changes with thermal activation process for the conversion from Fe-N4 complex containing hydrocarbon networks in ZIF to highly active FeNx sites embedded into carbon. A temperature of 800oC was identified as the critical point to start forming pyridinic nitrogen doping at the edge of the graphitized carbon planes. Further increasing heating temperature to 1100oC leads to increase of graphitic nitrogen, generating possible synergistic effect with FeNx sites to promote ORR activity. The best performing catalyst, which has well-defined particle size around 50 nm and abundance of atomic FeNx sites embedded into carbon structures, achieve a new performance milestone for the ORR in acid including a half-wave potential of 0.85 V vs RHE and only 20 mV loss after 10,000 cycles in O2 saturated H2SO4 electrolyte. The new class PGM-free catalyst with approaching activity to Pt holds great promise for future PEM fuel cells.« less

  3. Fabrication of ordered Fe–Ni nitride film with equiatomic Fe/Ni ratio

    NASA Astrophysics Data System (ADS)

    Takata, Fumiya; Ito, Keita; Suemasu, Takashi

    2018-05-01

    We successfully grew a single-phase tetragonal FeNiN film with an equiatomic ratio of Fe, Ni, and N on a MgO(001) substrate by molecular beam epitaxy. We then demonstrated the formation of Fe2Ni2N films by extracting N atoms from the FeNiN film. These results suggested that Fe and Ni atoms in the Fe2Ni2N film were L10-ordered along the film plane direction because of the a-axis orientation growth of the FeNiN film on the MgO(001) substrate.

  4. Syntheses and characterization of elpasolite-type ammonium alkali metal hexafluorometallates(III)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mi Jinxiao; Key Laboratory of New Processing Technology for Nonferrous Metals and Materials; Luo Shuming

    Crystal structures of three fluorides (NH{sub 4}){sub 2}NaFeF{sub 6}, (Fe), (NH{sub 4}){sub 2}NaGaF{sub 6}, (Ga), and (NH{sub 4}){sub 2}NaCrF{sub 6}, (Cr), as well as a substituted compound [(NH{sub 4}){sub 1-x}K{sub x}]{sub 2}KAlF{sub 6} (x{approx}0.17), (Al), have been refined using single-crystal and powder X-ray diffraction techniques. All these four ammonium hexafluorides have a cubic elpasolite-type structure and crystallize in the space group Fm3-bar m with lattice constants a=8.483(3), 8.450 (3), 8.4472(2) and 8.724(3) A for compounds (Fe), (Ga), (Cr) and (Al), respectively. The effective ionic radius of the ammonium ion calculated from those compounds has a mean value of R=1.729 Amore » for CN=12. An ultraviolet-visible absorption spectrum of (NH{sub 4}){sub 2}NaCrF{sub 6}, measured at room temperature, gives a crystal field (Dq=1575 cm{sup -1}) and Racah parameters (B=758 cm{sup -1} and C=3374 cm{sup -1}). Abnormal anisotropic thermal parameters of fluorine atoms have been observed in the compound (Al), and interpreted to arise from four strong hydrogen bonds (F...H-N) that are distributed in a square form around each fluorine atom. - Graphical abstract: Abnormal anisotropic thermal parameters of fluorine atoms have been observed in the compound [(NH{sub 4}){sub 1-x}K{sub x}]{sub 2}KAlF{sub 6} (x{approx}0.17), and interpreted to arise from four strong hydrogen bonds (F...H-N) that are distributed in a square form around each fluorine atom. The endmembers' phase transitions at low temperature are believed to be caused by them.« less

  5. Local structures in mixed Li{sub x}Fe{sub 1−y}M{sub y}PO{sub 4} (M=Co, Ni) electrode materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jalkanen, K.; Lindén, J.; Karppinen, M., E-mail: maarit.karppinen@aalto.fi

    We employ {sup 57}Fe Mössbauer spectroscopy as a local tool to probe electrical environments of Fe{sup 2+} and Fe{sup 3+} at different lithiation (x) and cation-substitution (y) levels in Li{sub x}Fe{sub 1−y}M{sub y}PO{sub 4}/C (M=Co, Ni) Li-ion battery electrode materials. Upon delithiation the local environment of Fe{sup 3+} remains unaffected for the parent y=0 system due to the LiFePO{sub 4}/FePO{sub 4} phase separation, whereas for y>0 changes in the electrical environment are seen for Fe{sup 3+}. When the Fe{sup 2+}/Fe{sup 3+} redox couple is partially-delithiated, a decreasing quadrupole splitting value is observed for Fe{sup 3+} with increasing y, implying amore » more symmetric electrical environment. The increasing concentration of the Co{sup 2+}/Ni{sup 2+} substituent introduces increasing amounts of Li atoms in the Fe{sup 3+}-containing phase, and these nearest-neighbor Li atoms are suspected to cause the changes seen in the local environment of Fe{sup 3+}. - Graphical abstract: Local environment of iron in Li{sub x}Fe{sub 1−y}(Co/Ni){sub y}PO{sub 4} is studied by {sup 57}Fe Mössbauer spectroscopy at different lithiation (x) and cation-substitution (y) levels. - Highlights: • Local Fe environment in Li{sub x}Fe{sub 1−y}(Co/Ni){sub y}PO{sub 4} is studied by {sup 57}Fe Mössbauer spectroscopy. • Co/Ni-for-Fe substitution results in a more symmetric electrical environment for Fe{sup 3+}. • Due to presence of Co{sup 2+}/Ni{sup 2+}, Li atoms are introduced into the Fe{sup 3+}-containing phase. • These nearest-neighbor Li atoms are suggested to change the local Fe{sup 3+} environment.« less

  6. Cluster assembly in nitrogenase.

    PubMed

    Sickerman, Nathaniel S; Rettberg, Lee A; Lee, Chi Chung; Hu, Yilin; Ribbe, Markus W

    2017-05-09

    The versatile enzyme system nitrogenase accomplishes the challenging reduction of N 2 and other substrates through the use of two main metalloclusters. For molybdenum nitrogenase, the catalytic component NifDK contains the [Fe 8 S 7 ]-core P-cluster and a [MoFe 7 S 9 C-homocitrate] cofactor called the M-cluster. These chemically unprecedented metalloclusters play a critical role in the reduction of N 2 , and both originate from [Fe 4 S 4 ] clusters produced by the actions of NifS and NifU. Maturation of P-cluster begins with a pair of these [Fe 4 S 4 ] clusters on NifDK called the P*-cluster. An accessory protein NifZ aids in P-cluster fusion, and reductive coupling is facilitated by NifH in a stepwise manner to form P-cluster on each half of NifDK. For M-cluster biosynthesis, two [Fe 4 S 4 ] clusters on NifB are coupled with a carbon atom in a radical-SAM dependent process, and concomitant addition of a 'ninth' sulfur atom generates the [Fe 8 S 9 C]-core L-cluster. On the scaffold protein NifEN, L-cluster is matured to M-cluster by the addition of Mo and homocitrate provided by NifH. Finally, matured M-cluster in NifEN is directly transferred to NifDK, where a conformational change locks the cofactor in place. Mechanistic insights into these fascinating biosynthetic processes are detailed in this chapter. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  7. Electronic structure, magnetism, and optical properties of Fe2SiO4 fayalite at ambient and high pressures: A GGA+U study

    NASA Astrophysics Data System (ADS)

    Jiang, Xuefan; Guo, G. Y.

    2004-04-01

    The electronic structure, magnetism, and optical properties of Fe2SiO4 fayalite, the iron-rich end member of the olivine-type silicate, one of the most abundant minerals in Earth’s upper mantle, have been studied by density-functional theory within the generalized gradient approximation (GGA) with the on-site Coulomb energy U=4.5 eV taken into account (GGA+U). The stable insulating antiferromagnetic solution with an energy gap ˜1.49 eV and a spin magnetic moment of 3.65μB and an orbital magnetic moment of 0.044μB per iron atom is obtained. It is found that the gap opening in this fayalite results mainly from the strong on-site Coulomb interaction on the iron atoms. In this band structure, the top of valence bands consists mainly of the 3d orbitals of Fe2 atoms, and the bottom of the conduction bands is mainly composed of the 3d orbitals of Fe1 atoms. Therefore, since the electronic transition from the Fe2 3d to Fe1 3d states is weak, significant electronic transitions would appear only about 1 eV above the absorption edge when Fe-O orbitals are involved in the final states. In addition, our band-structure calculations can explain the observed phenomena including redshift near the absorption edge and the decrease of the electrical resistivity of Fe2SiO4 upon compression. The calculated Fe p partial density of states agree well with Fe K-edge x-ray absorption spectrum. The calculated lattice constants and atomic coordinates for Fe2SiO4 fayalite in orthorhombic structure are in good agreement with experiments.

  8. Introducing Fe2+ into Nickel-Iron Layered Double Hydroxide: Local Structure Modulated Water Oxidation Activity.

    PubMed

    Cai, Zhao; Zhou, Daojin; Wang, Maoyu; Bak, Seongmin; Wu, Yueshen; Wu, Zishan; Tian, Yang; Xiong, Xuya; Li, Yaping; Liu, Wen; Siahrostami, Samira; Kuang, Yun; Yang, Xiao-Qing; Duan, Haohong; Feng, Zhenxing; Wang, Hailiang; Sun, Xiaoming

    2018-06-11

    Exploring materials with regulated local structures and understanding how the atomic motifs govern the reactivity and durability of catalysts are a critical challenge for designing advanced catalysts. Here we report the tuning of the local atomic structure of nickel-iron layered double hydroxides (NiFe-LDHs) by partially substituting Ni2+ with Fe2+ to introduce Fe-O-Fe moieties. These Fe2+-containing NiFe-LDHs exhibit enhanced oxygen evolution reaction (OER) activity with an ultralow overpotential of 195 mV at the current density of 10 mA/cm2, which is among the best OER catalytic performance reported to date. In-situ X-ray absorption, Raman, and electrochemical analysis jointly reveal that the Fe-O-Fe motifs could stabilize high-valent metal sites at low overpotentials, thereby enhancing the OER activity. These results reveal the importance of tuning the local atomic structure for designing high efficiency electrocatalysts. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A Hexanuclear Iron(II) Layer with Two Square-Planar FeO4 Units Spanned by Tetrasiloxide Ligands: Mimicking of Minerals and Catalysts.

    PubMed

    Manicke, N; Hoof, S; Keck, M; Braun-Cula, B; Feist, M; Limberg, C

    2017-07-17

    A hexanuclear iron(II) siloxide complex has been prepared by reacting an incompletely condensed silsesquioxane first with NaOMe and then with Fe(OTf) 2 . In the process of product formation, the siloxane framework undergoes a transformation and it was shown that this happens already upon addition of base: Treatment of the ligand precursor with NaOMe leads to a completely condensed silsesquioxane cage with 12 Si atoms that is composed of 2 equiv of the tetrasiloxide ligands found in the product complex. Its iron centers form a two-dimensional array reminiscent of the situations found in minerals and two-dimensional oxide films caused by segregation of FeO x and silica. As the hexairon(II) assembly contains two high-spin square-planar FeO 4 units-suggested to represent the active sites in Fe-zeolites, which react with N 2 O to generate strongly oxidizing sites-it was treated with Me 3 NO. This led to the oxidation of two of the iron centers to the oxidation state +III and elimination of one iron ion, so that a pentanuclear, mixed valent iron siloxide was formed. All complexes were fully characterized.

  10. Assessment of phase constitution on the Al-rich region of rapidly solidified Al-Co-Fe-Cr alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, W., E-mail: witorw@gmail.com

    The formation of quasicrystalline approximants in rapidly solidified Al-Co-Fe-Cr alloys was investigated. Alloys of atomic composition Al{sub 71}Co{sub 13}Fe{sub 8}Cr{sub 8}, Al{sub 77}Co{sub 11}Fe{sub 6}Cr{sub 6} and Al{sub 76}Co{sub 19}Fe{sub 4}Cr{sub 1} were produced using melt spinning and arc melting methods and their microstructural characterization was carried out by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Up to the present there is no consensus in the literature regarding the formation of quasicrystalline phase or quasicrystalline approximants in the Al{sub 71}Co{sub 13}Fe{sub 8}Cr{sub 8} alloy. This work presents, for the first time, a detailed structural characterization of selected alloysmore » in the Al-Co-Fe-Cr system close to the atomic composition Al{sub 71}Co{sub 13}Fe{sub 8}Cr{sub 8}. The results indicated the samples to be composed, mostly, by two intermetallic phases, which are quaternary extensions of Al{sub 5}Co{sub 2} and Al{sub 13}Co{sub 4} and are quasicrystalline approximants. Although the Al{sub 5}Co{sub 2} phase has already been reported in the Al{sub 71}Co{sub 13}Fe{sub 8}Cr{sub 8} alloy, the presence of the monoclinic Al{sub 13}Co{sub 4} is now identified for the first time in the as cast state. In the binary Al-Co system a quasicrystalline phase is known to form in a rapidly solidified alloy with composition close to the monoclinic and orthorhombic Al{sub 13}Co{sub 4} phases. This binary quasicrystalline phase presents an average valence electron per atom (e/a) between 1.7 and 1.9; thus, in addition to the Al{sub 71}Co{sub 13}Fe{sub 8}Cr{sub 8} alloy, the compositions Al{sub 77}Co{sub 11}Fe{sub 6}Cr{sub 6} and Al{sub 76}Co{sub 19}Fe{sub 4}Cr{sub 1} were chosen to be within the region of formation of the quaternary extension of the Al{sub 13}Co{sub 4} phase and also within the (e/a) of 1.7 to 1.9. However, no quasicrystalline phase is present in any of the studied alloys. The Al-Co-Fe-Cr system, around the compositions studied, is composed of quaternary extensions of Al-Co intermetallic phases, which present solubility of Fe and Cr at Co atomic sites. - Highlights: •The Al rich region of the AlCoFeCr system is studied concerning phase formation on rapidly solidified alloys. •The alloys were composed mostly by quaternary extensions of Al-Co intermetallic phases. •Al{sub 5}Co{sub 2} and Al{sub 13}Co{sub 4} were the major phases observed in the alloys and are approximants of a quasicrystalline phase. •No quasicrystalline phase was observed in the Al{sub 71}Co{sub 13}Fe{sub 8}Cr{sub 8} composition.« less

  11. Distribution of Fe atom density in a dc magnetron sputtering plasma source measured by laser-induced fluorescence imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Shibagaki, K.; Nafarizal, N.; Sasaki, K.; Toyoda, H.; Iwata, S.; Kato, T.; Tsunashima, S.; Sugai, H.

    2003-10-01

    Magnetron sputtering discharge is widely used as an efficient method for thin film fabrication. In order to achieve the optimized fabrication, understanding of the kinetics in plasmas is essential. In the present work, we measured the density distribution of sputtered Fe atoms using laser-induced fluorescence imaging spectroscopy. A dc magnetron plasma source with a Fe target was used. An area of 20 × 2 mm in front of the target was irradiated by a tunable laser beam having a planar shape. The picture of laser-induced fluorescence on the laser beam was taken using an ICCD camera. In this way, we obtained the two-dimensional image of the Fe atom density. As a result, it has been found that the Fe atom density observed at a distance of several centimeters from the target is higher than that adjacent to the target, when the Ar gas pressure was relatively high. It is suggested from this result that some gas-phase production processes of Fe atoms are available in the plasma. This work has been performed under the 21st Century COE Program by the Ministry of Education, Culture, Sports, Science and Technology in Japan.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Ruiter, Graham; Carsch, Kurtis M.; Gul, Sheraz

    In this paper, we report the synthesis, characterization, and reactivity of [LFe 3(PhPz) 3OMn( sPhIO)][OTf] x (3: x=2; 4: x=3), where 4 is one of very few examples of iodosobenzene–metal adducts characterized by X-ray crystallography. Access to these rare heterometallic clusters enabled differentiation of the metal centers involved in oxygen atom transfer (Mn) or redox modulation (Fe). Specifically, 57Fe Mössbauer and X-ray absorption spectroscopy provided unique insights into how changes in oxidation state (Fe III 2Fe IIMn II vs. Fe III 3Mn II) influence oxygen atom transfer in tetranuclear Fe 3Mn clusters. Finally, in particular, a one-electron redox change atmore » a distal metal site leads to a change in oxygen atom transfer reactivity by ca. two orders of magnitude.« less

  13. Ab initio investigation of competing antiferromagnetic structures in low Si-content FeMn(PSi) alloy

    NASA Astrophysics Data System (ADS)

    Li, Guijiang; Eriksson, Olle; Johansson, Börje; Vitos, Levente

    2016-06-01

    The antiferromagnetic structures of a low Si-content FeMn(PSi) alloy were investigated by first principles calculations. One possible antiferromagnetic structure in supercell along the c-axis was revealed in FeMnP0.75Si0.25 alloy. It was found that atomic disorder occupation between Fe atom on 3f and Mn atoms on 3g sites is responsible for the formation of antiferromagnetic structures. Furthermore the magnetic competition and the coupling between possible AFM supercells along the c and a-axis can promote a non-collinear antiferromagnetic structure. These theoretical investigations help to deeply understand the magnetic order in FeMn(PSi) alloys and benefit to explore the potential magnetocaloric materials in Fe2P-type alloys.

  14. Iron cycling under oscillatory redox conditions: from observations to processes

    NASA Astrophysics Data System (ADS)

    Meile, C. D.; Chen, C.; Barcellos, D.; Wilmoth, J.; Thompson, A.

    2017-12-01

    Fe oxyhydroxides play a critical role in soils through their role as structural entities, their high sorption capacity, their role as terminal electron acceptors in the respiration of organic matter, as well as their potential to affect the reactivity of that organic matter. In soils that undergo repeated fluctuations in O2 concentrations, soil iron undergoes transformations between reduced and oxidized forms. The rate of Fe(II) oxidation can govern the nature of Fe(III) oxyhydroxides formed, and hence can affect rates of OC mineralization under suboxic conditions. But it remains unclear if this same behavior occurs in soils, where Fe(II) is mainly present as surface complexes. We documented the impact of such redox oscillations on iron cycling through targeted experiments, in which the magnitude and frequency of redox oscillations were varied systematically on soils from the Luquillo Critical Zone Observatory, Puerto Rico. Our observations demonstrated that higher O2 concentrations led to a faster Fe(II) oxidation and resulted in less crystalline Fe(III)-oxyhydroxides than lower O2 concentrations. We further studied the dynamics of iron phases by amending soil slurries with isotopically-labeled 57Fe(II) and developed a numerical model to quantify the individual processes. Our model showed a higher rate of Fe(III) reduction and increased sorption capacity following the oxidation of Fe(II) at high O2 levels than at low O2 levels, and revealed rapid Fe atom exchange between solution and solid phase. Concurrent measurements of CO2 in our oscillation experiments further illustrated the importance O2 fluctuations on coupled Fe-C dynamics.

  15. Molecular characterization of human xanthine oxidoreductase: the enzyme is grossly deficient in molybdenum and substantially deficient in iron-sulphur centres

    PubMed Central

    2005-01-01

    XOR (xanthine oxidoreductase) purified from human milk was shown to contain 0.04 atom of Mo and 0.09 molecule of molybdopterin/subunit. On the basis of UV/visible and CD spectra, the human enzyme was approx. 30% deficient in iron-sulphur centres. Mo(V) EPR showed the presence of a weak rapid signal corresponding to the enzyme of low xanthine oxidase activity and a slow signal indicating a significant content of desulpho-form. Resulphuration experiments, together with calculations based on enzymic activity and Mo content, led to an estimate of 50–60% desulpho-form. Fe/S EPR showed, in addition to the well-known Fe/S I and Fe/S II species, the presence of a third Fe/S signal, named Fe/S III, which appears to replace partially Fe/S I. Comparison is made with similarly prepared bovine milk XOR, which has approx. 15-fold higher enzymic activity and Mo content. Taken along with evidence of low Mo content in the milk of other mammals, these findings add further support to the idea that XOR protein plays a physiological role in milk (e.g. in secretion) equal in importance to its catalytic function as an enzyme. PMID:15679468

  16. X-ray emission spectroscopy evidences a central carbon in the nitrogenase iron-molybdenum cofactor.

    PubMed

    Lancaster, Kyle M; Roemelt, Michael; Ettenhuber, Patrick; Hu, Yilin; Ribbe, Markus W; Neese, Frank; Bergmann, Uwe; DeBeer, Serena

    2011-11-18

    Nitrogenase is a complex enzyme that catalyzes the reduction of dinitrogen to ammonia. Despite insight from structural and biochemical studies, its structure and mechanism await full characterization. An iron-molybdenum cofactor (FeMoco) is thought to be the site of dinitrogen reduction, but the identity of a central atom in this cofactor remains unknown. Fe Kβ x-ray emission spectroscopy (XES) of intact nitrogenase MoFe protein, isolated FeMoco, and the FeMoco-deficient nifB protein indicates that among the candidate atoms oxygen, nitrogen, and carbon, it is carbon that best fits the XES data. The experimental XES is supported by computational efforts, which show that oxidation and spin states do not affect the assignment of the central atom to C(4-). Identification of the central atom will drive further studies on its role in catalysis.

  17. Electron transfer and atom exchange between aqueous Fe(II) and structural Fe(III) in clays. Role in U and Hg(II) transformations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scherer, Michelle

    2016-08-31

    During this project, we investigated Fe electron transfer and atom exchange between aqueous Fe(II) and structural Fe(III) in clay minerals. We used selective chemical extractions, enriched Fe isotope tracer experiments, computational molecular modeling, and Mössbauer spectroscopy. Our findings indicate that structural Fe(III) in clay minerals is reduced by aqueous Fe(II) and that electron transfer occurs when Fe(II) is sorbed to either basal planes and edge OH-groups of clay mineral. Findings from highly enriched isotope experiments suggest that up to 30 % of the Fe atoms in the structure of some clay minerals exhanges with aqueous Fe(II). First principles calculations usingmore » a small polaron hopping approach suggest surprisingly fast electron mobility at room temperature in a nontronite clay mineral and are consistent with temperature dependent Mössbauer data Fast electron mobility suggests that electrons may be able to conduct through the mineral fast enough to enable exchange of Fe between the aqueous phase and clay mineral structure. over the time periods we observed. Our findings suggest that Fe in clay minerals is not as stable as previously thought.« less

  18. Neutralization by Metal Ions of the Toxicity of Sodium Selenide

    PubMed Central

    Dauplais, Marc; Lazard, Myriam; Blanquet, Sylvain; Plateau, Pierre

    2013-01-01

    Inert metal-selenide colloids are found in animals. They are believed to afford cross-protection against the toxicities of both metals and selenocompounds. Here, the toxicities of metal salt and sodium selenide mixtures were systematically studied using the death rate of Saccharomyces cerevisiae cells as an indicator. In parallel, the abilities of these mixtures to produce colloids were assessed. Studied metal cations could be classified in three groups: (i) metal ions that protect cells against selenium toxicity and form insoluble colloids with selenide (Ag+, Cd2+, Cu2+, Hg2+, Pb2+ and Zn2+), (ii) metal ions which protect cells by producing insoluble metal-selenide complexes and by catalyzing hydrogen selenide oxidation in the presence of dioxygen (Co2+ and Ni2+) and, finally, (iii) metal ions which do not afford protection and do not interact (Ca2+, Mg2+, Mn2+) or weakly interact (Fe2+) with selenide under the assayed conditions. When occurring, the insoluble complexes formed from divalent metal ions and selenide contained equimolar amounts of metal and selenium atoms. With the monovalent silver ion, the complex contained two silver atoms per selenium atom. Next, because selenides are compounds prone to oxidation, the stabilities of the above colloids were evaluated under oxidizing conditions. 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB), the reduction of which can be optically followed, was used to promote selenide oxidation. Complexes with cadmium, copper, lead, mercury or silver resisted dissolution by DTNB treatment over several hours. With nickel and cobalt, partial oxidation by DTNB occurred. On the other hand, when starting from ZnSe or FeSe complexes, full decompositions were obtained within a few tens of minutes. The above properties possibly explain why ZnSe and FeSe nanoparticles were not detected in animals exposed to selenocompounds. PMID:23342137

  19. Visible-light induced photocatalysis of AgCl@Ag/titanate nanotubes/nitrogen-doped reduced graphite oxide composites

    NASA Astrophysics Data System (ADS)

    Pan, Hongfei; Zhao, Xiaona; Fu, Zhanming; Tu, Wenmao; Fang, Pengfei; Zhang, Haining

    2018-06-01

    High recombination rate of photogenerated electron-hole pairs and relatively narrow photoresponsive range of TiO2-based photocatalysts are the remaining challenges for their practical applications. To address such challenges, photocatalysts consisting of AgCl covered Ag nanoparticles (AgCl@Ag), titanate nanotubes (TiNT), and nitrogen-doped reduced graphite oxide (rGON) are fabricated through alkaline hydrothermal process, followed by deposition and in situ surface-oxidation of silver nanoparticles. In the synthesized photocatalysts, the titanate nanotubes have average length of about 100 nm with inner diameters of about 5 nm and the size of the formed silver nanoparticles is in the range of 50-100 nm. The synthesized photocatalyst degrades almost all the model organic pollutant Rhodamine B in 35 min and remains 90% of photocatalytic efficiency after 5 degradation cycles under visible light irradiation. Since the oxidant FeCl3 applied for oxidation of surface Ag to AgCl is difficult to be completely removed due to the high adsorption capacity of TiNT and rGON, the effect of reside Fe atoms on photocatalytic activity is evaluated and the results reveal that the residue Fe atom only affect the initial photodegradation performance. Nevertheless, the results demonstrate that the formed composite catalyst is a promising candidate for antibiosis and remediation in aquatic environmental contamination.

  20. Self-assembly of endohedral metallofullerenes: a decisive role of cooling gas and metal–carbon bonding† †Electronic supplementary information (ESI) available: Additional information on metal–carbon bonding and MD simulations. See DOI: 10.1039/c5nr08645k Click here for additional data file.

    PubMed Central

    Deng, Qingming; Heine, Thomas

    2016-01-01

    The endohedral metallofullerene (EMF) self-assembly process in Sc/carbon vapor in the presence and absence of an inert cooling gas (helium) is systematically investigated using quantum chemical molecular dynamics simulations. It is revealed that the presence of He atoms accelerates the formation of pentagons and hexagons and reduces the size of the self-assembled carbon cages in comparison with analogous He-free simulations. As a result, the Sc/C/He system simulations produce a larger number of successful trajectories (i.e. leading to Sc-EMFs) with more realistic cage-size distribution than simulations of the Sc/C system. The main Sc encapsulation mechanism involves nucleation of several hexagons and pentagons with Sc atoms already at the early stages of carbon vapor condensation. In such proto-cages, both Sc–C σ-bonds and coordination bonds between Sc atoms and the π-system of the carbon network are present. Sc atoms are thus rather labile and can move along the carbon network, but the overall bonding is sufficiently strong to prevent dissociation even at temperatures around 2000 kelvin. Further growth of the fullerene cage results in the encapsulation of one or two Sc atoms within the fullerene. In agreement with experimental studies, an extension of the simulations to Fe and Ti as the metal component showed that Fe-EMFs are not formed at all, whereas Ti is prone to form Ti-EMFs with small cage sizes, including Ti@C28-T d and Ti@C30-C 2v(3). PMID:26815243

  1. De novo modeling of the F420-reducing [NiFe]-hydrogenase from a methanogenic archaeon by cryo-electron microscopy

    PubMed Central

    Mills, Deryck J; Vitt, Stella; Strauss, Mike; Shima, Seigo; Vonck, Janet

    2013-01-01

    Methanogenic archaea use a [NiFe]-hydrogenase, Frh, for oxidation/reduction of F420, an important hydride carrier in the methanogenesis pathway from H2 and CO2. Frh accounts for about 1% of the cytoplasmic protein and forms a huge complex consisting of FrhABG heterotrimers with each a [NiFe] center, four Fe-S clusters and an FAD. Here, we report the structure determined by near-atomic resolution cryo-EM of Frh with and without bound substrate F420. The polypeptide chains of FrhB, for which there was no homolog, was traced de novo from the EM map. The 1.2-MDa complex contains 12 copies of the heterotrimer, which unexpectedly form a spherical protein shell with a hollow core. The cryo-EM map reveals strong electron density of the chains of metal clusters running parallel to the protein shell, and the F420-binding site is located at the end of the chain near the outside of the spherical structure. DOI: http://dx.doi.org/10.7554/eLife.00218.001 PMID:23483797

  2. Efficient Nitrogen Fixation via a Redox-Flexible Single-Iron Site with Reverse-Dative Iron → Boron σ Bonding.

    PubMed

    Lu, Jun-Bo; Ma, Xue-Lu; Wang, Jia-Qi; Liu, Jin-Cheng; Xiao, Hai; Li, Jun

    2018-05-10

    Model systems of the FeMo cofactor of nitrogenase have been explored extensively in catalysis to gain insights into their ability for nitrogen fixation that is of vital importance to the human society. Here we investigate the trigonal pyramidal borane-ligand Fe complex by first-principles calculations, and find that the variation of oxidation state of Fe along the reaction path correlates with that of the reverse-dative Fe → B bonding. The redox-flexibility of the reverse-dative Fe → B bonding helps to provide an electron reservoir that buffers and stabilizes the evolution of Fe oxidation state, which is essential for forming the key intermediates of N 2 activation. Our work provides insights for understanding and optimizing homogeneous and surface single-atom catalysts with reverse-dative donating ligands for efficient dinitrogen fixation. The extension of this kind of molecular catalytic active center to heterogeneous catalysts with surface single-clusters is also discussed.

  3. From Metal-Organic Frameworks to Single-Atom Fe Implanted N-doped Porous Carbons: Efficient Oxygen Reduction in Both Alkaline and Acidic Media.

    PubMed

    Jiao, Long; Wan, Gang; Zhang, Rui; Zhou, Hua; Yu, Shu-Hong; Jiang, Hai-Long

    2018-05-09

    It remains highly desired but a great challenge to achieve atomically dispersed metals in high loadings for efficient catalysis. Now porphyrinic metal-organic frameworks (MOFs) have been synthesized based on a novel mixed-ligand strategy to afford high-content (1.76 wt %) single-atom (SA) iron-implanted N-doped porous carbon (Fe SA -N-C) via pyrolysis. Thanks to the single-atom Fe sites, hierarchical pores, oriented mesochannels and high conductivity, the optimized Fe SA -N-C exhibits excellent oxygen reduction activity and stability, surpassing almost all non-noble-metal catalysts and state-of-the-art Pt/C, in both alkaline and more challenging acidic media. More far-reaching, this MOF-based mixed-ligand strategy opens a novel avenue to the precise fabrication of efficient single-atom catalysts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xing-Wu; Cao, Zhi; Zhao, Shu

    As active phases in low-temperature Fischer–Tropsch synthesis for liquid fuel production, epsilon iron carbides are critically important industrial materials. However, the precise atomic structure of epsilon iron carbides remains unclear, leading to a half-century of debate on the phase assignment of the ε-Fe 2C and ε’-Fe 2.2C. Here, we resolve this decades-long question by a combining theoretical and experimental investigation to assign the phases unambiguously. First, we have investigated the equilibrium structures and thermal stabilities of ε-Fe xC, (x = 1, 2, 2.2, 3, 4, 6, 8) by first-principles calculations. We have also acquired X-ray diffraction patterns and Mössbauer spectramore » for these epsilon iron carbides, and compared them with the simulated results. These analyses indicate that the unit cell of ε-Fe 2C contains only one type of chemical environment for Fe atoms, while ε’-Fe 2.2C has six sets of chemically distinct Fe atoms.« less

  5. Fe Isolated Single Atoms on S, N Codoped Carbon by Copolymer Pyrolysis Strategy for Highly Efficient Oxygen Reduction Reaction.

    PubMed

    Li, Qiheng; Chen, Wenxing; Xiao, Hai; Gong, Yue; Li, Zhi; Zheng, Lirong; Zheng, Xusheng; Yan, Wensheng; Cheong, Weng-Chon; Shen, Rongan; Fu, Ninghua; Gu, Lin; Zhuang, Zhongbin; Chen, Chen; Wang, Dingsheng; Peng, Qing; Li, Jun; Li, Yadong

    2018-06-01

    Heteroatom-doped Fe-NC catalyst has emerged as one of the most promising candidates to replace noble metal-based catalysts for highly efficient oxygen reduction reaction (ORR). However, delicate controls over their structure parameters to optimize the catalytic efficiency and molecular-level understandings of the catalytic mechanism are still challenging. Herein, a novel pyrrole-thiophene copolymer pyrolysis strategy to synthesize Fe-isolated single atoms on sulfur and nitrogen-codoped carbon (Fe-ISA/SNC) with controllable S, N doping is rationally designed. The catalytic efficiency of Fe-ISA/SNC shows a volcano-type curve with the increase of sulfur doping. The optimized Fe-ISA/SNC exhibits a half-wave potential of 0.896 V (vs reversible hydrogen electrode (RHE)), which is more positive than those of Fe-isolated single atoms on nitrogen codoped carbon (Fe-ISA/NC, 0.839 V), commercial Pt/C (0.841 V), and most reported nonprecious metal catalysts. Fe-ISA/SNC is methanol tolerable and shows negligible activity decay in alkaline condition during 15 000 voltage cycles. X-ray absorption fine structure analysis and density functional theory calculations reveal that the incorporated sulfur engineers the charges on N atoms surrounding the Fe reactive center. The enriched charge facilitates the rate-limiting reductive release of OH* and therefore improved the overall ORR efficiency. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Temperature dependent local atomic displacements in ammonia intercalated iron selenide superconductor

    NASA Astrophysics Data System (ADS)

    Paris, E.; Simonelli, L.; Wakita, T.; Marini, C.; Lee, J.-H.; Olszewski, W.; Terashima, K.; Kakuto, T.; Nishimoto, N.; Kimura, T.; Kudo, K.; Kambe, T.; Nohara, M.; Yokoya, T.; Saini, N. L.

    2016-06-01

    Recently, ammonia-thermal reaction has been used for molecular intercalation in layered FeSe, resulting a new Lix(NH3)yFe2Se2 superconductor with Tc ~ 45 K. Here, we have used temperature dependent extended x-ray absorption fine structure (EXAFS) to investigate local atomic displacements in single crystals of this new superconductor. Using polarized EXAFS at Fe K-edge we have obtained direct information on the local Fe-Se and Fe-Fe bondlengths and corresponding mean square relative displacements (MSRD). We find that the Se-height in the intercalated system is lower than the one in the binary FeSe, suggesting compressed FeSe4 tetrahedron in the title system. Incidentally, there is hardly any effect of the intercalation on the bondlengths characteristics, revealed by the Einstein temperatures, that are similar to those found in the binary FeSe. Therefore, the molecular intercalation induces an effective compression and decouples the FeSe slabs. Furthermore, the results reveal an anomalous change in the atomic correlations across Tc, appearing as a clear decrease in the MSRD, indicating hardening of the local lattice mode. Similar response of the local lattice has been found in other families of superconductors, e.g., A15-type and cuprates superconductors. This observation suggests that local atomic correlations should have some direct correlation with the superconductivity.

  7. Iron nanoparticles with tunable tetragonal structure and magnetic properties

    NASA Astrophysics Data System (ADS)

    Liu, Jinming; Schliep, Karl; He, Shi-Hai; Ma, Bin; Jing, Ying; Flannigan, David J.; Wang, Jian-Ping

    2018-05-01

    Body-centered cubic (bcc) Fe is known as a typical soft magnetic material with high-saturation magnetization (Ms) and low magnetocrystalline anisotropy. However, first-principles calculations demonstrate that body-centered tetragonal (bct) Fe has higher magnetocrystalline anisotropy than bcc Fe and comparable Ms. In this work, bct Fe nanoparticles (NPs) were successfully fabricated by a gas-phase condensation method for the first time. The bct Fe phase is confirmed by the x-ray diffraction pattern and diffraction images of transmission electron microscopy. An increased magnetocrystalline anisotropy of bct Fe, (2.65 ±0.67 ) ×1 05J /m3 [ (21.2 ±5.3 ) μ eV /atom ], is observed, which is around seven times higher than that of bcc Fe 4.8 ×1 04J /m3 (3.5 μ eV /atom ). The bct Fe NPs sample has coercivity of 3.22 ×1 05 A/m at 5 K and 1.0 4 ×1 05 A/m at 300 K, which are much higher than that of bcc Fe NPs. In addition, the saturation magnetization at 5 K is estimated to be (1.6 ±0.4 ) ×1 06 A/m (2.2 ±0.5 μB/atom ), comparable to that of bcc Fe 1.7 ×1 06 A/m (2.2 μB/atom ).

  8. Magnetic ground state of the multiferroic hexagonal LuFe O3

    NASA Astrophysics Data System (ADS)

    Suresh, Pittala; Vijaya Laxmi, K.; Bera, A. K.; Yusuf, S. M.; Chittari, Bheema Lingam; Jung, Jeil; Anil Kumar, P. S.

    2018-05-01

    The structural, electric, and magnetic properties of bulk hexagonal LuFe O3 are investigated. Single phase hexagonal LuFe O3 has been successfully stabilized in the bulk form without any doping by sol-gel method. The hexagonal crystal structure with P 63c m space group has been confirmed by x-ray-diffraction, neutron-diffraction, and Raman spectroscopy study at room temperature. Neutron diffraction confirms the hexagonal phase of LuFe O3 persists down to 6 K. Further, the x-ray photoelectron spectroscopy established the 3+ oxidation state of Fe ions. The temperature-dependent magnetic dc susceptibility, specific heat, and neutron-diffraction studies confirm an antiferromagnetic ordering below the Néel temperature (TN)˜130 K . Analysis of magnetic neutron-diffraction patterns reveals an in-plane (a b -plane) 120∘ antiferromagnetic structure, characterized by a propagation vector k =(0 0 0 ) with an ordered moment of 2.84 μB/F e3 + at 6 K. The 120∘ antifferomagnetic ordering is further confirmed by spin-orbit coupling density functional theory calculations. The on-site coulomb interaction (U ) and Hund's parameter (JH) on Fe atoms reproduced the neutron-diffraction Γ1 spin pattern among the Fe atoms. P -E loop measurements at room temperature confirm an intrinsic ferroelectricity of the sample with remnant polarization Pr˜0.18 μ C /c m2 . A clear anomaly in the dielectric data is observed at ˜TN revealing the presence of magnetoelectric coupling. A change in the lattice constants at TN has also been found, indicating the presence of a strong magnetoelastic coupling. Thus a coupling between lattice, electric, and magnetic degrees of freedom is established in bulk hexagonal LuFe O3 .

  9. MBE growth and FMR, BLS and MOKE studies of exchange coupling in Fe whisker/Cr/Fe(001) and in Fe/Cu/Fe(001) 'loose spin' structures

    NASA Astrophysics Data System (ADS)

    Heinrich, B.; From, M.; Cochran, J. F.; Kowalewski, M.; Atlan, D.; Celinski, Z.; Myrtle, K.

    1995-02-01

    The exchange coupling has been studied in structures which consist of two ferromagnetic layers separated by non-ferromagnetic spacers (trilayers). The exchange coupling was measured using FMR and BLS techniques in the temperature range 77-400 K. Two systems were investigated: (a) Fe whisker/Cr/Fe(001) and (b) Fe/Cr/Fe(001). The oscillatory thickness dependence of the exchange coupling through a spin-density wave Cr spacer will be discussed and compared with recent data obtained by other groups. Cu interlayers were deposited either in a pure form, or a single monolayer of {Cu}/{Fe} alloy ('loose spins') was inserted between two pure bcc Cu(001) layers. Several such 'loose spin' structures were engineered to test the behavior of 'loose spin' structures. It was found that the presence of Fe impurity atoms has a strong tendency to decrease the direct bilinear exchange coupling. The contribution of 'loose spins' to the exchange coupling can be made significant, and even dominant, by a suitable choice of the RKKY coupling energy between the 'loose spins' and the surrounding ferromagnetic layers.

  10. Carbon-sulfur bond-forming reaction catalysed by the radical SAM enzyme HydE.

    PubMed

    Rohac, Roman; Amara, Patricia; Benjdia, Alhosna; Martin, Lydie; Ruffié, Pauline; Favier, Adrien; Berteau, Olivier; Mouesca, Jean-Marie; Fontecilla-Camps, Juan C; Nicolet, Yvain

    2016-05-01

    Carbon-sulfur bond formation at aliphatic positions is a challenging reaction that is performed efficiently by radical S-adenosyl-L-methionine (SAM) enzymes. Here we report that 1,3-thiazolidines can act as ligands and substrates for the radical SAM enzyme HydE, which is involved in the assembly of the active site of [FeFe]-hydrogenase. Using X-ray crystallography, in vitro assays and NMR spectroscopy we identified a radical-based reaction mechanism that is best described as the formation of a C-centred radical that concomitantly attacks the sulfur atom of a thioether. To the best of our knowledge, this is the first example of a radical SAM enzyme that reacts directly on a sulfur atom instead of abstracting a hydrogen atom. Using theoretical calculations based on our high-resolution structures we followed the evolution of the electronic structure from SAM through to the formation of S-adenosyl-L-cysteine. Our results suggest that, at least in this case, the widely proposed and highly reactive 5'-deoxyadenosyl radical species that triggers the reaction in radical SAM enzymes is not an isolable intermediate.

  11. Carbon-sulfur bond-forming reaction catalysed by the radical SAM enzyme HydE

    NASA Astrophysics Data System (ADS)

    Rohac, Roman; Amara, Patricia; Benjdia, Alhosna; Martin, Lydie; Ruffié, Pauline; Favier, Adrien; Berteau, Olivier; Mouesca, Jean-Marie; Fontecilla-Camps, Juan C.; Nicolet, Yvain

    2016-05-01

    Carbon-sulfur bond formation at aliphatic positions is a challenging reaction that is performed efficiently by radical S-adenosyl-L-methionine (SAM) enzymes. Here we report that 1,3-thiazolidines can act as ligands and substrates for the radical SAM enzyme HydE, which is involved in the assembly of the active site of [FeFe]-hydrogenase. Using X-ray crystallography, in vitro assays and NMR spectroscopy we identified a radical-based reaction mechanism that is best described as the formation of a C-centred radical that concomitantly attacks the sulfur atom of a thioether. To the best of our knowledge, this is the first example of a radical SAM enzyme that reacts directly on a sulfur atom instead of abstracting a hydrogen atom. Using theoretical calculations based on our high-resolution structures we followed the evolution of the electronic structure from SAM through to the formation of S-adenosyl-L-cysteine. Our results suggest that, at least in this case, the widely proposed and highly reactive 5‧-deoxyadenosyl radical species that triggers the reaction in radical SAM enzymes is not an isolable intermediate.

  12. FORMATION MECHANISM FOR THE NANOSCALE AMORPHOUS INTERFACE IN PULSE-WELDED AL/FE BIMETALLIC SYSTEM

    DOE PAGES

    Li, Jingjing; Yu, Qian; Zhang, Zijiao; ...

    2016-05-20

    Pulse or impact welding traditionally has been referred to as “solid-state” welding. By integrating advanced interface characterizations and diffusion calculations, we report that the nanoscale amorphous interface in the pulse-welded Al/Fe bimetallic system is formed by rapid heating and melting of a thin Al layer at the interface, diffusion of iron atoms in the liquid aluminum, and subsequent rapid quenching with diffused iron atoms in solution. This finding challenges the commonly held belief regarding the solid-state nature of the impact-based welding process for dissimilar metals. Elongated ultra-fine grains with high dislocation density and ultra-fine equiaxed grains also are observed inmore » the weld interface vicinity on the steel and aluminum sides, respectively, which further confirms that melting and the resulted recrystallization occurred on the aluminum side of the interface.« less

  13. FORMATION MECHANISM FOR THE NANOSCALE AMORPHOUS INTERFACE IN PULSE-WELDED AL/FE BIMETALLIC SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jingjing; Yu, Qian; Zhang, Zijiao

    Pulse or impact welding traditionally has been referred to as “solid-state” welding. By integrating advanced interface characterizations and diffusion calculations, we report that the nanoscale amorphous interface in the pulse-welded Al/Fe bimetallic system is formed by rapid heating and melting of a thin Al layer at the interface, diffusion of iron atoms in the liquid aluminum, and subsequent rapid quenching with diffused iron atoms in solution. This finding challenges the commonly held belief regarding the solid-state nature of the impact-based welding process for dissimilar metals. Elongated ultra-fine grains with high dislocation density and ultra-fine equiaxed grains also are observed inmore » the weld interface vicinity on the steel and aluminum sides, respectively, which further confirms that melting and the resulted recrystallization occurred on the aluminum side of the interface.« less

  14. Formation mechanism for the nanoscale amorphous interface in pulse-welded Al/Fe bimetallic systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jingjing; Yu, Qian; Zhang, Zijiao

    Pulse or impact welding traditionally has been referred to as “solid-state” welding. By integrating advanced interface characterizations and diffusion calculations, we report that the nanoscale amorphous interface in the pulse-welded Al/Fe bimetallic system is formed by rapid heating and melting of a thin Al layer at the interface, diffusion of iron atoms in the liquid aluminum, and subsequent rapid quenching with diffused iron atoms in solution. This finding challenges the commonly held belief regarding the solid-state nature of the impact-based welding process for dissimilar metals. Elongated ultra-fine grains with high dislocation density and ultra-fine equiaxed grains also are observed inmore » the weld interface vicinity on the steel and aluminum sides, respectively, which further confirms that melting and the subsequent recrystallization occurred on the aluminum side of the interface.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chezhina, N.V., E-mail: chezhina@nc2490.spb.edu; Korolev, D.A.; Zhuk, N.A.

    On the basis of the results of magnetic susceptibility and ESR studies of the Bi{sub 3}Nb{sub 1−x}Fe{sub x}O{sub 7−δ} solid solutions iron atoms in the solid solutions of cubic modification of bismuth niobate were found to exist as Fe(III) monomers and exchange bound Fe(III)-O-Fe(III) dimers with antiferro- and ferromagnetic type of superexchange. The exchange parameters and the distribution of monomers and dimers in the solid solutions were calculated as a function of paramagnetic atom content. - Graphical abstract: The study of the Bi{sub 3}Nb{sub 1−x}Fe{sub x}O{sub 7−δ} solid solutions showed that the introduction of iron atoms into the structure ofmore » Bi{sub 3}NbO{sub 7} stabilizes the cubic structure of bismuth niobate making the phase transition tetragonal ↔ cubic structure irreversible. In the Bi{sub 3}Nb{sub 1−x}Fe{sub x}O{sub 7−δ} solid solutions we observe the formation of dimers with antiferro- and ferromagnetic exchange. Such clusters are partially retained even at the infinite dilution of the solid solution, which testifies for their rigidity. A sufficiently high parameter of ferromagnetic exchange in a dimer (+53 cm{sup −1}) seems to result from iron atoms being located in the vicinity of oxygen vacancy. - Highlights: • The reversible transition cubic – tetragonal modifications in Bi{sub 3}NbO{sub 7} becomes irreversible. • Only cubic modification of Bi{sub 3}Nb{sub 1-x}Fe{sub x}O{sub 7-δ} is stable due to clusters of Fe atoms. • These clusters are sufficiently strong and retained even at the infinite dilution. • The calculations of magnetic susceptibility give the distribution of the clusters and single atoms.« less

  16. Structure of Fe(III) precipitates generated by Fe(0) electrocoagulation in the presence of groundwater ions

    NASA Astrophysics Data System (ADS)

    van Genuchten, C. M.; Pena, J.; Addy, S. E.; Gadgil, A. J.

    2012-12-01

    Electrocoagulation (EC) using Fe(0) electrodes is an inexpensive and efficient technology capable of removing a variety of contaminants from water supplies. Because of its ease of use and modest electricity and Fe(0) requirements, EC has potential as an arsenic-removal technology for rural South Asia, where millions drink groundwater contaminated by arsenic. In EC, a small external voltage applied to a sacrificial Fe(0) anode in contact with an electrolyte (e.g. pumped groundwater containing arsenic) promotes the oxidative dissolution of Fe ions, which polymerize and create reactive hydrous ferric oxides (HFO) in-situ with a high affinity for binding contaminants. The chemical composition of the electrolyte influences EC performance. For example, major inorganic ions present in groundwater (e.g. Ca, Mg, P, As(V), Si) alter the pathway by which FeO6 oligomers polymerize to form crystalline Fe (oxyhydr)oxide minerals. Because the precipitate structure largely determines properties that govern the efficiency of EC systems (e.g. precipitate reactivity and colloidal stability), it is essential to understand the individual and interdependent structural effects of common groundwater ions. In this work, we integrate Fe K-edge EXAFS spectroscopy with the Pair Distribution Function (PDF) technique to create a detailed description of EC precipitate structure as a function of electrolyte chemistry. EC precipitate samples were generated in a range of individual and combined concentrations of Ca, Mg, P, As(V), and Si, encompassing most of the typical levels found in natural groundwater. Combining complementary EXAFS and PDF techniques with batch uptake experiments and general chemical reasoning, we obtain structural representations of EC precipitates that are inaccessible with any single characterization technique. Our results indicate that the presence of As(V), P, and Si oxyanions promote the formation of nanoscale material bearing similar, but not identical, intermediate-ranged atomic pair correlations as 2-line ferrihydrite (2LFH), rather than lepidocrocite (Lp) which is generated in an NaCl electrolyte. However, when Ca or Mg is added to oxyanion electrolytes, Fe-Fe polymerization and particle size both tend to increase and a Lp-like material with characteristic Fe-O and Fe-Fe pair correlations is once again favored. The presence of either Ca or Mg also enhances the removal P, As(V), and to a lesser extent, Si per mass of Fe. The analysis from EXAFS and PDF spectra provide new insights into the polyhedral connectivity of nanoscale oxyanion-bearing HFO formed under a wide range of chemical conditions, improving predictions of EC performance in the field and allowing for knowledge-based improvements in the design of future EC systems. Our PDF data also show that the most disordered EC precipitate samples (formed at high oxyanion/Fe ratios) all share a similar "backbone" of 3-4 peaks beyond the first 4 Å, regardless of the oxyanion present during synthesis. Using 2LFH as a reference, we index all atomic pair correlations throughout the coherently scattering structure of our disordered samples.

  17. Self-regulated Gd atom trapping in open Fe nanocorrals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, R. X.; Liu, Z.; Miao, B. F.

    2014-07-01

    Utilizing open Fe nanocorrals built by atom manipulation, we demonstrate self-regulated Gd atom trapping in open quantum corrals. The number of Gd atoms trapped is exactly determined by the diameter of the corral. The quantization can be understood as a self-regulating process, arising from the long-range interaction between Gd atoms and the open corral. We illustrate with arrays of open corrals that such atom trapping can suppress unwanted statistical fluctuations. Our approach opens a potential pathway for nanomaterial design and fabrication with atomic-level precision.

  18. Auger electron diffraction study of V/Fe(100) interface formation

    NASA Astrophysics Data System (ADS)

    Huttel, Y.; Avila, J.; Asensio, M. C.; Bencok, P.; Richter, C.; Ilakovac, V.; Heckmann, O.; Hricovini, K.

    1998-05-01

    Vanadium atoms present a magnetic moment different to zero when they are part of a thin film deposited on Fe or as a bimetallic Fe-V alloy. The understanding of this phenomenon can only be achieved with a correct structural description of these types of systems. We report an Auger electron diffraction investigation of V films grown on body cubic centred (b.c.c.) Fe(100) substrates. Angular-scanned Auger electron diffraction (AED) patterns of V L 23M 23M 4 (473 eV) and Fe L 3VV (703 eV) show the formation of a well-ordered V/Fe interface even at room temperature. The AED patterns of V films in the range of vanadium submonolayer provide evidence of an isotropic Auger emission, indicating the absence of interdiffusion of V atoms into the Fe substrate and absence of cluster growth of the V film. The annealing of these films up to 400°C does not activate the substitution of the topmost Fe surface layers by V atoms.

  19. Structure and magnetism in Co/X, Fe/Si, and Fe/(FeSi) multilayers

    NASA Astrophysics Data System (ADS)

    Franklin, Michael Ray

    Previous studies have shown that magnetic behavior in multilayers formed by repeating a bilayer unit comprised of a ferromagnetic layer and a non-magnetic spacer layer can be affected by small structural differences. For example, a macroscopic property such as giant magnetoresistance (GMR) is believed to depend significantly upon interfacial roughness. In this study, several complimentary structural probes were used to carefully characterize the structure of several sputtered multilayer systems-Co/Ag, Co/Cu, Co/Mo, Fe/Si, and Fe//[FeSi/]. X-ray diffraction (XRD) studies were used to examine the long-range structural order of the multilayers perpendicular to the plane of the layers. Transmission electron diffraction (TED) studies were used to probe the long-range order parallel to the layer plane. X-ray Absorption Fine Structure (XAFS) studies were used to determine the average local structural environment of the ferromagnetic atoms. For the Co/X systems, a simple correlation between crystal structure and saturation magnetization is discovered for the Co/Mo system. For the Fe/X systems, direct evidence of an Fe-silicide is found for the /[FeSi/] spacer layer but not for the Si spacer layer. Additionally, differences were observed in the magnetic behavior between the Fe in the nominally pure Fe layer and the Fe contained in the /[FeSi/] spacer layers.

  20. Solid Phase Extraction of Trace Al(III), Fe(II), Co(II), Cu(II), Cd(II) and Pb(II) Ions in Beverages on Functionalized Polymer Microspheres Prior to Flame Atomic Absorption Spectrometric Determinations.

    PubMed

    Berber, Hale; Alpdogan, Güzin

    2017-01-01

    In this study, poly(glycidyl methacrylate-methyl methacrylate-divinylbenzene) was synthesized in the form of microspheres, and then functionalized by 2-aminobenzothiazole ligand. The sorption properties of these functionalized microspheres were investigated for separation, preconcentration and determination of Al(III), Fe(II), Co(II), Cu(II), Cd(II) and Pb(II) ions using flame atomic absorption spectrometry. The optimum pH values for quantitative sorption were 2 - 4, 5 - 8, 6 - 8, 4 - 6, 2 - 6 and 2 - 3 for Al(III), Fe(II), Co(II), Cu(II), Cd(II) and Pb(II), respectively, and also the highest sorption capacity of the functionalized microspheres was found to be for Cu(II) with the value of 1.87 mmol g -1 . The detection limits (3σ; N = 6) obtained for the studied metals in the optimal conditions were observed in the range of 0.26 - 2.20 μg L -1 . The proposed method was successfully applied to different beverage samples for the determination of Al(III), Fe(II), Co(II), Cu(II), Cd(II) and Pb(II) ions, with the relative standard deviation of <3.7%.

  1. Autonomous Filling of Grain-Boundary Cavities during Creep Loading in Fe-Mo Alloys

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Fang, H.; Gramsma, M. E.; Kwakernaak, C.; Sloof, W. G.; Tichelaar, F. D.; Kuzmina, M.; Herbig, M.; Raabe, D.; Brück, E.; van der Zwaag, S.; van Dijk, N. H.

    2016-10-01

    We have investigated the autonomous repair of creep damage by site-selective precipitation in a binary Fe-Mo alloy (6.2 wt pct Mo) during constant-stress creep tests at temperatures of 813 K, 823 K, and 838 K (540 °C, 550 °C, and 565 °C). Scanning electron microscopy studies on the morphology of the creep-failed samples reveal irregularly formed deposits that show a close spatial correlation with the creep cavities, indicating the filling of creep cavities at grain boundaries by precipitation of the Fe2Mo Laves phase. Complementary transmission electron microscopy and atom probe tomography have been used to characterize the precipitation mechanism and the segregation at grain boundaries in detail.

  2. Well-Ordered In Adatoms at the In 2 O 3 ( 111 ) Surface Created by Fe Deposition

    DOE PAGES

    Wagner, Margareta; Lackner, Peter; Seiler, Steffen; ...

    2016-11-11

    Metal deposition on oxide surfaces usually results in adatoms, clusters, or islands of the deposited material, where defects in the surface often act as nucleation centers. An alternate configuration is reported. Afterwards the vapor deposition of Fe on the In 2O 3(111) surface at room temperature, ordered adatoms are observed with scanning tunneling microscopy (STM). These are identical to the In adatoms that form when the sample is reduced by heating in ultrahigh vacuum. Our density functional theory (DFT) calculations confirm that Fe interchanges with In in the topmost layer, pushing the excess In atoms to the surface where theymore » arrange as a well-ordered adatom array.« less

  3. Mössbauer spectroscopy and the structure of interfaces on the atomic scale in metallic nanosystems

    NASA Astrophysics Data System (ADS)

    Uzdin, V. M.

    2007-10-01

    A microscopic model of the formation of an alloy on the interface has been constructed, which takes into account the exchange of atoms with the substrate atoms and the “floating up” of the latter into the upper layers in the process of epitaxial growth. The self-consistent calculations of atomic magnetic moments of spatially inhomogeneous structures obtained in this case are used for the interpretation of data of Mössbauer spectroscopy. The proposed scenario of mixing leads to the appearance of a preferred direction in the sample and the asymmetry of interfaces in the direction of epitaxial growth. In the multilayer M 1/ M 2 ( M 1,2 = Fe, Cr, V, Sn, or Ag) systems, this asymmetry makes it possible to understand the difference in the magnetic behavior of M 1-on M 2 and M 2-on- M 1 interfaces which has been observed experimentally. The correlation between the calculated distributions of magnetic moments and the measured distributions of hyperfine fields at iron atoms confirms the assumption about their proportionality for a broad class of metallic multilayer systems. However, a linear decrease of hyperfine fields at the 57Fe nuclei with increasing number of impurity atoms among the nearest and next-nearest neighbors is not confirmed for Fe/Cr systems, although is correct in Fe/V superlattices. In the Fe/Cr multilayer systems, the experimentally measured value of magnetoresistance grows with increasing fraction of the “floated up” atoms of 57Fe. Thus, it is the bulk scattering by impurity atoms that gives the basic contribution to the effect of giant magnetoresistance. The problem of the influence of mixing and adsorption of hydrogen in the vanadium layers on the state of the spin-density wave in V/Cr superlattices has been considered.

  4. Role of iron modifier on boron atomization process using graphite furnace-atomic absorption spectrometry based on speciation of iron using X-ray absorption fine structure

    NASA Astrophysics Data System (ADS)

    Yamamoto, Yuhei; Tagami, Azusa; Shiarasaki, Toshihiro; Yonetani, Akira; Yamamoto, Takashi; Imai, Shoji

    2018-04-01

    The role of an Fe modifier on boron atomization process using graphite furnace-atomic absorbance spectrometry was investigated using a spectroscopic approach. The initial state of the Fe modifier in a pyrolytic graphite (PG) furnace was trivalent. With an increase in pyrolysis temperature, the Fe modifier was reduced in a stepwise manner. Fe2O3 and Fe3O4 were dominant at pyrolysis temperatures below 1300 K. From 1300 to 1500 K, FeO was dominant. At temperatures higher than 1700 K, Fe metal was dominant. After a drying step, 17.7% of the initial B remained in the PG furnace. After the pyrolysis step at 773 K, the residual fraction of B was similar to that after the drying step. After the pyrolysis step at a temperature of 1073 K, the residual fraction was 11.7%. At pyrolysis temperatures > 1738 K, the residual fraction was <3.3% (

  5. FeO "Orange Arc" Emission Detected in Optical Spectrum of Leonid Persistent Trains

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Lacey, Matt; Allan, Beverly J.; Self, Daniel E.; Plane, John M. C.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    We report the detection of a broad continuum emission dominating the visual spectrum of a Leonid persistent train. A comparison with laboratory spectra of FeO 1 "orange arc" emission at I mbar shows a general agreement of the band position and shape. The detection of FeO confirms the classical mechanism of metal atom catalyzed recombination of ozone and oxygen atoms as the driving force behind optical emission from persistent trains. Sodium and iron atoms are now confirmed catalysts.

  6. In situ observation of atomic movement in a ferroelectric film under an external electric field and stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hyeon Jun; Guo, Er-Jia; Min, Taewon

    Atomic movement under application of external stimuli (i.e., electric field or mechanical stress) in oxide materials has not been observed due to a lack of experimental methods but has been well known to determine the electric polarization. Here, we investigated atomic movement arising from the ferroelectric response of BiFeO 3 thin films under the effect of an electric field and stress in real time using a combination of switching spectroscopy, time-resolved X-ray microdiffraction, and in situ stress engineering. Under an electric field applied to a BiFeO 3 film, the hysteresis loop of the reflected X-ray intensity was found to resultmore » from the opposing directions of displaced atoms between the up and down polarization states. An additional shift of atoms arising from the linearly increased dielectric component of the polarization in BiFeO 3 was confirmed through gradual reduction of the diffracted X-ray intensity. The electric-fieldinduced displacement of oxygen atoms was found to be larger than that of Fe atom for both ferroelectric switching and increase of the polarization. In conclusion, the effect of external stress on the BiFeO 3 thin film, which was controlled by applying an electric field to the highly piezoelectric substrate, showed smaller atomic shifts than for the case of applying an electric field to the film, despite the similar tetragonality.« less

  7. In situ observation of atomic movement in a ferroelectric film under an external electric field and stress

    DOE PAGES

    Lee, Hyeon Jun; Guo, Er-Jia; Min, Taewon; ...

    2017-12-28

    Atomic movement under application of external stimuli (i.e., electric field or mechanical stress) in oxide materials has not been observed due to a lack of experimental methods but has been well known to determine the electric polarization. Here, we investigated atomic movement arising from the ferroelectric response of BiFeO 3 thin films under the effect of an electric field and stress in real time using a combination of switching spectroscopy, time-resolved X-ray microdiffraction, and in situ stress engineering. Under an electric field applied to a BiFeO 3 film, the hysteresis loop of the reflected X-ray intensity was found to resultmore » from the opposing directions of displaced atoms between the up and down polarization states. An additional shift of atoms arising from the linearly increased dielectric component of the polarization in BiFeO 3 was confirmed through gradual reduction of the diffracted X-ray intensity. The electric-fieldinduced displacement of oxygen atoms was found to be larger than that of Fe atom for both ferroelectric switching and increase of the polarization. In conclusion, the effect of external stress on the BiFeO 3 thin film, which was controlled by applying an electric field to the highly piezoelectric substrate, showed smaller atomic shifts than for the case of applying an electric field to the film, despite the similar tetragonality.« less

  8. Graphene as a flexible template for controlling magnetic interactions between metal atoms.

    PubMed

    Lee, Sungwoo; Kim, Dongwook; Robertson, Alex W; Yoon, Euijoon; Hong, Suklyun; Ihm, Jisoon; Yu, Jaejun; Warner, Jamie H; Lee, Gun-Do

    2017-03-01

    Metal-doped graphene produces magnetic moments that have potential application in spintronics. Here we use density function theory computational methods to show how the magnetic interaction between metal atoms doped in graphene can be controlled by the degree of flexure in a graphene membrane. Bending graphene by flexing causes the distance between two substitutional Fe atoms covalently bonded in graphene to gradually increase and these results in the magnetic moment disappearing at a critical strain value. At the critical strain, a carbon atom can enter between the two Fe atoms and blocks the interaction between relevant orbitals of Fe atoms to quench the magnetic moment. The control of interactions between doped atoms by exploiting the mechanical flexibility of graphene is a unique approach to manipulating the magnetic properties and opens up new opportunities for mechanical-magnetic 2D device systems.

  9. Two Keggin-type heteropolytungstates with transition metal as a central atom: Crystal structure and magnetic study with 2D-IR correlation spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chai, Feng; Chen, YiPing, E-mail: ypchen007@sina.com; State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002

    2013-06-01

    Two Keggin-type heteropolytungstates, [Co(phen)₃]₃[CoW₁₂O₄₀]·9H₂O 1 (phen=1,10-phenanthroline) and [Fe(phen)₃]₂[FeW₁₂O₄₀]·H₃O·H₂O 2, have been synthesized via the hydrothermal technique and characterized by single crystal X-ray diffraction analyses, IR, XPS, TG analysis, UV–DRS, XRD, thermal-dependent and magnetic-dependent 2D-COS IR (two-dimensional infrared correlation spectroscopy). Crystal structure analysis reveals that the polyanions in compound 1 are linked into 3D supramolecule through hydrogen bonding interactions between lattice water molecules and terminal oxygen atoms of polyanion units, and [Co(phen)₃]²⁺ cations distributed in the polyanion framework with many hydrogen bonding interactions. The XPS spectra indicate that all the Co atoms in 1 are +2 oxidation state, the Fe atomsmore » in 2 existing with +2 and +3 mixed oxidation states. - Graphical abstract: The magnetic-dependent synchronous 2D correlation IR spectra of 1 (a), 2 (b) over 0–50 mT in the range of 600–1000 cm⁻¹, the obvious response indicate two Keggin polyanions skeleton susceptible to applied magnetic field. Highlights: • Two Keggin-type heteropolytungstates with transition metal as a central atom has been obtained. • Compound 1 forms into 3D supramolecular architecture through hydrogen bonding between water molecules and polyanions. • Magnetic-dependent 2D-IR correlation spectroscopy was introduced to discuss the magnetism of polyoxometalate.« less

  10. Self-assembled monolayer and multilayer films of the nanocluster [HxPMo12O40 subsetH4Mo72Fe30(O2CMe)15O254(H2O)68] on gold.

    PubMed

    Colorado, Ramon; Crouse, Christopher A; Zeigler, Christopher N; Barron, Andrew R

    2008-08-19

    Films of the molybdenum-iron nanocluster [H x PMo 12O 40 subsetH 4Mo 72Fe 30(O 2CMe) 15O 254(H2O) 68] (FeMoC) were generated on gold via the self-assembly technique using two divergent routes. The first route entails the self-assembly of unfunctionalized FeMoC onto a preprepared carboxyl-terminated SAM on gold. The second route involves the preparation of thiol-terminated functionalized FeMoC clusters, which are then allowed to self-assemble onto bare gold surfaces. Monolayer films of FeMoC clusters are attained via both routes, with the second route requiring shorter immersion times (2 days) than the first route (6 days). Multilayer films of FeMoC are formed via the second route for immersion times longer than 2 days. Characterization of these films using optical ellipsometry, X-ray photoelectron spectroscopy, and atomic force microscopy confirm the self-assembly of the clusters on the surfaces.

  11. High Ms Fe16N2 thin film with Ag under layer on GaAs substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allard Jr, Lawrence Frederick

    2016-01-01

    (001) textured Fe16N2 thin film with Ag under layer is successfully grown on GaAs substrate using a facing target sputtering (FTS) system. After post annealing, chemically ordered Fe16N2 phase is formed and detected by X-ray diffraction (XRD). High saturation magnetization (Ms) is measured by a vibrating sample magnetometer (VSM). In comparison with Fe16N2 with Ag under layer on MgO substrate and Fe16N2 with Fe under layer on GaAs substrate, the current layer structure shows a higher Ms value, with a magnetically softer feature in contrast to the above cases. In addition, X-ray photoelectron spectroscopy (XPS) is performed to characterize themore » binding energy of N atoms. To verify the role of strain that the FeN layer experiences in the above three structures, Grazing Incidence X-ray Diffraction (GIXRD) is conducted to reveal a large in-plane lattice constant due to the in-plane biaxial tensile strain. INTRODUCTION« less

  12. Electron interactions with the heteronuclear carbonyl precursor H2FeRu3(CO)13 and comparison with HFeCo3(CO)12: from fundamental gas phase and surface science studies to focused electron beam induced deposition.

    PubMed

    P, Ragesh Kumar T; Weirich, Paul; Hrachowina, Lukas; Hanefeld, Marc; Bjornsson, Ragnar; Hrodmarsson, Helgi Rafn; Barth, Sven; Fairbrother, D Howard; Huth, Michael; Ingólfsson, Oddur

    2018-01-01

    In the current contribution we present a comprehensive study on the heteronuclear carbonyl complex H 2 FeRu 3 (CO) 13 covering its low energy electron induced fragmentation in the gas phase through dissociative electron attachment (DEA) and dissociative ionization (DI), its decomposition when adsorbed on a surface under controlled ultrahigh vacuum (UHV) conditions and exposed to irradiation with 500 eV electrons, and its performance in focused electron beam induced deposition (FEBID) at room temperature under HV conditions. The performance of this precursor in FEBID is poor, resulting in maximum metal content of 26 atom % under optimized conditions. Furthermore, the Ru/Fe ratio in the FEBID deposit (≈3.5) is higher than the 3:1 ratio predicted. This is somewhat surprising as in recent FEBID studies on a structurally similar bimetallic precursor, HFeCo 3 (CO) 12 , metal contents of about 80 atom % is achievable on a routine basis and the deposits are found to maintain the initial Co/Fe ratio. Low temperature (≈213 K) surface science studies on thin films of H 2 FeRu 3 (CO) 13 demonstrate that electron stimulated decomposition leads to significant CO desorption (average of 8-9 CO groups per molecule) to form partially decarbonylated intermediates. However, once formed these intermediates are largely unaffected by either further electron irradiation or annealing to room temperature, with a predicted metal content similar to what is observed in FEBID. Furthermore, gas phase experiments indicate formation of Fe(CO) 4 from H 2 FeRu 3 (CO) 13 upon low energy electron interaction. This fragment could desorb at room temperature under high vacuum conditions, which may explain the slight increase in the Ru/Fe ratio of deposits in FEBID. With the combination of gas phase experiments, surface science studies and actual FEBID experiments, we can offer new insights into the low energy electron induced decomposition of this precursor and how this is reflected in the relatively poor performance of H 2 FeRu 3 (CO) 13 as compared to the structurally similar HFeCo 3 (CO) 12 .

  13. Electron interactions with the heteronuclear carbonyl precursor H2FeRu3(CO)13 and comparison with HFeCo3(CO)12: from fundamental gas phase and surface science studies to focused electron beam induced deposition

    PubMed Central

    P, Ragesh Kumar T; Weirich, Paul; Hrachowina, Lukas; Hanefeld, Marc; Bjornsson, Ragnar; Hrodmarsson, Helgi Rafn; Barth, Sven; Fairbrother, D Howard; Huth, Michael

    2018-01-01

    In the current contribution we present a comprehensive study on the heteronuclear carbonyl complex H2FeRu3(CO)13 covering its low energy electron induced fragmentation in the gas phase through dissociative electron attachment (DEA) and dissociative ionization (DI), its decomposition when adsorbed on a surface under controlled ultrahigh vacuum (UHV) conditions and exposed to irradiation with 500 eV electrons, and its performance in focused electron beam induced deposition (FEBID) at room temperature under HV conditions. The performance of this precursor in FEBID is poor, resulting in maximum metal content of 26 atom % under optimized conditions. Furthermore, the Ru/Fe ratio in the FEBID deposit (≈3.5) is higher than the 3:1 ratio predicted. This is somewhat surprising as in recent FEBID studies on a structurally similar bimetallic precursor, HFeCo3(CO)12, metal contents of about 80 atom % is achievable on a routine basis and the deposits are found to maintain the initial Co/Fe ratio. Low temperature (≈213 K) surface science studies on thin films of H2FeRu3(CO)13 demonstrate that electron stimulated decomposition leads to significant CO desorption (average of 8–9 CO groups per molecule) to form partially decarbonylated intermediates. However, once formed these intermediates are largely unaffected by either further electron irradiation or annealing to room temperature, with a predicted metal content similar to what is observed in FEBID. Furthermore, gas phase experiments indicate formation of Fe(CO)4 from H2FeRu3(CO)13 upon low energy electron interaction. This fragment could desorb at room temperature under high vacuum conditions, which may explain the slight increase in the Ru/Fe ratio of deposits in FEBID. With the combination of gas phase experiments, surface science studies and actual FEBID experiments, we can offer new insights into the low energy electron induced decomposition of this precursor and how this is reflected in the relatively poor performance of H2FeRu3(CO)13 as compared to the structurally similar HFeCo3(CO)12. PMID:29527432

  14. Density functional theory study of small X-doped Mg(n) (X = Fe, Co, Ni, n = 1-9) bimetallic clusters: equilibrium structures, stabilities, electronic and magnetic properties.

    PubMed

    Kong, Fanjie; Hu, Yanfei

    2014-03-01

    The geometries, stabilities, and electronic and magnetic properties of Mg(n) X (X = Fe, Co, Ni, n = 1-9) clusters were investigated systematically within the framework of the gradient-corrected density functional theory. The results show that the Mg(n)Fe, Mg(n)Co, and Mg(n)Ni clusters have similar geometric structures and that the X atom in Mg(n)X clusters prefers to be endohedrally doped. The average atomic binding energies, fragmentation energies, second-order differences in energy, and HOMO-LUMO gaps show that Mg₄X (X = Fe, Co, Ni) clusters possess relatively high stability. Natural population analysis was performed and the results showed that the 3s and 4s electrons always transfer to the 3d and 4p orbitals in the bonding atoms, and that electrons also transfer from the Mg atoms to the doped atoms (Fe, Co, Ni). In addition, the spin magnetic moments were analyzed and compared. Several clusters, such as Mg₁,₂,₃,₄,₅,₆,₈,₉Fe, Mg₁,₂,₄,₅,₆,₈,₉Co, and Mg₁,₂,₅,₆,₇,₉Ni, present high magnetic moments (4 μ(B), 3 μ(B), and 2 μ(B), respectively).

  15. Atomic-Resolution X-ray Energy-Dispersive Spectroscopy Chemical Mapping of Substitutional Dy Atoms in a High-Coercivity Neodymium Magnet

    NASA Astrophysics Data System (ADS)

    Itakura, Masaru; Watanabe, Natsuki; Nishida, Minoru; Daio, Takeshi; Matsumura, Syo

    2013-05-01

    We have investigated local element distributions in a Dy-doped Nd2Fe14B hot-deformed magnet by atomic-column resolution chemical mapping using an X-ray energy-dispersive spectrometer (XEDS) attached to an aberration-corrected scanning transmission electron microscope (Cs-corrected STEM). The positions of the Nd and Dy atomic columns were visualized in the XEDS maps. The substitution of Dy was limited to a surface layer 2-3 unit cells thick in the Nd2Fe14B grains, and the Dy atoms preferentially occupied the 4f-Nd sites of Nd2Fe14B. These results provide further insights into the principal mechanism governing the coercivity enhancement due to Dy doping.

  16. Biaxial tensile strain modulates magnetic properties of the 3d transition metal doped stanene

    NASA Astrophysics Data System (ADS)

    Dai, Xian-Qi; Zhao, Ming-Yu; Zhao, Ru-Meng; Li, Wei

    2017-06-01

    Utilizing first-principle calculations, the biaxial tensile strain modulating magnetic states and electronic structures of transition metal (TM) (i.e., Mn, Fe, Sc, Ni and Ti) atoms doped in stanene are investigated. It shows that Mn and Fe doped stanene systems are magnetic, while the Sc, Ti and Ni doped stanene systems are nonmagnetic. When the biaxial tensile strain increases, a weaker antiferromagnetic coupling between the nearest neighbor (NN) Sn atoms and Mn (Fe, Ti) atom is observed. For Sc and Ni doped stanene systems, the biaxial strain doesn't introduce spin polarization for the TM atoms. In a word, the TM atoms doped stanene systems may manifest potential applications in nanoelectronics, spintronics and magnetic storage devices.

  17. Electronic and magnetic properties of transition metal decorated monolayer GaS

    NASA Astrophysics Data System (ADS)

    Lin, Heng-Fu; Liu, Li-Min; Zhao, Jijun

    2018-07-01

    Inducing controllable magnetism in two dimensional non-magnetic materials is very important for realizing dilute magnetic semiconductor. Using density functional theory, we have systematically investigated the effect of surface adsorption of various 3d transition metal (TM) atoms (Sc-Cu) on the electronic and magnetic properties of the monolayer GaS as representative of group-IIIA metal-monochalcogenide. We find that all adatoms favor the top site on the Ga atom. All the TM atoms, except for the Cr and Mn, can bond strongly to the GaS monolayer with sizable binding energies. Moreover, the TM decorated GaS monolayers exhibit interesting magnetic properties, which arise from the strong spin-dependent hybridization of the TM 3d orbitals with S 3p and Ga 4s orbitals. After examining the magnetic interaction between two same types of TM atoms, we find that most of them exhibit antiferromagnetic coupling, while Fe and Co atoms can form long-range ferromagnetism. Furthermore, we find that the electronic properties of metal decorated systems strongly rely on the type of TM adatom and the adsorption concentration. In particular, the spin-polarized semiconducting state can be realized in Fe doped system for a large range of doping concentrations. These findings indicate that the TM decorated GaS monolayers have potential device applications in next-generation electronics and spintronics.

  18. Trichlorido[(meth­yl{2-[meth­yl(2-pyridyl­meth­yl)amino]eth­yl}amino)acetonitrile]iron(III) methanol hemisolvate

    PubMed Central

    Nielsen, Anne; McKenzie, Christine J.; Bond, Andrew D.

    2009-01-01

    The title compound, [FeCl3(C12H18N4)]·0.5CH3OH, contains an FeIII ion in a distorted octa­hedral coordination environment. The neutral N,N′,N′′-tridentate ligand adopts a fac coordination mode, and chloride ligands lie trans to each of the three coordinated N atoms. In the crystal, the complexes form columns extending parallel to the approximate local threefold axes of the FeN3Cl3 octa­hedra, and the columns are arranged so that the uncoordinated nitrile groups align in an anti­parallel manner and the pyridyl rings form offset face-to-face arrangements [inter­planar separations = 2.95 (1) and 3.11 (1) Å; centroid–centroid distances = 5.31 (1) and 4.92 (1) Å]. The methanol solvent mol­ecule is disordered about a twofold rotation axis. PMID:21578169

  19. The Phase Transformation and Crystal Structure Studies of Strontium Substituted Barium Monoferrite

    NASA Astrophysics Data System (ADS)

    Mulyawan, A.; Adi, W. A.; Mustofa, S.; Fisli, A.

    2017-03-01

    Unlike other AFe2O4 ferrite materials, Barium Monoferrite (BaFe2O4) have an orthorhombic structure which is very interesting to further study the crystal structure and phase formation. In this study, Strontium substituted Barium Monoferrite in the form of Ba(1-x)Sr(x)Fe2O4 has successfully been synthesized through solid state reaction method which includes BaCO3, SrCO3, and Fe2O3 as starting materials. Ba(1-x)Sr(x)Fe2O4 was made by varying the dopant composition of Strontium (Sr2+) from x = 0, 0.1, 0.3, and 0.5. Each composition was assisted by ethanol and continued to the milling process for 5 hours then followed by sintering process at 900 °C for 5 hours. The phase transformation was studied by using X-ray diffractometer (XRD) and Rietveld refinement using General Structure Analysis System (GSAS) also 3D crystal visualization using VESTA. Referring to the refinement results, a single phase of BaFe2O4 was formed in x = 0 and 0.1. The composition has orthorhombic structure, space group B b21m, and lattice parameters of a = 19.0229, b = 5.3814 c = 8.4524 Å, α = β = γ = 90° and a = 18.9978, b = 5.3802 c = 8.4385 Å, α = β = γ = 90° respectively. In the composition of x = 0.3 it was found that the phase of BaSrFe4O8 begin to form due to the overload expansion of the Sr2+ occupancy which made the distortion of the initial lattice parameters and finally in the x = 0.5 composition the single phase of BaSrFe4O8 was clearly formed. Energy Dispersive Spectroscopy (EDS) was used to confirm the change of the material structure by measuring the elemental compound composition ratio. The result of EDS spectra clearly exhibited the dominant elements were Barium (Ba), Strontium (Sr), Iron (Fe), and Oxygen (O) with the compound ratio (Atomic percentage and mass percentage) correspond to the BaFe2O4 and BaSrFe4O8 phase.

  20. Electronic structure and properties of magnetic defects in Co(1+x)Al(1-x) and Fe(1+x)Al(1-x) alloys. Ph.D. Thesis - Paris Univ.

    NASA Technical Reports Server (NTRS)

    Abbe, D.

    1984-01-01

    CoAl and FeAl compounds are developed along two directions. Magnetic susceptibility and specific heat at low temperature on (NiCo)Al and (CoFe)Al ternary alloys are in good agreement with band calculations. Results on magnetization and specific heat under field at low temperature on nonstoichiometric compounds show clearly the importance of the nearest neighbor effects. In the case of CoAl, the isolated cobalt atoms substituting aluminum are characterized by a Kondo behavior, and, for FeAl, the isolated extra iron atoms are magnetic and polarize the matrix. Moreover, for the two compounds, clusters of higher order play a considerable part in the magnetic properties for CoAl, these clusters also seem to be characterized by a Kondo behavior, for FeAl, these clusters whose moment is higher than in the case of isolated atoms, could be constituted of excess parts of iron atoms.

  1. Tris(4,4′-bi-1,3-thia­zole-κ2 N,N′)iron(II) tetra­bromidoferrate(III) bromide

    PubMed Central

    Abedi, Anita; Amani, Vahid; Safari, Nasser

    2011-01-01

    In the [Fe(4,4′-bit)3]2+ (4,4′-bit is 4,4′-bi-1,3-thia­zole) cation of the title compound, [Fe(C6H4N2S2)3][FeBr4]Br, the FeII atom (3 symmetry) is six-coordinated in a distorted octa­hedral geometry by six N atoms from three 4,4′-bit ligands. In the [FeBr4]− anion, the FeIII atom (3 symmetry) is four-coordinated in a distorted tetra­hedral geometry. In the crystal, inter­molecular C—H⋯Br hydrogen bonds and Br⋯π inter­actions [Br⋯centroid distances = 3.562 (3) and 3.765 (2) Å] link the cations and anions, stabilizing the structure. PMID:21522247

  2. Enhanced magneto-optical Kerr effect at Fe/insulator interfaces

    NASA Astrophysics Data System (ADS)

    Gu, Bo; Takahashi, Saburo; Maekawa, Sadamichi

    2017-12-01

    Using density functional theory calculations, we have found an enhanced magneto-optical Kerr effect in Fe/insulator interfaces. The results of our study indicate that interfacial Fe atoms in the Fe films have a low-dimensional nature, which causes the following two effects: (i) The diagonal component σx x of the optical conductivity decreases dramatically because the hopping integral for electrons between Fe atoms is suppressed by the low dimensionality. (ii) The off-diagonal component σx y of the optical conductivity does not change at low photon energies, but it is enhanced at photon energies around 2 eV, where we obtain enhanced orbital magnetic moments and spin-orbit correlations for the interfacial Fe atoms. A large Kerr angle develops in proportion to the ratio σx y/σx x . Our findings indicate an efficient way to enhance the effect of spin-orbit coupling at metal/insulator interfaces without using heavy elements.

  3. Atomic layer deposition and properties of ZrO2/Fe2O3 thin films

    PubMed Central

    Seemen, Helina; Ritslaid, Peeter; Rähn, Mihkel; Tamm, Aile; Kukli, Kaupo; Kasikov, Aarne; Link, Joosep; Stern, Raivo; Dueñas, Salvador; Castán, Helena; García, Héctor

    2018-01-01

    Thin solid films consisting of ZrO2 and Fe2O3 were grown by atomic layer deposition (ALD) at 400 °C. Metastable phases of ZrO2 were stabilized by Fe2O3 doping. The number of alternating ZrO2 and Fe2O3 deposition cycles were varied in order to achieve films with different cation ratios. The influence of annealing on the composition and structure of the thin films was investigated. Additionally, the influence of composition and structure on electrical and magnetic properties was studied. Several samples exhibited a measurable saturation magnetization and most of the samples exhibited a charge polarization. Both phenomena were observed in the sample with a Zr/Fe atomic ratio of 2.0. PMID:29441257

  4. Near-neighbor mixing and bond dilation in mechanically alloyed Cu-Fe

    NASA Astrophysics Data System (ADS)

    Harris, V. G.; Kemner, K. M.; Das, B. N.; Koon, N. C.; Ehrlich, A. E.; Kirkland, J. P.; Woicik, J. C.; Crespo, P.; Hernando, A.; Garcia Escorial, A.

    1996-09-01

    Extended x-ray-absorption fine-structure (EXAFS) measurements were used to obtain element-specific, structural, and chemical information of the local environments around Cu and Fe atoms in high-energy ball-milled CuxFe1-x samples (x=0.50 and 0.70). Analysis of the EXAFS data shows both Fe and Cu atoms reside in face-centered-cubic sites where the first coordination sphere consists of a mixture of Fe and Cu atoms in a ratio which reflects the as-prepared stoichiometry. The measured bond distances indicate a dilation in the bonds between unlike neighbors which accounts for the lattice expansion measured by x-ray diffraction. These results indicate that metastable alloys having a positive heat of mixing can be prepared via the high-energy ball-milling process.

  5. Solution structure of an artificial Fe8S8 ferredoxin: the D13C variant of Bacillus schlegelii Fe7S8 ferredoxin.

    PubMed

    Aono, S; Bentrop, D; Bertini, I; Cosenza, G; Luchinat, C

    1998-12-01

    The solution structure of the D13C variant of the thermostable Fe7S8 ferredoxin from Bacillus schlegelii has been determined by 1H-NMR spectroscopy in its oxidized form. In a variable-temperature NMR study the D13C variant was as thermostable (up to 90 degrees C) as the wild-type protein (WT). Seventy-five out of 77 amino acid residues and 81% of all theoretically expected proton resonances in the D13C Fe8S8 protein have been assigned. Its structure was determined through torsion angle dynamics calculations with the program DYANA, using 935 meaningful NOEs (from a total of 1251), hydrogen bond constraints, and NMR-derived dihedral angle constraints for the cluster-ligating cysteines. Afterwards, restrained energy minimization and restrained molecular dynamics were applied to each conformer of the family. The final family of 20 structures has RMSD values from the mean structure of 0.055 nm for the backbone atoms and of 0.099 nm for all heavy atoms. The overall folding of the WT is maintained in the mutant, except for the immediate vicinity of the new cysteine, which becomes much more similar to native Fe8S8 proteins. The two residues at positions 11 and 12, which constitute an insertion with respect to all known Fe8S8 proteins, assume a conformation that does not prevent the preceding and following residues from folding like in native Fe8S8 proteins. Clear evidence for the existence of two conformations involving almost half of the amino acid residues was found. The two conformations are structurally indistinguishable. Temperature-dependent NMR experiments show that one of them is thermodynamically more stable than the other.

  6. Adsorption of CO2 on Fe-doped graphene nano-ribbons: Investigation of transport properties

    NASA Astrophysics Data System (ADS)

    Othman, W.; Fahed, M.; Hatim, S.; Sherazi, A.; Berdiyorov, G.; Tit, N.

    2017-07-01

    Density functional theory combined with the non-equilibrium Green’s function formalism is used to study the conductance response of Fe-doped graphene nano-ribbons (GNRs) to CO2 gas adsorption. A single Fe atom is either adsorbed on GNR’s surface (aFe-graphene) or it substitutes the carbon atom (sFe-graphene). Metal atom doping reduces the electronic transmission of pristine graphene due to the localization of electronic states near the impurity site. Moreover, the aFe-graphene is found to be less sensitive to the CO2 molecule attachment as compared to the sFe-graphene system. These behaviours are not only consolidated but rather confirmed by calculating the IV characteristics from which both surface resistance and its sensitivity to the gas are estimated. Since the change in the conductivity is one of the main outputs of sensors, our findings will be useful in developing efficient graphene-based solid-state gas sensors.

  7. Iron Carbides in Fischer–Tropsch Synthesis: Theoretical and Experimental Understanding in Epsilon-Iron Carbide Phase Assignment

    DOE PAGES

    Liu, Xing-Wu; Cao, Zhi; Zhao, Shu; ...

    2017-09-11

    As active phases in low-temperature Fischer–Tropsch synthesis for liquid fuel production, epsilon iron carbides are critically important industrial materials. However, the precise atomic structure of epsilon iron carbides remains unclear, leading to a half-century of debate on the phase assignment of the ε-Fe 2C and ε’-Fe 2.2C. Here, we resolve this decades-long question by a combining theoretical and experimental investigation to assign the phases unambiguously. First, we have investigated the equilibrium structures and thermal stabilities of ε-Fe xC, (x = 1, 2, 2.2, 3, 4, 6, 8) by first-principles calculations. We have also acquired X-ray diffraction patterns and Mössbauer spectramore » for these epsilon iron carbides, and compared them with the simulated results. These analyses indicate that the unit cell of ε-Fe 2C contains only one type of chemical environment for Fe atoms, while ε’-Fe 2.2C has six sets of chemically distinct Fe atoms.« less

  8. Composition and molecular scale structure of nanophases formed by precipitation of biotite weathering products

    NASA Astrophysics Data System (ADS)

    Tamrat, Wuhib Zewde; Rose, Jérôme; Grauby, Olivier; Doelsch, Emmanuel; Levard, Clément; Chaurand, Perrine; Basile-Doelsch, Isabelle

    2018-05-01

    Because of their large surface area and reactivity, nanometric-size soil mineral phases have a high potential for soil organic matter stabilization, contaminant sorption or soil aggregation. In the literature, Fe and Al phases have been the main targets of batch-synthesized nanomineral studies while nano-aluminosilicates (Al and Si phases) have been mainly studied in Andic soils. In the present work, we synthesized secondary nanophases of Fe, Al and Si. To simulate a system as close as possible to soil conditions, we conducted laboratory simulations of the processes of (1) biotite alteration in acidic conditions producing a Al Si Fe Mg K leachate solution and (2) the following neoformation of secondary nanophases by titrating the leachate solution to pH 4.2, 5 and 7. The morphology of the nanophases, their size, crystallinity and chemistry were characterized by TEM-EDX on single particles and their local atomic structure by EXAFS (Extended X-ray Absorption Fine Structure) at the Fe absorption K-edge. The main nanophases formed were amorphous particles 10-60 nm in size whose composition (dominated by Fe and Si) was strongly controlled by the pH conditions at the end of the titration. At pH 4.2 and pH 7, the structure of the nanophases was dominated by the polymerization of Fe, which was hindered by Al, Si, Mg and K. Conversely, at pH 5, the polymerization of Fe was counteracted by precipitation of high amounts of Si. The synthetized nanophases were estimated to be rather analogous to nanophases formed in natural biotite-bearing soils. Because of their small size and potential high surface reactivity, the adsorption capacities of these nanophases with respect to the OM should be revisited in the framework of soil C storage.

  9. First-principles investigation of graphitic carbon nitride monolayer with embedded Fe atom

    NASA Astrophysics Data System (ADS)

    Abdullahi, Yusuf Zuntu; Yoon, Tiem Leong; Halim, Mohd Mahadi; Hashim, Md. Roslan; Lim, Thong Leng

    2018-01-01

    Density-functional theory (DFT) calculations with spin-polarized generalized gradient approximation and Hubbard U correction are carried out to investigate the mechanical, structural, electronic and magnetic properties of graphitic heptazine with embedded Fe atom under bi-axial tensile strain and applied perpendicular electric field. It was found that the binding energy of heptazine with embedded Fe atom system decreases as larger tensile strain is applied, while it increases as larger electric field strength is applied. Our calculations also predict a band gap at a peak value of 5% tensile strain but at expense of the structural stability of the system. The band gap open up at 5% tensile strain is due to distortion in the structure caused by the repulsive effect in the cavity between the lone pairs of the edge nitrogen atoms and dxy /dx2 -y2 orbital of Fe atom, forcing the unoccupied pz- orbital is forced to shift toward higher energy. The electronic and magnetic properties of the heptazine with embedded Fe system under perpendicular electric field up to a peak value of 8 V/nm is also well preserved despite an obvious buckled structure. Such properties are desirable for diluted magnetic semiconductors, spintronics, and sensing devices.

  10. Free Form Low Cost Fabrication Using Titanium

    DTIC Science & Technology

    2007-06-29

    Compaction Metals) "* CP Ti (International Titanium Powders, LLC) "* Gas Atomized Ti-6AI- 4V (Carpenter Powder Products, Bridgeville, PA) "* Gas Atomized CP...analytical data for the titanium alloys represented in this report Alloy Al C Fe H Mo N2 02 al V TI CP-Ti Grade II 0.1 0.3 0.015 0.03 025 Balance TI-6AI- 4V ...Ti-6A1- 4V is titanium alloyed with 6% Aluminum and 4% Vanadium. This alloy has a melting point range of 1604-1660’C, which is not suitable for

  11. Ethylene Epoxidation with Nitrous Oxide over Fe-BTC Metal-Organic Frameworks: A DFT Study.

    PubMed

    Maihom, Thana; Choomwattana, Saowapak; Wannakao, Sippakorn; Probst, Michael; Limtrakul, Jumras

    2016-11-04

    The epoxidation of ethylene with N 2 O over the metal-organic framework Fe-BTC (BTC=1,3,5-benzentricarboxylate) is investigated by means of density functional calculations. Two reaction paths for the production of ethylene oxide or acetaldehyde are systematically considered in order to assess the efficiency of Fe-BTC for the selective formation of ethylene oxide. The reaction starts with the decomposition of N 2 O to form an active surface oxygen atom on the Fe site of Fe-BTC, which subsequently reacts with an ethylene molecule to form an ethyleneoxy intermediate. This intermediate can then be selectively transformed either by 1,2-hydride shift into the undesired product acetaldehyde or into the desired product ethylene oxide by way of ring closure of the intermediate. The production of ethylene oxide requires an activation energy of 5.1 kcal mol -1 , which is only about one-third of the activation energy of acetaldehyde formation (14.3 kcal mol -1 ). The predicted reaction rate constants for the formation of ethylene oxide in the relevant temperature range are approximately 2-4 orders of magnitude higher than those for acetaldehyde. Altogether, the results suggest that Fe-BTC is a good candidate catalyst for the epoxidation of ethylene by molecular N 2 O. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Modeling Solar Atmospheric Phenomena with AtomDB and PyAtomDB

    NASA Astrophysics Data System (ADS)

    Dupont, Marcus; Foster, Adam

    2018-01-01

    Taking advantage of the modeling tools made available by PyAtomDB (Foster 2015), we evaluated the impact of changing atomic data on solar phenomena, in particular their effects on models of coronal mass ejections (CME). Intitially, we perform modifications to the canonical SunNEI code (Murphy et al. 2011) in order to include non-equilibrium ionization (NEI) processes that occur in the CME modeled in SunNEI. The methods used involve the consideration of radiaitive cooling as well as ion balance calculations. These calculations were subsequently implemented within the SunNEI simulation. The insertion of aforementioned processes and parameter customizaton produced quite similar results of the original except for the case of iron. These differences were traced to inconsistencies in the recombination rates for Argon-like iron ions between the CHIANTI and AtomDB databases, even though they in theory use the same data. The key finding was that theoretical models are greatly impacted by the relative atomic database update cycles.Following the SunNEI comparison, we then use the AtomDB database to model the time depedencies of intensity flux spikes produced by a coronal shock wave (Ma et al. 2011). We produced a theretical representation for an ionizing plasma that interpolated over the intensity in four Astronomical Imaging Assembly (AIA) filters. Specifically, the 171 A (Fe IX) ,193 A (Fe XII, FeXXIV),211 A (Fe XIV),and 335 A (Fe XVI) wavelengths in order to assess the comparative spectral emissions between AtomDB and the observed data. The results of the theoretical model, in principle, shine light on both the equilibrium conditions before the shock and the non-equilibrium response to the shock front, as well as discrepancies introduced by changing the atomic data.

  13. Effect of magnetism and atomic order on static atomic displacements in the Invar alloy Fe-27 at.% Pt

    NASA Astrophysics Data System (ADS)

    Sax, C. R.; Schönfeld, B.; Ruban, A. V.

    2015-08-01

    Fe-27 at.% Pt was aged at 1123 K and quenched to room temperature (RT) to set up a state of thermal equilibrium. The local atomic arrangement was studied by diffuse x-ray scattering above (at 427 K) and below (at RT) the Curie temperature as well as at RT under a saturating magnetic field. The separated short-range order scattering remained unchanged for all three states, with maxima at 100 positions. Effective pair interaction parameters determined by the inverse Monte Carlo method gave an order-disorder transition temperature of about 1088 K, close to direct experimental findings. The species-dependent static atomic displacements for the first two shells show large differences, with a strong increase in magnitude from the state at 427 K over RT to the state under saturating magnetic field. This outcome is in agreement with an increase in atomic volume of Fe with increasing local magnetic moment. Electronic-structure calculations closely reproduce the values for the static atomic displacements in the ferromagnetic state, and predict their dependence on the atomic configuration. They also reveal a strong dependence of the magnetic exchange interactions in Fe-Pt on the atomic configuration state and lattice parameter. In particular, the increase of the Curie temperature in a random state relative to that in the ordered one is demonstrated to be related to the corresponding change of the magnetic exchange interactions due to the different local atomic chemical environment. There exists a similar strong concentration dependence of the chemical interactions as in the case of magnetic exchange interactions. Theoretical effective interactions for Fe-27 at.% Pt alloy are in good agreement with experimental results, and they also reproduce well the L1 2-A1 transition temperature.

  14. Development of ultrafine Ti-Fe-Sn in-situ composite with enhanced plasticity

    NASA Astrophysics Data System (ADS)

    Mondal, B.; Samal, S.; Biswas, K.; Govind

    2012-01-01

    The present investigation is aimed at developing ultrafine eutectic/dendrite Ti-Fe-Sn in-situ composite with balanced combination of strength and plasticity. It also studies the microstructure evolution in the series of hypereutectic Ti-Fe-Sn ternary alloys. Sn concentration of these alloys has been varied from 0 - 10 atom% in the binary alloy (Ti71Fe29) keeping the Ti concentration fixed. These alloys have been prepared by arc melting under an Ar atmosphere on a water-cooled Cu hearth, which are subsequently suction cast in a split Cu-mold under an Ar atmosphere. Detailed X-ray diffraction (XRD) study shows the presence of TiFe, β-Ti, and Ti3Sn phases. The SEM micrographs reveal that the microstructures consist of fine scale eutectic matrix (β-Ti and TiFe) with primary dendrite phases (TiFe and/or Ti3Sn) depending on concentration of Sn. α -Ti forms as a eutectoid reaction product of β-Ti. The room temperature uniaxial compressive test reveals simultaneous improvement in the strength (1942 MPa) and plasticity (13.1 %) for Ti71Fe26Sn3 ternary alloy. The fracture surface indicates a ductile mode of fracture for the alloy.

  15. Ab Initio calculation on magnetism of monatomic Fe nanowire on Au (111) surface

    NASA Astrophysics Data System (ADS)

    Yasui, Takashi; Nawate, Masahiko

    2010-01-01

    The magnetic anisotropy of the one-dimensional monatomic Fe wire on the Au (111) texture has been theoretically analyzed using Wien2k flamework. The model simulates experimentally observed ferromagnetic Fe monatomic wire self-organized along the terrace edge of the Au (788) plane, which exhibits the magnetizaiton perpendicular both the wire and Au plane. In the case of the model consisting the one-dimensional Fe wire placed on the Au (111) plane with the Au lattice cite, no significant anisotropy is resulted by the calculation. On the other hand, the model where the Fe wire is formed along the Au terrace like step indicates the anisotropy of which easy direction is along the wire, resulting in differenct direction from the experiment. When we introduce the disorder in the Fe wire array, the easy direction changes. As for the model that the every other Fe atoms are slightly closer to the Au step (approx 0.0091 nm) the easy direction turns to be perpendicular to the wire and parallel to the Au plane, that is, the dislocation direction. The disorder in the Fe wire seems to play significant roll in the anisotropy.

  16. New Measurement of the 60Fe Half-Life.

    PubMed

    Rugel, G; Faestermann, T; Knie, K; Korschinek, G; Poutivtsev, M; Schumann, D; Kivel, N; Günther-Leopold, I; Weinreich, R; Wohlmuther, M

    2009-08-14

    We have made a new determination of the half-life of the radioactive isotope 60Fe using high precision measurements of the number of 60Fe atoms and their activity in a sample containing over 10(15) 60Fe atoms. Our new value for the half-life of 60Fe is (2.62+/-0.04) x 10(6) yr, significantly above the previously reported value of (1.49+/-0.27) x 10(6) yr. Our new measurement for the lifetime of 60Fe has significant implications for interpretations of galactic nucleosynthesis, for determinations of formation time scales of solids in the early Solar System, and for the interpretation of live 60Fe measurements from supernova-ejecta deposits on Earth.

  17. Iron-catalyzed olefin epoxidation in the presence of acetic acid: insights into the nature of the metal-based oxidant.

    PubMed

    Mas-Ballesté, Rubén; Que, Lawrence

    2007-12-26

    The iron complexes [(BPMEN)Fe(OTf)2] (1) and [(TPA)Fe(OTf)2] (2) [BPMEN = N,N'-bis-(2-pyridylmethyl)-N,N'-dimethyl-1,2-ethylenediamine; TPA = tris-(2-pyridylmethyl)amine] catalyze the oxidation of olefins by H2O2 to yield epoxides and cis-diols. The addition of acetic acid inhibits olefin cis-dihydroxylation and enhances epoxidation for both 1 and 2. Reactions carried out at 0 degrees C with 0.5 mol % catalyst and a 1:1.5 olefin/H2O2 ratio in a 1:2 CH3CN/CH3COOH solvent mixture result in nearly quantitative conversions of cyclooctene to epoxide within 1 min. The nature of the active species formed in the presence of acetic acid has been probed at low temperature. For 2, in the absence of substrate, [(TPA)FeIII(OOH)(CH3COOH)]2+ and [(TPA)FeIVO(NCCH3)]2+ intermediates can be observed. However, neither is the active epoxidizing species. In fact, [(TPA)FeIVO(NCCH3)]2+ is shown to form in competition with substrate oxidation. Consequently, it is proposed that epoxidation is mediated by [(TPA)FeV(O)(OOCCH3)]2+, generated from O-O bond heterolysis of the [(TPA)FeIII(OOH)(CH3COOH)]2+ intermediate, which is promoted by the protonation of the terminal oxygen atom of the hydroperoxide by the coordinated carboxylic acid.

  18. Mossbauer effect in dilute iron alloys

    NASA Technical Reports Server (NTRS)

    Singh, J. J.

    1975-01-01

    The effects of variable concentration, x, of Aluminum, Germanium, and Lanthanum atoms in Iron lattice on various Mossbauer parameters was studied. Dilute binary alloys of (Fe-Al), (Fe-Ge), (Fe-Al) containing up to x = 2 a/o of the dilute constituent were prepared in the form of ingots and rolled to a thickness of 0.001 in. Mossbauer spectra of these targets were then studied in transmission geometry to measure changes in the hyperfine field, peak widths isomer shifts as well as the ratio of the intensities of peaks (1,6) to the intensities of peaks (2,5). It was shown that the concept of effective hyperfine structure field in very dilute alloys provides a useful means of studying the effects of progressively increasing the solute concentration on host lattice properties.

  19. Evidence for the equality of the solar photospheric and coronal abundance of iron

    NASA Technical Reports Server (NTRS)

    Phillips, K. J. H.; Pike, C. D.; Lang, J.; Zarro, D. M.; Fludra, A.; Watanabe, T.; Takahashi, M.

    1995-01-01

    The Fe K-alpha and K-beta X-ray lines (wavelengths 1.94 and 1.76 A) in the solar X-ray spectrum are formed by fluoroescence of photospheric iron atoms, and the ratio of the intensity of either to the He-like iron (Fe XXV) resonance line at 1.85 A is a function of the photospheric-to-coronal abundance of iron. The temperature dependence of this ratio is weak as long as the flare temperature T(sub e) greater than or approximately equal to 15 x 10(exp 6)K. Comparison of the theoretical value of this intensity ratio with observations from crystal spectrometers on Yohkoh, Solar Maximum Mission (SMM) and P78-1 are consistent with the photospheric abundance of Fe being equal to the coronal.

  20. A neutral molecular-based layered magnet [Fe(C2O4)(CH3OH)]n exhibiting magnetic ordering at TN approximately 23 K.

    PubMed

    Zhang, Bin; Zhang, Yan; Zhang, Jinbiao; Li, Junchao; Zhu, Daoben

    2008-10-07

    Solvothermal synthesis of FeCl(2).4H2O and H2C2O(4).2H2O in methanol at 120 degrees C yielded yellow plate-like crystals of [Fe(C2O4)(CH3OH)]n. Each iron atom is in a distorted octahedral environment, being bonded to four oxygen atoms from two bisbidentate oxalate anions, one O atom of a chelating oxalate anion and one O atom from a methanol molecule as an oxalate group bridging ligand in a five-coordination mode. The neutral layer of [Fe(C2O4)(CH3OH)]n with a [4,4] net along the ac plane. There is no interaction between layers. A long range magnetic ordering with spin canting at TN approximately 23 K was observed and confirmed by AC susceptibility measurements.

  1. Synthesis and structural characterization of dinuclear Cd2+, Hg2+ and Fe2+ complexes with neutral bi and tetradentate flexible pyrazole-based ligands

    NASA Astrophysics Data System (ADS)

    Beheshti, Azizolla; Lalegani, Arash; Behvandi, Fatemeh; Safaeiyan, Forough; Sarkarzadeh, Afsoon; Bruno, Giuseppe; Amiri Rudbari, Hadi

    2015-02-01

    Four new complexes of [Hg2Cl4(bpp)]n (1), [Hg2Cl4(tdmpp)] (2), [Cd2I4(tdmpp)] (3) and [Fe2Cl4(tdmpp)] (4) were prepared by using the neutral N-donor ligands 1,3-bis(3,5-dimethyl-1-pyrazolyl)propane (bpp) and 1,1,3,3-tetrakis(3,5-dimethyl-1-pyrazolyl)propane (tdmpp) with different flexibility and appropriate metal salts of Cd(II), Hg(II) and Fe(II) ions. These compounds were characterized by the infrared spectroscopy, elemental analysis and X-ray crystallography. Flexible ligands and non-covalent Csbnd H⋯Cl hydrogen bonds play a major role in the crystal packing of compounds 1, 2 and 4. In the two-dimensional non-covalent structure of 1, there are two distinctly different coordination modes for the mercury atoms. One mercury atom has pseudo-trigonal bipyramidal geometry and the other adopts a distorted tetrahedral environment. In the dinuclear structures of 2 and 4 the neutral molecules are linked together by the Csbnd H⋯Cl hydrogen bonds, forming an infinite one-dimensional zigzag chain structure. Compounds 2-4 are isostructural with each other.

  2. Synthesis of inorganic fullerene-like molecules.

    PubMed

    Bai, Junfeng; Virovets, Alexander V; Scheer, Manfred

    2003-05-02

    The reaction of [Cp*Fe(eta5-P5)] with Cu(I)Cl in solvent mixtures of CH2Cl2/CH3CN leads to the formation of entirely inorganic fullerene-like molecules of the formula [[Cp*Fe(eta5:eta1:eta1:eta1:eta1:eta1-P5)]12[CuCl]10[Cu2Cl3]5[Cu(CH3CN)2]5] (1) possessing 90 inorganic core atoms. This compound represents a structural motif similar to that of C60: cyclo-P5 rings of [Cp*Fe(eta5-P5)] molecules are surrounded by six-membered P4Cu2 rings that result from the coordination of each of the phosphorus lone pairs to CuCl metal centers, which are further coordinated by P atoms of other cyclo-P5 rings. Thus, five- and six-membered rings alternate in a manner comparable to that observed in the fullerene molecules. The so-formed half shells are joined by [Cu2Cl3]- as well as by [Cu(CH3CN)2]+ units. The spherical body has an inside diameter of 1.25 nanometers and an outside diameter of 2.13 nanometers, which is about three times as large as that of C60.

  3. KMg0.09Fe1.91(PO4)2

    PubMed Central

    Yatskin, Michael M.; Zatovsky, Igor V.; Baumer, Vyacheslav N.; Ogorodnyk, Ivan V.; Slobodyanik, Nikolay S.

    2012-01-01

    KMg0.09Fe1.91(PO4)2, potassium [iron(II)/magnesium] iron(III) bis(orthophosphate), is a solid solution derived from compounds with general formula KM IIFe(PO4)2 (M II = Fe, Cu), in which the Mg atoms substitute Fe atoms only in the octa­hedrally surrounded sites. The framework of the structure is built up from [FeO5] trigonal bipyramids and [MO6] (M = (Fe, Mg) octa­hedra sharing corners and edges and connected by two types of bridging PO4 tetra­hedra. The K+ cations are nine-coordinated and are situated in channels running along [101]. PMID:22719280

  4. Atomic scale study of ball milled Ni-Fe{sub 2}O{sub 3} using Mössbauer spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadav, Ravi Kumar; Govindaraj, R., E-mail: govind@igcar.gov.in; Vinod, K.

    Evolution of hyperfine fields at Fe atoms has been studied in a detailed manner in a mixture of Ni and α-Fe{sub 2}O{sub 3} subjected to high energy ball milling using Mossbauer spectroscopy. Mossbauer results indicate the dispersion of α-Fe{sub 2}O{sub 3} particles in Ni matrix in the as ball milled condition. Evolution of α-Fe{sub 2}O{sub 3} due to ball milling, reduction of the valence of associated Fe and possible interaction between the oxide particles with Ni in the matrix due to annealing treatments has been elucidated in the present study.

  5. Iron in solution with aluminum matrix after non-equilibrium processing: an atom probe tomography study

    NASA Astrophysics Data System (ADS)

    Saller, Brandon D.; Sha, Gang; Yang, Li Mei; Liu, Fan; Ringer, Simon P.; Schoenung, Julie M.

    2017-03-01

    In this paper, we report on the influence of rapid solidification and severe plastic deformation on the solid solubility of Fe in Al. Atom probe tomography, for the first time, was performed on fine (3-4 μm diameter) and coarse ( 100 μm) as-atomised Al-5 at.% Fe powder and cryomilled Al-5 at.% Fe powder. The atomised powders exhibited negligible Fe in solution with Al, whereas the cryomilled powder contained 2 at.% Fe in solution. Moreover, our results suggest that severe plastic deformation is preferable to atomisation/rapid solidification for increasing the non-equilibrium solid solubility of Fe in Al.

  6. Structure and magnetic properties of Fe12X clusters

    NASA Astrophysics Data System (ADS)

    Gutsev, G. L.; Johnson, L. E.; Belay, K. G.; Weatherford, C. A.; Gutsev, L. G.; Ramachandran, B. R.

    2014-02-01

    The electronic and geometrical structures of a Fe12X family of binary clusters Fe12Al, Fe12Sc, Fe12Ti, Fe12V, Fe12Cr, Fe12Mn, Fe12Co, Fe12Ni, Fe12Cu, Fe12Zn, Fe12Y, Fe12Zr, Fe12Nb, Fe12Mo, Fe12Tc, Fe12Ru, Fe12Rh, Fe12Pd, Fe12Ag, Fe12Cd, and Fe12Gd are studied using density functional theory within generalized gradient approximation. It is found that the geometrical structures corresponding to the lowest total energy states found for the Fe12X clusters possess icosahedral shape with the substituent atom occupying the central or a surface site. The only exception presents Fe12Nb where a squeezed cage structure is the energetically most favorable. The substitution of an atom in the Fe13 cluster results in the decrease of its total spin magnetic moment of 44 μB, except for Fe12Mn and Fe12Gd. The Fe12X clusters are more stable than the parent Fe13 cluster when X = Al, Sc, Ti, V, Co, Y, Zr, Nb, Mo, Tc, Ru, and Rh.

  7. Metal-Assisted Oxo Atom Addition to an Fe(III) Thiolate.

    PubMed

    Villar-Acevedo, Gloria; Lugo-Mas, Priscilla; Blakely, Maike N; Rees, Julian A; Ganas, Abbie S; Hanada, Erin M; Kaminsky, Werner; Kovacs, Julie A

    2017-01-11

    Cysteinate oxygenation is intimately tied to the function of both cysteine dioxygenases (CDOs) and nitrile hydratases (NHases), and yet the mechanisms by which sulfurs are oxidized by these enzymes are unknown, in part because intermediates have yet to be observed. Herein, we report a five-coordinate bis-thiolate ligated Fe(III) complex, [Fe III (S 2 Me2 N 3 (Pr,Pr))] + (2), that reacts with oxo atom donors (PhIO, IBX-ester, and H 2 O 2 ) to afford a rare example of a singly oxygenated sulfenate, [Fe III (η 2 -S Me2 O)(S Me2 )N 3 (Pr,Pr)] + (5), resembling both a proposed intermediate in the CDO catalytic cycle and the essential NHase Fe-S(O) Cys114 proposed to be intimately involved in nitrile hydrolysis. Comparison of the reactivity of 2 with that of a more electron-rich, crystallographically characterized derivative, [Fe III S 2 Me2 N Me N 2 amide (Pr,Pr)] - (8), shows that oxo atom donor reactivity correlates with the metal ion's ability to bind exogenous ligands. Density functional theory calculations suggest that the mechanism of S-oxygenation does not proceed via direct attack at the thiolate sulfurs; the average spin-density on the thiolate sulfurs is approximately the same for 2 and 8, and Mulliken charges on the sulfurs of 8 are roughly twice those of 2, implying that 8 should be more susceptible to sulfur oxidation. Carboxamide-ligated 8 is shown to be unreactive towards oxo atom donors, in contrast to imine-ligated 2. Azide (N 3 - ) is shown to inhibit sulfur oxidation with 2, and a green intermediate is observed, which then slowly converts to sulfenate-ligated 5. This suggests that the mechanism of sulfur oxidation involves initial coordination of the oxo atom donor to the metal ion. Whether the green intermediate is an oxo atom donor adduct, Fe-O═I-Ph, or an Fe(V)═O remains to be determined.

  8. Recycling of spent lithium-ion battery with polyvinyl chloride by mechanochemical process.

    PubMed

    Wang, Meng-Meng; Zhang, Cong-Cong; Zhang, Fu-Shen

    2017-09-01

    In the present study, cathode materials (C/LiCoO 2 ) of spent lithium-ion batteries (LIBs) and waste polyvinyl chloride (PVC) were co-processed via an innovative mechanochemical method, i.e. LiCoO 2 /PVC/Fe was co-grinded followed by water-leaching. This procedure generated recoverable LiCl from Li by the dechlorination of PVC and also generated magnetic CoFe 4 O 6 from Co. The effects of different additives (e.g. alkali metals, non-metal oxides, and zero-valent metals) on (i) the conversion rates of Li and Co and (ii) the dechlorination rate of PVC were investigated, and the reaction mechanisms were explored. It was found that the chlorine atoms in PVC were mechanochemically transformed into chloride ions that bound to the Li in LiCoO 2 to form LiCl. This resulted in reorganization of the Co and Fe crystals to form the magnetic material CoFe 4 O 6 . This study provides a more environmentally-friendly, economical, and straightforward approach for the recycling of spent LIBs and waste PVC compared to traditional processes. Copyright © 2017. Published by Elsevier Ltd.

  9. Improvement of in vitro corrosion and cytocompatibility of biodegradable Fe surface modified by Zn ion implantation

    NASA Astrophysics Data System (ADS)

    Wang, Henan; Zheng, Yang; Li, Yan; Jiang, Chengbao

    2017-05-01

    Pure Fe was surface-modified by Zn ion implantation to improve the biodegradable behavior and cytocompatibility. Surface topography, chemical composition, corrosion resistance and cytocompatibility were investigated. Atomic force microscopy, auger electron spectroscopy and X-ray photoelectron spectroscopy results showed that Zn was implanted into the surface of pure Fe in the depth of 40-60 nm and Fe2O3/ZnO oxides were formed on the outmost surface. Electrochemical measurements and immersion tests revealed an improved degradable behavior for the Zn-implanted Fe samples. An approximately 12% reduction in the corrosion potential (Ecorr) and a 10-fold increase in the corrosion current density (icorr) were obtained after Zn ion implantation with a moderate incident ion dose, which was attributed to the enhanced pitting corrosion. The surface free energy of pure Fe was decreased by Zn ion implantation. The results of direct cell culture indicated that the short-term (4 h) cytocompatibility of MC3T3-E1 cells was promoted by the implanted Zn on the surface.

  10. Fe/Si(001) Ferromagnetic Layers: Reactivity, Local Atomic Structure and Magnetism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lungu, G. A.; Costescu, R. M.; Husanu, M. A.

    2011-10-03

    Ultrathin ferromagnetic Fe layers on Si(001) have recently been synthesized using the molecular beam epitaxy (MBE) technique, and their structural and magnetic properties, as well as their interface reactivity have been investigated. The study was undertaken as function of the amount of Fe deposited and of substrate temperature. The interface reactivity was characterized by Auger electron spectroscopy (AES). The surface structure was characterized by low-energy electron diffraction (LEED). The magnetism was investigated by magneto-optical Kerr effect (MOKE). A higher deposition temperature stabilizes a better surface ordering, but it also enhances Fe and Si interdiffusion and it therefore decreases the magnetism.more » Despite the rapid disappearance of the long range order with Fe deposition at room temperature, the material exhibits a significant uniaxial in-plane magnetic anisotropy. For the Fe deposition performed at high temperature (500 deg. C), a weak ferromagnetism is still observed, with saturation magnetization of about 10% of the value obtained previously. MOKE studies allowed inferring the main properties of the distinct formed layers.« less

  11. Microstructure and properties of Ti-Fe-Y alloy fabricated by laser-aided direct metal deposition

    NASA Astrophysics Data System (ADS)

    Wang, Cunshan; Han, Liying

    2018-04-01

    Ti-Fe-Y alloys were designed using a "cluster-plus-glue-atom" model and then were prepared by laser-aided direct metal deposition (LDMD) on a pure titanium substrate. The influence of the Y addition on the microstructure and properties of the alloys were investigated. The results show that the alloys are composed of β-Ti solid solution and FeTi compound. The addition of Y not only suppresses the formation of Ti4Fe2O oxide but also increases the supercooling degree of the melt, leading to the grain refinement and the increase in the solid solution of the β-Ti. Meanwhile, the microstructure changes sequentially from eutectic to hypereutectic to hypoeutectic with the increasing of the Y addition. The strengest Ti-Fe-Y alloy has a dispersed eutectic structure and exhibits a good combination of mechanical, tribological, and forming properties, which is superior to that obtained for the binary Ti70.6Fe29.4 eutectic alloy. This makes the alloy a promising candidate as a LDMD material.

  12. Stability investigation of a high number density Pt1/Fe2O3 single-atom catalyst under different gas environments by HAADF-STEM

    NASA Astrophysics Data System (ADS)

    Duan, Sibin; Wang, Rongming; Liu, Jingyue

    2018-05-01

    Catalysis by supported single metal atoms has demonstrated tremendous potential for practical applications due to their unique catalytic properties. Unless they are strongly anchored to the support surfaces, supported single atoms, however, are thermodynamically unstable, which poses a major obstacle for broad applications of single-atom catalysts (SACs). In order to develop strategies to improve the stability of SACs, we need to understand the intrinsic nature of the sintering processes of supported single metal atoms, especially under various gas environments that are relevant to important catalytic reactions. We report on the synthesis of high number density Pt1/Fe2O3 SACs using a facial strong adsorption method and the study of the mobility of these supported Pt single atoms at 250 °C under various gas environments that are relevant to CO oxidation, water–gas shift, and hydrogenation reactions. Under the oxidative gas environment, Fe2O3 supported Pt single atoms are stable even at high temperatures. The presence of either CO or H2 molecules in the gas environment, however, facilitates the movement of the Pt atoms. The strong interaction between CO and Pt weakens the binding between the Pt atoms and the support, facilitating the movement of the Pt single atoms. The dissociation of H2 molecules on the Pt atoms and their subsequent interaction with the oxygen species of the support surfaces dislodge the surface oxygen anchored Pt atoms, resulting in the formation of Pt clusters. The addition of H2O molecules to the CO or H2 significantly accelerates the sintering of the Fe2O3 supported Pt single atoms. An anchoring-site determined sintering mechanism is further proposed, which is related to the metal–support interaction.

  13. Stability investigation of a high number density Pt1/Fe2O3 single-atom catalyst under different gas environments by HAADF-STEM.

    PubMed

    Duan, Sibin; Wang, Rongming; Liu, Jingyue

    2018-05-18

    Catalysis by supported single metal atoms has demonstrated tremendous potential for practical applications due to their unique catalytic properties. Unless they are strongly anchored to the support surfaces, supported single atoms, however, are thermodynamically unstable, which poses a major obstacle for broad applications of single-atom catalysts (SACs). In order to develop strategies to improve the stability of SACs, we need to understand the intrinsic nature of the sintering processes of supported single metal atoms, especially under various gas environments that are relevant to important catalytic reactions. We report on the synthesis of high number density Pt 1 /Fe 2 O 3 SACs using a facial strong adsorption method and the study of the mobility of these supported Pt single atoms at 250 °C under various gas environments that are relevant to CO oxidation, water-gas shift, and hydrogenation reactions. Under the oxidative gas environment, Fe 2 O 3 supported Pt single atoms are stable even at high temperatures. The presence of either CO or H 2 molecules in the gas environment, however, facilitates the movement of the Pt atoms. The strong interaction between CO and Pt weakens the binding between the Pt atoms and the support, facilitating the movement of the Pt single atoms. The dissociation of H 2 molecules on the Pt atoms and their subsequent interaction with the oxygen species of the support surfaces dislodge the surface oxygen anchored Pt atoms, resulting in the formation of Pt clusters. The addition of H 2 O molecules to the CO or H 2 significantly accelerates the sintering of the Fe 2 O 3 supported Pt single atoms. An anchoring-site determined sintering mechanism is further proposed, which is related to the metal-support interaction.

  14. Adsorption of Fe(II) and U(VI) to carboxyl-functionalized microspheres: The influence of speciation on uranyl reduction studied by titration and XAFS

    NASA Astrophysics Data System (ADS)

    Boyanov, Maxim I.; O'Loughlin, Edward J.; Roden, Eric E.; Fein, Jeremy B.; Kemner, Kenneth M.

    2007-04-01

    The chemical reduction of U(VI) by Fe(II) is a potentially important pathway for immobilization of uranium in subsurface environments. Although the presence of surfaces has been shown to catalyze the reaction between Fe(II) and U(VI) aqueous species, the mechanism(s) responsible for the enhanced reactivity remain ambiguous. To gain further insight into the U-Fe redox process at a complexing, non-conducting surface that is relevant to common organic phases in the environment, we studied suspensions containing combinations of 0.1 mM U(VI), 1.0 mM Fe(II), and 4.2 g/L carboxyl-functionalized polystyrene microspheres. Acid-base titrations were used to monitor protolytic reactions, and Fe K-edge and U L-edge X-ray absorption fine structure spectroscopy was used to determine the valence and atomic environment of the adsorbed Fe and U species. In the Fe + surface carboxyl system, a transition from monomeric to oligomeric Fe(II) surface species was observed between pH 7.5 and pH 8.4. In the U + surface carboxyl system, the U(VI) cation was adsorbed as a mononuclear uranyl-carboxyl complex at both pH 7.5 and 8.4. In the ternary U + Fe + surface carboxyl system, U(VI) was not reduced by the solvated or adsorbed Fe(II) at pH 7.5 over a 4-month period, whereas complete and rapid reduction to U(IV) nanoparticles occurred at pH 8.4. The U(IV) product reoxidized rapidly upon exposure to air, but it was stable over a 4-month period under anoxic conditions. Fe atoms were found in the local environment of the reduced U(IV) atoms at a distance of 3.56 Å. The U(IV)-Fe coordination is consistent with an inner-sphere electron transfer mechanism between the redox centers and involvement of Fe(II) atoms in both steps of the reduction from U(VI) to U(IV). The inability of Fe(II) to reduce U(VI) in solution and at pH 7.5 in the U + Fe + carboxyl system is explained by the formation of a transient, "dead-end" U(V)-Fe(III) complex that blocks the U(V) disproportionation pathway after the first electron transfer. The increased reactivity at pH 8.4 relative to pH 7.5 is explained by the reaction of U(VI) with an Fe(II) oligomer, whereby the bonds between Fe atoms facilitate the transfer of a second electron to the hypothetical U(V)-Fe(III) intermediate. We discuss how this mechanism may explain the commonly observed higher efficiency of uranyl reduction by adsorbed or structural Fe(II) relative to aqueous Fe(II).

  15. Effects of Coating Materials and Mineral Additives on Nitrate Reduction by Zerovalent Iron

    NASA Astrophysics Data System (ADS)

    Kim, K. H.; Jeong, H. Y.; Lee, S.; Kang, N.; Choi, H. J.; Park, M.

    2015-12-01

    In efforts to facilitate nitrate removal, a variety of coating materials and mineral additives were assessed for their effects on the nitrate reduction by zerovalent iron (ZVI). Coated ZVIs were prepared by reacting Fe particles with Cr(III), Co(II), Ni(II), Cu(II), and S(-II) solutions under anoxic conditions, with the resultant materials named Cr/Fe, Co/Fe, Ni/Fe, Cu/Fe, and FeS/Fe, respectively. The mineral additives used, synthesized or purchased, included goethite, magnetite, and hydrous ferric oxide (HFO). Kinetic experiments were performed using air-tight serum vials containing 1.0 g Fe (uncoated or coated forms) in 15 mL of 100 mg NO3×N/L solutions with pH buffered at 7.0. To monitor the reaction progress, the solution phase was analyzed for NO3-, NO2-, and NH4+ on an ion chromatography, while the headspace was analyzed for H2, N2, and O2 on a gas chromatography. By uncoated Fe, ca. 60% of nitrate was reductively transformed for 3.6 h, with NH4+ being the predominant product. Compared with uncoated one, Cr/Fe, Co/Fe, and Cu/Fe showed faster removal rates of nitrate. The observed reactivity enhancement was thought to result from additional reduction of nitrate by H atoms adsorbed on the surface of Cr, Co, or Cu metal. In contrast, both Ni/Fe and FeS/Fe showed slower removal of nitrate than uncoated Fe. In both cases, the coating, which highly disfavors the adsorption of nitrate, would form on the Fe surface. When goethite, HFO, and magnetite were amended, the nitrate reduction by Fe was significantly increased, with the effect being most evident with HFO. Although not capable of reducing nitrate, the mineral additives would serve as crystal nuclei for the corrosion products of Fe, thus making the development of passivation layers on the Fe surface less. In the future, we will perform a kinetic modeling of the experimental data to assess the relative contribution of multiple reaction paths in the nitrate reduction by Fe.

  16. Fe implantation effect in the 6H-SiC semiconductor investigated by Mössbauer spectrometry

    NASA Astrophysics Data System (ADS)

    Diallo, M. L.; Diallo, L.; Fnidiki, A.; Lechevallier, L.; Cuvilly, F.; Blum, I.; Viret, M.; Marteau, M.; Eyidi, D.; Juraszek, J.; Declémy, A.

    2017-08-01

    P-doped 6H-SiC substrates were implanted with 57Fe ions at 380 °C or 550 °C to produce a diluted magnetic semiconductor with an Fe homogeneous concentration of about 100 nm thickness. The magnetic properties were studied with 57Fe Conversion Electron Mössbauer Spectrometry at room temperature (RT). Results obtained by this technique on annealed samples prove that ferromagnetism in 57Fe-implanted SiC for Fe concentrations close to 2% and 4% is mostly due to Fe atoms diluted in the matrix. In contrast, for Fe concentrations close to 6%, it also comes from Fe in magnetic phase nano-clusters. This study allows quantifying the Fe amount in the interstitial and substitutional sites and the nanoparticles and shows that the majority of the diluted Fe atoms are substituted on Si sites inducing ferromagnetism up to RT.

  17. Interstitial Fe in MgO

    NASA Astrophysics Data System (ADS)

    Mølholt, T. E.; Mantovan, R.; Gunnlaugsson, H. P.; Svane, A.; Masenda, H.; Naidoo, D.; Bharuth-Ram, K.; Fanciulli, M.; Gislason, H. P.; Johnston, K.; Langouche, G.; Ólafsson, S.; Sielemann, R.; Weyer, G.

    2014-01-01

    Isolated 57Fe atoms were studied in MgO single-crystals by emission Mössbauer spectroscopy following implantation of 57Mn decaying to 57Fe. Four Mössbauer spectral components were found corresponding to different Fe lattice positions and/or charge states. Two components represent Fe atoms substituting Mg as Fe2+ and Fe3+, respectively; a third component is due to Fe in a strongly implantation-induced disturbed region. The fourth component, which is the focus of this paper, can be assigned to Fe at an interstitial site. Comparison of its measured isomer shift with ab initio calculations suggests that the interstitial Fe is located on, or close to, the face of the rock-salt MgO structure. To harmonize such an assignment with the measured near-zero quadrupole interaction a local motion process (cage motion) of the Fe has to be stipulated. The relation of such a local motion as a starting point for long range diffusion is discussed.

  18. Effect of 0.25 and 2.0 MeV He-Ion Irradiation on Short-Range Ordering in Model (EFDA) Fe-Cr Alloys

    NASA Astrophysics Data System (ADS)

    Dubiel, Stanisław M.; Żukrowski, Jan; Serruys, Yves

    2018-05-01

    The effects of He+ irradiation on a distribution of Cr atoms in Fe100-x Cr x (x = 5.8, 10.75, 15.15) alloys were studied by 57Fe Conversion Electron Mössbauer Spectroscopy (CEMS). The alloys were irradiated with doses up to 12 × 1016 ions/cm2 with 0.25 and 2.0 MeV He+ ions. The distribution of Cr atoms within the first two coordination shells around Fe atoms was expressed with short-range order parameters α 1 (first-neighbor shell, 1NN), α 2 (second-neighbor shell, 2NN), and α 12 (1NN + 2NN). In non-irradiated alloys, α 1 >0 and α 2 <0 was revealed for all three samples. The value of α 12 ≈0, i.e., the distribution of Cr atoms averaged over 1NN and 2NN, was random. The effect of the irradiation of the Fe94.2Cr5.8 alloy was similar for the two energies of He+, viz., increase of number of Cr atoms in 1NN and decrease in 2NN. Consequently, the degree of ordering increased. For the other two samples, the effect of the irradiation depends on the composition, and is stronger for the less energetic ions where, for Fe89.25Cr10.75 alloy, the disordering disappeared and some traces of Cr clustering appeared. In Fe84.85Cr15.15 alloy, the clustering was clear. In the samples irradiated with 2. 0 MeV He+ ions, the ordering also survived in the samples with x = 10.75 and 15.15, yet its degree became smaller than in the Fe94.2Cr5.8 alloy.

  19. Important role of the non-uniform Fe distribution for the ferromagnetism in group-IV-based ferromagnetic semiconductor GeFe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wakabayashi, Yuki K.; Ohya, Shinobu; Ban, Yoshisuke

    2014-11-07

    We investigate the growth-temperature dependence of the properties of the group-IV-based ferromagnetic semiconductor Ge{sub 1−x}Fe{sub x} films (x = 6.5% and 10.5%), and reveal the correlation of the magnetic properties with the lattice constant, Curie temperature (T{sub C}), non-uniformity of Fe atoms, stacking-fault defects, and Fe-atom locations. While T{sub C} strongly depends on the growth temperature, we find a universal relationship between T{sub C} and the lattice constant, which does not depend on the Fe content x. By using the spatially resolved transmission-electron diffractions combined with the energy-dispersive X-ray spectroscopy, we find that the density of the stacking-fault defects and the non-uniformitymore » of the Fe concentration are correlated with T{sub C}. Meanwhile, by using the channeling Rutherford backscattering and particle-induced X-ray emission measurements, we clarify that about 15% of the Fe atoms exist on the tetrahedral interstitial sites in the Ge{sub 0.935}Fe{sub 0.065} lattice and that the substitutional Fe concentration is not correlated with T{sub C}. Considering these results, we conclude that the non-uniformity of the Fe concentration plays an important role in determining the ferromagnetic properties of GeFe.« less

  20. Unique Reactivity of Transition Metal Atoms Embedded in Graphene to CO, NO, O₂ and O Adsorption: A First-Principles Investigation.

    PubMed

    Chu, Minmin; Liu, Xin; Sui, Yanhui; Luo, Jie; Meng, Changgong

    2015-10-27

    Taking the adsorption of CO, NO, O₂ and O as probes, we investigated the electronic structure of transition metal atoms (TM, TM = Fe, Co, Ni, Cu and Zn) embedded in graphene by first-principles-based calculations. We showed that these TM atoms can be effectively stabilized on monovacancy defects on graphene by forming plausible interactions with the C atoms associated with dangling bonds. These interactions not only give rise to high energy barriers for the diffusion and aggregation of the embedded TM atoms to withstand the interference of reaction environments, but also shift the energy levels of TM-d states and regulate the reactivity of the embedded TM atoms. The adsorption of CO, NO, O₂ and O correlates well with the weight averaged energy level of TM-d states, showing the crucial role of interfacial TM-C interactions on manipulating the reactivity of embedded TM atoms. These findings pave the way for the developments of effective monodispersed atomic TM composites with high stability and desired performance for gas sensing and catalytic applications.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, Margareta; Lackner, Peter; Seiler, Steffen

    Metal deposition on oxide surfaces usually results in adatoms, clusters, or islands of the deposited material, where defects in the surface often act as nucleation centers. An alternate configuration is reported. Afterwards the vapor deposition of Fe on the In 2O 3(111) surface at room temperature, ordered adatoms are observed with scanning tunneling microscopy (STM). These are identical to the In adatoms that form when the sample is reduced by heating in ultrahigh vacuum. Our density functional theory (DFT) calculations confirm that Fe interchanges with In in the topmost layer, pushing the excess In atoms to the surface where theymore » arrange as a well-ordered adatom array.« less

  2. Structure and function of photosystem I–[FeFe] hydrogenase protein fusions: An all-atom molecular dynamics study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, Bradley J.; Cheng, Xiaolin; Frymier, Paul

    2015-12-15

    All-atom molecular dynamics (MD) simulation was used to study the solution dynamics and protein protein interactions of protein fusions of photosystem I (PSI) from Thermosynechococcus elongatus and an [FeFe]-hydrogenase (FeFe H 2ase) from Clostridium pasteurianum, a unique complex capable of photocatalytic hydrogen production. This study involved fusions of these two proteins via dithiol linkers of different length including decanedithiol, octanedithiol, and hexanedithiol, for which experimental data had previously been obtained. Evaluation of root-mean-squared deviations (RMSDs) relative to the respective crystal structures of PSI and the FeFe H 2ase shows that these fusion complexes approach stable equilibrium conformations during the MDmore » simulations. Investigating protein mobility via root-mean-squared fluctuations (RMSFs) reveals that tethering via the shortest hexanedithiol linker results in increased atomic fluctuations of both PSI and the hydrogenase in these fusion complexes. Furthermore, evaluation of the inter- and intraprotein electron transfer distances in these fusion complexes indicates that the structural changes in the FeFe H 2ase arising from ligation to PSI via the shortest hexanedithiol linker may hinder electron transport in the hydrogenase, thus providing a molecular level explanation for the observation that the medium-length octanedithiol linker gives the highest hydrogen production rate.« less

  3. Effect of biaxial strain on the magnetism of Fe16N2: Density-functional investigations

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; Liu, Lijuan; Wu, Ping

    2014-02-01

    The effect of biaxial strain on the magnetism of α″-Fe16N2 was investigated by the first principles calculations. The GGA, GGA + U and HSE06 calculations give the same result that the magnetic moments increase with the biaxial strain in the ab plane. All non-equivalent Fe atoms contribute to the increase of magnetic moments, although the variations of inter-atomic distances between non-equivalent Fe and N are different. Additionally, the magnetic anisotropy of Fe16N2 could be controlled by the biaxial strain.

  4. Nanocomposite Nd-Y-Fe-B-Mo bulk magnets prepared by injection casting technique

    NASA Astrophysics Data System (ADS)

    Tao, Shan; Ahmad, Zubair; Zhang, Pengyue; Yan, Mi; Zheng, Xiaomei

    2017-09-01

    The phase composition, magnetic and microstructural properties of Nd2Fe14B/(α-Fe, Fe3B) nanocomposite magnets produced by injection casting technique have been studied. Magnetic hysteresis loop of the Nd7Y6Fe61B22Mo4 permanent magnet demonstrates the coercivity as high as 1289 kA/m. Electron microscopy elucidates a microstructure composed of magnetically soft α-Fe, Fe3B and hard Nd2Fe14B/Y2Fe14B nanograins (20-50 nm) separated by ultra-thin grain boundary layer. The Henkel plot curve of the Nd7Y6Fe61B22Mo4 magnet yields the existence of exchange coupling interactions between soft and hard phases. Macroscopically large size sheet magnet is obtained due to high glass forming ability of the Nd7Y6Fe61B22Mo4 alloy derived from large atomic radius mismatch and negative enthalpy of alloy constituent elements. The high coercivity of the magnet is attributed to the magnetically hard phase increment, nucleation of reverse domains and the presence of thin grain boundary phase. Good magnetic properties such as remanence of 0.51 T, coercivity of 1289 kA/m and maximum energy product of 46.2 kJ/m3 are obtained in directly casted Nd7Y6Fe61B22Mo4 sheet magnets.

  5. Tunability of room-temperature ferromagnetism in spintronic semiconductors through nonmagnetic atoms

    NASA Astrophysics Data System (ADS)

    Leedahl, Brett; Abooalizadeh, Zahra; LeBlanc, Kyle; Moewes, Alexander

    2017-07-01

    The implementation and control of room-temperature ferromagnetism (RTFM) by adding magnetic atoms to a semiconductor's lattice has been one of the most important problems in solid-state physics in the last decade. Herein we report on the mechanism that allows RTFM to be tuned by the inclusion of nonmagnetic aluminum in nickel ferrite. This material, NiFe2 -xAlxO4 (x =0 ,0.5 ,1.5 ), has already shown much promise for magnetic semiconductor technologies, and we are able to add to its versatility technological viability with our results. The site occupancies and valencies of Fe atoms (Fe3 +Td , Fe2 +Oh , and Fe3 +Oh ) can be methodically controlled by including aluminum. Using the fact that aluminum strongly prefers a 3+ octahedral environment, we can selectively fill iron sites with aluminum atoms, and hence specifically tune the magnetic contributions for each of the iron sites, and therefore the bulk material as well. Interestingly, the influence of the aluminum is weak on the electronic structure, allowing one to retain the desirable electronic properties while achieving desirable magnetic properties.

  6. Spectroscopy and atomic physics of highly ionized Cr, Fe, and Ni for tokamak plasmas

    NASA Technical Reports Server (NTRS)

    Feldman, U.; Doschek, G. A.; Cheng, C.-C.; Bhatia, A. K.

    1980-01-01

    The paper considers the spectroscopy and atomic physics for some highly ionized Cr, Fe, and Ni ions produced in tokamak plasmas. Forbidden and intersystem wavelengths for Cr and Ni ions are extrapolated and interpolated using the known wavelengths for Fe lines identified in solar-flare plasmas. Tables of transition probabilities for the B I, C I, N I, O I, and F I isoelectronic sequences are presented, and collision strengths and transition probabilities for Cr, Fe, and Ni ions of the Be I sequence are given. Similarities of tokamak and solar spectra are discussed, and it is shown how the atomic data presented may be used to determine ion abundances and electron densities in low-density plasmas.

  7. Fe-Cluster Compounds of Chalcogenides: Candidates for Rare-Earth-Free Permanent Magnet and Magnetic Nodal-Line Topological Material.

    PubMed

    Zhao, Xin; Wang, Cai-Zhuang; Kim, Minsung; Ho, Kai-Ming

    2017-12-04

    Fe-cluster-based crystal structures are predicted for chalcogenides Fe 3 X 4 (X = S, Se, Te) using an adaptive genetic algorithm. Topologically different from the well-studied layered structures of iron chalcogenides, the newly predicted structures consist of Fe clusters that are either separated by the chalcogen atoms or connected via sharing of the vertex Fe atoms. Using first-principles calculations, we demonstrate that these structures have competitive or even lower formation energies than the experimentally synthesized Fe 3 X 4 compounds and exhibit interesting magnetic and electronic properties. In particular, we show that Fe 3 Te 4 can be a good candidate as a rare-earth-free permanent magnet and Fe 3 S 4 can be a magnetic nodal-line topological material.

  8. Synthesis, Tribological and Hydrolysis Stability Study of Novel Benzotriazole Borate Derivative

    PubMed Central

    Liping, Xiong; Zhongyi, He; Liang, Qian; Lin, Mu; Aixi, Chen; Sheng, Han; Jianwei, Qiu; Xisheng, Fu

    2014-01-01

    Benzotriazole and borate derivatives have long been used as multifunctional additives to lubricants. A novel, environmentally friendly additive borate ester (NHB), which contains boron, ethanolamine, and benzotriazole groups in one molecule, was synthesized by a multi-step reaction, and its tribological properties in rapeseed oil (RSO) were investigated by a four-ball tribometer. The hydrolysis stability of the additive was investigated by half-time and open observation methods, and the mechanism of hydrolysis stability was discussed through Gaussian calculation. The novel compound NHB showed excellent performance under extreme pressure, against wearing, and in reducing friction, and its hydrolysis time is more than 1,220 times, which is better than that of triethyl borate. The mass ratio of NHB is bigger than that of the mixed liquid of triethyl borate and ethanolamine. The lone electron of amino N atoms forms a coordination effect with the B atom to compensate for the shortage of electrons in the B atom and to improve the hydrolysis stability of NHB. The surface morphology and the traces of different elements in the tribofilms formed with 1.0 wt.% NHB in were detected with scanning electron microscopy(SEM), energy dispersive X-ray spectroscopy (EDX)and X-ray photoelectron spectroscopy(XPS). The results shown that the additive caused a tribochemical reaction with the steel ball surface during the lubricating process. A mixed boundary lubrication film that contains organic nitrogen and inorganic salts, such as BN, B2O3, FeOx, Fe–O–B, and FeB, was also formed, and the formation of the lubricating film improved the tribological properties of the base oil. PMID:24465382

  9. Atom Probe Tomography Unveils Formation Mechanisms of Wear-Protective Tribofilms by ZDDP, Ionic Liquid, and Their Combination

    DOE PAGES

    Guo, Wei; Zhou, Yan; Sang, Xiahan; ...

    2017-06-20

    The development of advanced lubricant additives has been a critical component in paving the way for increasing energy efficiency and durability for numerous industry applications. However, the formation mechanisms of additive-induced protective tribofilms are not yet fully understood because of the complex chemomechanical interactions at the contact interface and the limited spatial resolution of many characterizing techniques currently used. In this paper, the tribofilms on a gray cast iron surface formed by three antiwear additives are systematically studied; a phosphonium-phosphate ionic liquid (IL), a zinc dialkyldithiophosphate (ZDDP), and an IL+ZDDP combination. All three additives provide excellent wear protection, with themore » IL+ZDDP combination exhibiting a synergetic effect, resulting in further reduced friction and wear. Atom probe tomography (APT) and scanning transmission electron microscopy (STEM) imaging and electron energy loss spectroscopy (EELS) were used to interrogate the subnm chemistry and bonding states for each of the tribofilms of interest. The IL tribofilm appeared amorphous and was Fe, P, and O rich. Wear debris particles having an Fe-rich core and an oxide shell were present in this tribofilm and a transitional oxide (Fe 2O 3)-containing layer was identified at the interface between the tribofilm and the cast iron substrate. The ZDDP+IL tribofilm shared some of the characteristics found in the IL and ZDDP tribofilms. Finally, tribofilm formation mechanisms are proposed on the basis of the observations made at the atomic level.« less

  10. Atom Probe Tomography Unveils Formation Mechanisms of Wear-Protective Tribofilms by ZDDP, Ionic Liquid, and Their Combination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Wei; Zhou, Yan; Sang, Xiahan

    The development of advanced lubricant additives has been a critical component in paving the way for increasing energy efficiency and durability for numerous industry applications. However, the formation mechanisms of additive-induced protective tribofilms are not yet fully understood because of the complex chemomechanical interactions at the contact interface and the limited spatial resolution of many characterizing techniques currently used. In this paper, the tribofilms on a gray cast iron surface formed by three antiwear additives are systematically studied; a phosphonium-phosphate ionic liquid (IL), a zinc dialkyldithiophosphate (ZDDP), and an IL+ZDDP combination. All three additives provide excellent wear protection, with themore » IL+ZDDP combination exhibiting a synergetic effect, resulting in further reduced friction and wear. Atom probe tomography (APT) and scanning transmission electron microscopy (STEM) imaging and electron energy loss spectroscopy (EELS) were used to interrogate the subnm chemistry and bonding states for each of the tribofilms of interest. The IL tribofilm appeared amorphous and was Fe, P, and O rich. Wear debris particles having an Fe-rich core and an oxide shell were present in this tribofilm and a transitional oxide (Fe 2O 3)-containing layer was identified at the interface between the tribofilm and the cast iron substrate. The ZDDP+IL tribofilm shared some of the characteristics found in the IL and ZDDP tribofilms. Finally, tribofilm formation mechanisms are proposed on the basis of the observations made at the atomic level.« less

  11. Fe doped Magnetic Nanodiamonds made by Ion Implantation.

    PubMed

    Chen, ChienHsu; Cho, I C; Jian, Hui-Shan; Niu, H

    2017-02-09

    Here we present a simple physical method to prepare magnetic nanodiamonds (NDs) using high dose Fe ion-implantation. The Fe atoms are embedded into NDs through Fe ion-implantation and the crystal structure of NDs are recovered by thermal annealing. The results of TEM and Raman examinations indicated the crystal structure of the Fe implanted NDs is recovered completely. The SQUID-VSM measurement shows the Fe-NDs possess room temperature ferromagnetism. That means the Fe atoms are distributed inside the NDs without affecting NDs crystal structure, so the NDs can preserve the original physical and chemical properties of the NDs. In addition, the ion-implantation-introduced magnetic property might make the NDs to become suitable for variety of medical applications.

  12. Fe doped Magnetic Nanodiamonds made by Ion Implantation

    NASA Astrophysics Data System (ADS)

    Chen, Chienhsu; Cho, I. C.; Jian, Hui-Shan; Niu, H.

    2017-02-01

    Here we present a simple physical method to prepare magnetic nanodiamonds (NDs) using high dose Fe ion-implantation. The Fe atoms are embedded into NDs through Fe ion-implantation and the crystal structure of NDs are recovered by thermal annealing. The results of TEM and Raman examinations indicated the crystal structure of the Fe implanted NDs is recovered completely. The SQUID-VSM measurement shows the Fe-NDs possess room temperature ferromagnetism. That means the Fe atoms are distributed inside the NDs without affecting NDs crystal structure, so the NDs can preserve the original physical and chemical properties of the NDs. In addition, the ion-implantation-introduced magnetic property might make the NDs to become suitable for variety of medical applications.

  13. High temperature extended x-ray absorption fine structure study of multiferroic BiFeO3

    NASA Astrophysics Data System (ADS)

    Raghavendra Reddy, V.; Meneghini, Carlo; Kothari, Deepti; Gupta, Ajay; Aquilanti, Giuliana

    2012-08-01

    Local atomic structure modifications around Fe atoms in polycrystalline multiferroic BiFeO3 are studied by Fe K edge x-ray absorption spectroscopy as a function of temperature across the Néel temperature (TN = 643 K) in order to reveal local structure modifications related to the magnetic transition. This work demonstrates that on crossing TN the local structure around Fe shows peculiar changes: the Fe-O bond lengths get shorter, the ligand symmetry increases and the Fe-O bond length disorder (σ2) deviates from Debye behaviour. These results suggest that the structural transition at the ferroelectric Curie temperature (TC = 1103 K) is anticipated by early local rearrangement of the structure starting already at TN.

  14. Shape-dependent surface magnetism of Co-Pt and Fe-Pt nanoparticles from first principles

    NASA Astrophysics Data System (ADS)

    Liu, Zhenyu; Wang, Guofeng

    2017-12-01

    In this paper, we have performed the first-principles density functional theory calculations to predict the magnetic properties of the CoPt and FePt nanoparticles in cuboctahedral, decahedral, and icosahedral shapes. The modeled alloy nanoparticles have a diameter of 1.1 nm and consist of 31 5 d Pt atoms and 24 3 d Co (or Fe) atoms. For both CoPt and FePt, we found that the decahedral nanoparticles had appreciably lower surface magnetic moments than the cuboctahedral and icosahedral nanoparticles. Our analysis indicated that this reduction in the surface magnetism was related to a large contraction of atomic spacing and high local Co (or Fe) concentration in the surface of the decahedral nanoparticles. More interestingly, we predicted that the CoPt and FePt cuboctahedral nanoparticles exhibited dramatically different surface spin structures when noncollinear magnetism was taken into account. Our calculation results revealed that surface anisotropy energy decided the fashion of surface spin canting in the CoPt and FePt nanoparticles, confirming previous predictions from atomistic Monte Carlo simulations.

  15. Controlled Phase and Tunable Magnetism in Ordered Iron Oxide Nanotube Arrays Prepared by Atomic Layer Deposition

    NASA Astrophysics Data System (ADS)

    Zhang, Yijun; Liu, Ming; Peng, Bin; Zhou, Ziyao; Chen, Xing; Yang, Shu-Ming; Jiang, Zhuang-De; Zhang, Jie; Ren, Wei; Ye, Zuo-Guang

    2016-01-01

    Highly-ordered and conformal iron oxide nanotube arrays on an atomic scale are successfully prepared by atomic layer deposition (ALD) with controlled oxidization states and tunable magnetic properties between superparamagnetism and ferrimagnetism. Non-magnetic α-Fe2O3 and superparamagnetic Fe3O4 with a blocking temperature of 120 K are in-situ obtained by finely controlling the oxidation reaction. Both of them exhibit a very small grain size of only several nanometers due to the nature of atom-by-atom growth of the ALD technique. Post-annealing α-Fe2O3 in a reducing atmosphere leads to the formation of the spinel Fe3O4 phase which displays a distinct ferrimagnetic anisotropy and the Verwey metal-insulator transition that usually takes place only in single crystal magnetite or thick epitaxial films at low temperatures. The ALD deposition of iron oxide with well-controlled phase and tunable magnetism demonstrated in this work provides a promising opportunity for the fabrication of 3D nano-devices to be used in catalysis, spintronics, microelectronics, data storages and bio-applications.

  16. Theoretical exploration of optical response of Fe3O4-reduced graphene oxide nanoparticle system within dynamical mean-field theory

    NASA Astrophysics Data System (ADS)

    Majidi, M. A.; Kusumaatmadja, R.; Fauzi, A. D.; Phan, W. Y.; Taufik, A.; Saleh, R.; Rusydi, A.

    2017-04-01

    We theoretically investigate the optical conductivity and its related optical response of Fe3O4-reduced graphene oxide (rGO) nanoparticle system. Experimental data of magnetization of the Fe3O4-rGO nanoparticle system have shown that the saturation magnetization can be enhanced by controlling the rGO content with the maximum enhancement reached at the optimal rGO content of about 5 weight percentage. We hypothesize that the magnetization enhancement is due to spin-flipping of Fe ions at tetrahedral sites induced by oxygen vacancies at the Fe3O4 nanoparticle boundaries. These oxygen vacancies are formed due to adsorption of oxygen atoms by rGO flakes around the Fe3O4 nanoparticle. In this study, we aim to explore the implications of this effect to the optical response of the system as a function of the rGO content. Our model incorporates Hubbard-repulsive interactions between electrons occupying the e g orbitals of Fe3+ and Heisenberg-like interactions between electron spins and spins of Fe3+ ions. We treat the relevant interactions within mean-field and dynamical mean-field approximations. Our results are to be compared with the existing experimental reflectance data of Fe3O4 nanoparticle system.

  17. Electrochemical CO 2 Reduction with Atomic Iron-Dispersed on Nitrogen-Doped Graphene

    DOE PAGES

    Zhang, Chenhao; Yang, Shize; Wu, Jingjie; ...

    2018-03-25

    Electrochemical reduction of CO 2 provides an opportunity to reach a carbon-neutral energy recycling regime, in which CO 2 emissions from fuel use are collected and converted back to fuels. The reduction of CO 2 to CO is the first step toward the synthesis of more complex carbon-based fuels and chemicals. Therefore, understanding this step is crucial for the development of high-performance electrocatalyst for CO 2 conversion to higher order products such as hydrocarbons. In this paper, atomic iron dispersed on nitrogen-doped graphene (Fe/NG) is synthesized as an efficient electrocatalyst for CO 2 reduction to CO. Fe/NG has a lowmore » reduction overpotential with high Faradic efficiency up to 80%. The existence of nitrogen-confined atomic Fe moieties on the nitrogen-doped graphene layer is confirmed by aberration-corrected high-angle annular dark-field scanning transmission electron microscopy and X-ray absorption fine structure analysis. The Fe/NG catalysts provide an ideal platform for comparative studies of the effect of the catalytic center on the electrocatalytic performance. Finally, the CO 2 reduction reaction mechanism on atomic Fe surrounded by four N atoms (Fe–N 4) embedded in nitrogen-doped graphene is further investigated through density functional theory calculations, revealing a possible promotional effect of nitrogen doping on graphene.« less

  18. Electrochemical CO 2 Reduction with Atomic Iron-Dispersed on Nitrogen-Doped Graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Chenhao; Yang, Shize; Wu, Jingjie

    Electrochemical reduction of CO 2 provides an opportunity to reach a carbon-neutral energy recycling regime, in which CO 2 emissions from fuel use are collected and converted back to fuels. The reduction of CO 2 to CO is the first step toward the synthesis of more complex carbon-based fuels and chemicals. Therefore, understanding this step is crucial for the development of high-performance electrocatalyst for CO 2 conversion to higher order products such as hydrocarbons. In this paper, atomic iron dispersed on nitrogen-doped graphene (Fe/NG) is synthesized as an efficient electrocatalyst for CO 2 reduction to CO. Fe/NG has a lowmore » reduction overpotential with high Faradic efficiency up to 80%. The existence of nitrogen-confined atomic Fe moieties on the nitrogen-doped graphene layer is confirmed by aberration-corrected high-angle annular dark-field scanning transmission electron microscopy and X-ray absorption fine structure analysis. The Fe/NG catalysts provide an ideal platform for comparative studies of the effect of the catalytic center on the electrocatalytic performance. Finally, the CO 2 reduction reaction mechanism on atomic Fe surrounded by four N atoms (Fe–N 4) embedded in nitrogen-doped graphene is further investigated through density functional theory calculations, revealing a possible promotional effect of nitrogen doping on graphene.« less

  19. Synthesis of Cluster-Derived PtFe/SiO(2) Catalysts for the Oxidation of CO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siani, A.; Alexeev, O.S.; Captain, B.

    2009-05-27

    Infrared (FTIR) and extended X-ray absorption fine structure (EXAFS) spectroscopy measurements were used to characterize the species formed after impregnation of Pt{sub 5}Fe{sub 2}(COD){sub 2}(CO){sub 12} onto silica, before and after removal of the organic ligands. The results indicate that the Pt{sub 5}Fe{sub 2}(COD){sub 2}(CO){sub 12} cluster adsorbs weakly on the SiO{sub 2} surface. Nevertheless, partial disintegration of the cluster was observed during aging even under He and at room temperature, related to the loss of CO ligands due to their interactions with silanol groups of the support. The organic ligands can be removed from a freshly impregnated cluster bymore » thermal treatment in either He or H{sub 2}, but the surface species formed in each case have different structures. Treatment in He at 350 {sup o}C leads to a complete disintegration of the Pt-Fe bimetallic core and results in the formation of highly dispersed Pt clusters with a nuclearity of six, along with surface Fe oxide-like species. In contrast, bimetallic PtFe nanoparticles with an average size of approximately 1 nm were formed when a similar H{sub 2} treatment was used. In this case, a greater degree of metal dispersion and a larger fraction of Pt-Fe interactions were observed compared to the PtFe/SiO{sub 2} samples prepared by co-impregnation of monometallic salt precursors. Electronic interactions between Pt and Fe atoms in such cluster-derived samples led to an increased electron density on platinum, as indicated by a red shift of the frequencies of FTIR bands for adsorbed NO and CO. These electronic interactions affect the strength of the CO adsorption on platinum. All bimetallic samples were found to be more active than Pt/SiO{sub 2} for the oxidation of CO in air; however, the activity depends strongly on the structure of the surface species, the fraction of Pt-Fe bimetallic contributions, the degree of electronic interactions between Pt and Fe, and the strength of the CO adsorption on platinum.« less

  20. The interaction of hydrogen with the {010} surfaces of Mg and Fe olivine as models for interstellar dust grains: a density functional theory study

    PubMed Central

    Downing, C. A.; Ahmady, B.; Catlow, C. R. A.; de Leeuw, N. H.

    2013-01-01

    There is no consensus as yet to account for the significant presence of water on the terrestrial planets, but suggested sources include direct hydrogen adsorption from the parent molecular cloud after the planets’ formation, and delivery of hydrous material via comets or asteroids external to the zone of the terrestrial planets. Alternatively, a more recent idea is that water may have directly adsorbed onto the interstellar dust grains involved in planetary formation. In this work, we use electronic structure calculations based on the density functional theory to investigate and compare the bulk and {010} surface structures of the magnesium and iron end-members of the silicate mineral olivine, namely forsterite and fayalite, respectively. We also report our results on the adsorption of atomic hydrogen at the mineral surfaces, where our calculations show that there is no activation barrier to the adsorption of atomic hydrogen at these surfaces. Furthermore, different surface sites activate the atom to form either adsorbed hydride or proton species in the form of hydroxy groups on the same surface, which indicates that these mineral surfaces may have acted as catalytic sites in the immobilization and reaction of hydrogen atoms to form dihydrogen gas or water molecules. PMID:23734054

  1. New structures of Fe3S for rare-earth-free permanent magnets

    NASA Astrophysics Data System (ADS)

    Yu, Shu; Zhao, Xin; Wu, Shunqing; Nguyen, Manh Cuong; Zhu, Zi-zhong; Wang, Cai-Zhuang; Ho, Kai-Ming

    2018-02-01

    We applied an adaptive genetic algorithm (AGA) to search for low-energy crystal structures of Fe3S. A number of structures with energies lower than that of the experimentally reported Pnma and I-4 structures have been obtained from our AGA searches. These low-energy structures can be classified as layer-motif and column-motif structures. In the column-motif structures, Fe atoms self-assemble into rods with a bcc type of underlying lattice, which are separated by the holes terminated by S atoms. In the layer-motif structures, the bulk Fe is broken into slabs of several layers passivated by S atoms. Magnetic property calculations showed that the column-motif structures exhibit reasonably high uniaxial magnetic anisotropy. In addition, we examined the effect of Co doping to Fe3S and found that magnetic anisotropy can be enhanced through Co doping.

  2. New structures of Fe3S for rare-earth-free permanent magnets

    DOE PAGES

    Yu, Shu; Zhao, Xin; Wu, Shunqing; ...

    2018-02-25

    We applied adaptive genetic algorithm (AGA) to search for low-energy crystal structures of Fe 3S. A number of structures with energies lower than that of the experimentally reported Pnma and I-4 structures have been obtained from our AGA searches. These low-energy structures can be classified as layer-motif and column-motif structures. In the column-motif structures, Fe atoms self-assemble into rods with bcc type of underlying lattice, which are separated by the holes terminated by S atoms. In the layer-motif structures, the bulk Fe is broken into slabs of several layers passivated by S atoms. Magnetic properties calculations showed that the column-motifmore » structures exhibit reasonably high uniaxial magnetic anisotropy. In addition, we examined the effect of Co doping to Fe 3S and found magnetic anisotropy can be enhanced through Co doping.« less

  3. (Cryptand-222)potassium(+) (hydrogensulfido)[5,10,15,20-tetra-kis(2-pival-amido-phen-yl)porphyrinato]ferrate(II).

    PubMed

    Dhifet, Mondher; Belkhiria, Mohamed Salah; Daran, Jean-Claude; Nasri, Habib

    2009-07-22

    As part of a systematic investigation for a number of Fe(II) porphyrin complexes used as biomimetic models for cytochrome P450, crystals of the title compound, [K(C(18)H(36)N(2)O(6))][Fe(II)(C(64)H(64)N(8)O(4))(HS)], were prepared. The compound exhibits a non-planar conformation with major ruffling and saddling distortions. The average equatorial iron-pyrrole N atom [Fe-N(p) = 2.102 (2) Å] bond length and the distance between the Fe(II) atom and the 24-atom core of the porphyrin ring (Fe-P(C)= 0.558 Å) are typical for high-spin iron(II) penta-coordinate porphyrinates. One of the tert-butyl groups in the structure is disordered over two sets with occupancies of 0.84 and 0.16.

  4. Effect of Fe-ion implantation doping on structural and optical properties of CdS thin films

    NASA Astrophysics Data System (ADS)

    Chandramohan, S.; Kanjilal, A.; Sarangi, S. N.; Majumder, S.; Sathyamoorthy, R.; Som, T.

    2010-06-01

    We report on effects of Fe implantation doping-induced changes in structural, optical, morphological, and vibrational properties of cadmium sulfide thin films. Films were implanted with 90 keV Fe+ ions at room temperature for a wide range of fluences from 0.1×1016 to 3.6×1016 ions cm-2 (corresponding to 0.38-12.03 at.% of Fe). Glancing angle X-ray diffraction analysis revealed that the implanted Fe atoms tend to supersaturate by occupying the substitutional cationic sites rather than forming metallic clusters or secondary phase precipitates. In addition, Fe doping does not lead to any structural phase transformation although it induces structural disorder and lattice contraction. Optical absorption studies show a reduction in the optical band gap from 2.39 to 2.17 eV with increasing Fe concentration. This is attributed to disorder-induced band tailing in semiconductors and ion-beam-induced grain growth. The strain associated with a lattice contraction is deduced from micro-Raman scattering measurements and is found that size and shape fluctuations of grains, at higher fluences, give rise to inhomogeneity in strain.

  5. Ni doped Fe3O4 magnetic nanoparticles.

    PubMed

    Larumbe, S; Gómez-Polo, C; Pérez-Landazábal, J I; García-Prieto, A; Alonso, J; Fdez-Gubieda, M L; Cordero, D; Gómez, J

    2012-03-01

    In this work, the effect of nickel doping on the structural and magnetic properties of Fe3O4 nanoparticles is analysed. Ni(x)Fe(3-x)O4 nanoparticles (x = 0, 0.04, 0.06 and 0.11) were obtained by chemical co-precipitation method, starting from a mixture of FeCl2 x 4H2O and Ni(AcO)2 x 4H2O salts. The analysis of the structure and composition of the synthesized nanoparticles confirms their nanometer size (main sizes around 10 nm) and the inclusion of the Ni atoms in the characteristic spinel structure of the magnetite Fe3O4 phase. In order to characterize in detail the structure of the samples, X-ray absorption (XANES) measurements were performed on the Ni and Fe K-edges. The results indicate the oxidation of the Ni atoms to the 2+ state and the location of the Ni2+ cations in the Fe2+ octahedral sites. With respect to the magnetic properties, the samples display the characteristic superparamagnetic behaviour, with anhysteretic magnetic response at room temperature. The estimated magnetic moment confirms the partial substitution of the Fe2+ cations by Ni2+ atoms in the octahedral sites of the spinel structure.

  6. Giant interfacial perpendicular magnetic anisotropy in Fe/CuIn 1 -xGaxSe2 beyond Fe/MgO

    NASA Astrophysics Data System (ADS)

    Masuda, Keisuke; Kasai, Shinya; Miura, Yoshio; Hono, Kazuhiro

    2017-11-01

    We study interfacial magnetocrystalline anisotropies in various Fe/semiconductor heterostructures by means of first-principles calculations. We find that many of those systems show perpendicular magnetic anisotropy (PMA) with a positive value of the interfacial anisotropy constant Ki. In particular, the Fe/CuInSe 2 interface has a large Ki of ˜2.3 mJ /m2 , which is about 1.6 times larger than that of Fe/MgO known as a typical system with relatively large PMA. We also find that the values of Ki in almost all the systems studied in this work follow the well-known Bruno's relation, which indicates that minority-spin states around the Fermi level provide dominant contributions to the interfacial magnetocrystalline anisotropies. Detailed analyses of the local density of states and wave-vector-resolved anisotropy energy clarify that the large Ki in Fe/CuInSe 2 is attributed to the preferable 3 d -orbital configurations around the Fermi level in the minority-spin states of the interfacial Fe atoms. Moreover, we have shown that the locations of interfacial Se atoms are the key for such orbital configurations of the interfacial Fe atoms.

  7. Site preference and magnetic properties of Ga/In-substituted strontium hexaferrite: An ab initio study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixit, Vivek; Nandadasa, Chandani N.; Kim, Seong-Gon, E-mail: kimsg@ccs.msstate.edu

    2015-11-28

    The first-principles density functional theory has been used to study Ga/In-substituted strontium hexaferrite (SrFe{sub 12}O{sub 19}). Based on the calculation of the substitution energy of Ga and In in SrFe{sub 12}O{sub 19} and the formation probability analysis, we conclude that in SrFe{sub 12−x}Ga{sub x}O{sub 19} the substituted Ga atoms prefer to occupy the 12k, 2a, and 4f{sub 1} sites, while In atoms in SrFe{sub 12−x}In{sub x}O{sub 19} occupy the 12k, 4f{sub 2}, and 4f{sub 1} sites. We used the site occupation probabilities to calculate the magnetic properties of the substituted SrFe{sub 12}O{sub 19}. It was found that as the fractionmore » of Ga atoms in SrFe{sub 12−x}Ga{sub x}O{sub 19} increases, the saturation magnetization (M{sub s}) as well as magnetic anisotropy energy (MAE) decrease, while the anisotropy field (H{sub a}) increases. In the case of SrFe{sub 12−x}In{sub x}O{sub 19}, M{sub s}, MAE, and H{sub a} decrease with an increase of the concentration of In atoms.« less

  8. Characterization of helium-vacancy complexes in He-ions implanted Fe9Cr by using positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhu, Te; Jin, Shuoxue; Zhang, Peng; Song, Ligang; Lian, Xiangyu; Fan, Ping; Zhang, Qiaoli; Yuan, Daqing; Wu, Haibiao; Yu, Runsheng; Cao, Xingzhong; Xu, Qiu; Wang, Baoyi

    2018-07-01

    The formation of helium bubble precursors, i.e., helium-vacancy complexes, was investigated for Fe9Cr alloy, which was uniformly irradiated by using 100 keV helium ions with fluences up to 5 × 1016 ions/cm2 at RT, 523, 623, 723, and 873 K. Helium-irradiation-induced microstructures in the alloy were probed by positron annihilation technique. The results show that the ratio of helium atom to vacancy (m/n) in the irradiation induced HemVn clusters is affected by the irradiation temperature. Irradiated at room temperature, there is a coexistence of large amounts of HemV1 and mono-vacancies in the sample. However, the overpressured HemVn (m > n) clusters or helium bubbles are easily formed by the helium-filled vacancy clusters (HemV1 and HemVn (m ≈ n)) absorbing helium atoms when irradiated at 523 K and 823 K. The results also show that void swelling of the alloy is the largest under 723 K irradiation.

  9. Chemical composition and evolution of tourmaline-supergroup minerals from the Sb hydrothermal veins in Rožňava area, Western Carpathians, Slovakia

    NASA Astrophysics Data System (ADS)

    Bačík, Peter; Dikej, Jakub; Fridrichová, Jana; Miglierini, Marcel; Števko, Martin

    2017-09-01

    Tourmaline-supergroup minerals are common gangue minerals in Sb-hydrothermal veins on Betliar - Straková, Čučma - Gabriela and Rožňava - Peter-Pavol vein deposits in the Rožňava area, Slovakia. Tourmaline-supergroup minerals form relatively large prismatic to radial aggregates of parallel black to greyish-black crystals. Tourmaline-supergroup minerals from Betliar - Straková and Rožňava - Peter-Pavol are almost homogeneous with intermediate schorl-dravite composition. Čučma - Gabriela tourmaline have distinct zoning with massive core of the schorlitic-to-feruvitic shifting to schorlitic-to-dravitic composition, and dravitic to magnesio-foititic rim. The tourmaline composition is influenced by two main substitutions, namely Ca(Mg,Fe)Na-1Al-1 and X □AlNa-1(Mg,Fe)-1. Betliar - Straková and Rožňava - Peter-Pavol tourmaline-supergroup minerals exhibit only small extents of the X □AlNa-1(Mg,Fe)-1 substitution. This substitution shifts the composition to magnesio-foitite in Čučma - Gabriela tourmaline. The decrease of Al in the core of Čučma - Gabriela tourmaline crystals is caused by extensive Ca(Mg,Fe)Na-1Al-1 substitution. The unit-cell dimensions of all investigated tourmaline-supergroup minerals indicate an octahedral disorder with the Z (Fe3++Mg) proportion calculated from empirical equations varying between 0.85 and 0.87 apfu (atoms per formula unit). Based on Mössbauer spectra, the Z Fe3+ content varied between 0.25 apfu in Betliar - Straková tourmaline and 0.45 apfu in Čučma - Gabriela sample. Based on Fe/(Fe + Mg) ratio, Betliar - Straková tourmaline is slightly enriched in Fe compared to Rožňava - Peter-Pavol, suggesting the impact of the host-rock composition; first are grown in Fe-richer acidic metarhyolitic rocks, latter in metapelites. In Čučma - Gabriela, the variations in Fe/(Fe + Mg) are very likely reflecting the change in fluid composition. Magnesio-foitite is the product of second-stage crystallization forming rims and crack fills. The relatively low Fe3+/Fe2+ ratio suggests only minor proportion of meteoric fluids forming tourmaline.

  10. Molecular dynamics studies of displacement cascades in Fe-Y{sub 2}TiO{sub 5} system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dholakia, Manan, E-mail: manan@igcar.gov.in; Chandra, Sharat; Jaya, S. Mathi

    The effect of displacement cascade on Fe-Y{sub 2}TiO{sub 5} bilayer is studied using classical molecular dynamics simulations. Different PKA species – Fe, Y, Ti and O – with the same PKA energy of 8 keV are used to produce displacement cascades that encompass the interface. It is shown that Ti atom has the highest movement in the ballistic regime of cascades which can lead to Ti atoms moving out of the oxide clusters into the Fe matrix in ODS alloys.

  11. Ternary Pt9RhFex Nanoscale Alloys as Highly Efficient Catalysts with Enhanced Activity and Excellent CO-Poisoning Tolerance for Ethanol Oxidation.

    PubMed

    Wang, Peng; Yin, Shibin; Wen, Ying; Tian, Zhiqun; Wang, Ningzhang; Key, Julian; Wang, Shuangbao; Shen, Pei Kang

    2017-03-22

    To address the problems of high cost and poor stability of anode catalysts in direct ethanol fuel cells (DEFCs), ternary nanoparticles Pt 9 RhFe x (x = 1, 3, 5, 7, and 9) supported on carbon powders (XC-72R) have been synthesized via a facile method involving reduction by sodium borohydride followed by thermal annealing in N 2 at ambient pressure. The catalysts are physically characterized by X-ray diffraction, scanning transmission electron microscopy, and X-ray photoelectron spectroscopy, and their catalytic performance for the ethanol oxidation reaction (EOR) is evaluated by cyclic and linear scan voltammetry, CO-stripping voltammograms, and chronopotentiometry. All the Pt 9 RhFe x /C catalysts of different atomic ratios produce high EOR catalytic activity. The catalyst of atomic ratio composition 9:1:3 (Pt/Rh/Fe) has the highest activity and excellent CO-poisoning tolerance. Moreover, the enhanced EOR catalytic activity on Pt 9 RhFe 3 /C when compared to Pt 9 Rh/C, Pt 3 Fe/C, and Pt/C clearly demonstrates the presence of Fe improves catalytic performance. Notably, the onset potential for CO oxidation on Pt 9 RhFe 3 /C (0.271 V) is ∼55, 75, and 191 mV more negative than on Pt 9 Rh/C (0.326 V), Pt 3 Fe/C (0.346 V), and Pt/C (0.462 V), respectively, which implies the presence of Fe atoms dramatically improves CO-poisoning tolerance. Meanwhile, compared to the commercial PtRu/C catalyst, the peak potential on Pt 9 RhFe 3 /C for CO oxidation was just slightly changed after several thousand cycles, which shows high stability against the potential cycling. The possible mechanism by which Fe and Rh atoms facilitate the observed enhanced performance is also considered herein, and we conclude Pt 9 RhFe 3 /C offers a promising anode catalyst for direct ethanol fuel cells.

  12. Simplified sample treatment for the determination of total concentrations and chemical fractionation forms of Ca, Fe, Mg and Mn in soluble coffees.

    PubMed

    Pohl, Pawel; Stelmach, Ewelina; Szymczycha-Madeja, Anna

    2014-11-15

    A simpler, and faster than wet digestion, sample treatment was proposed prior to determination of total concentrations for selected macro- (Ca, Mg) and microelements (Fe, Mn) in soluble coffees by flame atomic absorption spectrometry. Samples were dissolved in water and acidified with HNO3. Precision was in the range 1-4% and accuracy was better than 2.5%. The method was used in analysis of 18 soluble coffees available on the Polish market. Chemical fractionation patterns for Ca, Fe, Mg and Mn in soluble coffees, as consumed, using a two-column solid-phase extraction method, determined Ca, Mg and Mn were present predominantly as cations (80-93% of total content). This suggests these elements are likely to be highly bioaccessible. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Fe-Cluster Compounds of Chalcogenides: Candidates for Rare-Earth-Free Permanent Magnet and Magnetic Nodal-Line Topological Material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Xin; Wang, Cai-Zhuang; Kim, Minsung

    Here, Fe-cluster-based crystal structures are predicted for chalcogenides Fe 3X 4 (X = S, Se, Te) using an adaptive genetic algorithm. Topologically different from the well-studied layered structures of iron chalcogenides, the newly predicted structures consist of Fe clusters that are either separated by the chalcogen atoms or connected via sharing of the vertex Fe atoms. Additionally, using first-principles calculations, we demonstrate that these structures have competitive or even lower formation energies than the experimentally synthesized Fe 3X 4 compounds and exhibit interesting magnetic and electronic properties. In particular, we show that Fe 3X 4 can be a good candidatemore » as a rare-earth-free permanent magnet and Fe 3X 4 can be a magnetic nodal-line topological material.« less

  14. Fe-Cluster Compounds of Chalcogenides: Candidates for Rare-Earth-Free Permanent Magnet and Magnetic Nodal-Line Topological Material

    DOE PAGES

    Zhao, Xin; Wang, Cai-Zhuang; Kim, Minsung; ...

    2017-11-13

    Here, Fe-cluster-based crystal structures are predicted for chalcogenides Fe 3X 4 (X = S, Se, Te) using an adaptive genetic algorithm. Topologically different from the well-studied layered structures of iron chalcogenides, the newly predicted structures consist of Fe clusters that are either separated by the chalcogen atoms or connected via sharing of the vertex Fe atoms. Additionally, using first-principles calculations, we demonstrate that these structures have competitive or even lower formation energies than the experimentally synthesized Fe 3X 4 compounds and exhibit interesting magnetic and electronic properties. In particular, we show that Fe 3X 4 can be a good candidatemore » as a rare-earth-free permanent magnet and Fe 3X 4 can be a magnetic nodal-line topological material.« less

  15. ``Loose spins'' in Fe/Cu/Fe(001) structures

    NASA Astrophysics Data System (ADS)

    Heinrich, B.; Celinski, Z.; Liao, L. X.; From, M.; Cochran, J. F.

    1994-05-01

    Slonczewski recently proposed a model for the exchange coupling between ferromagnetic layers separated by a nonferromagnetic spacer based on the concept of ``loose spins.'' ``Loose spins'' contribute to the total exchange energy. We have studied the role of ``loose spins'' in bcc Fe/Cu/Fe(001) structures. bcc Fe/Cu/Fe(001) trilayers deposited at room temperature were investigated extensively in our previous studies. In our ``loose spin'' studies, the Fe was added inside the Cu interlayer. Several structures were atomically engineered in order to test the behavior of ``loose spins:'' One additional atomic layer of an (Fe+Cu) alloy were located in appropriate positions in a Cu spacer. The bilinear and biquadratic exchange coupling in the above structures was quantitatively studied with FMR in the temperature range 77-370 K and with MOKE at RT.

  16. Properties of iron sulfide, hydrosulfide, and mixed sulfide/hydrosulfide cluster anions through photoelectron spectroscopy and density functional theory calculations.

    PubMed

    Yin, Shi; Bernstein, Elliot R

    2016-10-21

    A new magnetic-bottle time-of-flight photoelectron spectroscopy (PES) apparatus is constructed in our laboratory. The PES spectra of iron sulfide, hydrosulfide, and mixed sulfide/hydrosulfide [FeS m (SH) n - ; m, n = 0-3, 0 < (m + n) ≤ 3] cluster anions, obtained at 2.331 eV (532 nm) and 3.492 eV (355 nm) photon energies, are reported. The electronic structure and bonding properties of these clusters are additionally investigated at different levels of density functional theory. The most probable structures and ground state spin multiplicity for these cluster anions are tentatively assigned by comparing their theoretical first vertical detachment energies (VDEs) with their respective experiment values. The behavior of S and (SH) as ligands in these iron sulfide, hydrosulfide, and mixed sulfide/hydrosulfide cluster anions is investigated and compared. The experimental first VDEs for Fe(SH) 1-3 - cluster anions are lower than those found for their respective FeS 1-3 - cluster anions. The experimental first VDEs for FeS 1-3 - clusters are observed to increase for the first two S atoms bound to Fe - ; however, due to the formation of an S-S bond for the FeS 3 - cluster, its first VDE is found to be ∼0.41 eV lower than the first VDE for the FeS 2 - cluster. The first VDEs of Fe(SH) 1-3 - cluster anions are observed to increase with the increasing numbers of SH groups. The calculated partial charges of the Fe atom for ground state FeS 1-3 - and Fe(SH) 1-3 - clusters are apparently related to and correlated with their determined first VDEs. The higher first VDE is correlated with a higher, more positive partial charge for the Fe atom of these cluster anions. Iron sulfide/hydrosulfide mixed cluster anions are also explored in this work: the first VDE for FeS(SH) - is lower than that for FeS 2 - , but higher than that for Fe(SH) 2 - ; the first VDEs for FeS 2 (SH) - and FeS(SH) 2 - are close to that for FeS 3 - , but higher than that for Fe(SH) 3 - . The first VDEs of general iron sulfide, hydrosulfide, and mixed sulfide/hydrosulfide clusters [FeS m (SH) n - ; m, n = 0-3, 0 < (m + n) ≤ 3] are dependent on three properties of these anions: 1. the partial charge on the Fe atom, 2. disulfide bond formation (S-S) in the cluster, and 3. the number of hydrosulfide ligands in the cluster. The higher the partial charge on the Fe atom of these clusters, the larger the first VDE; however, cluster S-S bonding and more (SH) ligands in the cluster lower the cluster anion first VDE.

  17. Properties of iron sulfide, hydrosulfide, and mixed sulfide/hydrosulfide cluster anions through photoelectron spectroscopy and density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Yin, Shi; Bernstein, Elliot R.

    2016-10-01

    A new magnetic-bottle time-of-flight photoelectron spectroscopy (PES) apparatus is constructed in our laboratory. The PES spectra of iron sulfide, hydrosulfide, and mixed sulfide/hydrosulfide [FeSm(SH)n-; m, n = 0-3, 0 < (m + n) ≤ 3] cluster anions, obtained at 2.331 eV (532 nm) and 3.492 eV (355 nm) photon energies, are reported. The electronic structure and bonding properties of these clusters are additionally investigated at different levels of density functional theory. The most probable structures and ground state spin multiplicity for these cluster anions are tentatively assigned by comparing their theoretical first vertical detachment energies (VDEs) with their respective experiment values. The behavior of S and (SH) as ligands in these iron sulfide, hydrosulfide, and mixed sulfide/hydrosulfide cluster anions is investigated and compared. The experimental first VDEs for Fe(SH)1-3- cluster anions are lower than those found for their respective FeS1-3- cluster anions. The experimental first VDEs for FeS1-3- clusters are observed to increase for the first two S atoms bound to Fe-; however, due to the formation of an S-S bond for the FeS3- cluster, its first VDE is found to be ˜0.41 eV lower than the first VDE for the FeS2- cluster. The first VDEs of Fe(SH)1-3- cluster anions are observed to increase with the increasing numbers of SH groups. The calculated partial charges of the Fe atom for ground state FeS1-3- and Fe(SH)1-3- clusters are apparently related to and correlated with their determined first VDEs. The higher first VDE is correlated with a higher, more positive partial charge for the Fe atom of these cluster anions. Iron sulfide/hydrosulfide mixed cluster anions are also explored in this work: the first VDE for FeS(SH)- is lower than that for FeS2-, but higher than that for Fe(SH)2-; the first VDEs for FeS2(SH)- and FeS(SH)2- are close to that for FeS3-, but higher than that for Fe(SH)3-. The first VDEs of general iron sulfide, hydrosulfide, and mixed sulfide/hydrosulfide clusters [FeSm(SH)n-; m, n = 0-3, 0 < (m + n) ≤ 3] are dependent on three properties of these anions: 1. the partial charge on the Fe atom, 2. disulfide bond formation (S-S) in the cluster, and 3. the number of hydrosulfide ligands in the cluster. The higher the partial charge on the Fe atom of these clusters, the larger the first VDE; however, cluster S-S bonding and more (SH) ligands in the cluster lower the cluster anion first VDE.

  18. H-bonding scheme and cation partitioning in axinite: a single-crystal neutron diffraction and Mössbauer spectroscopic study

    NASA Astrophysics Data System (ADS)

    Gatta, G. Diego; Redhammer, Günther J.; Guastoni, Alessandro; Guastella, Giorgio; Meven, Martin; Pavese, Alessandro

    2016-05-01

    The crystal chemistry of a ferroaxinite from Colebrook Hill, Rosebery district, Tasmania, Australia, was investigated by electron microprobe analysis in wavelength-dispersive mode, inductively coupled plasma-atomic emission spectroscopy (ICP-AES), 57Fe Mössbauer spectroscopy and single-crystal neutron diffraction at 293 K. The chemical formula obtained on the basis of the ICP-AES data is the following: ^{X1,X2} {{Ca}}_{4.03} Y ( {{{Mn}}_{0.42} {{Mg}}_{0.23} {{Fe}}^{2 + }_{1.39} } )_{Σ 2.04} ^{Z1,Z2} ( {{{Fe}}^{3 + }_{0.15} {{Al}}_{3.55} {{Ti}}_{0.12} } )_{Σ 3.82} ^{T1,T2,T3,T4} ( {{{Ti}}_{0.03} {{Si}}_{7.97} } )_{Σ 8} ^{T5} {{B}}_{1.96} {{O}}_{30} ( {{OH}} )_{2.18} . The 57Fe Mössbauer spectrum shows unambiguously the occurrence of Fe2+ and Fe3+ in octahedral coordination only, with Fe2+/Fe3+ = 9:1. The neutron structure refinement provides a structure model in general agreement with the previous experimental findings: the tetrahedral T1, T2, T3 and T4 sites are fully occupied by Si, whereas the T5 site is fully occupied by B, with no evidence of Si at the T5, or Al or Fe3+ at the T1- T5 sites. The structural and chemical data of this study suggest that the amount of B in ferroaxinite is that expected from the ideal stoichiometry: 2 a.p.f.u. (for 32 O). The atomic distribution among the X1, X2, Y, Z1 and Z2 sites obtained by neutron structure refinement is in good agreement with that based on the ICP-AES data. For the first time, an unambiguous localization of the H site is obtained, which forms a hydroxyl group with the oxygen atom at the O16 site as donor. The H-bonding scheme in axinite structure is now fully described: the O16- H distance (corrected for riding motion effect) is 0.991(1) Å and an asymmetric bifurcated bonding configuration occurs, with O5 and O13 as acceptors [i.e. with O16··· O5 = 3.096(1) Å, H··· O5 = 2.450(1) Å and O16- H··· O5 = 123.9(1)°; O16··· O13 = 2.777(1) Å, H··· O13 = 1.914(1) Å and O16- H··· O13 = 146.9(1)°].

  19. About the Barriers to Reaction of CCl4 with HFeOH and FeCl2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ginovska-Pangovska, Bojana; Camaioni, Donald M.; Dupuis, Michel

    2011-08-11

    The reactivity of iron nanoparticles in aqueous environments has received considerable attention due to their potential utilization in environmental remediation technologies. As part of a broader program aiming at an improved understanding of the mechanisms involved in the degradation of harmful chlorocarbons, joint experimental and computational studies of model systems were initiated. We previously reported on the reaction of one and two Fe atoms reactions with carbon tetrachloride (CCl4) in direct mimic of “atom-dropping” experiments, with insights into the formation of novel iron-carbon-chlorine complexes, their structures and possible reaction mechanisms. Increasing the level of complexity, we report here on themore » modeling of the reaction of HFeOH and CCl4 as companion research of recent ultra high vacuum experiments of the reaction of Fe with water and CCl4. HFeOH is a stable molecular species formed in the reaction of Fe with H2O. Experimentally the (Fe, H2O, CCl4) system showed no reactivity up to the desorption temperature of CCl4. Electron correlated CCSD(T) calculations (at DFT(B3LYP) optimized structures) indicated an energy barrier to reactivity of 24.5 kcal/mol following the formation of a stable ( 7.5 kcal/mol) long-range precursor complex. This finding is consistent with the lack of experimentally detected reaction products. This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.« less

  20. Investigation of structural and multiferroic properties of three phases of BiFeO3 using modified Becke Johnson potential technique

    NASA Astrophysics Data System (ADS)

    Sagar, Elle; Mahesh, R.; Pavan Kumar, N.; Venugopal Reddy, P.

    2017-11-01

    Electronic band structure, ferroelectric and ferromagnetic properties of Cubic, Tetragonal and Rhombohedral (hexagonal axis) phases of multiferroic BiFeO3 compound has been investigated using first-principles calculations under the generalized gradient (GGA) and TB-mBJ semi local (Tran-Blaha modified Becke-Johnson) potential approximations using WIEN2k code. For this purpose, the total energies were calculated as a function of reduced volumes and the data were fitted to Brich Murnaghan equation. The estimated ground state parameters are found to be comparable with those of experimental ones. The semiconducting behavior of the material was obtained using TB-mBJ method in the spin polarized mode. Analysis of the density of states indicates that the valence band consists of Fe-d and O-p states, while the conduction band is composed of Fe-d and Bi-p states. The analysis of electron localization function shows that stereochemically active lone-pair electrons are present at Bi sites of Rhombohedral and Tetragonal phases and are responsible for the displacements of Bi atoms from the centro-symmetric to the non-centrosymmetric structure leading to the exhibition of ferroelectricity. Further, it has been concluded that the "lone pair" may have been formed due to the hybridization of 6s and 6p atomic orbitals with 6s2 electrons filling one of the resulting orbitals in Bi. The Polarization and the magnetic properties including susceptibility were obtained. The calculated magnetic moments at the iron sites are not integer values, since Fe electrons have a hybridization interaction with the neighboring O ions.

  1. Effect of nickel on point defects diffusion in Fe – Ni alloys

    DOE PAGES

    Anento, Napoleon; Serra, Anna; Osetsky, Yury N.

    2017-05-05

    Iron-Nickel alloys are perspective alloys as nuclear energy structural materials because of their good radiation damage tolerance and mechanical properties. Understanding of experimentally observed features such as the effect of Ni content to radiation defects evolution is essential for developing predictive models of radiation. Recently an atomic-scale modelling study has revealed one particular mechanism of Ni effect related to the reduced mobility of clusters of interstitial atoms in Fe-Ni alloys. In this paper we present results of the microsecond-scale molecular dynamics study of point defects, i.e. vacancies and self-interstitial atoms, diffusion in Fe-Ni alloys. It is found that the additionmore » of Ni atoms affects diffusion processes: diffusion of vacancies is enhanced in the presence of Ni, whereas diffusion of interstitials is reduced and these effects increase at high Ni concentration and low temperature. As a result, the role of Ni solutes in radiation damage evolution in Fe-Ni alloys is discussed.« less

  2. Clinopyroxenite dykes within a banded unit in the basal mantle section of the northern part of the Oman ophiolite: A record of the latest deep-seated magmatism

    NASA Astrophysics Data System (ADS)

    Ishimaru, Satoko; Arai, Shoji; Tamura, Akihiro

    2017-11-01

    We found clinopyroxenite dykes in a banded harzburgite block within the Sumeini area in the uppermost part of the metamorphic sole of the northern part of the Oman ophiolite. The dykes clearly cut the deformational structure of the harzburgite and contain its fragments, indicating dyke formation during obduction of the ophiolite. The Mg# [= Mg / (Mg + total Fe)] of clinopyroxenes in the dykes ranges from 0.81 to 0.91, and increases up to 0.93 proximal to harzburgite fragments. Mantle minerals in the harzburgite fragments were modified chemically through interaction with the magma that formed the dyke, yielding lower clinopyroxene and spinel Mg#, and spinels with higher TiO2 contents than those in the unaltered harzburgite. These geochemical features indicate that the clinopyroxenite dykes are cumulates derived from a relatively deep-seated primitive magma enriched in light rare earth elements (LREE) with an ocean island basalt (OIB)-like affinity, geochemically similar to the V3 lavas of an off-ridge origin. Combining these data with geological observations suggests that the clinopyroxenite dykes represent root system of the V3 lavas. Our analyses of the clinopyroxenite dykes testify to the external nature of the V3 magmas, which was added to the sliced oceanic lithosphere from the outside. It is likely that the V3 magma underwent deep-seated crystallization of clinopyroxene and had limited interaction with mantle peridotite en route to the surface. The mode of occurrence of the Sumeini clinopyroxenites (i.e., emplaced into a banded harzburgite block surrounded by garnet amphibolite) is consistent with the generation of OIB-like magmas (V3 lava) beneath the Oman ophiolite resulting from the break-off of the "subducting slab" and subsequent infiltration of hot asthenospheric mantle. This view is consistent with the limited distribution of V3-related rocks in the Oman ophiolite. The production of such OIB-like magmas during ophiolite obduction is not a rare event, especially during the subduction of young and hot oceanic lithosphere. Footnote: Mg#, Mg/(Mg + Fe total) atomic ratio; Cr#, Cr/(Cr + Al) atomic ratio; YAl, Al/(Al + Cr + Fe3 +) atomic ratio; YCr, Al/(Al + Cr + Fe3 +) atomic ratio; YFe, Al/(Al + Cr + Fe3 +) atomic ratio. RSD: relative standard deviation. Ref. values: Reference values of JEOL_Kfs from a JEOL database.

  3. Synthesis of highly reactive subnano-sized zero-valent iron using smectite clay templates.

    PubMed

    Gu, Cheng; Jia, Hanzhong; Li, Hui; Teppen, Brian J; Boyd, Stephen A

    2010-06-01

    A novel method was developed for synthesizing subnano-sized zero-valent iron (ZVI) using smectite clay layers as templates. Exchangeable Fe(III) cations compensating the structural negative charges of smectites were reduced with NaBH(4), resulting in the formation of ZVI. The unique structure of smectite clay, in which isolated exchangeable Fe(III) cations reside near the sites of structural negative charges, inhibited the agglomeration of ZVI resulting in the formation of subnanoscale ZVI particles in the smectite interlayer regions. X-ray diffraction revealed an interlayer spacing of approximately 5 A. The non-structural iron content of this clay yields a calculated ratio of two atoms of ZVI per three cation exchange sites, in full agreement with the X-ray diffraction (XRD) results since the diameter of elemental Fe is 2.5 A. The clay-templated ZVI showed superior reactivity and efficiency compared to other previously reported forms of ZVI as indicated by the reduction of nitrobenzene; structural Fe within the aluminosilicate layers was nonreactive. At a 1:3 molar ratio of nitrobenzene/non-structural Fe, a reaction efficiency of 83% was achieved, and over 80% of the nitrobenzene was reduced within one minute. These results confirm that non-structural Fe from Fe(III)-smectite was reduced predominantly to ZVI which was responsible for the reduction of nitrobenzene to aniline. This new form of subnanoscale ZVI may find utility in the development of remediation technologies for persistent environmental contaminants, for example, as components of constructed reactive domains such as reactive caps for contaminated sediments.

  4. Synthesis of Highly Reactive Subnano-sized Zero-valent Iron using Smectite Clay Templates

    PubMed Central

    Gu, Cheng; Jia, Hanzhang; Li, Hui; Teppen, Brian J.; Boyd, Stephen A.

    2010-01-01

    A novel method was developed for synthesizing subnano-sized zero-valent iron (ZVI) using smectite clay layers as templates. Exchangeable Fe(III) cations compensating the structural negative charges of smectites were reduced with NaBH4, resulting in the formation of ZVI. The unique structure of smectite clay, in which isolated exchangeable Fe(III) cations reside near the sites of structural negative charges, inhibited the agglomeration of ZVI resulting in the formation of discrete regions of subnanoscale ZVI particles in the smectite interlayer regions. X-ray diffraction revealed an interlayer spacing of ~ 5 Å. The non-structural iron content of this clay yields a calculated ratio of two atoms of ZVI per three cation exchange sites, in full agreement with the XRD results since the diameter of elemental Fe is 2.5 Å. The clay-templated ZVI showed superior reactivity and efficiency compared to other previously reported forms of ZVI as indicated by the reduction of nitrobenzene; structural Fe within the aluminosilicate layers was nonreactive. At a 1:3 molar ratio of nitrobenzene:non-structural Fe, a reaction efficiency of 83% was achieved, and over 80% of the nitrobenzene was reduced within one minute. These results confirm that non-structural Fe from Fe(III)-smectite was reduced predominantly to ZVI which was responsible for the reduction of nitrobenzene to aniline. This new form of subnano-scale ZVI may find utility in the development of remediation technologies for persistent environmental contaminants, e.g. as components of constructed reactive domains such as reactive caps for contaminated sediments. PMID:20446730

  5. Electron Transfer Pathways Facilitating U(VI) Reduction by Fe(II) on Al- vs Fe-Oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, S. D.; Becker, U.; Rosso, K. M.

    This study continues mechanistic development of heterogeneous electron transfer (ET) pathways at mineral surfaces in aquatic environments that enable the reduction U(VI) by surface-associated Fe(II). Using computational molecular simulation within the framework of Marcus Theory, our findings highlight the importance of the configurations and interaction of the electron donor and acceptor species with the substrate, with respect to influencing its electronic structure and thereby the ability of semiconducting minerals to facilitate ET. U(VI) reduction by surface-associated Fe(II) (adsorbed or structurally incorporated into the lattice) on an insulating, corundum (001) surface (α-Al2O3) occurs when proximal inner-sphere (IS) surface complexes are formed,more » such that ET occurs through a combination of direct exchange (i.e., Fe d- and U f-orbitals overlap through space) and superexchange via intervening surface oxygen atoms. U(VI) reduction by coadsorbed Fe(II) on the isostructural semiconducting hematite (α-Fe2O3) basal surface requires either their direct electronic interaction (e.g., IS complexation) or mediation of this interaction indirectly through the surface via an intrasurface pathway. Conceptually possible longer-range ET by charge-hopping through surface Fe atoms was investigated to determine whether this indirect pathway is competitive with direct ET. The calculations show that energy barriers are large for this conduction-based pathway; interfacial ET into the hematite surface is endothermic (+80.1 kJ/mol) and comprises the rate-limiting step (10–6 s–1). The presence of the IS adsorbates appears to weaken the electronic coupling between underlying Fe ions within the surface, resulting in slower intra-surface ET (10–5 s–1) than expected in the bulk basal plane. Our findings lay out first insights into donor-acceptor communication via a charge-hopping pathway through the surface for heterogeneous reduction of U(VI) by Fe(II) and help provide a basis for experimental interrogation of this important process at mineral-water interfaces.« less

  6. Mechanically - induced disorder in CaFe2As2: a 57Fe Mössbauer study

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoming; Ran, Sheng; Canfield, Paul C.; Bud'Ko, Sergey L.

    57 Fe Mössbauer spectroscopy was used to study an extremely pressure and strain sensitive compound, CaFe2As2, with different degrees of strain introduced by grinding and annealing. At the base temperature, in the antiferromagnetic/orthorhombic phase, compared to a sharp sextet Mössbauer spectrum of single crystal CaFe2As2, which is taken as an un-strained sample, an obviously broadened sextet and an extra doublet were observed for ground CaFe2As2 powders with different degrees of strain. The Mössbauer results suggest that the magnetic phase transition of CaFe2As2 can be inhomogeneously suppressed by the grinding induced strain to such an extent that the antiferromagnetic order in parts of the grains forming the powdered sample remain absent all the way down to 4.6 K. However, strain has almost no effect on the temperature dependent hyperfine magnetic field in the grains with magnetic order. The quadrupole shift in the magnetic phase approachs zero with increasing degrees of strain, indicating that the strain reduces the average lattice asymmetry at Fe atom position. Supported by US DOE under the Contract No. DE-AC02-07CH11358 and by the China Scholarship Council.

  7. Influence of the plasma environment on atomic structure using an ion-sphere model

    DOE PAGES

    Belkhiri, Madeny Jean; Fontes, Christopher John; Poirier, Michel

    2015-09-03

    Plasma environment effects on atomic structure are analyzed using various atomic structure codes. To monitor the effect of high free-electron density or low temperatures, Fermi-Dirac and Maxwell-Boltzmann statistics are compared. After a discussion of the implementation of the Fermi-Dirac approach within the ion-sphere model, several applications are considered. In order to check the consistency of the modifications brought here to extant codes, calculations have been performed using the Los Alamos Cowan Atomic Structure (cats) code in its Hartree-Fock or Hartree-Fock-Slater form and the parametric potential Flexible Atomic Code (fac). The ground-state energy shifts due to the plasma effects for themore » six most ionized aluminum ions have been calculated using the fac and cats codes and fairly agree. For the intercombination resonance line in Fe 22+, the plasma effect within the uniform electron gas model results in a positive shift that agrees with the MCDF value of B. Saha et al.« less

  8. Influence of the plasma environment on atomic structure using an ion-sphere model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belkhiri, Madeny Jean; Fontes, Christopher John; Poirier, Michel

    Plasma environment effects on atomic structure are analyzed using various atomic structure codes. To monitor the effect of high free-electron density or low temperatures, Fermi-Dirac and Maxwell-Boltzmann statistics are compared. After a discussion of the implementation of the Fermi-Dirac approach within the ion-sphere model, several applications are considered. In order to check the consistency of the modifications brought here to extant codes, calculations have been performed using the Los Alamos Cowan Atomic Structure (cats) code in its Hartree-Fock or Hartree-Fock-Slater form and the parametric potential Flexible Atomic Code (fac). The ground-state energy shifts due to the plasma effects for themore » six most ionized aluminum ions have been calculated using the fac and cats codes and fairly agree. For the intercombination resonance line in Fe 22+, the plasma effect within the uniform electron gas model results in a positive shift that agrees with the MCDF value of B. Saha et al.« less

  9. Local order study of YFe 2D x (0⩽ x⩽3.5) compounds by X-ray absorption and Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Paul-Boncour, V.; Wiesinger, G.; Reichl, Ch.; Latroche, M.; Percheron-Guégan, A.; Cortes, R.

    2001-12-01

    The local order in YFe 2D x deuterides has been characterized by EXAFS and 57Fe Mössbauer spectroscopy. For all the deuterides several Fe sites and a large distribution of Fe-Fe distances are observed. The Y-Fe and Y-Y distances are close to those calculated for a cubic C15 type structure, but with significant static disorder. These large distance distributions are related to the influence of hydrogen atoms which induce local distortions of the interstitial sites with a displacement of Y and Fe atoms. However, the bulk and mean local magnetic properties remain sensitive to the long range order structure of the deuterides.

  10. Differential speciation of ferriprotoporphyrin IX in the presence of free base and diprotic 4-aminoquinoline antimalarial drugs

    NASA Astrophysics Data System (ADS)

    Gildenhuys, Johandie; Müller, Ronel; le Roex, Tanya; de Villiers, Katherine A.

    2017-03-01

    The crystal structures of the μ-propionato dimer and π-π dimer of ferriprotoporphyrin IX (Fe(III)PPIX) have been determined by single crystal X-ray diffraction (SCD). Both species were obtained in the presence of the synthetic 4-aminoquinoline antimalarial drug, amodiaquine (AQ). The solution that afforded the μ-propionato dimer contained AQ as a free base (i.e. with both quinoline and terminal amine nitrogen atoms neutral). On the other hand, when the diprotic salt of AQ was included in the crystallization medium, the Fe(III)PPIX π-π dimer was obtained. The structure of the μ-propionato dimer, which is the discrete structural unit that constitutes haemozoin (malaria pigment), is identical to that obtained previously in presence of chloroquine free base. We suspect that the drug, via its two available basic sites, facilitates dissociation of one of the two Fe(III)PPIX propionic acid groups to yield a propionate group that is required for reciprocal coordination of the metal centre to form the centrosymmetric dimer. On the other hand, this proton transfer is not possible when the drug is present as a diprotic salt. In this case, the π-π dimer of Fe(III)PPIX is obtained. In the current study, the π-π dimer of haemin (chloro-Fe(III)PPIX) was obtained as a DMF solvate from non-aqueous aprotic solution (dimethyl formamide and chloroform), however the π-π dimer is also known to exist in aqueous solution (as aqua- or hydroxo-Fe(III)PPIX), where it is purportedly involved in the nucleation of haemozoin. We have been able to unambiguously determine the positions of all non-hydrogen atoms, as well as locate or assign all hydrogen atoms in the structure of the π-π dimer, which was not possible in the SCD structure of haemin reported by Koenig in 1965 owing to disorder in the vinyl and methyl substituents. Interestingly, no disorder in the methyl and vinyl groups is observed in the current structure. Both the π-π and μ-propionato dimers of Fe(III)PPIX are important species in the haem detoxification pathway in the malaria parasite and other blood-feeding organisms, and the structural insight gained in this study may assist target-driven design of new chemotherapeutic agents.

  11. Nanopatterning dynamics on Si(100) during oblique 40-keV Ar+ erosion with metal codeposition: Morphological and compositional correlation

    NASA Astrophysics Data System (ADS)

    Redondo-Cubero, A.; Gago, R.; Palomares, F. J.; Mücklich, A.; Vinnichenko, M.; Vázquez, L.

    2012-08-01

    The formation and dynamics of nanopatterns produced on Si(100) surfaces by 40-keV Ar+ oblique (α = 60°) bombardment with concurrent Fe codeposition have been studied. Morphological and chemical analysis has been performed by ex situ atomic force microscopy, Rutherford backscattering spectrometry, x-ray photoelectron spectroscopy, and scanning and transmission electron microscopies. During irradiation, Fe atoms incorporated into the target surface react with Si to form silicides, a process enhanced at this medium-ion energy range. The silicides segregate at the nanoscale from the early irradiation stages. As the irradiation proceeds, a ripple pattern is formed without any correlation with silicide segregation. From the comparison with the pattern dynamics reported previously for metal-free conditions, it is demonstrated that the metal incorporation alters both the pattern dynamics and the morphology. Although the pattern formation and dynamics are delayed for decreasing metal content, once ripples emerge, the same qualitative pattern of morphological evolution is observed for different metal content, resulting in an asymptotic saw-tooth-like facetted surface pattern. Despite the medium ion energy employed, the nanopatterning process with concurrent Fe deposition can be explained by those mechanisms proposed for low-ion energy irradiations such as shadowing, height fluctuations, silicide formation and segregation, ensuing composition dependent sputter rate, and ion sculpting effects. In particular, the interplay between the ion irradiation and metal flux geometries, differences in sputtering rates, and the surface pattern morphology produces a dynamic compositional patterning correlated with the evolving morphological one.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Xiongyi; Groves, John T.

    Since our initial report in 1976, the oxygen rebound mechanism has become the consensus mechanistic feature for an expanding variety of enzymatic C–H functionalization reactions and small molecule biomimetic catalysts. For both the biotransformations and models, an initial hydrogen atom abstraction from the substrate (R–H) by high-valent iron-oxo species (Fe n=O) generates a substrate radical and a reduced iron hydroxide, [Fe n-1–OH ·R]. This caged radical pair then evolves on a complicated energy landscape through a number of reaction pathways, such as oxygen rebound to form R–OH, rebound to a non-oxygen atom affording R–X, electron transfer of the incipient radicalmore » to yield a carbocation, R +, desaturation to form olefins, and radical cage escape. These various flavors of the rebound process, often in competition with each other, give rise to the wide range of C–H functionalization reactions performed by iron-containing oxygenases. In this review, we first recount the history of radical rebound mechanisms, their general features, and key intermediates involved. We will discuss in detail the factors that affect the behavior of the initial caged radical pair and the lifetimes of the incipient substrate radicals. Several representative examples of enzymatic C–H transformations are selected to illustrate how the behaviors of the radical pair [Fe n-1–OH ·R] determine the eventual reaction outcome. Finally, we discuss the powerful potential of “radical rebound” processes as a general paradigm for developing novel C–H functionalization reactions with synthetic, biomimetic catalysts. We envision that new chemistry will continue to arise by bridging enzymatic “radical rebound” with synthetic organic chemistry.« less

  13. Decisive role of magnetism in the interaction of chromium and nickel solute atoms with 1/2$$\\langle$$111$$\\rangle$$-screw dislocation core in body-centered cubic iron

    DOE PAGES

    Odbadrakh, Kh.; Samolyuk, G.; Nicholson, D.; ...

    2016-09-13

    Resistance to swelling under irradiation and a low rate of corrosion in high temperature environments make Fe-Cr and Fe-Cr-Ni alloys promising structural materials for energy technologies. In this paper we report the results obtained using a combination of density functional theory (DFT) techniques: plane wave basis set solutions for pseudo-potentials and multiple scattering solutions for all electron potentials. We have found a very strong role of magnetism in the stability of screw dislocation cores in pure Fe and their interaction with Cr and Ni magnetic impurities. In particular, the screw dislocation quadrupole in Fe is stabilized only in the presencemore » of ferromagnetism. In addition, Ni atoms, who's magnetic moment is oriented along the magnetization direction of the Fe matrix, prefer to occupy in core positions whereas Cr atoms, which couple anti-ferromagnetically with the Fe matrix, prefer out of the dislocation core positions. In effect, Ni impurities are attracted to, while Cr impurities are repelled by the dislocation core. Moreover, we demonstrate that this contrasting behavior can be explained only by the nature of magnetic coupling of the impurities to the Fe matrix. In addition, Cr interaction with the dislocation core mirrors that of Ni if the Cr magnetic moment is constrained to be along the direction of Fe matrix magnetization. In addition, we have shown that the magnetic contribution can affect the impurity-impurity interaction at distances up to a few Burgers vectors. In particular, the distance between Cr atoms in Fe matrix should be at least 3–4 lattice parameters in order to eliminate finite size effects.« less

  14. Oxide surfaces in practical and model catalytic systems

    NASA Astrophysics Data System (ADS)

    Lanier, Courtney H.

    Oxide surface structures play a key role in many technological processes, including catalysis, thin film growth, and layered structures, and a thorough understanding of surface structures and surface structure dynamics is required in order to better engineer materials systems for these processes. This research works towards understanding these fundamental principles through an investigation of practical and model catalytic systems. In this work, the surface structures and dynamics of Mg3(VO4)2, LaAlO3, SrTiO3, and alpha-Fe2O3/Fe3O 4 are investigated under a variety of conditions and by a range of experimental and computational techniques. The structure and morphology of LaAlO3 has been investigated over a range of annealing temperatures, and the ( 5x5 )R26.6° reconstruction of LaAlO3 (001) has been determined using transmission electron diffraction combined with direct methods. The structure is relatively simple, consisting of a lanthanum oxide termination with one lanthanum cation vacancy per surface unit cell. The electronic structure is unusual since a fractional number of holes or atomic occupancies per surface unit cell are required to achieve charge neutrality. The reconstruction can be understood in terms of expulsion of the more electropositive cation from the surface followed by an increased covalency between the remaining surface lanthanum atoms and adjacent oxygen atoms. The c(6x2) is a reconstruction of the SrTiO3 (001) surface that is formed between 1050-1100°C in oxidizing annealing conditions. This work proposes a model for the atomic structure for the c(6x2) obtained through a combination of results from transmission electron diffraction, surface x-ray diffraction, direct methods analysis, computational combinational screening, and density functional theory. As it is formed at high temperatures, the surface is complex and can be described as a short-range ordered phase featuring microscopic domains composed of four main structural motifs. Additionally, non-periodic TiO2 units are present on the surface. The surface and bulk of oriented single crystal Mg3(VO 4)2 have been characterized after treatment in a reducing environment. Annealing in a flow of 7% H2 in N2 causes the reduction of Mg3(VO4)2 to Mg3V 2O6, which is shown to be single-crystal to single-crystal and occurs in such a way that the oxygen framework of the crystal is preserved. Transmission electron microscopy images of crystals at the early stages of reduction show low angle grain boundaries and the formation of channels approximately 50nm in diameter. A model for reduction of Mg3(VO4) 2 to Mg3V2O6 based on the experimental observations and derived from classic nucleation theory is proposed. The so-called Biphase structure on alpha-Fe2O3 has been previously reported and described as islands of Fe1-xO and alpha-Fe2O3 arranged in a 40A periodic unit cell. Based on thermodynamic arguments and experimental evidence, including transmission electron diffraction, we find that the previous structure model was incorrect. Rather, it is found that the Biphase structure is, in fact, related to the reduction of alpha-Fe2O3 to Fe 3O4, is a layered structure, and does not contain islands of Fe1-xO. A model for the Biphase termination consisting of bulk alpha-Fe 2O3 with an Fe3O4 -derived overlayer is developed and is consistent with all current and previously reported experimental findings.

  15. Transition metal intercalated bilayer silicene

    NASA Astrophysics Data System (ADS)

    Pandey, Dhanshree; Kamal, C.; Chakrabarti, Aparna

    2018-04-01

    We investigate the electronic and magnetic properties of Mn, Fe and Co-intercalated silicene bilayer with AA and AB stacking by using spin polarized density functional theory. The intercalation of Mn increases the gap between the two layers of silicene due to the larger atomic radii of Mn as compared to Fe and Co. Bader charge analysis has been performed to understand the bonding between the TM and Si atoms. This also helps in explaining the magnetic moment possessed by the composite systems after intercalating TM in between the layers of bilayer silicene system. This study reveals that a significant net magnetic moment is observed in cases of Mn-intercalated silicene bilayers, whereas Fe has a very small moment of 0.78 µB in the case of AA stacking configuration only. Co intercalation leads to net zero magnetic moment. Further, we find that Fe and Co marginally favor the AB stacking whereas Mn has a slight preference of the AA over the AB configuration. The composite systems, specifically when intercalated with Fe and Co atoms, favor a hybridization which is far away from sp3-like hybridization along the plane of Si atoms in bilayer silicene.

  16. The role of FeS clusters for molybdenum cofactor biosynthesis and molybdoenzymes in bacteria

    PubMed Central

    Yokoyama, Kenichi; Leimkühler, Silke

    2016-01-01

    Molybdenum is the only second row transition metal essential for biological systems, which is biologically available as molybdate ion. In eukarya, bacteria and archaea, molybdenum is bound to either to a tricyclic pyranopterin, thereby forming the molybdenum cofactor (Moco), or in some bacteria to the FeS cluster based iron-molybdenum cofactor (FeMoco), which forms the active site of nitrogenase. To date more than 50 Moco-containing enzymes have been purified and biochemically or structurally characterized. The physiological role of molybdenum in these enzymes is fundamental to organisms, since the reactions include the catalysis of key steps in carbon, nitrogen and sulfur metabolism. The catalyzed reactions are in most cases oxo-transfer reactions or the hydroxylation of carbon centers. The biosynthesis of Moco has been intensively studied, in addition to its insertion into molybdoenzymes. In particular, a link between the biosynthesis and maturation of molybdoenzymes and the biosynthesis and distribution of FeS clusters has been identified in the last years: 1) The synthesis of the first intermediate in Moco biosynthesis requires an FeS-cluster containing protein, 2) The sulfurtransferase for the dithiolene group in Moco is common also for the synthesis of FeS clusters, thiamin and thiolated tRNAs, 3) the modification of the active site with a sulfur atom additionally involves a sulfurtransferase, 4) most molybdoenzymes in bacteria require FeS clusters as additional redox active cofactors. In this review we will focus on the biosynthesis of the molybdenum cofactor in bacteria, its modification and insertion into molybdoenzymes, with an emphasis to its link to FeS cluster biosynthesis and sulfur transfer. PMID:25268953

  17. Iron and boron removal from sodium silicate using complexation methods

    NASA Astrophysics Data System (ADS)

    Wahyuningsih, S.; Suharty, N. S.; Pramono, E.; Ramelan, A. H.; Sasongko, B.; Dewi, A. O. T.; Hidayat, R.; Sulistyono, E.; Handayani, M.; Firdiyono, F.

    2018-05-01

    Silica purification of other materials is needed to improve the purity of silica that suitable for solar cells requirement. The silica is obtained from roasting of sand minerals in sodium silicate form. Iron (Fe) and boron (B) are an impurity that must be separated to obtain high pure silica. Separation of Fe and B used complexation methods. Chitosan-EDTA is used to remove Fe component and curcumin is used to remove B component. The elemental analysis with Atomic Absorption Spectrophotometer (AAS) showed the amount of Fe in sodium silicate decreased after binding to Chitosan EDTA. The contact duration between sodium silicate and chitosan-EDTA at baseline did not affect the results. Then the removal of B from sodium silicate using curcumin was done under basic conditions. B-Curcumin complexes were known from the wavelength number shifts of O-H, C-O, and C = O vibrational in the IR spectrum. The results showed that the optimum concentration of curcumin for removal B was 2 × 10-7 M.

  18. Size dependent behavior of Fe 3O 4 crystals during electrochemical (de)lithiation: an in situ X-ray diffraction, ex situ X-ray absorption spectroscopy, transmission electron microscopy and theoretical investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bock, David C.; Pelliccione, Christopher J.; Zhang, Wei

    Here, the iron oxide magnetite, Fe 3O 4, is a promising conversion type lithium ion battery anode material due to its high natural abundance, low cost and high theoretical capacity. While the close packing of ions in the inverse spinel structure of Fe 3O 4 enables high energy density, it also limits the kinetics of lithium ion diffusion in the material. Nanosizing of Fe 3O 4 to reduce the diffusion path length is an effective strategy for overcoming this issue and results in improved rate capability. However, the impact of nanosizing on the multiple structural transformations that occur during themore » electrochemical (de)lithiation reaction in Fe 3O 4 is poorly understood. In this study, the influence of crystallite size on the lithiation-conversion mechanisms in Fe 3O 4 is investigated using complementary X-ray techniques along with transmission electron microscopy (TEM) and continuum level simulations on electrodes of two different Fe 3O 4 crystallite sizes. In situ X-ray diffraction (XRD) measurements were utilized to track the changes to the crystalline phases during (de)lithiation. X-ray absorption spectroscopy (XAS) measurements at multiple points during the (de)lithiation processes provided local electronic and atomic structural information. Tracking the crystalline and nanocrystalline phases during the first (de)lithiation provides experimental evidence that (1) the lithiation mechanism is non-uniform and dependent on crystallite size, where increased Li + diffusion length in larger crystals results in conversion to Fe 0 metal while insertion of Li + into spinel-Fe 3O 4 is still occurring, and (2) the disorder and size of the Fe metal domains formed when either material is fully lithiated impacts the homogeneity of the FeO phase formed during the subsequent delithiation.« less

  19. Size dependent behavior of Fe 3O 4 crystals during electrochemical (de)lithiation: an in situ X-ray diffraction, ex situ X-ray absorption spectroscopy, transmission electron microscopy and theoretical investigation

    DOE PAGES

    Bock, David C.; Pelliccione, Christopher J.; Zhang, Wei; ...

    2017-07-17

    Here, the iron oxide magnetite, Fe 3O 4, is a promising conversion type lithium ion battery anode material due to its high natural abundance, low cost and high theoretical capacity. While the close packing of ions in the inverse spinel structure of Fe 3O 4 enables high energy density, it also limits the kinetics of lithium ion diffusion in the material. Nanosizing of Fe 3O 4 to reduce the diffusion path length is an effective strategy for overcoming this issue and results in improved rate capability. However, the impact of nanosizing on the multiple structural transformations that occur during themore » electrochemical (de)lithiation reaction in Fe 3O 4 is poorly understood. In this study, the influence of crystallite size on the lithiation-conversion mechanisms in Fe 3O 4 is investigated using complementary X-ray techniques along with transmission electron microscopy (TEM) and continuum level simulations on electrodes of two different Fe 3O 4 crystallite sizes. In situ X-ray diffraction (XRD) measurements were utilized to track the changes to the crystalline phases during (de)lithiation. X-ray absorption spectroscopy (XAS) measurements at multiple points during the (de)lithiation processes provided local electronic and atomic structural information. Tracking the crystalline and nanocrystalline phases during the first (de)lithiation provides experimental evidence that (1) the lithiation mechanism is non-uniform and dependent on crystallite size, where increased Li + diffusion length in larger crystals results in conversion to Fe 0 metal while insertion of Li + into spinel-Fe 3O 4 is still occurring, and (2) the disorder and size of the Fe metal domains formed when either material is fully lithiated impacts the homogeneity of the FeO phase formed during the subsequent delithiation.« less

  20. Iron(II)-catalyzed amidation of aldehydes with iminoiodinanes at room temperature and under microwave-assisted conditions.

    PubMed

    Ton, Thi My Uyen; Tejo, Ciputra; Tania, Stefani; Chang, Joyce Wei Wei; Chan, Philip Wai Hong

    2011-06-17

    A method for the amidation of aldehydes with PhI=NTs/PhI=NNs as the nitrogen source and an inexpensive iron(II) chloride + pyridine as the in situ formed precatalyst under mild conditions at room temperature or microwave assisted conditions is described. The reaction was operationally straightforward and accomplished in moderate to excellent product yields (20-99%) and with complete chemoselectivity with the new C-N bond forming only at the formylic C-H bond in substrates containing other reactive functional groups. By utilizing microwave irradiation, comparable product yields and short reaction times of 1 h could be accomplished. The mechanism is suggested to involve insertion of a putative iron-nitrene/imido group to the formylic C-H bond of the substrate via a H-atom abstraction/radical rebound pathway mediated by the precatalyst [Fe(py)(4)Cl(2)] generated in situ from reaction of FeCl(2) with pyridine.

  1. Tunable magnetism of 3d transition metal doped BiFeO3

    NASA Astrophysics Data System (ADS)

    Lu, S.; Li, C.; Zhao, Y. F.; Gong, Y. Y.; Niu, L. Y.; Liu, X. J.; Wang, T.

    2017-10-01

    Electronic polarization or bond relaxation can effectively alter the electronic and magnetic behavior of materials by doping impurity atom. For this aim, the thermodynamic, electronic and magnetic performances of cubic BiFeO3 have been modulated by the 3d transition metal (TM) dopants (Sc, Ti, V, Cr, Mn, Co, Ni, Cu and Zn) based on the density functional theory. Results show that the doped specimen with low impurity concentration is more stable than that with high impurity concentration. The Mulliken charge values and spin magnetic moments of TM element are making major changes, while those of all host atoms are making any major changes. Especially, it is the linear relation between the spin magnetic moments of TM dopants and the total magnetic moment of doped specimens; thus, the variations of total magnetic moment of doped specimens are decided by the spin magnetic moments of TM dopants, thought the total magnetic moments of doped specimens mainly come from Fe atom and TM dopants. Besides, as double TM atoms substitution the Fe atoms, the Sc-, Ti-, Mn-, Co- and Zn-doped specimens show AFM state, while the V-, Cr-, Ni- and Cu-doped specimens show FM state.

  2. Controlled Phase and Tunable Magnetism in Ordered Iron Oxide Nanotube Arrays Prepared by Atomic Layer Deposition

    DOE PAGES

    Zhang, Yijun; Liu, Ming; Peng, Bin; ...

    2016-01-27

    Highly-ordered and conformal iron oxide nanotube arrays on an atomic scale are successfully prepared by atomic layer deposition (ALD) with controlled oxidization states and tunable magnetic properties between superparamagnetism and ferrimagnetism. Non-magnetic α-Fe 2O 3 and superparamagnetic Fe 2O 3with a blocking temperature of 120 K are in-situ obtained by finely controlling the oxidation reaction. Both of them exhibit a very small grain size of only several nanometers due to the nature of atom-by-atom growth of the ALD technique. Post-annealing α-Fe 2O 3 in a reducing atmosphere leads to the formation of the spinel Fe 3O 4 phase which displaysmore » a distinct ferrimagnetic anisotropy and the Verwey metal-insulator transition that usually takes place only in single crystal magnetite or thick epitaxial films at low temperatures. Finally, the ALD deposition of iron oxide with well-controlled phase and tunable magnetism demonstrated in this work provides a promising opportunity for the fabrication of 3D nano-devices to be used in catalysis, spintronics, microelectronics, data storages and bio-applications.« less

  3. Modeling the Reaction of Fe Atoms with CCl4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Camaioni, Donald M.; Ginovska, Bojana; Dupuis, Michel

    2009-01-05

    The reaction of zero-valent iron with carbon tetrachloride (CCl4) in gas phase was studied using density functional theory. Temperature programmed desorption experiments over a range of Fe and CCl4 coverages on a FeO(111) surface, demonstrate a rich surface chemistry with several reaction products (C2Cl4, C2Cl6, OCCl2, CO, FeCl2, FeCl3) observed. The reactivity of Fe and CCl4 was studied under three stoichiometries, one Fe with one CCl4, one Fe with two CCl4 molecules and two Fe with one CCl4, modeling the environment of the experimental work. The electronic structure calculations give insight into the reactions leading to the experimentally observed productsmore » and suggest that novel Fe-C-Cl containing species are important intermediates in these reactions. The intermediate complexes are formed in highly exothermic reactions, in agreement with the experimentally observed reactivity with the surface at low temperature (30 K). This initial survey of the reactivity of Fe with CCl4 identifies some potential reaction pathways that are important in the effort to use Fe nano-particles to differentiate harmful pathways that lead to the formation of contaminants like chloroform (CHCl3) from harmless pathways that lead to products such as formate (HCO2-) or carbon oxides in water and soil. The Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.« less

  4. Photo-excitation of electrons in cytochrome c oxidase as a theory of the mechanism of the increase of ATP production in mitochondria by laser therapy

    NASA Astrophysics Data System (ADS)

    Zielke, Andrzej

    2014-02-01

    The hypothesis explains the molecular basis for restoring mitochondrial function by laser therapy. It also explains how laser therapy reverses both excessive oxidation (lack of NADH/FADH2) and excessive reduction (lack of O2) states of cytochrome c oxidase complex. It is proposed that photons interact with heme molecules of cytochrome c oxidase. A molecule of heme contains a porphyrin ring and an atom of iron in the center. The iron atom (Fe) can switch oxidation states back and forth between ferrous (Fe2+) and ferric (Fe3+) by accepting or releasing an electron. The porphyrin ring is a complex aromatic molecule that has 26 pi electrons which are "delocalized", spinning in the carbon rings creating a resonating electromagnetic cloud. Photons with similar wavelengths are absorbed by the cloud increasing its energy. The energy is then passed on to the centrally located atom of iron existing in a reduced state (Fe2+). The electrons on the orbits of the iron atom accept this electromagnetic energy, and change orbitals to a higher energetic level. If the energy is sufficient, electrons leave the atom entirely. If this occurs, Fe2+ become oxidized to Fe3+ releasing electrons, thus restoring electron flow and the production of ATP. At the same time, electrons freed from complex IV may have sufficient energy to be picked by NAD+/FADH and re-enter the chain at the complex I or II amplifying the flow of electrons.

  5. Synthesis and isolation of [Fe@Ge(10)](3-): a pentagonal prismatic Zintl ion cage encapsulating an interstitial iron atom.

    PubMed

    Zhou, Binbin; Denning, Mark S; Kays, Deborah L; Goicoechea, Jose M

    2009-03-04

    Reaction of an ethylenediamine (en) solution of the Zintl phase precursor K(4)Ge(9) with FeAr(2) (Ar = 2,6-Mes(2)C(6)H(3)) in the presence of 2,2,2-crypt (4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane) yielded the endohedral Zintl ion [Fe@Ge(10)](3-) (1) which was crystallographically characterized as a [K(2,2,2-crypt)](+) salt in [K(2,2,2-crypt)](3)[Fe@Ge(10)]*2en. This unprecedented Zintl ion exhibits a pentagonal prismatic 10-atom germanium cage with an interstitial iron atom in the central cavity. Confirmation of the existence of the cluster anion in solution was corroborated by positive and negative ion mode electrospray mass spectrometry.

  6. CO activation pathways and the mechanism of Fischer–Tropsch synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ojeda, Manuel; Nabar, Rahul P.; Nilekar, Anand U.

    2010-06-15

    Unresolved mechanistic details of monomer formation in Fischer–Tropsch synthesis (FTS) and of its oxygen rejection routes are addressed here by combining kinetic and theoretical analyses of elementary steps on representative Fe and Co surfaces saturated with chemisorbed CO. These studies provide experimental and theoretical evidence for hydrogen-assisted CO activation as the predominant kinetically-relevant step on Fe and Co catalysts at conditions typical of FTS practice. H2 and CO kinetic effects on FTS rates and oxygen rejection selectivity (as H2O or CO2) and density functional theory estimates of activation barriers and binding energies are consistent with H-assisted CO dissociation, but notmore » with the previously accepted kinetic relevance of direct CO dissociation and chemisorbed carbon hydrogenation elementary steps. H-assisted CO dissociation removes O-atoms as H2O, while direct dissociation forms chemisorbed oxygen atoms that desorb as CO2. Direct CO dissociation routes are minor contributors to monomer formation on Fe and may become favored at high temperatures on alkali-promoted catalysts, but not on Co catalysts, which remove oxygen predominantly as H2O because of the preponderance of Hassisted CO dissociation routes. The merging of experiment and theory led to the clarification of persistent mechanistic issues previously unresolved by separate experimental and theoretical inquiries.« less

  7. The role of meteoric smoke in the Earth s environment

    NASA Astrophysics Data System (ADS)

    Plane, J.

    An average of about 120 tonnes of interplanetary dust is believed to enter the earth's atmosphere each day. At least 55% of this ablates completely into atoms and ions, mostly between 70 and 110 km. Meteoric ablation is the source of the layers of metal atoms (Na, Fe etc.) that occur globally in the upper mesosphere; these layers are observed routinely by ground-based resonance lidars. This paper is concerned with the subsequent fate of the meteoric metals, and other constituents such as sulfur. The laboratory programme at the University of East Anglia studies the reactions that metallic species are likely to undergo in this region of the atmosphere. The resulting rate coefficients and photolysis cross sections are then used in atmospheric models. Once these models can satisfactorily reproduce the characteristic features of the mesospheric metal layers (as is the case for Na and Fe), they can then be used to predict the condensation of metal-containing species (oxides, hydroxides, carbonates) into nanometer-sized dust particles, known as "meteoric smoke". This paper will discuss the role of this smoke in providing condensation nuclei for noctilucent clouds in the upper mesosphere, forming sulphuric acid particles in the stratospheric Junge layer, and fertilizing the Fe-deficient Southern Ocean.

  8. Crystal structure and magnetic properties of FeTe2O5X (X=Cl, Br): a frustrated spin cluster compound with a new Te(IV) coordination polyhedron.

    PubMed

    Becker, Richard; Johnsson, Mats; Kremer, Reinhard K; Klauss, Hans-Henning; Lemmens, Peter

    2006-12-06

    A new layered transition metal oxohalide, FeTe2O5ClxBr1-x, has been identified. It crystallizes in the monoclinic space group P21/c. The unit cell for FeTe2O5Br is a = 13.3964(8), b = 6.5966(4), c = 14.2897(6) A, beta=108.118(6) degrees, and Z=8. The layers are built of edge sharing [FeO6] octahedra forming [Fe4O16]20- units that are linked by [Te4O10X2]6- groups. The layers have no net charge and are only weakly connected via van der Waals forces to adjacent layers. There are four crystallographically different Te atoms, and one of them displays a unique [TeO2X] coordination polyhedron (X=Cl, Br). Magnetic susceptibility measurements show a broad maximum typical for 4-spin clusters of coupled Fe(III) ions in the high-spin state. Evidence for magnetic instabilities exists at low temperatures, which have been confirmed with specific heat experiments. A theoretical modeling of the susceptibility concludes a frustration of the intra-tetramer anti-ferromagnetic exchange interaction.

  9. Magnetism from Fe2O3 nanoparticles embedded in amorphous SiO2 matrix

    NASA Astrophysics Data System (ADS)

    Sendil Kumar, A.; Bhatnagar, Anil K.

    2018-02-01

    Fe2O3 nanoparticles are embedded in amorphous SiO2 matrix by coprecipitation method with varying concentrations. Conditions are optimized to get almost monodispersed Fe2O3 nanoparticles with high chemical stability. Microstructure of synthesized nanoparticles is well characterized and found that Fe2O3 is in nanocrystalline form and embedded uniformly in amorphous SiO2 matrix. Enhanced surface reactivity is found for nanoparticles which influences physical properties of the SiO2 supported Fe2O3 system due to adsorption. In oxide nanoparticles, significant number of defect sites at the surface is expected but when supported medium such as SiO2 it reduces this defect concentration. Field- and temperature-dependent magnetisation studies on these samples show superparamagnetic behaviour. Superparamagnetic behaviour is seen in all the concentration systems but the coercivity observed in the lower concentration systems is found to be anomalous compared to that of higher concentrations. The observed magnetic behaviour comes from either unsaturated bond existing due to the absence of anions at the surface of nanoparticles or reconstruction of atomic orbitals taking place at interface of Fe2O3-SiO2 system.

  10. Theoretical investigation of aerobic and anaerobic oxidative inactivation of the [NiFe]-hydrogenase active site.

    PubMed

    Breglia, Raffaella; Greco, Claudio; Fantucci, Piercarlo; De Gioia, Luca; Bruschi, Maurizio

    2018-01-17

    The extraordinary capability of [NiFe]-hydrogenases to catalyse the reversible interconversion of protons and electrons into dihydrogen (H 2 ) has stimulated numerous experimental and theoretical studies addressing the direct utilization of these enzymes in H 2 production processes. Unfortunately, the introduction of these natural H 2 -catalysts in biotechnological applications is limited by their inhibition under oxidising (aerobic and anaerobic) conditions. With the aim of contributing to overcome this limitation, we studied the oxidative inactivation mechanism of [NiFe]-hydrogenases by performing Density Functional Theory (DFT) calculations on a very large model of their active site in which all the amino acids forming the first and second coordination spheres of the NiFe cluster have been explicitly included. We identified an O 2 molecule and two H 2 O molecules as sources of the two oxygen atoms that are inserted at the active site of the inactive forms of the enzyme (Ni-A and Ni-B) under aerobic and anaerobic conditions, respectively. Furthermore, our results support the experimental evidence that the Ni-A-to-Ni-B ratio strongly depends on the number of reducing equivalents available for the process and on the oxidizing conditions under which the reaction takes place.

  11. Influences on Distribution of Solute Atoms in Cu-8Fe Alloy Solidification Process Under Rotating Magnetic Field

    NASA Astrophysics Data System (ADS)

    Zou, Jin; Zhai, Qi-Jie; Liu, Fang-Yu; Liu, Ke-Ming; Lu, De-Ping

    2018-05-01

    A rotating magnetic field (RMF) was applied in the solidification process of Cu-8Fe alloy. Focus on the mechanism of RMF on the solid solution Fe(Cu) atoms in Cu-8Fe alloy, the influences of RMF on solidification structure, solute distribution, and material properties were discussed. Results show that the solidification behavior of Cu-Fe alloy have influenced through the change of temperature and solute fields in the presence of an applied RMF. The Fe dendrites were refined and transformed to rosettes or spherical grains under forced convection. The solute distribution in Cu-rich phase and Fe-rich phase were changed because of the variation of the supercooling degree and the solidification rate. Further, the variation in solute distribution was impacted the strengthening mechanism and conductive mechanism of the material.

  12. Iron-Rhodium and Iron-Iridium Mixed-Metal Nitrido-Carbonyl Clusters. Synthesis, Characterization, Redox Properties, and Solid-State Structure of the Octahedral Clusters [Fe(5)RhN(CO)(15)](2)(-), [Fe(5)IrN(CO)(15)](2)(-), and [Fe(4)Rh(2)N(CO)(15)](-). Infrared and Nuclear Magnetic Resonance Spectroscopic Studies on the Interstitial Nitride.

    PubMed

    Della Pergola, Roberto; Cinquantini, Arnaldo; Diana, Eliano; Garlaschelli, Luigi; Laschi, Franco; Luzzini, Paola; Manassero, Mario; Repossi, Andrea; Sansoni, Mirella; Stanghellini, Pier Luigi; Zanello, Piero

    1997-08-13

    The cluster [Fe(5)RhN(CO)(15)](2)(-) was synthesized in 40% yield from [Fe(4)N(CO)(12)](-) and [Rh(CO)(4)](-) in refluxing tetrahydrofuran, whereas the analogous anion [Fe(5)IrN(CO)(15)](2)(-) was prepared in CH(3)CN at room temperature from [Fe(6)N(CO)(15)](3)(-) and [Ir(C(8)H(14))(2)Cl](2); the yields are higher than 60%. The monoanion [Fe(4)Rh(2)N(CO)(15)](-) was obtained in 70% yield from [Fe(5)RhN(CO)(15)](2)(-) and hydrated RhCl(3). The solid-state structures of the three anions were determined on their [PPh(4)](+) salts: the six metal atoms are arranged in octahedral cages and are coordinated to 3 edge-bridging and 12 terminal carbonyl ligands and to a &mgr;(6)-N ligand. The Rh and Ir atoms have less terminal COs than Fe, in order to equalize the excess electrons at the d(9) metal centers. The two rhodium atoms in [Fe(4)Rh(2)N(CO)(15)](-) are directly bound. The (15)N NMR spectra of the three compounds have been recorded; the signals of the nitride ligands were found at delta = 514 ppm for the dianions and 470 ppm for [Fe(4)Rh(2)N(CO)(15)](-); any group 9 atom shifts the resonance of nitrogen to higher fields. The coupling constants J((15)N-(103)Rh) are 8-9 Hz. The vibrational patterns of the metal cores have been interpreted on the basis of an idealized M(6) octahedral arrangement, subsequently modified by the perturbations given by different atomic masses and M-M stretching force constants. The motions of the nitrogen are related to the idealized symmetry of the cage; the M-N force constant values depend on the type of metal and on the charge of the anion. The dianions [Fe(5)MN(CO)(15)](2)(-) can be electrochemically oxidized at -20 degrees C to their short-lived monoanions, which can be characterized by EPR spectroscopy. In contrast, the cluster [Fe(4)Rh(2)N(CO)(15)](-) undergoes a single-step 2-electron reduction to the partially stable trianion [Fe(4)Rh(2)N(CO)(15)](3)(-), which was also characterized by EPR spectroscopy. The Fe-Rh nitride clusters are active catalysts for the hydroformylation of 1-pentene, but display low selectivity (35-65%) in n-hexanal and are demolished under catalytic conditions.

  13. Introducing Fe 2+ into Nickel-Iron Layered Double Hydroxide: Local Structure Modulated Water Oxidation Activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Zhao; Zhou, Daojin; Wang, Maoyu

    Exploring materials with regulated local structures and understanding how the atomic motifs govern the reactivity and durability of catalysts are a critical challenge for designing advanced catalysts. Here we report the tuning of the local atomic structure of nickel–iron layered double hydroxides (NiFe–LDHs) by partially substituting Ni 2+ with Fe 2+ to introduce Fe–O–Fe moieties. These Fe 2+–containing NiFe–LDHs exhibit enhanced oxygen evolution reaction (OER) activity with an ultralow overpotential of 195 mV at the current density of 10 mA/cm 2, which is among the best OER catalytic performance reported to date. In–situ X–ray absorption, Raman, and electrochemical analysis jointlymore » reveal that the Fe–O–Fe motifs could stabilize high–valent metal sites at low overpotentials, thereby enhancing the OER activity. Lastly, these results reveal the importance of tuning the local atomic structure for designing high efficiency electrocatalysts.« less

  14. Introducing Fe 2+ into Nickel-Iron Layered Double Hydroxide: Local Structure Modulated Water Oxidation Activity

    DOE PAGES

    Cai, Zhao; Zhou, Daojin; Wang, Maoyu; ...

    2018-06-11

    Exploring materials with regulated local structures and understanding how the atomic motifs govern the reactivity and durability of catalysts are a critical challenge for designing advanced catalysts. Here we report the tuning of the local atomic structure of nickel–iron layered double hydroxides (NiFe–LDHs) by partially substituting Ni 2+ with Fe 2+ to introduce Fe–O–Fe moieties. These Fe 2+–containing NiFe–LDHs exhibit enhanced oxygen evolution reaction (OER) activity with an ultralow overpotential of 195 mV at the current density of 10 mA/cm 2, which is among the best OER catalytic performance reported to date. In–situ X–ray absorption, Raman, and electrochemical analysis jointlymore » reveal that the Fe–O–Fe motifs could stabilize high–valent metal sites at low overpotentials, thereby enhancing the OER activity. Lastly, these results reveal the importance of tuning the local atomic structure for designing high efficiency electrocatalysts.« less

  15. Fenton chemistry at aqueous interfaces

    PubMed Central

    Enami, Shinichi; Sakamoto, Yosuke; Colussi, Agustín J.

    2014-01-01

    In a fundamental process throughout nature, reduced iron unleashes the oxidative power of hydrogen peroxide into reactive intermediates. However, notwithstanding much work, the mechanism by which Fe2+ catalyzes H2O2 oxidations and the identity of the participating intermediates remain controversial. Here we report the prompt formation of O=FeIVCl3− and chloride-bridged di-iron O=FeIV·Cl·FeIICl4− and O=FeIV·Cl·FeIIICl5− ferryl species, in addition to FeIIICl4−, on the surface of aqueous FeCl2 microjets exposed to gaseous H2O2 or O3 beams for <50 μs. The unambiguous identification of such species in situ via online electrospray mass spectrometry let us investigate their individual dependences on Fe2+, H2O2, O3, and H+ concentrations, and their responses to tert-butanol (an ·OH scavenger) and DMSO (an O-atom acceptor) cosolutes. We found that (i) mass spectra are not affected by excess tert-butanol, i.e., the detected species are primary products whose formation does not involve ·OH radicals, and (ii) the di-iron ferryls, but not O=FeIVCl3−, can be fully quenched by DMSO under present conditions. We infer that interfacial Fe(H2O)n2+ ions react with H2O2 and O3 >103 times faster than Fe(H2O)62+ in bulk water via a process that favors inner-sphere two-electron O-atom over outer-sphere one-electron transfers. The higher reactivity of di-iron ferryls vs. O=FeIVCl3− as O-atom donors implicates the electronic coupling of mixed-valence iron centers in the weakening of the FeIV–O bond in poly-iron ferryl species. PMID:24379389

  16. Atomic alignment effect in the dissociative energy transfer reaction of metal carbonyls (Fe(CO)5, Ni(CO)4) with oriented Ar (3P2, M(J) = 2).

    PubMed

    Ohoyama, H; Matsuura, Y

    2011-10-13

    The atomic alignment effect has been studied for the dissociative energy transfer reaction of metal carbonyls (Fe(CO)(5), Ni(CO)(4)) with the oriented Ar ((3)P(2), M(J) = 2). The emission intensity from the excited metal products (Fe*, Ni*) has been measured as a function of the atomic alignment in the collision frame. The selectivity of the atomic orbital alignment of Ar ((3)P(2), M(J) = 2) (rank 2 moment, a(2)) is found to be opposite for the two reaction systems; the Fe(CO)(5) reaction is favorable at the Π configuration (positive a(2)), while the Ni(CO)(4) reaction is favorable at the Σ configuration (negative a(2)). Moreover, a significant spin alignment effect (rank 4 moment, a(4)) is recognized only in the Ni(CO)(4) reaction. The atomic alignment effect turns out to be essentially different between the two reaction systems; the Fe(CO)(5) reaction is controlled by the configuration of the half-filled 3p atomic orbital of Ar ((3)P(2)) in the collision frame (L dependence), whereas the Ni(CO)(4) reaction is controlled by the configuration of the total angular moment J (including spin) of Ar ((3)P(2)) in the collision frame (J dependence). As the origin of J dependence observed only in the Ni(CO)(4) reaction, the correlation (and/or the interference) between two electron exchange processes via the electron rearrangements is proposed.

  17. Evidence of a reduction reaction of oxidized iron/cobalt by boron atoms diffused toward naturally oxidized surface of CoFeB layer during annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, Soshi, E-mail: sato.soshi@cies.tohoku.ac.jp; Honjo, Hiroaki; Niwa, Masaaki

    2015-04-06

    We have investigated the redox reaction on the surface of Ta/CoFeB/MgO/CoFeB magnetic tunnel junction stack samples after annealing at 300, 350, and 400 °C for 1 h using angle-resolved X-ray photoelectron spectroscopy for precise analysis of the chemical bonding states. At a capping tantalum layer thickness of 1 nm, both the capping tantalum layer and the surface of the underneath CoFeB layer in the as-deposited stack sample were naturally oxidized. By comparison of the Co 2p and Fe 2p spectra among the as-deposited and annealed samples, reduction of the naturally oxidized cobalt and iron atoms occurred on the surface of the CoFeB layer.more » The reduction reaction was more significant at higher annealing temperature. Oxidized cobalt and iron were reduced by boron atoms that diffused toward the surface of the top CoFeB layer. A single CoFeB layer was prepared on SiO{sub 2}, and a confirmatory evidence of the redox reaction with boron diffusion was obtained by angle-resolved X-ray photoelectron spectroscopy analysis of the naturally oxidized surface of the CoFeB single layer after annealing. The redox reaction is theoretically reasonable based on the Ellingham diagram.« less

  18. Stellar and laboratory XUV/EUV line ratios in Fe XVIII and Fe XIX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Traebert, E.; Beiersdorfer, P.; Clementson, J.

    2012-05-25

    A so-called XUV excess has been suspected with the relative fluxes of Fe XVIII and Fe XIX lines observed in the XUV and EUV ranges of the spectrum of the star Capella as observed by the Chandra spacecraft, even after correction for interstellar absorption. This excess becomes apparent in the comparison of the observations with simulations of stellar spectra obtained using collisional-radiative models that employ, for example, the Atomic Plasma Emission Code (APEC) or the Flexible Atomic Code (FAC). We have addressed this problem by laboratory studies using the Livermore electron beam ion trap (EBIT).

  19. Antiferromagnetic structure and electronic properties of BaCr2As2 and BaCrFeAs2

    NASA Astrophysics Data System (ADS)

    Filsinger, Kai A.; Schnelle, Walter; Adler, Peter; Fecher, Gerhard H.; Reehuis, Manfred; Hoser, Andreas; Hoffmann, Jens-Uwe; Werner, Peter; Greenblatt, Martha; Felser, Claudia

    2017-05-01

    Recent theoretical studies suggest that superconductivity may be found in doped chromium pnictides with crystal structures similar to their iron counterparts. Here, we report a comprehensive study on the magnetic arsenides BaCr2As2 and BaCrFeAs2 (space group I 4 /m m m ), which are possible mother compounds with d4 and d5 electron configurations, respectively. DFT-based calculations of the electronic structure evidence metallic antiferromagnetic ground states for both compounds. By powder neutron diffraction, we confirm for BaCr2As2 a robust ordering in the antiferromagnetic G -type structure at TN=580 K with μCr=1.9 μB . Anomalies in the lattice parameters point to magnetostructural coupling effects. In BaCrFeAs2, the Cr and Fe atoms randomly occupy the transition-metal site and G -type order is found below 265 K with μCr /Fe=1.1 μB . 57Fe Mössbauer spectroscopy demonstrates that only a small ordered moment is associated with the Fe atoms, in agreement with electronic structure calculations leading to μFe˜0 . The temperature dependence of the hyperfine field does not follow that of the total moments. Both compounds are metallic but show large enhancements of the linear specific heat. Electrical transport in BaCrFeAs2 is dominated by the atomic disorder and the partial magnetic disorder of Fe. Our results indicate that Néel-type order is unfavorable for Fe moments and thus it is destabilized with increasing Fe content.

  20. Quinary metallic glass alloys

    DOEpatents

    Lin, Xianghong; Johnson, William L.

    1998-01-01

    At least quinary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10.sup.3 K/s. Such alloys comprise zirconium and/or hafnium in the range of 45 to 65 atomic percent, titanium and/or niobium in the range of 4 to 7.5 atomic percent, and aluminum and/or zinc in the range of 5 to 15 atomic percent. The balance of the alloy compositions comprise copper, iron, and cobalt and/or nickel. The composition is constrained such that the atomic percentage of iron is less than 10 percent. Further, the ratio of copper to nickel and/or cobalt is in the range of from 1:2 to 2:1. The alloy composition formula is: (Zr,Hf).sub.a (Al,Zn).sub.b (Ti,Nb).sub.c (Cu.sub.x Fe.sub.y (Ni,Co).sub.z).sub.d wherein the constraints upon the formula are: a ranges from 45 to 65 atomic percent, b ranges from 5 to 15 atomic percent, c ranges from 4 to 7.5 atomic percent, d comprises the balance, d.multidot.y is less than 10 atomic percent, and x/z ranges from 0.5 to 2.

  1. Quinary metallic glass alloys

    DOEpatents

    Lin, X.; Johnson, W.L.

    1998-04-07

    At least quinary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10{sup 3}K/s. Such alloys comprise zirconium and/or hafnium in the range of 45 to 65 atomic percent, titanium and/or niobium in the range of 4 to 7.5 atomic percent, and aluminum and/or zinc in the range of 5 to 15 atomic percent. The balance of the alloy compositions comprise copper, iron, and cobalt and/or nickel. The composition is constrained such that the atomic percentage of iron is less than 10 percent. Further, the ratio of copper to nickel and/or cobalt is in the range of from 1:2 to 2:1. The alloy composition formula is: (Zr,Hf){sub a}(Al,Zn){sub b}(Ti,Nb){sub c}(Cu{sub x}Fe{sub y}(Ni,Co){sub z}){sub d} wherein the constraints upon the formula are: a ranges from 45 to 65 atomic percent, b ranges from 5 to 15 atomic percent, c ranges from 4 to 7.5 atomic percent, d comprises the balance, d{hor_ellipsis}y is less than 10 atomic percent, and x/z ranges from 0.5 to 2.

  2. Structure and magnetic behaviors of melt-spun SmFeSiB ribbons and their nitrides

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Zhang, K.; Li, K. S.; Yu, D. B.; Ling, J. J.; Men, K.; Dou, Q. Y.; Yan, W. L.; Xie, J. J.; Yang, Y. F.

    2016-05-01

    SmFe9.3+xSi0.2B0.1 (x=0, 0.5, 1.0) ribbons and their nitrides were prepared by melt-spinning, followed by annealing and subsequent nitriding. The structure and magnetic properties have been investigated by means of powder X-ray diffraction, vibrating sample magnetometer and Mossbauer spectroscopy. Rietveld analysis shows that the augment of Fe content gives rise to an increase of the c/a ratio and cell volume. The increasing amount of Fe atoms occupying the 2e sites results in the change of initial structure. It is indicated that the isomer shift of 3g and 6l atom remains quasi-constant while the 2e atom shows a noticeable increase with the increase of iron content, which further conforms the preferential occupation of excessive Fe atoms at this site. Consistent with Tc, the mean hyperfine field 〈Bhf〉 has the highest value of 25.7 T when x=0.5. The hyperfine fields at different Fe sites follow the order H2e>H3g>H6l. The highest curie temperature of 477.68 K and the hyperfine field of 25.7 T in the as-quenched ribbons were obtained when x=0.5. Meanwhile, the highest magnetic properties of Hcj=4.31 kOe, (BH)m=3.5 MGOe in the nitride powders were found.

  3. Bottom-up Approach Design, Band Structure, and Lithium Storage Properties of Atomically Thin γ-FeOOH Nanosheets.

    PubMed

    Song, Yun; Cao, Yu; Wang, Jing; Zhou, Yong-Ning; Fang, Fang; Li, Yuesheng; Gao, Shang-Peng; Gu, Qin-Fen; Hu, Linfeng; Sun, Dalin

    2016-08-24

    As a novel class of soft matter, two-dimensional (2D) atomic nanosheet-like crystals have attracted much attention for energy storage devices due to the fact that nearly all of the atoms can be exposed to the electrolyte and involved in redox reactions. Herein, atomically thin γ-FeOOH nanosheets with a thickness of ∼1.5 nm are synthesized in a high yield, and the band and electronic structures of the γ-FeOOH nanosheet are revealed using density-functional theory calculations for the first time. The rationally designed γ-FeOOH@rGO composites with a heterostacking structure are used as an anode material for lithium-ion batteries (LIBs). A high reversible capacity over 850 mAh g(-1) after 100 cycles at 200 mA g(-1) is obtained with excellent rate capability. The remarkable performance is attributed to the ultrathin nature of γ-FeOOH nanosheets and 2D heterostacking structure, which provide the minimized Li(+) diffusion length and buffer zone for volume change. Further investigation on the Li storage electrochemical mechanism of γ-FeOOH@rGO indicates that the charge-discharge processes include both conversion reaction and capacitive behavior. This synergistic effect of conversion reaction and capacitive behavior originating from 2D heterostacking structure casts new light on the development of high-energy anode materials.

  4. Phase identification in boron-containing powder metallurgy steel using EBSD in combination with EPMA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Ming-Wei, E-mail: mwwu@ntut.edu.tw; Cai, Wen-Zhang

    2016-03-15

    Boron (B) is extensively used to induce liquid phase sintering (LPS) in powder metallurgy (PM) steels and thereby increase the densification. The alloying elements in B-containing PM steels affect the boride phase, stability of the boride, the temperature of liquid formation, and the progress of LPS. However, the boride phase has not been systematically identified yet. The main objective of this study was to clarify the influences of alloying elements, including C, Cr, and Ni, on the boride phases using electron backscatter diffraction (EBSD) in combination with electron probe microanalysis (EPMA). Network structures consisting of ferrite, Fe{sub 2}B boride, andmore » Fe{sub 3}C carbide were extensively observed in the Fe–0.4B–0.5C steel. The portions of Fe{sub 2}B were sufficiently larger than those of Fe{sub 3}C, and Fe{sub 3}C was mostly distributed at the interfaces between ferrite and Fe{sub 2}B. Adding 1.5 wt.% Cr or 1.8 wt.% Ni to Fe–0.4B–0.5C steel completely changes the Fe{sub 2}B and Fe{sub 3}C phases to a M{sub 3}(B,C) phase, where M represents the metallic elements, including Fe, Cr, Mo, and Ni. Furthermore, Cr, Mo, B, and C atoms tend to concentrate on the M{sub 3}(B,C) phase, but Ni atoms do not. - Highlights: • Network structures consisting of ferrite, Fe{sub 2}B boride, and Fe{sub 3}C carbide were extensively observed in the Fe–0.4B–0.5C steel. • Adding 1.5 wt.% Cr or 1.8 wt.% Ni to Fe–0.4B–0.5C steel completely transforms the Fe{sub 2}B and Fe{sub 3}C phases to a M{sub 3}(B,C) phase. • Cr, Mo, B, and C atoms tend to concentrate on the M{sub 3}(B,C) phase, but Ni atoms do not.« less

  5. Iron-based magnetic superhalogens with pseudohalogens as ligands: An unbiased structure search

    PubMed Central

    Ping Ding, Li; Shao, Peng; Lu, Cheng; Hui Zhang, Fang; Wang, Li Ya

    2017-01-01

    We have performed an unbiased structure search for a series of neutral and anionic FeL4 (L = BO2, CN, NO2, NO3, OH, CH3, NH2, BH4 and Li2H3) clusters using the CALYPSO (Crystal structure Analysis by Particle Swarm Optimization) structure search method. To probe the superhalogen properties of neutral and anionic FeL4 clusters, we used density-functional theory with the B3LYP functional to examine three factors, including distribution of extra electron, pattern of bonding and the nature of the ligands. Theoretical results show that Fe(BO2)4, Fe(NO3)4 and Fe(NO2)4 can be classified as magnetic superhalogen due to that their electron affinities even exceed those of the constituent ligands. The magnetic moment of Fe atom is almost entirly maintained when it is decorated with various ligands except for neutral and anionic (Li2H3)4. Moreover, the current work is also extended to the salt moieties formed by hyperhalogen/superhalogen anion and Na+ ion. It is found that these salts against dissociation into Na + FeL4 are thermodynamic stable except for Na[Fe(OH)4]. These results provides a wealth of electronic structure information about FeL4 magnetic superhalogens and offer insights into the synthesis mechanisms. PMID:28327547

  6. The role of allophane nano-structure and Fe oxide speciation for hosting soil organic matter in an allophanic Andosol

    NASA Astrophysics Data System (ADS)

    Filimonova, Svetlana; Kaufhold, Stephan; Wagner, Friedrich E.; Häusler, Werner; Kögel-Knabner, Ingrid

    2016-05-01

    We evaluated the impact of nano-structural characteristics of allophanic compounds and Fe oxide speciation on the efficiency of organo-mineral interactions in an allophanic Andosol derived from volcanic ash (Eifel mountains, Germany). The samples selected for our work represented a gradient from: (i) a pure synthetic allophane and (ii) model organo-mineral mixtures to (iii) particle size fractions of the natural Andosol. We thus aimed to link the processes operating at the individual molecular scale to the phenomena active at the aggregate scale. For a non-destructive characterization of the samples, we applied 129Xe NMR spectroscopy of adsorbed Xe atoms (to identify the mineral nano-structure and surface acid centres), ESEM (verifying the nano-spherical structure of allophane), 13C CPMAS NMR (for the nature of the soil organic matter (SOM)), 57Fe Mössbauer spectroscopy (Fe oxide speciation), and N2 adsorption (contribution of micro- and mesoporosity). By using the atomic probe Xe, we obtained evidence for a coupled mechanism of adsorption onto allophane requiring both the narrow pores (voids formed by the primary nano-spherules) and the acid centres located at the defect surfaces of the primary spherules. The validity of this coupled mechanism for the sorption of organic matter was confirmed by the concomitant blocking of acid centres (129Xe NMR data) and the decrease of the N2-available pore volumes (Vmicro and Vmeso) in the model samples DOM/- and NOM/allophane (DOM = dissolved OM, NOM = natural OM). In the Andosol, the high resistance of SOM against oxidation (OCresist = 15-50%) was combined with preferential accumulation of certain organic compounds, e.g. potentially labile substrates such as carbohydrates, and the low molecular weight species such as amino acids. This feature was attributed to the peculiar microporous tortuous structure of allophane aggregates that likely impose certain criteria for the chemical nature and size of mineral-bound SOM. On the other hand, the revealed dominance of nanoparticulate Fe oxyhydroxides (57% ferrihydrite) and Fe-substituted allophane (supposedly formed due to co-precipitation of the Al, Si and Fe in the course of volcanic soil formation) may substantially contribute to the formation of highly resistant organo-mineral associations through the enhanced extent of reactive surface groups in nanoparticles, increased surface charge density and electron accepting properties of substituting Fe3+ species that supposedly enhance the proportion of oxidised organic components.

  7. The bonding of FeN2, FeCO, and Fe2N2 - Model systems for side-on bonding of CO and N2

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Pettersson, Lars G. M.; Siegbahn, Per E. M.

    1987-01-01

    Qualitative calculations are performed to elucidate the nature of the side-on interaction of both N2 and CO with a single Fe atom. The systems are found to be quite similar, with bonding leading to an increase in the CO or N2 bond length and a decrease in the vibrational frequency. The CO or N2 stretching modes lead to a large dipole derivative along the metal-ligand bond axis. The populations show an almost identical, large donation from the Fe 3d orbitals into the CO or N2 Pi-asterisk. The larger system Fe2N2 is then considered, with the N2 bridging the Fe2, both parallel and perpendicular to the Fe2 bond axis for two different Fe-Fe distances. For FeN2, the shift in the observed N2 frequency is smaller than observed for the alpha state of N2/Fe(111). The shift in the N2 vibrational frequency increases when the N2 interacts with two Fe atoms, either at the Fe-Fe nearest neighbor distance or at the first layer Fe-Fe distance, when the side-on N2 axis is oriented perpendicular to an Fe-Fe bond.

  8. Formation of cation-anion complexes in the photochemical reaction of molybdenocene dihydrode with iron pentacarbonyl. Crystal structures of (Cp/sub 2/Mo(CO)H)/sup +/(Fe/sub 3/(CO)/sub 11/H)/sup -/ and (Cp/sub 2/Mo(CO)H)/sup +/(CoMo(CO)/sub 3/)/sup -/ (triclinic modification) (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antsyshkina, A.S.; Dikareva, L.M.; Porai-Koshits, M.A.

    1985-11-01

    The reaction of Cp/sub 2/MoH/sub 2/ with Fe(CO)/sub 5/ in boiling benzene under UV irradiation gives the ionic complexes (Cp/sub 2/Mo(CO)H)/sup +/(Fe/sub 3/(CO)/sub 11/H)/sup -/ (I) and (Cp/sub 2/Mo(CO)H)/sup +/(CpMo(CO)/sub 3/)/sup -/ (II), whose structures were established by x-ray diffraction analysis (Syntex P2/sub 1/ automatic diffractometer, lambda Mo K/sub ..cap alpha../, graphite monochromator, theta/2theta scan technique, full-matrix least-squares method, isotropic variant for I on the basis of 2112 reflections to % = 0.11 and anisotropic variant for II on the basis of 3770 values of hkl to R = 0.052). In complexes I and II the (CpMo(CO)H)/sup +/ fragment ismore » a tapered sandwich with an eclipsed conformation of the rings. In complex I the angle between the rings is 33.9/sup 0/, the mean Mo-C(C/sub 5/H/sub 5/) distance is 2.28(3) A, the mean Mo-C(CO) distance is 2.03(3) A, and the mean Mo-H distance is 1.78(10) A. The corresponding parameters in complex II are: 32.4/sup 0/, 2.296(7), 2.020(6), and 1.87(7) A. The anion in complex I is based on a triangular cluster of Fe atoms, in which one Fe-Fe distance is significantly shorter (2.488(5) A) than the other two (2.702(5) and 2.697(5) A). The Fe atoms forming the short bond are joined additionally by hydride (Fe-H = 2.14 A) and carbonyl (Fe-C = 1.90(3) and 1.93(3) A) Bridges. The remaining groups are terminal. A probable scheme for the process of the formation of complexes I and II has been discussed.« less

  9. Back-clocking of Fe2+/Fe1+ spin states in a H2-producing catalyst by advanced EPR

    NASA Astrophysics Data System (ADS)

    Stathi, Panagiota; Mitrikas, George; Sanakis, Yiannis; Louloudi, Maria; Deligiannakis, Yiannis

    2013-10-01

    A mononuclear Fe-(P(PPh2)3) ((P(PPh2)3) = tris[2-diphenylphospino)ethyl]phosphine) catalyst was studied in situ under catalytic conditions using advanced electron paramagnetic resonance (EPR) techniques. Fe-(P(PPh2)3) efficiently catalyses H2 production using HCOOH as substrate. Dual-mode continuous-wave (CW) EPR, used to study the initial Fe2+(S = 2) state, shows that the complex is characterised by a - rather small - zero field splitting parameter Δ = 0.45 cm-1 and geff = 8.0. In the presence of HCOOH substrate the complex evolves and a unique Fe1+(S = 1/2) state is trapped. The Fe1+ atom is coordinated by four 31P nuclei in a pseudo-C3 symmetry. Only a small fraction of the Fe1+ spin density is delocalised onto the 31P atoms. Four-pulse electron spin echo envelope modulation (ESEEM) and two-dimensional hyperfine sublevel correlation spectroscopy (2D-HYSCORE) data reveal the existence of two types of 1H couplings. One corresponds to weak, purely dipolar coupling, tentatively assigned to phenyl protons. The most important is a - rather unusual - 1H coupling with negative Aiso (-2.75 MHz) and strong dipolar part (T = 5.5 MHz). This 1H is located on the pseudo-C3 symmetry axis of the Fe1+-(P(PPh2)3-HCOO- complex where one substrate molecule, formate anion, is coordinated on the Fe1+ atom.

  10. Charge dynamics of 57Fe probe atoms in La2Li0.5Cu0.5O4

    NASA Astrophysics Data System (ADS)

    Presniakov, I. A.; Sobolev, A. V.; Rusakov, V. S.; Moskvin, A. S.; Baranov, A. V.

    2018-06-01

    The objective of this study is to characterize the electronic state and local surrounding of 57Fe Mössbauer probe atoms within iron-doped layered perovskite La2Li0.5Cu0.5O4 containing transition metal in unusual formal oxidation states "+3". An approach based on the qualitative energy diagrams analysis and the calculations within the cluster configuration interaction method have been developed. It was shown that a large amount of charge is transferred via Cu-O bonds from the O: 2p bands to the Cu: 3d orbitals and the ground state is dominated by the d9L configuration ("Cu2+-O-" state). The dominant d9L ground state for the (CuO6) sublattice induces in the environment of the 57Fe probe cations a charge transfer Fe3+ + O-(L) → Fe4+ + O2-, which transforms "Fe3+" into "Fe4+" state. The experimental spectra in the entire temperature range 77-300 K were described with the use of the stochastic two-level model based on the assumption of dynamic equilibrium between two Fe3+↔Fe4+ valence states related to the iron atom in the [Fe(1)O4]4- center. The relaxation frequencies and activation energies of the corresponding charge fluctuations were estimated based on Mössbauer data. The results are discussed assuming a temperature-induced change in the electronic state of the [CuO4]5- clusters in the layered perovskite.

  11. X-ray absorption investigation of local structural disorder in Ni 1-xFe x (x=0.10, 0.20, 0.35, and 0.50) alloys

    DOE PAGES

    Zhang, Fuxiang X.; Jin, Ke; Zhao, Shijun; ...

    2017-04-27

    Defect energetics in structural materials has long been recognized to be affected by specific alloy compositions. Significantly enhanced radiation resistance has recently been observed in concentrated solid-solution alloys. However, the link between local structural disorder and modified defect dynamics in solid solutions remains unclear. To reveal the atomic-level lattice distortion, the local structures of Ni and Fe in Ni 1-xFe x (x=0.1, 0.2, 0.35 and 0.5) solid solution alloys were measured with extended X-ray absorption fine structure (EXAFS) technique. The lattice constant and the first-neighbor distances increase with the increase of Fe content in the solid solutions. EXAFS measurements havemore » revealed that the bond length of Fe with surrounding atoms is 0.01-0.03 larger than that of Ni in the alloy systems. Debye-Waller factor of the Fe-Fe bonds in all the systems is also slightly larger than that of the Ni-Ni bond. EXAFS fitting suggests that the local structural disorder is enhanced with the addition of Fe elements in the solid solution. The local bonding environments from ab initio calculation are in good agreement with the experimental results, which suggest that the Fe has a larger first-neighbor bonding distance than that of Ni, and thus Ni atom inside the Ni-Fe solid solution alloys undergoes compressive strain.« less

  12. X-ray absorption investigation of local structural disorder in Ni 1-xFe x (x=0.10, 0.20, 0.35, and 0.50) alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fuxiang X.; Jin, Ke; Zhao, Shijun

    Defect energetics in structural materials has long been recognized to be affected by specific alloy compositions. Significantly enhanced radiation resistance has recently been observed in concentrated solid-solution alloys. However, the link between local structural disorder and modified defect dynamics in solid solutions remains unclear. To reveal the atomic-level lattice distortion, the local structures of Ni and Fe in Ni 1-xFe x (x=0.1, 0.2, 0.35 and 0.5) solid solution alloys were measured with extended X-ray absorption fine structure (EXAFS) technique. The lattice constant and the first-neighbor distances increase with the increase of Fe content in the solid solutions. EXAFS measurements havemore » revealed that the bond length of Fe with surrounding atoms is 0.01-0.03 larger than that of Ni in the alloy systems. Debye-Waller factor of the Fe-Fe bonds in all the systems is also slightly larger than that of the Ni-Ni bond. EXAFS fitting suggests that the local structural disorder is enhanced with the addition of Fe elements in the solid solution. The local bonding environments from ab initio calculation are in good agreement with the experimental results, which suggest that the Fe has a larger first-neighbor bonding distance than that of Ni, and thus Ni atom inside the Ni-Fe solid solution alloys undergoes compressive strain.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wenjie; Zhang, Honghu; Feng, Shuren

    Surface-sensitive X-ray scattering and spectroscopy techniques reveal significant adsorption of iron ions and iron-hydroxide (Fe(III)) complexes to a charge-neutral zwitterionic template of phosphatidylcholine (PC). The PC template is formed by a Langmuir monolayer of dipalmitoyl-PC (DPPC) that is spread on the surface of 2 to 40 μM FeCl 3 solutions at physiological levels of KCl (100 mM). At 40 μM of Fe(III) as many as ~3 iron atoms are associated with each PC group. Grazing incidence X-ray diffraction measurements indicate a significant disruption in the in-plane ordering of DPPC molecules upon iron adsorption. The binding of iron-hydroxide complexes to amore » neutral PC surface is yet another example of nonelectrostatic, presumably covalent bonding to a charge-neutral organic template. Furthermore, the strong binding and the disruption of in-plane lipid structure has biological implications on the integrity of PC-derived lipid membranes, including those based on sphingomyelin.« less

  14. Crossover from disordered to core-shell structures of nano-oxide Y{sub 2}O{sub 3} dispersed particles in Fe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higgins, M. P.; Wang, L. M.; Gao, F., E-mail: gaofeium@umich.edu

    Molecular dynamic simulations of Y{sub 2}O{sub 3} in bcc Fe and transmission electron microscopy (TEM) observations were used to understand the structure of Y{sub 2}O{sub 3} nano-clusters in an oxide dispersion strengthened steel matrix. The study showed that Y{sub 2}O{sub 3} nano-clusters below 2 nm were completely disordered. Y{sub 2}O{sub 3} nano-clusters above 2 nm, however, form a core-shell structure, with a shell thickness of 0.5–0.7 nm that is independent of nano-cluster size. Y{sub 2}O{sub 3} nano-clusters were surrounded by off-lattice Fe atoms, further increasing the stability of these nano-clusters. TEM was used to corroborate our simulation results and showed a crossover frommore » a disordered nano-cluster to a core-shell structure.« less

  15. Influence of LaFeO 3 Surface Termination on Water Reactivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoerzinger, Kelsey A.; Comes, Ryan; Spurgeon, Steven R.

    2017-02-17

    The polarity of oxide surfaces can dramatically impact their surface reactivity, in particular with polar molecules such as water. The surface species that result from this interaction change the oxide electronic structure and chemical reactivity in applications such as photoelectrochemistry, but are challenging to probe experimentally with atomic-scale understanding. Here we report a detailed study of the surface chemistry and electronic structure of the perovskite LaFeO3 in humid conditions using ambient pressure X-ray photoelectron spectroscopy. Comparing the two possible terminations of the polar (001)-oriented surface, we find that the LaO surface is more reactive toward water, forming hydroxyl species andmore » adsorbing molecular water at lower relative humidity than its FeO2-terminated counterpart. Our results demonstrate how the termination of a complex oxide can dramatically impact its reactivity, providing insight into the design of catalyst materials.« less

  16. Study of optical and luminescence properties of silicon — semiconducting silicide — silicon multilayer nanostructures

    NASA Astrophysics Data System (ADS)

    Galkin, N. G.; Galkin, K. N.; Dotsenko, , S. A.; Goroshko, D. L.; Shevlyagin, A. V.; Chusovitin, E. A.; Chernev, I. M.

    2017-01-01

    By method of in situ differential spectroscopy it was established that at the formation of monolayer Fe, Cr, Ca, Mg silicide and Mg stannide islands on the atomically clean silicon surface an appearance of loss peaks characteristic for these materials in the energy range of 1.1-2.6 eV is observed. An optimization of growth processes permit to grow monolithic double nanoheterostructures (DNHS) with embedded Fe, Cr and Ca nanocrystals, and also polycrystalline DNHS with NC of Mg silicide and Mg stannide and Ca disilicide. By methods of optical spectroscopy and Raman spectroscopy it was shown that embedded NC form intensive peaks in the reflectance spectra at energies up to 2.5 eV and Raman peaks. In DNS with β-FeSi2 NC a photoluminescence and electroluminescence at room temperature were firstly observed.

  17. β-K3Fe(MoO4)2Mo2O7

    PubMed Central

    Souilem, Amira; Zid, Mohamed Faouzi; Driss, Ahmed

    2014-01-01

    The title compound, tripotassium iron(III) bis­(ortho­molyb­date) dimolybdate, was obtained by a solid-state reaction. The main structural building units are one FeO6 octa­hedron, two MoO4 tetra­hedra and one Mo2O7 dimolybdate group, all with point group symmetries m. These units are linked via corner-sharing to form ribbons parallel to [010]. The three K+ cations are located between the ribbons on mirror planes and have coordination numbers of 10 and 12. Two O atoms of one of the MoO4 tetra­hedra of the dimolybdate group are disordered over two positions in a 0.524 (11):0.476 (11) ratio. The structure of the title compound is compared briefly with that of Rb3FeMo4O15. PMID:25161509

  18. Simple-Cubic Carbon Frameworks with Atomically Dispersed Iron Dopants toward High-Efficiency Oxygen Reduction.

    PubMed

    Wang, Biwei; Wang, Xinxia; Zou, Jinxiang; Yan, Yancui; Xie, Songhai; Hu, Guangzhi; Li, Yanguang; Dong, Angang

    2017-03-08

    Iron and nitrogen codoped carbons (Fe-N-C) have attracted increasingly greater attention as electrocatalysts for oxygen reduction reaction (ORR). Although challenging, the synthesis of Fe-N-C catalysts with highly dispersed and fully exposed active sites is of critical importance for improving the ORR activity. Here, we report a new type of graphitic Fe-N-C catalysts featuring numerous Fe single atoms anchored on a three-dimensional simple-cubic carbon framework. The Fe-N-C catalyst, derived from self-assembled Fe 3 O 4 nanocube superlattices, was prepared by in situ ligand carbonization followed by acid etching and ammonia activation. Benefiting from its homogeneously dispersed and fully accessible active sites, highly graphitic nature, and enhanced mass transport, our Fe-N-C catalyst outperformed Pt/C and many previously reported Fe-N-C catalysts for ORR. Furthermore, when used for constructing the cathode for zinc-air batteries, our Fe-N-C catalyst exhibited current and power densities comparable to those of the state-of-the-art Pt/C catalyst.

  19. Influence of ball milling on atomic structure and magnetic properties of Co{sub 40}Fe{sub 22}Ta{sub 8}B{sub 30} glassy alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taghvaei, Amir Hossein, E-mail: Amirtaghvaei@gmail.com; Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz; Stoica, Mihai

    2014-06-01

    The influence of ball milling on the atomic structure and magnetic properties of the Co{sub 40}Fe{sub 22}Ta{sub 8}B{sub 30} metallic glass with a high thermal stability and excellent soft magnetic properties has been investigated. After 14 h of milling, the obtained powders were found to consist mainly of an amorphous phase and a small fraction of the (Co,Fe){sub 21}Ta{sub 2}B{sub 6} nanocrystals. The changes in the reduced pair correlation functions suggest noticeable changes in the atomic structure of the amorphous upon ball milling. Furthermore, it has been shown that milling is accompanied by introduction of compressive and dilatational sites inmore » the glassy phase and increasing the fluctuation of the atomic-level hydrostatic stress without affecting the coordination number of the nearest neighbors. Ball milling has decreased the thermal stability and significantly affected the magnetic properties through increasing the saturation magnetization, Curie temperature of the amorphous phase and coercivity. - Highlights: • Ball milling affected the atomic structure of Co{sub 40}Fe{sub 22}Ta{sub 8}B{sub 30} metallic glass. • Mechanically-induced crystallization started after 4 h milling. • Milling increased the fluctuation of the atomic-level hydrostatic stress in glass. • Ball milling influenced the thermal stability and magnetic properties.« less

  20. Peculiarities of FeSi phonon spectrum induced by a change of atomic volume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parshin, P. P., E-mail: Parshin-PP@nrcki.ru, E-mail: neupar45@yandex.ru; Chumakov, A. I.; Alekseev, P. A.

    2016-12-15

    We analyze in detail the results of experimental investigations of the evolution of the thermal vibration spectra for iron atoms in iron monosilicide FeSi depending on two external parameters, viz., temperature T (in the range 46–297 K at pressure P = 0.1 MPa) and pressure P (in the range 0.1 MPa–43 GPa at temperature T = 297 K), obtained by nuclear inelastic scattering of synchrotron radiation. The decrease of the atomic volume is accompanied by a rearrangement of the phonon spectrum, which is manifested, in particular, in the splitting of the low-energy peak in the spectrum and in an increasemore » of the energy for all phonons. The changes of the average energy of the iron atom vibrational spectrum and of the Debye energy with decreasing atomic volume are analyzed. Different versions of FeSi electron spectrum variation, which can be used to explain the observed phonon anomalies, are considered.« less

  1. Synthesis and characterization of magnetically hard Fe-Pt alloy nanoparticles and nano-islands

    NASA Astrophysics Data System (ADS)

    Hu, Xiaocao

    In this dissertation, we explored the fabrication of FePt nanoparticles and nano-islands with the face-centered tetragonal (fct, L10) phase prepared by both chemical synthesis routes and physical vapor deposition. Microstructure and magnetic properties characterizations were used to gain a fundamental understanding of the nano-structure formation and atomic ordering behavior and determine the possible applications in the next generation ultra-high density magnetic storage media. FePt nanoparticles prepared by thermal decomposition of iron pentacarbonyl [Fe(CO)5] have been widely investigated and by tuning the processing procedure monodispersed FePt nanoparticles with good assembly can be obtained. The as-made FePt nanoparticles are usually in the magnetically soft face-centered cubic (fcc) phase. To transformation to the fct phase, post-annealing at above 600°C is needed which, however, introduces undesirable agglomeration and sintering. To address this problem, we used three different fabrication processes which are discussed below. In the first fabrication experiment, the FePt nanoparticles were fabricated by a novel environmental friendly method involving crystalline saline complex hexaaquairon (II) hexachloroplatinate ([Fe(H2O)6]PtCl 6) with a special layered structure. Then the precursor was ball milled with NaCl and annealed at temperatures above 400°C under a reducing atmosphere of forming gas (95% Ar and 5% H2) FePt nanoparticles were obtained after washing away NaCl with deionized water. This method avoids the use of the very poisonous Fe(CO)5 and other organic solvents such as oleylamine and oleic acid. Instead, environmentally friendly NaCl and water were used. The size of FePt nanoparticles was controlled by varying the proportion of precursor and NaCl (from 10mg/20g to 50mg/20g). Particles with size in the range of 6.2--13.2 nm were obtained. All the nanoparticles annealed above 400°C are in the highly ordered fct phase with a coercivity range of 4.7 kOe to 10.7 kOe. Compared with reported high annealing temperatures above 600°C, this fabrication process led to a significantly decreased temperature to achieve the L10 phase FePt by 200°C. A qualitative model was set up to explain the surprising low L10 phase achievement temperature and the influence of annealing temperature on the microstructure and magnetic properties was investigated. Although FePt nanoparticles with high coercivity and small size were successfully obtained by the first fabrication method, agglomeration happened during the washing procedure due to the large inter-particle magnetostatic force caused by their high magnetization. To avoid this agglomeration, exfoliated graphene was introduced in the second preparation method to keep the nanoparticles separated. Different from the traditional solvent-phase reaction to disperse FePt nanoparticles onto the exfoliated graphene, a novel solid-phase reaction was used in this dissertation involving the layered precursor [Fe(H2 O)6]PtCl6 molecule. The [Fe(H2O) 6]PtCl6 water solution was mixed with exfoliated graphene oxide (GO) and then the top solution was removed. Fe2+ and Pt2+ ions were absorbed onto the surface of GO. The remaining product was annealed under a reducing atmosphere of forming gas at different temperatures (500°C to 950°C). During the reduction process, GO was reduced to "graphene" and FePt nanoparticles were formed on the surface of exfoliated graphene. The separation effect by the exfoliated graphene increased the phase transformation temperature to 600°C compared to the first method. However, even at an annealing temperature as high as 750°C, we could still obtained separated, small size FePt nanoparticles with coercivity of 8.3 kOe. The third preparation method used in this dissertation is the traditional magnetron sputtering with very short deposition time (10 s to 25 s) on heated MgO (001) substrate to form separate nano-islands instead of continuous thin films. The ordering of FePt nano-islands were studied by high resolution transmission electron microscopy. Because of the low degree of atomic ordering of the as-prepared nano-islands, post annealing at 700°C under an atmosphere of forming gas was introduced. Ordering of nano-islands of as small as 3 nm was revealed. We discovered that in the ordered FePt nano-islands, there are defects present. Particularly, we observed an onion like structure in a FePt nano-island composed of c-domains perpendicular to each other. These defects explained the low coercivity of the L10 ordered FePt nano-islands, which was envisioned theoretically. In summary, in this dissertation, novel solid-phase, environmentally friendly synthesis methods to fabricate FePt nanoparticles and FePt nanoparticles on "graphene" with high coercivity are first reported. Also, a special onion-like structure was first discovered by high-resolution microscopy and theoretical simulation was done with good agreement with the experimental results.

  2. Tetra-butyl-ammonium tetra-kis-(trimethyl-silanolato-κO)ferrate(III).

    PubMed

    Hay, Michael; Staples, Richard; Lee, Andre

    2012-09-01

    In the title salt, (C(16)H(36)N)[Fe(C(3)H(9)OSi)(4)], the cation contains a central N atom bonded to four n-butyl alkyl groups in a tetra-hedral arrangement, while the anion contains a central Fe(III) atom tetra-hedrally coordinated by four trimethyl-silanolate ligands.

  3. Effects of trace elements on the crystal field parameters of Nd ions at the surface of Nd{sub 2}Fe{sub 14}B grains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toga, Yuta; Suzuki, Tsuneaki; Sakuma, Akimasa, E-mail: sakuma@solid.apph.tohoku.ac.jp

    2015-06-14

    Using first-principles calculations, we investigate the positional dependence of trace elements such as O and Cu on the crystal field parameter A{sub 2}{sup 0}, proportional to the magnetic anisotropy constant K{sub u} of Nd ions placed at the surface of Nd{sub 2}Fe{sub 14}B grains. The results suggest the possibility that the A{sub 2}{sup 0} parameter of Nd ions at the (001) surface of Nd{sub 2}Fe{sub 14}B grains exhibits a negative value when the O or Cu atom is located near the surface, closer than its equilibrium position. At the (110) surface, however, O atoms located at the equilibrium position providemore » a negative A{sub 2}{sup 0}, while for Cu additions A{sub 2}{sup 0} remains positive regardless of Cu's position. Thus, Cu atoms are expected to maintain a positive local K{sub u} of surface Nd ions more frequently than O atoms when they approach the grain surfaces in the Nd-Fe-B grains.« less

  4. Foam model of planetary formation

    NASA Astrophysics Data System (ADS)

    Andreev, Y.; Potashko, O.

    The Analysis of 2637 terrestrial minerals shows presence of characteristic element and isotope structure for each ore irrespective of its site. The model of processes geo-nuclear syntheses elements is offered due to avalanche merge of nucleus which simply explains these laws. Main assumption: nucleus, atoms, connections, ores and minerals were formed in volume of the modern Earth at an early stage of its evolution from uniform proto-substance. Substantive provisions of the model: 1)The most part of nucleus of atoms of all chemical elements of the Earth's crust were formed on the mechanism of avalanche chain merge practically in one stage (in geological scales) in a course of correlated(in scales of a planet) process with allocation of a plenty of heat. 2) Atoms of chemical elements were generated during cooling a planet with preservation of a relative spatial arrangement of nucleus. 3) Chemical compounds have arisen at cooling a surface of a planet and were accompanied by reorganizations (hashing) macro- and geo-scale. 4) Mineral formations are consequence of correlated behaviour of chemical compounds on microscopic scales during phase transition from gaseous or liquid to a firm condition. 5) Synthesis of chemical elements in deep layers of the Earth occurs till now. "Foaming'' instead of "Big Bang" The physical space is continual gas-fluid environment consist of super fluid foam. The continuity, keeping and uniqueness of proto-substance are postulated. Scenario: primary singularity-> droplets(proto-galaxies) droplets(proto-stars)-> droplets(proto-planets)-> droplets(proto- satellites)-> droplets. Proto-planet substance->proton+electron as 1st generation disintegration result of primary foam. Nuclei or nucleonic crystals are the 2nd generation in result of cascade merge of protons into conglomerates. The theory has applied to the analysis of samples of native copper deposit from Rafalovka's ore deposit in Ukraine. The abundance of elements by use of the roentgen fluorescent microanalysis has been made. Changes of a parity of elements are described by nuclear synthesis reactions: 16O+47Ti, 23Na+40Ca, 24Mg+39K, 31P+32S-> 63Cu; 16O+49Ti, 23Na+42Ca, 26Mg+39K, 31P+34S-> 65Cu Dramatical change of isotope parities of 56Fe and 57Fe in the sites of space carried on 3 millimetres. The content of 57Fe is greater then 56Fe in Cu granule.

  5. Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation

    DOEpatents

    Lilga, Michael A.; Hallen, Richard T.

    1990-01-01

    The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately .pi.-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancilliary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H.sub.2 from mixed gas streams such as the produce gas from coal gasification processes.

  6. Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation

    DOEpatents

    Lilga, M.A.; Hallen, R.T.

    1991-10-15

    The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately [pi]-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancillary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H[sub 2] from mixed gas streams such as the product gas from coal gasification processes. 3 figures.

  7. Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation

    DOEpatents

    Lilga, M.A.; Hallen, R.T.

    1990-08-28

    The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately [pi]-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancillary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H[sub 2] from mixed gas streams such as the producer gas from coal gasification processes. 3 figs.

  8. Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation

    DOEpatents

    Lilga, Michael A.; Hallen, Richard T.

    1991-01-01

    The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately .pi.-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancilliary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H.sub.2 from mixed gas streams such as the product gas from coal gasification processes.

  9. Modulating the electronic and magnetic properties of bilayer borophene via transition metal atoms intercalation: from metal to half metal and semiconductor

    NASA Astrophysics Data System (ADS)

    Zhang, Xiuyun; Sun, Yi; Ma, Liang; Zhao, Xinli; Yao, Xiaojing

    2018-07-01

    Borophene, a two-dimensional monolayer made of boron atoms, has attracted wide attention due to its appealing properties. Great efforts have been devoted to fine tuning its electronic and magnetic properties for desired applications. Herein, we theoretically investigate the versatile electronic and magnetic properties of bilayer borophene (BLB) intercalated by 3d transition metal (TM) atoms, TM@BLBs (TM = Ti-Fe), using ab initio calculations. Four allotropes of AA-stacking (α 1-, β-, β 12- and χ 3-) BLBs with different intercalation concentrations of TM atoms are considered. Our results show that the TM atoms are strongly bonded to the borophene layers with fairly large binding energies, around 6.31 ∼ 15.44 eV per TM atom. The BLBs with Cr and Mn intercalation have robust ferromagnetism, while for the systems decorated with Fe atoms, fruitful magnetic properties, such as nonmagnetic, ferromagnetic or antiferromagnetic, are identified. In particular, the α 1- and β-BLBs intercalated by Mn or Fe atom can be transformed into a semiconductor, half metal or graphene-like semimetal. Moreover, some heavily doped TM@BLBs expose high Curie temperatures above room temperature. The attractive properties of TM@BLBs entail an efficient way to modulate the electronic and magnetic properties of borophene sheets for advanced applications.

  10. NH3 molecule adsorption on spinel-type ZnFe2O4 surface: A DFT and experimental comparison study

    NASA Astrophysics Data System (ADS)

    Zou, Cong-yang; Ji, Wenchao; Shen, Zhemin; Tang, Qingli; Fan, Maohong

    2018-06-01

    Ammonia (NH3) is a caustic environment pollutant which contributes to haze formation and water pollution. Zinc ferrite (ZnFe2O4) exhibits good catalytic activity in NH3 removal. The density functional theory (DFT) was applied to explore the interaction mechanism of NH3 molecule adsorption on spinel-type ZnFe2O4 (1 1 0) surface with GGA-PW91 method in atomic and electronic level. The results indicated that NH3 molecule preferred to adsorb on surface Zn atom with the formation of H3Nsbnd Zn coordinate bond over ZnFe2O4 (1 1 0) surface. The H3Nsbnd Zn state was exothermic process with adsorption energy of -203.125 kJ/mol. About 0.157e were transferred from NH3 molecule to the surface which resulted in strong interaction. Higher activation degree occurred in H3Nsbnd Zn configuration with two Nsbnd H bonds elongated and NH3 structure became more flat on the surface. The PDOS change of NH3 molecule was consistent with the result of adsorption energy. It was concluded that s orbital of NH3 (N) and s, p orbitals of Zn atom overlapped at -0.619 Ha. The p orbital of NH3 (N) has interaction with d orbital of Zn atom suggesting the hybridization between them. Based on NH3 removal experimental and XPS spectra results, NH3sbnd ZnFe2O4 interaction was mainly depended on the coordination between Zn atom and NH3 molecule. The DFT calculations have deepened our understanding on NH3sbnd ZnFe2O4 interaction system.

  11. Iron rich low cost superalloys. Ph.D. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Wayne, S. F.

    1985-01-01

    An iron-rich low-cost superalloy was developed. The alloy, when processed by conventional chill casting, has physical and mechanical properties that compare favorably with existing nickel and cobalt based superalloys while containing significantly lower amounts of strategic elements. Studies were also made on the properties of Cr(20)-Mn(10)-C(3.4)-Fe(bal.), a eutectic alloy processed by chill casting and directional solidification which produced an aligned microstructure consisting of M7C3 fibers in a gamma-Fe matrix. Thermal expansion of the M7C3 (M = Fe, Cr, Mn) carbide lattice was measured up to 800 C and found to be highly anisotropic, with the a-axis being the predominant mode of expansion. Repetitive impact sliding wear experiments performed with the Fe rich eutectic alloy showed that the directionally solidified microstructure greatly improved the alloy's wear resistance as compared to the chill cast microstructure and conventional nickel base superalloys. Studies on the molybdenum cementite phase prove that the crystal structure of the xi phase is not orthorhombic. The crystal structure of the xi phase is made up of octahedra building elements consisting of four Mo and two Fe atoms and trigonal prisms consisting of four Fe and two Mo atoms. The voids are occupied by carbon atoms. The previous chemical formula for the molybdenum cementite MoFe2C is now clearly seen to be Mo12Fe22C10.

  12. In situ TEM study of electron-beam radiation induced boron diffusion and effects on phase and microstructure evolution in nanostructured CoFeB/SiO2 thin film

    NASA Astrophysics Data System (ADS)

    Liu, B. H.; Teo, H. W.; Mo, Z. H.; Mai, Z. H.; Lam, J.; Xue, J. M.; Zhao, Y. Z.; Tan, P. K.

    2017-01-01

    Using in situ transmission electron microscopy (TEM), we studied boron diffusion and segregation in CoFeB/SiO2 nanostructured thin film stacks. We also investigated how these phenomena affected the phase and microstructure of CoFeB thin films under electron beam irradiation at 300 kV. A unique phase transformation was observed in CoFeB thin films under high-dose electron irradiation, from a polycrystalline Co3Fe to a unilateral amorphous phase of Co3Fe and nanocrystalline FexCo23-xB6. The unilateral amorphization of the Co3Fe film showed an electron-dose-rate sensitivity with a threshold dose rate. Detailed in situ TEM studies revealed that the unilateral amorphization of the Co3Fe film arose from boron segregation at the bottom of the Co3Fe thin film induced by radiation-enhanced diffusion of boron atoms that were displaced by electron knock-on effects. The radiation-induced nanocrystallization of FexCo23-xB6 was also found to be dose-rate sensitive with a higher electron beam current leading to earlier nucleation and more rapid grain growth. The nanocrystallization of FexCo23-xB6 occurred preferentially at the CoFeB/SiO2 interface. Kinetic studies by in situ TEM revealed the surface crystallization and diffusion-controlled nucleation and grain growth mechanisms. The radiation-enhanced atomic diffusivity and high-concentration of radiation-induced point defects at the Co3Fe/SiO2 interface enhanced the local short-range ordering of Fe, Co, and B atoms, favoring nucleation and grain growth of FexCo23-xB6 at the interface.

  13. Thermodynamic stability of stoichiometric LaFeO3 and BiFeO3: a hybrid DFT study.

    PubMed

    Heifets, Eugene; Kotomin, Eugene A; Bagaturyants, Alexander A; Maier, Joachim

    2017-02-01

    BiFeO 3 perovskite attracts great attention due to its multiferroic properties and potential use as a parent material for Bi 1-x Sr x FeO 3-δ and Bi 1-x Sr x Fe 1-y Co y O 3-δ solid solutions in intermediate temperature cathodes of oxide fuel cells. Another iron-based LaFeO 3 perovskite is the end member for well-known solid solutions (La 1-x Sr x Fe 1-y Co y O 3-δ ) used for oxide fuel cells and other electrochemical devices. In this study an ab initio hybrid functional approach was used for the study of the thermodynamic stability of both LaFeO 3 and BiFeO 3 with respect to decompositions to binary oxides and to elements, as a function of temperature and oxygen pressure. The localized (LCAO) basis sets describing the crystalline electron wave functions were carefully re-optimized within the CRYSTAL09 computer code. The results obtained by considering Fe as an all-electron atom and within the effective core potential technique are compared in detail. Based on our calculations, the phase diagrams were constructed allowing us to predict the stability region of stoichiometric materials in terms of atomic chemical potentials. This permits determining the environmental conditions for the existence of stable BiFeO 3 and LaFeO 3 . These conditions were presented as contour maps of oxygen atoms' chemical potential as a function of temperature and partial pressure of oxygen gas. A similar analysis was also performed using the experimental Gibbs energies of formation. The obtained phase diagrams and contour maps are compared with the calculated ones.

  14. Near surface silicide formation after off-normal Fe-implantation of Si(001) surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khanbabaee, B., E-mail: khanbabaee@physik.uni-siegen.de; Pietsch, U.; Lützenkirchen-Hecht, D.

    We report on formation of non-crystalline Fe-silicides of various stoichiometries below the amorphized surface of crystalline Si(001) after irradiation with 5 keV Fe{sup +} ions under off-normal incidence. We examined samples prepared with ion fluences of 0.1 × 10{sup 17} and 5 × 10{sup 17} ions cm{sup −2} exhibiting a flat and patterned surface morphology, respectively. Whereas the iron silicides are found across the whole surface of the flat sample, they are concentrated at the top of ridges at the rippled surface. A depth resolved analysis of the chemical states of Si and Fe atoms in the near surface region was performed by combining X-raymore » photoelectron spectroscopy and X-ray absorption spectroscopy (XAS) using synchrotron radiation. The chemical shift and the line shape of the Si 2p core levels and valence bands were measured and associated with the formation of silicide bonds of different stoichiometric composition changing from an Fe-rich silicides (Fe{sub 3}Si) close to the surface into a Si-rich silicide (FeSi{sub 2}) towards the inner interface to the Si(001) substrate. This finding is supported by XAS analysis at the Fe K-edge which shows changes of the chemical environment and the near order atomic coordination of the Fe atoms in the region close to surface. Because a similar Fe depth profile has been found for samples co-sputtered with Fe during Kr{sup +} ion irradiation, our results suggest the importance of chemically bonded Fe in the surface region for the process of ripple formation.« less

  15. Research Update: Spatially resolved mapping of electronic structure on atomic level by multivariate statistical analysis

    NASA Astrophysics Data System (ADS)

    Belianinov, Alex; Ganesh, Panchapakesan; Lin, Wenzhi; Sales, Brian C.; Sefat, Athena S.; Jesse, Stephen; Pan, Minghu; Kalinin, Sergei V.

    2014-12-01

    Atomic level spatial variability of electronic structure in Fe-based superconductor FeTe0.55Se0.45 (Tc = 15 K) is explored using current-imaging tunneling-spectroscopy. Multivariate statistical analysis of the data differentiates regions of dissimilar electronic behavior that can be identified with the segregation of chalcogen atoms, as well as boundaries between terminations and near neighbor interactions. Subsequent clustering analysis allows identification of the spatial localization of these dissimilar regions. Similar statistical analysis of modeled calculated density of states of chemically inhomogeneous FeTe1-xSex structures further confirms that the two types of chalcogens, i.e., Te and Se, can be identified by their electronic signature and differentiated by their local chemical environment. This approach allows detailed chemical discrimination of the scanning tunneling microscopy data including separation of atomic identities, proximity, and local configuration effects and can be universally applicable to chemically and electronically inhomogeneous surfaces.

  16. High magnetic coercivity of FePt-Ag/MgO granular nanolayers

    NASA Astrophysics Data System (ADS)

    Roghani, R.; Sebt, S. A.; Khajehnezhad, A.

    2018-06-01

    L10-FePt ferromagnetic nanoparticles have a hight coercivity of Tesla order. Thus, these nanoparticles, with size of 10 to 15 nm and uniform surface distribution, are suitable in magnetic data storage technology with density of more than 1GB. In order to improve structural and magnetic properties of FePt nanoparticles, some elements and combinations have been added to compound. In this research, we show that due to the presence of the Ag, the phase transition temperature of FePt from fcc to L10-fct phase decreases. The presence of Ag as an additive in FePt-Ag nanocomposite, increases the magnetic coercivity. This nanocomposite, with 10% Ag, was deposited by magnetron sputtering on the MgO heat layer. VSM results of 10 nm nanoparticles show that coercivity has increased up to 1.4 T. XRD and FESEM results confirm that the size of the L10-FePt nanoparticles are 10 nm and their surface distribution are uniform. Ag gradually form nano scale clusters with separate lattice and FePt-Ag nanocomposite appears. The result of this process is emptiness of Ag position in FePt-fcc lattice. So, the mobility of Fe and Pt atoms in this lattice increases and it can be possible for them to move in lower temperature. This mechanism explain the effect of Ag on decreasing the transition temperature to fct-L10 phase, and hight coercivity of FePt nanoparticles.

  17. Exploiting magnetic properties of Fe doping in zirconia. From first-principles simulations to the experimental growth and characterization of thin films

    NASA Astrophysics Data System (ADS)

    Sangalli, Davide; Cianci, Elena; Lamperti, Alessio; Ciprian, Roberta; Albertini, Franca; Casoli, Francesca; Lupo, Pierpaolo; Nasi, Lucia; Campanini, Marco; Debernardi, Alberto

    2013-05-01

    In this study we explore, both from theoretical and experimental side, the effect of Fe doping in ZrO2 (ZrO2:Fe). By means of first principles simulation, we study the magnetization density and the magnetic interaction between Fe atoms. We also consider how this is affected by the presence of oxygen vacancies and compare our findings with models based on impurity band [J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Nat. Mater. 4, 173 (2005)] and carrier mediated magnetic interaction [T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287, 1019 (2000)]. Experimentally, thin films (≈20 nm) of ZrO2:Fe at high doping concentration are grown by atomic layer deposition. We provide experimental evidence that Fe is uniformly distributed in the ZrO2 by transmission electron microscopy and energy dispersive X-ray mapping, while X-ray diffraction evidences the presence of the fluorite crystal structure. Alternating gradient force magnetometer measurements show magnetic signal at room temperature, however, with low magnetic moment per atom. Results from experimental measures and theoretical simulations are compared.

  18. Atomic scale study of grain boundary segregation before carbide nucleation in Ni-Cr-Fe Alloys

    NASA Astrophysics Data System (ADS)

    Li, Hui; Xia, Shuang; Liu, Wenqing; Liu, Tingguang; Zhou, Bangxin

    2013-08-01

    Three dimensional chemical information concerning grain boundary segregation before carbide nucleation was characterized by atom probe tomography in two Ni-Cr-Fe alloys which were aged at 500 °C for 0.5 h after homogenizing treatment. B, C and Si atoms segregation at grain boundary in Alloy 690 was observed. B, C, N and P atoms segregation at grain boundary in 304 austenitic stainless steel was observed. C atoms co-segregation with Cr atoms at the grain boundaries both in Alloy 690 and 304 austenitic stainless steel was found, and its effect on the carbide nucleation was discussed. The amount of each segregated element at grain boundaries in the two Ni-Cr-Fe alloys were analyzed quantitatively. Comparison of the grain boundary segregation features of the two Ni-Cr-Fe alloys were carried out based on the experimental results. The impurity and solute atoms segregate inhomogeneously in the same grain boundary both in 304 SS and Alloy 690. The grain boundary segregation tendencies (Sav) are B (11.8 ± 1.4) > P (5.4 ± 1.4) > N (4.7 ± 0.3) > C (3.7 ± 0.4) in 304 SS, and B (6.9 ± 0.9) > C (6.7 ± 0.4) > Si (1.5 ± 0.2) in Alloy 690. Cr atoms may co-segregate with C atoms at grain boundaries before carbide nucleation at the grain boundaries both in 304 SS and Alloy 690. Ni atoms generally deplete at grain boundary both in 304 SS and Alloy 690. The literature shows that the Ni atoms may co-segregate with P atoms at grain boundaries [28], but the P atoms segregation do not leads to Ni segregation in the current study. In the current study, Fe atoms may segregate or deplete at grain boundary in Alloy 690. But Fe atoms generally deplete at grain boundary in 304 SS. B atoms have the strongest grain boundary segregation tendency both in 304 SS and Alloy 690. The grain boundary segregation tendency and Gibbs free energy of B in 304 SS is higher than in Alloy 690. C atoms are easy to segregate at grain boundaries both in 304 SS and Alloy 690. The grain boundary segregation tendency and Gibbs free energy of C in Alloy 690 is higher than in 304 SS, due to the higher bulk C concentration and the site competition of P atoms which segregate at grain boundary [29,30]. It is imply that the segregation tendency is influenced by the bulk concentration of the segregates. Si atoms slightly segregate at grain boundaries in Alloy 690, but do not segregate at grain boundaries in 304 SS. N and P atoms segregate at grain boundary in 304 SS, and their segregation Gibbs free energy are similar. N atoms may be exhausted by the TiN precipitated in the matrix and can not be observed in the grain boundary of Alloy 690 [19]. Mn atoms deplete at grain boundary in 304 SS. This phenomenon is similar to that of proton irradiation induced segregation in 304 SS [32]. B, C, N, P segregation Gibbs energies are similar both in 304 SS and Alloy 690. B and C atoms segregate at grain boundary both in Alloy 690 and 304 SS, P and N segregate at grain boundary in 304 SS. Si atoms segregate at grain boundary in Alloy 690, but do not segregate at grain boundary in 304 SS. Cr enriches at grain boundary both in Alloy 690 and 304 SS, although carbide does not nucleate. Ni and Fe may segregate, deplete or homogeneously distribute at grain boundary in Alloy 690, but they deplete at grain boundary in 304 SS. C and Cr atoms co-segregate at grain boundaries before carbide nucleation in Alloy 690 and 304 SS. Combination with other results in literatures, the evolution of Cr concentration at grain boundary should be enrichment at grain boundary before carbide nucleation, depletion at grain boundary after carbide precipitation, and healing after obvious growth of carbide. After aging treatment at 500 °C for 0.5 h, the total reduction of grain boundary free energy due to segregation is 27.489 kJ/mol for Alloy 690 and 45.207 kJ/mol for 304.

  19. An iron-sulfur center essential for transcriptional activation by the redox-sensing SoxR protein.

    PubMed Central

    Hidalgo, E; Demple, B

    1994-01-01

    The soxRS oxidative stress regulon of Escherichia coli is triggered by superoxide (O2.-) generating agents or by nitric oxide through two consecutive steps of gene activation. SoxR protein has been proposed as the redox sensing gene activator that triggers this cascade of gene expression. We have now characterized two forms of SoxR: Fe-SoxR contained non-heme iron (up to 1.6 atoms per monomer); apo-SoxR was devoid of Fe or other metals. The spectroscopic properties of Fe-SoxR indicated that it contains a redox active iron-sulfur (FeS) cluster that is oxidized upon extraction from E. coli. Fe-SoxR and apo-SoxR bound the in vivo target, the soxS promoter, with equal affinities and protected the same region from DNase I in vitro. However, only Fe-SoxR stimulated transcription initiation at soxS in vitro > 100-fold, similar to the activation of soxS expression in vivo. This stimulation occurred at a step after the binding of RNAP and indicates a conformational effect of oxidized Fe-SoxR on the soxS promoter. The variable redox state of the SoxR FeS cluster may thus be employed in vivo to modulate the transcriptional activity of this protein in response to specific types of oxidative stress. Images PMID:8306957

  20. Origins of giant biquadratic coupling in CoFe/Mn/CoFe sandwich structures (abstract)

    NASA Astrophysics Data System (ADS)

    Koon, Norman C.

    1996-04-01

    Recently Filipkowski et al. reported extremely strong, near 90 degree coupling of 2.5 erg/cm2 for epitaxial sandwiches of CoFe/Mn/CoFe, where the CoFe composition was chosen to be a good lattice match to Mn. Both CoFe and Mn have the bcc structure, but Mn is antiferromagnetic while CoFe is ferromagnetic. It was found that the data were very well described by a simple model due to Slonczewski, in which the interlayer coupling is given by Fc=C+(φ1-φ2)2+C-(φ1-φ2-π)2. While this model describes the data much better than the usual biquadratic form, it still does not connect directly to the microscopic origins of the effect. In the present work we seek to explain the results in terms of normal bilinear exchange and magnetocrystalline anisotropy, together with reasonable assumptions about the structure of the interfaces. We obtain excellent agreement with both the experimental results and the Slonczewski model under the assumptions that at least one of the two CoFe/Mn interfaces is smooth (i.e., atomically flat) on a length scale comparable to or greater than the thickness of the Mn layer and at least one interface is rough on a scale less than approximately a domain wall thickness.

  1. DFT studies of elemental mercury oxidation mechanism by gaseous advanced oxidation method: Co-interaction with H2O2 on Fe3O4 (111) surface

    NASA Astrophysics Data System (ADS)

    Zhou, Changsong; Song, Zijian; Zhang, Zhiyue; Yang, Hongmin; Wang, Ben; Yu, Jie; Sun, Lushi

    2017-12-01

    Density functional theory calculations have been carried out for H2O2 and Hg0 co-interaction on Fe3O4 (111) surface. On the Fetet1-terminated Fe3O4 (111) surface, the most favored configurations are H2O2 decomposition and produce two OH groups, which have strong interaction with Hg atom to form an OHsbnd Hgsbnd OH intermediate. The adsorbed OHsbnd Hgsbnd OH is stable and hardly detaches from the catalyst surface due to the highly endothermic process. A large amount of electron transfer has been found from Hg to the produced OH groups and has little irreversible effect on the Fe3O4 (111) surface. On the Feoct2-terminated Fe3O4 (111) surface, the Feoct2 site is more active than Fetet1 site. H2O2 decomposition and Hg0 oxidation processes are more likely to occur due to that the Feoct2 site both contains Fe2+ and Fe3+ cations. The calculations reveal that Hg0 oxidation by the OH radical produced from H2O2 is energetically favored. Additionally, Hg0 and H2O2 co-interaction mechanism on the Fe3O4 (111) interface has been investigated on the basis of partial local density of state calculation.

  2. Synthesis of polypyrrole within the cell wall of yeast by redox-cycling of [Fe(CN)6](3-)/[Fe(CN)6](4-).

    PubMed

    Ramanavicius, Arunas; Andriukonis, Eivydas; Stirke, Arunas; Mikoliunaite, Lina; Balevicius, Zigmas; Ramanaviciene, Almira

    2016-02-01

    Yeast cells are often used as a model system in various experiments. Moreover, due to their high metabolic activity, yeast cells have a potential to be applied as elements in the design of biofuel cells and biosensors. However a wider application of yeast cells in electrochemical systems is limited due to high electric resistance of their cell wall. In order to reduce this problem we have polymerized conducting polymer polypyrrole (Ppy) directly in the cell wall and/or within periplasmic membrane. In this research the formation of Ppy was induced by [Fe(CN)6](3-)ions, which were generated from K4[Fe(CN)6], which was initially added to polymerization solution. The redox process was catalyzed by oxido-reductases, which are present in the plasma membrane of yeast cells. The formation of Ppy was confirmed by spectrophotometry and atomic force microscopy. It was confirmed that the conducting polymer polypyrrole was formed within periplasmic space and/or within the cell wall of yeast cells, which were incubated in solution containing pyrrole, glucose and [Fe(CN)6](4-). After 24h drying at room temperature we have observed that Ppy-modified yeast cell walls retained their initial spherical form. In contrast to Ppy-modified cells, the walls of unmodified yeast have wrinkled after 24h drying. The viability of yeast cells in the presence of different pyrrole concentrations has been evaluated. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Nanoscale spatial analysis of clay minerals containing cesium by synchrotron radiation photoemission electron microscopy

    NASA Astrophysics Data System (ADS)

    Yoshigoe, Akitaka; Shiwaku, Hideaki; Kobayashi, Toru; Shimoyama, Iwao; Matsumura, Daiju; Tsuji, Takuya; Nishihata, Yasuo; Kogure, Toshihiro; Ohkochi, Takuo; Yasui, Akira; Yaita, Tsuyoshi

    2018-01-01

    A synchrotron radiation photoemission electron microscope (SR-PEEM) was applied to demonstrate the pinpoint analysis of micrometer-sized weathered biotite clay particles with artificially adsorbed cesium (Cs) atoms. Despite the insulating properties of the clay, we observed the spatial distributions of constituent elements (Si, Al, Cs, Mg, and Fe) without charging issues and clarified reciprocal site-correlations among these elements with nanometer resolution. We found that Cs atoms were likely to be adsorbed evenly over the entire particle; however, we identified an occupational conflict between Cs and Mg atoms, implying that Cs sorption involves ion exchange processes. Spatially resolved X-ray absorption spectra (XAS) of the Cs4,5 M-edge region showed Cs to be present in a monocation state (Cs+) as typically observed for Cs compounds. Further pinpoint XAS measurements were also performed at the Fe L2,3-edge to determine the chemical valence of the Fe atoms. The shapes of the spectra were similar to those for Fe2O3, indicating that Fe in the clay was in a 3+ oxidation state. From these observations, we infer that charge compensation facilitates Cs adsorption in the vicinity of a substitution site where Si4+ ions are replaced by Fe3+ ions in SiO4 tetrahedral sheets. Our results demonstrate the utility of SR-PEEM as a tool for spatially resolved chemical analyses of various environmental substances, which is not limited by the poor conductivity of samples.

  4. Magnetic and electrical characterization of nickel-rich NiFe thin films synthesized by atomic layer deposition and subsequent thermal reduction.

    PubMed

    Espejo, A P; Zierold, R; Gooth, J; Dendooven, J; Detavernier, C; Escrig, J; Nielsch, K

    2016-08-26

    Nickel-rich NiFe thin films (Ni92Fe8, Ni89Fe11 and Ni83Fe17) were prepared by combining atomic layer deposition (ALD) with a subsequent thermal reduction process. In order to obtain Ni x Fe1-x O y films, one ALD supercycle was performed according to the following sequence: m NiCp2/O3, with m = 1, 2 or 3, followed by one FeCp2/O3 cycle. The supercycle was repeated n times. The thermal reduction process in hydrogen atmosphere was investigated by in situ x-ray diffraction studies as a function of temperature. The metallic nickel iron alloy thin films were investigated and characterized with respect to crystallinity, morphology, resistivity, and magnetism. As proof-of-concept magnetic properties of an array of Ni83Fe17, close to the perfect Permalloy stoichiometry, nanotubes and an isolated tube were investigated.

  5. Magnetic and electrical characterization of nickel-rich NiFe thin films synthesized by atomic layer deposition and subsequent thermal reduction

    NASA Astrophysics Data System (ADS)

    Espejo, A. P.; Zierold, R.; Gooth, J.; Dendooven, J.; Detavernier, C.; Escrig, J.; Nielsch, K.

    2016-08-01

    Nickel-rich NiFe thin films (Ni92Fe8, Ni89Fe11 and Ni83Fe17) were prepared by combining atomic layer deposition (ALD) with a subsequent thermal reduction process. In order to obtain Ni x Fe1-x O y films, one ALD supercycle was performed according to the following sequence: m NiCp2/O3, with m = 1, 2 or 3, followed by one FeCp2/O3 cycle. The supercycle was repeated n times. The thermal reduction process in hydrogen atmosphere was investigated by in situ x-ray diffraction studies as a function of temperature. The metallic nickel iron alloy thin films were investigated and characterized with respect to crystallinity, morphology, resistivity, and magnetism. As proof-of-concept magnetic properties of an array of Ni83Fe17, close to the perfect Permalloy stoichiometry, nanotubes and an isolated tube were investigated.

  6. Substrate temperature effect on the structural anisotropy in amorphous Tb-Fe films

    NASA Astrophysics Data System (ADS)

    Harris, V. G.; Hellman, F.; Elam, W. T.; Koon, N. C.

    1993-05-01

    Using extended x-ray absorption fine structures (EXAFS) measurements we have investigated the atomic environment around the Fe atom in a series of amorphous Tb0.26Fe0.74 films having different magnetic anisotropy energies owing to different deposition temperatures. The polarization properties of synchrotron radiation allowed the separate study of structure parallel and perpendicular to the sample plane. An anisotropy between these two structures was observed. Modeling results indicate this anisotropy is due to anisotropic pair correlations where the Fe-Fe pairs are statistically preferred in-plane and the Fe-Tb pairs out-of-plane. The amplitude of this anisotropy scales with both the substrate temperature and the magnetic anisotropy energy. A ≊1% in-plane compression of the Fe-Fe distance was measured between the in-plane and out-of-plane structure of the sample grown at 77 K. This sample had no detectable local chemical anisotropy suggesting that intrinsic stress plays an important role in determining its magnetic anisotropy.

  7. Effects of Al content and annealing on the phases formation, lattice parameters, and magnetization of A l x F e 2 B 2 ( x = 1.0 , 1.1 , 1.2 ) alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levin, E. M.; Jensen, B. A.; Barua, R.

    AlFe 2B 2 is a ferromagnet with the Curie temperature around 300 K and has the potential to be an outstanding rare-earth free candidate for magnetocaloric applications. However, samples prepared from the melt contain additional phases which affect the functional response of the AlFe 2B 2 phase. Here, we report on the effects of Al content in samples with the initial (nominal) composition of Al xFe 2B 2 where x=1.0, 1.1, and 1.2 prepared by arc-melting followed by suction casting and annealing. The as-cast Al xFe 2B 2 alloys contain AlFe 2B 2 as well as additional phases including themore » primary solidifying FeB and Al 13Fe 4 compounds which are ferromagnetic and paramagnetic, respectively, at 300 K. The presence of these phases makes it difficult to extract the intrinsic magnetic properties of AlFe 2B 2 phase. Annealing of Al xFe 2B 2 alloys at 1040°C for 3 days allows for reaction of the FeB with Al 13Fe 4 to form the AlFe 2B 2 phase, significantly reduces the amount of additional phases, and results in nearly pure AlFe 2B2 phase as confirmed with XRD, magnetization, scanning electron microscopy, and electronic transport. The values of the magnetization, effective magnetic moment per Fe atom, specific heat capacity, electrical resistivity and Seebeck coefficient for the AlFe 2B 2 compound have been established.« less

  8. Effects of Al content and annealing on the phases formation, lattice parameters, and magnetization of A l x F e 2 B 2 ( x = 1.0 , 1.1 , 1.2 ) alloys

    DOE PAGES

    Levin, E. M.; Jensen, B. A.; Barua, R.; ...

    2018-03-26

    AlFe 2B 2 is a ferromagnet with the Curie temperature around 300 K and has the potential to be an outstanding rare-earth free candidate for magnetocaloric applications. However, samples prepared from the melt contain additional phases which affect the functional response of the AlFe 2B 2 phase. Here, we report on the effects of Al content in samples with the initial (nominal) composition of Al xFe 2B 2 where x=1.0, 1.1, and 1.2 prepared by arc-melting followed by suction casting and annealing. The as-cast Al xFe 2B 2 alloys contain AlFe 2B 2 as well as additional phases including themore » primary solidifying FeB and Al 13Fe 4 compounds which are ferromagnetic and paramagnetic, respectively, at 300 K. The presence of these phases makes it difficult to extract the intrinsic magnetic properties of AlFe 2B 2 phase. Annealing of Al xFe 2B 2 alloys at 1040°C for 3 days allows for reaction of the FeB with Al 13Fe 4 to form the AlFe 2B 2 phase, significantly reduces the amount of additional phases, and results in nearly pure AlFe 2B2 phase as confirmed with XRD, magnetization, scanning electron microscopy, and electronic transport. The values of the magnetization, effective magnetic moment per Fe atom, specific heat capacity, electrical resistivity and Seebeck coefficient for the AlFe 2B 2 compound have been established.« less

  9. Beyond ferryl-mediated hydroxylation: 40 years of the rebound mechanism and C–H activation

    DOE PAGES

    Huang, Xiongyi; Groves, John T.

    2016-12-01

    Since our initial report in 1976, the oxygen rebound mechanism has become the consensus mechanistic feature for an expanding variety of enzymatic C–H functionalization reactions and small molecule biomimetic catalysts. For both the biotransformations and models, an initial hydrogen atom abstraction from the substrate (R–H) by high-valent iron-oxo species (Fe n=O) generates a substrate radical and a reduced iron hydroxide, [Fe n-1–OH ·R]. This caged radical pair then evolves on a complicated energy landscape through a number of reaction pathways, such as oxygen rebound to form R–OH, rebound to a non-oxygen atom affording R–X, electron transfer of the incipient radicalmore » to yield a carbocation, R +, desaturation to form olefins, and radical cage escape. These various flavors of the rebound process, often in competition with each other, give rise to the wide range of C–H functionalization reactions performed by iron-containing oxygenases. In this review, we first recount the history of radical rebound mechanisms, their general features, and key intermediates involved. We will discuss in detail the factors that affect the behavior of the initial caged radical pair and the lifetimes of the incipient substrate radicals. Several representative examples of enzymatic C–H transformations are selected to illustrate how the behaviors of the radical pair [Fe n-1–OH ·R] determine the eventual reaction outcome. Finally, we discuss the powerful potential of “radical rebound” processes as a general paradigm for developing novel C–H functionalization reactions with synthetic, biomimetic catalysts. We envision that new chemistry will continue to arise by bridging enzymatic “radical rebound” with synthetic organic chemistry.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Xiangyi; Lu, Jun; Sohm, Evan

    The present study aims to explore a new method to improve the catalytic activity of non-precious metals, especially in electrochemical reactions. In this study, highly ionized Fe plasma produced by arc discharge uniformly deposit on porous carbon substrate and form atomic clusters by the Pulsed Arc Plasma Deposition technique. The as-prepared FeOx/C material was tested as a cathode material in rechargeable Li-O2 battery under different current rates. The results show a significantly improvement of the battery performance in both cycle life and reaction rate. Furthermore, XRD and SEM results show that the as-prepared cathode material has the ability to stabilizemore » cathode and reduce side reactions, and current rate is a critical factor of the nucleation of the discharge products.« less

  11. Nanostructured double-layer FeO as nanotemplate for tuning adsorption of titanyl phthalocyanine molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Shuangzan; University of Chinese Academy of Sciences, Beijing 100049; Qin, Zhihui, E-mail: zhqin@wipm.ac.cn

    2014-06-23

    The growth, structure of Pt(111) supported double-layer FeO and the adsorption of titanyl phthalocyanine (TiOPc) molecules with tunable site and orientation were presented. According to the atomic-resolution STM image, the structure was rationalized as (8√3 × 8√3) R30°/Pt(111) nanostructure constructed by Fe species coordinated with different number of oxygen on top of non-rotated (8 × 8) FeO /Pt(111) structure. Due to the modulation of the stacking of Fe atoms in the second layer relative to the O atoms in the second layer and the underlying layer, the interface and total dipole moment periodically vary within (8√3 × 8√3) R30°/Pt(111) structure. The resulted periodically distributed dipole-dipole interactionmore » benefits the growth of TiOPc molecules with area-selective sites and molecular orientations. Thus, this study provides a reliable method to govern the adsorption process of the polar molecules for potential applications in future functional molecular devices.« less

  12. Effect of surface Fe-S hybrid structure on the activity of the perfect and reduced α-Fe2O3(001) for chemical looping combustion

    NASA Astrophysics Data System (ADS)

    Xiao, Xianbin; Qin, Wu; Wang, Jianye; Li, Junhao; Dong, Changqing

    2018-05-01

    Sulfurization of the gradually reduced Fe2O3 surfaces is inevitable while Fe2O3 is used as an oxygen carrier (OC) for coal chemical looping combustion (CLC), which will result in formation of Fe-S hybrid structure on the surfaces. The Fe-S hybrid structure will directly alter the reactivity of the surfaces. Therefore, detailed properties of Fe-S hybrid structure over the perfect and reduced Fe2O3(001) surfaces, and its effect on the interfacial interactions, including CO oxidization and decomposition on the surfaces, were investigated by using density functional theory (DFT) calculations. The S atom prefers to chemically bind to Fe site with electron transfer from the surfaces to the S atom, and a deeper reduction of Fe2O3(001) leads to an increasing interaction between S and Fe. The formation of Fe-S hybrid structure alters the electronic properties of the gradually reduced Fe2O3(001) surfaces, promoting CO oxidation on the surfaces ranging from Fe2O3 to FeO, but depressing carbon deposition on the surfaces ranging from FeO to Fe. The sulfurized FeO acts as a watershed to realize relatively high CO oxidation rate and low carbon deposition. Results provided a fundamental understanding for controlling and optimizing the CLC processes.

  13. Crystal Structure and Magnetic Properties of New Cubic Quaternary Compounds RT2Sn2Zn18 (R = La, Ce, Pr, and Nd, and T = Co and Fe)

    NASA Astrophysics Data System (ADS)

    Isikawa, Yosikazu; Mizushima, Toshio; Ejiri, Jun-ichi; Kitayama, Shiori; Kumagai, Keigou; Kuwai, Tomohiko; Bordet, Pierre; Lejay, Pascal

    2015-07-01

    The new cubic quaternary intermetallic compounds RT2Sn2Zn18 (R = La, Ce, Pr, and Nd, and T = Co and Fe) were synthesized by the mixture-metal flux method using Zn and Sn. The crystal structure was investigated by powder X-ray diffraction and with a four-circle X-ray diffractometer using single crystals. The space group of the compounds is Fdbar{3}m (No. 227). The rare-earth atom is at the cubic site which is the center of a cage composed of Zn and Sn atoms. The crystal structure is the same as the CeCr2Al20-type crystal structure except the atoms at the 16c site, i.e., the Zn atoms at the 16c site are completely replaced by Sn atoms, indicating that the compounds are crystallographically new ordered quaternary compounds. The lattice parameter a and the physical properties of the magnetic susceptibility χ, the magnetization M, and the specific heat C of these cubic caged compounds were investigated. LaCo2Sn2Zn18 and LaFe2Sn2Zn18 are enhanced Pauli paramagnets that originate from the Co and Fe itinerant 3d electrons. CeCo2Sn2Zn18 and CeFe2Sn2Zn18 are also enhanced Pauli paramagnets that originate from both the 3d electrons and Ce 4f electrons. PrCo2Sn2Zn18 and PrFe2Sn2Zn18 are nonmagnetic materials with huge values of C divided by temperature, which indicates that the ground state of Pr ions is a non-Kramers' doublet. NdCo2Sn2Zn18 and NdFe2Sn2Zn18 are magnetic materials with the Néel temperatures of 1.0 and 3.8 K, respectively. All eight compounds have large magnetic moments of Co/Fe in the paramagnetic temperature region, and thus their magnetic moments are inferred to be magnetically frustrating owing to the pyrochlore lattice in the low-temperature region.

  14. Syntheses, crystal structures, and magnetic properties of the oxalato-bridged mixed-valence complexes (FeII(bpm)3]2[FeIII2(ox)5].8H2O and FeII(bpm)3Na(H2O)2Fe(ox)(3).4H2O (bpm = 2,2'-bipyrimidine).

    PubMed

    Armentano, D; De Munno, G; Faus, J; Lloret, F; Julve, M

    2001-02-12

    The preparation and crystal structures of two oxalato-bridged FeII-FeIII mixed-valence compounds, [FeII(bpm)3]2[FeIII2(ox)5].8H2O (1) and FeII(bpm)3Na(H2O)2FeIII(ox)(3).4H2O (2) (bpm = 2,2'-bipyrimidine; ox = oxalate dianion) are reported here. Complex 1 crystallizes in the triclinic system, space group P1, with a = 10.998(2) A, b = 13.073(3) A, c = 13.308(3) A, alpha = 101.95(2) degrees, beta = 109.20(2) degrees, gamma = 99.89(2) degrees, and Z = 1. Complex 2 crystallizes in the monoclinic system, space group P2(1)/c, with a = 12.609(2) A, b = 19.670(5) A, c = 15.843(3) A, beta = 99.46(1) degrees, and Z = 4. The structure of complex 1 consists of centrosymmetric oxalato-bridged dinuclear high-spin iron(III) [Fe2(ox)5]2- anions, tris-chelated low-spin iron(II) [Fe(bpm)3]2+ cations, and lattice water molecules. The iron atoms are hexacoordinated: six oxygen atoms (iron(III)) from two bidentate and one bisbidentate oxalato ligands and six nitrogen atoms (iron(II)) from three bidentate bpm groups. The Fe(III)-O(ox) and Fe(II)-N(bpm) bond distances vary in the ranges 1.967(3)-2.099(3) and 1.967(4)-1.995(3) A, respectively. The iron(III)-iron(III) separation across the bridging oxalato is 5.449(2) A, whereas the shortest intermolecular iron(III)-iron(II) distance is 6.841(2) A. The structure of complex 2 consists of neutral heterotrinuclear Fe(bpm)2Na(H2O)2Fe(ox)3 units and water molecules of crystallization. The tris-chelated low-spin iron(II) ([Fe(bpm)3]2+) and high-spin iron(III) ([Fe(ox)3]3-) entities act as bidentate ligands (through two bpm-nitrogen and two oxalato-oxygen atoms, respectively) toward the univalent sodium cation, yielding the trinuclear (bpm)2Fe(II)-bpm-Na(I)-ox-Fe(III)(ox)2 complex. Two cis-coordinated water molecules complete the distorted octahedral surrounding of the sodium atom. The ranges of the Fe(II)-N(bpm) and Fe(III)-O(ox) bond distances [1.968(6)-1.993(5) and 1.992(6)-2.024(6) A, respectively] compare well with those observed in 1. The Na-N(bpm) bond lengths (2.548(7) and 2.677(7) A) are longer than those of Na-O(ox) (2.514(7) and 2.380(7) A) and Na-O(water) (2.334(15) and 2.356(12) A). The intramolecular Fe(II)...Fe(III) separation is 6.763(2) A, whereas the shortest intermolecular Fe(II)...Fe(II) and Fe(III)...Fe(III) distances are 8.152(2) and 8.992(2) A, respectively. Magnetic susceptibility measurements in the temperature range 2.0-290 K for 1 reveal that the high-spin iron(III) ions are antiferromagnetically coupled (J = -6.6 cm-1, the Hamiltonian being defined as H = -JS1.S2). The magnitude of the antiferromagnetic coupling through the bridging oxalato in the magneto-structurally characterized family of formula [M2(ox)5](2m-10)+ (M = Fe(III) (1), Cr(III), and Ni(II)) is analyzed and discussed by means of a simple orbital model.

  15. Accurate wavelength measurements and modeling of FeXV to FeXIX spectra recorded in high density plasmas between 13.5 to 17 A.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    May, M; Beiersdorfer, P; Dunn, J

    Iron spectra have been recorded from plasmas created at three different laser plasma facilities, the Tor Vergata University laser in Rome (Italy), the Hercules laser at ENEA in Frascati (Italy), and the Compact Multipulse Terawatt (COMET) laser at LLNL in California (USA). The measurements provide a means of identifying dielectronic satellite lines from FeXVI and FeXV in the vicinity of the strong 2p {yields} 3d transitions of FeXVII. About 80 {Delta}n {ge} 1 lines of FeXV (Mg-like) to FeXIX (O-like) were recorded between 13.8 to 17.1 {angstrom} with a high spectral resolution ({lambda}/{Delta}{lambda} {approx} 4000), about thirty of these linesmore » are from FeXVI and FeXV. The laser produced plasmas had electron temperatures between 100 to 500 eV and electron densities between 10{sup 20} to 10{sup 22} cm{sup -3}. The Hebrew University Lawrence Livermore Atomic Code (HULLAC) was used to calculate the atomic structure and atomic rates for FeXV to FeXIX. HULLAC was used to calculate synthetic line intensities at T{sub e} = 200 eV and n{sub e} = 10{sup 21}cm{sup -3} for three different conditions to illustrate the role of opacity: optically thin plasmas with no excitation-autoionization/dielectronic recombination (EA/DR) contributions to the line intensities, optically thin plasmas that included EA/DR contributions to the line intensities, and optically thick plasmas (optical depth {approx} 200 {micro}m) that included EA/DR contributions to the line intensities. The optically thick simulation best reproduced the recorded spectrum from the Hercules laser. However some discrepancies between the modeling and the recorded spectra remain.« less

  16. DFT calculations of strain and interface effects on electronic structures and magnetic properties of L10-FePt/Ag heterojunction of GMR applications

    NASA Astrophysics Data System (ADS)

    Pramchu, Sittichain; Jaroenjittichai, Atchara Punya; Laosiritaworn, Yongyut

    2018-03-01

    In this work, density functional theory (DFT) was employed to investigate the effect of strain and interface on electronic structures and magnetic properties of L10-FePt/Ag heterojunction. Two possible interface structures of L10-FePt(001)/Ag(001), that is, interface between Fe and Ag layers (Fe/Ag) and between Pt and Ag layers (Pt/Ag), were inspected. It was found that Pt/Ag interface is more stable than Fe/Ag interface due to its lower formation energy. Further, under the lattice mismatch induced tensile strain, the enhancement of magnetism for both Fe/Ag and Pt/Ag interface structures has been found to have progressed, though the magnetic moments of "interfacial" Fe and Pt atoms have been found to have decreased. To explain this further, the local density of states (LDOS) analysis suggests that interaction between Fe (Pt) and Ag near Fe/Ag (Pt/Ag) interface leads to spin symmetry breaking of the Ag atom and hence induces magnetism magnitude. In contrast, the magnetic moments of interfacial Fe and Pt atoms reduce because of the increase in the electronic states near the Fermi level of the minority-spin electrons. In addition, the significant enhancements of the LDOS near the Fermi levels of the minority-spin electrons signify the boosting of the transport properties of the minority-spin electrons and hence the spin-dependent electron transport at this ferromagnet/metal interface. From this work, it is expected that this clarification of the interfacial magnetism may inspire new innovation on how to improve spin-dependent electron transport for enhancing the giant magnetoresistance (GMR) ratio of potential GMR-based spintronic devices.

  17. Synthesis and Study of Fe-Doped Bi₂S₃ Semimagnetic Nanocrystals Embedded in a Glass Matrix.

    PubMed

    Silva, Ricardo S; Mikhail, Hanna D; Guimarães, Eder V; Gonçalves, Elis R; Cano, Nilo F; Dantas, Noelio O

    2017-07-11

    Iron-doped bismuth sulphide (Bi 2- x Fe x S₃) nanocrystals have been successfully synthesized in a glass matrix using the fusion method. Transmission electron microscopy images and energy dispersive spectroscopy data clearly show that nanocrystals are formed with an average diameter of 7-9 nm, depending on the thermic treatment time, and contain Fe in their chemical composition. Magnetic force microscopy measurements show magnetic phase contrast patterns, providing further evidence of Fe incorporation in the nanocrystal structure. The electron paramagnetic resonance spectra displayed Fe 3+ typical characteristics, with spin of 5/2 in the 3d⁵ electronic state, thereby confirming the expected trivalent state of Fe ions in the Bi₂S₃ host structure. Results from the spin polarized density functional theory simulations, for the bulk Fe-doped Bi₂S₃ counterpart, corroborate the experimental fact that the volume of the unit cell decreases with Fe substitutionally doping at Bi1 and Bi2 sites. The Bader charge analysis indicated a pseudo valency charge of 1.322| e | on Fe Bi ₁ and 1.306| e | on Fe Bi ₂ ions, and a spin contribution for the magnetic moment of 5.0 µ B per unit cell containing one Fe atom. Electronic band structures showed that the (indirect) band gap changes from 1.17 eV for Bi₂S₃ bulk to 0.71 eV (0.74 eV) for Bi₂S₃:Fe Bi1 (Bi₂S₃:Fe Bi2 ). These results are compatible with the 3d⁵ high-spin state of Fe 3+ , and are in agreement with the experimental results, within the density functional theory accuracy.

  18. Pseudogap and proximity effect in the Bi2Te3/Fe1+yTe interfacial superconductor.

    PubMed

    He, M Q; Shen, J Y; Petrović, A P; He, Q L; Liu, H C; Zheng, Y; Wong, C H; Chen, Q H; Wang, J N; Law, K T; Sou, I K; Lortz, R

    2016-09-02

    In the interfacial superconductor Bi2Te3/Fe1+yTe, two dimensional superconductivity occurs in direct vicinity to the surface state of a topological insulator. If this state were to become involved in superconductivity, under certain conditions a topological superconducting state could be formed, which is of high interest due to the possibility of creating Majorana fermionic states. We report directional point-contact spectroscopy data on the novel Bi2Te3/Fe1+yTe interfacial superconductor for a Bi2Te3 thickness of 9 quintuple layers, bonded by van der Waals epitaxy to a Fe1+yTe film at an atomically sharp interface. Our data show highly unconventional superconductivity, which appears as complex as in the cuprate high temperature superconductors. A very large superconducting twin-gap structure is replaced by a pseudogap above ~12 K which persists up to 40 K. While the larger gap shows unconventional order parameter symmetry and is attributed to a thin FeTe layer in proximity to the interface, the smaller gap is associated with superconductivity induced via the proximity effect in the topological insulator Bi2Te3.

  19. Development of low-Cr ODS FeCrAl alloys for accident-tolerant fuel cladding

    NASA Astrophysics Data System (ADS)

    Dryepondt, Sebastien; Unocic, Kinga A.; Hoelzer, David T.; Massey, Caleb P.; Pint, Bruce A.

    2018-04-01

    Low-Cr oxide dispersion strengthened (ODS) FeCrAl alloys were developed as accident tolerant fuel cladding because of their excellent oxidation resistance at very high temperature, high strength and improved radiation tolerance. Fe-12Cr-5Al wt.% gas atomized powder was ball milled with Y2O3+FeO, Y2O3+ZrO2 or Y2O3+TiO2, and the resulting powders were extruded at 950 °C. The resulting fine grain structure, particularly for the Ti and Zr containing alloys, led to very high strength but limited ductility. Comparison with variants of commercial PM2000 (Fe-20Cr-5Al) highlighted the significant impact of the powder consolidation step on the alloy grain size and, therefore, on the alloy mechanical properties at T < 500 °C. These low-Cr compositions exhibited good oxidation resistance at 1400 °C in air and steam for 4 h but could not form a protective alumina scale at 1450 °C, similar to observations for fine grained PM2000 alloys. The effect of alloy grain size, Zr and Ti additions, and impurities on the alloy mechanical and oxidation behaviors are discussed.

  20. Computational Design of Iron Diphosphine Complexes with Pendant Amines for Hydrogenation of CO2 to Methanol: A Mimic of [NiFe] Hydrogenase.

    PubMed

    Chen, Xiangyang; Jing, Yuanyuan; Yang, Xinzheng

    2016-06-20

    Inspired by the active-site structure of the [NiFe] hydrogenase, we have computationally designed the iron complex [P(tBu) 2 N(tBu) 2 )Fe(CN)2 CO] by using an experimentally ready-made diphosphine ligand with pendant amines for the hydrogenation of CO2 to methanol. Density functional theory calculations indicate that the rate-determining step in the whole catalytic reaction is the direct hydride transfer from the Fe center to the carbon atom in the formic acid with a total free energy barrier of 28.4 kcal mol(-1) in aqueous solution. Such a barrier indicates that the designed iron complex is a promising low-cost catalyst for the formation of methanol from CO2 and H2 under mild conditions. The key role of the diphosphine ligand with pendent amine groups in the reaction is the assistance of the cleavage of H2 by forming a Fe-H(δ-) ⋅⋅⋅H(δ+) -N dihydrogen bond in a fashion of frustrated Lewis pairs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Pseudogap and proximity effect in the Bi2Te3/Fe1+yTe interfacial superconductor

    PubMed Central

    He, M. Q.; Shen, J. Y.; Petrović, A. P.; He, Q. L.; Liu, H. C.; Zheng, Y.; Wong, C. H.; Chen, Q. H.; Wang, J. N.; Law, K. T.; Sou, I. K.; Lortz, R.

    2016-01-01

    In the interfacial superconductor Bi2Te3/Fe1+yTe, two dimensional superconductivity occurs in direct vicinity to the surface state of a topological insulator. If this state were to become involved in superconductivity, under certain conditions a topological superconducting state could be formed, which is of high interest due to the possibility of creating Majorana fermionic states. We report directional point-contact spectroscopy data on the novel Bi2Te3/Fe1+yTe interfacial superconductor for a Bi2Te3 thickness of 9 quintuple layers, bonded by van der Waals epitaxy to a Fe1+yTe film at an atomically sharp interface. Our data show highly unconventional superconductivity, which appears as complex as in the cuprate high temperature superconductors. A very large superconducting twin-gap structure is replaced by a pseudogap above ~12 K which persists up to 40 K. While the larger gap shows unconventional order parameter symmetry and is attributed to a thin FeTe layer in proximity to the interface, the smaller gap is associated with superconductivity induced via the proximity effect in the topological insulator Bi2Te3. PMID:27587000

  2. NASICON-related Na3.4Mn0.4Fe1.6(PO4)3

    PubMed Central

    Yatskin, Michael M.; Strutynska, Nataliya Yu.; Baumer, Vyacheslav N.; Ogorodnyk, Ivan V.; Slobodyanik, Nikolay S.

    2012-01-01

    The solid solution, sodium [iron(III)/manganese(II)] tris­(orthophosphate), Na3.4Mn0.4Fe1.6(PO4)3, was obtained using a flux method. Its crystal structure is related to that of NASICON-type compounds. The [(Mn/Fe)2(PO4)3] framework is built up from an (Mn/Fe)O6 octa­hedron (site symmetry 3.), with a mixed Mn/Fe occupancy, and a PO4 tetra­hedron (site symmetry .2). The Na+ cations are distributed over two partially occupied sites in the cavities of the framework. One Na+ cation (site symmetry -3.) is surrounded by six O atoms, whereas the other Na+ cation (site symmetry .2) is surrounded by eight O atoms. PMID:22807697

  3. Uniform Fe3O4 coating on flower-like ZnO nanostructures by atomic layer deposition for electromagnetic wave absorption.

    PubMed

    Wan, Gengping; Wang, Guizhen; Huang, Xianqin; Zhao, Haonan; Li, Xinyue; Wang, Kan; Yu, Lei; Peng, Xiange; Qin, Yong

    2015-11-21

    An elegant atomic layer deposition (ALD) method has been employed for controllable preparation of a uniform Fe3O4-coated ZnO (ZnO@Fe3O4) core-shell flower-like nanostructure. The Fe3O4 coating thickness of the ZnO@Fe3O4 nanostructure can be tuned by varying the cycle number of ALD Fe2O3. When serving as additives for microwave absorption, the ZnO@Fe3O4-paraffin composites exhibit a higher absorption capacity than the ZnO-paraffin composites. For ZnO@500-Fe3O4, the effective absorption bandwidth below -10 dB can reach 5.2 GHz and the RL values below -20 dB also cover a wide frequency range of 11.6-14.2 GHz when the coating thickness is 2.3 mm, suggesting its potential application in the treatment of the electromagnetic pollution problem. On the basis of experimental observations, a mechanism has been proposed to understand the enhanced microwave absorption properties of the ZnO@Fe3O4 composites.

  4. Structural Characterization of CO-Inhibited Mo-Nitrogenase by Combined Application of Nuclear Resonance Vibrational Spectroscopy, Extended X-ray Absorption Fine Structure, and Density Functional Theory: New Insights into the Effects of CO Binding and the Role of the Interstitial Atom

    DOE PAGES

    Scott, Aubrey D.; Pelmenschikov, Vladimir; Guo, Yisong; ...

    2014-10-02

    The properties of CO-inhibited Azotobacter vinelandii (Av) Mo-nitrogenase (N 2ase) have been examined by the combined application of nuclear resonance vibrational spectroscopy (NRVS), extended X-ray absorption fine structure (EXAFS), and density functional theory (DFT). Dramatic changes in the NRVS are seen under high-CO conditions, especially in a 188 cm –1 mode associated with symmetric breathing of the central cage of the FeMo-cofactor. Similar changes are reproduced with the α-H195Q N 2ase variant. In the frequency region above 450 cm –1, additional features are seen that are assigned to Fe-CO bending and stretching modes (confirmed by 13CO isotope shifts). The EXAFSmore » for wild-type N 2ase shows evidence for a significant cluster distortion under high-CO conditions, most dramatically in the splitting of the interaction between Mo and the shell of Fe atoms originally at 5.08 Å in the resting enzyme. A DFT model with both a terminal ₋CO and a partially reduced ₋CHO ligand bound to adjacent Fe sites is consistent with both earlier FT-IR experiments, and the present EXAFS and NRVS observations for the wild-type enzyme. Another DFT model with two terminal CO ligands on the adjacent Fe atoms yields Fe-CO bands consistent with the α-H195Q variant NRVS. The calculations also shed light on the vibrational “shake” modes of the interstitial atom inside the central cage, and their interaction with the Fe-CO modes. We discuss implications for the CO and N 2 reactivity of N 2ase.« less

  5. Structural characterization of CO-inhibited Mo-nitrogenase by combined application of nuclear resonance vibrational spectroscopy, extended X-ray absorption fine structure, and density functional theory: new insights into the effects of CO binding and the role of the interstitial atom.

    PubMed

    Scott, Aubrey D; Pelmenschikov, Vladimir; Guo, Yisong; Yan, Lifen; Wang, Hongxin; George, Simon J; Dapper, Christie H; Newton, William E; Yoda, Yoshitaka; Tanaka, Yoshihito; Cramer, Stephen P

    2014-11-12

    The properties of CO-inhibited Azotobacter vinelandii (Av) Mo-nitrogenase (N2ase) have been examined by the combined application of nuclear resonance vibrational spectroscopy (NRVS), extended X-ray absorption fine structure (EXAFS), and density functional theory (DFT). Dramatic changes in the NRVS are seen under high-CO conditions, especially in a 188 cm(-1) mode associated with symmetric breathing of the central cage of the FeMo-cofactor. Similar changes are reproduced with the α-H195Q N2ase variant. In the frequency region above 450 cm(-1), additional features are seen that are assigned to Fe-CO bending and stretching modes (confirmed by (13)CO isotope shifts). The EXAFS for wild-type N2ase shows evidence for a significant cluster distortion under high-CO conditions, most dramatically in the splitting of the interaction between Mo and the shell of Fe atoms originally at 5.08 Å in the resting enzyme. A DFT model with both a terminal -CO and a partially reduced -CHO ligand bound to adjacent Fe sites is consistent with both earlier FT-IR experiments, and the present EXAFS and NRVS observations for the wild-type enzyme. Another DFT model with two terminal CO ligands on the adjacent Fe atoms yields Fe-CO bands consistent with the α-H195Q variant NRVS. The calculations also shed light on the vibrational "shake" modes of the interstitial atom inside the central cage, and their interaction with the Fe-CO modes. Implications for the CO and N2 reactivity of N2ase are discussed.

  6. Preparation of metastable CoFeNi alloys with ultra-high magnetic saturation (Bs = 2.4-2.59 T) by reverse pulse electrodeposition

    NASA Astrophysics Data System (ADS)

    Tabakovic, Ibro; Venkatasamy, Venkatram

    2018-04-01

    The results of reverse pulse electrodeposition of CoFeNi films with ultra-high magnetic saturation, i.e. Bs values between 2.4 and 2.59 T, are presented in this work. Based on valence-bond theory (Hund's rule) it was assumed that the electronic configuration of MOH obtained by one electron reduction of electroactive intermediate (MOH+ads + e → MOHads) or oxidation of metal (M - e + HOH → MOH + H+) would result with larger number of spins per atom for each of transition metals in MOH-precipitated in CoFeNi deposit- with one more spin than their respective neutral metal in the order: Fe > Co > Ni. The experimental results showed that the increase of Bs value above Slater-Pauling curve was not observed for CoFe alloys, thus FeOH and CoOH compounds were not present in deposit. However, the increase of the Bs values above the Slater-Pauling curve (Bs = 2.4-2.59 T) was observed, for CoFeNi films obtained by reverse pulse electrodeposition. Therefore, NiOH as a stable compound is probably formed in a one-electron oxidation step during anodic pulse oxidation reaction precipitated presumably at the grain boundaries, giving rise to the ultra-high magnetic saturation of CoFeNi films. The effects of experimental conditions on elemental composition, magnetic properties, crystal structure, and thermal stability of CoFeNi films were studied.

  7. A New Green Chemical Synthesis Strategy for Synthesis of L10 FePt Nanoparticles from Layered Precursor Fe(H2O)6PtCl6

    NASA Astrophysics Data System (ADS)

    Hadjipanayis, George; Hu, Xiaocao; Capobianchi, Aldo; Gallagher, Ryan

    2014-03-01

    In this work, a new green chemical strategy for the synthesis of L10 FePt nanoparticles is reported. The starting material is a polycrystalline molecular complex (Fe(H2O)6PtCl6) , in which Fe and Pt atoms are arranged on alternating planes. The starting compound was milled with crystalline NaCl and then annealed under forming gas (5 % H2 and 95 % Ar) at 450 °C for 2h. Finally, the mixture was washed with water to remove the NaCl and L10 FePt nanoparticles were obtained. Transmission electron microscopy (TEM) images revealed that this method is able to produce L10 nanoparticles with different average size varying from 13.9 nm to 5.4 nm depending on the (Fe(H2O)6PtCl6) /NaCl ratio. With smaller (Fe(H2O)6PtCl6) /NaCl ratio(10mg/20g) and longer milling time(15h), FePt nanoparticles had a smaller size and narrower size distribution. The X-Ray Diffraction (XRD) pattern showed the presence of the characteristic peaks of the fct phase. The hysteresis loop, measured both at room temperature and 50 K, shows a high coercivity of 7.6 kOe and 11.2 kOe, respectively as expected for the high anisotropy L10 phase. Larger precursor/NaCl ratio and shorter ball milling time led to larger coercivity.

  8. Crystallization induced ordering of hard magnetic L1{sub 0} phase in melt-spun FeNi-based ribbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, Kazuhisa, E-mail: sato@uhvem.osaka-u.ac.jp; Sharma, Parmanand; Zhang, Yan

    2016-05-15

    The microstructure of newly developed hard magnetic Fe{sub 42}Ni{sub 41.3}Si{sub x}B{sub 12-x}P{sub 4}Cu{sub 0.7} (x = 2 to 8 at%) nanocrystalline alloy ribbons has been studied by transmission electron microscopy (TEM) and electron diffraction. A high-density polycrystalline grains, ∼30 nm in size, were formed in a ribbon after annealing at 673 K for 288 hours. Elemental mapping of the annealed specimen revealed the coexistence of three regions, Fe-rich, Ni-rich, and nearly equiatomic Fe-Ni, with areal fractions of 37%, 40%, and 23 %, respectively. The equiatomic L1{sub 0}-type ordered phase of FeNi was detected in between the Fe and Ni-rich phases.more » The presence of superlattice reflections in nanobeam electron diffraction patterns confirmed the formation of the hard magnetic L1{sub 0} phase beyond any doubt. The L1{sub 0} phase of FeNi was detected in alloys annealed in the temperature range of 673 to 813 K. The present results suggest that the order-disorder transition temperature of L1{sub 0} FeNi is higher than the previously reported value (593 K). The high diffusion rates of the constituent elements induced by the crystallization of an amorphous phase at relatively low temperature (∼673 K) are responsible for the development of atomic ordering in FeNi.« less

  9. Effect of mitochondrial complex I inhibition on Fe-S cluster protein activity.

    PubMed

    Mena, Natalia P; Bulteau, Anne Laure; Salazar, Julio; Hirsch, Etienne C; Núñez, Marco T

    2011-06-03

    Iron-sulfur (Fe-S) clusters are small inorganic cofactors formed by tetrahedral coordination of iron atoms with sulfur groups. Present in numerous proteins, these clusters are involved in key biological processes such as electron transfer, metabolic and regulatory processes, DNA synthesis and repair and protein structure stabilization. Fe-S clusters are synthesized mainly in the mitochondrion, where they are directly incorporated into mitochondrial Fe-S cluster-containing proteins or exported for cytoplasmic and nuclear cluster-protein assembly. In this study, we tested the hypothesis that inhibition of mitochondrial complex I by rotenone decreases Fe-S cluster synthesis and cluster content and activity of Fe-S cluster-containing enzymes. Inhibition of complex I resulted in decreased activity of three Fe-S cluster-containing enzymes: mitochondrial and cytosolic aconitases and xanthine oxidase. In addition, the Fe-S cluster content of glutamine phosphoribosyl pyrophosphate amidotransferase and mitochondrial aconitase was dramatically decreased. The reduction in cytosolic aconitase activity was associated with an increase in iron regulatory protein (IRP) mRNA binding activity and with an increase in the cytoplasmic labile iron pool. Since IRP activity post-transcriptionally regulates the expression of iron import proteins, Fe-S cluster inhibition may result in a false iron deficiency signal. Given that inhibition of complex I and iron accumulation are hallmarks of idiopathic Parkinson's disease, the findings reported here may have relevance for understanding the pathophysiology of this disease. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Effect of environmental factors on the complexation of iron and humic acid.

    PubMed

    Fang, Kai; Yuan, Dongxing; Zhang, Lei; Feng, Lifeng; Chen, Yaojin; Wang, Yuzhou

    2015-01-01

    A method of size exclusion chromatography coupled with ultraviolet spectrophotometry and off-line graphite furnace atomic absorption spectrometry was developed to assess the complexation properties of iron (Fe) and humic acid (HA) in a water environment. The factors affecting the complexation of Fe and HA, such as ionic strength, pH, temperature and UV radiation, were investigated. The Fe-HA complex residence time was also studied. Experimental results showed that pH could influence the deprotonation of HA and hydrolysis of Fe, and thus affected the complexation of Fe and HA. The complexation was greatly disrupted by the presence of NaCl. Temperature had some influence on the complexation. The yield of Fe-HA complexes showed a small decrease at high levels of UV radiation, but the effect of UV radiation on Fe-HA complex formation at natural levels could be neglected. It took about 10 hr for the complexation to reach equilibrium, and the Fe-HA complex residence time was about 20 hr. Complexation of Fe and HA reached a maximum level under the conditions of pH 6, very low ionic strength, in the dark and at a water temperature of about 25°C, for 10 hr. It was suggested that the Fe-HA complex could form mainly in freshwater bodies and reach high levels in the warm season with mild sunlight radiation. With changing environmental parameters, such as at lower temperature in winter or higher pH and ionic strength in an estuary, the concentration of the Fe-HA complex would decrease. Copyright © 2014. Published by Elsevier B.V.

  11. Bulk amorphous steels based on Fe alloys

    DOEpatents

    Lu, ZhaoPing; Liu, Chain T.

    2006-05-30

    A bulk amorphous alloy has the approximate composition: Fe.sub.(100-a-b-c-d-e)Y.sub.aMn.sub.bT.sub.cM.sub.dX.sub.e wherein: T includes at least one of the group consisting of: Ni, Cu, Cr and Co; M includes at least one of the group consisting of W, Mo, Nb, Ta, Al and Ti; X includes at least one of the group consisting of Co, Ni and Cr; a is an atomic percentage, and a<5; b is an atomic percentage, and b.ltoreq.25; c is an atomic percentage, and c.ltoreq.25; d is an atomic percentage, and d.ltoreq.25; and e is an atomic percentage, and 5.ltoreq.e.ltoreq.30.

  12. Reactions of laser-ablated Fe, Co, and Ni with NO: Infrared spectra and density functional calculations of MNO{sup +} and M(NO){sub x} (M = Fe, Co, x = 1--3; M = Ni, x = 1,2), and M(NO){sub x}{sup {minus}} (M = Co, Ni; x = 1,2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, M.; Andrews, L.

    2000-05-04

    Laser-ablated iron, cobalt, and nickel atoms, cations, and electrons have been reacted with NO molecules during condensation in excess neon and argon. The end-on bonded Fe(NO){sub 1-3}, Co(NO){sub 1-3}, and Ni(NO){sub 1-2} nitrosyls and side-bonded Fe-({eta}{sup 2}-NO), Co-({eta}{sup 2}-NO), and Ni-({eta}{sup 2}-NO) species are formed during sample deposition or on annealing. The FeNO{sup +}, CoNO{sup +}, and NiNO{sup +} mononitrosyl cations are also produced via metal cation reactions with NO. Evidence is also presented for the Ni(NO){sub 1,2}{sup {minus}} and Co(NO){sub 1,2}{sup {minus}} anions. The product absorptions are identified by isotopic substitution ({sup 15}N{sup 16}O, {sup 15}N{sup 18}O, and mixtures),more » electron trapping with added CCl{sub 4}, and density functional calculations of isotopic frequencies. This work provides the first vibrational spectroscopic characterization of Fe, Co, and Ni nitrosyl cations and anions.« less

  13. Optoelectronic properties of Fe impurities in delafossite oxide materials. A high-throughput investigation

    NASA Astrophysics Data System (ADS)

    Haycock, Barry; Lewis, James P.

    2014-03-01

    A group of materials that shows promise in optoelectronic applications is the family of oxide materials (delafossites), of the form ABO2, where the A site is a monovalent cation (e . g . , Cu, Ag, or Au) and the B site is a trivalent cation (e . g ., Ga, Y, Al, or In). The bandgap of some delafossites can be tailored for specific purposes, such as in photocatalysis applications, with B-site doping. We report on our recent investigations of the properties of CuGaO2, CuInO2, CuAlO2 and NaInO2 and predict the relative disorder of Fe impurities by comparing crystallographic metrics resulting from Fe doping. We performed approximately 10K calculations, in parallel on the Titan platform (Oak Ridge Leadership Computing Facility), of possible Fe-impurity permutations to determine the most-likely configurations of Fe impurities relative to each another. Our computational approach allows us to study large supercells, consisting of 432 atoms, which enable us to examine the properties of these materials in increments of 1% for the B-site doping of Fe. We will present results from our energetically-preferred supercells and discuss further applications of our techniques applied for characterization of new reconstructions via derived metrics.

  14. New double molybdate Na9Fe(MoO4)6: Synthesis, structure, properties

    NASA Astrophysics Data System (ADS)

    Savina, Aleksandra A.; Solodovnikov, Sergey F.; Basovich, Olga M.; Solodovnikova, Zoya A.; Belov, Dmitry A.; Pokholok, Konstantin V.; Gudkova, Irina A.; Stefanovich, Sergey Yu.; Lazoryak, Bogdan I.; Khaikina, Elena G.

    2013-09-01

    A new double molybdate Na9Fe(MoO4)6 was synthesized using solid state reactions and studied with X-ray powder diffraction, second harmonic generation (SHG) technique, differential scanning calorimetry, X-ray fluorescence analysis, Mössbauer and dielectric impedance spectroscopy. Single crystals of Na9Fe(MoO4)6 were obtained and its structure was solved (the space group R3¯, a=14.8264(2), c=19.2402(3) Å, V=3662.79(9) Å3, Z=6, R=0.0132). The structure is related to that of sodium ion conductor II-Na3Fe2(AsO4)3. The basic structure units are polyhedral clusters composed of central FeО6 octahedron sharing edges with three Na(1)О6 octahedra. The clusters share common vertices with bridging МоО4 tetrahedra to form an open 3D framework where the cavities are occupied by Na(2) and Na(3) atoms. The compound melts incongruently at 904.7±0.2 K. Arrhenius type temperature dependence of electric conductivity σ has been registered in solid state (σ=6.8×10-2 S сm-1 at 800 K), thus allowing considering Na9Fe(MoO4)6 as a new sodium ion conductor.

  15. Synthèse et étude structrale de lyonsite-type (Na0,4,Li0,6)(Fe,Li2)(MoO4)3

    PubMed Central

    Souilem, Amira; Zid, Mohamed Faouzi; Driss, Ahmed

    2015-01-01

    The new compound (Na0.4,Li0.6)(Fe,Li2)(MoO4)3 was synthesized by cooling from the melt. Its anionic framework is built up from two distinct MO6 octa­hedra, each containing disordered Li+ and Fe3+ ions in 0.6:0.4 and 0.7:0.3 ratios, and two MoO4 tetra­hedra, which link by vertex-sharing of their O atoms. These tetra­meric units are further linked by sharing edges between octa­hedra and by formation of M—O—Mo (M = Fe/Li) bridges, forming ribbons propagating in the [100] direction. The ribbons are cross-linked in both the b- and c-axis directions, giving rise to a three-dimensional framework having [100] tunnels in which the monovalent Na+/Li+ cations (0.4:0.6 ratio) lie. Bond-valence calculations are consistent with the disorder model for the cations. The structure of the title compound, which is isotypic with Li3Fe(MoO4)3 and Li3Ga(MoO4)3, is compared briefly with those of LiFeMo2O8 and Li1.6Mn2.2(MoO4)3. PMID:26090130

  16. Colorimetric and atomic absorption spectrometric determination of mucolytic drug ambroxol through ion-pair formation with iron and thiocyanate.

    PubMed

    Levent, Abdulkadir; Sentürk, Zühre

    2010-09-01

    Colorimetric and atomic absorption spectrometric methods have been developed for the determination of mucolytic drug Ambroxol. These procedures depend upon the reaction of iron(III) metal ion with the drug in the presence of thiocyanate ion to form stable ion-pair complex which extractable chloroform. The red-coloured complex was determined either colorimetrically at 510 nm or by indirect atomic absorption spectrometry (AAS) via the determination of the iron content in the formed complex. The optimum experimental conditions for pH, concentrations of Fe(3+) and SCN(-), shaking time, phase ratio, and the number of extractions were determined. Under the proposed conditions, linearity was obeyed in the concentration ranges 4.1x10(-6) - 5.7x10(-5) M (1.7-23.6 µg mL(-1)) using both methods, with detection limits of 4.6x10(-7) M (0.19 µg mL(-1)) for colorimetry and 1.1x10(-6) M (0.46 µg mL(-1)) for AAS. The proposed methods were applied for the determination of Ambroxol in tablet dosage forms. The results obtained were statistically analyzed and compared with those obtained by applying the high-performance liquid chromatographic method with diode-array detection.

  17. Unique coordination of pyrazine in T[Ni(CN){sub 4}].2pyz with T=Mn, Zn, Cd

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemus-Santana, A.A.; Rodriguez-Hernandez, J.; Castillo, L.F. del, E-mail: lfelipe@servidor.unam.m

    2009-04-15

    The materials under study, T[Ni(CN){sub 4}].2pyz with T=Mn, Zn, Cd, were prepared by separation of T[Ni(CN){sub 4}] layers in citrate aqueous solution to allow the intercalation of the pyrazine molecules. The obtained solids were characterized from chemical analyses, X-ray diffraction, infrared, Raman, thermogravimetry, UV-Vis, magnetic and adsorption data. Their crystal structure was solved from ab initio using direct methods and then refined by the Rietveld method. A unique coordination for pyrazine to metal centers at neighboring layers was observed. The pyrazine molecule is found forming a bridge between Ni and T atoms, quite different from the proposed structures for T=Fe,more » Ni where it remains coordinated to two T atoms to form a vertical pillar between neighboring layers. The coordination of pyrazine to both Ni and T atoms minimizes the material free volume and leads to form a hydrophobic framework. On heating the solids remain stable up to 140 deg. C. No CO{sub 2} and H{sub 2} adsorption was observed in the small free spaces of their frameworks. - Graphical abstract: Framework for T[Ni(CN){sub 4}].2pyz with T=Mn, Zn, Cd.« less

  18. Wet-chemical synthesis of nanoscale iron boride, XAFS analysis and crystallisation to α-FeB.

    PubMed

    Rades, Steffi; Kornowski, Andreas; Weller, Horst; Albert, Barbara

    2011-06-20

    The reaction of lithium tetrahydridoborate and iron bromide in high boiling ether as reaction medium produces an ultrafine, pyrophoric and magnetic precipitate. X-ray and electron diffraction proved the product to be amorphous. According to X-ray absorption fine structure spectroscopy (XAFS) the precipitate has FeB structure up to nearly two coordination spheres around an iron absorber atom. Transmission electron microscopy (TEM) confirms the ultrafine powder to be nanoscale. Subsequent annealing at 450 °C causes the atoms to arrange in a more distinct FeB structure, and further thermal treatment to 1050 °C extends the local structure to the α-modification of FeB. Between 1050 °C and 1500 °C α-FeB is transformed into β-FeB. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Ab initio calculation of electronic structure and magnetic properties of R2Fe14BNx (R = Pr,Nd)

    NASA Astrophysics Data System (ADS)

    Tian, Guang; Zha, Liang; Yang, Wenyun; Qiao, Guanyi; Wang, Changsheng; Yang, Yingchang; Yang, Jinbo

    2018-05-01

    The site preference of N atom for R2Fe14BNx (R= Pr, Nd) and the interstitial nitrogen effect on the magnetic properties have been studied by the first-principles method. It was found that the nitrogen is more likely to occupy the 4e site for Pr2Fe14BNx compound, while 4f site for Nd2Fe14BNx. When N atoms entering some specific crystal sites (such as 2a and 4f), the total magnetic moments of these compounds are not reduced, but slightly increased. Although the doping of N may reduce the total magnetic moments of some R2Fe14B compounds in the cases of optimal occupancy, the volumetric effect caused by N doping can still change the electron density distributions of Fe near the Fermi level, improving the magnetic ordering temperature of such compounds.

  20. Strain localization in thin films of Bi(Fe,Mn)O 3 due to the formation of stepped Mn 4+-rich antiphase boundaries

    DOE PAGES

    MacLaren, I.; Sala, B.; Andersson, S. M. L.; ...

    2015-10-17

    Here, the atomic structure and chemistry of thin films of Bi(Fe,Mn)O 3 (BFMO) films with a target composition of Bi 2FeMnO 6 on SrTiO 3 are studied using scanning transmission electron microscopy imaging and electron energy loss spectroscopy. It is shown that Mn4+-rich antiphase boundaries are locally nucleated right at the film substrate and then form stepped structures that are approximately pyramidal in three dimensions. These have the effect of confining the material below the pyramids in a highly strained state with an out-of-plane lattice parameter close to 4.1 Å. Outside the area enclosed by the antiphase boundaries, the out-of-planemore » lattice parameter is much closer to bulk values for BFMO. This suggests that to improve the crystallographic perfection of the films whilst retaining the strain state through as much of the film as possible, ways need to be found to prevent nucleation of the antiphase boundaries. Since the antiphase boundaries seem to form from the interaction of Mn with the Ti in the substrate, one route to perform this would be to grow a thin buffer layer of pure BiFeO 3 on the SrTiO 3 substrate to minimise any Mn-Ti interactions.« less

  1. Phosphate forms an unusual tripodal complex with the Fe–Mn center of sweet potato purple acid phosphatase

    PubMed Central

    Schenk, Gerhard; Gahan, Lawrence R.; Carrington, Lyle E.; Mitić, Nataša; Valizadeh, Mohsen; Hamilton, Susan E.; de Jersey, John; Guddat, Luke W.

    2005-01-01

    Purple acid phosphatases (PAPs) are a family of binuclear metalloenzymes that catalyze the hydrolysis of phosphoric acid esters and anhydrides. A PAP in sweet potato has a unique, strongly antiferromagnetically coupled Fe(III)–Mn(II) center and is distinguished from other PAPs by its increased catalytic efficiency for a range of activated and unactivated phosphate esters, its strict requirement for Mn(II), and the presence of a μ-oxo bridge at pH 4.90. This enzyme displays maximum catalytic efficiency (kcat/Km) at pH 4.5, whereas its catalytic rate constant (kcat) is maximal at near-neutral pH, and, in contrast to other PAPs, its catalytic parameters are not dependent on the pKa of the leaving group. The crystal structure of the phosphate-bound Fe(III)–Mn(II) PAP has been determined to 2.5-Å resolution (final Rfree value of 0.256). Structural comparisons of the active site of sweet potato, red kidney bean, and mammalian PAPs show several amino acid substitutions in the sweet potato enzyme that can account for its increased catalytic efficiency. The phosphate molecule binds in an unusual tripodal mode to the two metal ions, with two of the phosphate oxygen atoms binding to Fe(III) and Mn(II), a third oxygen atom bridging the two metal ions, and the fourth oxygen pointing toward the substrate binding pocket. This binding mode is unique among the known structures in this family but is reminiscent of phosphate binding to urease and of sulfate binding to λ protein phosphatase. The structure and kinetics support the hypothesis that the bridging oxygen atom initiates hydrolysis. PMID:15625111

  2. A density functional theory study on the effect of zero-point energy corrections on the methanation profile on Fe(100).

    PubMed

    Govender, Ashriti; Ferré, Daniel Curulla; Niemantsverdriet, J W Hans

    2012-04-23

    The thermodynamics and kinetics of the surface hydrogenation of adsorbed atomic carbon to methane, following the reaction sequence C+4H(-->/<--)CH+3H(-->/<--)CH(2)+2H(-->/<--)CH(3)+H(-->/<--)CH(4), are studied on Fe(100) by means of density functional theory. An assessment is made on whether the adsorption energies and overall energy profile are affected when zero-point energy (ZPE) corrections are included. The C, CH and CH(2) species are most stable at the fourfold hollow site, while CH(3) prefers the twofold bridge site. Atomic hydrogen is adsorbed at both the twofold bridge and fourfold hollow sites. Methane is physisorbed on the surface and shows neither orientation nor site preference. It is easily desorbed to the gas phase once formed. The incorporation of ZPE corrections has a very slight, if any, effect on the adsorption energies and does not alter the trends with regards to the most stable adsorption sites. The successive addition of hydrogen to atomic carbon is endothermic up to the addition of the third hydrogen atom resulting in the methyl species, but exothermic in the final hydrogenation step, which leads to methane. The overall methanation reaction is endothermic when starting from atomic carbon and hydrogen on the surface. Zero-point energy corrections are rarely provided in the literature. Since they are derived from C-H bonds with characteristic vibrations on the order of 2500-3000 cm(-1), the equivalent ZPE of 1/2 hν is on the order of 0.2-0.3 eV and its effect on adsorption energy can in principle be significant. Particularly in reactions between CH(x) and H, the ZPE correction is expected to be significant, as additional C-H bonds are formed. In this instance, the methanation reaction energy of +0.77 eV increased to +1.45 eV with the inclusion of ZPE corrections, that is, less favourable. Therefore, it is crucial to include ZPE corrections when reporting reactions involving hydrogen-containing species. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Small angle neutron and X-ray studies of carbon structures with metal atoms

    NASA Astrophysics Data System (ADS)

    Lebedev, V. T.; Szhogina, A. A.; Bairamukov, V. Yu

    2017-05-01

    Encapsulation of metal atoms inside carbon single-wall cages or within multi-layer cells has been realized using molecular precursors and high temperature processes transforming them into desirable structures. Endohedral fullerenols Fe@C60(OH)X with 3d-metal (iron) have been studied by SANS in aqueous solutions where they form stable globular clusters with radii R C ∼ 10-12 nm and aggregation numbers N C ∼ 104. This self-assembly is a crucial feature of paramagnetic fullerenols as perspective contrast agents for Magneto-Resonance Imaging in medicine. Cellular carbon-metal structures have been created by the pyrolysis of diphthalocyanines of lanthanides and actinides. It was established that these ultra porous matrices consist of globular cells of molecular precursor size (∼ 1 nm) which are aggregated into superstructures. This provides retain of metal atoms inside matrices which may serve for safety storage of spent fuel of nuclear power plants.

  4. Characterization of the Fe-Co-1.5V soft ferromagnetic alloy processed by Laser Engineered Net Shaping (LENS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kustas, Andrew B.; Susan, Donald F.; Johnson, Kyle L.

    Processing of the low workability Fe-Co-1.5V (Hiperco® equivalent) alloy is demonstrated using the Laser Engineered Net Shaping (LENS) metals additive manufacturing technique. As an innovative and highly localized solidification process, LENS is shown to overcome workability issues that arise during conventional thermomechanical processing, enabling the production of bulk, near net-shape forms of the Fe-Co alloy. Bulk LENS structures appeared to be ductile with no significant macroscopic defects. Atomic ordering was evaluated and significantly reduced in as-built LENS specimens relative to an annealed condition, tailorable through selection of processing parameters. Fine equiaxed grain structures were observed in as-built specimens following solidification,more » which then evolved toward a highly heterogeneous bimodal grain structure after annealing. The microstructure evolution in Fe-Co is discussed in the context of classical solidification theory and selective grain boundary pinning processes. In conclusion, magnetic properties were also assessed and shown to fall within the extremes of conventionally processed Hiperco® alloys.« less

  5. Characterization of the Fe-Co-1.5V soft ferromagnetic alloy processed by Laser Engineered Net Shaping (LENS)

    DOE PAGES

    Kustas, Andrew B.; Susan, Donald F.; Johnson, Kyle L.; ...

    2018-02-21

    Processing of the low workability Fe-Co-1.5V (Hiperco® equivalent) alloy is demonstrated using the Laser Engineered Net Shaping (LENS) metals additive manufacturing technique. As an innovative and highly localized solidification process, LENS is shown to overcome workability issues that arise during conventional thermomechanical processing, enabling the production of bulk, near net-shape forms of the Fe-Co alloy. Bulk LENS structures appeared to be ductile with no significant macroscopic defects. Atomic ordering was evaluated and significantly reduced in as-built LENS specimens relative to an annealed condition, tailorable through selection of processing parameters. Fine equiaxed grain structures were observed in as-built specimens following solidification,more » which then evolved toward a highly heterogeneous bimodal grain structure after annealing. The microstructure evolution in Fe-Co is discussed in the context of classical solidification theory and selective grain boundary pinning processes. In conclusion, magnetic properties were also assessed and shown to fall within the extremes of conventionally processed Hiperco® alloys.« less

  6. Large ferroelectric polarization of TiN/Hf0.5Zr0.5O2/TiN capacitors due to stress-induced crystallization at low thermal budget

    NASA Astrophysics Data System (ADS)

    Kim, Si Joon; Narayan, Dushyant; Lee, Jae-Gil; Mohan, Jaidah; Lee, Joy S.; Lee, Jaebeom; Kim, Harrison S.; Byun, Young-Chul; Lucero, Antonio T.; Young, Chadwin D.; Summerfelt, Scott R.; San, Tamer; Colombo, Luigi; Kim, Jiyoung

    2017-12-01

    We report on atomic layer deposited Hf0.5Zr0.5O2 (HZO)-based capacitors which exhibit excellent ferroelectric (FE) characteristics featuring a large switching polarization (45 μC/cm2) and a low FE saturation voltage (˜1.5 V) as extracted from pulse write/read measurements. The large FE polarization in HZO is achieved by the formation of a non-centrosymmetric orthorhombic phase, which is enabled by the TiN top electrode (TE) having a thickness of at least 90 nm. The TiN films are deposited at room temperature and annealed at 400 °C in an inert environment for at least 1 min in a rapid thermal annealing system. The room-temperature deposited TiN TE acts as a tensile stressor on the HZO film during the annealing process. The stress-inducing TiN TE is shown to inhibit the formation of the monoclinic phase during HZO crystallization, forming an orthorhombic phase that generates a large FE polarization, even at low process temperatures.

  7. Modulating the electronic and magnetic properties of bilayer borophene via transition metal atoms intercalation: from metal to half metal and semiconductor.

    PubMed

    Zhang, Xiuyun; Sun, Yi; Ma, Liang; Zhao, Xinli; Yao, Xiaojing

    2018-07-27

    Borophene, a two-dimensional monolayer made of boron atoms, has attracted wide attention due to its appealing properties. Great efforts have been devoted to fine tuning its electronic and magnetic properties for desired applications. Herein, we theoretically investigate the versatile electronic and magnetic properties of bilayer borophene (BLB) intercalated by 3d transition metal (TM) atoms, TM@BLBs (TM = Ti-Fe), using ab initio calculations. Four allotropes of AA-stacking (α 1 -, β-, β 12 - and χ 3 -) BLBs with different intercalation concentrations of TM atoms are considered. Our results show that the TM atoms are strongly bonded to the borophene layers with fairly large binding energies, around 6.31 ∼ 15.44 eV per TM atom. The BLBs with Cr and Mn intercalation have robust ferromagnetism, while for the systems decorated with Fe atoms, fruitful magnetic properties, such as nonmagnetic, ferromagnetic or antiferromagnetic, are identified. In particular, the α 1 - and β-BLBs intercalated by Mn or Fe atom can be transformed into a semiconductor, half metal or graphene-like semimetal. Moreover, some heavily doped TM@BLBs expose high Curie temperatures above room temperature. The attractive properties of TM@BLBs entail an efficient way to modulate the electronic and magnetic properties of borophene sheets for advanced applications.

  8. Recent Developments in the NIST Atomic Databases

    NASA Astrophysics Data System (ADS)

    Kramida, Alexander

    2011-05-01

    New versions of the NIST Atomic Spectra Database (ASD, v. 4.0) and three bibliographic databases (Atomic Energy Levels and Spectra, v. 2.0, Atomic Transition Probabilities, v. 9.0, and Atomic Line Broadening and Shapes, v. 3.0) have recently been released. In this contribution I will describe the main changes in the way users get the data through the Web. The contents of ASD have been significantly extended. In particular, the data on highly ionized tungsten (W III-LXXIV) have been added from a recently published NIST compilation. The tables for Fe I and Fe II have been replaced with newer, much more extensive lists (10000 lines for Fe I). The other updated or new spectra include H, D, T, He I-II, Li I-III, Be I-IV, B I-V, C I-II, N I-II, O I-II, Na I-X, K I-XIX, and Hg I. The new version of ASD now incorporates data on isotopes of several elements. I will describe some of the issues the NIST ASD Team faces when updating the data.

  9. Recent Developments in the NIST Atomic Databases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kramida, Alexander

    New versions of the NIST Atomic Spectra Database (ASD, v. 4.0) and three bibliographic databases (Atomic Energy Levels and Spectra, v. 2.0, Atomic Transition Probabilities, v. 9.0, and Atomic Line Broadening and Shapes, v. 3.0) have recently been released. In this contribution I will describe the main changes in the way users get the data through the Web. The contents of ASD have been significantly extended. In particular, the data on highly ionized tungsten (W III-LXXIV) have been added from a recently published NIST compilation. The tables for Fe I and Fe II have been replaced with newer, much moremore » extensive lists (10000 lines for Fe I). The other updated or new spectra include H, D, T, He I-II, Li I-III, Be I-IV, B I-V, C I-II, N I-II, O I-II, Na I-X, K I-XIX, and Hg I. The new version of ASD now incorporates data on isotopes of several elements. I will describe some of the issues the NIST ASD Team faces when updating the data.« less

  10. Synthesis and characterization of (cryptand-222)potassium (2-methylimidazolato)(meso-tetraphenylporphinato)ferrate(II)-2-methylimidazole-tetrahydrofuran (1/1/2).

    PubMed

    Wu, Qi; Yao, Zhen; Li, Jianfeng

    2017-09-01

    Metalloporphyrin complexes containing an additional imidazole ligand can provide information about the effect of deprotonation or hydrogen bonding on the axial histidine unit in heme proteins. The title high-spin five-coordinate imidazolate-ligated iron(II) porphyrinate, [K(C 18 H 36 N 2 O 6 )][Fe(C 4 H 5 N 2 )(C 44 H 28 N 4 )]·C 4 H 6 N 2 ·2C 4 H 8 O, has been synthesized and investigated. The solvated salt crystallizes with one 2-methylimidazole molecule, two tetrahydrofuran solvent molecules and a potassium cation chelated inside a cryptand-222 (4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane) molecule. The imidazolate ligand is ordered. The average Fe-Np (Np is a porphyrin N atom) bond length is 2.113 (11) Å and the axial Fe-N Im (N Im is an imidazolate N atom) is 2.0739 (13) Å. The out-of-plane displacement of the Fe II atom from the 24-atom mean plane is 0.6098 (5) Å, indicating an apparent doming of the porphyrin core.

  11. Nanostructured Fe-Cr Alloys for Advanced Nuclear Energy Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scattergood, Ronald O.

    2016-04-26

    We have completed research on the grain-size stabilization of model nanostructured Fe14Cr base alloys at high temperatures by the addition of non-equilibrium solutes. Fe14Cr base alloys are representative for nuclear reactor applications. The neutron flux in a nuclear reactor will generate He atoms that coalesce to form He bubbles. These can lead to premature failure of the reactor components, limiting their lifetime and increasing the cost and capacity for power generation. In order to mitigate such failures, Fe14Cr base alloys have been processed to contain very small nano-size oxide particles (less than 10 nm in size) that trap He atomsmore » and reduce bubble formation. Theoretical and experimental results indicate that the grain boundaries can also be very effective traps for He atoms and bubble formation. An optimum grain size will be less than 100 nm, ie., nanocrystalline alloys must be used. Powder metallurgy methods based on high-energy ball milling can produce Fe-Cr base nanocrystalline alloys that are suitable for nuclear energy applications. The problem with nanocrystalline alloys is that excess grain-boundary energy will cause grains to grow at higher temperatures and their propensity for He trapping will be lost. The nano-size oxide particles in current generation nuclear alloys provide some grain size stabilization by reducing grain-boundary mobility (Zener pinning – a kinetic effect). However the current mitigation strategy minimizing bubble formation is based primarily on He trapping by nano-size oxide particles. An alternate approach to nanoscale grain size stabilization has been proposed. This is based on the addition of small amounts of atoms that are large compared to the base alloy. At higher temperatures these will diffuse to the grain boundaries and will produce an equilibrium state for the grain size at higher temperatures (thermodynamic stabilization – an equilibrium effect). This would be preferred compared to a kinetic effect, which is not based on an equilibrium state. The PI and coworkers have developed thermodynamic-based models that can be used to select appropriate solute additions to Fe14Cr base alloys to achieve a contribution to grain-size stabilization and He bubble mitigation by the thermodynamic effect. All such models require approximations and the proposed research was aimed at alloy selection, processing and detailed atomic-level microstructure evaluations to establish the efficacy of the thermodynamic effect. The outcome of this research shows that appropriate alloy additions can produce a contribution from the thermodynamic stabilization effect. Furthermore, due to the oxygen typically present in nominally high purity elemental powders used for powder metallurgy processing, the optimum results obtained appeared as a synergistic combination of nano-size oxide particle pinning kinetic effect and the grain-boundary segregation thermodynamic effect.« less

  12. Site preference, magnetism and lattice vibrations of intermetallics Lu₂Fe 17–xT x (T=Cr, Mn, Ru)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jin-Chun; Qian, Ping, E-mail: qianpinghu@sohu.com; Zhang, Zhen-Feng

    We present an atomistic study on the phase stability, site preference and lattice constants of the rare earth intermetallics Lu₂Fe 17–xT x (T=Cr, Mn, Ru). The calculated preferential occupation site of ternary element T is found to be the 4f site. The order of site preference is given as 4f, 12k, 12j and 6g for Lu₂Fe 17–xT x. The calculated lattice parameters are corresponding to the experimental results. We have calculated the magnetic moments of Lu₂Fe 17–xT x compounds. Results show that the calculated total magnetic moment of Lu₂Fe₁₇ compound is M=37.34 μ B/f.u. In addition, the total and partialmore » phonon densities of states are evaluated first for these complicated structures. - Graphical abstract: The vibrational modes are mostly excited by Fe atoms, Lu contributes to the lower frequencies modes, and the contribution of Ru atoms is the same as Fe atoms. Highlights: • There are no reports on lattice vibrations of Lu₂(Fe, T) 17–x (T=Cr, Mn, Ru) compounds. • The phase stability and site preference are evaluated first for the complex structures of Lu₂(Fe, T) 17–x (T=Cr, Mn, Ru) compounds. • The lattice inversion method to obtain the interatomic pair potential is the unique one.« less

  13. Structures of the Substrate-free and Product-bound Forms of HmuO, a Heme Oxygenase from Corynebacterium diphtheriae

    PubMed Central

    Unno, Masaki; Ardèvol, Albert; Rovira, Carme; Ikeda-Saito, Masao

    2013-01-01

    Heme oxygenase catalyzes the degradation of heme to biliverdin, iron, and carbon monoxide. Here, we present crystal structures of the substrate-free, Fe3+-biliverdin-bound, and biliverdin-bound forms of HmuO, a heme oxygenase from Corynebacterium diphtheriae, refined to 1.80, 1.90, and 1.85 Å resolution, respectively. In the substrate-free structure, the proximal and distal helices, which tightly bracket the substrate heme in the substrate-bound heme complex, move apart, and the proximal helix is partially unwound. These features are supported by the molecular dynamic simulations. The structure implies that the heme binding fixes the enzyme active site structure, including the water hydrogen bond network critical for heme degradation. The biliverdin groups assume the helical conformation and are located in the heme pocket in the crystal structures of the Fe3+-biliverdin-bound and the biliverdin-bound HmuO, prepared by in situ heme oxygenase reaction from the heme complex crystals. The proximal His serves as the Fe3+-biliverdin axial ligand in the former complex and forms a hydrogen bond through a bridging water molecule with the biliverdin pyrrole nitrogen atoms in the latter complex. In both structures, salt bridges between one of the biliverdin propionate groups and the Arg and Lys residues further stabilize biliverdin at the HmuO heme pocket. Additionally, the crystal structure of a mixture of two intermediates between the Fe3+-biliverdin and biliverdin complexes has been determined at 1.70 Å resolution, implying a possible route for iron exit. PMID:24106279

  14. Properties and reactivity of Fe-organic matter associations formed by coprecipitation versus adsorption: Clues from arsenate batch adsorption

    NASA Astrophysics Data System (ADS)

    Mikutta, Robert; Lorenz, Dennis; Guggenberger, Georg; Haumaier, Ludwig; Freund, Anja

    2014-11-01

    Ferric oxyhydroxides play an important role in controlling the bioavailability of oxyanions such as arsenate and phosphate in soil. Despite this, little is known about the properties and reactivity of Fe(III)-organic matter phases derived from adsorption (reaction of organic matter (OM) to post-synthesis Fe oxide) versus coprecipitation (formation of Fe oxides in presence of OM). Coprecipitates and adsorption complexes were synthesized at pH 4 using two natural organic matter (NOM) types extracted from forest floor layers (Oi and Oa horizon) of a Haplic Podzol. Iron(III) coprecipitates were formed at initial molar metal-to-carbon (M/C) ratios of 1.0 and 0.1 and an aluminum (Al)-to-Fe(III) ratio of 0.2. Sample properties were studied by X-ray diffraction, X-ray photoelectron spectroscopy (XPS), N2 gas adsorption, dynamic light scattering, and electrophoretic mobility measurements. Arsenic [As(V)] adsorption to Fe-OM phases was studied in batch experiments (168 h, pH 4, 100 μM As). The organic carbon (OC) contents of the coprecipitates (82-339 mg g-1) were higher than those of adsorption complexes (31 and 36 mg g-1), leading to pronounced variations in specific surface area (9-300 m2 g-1), average pore radii (1-9 nm), and total pore volumes (11-374 mm3 g-1) but being independent of the NOM type or the presence of Al. The occlusion of Fe solids by OM (XPS surface concentrations: 60-82 atom% C) caused comparable pHPZC (1.5-2) of adsorption complexes and coprecipitates. The synthesis conditions resulted in different Fe-OM association modes: Fe oxide particles in 'M/C 0.1' coprecipitates covered to a larger extent the outermost aggregate surfaces, for some 'M/C 1.0' coprecipitates OM effectively enveloped the Fe oxides, while OM in the adsorption complexes primarily covered the outer aggregate surfaces. Despite of their larger OC contents, adsorption of As(V) was fastest to coprecipitates formed at low Fe availability (M/C 0.1) and facilitated by desorption of weakly bonded OC and disaggregation. In contrast, 'M/C 1.0' coprecipitates showed a comparable rate of As uptake as the adsorption complexes. While small mesopores (2-10 nm) promoted the fast As uptake particularly to 'M/C 0.1' coprecipitates, the presence of micropores (<2 nm) appeared to impair As desorption. This study shows that the environmental reactivity of poorly crystalline Fe(III) oxides in terrestrial and aquatic systems can largely vary depending on the formation conditions. Carbon-rich Fe phases precipitated at low M/C ratios may play a more important role in oxyanion immobilization and Fe and C cycling than phases formed at higher M/C ratios or respective adsorption complexes.

  15. Ferrate(VI) oxidation of polychlorinated diphenyl sulfides: Kinetics, degradation, and oxidized products.

    PubMed

    Chen, Jing; Xu, Xinxin; Zeng, Xiaolan; Feng, Mingbao; Qu, Ruijuan; Wang, Zunyao; Nesnas, Nasri; Sharma, Virender K

    2018-06-13

    This paper presents oxidation of polychlorinated diphenyl sulfides (PCDPSs), dioxin-like compounds, by ferrate(VI) (Fe VI O 4 2- , Fe(VI)). Kinetics of the reactions of Fe(VI) with seventeen PCDPSs, differ in number and positions of chlorine atoms (from 2 to 7), were investigated at pH 8.0. The second-order rate constants (k, M -1 s -1 ) of the reactions varied with the numbers and positions of chlorine atoms and appeared to be related with standard Gibbs free energy of formation (Δ f G 0 ) of PCDPSs. Degradation experiments in the presence of ions and humic acid demonstrated complete removal of PeCDPS by Fe(VI) in minutes. Pathways of the reaction were investigated by identifying oxidized products (OPs) of the reaction between Fe(VI) and 2,2',3',4,5-pentachlorodiphenyl sulfide (PeCDPS) at pH 8.0. Pathways of oxidation involved major pathway of attack on sulfur(II) by Fe(VI) in steps to yield sulfoxide type products, and subsequent breakage of C-S bond with the formation of sulfonic acid-containing trichloro compound. Minor pathways were hydroxylation of benzene ring and substitution of chlorine atom with hydroxyl group. Estimation of toxicity of OPs of the oxidation of PeCDPS by Fe(VI) suggested the decreased toxicity from the parent contaminant. Copyright © 2018. Published by Elsevier Ltd.

  16. Studies of Positrons Trapped at Quantum-Dot Like Particles Embedded in Metal Surfaces

    NASA Astrophysics Data System (ADS)

    Fazleev, N. G.; Nadesalingam, M. P.; Weiss, A. H.

    2009-03-01

    Experimental studies of the positron annihilation induced Auger electron (PAES) spectra from the Fe-Cu alloy surfaces with quantum-dot like Cu nanoparticles embedded in Fe show that the PAES signal from Cu increase rapidly as the concentration of Cu is enhanced by vacuum annealing. These measurements indicate that almost 75% of positrons that annihilate with core electrons due so with Cu even though the surface concentration of Cu as measured by EAES is only 6%. This result suggests that positrons become localized at sites at the surface containing high concentration of Cu atoms before annihilation. These experimental results are investigated theoretically by performing calculations of the "image-potential" positron surface states and annihilation characteristics of the surface trapped positrons with relevant Fe and Cu core-level electrons for the clean Fe(100) and Cu(100) surfaces and for the Fe(100) surface with quantum-dot like Cu nanoparticles embedded in the top atomic layers of the host substrate. Estimates of the positron binding energy and positron annihilation characteristics reveal their strong sensitivity to the nanoparticle coverage. Computed core annihilation probabilities are compared with experimental ones estimated from the measured Auger peak intensities. The observed behavior of the Fe and Cu PAES signal intensities is explained by theoretical calculations as being due to trapping of positrons in the regions of Cu nanoparticles embedded in the top atomic layers of Fe.

  17. Abnormal variation of magnetic properties with Ce content in (PrNdCe)2Fe14B sintered magnets prepared by dual alloy method

    NASA Astrophysics Data System (ADS)

    Xue-Feng, Zhang; Jian-Ting, Lan; Zhu-Bai, Li; Yan-Li, Liu; Le-Le, Zhang; Yong-Feng, Li; Qian, Zhao

    2016-05-01

    Resource-saving (PrNdCe)2Fe14B sintered magnets with nominal composition (PrNd)15-x Ce x Fe77B8 (x = 0-10) were prepared using a dual alloy method by mixing (PrNd)5Ce10Fe77B8 with (PrNd)15Fe77B8 powders. For Ce atomic percent of 1% and 2%, coercivity decreases dramatically. With further increase of Ce atomic percent, the coercivity increases, peaks at 6.38 kOe in (PrNd)11Ce4Fe77B8, and then declines gradually. The abnormal dependence of coercivity is likely related to the inhomogeneity of rare earth chemical composition in the intergranular phase, where PrNd concentration is strongly dependent on the additive amount of (PrNd)5Ce10Fe77B8 powders. In addition, for Ce atomic percent of 8%, 7%, and 6% the coercivity is higher than that of magnets prepared by the conventional method, which shows the advantage of the dual alloy method in preparing high abundant rare earth magnets. Project supported by the National Natural Science Foundation of China (Grant Nos. 51461033, 51571126, 51541105, and 11547032), the Natural Science Foundation of Inner Mongolia, China (Grant No. 2013MS0110), and the Inner Mongolia University of Science and Technology Innovation Fund, China.

  18. Near-Ultraviolet and Visible Spectroscopy of HAYABUSA Spacecraft Re-Entry

    NASA Astrophysics Data System (ADS)

    Abe, Shinsuke; Fujita, Kazuhisa; Kakinami, Yoshihiro; Iiyama, Ohmi; Kurosaki, Hirohisa; Shoemaker, Michael A.; Shiba, Yasuo; Ueda, Masayoshi; Suzuki, Masaharu

    2011-10-01

    HAYABUSA is the first spacecraft ever to land on and lift off from any celestial body other than the moon. The mission, which returned asteroid samples to the Earth while overcoming various technical hurdles, ended on 2010 June 13, with the planned atmospheric re-entry. In order to safely deliver the sample return capsule, the HAYABUSA spacecraft ended its 7-year journey in a brilliant ``artificial fireball'' over the Australian desert. Spectroscopic observation was carried out in the near-ultraviolet and visible wavelengths between 3000 Å and 7500 Å at 3-20 Å resolution. Approximately 100 atomic lines such as Fe I, Mg I, Na I, Al I, Cr I, Mn I, Ni I, Ti I, Li I, Zn I, O I, and N I were identified from the spacecraft. Exotic atoms such as Cu I, Mo I, Xe I and Hg I were also detected. A strong Li I line (6708 Å) at a height of ˜ 55 km originated from the onboard Li-Ion batteries. The FeO molecule bands at a height of ˜ 63 km were probably formed in the wake of the spacecraft. The effective excitation temperature as determined from the atomic lines varied from 4500 K to 6000 K. The observed number density of Fe I was about 10 times more abundant than Mg I after the spacecraft explosion. N+2 (1-) bands from a shock layer and CN violet bands from the sample return capsule's ablating heat shield were dominant molecular bands in the near-ultraviolet region of 3000-4000 Å. OH(A-X) band was likely to exist around 3092 Å. A strong shock layer from the HAYABUSA spacecraft was rapidly formed at heights between 93 km and 83 km, which was confirmed by detection of N+2 (1-) bands with a vibration temperature of ˜ 13000 K. Gray-body temperature of the capsule at a height of ˜ 42 km was estimated to be ˜2437 K which is matched to a theoretical prediction. The final message of the HAYABUSA spacecraft and its sample return capsule are discussed through our spectroscopy.

  19. Novel Fe-based nanocrystalline powder cores with excellent magnetic properties produced using gas-atomized powder

    NASA Astrophysics Data System (ADS)

    Chang, Liang; Xie, Lei; Liu, Min; Li, Qiang; Dong, Yaqiang; Chang, Chuntao; Wang, Xin-Min; Inoue, Akihisa

    2018-04-01

    FeSiBPNbCu nanocrystalline powder cores (NPCs) with excellent magnetic properties were fabricated by cold-compaction of the gas-atomized amorphous powder. Upon annealing at the optimum temperature, the NPCs showed excellent magnetic properties, including high initial permeability of 88, high frequency stability up to 1 MHz with a constant value of 85, low core loss of 265 mW/cm3 at 100 kHz for Bm = 0.05 T, and superior DC-bias permeability of 60% at a bias field of 100 Oe. The excellent magnetic properties of the present NPCs could be attributed to the ultrafine α-Fe(Si) phase precipitated in the amorphous matrix and the use of gas-atomized powder coated with a uniform insulation layer.

  20. Synthesis, characterization and single crystal x-ray analysis of a complex of iron(II) bis(2,4-dimethylphenyl)dithiophosphate with 4-ethylpyridine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Sandeep; Andotra, Savit; Kaur, Mandeep

    2016-09-15

    Complex of iron(II) bis(2,4-dimethylphenyl)dithiophosphate with 4-ethylpyridine [((2,4- (CH{sub 3}){sub 2}C{sub 6}H{sub 3}O)2PS2)2Fe(NC{sub 5}H{sub 4}(C{sub 2}H{sub 5})-4){sub 2}] is synthesized and characterized by elemental analysis, magnetic moment, IR spectroscopy and single crystal X-ray analysis. Complex crystallizes in the monoclinic sp. gr. P2{sub 1}/n, Z = 2. Crystal structure consists of mononuclear units with Fe(II) ion chelated by four S atoms of the two diphenyldithiophosphate ligands in bidentate manner. N atoms from two 4-ethylpyridine ligands are axially coordinated to the Fe(II) atom leading to an octahedral geometry.

  1. Magnetic interaction reversal in watermelon nanostructured Cr-doped Fe nanoclusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaur, Maninder; Dai, Qilin; Bowden, Mark

    2013-01-01

    Cr-doped core-shell Fe/Fe-oxide nanoclusters (NCs) were synthesized at varied atomic percentages of Cr from 0 at. % to 8 at. %. The low concentrations of Cr (<10 at. %) were selected in order to inhibit the complete conversion of the Fe-oxide shell to Cr2O3 and the Fe core to FeCr alloy. The magnetic interaction in Fe/Fe-oxide NCs (rv25 nm) can be controlled by antiferromagnetic Cr-dopant. We report the origin of r-FeCr phase at very low Cr concentration (2 at. %) unlike in previous studies, and the interaction reversal from dipolar to exchange interaction in watermelon-like Cr-doped core-shell NCs. The giantmore » magnetoresistance (GMR) effect,1,2 where an antiferromagnetic (AFM) exchange coupling exists between two ferromagnetic (FM) layers separated by a certain type of magnetic or non-magnetic spacer,3 has significant potential for application in the magnetic recording industry. Soon after the discovery of the GMR, the magnetic properties of multilayer systems (FeCr) became a subject of intensive study. The application of bulk iron-chromium (Fe-Cr) alloys has been of great interest, as these alloys exhibit favorable prop- erties including corrosion resistance, high strength, hardness, low oxidation rate, and strength retention at elevated temper- ature. However, the structural and magnetic properties of Cr-doped Fe nanoclusters (NCs) have not been investigated in-depth. Of all NCs, Fe-based clusters have unique magnetic properties as well as favorable catalytic characteristics in reactivity, selectivity, and durability.4 The incorporation of dopant of varied type and concentration in Fe can modify its chemical ordering, thereby optimizing its electrical, optical, and magnetic properties and opening up many new applications. The substitution of an Fe atom (1.24 A°) by a Cr atom (1.25 A° ) can easily modify the magnetic properties, since (i) the curie temperature (Tc ) of Fe is 1043 K, while Cr is an itinerant AFM with a bulk Neel temperature TN =311 K, and (ii) Fe and Cr share the same crystal structure (bcc) with only 0.5% difference between their lattice constants.« less

  2. Observations of the Minor Species Al, Fe and Ca(+) in Mercury's Exosphere

    NASA Technical Reports Server (NTRS)

    Bida, Thomas A.; Killen, Rosemary M.

    2011-01-01

    We report the first detections of Al and Fe, and strict upper limits for Ca(+) in the exosphere of Mercury, using the HIRES spectrometer at the Keck I telescope. We report observed 4-sigma tangent columns of 1.5x10(exp 7) Al atoms per square centimeter at an altitude of 1220 km (1.5 Mercury radii (R(sub M)) from planet center), and that for Fe of 1.6 x 10 per square centimeter at an altitude of 950 km (1.4 R(sub M)). The observed 3-sigma Ca(+) column was 3.9x10(exp 6) ions per square centimeter at an altitude of 1630 km (1.67 R(sub M). A simple model for zenith column abundances of the neutral species were 9.5 x 10(exp 7) Al per square centimeter, and 3.0 x 10(exp 8) Fe per square centimeter. The observations appear to be consistent with production of these species by impact vaporization with a large fraction of the ejecta in molecular form. The scale height of the Al gas is consistent with a kinetic temperature of 3000 - 9000 K while that of Fe is 10500 K. The apparent high temperature of the Fe gas would suggest that it may be produced by dissociation of molecules. A large traction of both Al and Fe appear to condense in a vapor cloud at low altitudes.

  3. Facile method to synthesize dopamine-capped mixed ferrite nanoparticles and their peroxidase-like activity

    NASA Astrophysics Data System (ADS)

    Mumtaz, Shazia; Wang, Li-Sheng; Abdullah, Muhammad; Zajif Hussain, Syed; Iqbal, Zafar; Rotello, Vincent M.; Hussain, Irshad

    2017-03-01

    A facile single-step strategy to prepare stable and water-dispersible dopamine-functionalized ultra-small mixed ferrite nanoparticles MFe2O4-DOPA (where M is a bivalent metal atom i.e. Fe, Co Cu, Mn and Ni) at room temperature is described. The nanoparticles formed have narrow size distribution as indicated by their characterization using transmission electron microscopy (TEM) and dynamic light scattering. The surface chemistry of these nanoparticles was probed by FTIR spectroscopy indicating their successful capping with dopamine ligands, which was further confirmed using zetapotential measurements and thermogravimetric analysis. The comparative horseradish peroxidase (HRP)—like activity of these cationic mixed ferrites nanoparticles was studied at pH 4.6 using a negatively-charged 2, 2‧-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) as a chromogenic substrate in the presence of hydrogen peroxide. A time-dependent relative peroxidase-like activity follows the following order CoFe2O4-DOPA  >  MnFe2O4-DOPA  >  CuFe2O4-DOPA  >  NiFe2O4-DOPA  >  Fe3O4-DOPA. This diversity in HRP-like activity may be attributed to the different redox properties of ferrite nanoparticles when doped with M (Fe, Co Cu, Mn and Ni).

  4. Selective sensing of submicromolar iron(III) with 3,3‧,5,5‧-tetramethylbenzidine as a chromogenic probe

    NASA Astrophysics Data System (ADS)

    Zhang, Lufeng; Du, Jianxiu

    2016-04-01

    The development of highly selective and sensitive method for iron(III) detection is of great importance both from human health as well as environmental point of view. We herein reported a simple, selective and sensitive colorimetric method for the detection of Fe(III) at submicromolar level with 3,3,‧5,5‧-tetramethylbenzidine (TMB) as a chromogenic probe. It was observed that Fe(III) could directly oxidize TMB to form a blue solution without adding any extra oxidants. The reaction has a stoichiometric ratio of 1:1 (Fe(III)/TMB) as determined by a molar ratio method. The resultant color change can be perceived by the naked eye or monitored the absorbance change at 652 nm. The method allowed the measurement of Fe(III) in the range 1.0 × 10- 7-1.5 × 10- 4 mol L- 1 with a detection limit of 5.5 × 10- 8 mol L- 1. The relative standard deviation was 0.9% for eleven replicate measurements of 2.5 × 10- 5 mol L- 1 Fe(III) solution. The chemistry showed high selectivity for Fe(III) in contrast to other common cation ions. The practically of the method was evaluated by the determination of Fe in milk samples; good consistency was obtained between the results of this method and atomic absorption spectrophotometry as indicated by statistical analysis.

  5. Manipulation of perpendicular magnetic anisotropy of single Fe atom adsorbed graphene via MgO(1 1 1) substrate

    NASA Astrophysics Data System (ADS)

    Fu, Mingming; Tang, Weiqing; Wu, Yaping; Ke, Congming; Guo, Fei; Zhang, Chunmiao; Yang, Weihuang; Wu, Zhiming; Kang, Junyong

    2018-05-01

    Perpendicular magnetic anisotropy is significantly important for realizing a long-term retention of information for spintronics devices. Inspired by 2D graphene with its high charge carrier mobility and long spin diffusion length, we report a first-principles design framework on perpendicular magnetic anisotropy engineering of a Fe atom adsorbed graphene by employing a O-terminated MgO (1 1 1) substrate. Determined by the adsorption sites of the Fe atom, a tunable magnetic anisotropy is realized in Fe/graphene/MgO (1 1 1) structure, with the magnetic anisotropy energy of  ‑0.48 meV and 0.23 meV, respectively, corresponding to the in-plane and out of plane easy magnetizations. Total density of states suggest a half-metallicity with a 100% spin polarization in the system. Decomposed densities of Fe-3d states reveal the orbital contributions to the magnetic anisotropy for different Fe adsorption sites. Bonding interaction and charge redistribution regulated by MgO substrate are found responsible for the novel perpendicular magnetic anisotropy engineering in the system. The effective manipulation of perpendicular magnetic anisotropy in present work offers some references for the design and construction of 2D spintronics devices.

  6. Self-consistent mapping of the ab initio calculations to the multi-orbital p- d model: Magnetism in α-FeSi2 films as the effect of the local environment

    NASA Astrophysics Data System (ADS)

    Zhandun, V.; Zamkova, N.; Ovchinnikov, S.; Sandalov, I.

    2017-11-01

    To accurately translate the results obtained within density functional theory (DFT) to the language of many-body theory we suggest and test the following approach: the parameters of the formulated model are to be found from the requirement that the model self-consistent electron density and density of electron states are as close as possible to the ones found from the DFT-based calculations. The investigation of the phase diagram of the model allows us to find the critical regions in magnetic properties. Then the behavior of the real system in these regions is checked by the ab initio calculations. As an example, we studied the physics of magnetic moment (MM) formation due to substitutions of Si by Fe-atoms or vice versa in the otherwise non-magnetic alloy α-FeSi2. We find that the MM formation is essentially controlled by the interaction of Fe atoms with its next nearest atoms (NNN) and by their particular arrangement. The latter may result in different magnetic states at the same concentrations of constituents. Moreover, one of arrangements produces the counterintuitive result: a ferromagnetism arises due to an increase in Si concentration in Fe1-xSi2+ x ordered alloy. The existing phenomenological models associate the destruction of magnetic moment only with the number of Fe-Si nearest neighbors. The presented results show that the crucial role in MM formation is played by the particular local NNN environment of the metal atom in the transition metal-metalloid alloy.

  7. VTST/MT studies of the catalytic mechanism of C-H activation by transition metal complexes with [Cu2(μ-O2)], [Fe2(μ-O2)] and Fe(IV)-O cores based on DFT potential energy surfaces.

    PubMed

    Kim, Yongho; Mai, Binh Khanh; Park, Sumin

    2017-04-01

    High-valent Cu and Fe species, which are generated from dioxygen activation in metalloenzymes, carry out the functionalization of strong C-H bonds. Understanding the atomic details of the catalytic mechanism has long been one of the main objectives of bioinorganic chemistry. Large H/D kinetic isotope effects (KIEs) were observed in the C-H activation by high-valent non-heme Cu or Fe complexes in enzymes and their synthetic models. The H/D KIE depends significantly on the transition state properties, such as structure, energies, frequencies, and shape of the potential energy surface, when the tunneling effect is large. Therefore, theoretical predictions of kinetic parameters such as rate constants and KIEs can provide a reliable link between atomic-level quantum mechanical mechanisms and experiments. The accurate prediction of the tunneling effect is essential to reproduce the kinetic parameters. The rate constants and HD/KIE have been calculated using the variational transition-state theory including multidimensional tunneling based on DFT potential energy surfaces along the reaction coordinate. Excellent agreement was observed between the predicted and experimental results, which assures the validity of the DFT potential energy surfaces and, therefore, the proposed atomic-level mechanisms. The [Cu 2 (μ-O) 2 ], [Fe 2 (μ-O) 2 ], and Fe(IV)-oxo species were employed for C-H activation, and their role as catalysts was discussed at an atomic level.

  8. Substantiation of Epitaxial Growth of Diamond Crystals on the Surface of Carbide Fe3AlC0.66 Phase Nanoparticles.

    PubMed

    Dzevin, Ievgenij M; Mekhed, Alexander A

    2017-12-01

    Samples of Fe-Al-C alloys of varying composition were synthesized under high pressures and temperatures. From X-ray analysis data, only K-phase with usual for it average parameter of elemental lattice cell, a = 0.376 nm, carbide Fe 3 C and cubic diamond reflexes were present before and after cooling to the temperature of liquid nitrogen.Calculations were made of the parameters of unit cells, the enthalpy of formation of the Fe 3 AlC, Fe 3.125 Al 0.825 C 0.5 , Fe 3.5 Al 0.5 C 0.5 , Fe 3.5 Al 0.5 C, Fe 3 Al 0.66 C 0.66 , and Fe 3 AlC 0.66 unit cells and crystallographic planes were identified on which epitaxial growth of the diamond phase was possible, using density functional theory as implemented in the WIEN2k package.The possibility of epitaxial growth of diamond crystals on Fe 3 AlC 0.66 (K-phase) nanoparticles was, therefore, demonstrated. The [200] plane was established to be the most suitable plane for diamond growth, having four carbon atoms arranged in a square and a central vacancy which can be occupied by carbon during thermal-and-pressure treatment. Distances between carbon atoms in the [200] plane differ by only 5% from distances between the carbon atoms of a diamond. The electronic structure and energetic parameters of the substrate were also investigated. It was shown that the substrate with at least four intermediate layers of K-phase exhibits signs of stability such as negative enthalpy of formation and the Fermi level falling to minimum densities of states.

  9. Accurate Wavelength Measurements and Modeling of Fe XV to Fe XIX Spectra Recorded in High-Density Plasmas between 13.5 and 17 Å

    NASA Astrophysics Data System (ADS)

    May, M. J.; Beiersdorfer, P.; Dunn, J.; Jordan, N.; Hansen, S. B.; Osterheld, A. L.; Faenov, A. Ya.; Pikuz, T. A.; Skobelev, I. Yu.; Flora, F.; Bollanti, S.; Di Lazzaro, P.; Murra, D.; Reale, A.; Reale, L.; Tomassetti, G.; Ritucci, A.; Francucci, M.; Martellucci, S.; Petrocelli, G.

    2005-06-01

    Iron spectra have been recorded from plasmas created at three different laser plasma facilities: the Tor Vergata University laser in Rome (Italy), the Hercules laser at ENEA in Frascati (Italy), and the Compact Multipulse Terawatt (COMET) laser at LLNL in California (USA). The measurements provide a means of identifying dielectronic satellite lines from Fe XVI and Fe XV in the vicinity of the strong 2p-->3d transitions of Fe XVII. About 80 Δn>=1 lines of Fe XV (Mg-like) to Fe XIX (O-like) were recorded between 13.8 and 17.1 Å with a high spectral resolution (λ/Δλ~4000) about 30 of these lines are from Fe XVI and Fe XV. The laser-produced plasmas had electron temperatures between 100 and 500 eV and electron densities between 1020 and 1022 cm-3. The Hebrew University Lawrence Livermore Atomic Code (HULLAC) was used to calculate the atomic structure and atomic rates for Fe XV-XIX. HULLAC was used to calculate synthetic line intensities at Te=200 eV and ne=1021 cm-3 for three different conditions to illustrate the role of opacity: optically thin plasmas with no excitation-autoionization/dielectronic recombination (EA/DR) contributions to the line intensities, optically thin plasmas that included EA/DR contributions to the line intensities, and optically thick plasmas (optical depth ~200 μm) that included EA/DR contributions to the line intensities. The optically thick simulation best reproduced the recorded spectrum from the Hercules laser. However, some discrepancies between the modeling and the recorded spectra remain.

  10. Momentum sharing in imbalanced Fermi systems

    NASA Astrophysics Data System (ADS)

    Hen, O.; Sargsian, M.; Weinstein, L. B.; Piasetzky, E.; Hakobyan, H.; Higinbotham, D. W.; Braverman, M.; Brooks, W. K.; Gilad, S.; Adhikari, K. P.; Arrington, J.; Asryan, G.; Avakian, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Beck, A.; Beck, S. May-Tal; Bedlinskiy, I.; Bertozzi, W.; Biselli, A.; Burkert, V. D.; Cao, T.; Carman, D. S.; Celentano, A.; Chandavar, S.; Colaneri, L.; Cole, P. L.; Crede, V.; D'Angelo, A.; De Vita, R.; Deur, A.; Djalali, C.; Doughty, D.; Dugger, M.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Fedotov, G.; Fegan, S.; Forest, T.; Garillon, B.; Garcon, M.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Girod, F. X.; Goetz, J. T.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hafidi, K.; Hanretty, C.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkanov, B. I.; Isupov, E. L.; Jiang, H.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, F. J.; Koirala, S.; Korover, I.; Kuhn, S. E.; Kubarovsky, V.; Lenisa, P.; Levine, W. I.; Livingston, K.; Lowry, M.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McKinnon, B.; Mineeva, T.; Mokeev, V.; Movsisyan, A.; Camacho, C. Munoz; Mustapha, B.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rizzo, A.; Rosner, G.; Roy, P.; Rossi, P.; Sabatié, F.; Schott, D.; Schumacher, R. A.; Sharabian, Y. G.; Smith, G. D.; Shneor, R.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Stoler, P.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tkachenko, S.; Ungaro, M.; Vlassov, A. V.; Voutier, E.; Walford, N. K.; Wei, X.; Wood, M. H.; Wood, S. A.; Zachariou, N.; Zana, L.; Zhao, Z. W.; Zheng, X.; Zonta, I.; aff16

    2014-10-01

    The atomic nucleus is composed of two different kinds of fermions: protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority of fermions (usually neutrons) to have a higher average momentum. Our high-energy electron-scattering measurements using 12C, 27Al, 56Fe, and 208Pb targets show that even in heavy, neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few-body systems to neutron stars and may also be observable experimentally in two-spin-state, ultracold atomic gas systems.

  11. Comprehensive insights into the structural and chemical changes in mixed-anion FeOF electrodes by using operando PDF and NMR spectroscopy.

    PubMed

    Wiaderek, Kamila M; Borkiewicz, Olaf J; Castillo-Martínez, Elizabeth; Robert, Rosa; Pereira, Nathalie; Amatucci, Glenn G; Grey, Clare P; Chupas, Peter J; Chapman, Karena W

    2013-03-13

    In-depth analysis of operando X-ray pair distribution function (PDF) data is combined with Li NMR spectroscopy to gain comprehensive insights into the electrochemical reaction mechanism of high-performance iron oxyfluoride electrodes. While the full discharge capacity could be recovered upon charge, implying reversibility of the electrochemical reaction, the atomic structure of the electrode formed after cycling (discharge-charge) differs from the pristine uncycled electrode material. Instead, the "active" electrode that forms upon cycling is a nanocomposite of an amorphous rutile phase and a nanoscale rock salt phase. Bond valence sum analysis, based on the precise structural parameters (bond lengths and coordination number) extracted from the in situ PDF data, suggests that anion partitioning occurs during the electrochemical reaction, with the rutile phase being F-rich and the rock salt phase being O-rich. The F- and O-rich phases react sequentially; Fe in a F-rich environment reacts preferentially during both discharge and charge.

  12. To the application of the emission Mössbauer and positron annihilation spectroscopies for detection of carcinogens

    NASA Astrophysics Data System (ADS)

    Bokov, A. V.; Byakov, V. M.; Kulikov, L. A.; Perfiliev, Yu. D.; Stepanov, S. V.

    2017-11-01

    Being the main cause of cancer, almost all chemical carcinogens are strong electrophiles, that is, they have a high affinity for the electron. We have shown that positron annihilation lifetime spectroscopy (PALS) is able to detect chemical carcinogens by their inhibition of positronium (Ps) formation in liquid media. Electrophilic carcinogens intercept thermalized track electrons, which are precursors of Ps, and as a result, when they are present Ps atom does not practically form. Available biophysical data seemingly indicate that frozen solutions model better an intracellular medium than the liquid ones. So it is reasonable to use emission Mössbauer spectroscopy (EMS) to detect chemical carcinogens, measuring the yield of 57Fe2+ions formed in reactions of Auger electrons and other secondary electrons they produced with 57Fe3+. These reactions are similar to the Ps formation process in the terminal part the positron track: e++ e- =>Ps. So EMS and PALS are complementary methods for detection of carcinogenic compounds.

  13. First-principle study of single TM atoms X (X=Fe, Ru or Os) doped monolayer WS2 systems

    NASA Astrophysics Data System (ADS)

    Zhu, Yuan-Yan; Zhang, Jian-Min

    2018-05-01

    We report the structural, magnetic and electronic properties of the pristine and single TM atoms X (X = Fe, Ru or Os) doped monolayer WS2 systems based on first-principle calculations. The results show that the W-S bond shows a stronger covalent bond, but the covalency is obviously weakened after the substitution of W atom with single X atoms, especially for Ru (4d75s1) with the easily lost electronic configuration. The smaller total energies of the doped systems reveal that the spin-polarized states are energetically favorable than the non-spin-polarized states, and the smallest total energy of -373.918 eV shows the spin-polarized state of the Os doped monolayer WS2 system is most stable among three doped systems. In addition, although the pristine monolayer WS2 system is a nonmagnetic-semiconductor with a direct band gap of 1.813 eV, single TM atoms Fe and Ru doped monolayer WS2 systems transfer to magnetic-HM with the total moments Mtot of 1.993 and 1.962 μB , while single TM atom Os doped monolayer WS2 systems changes to magnetic-metal with the total moments Mtot of 1.569 μB . Moreover, the impurity states with a positive spin splitting energies of 0.543, 0.276 and 0.1999 eV near the Fermi level EF are mainly contributed by X-dxy and X-dx2-y2 states hybridized with its nearest-neighbor atom W-dz2 states for Fe, Ru and Os doped monolayer WS2 system, respectively. Finally, we hope that the present study on monolayer WS2 will provide a useful theoretical guideline for exploring low-dimensional spintronic materials in future experiments.

  14. Microscale speciation of arsenic and iron in ferric-based sorbents subjected to simulated landfill conditions

    PubMed Central

    Root, Robert A.; Fathordoobadi, Sahar; Alday, Fernando; Ela, Wendell; Chorover, Jon

    2013-01-01

    During treatment for potable use, water utilities generate arsenic-bearing ferric wastes that are subsequently dispatched to landfills. The biogeochemical weathering of these residuals in mature landfills affects the potential mobilization of sorbed arsenic species via desorption from solids subjected to phase transformations driven by abundant organic matter and bacterial activity. Such processes are not simulated with the Toxicity Characteristic Leaching Procedure (TCLP) currently used to characterize hazard. To examine the effect of sulfate on As retention in landfill leachate, columns of As(V) loaded amorphous ferric hydroxide were reacted biotically at two leachate sulfate concentrations (0.064 mM and 2.1 mM). After 300 d, ferric sorbents were reductively dissolved. Arsenic released to porewaters was partially co-precipitated in mixed-valent secondary iron phases whose speciation was dependent on sulfate concentration. As and Fe XAS showed that, in the low sulfate column, 75–81% of As(V) was reduced to As(III), and 53–68% of the Fe(III) sorbent was transformed, dominantly to siderite and green rust. In the high sulfate column, Fe(III) solids were reduced principally to FeS(am), whereas As(V) was reduced to a polymeric sulfide with local atomic structure of realgar. Multi-energy micro-X-ray fluorescence (ME-μXRF) imaging at Fe and As K-edges showed that As formed surface complexes with ferrihydrite > siderite > green rust in the low sulfate column; while discrete realgar-like phases formed in the high sulfate systems. Results indicate that landfill sulfur chemistry exerts strong control over the potential mobilization of As from ferric sorbent residuals by controlling secondary As and Fe sulfide co-precipitate formation. PMID:24102155

  15. Geometrical, electronic, and magnetic properties of CunFe (n=1-12) clusters: A density functional study

    NASA Astrophysics Data System (ADS)

    Ling, Wang; Dong, Die; Shi-Jian, Wang; Zheng-Quan, Zhao

    2015-01-01

    The geometrical, electronic, and magnetic properties of small CunFe (n=1-12) clusters have been investigated by using density functional method B3LYP and LanL2DZ basis set. The structural search reveals that Fe atoms in low-energy CunFe isomers tend to occupy the position with the maximum coordination number. The ground state CunFe clusters possess planar structure for n=2-5 and three-dimensional (3D) structure for n=6-12. The electronic properties of CunFe clusters are analyzed through the averaged binding energy, the second-order energy difference and HOMO-LUMO energy gap. It is found that the magic numbers of stability are 1, 3, 7 and 9 for the ground state CunFe clusters. The energy gap of Fe-encapsulated cage clusters is smaller than that of other configurations. The Cu5Fe and Cu7Fe clusters have a very large energy gap (>2.4 eV). The vertical ionization potential (VIP), electron affinity (EA) and photoelectron spectra are also calculated and simulated theoretically for all the ground-state clusters. The magnetic moment analyses for the ground-state CunFe clusters show that Fe atom can enhance the magnetic moment of the host cluster and carries most of the total magnetic moment.

  16. Composition and phase analysis of nanocrystalline Ba{sub x}Sr{sub 1-x}Fe{sub 12}O{sub 19} (x = 1.0; 0.6; and 0.4) by using general structure analysis system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunanto, Y. E., E-mail: yohanes.gunanto@uph.edu; Jobiliong, E., E-mail: eric.jobiliong@uph.edu; Adi, Wisnu Ari, E-mail: dwisnuaa@batan.go.id

    2016-03-11

    Single phase of nanocrystalline Ba{sub x}Sr{sub 1-x}Fe{sub 12}O{sub 19} (x = 1.0; 0.6; and 0.4) was successfully synthesized by mechanical milling method and thermal process. Stoichiometric quantities of analytical-grade SrCO{sub 3}, BaCO{sub 3}, and Fe{sub 2}O{sub 3}, were mixed and milled using a high-energy milling. The mixture of all precursors was sintered at a temperature of 1000 °C for 10 hours. The refinement of x-ray diffraction trace for all samples confirmed a single phase material with a hexagonal structure. The increase of the amount of strontium content in the barium atoms in the Ba{sub x}Sr{sub 1-x}Fe{sub 12}O{sub 19} system canmore » decrease the lattice parameter which have been successfully substituted into the barium atoms. The calculation result of cationic distribution showed that the Ba{sub x}Sr{sub 1-x}Fe{sub 12}O{sub 19} (x = 0.6) and (x = 0.4) samples have nominal composition of Ba{sub 0,61}Sr{sub 0,39}Fe{sub 12}O{sub 19} and Ba{sub 0,37}Sr{sub 0,63}Fe{sub 12}O{sub 19}, respectively. Results of the mean of crystallite size evaluation for respective powder materials showed that the Ba{sub x}Sr{sub 1-x}Fe{sub 12}O{sub 19} (x = 1.0; 0.6; and 0.4) samples have the crystallite size of 22 nm, 25 nm and 34 nm, respectively. We concluded that the cationic distribution of barium atoms was successfully substituted by strontium atoms approaching the nominal stoichiometric composition.« less

  17. The Vapor Deposition Model of Space Weathering: A Strawman Paradigm for the Moon

    NASA Astrophysics Data System (ADS)

    Hapke, Bruce W.

    1998-01-01

    Understanding space weathering on the lunar surface is essential to solving a number of major problems, including correctly interpreting lunar remote-sensing observations, understanding physical and chemical processes in the lunar regolith, and extrapolating to other bodies, especially Mercury, the asteroids, and the parent bodies of the ordinary chondrites. Hence, it is of great importance to correctly identify the process or processes that dominate lunar space weathering. The vapor deposition model postulates that lunar space weathering occurs as a result of the production of submicrscopic metallic iron (SMFe, also called superparamagnetic iron and nanophase iron) particles in the regolith by the intrinsic differentiation that accompanies the deposition of silicate vapor produced by both solar wind sputtering and micrometeorite impacts. This is the only process that has been demonstrated repeatedly by laboratory experiments to be capable of selectively producing SMFe. Hence, at present, it must be regarded as the leading contender for the correct model of lunar space weathering. This paper reviews the features of the vapor deposition model. The basic mechanism of the model relies on the fact that the porous microrelief of the lunar regolith allows most of the vapor produced by sputtering and impacts to be retained in the soil, rather than escaping from the Moon. As the individual vapor atoms impact the soil grain surfaces, they are first weakly bound by physical adsorption processes, and so have a finite probability of desorbing and escaping. Since the O is the most volatile, it escapes preferentially. The remaining atoms become chemically bound and form amorphous coatings on lunar soil grains. Because Fe is the most easily reduced of the major cations in the soil, the O deficiency manifests itself in the form of interstitial Fe0 in the glass deposits. Subsequent heating by impacts allows the Feo atoms to congregate together by solid-state diffusion to form SMFe grains. The impacts dislodge some of the coatings, which form an additional component of the soil, and also shock-weld the mineral grains, impact-vitrified glass, and vapor-deposited glass into agglutinates. Glass generated by impact vitrification probably plays a negligible role in lunar optical properties.

  18. DFT study on dry reforming of methane over Ni2Fe overlayer of Ni(1 1 1) surface

    NASA Astrophysics Data System (ADS)

    Xu, Li-li; Wen, Hong; Jin, Xin; Bing, Qi-ming; Liu, Jing-yao

    2018-06-01

    We reported the complete catalytic cycle of dry reforming of methane (DRM) on Ni2Fe overlayer of Ni(1 1 1) surface by periodic density functional theory (DFT) calculations. The pathways for dehydrogenation of CH4 and CO2 activation were located. Our results demonstrate that compared with pure Ni(1 1 1) surface, the introduction Fe into Ni increases the energy barrier of CH dissociation to carbon and hydrogen atoms, thereby suppressing coke deposition on the surface, while it promotes the H-induced CO2 activation pathway to form OH radical, and thus not only the surface oxygen but also OH are responsible for the oxidation of CHx (x = 0,1) on the Ni2Fe overlayer. The most favorable pathway of CH/C oxidation is found to be CH∗ + OH∗ → CHOH∗ → CHO∗ + H∗ → CO∗ + 2H∗, with the rate-limiting energy barrier of 1.12 eV. Furthermore, since Fe is oxidized partially to FeO leading to a partial dealloying under DRM conditions, we also studied the surface-carbon removal and the activity for the reforming of methane on the FeO ribbon supported Ni(1 1 1) (FeO/Ni) interface by DFT+U method. The surface C reacts with lattice oxygen of FeO to produce CO via a Mars-van Krevelen (MvK) mechanism, with a very lower energy barrier of 0.16 eV. The present results show that the introduction of Fe into Ni has a positive effect on the activity toward DRM and has an improved coke resistance.

  19. From iron coordination compounds to metal oxide nanoparticles.

    PubMed

    Iacob, Mihail; Racles, Carmen; Tugui, Codrin; Stiubianu, George; Bele, Adrian; Sacarescu, Liviu; Timpu, Daniel; Cazacu, Maria

    2016-01-01

    Various types, shapes and sizes of iron oxide nanoparticles were obtained depending on the nature of the precursor, preparation method and reaction conditions. The mixed valence trinuclear iron acetate, [Fe 2 III Fe II O(CH 3 COO) 6 (H 2 O) 3 ]·2H 2 O (FeAc1), μ 3 -oxo trinuclear iron(III) acetate, [Fe 3 O(CH 3 COO) 6 (H 2 O) 3 ]NO 3 ∙4H 2 O (FeAc2), iron furoate, [Fe 3 O(C 4 H 3 OCOO) 6 (CH 3 OH) 3 ]NO 3 ∙2CH 3 OH (FeF), iron chromium furoate, FeCr 2 O(C 4 H 3 OCOO) 6 (CH 3 OH) 3 ]NO 3 ∙2CH 3 OH (FeCrF), and an iron complex with an original macromolecular ligand (FePAZ) were used as precursors for the corresponding oxide nanoparticles. Five series of nanoparticle samples were prepared employing either a classical thermal pathway (i.e., thermal decomposition in solution, solvothermal method, dry thermal decomposition/calcination) or using a nonconventional energy source (i.e., microwave or ultrasonic treatment) to convert precursors into iron oxides. The resulting materials were structurally characterized by wide-angle X-ray diffraction and Fourier transform infrared, Raman, energy-dispersive X-ray, and X-ray fluorescence spectroscopies, as well as thermogravimetric analysis. The morphology was characterized by transmission electron microscopy, atomic force microscopy and dynamic light scattering. The parameters were varied within each route to fine tune the size and shape of the formed nanoparticles.

  20. Research Update: Spatially resolved mapping of electronic structure on atomic level by multivariate statistical analysis

    DOE PAGES

    Belianinov, Alex; Panchapakesan, G.; Lin, Wenzhi; ...

    2014-12-02

    Atomic level spatial variability of electronic structure in Fe-based superconductor FeTe0.55Se0.45 (Tc = 15 K) is explored using current-imaging tunneling-spectroscopy. Multivariate statistical analysis of the data differentiates regions of dissimilar electronic behavior that can be identified with the segregation of chalcogen atoms, as well as boundaries between terminations and near neighbor interactions. Subsequent clustering analysis allows identification of the spatial localization of these dissimilar regions. Similar statistical analysis of modeled calculated density of states of chemically inhomogeneous FeTe1 x Sex structures further confirms that the two types of chalcogens, i.e., Te and Se, can be identified by their electronic signaturemore » and differentiated by their local chemical environment. This approach allows detailed chemical discrimination of the scanning tunneling microscopy data including separation of atomic identities, proximity, and local configuration effects and can be universally applicable to chemically and electronically inhomogeneous surfaces.« less

Top