Sample records for fe ii absorption

  1. Studies on different iron source absorption by in situ ligated intestinal loops of broilers.

    PubMed

    Jia, Y F; Jiang, M M; Sun, J; Shi, R B; Liu, D S

    2015-02-01

    The objective of this study was to investigate the iron source absorption in the small intestine of broiler. In situ ligated intestinal loops of 70 birds were poured into one of seven solutions, including inorganic iron (FeSO4, Fe2(SO4)3), organic Fe glycine chelate (Fe-Gly(II), Fe-Gly(III)), the mixtures (FeSO4 with glycine (Fe+Gly(II)), Fe2(SO4)3 with glycine (Fe+Gly(III)), and no Fe source (control). The total volume of 3-mL solution (containing 1 mg of elemental Fe) was injected into intestinal loops, and then 120-min incubation was performed. Compared with inorganic iron groups, in which higher FeSO4 absorption than Fe2(SO4)3 was observed, supplementation with organic Fe glycine chelate significantly increased the Fe concentration in the duodenum and jejunum (P < 0.05), however, decreased DMT1 and DcytB messenger RNA (mRNA) levels (P < 0.05). Organic Fe glycine chelate (Fe-Gly(II), Fe-Gly(III)) increased serum iron concentration (SI), compared with inorganic 3 valence iron groups (Fe2(SO4)3 and Fe+Gly(III)) (P < 0.05); moreover, lower TIBC value was observed for the chelate (P < 0.05); however, mixture of inorganic iron and glycine did not have a positive role at DMT1 and DcytB mRNA levels, SI and Fe concentrations in the small intestine. Those results indicated that the absorption of organic Fe glycine chelate was more effective than that of inorganic Fe, and the orders of iron absorption in the small intestine were: Fe-Gly(II), Fe-Gly(III) > FeSO4, Fe+Gly(II) > Fe2(SO4)3, Fe+Gly(III). Additionally, the simple mixture of inorganic iron and glycine could not increase Fe absorption, and the duodenum was the main site of Fe absorption in the intestines of broilers and the ileum absorbed iron rarely.

  2. The Effect of Plant Proteins Derived from Cereals and Legumes on Heme Iron Absorption.

    PubMed

    Weinborn, Valerie; Pizarro, Fernando; Olivares, Manuel; Brito, Alex; Arredondo, Miguel; Flores, Sebastián; Valenzuela, Carolina

    2015-10-30

    The aim of this study is to determine the effect of proteins from cereals and legumes on heme iron (Fe) absorption. The absorption of heme Fe without its native globin was measured. Thirty adult females participated in two experimental studies (15 per study). Study I focused on the effects of cereal proteins (zein, gliadin and glutelin) and study II on the effects of legume proteins (soy, pea and lentil) on heme Fe absorption. When heme was given alone (as a control), study I and II yielded 6.2% and 11.0% heme absorption (p > 0.05). In study I, heme Fe absorption was 7.2%, 7.5% and 5.9% when zein, gliadin and glutelin were added, respectively. From this, it was concluded that cereal proteins did not affect heme Fe absorption. In study II, heme Fe absorption was 7.3%, 8.1% and 9.1% with the addition of soy, pea and lentil proteins, respectively. Only soy proteins decreased heme Fe absorption (p < 0.05). These results suggest that with the exception of soy proteins, which decreased absorption, proteins derived from cereals and legumes do not affect heme Fe absorption.

  3. Organic acids influence iron uptake in the human epithelial cell line Caco-2.

    PubMed

    Salovaara, Susan; Sandberg, Ann-Sofie; Andlid, Thomas

    2002-10-09

    It has previously been suggested that organic acids enhance iron absorption. We have studied the effect of nine organic acids on the absorption of Fe(II) and Fe(III) in the human epithelial cell line Caco-2. The effect obtained was dose-dependent, and the greatest increase (43-fold) was observed for tartaric acid (4 mmol/L) on Fe(III) (10 micromol/L). Tartaric, malic, succinic, and fumaric acids enhanced Fe(II) and Fe(III) uptake. Citric and oxalic acid, on the other hand, inhibited Fe(II) uptake but enhanced Fe(III) uptake. Propionic and acetic acid increased the Fe(II) uptake, but had no effect on Fe(III) uptake. Our results show a correlation between absorption pattern and chemical structure; e.g. hydroxyl groups, in addition to carboxyls, were connected with a positive influence. The results may be important for elucidating factors affecting iron bioavailability in the small intestine and for the development of foods with improved iron bioavailability.

  4. Line Identifications in the Far Ultraviolet Spectrum of the Eclipsing Binary System 31 Cygni

    NASA Astrophysics Data System (ADS)

    Hagen Bauer, Wendy; Bennett, P. D.

    2011-05-01

    The eclipsing binary system 31 Cygni (K4 Ib + B3 V) was observed at several phases with the Far Ultraviolet Spectrosocopic Explorer (FUSE) satellite. During total eclipse, a rich emission spectrum was observed, produced by scattering of hot star photons in the extended wind of the K supergiant. The system was observed during deep chromospheric eclipse, and 2.5 months after total eclipse ended. We present an atlas of line identifications in these spectra. During total eclipse, emission features from C II , C III, N I, N II, N III, O I, Si II, P II, P III, S II, S III, Ar I, Cr III, Fe II, Fe III, and Ni II were detected. The strongest emission features arise from N II. These lines appear strongly in absorption during chromospheric eclipse, and even 2.5 months after total eclipse, the absorption bottoms out on the underlying emission seen during total eclipse. The second strongest features in the emission spectrum arise from Fe III. Any chromospheric Fe III absorption is buried within strong chromospheric absorption from other species, mainly Fe II. The emission profiles of most of the doubly-ionized species are red-shifted relative to the systemic velocity, with asymmetric profiles with a steeper long-wavelength edge. Emission profiles from singly-ionized species tend to be more symmetric and centered near the systemic velocity. In deep chromospheric eclipse, absorption features are seen from neutral and singly-ionized species, arising from lower levels up to 3 eV. Many strong chromospheric features are doubled in the observation obtained during egress from eclipse. The 31 Cygni spectrum taken 2.5 months after total eclipse ended ws compared to single-star B spectra from the FUSE archives. There was still some additional chromospheric absorption from strong low-excitation Fe II, O I and Ar I.

  5. Evidence for a cool wind from the K2 dwarf in the detached binary V471 Tauri

    NASA Technical Reports Server (NTRS)

    Mullan, D. J.; Sion, E. M.; Bruhweiler, F. C.; Carpenter, K. G.

    1989-01-01

    Evidence for mass loss from the K2 dwarf in V471 Tauri is found in the form of discrete absorption features in lines of various elements (Mg, Fe, Cr, Mn) and ionization stages (Mg I, Mg II, Fe I, Fe II). Resonant Mg II absorption indicates a mass loss rate of at least 10 to the -11th solar masses per year. The wind appears to be cool (no more than a few times 10,000 K).

  6. ORIGINS OF ABSORPTION SYSTEMS OF CLASSICAL NOVA V2659 CYG (NOVA CYG 2014)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arai, A.; Kawakita, H.; Shinnaka, Y.

    2016-10-10

    We report on high-dispersion spectroscopy results of a classical nova V2659 Cyg (Nova Cyg 2014) that are taken 33.05 days after the V -band maximum. The spectrum shows two distinct blueshifted absorption systems originating from H i, Fe ii, Ca ii, etc. The radial velocities of the absorption systems are −620 km s{sup −1}, and −1100 to −1500 km s{sup −1}. The higher velocity component corresponds to the P-Cygni absorption features frequently observed in low-resolution spectra. Much larger numbers of absorption lines are identified at the lower velocity. These mainly originate from neutral or singly ionized Fe-peak elements (Fe i,more » Ti ii, Cr ii, etc.). Based on the results of our spectroscopic observations, we discuss the structure of the ejecta of V2659 Cyg. We conclude that the low- and high-velocity components are likely to be produced by the outflow wind and the ballistic nova ejecta, respectively.« less

  7. Effects of slurry properties on simultaneous removal of SO2 and NO by ammonia-Fe(II)EDTA absorption in sintering plants.

    PubMed

    Zhang, Qi; Wang, Shijie; Zhang, Gu; Wang, Zhiyong; Zhu, Ping

    2016-12-01

    Simultaneous removal of SO 2 and NO by ammonia-Fe(II)EDTA absorption has become a research focus in recent years. In order to get useful data for further industrialization, in this work the practical operating conditions of the sintering plant were simulated in a pilot-scale reactor in order to explore the effects of slurry properties on simultaneous removal of SO 2 and NO. It was not conducive to the absorption of NO when (NH 4 ) 2 SO 4 concentration and slurry temperature had been increased. The initial NO removal efficiency decreased from 90.63% to 44.12% as the (NH 4 ) 2 SO 4 concentration increased from zero to 3.5 mol/L. With the increasing of Fe(II)EDTA concentration, SO 3 2- concentration and pH value of absorption liquid and the absorption capacity of NO by Fe(II)EDTA solution increased. Especially the existence of SO 3 2- ions in slurry had significantly improved the service life of chelating agents. The NO removal efficiency only decreased by 16.46% with the SO 3 2- concentration of 0.3 mol/L after 30-min of operation. The chloride ions had no effects on the absorption of SO 2 and NO. The results indicated that changes of slurry properties had different effects on simultaneous removal of SO 2 and NO by ammonia-Fe(II)EDTA solution. The basic data offered by the experiments could effectively contribute to further industrial applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Fe II fluorescence and anomalous C IV doublet intensities in symbiotic novae

    NASA Technical Reports Server (NTRS)

    Michalitsianos, A. G.; Kafatos, M.; Meier, S. R.

    1992-01-01

    The variation of absolute intensities of Bowen-excited Fe II emission in the symbiotic stars RR Tel, RX Pup, and AG Peg is examined. The C IV doublet intensity ratios in RR Tel were not anomalous between 1979 and 1989, and the ratio had typical values within the optically thin range. The intensity of individual Fe II Bowen-excited lines is correlated with the C IV 1548.2 A flux, suggesting the presence of a foreground Fe II region in which fluorescent-excited material responds to flux variations of C IV 1548.2 A. In RX Pup the combined fluxes of Fe II Bowen-pumped lines can account for an appreciable fraction of the flux deficit in the C IV 1548.2 A line when the C IV doublet ratio is less than the optically thick limit of unity. The Fe II Bowen lines in RX Pup exhibit a velocity range from 0 to 80 km/s, where several strong Fe II emission lines correspond to deep absorption structure in the C IV 1548.2 A line profile. In AG Peg and C IV 1548.2 A flux deficit cannot be explained by Fe II fluorescent absorption alone when the C IV doublet ratio anomaly is at an extreme.

  9. Vanishing absorption and blueshifted emission in FeLoBAL quasars

    NASA Astrophysics Data System (ADS)

    Rafiee, Alireza; Pirkola, Patrik; Hall, Patrick B.; Galati, Natalee; Rogerson, Jesse; Ameri, Abtin

    2016-07-01

    We study the dramatic decrease in iron absorption strength in the iron low-ionization broad absorption line quasar SDSS J084133.15+200525.8. We report on the continued weakening of absorption in the prototype of this class of variable broad absorption line quasar, FBQS J140806.2+305448. We also report a third example of this class, SDSS J123103.70+392903.6; unlike the other two examples, it has undergone an increase in observed continuum brightness (at 3000 Å rest frame) as well as a decrease in iron absorption strength. These changes could be caused by absorber transverse motion or by ionization variability. We note that the Mg II and UV Fe II lines in several FeLoBAL quasars are blueshifted by thousands of km s-1 relative to the H β emission line peak. We suggest that such emission arises in the outflowing winds normally seen only in absorption.

  10. The MUSE Hubble Ultra Deep Field Survey. VII. Fe II* emission in star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Finley, Hayley; Bouché, Nicolas; Contini, Thierry; Paalvast, Mieke; Boogaard, Leindert; Maseda, Michael; Bacon, Roland; Blaizot, Jérémy; Brinchmann, Jarle; Epinat, Benoît; Feltre, Anna; Marino, Raffaella Anna; Muzahid, Sowgat; Richard, Johan; Schaye, Joop; Verhamme, Anne; Weilbacher, Peter M.; Wisotzki, Lutz

    2017-11-01

    Non-resonant Fe II* (λ2365, λ2396, λ2612, λ2626) emission can potentially trace galactic winds in emission and provide useful constraints to wind models. From the 3.15' × 3.15' mosaic of the Hubble Ultra Deep Field (UDF) obtained with the VLT/MUSE integral field spectrograph, we identify a statistical sample of 40 Fe II* emitters and 50 MgIII (λλ2796,2803) emitters from a sample of 271 [O II]λλ3726,3729 emitters with reliable redshifts from z = 0.85-1.50 down to 2 × 10-18 (3σ) ergs s-1 cm-2 (for [O II]), covering the M⋆ range from 108-1011 M⊙. The Fe II* and Mg II emitters follow the galaxy main sequence, but with a clear dichotomy. Galaxies with masses below 109 M⊙ and star formation rates (SFRs) of ≲ 1 M⊙ yr-1 have MgIII emission without accompanying Fe II* emission, whereas galaxies with masses above 1010 M⊙ and SFRs ≳ 10 M⊙ yr-1 have Fe II* emission without accompanying MgIII emission. Between these two regimes, galaxies have both MgIII and Fe II* emission, typically with MgIII P Cygni profiles. Indeed, the MgIII profile shows a progression along the main sequence from pure emission to P Cygni profiles to strong absorption, due to resonant trapping. Combining the deep MUSE data with HST ancillary information, we find that galaxies with pure MgIII emission profiles have lower SFR surface densities than those with either MgIII P Cygni profiles or Fe II* emission. These spectral signatures produced through continuum scattering and fluorescence, MgIII P Cygni profiles and Fe II* emission, are better candidates for tracing galactic outflows than pure MgIII emission, which may originate from HIII regions. We compare the absorption and emission rest-frame equivalent widths for pairs of FeIII transitions to predictions from outflow models and find that the observations consistently have less total re-emission than absorption, suggesting either dust extinction or non-isotropic outflow geometries.

  11. β-FeSi II as a Kankyo (environmentally friendly) semiconductor for solar cells in the space application

    NASA Astrophysics Data System (ADS)

    Makita, Yunosuke; Ootsuka, Teruhisa; Fukuzawa, Yasuhiro; Otogawa, Naotaka; Abe, Hironori; Liu, Zhengxin; Nakayama, Yasuhiko

    2006-04-01

    β-FeSi II defined as a Kankyo (Environmentally Friendly) semiconductor is regarded as one of the 3-rd generation semiconductors after Si and GaAs. Versatile features about β-FeSi II are, i) high optical absorption coefficient (>10 5cm -1), ii) chemical stability at temperatures as high as 937°C, iii) high thermoelectric power (Seebeck coefficient of k ~ 10 -4/K), iv) a direct energy band-gap of 0.85 eV, corresponding to 1.5μm of quartz optical fiber communication, v) lattice constant nearly well-matched to Si substrate, vi) high resistance against the humidity, chemical attacks and oxidization. Using β-FeSi II films, one can fabricate various devices such as Si photosensors, solar cells and thermoelectric generators that can be integrated basically on Si-LSI circuits. β-FeSi II has high resistance against the exposition of cosmic rays and radioactive rays owing to the large electron-empty space existing in the electron cloud pertinent to β-FeSi II. Further, the specific gravity of β-FeSi II (4.93) is placed between Si (2.33) and GaAs ((5.33). These features together with the aforementioned high optical absorption coefficient are ideal for the fabrication of solar cells to be used in the space. To demonstrate fascinating capabilities of β-FeSi II, one has to prepare high quality β-FeSi II films. We in this report summarize the current status of β-FeSi II film preparation technologies. Modified MBE and facing-target sputtering (FTS) methods are principally discussed. High quality β-FeSi II films have been formed on Si substrates by these methods. Preliminary structures of n-β-FeSi II /p-Si and p-β-FeSi II /n-Si solar cells indicated an energy conversion efficiency of 3.7%, implying that β-FeSi II is practically a promising semiconductor for a photovoltaic device.

  12. Ultraviolet Fe VII absorption and Fe II emission lines of central stars of planetary nebulae

    NASA Technical Reports Server (NTRS)

    Cheng, Kwang-Ping; Feibelman, Walter A.; Bruhweiler, Frederick C.

    1991-01-01

    The SWP camera of the IUE satellite was used in the high-dispersion mode to search for Fe VII absorption and Fe II high-excitation emission lines in five additional very hot central stars of planetary nebulae. Some of the Fe VII lines were detected at 1208, 1239, and 1332 A in all the objects of this program, LT 5, NGC 6058, NGC 7094, A43, and Lo 1 (= K1-26), as well as some of the Fe II emission lines at A 1360, 1776, 1869, 1881, 1884, and 1975 A. Two additional objects, NGC 2867 and He 2-131, were obtained from the IUE archive and were evaluated. The present study probably exhausts the list of candidates that are sufficiently bright and hot to be reached with the high-dispersion mode of the IUE.

  13. Ultraviolet Fe VII absorption and Fe II emission lines of central stars of planetary nebulae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Kwang-Ping; Feibelman, W.A.; Bruhweiler, F.C.

    1991-08-01

    The SWP camera of the IUE satellite was used in the high-dispersion mode to search for Fe VII absorption and Fe II high-excitation emission lines in five additional very hot central stars of planetary nebulae. Some of the Fe VII lines were detected at 1208, 1239, and 1332 A in all the objects of this program, LT 5, NGC 6058, NGC 7094, A43, and Lo 1 (= K1-26), as well as some of the Fe II emission lines at A 1360, 1776, 1869, 1881, 1884, and 1975 A. Two additional objects, NGC 2867 and He 2-131, were obtained from themore » IUE archive and were evaluated. The present study probably exhausts the list of candidates that are sufficiently bright and hot to be reached with the high-dispersion mode of the IUE. 17 refs.« less

  14. Observations of the peculiar object MWC 560 in outburst

    NASA Technical Reports Server (NTRS)

    Michalitsianos, A. G.; Maran, S. P.; Oliversen, R. J.; Bopp, B.; Kontizas, E.

    1991-01-01

    The results of ultraviolet spectroscopy, photoelectric photometry, and supplemental high-resolution H(alpha) spectroscopy of a photometric outburst of MWC 560 are discussed. Ultraviolet spectra are shown to be consistent with the ejection of an optically thick shell that produced strong absorption blends of Fe II and Cr II. The velocities reported exceed by far those previously found in symbiotic stars or recurrent novas. In addition to the variable high-velocity system of broad absorption features, a relatively stable system of Mg II, Mg I, Fe II, Cr II, and other ionic absorptions is observed. It is pointed out that the spectroscopic phenomena in MWC 560 resemble those found in XX Ophiuchi, but the velocities in the MWC 560 are an order of magnitude higher than those found in XX Oph.

  15. Detection of accreting gas toward HD 45677: A newly recognized, Herbig Be proto-planetary system

    NASA Technical Reports Server (NTRS)

    Grady, C. A.; Bjorkman, K. S.; Shepherd, D.; Schulte-Ladbeck, R. E.; Perez, M. R.; Dewinter, D.; The, P. S.

    1993-01-01

    We report detection of high velocity, accreting gas toward the Be star with IR excess and bipolar nebula, HD 45677. High velocity (+200 to +400 km/s), variable column density gas is visible in all IUE spectra from 1979-1992 in transitions of Si II, C II, Al III, Fe III, Si IV, and C IV. Low-velocity absorption profiles from low oscillator-strength transitions of Si II, Fe II, and Zn II exhibit double-peaked absorption profiles similar to those previously reported in optical spectra of FU Orionis objects. The UV absorption data, together with previously reported analyses of the IR excess and polarization of this object, suggest that HD 45677 is a massive, Herbig Be star with an actively accreting circumstellar, proto-planetary disk.

  16. Line identifications, line strengths, and continuum flux measurements in the ultraviolet spectrum of Arcturus

    NASA Technical Reports Server (NTRS)

    Carpenter, K. G.; Wing, R. F.; Stencel, R. E.

    1985-01-01

    The ultraviolet spectrum of Arcturus has been observed at high resolution with the IUE satellite. Line identifications, mean absolute 'continuum' flux measurements, integrated absolute emission-line fluxes, and measurements of selected absorption line strengths are presented for the 2250-2930 A region. In the 1150-2000 A region, identifications are given primarily on the basis of low-resolution spectra. Chromospheric emission lines have been identified with low-excitation species including H I, C I, C II, O I, Mg I, Mg II, Al II, Si I, Si II, S I, and Fe II; there is no evidence for lines of C IV, N V, or other species requiring high temperatures. A search for molecular absorption features in the 2500-2930 A interval has led to several tentative identifications, but only OH could be established as definitely present. Iron lines strongly dominate the identifications in the 2250-2930 A region, Fe II accounting for about 86 percent of the emission features and Fe I for 43 percent of the identified absorption features.

  17. Solid Phase Extraction of Trace Al(III), Fe(II), Co(II), Cu(II), Cd(II) and Pb(II) Ions in Beverages on Functionalized Polymer Microspheres Prior to Flame Atomic Absorption Spectrometric Determinations.

    PubMed

    Berber, Hale; Alpdogan, Güzin

    2017-01-01

    In this study, poly(glycidyl methacrylate-methyl methacrylate-divinylbenzene) was synthesized in the form of microspheres, and then functionalized by 2-aminobenzothiazole ligand. The sorption properties of these functionalized microspheres were investigated for separation, preconcentration and determination of Al(III), Fe(II), Co(II), Cu(II), Cd(II) and Pb(II) ions using flame atomic absorption spectrometry. The optimum pH values for quantitative sorption were 2 - 4, 5 - 8, 6 - 8, 4 - 6, 2 - 6 and 2 - 3 for Al(III), Fe(II), Co(II), Cu(II), Cd(II) and Pb(II), respectively, and also the highest sorption capacity of the functionalized microspheres was found to be for Cu(II) with the value of 1.87 mmol g -1 . The detection limits (3σ; N = 6) obtained for the studied metals in the optimal conditions were observed in the range of 0.26 - 2.20 μg L -1 . The proposed method was successfully applied to different beverage samples for the determination of Al(III), Fe(II), Co(II), Cu(II), Cd(II) and Pb(II) ions, with the relative standard deviation of <3.7%.

  18. Pathway of FeEDTA transformation and its impact on performance of NOx removal in a chemical absorption-biological reduction integrated process

    PubMed Central

    Li, Wei; Zhao, Jingkai; Zhang, Lei; Xia, Yinfeng; Liu, Nan; Li, Sujing; Zhang, Shihan

    2016-01-01

    A novel chemical absorption-biological reduction (CABR) integrated process, employing ferrous ethylenediaminetetraacetate (Fe(II)EDTA) as a solvent, is deemed as a potential option for NOx removal from the flue gas. Previous work showed that the Fe(II)EDTA concentration was critical for the NOx removal in the CABR process. In this work, the pathway of FeEDTA (Fe(III)/Fe(II)-EDTA) transformation was investigated to assess its impact on the NOx removal in a biofilter. Experimental results revealed that the FeEDTA transformation involved iron precipitation and EDTA degradation. X-ray photoelectron spectroscopy analysis confirmed the iron was precipitated in the form of Fe(OH)3. The iron mass balance analysis showed 44.2% of the added iron was precipitated. The EDTA degradation facilitated the iron precipitation. Besides chemical oxidation, EDTA biodegradation occurred in the biofilter. The addition of extra EDTA helped recover the iron from the precipitation. The transformation of FeEDTA did not retard the NO removal. In addition, EDTA rather than the iron concentration determined the NO removal efficiency. PMID:26743930

  19. Iron and Arsenic Speciation During As(III) Oxidation by Manganese Oxides in the Presence of Fe(II): Molecular-Level Characterization Using XAFS, Mössbauer, and TEM Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yun; Kukkadapu, Ravi K.; Livi, Kenneth J. T.

    The redox state and speciation of metalloid arsenic (As) determine its toxicity and mobility. Knowledge of biogeochemical processes influencing the As redox state is therefore important to understand and predict its environmental behavior. Many previous studies examined As(III) oxidation by various Mn-oxides, but little is known the environmental influences (e.g. co-existing ions) on such process. In this study, we investigated the mechanisms of As(III) oxidation by a poorly crystalline hexagonal birnessite (δ-MnO2) in the presence of Fe(II) using X-ray absorption spectroscopy (XAS), Mössbauer spectroscopy and transmission electron microscopy (TEM) coupled with energy-dispersive X-ray spectroscopy (EDS). As K-edge X-ray absorption nearmore » edge spectroscopy (XANES) analysis revealed that, at low Fe(II) concentration (100 μM), As(V) was the predominant As species on the solid phase, while at higher Fe(II) concentration (200-1000 μM), both As(III) and As(V) were sorbed on the solid phase. As K-edge extended X-ray absorption fine structure spectroscopy (EXAFS) analysis showed an increasing As-Mn/Fe distance over time, indicating As prefers to bind with the newly formed Fe(III)-(hydr)oxides. As adsorbed on Fe(III)-(hydr)oxides as a bidentate binuclear corner-sharing complex. Both Mössbauer and TEM-EDS investigations demonstrated that the oxidized Fe(III) products formed during Fe(II) oxidation by δ-MnO2 were predominantly ferrihydrite, goethite, and ferric arsenate like compounds. However, Fe EXAFS analysis also suggested the formation of a small amount of lepidocrocite. The Mn K-edge XANES data indicated that As(III) and Fe(II) oxidation occurs as a two electron transfer with δ-MnO2 and the observed Mn(III) is due to conproportionation of surface sorbed Mn(II) with Mn(IV) in δ-MnO2 structure. This study reveals that the mechanisms of As(III) oxidation by δ-MnO2 in the presence of Fe(II) are very complex, involving many simultaneous reactions, and the formation of Fe(III)-(hydr)oxides plays a very important role in reducing As mobility.« less

  20. Oscillator strengths for ionized iron and manganese

    NASA Technical Reports Server (NTRS)

    De Boer, K. S.; Pottasch, S. R.; Morton, D. C.; York, D. G.

    1974-01-01

    The observed strengths of interstellar absorption lines of Fe II and Mn II in the spectra of alpha Vir, beta Cen, pi Sco, and zeta Oph along with laboratory f values of some of these lines between 2343 and 2606 A have been used to determine curves of growth for these ions and the f-values of ten lines of Fe II and three lines of Mn II between 1055 and 1261 A. The Fe and Mn abundances are derived.

  1. New method for the direct determination of dissolved Fe(III) concentration in acid mine waters

    USGS Publications Warehouse

    To, T.B.; Nordstrom, D. Kirk; Cunningham, K.M.; Ball, J.W.; McCleskey, R. Blaine

    1999-01-01

    A new method for direct determination of dissolved Fe(III) in acid mine water has been developed. In most present methods, Fe(III) is determined by computing the difference between total dissolved Fe and dissolved Fe(II). For acid mine waters, frequently Fe(II) >> Fe(III); thus, accuracy and precision are considerably improved by determining Fe(III) concentration directly. The new method utilizes two selective ligands to stabilize Fe(III) and Fe(II), thereby preventing changes in Fe reduction-oxidation distribution. Complexed Fe(II) is cleanly removed using a silica-based, reversed-phase adsorbent, yielding excellent isolation of the Fe(III) complex. Iron(III) concentration is measured colorimetrically or by graphite furnace atomic absorption spectrometry (GFAAS). The method requires inexpensive commercial reagents and simple procedures that can be used in the field. Calcium(II), Ni(II), Pb(II), AI(III), Zn(II), and Cd(II) cause insignificant colorimetric interferences for most acid mine waters. Waters containing >20 mg of Cu/L could cause a colorimetric interference and should be measured by GFAAS. Cobalt(II) and Cr(III) interfere if their molar ratios to Fe(III) exceed 24 and 5, respectively. Iron(II) interferes when its concentration exceeds the capacity of the complexing ligand (14 mg/L). Because of the GFAAS elemental specificity, only Fe(II) is a potential interferent in the GFAAS technique. The method detection limit is 2 ??g/L (40 nM) using GFAAS and 20 ??g/L (0.4 ??M) by colorimetry.A new method for direct determination of dissolved Fe(III) in acid mine water has been developed. In most present methods, Fe(III) is determined by computing the difference between total dissolved Fe and dissolved Fe(II). For acid mine waters, frequently Fe(II)???Fe(III); thus, accuracy and precision are considerably improved by determining Fe(III) concentration directly. The new method utilizes two selective ligands to stabilize Fe(III) and Fe(II), thereby preventing changes in Fe reduction-oxidation distribution. Complexed Fe(II) is cleanly removed using a silica-based, reversed-phase adsorbent, yielding excellent isolation of the Fe(III) complex. Iron(III) concentration is measured colorimetrically or by graphite furnace atomic absorption spectrometry (GFAAS). The method requires inexpensive commercial reagents and simple procedures that can be used in the field. Calcium(II), Ni(II), Pb(II), Al(III), Zn(II), and Cd(II) cause insignificant colorimetric interferences for most acid mine waters. Waters containing >20 mg of Cu/L could cause a colorimetric interference and should be measured by GFAAS. Cobalt(II) and Cr(III) interfere if their molar ratios to Fe(III) exceed 24 and 5, respectively. Iron(II) interferes when its concentration exceeds the capacity of the complexing ligand (14 mg/L). Because of the GFAAS elemental specificity, only Fe(II) is a potential interferent in the GFAAS technique. The method detection limit is 2/??g/L (40 nM) using GFAAS and 20 ??g/L (0.4 ??M) by colorimetry.

  2. Online spectrophotometric determination of Fe(II) and Fe(III) by flow injection combined with low pressure ion chromatography

    NASA Astrophysics Data System (ADS)

    Chen, Shujuan; Li, Nan; Zhang, Xinshen; Yang, Dongjing; Jiang, Heimei

    2015-03-01

    A simple and new low pressure ion chromatography combined with flow injection spectrophotometric procedure for determining Fe(II) and Fe(III) was established. It is based on the selective adsorption of low pressure ion chromatography column to Fe(II) and Fe(III), the online reduction reaction of Fe(III) and the reaction of Fe(II) in sodium acetate with phenanthroline, resulting in an intense orange complex with a suitable absorption at 515 nm. Various chemical (such as the concentration of colour reagent, eluant and reductive agent) and instrumental parameters (reaction coil length, reductive coil length and wavelength) were studied and were optimized. Under the optimum conditions calibration graph of Fe(II)/Fe(III) was linear in the Fe(II)/Fe(III) range of 0.040-1.0 mg/L. The detection limit of Fe(III) and Fe(II) was respectively 3.09 and 1.55 μg/L, the relative standard deviation (n = 10) of Fe(II) and Fe(III) 1.89% and 1.90% for 0.5 mg/L of Fe(II) and Fe(III) respectively. About 2.5 samples in 1 h can be analyzed. The interfering effects of various chemical species were studied. The method was successfully applied in the determination of water samples.

  3. NUV Spectroscopic Studies of Eta Car's Weigelt D across the 2003.5 Minimum

    NASA Technical Reports Server (NTRS)

    Ivarsson, S.; Nielsen, K. E.; Gull, T. R.; Hillier, J. D.

    2006-01-01

    HST/STIS high dispersion, high spatial resolution spectra in the near UV (2424-2705A) were recorded of Weigelt D, located 0.25" from Eta Carinae, before, during and after the star's 2003.5 minimum. Most nebular emission, including Lyman-alpha pumped Fe II and [Fe III] lines show phase dependent variations with disappearance at the minimum and reappearance a few months later. Circumstellar absorptions increase at minimum, especially in the Fe II resonance lines originating not only from ground levels but also meta stable levels well above the ground levels. These ionization/excitation effects can be explained by a sudden change in UV flux reaching the blobs, likely due to a line-of-sight obscuration of the hotter companion star, Eta Car B, recently discovered by Iping et al. (poster, this meeting). The scattered starlight seen towards Weigelt D display noticeable different line profiles than the direct starlight from Eta Carinae. P-Cygni absorption profiles in Fe II stellar lines observed directly towards Eta Carinae, show terminal velocities up to -550 km/s. However, scattered starlight of Weigelt D display significant lower velocities ranging from -40 to -150 km/s.We interpret this result to be indicative that no absorbing Fe II wind structure exists between the Central source and Weigelt D. The lower velocity absorption appears to be connected to the outer Fe II wind structure of Eta Car A extending beyond Weigelt D intersecting the observer's line of sight. This result is consistent with the highly extended wind of Eta Car A.

  4. Viable, lyophilized lactobacilli do not increase iron absorption from a lactic acid-fermented meal in healthy young women, and no iron absorption occurs in the distal intestine.

    PubMed

    Bering, Stine; Sjøltov, Laila; Wrisberg, Seema S; Berggren, Anna; Alenfall, Jan; Jensen, Mikael; Højgaard, Liselotte; Tetens, Inge; Bukhave, Klaus

    2007-11-01

    Lactic acid-fermented foods have been shown to increase Fe absorption in human subjects, possibly by lowering pH, activation of phytases, production of organic acids, or by the viable lactic acid bacteria. In this study the effect of a heat-inactivated lactic acid-fermented oat gruel with and without added viable, lyophilized Lactobacillus plantarum 299v on non-haem Fe absorption was investigated. Furthermore, Fe absorption in the distal intestine was determined. In a randomized, double-blinded crossover trial eighteen healthy young women aged 22 (SD 3) years with low Fe status (serum ferritin < 30 microg/l) were served the two test gruels, extrinsically labelled with 59Fe and served with two enterocoated capsules (containing 55Fe(II) and 55Fe(III), respectively) designed to disintegrate in the ileum. The meals were consumed on two consecutive days, e.g. in the order AA followed by BB in a second period. Non-haem Fe absorption was determined from 59Fe whole-body retention and isotope activities in blood samples. The concentrations of Fe, lactate, phytate, and polyphenols, and the pH were similar in the heat-inactivated lactic acid-fermented oat gruels with and without added L. plantarum 299v, and no difference in Fe absorption was observed between the test gruels (1.4 and 1.3%, respectively). Furthermore, no absorption of Fe in the distal intestine was observed. In conclusion, addition of viable, lyophilized lactobacillus to a heat-inactivated lactic acid-fermented oat gruel does not affect Fe absorption, and no absorption seems to occur in the distal part of the intestine from low Fe bioavailability meals in these women.

  5. Redox chemistry of a binary transition metal oxide (AB 2 O 4 ): a study of the Cu 2+ /Cu 0 and Fe 3+ /Fe 0 interconversions observed upon lithiation in a CuFe 2 O 4 battery using X-ray absorption spectroscopy

    DOE PAGES

    Cama, Christina A.; Pelliccione, Christopher J.; Brady, Alexander B.; ...

    2016-06-06

    Copper ferrite, CuFe 2 O 4, is a promising candidate for application as a high energy electrode material in lithium based batteries. Mechanistic insight on the electrochemical reduction and oxidation processes was gained through the first X-ray absorption spectroscopic study of lithiation and delithiation of CuFe 2 O 4. A phase pure tetragonal CuFe 2 O 4 material was prepared and characterized using laboratory and synchrotron X-ray diffraction, Raman spectroscopy, and transmission electron microscopy. We used ex situ X-ray absorption spectroscopy (XAS) measurements to study the battery redox processes at the Fe and Cu K-edges, using X-ray absorption near-edge structuremore » (XANES), extended X-ray absorption fine structure (EXAFS), and transmission X-ray microscopy (TXM) spectroscopies. EXAFS analysis showed upon discharge, an initial conversion of 50% of the copper(II) to copper metal positioned outside of the spinel structure, followed by a migration of tetrahedral iron(III) cations to octahedral positions previously occupied by copper(II). Then, upon charging to 3.5 V, the copper metal remained in the metallic state, while iron metal oxidation to iron(III) was achieved. Our results provide new mechanistic insight regarding the evolution of the local coordination environments at the iron and copper centers upon discharging and charging.« less

  6. Redox chemistry of a binary transition metal oxide (AB2O4): a study of the Cu(2+)/Cu(0) and Fe(3+)/Fe(0) interconversions observed upon lithiation in a CuFe2O4 battery using X-ray absorption spectroscopy.

    PubMed

    Cama, Christina A; Pelliccione, Christopher J; Brady, Alexander B; Li, Jing; Stach, Eric A; Wang, Jiajun; Wang, Jun; Takeuchi, Esther S; Takeuchi, Kenneth J; Marschilok, Amy C

    2016-06-22

    Copper ferrite, CuFe2O4, is a promising candidate for application as a high energy electrode material in lithium based batteries. Mechanistic insight on the electrochemical reduction and oxidation processes was gained through the first X-ray absorption spectroscopic study of lithiation and delithiation of CuFe2O4. A phase pure tetragonal CuFe2O4 material was prepared and characterized using laboratory and synchrotron X-ray diffraction, Raman spectroscopy, and transmission electron microscopy. Ex situ X-ray absorption spectroscopy (XAS) measurements were used to study the battery redox processes at the Fe and Cu K-edges, using X-ray absorption near-edge structure (XANES), extended X-ray absorption fine structure (EXAFS), and transmission X-ray microscopy (TXM) spectroscopies. EXAFS analysis showed upon discharge, an initial conversion of 50% of the copper(ii) to copper metal positioned outside of the spinel structure, followed by a migration of tetrahedral iron(iii) cations to octahedral positions previously occupied by copper(ii). Upon charging to 3.5 V, the copper metal remained in the metallic state, while iron metal oxidation to iron(iii) was achieved. The results provide new mechanistic insight regarding the evolution of the local coordination environments at the iron and copper centers upon discharging and charging.

  7. Synthesis of Unsupported d(1)-d(x) Oxido-Bridged Heterobimetallic Complexes Containing V(IV): A New Direction for Metal-to-Metal Charge Transfer.

    PubMed

    Wu, Xinyuan; Huang, Tao; Lekich, Travis T; Sommer, Roger D; Weare, Walter W

    2015-06-01

    Heterobimetallic complexes composed only of first-row transition metals [(TMTAA)V(IV)═O→M(II)Py5Me2](OTf)2 (TMTAA = 7,16-dihydro-6,8,15,17-tetramethyldibenzo[b,i][1,4,8,11]tetraazacyclotetradecine; Py5Me2 = 2,6-bis(1,1-bis(2-pyridyl)ethyl)pyridine; M = Mn(II), Fe(II), Co(II), Ni(II), Cu(II); OTf = trifluoromethanesulfonate) have been synthesized through a dative interaction between a terminal oxido and M(II) metal centers. This is the first series of V(IV)═O→M(II) heterobimetallic complexes containing an unsupported oxido bridge. Among these five complexes, only V(IV)═O→Fe(II) (3b) has a clear new absorption band upon formation of the dinuclear species (502 nm, ε = 1700 M(-1) cm(-1)). This feature is assigned to a metal-to-metal charge transfer (MMCT) transition from V(IV) to Fe(II), which forms a V(V)-O-Fe(I) excited state. This assignment is supported by electrochemical data, electronic absorption profiles, and resonance Raman spectroscopy and represents the first report of visible-light induced MMCT in a heterobimetallic oxido-bridged molecule where the electron originates on a d(1) metal center.

  8. Spectrophotometric determination of dopamine hydrochloride in pharmaceutical, banana, urine and serum samples by potassium ferricyanide-Fe(III).

    PubMed

    Guo, Li; Zhang, Yan; Li, Quanmin

    2009-12-01

    In the present work, we developed a simple, sensitive and inexpensive method to determine dopamine hydrochloride using potassium ferricyanide-Fe(III) by spectrophotometry. The results show that Fe(III) is deoxidized to Fe(II) by dopamine hydrochloride at pH 4.0, and then Fe(II) reacts with potassium ferricyanide to form a soluble prussian blue (KFe(III)[Fe(II)(CN)6]). The absorbance of this product was monitored over time using a spectrophotometer at an absorption maximum of 735 nm, and the amount of dopamine hydrochloride could be calculated based on the absorbance. A good linear relationship of the concentration of dopamine hydrochloride versus absorbance was observed, and a linear regression equation of A = 0.022 + 0.16921C (microg mL(-1)) was obtained. Moreover, the apparent molar absorption coefficient for the indirect determination of dopamine hydrochloride was 3.2 x 10(4) L mol(-1) cm(-1). This described method has been used to determine dopamine hydrochloride in pharmaceutical, banana, urine and serum samples with satisfactory results.

  9. The HST-pNFL program: Mapping the Fluorescent Emission of Galactic Outflows

    NASA Astrophysics Data System (ADS)

    Heckman, Timothy

    2017-08-01

    Galactic outflows associated with star formation are believed to play a crucial role in the evolution of galaxies and the IGM. Most of our knowledge about outflows has come from down-the-barrel UV absorption spectroscopy of star-forming galaxies. However, absorption-line data alone provide only indirect information about the radial structure of the gas flows, which introduces large systematic uncertainties in some of the most important quantities, such as the outflow rate, the mass loading factor, and the momentum, metal, and energy fluxes. Recent spectroscopic observations of star-forming galaxies with large (projected physical) apertures have revealed non-resonant (fluorescent) emission in the UV, e.g., FeII* and SiII*, that can be naturally produced by spatially extended emission from the same outflowing material traced in absorption. Encouraged by the most recent observations of FeII* emission by the SDSS-IV/eBOSS survey (Zhu et al. 2015), we propose a pilot program to use narrow-band filter UVIS F280N images to map the extended FeII* 2626 and 2613 fluorescent emission in a carefully-chosen sample of 4 starburst galaxies at z=0.065, and COS G130M to obtain down-the- barrel spectra for SiII absorption and SiII* emission. This HST pilot program can provide unique information about the spatial structure of galactic outflows and can potentially lead to a revolution in our understanding of outflow physics and its impact on galaxies and the IGM.

  10. A search for ultraviolet circumstellar gas absorption features in alpha Piscis Austrinus (Fomalhaut), a possible Beta Pictoris-like system

    NASA Technical Reports Server (NTRS)

    Cheng, K.-P.; Bruhweiler, Fred C.; Kondo, Yoji

    1994-01-01

    Archival high-dispersion International Ultraviolet Explorer (IUE) spectra have been used to search for circumstellar gas absorption features in alpha PsA (A3 V), a nearby (6.7 pc) proto-planetary system candidate. Recent sub-millimeter mapping observations around the region of alpha PsA indicate a spatially resolved dust disk like the one seen around Beta Pic. To determine how closely this putative disk resembles that of Beta Pic, we have searched for signatures of circumstellar gaseous absorption in all the available IUE high-dispersion data of alpha PsA. Examination of co-added IUE spectra shows weak circumstellar absorptions from excited levels in the resonance multiplet of Fe II near 2600 A. We also conclude that the sharp C I feature near 1657 A, previously identified as interstellar absorption toward alpha PsA, likely has a circumstellar origin. However, because the weakness of these absorption features, we will consider the presence of circumstellar gas as tentative and should be verified by using the Goddard High-Resolution Spectrograph aboard the Hubble Space Telescope. No corresponding circumstellar absorption is detected in higher ionization Fe III and Al III. Since the collisionally ionized nonphotospheric Al III resonance absorption seen in Beta Pic is likely formed close to the stellar surface, its absence in the UV spectra of alpha PsA could imply that, in contrast with Beta Pic, there is no active gaseous disk infall onto the central star. In the alpha PsA gaseous disk, if we assume a solar abundance for iron and all the iron is in the form of Fe II, plus a disk temperature of 5000 K, the Fe II UV1 absorption at 2611.8743 A infers a total hydrogen column density along the line of sight through the circumstellar disk of N(H) approximately equals 3.8 x 10(exp 17)/cm.

  11. Laser initiation of Fe(II) complexes of 4-nitro-pyrazolyl substituted tetrazine ligands

    DOE PAGES

    Myers, Thomas Winfield; Brown, Kathryn Elizabeth; Chavez, David E.; ...

    2017-02-01

    Here, the synthesis and characterization of new 1,2,4-triazolyl and 4-nitro-pyrazolyl substituted tetrazine ligands has been achieved. The strongly electron deficient 1,2,4-triazolyl substituted ligands did not coordinate Fe(II) metal centers, while the mildly electron deficient 4-nitro-pyrazolyl substituted ligands did coordinate Fe(II) metal centers in a 2:1 ratio of ligand to metal. The thermal stability and mechanical sensitivity characteristics of the complexes are similar to the conventional explosive pentaerythritol tetranitrate. The complexes had strong absorption in the visible region of the spectrum that extended into the near-infrared. In spite of having improved oxygen balances, increased mechanical sensitivity, and similar absorption of NIRmore » light to recently reported Fe(II) tetrazine complexes, these newly synthesized explosives were more difficult to initiate with Nd:YAG pulsed laser light. More specifically, the complexes required lower densities (0.9 g/cm 3) to initiate at the same threshold utilized to initiate previous materials at higher densities (1.05 g/cm 3).« less

  12. Effect of Iron(II) on Arsenic Sequestration by δ-MnO 2 : Desorption Studies Using Stirred-Flow Experiments and X-Ray Absorption Fine-Structure Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yun; Li, Wei; Sparks, Donald L.

    2015-10-18

    Arsenic (As) mobility in the environment is greatly affected by its oxidation state and the degree to which it is sorbed on metal oxide surfaces. Manganese (Mn) and iron (Fe) oxides are ubiquitous solids in terrestrial systems and have high sorptive capacities for many trace metals, including As. Although numerous studies have studied the effects of As adsorption and desorption onto Fe and Mn oxides individually, the fate of As within mixed systems representative of natural environments has not been resolved. In this research, As(III) was initially reacted with a poorly crystalline phyllomanganate (δ-MnO 2) in the presence of Fe(II)more » prior to desorption. This initial reaction resulted in the sorption of both As(III) and As(V) on mixed Fe/Mn-oxides surfaces. A desorption study was carried out using two environmentally significant ions, phosphate (PO 4 3–) and calcium (Ca 2+). Both a stirred-flow technique and X-ray absorption fine-structure spectroscopy (XAFS) analysis were used to investigate As desorption behavior. Results showed that when As(III)/Fe(II) = 1:1 in the initial reaction, only As(V) was desorbed, agreeing with a previous study showing that As(III) is not associated with the Fe/Mn-oxides. When As(III)/Fe(II) = 1:10 in the initial reaction, both As(III) and As(V) can be desorbed from the Fe/Mn-oxide surface, and more As(III) is desorbed than As(V). Neither of the desorbents used in this study completely removed As(III) or As(V) from the Fe/Mn-oxides surface. However, the As desorption fraction decreases with increasing Fe(II) concentration in the initial reactions.« less

  13. Effect of Iron(II) on Arsenic Sequestration by δ-MnO2: Desorption Studies Using Stirred-Flow Experiments and X-Ray Absorption Fine-Structure Spectroscopy.

    PubMed

    Wu, Yun; Li, Wei; Sparks, Donald L

    2015-11-17

    Arsenic (As) mobility in the environment is greatly affected by its oxidation state and the degree to which it is sorbed on metal oxide surfaces. Manganese (Mn) and iron (Fe) oxides are ubiquitous solids in terrestrial systems and have high sorptive capacities for many trace metals, including As. Although numerous studies have studied the effects of As adsorption and desorption onto Fe and Mn oxides individually, the fate of As within mixed systems representative of natural environments has not been resolved. In this research, As(III) was initially reacted with a poorly crystalline phyllomanganate (δ-MnO2) in the presence of Fe(II) prior to desorption. This initial reaction resulted in the sorption of both As(III) and As(V) on mixed Fe/Mn-oxides surfaces. A desorption study was carried out using two environmentally significant ions, phosphate (PO4(3-)) and calcium (Ca(2+)). Both a stirred-flow technique and X-ray absorption fine-structure spectroscopy (XAFS) analysis were used to investigate As desorption behavior. Results showed that when As(III)/Fe(II) = 1:1 in the initial reaction, only As(V) was desorbed, agreeing with a previous study showing that As(III) is not associated with the Fe/Mn-oxides. When As(III)/Fe(II) = 1:10 in the initial reaction, both As(III) and As(V) can be desorbed from the Fe/Mn-oxide surface, and more As(III) is desorbed than As(V). Neither of the desorbents used in this study completely removed As(III) or As(V) from the Fe/Mn-oxides surface. However, the As desorption fraction decreases with increasing Fe(II) concentration in the initial reactions.

  14. BI Crucis - A new symbiotic star

    NASA Technical Reports Server (NTRS)

    Henize, K. G.; Carlson, E. D.

    1980-01-01

    A Mount Stromlo spectrogram of BI Cru taken in 1962 shows emission lines of H I, He I, He II, Fe II, N III, and the forbidden O III, forbidden Ne III, and forbidden S II transitions superposed on a weak bluish continuum. A spectrogram by Allen in 1974 shows emission lines of H I and Fe II and possibly weak He I, forbidden Fe II, and forbidden O I lines superposed on an M-star absorption spectrum. The object is evidently a symbiotic star showing large variations in its spectral character. Significant differences exist in the mean ion velocities and appear to be correlated with ionization potential.

  15. The role of defects in Fe(II) – goethite electron transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrade de Notini, Luiza; Latta, Drew; Neumann, Anke

    Despite accumulating experimental evidence for Fe(II)-Fe(III) oxide electron transfer, computational chemical calculations suggest that oxidation of sorbed Fe(II) is not energetically feasible unless defects are present. Here we used isotope specific 57Fe Mössbauer spectroscopy to investigate whether Fe(II)-goethite electron transfer is influenced by defects. Specifically, we heated the mineral to try to anneal the goethite surface and ground goethite to try to create defects. We found that heating goethite results in less oxidation of sorbed Fe(II) by goethite. When goethite was re-ground after heating, electron transfer was partially restored. X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) ofmore » heated and ground goethite confirm that heating and grinding alter the surface structure of the goethite. We propose that the heating process annealed the surface and decreased the number of sites where electron transfer could occur. Our experimental findings suggest that surface defects play an important role in Fe(II)-goethite electron transfer as suggested by computational calculations. Our finding that defects influence heterogeneous Fe(II)-goethite electron transfer has important implications for Fe(II) driven recrystallization of Fe oxides, as well as X and Y.« less

  16. N2O production in the Fe(II)(EDTA)-NO reduction process: the effects of carbon source and pH.

    PubMed

    Chen, Jun; Wang, Lei; Zheng, Ji; Chen, Jianmeng

    2015-07-01

    Chemical absorption-biological reduction (BioDeNOx), which uses Fe(II)(EDTA) as a complexing agent for promoting the mass transfer efficiency of NO from gas to water, is a promising technology for removing nitric oxide (NO) from flue gases. The carbon source and pH are important parameters for Fe(II)(EDTA)-NO (the production of absorption) reduction and N2O emissions from BioDeNOx systems. Batch tests were performed to evaluate the effects of four different carbon sources (i.e., methanol, ethanol, sodium acetate, and glucose) on Fe(II)(EDTA)-NO reduction and N2O emissions at an initial pH of 7.2 ± 0.2. The removal efficiency of Fe(II)(EDTA)-NO was 93.9%, with a theoretical rate of 0.77 mmol L(-1) h(-1) after 24 h of operation. The highest N2O production was 0.025 mmol L(-1) after 3 h when glucose was used as the carbon source. The capacities of the carbon sources to enhance the activity of the Fe(II)(EDTA)-NO reductase enzyme decreased in the following order based on the C/N ratio: glucose > ethanol > sodium acetate > methanol. Over the investigated pH range of 5.5-8.5, the Fe(II)(EDTA)-NO removal efficiency was highest at a pH of 7.5, with a theoretical rate of 0.88 mmol L(-1) h(-1). However, the N2O production was lowest at a pH of 8.5. The primary effect of pH on denitrification resulted from the inhibition of nosZ in acidic conditions.

  17. Direct Detection of Fe(II) in Extracellular Polymeric Substances (EPS) at the Mineral-Microbe Interface in Bacterial Pyrite Leaching

    PubMed Central

    Mitsunobu, Satoshi; Zhu, Ming; Takeichi, Yasuo; Ohigashi, Takuji; Suga, Hiroki; Jinno, Muneaki; Makita, Hiroko; Sakata, Masahiro; Ono, Kanta; Mase, Kazuhiko; Takahashi, Yoshio

    2016-01-01

    We herein investigated the mechanisms underlying the contact leaching process in pyrite bioleaching by Acidithiobacillus ferrooxidans using scanning transmission X-ray microscopy (STXM)-based C and Fe near edge X-ray absorption fine structure (NEXAFS) analyses. The C NEXAFS analysis directly showed that attached A. ferrooxidans produces polysaccharide-abundant extracellular polymeric substances (EPS) at the cell-pyrite interface. Furthermore, by combining the C and Fe NEXAFS results, we detected significant amounts of Fe(II), in addition to Fe(III), in the interfacial EPS at the cell-pyrite interface. A probable explanation for the Fe(II) in detected EPS is the leaching of Fe(II) from the pyrite. The detection of Fe(II) also indicates that Fe(III) resulting from pyrite oxidation may effectively function as an oxidizing agent for pyrite at the cell-pyrite interface. Thus, our results imply that a key role of Fe(III) in EPS, in addition to its previously described role in the electrostatic attachment of the cell to pyrite, is enhancing pyrite dissolution. PMID:26947441

  18. The outer atmospheres of cool M giants: High-dispersion ultraviolet spectra of Rho Per, 2 Cen, and g Her

    NASA Technical Reports Server (NTRS)

    Eaton, Joel A.; Johnson, Hollis R.

    1986-01-01

    Long duration IUE spectra were obtained to extend coverage of cool giants studied in the ultraviolet at high dispersion to M6. The chromospheric spectra of the three stars, which consist of a profusion of Fe II lines and a few lines of Mg II, Mg I, Al II, C II, C I, Cr II, and Fe I, are remarkably similar, both among themselves and with respect to stars of earlier spectral type. These lines present a picture of a warm chromosphere that is static in the average but may be far from uniform in density and ionization. The Mg II emission lines of 2 Cen show 2 unresolved absorption components, the shorter at the velocity of the local interstellar medium. The longer is blueshifted from the star by 12 to 18 km/sec and must be one of very few observed shell lines uncontaminated by interstellar absorption.

  19. Iron L-edge X-ray Absorption Spectroscopy of Oxy-Picket Fence Porphyrin: Experimental Insight into Fe-O2 Bonding

    PubMed Central

    Wilson, Samuel A.; Kroll, Thomas; Decreau, Richard A.; Hocking, Rosalie K.; Lundberg, Marcus; Hedman, Britt; Hodgson, Keith O.; Solomon, Edward I.

    2013-01-01

    The electronic structure of the Fe–O2 center in oxy-hemoglobin and oxy-myoglobin is a long-standing issue in the field of bioinorganic chemistry. Spectroscopic studies have been complicated by the highly delocalized nature of the porphyrin and calculations require interpretation of multi-determinant wavefunctions for a highly covalent metal site. Here, iron L-edge X-ray absorption spectroscopy (XAS), interpreted using a valence bond configuration interaction (VBCI) multiplet model, is applied to directly probe the electronic structure of the iron in the biomimetic Fe–O2 heme complex [Fe(pfp)(1-MeIm)O2] (pfp = meso-tetra(α,α,α,α-o-pivalamidophenyl) porphyrin or TpivPP). This method allows separate estimates of σ-donor, π-donor, and π-acceptor interactions through ligand to metal charge transfer (LMCT) and metal to ligand charge transfer (MLCT) mixing pathways. The L-edge spectrum of [Fe(pfp)(1-MeIm)O2] is further compared to those of [FeII(pfp)(1-MeIm)2], [FeII(pfp)], and [FeIII(tpp)(ImH)2]Cl (tpp = meso-tetraphenylporphyrin) which have FeII S = 0, FeII S = 1 and FeIII S = 1/2 ground states, respectively. These serve as references for the three possible contributions to the ground state of oxy-pfp. The Fe–O2 pfp site is experimentally determined to have both significant σ-donation and a strong π-interaction of the O2 with the iron, with the latter having implications with respect to the spin polarization of the ground state. PMID:23259487

  20. Effect of self-absorption correction on surface hardness estimation of Fe-Cr-Ni alloys via LIBS.

    PubMed

    Ramezanian, Zahra; Darbani, Seyyed Mohammad Reza; Majd, Abdollah Eslami

    2017-08-20

    The effect of self-absorption was investigated on the estimation of surface hardness of Fe-Cr-Ni metallic alloys by the laser-induced breakdown spectroscopy (LIBS) technique. For this purpose, the linear relationship between the ratio of chromium ionic to atomic line intensities (CrII/CrI) and surface hardness was studied, both before and after correcting the self-absorption effect. The correlation coefficient significantly increased from 47% to 90% after self-absorption correction. The results showed the measurements of surface hardness using LIBS can be more accurate and valid by correcting the self-absorption effect.

  1. Characterization of the kinetics of Fe (II) binding by the R2 protein subunit of E. coli ribonucleotide reductase

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Dipankar; , Joseph Martin Bollinger, Jr.

    2008-07-01

    The kinetics of Fe(II) binding to Escherichia coli Ribonucleotide reductase (R2) has been studied using rapid kinetics techniques including chemical quenched flow (CQF) Mössbauer spectroscopy. Based on the stopped flow absorption (SF-Abs) and CQF Mössbauer spectroscopy results, the pre-steady kinetics of binding of Fe(II) to the two sites A and B on R2 have been established with attendant conformational changes. Fe (II) binds to Site B tighter and faster and these and other results provide important information towards the di-iron cofactor assembly mechanism in R2 and could have possible implications for the development of modified and new anticancer and antiviral drugs.

  2. Sorption and reduction of selenite on chlorite surfaces in the presence of Fe(II) ions.

    PubMed

    Baik, Min Hoon; Lee, Seung Yeop; Jeong, Jongtae

    2013-12-01

    The sorption and reduction of selenite on chlorite surfaces in the presence of Fe(II) ions were investigated as a function of pH, Se(IV) concentration, and Fe(II) concentration under an anoxic condition. The sorption of Se(IV) onto chlorite surfaces followed the Langmuir isotherm regardless of the presence of Fe(II) ions in the solution. The Se(IV) sorption was observed to be very low at all pH values when the solution was Fe(II)-free or the concentration of Fe(II) ions was as low as 0.5 mg/L. However, the Se(IV) sorption was enhanced at a pH > 6.5 when the Fe(II) concentration was higher than 5 mg/L because of the increased sorption of Fe(II) onto the chlorite surfaces. XANES (X-ray absorption near edge structure) spectra of the Se K-edge showed that most of the sorbed Se(IV) was reduced to Se(0) by Fe(II) sorbed onto the chlorite surfaces, especially at pH > 9. The combined results of field-emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD) also showed that elemental selenium and goethite were formed and precipitated on the chlorite surfaces during the sorption of selenite. Consequently it can be concluded that Se(IV) can be reduced to Se(0) in the presence of Fe(II) ions by the surface catalytic oxidation of Fe(II) into Fe(III) and the formation of goethite at neutral and particularly alkaline conditions. Thus the mobility of selenite in groundwater is expected to be reduced by the presence of a relatively higher concentration of Fe(II) in subsurface environments. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Spectroscopic characterization of mononitrosyl complexes in heme-nonheme diiron centers within the myoglobin scaffold (FeBMbs): relevance to denitrifying NO reductase†

    PubMed Central

    Hayashi, Takahiro; Miner, Kyle D.; Yeung, Natasha; Lin, Ying-Wu; Lu, Yi; Moënne-Loccoz, Pierre

    2011-01-01

    Denitrifying NO reductases are evolutionarily related to the superfamily of heme-copper terminal oxidases. These transmembrane protein complexes utilize a heme-nonheme diiron center to reduce two NO molecules to N2O. To understand this reaction, the diiron site has been modeled using sperm whale myoglobin as a scaffold and mutating distal residues Leu-29 and Phe-43 to histidines, and Val-68 to a glutamic acid to create a nonheme FeB site. The impact of incorporation of metal ions at this engineered site on the reaction of the ferrous heme with one NO was examined by UV-vis absorption, EPR, resonance Raman, and FTIR spectroscopies. UV-vis absorption and resonance Raman spectra demonstrate that the first NO molecule binds to the ferrous heme, but while the apoproteins and CuI- or ZnII-loaded proteins show characteristic EPR signatures of S = 1/2 six-coordinate heme {FeNO}7 species observable at liquid nitrogen temperature, the FeII-loaded proteins are EPR silent at ≥ 30 K. Vibrational modes from the heme [Fe-N-O] unit are identified in the RR and FTIR spectra using 15NO and 15N18O. The apo- and CuI-bound proteins exhibit ν(FeNO) and ν(NO) that are only marginally distinct from those reported for native myoglobin. However, binding of FeII at the FeB site shifts the heme ν(FeNO) by +17 cm-1 and the ν(NO) by -50 cm-1 to 1549 cm-1. This low ν(NO) is without precedent for a six-coordinate heme {FeNO}7 species and suggests that the NO group adopts a strong nitroxyl character stabilized by electrostatic interaction with the nearby nonheme FeII. Detection of a similarly low ν(NO) in the ZnII-loaded protein supports this interpretation. PMID:21634416

  4. The reactivity of Fe(II) associated with goethite formed during short redox cycles toward Cr(VI) reduction under oxic conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomaszewski, Elizabeth J.; Lee, Seungyeol; Rudolph, Jared

    Chromium (Cr) is a toxic metal that causes a myriad of health problems and enters the environment as a result of anthropogenic activities and/or natural processes. The toxicity and solubility of chromium is linked to its oxidation state; Cr(III) is poorly soluble and relatively nontoxic, while Cr(VI) is soluble and a known carcinogen. Solid Fe(II) in iron-bearing minerals, such as pyrite, magnetite, and green rusts, reduce the oxidation state of chromium, reducing its toxicity and mobility. However, these minerals are not the only potential sources of solid-associated Fe(II) available for Cr(VI) reduction. For example, ferric (Fe(III)) (hydr)oxides, such as goethitemore » or hematite, can have Fe(II) in the solid without phase transformation; however, the reactivity of Fe(II) within Fe(III) (hydr)oxides with contaminants, has not been previously investigated. Here, we cyclically react goethite with dissolved Fe(II) followed by dissolved O2, leading to the formation of reactive Fe(II) associated with goethite. In separate reactors, the reactivity of this Fe(II) is probed under oxic conditions, by exposure to chromate (CrO42 -) after either one, two, three or four redox cycles. Cr is not present during redox cycling; rather, it is introduced to a subset of the solid after each oxidation half-cycle. Analysis of X-ray absorption near edge structure (XANES) spectra reveals that the extent of Cr(VI) reduction to Cr(III) depends not only on solid Fe(II) content but also surface area and mean size of ordered crystalline domains, determined by BET surface area analysis and X-ray diffraction (XRD), respectively. Shell-by-shell fitting of the extended X-ray absorption fine structure (EXAFS) spectra demonstrates chromium forms both single and double corner sharing complexes on the surface of goethite, in addition to sorbed Cr(III) species. Finally, transmission electron microscope (TEM) imaging and X-ray energy-dispersive spectroscopy (EDS) illustrate that Cr preferentially localizes on the (100) face of goethite, independent of the number of redox cycles goethite undergoes. This work demonstrates that under oxic conditions, solid Fe(II) associated with goethite resulting from rapid redox cycling is reactive and available for electron transfer to Cr(VI), suggesting Fe(III) (hydr)oxides may act as reservoirs of reactive electron density, even in oxygen saturated environments.« less

  5. Kinetics and Products of Chromium(VI) Reduction by Iron(II/III)-Bearing Clay Minerals.

    PubMed

    Joe-Wong, Claresta; Brown, Gordon E; Maher, Kate

    2017-09-05

    Hexavalent chromium is a water-soluble pollutant, the mobility of which can be controlled by reduction of Cr(VI) to less soluble, environmentally benign Cr(III). Iron(II/III)-bearing clay minerals are widespread potential reductants of Cr(VI), but the kinetics and pathways of Cr(VI) reduction by such clay minerals are poorly understood. We reacted aqueous Cr(VI) with two abiotically reduced clay minerals: an Fe-poor montmorillonite and an Fe-rich nontronite. The effects of ionic strength, pH, total Fe content, and the fraction of reduced structural Fe(II) [Fe(II)/Fe(total)] were examined. The last variable had the largest effect on Cr(VI) reduction kinetics: for both clay minerals, the rate constant of Cr(VI) reduction varies by more than 3 orders of magnitude with Fe(II)/Fe(total) and is described by a linear free energy relationship. Under all conditions examined, Cr and Fe K-edge X-ray absorption near-edge structure spectra show that the main Cr-bearing product is a Cr(III)-hydroxide and that Fe remains in the clay structure after reacting with Cr(VI). This study helps to quantify our understanding of the kinetics of Cr(VI) reduction by Fe(II/III)-bearing clay minerals and may improve predictions of Cr(VI) behavior in subsurface environments.

  6. Time-resolved x-ray absorption spectroscopy: Watching atoms dance

    NASA Astrophysics Data System (ADS)

    Milne, Chris J.; Pham, Van-Thai; Gawelda, Wojciech; van der Veen, Renske M.; El Nahhas, Amal; Johnson, Steven L.; Beaud, Paul; Ingold, Gerhard; Lima, Frederico; Vithanage, Dimali A.; Benfatto, Maurizio; Grolimund, Daniel; Borca, Camelia; Kaiser, Maik; Hauser, Andreas; Abela, Rafael; Bressler, Christian; Chergui, Majed

    2009-11-01

    The introduction of pump-probe techniques to the field of x-ray absorption spectroscopy (XAS) has allowed the monitoring of both structural and electronic dynamics of disordered systems in the condensed phase with unprecedented accuracy, both in time and in space. We present results on the electronically excited high-spin state structure of an Fe(II) molecular species, [FeII(bpy)3]2+, in aqueous solution, resolving the Fe-N bond distance elongation as 0.2 Å. In addition an analysis technique using the reduced χ2 goodness of fit between FEFF EXAFS simulations and the experimental transient absorption signal in energy space has been successfully tested as a function of excited state population and chemical shift, demonstrating its applicability in situations where the fractional excited state population cannot be determined through other measurements. Finally by using a novel ultrafast hard x-ray 'slicing' source the question of how the molecule relaxes after optical excitation has been successfully resolved using femtosecond XANES.

  7. Fe(II) sorption on pyrophyllite: Effect of structural Fe(III) (impurity) in pyrophyllite on nature of layered double hydroxide (LDH) secondary mineral formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Starcher, Autumn N.; Li, Wei; Kukkadapu, Ravi K.

    Fe(II)-Al(III)-LDH (layered double hydroxide) phases have been shown to form from reactions of aqueous Fe(II) with Fe-free Al-bearing minerals (phyllosilicate/clays and Al-oxides). To our knowledge, the effect of small amounts of structural Fe(III) impurities in “neutral” clays on such reactions, however, were not studied. In this study to understand the role of structural Fe(III) impurity in clays, laboratory batch studies with pyrophyllite (10 g/L), an Al-bearing phyllosilicate, containing small amounts of structural Fe(III) impurities and 0.8 mM and 3 mM Fe(II) (both natural and enriched in 57Fe) were carried out at pH 7.5 under anaerobic conditions (4% H2 – 96%more » N2 atmosphere). Samples were taken up to 4 weeks for analysis by Fe-X-ray absorption spectroscopy and 57Fe Mössbauer spectroscopy. In addition to the precipitation of Fe(II)-Al(III)-LDH phases as observed in earlier studies with pure minerals (no Fe(III) impurities in the minerals), the analyses indicated formation of small amounts of Fe(III) containing solid(s), most probably hybrid a Fe(II)-Al(III)/Fe(III)-LDH phase. The mechanism of Fe(II) oxidation was not apparent but most likely was due to interfacial electron transfer from the sorbed Fe(II) to the structural Fe(III) and/or surface-sorption-induced electron-transfer from the sorbed Fe(II) to the clay lattice. Increase in the Fe(II)/Al ratio of the LDH with reaction time further indicated the complex nature of the samples. This research provides evidence for the formation of both Fe(II)-Al(III)-LDH and Fe(II)-Fe(III)/Al(III)-LDH-like phases during reactions of Fe(II) in systems that mimic the natural environments. Better understanding Fe phase formation in complex laboratory studies will improve models of natural redox systems.« less

  8. Fractionation of Fe isotopes during Fe(II) oxidation by a marine photoferrotroph is controlled by the formation of organic Fe-complexes and colloidal Fe fractions

    NASA Astrophysics Data System (ADS)

    Swanner, Elizabeth D.; Wu, Wenfang; Schoenberg, Ronny; Byrne, James; Michel, F. Marc; Pan, Yongxin; Kappler, Andreas

    2015-09-01

    Much interest exists in finding mineralogical, organic, morphological, or isotopic biosignatures for Fe(II)-oxidizing bacteria (FeOB) that are retained in Fe-rich sediments, which could indicate the activity of these organisms in Fe-rich seawater, more common in the Precambrian Era. To date, the effort to establish a clear Fe isotopic signature in Fe minerals produced by Fe(II)-oxidizing metabolisms has been thwarted by the large kinetic fractionation incurred as freshly oxidized aqueous Fe(III) rapidly precipitates as Fe(III) (oxyhydr)oxide minerals at near neutral pH. The Fe(III) (oxyhydr)oxide minerals resulting from abiotic Fe(II) oxidation are isotopically heavy compared to the Fe(II) precursor and are not clearly distinguishable from minerals formed by FeOB isotopically. However, in marine hydrothermal systems and Fe(II)-rich springs the minerals formed are often isotopically lighter than expected considering the fraction of Fe(II) that has been oxidized and experimentally-determined fractionation factors. We measured the Fe isotopic composition of aqueous Fe (Feaq) and the final Fe mineral (Feppt) produced in batch experiment using the marine Fe(II)-oxidizing phototroph Rhodovulum iodosum. The δ56Feaq data are best described by a kinetic fractionation model, while the evolution of δ56Feppt appears to be controlled by a separate fractionation process. We propose that soluble Fe(III), and Fe(II) and Fe(III) extracted from the Feppt may act as intermediates between Fe(II) oxidation and Fe(III) precipitation. Based on 57Fe Mössbauer spectroscopy, extended X-ray absorption fine structure (EXAFS) spectroscopy, and X-ray total scattering, we suggests these Fe phases, collectively Fe(II/III)interm, may consist of organic-ligand bound, sorbed, and/or colloidal Fe(II) and Fe(III) mineral phases that are isotopically lighter than the final Fe(III) mineral product. Similar intermediate phases, formed in response to organic carbon produced by FeOB and inorganic ligands (e.g., SiO44- or PO43-), may form in many natural Fe(II)-oxidizing environments. We propose that the formation of these intermediates is likely to occur in organic-rich systems, and thus may have controlled the ultimate isotopic composition of Fe minerals in systems where Fe(II) was being oxidized by or in the presence of microbes in Earth's past.

  9. Tc(VII) and Cr(VI) Interaction with Naturally Reduced Ferruginous Smectite from a Redox Transition Zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qafoku, Odeta; Pearce, Carolyn I.; Neumann, Anke

    Fe(II)-rich clay minerals found in subsurface redox transition zones (RTZs) can serve as important source of electron equivalents limiting the transport of redox active contaminants. While most laboratory reactivity studies are based on reduced model clays, the reactivity of naturally reduced clays in field samples remains poorly explored. Characterization of the clay size fraction of a fine-grained unit from RTZ interface at the Hanford site, Washington, including mineralogy, crystal chemistry, and Fe(II)/(III) content, indicates that ferruginous montmorillonite is the dominant mineralogical component. Oxic and anoxic fractions differ significantly in Fe(II) concentration, but FeTOTAL remains constant demonstrating no Fe loss duringmore » reduction-oxidation cycling. At its native pH of 8.6, the anoxic fraction despite its significant Fe(II) (~23% of FeTOTAL), exhibits minimal reactivity with TcO4- and CrO42- and much slower reaction kinetics than that measured in studies with biologically/chemically reduced model clays. Reduction capacity is enhanced by added Fe(II) (if Fe(II)SORBED >8% clay Fe(II)LABILE), however the kinetics of this conceptually surface-mediated reaction remain sluggish. Surface-sensitive Fe L-edge X-ray absorption spectroscopy shows that Fe(II)SORBED and the resulting reducing equivalents are not available in the outermost few nanometers of clay surfaces. Slow kinetics thus appear related to diffusion-limited access to electron equivalents retained within clay mineral.« less

  10. Tc(VII) and Cr(VI) Interaction with Naturally Reduced Ferruginous Smectite from a Redox Transition Zone.

    PubMed

    Qafoku, Odeta; Pearce, Carolyn I; Neumann, Anke; Kovarik, Libor; Zhu, Mengqiang; Ilton, Eugene S; Bowden, Mark E; Resch, Charles T; Arey, Bruce W; Arenholz, Elke; Felmy, Andrew R; Rosso, Kevin M

    2017-08-15

    Fe(II)-rich clay minerals found in subsurface redox transition zones (RTZs) can serve as important sources of electron equivalents limiting the transport of redox-active contaminants. While most laboratory reactivity studies are based on reduced model clays, the reactivity of naturally reduced field samples remains poorly explored. Characterization of the clay size fraction of a fine-grained unit from the RTZ interface at the Hanford site, Washington, including mineralogy, crystal chemistry, and Fe(II)/(III) content, indicates that ferruginous montmorillonite is the dominant mineralogical component. Oxic and anoxic fractions differ significantly in Fe(II) natural content, but Fe TOTAL remains constant, demonstrating no Fe loss during its reduction-oxidation cyclings. At native pH of 8.6, the anoxic fraction, despite its significant Fe(II), ∼23% of Fe TOTAL , exhibits minimal reactivity with TcO 4 - and CrO 4 2- and much slower reaction kinetics than those measured in studies with biologically/chemically reduced model clays. Reduction capacity is enhanced by added/sorbed Fe(II) (if Fe(II) SORBED > 8% clay Fe(II) LABILE ); however, the kinetics of this conceptually surface-mediated reaction remain sluggish. Surface-sensitive Fe L-edge X-ray absorption spectroscopy shows that Fe(II) SORBED and the resulting reducing equivalents are not available in the outermost few nanometers of clay surfaces. Slow kinetics thus appear related to diffusion-limited access to electron equivalents retained within the clay mineral structure.

  11. Accelerated Oxygen Atom Transfer and C-H Bond Oxygenation by Remote Redox Changes in Fe3 Mn-Iodosobenzene Adducts.

    PubMed

    de Ruiter, Graham; Carsch, Kurtis M; Gul, Sheraz; Chatterjee, Ruchira; Thompson, Niklas B; Takase, Michael K; Yano, Junko; Agapie, Theodor

    2017-04-18

    We report the synthesis, characterization, and reactivity of [LFe 3 (PhPz) 3 OMn( s PhIO)][OTf] x (3: x=2; 4: x=3), where 4 is one of very few examples of iodosobenzene-metal adducts characterized by X-ray crystallography. Access to these rare heterometallic clusters enabled differentiation of the metal centers involved in oxygen atom transfer (Mn) or redox modulation (Fe). Specifically, 57 Fe Mössbauer and X-ray absorption spectroscopy provided unique insights into how changes in oxidation state (Fe III 2 Fe II Mn II vs. Fe III 3 Mn II ) influence oxygen atom transfer in tetranuclear Fe 3 Mn clusters. In particular, a one-electron redox change at a distal metal site leads to a change in oxygen atom transfer reactivity by ca. two orders of magnitude. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Structural Investigations of the Nickel-Induced Inhibition of Truncated Constructs of the JMJD2 Family of Histone Demethylases Using X-ray Absorption Spectroscopy

    PubMed Central

    Giri, Nitai Charan; Passantino, Lisa; Sun, Hong; Zoroddu, Maria Antonietta; Costa, Max; Maroney, Michael J.

    2013-01-01

    Occupational and/or environmental exposure to nickel has been implicated in various types of cancer, and in vitro exposure to nickel compounds results in accumulation of Ni(II) ions in cells. One of the major targets of Ni(II) ions inside the cell is Fe(II)- and αKG-dependent dioxygenases. Using JMJD2A and JMJD2C as examples, we show that JMJD2 family of histone demethylases, which are products of putative oncogenes as well as Fe(II)- and αKG-dependent dioxygenases, are highly sensitive to inhibition by Ni(II) ions. In this work, X-ray absorption spectroscopy (XAS) has been used to investigate the Fe(II) active site of truncated JMJD2A and JMJD2C (1 – 350 aa) in the presence and absence of αKG and/or substrate to obtain mechanistic details of the early steps in catalysis that precede O2 binding in histone demethylation by the JMJD2 family of histone demethylases. Zinc K-edge XAS has been performed on the resting JMJD2A (with iron in the active site) to confirm the presence of the expected structural zinc site. XAS of the Ni(II)-substituted enzymes has also been performed to investigate the inhibition of these enzymes by Ni(II) ions. Our XAS results indicate that the five-coordinate Fe(II) center in the resting enzyme is retained in the binary and ternary complexes. In contrast, the Ni(II) center is six-coordinate in the resting enzyme, binary and ternary complexes. XAS results indicate that both Fe(II) and Ni(II) bind αKG in the binary and ternary complexes. The electron density build-up that is observed at the Fe(II) center in the presence of αKG and substrate is not observed at the Ni(II) center. Thus, both electronic and steric factors are responsible for Ni-induced inhibition of the JMJD2 family of histone demethylases. Ni-induced inhibition of these enzymes may explain the alteration of the epigenetic mechanism of gene expression that is responsible for Ni-induced carcinogenesis. PMID:23692052

  13. Mechanisms of electron transfer from structrual Fe(II) in reduced nontronite to oxygen for production of hydroxyl radicals

    NASA Astrophysics Data System (ADS)

    Yuan, Songhu; Liu, Xixiang; Liao, Wenjuan; Zhang, Peng; Wang, Xiaoming; Tong, Man

    2018-02-01

    Production of hydroxyl radicals (radOH) has been recently revealed upon oxygenation of sediments in redox-dynamic subsurface environments. In particular, Fe(II)-bearing clay minerals are the major sediment components contributing to radOH production upon oxygenation, and the produced radOH can oxidize contaminants and inactivate bacteria. Whereas, the mechanisms of radOH production from oxygenation of Fe(II)-bearing clay minerals remain elusive. The objectives of this study were to identify the structural variation of Fe(II) entities during the oxidation of Fe(II)-bearing clay minerals by O2, and to unravel the mechanisms of electron transfer within the mineral structure and from mineral to O2 for radOH production. Nontronite (NAu-2, 23% Fe) which was chemically reduced to 54.5% Fe(II) in total Fe was used as a model Fe(II)-bearing clay mineral. Production of radOH and oxidation of Fe(II) were measured during the oxidation of reduced NAu-2 by O2. A wide spectrum of spectroscopic techniques, including Fourier transform infrared spectroscopy (FTIR), Fe K-edge X-ray absorption spectroscopy (XAS), Mössbauer spectra, and X-ray photoelectron spectroscopy (XPS), were employed to explore the structural variation of Fe(II) entities in NAu-2 and the electron transfer within NAu-2 and from NAu-2 to O2. For 180 min oxidation of 1 g/L reduced NAu-2, a biphasic radOH production was observed, being quick within the initial 15 min and slow afterwards. Production of radOH correlates well with oxidation of Fe(II) in the reduced NAu-2. Within the initial 15 min, trioctahedral Fe(II)-Fe(II)-Fe(II) entities and edge Fe(II) in the reduced NAu-2 were preferentially and quickly oxidized, and electrons from the interior Fe(II)-Fe(II)-Fe(II) entities were most likely ejected from the basal siloxane plane to O2. Meanwhile, trioctahedral Fe(II)-Fe(II)-Fe(II) entities were mainly transformed to dioctahedral Fe(II)-Fe(II) entities. When the time of oxygenation was longer than 15 min, dioctahedral Al-Fe(II), Fe(II)-Fe(II) and Fe(II)-Fe(III) entities were slowly oxidized, and the interior electrons were transported through Fe(II)-O-Fe(III) linkages to edges and then ejected to O2. In the slow stage of oxidation, electrons from interior Fe(II) accumulated towards the near surface layers and fueled the regeneration of edge Fe(II) for radOH production. In both stages, one-electron transfer mechanism with the involvement of O2rad - and H2O2 applies for radOH production from the oxidation of structural Fe(II) by O2. The mechanisms unraveled in this study advance the understanding of reactive oxygen species (ROS) production and structural Fe variation when Fe(II)-bearing clay minerals are oxygenated in redox-dynamic systems.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, Thomas Winfield; Brown, Kathryn Elizabeth; Chavez, David E.

    Here, the synthesis and characterization of new 1,2,4-triazolyl and 4-nitro-pyrazolyl substituted tetrazine ligands has been achieved. The strongly electron deficient 1,2,4-triazolyl substituted ligands did not coordinate Fe(II) metal centers, while the mildly electron deficient 4-nitro-pyrazolyl substituted ligands did coordinate Fe(II) metal centers in a 2:1 ratio of ligand to metal. The thermal stability and mechanical sensitivity characteristics of the complexes are similar to the conventional explosive pentaerythritol tetranitrate. The complexes had strong absorption in the visible region of the spectrum that extended into the near-infrared. In spite of having improved oxygen balances, increased mechanical sensitivity, and similar absorption of NIRmore » light to recently reported Fe(II) tetrazine complexes, these newly synthesized explosives were more difficult to initiate with Nd:YAG pulsed laser light. More specifically, the complexes required lower densities (0.9 g/cm 3) to initiate at the same threshold utilized to initiate previous materials at higher densities (1.05 g/cm 3).« less

  15. A survey of ultraviolet interstellar absorption lines

    NASA Technical Reports Server (NTRS)

    Bohlin, R. C.; Jenkins, E. B.; Spitzer, L., Jr.; York, D. G.; Hill, J. K.; Savage, B. D.; Snow, T. P., Jr.

    1983-01-01

    A telescope-spectrometer on the Copernicus spacecraft made possible the measurement of many ultraviolet absorption lines produced by the interstellar gas. The present survey provides data on ultraviolet absorption lines in the spectra of 88 early-type stars. The stars observed are divided into four classes, including reddened stars, unreddened bright stars, moderately reddened bright stars, and unreddened and moderately reddened faint stars. Data are presented for equivalent width, W, radial velocity V, and rms line width, D, taking into account some 10 to 20 lines of N I, O I, Si II, P II, S II, Cl I, Cl II, Mn II, Fe II, Ni II, Cu II, and H2. The data are based on multiple scans for each line. Attention is given to details of observations, the data reduction procedure, and the computation of equivalent width, mean velocity, and velocity dispersion.

  16. Fe II emission lines. I - Chromospheric spectra of red giants

    NASA Technical Reports Server (NTRS)

    Judge, P. G.; Jordan, C.

    1991-01-01

    A 'difference filtering' algorithm developed by Ayers (1979) is used to construct high-quality high-dispersion long-wavelength IUE spectra of three giant stars. Measurements of all the emission lines seen between 2230 and 3100 A are tabulated. The emission spectrum of Fe II is discussed in comparison with other lines whose formation mechanisms are well understood. Systematic changes in the Fe II spectrum are related to the different physical conditions in the three stars, and examples are given of line profiles and ratios which can be used to determine conditions in the outer atomspheres of giants. It is concluded that most of the Fe II emission results from collisional excitation and/or absorption of photospheric photons at optical wavelengths, but some lines are formed by fluorescence, being photoexcited by other strong chromospheric lines. Between 10 and 20 percent of the radiative losses of Fe II arise from 10 eV levels radiatively excited by the strong chromospheric H Ly-alpha line.

  17. [Fe II] emissions associated with the young interacting binary UY Aurigae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pyo, Tae-Soo; Hayashi, Masahiko; Beck, Tracy L.

    We present high-resolution 1.06-1.28 μm spectra toward the interacting binary UY Aur obtained with GEMINI/NIFS and the adaptive optics system Altair. We have detected [Fe II] λ1.257 μm and He I λ1.083 μm lines from both UY Aur A (the primary source) and UY Aur B (the secondary). In [Fe II] UY Aur A drives fast and widely opening outflows with an opening angle of ∼90° along a position angle of ∼40°, while UY Aur B is associated with a redshifted knot. The blueshifted and redshifted emissions show a complicated structure between the primary and secondary. The radial velocities ofmore » the [Fe II] emission features are similar for UY Aur A and B: ∼ –100 km s{sup –1} for the blueshifted emission and ∼ +130 km s{sup –1} for the redshifted component. The He I line profile observed toward UY Aur A comprises a central emission feature with deep absorptions at both blueshifted and redshifted velocities. These absorption features may be explained by stellar wind models. The He I line profile of UY Aur B shows only an emission feature.« less

  18. Evidence for Fluorescent Fe II Emission from Extended Low Ionization Outflows in Obscured Quasars

    NASA Astrophysics Data System (ADS)

    Wang, Tinggui; Ferland, Gary J.; Yang, Chenwei; Wang, Huiyuan; Zhang, Shaohua

    2016-06-01

    Recent studies have shown that outflows in at least some broad absorption line (BAL) quasars are extended well beyond the putative dusty torus. Such outflows should be detectable in obscured quasars. We present four WISE selected infrared red quasars with very strong and peculiar ultraviolet Fe II emission lines: strong UV Fe II UV arising from transitions to ground/low excitation levels, and very weak Fe II at wavelengths longer than 2800 Å. The spectra of these quasars display strong resonant emission lines, such as C IV, Al III and Mg II but sometimes, a lack of non-resonant lines such as C III], S III and He II. We interpret the Fe II lines as resonantly scattered light from the extended outflows that are viewed nearly edge-on, so that the accretion disk and broad line region are obscured by the dusty torus, while the extended outflows are not. We show that dust free gas exposed to strong radiation longward of 912 Å produces Fe II emission very similar to that observed. The gas is too cool to collisionally excite Fe II lines, accounting for the lack of optical emission. The spectral energy distribution from the UV to the mid-infrared can be modeled as emission from a clumpy dusty torus, with UV emission being reflected/scattered light either by the dusty torus or the outflow. Within this scenario, we estimate a minimum covering factor of the outflows from a few to 20% for the Fe II scattering region, suggesting that Fe II BAL quasars are at a special stage of quasar evolution.

  19. Iron(II)-Catalyzed Iron Atom Exchange and Mineralogical Changes in Iron-rich Organic Freshwater Flocs: An Iron Isotope Tracer Study.

    PubMed

    ThomasArrigo, Laurel K; Mikutta, Christian; Byrne, James; Kappler, Andreas; Kretzschmar, Ruben

    2017-06-20

    In freshwater wetlands, organic flocs are often found enriched in trace metal(loid)s associated with poorly crystalline Fe(III)-(oxyhydr)oxides. Under reducing conditions, flocs may become exposed to aqueous Fe(II), triggering Fe(II)-catalyzed mineral transformations and trace metal(loid) release. In this study, pure ferrihydrite, a synthetic ferrihydrite-polygalacturonic acid coprecipitate (16.7 wt % C), and As- (1280 and 1230 mg/kg) and organic matter (OM)-rich (18.1 and 21.8 wt % C) freshwater flocs dominated by ferrihydrite and nanocrystalline lepidocrocite were reacted with an isotopically enriched 57 Fe(II) solution (0.1 or 1.0 mM Fe(II)) at pH 5.5 and 7. Using a combination of wet chemistry, Fe isotope analysis, X-ray absorption spectroscopy (XAS), 57 Fe Mössbauer spectroscopy and X-ray diffraction, we followed the Fe atom exchange kinetics and secondary mineral formation over 1 week. When reacted with Fe(II) at pH 7, pure ferrihydrite exhibited rapid Fe atom exchange at both Fe(II) concentrations, reaching 76 and 89% atom exchange in experiments with 0.1 and 1 mM Fe(II), respectively. XAS data revealed that it transformed into goethite (21%) at the lower Fe(II) concentration and into lepidocrocite (73%) and goethite (27%) at the higher Fe(II) concentration. Despite smaller Fe mineral particles in the coprecipitate and flocs as compared to pure ferrihydrite (inferred from Mössbauer-derived blocking temperatures), these samples showed reduced Fe atom exchange (9-30% at pH 7) and inhibited secondary mineral formation. No release of As was recorded for Fe(II)-reacted flocs. Our findings indicate that carbohydrate-rich OM in flocs stabilizes poorly crystalline Fe minerals against Fe(II)-catalyzed transformation by surface-site blockage and/or organic Fe(II) complexation. This hinders the extent of Fe atom exchange at mineral surfaces and secondary mineral formation, which may consequently impair Fe(II)-activated trace metal(loid) release. Thus, under short-term Fe(III)-reducing conditions facilitating the fast attainment of solid-solution equilibria (e.g., in stagnant waters), Fe-rich freshwater flocs are expected to remain an effective sink for trace elements.

  20. The nature of chemical bonding in actinide and lanthanide ferrocyanides determined by X-ray absorption spectroscopy and density functional theory.

    PubMed

    Dumas, Thomas; Guillaumont, Dominique; Fillaux, Clara; Scheinost, Andreas; Moisy, Philippe; Petit, Sébastien; Shuh, David K; Tyliszczak, Tolek; Den Auwer, Christophe

    2016-01-28

    The electronic properties of actinide cations are of fundamental interest to describe intramolecular interactions and chemical bonding in the context of nuclear waste reprocessing or direct storage. The 5f and 6d orbitals are the first partially or totally vacant states in these elements, and the nature of the actinide ligand bonds is related to their ability to overlap with ligand orbitals. Because of its chemical and orbital selectivities, X-ray absorption spectroscopy (XAS) is an effective probe of actinide species frontier orbitals and for understanding actinide cation reactivity toward chelating ligands. The soft X-ray probes of the light elements provide better resolution than actinide L3-edges to obtain electronic information from the ligand. Thus coupling simulations to experimental soft X-ray spectral measurements and complementary quantum chemical calculations yields quantitative information on chemical bonding. In this study, soft X-ray XAS at the K-edges of C and N, and the L2,3-edges of Fe was used to investigate the electronic structures of the well-known ferrocyanide complexes K4Fe(II)(CN)6, thorium hexacyanoferrate Th(IV)Fe(II)(CN)6, and neodymium hexacyanoferrate KNd(III)Fe(II)(CN)6. The soft X-ray spectra were simulated based on quantum chemical calculations. Our results highlight the orbital overlapping effects and atomic effective charges in the Fe(II)(CN)6 building block. In addition to providing a detailed description of the electronic structure of the ferrocyanide complex (K4Fe(II)(CN)6), the results strongly contribute to confirming the actinide 5f and 6d orbital oddity in comparison to lanthanide 4f and 5d.

  1. The nature of chemical bonding in actinide and lanthanide ferrocyanides determined by X-ray absorption spectroscopy and density functional theory

    DOE PAGES

    Dumas, Thomas; Guillaumont, Dominique; Fillaux, Clara; ...

    2016-01-01

    The electronic properties of actinide cations are of fundamental interest to describe intramolecular interactions and chemical bonding in the context of nuclear waste reprocessing or direct storage. The 5f and 6d orbitals are the first partially or totally vacant states in these elements, and the nature of the actinide ligand bonds is related to their ability to overlap with ligand orbitals. Because of its chemical and orbital selectivities, X-ray absorption spectroscopy (XAS) is an effective probe of actinide species frontier orbitals and for understanding actinide cation reactivity toward chelating ligands. The soft X-ray probes of the light elements provide bettermore » resolution than actinide L 3 -edges to obtain electronic information from the ligand. Thus coupling simulations to experimental soft X-ray spectral measurements and complementary quantum chemical calculations yields quantitative information on chemical bonding. In this study, soft X-ray XAS at the K-edges of C and N, and the L 2,3 -edges of Fe was used to investigate the electronic structures of the well-known ferrocyanide complexes K 4 Fe II (CN) 6 , thorium hexacyanoferrate Th IV Fe II (CN) 6 , and neodymium hexacyanoferrate KNd III Fe II (CN) 6 . The soft X-ray spectra were simulated based on quantum chemical calculations. Our results highlight the orbital overlapping effects and atomic effective charges in the Fe II (CN) 6 building block. In addition to providing a detailed description of the electronic structure of the ferrocyanide complex (K 4 Fe II (CN) 6 ), the results strongly contribute to confirming the actinide 5f and 6d orbital oddity in comparison to lanthanide 4f and 5d.« less

  2. Optical and UV Spectra of the Remnant of SN 1885 (S And) in M31

    NASA Astrophysics Data System (ADS)

    Fesen, Robert A.; Weil, Kathryn E.; Hamilton, Andrew J. S.; Höflich, Peter A.

    2017-10-01

    We present multi-slit, 1D and 2D optical and UV spectra of the remnant of supernova 1885 (SN 1885; S And) taken using the Hubble Space Telescope’s Imaging Spectrograph (HST/STIS). These spectra of this probable subluminous Type Ia remnant, seen in silhouette against the central bulge of the Andromeda galaxy (M31), show strong and broad absorptions from neutral and singly ionized species of calcium, magnesium, and iron but with strikingly different distributions. Calcium H and K absorption indicates spherically distributed Ca-rich ejecta, densest in a lumpy shell expanding at 2000-6000 km s-1. Equally broad but weaker Ca I 4227 Å absorption is seen to extend out to velocities of ˜13,000 km s-1. Magnesium-rich ejecta in the remnant are detected for the first time through Mg I 2852 Å and Mg II 2796, 2803 Å absorptions concentrated in a shell with expansion velocities from ≃ 7000 {km} {{{s}}}-1 to at least 10,000 km s-1. Fe I 3720 Å absorption is detected as two discrete blueshifted and redshifted absorptions suggestive of an Fe I shell with expansion velocities of ±2000-8000 km s-1. Weak Fe II resonance absorptions in the wavelength region 2300-2700 Å are consistent with prior HST UV images showing Fe II-rich ejecta confined to a small number of optically thick plumes. The presence of such iron plumes extending out from the remnant’s core plus layered shells of calcium and magnesium point to a delayed-detonation explosion. The spectra also suggest a roughly spherical explosion, contrary to that expected by a merger or collision of two white dwarfs. We conclude that SN 1885 likely was an off-center, delayed-detonation explosion leading to a subluminous SN Ia similar to SN 1986G. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract No. NAS5-26555.

  3. Abundances of O, Mg, S, Cr, Mn, Ti, NI and Zn from absorption lines of neutral gas in the Large Magellanic Cloud in front of R136

    NASA Astrophysics Data System (ADS)

    de Boer, K. S.; Fitzpatrick, E. L.; Savage, B. D.

    1985-11-01

    The authors have searched six high-dispersion IUE spectra of R136 for weak absorption lines of C I, O I, Mg I, Mg II, Si I, Si II, P I, Cl I, Cr II, Mn II, Fe I, Ni II, Zn II, CO and C2. The absorption detected is from neutral gas in front of the 30 Doradus H II region. For the first time abundances of Mg, Cr, Mn, Ti, Ni, and Zn are determined for an extragalactic system. The LMC abundances from the absorption lines are a factor of 2 to 3 below those of the Milky Way, in agreement with general results from emission line studies. The density and temperature of the neutral gas are estimates from the observed excitation and ionization at approximately n(H) = 300 cm-3 and T = 100K, implying a gas pressure of about 3×104cm-3K.

  4. Characterization of β-FeSi II films as a novel solar cell semiconductor

    NASA Astrophysics Data System (ADS)

    Fukuzawa, Yasuhiro; Ootsuka, Teruhisa; Otogawa, Naotaka; Abe, Hironori; Nakayama, Yasuhiko; Makita, Yunosuke

    2006-04-01

    β-FeSi II is an attractive semiconductor owing to its extremely high optical absorption coefficient (α>10 5 cm -1), and is expected to be an ideal semiconductor as a thin film solar cell. For solar cell use, to prepare high quality β-FeSi II films holding a desired Fe/Si ratio, we chose two methods; one is a molecular beam epitaxy (MBE) method in which Fe and Si were evaporated by using normal Knudsen cells, and occasionally by e-gun for Si. Another one is the facing-target sputtering (FTS) method in which deposition of β-FeSi II films is made on Si substrate that is placed out of gas plasma cloud. In both methods to obtain β-FeSi II films with a tuned Fe/Si ratio, Fe/Si super lattice was fabricated by varying Fe and Si deposition thickness. Results showed significant in- and out-diffusion of host Fe and Si atoms at the interface of Si substrates into β-FeSi II layers. It was experimentally demonstrated that this diffusion can be suppressed by the formation of template layer between the epitaxial β-FeSi II layer and the substrate. The template layer was prepared by reactive deposition epitaxy (RDE) method. By fixing the Fe/Si ratio as precisely as possible at 1/2, systematic doping experiments of acceptor (Ga and B) and donor (As) impurities into β-FeSi II were carried out. Systematical changes of electron and hole carrier concentration in these samples along variation of incorporated impurities were observed through Hall effect measurements. Residual carrier concentrations can be ascribed to not only the remaining undesired impurities contained in source materials but also to a variety of point defects mainly produced by the uncontrolled stoichiometry. A preliminary structure of n-β-FeSi II/p-Si used as a solar cell indicated a conversion efficiency of 3.7%.

  5. Average [O II] nebular emission associated with Mg II absorbers: dependence on Fe II absorption

    NASA Astrophysics Data System (ADS)

    Joshi, Ravi; Srianand, Raghunathan; Petitjean, Patrick; Noterdaeme, Pasquier

    2018-05-01

    We investigate the effect of Fe II equivalent width (W2600) and fibre size on the average luminosity of [O II] λλ3727, 3729 nebular emission associated with Mg II absorbers (at 0.55 ≤ z ≤ 1.3) in the composite spectra of quasars obtained with 3 and 2 arcsec fibres in the Sloan Digital Sky Survey. We confirm the presence of strong correlations between [O II] luminosity (L_{[O II]}) and equivalent width (W2796) and redshift of Mg II absorbers. However, we show L_{[O II]} and average luminosity surface density suffer from fibre size effects. More importantly, for a given fibre size, the average L_{[O II]} strongly depends on the equivalent width of Fe II absorption lines and found to be higher for Mg II absorbers with R ≡W2600/W2796 ≥ 0.5. In fact, we show the observed strong correlations of L_{[O II]} with W2796 and z of Mg II absorbers are mainly driven by such systems. Direct [O II] detections also confirm the link between L_{[O II]} and R. Therefore, one has to pay attention to the fibre losses and dependence of redshift evolution of Mg II absorbers on W2600 before using them as a luminosity unbiased probe of global star formation rate density. We show that the [O II] nebular emission detected in the stacked spectrum is not dominated by few direct detections (i.e. detections ≥3σ significant level). On an average, the systems with R ≥ 0.5 and W2796 ≥ 2 Å are more reddened, showing colour excess E(B - V) ˜ 0.02, with respect to the systems with R < 0.5 and most likely trace the high H I column density systems.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Ruiter, Graham; Carsch, Kurtis M.; Gul, Sheraz

    In this paper, we report the synthesis, characterization, and reactivity of [LFe 3(PhPz) 3OMn( sPhIO)][OTf] x (3: x=2; 4: x=3), where 4 is one of very few examples of iodosobenzene–metal adducts characterized by X-ray crystallography. Access to these rare heterometallic clusters enabled differentiation of the metal centers involved in oxygen atom transfer (Mn) or redox modulation (Fe). Specifically, 57Fe Mössbauer and X-ray absorption spectroscopy provided unique insights into how changes in oxidation state (Fe III 2Fe IIMn II vs. Fe III 3Mn II) influence oxygen atom transfer in tetranuclear Fe 3Mn clusters. Finally, in particular, a one-electron redox change atmore » a distal metal site leads to a change in oxygen atom transfer reactivity by ca. two orders of magnitude.« less

  7. Iron metal production in silicate melts through the direct reduction of Fe/II/ by Ti/III/, Cr/II/, and Eu/II/. [in lunar basalts

    NASA Technical Reports Server (NTRS)

    Schreiber, H. D.; Balazs, G. B.; Shaffer, A. P.; Jamison, P. L.

    1982-01-01

    The production of metallic iron in silicate melts by chemical reactions of Ti(3+), Cr(2+), and Eu(2+) with Fe(2+) is demonstrated under experimental conditions in a simplified basaltic liquid. These reactions form a basis for interpreting the role of isochemical valency exchange models in explanations for the reduced nature of lunar basalts. The redox couples are individually investigated in the silicate melt to ascertain reference redox ratios that are independent of mutual interactions. These studies also provide calibrations of spectral absorptions of the Fe(2+) and Ti(2+) species in these glasses. Subsequent spectrophotometric analyses of Fe(2+) and Ti(2+) in glasses doped with both iron and titanium and of Fe(2+) in glasses doped with either iron and chromium or iron and europium ascertain the degree of mutual interactions in these dual-doped glasses.

  8. Incorporation of Pyrazine and Bipyridine Linkers with High-Spin Fe(II) and Co(II) in a Metal–Organic Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawamura, Airi; Greenwood, Arin R.; Filatov, Alexander S.

    2017-02-27

    A series of isoreticular metal organic frameworks (MOFs) of the formula M(BDC)(L) (M = Fe(II) or Co(II), BDC = 1,4-benzenedicarboxylate, L = pyrazine (pyz) or 4,4'-bipyridine (bipy)) has been synthesized and characterized by N-2 gas uptake Measurements, single crystal and powder X-ray diffraction, magnetometry, X-ray absorption spectroscopy, and Mossbauer spectroscopy. These studies indicate the formation of a permanently porous solid with high-spin Fe(II) and Co(II) centers that are weakly coupled, consistent with first-principles density functional theory calculations. This family of materials represents unusual examples of paramagnetic metal centers coordinated by linkers capable of mediating magnetic or electronic coupling in amore » porous framework. While only weak interactions are observed, the rigid 3D framework of the MOF dramatically impacts the properties of these materials when compared with close structural analogues.« less

  9. Accumulation of Fe oxyhydroxides in the Peruvian oxygen deficient zone implies non-oxygen dependent Fe oxidation

    DOE PAGES

    Heller, Maija I.; Lam, Phoebe J.; Moffett, James W.; ...

    2017-05-19

    Oxygen minimum zones (OMZs) have been proposed to be an important source of dissolved iron (Fe) into the interior ocean. However, previous studies in OMZs have shown a sharp decrease in total dissolved Fe (dFe) and/or dissolved Fe(II) (dFe(II)) concentrations at the shelf-break, despite constant temperature, salinity and continued lack of oxygen across the shelf-break. The loss of both total dFe and dFe(II) suggests a conversion of the dFe to particulate form, but studies that have coupled the reduction-oxidation (redox) speciation of both dissolved and particulate phases have not previously been done. Here in this work, we have measured themore » redox speciation and concentrations of both dissolved and particulate forms of Fe in samples collected during the U.S. GEOTRACES Eastern tropical Pacific Zonal Transect (EPZT) cruise in 2013 (GP16). This complete data set allows us to assess possible mechanisms for loss of dFe. We observed an offshore loss of dFe(II) within the oxygen deficient zone (ODZ), where dissolved oxygen is undetectable, accompanied by an increase in total particulate Fe (pFe). Total pFe concentrations were highest in the upper ODZ. X-ray absorption spectroscopy revealed that the pFe maximum was primarily in the Fe(III) form as Fe(III) oxyhydroxides. The remarkable similarity in the distributions of total particulate iron and nitrite suggests a role for nitrite in the oxidation of dFe(II) to pFe(III). Lastly, we present a conceptual model for the rapid redox cycling of Fe that occurs in ODZs, despite the absence of oxygen.« less

  10. Accumulation of Fe oxyhydroxides in the Peruvian oxygen deficient zone implies non-oxygen dependent Fe oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heller, Maija I.; Lam, Phoebe J.; Moffett, James W.

    Oxygen minimum zones (OMZs) have been proposed to be an important source of dissolved iron (Fe) into the interior ocean. However, previous studies in OMZs have shown a sharp decrease in total dissolved Fe (dFe) and/or dissolved Fe(II) (dFe(II)) concentrations at the shelf-break, despite constant temperature, salinity and continued lack of oxygen across the shelf-break. The loss of both total dFe and dFe(II) suggests a conversion of the dFe to particulate form, but studies that have coupled the reduction-oxidation (redox) speciation of both dissolved and particulate phases have not previously been done. Here in this work, we have measured themore » redox speciation and concentrations of both dissolved and particulate forms of Fe in samples collected during the U.S. GEOTRACES Eastern tropical Pacific Zonal Transect (EPZT) cruise in 2013 (GP16). This complete data set allows us to assess possible mechanisms for loss of dFe. We observed an offshore loss of dFe(II) within the oxygen deficient zone (ODZ), where dissolved oxygen is undetectable, accompanied by an increase in total particulate Fe (pFe). Total pFe concentrations were highest in the upper ODZ. X-ray absorption spectroscopy revealed that the pFe maximum was primarily in the Fe(III) form as Fe(III) oxyhydroxides. The remarkable similarity in the distributions of total particulate iron and nitrite suggests a role for nitrite in the oxidation of dFe(II) to pFe(III). Lastly, we present a conceptual model for the rapid redox cycling of Fe that occurs in ODZs, despite the absence of oxygen.« less

  11. Accumulation of Fe oxyhydroxides in the Peruvian oxygen deficient zone implies non-oxygen dependent Fe oxidation

    NASA Astrophysics Data System (ADS)

    Heller, Maija I.; Lam, Phoebe J.; Moffett, James W.; Till, Claire P.; Lee, Jong-Mi; Toner, Brandy M.; Marcus, Matthew A.

    2017-08-01

    Oxygen minimum zones (OMZs) have been proposed to be an important source of dissolved iron (Fe) into the interior ocean. However, previous studies in OMZs have shown a sharp decrease in total dissolved Fe (dFe) and/or dissolved Fe(II) (dFe(II)) concentrations at the shelf-break, despite constant temperature, salinity and continued lack of oxygen across the shelf-break. The loss of both total dFe and dFe(II) suggests a conversion of the dFe to particulate form, but studies that have coupled the reduction-oxidation (redox) speciation of both dissolved and particulate phases have not previously been done. Here we have measured the redox speciation and concentrations of both dissolved and particulate forms of Fe in samples collected during the U.S. GEOTRACES Eastern tropical Pacific Zonal Transect (EPZT) cruise in 2013 (GP16). This complete data set allows us to assess possible mechanisms for loss of dFe. We observed an offshore loss of dFe(II) within the oxygen deficient zone (ODZ), where dissolved oxygen is undetectable, accompanied by an increase in total particulate Fe (pFe). Total pFe concentrations were highest in the upper ODZ. X-ray absorption spectroscopy revealed that the pFe maximum was primarily in the Fe(III) form as Fe(III) oxyhydroxides. The remarkable similarity in the distributions of total particulate iron and nitrite suggests a role for nitrite in the oxidation of dFe(II) to pFe(III). We present a conceptual model for the rapid redox cycling of Fe that occurs in ODZs, despite the absence of oxygen.

  12. Resolving Fe-rich Neutral ISM in a Massive Quiescent Galaxy at z 0.4

    NASA Astrophysics Data System (ADS)

    Zahedy, Fakhri

    2016-10-01

    Roughly 40% of elliptical galaxies are found to contain cool gas but exhibit no on-going star formation, indicating that some feedback mechanisms are at work. While AGN feedback is commonly thought to be responsible for quenching star formation in massive halos, recent work has reiterated the importance of feedback from old stellar populations, including Type Ia supernovae (SNe Ia). In Zahedy et al. (2016), we reported detections of ultra-strong MgII absorption (>3.6 Ang) at 1-2 effective radii of a massive quiescent lensing galaxy at z=0.408. Strong MgII, FeII, MgI, and CaII absorption are found at the lens redshift along two lensed QSO sightlines separated by 8 kpc. The absorbers are resolved into 15 components with line-of-sight velocity spread of 600 km/s. The large observed ionic column densities, N>1e14 cm^-2 suggest large neutral hydrogen column densities N(HI)>1e18 cm^-2 and a significant neutral gas fraction. The most striking feature is the uniformly large Fe/Mg ratio across the full 600 km/s velocity range, suggesting a large contribution in chemical enrichment from SNe Ia (>20%). Here we propose QSO absorption-line spectroscopy of this unique system using STIS and the G140L grating with the slit oriented along the two lensed QSOs. The goal is to determine N(HI) from observations of the full Lyman absorption series and gas-phase metallicity of the interstellar medium at two locations separated by 8 kpc in an elliptical galaxy beyond the local universe. With a modest investment of HST time, we will be able to examine the extent SNe Ia-driven feedback in a distant quiescent galaxy using this unique double-lens system.

  13. Structural, Spectroscopic, and Electrochemical Properties of Nonheme Fe(II)-Hydroquinonate Complexes: Synthetic Models of Hydroquinone Dioxygenases

    PubMed Central

    Baum, Amanda E.; Park, Heaweon; Wang, Denan; Lindeman, Sergey V.; Fiedler, Adam T.

    2012-01-01

    Using the tris(3,5-diphenylpyrazol-1-yl)borate (Ph2Tp) supporting ligand, a series of mono- and dinuclear ferrous complexes containing hydroquinonate (HQate) ligands have been prepared and structurally characterized with X-ray crystallography. The monoiron(II) complexes serve as faithful mimics of the substrate-bound form of hydroquinone dioxygenases (HQDOs) – a family of nonheme Fe enzymes that catalyze the oxidative cleavage of 1,4-dihydroxybenzene units. Reflecting the variety of HQDO substrates, the synthetic complexes feature both mono- and bidentate HQate ligands. The bidentate HQates cleanly provide five-coordinate, high-spin Fe(II) complexes with the general formula [Fe(Ph2Tp)(HLX)] (1X), where HLX is a HQate(1-) ligand substituted at the 2-position with a benzimidazolyl (1A), acetyl (1B and 1C), or methoxy (1D) group. In contrast, the monodentate ligand 2,6-dimethylhydroquinone (H2LF) exhibited a greater tendency to bridge between two Fe(II) centers, resulting in formation of [Fe2(Ph2Tp)2(μ-LF)(MeCN)] [2F(MeCN)]. However, addition of one equivalent of “free” pyrazole (Ph2pz) ligand provided the mononuclear complex, [Fe(Ph2Tp)(HLF)(Ph2pz)] [1F(Ph2pz)], which is stabilized by an intramolecular hydrogen bond between the HLF and Ph2pz donors. Complex 1F(Ph2pz) represents the first crystallographically-characterized example of a monoiron complex bound to an untethered HQate ligand. The geometric and electronic structures of the Fe/HQate complexes were further probed with spectroscopic (UV-vis absorption, 1H NMR) and electrochemical methods. Cyclic voltammograms of complexes in the 1X series revealed an Fe-based oxidation between 0 and −300 mV (vs. Fc+/0), in addition to irreversible oxidation(s) of the HQate ligand at higher potentials. The one-electron oxidized species (1Xox) were examined with UV-vis absorption and electron paramagnetic resonance (EPR) spectroscopies. PMID:22930005

  14. Comparative absorption, electroabsorption and electrochemical studies of intervalence electron transfer and electronic coupling in cyanide-bridged bimetallic systems: ancillary ligand effects

    NASA Astrophysics Data System (ADS)

    Vance, Fredrick W.; Slone, Robert V.; Stern, Charlotte L.; Hupp, Joseph T.

    2000-03-01

    Electroabsorption or Stark spectroscopy has been used to evaluate the systems (NC) 5M II-CN-Ru III(NH 3) 51- and (NC) 5M II-CN-Ru III(NH 3) 4py 1-, where M II=Fe II or Ru II. When a pyridine ligand is present in the axial position on the Ru III acceptor, the effective optical electron transfer distance - as measured by the change in dipole moment, |Δ μ| - is increased by more than 35% relative to the ammine substituted counterpart. Comparison of the charge transfer distances to the crystal structure of Na[(CN) 5Fe-CN-Ru(NH 3) 4py] · 6H 2O reveals that the Stark derived distances are ˜50% to ˜90% of the geometric separation of the metal centers. The differences result in an upward revision in the Hush delocalization parameter, c b2, and of the electronic coupling matrix element, H ab, relative to those parameters obtained exclusively from electronic absorption measurements. The revised parameters are compared to those, which are obtained via electrochemical techniques and found to be in only fair agreement. We conclude that the absorption/electroabsorption analysis likely yields a more reliable set of mixing and coupling parameters.

  15. Spectroscopic and functional characterization of iron-bound forms of Azotobacter vinelandii (Nif)IscA.

    PubMed

    Mapolelo, Daphne T; Zhang, Bo; Naik, Sunil G; Huynh, Boi Hanh; Johnson, Michael K

    2012-10-16

    The ability of Azotobacter vinelandii(Nif)IscA to bind Fe has been investigated to assess the role of Fe-bound forms in NIF-specific Fe-S cluster biogenesis. (Nif)IscA is shown to bind one Fe(III) or one Fe(II) per homodimer and the spectroscopic and redox properties of both the Fe(III)- and Fe(II)-bound forms have been characterized using the UV-visible absorption, circular dichroism, and variable-temperature magnetic circular dichroism, electron paramagnetic resonance, Mössbauer and resonance Raman spectroscopies. The results reveal a rhombic intermediate-spin (S = 3/2) Fe(III) center (E/D = 0.33, D = 3.5 ± 1.5 cm(-1)) that is most likely 5-coordinate with two or three cysteinate ligands and a rhombic high spin (S = 2) Fe(II) center (E/D = 0.28, D = 7.6 cm(-1)) with properties similar to reduced rubredoxins or rubredoxin variants with three cysteinate and one or two oxygenic ligands. Iron-bound (Nif)IscA undergoes reversible redox cycling between the Fe(III)/Fe(II) forms with a midpoint potential of +36 ± 15 mV at pH 7.8 (versus NHE). l-Cysteine is effective in mediating release of free Fe(II) from both the Fe(II)- and Fe(III)-bound forms of (Nif)IscA. Fe(III)-bound (Nif)IscA was also shown to be a competent iron source for in vitro NifS-mediated [2Fe-2S] cluster assembly on the N-terminal domain of NifU, but the reaction occurs via cysteine-mediated release of free Fe(II) rather than direct iron transfer. The proposed roles of A-type proteins in storing Fe under aerobic growth conditions and serving as iron donors for cluster assembly on U-type scaffold proteins or maturation of biological [4Fe-4S] centers are discussed in light of these results.

  16. Arsenic Incorporation in Pyrite at Ambient Temperature at Both Tetrahedral S-I and Octahedral FeII Sites: Evidence from EXAFS-DFT Analysis.

    PubMed

    Le Pape, Pierre; Blanchard, Marc; Brest, Jessica; Boulliard, Jean-Claude; Ikogou, Maya; Stetten, Lucie; Wang, Shuaitao; Landrot, Gautier; Morin, Guillaume

    2017-01-03

    Pyrite is a ubiquitous mineral in reducing environments and is well-known to incorporate trace elements such as Co, Ni, Se, Au, and commonly As. Indeed, As-bearing pyrite is observed in a wide variety of sedimentary environments, making it a major sink for this toxic metalloid. Based on the observation of natural hydrothermal pyrites, As -I is usually assigned to the occupation of tetrahedral S -I sites, with the same oxidation state as in arsenopyrite (FeAsS), although rare occurrences of As III and As II have been reported. However, the modes of As incorporation into pyrite during its crystallization under low-temperature diagenetic conditions have not yet been elucidated because arsenic acts as an inhibitor for pyrite nucleation at ambient temperature. Here, we provide evidence from X-ray absorption spectroscopy for As II,III incorporation into pyrite at octahedral Fe II sites and for As -I at tetrahedral S -I sites during crystallization at ambient temperature. Extended X-ray absorption fine structure (EXAFS) spectra of these As-bearing pyrites are explained by local structure models obtained using density functional theory (DFT), assuming incorporation of As at the Fe and S sites, as well as local clustering of arsenic. Such observations of As -I incorporation at ambient temperature can aid in the understanding of the early formation of authigenic arsenian pyrite in subsurface sediments. Moreover, evidence for substitution of As II,III for Fe in our synthetic samples raises questions about both the possible occurrence and the geochemical reactivity of such As-bearing pyrites in low-temperature subsurface environments.

  17. Coexistence of Fe(II)- and Mn(II)-oxidizing bacteria govern the formation of deep sea umber deposits

    NASA Astrophysics Data System (ADS)

    Peng, Xiaotong; Ta, Kaiwen; Chen, Shun; Zhang, Lijuan; Xu, Hengchao

    2015-11-01

    The genesis of umber deposits has remained controversial for several decades. Recently, microbial Fe(II) oxidation associated with low-temperature diffuse venting has been identified as a key process for the formation of umber deposits, but the exact biogeochemical mechanisms involved to the precipitation of Mn oxides in umber deposits still remain unknown. Here, we used nano secondary ion mass spectrometer, synchrotron-based X-ray absorption spectroscopy, electron microscopy, and molecular techniques to demonstrate the coexistence of two types of metal-oxidizing bacteria within deep-sea hydrothermal umber deposits at the South Mid-Atlantic Ridge, where we found unique spheroids composed of biogenic Fe oxyhydroxides and Mn oxides in the deposits. Our data show that Fe oxyhydroxides and Mn oxides are metabolic by-products of lithotrophic Fe(II)-oxidizing bacteria and heterotrophic Mn(II)-oxidizing bacteria, respectively. The hydrothermal vents fuel lithotrophic microorganisms, which constitute a trophic base that might support the activities of heterogenic Mn(II)-oxidizing bacteria. The biological origin of umber deposits shed light on the importance of geomicrobiological interaction in triggering the formation of metalliferous deposits, with important implications for the generation of submarine Mn deposits and crusts.

  18. Ultraviolet observations of the gas phase abundances in the diffuse clouds toward Zeta Ophiuchi at 3.5 kilometers per second resolution

    NASA Technical Reports Server (NTRS)

    Savage, Blair D.; Cardelli, Jason A.; Sofia, Ulysses J.

    1992-01-01

    Goddard High Resolution Spectrograph echelle mode measurements at 3.5 km/s resolution are presented for interstellar absorption produced by C II, O I, Mg I, Mg II, Al III, P II, Cr II, Mn II, Fe II, Ni II, Cu II, Zn II, Ga II, Ge II, and Kr I. The absorption line measurements are converted into representations of apparent column density per unit velocity in order to study the multicomponent nature of the absorption. The high spectral resolution of the measurements allows a comparative study of gas phase abundances for many species in the absorbing clouds near -27 and -15 km/s with a typical precision of about 0.05 dex. The matter absorbing near -27 km/s is situated in the local interstellar medium and has log N(H I) of about 19.74. This absorption provides information about the modest 'base' depletion associated with the lower density interstellar medium. The depletion results suggest that accretion processes are operating interstellar clouds that exhibit similar depletion efficiencies for some elements but much higher depletion efficiencies for others.

  19. Accelerated Oxygen Atom Transfer and C-H Bond Oxygenation by Remote Redox Changes in Fe 3Mn-Iodosobenzene Adducts

    DOE PAGES

    de Ruiter, Graham; Carsch, Kurtis M.; Gul, Sheraz; ...

    2017-03-24

    In this paper, we report the synthesis, characterization, and reactivity of [LFe 3(PhPz) 3OMn( sPhIO)][OTf] x (3: x=2; 4: x=3), where 4 is one of very few examples of iodosobenzene–metal adducts characterized by X-ray crystallography. Access to these rare heterometallic clusters enabled differentiation of the metal centers involved in oxygen atom transfer (Mn) or redox modulation (Fe). Specifically, 57Fe Mössbauer and X-ray absorption spectroscopy provided unique insights into how changes in oxidation state (Fe III 2Fe IIMn II vs. Fe III 3Mn II) influence oxygen atom transfer in tetranuclear Fe 3Mn clusters. Finally, in particular, a one-electron redox change atmore » a distal metal site leads to a change in oxygen atom transfer reactivity by ca. two orders of magnitude.« less

  20. Importance of reduced sulfur for the equilibrium chemistry and kinetics of Fe(II), Co(II) and Ni(II) supplemented to semi-continuous stirred tank biogas reactors fed with stillage.

    PubMed

    Shakeri Yekta, Sepehr; Lindmark, Amanda; Skyllberg, Ulf; Danielsson, Asa; Svensson, Bo H

    2014-03-30

    The objective of the present study was to assess major chemical reactions and chemical forms contributing to solubility and speciation of Fe(II), Co(II), and Ni(II) during anaerobic digestion of sulfur (S)-rich stillage in semi-continuous stirred tank biogas reactors (SCSTR). These metals are essential supplements for efficient and stable performance of stillage-fed SCSTR. In particular, the influence of reduced inorganic and organic S species on kinetics and thermodynamics of the metals and their partitioning between aqueous and solid phases were investigated. Solid phase S speciation was determined by use of S K-edge X-ray absorption near-edge spectroscopy. Results demonstrated that the solubility and speciation of supplemented Fe were controlled by precipitation of FeS(s) and formation of the aqueous complexes of Fe-sulfide and Fe-thiol. The relatively high solubility of Co (∼ 20% of total Co content) was attributed to the formation of compounds other than Co-sulfide and Co-thiol, presumably of microbial origin. Nickel had lower solubility than Co and its speciation was regulated by interactions with FeS(s) (e.g. co-precipitation, adsorption, and ion substitution) in addition to precipitation/dissolution of discrete NiS(s) phase and formation of aqueous Ni-sulfide complexes. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Redox characterization of the Fe(II)-catalyzed transformation of ferrihydrite to goethite

    NASA Astrophysics Data System (ADS)

    Jones, Adele M.; Collins, Richard N.; Waite, T. David

    2017-12-01

    The reduction potential of Fe(II)-Fe(III) (oxyhydr)oxide systems provides an important control on the biogeochemical cycling of redox-sensitive elements such as carbon and nitrogen as well as trace metals and organic contaminants in natural systems. As such, an in-depth understanding of the factors controlling the reduction potential of such systems is critical to predicting the likely transformation, transport and fate of these species in natural and perturbed environments. In this study the mineralogy and reduction potential of ferrihydrite suspensions at pH 6.50 and pH 7.00 were determined over the course of their Fe(II)-catalyzed transformation to lepidocrocite and goethite using X-ray absorption spectroscopy and mediated electrochemical approaches. The measured reduction potentials were compared to those of analogous Fe(II)-Fe(III) (oxyhydr)oxide suspensions reacted for 5 min containing pure ferrihydrite (Fh), lepidocrocite (L) and goethite (Gt). The reduction potentials of the pure Fe(II)-Fe(III) (oxyhydr)oxide suspensions were, respectively, +47.5, -13.5 and -122.3 mV vs. SHE at pH 6.5, and -22.9, -84.1 and -189.7 mV vs. SHE at pH 7. These values are in good agreement with reduction potentials calculated using the Nernst equation and reported thermodynamic solubility products indicating that these suspensions had reached equilibrium within 5 min. The reduction potential of the pH 6.50 Fe(II)-ferrihydrite suspension decreased from +47.4 mV to -126.4 mV over a week, and from -20.1 mV to -188.4 mV (all vs. SHE) after 24 h at pH 7. The changes in reduction potential over time matched well to those calculated from the relative proportion of each pure Fe(III) (oxyhydr)oxide present suggesting that Fe3+ activity was influenced by the mix of iron oxides present rather than the most insoluble solid species. Finally, evidence is provided that adsorbed Fe(II) has the capacity to reduce a significantly larger fraction of a reducible species than the aqueous Fe(II) species with which it is in equilibrium. As an Fe(III) (oxyhydr)oxide suspension in equilibrium with aqueous and adsorbed Fe(II) species possesses a single, unique reduction potential, this suggests that adsorbed Fe(II) is a more facile reductant than aqueous Fe(II).

  2. Iron K-edge X-ray absorption near-edge structure spectroscopy of aerodynamically levitated silicate melts and glasses

    DOE PAGES

    Alderman, O. L. G.; Wilding, M. C.; Tamalonis, A.; ...

    2017-01-26

    Here, the local structure about Fe(II) and Fe(III) in silicate melts was investigated in-situ using iron K-edge X-ray absorption near-edge structure (XANES) spectroscopy. An aerodynamic levitation and laser heating system was used to allow access to high temperatures without contamination, and was combined with a chamber and gas mixing system to allow the iron oxidation state, Fe 3+/ΣFe, to be varied by systematic control of the atmospheric oxygen fugacity. Eleven alkali-free, mostly iron-rich and depolymerized base compositions were chosen for the experiments, including pure oxide FeO, olivines (Fe,Mg) 2SiO 4, pyroxenes (Fe,Mg)SiO 3, calcic FeO-CaSiO 3, and a calcium aluminosilicatemore » composition, where total iron content is denoted by FeO for convenience. Melt temperatures varied between 1410 and 2160 K and oxygen fugacities between FMQ – 2.3(3) to FMQ + 9.1(3) log units (uncertainties in parentheses) relative to the fayalite-magnetite-β-quartz (FMQ) buffer.« less

  3. IUE observations of the quasar 3C 273. [International Ultraviolet Explorer

    NASA Technical Reports Server (NTRS)

    Boggess, A.; Daltabuit, E.; Torres-Peimbert, S.; Estabrook, F. B.; Wahlquist, H. D.; Lane, A. L.; Green, R.; Oke, J. B.; Schmidt, M.; Zimmerman, B.

    1979-01-01

    IUE observations indicate that the spectrum of 3C 273 is similar to that of other large-redshift quasars. There is a large excess of flux in the range 2400 A to 5300 A, which encompasses the Balmer jump region but which does not appear to be explainable by Balmer emission. The intensity ratio of Lyman-alpha to H-beta is 5.5, in agreement with other measures and a factor 6 smaller than the recombination value. The only absorption lines in the spectrum are due to our Galaxy. There is marginal evidence for a depression of the continuum shortward of the Lyman-alpha emission line, but the errors are too large to warrant any conclusion that 3C 273 has a rich absorption-line spectrum such as that seen in large-redshift quasars. The absence of emission and absorption lines of Fe II leads to the conclusion that resonance fluorescence probably produces the visual Fe II emission lines.

  4. Constraining the variation of the fine-structure constant with observations of narrow quasar absorption lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Songaila, A.; Cowie, L. L., E-mail: acowie@ifa.hawaii.edu

    2014-10-01

    The unequivocal demonstration of temporal or spatial variability in a fundamental constant of nature would be of enormous significance. Recent attempts to measure the variability of the fine-structure constant α over cosmological time, using high-resolution spectra of high-redshift quasars observed with 10 m class telescopes, have produced conflicting results. We use the many multiplet (MM) method with Mg II and Fe II lines on very high signal-to-noise, high-resolution (R = 72, 000) Keck HIRES spectra of eight narrow quasar absorption systems. We consider both systematic uncertainties in spectrograph wavelength calibration and also velocity offsets introduced by complex velocity structure inmore » even apparently simple and weak narrow lines and analyze their effect on claimed variations in α. We find no significant change in α, Δα/α = (0.43 ± 0.34) × 10{sup –5}, in the redshift range z = 0.7-1.5, where this includes both statistical and systematic errors. We also show that the scatter in measurements of Δα/α arising from absorption line structure can be considerably larger than assigned statistical errors even for apparently simple and narrow absorption systems. We find a null result of Δα/α = (– 0.59 ± 0.55) × 10{sup –5} in a system at z = 1.7382 using lines of Cr II, Zn II, and Mn II, whereas using Cr II and Zn II lines in a system at z = 1.6614 we find a systematic velocity trend that, if interpreted as a shift in α, would correspond to Δα/α = (1.88 ± 0.47) × 10{sup –5}, where both results include both statistical and systematic errors. This latter result is almost certainly caused by varying ionic abundances in subcomponents of the line: using Mn II, Ni II, and Cr II in the analysis changes the result to Δα/α = (– 0.47 ± 0.53) × 10{sup –5}. Combining the Mg II and Fe II results with estimates based on Mn II, Ni II, and Cr II gives Δα/α = (– 0.01 ± 0.26) × 10{sup –5}. We conclude that spectroscopic measurements of quasar absorption lines are not yet capable of unambiguously detecting variation in α using the MM method.« less

  5. Temperature dependence and coupling of iron and arsenic reduction and release during flooding of a contaminated soil.

    PubMed

    Weber, Frank-Andreas; Hofacker, Anke F; Voegelin, Andreas; Kretzschmar, Ruben

    2010-01-01

    Arsenic (As) in soils and sediments is commonly mobilized when anoxic conditions promote microbial iron (Fe) and As reduction. Recent laboratory studies and field observations have suggested a decoupling between Fe and As reduction and release, but the links between these processes are still not well understood. In microcosm experiments, we monitored the formation of Fe(II) and As(III) in the porewater and in the soil solid-phase during flooding of a contaminated floodplain soil at temperatures of 23, 14, and 5 degrees C. At all temperatures, flooding induced the development of anoxic conditions and caused increasing concentrations of dissolved Fe(II) and As(III). Decreasing the temperature from 23 to 14 and 5 degrees C strongly slowed down soil reduction and Fe and As release. Speciation of As in the soil solid-phase by X-ray absorption spectroscopy (XAS) and extraction of the Fe(II) that has formed by reductive Fe(III) (hydr)oxide dissolution revealed that less than 3.9% of all As(III) and less than 3.2% of all Fe(II) formed during 52 days of flooding at 23 degrees C were released into the porewater, although 91% of the initially ascorbate-extractable Fe and 66% of the total As were reduced. The amount of total As(III) formed during soil reduction was linearly correlated to the amount of total Fe(II) formed, indicating that the rate of As(V) reduction was controlled by the rate of microbial Fe(III) (hydr)oxide reduction.

  6. Spatially resolved galactic wind in lensed galaxy RCSGA 032727-132609

    NASA Astrophysics Data System (ADS)

    Bordoloi, Rongmon; Rigby, Jane R.; Tumlinson, Jason; Bayliss, Matthew B.; Sharon, Keren; Gladders, Michael G.; Wuyts, Eva

    2016-05-01

    We probe the spatial distribution of outflowing gas along four lines of sight separated by up to 6 kpc in a gravitationally lensed star-forming galaxy at z = 1.70. Using Mg II and Fe II emission and absorption as tracers, we find that the clumps of star formation are driving galactic outflows with velocities of -170 to -250 km s-1. The velocities of Mg II emission are redshifted with respect to the systemic velocities of the galaxy, consistent with being back-scattered. By contrast, the Fe II fluorescent emission lines are either slightly blueshifted or at the systemic velocity of the galaxy. Taken together, the velocity structure of the Mg II and Fe II emission is consistent with arising through scattering in galactic winds. Assuming a thin shell geometry for the outflowing gas, the estimated masses carried out by these outflows are large (≳30-50 M⊙ yr- 1), with mass loading factors several times the star formation rate. Almost 20 per cent to 50 per cent of the blueshifted absorption probably escapes the gravitational potential of the galaxy. In this galaxy, the outflow is `locally sourced', that is, the properties of the outflow in each line of sight are dominated by the properties of the nearest clump of star formation; the wind is not global to the galaxy. The mass outflow rates and the momentum flux carried out by outflows in individual star-forming knots of this object are comparable to that of starburst galaxies in the local Universe.

  7. Spatially Resolved Galactic Wind in Lensed Galaxy RCSGA 032727-132609

    NASA Technical Reports Server (NTRS)

    Bordoloi, Rongmon; Rigby, Jane R.; Tumlinson, Janson; Bayliss, Matthew B.; Sharon, Keren; Gladders, Michael G.; Wuyts, Eva

    2016-01-01

    We probe the spatial distribution of outflowing gas along four lines of sight separated by up to 6 kpc in a gravitationally lensed star-forming galaxy at z = 1.70. Using Mg II and Fe II emission and absorption as tracers, we find that the clumps of star formation are driving galactic outflows with velocities of - 170 to - 250 km/s. The velocities of Mg II emission are redshifted with respect to the systemic velocities of the galaxy, consistent with being backscattered. By contrast, the Fe II fluorescent emission lines are either slightly blueshifted or at the systemic velocity of the galaxy. Taken together, the velocity structure of the Mg II and Fe II emission is consistent with arising through scattering in galactic winds. Assuming a thin shell geometry for the outflowing gas, the estimated masses carried out by these outflows are large (approx 30-50 M/yr), with mass loading factors several times the star formation rate. Almost 20 per cent to 50 per cent of the blueshifted absorption probably escapes the gravitational potential of the galaxy. In this galaxy, the outflow is 'locally sourced', that is, the properties of the outflow in each line of sight are dominated by the properties of the nearest clump of star formation; the wind is not global to the galaxy. The mass outflow rates and the momentum flux carried out by outflows in individual star-forming knots of this object are comparable to that of starburst galaxies in the local Universe.

  8. Synthesis and Mossbauer spectroscopic studies of chemically oxidized ferrocenyl(phenyl)phosphines.

    PubMed

    Durfey, D A; Kirss, R U; Frommen, C; Feighery, W

    The electrochemical potentials of Fc3-xPPhx, (1-3, x = 0-2) and (FcPPh)n (4) indicate that iodine should oxidize ferrocenyl(phenyl)phosphines. The molar conductivity of solutions of 1-3 increases sharply when the solutions are titrated with iodine, leveling off after the addition of > 2 equiv of oxidant, consistent with formation of 1:1 electrolytes. Diamagnetic salts 6-9 are observed upon addition of a benzene solution of iodine to a benzene solution of 1-4 at ambient temperature in ratios of I2/metallocene ranging from 1:1 to 2:1. Well-resolved 1H and 31P NMR spectra are obtained for 6-8. Absorptions assigned to the I3- anion dominate the UV-vis spectrum of 6-8, whereas characteristic absorptions for [Fc][I3] are absent. Mossbauer spectra of 7-9 reveal isomer shifts consistent with low-spin iron(II) in ferrocene derivatives rather than those in ferricenium ions. Small amounts of low-spin FeIII appear to be present in 6. Taken together, the results suggest that 6-9 are iodophosphonium salts and not ferricenium salts. Diferrocenyl(phenyl)phosphine oxide (5) reacts with iodine to produce a diamagnetic, dark solid 10. Low-spin FeII is observed at 77 and 293 K in the Mossbauer spectra of 10 with no evidence for oxidation of FeII to FeIII. Compound 10 is proposed to be a neutral complex between 5 and I2. Reactions between 5 and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) yield [Fc2P(=O)][DDQ]2 (11). Mossbauer spectroscopy of 11 indicates the presence of a mixture of low-spin FeII and low-spin FeIII at 77 K, suggesting that some electron transfer occurs from 5 to DDQ. The fraction of low-spin FeIII increases at room temperature.

  9. Synthesis of Optode Thin Layer using Sol Gel Hybrid of Trietoxysiloxane monomer and 3-(Trimethoxysilyl) Propilamine with Ionophore 4-(2-Pyridilazo)-1,3-Benzenadiol (PAR)

    NASA Astrophysics Data System (ADS)

    Wahyuningsih, S.; Rahmawati, F.; Kamal, S.; Slamet, S.; Yunianto, M.; Rahmawati, P.; Aini, F. N.

    2018-03-01

    Optode (Optical sensors) is one of the modern chemical sensors in the field of analytical chemistry that has utilized of inorganic polymers. The optode based on MLCT (Metal to Ligand Charge Transfer) (or MMLL’CT, Mixing Metal-Ligand to Ligand Charge Transfer) or LMCT (Ligand to Metal Charge Transfer) phenomenons have beed generated from oktyltrietxysilane, aminopropyltrimethoxysilane and 4-(2-pyrydilazo) resorcinol (abbreviated as OTES-APTS-PAR) for Cu(II), Cr(III), Ni(II), Fe(III), Cd(II), and Zn(II) ions target. The syntheses of thin layer optode were performed by sol gel method followed by evaporation in glass substrat. The formation of 4-(2-pyrydilazo) resorcinol complexes with ions target have gained strong absorption spectras in visible region because of charge transfer phenomenons. The optical sensor of OTES-APTS-PAR was analysed thermal properties using Differential Thermal Analysis (DTA). DTA thermogram showed a glass transition peaks at a temperature of 315.5 °C. Fourier transform Infrared (FTIR) spectras have showed that the optode materials consisted NH aryl groups indicated IR absorption at 1577.7 cm-1 and also –CH aromatic at 1469.0 cm-1. Synthesized optode materials have strong broad visible absorption with the maximum wavelengths (λmax) = 405 nm and 508.5 nm, respectively. This material have excellent optical responds to several metal ions such as Cu(II), Cr(III), Ni(II), Fe(III), Cd(II), and Zn(II) that was showed from huge Δλmax and the increase of Ktotal

  10. Nanoparticulate iron(III) oxo-hydroxide delivers safe iron that is well absorbed and utilised in humans

    PubMed Central

    Pereira, Dora I.A.; Bruggraber, Sylvaine F.A.; Faria, Nuno; Poots, Lynsey K.; Tagmount, Mani A.; Aslam, Mohamad F.; Frazer, David M.; Vulpe, Chris D.; Anderson, Gregory J.; Powell, Jonathan J.

    2014-01-01

    Iron deficiency is the most common nutritional disorder worldwide with substantial impact on health and economy. Current treatments predominantly rely on soluble iron which adversely affects the gastrointestinal tract. We have developed organic acid-modified Fe(III) oxo-hydroxide nanomaterials, here termed nano Fe(III), as alternative safe iron delivery agents. Nano Fe(III) absorption in humans correlated with serum iron increase (P < 0.0001) and direct in vitro cellular uptake (P = 0.001), but not with gastric solubility. The most promising preparation (iron hydroxide adipate tartrate: IHAT) showed ~80% relative bioavailability to Fe(II) sulfate in humans and, in a rodent model, IHAT was equivalent to Fe(II) sulfate at repleting haemoglobin. Furthermore, IHAT did not accumulate in the intestinal mucosa and, unlike Fe(II) sulfate, promoted a beneficial microbiota. In cellular models, IHAT was 14-fold less toxic than Fe(II) sulfate/ascorbate. Nano Fe(III) manifests minimal acute intestinal toxicity in cellular and murine models and shows efficacy at treating iron deficiency anaemia. From the Clinical Editor This paper reports the development of novel nano-Fe(III) formulations, with the goal of achieving a magnitude less intestinal toxicity and excellent bioavailability in the treatment of iron deficiency anemia. Out of the tested preparations, iron hydroxide adipate tartrate met the above criteria, and may become an important tool in addressing this common condition. PMID:24983890

  11. Resolving the Iron Phthalocyanine Redox Transitions for ORR Catalysis in Aqueous Media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alsudairi, Amell; Li, Jingkun; Ramaswamy, Nagappan

    Metal macrocycles are among the most important catalytic systems in electrocatalysis and biocatalysis owing to their rich redox chemistry. Precise understanding of the redox behavior of metal macrocycles in operando is essential for fundamental studies and practical applications of this catalytic system. Here we present electrochemical data for the representative iron phthalocyanine (FePc) in both aqueous and nonaqueous media coupled with in situ Raman and X-ray absorption analyses to challenge the traditional notion of the redox transition of FePc at the low potential end in aqueous media by showing that it arises from the redox transition of the ring. Ourmore » data unequivocally demonstrate that the electron is shuttled to the Pc ring via the Fe(II)/Fe(I) redox center. The Fe(II)/Fe(I) redox transition of FePc in aqueous media is indiscernible by normal spectroscopic methods owing to the lack of a suitable axial ligand to stabilize the Fe(I) state.« less

  12. Synthesis, spectroscopy, and binding constants of ketocatechol-containing iminodiacetic acid and its Fe(III), Cu(II), and Zn(II) complexes and reaction of Cu(II) complex with H₂O₂ in aqueous solution.

    PubMed

    Gao, Jiaojiao; Xing, Feifei; Bai, Yueling; Zhu, Shourong

    2014-06-07

    A new neuromelanin-like ketocatechol-containing iminodiacetic acid ligand, (N-(3,4-dihydroxyl)phenacylimino)diacetic acid (H4L), which is also quite similar to compounds found in insect cuticle, has been synthesized and characterized. The X-ray crystal structure of H4L has been successfully determined. Proton binding and coordination with Fe(III), Cu(II), and Zn(II) have been studied by potentiometric titrations and UV-vis spectrophotometry in aqueous solution. UV spectra of H4L in the absence and presence of different metal ions indicate complexes formed with the catechol moiety of H4L in aqueous solution. Visible spectra and NMR reveal that H4L with Fe(III), Cu(II), and Zn(II) can all give stable mono-(ML) and dinuclear complexes [M(ML)]. Fe(III) can also form {Fe(FeL)2} and {Fe(FeL)3} species with sufficient base. The process is accompanied by a drastic color change from light blue to deep-blue to wine-red. The Fe(III)-Cu(II) heteronuclear complex also exists in aqueous solution whose spectra are similar to the homonuclear Fe(III) complex. However, the spectra of {Fe(CuL)} shifted to a longer wavelength and {Fe(CuL)2} and {Fe(CuL)3} shifted to a shorter wavelength. Keto-enol tautomerism was observed in weak basic aqueous solution as indicated by (1)H NMR spectra. The reaction products of Cu(II) complex with H2O2 depend on the H2O2 concentration and pH value. Low concentrations of H2O2 oxidize H4L to a series of semiquinone and quinone compounds with absorption maxima at 314-400 nm, while a high concentration of H2O2 oxidizes H4L to colorless muconic acid derivatives. NaIO4 gives different oxidase products, but no 2,4,5-trihydroxyphenylalanine quinone (TPQ)-like hydroxyquinone can be found.

  13. Copernicus observations of Betelgeuse and Antares

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernat, A.P.; Lambert, D.L.

    1976-03-15

    The possibility is explored that the k-line asymmetry is caused by overlying resonance lines of Mn i and Fe i formed in the cool circumstellar gas shells around these stars. Observations of the Mn i 4030--4033 A lines are used to show that circumstellar shell absorption is too weak to explain the asymmetry. However, the overlying lines of the Mn i and Fe i do appear to be responsible because selected Fe i lines in the visible spectrum appear weakened by fluorescent emission driven by the Mg ii emission line. It is suggested that the absorption occurs in a coolmore » turbulent region between the base of the circumstellar shell and the top of the chromosphere. (AIP)« less

  14. In situ spectroscopic and solution analyses of the reductive dissolution of Mn02 by Fe(II)

    USGS Publications Warehouse

    Villinski, John E.; O'Day, Peggy A.; Corley, Timothy L.; Conklin, Martha H.

    2001-01-01

    The reductive dissolution of MnO2 by Fe(II) under conditions simulating acid mine drainage (pH 3, 100 mM SO42-) was investigated by utilizing a flow-through reaction cell and synchrotron X-ray absorption spectroscopy. This configuration allows collection of in situ, real-time X-ray absorption near-edge structure (XANES) spectra and bulk solution samples. Analysis of the solution chemistry suggests that the reaction mechanism changed (decreased reaction rate) as MnO2 was reduced and Fe(III) precipitated, primarily as ferrihydrite. Simultaneously, we observed an additional phase, with the local structure of jacobsite (MnFe2O4), in the Mn XANES spectra of reactants and products. The X-ray absorbance of this intermediate phase increased during the experiment, implying an increase in concentration. The presence of this phase, which probably formed as a surface coating, helps to explain the reduced rate of dissolution of manganese(IV) oxide. In natural environments affected by acid mine drainage, the formation of complex intermediate solid phases on mineral surfaces undergoing reductive dissolution may likewise influence the rate of release of metals to solution.

  15. Follow-up FOCAS Spectroscopy for [O iii] Blobs at z 0.7

    NASA Astrophysics Data System (ADS)

    Yuma, Suraphong

    2014-01-01

    We propose FOCAS spectroscopy for our eight newly selected [O_iii] blobs at z~0.7, showing remarkably extended [O_iii] emission larger than 30 kpc down to 1.2x10^{-18} erg^{-1}cm^{-2} arcsec^{-2} in continuum-subtracted narrowband images. This extended oxygen nebulae beyond stellar component is thought to be hot metal-right gas outflowing from galaxies. However, without spectroscopy to verify gas motion of the system, we cannot certainly conclude that the extended feature of [O_iii] emission is caused by gas outflow. With FOCAS, we expect to observe Fe_ii, Mg_ii absorption lines and [O_ii}], Hbeta, and [O_iii] emission lines, which all fall into optical window at this redshift. We will 1) confirm the outflow of these blobs through Fe_ii and/or Mg_ii absorption lines, 2) constrain energy source of the outflow (AGN or stellar feedback) through line-ratio diagnostic diagram, and 3) for the first time investigate if the extended oxygen emission is just due to the photo-ionized outflowing gas or involving shock heating process through [O_ii]/[O_iii] ratios in extended regions. The last goal can only be accomplished with FOCAS optical spectroscopy, which can observe both [O_ii] and [O_iii] emission lines simultaneously.

  16. Intersstellar absorption lines between 2000 and 3000 A in nearby stars observed with BUSS. [Balloon Borne Ultraviolet Spectrophotometer

    NASA Technical Reports Server (NTRS)

    De Boer, K. S.; Lenhart, H.; Van Der Hucht, K. A.; Kamperman, T. M.; Kondo, Y.

    1986-01-01

    Spectra obtained between 2000 and 3000 A with the Balloon Borne Ultraviolet Spectrophotometer (BUSS) payload were examined for interstellar absorption lines. In bright stars, with spectral types between O9V and F5V, such lines were measured of Mg I, Mg II, Cr II, Mn II, Fe II and Zn II, with Cr II and Zn II data of especially high quality. Column densities were derived and interstellar abundances were determined for the above species. It was found that metal depletion increases with increasing E(B-V); Fe was most affected and Zn showed a small depletion for E(B-V) greater than 0.3 towards Sco-Oph. The metal column densities, derived for Alpha-And, Kappa-Dra, Alpha-Com, Alpha-Aql, and 29 Cyg were used to infer N(H I). It was shown that the ratio of Mg I to Na I is instrumental in determining the ionization structure along each line of sight. The spectra of Aql stars confirms the presence of large gas densities near Alpha-Oph. Moreover, data indicated that the Rho-Oph N(H I) value needs to be altered to 35 x 10 to the 20th/sq cm, based on observed ion ratios and analysis of the Copernicus L-alpha profile.

  17. Mackinawite (FeS) Reduces Mercury(II) under Sulfidic Conditions

    PubMed Central

    2015-01-01

    Mercury (Hg) is a toxicant of global concern that accumulates in organisms as methyl Hg. The production of methyl Hg by anaerobic bacteria may be limited in anoxic sediments by the sequestration of divalent Hg [Hg(II)] into a solid phase or by the formation of elemental Hg [Hg(0)]. We tested the hypothesis that nanocrystalline mackinawite (tetragonal FeS), which is abundant in sediments where Hg is methylated, both sorbs and reduces Hg(II). Mackinawite suspensions were equilibrated with dissolved Hg(II) in batch reactors. Examination of the solid phase using Hg LIII-edge extended X-ray absorption fine structure (EXAFS) spectroscopy showed that Hg(II) was indeed reduced in FeS suspensions. Measurement of purgeable Hg using cold vapor atomic fluorescence spectrometry (CVAFS) from FeS suspensions and control solutions corroborated the production of Hg(0) that was observed spectroscopically. However, a fraction of the Hg(II) initially added to the suspensions remained in the divalent state, likely in the form of β-HgS-like clusters associated with the FeS surface or as a mixture of β-HgS and surface-associated species. Complexation by dissolved S(-II) in anoxic sediments hinders Hg(0) formation, but, by contrast, Hg(II)–S(-II) species are reduced in the presence of mackinawite, producing Hg(0) after only 1 h of reaction time. The results of our work support the idea that Hg(0) accounts for a significant fraction of the total Hg in wetland and estuarine sediments. PMID:25180562

  18. Adsorption of Fe(II) and U(VI) to carboxyl-functionalized microspheres: The influence of speciation on uranyl reduction studied by titration and XAFS

    NASA Astrophysics Data System (ADS)

    Boyanov, Maxim I.; O'Loughlin, Edward J.; Roden, Eric E.; Fein, Jeremy B.; Kemner, Kenneth M.

    2007-04-01

    The chemical reduction of U(VI) by Fe(II) is a potentially important pathway for immobilization of uranium in subsurface environments. Although the presence of surfaces has been shown to catalyze the reaction between Fe(II) and U(VI) aqueous species, the mechanism(s) responsible for the enhanced reactivity remain ambiguous. To gain further insight into the U-Fe redox process at a complexing, non-conducting surface that is relevant to common organic phases in the environment, we studied suspensions containing combinations of 0.1 mM U(VI), 1.0 mM Fe(II), and 4.2 g/L carboxyl-functionalized polystyrene microspheres. Acid-base titrations were used to monitor protolytic reactions, and Fe K-edge and U L-edge X-ray absorption fine structure spectroscopy was used to determine the valence and atomic environment of the adsorbed Fe and U species. In the Fe + surface carboxyl system, a transition from monomeric to oligomeric Fe(II) surface species was observed between pH 7.5 and pH 8.4. In the U + surface carboxyl system, the U(VI) cation was adsorbed as a mononuclear uranyl-carboxyl complex at both pH 7.5 and 8.4. In the ternary U + Fe + surface carboxyl system, U(VI) was not reduced by the solvated or adsorbed Fe(II) at pH 7.5 over a 4-month period, whereas complete and rapid reduction to U(IV) nanoparticles occurred at pH 8.4. The U(IV) product reoxidized rapidly upon exposure to air, but it was stable over a 4-month period under anoxic conditions. Fe atoms were found in the local environment of the reduced U(IV) atoms at a distance of 3.56 Å. The U(IV)-Fe coordination is consistent with an inner-sphere electron transfer mechanism between the redox centers and involvement of Fe(II) atoms in both steps of the reduction from U(VI) to U(IV). The inability of Fe(II) to reduce U(VI) in solution and at pH 7.5 in the U + Fe + carboxyl system is explained by the formation of a transient, "dead-end" U(V)-Fe(III) complex that blocks the U(V) disproportionation pathway after the first electron transfer. The increased reactivity at pH 8.4 relative to pH 7.5 is explained by the reaction of U(VI) with an Fe(II) oligomer, whereby the bonds between Fe atoms facilitate the transfer of a second electron to the hypothetical U(V)-Fe(III) intermediate. We discuss how this mechanism may explain the commonly observed higher efficiency of uranyl reduction by adsorbed or structural Fe(II) relative to aqueous Fe(II).

  19. Enhancement of Fe diffusion in ZnSe/S laser crystals under hot isostatic pressing

    NASA Astrophysics Data System (ADS)

    Gafarov, Ozarfar; Martinez, Alan; Fedorov, Vladimir; Mirov, Sergey

    2017-02-01

    Many organic molecules have strong and narrow absorption features in the middle Infrared (mid-IR) spectral range. The ability to directly probe absorption features of molecules enables numerous mid-IR applications in non-invasive medical diagnosis, industrial processing and process control, environmental monitoring, etc. Thus, there is a strong demand for lasers operating in mid-IR spectral range. Transition metal (TM) doped II-VI semiconductors such as Fe/Cr:ZnSe/S are the material of choice for fabrication of mid-IR gain media due to favorable combination of properties: a four level energy structure, absence of excited state absorption , broad mid-IR vibronic absorption and emission bands. Despite the significant progress in post-growth thermal diffusion technology of TM:II-VI fabrication there are still some difficulties associated with diffusion of certain TM's in these materials. In this work we address the issue of poor diffusion of Fe in ZnSe/S polycrystals. It is well known that with the temperature increase the diffusion rate of impurity also increases. However, simple application of high temperatures during the diffusion process is problematic for ZnSe/S crystals due to their strong sublimation. The sublimation processes can be suppressed by application of high pressures. Hot isostatic pressing was utilized as the means for simultaneous application of high temperatures (1300°C) and high pressures (1000atm, 3000atm). It was determined that diffusion coefficient of Fe was improved 13 and 14 fold in ZnSe and ZnS, respectively, as compared to the standard diffusion at 950°C. The difference in diffusion coefficients can be due to strong increase in the grain size of polycrystals.

  20. Physical conditions in the neutral interstellar medium at z = 2.43 toward Q 2348-011

    NASA Astrophysics Data System (ADS)

    Noterdaeme, P.; Petitjean, P.; Srianand, R.; Ledoux, C.; Le Petit, F.

    2007-07-01

    Aims:We aim at deriving the physical conditions in the neutral gas associated with damped Lyman-α systems using observation and analysis of H2 and C i absorptions. Methods: We obtained a high-resolution VLT-UVES spectrum of the quasar Q 2348-011 over a wavelength range that covers most of the prominent metal and molecular absorption lines from the log N(H i) = 20.50 ± 0.10 damped Lyman-α system at z_abs=2.4263. We detected H2 in this system and measured column densities of H2, C i, C i^*, C i**, Si ii, P ii, S ii, Fe ii, and Ni ii. From the column density ratios and, in particular, the relative populations of H2 rotational and C i fine-structure levels, we derived the physical conditions in the gas (relative abundances, dust-depletion, particle density, kinetic temperature, and ionising flux) and discuss physical conditions in the neutral phase. Results: Molecular hydrogen was detected in seven components in the first four rotational levels (J = 0-3) of the vibrational ground state. Absorption lines of H2 J=4 (resp. J = 5) rotational levels are detected in six (resp. two) of these components. This leads to a total molecular fraction of log f ≃ -1.69+0.37-0.58. Fourteen components are needed to reproduce the metal-line profiles. The overall metallicity is found to be -0.80, -0.62, -1.17 ± 0.10 for, respectively, [Si/H], [S/H] and [Fe/H]. We confirm the earlier findings that there is a correlation between log N(Fe ii)/N(S ii) and log N(Si ii)/N(S ii) from different components indicative of a dust-depletion pattern. Surprisingly, however, the depletion of metals onto dust in the H2 components is not large in this system: [Fe/S] = -0.8 to -0.1. The gas in H2-bearing components is found to be cold but still hotter than similar gas in our Galaxy (T > 130 K, instead of typically 80 K) and dense (n ˜ 100-200 cm-3). There is an anti-correlation (R=-0.97) between the logarithm of the photo-absorption rate, log β_0, and log N(H2)/N(C i) derived for each H2 component. We show that this is mostly due to shielding effects and imply that the photo-absorption rate β0 is a good indicator of the physical conditions in the gas. We find that the gas is immersed in an intense UV field, about one order of magnitude higher than in the solar vicinity. These results suggest that the gas in H2-bearing DLAs is clumpy, and star-formation occurs in the associated object. Based on observations carried out at the European Southern Observatory (ESO) under prog. ID No. 072.A-0346 with the UVES spectrograph installed at the Very Large Telescope (VLT) Unit 2, Kueyen, on Cerro Paranal, Chile.

  1. Multiepoch Spectropolarimetry of SN 2011fe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milne, Peter A.; Williams, G. Grant; Smith, Paul S.

    2017-01-20

    We present multiple spectropolarimetric observations of the nearby Type Ia supernova (SN) 2011fe in M101, obtained before, during, and after the time of maximum apparent visual brightness. The excellent time coverage of our spectropolarimetry has allowed better monitoring of the evolution of polarization features than is typical, which has allowed us new insight into the nature of normal SNe Ia. SN 2011fe exhibits time-dependent polarization in both the continuum and strong absorption lines. At early epochs, red wavelengths exhibit a degree of continuum polarization of up to 0.4%, likely indicative of a mild asymmetry in the electron-scattering photosphere. This behaviormore » is more common in subluminous SNe Ia than in normal events, such as SN 2011fe. The degree of polarization across a collection of absorption lines varies dramatically from epoch to epoch. During the earliest epoch, a λ 4600–5000 Å complex of absorption lines shows enhanced polarization at a different position angle than the continuum. We explore the origin of these features, presenting a few possible interpretations, without arriving at a single favored ion. During two epochs near maximum, the dominant polarization feature is associated with the Si ii λ 6355 Å absorption line. This is common for SNe Ia, but for SN 2011fe the polarization of this feature increases after maximum light, whereas for other SNe Ia, that polarization feature was strongest before maximum light.« less

  2. Formation of Deep Sea Umber Deposits Linked to Microbial Metal Oxidation at the South Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Peng, Xiaotong; Ta, Kaiwen; Chen, Shun; Zhang, Lijuan; Xu, Hengchao

    2015-04-01

    Umber deposits are important metalliferous deposits, which occur in off-axis half-graben structures at ancient and modern ocean floor. The genesis of umber deposits has remained controversial for several decades. Recently, microbial Fe(II) oxidation associated with low-temperature diffuse venting has been identified as a key process for the formation of umber deposits, but the exact biochemical mechanisms involved to the precipitation of Mn oxides and co-precipitation of Fe oxyhydroxides and Mn oxides in umber deposits still remain unknown. Here, we used nano secondary ion mass spectrometer, synchrotron-based X-ray absorption spectroscopy, electron microscopy, and molecular techniques to demonstrate the coexistence of two types of metal-oxidizing bacteria within deep-sea hydrothermal umber deposits at the South Atlantic Ridge, where we found unique spheroids composed of biogenic Fe oxyhydroxides and Mn oxides in the deposits. Our data suggest that Fe oxyhydroxides and Mn oxides are metabolic by-products of lithotrophic Fe(II)-oxidizing bacteria and heterotrophic Mn(II)-oxidizing bacteria, respectively. The hydrothermal vents fuel lithotrophic Fe(II)-oxidizing bacteria, which constitute a trophic base that may support the activities of heterotrophic Mn(II)-oxidizing bacteria. The biological origin of umber deposits underscore the importance of geomicrobiologcial interaction in triggering the formation of deep-sea deposits, with important implications for the generation of submarine Mn deposits and crusts.

  3. The Properties and Prevalence of Galactic Outflows at z ~ 1 in the Extended Groth Strip

    NASA Astrophysics Data System (ADS)

    Kornei, Katherine A.; Shapley, Alice E.; Martin, Crystal L.; Coil, Alison L.; Lotz, Jennifer M.; Schiminovich, David; Bundy, Kevin; Noeske, Kai G.

    2012-10-01

    We investigate galactic-scale outflowing winds in 72 star-forming galaxies at z ~ 1 in the Extended Groth Strip. Galaxies were selected from the DEEP2 survey and follow-up LRIS spectroscopy was obtained covering Si II, C IV, Fe II, Mg II, and Mg I lines in the rest-frame ultraviolet. Using Galaxy Evolution Explorer (GALEX), Hubble Space Telescope (HST), and Spitzer imaging available for the Extended Groth Strip, we examine galaxies on a per-object basis in order to better understand both the prevalence of galactic outflows at z ~ 1 and the star-forming and structural properties of objects experiencing outflows. Gas velocities, measured from the centroids of Fe II interstellar absorption lines, are found to span the interval [-217, +155] km s-1. We find that ~40% (10%) of the sample exhibits blueshifted Fe II lines at the 1σ (3σ) level. We also measure maximal outflow velocities using the profiles of the Fe II and Mg II lines; we find that Mg II frequently traces higher velocity gas than Fe II. Using quantitative morphological parameters derived from the HST imaging, we find that mergers are not a prerequisite for driving outflows. More face-on galaxies also show stronger winds than highly inclined systems, consistent with the canonical picture of winds emanating perpendicular to galactic disks. In light of clumpy galaxy morphologies, we develop a new physically motivated technique for estimating areas corresponding to star formation. We use these area measurements in tandem with GALEX-derived star formation rates (SFRs) to calculate SFR surface densities. At least 70% of the sample exceeds an SFR surface density of 0.1 M ⊙ yr-1 kpc-2, the threshold necessary for driving an outflow in local starbursts. At the same time, the outflow detection fraction of only 40% in Fe II absorption provides further evidence for an outflow geometry that is not spherically symmetric. We see a ~3σ trend between outflow velocity and SFR surface density, but no significant trend between outflow velocity and SFR. Higher resolution data are needed in order to test the scaling relations between outflow velocity and both SFR and SFR surface density predicted by theory. Based, in part, on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W. M. Keck Foundation.

  4. Influence of central metalloligand geometry on electronic communication between metals: syntheses, crystal structures, MMCT properties of isomeric cyanido-bridged Fe2Ru complexes, and TDDFT calculations.

    PubMed

    Ma, Xiao; Lin, Chen-Sheng; Hu, Sheng-Min; Tan, Chun-Hong; Wen, Yue-Hong; Sheng, Tian-Lu; Wu, Xin-Tao

    2014-06-02

    To investigate how the central metalloligand geometry influences distant or vicinal metal-to-metal charge-transfer (MMCT) properties of polynuclear complexes, cis- and trans-isomeric heterotrimetallic complexes, and their one- and two-electron oxidation products, cis/trans-[Cp(dppe)Fe(II)NCRu(II)(phen)2CN-Fe(II)(dppe)Cp][PF6]2 (cis/trans-1[PF6]2), cis/trans-[Cp(dppe)Fe(II)NCRu(II)(phen)2CNFe(III)-(dppe)Cp][PF6]3 (cis/trans-1[PF6]3) and cis/trans-[Cp(dppe)Fe(III)NCRu(II)(phen)2CN-Fe(III)(dppe)Cp][PF6]4 (cis/trans-1[PF6]4) have been synthesized and characterized. Electrochemical measurements show the presence of electronic interactions between the two external Fe(II) atoms of the cis- and trans-isomeric complexes cis/trans-1[PF6]2. The electronic properties of all these complexes were studied and compared by spectroscopic techniques and TDDFT//DFT calculations. As expected, both mixed valence complexes cis/trans-1[PF6]3 exhibited different strong absorption signals in the NIR region, which should mainly be attributed to a transition from an MO that is delocalized over the Ru(II)-CN-Fe(II) subunit to a Fe(III) d orbital with some contributions from the co-ligands. Moreover, the NIR transition energy in trans-1[PF6]3 is lower than that in cis-1[PF6]3, which is related to the symmetry of their molecular orbitals on the basis of the molecular orbital analysis. Also, the electronic spectra of the two-electron oxidized complexes show that trans-1[PF6]4 possesses lower vicinal Ru(II) → Fe(III) MMCT transition energy than cis-1[PF6]4. Moreover, the assignment of MMCT transition of the oxidized products and the differences of the electronic properties between the cis and trans complexes can be well rationalized using TDDFT//DFT calculations. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. GHRS observations of cool, low-gravity stars. 1: The far-ultraviolet spectrum of alpha Orionis (M2 Iab)

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth G.; Robinson, Richard D.; Wahlgren, Glenn M.; Linsky, Jeffrey L.; Brown, Alexander

    1994-01-01

    We present far-UV (1200-1930 A) observations of the prototypical red supergiant star alpha Ori, obtained with the Goddard High Resolution Spectrograph (GHRS) on the Hubble Space Telescope (HST). The observations, obtained in both low- (G140L) and medium- (G160/200M) resolution modes, unamibiguously confirm that the UV 'continuum' tentatively seen with (IUE) is in fact a true continuum and is not due to a blend of numerous faint emission features or scattering inside the IUE spectrograph. This continuum appears to originate in the chromospheric of the star at temperatures ranging from 3000-5000 K, and we argue that it is not related to previously reported putative companions or to bright spots on the stellar disk. Its stellar origin is further confirmed by overlying atomic and molecular absorptions from the chromosphere and circumstellar shell. The dominant structure in this spectral region is due to nine strong, broad absorption bands of the fourth-positive A-X system of CO, superposed on this continuum in the 1300-1600 A region. Modeling of this CO absorption indicates that it originates in the circumstellar shell in material characterized by T = 500 K, N(CO) = 1.0 x 10(exp 18) per sq cm, and V(sub turb) = 5.0 km per sec. The numerous chromospheric emission features are attributed mostly to fluorescent lines of Fe II and Cr II (both pumped by Lyman Alpha) and S I lines, plus a few lines of O I, C I, and Si II. The O I and C I UV 2 multiplets are very deficient in flux, compared to both the flux observed in lines originating from common upper levels but with markedly weaker intrinsic strength (i.e., O I UV 146 and C I UV 32) and to the UV 2 line fluxes seen in other cool, less luminous stars. This deficiency appears to be caused by strong self-absorption of these resonance lines in the circumstellar shell and/or upper chromosphere of alpha Ori. Atomic absorption features, primarily due to C I and Fe II are clearly seen in the G160M spectrum centered near 1655 A. These Fe II features are formed at temperatures that can occur only in the chromosphere of the star and are clearly not photospheric or circumstellar in origin.

  6. Nanoparticulate iron(III) oxo-hydroxide delivers safe iron that is well absorbed and utilised in humans.

    PubMed

    Pereira, Dora I A; Bruggraber, Sylvaine F A; Faria, Nuno; Poots, Lynsey K; Tagmount, Mani A; Aslam, Mohamad F; Frazer, David M; Vulpe, Chris D; Anderson, Gregory J; Powell, Jonathan J

    2014-11-01

    Iron deficiency is the most common nutritional disorder worldwide with substantial impact on health and economy. Current treatments predominantly rely on soluble iron which adversely affects the gastrointestinal tract. We have developed organic acid-modified Fe(III) oxo-hydroxide nanomaterials, here termed nano Fe(III), as alternative safe iron delivery agents. Nano Fe(III) absorption in humans correlated with serum iron increase (P < 0.0001) and direct in vitro cellular uptake (P = 0.001), but not with gastric solubility. The most promising preparation (iron hydroxide adipate tartrate: IHAT) showed ~80% relative bioavailability to Fe(II) sulfate in humans and, in a rodent model, IHAT was equivalent to Fe(II) sulfate at repleting haemoglobin. Furthermore, IHAT did not accumulate in the intestinal mucosa and, unlike Fe(II) sulfate, promoted a beneficial microbiota. In cellular models, IHAT was 14-fold less toxic than Fe(II) sulfate/ascorbate. Nano Fe(III) manifests minimal acute intestinal toxicity in cellular and murine models and shows efficacy at treating iron deficiency anaemia. This paper reports the development of novel nano-Fe(III) formulations, with the goal of achieving a magnitude less intestinal toxicity and excellent bioavailability in the treatment of iron deficiency anemia. Out of the tested preparations, iron hydroxide adipate tartrate met the above criteria, and may become an important tool in addressing this common condition. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  7. A selective naked-eye chemosensor derived from 2-methoxybenzylamine and 2,3-dihydroxybenzaldehyde - synthesis, spectral characterization and electrochemistry of its bis-bidentates Schiff bases metal complexes

    NASA Astrophysics Data System (ADS)

    Djouhra, Aggoun; Ali, Ourari; Ramiro, Ruiz-Rosas; Emilia, Morallon

    2017-09-01

    A new colorimetric receptor HL, acting as a bidentate Schiff base ligand, has been synthesized by condensation of 2-methoxybenzylamine on 2,3-dihydroxybenzaldehyde in a methanolic solution. Interestingly, this chelating agent can selectively detect Cu2 +, Co2 +, Fe2 + and Fe3 + ions with a simple and an easy-to-make, well defined naked-eye visible color changes in two different solvents like acetonitrile and methanol. This bidentate ligand coordinates three metal ions of Co(II), Cu(II) and Fe(II) via nitrogen and oxygen atoms. The molecular structures of the synthesized compounds were elucidated by various physicochemical properties such as the elemental analysis, FT-IR, HNMR, UV-Vis and the Mass spectrometry. The resulting general formulae [M(L)2·H2O] (M(II) = Cu, Fe, Co) are proposed as mononuclear complexes. The solvatochromism properties of these compounds were studied with their absorption spectra using different solvents as methanol (MeOH), acetonitrile (AN), tetrahydrofuran (THF), dimethylformamid (DMF), dimethylsulfoxid (DMSO) and dichloromethane (DC). The Electrochemical behavior of copper complex was explored in DMF solutions by cyclic voltammetry (CV) with two working electrodes: glassy carbon (GC) and platinum electrode (Pt). This study reveals that copper complex shows successively two redox systems as CuIII/II and CuII/I. The FeIII/II and CoII/I redox systems have also been studied in DMF and DMSO media.

  8. Salicylyl Fluorene Derivatives as Fluorescent Sensors for Cu(II) Ions.

    PubMed

    Khaokeaw, Chenwit; Sukwattanasinitt, Mongkol; Rashatasakhon, Paitoon

    2016-03-01

    Two derivatives of fluorene containing salicylic acid groups are successfully synthesized by palladium-catalyzed coupling reactions and subsequent hydrolysis of salicylate esters. The compounds are characterized by various spectroscopic methods. In phosphate buffer (pH 8.0) solutions, these compounds are well soluble. They show maximum absorption wavelengths in the range of 304-330 nm and exhibit maximum emission wavelength around 420 and 430 nm with the quantum yields of 2.7 and 4.4 %, respectively. The compound with alkynyl salicylate groups (2) exhibits a selective fluorescence quenching towards Cu(II) and Fe(II) with a relatively similar sensitivity. The selectivity favoring Cu(II) over Fe(II) and other metal ions can be achieved upon the addition of 30 μM Triton X-100. The Cu(II) detection limit in solution phase is 1.47 ppb. The fluorescence signal recovery upon the addition of EDTA indicate a reversible complexation between 2 and Cu(II) ion. Fabrication of 2 on filter paper using a 50 μM solution in THF affords a naked-eye detection for Cu(II) and Fe(II) in aqueous media at picomole level.

  9. Measuring the Outflow Properties of FeLoBAL Quasars

    NASA Astrophysics Data System (ADS)

    Dabbieri, Collin; Choi, Hyunseop; MacInnis, Francis; Leighly, Karen; Terndrup, Donald

    2018-01-01

    Roughly 20 percent of the quasar population shows broad absorption lines, which are indicators of an energetic wind. Within the broad absorption line class of quasars exist FeLoBAL quasars, which show strong absorption lines from the Fe II and Fe III transitions as well as other low-ionization lines. FeLoBALs are of particular interest because they are thought to possibly be a short-lived stage in a quasar's life where it expels its shroud of gas and dust. This means the winds we see from FeLoBALs are one manifestation of galactic feedback. This idea is supported by Farrah et al. (2012) who found an anti correlation between outflow strength and contribution from star formation to the total IR luminosity of the host galaxy when examining a sample of FeLoBAL quasars. We analyze the sample of 26 FeLoBALs from Farrah et al. (2012) in order to measure the properties of their outflows, including ionization, density, column density and covering fraction. The absorption and continuum profiles of these objects are modeled using SimBAL, a program which creates synthetic spectra using a grid of Cloudy models. A Monte-Carlo method is employed to determine posterior probabilities for the physical parameters of the outflow. From these probabilities we extract the distance of the outflow, the mass outflow rate and the kinetic luminosity. We demonstrate SimBAL is capable of modeling a wide range of spectral morphologies. From the 26 objects studied we observe interesting correlations between ionization parameter, distance and density. Analysis of our sample also suggests a dearth of objects with velocity widths greater than or equal to 300 km/s at distances greater than or equal to 100 parsecs.

  10. Spectrophotometric Determination of Iron(II) and Cobalt(II) by Direct, Derivative, and Simultaneous Methods Using 2-Hydroxy-1-Naphthaldehyde-p-Hydroxybenzoichydrazone

    PubMed Central

    Devi, V. S. Anusuya; Reddy, V. Krishna

    2012-01-01

    Optimized and validated spectrophotometric methods have been proposed for the determination of iron and cobalt individually and simultaneously. 2-hydroxy-1-naphthaldehyde-p-hydroxybenzoichydrazone (HNAHBH) reacts with iron(II) and cobalt(II) to form reddish-brown and yellow-coloured [Fe(II)-HNAHBH] and [Co(II)-HNAHBH] complexes, respectively. The maximum absorbance of these complexes was found at 405 nm and 425 nm, respectively. For [Fe(II)-HNAHBH], Beer's law is obeyed over the concentration range of 0.055–1.373 μg mL−1 with a detection limit of 0.095 μg mL−1 and molar absorptivity ɛ, 5.6 × 104 L mol−1 cm−1. [Co(II)-HNAHBH] complex obeys Beer's law in 0.118–3.534 μg mL−1 range with a detection limit of 0.04 μg mL−1 and molar absorptivity, ɛ of 2.3 × 104 L mol−1 cm−1. Highly sensitive and selective first-, second- and third-order derivative methods are described for the determination of iron and cobalt. A simultaneous second-order derivative spectrophotometric method is proposed for the determination of these metals. All the proposed methods are successfully employed in the analysis of various biological, water, and alloy samples for the determination of iron and cobalt content. PMID:22505925

  11. Structural, Electronic, and Electrochemical Properties of LixCo[Fe(CN)6]0.902.9H2O

    NASA Astrophysics Data System (ADS)

    Takachi, Masamitsu; Matsuda, Tomoyuki; Moritomo, Yutaka

    2013-04-01

    Prussian blue analogues with jungle-gym-type structure are promising candidates for cathode materials of the lithium-ion secondary battery (LIB). Here, we investigated the structural, electronic, and electrochemical properties of cobalt hexacyanoferrate, LixCo[Fe(CN)6]0.902.9H2O, against Li concentration (x). The capacity (= 139 mAh/g) of the thin-film electrode was close to the ideal value (= 132 mAh/g) for the two-electron reaction. The discharge curve exhibits three plateaus, i.e., plateaus I, II, and III. The material exhibits a first-order phase transition accompanied by significant volume expansion by 7% at the boundary between plateaus II and III. Ex situ X-ray absorption spectroscopy (XAS) indicates that the discharge processes of plateaus I, II, and III are ascribed to the reduction processes of Fe3+, Co3+, and Fe3+, respectively. The rate (r) and cycle (n) dependence of the electrode performance will be discussed in terms of the reduction processes.

  12. Reduction of Ag{sup I}, Au{sup III}, Cu{sup II}, and Hg{sup II} by Fe{sup II}/Fe{sup III} hydroxysulfate green rust.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Loughlin, E. J.; Kelly, S. D.; Kemner, K. M.

    Green rusts are mixed Fe{sup II}/Fe{sup III} hydroxides that are found in many suboxic environments where they are believed to play a central role in the biogeochemical cycling of iron. X-ray absorption fine structure analysis of hydroxysulfate green rust suspensions spiked with aqueous solutions of AgCH{sub 3}COO, AuCl{sub n}(OH){sub 4-n}, CuCl{sub 2}, or HgCl{sub 2} showed that Ag{sup I}, Au{sup III}, Cu{sup II}, and Hg{sup II} were readily reduced to Ag{sup 0}, Au{sup 0}, Cu{sup 0}, and Hg{sup 0}. Imaging of the resulting solids from the Ag{sup I}-, Au{sup III}-, and Cu{sup II}-amended green rust suspensions by transmission electron microscopymore » indicated the formation of submicron-sized particles of Ag{sup 0}, Au{sup 0}, and Cu{sup 0}. The facile reduction of Ag{sup I}, Au{sup III}, Cu{sup II}, and Hg{sup II} to Ag{sup 0}, Au{sup 0}, Cu{sup 0}, and Hg{sup 0}, respectively, by green rust suggests that the presence of green rusts in suboxic soils and sediments can have a significant impact on the biogeochemistry of silver, gold, copper, and mercury, particularly with respect to their mobility.« less

  13. The Importance of pH, Oxygen, and Bitumen on the Oxidation and Precipitation of Fe(III)-(oxy)hydroxides during Hydraulic Fracturing of Oil/Gas Shales

    NASA Astrophysics Data System (ADS)

    Jew, A. D.; Dustin, M. K.; Harrison, A. L.; Joe-Wong, C. M.; Thomas, D.; Maher, K.; Brown, G. E.; Bargar, J.

    2016-12-01

    Due to the rapid growth of hydraulic fracturing in the United States, understanding the cause for the rapid production drop off of new wells over the initial months of production is paramount. One possibility for the production decrease is pore occlusion caused by the oxidation of Fe(II)-bearing phases resulting in Fe(III) precipitates. To understand the release and fate of Fe in the shale systems, we reacted synthesized fracture fluid at 80oC with shale from four different geological localities (Marcellus Fm., Barnett Fm., Eagle Ford Fm., and Green River Fm.). A variety of wet chemical and synchrotron-based techniques (XRF mapping and x-ray absorption spectroscopy) were used to understand Fe release and solid phase Fe speciation. Solution pH was found to be the greatest factor for Fe release. Carbonate-poor Barnett and Marcellus shale showed rapid Fe release into solution followed by a plateau or significant drop in Fe concentrations indicating mineral precipitation. Conversely, in high carbonate shales, Eagle Ford and Green River, no Fe was detected in solution indicating fast Fe oxidation and precipitation. For all shale samples, bulk Fe EXAFS data show that a significant amount of Fe in the shales is bound directly to organic carbon. Throughout the course of the experiments inorganic Fe(II) phases (primarily pyrite) reacted while Fe(II) bound to C showed no indication of reaction. On the micron scale, XRF mapping coupled with μ-XANES spectroscopy showed that at pH < 4.0, Fe(III) bearing phases precipitated as diffuse surface precipitates of ferrihydrite, goethite, and magnetite away from Fe(II) point sources. In near circum-neutral pH systems, Fe(III)-bearing phases (goethite and hematite) form large particles 10's of μm's in diameter near Fe(II) point sources. Idealized systems containing synthesized fracturing fluid, dissolved ferrous chloride, and bitumen showed that bitumen released during reaction with fracturing fluids is capable of oxidizing Fe(II) to Fe(III) at pH's 2.0 and 7.0. This indicates that bitumen can play a large role in Fe oxidation and speciation in the subsurface. This work shows that shale mineralogy has a significant impact on the morphology and phases of Fe(III) precipitates in the subsurface which in turn can significantly impact subsurface solution flow.

  14. Obligatory reduction of ferric chelates in iron uptake by soybeans.

    PubMed

    Chaney, R L; Brown, J C; Tiffin, L O

    1972-08-01

    The contrasting Fe(2+) and Fe(3+) chelating properties of the synthetic chelators ethylenediaminedi (o-hydroxyphenylacetate) (EDDHA) and 4,7-di(4-phenylsulfonate)-1, 10-phenanthroline (bathophenanthrolinedisulfonate) (BPDS) were used to determine the valence form of Fe absorbed by soybean roots supplied with Fe(3+)-chelates. EDDHA binds Fe(3+) strongly, but Fe(2+) weakly; BPDS binds Fe(2+) strongly but Fe(3+) weakly. Addition of an excess of BPDS to nutrient solutions containing Fe(3+)-chelates inhibited soybean Fe uptake-translocation by 99+%; [Fe(II) (BPDS)(3)](4-) accumulated in the nutrient solution. The addition of EDDHA caused little or no inhibition. These results were observed with topped and intact soybeans. Thus, separation and absorption of Fe from Fe(3+)-chelates appear to require reduction of Fe(3+)-chelate to Fe(2+)-chelate at the root, with Fe(2+) being the principal form of Fe absorbed by soybean.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Starcher, Autumn N.; Elzinga, Evert J.; Sparks, Donald L.

    Previous research demonstrated the formation of single divalent metal (Co, Ni, and ZnAl) and mixed divalent metal (NiZnAl) layered double hydroxide (LDH) phases from reactions of the divalent metal with Al-bearing substrates and soils in both laboratory experiments and in the natural environment. Recently Fe(II)-Al-LDH phases have been found in laboratory batch reaction studies, and although they have yet to be found in the natural environment. Potential locations of Fe(II)-Al-LDH phases in nature include areas with suboxic and anoxic conditions. Because these areas can be environments of significant contaminant accumulation, it is important to understand the possible interactions and impactsmore » of contaminant elements on LDH phase formation. One such contaminant, Zn, can also form as an LDH and has been found to form as a mixed divalent layered hydroxide phase. To understand how Zn impacts the formation of Fe(II)-Al-LDH phase formation and kinetics, 3 mM or 0.8 mM Fe(II) and 0.8 mM Zn were batch reacted with either 10 g/L pyrophyllite or 7.5 g/L γ-Al2O3 for up to three months under anoxic conditions. Aqueous samples were analyzed by inductively coupled plasma optical emission spectrometry (ICP-OES) and solid samples were analyzed with X-ray absorption spectroscopy (XAS). Shell-by-shell fits of Fe(II) and co-sorption samples with pyrophyllite show the formation of a mixed divalent metal (Fe(II)-Zn-Al) layered hydroxide phase, while Fe(II) and Zn co-sorption samples with γ-Al2O3 produce Fe(II)-Al-LDH phases and Zn in inner-sphere complexation with the γ-Al2O3. This study demonstrates the formation of a mixed divalent metal layered hydroxide and further iterates the importance of sorbent reactivity on LDH phase formation.« less

  16. VizieR Online Data Catalog: MgII/FeII absorption profile for 0.3

    NASA Astrophysics Data System (ADS)

    Rubin, K. H. R.; Prochaska, J. X.; Koo, D. C.; Phillips, A. C.; Martin, C. L.; Winstrom, L. O.

    2017-05-01

    In this work, we use rest-frame near-UV spectroscopy of a sample of 105 galaxies at 0.3~9.6 down to a SFR limit>~2 Msun/yr at z~0.5, permitting exploration of outflow properties over the entire breadth of the star-forming sequence at z>0.3 for the first time. Our galaxy sample is drawn from pre-existing photometric and spectroscopic redshift surveys in fields with deep imaging taken with the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS). (3 data files).

  17. HST Detection of Extended Neutral Hydrogen in a Massive Elliptical at z = 0.4

    NASA Astrophysics Data System (ADS)

    Zahedy, Fakhri S.; Chen, Hsiao-Wen; Rauch, Michael; Zabludoff, Ann

    2017-09-01

    We report the first detection of extended neutral hydrogen (H I) gas in the interstellar medium (ISM) of a massive elliptical galaxy beyond z˜ 0. The observations utilize the doubly lensed images of QSO HE 0047-1756 at {z}{QSO}=1.676 as absorption-line probes of the ISM in the massive ({M}{star}≈ {10}11 {M}⊙ ) elliptical lens at z = 0.408, detecting gas at projected distances of d = 3.3 and 4.6 kpc on opposite sides of the lens. Using the Space Telescope Imaging Spectrograph, we obtain UV absorption spectra of the lensed QSO and identify a prominent flux discontinuity and associated absorption features matching the Lyman series transitions at z = 0.408 in both sightlines. The H I column density is log N({{H}} {{I}})=19.6{--}19.7 at both locations across the lens, comparable to what is seen in 21 cm images of nearby ellipticals. The H I gas kinematics are well-matched with the kinematics of the Fe II absorption complex revealed in ground-based echelle data, displaying a large velocity shear of ≈360 {\\text{km s}}-1 across the galaxy. We estimate an ISM Fe abundance of 0.3-0.4 solar at both locations. Including likely dust depletions increases the estimated Fe abundances to solar or supersolar, similar to those of the hot ISM and stars of nearby ellipticals. Assuming 100% covering fraction of this Fe-enriched gas, we infer a total Fe mass of {M}{cool}({Fe})˜ (5{--}8)× {10}4 {M}⊙ in the cool ISM of the massive elliptical lens, which is no more than 5% of the total Fe mass observed in the hot ISM.

  18. Luminous and Variable Stars in M31 and M33. IV. Luminous Blue Variables, Candidate LBVs, B[e] Supergiants, and the Warm Hypergiants: How to Tell Them Apart

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humphreys, Roberta M.; Gordon, Michael S.; Hahn, David

    In this series of papers we have presented the results of a spectroscopic survey of luminous stars in the nearby spirals M31 and M33. Here, we present spectroscopy of 132 additional stars. Most have emission-line spectra, including luminous blue variables (LBVs) and candidate LBVs, Fe ii emission line stars, the B[e] supergiants, and the warm hypergiants. Many of these objects are spectroscopically similar and are often confused with each other. We examine their similarities and differences and propose the following guidelines that can be used to help distinguish these stars in future work. (1) The B[e] supergiants have emission linesmore » of [O i] and [Fe ii] in their spectra. Most of the spectroscopically confirmed sgB[e] stars also have warm circumstellar dust in their spectral energy distributions (SEDs). (2) Confirmed LBVs do not have the [O i] emission lines in their spectra. Some LBVs have [Fe ii] emission lines, but not all. Their SEDs show free–free emission in the near-infrared but no evidence for warm dust . Their most important and defining characteristic is the S Dor-type variability. (3) The warm hypergiants spectroscopically resemble the LBVs in their dense wind state and the B[e] supergiants. However, they are very dusty. Some have [Fe ii] and [O i] emission in their spectra like the sgB[e] stars, but are distinguished by their A- and F-type absorption-line spectra. In contrast, the B[e] supergiant spectra have strong continua and few if any apparent absorption lines. Candidate LBVs should share the spectral characteristics of the confirmed LBVs with low outflow velocities and the lack of warm circumstellar dust.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joseph, Kitheri; Stennett, Martin C.; Hyatt, Neil C.

    Bulk properties such as glass transition temperature, density and thermal expansion of iron phosphate glass compositions, with replacement of Cs by Ba, are investigated as a surrogate for the transmutation of 137Cs to 137Ba, relevant to the immobilisation of Cs in glass. These studies are required to establish the appropriate incorporation rate of 137Cs in iron phosphate glass. Density and glass transition temperature increases with the addition of BaO indicating the shrinkage and reticulation of the iron phosphate glass network. The average thermal expansion coefficient reduces from 19.8 × 10-6 K-1 to 13.4 × 10-6 K-1, when 25 wt. %more » of Cs2O was replaced by 25 wt. % of BaO in caesium loaded iron phosphate glass. In addition to the above bulk properties, the role of Ba as a network modifier in the structure of iron phosphate glass is examined using various spectroscopic techniques. The FeII content and average coordination number of iron in the glass network was estimated using Mössbauer spectroscopy. The FeII content in the un-doped iron phosphate glass and barium doped iron phosphate glasses was 20, 21 and 22 ± 1% respectively and the average Fe coordination varied from 5.3 ± 0.2 to 5.7 ± 0.2 with increasing Ba content. The atomic scale structure was further probed by Fe K-edge X-ray absorption spectroscopy. The average coordination number provided by extended X-ray absorption fine structure spectroscopy and X-ray absorption near edge structure was in good agreement with that given by the Mössbauer data.« less

  20. Iron phosphate glasses: Bulk properties and atomic scale structure

    NASA Astrophysics Data System (ADS)

    Joseph, Kitheri; Stennett, Martin C.; Hyatt, Neil C.; Asuvathraman, R.; Dube, Charu L.; Gandy, Amy S.; Govindan Kutty, K. V.; Jolley, Kenny; Vasudeva Rao, P. R.; Smith, Roger

    2017-10-01

    Bulk properties such as glass transition temperature, density and thermal expansion of iron phosphate glass compositions, with replacement of Cs by Ba, are investigated as a surrogate for the transmutation of 137Cs to 137Ba, relevant to the immobilisation of Cs in glass. These studies are required to establish the appropriate incorporation rate of 137Cs in iron phosphate glass. Density and glass transition temperature increases with the addition of BaO indicating the shrinkage and reticulation of the iron phosphate glass network. The average thermal expansion coefficient reduces from 19.8 × 10-6 K-1 to 13.4 × 10-6 K-1, when 25 wt. % of Cs2O was replaced by 25 wt. % of BaO in caesium loaded iron phosphate glass. In addition to the above bulk properties, the role of Ba as a network modifier in the structure of iron phosphate glass is examined using various spectroscopic techniques. The FeII content and average coordination number of iron in the glass network was estimated using Mössbauer spectroscopy. The FeII content in the un-doped iron phosphate glass and barium doped iron phosphate glasses was 20, 21 and 22 ± 1% respectively and the average Fe coordination varied from 5.3 ± 0.2 to 5.7 ± 0.2 with increasing Ba content. The atomic scale structure was further probed by Fe K-edge X-ray absorption spectroscopy. The average coordination number provided by extended X-ray absorption fine structure spectroscopy and X-ray absorption near edge structure was in good agreement with that given by the Mössbauer data.

  1. Structural stability of coprecipitated natural organic matter and ferric iron under reducing conditions

    USGS Publications Warehouse

    Henneberry, Yumiko K.; Kraus, Tamara E.C.; Nico, Peter S.; Horwath, William R.

    2012-01-01

    The objective was to assess the interaction of Fe coprecipitated with dissolved organic matter (DOM) and its effect on Fe (hydr)oxide crystallinity and DOM retention under abiotic reducing conditions. A Fe-based coagulant was reacted with DOM from an agricultural drain and the resulting precipitate (floc) was exposed to S(-II) and Fe(II). Solution concentrations of Fe(II/III) and DOM were monitored, floc crystallinity was determined using X-ray diffraction, and the composition and distribution of functional groups were assessed using scanning transmission X-ray microscopy (STXM) and near edge X-ray absorption fine structure (NEXAFS) spectroscopy. Results indicate coprecipitation of Fe(III) with DOM forms a non-crystalline floc that withstands crystallization regardless of change in pH, Fe:DOM ratio and type of reductant added. There was no evidence that exposure to reducing conditions led to release of DOM from the floc, indicating that coprecipitation with complex natural DOM in aquatic environments may stabilize Fe (hydr)oxides against crystallization upon reaction with reduced species and lead to long term sequestration of the DOM. STXM analysis identified spatially distinct regions with remarkable functional group purity, contrary to the model of DOM as a relatively uniform complex polymer lacking identifiable organic compounds. Polysaccharide-like OM was strongly and directly correlated with the presence of Fe but showed different Fe binding strength depending on the presence of carboxylic acid functional groups, whereas amide and aromatic functional groups were inversely correlated with Fe content.

  2. Reconstructing the Mineralogy and Bioavailability of Dust-Borne Iron Deposited to the Southern Ocean through the Last Glacial Cycle

    NASA Astrophysics Data System (ADS)

    Shoenfelt, E. M.; Winckler, G.; Lamy, F.; Bostick, B. C.

    2017-12-01

    The iron (Fe) in dust deposited to the Fe-limited Southern Ocean plays an important role in ocean biogeochemistry and global climate. For instance, increases in dust-borne Fe deposition in the subantarctic Southern Ocean have been linked to increases in productivity and part of the CO2 drawdown of the last glacial cycle [1]. Notably, bioavailable Fe impacts productivity rather than total Fe. While it has long been understood that Fe mineralogy impacts Fe bioavailability in general, our understanding of the mineralogy of Fe in dust in specific is limited to that in modern dust sources. Reduced mineral Fe in dust has been shown to be more bioavailable than oxidized mineral iron, as it is more readily dissolved [2], and it is more easily utilized directly by a model diatom [3]. Our previous work focusing on South American dust sources shows that glacial activity is associated with higher Fe(II) fractions in dust-borne minerals, due to the physical weathering of Fe(II)-rich silicates in bedrock [3]. Thus, we hypothesize that there were higher Fe(II) fractions in dust deposited during cold glacial periods where ice sheets were more widespread. Using synchrotron-based X-ray absorption spectroscopy, we have reconstructed the mineralogy of Fe deposited to Southern Ocean sediment cores from the subantarctic South Atlantic (TN057-6/ODP Site 1090) and South Pacific (PS7/56-1) through the last glacial cycle, creating the first paleorecord of Fe mineralogy and its associated bioavailability. During cold glacial periods there is a higher fraction of reduced Fe - in the form of Fe(II) silicates - deposited to the sediments compared to warm interglacial periods. Thus, Fe(II) content is directly correlated with dust input. The presence of Fe(II) silicates rather than products of diagenesis such as pyrite suggests that these Fe(II) minerals are physically weathered from bedrock and preserved rather than produced in the sediment. This result suggests that not only was there more dust and Fe deposited to the Southern Ocean during glacial periods, glacial Fe was also more bioavailable due to the importance of glacial activity to high latitude dust formation. [1] A. Martinez-Garcia et al., Science 343 (2014). [2] A. W. Schroth et al., Nat. Geosci. 2 (2009). [3] E. M. Shoenfelt et al., Sci. Adv. 3(6), DOI:10.1126/sciadv.1700314 (2017).

  3. Fe3O4@SiO2@CS-TETA functionalized graphene oxide for the adsorption of methylene blue (MB) and Cu(II)

    NASA Astrophysics Data System (ADS)

    Wang, Fan; Zhang, Lijuan; Wang, Yeying; Liu, Xijian; Rohani, Sohrab; Lu, Jie

    2017-10-01

    The graphene oxide (GO) functionalized by Fe3O4@SiO2@CS-TETA nanoparticles, Fe3O4@SiO2@CS-TETA-GO, was firstly fabricated in a mild way as a novel adsorbent for the removal of Cu(II) ions and methylene blue (MB) from aqueous solutions. The magnetic composites showed a good dispersity in water and can be conveniently collected for reuse through magnetic separation due to its excellent magnetism. When the Fe3O4@SiO2@CS- TETA-GO was used as an absorbent for the absorption of MB and Cu(II), the adsorption kinetics and isotherms data well fitted the pseudo-second-order model and the Langmuir model, respectively. Under the optimized pH and initial concentration, the maximum adsorption capacity was about 529.1 mg g-1 for MB in 20 min and 324.7 mg g-1 for Cu(II) in 16 min, respectively, exhibiting a better adsorption performance than other GO-based adsorbents reported recently. More importantly, the synthesized adsorbent could be effectively regenerated and repeatedly utilized without significant capacity loss after six times cycles. All the results demonstrated that Fe3O4@SiO2@CS-TETA-GO could be used as an excellent adsorbent for the adsorption of Cu(II) and MB in many fields.

  4. An iron( ii ) hydride complex of a ligand with two adjacent β-diketiminate binding sites and its reactivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gehring, Henrike; Metzinger, Ramona; Braun, Beatrice

    2016-01-13

    After lithiation of PYR-H2 (PYR = [(NC(Me)C(H)C(Me)NC6H3(iPr)2)2(C5H3N)]2-) – the precursor of an expanded β-diketiminato ligand system with two binding pockets – with KN(TMS)2 the reaction of the resulting potassium salt with FeBr2 led to a dinuclear iron(II) bromide complex [(PYR)Fe(μ-Br)2Fe] (1). Through treatment with KHBEt3 the bromide ligands could be replaced by hydrides to yield [PYR)Fe2(μ-H)2] (2), a distorted analogue of known β-diketiminato iron hydride complexes, as evidenced by NMR, Mößbauer and X-ray absorption spectroscopy, as well as by its reactivity: for instance, 2 reacts with the proton source lutidinium triflate via protonation of the hydride ligands to form anmore » iron(II) product [(PYR)Fe2(OTf)2] (4), while CO2 inserts into the Fe–H bonds generating the formate complex [(PYR)Fe2(μ-HCOO)2] (5); in the presence of traces of water partial hydrolysis occurs so that [(PYR)Fe2(μ-OH)(μ-HCOO)] (6) is isolated. Altogether, the iron(II) chemistry supported by the PYR2- ligand is distinctly different from the one of nickel(II), where both, the arrangement of the two binding pockets and the additional pyridyl donor led to diverging features as compared with the corresponding system based on the parent β-diketiminato ligand.« less

  5. IUE observations of the atmospheric eclipsing binary system Zeta Aurigae

    NASA Technical Reports Server (NTRS)

    Champman, R. D.

    1980-01-01

    IUE observations of the eclipsing binary system Zeta Aurigae made prior to and during the eclipse of the relatively small B8 V star by the cool supergiant star (spectral type K2 II) are reported. Spectral lines produced by the absorption of B star radiation in the atmosphere of the K star during eclipse can be used as a probe of the extended K star atmosphere, due to the negligible cool star continuum in the 1200-3200 A region. Spectra taken prior to eclipse are found to be similar to those of the single B8 V star 64 Ori, with the exception of very strong multi-component absorption lines of Si II, Si IV, C IV and the Mg resonance doublet with strong P Cygni profiles, indicating a double shell. Absorption lines including those corresponding to Al II, Al III, Cr II, Mn II, Fe II, Ni II and Ca II are observed to increase in strength and number as the eclipse progresses, with high-ionization-potential lines formed far from the K star, possibly in a shock wave, and low-ionization potential lines, formed in cool plasma, probably a cool wind, nearer to the K star. Finally, an emission-line spectra with lines corresponding to those previously observed in absorption is noted at the time the B-star continuum had disappeared.

  6. Spatially Resolved Distribution of Fe Species around Microbes at the Submicron Scale in Natural Bacteriogenic Iron Oxides.

    PubMed

    Suga, Hiroki; Kikuchi, Sakiko; Takeichi, Yasuo; Miyamoto, Chihiro; Miyahara, Masaaki; Mitsunobu, Satoshi; Ohigashi, Takuji; Mase, Kazuhiko; Ono, Kanta; Takahashi, Yoshio

    2017-09-27

    Natural bacteriogenic iron oxides (BIOS) were investigated using local-analyzable synchrotron-based scanning transmission X-ray microscopy (STXM) with a submicron-scale resolution. Cell, cell sheath interface (EPS), and sheath in the BIOS were clearly depicted using C-, N-, and O- near edge X-ray absorption fine structure (NEXAFS) obtained through STXM measurements. Fe-NEXAFS obtained from different regions of BIOS indicated that the most dominant iron mineral species was ferrihydrite. Fe(II)- and/or Fe(III)-acidic polysaccharides accompanied ferrihydrite near the cell and EPS regions. Our STXM/NEXAFS analysis showed that Fe species change continuously between the cell, EPS, and sheath under several 10-nm scales.

  7. Experimental study of THz electro-optical sampling crystals ZnSe, ZnTe and GaP

    NASA Astrophysics Data System (ADS)

    Zhukova, M.; Makarov, E.; Putilin, S.; Tsypkin, A.; Chegnov, V.; Chegnova, O.; Bespalov, V.

    2017-11-01

    The application of optoelectronic techniques to the generation and detection of THz radiation is now well established. Wide gap semiconductor crystals of groups II-VI, III-V and III-VI are abundantly used. However, some limitations are occurred while using powerful laser systems. In this paper we introduce experimental results of two-photon absorption (2PA) in ZnSe, ZnTe and GaP studied with femtosecond pump-probe supercontinuum spectroscopy. Using of supercontinuum helps us to measure 2PA absorption dynamics and nonlinear index of refraction in wide frequency ranges. Besides influence of Fe concentration in ZnSe:Fe crystals on transmitted THz radiation is described.

  8. Chitosan-bound pyridinedicarboxylate Ni(II) and Fe(III) complex biopolymer films as waste water decyanidation agents.

    PubMed

    Adewuyi, Sheriff; Jacob, Julianah Modupe; Olaleye, Oluwatoyin Omolola; Abdulraheem, Taofiq Olanrewaju; Tayo, Jubril Ayopo; Oladoyinbo, Fatai Oladipupo

    2016-10-20

    Chitosan is a biopolymer with immense structural advantage for chemical and mechanical modifications to generate novel properties, functions and applications. This work depicts new pyridinedicarboxylicacid (PDC) crosslinked chitosan-metal ion films as veritable material for cyanide ion removal from aqueous solution. The PDC-crosslinked chitosan-metal films (PDC-Chit-Ni(II) and PDC-Chit-Fe(III)) were formed by complexing PDC-crosslinked chitosan film with anhydrous nickel(II) and iron(III) chloride salts respectively. The PDC-Chit and its metal films were characterized employing various analytical and spectroscopic techniques. The FT-IR, UV-vis and the XRD results confirm the presence of the metal ions in the metal coordinated PDC-crosslinked chitosan film. The surface morphological difference of PDC-Chit-Ni(II) film before and after decyanidation was explored with scanning electron microscopy. Furthermore, the quantitative amount of nickel(II) and iron(III) present in the complex were determined using Atomic Absorption Spectrophotometer as 32.3 and 37.2μg/g respectively which portends the biopolymer film as a good complexing agent. Removal of cyanide from aqueous solution with PDC-Chit, PDC-Chit-Ni(II) and PDC-Chit-Fe(III) films was studied with batch equilibrium experiments. At equilibrium, decyanidation capacity (DC) followed the order PDC-Chit-Ni (II)≈PDC-Chit-Fe(III)>PDC-Chit. PDC-Chit-Ni(II) film gave 100% CN(-) removal within 40min decyanidation owing to favorable coordination geometry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Mg II-Absorbing Galaxies in the UltraVISTA Survey

    NASA Astrophysics Data System (ADS)

    Stroupe, Darren; Lundgren, Britt

    2018-01-01

    Light that is emitted from distant quasars can become partially absorbed by intervening gaseous structures, including galaxies, in its path toward Earth, revealing information about the chemical content, degree of ionization, organization and evolution of these structures through time. In this project, quasar spectra are used to probe the halos of foreground galaxies at a mean redshift of z=1.1 in the COSMOS Field. Mg II absorption lines in Sloan Digital Sky Survey quasar spectra are paired with galaxies in the UltraVISTA catalog at an impact parameter less than 200 kpc. A sample of 77 strong Mg II absorbers with a rest-frame equivalent width ≥ 0.3 Å and redshift from 0.34 < z < 2.21 are investigated to find equivalent width ratios of Mg II, C IV and Fe II absorption lines, and their relation to the impact parameter and the star formation rates, stellar masses, environments and redshifts of their host galaxies.

  10. Galactic Outflows and Their Correlation with Galaxy Properties at 0.8 < z < 1.6

    NASA Astrophysics Data System (ADS)

    Whiting, Lindsey M.

    Out. ows have been shown to be ubiquitous in galaxies between z = 1 and z=2, and many models and observations have attempted to correlate the absorption line. properties of these out. ows with morphological characteristics of their host galaxies. In this study, we examined the spectra of 71 galaxies with redshifts 1< z<2, paying. particular attention to the FeII and MgII absorption lines. We plotted the equivalent. width, velocity, and maximum velocity of the absorption features against various. physical properties of the galaxies, obtained from catalogues created by Skelton et. al., (2014) and van der Wel et al., (2012). We conrmed the presence of out. ows in. our galaxy sample, and found a signicant trend between the equivalent width and. star formation rate - out. owing gas has stronger absorption lines in galaxies with. higher star formation rates.

  11. Interpreting the spectral behavior of MWC 314

    NASA Astrophysics Data System (ADS)

    Frasca, A.; Miroshnichenko, A. S.; Rossi, C.; Friedjung, M.; Marilli, E.; Muratorio, G.; Busà, I.

    2016-01-01

    Context. MWC 314 is one of the most luminous stars in the Milky Way. Its fundamental parameters are similar to those of luminous blue variables (LBVs), although no large photometric variations have been recorded. Moreover, it shows no evidence of either a dust shell or a relevant spectral variability. Aims: The main purpose of this work is to clarify the origin of the radial velocity and line profile variations exhibited by absorption and emission lines. Methods: We analyzed the radial velocity (RV) variations displayed by the absorption lines from the star's atmosphere using high-resolution optical spectra and fitting the RV curve with an eccentric orbit model. We also studied the RV and profile variations of some permitted and forbidden emission lines of metallic ions with a simple geometric model. The behavior of the Balmer and He I lines has also been investigated. Results: Fourier analysis applied to the RV of the absorption lines clearly shows a 60-day periodicity. A dense coverage of the RV curve allowed us to derive accurate orbital parameters. The RV of the Fe II emission lines varies in the same way, but with a smaller amplitude. Additionally, the intensity ratio of the blue/red peaks of these emission lines correlates with the RV variations. The first three members of the Balmer series as well as [N II] lines display a nearly constant RV and no profile variations in phase with the orbital motion instead. The He I λ5876 Å line shows a strongly variable profile with broad and blue-shifted absorption components that reach velocities of ≤-1000 km s-1 in some specific orbital phases. Conclusions: Our data and analysis provide strong evidence that the object is a binary system composed of a supergiant B[e] star and an undetected companion. The emission lines with a non-variable RV could originate in a circumbinary region. For the Fe II emission lines, we propose a simple geometrical two-component model where a compact source of Fe II emission, moving around the center of mass, is affected by a static extra absorption that originates from a larger area. Finally, the blue-shifted absorption in the He I λ5876 Å line could be the result of density enhancements in the primary star wind that is flowing towards the companion, and which is best observed when projected over the disk of the primary star. Based on observations made at the 0.91 m of Catania Observatory, the OHP telescopes and the 1.83 m telescope of the Asiago Observatory.

  12. Nanoparticulate mackinawite formation; a stopped and continuous flow XANES and EXAFS investigation

    NASA Astrophysics Data System (ADS)

    Butler, I. B.; Bell, A. M.; Charnock, J. M.; Rickard, D.; Vaughan, D. J.; Oldroyd, A.

    2009-12-01

    The sequestration of sulfur and iron within sedimentary iron sulfides, and ultimately as pyrite, is a major sink in global biogeochemical cycles of those elements and has impacts on global carbon and oxygen cycles. The formation of the metastable black iron (II) monosulfide mackinawite is a key process because mackinawite forms in aqueous solutions where the Fe(II) and S(-II) IAP exceeds mackinawite’s Ksp. Mackinawite is the first formed iron sulfide phase, a consequence of Ostwald’s step rule and is a reactant phase during the formation of thermodynamically stable sedimentary iron sulfide minerals such as pyrite. The reaction of dissolved Fe(II) and sulfide is extremely fast and reactions in the environmentally significant near-neutral pH range tend to completion in <1 second. We have combined stopped and continuous flow techniques with X-ray absorption spectroscopy to evaluate the products of the fast precipitation kinetics of mackinawite over millisecond timescales. EXAFS spectra and data collected during flow experiments were compared with those from a well characterised freeze-dried nanoparticulate mackinawite standard and with published data. Published work has used Rietveld crystal structure refinement to determine bond distances of 2.2558 and 2.5976Å for Fe-S and Fe-Fe respectively. In our experiments Fe K edge XANES is consistent with tetrahedrally coordinated Fe in the precipitated sulfide phase. EXAFS data show that local Fe-S and Fe-Fe coordination and interatomic distances (Fe-S = 2.24Å; Fe-Fe = 2.57Å) are consistent with those determined for the standard mackinawite and published data. The coordination and spacing are developed in the precipitated phase after <10ms reaction at pH5, and considerably faster in experiments at near neutral to alkaline pH. No evidence for phases structurally intermediate between hexaqua Fe(II) and precipitated mackinawite was observed. Aqueous FeS° cluster complexes previously identified as intermediates during mackinawite formation and iron sulfide mineral transformations did not contribute significantly to the EXAFS spectra collected. For environmental, geological and biogeochemical applications, the precipitation of the mineral mackinawite can be considered to proceed rapidly from aqueous Fe(II) and S(-II) ions to the nanoparticulate crystalline mineral. The materials labelled “disordered mackinawite”, or “amorphous FeS” phase which have been widely quoted in the iron sulfide literature do not form at any stage of the precipitation of mackinawite from aqueous solutions. Physical and chemical properties previously ascribed to an amorphous or disordered structure are a consequence of the nanoparticulate form of the first precipitated solid.

  13. Probing the Impact of Solvation on Photoexcited Spin Crossover Complexes with High-Precision X-ray Transient Absorption Spectroscopy

    DOE PAGES

    Liu, Cunming; Zhang, Jianxin; Lawson Daku, Latevi M.; ...

    2017-11-10

    Investigating the photoinduced electronic and structural response of bistable molecular building blocks incorporating transition metals in solution phase constitutes a necessary stepping stone for steering their properties towards applications and perfomance optimizations. Here, this paper presents a detailed X-ray transient absorption (XTA) spectroscopy study of a prototypical spin crossover (SCO) complex [Fe II(mbpy) 3] 2+ (where mbpy=4,4’-dimethyl-2,2’-bipyridine) with a [Fe IIN 6] first coordination shell in water (H 2O) and acetonitrile (CH 3CN). The unprecedented data quality of the XTA spectra together with the direct fitting of the difference spectra in k space using a large number of scattering pathsmore » enables resolving the subtle difference in the photoexcited structures of an Fe II complex in two solvents for the first time. Also, compared to the low spin (LS) 1A 1 state, the average Fe-N bond elongations for the photoinduced high spin (HS) 5T 2 state are found to be 0.181 ± 0.003 Å in H 2O and 0.199 ± 0.003 Å in CH 3CN. This difference in structural response is attributed to ligand-solvent interactions that are stronger in H 2O than in CH 3CN for the HS excited state. Our studies demonstrate that, although the metal center of [Fe II(mbpy) 3] 2+ could have been expected to be rather shielded by the three bidentate ligands with quasi-octahedral-coordination, the ligand field strength in the HS excited state is nevertheless indirectly affected by solvation that modifies the charge distribution within the Fe-N covalent bonds. More generally, this work highlights the importance of including solvation effects in order to develop a generalized understanding of the spin-state switching at the atomic level.« less

  14. Copernicus observations of Betelgeuse and Antares

    NASA Technical Reports Server (NTRS)

    Bernat, A. P.; Lambert, D. L.

    1976-01-01

    The Mg II h and k lines were observed strongly in emission by Copernicus scans of the M supergiants alpha Ori and alpha Sco. The striking symmetry in the k line as contrasted with the symmetric h line, as observed previously was confirmed. Estimates of absolute chromospheric fluxes were obtained. Measured values for the widths of the h and k lines do not follow a Wilson-Bappu relationship. Upper limits determined for other chromospheric lines of alpha Ori tend to exclude the existence of extensive and/or hot regions surrounding this supergiant. Observed weakening by fluorescence of the Fe L 4307 A line is good evidence that the Mn I and Fe I resonance transitions overlying the Mg II k-line profile are responsible for the strong asymmetry of this line in the two stars. However, quantitative study shows that the absorption provided by the cool circumstellar shells is insufficient to provide the observed asymmetry. Additional absorption may be provided by a cool turbulent region at the top of the chromosphere.

  15. Heterostructured ZnFe2O4/Fe2TiO5/TiO2 Composite Nanotube Arrays with an Improved Photocatalysis Degradation Efficiency Under Simulated Sunlight Irradiation

    NASA Astrophysics Data System (ADS)

    Xiong, Kun; Wang, Kunzhou; Chen, Lin; Wang, Xinqing; Fan, Qingbo; Courtois, Jérémie; Liu, Yuliang; Tuo, Xianguo; Yan, Minhao

    2018-03-01

    To improve the visible light absorption and photocatalytic activity of titanium dioxide nanotube arrays (TONTAs), ZnFe2O4 (ZFO) nanocrystals were perfused into pristine TONTA pipelines using a novel bias voltage-assisted perfusion method. ZFO nanocrystals were well anchored on the inner walls of the pristine TONTAs when the ZFO suspensions (0.025 mg mL-1) were kept under a 60 V bias voltage for 1 h. After annealing at 750 °C for 2 h, the heterostructured ZFO/Fe2TiO5 (FTO)/TiO2 composite nanotube arrays were successfully obtained. Furthermore, Fe3+ was reduced to Fe2+ when solid solution reactions occurred at the interface of ZFO and the pristine TONTAs. Introducing ZFO significantly enhanced the visible light absorption of the ZFO/FTO/TONTAs relative to that of the annealed TONTAs. The coexistence of type I and staggered type II band alignment in the ZFO/FTO/TONTAs facilitated the separation of photogenerated electrons and holes, thereby improving the efficiency of the ZFO/FTO/TONTAs for photocatalytic degradation of methylene blue when irradiated with simulated sunlight. [Figure not available: see fulltext.

  16. Molecular hydrogen absorption systems in Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Balashev, S. A.; Klimenko, V. V.; Ivanchik, A. V.; Varshalovich, D. A.; Petitjean, P.; Noterdaeme, P.

    2014-05-01

    We present a systematic search for molecular hydrogen absorption systems at high redshift in quasar spectra from the Sloan Digital Sky Survey (SDSS)-II Data Release 7 and SDSS-III Data Release 9. We have selected candidates using a modified profile fitting technique taking into account that the Lyα forest can effectively mimic H2 absorption systems at the resolution of SDSS data. To estimate the confidence level of the detections, we use two methods: a Monte Carlo sampling and an analysis of control samples. The analysis of control samples allows us to define regions of the spectral quality parameter space where H2 absorption systems can be confidently identified. We find that H2 absorption systems with column densities log NH2 > 19 can be detected in only less than 3 per cent of SDSS quasar spectra. We estimate the upper limit on the detection rate of saturated H2 absorption systems (NH2 > 19) in damped Lyα (DLA) systems to be about 7 per cent. We provide a sample of 23 confident H2 absorption system candidates that would be interesting to follow up with high-resolution spectrographs. There is a 1σ r - i colour excess and non-significant AV extinction excess in quasar spectra with an H2 candidate compared to standard DLA-bearing quasar spectra. The equivalent widths of C II, Si II and Al III (but not Fe II) absorptions associated with H2 candidate DLAs are larger compared to standard DLAs. This is probably related to a larger spread in velocity of the absorption lines in the H2-bearing sample.

  17. The Redshifted Hydrogen Balmer and Metastable He 1 Absorption Line System in Mini-FeLoBAL Quasar SDSS J112526.12+002901.3: A Parsec-scale Accretion Inflow?

    NASA Astrophysics Data System (ADS)

    Shi, Xi-Heng; Jiang, Peng; Wang, Hui-Yuan; Zhang, Shao-Hua; Ji, Tuo; Liu, Wen-Juan; Zhou, Hong-Yan

    2016-10-01

    The accretion of the interstellar medium onto central super-massive black holes is widely accepted as the source of the gigantic energy released by the active galactic nuclei. However, few pieces of observational evidence have been confirmed directly demonstrating the existence of the inflows. The absorption line system in the spectra of quasar SDSS J112526.12+002901.3 presents an interesting example in which the rarely detected hydrogen Balmer and metastable He I absorption lines are found redshifted to the quasar's rest frame along with the low-ionization metal absorption lines Mg II, Fe II, etc. The repeated SDSS spectroscopic observations suggest a transverse velocity smaller than the radial velocity. The motion of the absorbing medium is thus dominated by infall. The He I* lines present a powerful probe to the strength of ionizing flux, while the Balmer lines imply a dense environment. With the help of photoionization simulations, we find that the absorbing medium is exposed to the radiation with ionization parameter U ≈ 10-1.8, and the density is n({{H}})≈ {10}9 {{cm}}-3. Thus the absorbing medium is located ˜4 pc away from the central engine. According to the similarity in the distance and physical conditions between the absorbing medium and the torus, we strongly propose the absorption line system as a candidate for the accretion inflow, which originates in the inner surface of the torus.

  18. Synthesis of first row transition metal selenomaltol complexes.

    PubMed

    Spiegel, Michael T; Hoogerbrugge, Amanda; Truksa, Shamus; Smith, Andrew G; Shuford, Kevin L; Klausmeyer, Kevin K; Farmer, Patrick J

    2018-06-21

    We report an efficient, one-step synthesis of the chelator 3-hydroxy-2-methyl-4-selenopyrone (selenomaltol). Complexes of selenomaltol with Fe(iii), Ni(ii), Cu(ii) and Zn(ii) have been prepared and studied by NMR, X-ray crystallography, cyclic voltammetry, EPR and electronic absorption. The Ni(ii) and Cu(ii) complexes show chemically reversible oxidations which are suggested to be ligand-based. Nuclear independent chemical shifts (NICS) analysis is used to compare aromaticity of the heterocyclic rings of selenomaltol and its chelates. The compounds described here should significantly expand the scope and utility of unusual O,Se-donor chelates.

  19. NIR Imaging Spectroscopy of the Inner Few Arcseconds of NGC 4151 with OSIRIS at Keck

    NASA Technical Reports Server (NTRS)

    Iserlohe, Christof; Krabbe, Alfred; Larkin, James E.; Barczys, Matthew; McElwain, Michael W.; Quirrenbach, Andreas; Weiss, Jason; Wright, Shelley A.

    2013-01-01

    We present H- and K-band data from the inner arcsecond of the Seyfert 1.5 galaxy NGC 4151 obtained with the adaptive optics assisted near-infrared imaging field spectrograph OSIRIS at the Keck Observatory. The angular resolution is about a few parsecs on-site and thus competes easily with optical images taken previously with the Hubble Space Telescope. We present the morphology and dynamics of most species detected but focus on the morphology and dynamics of the narrow line region (as traced by emission of [FeII]?1.644 µm), the interplay between plasma ejected from the nucleus (as traced by 21 cm continuum radio data) and hot H2 gas and characterize the detected nuclear HeI?2.058 µm absorption feature as a narrow absorption line (NAL) phenomenon. Emission from the narrow line region (NLR) as traced by [FeII] reveals a biconical morphology and we compare the measured dynamics in the [FeII] emission line with models proposing acceleration of gas in the NLR and simple ejection of gas into the NLR. In the inner 2.5 arcseconds the acceleration model reveals a better fit to our data than the ejection model.We also see evidence that the jet very locally enhances emission in [FeII] at certain positions in our field-of-view such that we were able to distinct the kinematics of these clouds from clouds generally accelerated in the NLR. Further, the radio jet is aligned with the bicone surface rather than the bicone axis such that we assume that the jet is not the dominant mechanism responsible for driving the kinematics of clouds in the NLR. The hot H2 gas is thermal with a temperature of about 1700 K. We observe a remarkable correlation between individual H2 clouds at systemic velocity with the 21 cm continuum radio jet. We propose that the radio jet is at least partially embedded in the galactic disk of NGC 4151 such that deviations from a linear radio structure are invoked by interactions of jet plasma with H2 clouds that are moving into the path of the jet because of rotation of the galactic disk of NGC 4151. Additionally, we observe a correlation of the jet as traced by the radio data, with gas as traced in Br? and H2, at velocities between systemic and +/- 200 km/s at several locations along the path of the jet. The HeI?2.058 µm line in NGC 4151 appears in emission with a blueshifted absorption component from an outflow. The emission (absorption) component has a velocity offset of 10 km/s (-280 km/s) with a Gaussian (Lorentzian) full-width (half-width) at half maximum of 160 km/s (440 km/s). The absorption component remains spatially unresolved and its kinematic measures differ from that of UV resonance absorption lines. From the amount of absorption we derive a lower limit of the HeI 2S column density of 1 × 10(exp 14) cm-2 with a covering factor along the line-of-sight of C(sub los) approximately equal to 0.1.

  20. Rapid X-ray Photoreduction of Dimetal-Oxygen Cofactors in Ribonucleotide Reductase

    PubMed Central

    Sigfridsson, Kajsa G. V.; Chernev, Petko; Leidel, Nils; Popović-Bijelić, Ana; Gräslund, Astrid; Haumann, Michael

    2013-01-01

    Prototypic dinuclear metal cofactors with varying metallation constitute a class of O2-activating catalysts in numerous enzymes such as ribonucleotide reductase. Reliable structures are required to unravel the reaction mechanisms. However, protein crystallography data may be compromised by x-ray photoreduction (XRP). We studied XPR of Fe(III)Fe(III) and Mn(III)Fe(III) sites in the R2 subunit of Chlamydia trachomatis ribonucleotide reductase using x-ray absorption spectroscopy. Rapid and biphasic x-ray photoreduction kinetics at 20 and 80 K for both cofactor types suggested sequential formation of (III,II) and (II,II) species and similar redox potentials of iron and manganese sites. Comparing with typical x-ray doses in crystallography implies that (II,II) states are reached in <1 s in such studies. First-sphere metal coordination and metal-metal distances differed after chemical reduction at room temperature and after XPR at cryogenic temperatures, as corroborated by model structures from density functional theory calculations. The inter-metal distances in the XPR-induced (II,II) states, however, are similar to R2 crystal structures. Therefore, crystal data of initially oxidized R2-type proteins mostly contain photoreduced (II,II) cofactors, which deviate from the native structures functional in O2 activation, explaining observed variable metal ligation motifs. This situation may be remedied by novel femtosecond free electron-laser protein crystallography techniques. PMID:23400774

  1. Rapid X-ray photoreduction of dimetal-oxygen cofactors in ribonucleotide reductase.

    PubMed

    Sigfridsson, Kajsa G V; Chernev, Petko; Leidel, Nils; Popovic-Bijelic, Ana; Gräslund, Astrid; Haumann, Michael

    2013-04-05

    Prototypic dinuclear metal cofactors with varying metallation constitute a class of O2-activating catalysts in numerous enzymes such as ribonucleotide reductase. Reliable structures are required to unravel the reaction mechanisms. However, protein crystallography data may be compromised by x-ray photoreduction (XRP). We studied XPR of Fe(III)Fe(III) and Mn(III)Fe(III) sites in the R2 subunit of Chlamydia trachomatis ribonucleotide reductase using x-ray absorption spectroscopy. Rapid and biphasic x-ray photoreduction kinetics at 20 and 80 K for both cofactor types suggested sequential formation of (III,II) and (II,II) species and similar redox potentials of iron and manganese sites. Comparing with typical x-ray doses in crystallography implies that (II,II) states are reached in <1 s in such studies. First-sphere metal coordination and metal-metal distances differed after chemical reduction at room temperature and after XPR at cryogenic temperatures, as corroborated by model structures from density functional theory calculations. The inter-metal distances in the XPR-induced (II,II) states, however, are similar to R2 crystal structures. Therefore, crystal data of initially oxidized R2-type proteins mostly contain photoreduced (II,II) cofactors, which deviate from the native structures functional in O2 activation, explaining observed variable metal ligation motifs. This situation may be remedied by novel femtosecond free electron-laser protein crystallography techniques.

  2. More Constraints on the Physical Conditions of the Kinematically Complex, Multiphase Absorption Line System at z=0.93 toward PG1206+459

    NASA Astrophysics Data System (ADS)

    Rosenwasser, Ben; Muzahid, Sowgat; Norris, Jackson; Charlton, Jane C.

    2015-01-01

    We present the results of photo- and collisional ionization modeling of the strong MgII absorption system at redshift z~0.93 towards the quasar PG1206+459. This system has been extensively studied over the last two decades (Churchill & Charlton 1999; Ding et al. 2003; Tripp et al. 2011) using a combination of spectra from Keck/HIRES, HST/FOS, HST/STIS, and HST/COS. Here we present newconstraints using the most complete spectral coverage including more recent observations of OVI and the Lyman series from HST/COS. Numerous absorption components are seen over a large velocity spread (~1500km/s), and multiple ionization phases are required to account for the detected transitions, which include MgI, MgII, FeII, SiII, SiIII, SiIV, CII, CIII, CIV, SIII, SIV, SV, SVI, NIII, NIV, NV, OIII, OIV, OV, OVI, and NeVIII. Considering the new constraints, we revisit the question of the physical nature of the structures that produce this absorber.

  3. The z = 0.8596 damped Ly-alpha absorbing galaxy toward PKS 0454+039

    NASA Technical Reports Server (NTRS)

    Steidel, Charles C.; Bowen, David V.; Blades, J. Chris; Dickenson, Mark

    1995-01-01

    We present Hubble Space Telescope (HST) and ground-based data on the Z(sub abs) = 0.8596 metal-line absorption system along the line of sight to PKS 0454+0356. The system is a moderate-redshift damped Ly-alpha system, with N(H I) = (5.7 +/- 0.3) x 10(exp 20)/sq cm as measured from the Faint Object Spectrograph (FOS) spectrum. We also present ground-based images which we use to identify the galaxy which most probably gives rise to the damped system; the most likely candidate is relatively underluminous by QSO absorber standards M(sub B) approximately -19.0 for A(sub 0) = 0.5 and H(sub 0) = 50 km/s/Mpc) and lies approximately 8.5/h kpc in projection from the QSO sight line. Ground-based measurements of Zn II, Cr II, and Fe II absorption lines from this system allow us to infer abundances of (Zn/H) = -1.1, (Cr/H) = -1.2, and (Fe/H) = -1.2 indicating overall metallicity similar to damped systems at z is greater than 2, and that the depletion of Cr and Fe onto dust grains may be even less important than in many of the high-redshift systems of comparable metallicity. Limits previously placed on the 21 cm optical depth in the z = 0.8596 system, together with our new N(H I) measurement, suggest a very high spin temperature for the H I, T(sub s) is greater than 580 K.

  4. Promoted reduction of tellurite and formation of extracellular tellurium nanorods by concerted reaction between iron and Shewanella oneidensis MR-1.

    PubMed

    Kim, Dong-Hun; Kim, Min-Gyu; Jiang, Shenghua; Lee, Ji-Hoon; Hur, Hor-Gil

    2013-08-06

    The reduction of tellurite (Te(IV)) by dissimilatory metal reducing bacterium, Shewanella oneidensis MR-1, was promoted in the presence of Fe(III) in comparison with Te(IV) bioreduction in the absence of Fe(III). Electron microscopic analyses revealed that iron promoted Te(IV) reduction led to form exclusively extracellular crystalline Te(0) nanorods, as compared to the mostly intracellular formation of Te(0) nanorods in the absence of Fe(III). The Te K-edge X-ray absorption spectrometric analyses demonstrated that S. oneidensis MR-1 in the presence of Fe(III) reduced Te(IV) to less harmful metallic Te(0) nanorods through the precipitation of tellurite (Te(IV)Ox) complex by the bacterial respiration of Fe(III) to Fe(II) under anaerobic conditions. However, Fe(II) ion itself was only able to precipitate the solid tellurite (Te(IV)Ox) complex from the Te(IV) solution, which was not further reduced to Te(0). The results clearly indicated that bacterial S. oneidensis MR-1 plays important roles in the reduction and crystallization of Te(0) nanorods by as yet undetermined biochemical mechanisms. As compared to the slow bacterial Te(IV) reduction in the absence of Fe(III), the rapid reduction of Te(IV) to Te(0) by the concerted biogeochemical reaction between Fe(II) and S. oneidensis MR-1 could be applied for the sequestration and detoxification of Te(IV) in the environments as well as for the preparation of extracellular Te(0) nanorod structures.

  5. Competing retention pathways of uranium upon reaction with Fe(II)

    NASA Astrophysics Data System (ADS)

    Massey, Michael S.; Lezama-Pacheco, Juan S.; Jones, Morris E.; Ilton, Eugene S.; Cerrato, José M.; Bargar, John R.; Fendorf, Scott

    2014-10-01

    Biogeochemical retention processes, including adsorption, reductive precipitation, and incorporation into host minerals, are important in contaminant transport, remediation, and geologic deposition of uranium. Recent work has shown that U can become incorporated into iron (hydr)oxide minerals, with a key pathway arising from Fe(II)-induced transformation of ferrihydrite, (Fe(OH)3·nH2O) to goethite (α-FeO(OH)); this is a possible U retention mechanism in soils and sediments. Several key questions, however, remain unanswered regarding U incorporation into iron (hydr)oxides and this pathway's contribution to U retention, including: (i) the competitiveness of U incorporation versus reduction to U(IV) and subsequent precipitation of UO2; (ii) the oxidation state of incorporated U; (iii) the effects of uranyl aqueous speciation on U incorporation; and, (iv) the mechanism of U incorporation. Here we use a series of batch reactions conducted at pH ∼7, [U(VI)] from 1 to 170 μM, [Fe(II)] from 0 to 3 mM, and [Ca] at 0 or 4 mM coupled with spectroscopic examination of reaction products of Fe(II)-induced ferrihydrite transformation to address these outstanding questions. Uranium retention pathways were identified and quantified using extended X-ray absorption fine structure (EXAFS) spectroscopy, X-ray powder diffraction, X-ray photoelectron spectroscopy, and transmission electron microscopy. Analysis of EXAFS spectra showed that 14-89% of total U was incorporated into goethite, upon reaction with Fe(II) and ferrihydrite. Uranium incorporation was a particularly dominant retention pathway at U concentrations ⩽50 μM when either uranyl-carbonato or calcium-uranyl-carbonato complexes were dominant, accounting for 64-89% of total U. With increasing U(VI) and Fe(II) concentrations, U(VI) reduction to U(IV) became more prevalent, but U incorporation remained a functioning retention pathway. These findings highlight the potential importance of U(V) incorporation within iron oxides as a retention process of U across a wide range of biogeochemical environments and the sensitivity of uranium retention processes to operative (bio)geochemical conditions.

  6. Competing retention pathways of uranium upon reaction with Fe(II)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massey, Michael S.; Lezama Pacheco, Juan S.; Jones, Morris

    Biogeochemical retention processes, including adsorption, reductive precipitation, and incorporation into host minerals, are important in contaminant transport, remediation, and geologic deposition of uranium. Recent work has shown that U can become incorporated into iron (hydr)oxide minerals, with a key pathway arising from Fe(II)-induced transformation of ferrihydrite, (Fe(OH)3•nH2O) to goethite (α-FeO(OH)); this is a possible U retention mechanism in soils and sediments. Several key questions, however, remain unanswered regarding U incorporation into iron (hydr)oxides and this pathway’s contribution to U retention, including: (i) the competitiveness of U incorporation versus reduction to U(IV) and subsequent precipitation of UO2; (ii) the oxidation statemore » of incorporated U; (iii) the effects of uranyl aqueous speciation on U incorporation; and, (iv) the mechanism of U incorporation. Here we use a series of batch reactions conducted at pH ~7, [U(VI)] from 1 to 170 μM, [Fe(II)] from 0 to 3 mM, and [Ca] at 0 or 4 mM) coupled with spectroscopic examination of reaction products of Fe(II)-induced ferrihydrite transformation to address these outstanding questions. Uranium retention pathways were identified and quantified using extended x-ray absorption fine structure (EXAFS) spectroscopy, x-ray powder diffraction, x-ray photoelectron spectroscopy, and transmission electron microscopy. Analysis of EXAFS spectra showed that 14 to 89% of total U was incorporated into goethite, upon reaction with Fe(II) and ferrihydrite. Uranium incorporation was a particularly dominant retention pathway at U concentrations ≤ 50 μM when either uranyl-carbonato or calcium-uranyl-carbonato complexes were dominant, accounting for 64 to 89% of total U. With increasing U(VI) and Fe(II) concentrations, U(VI) reduction to U(IV) became more prevalent, but U incorporation remained a functioning retention pathway. These findings highlight the potential importance of U(V) incorporation within iron oxides as a retention process of U across a wide range of biogeochemical environments and the sensitivity of uranium retention processes to operative (bio)geochemical conditions.« less

  7. Probing the Outflowing Multiphase Gas ∼1 kpc below the Galactic Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savage, Blair D.; Kim, Tae-Sun; Wakker, Bart P.

    Comparison of interstellar medium (ISM) absorption in the UV spectrum of LS 4825, a B1 Ib−II star d  = 21 ± 5 kpc from the Sun toward l  = 1.°67 and b  = −6.°63, with ISM absorption toward an aligned foreground star at d  < 7.0 ± 1.7 kpc, allows us to isolate and study gas associated with the Milky Way nuclear wind. Spectra from the Space Telescope Imaging Spectrograph show low-ionization absorption out to d  < 7 kpc (e.g., O i, C ii, Mg ii, Si ii, Fe ii, S ii) only between 0 and 40 km s{sup −1}, while absorption at d  > 7 kpc, ∼1 kpc below themore » Galactic plane, is complex and spans −290 to +94 km s{sup −1}. The intermediate and high ions Si iii, C iv, Si iv, and N v show extremely strong absorption with multiple components from −283 to 107 km s{sup −1}, implying that the ISM ∼1 kpc below the Galactic center has a substantial reservoir of plasma and more gas containing C iv and N v than in the Carina OB1 association at z  = 0 kpc. Abundances and physical conditions are presented for many absorption components. The high ion absorption traces cooling transition temperature plasma probably driven by the outflowing hot gas, while the extraordinarily large thermal pressure, p / k  ∼ 10{sup 5} cm{sup −3} K{sup −1}, in an absorption component at −114 km s{sup −1} probably arises from the ram pressure of the outflowing hot gas. The observations are consistent with a flow whose ionization structure in the high ions can be understood through a combination of nonequilibrium radiative cooling and turbulent mixing.« less

  8. A nano-disperse ferritin-core mimetic that efficiently corrects anemia without luminal iron redox activity

    PubMed Central

    Powell, Jonathan J.; Bruggraber, Sylvaine F.A.; Faria, Nuno; Poots, Lynsey K.; Hondow, Nicole; Pennycook, Timothy J.; Latunde-Dada, Gladys O.; Simpson, Robert J.; Brown, Andy P.; Pereira, Dora I.A.

    2014-01-01

    The 2-5 nm Fe(III) oxo-hydroxide core of ferritin is less ordered and readily bioavailable compared to its pure synthetic analogue, ferrihydrite. We report the facile synthesis of tartrate-modified, nano-disperse ferrihydrite of small primary particle size, but with enlarged or strained lattice structure (~ 2.7 Å for the main Bragg peak versus 2.6 Å for synthetic ferrihydrite). Analysis indicated that co-precipitation conditions can be achieved for tartrate inclusion into the developing ferrihydrite particles, retarding both growth and crystallization and favoring stabilization of the cross-linked polymeric structure. In murine models, gastrointestinal uptake was independent of luminal Fe(III) reduction to Fe(II) and, yet, absorption was equivalent to that of ferrous sulphate, efficiently correcting the induced anemia. This process may model dietary Fe(III) absorption and potentially provide a side effect-free form of cheap supplemental iron. From the Clinical Editor Small size tartrate-modified, nano-disperse ferrihydrite was used for efficient gastrointestinal delivery of soluble Fe(III) without the risk for free radical generation in murine models. This method may provide a potentially side effect-free form iron supplementation. PMID:24394211

  9. Metal dependence and branched RNA cocrystal structures of the RNA lariat debranching enzyme Dbr1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Nathaniel E.; Katolik, Adam; Roberts, Kenneth M.

    Intron lariats are circular, branched RNAs (bRNAs) produced during pre-mRNA splicing. Their unusual chemical and topological properties arise from branch-point nucleotides harboring vicinal 2',5'- and 3',5'-phosphodiester linkages. The 2',5'-bonds must be hydrolyzed by the RNA debranching enzyme Dbr1 before spliced introns can be degraded or processed into small nucleolar RNA and microRNA derived from intronic RNA. Here, we measure the activity of Dbr1 from Entamoeba histolytica by using a synthetic, dark-quenched bRNA substrate that fluoresces upon hydrolysis. Purified enzyme contains nearly stoichiometric equivalents of Fe and Zn per polypeptide and demonstrates turnover rates of ~3 s -1. Similar rates aremore » observed when apo-Dbr1 is reconstituted with Fe(II)+Zn(II) under aerobic conditions. Under anaerobic conditions, a rate of ~4.0 s -1 is observed when apoenzyme is reconstituted with Fe(II). In contrast, apo-Dbr1 reconstituted with Mn(II) or Fe(II) under aerobic conditions is inactive. Diffraction data from crystals of purified enzyme using X-rays tuned to the Fe absorption edge show Fe partitions primarily to the β-pocket and Zn to the α-pocket. Structures of the catalytic mutant H91A in complex with 7-mer and 16-mer synthetic bRNAs reveal bona fide RNA branchpoints in the Dbr1 active site. A bridging hydroxide is in optimal position for nucleophilic attack of the scissile phosphate. The results clarify uncertainties regarding structure/function relationships in Dbr1 enzymes, and the fluorogenic probe permits high-throughput screening for inhibitors that may hold promise as treatments for retroviral infections and neurodegenerative disease.« less

  10. Mass loss from alpha Cyg /A2Ia/ derived from the profiles of low excitation Fe II lines

    NASA Technical Reports Server (NTRS)

    Hensberge, H.; De Loore, C.; Lamers, H. J. G. L. M.; Bruhweiler, F. C.

    1982-01-01

    The low-excitation Fe II lines in the spectral region 2000-3000 A are studied in the spectrum of alpha-Cyg. The profiles of the resonance lines are described by four representative parameters, and a preliminary model is derived from the dependence of these parameters on theoretical line strength, taking into account the influence of blending photospheric lines in an overall and qualitative way. At least 11% of all iron in the wind is once ionized, unless a non-thermal heating source enhances the fraction Fe(++) without destroying much Al(+). It is shown that the contribution of blending photospheric absorption lines to weaker P Cygni profiles has been previously largely underestimated. The mass loss rate corresponding to the model is derived, and is smaller by a factor of 500 than the one derived from the infrared excess by Barlow and Cohen (1977).

  11. Effect of iron status on iron absorption in different habitual meals in young south Indian women.

    PubMed

    Kalasuramath, Suneeta; Kurpad, Anura V; Thankachan, Prashanth

    2013-02-01

    Iron deficiency (ID) affects a large number of women in India. An inverse relationship exists between iron (Fe) status and Fe absorption. Dietary inhibitory and enhancing factors exert a profound influence on bioavailability of Fe. Although the current recommended dietary allowance (RDA) for Fe is based on 8 per cent bioavailability, it is not clear if this holds good for the usual highly inhibitory Indian diet matrix. This study was aimed to determine Fe absorption from several habitually consumed south Indian food and to evaluate the interaction of Fe status with absorption. Four Fe absorption studies were performed on 60 apparently healthy young women, aged 18-35 years. Based on blood biochemistry, 45 of them were ID and 15 were iron replete (IR). The habitual meals assessed were rice, millet and wheat based meals in the ID subjects and rice based meal alone in the IR subjects. Each subject received the test meal labelled with 3 mg of ⁵⁷Fe and Fe absorption was measured based on erythrocyte incorporation of isotope label 14 days following administration. Mean fractional Fe absorption from the rice, wheat and millet based meals in the ID subjects were 8.3, 11.2 and 4.6 per cent, respectively. Fe absorption from the rice-based meals was 2.5 per cent in IR subjects. Fe absorption is dictated by Fe status from low bioavailability meals. Millet based meals have the lowest bioavailability, while the rice and wheat based meals had moderate to good bioavailability. In millet based meals, it is prudent to consider ways to improve Fe absorption.

  12. Polyaniline/Fe3O4-RGO Nanocomposites for Microwave Absorption

    NASA Astrophysics Data System (ADS)

    Mathew, Jithin; Sathishkumar, M.; Kothurkar, Nikhil K.; Senthilkumar, R.; Sabarish Narayanan, B.

    2018-02-01

    Fe3O4 nanoparticles were synthesized by co-precipitation of ferric chloride (FeCl3) and ferrous chloride (FeCl2). Reduced graphene oxide (RGO) was prepared by reducing the graphene oxide, which was synthesized by Hummer’s method, using hydrazine hydrate. Three nanocomposites based on sodium dodecyl benzene sulphonate (SDBS)-doped polyaniline were synthesized through in situ polymerization in the presence of the fillers (i) Fe3O4, (ii) reduced graphene oxide (RGO) and (iii) Fe3O4-decorated RGO respectively. The synthesized PANI and the composites were characterized by X-ray diffraction, Fourier transform infrared spectroscopy and transmission electron microscopy. Their microstructures, electrical conductivities, and EMI shielding effectiveness were studied. The nanocomposite containing 10 % RGO showed the maximum electrical conductivity and the one with 10 % RGO and 10 % Fe3O4 showed the maximum EMI shielding effectiveness of 7.5 dB for a 1 mm thick sample.

  13. Speciation, photosensitivity, and reactions of transition metal ions in atmospheric droplets

    NASA Astrophysics Data System (ADS)

    Weschler, C. J.; Mandich, M. L.; Graedel, T. E.

    1986-04-01

    Dissolved transition metal ions (TMI) are common constituents of atmospheric droplets. They are known to catalyze sulfur oxidation in droplets and are suspected of being involved in other chemical processes as well. We have reviewed the relevant equilibrium constants and chemical reactions of the major TMI (iron, manganese, copper, and nickel), their ability to form complexes in aqueous solution, and their potential involvement in photochemical processes in atmospheric droplets. Among the results are the following: (1) The major Fe(III) species in atmospheric water droplets are [Fe(OH)(H2O)5]2+, [Fe(OH)2(H2O)4]+, and [Fe(SO3)(H2O)5]+; the partitioning among these complexes is a function of pH. In contrast, Cu(II), Mn(II), and Ni(II) exist almost entirely in the droplets as hexaquo complexes. (2) Within the tropospheric solar spectrum, some of the complexes of Fe(III) have large absorption cross-sections. In this work we report cross-section data for several of the complexes. Absorption of solar photons by such complexes is generally followed by cleavage, which in the same process reduces the iron (III) atom and produces a reactive free radical. This mechanism has the potential to be a significant and heretofore unappreciated source of free radicals in atmospheric droplets. (3) TMI participate in redox reactions with H2O2 and its associated species HO2· and O2-. These reactions furnish the potential for catalytic cycles involving TMI in atmospheric droplets under a variety of illumination and acidity conditions. (4) A number of organic processes in atmospheric droplets may involve TMI. Among these processes are the production and destruction of alkylhydroperoxides, the chemical chains linking RO2· radicals to stable alcohols and acids, and the oxidation of aliphatic aldehydes to organic acids.

  14. Photochemical organic oxidations and dechlorinations with a mu-oxo bridged heme/non-heme diiron complex.

    PubMed

    Wasser, Ian M; Fry, H Christopher; Hoertz, Paul G; Meyer, Gerald J; Karlin, Kenneth D

    2004-12-27

    Steady state and laser flash photolysis studies of the heme/non-heme mu-oxo diiron complex [((6)L)Fe(III)-O-Fe(III)-Cl](+) (1) have been undertaken. The anaerobic photolysis of benzene solutions of 1 did not result in the buildup of any photoproduct. However, the addition of excess triphenylphosphine resulted in the quantitative photoreduction of 1 to [((6)L)Fe(II)...Fe(II)-Cl](+) (2), with concomitant production by oxo-transfer of 1 equiv of triphenylphosphine oxide. Under aerobic conditions and excess triphenylphosphine, the reaction produces multiple turnovers (approximately 28) before the diiron complex is degraded. The anaerobic photolysis of tetrahydrofuran (THF) or toluene solutions of 1 likewise results in the buildup of 2. The oxidation products from these reactions included gamma-butyrolactone (approximately 15%) for the reaction in THF and benzaldehyde (approximately 23%) from the reaction in toluene. In either case, the O-atom which is incorporated into the carbonyl product is derived from dioxygen present under workup or under aerobic photolysis conditions. Transient absorption measurements of low-temperature THF solutions of 1 revealed the presence of an (P)Fe(II)-like [P = tetraaryl porphyrinate dianion] species suggesting that the reactive species is a formal (heme)Fe(II)/Fe(IV)=O(non-heme) pair. The non-heme Fe(IV)=O is thus most likely responsible for C-H bond cleavage and subsequent radical chemistry. The photolysis of 1 in chlorobenzene or 1,2-dichlorobenzene resulted in C-Cl cleavage reactions and the formation of [[((6)L)Fe(III)-Cl...Fe(III)-Cl](2)O](2+) (3), with chloride ligands that are derived from solvent dehalogenation chemistry. The resulting organic products are biphenyl trichlorides or biphenyl monochlorides, derived from dichlorobenzene and chlorobenzene, respectively. Similarly, product 3 is obtained by the photolysis of benzene-benzyl chloride solutions of 1; the organic product is benzaldehyde (approximately 70%). A brief discussion of the dehalogenation chemistry, along with relevant environmental perspectives, is included.

  15. On the Iron Abundance Anomaly in K-dwarf and Hyades Stars

    NASA Astrophysics Data System (ADS)

    Aleo, Patrick D.; Sobotka, Alexander C.; Ramírez, Ivan

    2017-09-01

    Using standard 1D-LTE model atmosphere analysis, we provide an in-depth investigation of iron abundance as derived from neutral and singly ionization iron lines (Fe I, II) in nearby star clusters. Specifically, we replicate the discrepancy regarding Δ[Fe/H], wherein the difference of Fe II-Fe I increases for stars of the same cluster with decreasing T eff, reaching an astonishing 1.0 dex at T eff ˜ 4000 K. Previous studies have investigated this anomaly in the Pleiades and Hyades clusters with no concrete solution. In this analysis, we probe two samples: 63 wide binary field stars where the primary star is of Sun-like temperatures and the secondary is a K-dwarf, ranging from 4231 K ≤ T eff ≤ 6453 K, and 33 Hyades stars of temperatures 4268 K ≤ T eff ≤ 6072 K. Previous studies have found discrepancies on the order of 1.0 dex. However, we find that these studies have neglected line-blending effects of certain Fe II lines, namely λ = {4508.29 Å, 4993.34 Å, 5197.58 Å, 5325.55 Å, 5425.26 Å, 6456.38 Å}. When these lines are removed from the line-list, we find Δ[Fe/H] decreases to ˜0.6 dex in the field binaries and ˜0.3 dex in the Hyades. The reason for this remaining trend is investigated by probing NLTE effects, as well as age and activity considerations using Ca II H+K emission and Li absorption, but these results appear to be small to negligible.

  16. Cu(II) removal by Anoxybacillus flavithermus-iron oxide composites during the addition of Fe(II)aq

    NASA Astrophysics Data System (ADS)

    Franzblau, Rachel E.; Daughney, Christopher J.; Swedlund, Peter J.; Weisener, Christopher G.; Moreau, Magali; Johannessen, Bernt; Harmer, Sarah L.

    2016-01-01

    There is currently poor understanding of metal removal by composites of bacteria and iron oxide minerals, even though they commonly co-occur and are among the most important sorbents in near-surface fluid-rock environments. This study evaluated Cu removal by composites of Anoxybacillus flavithermus and iron oxide over time during the addition, oxidation, and hydrolysis of Fe(II)aq and precipitation of the mineral, in comparison to Cu removal in the two single-sorbent end-member systems. In the absence of iron oxide, Cu removal by A. flavithermus was well described by a previously published surface complexation model, after inclusion of additional reactions describing aqueous complexation by exudate ligands released by the bacteria. In the absence of bacterial cells, Cu removal by iron oxide synthesized in the presence of the bacterial exudate ligands demonstrated the formation of ternary surface complexes. Removal of Cu by the A. flavithermus-iron oxide composites was ca. 20% greater than the prediction based on assumption of additivity in the two end-member systems. This non-additive behavior was attributed to (1) progressive physical blockage of bacterial surface sites by the iron oxide particles, (2) physical blockage of adsorption sites as a result of self-aggregation of the iron oxide particles, and (3) the reduction of Cu(II) to Cu(I) at the bacterial cell surface, as demonstrated by X-ray absorption spectroscopy. The extent of reduction of Cu(II) to Cu(I) was proportional to the concentration of solid phase Fe(II), suggesting that iron oxidation and copper reduction are linked. This study has shown that Cu removal by bacteria-iron oxide composites is greatly affected by redox processes such as Cu(II) reduction on the cell surface both by other bacterial surface ligands and the oxidation of sorbed Fe(II), as well as Fe(II) redox interactions, and aging effects of the mineral (i.e. surface site masking).

  17. Probing the cool interstellar and circumgalactic gas of three massive lensing galaxies at z = 0.4-0.7

    NASA Astrophysics Data System (ADS)

    Zahedy, Fakhri S.; Chen, Hsiao-Wen; Rauch, Michael; Wilson, Michelle L.; Zabludoff, Ann

    2016-05-01

    We present multisightline absorption spectroscopy of cool gas around three lensing galaxies at z = 0.4-0.7. These lenses have half-light radii re = 2.6-8 kpc and stellar masses of log M*/M⊙ = 10.9-11.4, and therefore resemble nearby passive elliptical galaxies. The lensed QSO sightlines presented here occur at projected distances of d = 3-15 kpc (or d ≈ 1-2 re) from the lensing galaxies, providing for the first time an opportunity to probe both interstellar gas at r ˜ re and circumgalactic gas at larger radii r ≫ re of these distant quiescent galaxies. We observe distinct gas absorption properties among different lenses and among sightlines of individual lenses. Specifically, while the quadruple lens for HE 0435-1223 shows no absorption features to very sensitive limits along all four sightlines, strong Mg II, Fe II, Mg I, and Ca II absorption transitions are detected along both sightlines near the double lens for HE 0047-1756, and in one of the two sightlines near the double lens for HE 1104-1805. The absorbers are resolved into 8-15 individual components with a line-of-sight velocity spread of Δ v ≈ 300-600 km s-1. The large ionic column densities, log N ≳ 14, observed in two components suggest that these may be Lyman limit or damped Ly α absorbers with a significant neutral hydrogen fraction. The majority of the absorbing components exhibit a uniform supersolar Fe/Mg ratio with a scatter of <0.1 dex across the full Δ v range. Given a predominantly old stellar population in these lensing galaxies, we argue that the observed large velocity width and Fe-rich abundance pattern can be explained by SNe Ia enriched gas at radius r ˜ re. We show that additional spatial constraints in line-of-sight velocity and relative abundance ratios afforded by a multisightline approach provide a powerful tool to resolve the origin of chemically enriched cool gas in massive haloes.

  18. Iron species determination by task-specific ionic liquid-based in situ solvent formation dispersive liquid-liquid microextraction combined with flame atomic absorption spectrometry.

    PubMed

    Sadeghi, Susan; Ashoori, Vahid

    2017-10-01

    The task-specific ionic liquid (TSIL) of 1-ethyl-3-methylimidazolium bromide functionalized with 8-hydroxyquinoline was used as a chelating agent and extracting solvent for dispersive liquid-liquid microextraction and subsequent determination of Fe(III) by flame atomic absorption spectrometry. The in situ solvent formation of TSIL using KPF 6 provided the desired water-immiscible ionic liquid. The total Fe concentration could be determined after pre-oxidation of Fe(II) to Fe(III). Various factors affecting the proposed extraction procedure were optimized. The proposed analytical conditions were: sample pH 5, TSIL amount 0.3% (w/v), KPF 6 amount 0.15% (w/v), anti-sticking 0.1% (w/v) and salt concentration 5% (w/v). Under optimal conditions, the linear dynamic ranges for Fe(III) and total Fe were 20-80 and 20-110 ng mL -1 , respectively, with a detection limit of 6.9 ng mL -1 for Fe(III) and relative standard deviation of 2.2%. The proposed method was successfully applied to the determination of trace Fe(III) in water (underground, tap, refined water and artificial sea water) and beverage (apple, tomato, and tea) samples. The developed method offers advantages such as simplicity, ease of operation, and extraction of Fe(III) from aqueous solutions without the use of organic solvent. It was successfully applied for iron speciation in different real samples. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  19. Quasar 2175 Å dust absorbers - II. Correlation analysis and relationship with other absorption line systems

    NASA Astrophysics Data System (ADS)

    Ma, Jingzhe; Ge, Jian; Prochaska, J. Xavier; Zhang, Shaohua; Ji, Tuo; Zhao, Yinan; Zhou, Hongyan; Lu, Honglin; Schneider, Donald P.

    2018-03-01

    We present the cold neutral content (H I and C I gas) of 13 quasar 2175 Å dust absorbers (2DAs) at z = 1.6-2.5 to investigate the correlation between the presence of the UV extinction bump with other physical characteristics. These 2DAs were initially selected from the Sloan Digital Sky Surveys I-III and followed up with the Keck-II telescope and the Multiple Mirror Telescope as detailed in our Paper I. We perform a correlation analysis between metallicity, redshift, depletion level, velocity width, and explore relationships between 2DAs and other absorption line systems. The 2DAs on average have higher metallicity, higher depletion levels, and larger velocity widths than Damped Lyman α absorbers (DLAs) or subDLAs. The correlation between [Zn/H] and [Fe/Zn] or [Zn/H] and logΔV90 can be used as alternative stellar mass estimators based on the well-established mass-metallicity relation. The estimated stellar masses of the 2DAs in this sample are in the range of ˜109 to ˜2 × 1011 M⊙ with a median value of ˜2 × 1010 M⊙. The relationship with other quasar absorption line systems can be described as (1) 2DAs are a subset of Mg II and Fe II absorbers, (2) 2DAs are preferentially metal-strong DLAs/subDLAs, (3) More importantly, all of the 2DAs show C I detections with logN(C I) > 14.0 cm-2, and (4) 2DAs can be used as molecular gas tracers. Their host galaxies are likely to be chemically enriched, evolved, massive (more massive than typical DLA/subDLA galaxies), and presumably star-forming galaxies.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alderman, O. L. G.; Wilding, M. C.; Tamalonis, A.

    Here, the local structure about Fe(II) and Fe(III) in silicate melts was investigated in-situ using iron K-edge X-ray absorption near-edge structure (XANES) spectroscopy. An aerodynamic levitation and laser heating system was used to allow access to high temperatures without contamination, and was combined with a chamber and gas mixing system to allow the iron oxidation state, Fe 3+/ΣFe, to be varied by systematic control of the atmospheric oxygen fugacity. Eleven alkali-free, mostly iron-rich and depolymerized base compositions were chosen for the experiments, including pure oxide FeO, olivines (Fe,Mg) 2SiO 4, pyroxenes (Fe,Mg)SiO 3, calcic FeO-CaSiO 3, and a calcium aluminosilicatemore » composition, where total iron content is denoted by FeO for convenience. Melt temperatures varied between 1410 and 2160 K and oxygen fugacities between FMQ – 2.3(3) to FMQ + 9.1(3) log units (uncertainties in parentheses) relative to the fayalite-magnetite-β-quartz (FMQ) buffer.« less

  1. Atomic-absorption determination of rhodium in chromite concentrates

    USGS Publications Warehouse

    Schnepfe, M.M.; Grimaldi, F.S.

    1969-01-01

    Rhodium is determined in chromite concentrates by atomic absorption after concentration either by co-precipitation with tellurium formed by the reduction of tellurite with tin(II) chloride or by fire assay into a gold bead. Interelement interferences in the atomic-absorption determination are removed by buffering the solutions with lanthanum sulphate (lanthanum concentration 1%). Substantial amounts of Ag, Al, Au, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ho, Hg, K, La, Mg, Mn, Mo, Na, Ni, Pb, Te, Ti, V, Y, Zn and platinum metals can be tolerated. A lower limit of approximately 0.07 ppm Rh can be determined in a 3-g sample. ?? 1969.

  2. Nicotianamine forms complexes with Zn(II) in vivo.

    PubMed

    Trampczynska, Aleksandra; Küpper, Hendrik; Meyer-Klaucke, Wolfram; Schmidt, Holger; Clemens, Stephan

    2010-01-01

    The non-proteinogenic amino acid nicotianamine (NA) is a major player in plant metal homeostasis. It is known to form complexes with different transition metals in vitro. Available evidence associates NA with translocation of Fe, and possibly other micronutrients, to and between different plant cells and tissues. To date, however, it is still extremely challenging to detect metal-ligand complexes in vivo because tissue disruption immediately changes the chemical environment and thereby the availability of binding partners. In order to overcome this limitation we used various Schizosaccharomyces pombe strains expressing a plant NAS gene to study formation of metal-NA complexes in vivo. Tolerance, accumulation and competition data clearly indicated formation of Zn(ii)-NA but not of Cu(ii)-NA complexes. Zn(ii)-NA was then identified by X-ray absorption spectroscopy (XAS). About half of the cellular Zn was found to be bound by NA in NAS-expressing cells while no NA-like ligands were detected by XAS in control cells not expressing NAS. Given the high conservation of eukaryotic metal homeostasis components, these results strongly suggest the possible existence of Zn(ii)-NA complexes also in planta. Reported observations implicating NA in plant Zn homeostasis would then indeed be attributable to direct interaction of Zn(ii) with NA rather than only indirectly to perturbations in Fe metabolism. Re-evaluation of extended X-ray absorption fine structure (EXAFS) spectra for the Zn hyperaccumulator Thlaspi caerulescens showed that NA is as expected not a major storage ligand for Zn. Instead it is hypothesized to be involved in efficient translocation of Zn to above-ground tissues in hyperaccumulators.

  3. Synthesis and structural characterisation of iron(II) and copper(II) diphosphates containing flattened metal oxotetrahedra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keates, Adam C.; Wang, Qianlong; Weller, Mark T., E-mail: m.t.weller@bath.ac.uk

    2014-02-15

    Single crystal and bulk polycrystalline forms of K{sub 2}MP{sub 2}O{sub 7} (M=Fe(II), Cu(II)) have been synthesised and their structures determined from single crystal X-ray diffraction data. Both compounds crystallize in the tetragonal system, space group P-42{sub 1}m. Their structures are formed from infinite sheets of linked oxopolyhedra of the stoichiometry [MP{sub 2}O{sub 7}]{sup 2−} with potassium cations situated between the layers. The MO{sub 4} tetrahedra share oxygen atoms with [P{sub 2}O{sub 7}]{sup 4−} diphosphate groups and the potassium ions have KO{sub 8} square prismatic geometry. In both compounds the M(II) centre has an unusual strongly flattened, tetrahedral coordination to oxygen,more » as a result of the Jahn–Teller (JT) effect for the high spin d{sup 6} Fe(II) and p-orbital mixing or a second order JT effect for d{sup 9} Cu(II) centres in four fold coordination. The uncommon transition metal ion environments found in these materials are reflected in their optical absorption spectra and magnetism data. - Graphical abstract: The structures of the tetragonal polymorphs of K{sub 2}MP{sub 2}O{sub 7}, M=Cu(II), Fe(II), consist of infinite sheets of stoichiometry [MP{sub 2}O{sub 7}]{sup 2−}, formed from linked pyrophosphate groups and MO{sub 4} tetrahedra, separated by potassium ions. In both compounds the unusual tetrahedral coordination of the M(II) centre is strongly flattened as a result of Jahn–Teller (JT) effects for high spin, d{sup 6} Fe(II) and p-orbital mixing and second-order JT effects for d{sup 9} Cu(II). Display Omitted - Highlights: • Tetrahedral copper and iron(II) coordinated by oxygen. • New layered phosphate structure. • Jahn–Teller and d{sup 10} distorted coordinations.« less

  4. In Haitian women and preschool children, iron absorption from wheat flour-based meals fortified with sodium iron EDTA is higher than that from meals fortified with ferrous fumarate, and is not affected by Helicobacter pylori infection in children.

    PubMed

    Herter-Aeberli, Isabelle; Eliancy, Kerline; Rathon, Yanick; Loechl, Cornelia U; Marhône Pierre, Joseline; Zimmermann, Michael B

    2017-08-01

    Fe fortification of wheat flour was proposed in Haiti to combat Fe deficiency, but Fe bioavailability from fortificants has never been investigated in Haitian women or preschool children, two key target groups. We aimed to investigate the bioavailability of ferrous fumarate (FeFum), NaFeEDTA and their combination from fortified wheat flour. We recruited twenty-two healthy mother-child pairs in Port au Prince, Haiti, for an Fe-absorption study. We administered stable Fe isotopes as FeFum or NaFeEDTA individually in low-extraction wheat flour bread rolls consumed by all participants in a randomised, cross-over design. In a final, identical meal, consumed only by the women, FeFum+NaFeEDTA was administered. We measured Fe absorption by using erythrocyte incorporation of stable isotopes 14 d after consumption of each meal, and determined Fe status, inflammatory markers and Helicobacter pylori infection. Fe absorption (geometric mean was 9·24 (95 % CI 6·35, 13·44) and 9·26 (95 % CI 7·00, 12·31) from FeFum and 13·06 (95 % CI 9·23, 19·10) and 12·99 (95 % CI 9·18, 18·39) from NaFeEDTA in mothers and children, respectively (P<0·05 between compounds). Fe absorption from FeFum+NaFeEDTA was 11·09 (95 % CI 7·45, 17·34) and did not differ from the other two meals. H. pylori infection did not influence Fe absorption in children. In conclusion, in Haitian women and children, Fe absorption from NaFeEDTA was 40 % higher than from FeFum, and the combination FeFum+NaFeEDTA did not significantly increase Fe absorption compared with FeFum alone. In the context of Haiti, where the high costs of NaFeEDTA may not be affordable, the use of FeFum at 60 mg Fe/kg flour may be a preferable, cost-effective fortification strategy.

  5. Identification and Spectroscopic Characterization of Nonheme Iron(III) Hypochlorite Intermediates.

    PubMed

    Draksharapu, Apparao; Angelone, Davide; Quesne, Matthew G; Padamati, Sandeep K; Gómez, Laura; Hage, Ronald; Costas, Miquel; Browne, Wesley R; de Visser, Sam P

    2015-03-27

    Fe III -hypohalite complexes have been implicated in a wide range of important enzyme-catalyzed halogenation reactions including the biosynthesis of natural products and antibiotics and post-translational modification of proteins. The absence of spectroscopic data on such species precludes their identification. Herein, we report the generation and spectroscopic characterization of nonheme Fe III -hypohalite intermediates of possible relevance to iron halogenases. We show that Fe III -OCl polypyridylamine complexes can be sufficiently stable at room temperature to be characterized by UV/Vis absorption, resonance Raman and EPR spectroscopies, and cryo-ESIMS. DFT methods rationalize the pathways to the formation of the Fe III -OCl, and ultimately Fe IV =O, species and provide indirect evidence for a short-lived Fe II -OCl intermediate. The species observed and the pathways involved offer insight into and, importantly, a spectroscopic database for the investigation of iron halogenases.

  6. Identification and Spectroscopic Characterization of Nonheme Iron(III) Hypochlorite Intermediates**

    PubMed Central

    Draksharapu, Apparao; Angelone, Davide; Quesne, Matthew G; Padamati, Sandeep K; Gómez, Laura; Hage, Ronald; Costas, Miquel; Browne, Wesley R; de Visser, Sam P

    2015-01-01

    FeIII–hypohalite complexes have been implicated in a wide range of important enzyme-catalyzed halogenation reactions including the biosynthesis of natural products and antibiotics and post-translational modification of proteins. The absence of spectroscopic data on such species precludes their identification. Herein, we report the generation and spectroscopic characterization of nonheme FeIII–hypohalite intermediates of possible relevance to iron halogenases. We show that FeIII-OCl polypyridylamine complexes can be sufficiently stable at room temperature to be characterized by UV/Vis absorption, resonance Raman and EPR spectroscopies, and cryo-ESIMS. DFT methods rationalize the pathways to the formation of the FeIII-OCl, and ultimately FeIV=O, species and provide indirect evidence for a short-lived FeII-OCl intermediate. The species observed and the pathways involved offer insight into and, importantly, a spectroscopic database for the investigation of iron halogenases. PMID:25663379

  7. Fate of Adsorbed U(VI) during Sulfidization of Lepidocrocite and Hematite

    PubMed Central

    2017-01-01

    The impact on U(VI) adsorbed to lepidocrocite (γ-FeOOH) and hematite (α-Fe2O3) was assessed when exposed to aqueous sulfide (S(-II)aq) at pH 8.0. With both minerals, competition between S(-II) and U(VI) for surface sites caused instantaneous release of adsorbed U(VI). Compared to lepidocrocite, consumption of S(-II)aq proceeded slower with hematite, but yielded maximum dissolved U concentrations that were more than 10 times higher, representing about one-third of the initially adsorbed U. Prolonged presence of S(-II)aq in experiments with hematite in combination with a larger release of adsorbed U(VI), enhanced the reduction of U(VI): after 24 h of reaction about 60–70% of U was in the form of U(IV), much higher than the 25% detected in the lepidocrocite suspensions. X-ray absorption spectra indicated that U(IV) in both hematite and lepidocrocite suspensions was not in the form of uraninite (UO2). Upon exposure to oxygen only part of U(IV) reoxidized, suggesting that monomeric U(IV) might have become incorporated in newly formed iron precipitates. Hence, sulfidization of Fe oxides can have diverse consequences for U mobility: in short-term, desorption of U(VI) increases U mobility, while reduction to U(IV) and its possible incorporation in Fe transformation products may lead to long-term U immobilization. PMID:28121137

  8. The physical driver of the optical Eigenvector 1 in Quasar Main Sequence

    NASA Astrophysics Data System (ADS)

    Panda, Swayamtrupta; Czerny, Bożena; Wildy, Conor

    2017-11-01

    Quasars are complex sources, characterized by broad band spectra from radio through optical to X-ray band, with numerous emission and absorption features. This complexity leads to rich diagnostics. However, tet{bg92} used Principal Component Analysis (PCA), and with this analysis they were able to show significant correlations between the measured parameters. The leading component, related to Eigenvector 1 (EV1) was dominated by the anticorrelation between the Fe II optical emission and [OIII] line and EV1 alone contained 30% of the total variance. It opened a way in defining a quasar main sequence, in close analogy to the stellar main sequence on the Hertzsprung-Russel (HR) diagram ( tealt{sul01}). The question still remains which of the basic theoretically motivated parameters of an active nucleus (Eddington ratio, black hole mass, accretion rate, spin, and viewing angle) is the main driver behind the EV1. Here we limit ourselves to the optical waveband, and concentrate on theoretical modelling the Fe II to Hβ ratio, and we test the hypothesis that the physical driver of EV1 is the maximum of the accretion disk temperature, reflected in the shape of the spectral energy distribution (SED). We performed computations of the Hβ and optical Fe II for a broad range of SED peak position using CLOUDY photoionisation code. We assumed that both Hβ and Fe II emission come from the Broad Line Region represented as a constant density cloud in a plane-parallel geometry. We expected that a hotter disk continuum will lead to more efficient production of Fe II but our computations show that the Fe II to Hβ ratio actually drops with the rise of the disk temperature. Thus either hypothesis is incorrect, or approximations used in our paper for the description of the line emissivity is inadequate.

  9. Iron Transformation Pathways and Redox Micro-Environments in Seafloor Sulfide-Mineral Deposits: Spatially Resolved Fe XAS and δ(57/54)Fe Observations.

    PubMed

    Toner, Brandy M; Rouxel, Olivier J; Santelli, Cara M; Bach, Wolfgang; Edwards, Katrina J

    2016-01-01

    Hydrothermal sulfide chimneys located along the global system of oceanic spreading centers are habitats for microbial life during active venting. Hydrothermally extinct, or inactive, sulfide deposits also host microbial communities at globally distributed sites. The main goal of this study is to describe Fe transformation pathways, through precipitation and oxidation-reduction (redox) reactions, and examine transformation products for signatures of biological activity using Fe mineralogy and stable isotope approaches. The study includes active and inactive sulfides from the East Pacific Rise 9°50'N vent field. First, the mineralogy of Fe(III)-bearing precipitates is investigated using microprobe X-ray absorption spectroscopy (μXAS) and X-ray diffraction (μXRD). Second, laser-ablation (LA) and micro-drilling (MD) are used to obtain spatially-resolved Fe stable isotope analysis by multicollector-inductively coupled plasma-mass spectrometry (MC-ICP-MS). Eight Fe-bearing minerals representing three mineralogical classes are present in the samples: oxyhydroxides, secondary phyllosilicates, and sulfides. For Fe oxyhydroxides within chimney walls and layers of Si-rich material, enrichments in both heavy and light Fe isotopes relative to pyrite are observed, yielding a range of δ(57)Fe values up to 6‰. Overall, several pathways for Fe transformation are observed. Pathway 1 is characterized by precipitation of primary sulfide minerals from Fe(II)aq-rich fluids in zones of mixing between vent fluids and seawater. Pathway 2 is also consistent with zones of mixing but involves precipitation of sulfide minerals from Fe(II)aq generated by Fe(III) reduction. Pathway 3 is direct oxidation of Fe(II) aq from hydrothermal fluids to form Fe(III) precipitates. Finally, Pathway 4 involves oxidative alteration of pre-existing sulfide minerals to form Fe(III). The Fe mineralogy and isotope data do not support or refute a unique biological role in sulfide alteration. The findings reveal a dynamic range of Fe transformation pathways consistent with a continuum of micro-environments having variable redox conditions. These micro-environments likely support redox cycling of Fe and S and are consistent with culture-dependent and -independent assessments of microbial physiology and genetic diversity of hydrothermal sulfide deposits.

  10. Distance determination to Broad Line Absorbers in AGN

    NASA Astrophysics Data System (ADS)

    Bautista, Manuel; Arav, N.; Dunn, J.; Edmonds, D.; Korista, K. T.; Moe, M.; Benn, C.; Ignacio, G.

    2009-01-01

    We present various techniques for the determination of the physical conditions (density, temperature, total hydrogen column density, and ionization structure), chemical composition, and distances of Broad Line Absorbers (BAL) to the central engine in AGN. We start by discussing various density diagnostics from absorption lines from species such as C II, Si II, and Fe III. On the other hand, lines from metastable levels Fe II are often affected by Bowen fluorescence by scattered C IV photons. Lines from metastable levels of Ni II are usually excited by continuum fluorescence and mostly sensitive to the strength of the radiation field shortward of the Lyman continuum and as such they cam be used as direct distance indicators. Further, we show how the total hydrogen density of the absorber, its ionization parameter and distance can be determined through photoionization modeling of the absorber. Finally, we present our results for outflows of three different quasars: QSO 2359-1241 and SDSS J0318-0600.

  11. Spin tuning of electron-doped metal-phthalocyanine layers.

    PubMed

    Stepanow, Sebastian; Lodi Rizzini, Alberto; Krull, Cornelius; Kavich, Jerald; Cezar, Julio C; Yakhou-Harris, Flora; Sheverdyaeva, Polina M; Moras, Paolo; Carbone, Carlo; Ceballos, Gustavo; Mugarza, Aitor; Gambardella, Pietro

    2014-04-09

    The spin state of organic-based magnets at interfaces is to a great extent determined by the organic environment and the nature of the spin-carrying metal center, which is further subject to modifications by the adsorbate-substrate coupling. Direct chemical doping offers an additional route for tailoring the electronic and magnetic characteristics of molecular magnets. Here we present a systematic investigation of the effects of alkali metal doping on the charge state and crystal field of 3d metal ions in Cu, Ni, Fe, and Mn phthalocyanine (Pc) monolayers adsorbed on Ag. Combined X-ray absorption spectroscopy and ligand field multiplet calculations show that Cu(II), Ni(II), and Fe(II) ions reduce to Cu(I), Ni(I), and Fe(I) upon alkali metal adsorption, whereas Mn maintains its formal oxidation state. The strength of the crystal field at the Ni, Fe, and Mn sites is strongly reduced upon doping. The combined effect of these changes is that the magnetic moment of high- and low-spin ions such as Cu and Ni can be entirely turned off or on, respectively, whereas the magnetic configuration of MnPc can be changed from intermediate (3/2) to high (5/2) spin. In the case of FePc a 10-fold increase of the orbital magnetic moment accompanies charge transfer and a transition to a high-spin state.

  12. Enhanced and stabilized arsenic retention in microcosms through the microbial oxidation of ferrous iron by nitrate

    DOE PAGES

    Sun, Jing; Chillrud, Steven N.; Mailloux, Brian J.; ...

    2015-10-23

    Magnetite strongly retains As, and is relatively stable under Fe(III)-reducing conditions common in aquifers that release As. In this paper, laboratory microcosm experiments were conducted to investigate a potential As remediation method involving magnetite formation, using groundwater and sediments from the Vineland Superfund site. The microcosms were amended with various combinations of nitrate, Fe(II) (aq) (as ferrous sulfate) and lactate, and were incubated for more than 5 weeks. In the microcosms enriched with 10 mM nitrate and 5 mM Fe(II) (aq), black magnetic particles were produced, and As removal from solution was observed even under sustained Fe(III) reduction stimulated bymore » the addition of 10 mM lactate. The enhanced As retention was mainly attributed to co-precipitation within magnetite and adsorption on a mixture of magnetite and ferrihydrite. Sequential chemical extraction, X-ray absorption spectroscopy and magnetic susceptibility measurements showed that these minerals formed at pH 6–7 following nitrate-Fe(II) addition, and As-bearing magnetite was stable under reducing conditions. Scanning electron microscopy and X-ray diffraction indicated that nano-particulate magnetite was produced as coatings on fine sediments, and no aging effect was detected on morphology over the course of incubation. Finally, these results suggest that a magnetite based strategy may be a long-term remedial option for As-contaminated aquifers.« less

  13. Spectroscopic study of synthetic hydrothermal Fe3+-bearing beryl

    NASA Astrophysics Data System (ADS)

    Taran, Michail N.; Dyar, M. Darby; Khomenko, Vladimir M.

    2017-12-01

    A synthetic hydrothermal beryl Fe-4-51, investigated previously by Taran and Rossman (Am Miner 86:973-980, 2001), was additionally studied by microprobe, Mössbauer, optical absorption, Raman and IR spectroscopy. For comparison, polarized spectra of natural blue aquamarine and Cr3+, Fe3+-bearing alexandrite, both from Brazil, are also presented. Fe-4-51 is a nearly pure Fe3+-bearing beryl, with a homogeneous composition as shown by electron microprobe. Averaging over 22 points gives a formula of Be3.07(Al1.94,{Fe}_{{{0.07}}}^{{{3}+}} )Σ=2.01Si5.95O18, with Fe3+ replacing Al3+ in the octahedral site of the structure. The Mössbauer spectrum is dominated by a broad disordered pattern with beryl-suitable parameters; for Fe2+, IS = 1.21 mm/s, QS = 2.71 mm/s, area ≈ 5% and for Fe3+, IS = 0.34 mm/s, QS = 0.71 mm/s, and area ≈ 67%—are distinguished overlying a broad disordered continuum. The optical absorption spectrum is typical of octahedral Fe3+. From it, the crystal field strength Dq is derived as 1520 cm-1 and the values of Racah parameters of interelectronic repulsion B and C are found to be 665 and 3415 cm-1, respectively. This rather low B value, compared with that of a free Fe3+ ion, 814 cm-1, suggests a comparatively high degree of covalency in the octahedral Fe3+-O bond. Infrared spectra show the presence of channel H2O of both I and II structural type in comparable quantities, about 0.5 and 1 mass%, respectively. Raman data show the expected five bands in the energy range from 300 to 1200 cm-1.

  14. Spectroscopic study of synthetic hydrothermal Fe3+-bearing beryl

    NASA Astrophysics Data System (ADS)

    Taran, Michail N.; Dyar, M. Darby; Khomenko, Vladimir M.

    2018-05-01

    A synthetic hydrothermal beryl Fe-4-51, investigated previously by Taran and Rossman (Am Miner 86:973-980, 2001), was additionally studied by microprobe, Mössbauer, optical absorption, Raman and IR spectroscopy. For comparison, polarized spectra of natural blue aquamarine and Cr3+, Fe3+-bearing alexandrite, both from Brazil, are also presented. Fe-4-51 is a nearly pure Fe3+-bearing beryl, with a homogeneous composition as shown by electron microprobe. Averaging over 22 points gives a formula of Be3.07(Al1.94,{Fe}_{{{0.07}}}^{{{3}+}})Σ=2.01Si5.95O18, with Fe3+ replacing Al3+ in the octahedral site of the structure. The Mössbauer spectrum is dominated by a broad disordered pattern with beryl-suitable parameters; for Fe2+, IS = 1.21 mm/s, QS = 2.71 mm/s, area ≈ 5% and for Fe3+, IS = 0.34 mm/s, QS = 0.71 mm/s, and area ≈ 67%—are distinguished overlying a broad disordered continuum. The optical absorption spectrum is typical of octahedral Fe3+. From it, the crystal field strength Dq is derived as 1520 cm-1 and the values of Racah parameters of interelectronic repulsion B and C are found to be 665 and 3415 cm-1, respectively. This rather low B value, compared with that of a free Fe3+ ion, 814 cm-1, suggests a comparatively high degree of covalency in the octahedral Fe3+-O bond. Infrared spectra show the presence of channel H2O of both I and II structural type in comparable quantities, about 0.5 and 1 mass%, respectively. Raman data show the expected five bands in the energy range from 300 to 1200 cm-1.

  15. Iron deficiency up-regulates iron absorption from ferrous sulphate but not ferric pyrophosphate and consequently food fortification with ferrous sulphate has relatively greater efficacy in iron-deficient individuals.

    PubMed

    Zimmermann, Michael B; Biebinger, Ralf; Egli, Ines; Zeder, Christophe; Hurrell, Richard F

    2011-04-01

    Fe absorption from water-soluble forms of Fe is inversely proportional to Fe status in humans. Whether this is true for poorly soluble Fe compounds is uncertain. Our objectives were therefore (1) to compare the up-regulation of Fe absorption at low Fe status from ferrous sulphate (FS) and ferric pyrophosphate (FPP) and (2) to compare the efficacy of FS with FPP in a fortification trial to increase body Fe stores in Fe-deficient children v. Fe-sufficient children. Using stable isotopes in test meals in young women (n 49) selected for low and high Fe status, we compared the absorption of FPP with FS. We analysed data from previous efficacy trials in children (n 258) to determine whether Fe status at baseline predicted response to FS v. FPP as salt fortificants. Plasma ferritin was a strong negative predictor of Fe bioavailability from FS (P < 0·0001) but not from FPP. In the efficacy trials, body Fe at baseline was a negative predictor of the change in body Fe for both FPP and FS, but the effect was significantly greater with FS (P < 0·01). Because Fe deficiency up-regulates Fe absorption from FS but not from FPP, food fortification with FS may have relatively greater impact in Fe-deficient children. Thus, more soluble Fe compounds not only demonstrate better overall absorption and can be used at lower fortification levels, but they also have the added advantage that, because their absorption is up-regulated in Fe deficiency, they innately 'target' Fe-deficient individuals in a population.

  16. Cation-induced coagulation of aquatic plant-derived dissolved organic matter: Investigation by EEM-PARAFAC and FT-IR spectroscopy.

    PubMed

    Liu, Shasha; Zhu, Yuanrong; Liu, Leizhen; He, Zhongqi; Giesy, John P; Bai, Yingchen; Sun, Fuhong; Wu, Fengchang

    2018-03-01

    Complexation and coagulation of plant-derived dissolved organic matter (DOM) by metal cations are important biogeochemical processes of organic matter in aquatic systems. Thus, coagulation and fractionation of DOM derived from aquatic plants by Ca(II), Al(III), and Fe(III) ions were investigated. Metal ion-induced removal of DOM was determined by analyzing dissolved organic carbon in supernatants after addition of these metal cations individually. After additions of metal ions, both dissolved and coagulated organic fractions were characterized by use of fluorescence excitation emission matrix-parallel factor (EEM-PARAFAC) analysis and Fourier transform infrared (FT-IR) spectroscopy. Addition of Ca(II), Fe(III) or Al(III) resulted in net removal of aquatic plant-derived DOM. Efficiencies of removal of DOM by Fe(III) or Al(III) were greater than that by Ca(II). However, capacities to remove plant-derived DOM by the three metals were less than which had been previously reported for humic materials. Molecular and structural features of plant-derived DOM fractions in associations with metal cations were characterized by changes in fluorescent components and infrared absorption peaks. Both aromatic and carboxylic-like organic matters could be removed by Ca(II), Al(III) or Fe(III) ions. Whereas organic matters containing amides were preferentially removed by Ca(II), and phenolic materials were selectively removed by Fe(III) or Al(III). These observations indicated that plant-derived DOM might have a long-lasting effect on water quality and organisms due to its poor coagulation with metal cations in aquatic ecosystems. Plant-derived DOM is of different character than natural organic matter and it is not advisable to attempt removal through addition of metal salts during treatment of sewage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toner, Brandy M.; Rouxel, Olivier J.; Santelli, Cara M.

    Hydrothermal sulfide chimneys located along the global system of oceanic spreading centers are habitats for microbial life during active venting. Hydrothermally extinct, or inactive, sulfide deposits also host microbial communities at globally distributed sites. The main goal of this study is to describe Fe transformation pathways, through precipitation and oxidation-reduction (redox) reactions, and examine transformation products for signatures of biological activity using Fe mineralogy and stable isotope approaches. The study includes active and inactive sulfides from the East Pacific Rise 9°50'N vent field. First, the mineralogy of Fe(III)-bearing precipitates is investigated using microprobe X-ray absorption spectroscopy (μXAS) and X-ray diffractionmore » (μXRD). Second, laser-ablation (LA) and micro-drilling (MD) are used to obtain spatially-resolved Fe stable isotope analysis by multicollector-inductively coupled plasma-mass spectrometry (MC-ICP-MS). Eight Fe-bearing minerals representing three mineralogical classes are present in the samples: oxyhydroxides, secondary phyllosilicates, and sulfides. For Fe oxyhydroxides within chimney walls and layers of Si-rich material, enrichments in both heavy and light Fe isotopes relative to pyrite are observed, yielding a range of δ 57Fe values up to 6‰. Overall, several pathways for Fe transformation are observed. Pathway 1 is characterized by precipitation of primary sulfide minerals from Fe(II)aq-rich fluids in zones of mixing between vent fluids and seawater. Pathway 2 is also consistent with zones of mixing but involves precipitation of sulfide minerals from Fe(II)aq generated by Fe(III) reduction. Pathway 3 is direct oxidation of Fe(II) aq from hydrothermal fluids to form Fe(III) precipitates. Finally, Pathway 4 involves oxidative alteration of pre-existing sulfide minerals to form Fe(III). The Fe mineralogy and isotope data do not support or refute a unique biological role in sulfide alteration. The findings reveal a dynamic range of Fe transformation pathways consistent with a continuum of micro-environments having variable redox conditions. Lastly, these micro-environments likely support redox cycling of Fe and S and are consistent with culture-dependent and -independent assessments of microbial physiology and genetic diversity of hydrothermal sulfide deposits.« less

  18. The BUSS spectrum of Beta Lyrae. [Balloon-borne Ultraviolet Stellar Spectrograph

    NASA Technical Reports Server (NTRS)

    Hack, M.; Sahade, J.; De Jager, C.; Kondo, Y.

    1983-01-01

    The spectrum of Beta Lyrae from about 1975 to 3010 A taken with the Balloon-borne ultraviolet Stellar Spectrograph experiment in May 1976 at phase 0.61 P is analyzed. Results show the presence of N II semi-forbidden emission and provide evidence for about the same location, in the outer envelope of the system, of the layers responsible for the resonance Mg II doublet emissions and for the "narrow" H-alpha emission. In addition, three sets of absorption lines, P Cygni profiles of Fe III and broad Beals Type III emissions of Mg II, are found to be present.

  19. Detailed transient heme structures of Mb-CO in solution after CO dissociation: an X-ray transient absorption spectroscopic study.

    PubMed

    Stickrath, Andrew B; Mara, Michael W; Lockard, Jenny V; Harpham, Michael R; Huang, Jier; Zhang, Xiaoyi; Attenkofer, Klaus; Chen, Lin X

    2013-04-25

    Although understanding the structural dynamics associated with ligand photodissociation is necessary in order to correlate structure and function in biological systems, few techniques are capable of measuring the ultrafast dynamics of these systems in solution-phase at room temperature. We present here a detailed X-ray transient absorption (XTA) study of the photodissociation of CO-bound myoglobin (Fe(II)CO-Mb) in room-temperature aqueous buffer solution with a time resolution of 80 ps, along with a general procedure for handling biological samples under the harsh experimental conditions that transient X-ray experiments entail. The XTA spectra of (Fe(II)CO-Mb) exhibit significant XANES and XAFS alterations following 527 nm excitation, which remain unchanged for >47 μs. These spectral changes indicate loss of the CO ligand, resulting in a five-coordinate, domed heme, and significant energetic reorganization of the 3d orbitals of the Fe center. With the current experimental setup, each X-ray pulse in the pulse train, separated by ~153 ns, can be separately discriminated, yielding snapshots of the myoglobin evolution over time. These methods can be easily applied to other biological systems, allowing for simultaneous structural and electronic measurements of any biological system with both ultrafast and slow time resolutions, effectively mapping out all of the samples' relevant physiological processes.

  20. A layered magnetic iron/iron oxide nanoscavenger for the analytical enrichment of ng-L(-1) concentration levels of heavy metals from water.

    PubMed

    Karatapanis, Andreas E; Petrakis, Dimitrios E; Stalikas, Constantine D

    2012-05-13

    Magnetically driven separation techniques have received considerable attention in recent decade because of their great potential application. In this study, we investigate the application of an unmodified layered magnetic Fe/Fe(2)O(3) nanoscavenger for the analytical enrichment and determination of sub-parts per billion concentrations of Cd(II), Pb(II), Ni(II), Cr(VI) and As(V) from water samples. The synthesized nanoscavenger was characterized by BET, TGA, XRD and IR and the parameters influencing the extraction and recovery of the preconcentration process were assessed by atomic absorption spectrometry. The possible mechanism of the enrichment of heavy metals on Fe/Fe(2)O(3) was proposed, which involved the dominant adsorption and reduction. The nanoscale size offers large surface area and high reactivity of sorption and reduction reactions. The obtained limits of detection for the metals studied were in the range of 20-125 ng L(-1) and the applicability of the nanomaterial was verified using a real sample matrix. The method is environmentally friendly as only 15 mg of nanoscavenger are used, no organic solvent is required for the extraction and the experiment is performed without the need for filtration or preparation of packed preconcentration columns. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Effect of Humic Acid on the Removal of Chromium(VI) and the Production of Solids in Iron Electrocoagulation.

    PubMed

    Pan, Chao; Troyer, Lyndsay D; Liao, Peng; Catalano, Jeffrey G; Li, Wenlu; Giammar, Daniel E

    2017-06-06

    Iron-based electrocoagulation can be highly effective for Cr(VI) removal from water supplies. However, the presence of humic acid (HA) inhibited the rate of Cr(VI) removal in electrocoagulation, with the greatest decreases in Cr(VI) removal rate at higher pH. This inhibition was probably due to the formation of Fe(II) complexes with HA that are more rapidly oxidized than uncomplexed Fe(II) by dissolved oxygen, making less Fe(II) available for reduction of Cr(VI). Close association of Fe(III), Cr(III), and HA in the solid products formed during electrocoagulation influenced the fate of both Cr(III) and HA. At pH 8, the solid products were colloids (1-200 nm) with Cr(III) and HA concentrations in the filtered fraction being quite high, while at pH 6 these concentrations were low due to aggregation of small particles. X-ray diffraction and X-ray absorption fine structure spectroscopy indicated that the iron oxides produced were a mixture of lepidocrocite and ferrihydrite, with the proportion of ferrihydrite increasing in the presence of HA. Cr(VI) was completely reduced to Cr(III) in electrocoagulation, and the coordination environment of the Cr(III) in the solids was similar regardless of the humic acid loading, pH, and dissolved oxygen level.

  2. X-ray K-edge absorption spectra of Fe minerals and model compounds: II. EXAFS

    NASA Astrophysics Data System (ADS)

    Waychunas, Glenn A.; Brown, Gordon E.; Apted, Michael J.

    1986-01-01

    K-edge extended X-ray absorption fine structure (EXAFS) spectra of Fe in varying environments in a suite of well-characterized silicate and oxide minerals were collected using synchrotron radiation and analyzed using single scattering approximation theory to yield nearest neighbor Fe-O distances and coordination numbers. The partial inverse character of synthetic hercynite spinal was verified in this way. Comparison of the results from all samples with structural data from X-ray diffraction crystal structure refinements indicates that EXAFS-derived first neighbor distances are generally accurate to ±0.02 Å using only theoretically generated phase information, and may be improved over this if similar model compounds are used to determine EXAFS phase functions. Coordination numbers are accurate to ±20 percent and can be similarly improved using model compound EXAFS amplitude information. However, in particular cases the EXAFS-derived distances may be shortened, and the coordination number reduced, by the effects of static and thermal disorder or by partial overlap of the longer Fe-O first neighbor distances with second neighbor distances in the EXAFS structure function. In the former case the total information available in the EXAFS is limited by the disorder, while in the latter case more accurate results can in principle be obtained by multiple neighbor EXAFS analysis. The EXAFS and XANES spectra of Fe in Nain, Labrador osumulite and Lakeview, Oregon plagioclase are also analyzed as an example of the application of X-ray absorption spectroscopy to metal ion site occupation determination in minerals.

  3. Consumption of galacto-oligosaccharides increases iron absorption from a micronutrient powder containing ferrous fumarate and sodium iron EDTA: a stable-isotope study in Kenyan infants.

    PubMed

    Paganini, Daniela; Uyoga, Mary A; Cercamondi, Colin I; Moretti, Diego; Mwasi, Edith; Schwab, Clarissa; Bechtler, Salome; Mutuku, Francis M; Galetti, Valeria; Lacroix, Christophe; Karanja, Simon; Zimmermann, Michael B

    2017-10-01

    Background: Whether consumption of prebiotics increases iron absorption in infants is unclear. Objective: We set out to determine whether prebiotic consumption affects iron absorption from a micronutrient powder (MNP) containing a mixture of ferrous fumarate and sodium iron EDTA (FeFum+NaFeEDTA) in Kenyan infants. Design: Infants ( n = 50; aged 6-14 mo) consumed maize porridge that was fortified with an MNP containing FeFum+NaFeEDTA and 7.5 g galacto-oligosaccharides (GOSs) (Fe+GOS group, n = 22) or the same MNP without GOSs (Fe group, n = 28) each day for 3 wk. Then, on 2 consecutive days, we fed all infants isotopically labeled maize porridge and MNP test meals containing 5 mg Fe as 57 FeFum+Na 58 FeEDTA or ferrous sulfate ( 54 FeSO 4 ). Iron absorption was measured as the erythrocyte incorporation of stable isotopes. Iron markers, fecal pH, and bacterial groups were assessed at baseline and 3 wk. Comparisons within and between groups were done with the use of mixed-effects models. Results: There was a significant group-by-compound interaction on iron absorption ( P = 0.011). The median percentages of fractional iron absorption from FeFum+NaFeEDTA and from FeSO 4 in the Fe group were 11.6% (IQR: 6.9-19.9%) and 20.3% (IQR: 14.2-25.7%), respectively, ( P < 0.001) and, in the Fe+GOS group, were 18.8% (IQR: 8.3-37.5%) and 25.5% (IQR: 15.1-37.8%), respectively ( P = 0.124). Between groups, iron absorption was greater from the FeFum+NaFeEDTA ( P = 0.047) in the Fe+GOS group but not from the FeSO 4 ( P = 0.653). The relative iron bioavailability from FeFum+NaFeEDTA compared with FeSO 4 was higher in the Fe+GOS group than in the Fe group (88% compared with 63%; P = 0.006). There was a significant time-by-group interaction on Bifidobacterium spp. ( P = 0.008) and Lactobacillus / Pediococcus / Leuconostoc spp. ( P = 0.018); Lactobacillus / Pediococcus / Leuconostoc spp. decreased in the Fe group ( P = 0.013), and there was a nonsignificant trend toward higher Bifidobacterium spp. in the Fe+GOS group ( P = 0.099). At 3 wk, iron absorption was negatively correlated with fecal pH ( P < 0.001) and positively correlated with Lactobacillus / Pediococcus / Leuconostoc spp. ( P = 0.001). Conclusion: GOS consumption by infants increased iron absorption by 62% from an MNP containing FeFum+NaFeEDTA, thereby possibly reflecting greater colonic iron absorption. This trial was registered at clinicaltrials.gov as NCT02666417. © 2017 American Society for Nutrition.

  4. A modified physiological BCS for prediction of intestinal absorption in drug discovery.

    PubMed

    Zaki, Noha M; Artursson, Per; Bergström, Christel A S

    2010-10-04

    In this study, the influence of physiologically relevant media on the compound position in a biopharmaceutical classification system (BCS) which resembled the intestinal absorption was investigated. Both solubility and permeability limited compounds (n = 22) were included to analyze the importance of each of these on the final absorption. Solubility was determined in three different dissolution media, phosphate buffer pH 6.5 (PhB 6.5), fasted state simulated intestinal fluid (FaSSIF), and fed state simulated intestinal fluid (FeSSIF) at 37 °C, and permeability values were determined using the 2/4/A1 cell line. The solubility data and membrane permeability values were used for sorting the compounds into a BCS modified to reflect the fasted and fed state. Three of the seven compounds sorted as BCS II in PhB 6.5 (high permeability, low solubility) changed their position to BCS I when dissolved in FaSSIF and/or FeSSIF (high permeability, high solubility). These were low dosed (20 mg or less) lipophilic molecules displaying solvation limited solubility. In contrast, compounds having solid-state limited solubility had a minor increase in solubility when dissolved in FaSSIF and/or FeSSIF. Although further studies are needed to enable general cutoff values, our study indicates that low dosed BCS Class II compounds which have solubility normally restricted by poor solvation may behave as BCS Class I compounds in vivo. The large series of compounds investigated herein reveals the importance of investigating solubility and dissolution under physiologically relevant conditions in all stages of the drug discovery process to push suitable compounds forward, to select proper formulations, and to reduce the risk of food effects.

  5. Treatment of ferrous-NTA-based NO x scrubber solution by an up-flow anaerobic packed bed bioreactor.

    PubMed

    Chandrashekhar, B; Sahu, Nidhi; Tabassum, Heena; Pai, Padmaraj; Morone, Amruta; Pandey, R A

    2015-06-01

    A bench scale system consisting of an up-flow packed bed bioreactor (UAPBR) made of polyurethane foam was used for the treatment and regeneration of aqueous solution of ferrous-NTA scrubbed with nitric oxide (NO). The biomass in the UAPBR was sequentially acclimatized under denitrifying and iron reducing conditions using ethanol as electron donor, after which nitric oxide (NO) gas was loaded continuously to the system by absorption. The system was investigated for different parameters viz. pH, removal efficiency of nitric oxide, biological reduction efficiency of Fe(II)NTA-NO and COD utilization. The Fe(II)NTA-NO reduction efficiency reached 87.8 % at a loading rate of 0.24 mmol L(-1) h(-1), while the scrubber efficiency reached more than 75 % with 250 ppm NO. Stover-Kincannon and a Plug-flow kinetic model based on Michaelis-Menten equation were used to describe the UAPBR performance with respect to Fe(II)NTA-NO and COD removal. The Stover-Kincannon model was found capable of describing the Fe(II)NTA-NO reduction (R m = 8.92 mM h(-1) and K NO = 11.46 mM h(-1)) while plug-flow model provided better fit to the COD utilization (U m = 66.62 mg L(-1) h(-1), K COD = 7.28 mg L(-1)). Analyses for pH, Fe(III)NTA, ammonium, nitrite concentration, and FTIR analysis of the medium samples indicated degradation of NTA, which leads to ammonium and nitrite accumulation in the medium, and affect the regeneration process.

  6. Mineralogical, Physical and Geochemical Factors that Drive Microbial Reduction of Iron Oxides and Diagenesis under Broad Environmental Conditions

    NASA Astrophysics Data System (ADS)

    Dong, Y.; Sanford, R. A.; Boyanov, M.; Kemner, K. M.; Flynn, T. M.; O'Loughlin, E. J.; George, S.; Fouke, K.; Fouke, B. W.

    2016-12-01

    Iron reduction by dissimilatory iron-reducing bacteria (DIRB), coupled with the oxidation of organic compounds or H2, causes formation of post-depositional (diagenetic) Fe(II)-containing minerals. Previous studies on the composition, distribution and precipitation rates of secondary minerals during microbial iron reduction have primarily focused on ferrihydrite reduction by Shewanella spp. However, comparatively little is known about these processes by a variety of other DIRB and the effect of specific environmental factors on Fe(II)-bearing mineral diagenesis. Here we examine how environmental conditions influence the reduction of ferric iron minerals by Orenia metallireducens strain Z6, a DIRB from the phylum Firmicutes. This includes the effects of: (1) pH at 6.5-8.5; (2) temperature at 22-50 °C; (3) salinity at 2-20% NaCl; (4) solution chemistry of phosphate and sulfate; (5) electron shuttles (e.g., anthraquinone-2,6-disulfonate (AQDS)); and (6) iron oxides, including ferrihydrite, lepidocrocite, goethite, hematite, and magnetite. For a total of 19 culturing conditions, we measured ferrous iron produced over time using the ferrozine assay and formation of secondary minerals using scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), X-Ray Diffraction (XRD), and extended X-ray absorption fine structure spectroscopy (Fe-edge XANES and EXAFS). Results show that both the rate and extent of DIRB reduction of ferrihydrite and lepidocrocite vastly exceeded those of the more crystalline minerals. The microscopic and spectroscopic analyses indicate diversity in the composition and relative abundance of Fe(II)-containing minerals such as green rust, siderite, magnetite and/or vivianite under the different experimental conditions. However, the secondary mineralization products cannot be attributed to either the extent or kinetics of Fe(II) generation. Instead, the composition of these digenetic minerals resulted from the intricate interplay of precipitation dynamics, adsorption of Fe(II), and subsequent transformation (dissolution and reprecipitation). This study establishes the first mechanistic understanding of biomineralization of Fe(II) bearing minerals during microbial iron reduction under a broad range of environmental conditions.

  7. Pentacyanoiron(II) as an electron donor group for nonlinear optics: medium-responsive properties and comparisons with related pentaammineruthenium(II) complexes.

    PubMed

    Coe, Benjamin J; Harries, Josephine L; Helliwell, Madeleine; Jones, Lathe A; Asselberghs, Inge; Clays, Koen; Brunschwig, Bruce S; Harris, James A; Garín, Javier; Orduna, Jesús

    2006-09-20

    In this article, we describe a series of complex salts in which electron-rich {Fe(II)(CN)(5)}(3)(-) centers are coordinated to pyridyl ligands with electron-accepting N-methyl/aryl-pyridinium substituents. These compounds have been characterized by using various techniques including electronic absorption spectroscopy and cyclic voltammetry. Molecular quadratic nonlinear optical (NLO) responses have been determined by using hyper-Rayleigh scattering (HRS) at 1064 nm, and also via Stark (electroabsorption) spectroscopic studies on the intense, visible d --> pi* metal-to-ligand charge-transfer (MLCT) bands. The relatively large static first hyperpolarizabilities, beta(0), increase markedly on moving from aqueous to methanol solutions, accompanied by large red-shifts in the MLCT transitions. Acidification of aqueous solutions allows reversible switching of the linear and NLO properties, as shown via both HRS and Stark experiments. Time-dependent density functional theory and finite field calculations using a polarizable continuum model yield relatively good agreement with the experimental results and confirm the large decrease in beta(0) on protonation. The Stark-derived beta(0) values are generally larger for related {Ru(II)(NH(3))(5)}(2+) complexes than for their {Fe(II)(CN)(5)}(3)(-) analogues, consistent with the HRS data in water. However, the HRS data in methanol show that the stronger solvatochromism of the Fe(II) complexes causes their NLO responses to surpass those of their Ru(II) counterparts upon changing the solvent medium.

  8. Study of Cr(VI) adsorption onto magnetite nanoparticles using synchrotron-based X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Yen-Hua; Liu, Dian-Yu; Lee, Jyh-Fu

    2018-04-01

    In this study, the efficiency of Cr(VI) adsorption onto nano-magnetite was examined by batch experiments, and the Cr(VI) adsorption mechanism was investigated using synchrotron-based X-ray absorption spectroscopy. Magnetite nanoparticles with a mean diameter of 10 nm were synthesized using an inexpensive and simple co-precipitation method. It shows a saturation magnetization of 54.3 emu/g, which can be recovered with an external magnetic field. The adsorption data fitted the Langmuir adsorption isotherm well, implying a monolayer adsorption behavior of Cr(VI) onto nano-magnetite. X-ray absorption spectroscopy results indicate that the adsorption mechanism involves electron transfer between Fe(II) in nano-magnetite (Fe2+OFe3+ 2O3) and Cr(VI) to transform into Cr(III), which may exist as an Fe(III)-Cr(III) mixed solid phase. Moreover, the Cr(III)/Cr(VI) ratio in the final products can be determined by the characteristic pre-edge peak area of Cr(VI) in the Cr K-edge spectrum. These findings suggest that nano-magnetite is effective for Cr(VI) removal from wastewater because it can transform highly poisonous Cr(VI) species into nontoxic Cr(III) compounds, which are highly insoluble and immobile under environmental conditions.

  9. Iron absorption from intrinsically-labeled lentils

    USDA-ARS?s Scientific Manuscript database

    Low iron (Fe) absorption from important staple foods may contribute to Fe deficiency in developing countries. To date, there are few studies examining the Fe bioavailability of pulse crops as commonly prepared and consumed by humans. The objectives of this study were to characterize the Fe absorpt...

  10. Iron K Features in the Quasar E 1821+643: Evidence for Gravitationally Redshifted Absorption?

    NASA Technical Reports Server (NTRS)

    Yaqoob, Tahir; Serlemitsos, Peter

    2005-01-01

    We report a Chandra high-energy grating detection of a narrow, redshifted absorption line superimposed on the red wing of a broad Fe K line in the z = 0.297 quasar E 1821+643. The absorption line is detected at a confidence level, estimated by two different methods, in the range approx. 2 - 3 sigma. Although the detection significance is not high enough to exclude a non-astrophysical origin, accounting for the absorption feature when modeling the X-ray spectrum implies that the Fe-K emission line is broad, and consistent with an origin in a relativistic accretion disk. Ignoring the apparent absorption feature leads to the conclusion that the Fe-K emission line is narrower, and also affects the inferred peak energy of the line (and hence the inferred ionization state of Fe). If the absorption line (at approx. 6.2 keV in the quasar frame) is real, we argue that it could be due to gravitationally redshifted Fe XXV or Fe XXVI resonance absorption within approx. 10 - 20 gravitational radii of the putative central black hole. The absorption line is not detected in earlier ASCA and Chandra low-energy grating observations, but the absorption line is not unequivocally ruled out by these data. The Chandra high-energy grating Fe-K emission line is consistent with an origin predominantly in Fe I-XVII or so. In an ASCA observation eight years earlier, the Fe-K line peaked at approx. 6.6 keV, closer to the energies of He-like Fe triplet lines. Further, in a Chandra low-energy grating observation the Fe-K line profile was double-peaked, one peak corresponding to Fe I-XVII or so, the other peak to Fe XXVI Ly alpha. Such a wide range in ionization state of Fe is not ruled out by the HEG and ASCA data either, and is suggestive of a complex structure for the line-emitter.

  11. High-resolution IUE observations of the 1981 eclipse of 32 CYG

    NASA Technical Reports Server (NTRS)

    Reimers, D.; Che, A.; Hempe, K.

    1981-01-01

    32 Cyg shows a spectacular pure emission line spectrum during eclipse. Six weeks later, most lines, which were observed in emission during eclipse, are seen as P Cygni type profiles with strong absorption components. The lines are formed through line scattering of B star light in the extended atmosphere (wind) of the K supergiant. During eclipse, the emission parts of the P Cyg lines remain visible since the size of the line scattering sphere around the B star is larger than the red giant. Other emission lines are formed in a shock front near the B star (CIV, SiIV, FeIII) and possibly in an accretion disk. The strong FeII UV Mult. 191 lambda lambda 1785-88 A is shown to be formed through optical pumping via FeII UV Mult. 9 photons. The phase dependence of the P Cyg type profiles is modelled by means of line transfer calculations in nonspherical, 3-dimensional geometry with velocity fields.

  12. Production of hydroxyl radical by redox active flavonoids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalyanaraman, B.; Hodnick, W.F.; Pardini, R.S.

    1986-05-01

    The authors have previously shown that flavonoids autoxidize and generate superoxide (O/sub 2//sup -/) and hydrogen peroxide (H/sub 2/O/sub 2/), suggesting that hydroxyl radical (OH) could be formed via the metal-ion catalyzed Haber-Weiss reaction. In the presence of ethylenediamine tetraacetic acid (EDTA) and 5,5-dimethyl-1-pyrroline-1-oxide (DMPO), myricetin, quercetagetin and quercetin gave an ESR signal for the DMPO-OH spin adduct, and the DMPO-Eto adduct in the presence of excess ethanol, indicating the production of free OH. The addition of FeCl/sub 3/ to the reaction mixture resulted in a dramatic increase in the DMPO-OH signal. Without chelator (EDTA) there was no signal andmore » the presence of diethylenetriamine-pentaacetic acid (DETAPAC) greatly diminished the signal. The presence of superoxide dismutase (SOD) had no effect on the signal while catalase completely abrogated the signal. The addition of Fe (III)-EDTA to flavonoid solutions under anaerobic conditions produced time dependent auxochromic shifts in their absorption spectra and resulted in the reduction of Fe (III) to Fe (II). These data suggest that the flavonoids autoxidize to produce O/sub 2//sup -/ and H/sub 2/O/sub 2/ by dismutation and in the presence of Fe (III)-EDTA the flavonoid can directly reduce the Fe (III) to Fe (II) resulting in the production of OH through Fenton chemistry.« less

  13. The Hubble Space Telescope quasar absorption line key project. 6: Properties of the metal-rich systems

    NASA Technical Reports Server (NTRS)

    Bergeron, Jacqueline; Petitjean, Patrick; Sargent, W. L. W.; Bahcall, John N.; Boksenberg, Alec; Hartig, George F.; Jannuzi, Buell T.; Kirhakos, Sofia; Savage, Blair D.; Schneider, Donald P.

    1994-01-01

    We present an analysis of the properties of a sample of 18 metal-rich, low-redshift z(sub abs) much less than z(sub em) absorbers seen in low- and medium-resolution spectra obtained for the Quasar Absorption Line Key Project with the Hubble Space Telescope Faint Object Spectrograph (HST/FOS). For most of the C IV and Lyman-limit systems, observations in the optical wavelength range of the expected associated Mg II absorption are available. As at high redshift (z approximately 2), there are two subclasses of absorbers which are characterized by the presence or absence of MG II absorption. However, some low-redshift Mg II and Fe absorptions originate from regions optically thin to UV ionizing photons and thus, at low redshift, the low-ionization systems do not always trace high opacities, as is the case at high redshift. This implies that the mean ionization state of metal-rich, optically thin absorbing clouds falls with decreasing redshift, which is consistent with the hypothesis that the gas is photoionized by the metagalactic UV background radiation field. Two main constraints are derived from the analysis of the Lyman-limit sample, assuming photoionization models are valid. First, a low opacity to ionizing photons (tau(sub LL) approximately less than 1), as observed for several Mg II-Fe II systems at z approximately 0.5, sets limits on the ionization level of hydrogen, thus on the total hydrogen column density and the heavy element abundances, (Z/H) approximately -0.5 to -0.3. Second, the dimensions of individual Mg II clouds are smaller than at high redshift by a factor 3-10. At z approximately greater than 0.6, the O VI absorption doublet is detected in four of the five z(sub abs) much less than z(sub em) systems for which the O VI wavelength range has been observed, whereas the associated N V doublet is detected in only two cases. This suggests that the presence of a high-ionization O VI phase is a general property of z approximately 0.6-1 absorption systems, as is also probably the case at high redshift. These O VI absorbers can be ionized by the UV metagalactic field if their density is low, nH approximately less than 3 x 10(exp -4)/cc. The O VI phase would then be a homogeneous region of large extent, r approximately greater than 50 kpc. A detailed photoionization model of the z(sub abs) = 0.791 absorber toward PKS 2145+06 confirms the properties derived from the Mg II, C IV, O VI, and Lyman-limit samples. The galaxy causing this extensive metal-line absorption system has been identified, and its possible contribution to the UV ionizing flux does not substantially modify the value of the derived parameters. The heavy element abundances are about half the solar values. The O VI region has a density about 20 times lower than the Mg II clouds and a size of approximately 70 kpc. Alternatively, the high-ionization phase could be collisionally ionized and trace gas associated with a possible group of galaxies at the absorber redshift.

  14. The NIR Ca ii triplet at low metallicity. Searching for extremely low-metallicity stars in classical dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Starkenburg, E.; Hill, V.; Tolstoy, E.; González Hernández, J. I.; Irwin, M.; Helmi, A.; Battaglia, G.; Jablonka, P.; Tafelmeyer, M.; Shetrone, M.; Venn, K.; de Boer, T.

    2010-04-01

    The NIR Ca ii triplet absorption lines have proven to be an important tool for quantitative spectroscopy of individual red giant branch stars in the Local Group, providing a better understanding of metallicities of stars in the Milky Way and dwarf galaxies and thereby an opportunity to constrain their chemical evolution processes. An interesting puzzle in this field is the significant lack of extremely metal-poor stars, below [Fe/H] = -3, found in classical dwarf galaxies around the Milky Way using this technique. The question arises whether these stars are really absent, or if the empirical Ca ii triplet method used to study these systems is biased in the low-metallicity regime. Here we present results of synthetic spectral analysis of the Ca ii triplet, that is focused on a better understanding of spectroscopic measurements of low-metallicity giant stars. Our results start to deviate strongly from the widely-used and linear empirical calibrations at [Fe/H] < -2. We provide a new calibration for Ca ii triplet studies which is valid for -0.5 ≥ [Fe/H] ≥ -4. We subsequently apply this new calibration to current data sets and suggest that the classical dwarf galaxies are not so devoid of extremely low-metallicity stars as was previously thought. Using observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile proposal 171.B-0588.

  15. Fe N-Heterocyclic Carbene Complexes as Promising Photosensitizers.

    PubMed

    Liu, Yizhu; Persson, Petter; Sundström, Villy; Wärnmark, Kenneth

    2016-08-16

    The photophysics and photochemistry of transition metal complexes (TMCs) has long been a hot field of interdisciplinary research. Rich metal-based redox processes, together with a high variety in electronic configurations and excited-state dynamics, have rendered TMCs excellent candidates for interconversion between light, chemical, and electrical energies in intramolecular, supramolecular, and interfacial arrangements. In specific applications such as photocatalytic organic synthesis, photoelectrochemical cells, and light-driven supramolecular motors, light absorption by a TMC-based photosensitizer and subsequent excited-state energy or electron transfer constitute essential steps. In this context, TMCs based on rare and expensive metals, such as ruthenium and iridium, are frequently employed as photosensitizers, which is obviously not ideal for large-scale implementation. In the search for abundant and environmentally benign solutions, six-coordinate Fe(II) complexes (Fe(II)L6) have been widely considered as highly desirable alternatives. However, not much success has been achieved due to the extremely short-lived triplet metal-to-ligand charge transfer ((3)MLCT) excited state that is deactivated by low-lying metal-centered (MC) states on a 100 fs time scale. A fundamental strategy to design useful Fe-based photosensitizers is thus to destabilize the MC states relative to the (3)MLCT state by increasing the ligand field strength, with special focus on making eg σ* orbitals on the Fe center energetically less accessible. Previous efforts to directly transplant successful strategies from Ru(II)L6 complexes unfortunately met with limited success in this regard, despite their close chemical kinship. In this Account, we summarize recent promising results from our and other groups in utilizing strongly σ-donating N-heterocyclic carbene (NHC) ligands to make strong-field Fe(II)L6 complexes with significantly extended (3)MLCT lifetimes. Already some of the first homoleptic bis(tridentate) complexes incorporating (CNHC^Npyridine^CNHC)-type ligands gratifyingly resulted in extension of the (3)MLCT lifetime by more than 2 orders of magnitude compared to the parental [Fe(tpy)2](2+) (tpy = 2,2':6',2″-terpyridine) complex. Quantum chemical (QC) studies also revealed that the (3)MC instead of the (5)MC state likely dictates the deactivation of the (3)MLCT state, a behavior distinct from traditional Fe(II)L6 complexes but rather resembling Ru analogues. A heteroleptic Fe(II) NHC complex featuring mesoionic bis(1,2,3-triazol-5-ylidene) (btz) ligands also delivered a 100-fold elongation of the (3)MLCT lifetime relative to its parental [Fe(bpy)3](2+) (bpy = 2,2'-bipyridine) complex. Again, a Ru-like deactivation mechanism of the (3)MLCT state was indicated by QC studies. With a COOH-functionalized homoleptic complex, a record (3)MLCT lifetime of 37 ps was recently observed on an Al2O3 nanofilm. As a proof of concept, it was further demonstrated that the significant improvement in the (3)MLCT lifetime indeed benefits efficient light harvesting with Fe(II) NHC complexes. For the first time, close-to-unity electron injection from the lowest-energy (3)MLCT state to a TiO2 nanofilm was achieved by a stable Fe(II) complex. This is in complete contrast to conventional Fe(II)L6-derived photosensitizers that could only make use of high-energy photons. These exciting results significantly broaden the understanding of the fundamental photophysics and photochemistry of d(6) Fe(II) complexes. They also open up new possibilities to develop solar energy-converting materials based on this abundant, inexpensive, and intrinsically nontoxic element.

  16. ASCA observations of NGC 1068

    NASA Technical Reports Server (NTRS)

    Ueno, Shiro; Mushotzky, Richard F.; Koyama, Katsuji; Iwasawa, Kazushi; Awaki, Hisamitsu; Hayashi, Ichizo

    1994-01-01

    With the high sensitivity and spectral resolution of the Advanced Satellite for Cosmology and Astrophysics (ASCA) satellite, we have discovered strong emission lines from the H-like and/or He-like ions of Ne, Mg, Si, and S as well as Fe L and confirmed the complex structure of Fe K line emission in the Seyfert II galaxy NGC 1068. The continuum emission above 3 keV exhibits rather flat shape with no evidence of low energy absorption. The overall X-ray spectrum can be well explained with a model involving starburst activity plus an obscured active galactic nucleus.

  17. The z = 1.6748 C I Absorber Toward the QSO PKS 1756+237

    NASA Astrophysics Data System (ADS)

    Roth, Katherine C.; Bauer, James M.; Jim, Kevin T. C.

    We have detected C I ground-state absorption at zabs = 1.6748 toward the QSO PKS 1756+237 (zem = 1.725), making this only the fourth known C I QSO absorber. The absence of excited-state fine-structure C I lines is compatible with the redshifted Cosmic Microwave Background Radiation at an expected temperature of TCMBR (1+z) = 7.291 K (Mather et al. 1994, ApJ, 354, L37). We find a 2 σ upper-limit on the C I excitation temperature of Tex <= 7.73(+0.53, -0.46) K (Roth & Bauer 1999, ApJ, submitted). Our Keck HIRES spectra (8.3 km s-1 FWHM) obtained in May 1997 also reveal the existence of Ni II and Fe II lines with a sub-solar Ni/Fe abundance ratio, presumably indicative of dust. We have obtained deep, high resolution (0.3'' FWHM) images in H+K' with the UH 2.2m Tip-Tilt system of the QSO field in order to identify the system responsible for the zabs = 1.6748 absorption. We detect two faint candidate systems within 1.5'' and 3'' (≅ 15 and 30 kpc, Hcirc = 65) of the QSO.

  18. Characterization of a tricationic trigonal bipyramidal iron(IV) cyanide complex, with a very high reduction potential, and its iron(II) and iron(III) congeners.

    PubMed

    England, Jason; Farquhar, Erik R; Guo, Yisong; Cranswick, Matthew A; Ray, Kallol; Münck, Eckard; Que, Lawrence

    2011-04-04

    Currently, there are only a handful of synthetic S = 2 oxoiron(IV) complexes. These serve as models for the high-spin (S = 2) oxoiron(IV) species that have been postulated, and confirmed in several cases, as key intermediates in the catalytic cycles of a variety of nonheme oxygen activating enzymes. The trigonal bipyramidal complex [Fe(IV)(O)(TMG(3)tren)](2+) (1) was both the first S = 2 oxoiron(IV) model complex to be generated in high yield and the first to be crystallographically characterized. In this study, we demonstrate that the TMG(3)tren ligand is also capable of supporting a tricationic cyanoiron(IV) unit, [Fe(IV)(CN)(TMG(3)tren)](3+) (4). This complex was generated by electrolytic oxidation of the high-spin (S = 2) iron(II) complex [Fe(II)(CN)(TMG(3)tren)](+) (2), via the S = 5/2 complex [Fe(III)(CN)(TMG(3)tren)](2+) (3), the progress of which was conveniently monitored by using UV-vis spectroscopy to follow the growth of bathochromically shifting ligand-to-metal charge transfer (LMCT) bands. A combination of X-ray absorption spectroscopy (XAS), Mössbauer and NMR spectroscopies was used to establish that 4 has a S = 0 iron(IV) center. Consistent with its diamagnetic iron(IV) ground state, extended X-ray absorption fine structure (EXAFS) analysis of 4 indicated a significant contraction of the iron-donor atom bond lengths, relative to those of the crystallographically characterized complexes 2 and 3. Notably, 4 has an Fe(IV/III) reduction potential of ∼1.4 V vs Fc(+/o), the highest value yet observed for a monoiron complex. The relatively high stability of 4 (t(1/2) in CD(3)CN solution containing 0.1 M KPF(6) at 25 °C ≈ 15 min), as reflected by its high-yield accumulation via slow bulk electrolysis and amenability to (13)C NMR at -40 °C, highlights the ability of the sterically protecting, highly basic peralkylguanidyl donors of the TMG(3)tren ligand to support highly charged high-valent complexes.

  19. On the Iron Abundance Anomaly in K-dwarf and Hyades Stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aleo, Patrick D.; Sobotka, Alexander C.; Ramírez, Ivan

    Using standard 1D-LTE model atmosphere analysis, we provide an in-depth investigation of iron abundance as derived from neutral and singly ionization iron lines (Fe i, ii) in nearby star clusters. Specifically, we replicate the discrepancy regarding Δ[Fe/H], wherein the difference of Fe ii–Fe i increases for stars of the same cluster with decreasing T {sub eff}, reaching an astonishing 1.0 dex at T {sub eff} ∼ 4000 K. Previous studies have investigated this anomaly in the Pleiades and Hyades clusters with no concrete solution. In this analysis, we probe two samples: 63 wide binary field stars where the primary starmore » is of Sun-like temperatures and the secondary is a K-dwarf, ranging from 4231 K ≤ T {sub eff} ≤ 6453 K, and 33 Hyades stars of temperatures 4268 K ≤ T {sub eff} ≤ 6072 K. Previous studies have found discrepancies on the order of 1.0 dex. However, we find that these studies have neglected line-blending effects of certain Fe ii lines, namely λ = (4508.29 Å, 4993.34 Å, 5197.58 Å, 5325.55 Å, 5425.26 Å, 6456.38 Å). When these lines are removed from the line-list, we find Δ[Fe/H] decreases to ∼0.6 dex in the field binaries and ∼0.3 dex in the Hyades. The reason for this remaining trend is investigated by probing NLTE effects, as well as age and activity considerations using Ca ii H+K emission and Li absorption, but these results appear to be small to negligible.« less

  20. Advances in the detection of as in environmental samples using low energy X-ray fluorescence in a scanning transmission X-ray microscope: arsenic immobilization by an Fe(II)-oxidizing freshwater bacteria.

    PubMed

    Hitchcock, A P; Obst, M; Wang, J; Lu, Y S; Tyliszczak, T

    2012-03-06

    Speciation and quantitative mapping of elements, organic and inorganic compounds, and mineral phases in environmental samples at high spatial resolution is needed in many areas of geobiochemistry and environmental science. Scanning transmission X-ray microscopes (STXMs) provide a focused beam which can interrogate samples at a fine spatial scale. Quantitative chemical information can be extracted using the transmitted and energy-resolved X-ray fluorescence channels simultaneously. Here we compare the relative merits of transmission and low-energy X-ray fluorescence detection of X-ray absorption for speciation and quantitative analysis of the spatial distribution of arsenic(V) within cell-mineral aggregates formed by Acidovorax sp. strain BoFeN1, an anaerobic nitrate-reducing Fe(II)-oxidizing β-proteobacteria isolated from the sediments of Lake Constance. This species is noted to be highly tolerant to high levels of As(V). Related, As-tolerant Acidovorax-strains have been found in As-contaminated groundwater wells in Bangladesh and Cambodia wherein they might influence the mobility of As by providing sorption sites which might have different properties as compared to chemically formed Fe-minerals. In addition to demonstrating the lower detection limits that are achieved with X-ray fluorescence relative to transmission detection in STXM, this study helps to gain insights into the mechanisms of As immobilization by biogenic Fe-mineral formation and to further the understanding of As-resistance of anaerobic Fe(II)-oxidizing bacteria.

  1. Discovery of a z = 0.65 post-starburst BAL quasar in the DES supernova fields

    DOE PAGES

    Mudd, Dale; Martini, Paul; Tie, Suk Sien; ...

    2017-03-23

    In this paper, we present the discovery of a z = 0.65 low-ionization broad absorption line (LoBAL) quasar in a post-starburst galaxy in data from the Dark Energy Survey (DES) and spectroscopy from the Australian Dark Energy Survey (OzDES). LoBAL quasars are a minority of all BALs, and rarer still is that this object also exhibits broad Fe ii (an FeLoBAL) and Balmer absorption. This is the first BAL quasar that has signatures of recently truncated star formation, which we estimate ended about 40 Myr ago. The characteristic signatures of an FeLoBAL require high column densities, which could be explainedmore » by the emergence of a young quasar from an early, dust-enshrouded phase, or by clouds compressed by a blast wave. Finally, the age of the starburst component is comparable to estimates of the lifetime of quasars, so if we assume the quasar activity is related to the truncation of the star formation, this object is better explained by the blast wave scenario.« less

  2. Discovery of a z = 0.65 post-starburst BAL quasar in the DES supernova fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mudd, Dale; Martini, Paul; Tie, Suk Sien

    We present the discovery of a z=0.65 low-ionization broad absorption line (LoBAL) quasar in a post-starburst galaxy in data from the Dark Energy Survey (DES) and spectroscopy from the Australian Dark Energy Survey (OzDES). LoBAL quasars are a minority of all BALs, and rarer still is that this object also exhibits broad FeII (an FeLoBAL) and Balmer absorption. This is the first BAL quasar that has signatures of recently truncated star formation, which we estimate ended about 40 Myr ago. The characteristic signatures of an FeLoBAL require high column densities, which could be explained by the emergence of a youngmore » quasar from an early, dust-enshrouded phase, or by clouds compressed by a blast wave. The age of the starburst component is comparable to estimates of the lifetime of quasars, so if we assume the quasar activity is related to the truncation of the star formation, this object is better explained by the blast wave scenario.« less

  3. Discovery of a z = 0.65 post-starburst BAL quasar in the DES supernova fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mudd, Dale; Martini, Paul; Tie, Suk Sien

    In this paper, we present the discovery of a z = 0.65 low-ionization broad absorption line (LoBAL) quasar in a post-starburst galaxy in data from the Dark Energy Survey (DES) and spectroscopy from the Australian Dark Energy Survey (OzDES). LoBAL quasars are a minority of all BALs, and rarer still is that this object also exhibits broad Fe ii (an FeLoBAL) and Balmer absorption. This is the first BAL quasar that has signatures of recently truncated star formation, which we estimate ended about 40 Myr ago. The characteristic signatures of an FeLoBAL require high column densities, which could be explainedmore » by the emergence of a young quasar from an early, dust-enshrouded phase, or by clouds compressed by a blast wave. Finally, the age of the starburst component is comparable to estimates of the lifetime of quasars, so if we assume the quasar activity is related to the truncation of the star formation, this object is better explained by the blast wave scenario.« less

  4. Aggregate-scale heterogeneity in iron (hydr)oxide reductive transformations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tufano, K.J.; Benner, S.G.; Mayer, K.U.

    There is growing awareness of the complexity of potential reaction pathways and the associated solid-phase transformations during the reduction of Fe (hydr)oxides, especially ferrihydrite. An important observation in static and advective-dominated systems is that microbially produced Fe(II) accelerates Ostwald ripening of ferrihydrite, thus promoting the formation of thermodynamically more stable ferric phases (lepidocrocite and goethite) and, at higher Fe(II) surface loadings, the precipitation of magnetite; high Fe(II) levels can also lead to green rust formation, and with high carbonate levels siderite may also be formed. This study expands this emerging conceptual model to a diffusion-dominated system that mimics an idealizedmore » micropore of a ferrihydrite-coated soil aggregate undergoing reduction. Using a novel diffusion cell, coupled with micro-x-ray fluorescence and absorption spectroscopies, we determined that diffusion-controlled gradients in Fe{sup 2+}{sub (aq)} result in a complex array of spatially distributed secondary mineral phases. At the diffusive pore entrance, where Fe{sup 2+} concentrations are highest, green rust and magnetite are the dominant secondary Fe (hydr)oxides (30 mol% Fe each). At intermediate distances from the inlet, green rust is not observed and the proportion of magnetite decreases from approximately 30 to <10%. Across this same transect, the proportion of goethite increases from undetectable up to >50%. At greater distances from the advective-diffusive boundary, goethite is the dominant phase, comprising between 40 and 95% of the Fe. In the presence of magnetite, lepidocrocite forms as a transient-intermediate phase during ferrihydrite-to-goethite conversion; in the absence of magnetite, conversion to goethite is more limited. These experimental observations, coupled with results of reactive transport modeling, confirm the conceptual model and illustrate the potential importance of diffusion-generated concentration gradients in dissolved Fe{sup 2+} on the fate of ferrihydrite during reduction in structured soils.« less

  5. Opposite Surface and Bulk Solvatochromic Effects in a Molecular Spin-Crossover Compound Revealed by Ambient Pressure X-ray Absorption Spectroscopy.

    PubMed

    Borgatti, Francesco; Torelli, Piero; Brucale, Marco; Gentili, Denis; Panaccione, Giancarlo; Castan Guerrero, Celia; Schäfer, Bernhard; Ruben, Mario; Cavallini, Massimiliano

    2018-03-27

    We investigate the solvatochromic effect of a Fe-based spin-crossover (SCO) compound via ambient pressure soft X-ray absorption spectroscopy (AP-XAS) and atomic force microscopy (AFM). AP-XAS provides the direct evidence of the spin configuration for the Fe(II) 3d states of the SCO material upon in situ exposure to specific gas or vapor mixtures; concurrent changes in nanoscale topography and mechanical characteristics are revealed via AFM imaging and AFM-based force spectroscopy, respectively. We find that exposing the SCO material to gaseous helium promotes an effective decrease of the transition temperature of its surface layers, while the exposure to methanol vapor causes opposite surfacial and bulk solvatochromic effects. Surfacial solvatochromism is accompanied by a dramatic reduction of the surface layers stiffness. We propose a rationalization of the observed effects based on interfacial dehydration and solvation phenomena.

  6. COMPARATIVE ASSESSMENT OF THE COMPOSITION AND CHARGE STATE OF NITROGENASE FeMo-COFACTOR

    PubMed Central

    Harris, Travis V.; Szilagyi, Robert K.

    2011-01-01

    A significant limitation in our understanding of the molecular mechanism of biological nitrogen fixation is the uncertain composition of the FeMo-cofactor (FeMo-co) of nitrogenase. In this study we present a systematic, density functional theory-based evaluation of spin coupling schemes, iron oxidation states, ligand protonation states, and interstitial ligand composition using a wide range of experimental criteria. The employed functionals and basis sets were validated with molecular orbital information from X-ray absorption spectroscopic data of relevant iron-sulfur clusters. Independently from the employed level of theory, the electronic structure with the greatest number of antiferromagnetic interactions corresponds to the lowest energy state for a given charge and oxidation state distribution of the iron ions. The relative spin state energies of resting and oxidized FeMo-co already allowed the exclusion of certain iron oxidation state distributions and interstitial ligand compositions. Geometry optimized FeMo-co structures of several models further eliminated additional states and compositions, while reduction potentials indicated a strong preference for the most likely charge state of FeMo-co. Mössbauer and ENDOR parameter calculations were found to be remarkably dependent on the employed training set, density functional and basis set. Overall, we found that a more oxidized [MoIV-2FeII-5FeIII-9S2−-C4−] composition with a hydroxyl-protonated homocitrate ligand satisfies all of the available experimental criteria, and is thus favored over the currently preferred composition of [MoIV-4FeII-3FeIII-9S2−-N3−] from the literature. PMID:21545160

  7. Filling the Gap in Extended Metal Atom Chains: Ferromagnetic Interactions in a Tetrairon(II) String Supported by Oligo-α-pyridylamido Ligands.

    PubMed

    Nicolini, Alessio; Galavotti, Rita; Barra, Anne-Laure; Borsari, Marco; Caleffi, Matteo; Luo, Guangpu; Novitchi, Ghenadie; Park, Kyungwha; Ranieri, Antonio; Rigamonti, Luca; Roncaglia, Fabrizio; Train, Cyrille; Cornia, Andrea

    2018-05-07

    The stringlike complex [Fe 4 (tpda) 3 Cl 2 ] (2; H 2 tpda = N 2 , N 6 -bis(pyridin-2-yl)pyridine-2,6-diamine) was obtained as the first homometallic extended metal atom chain based on iron(II) and oligo-α-pyridylamido ligands. The synthesis was performed under strictly anaerobic and anhydrous conditions using dimesityliron, [Fe 2 (Mes) 4 ] (1; HMes = mesitylene), as both an iron source and a deprotonating agent for H 2 tpda. The four lined-up iron(II) ions in the structure of 2 (Fe···Fe = 2.94-2.99 Å, Fe···Fe···Fe = 171.7-168.8°) are wrapped by three doubly deprotonated twisted ligands, and the chain is capped at its termini by two chloride ions. The spectroscopic and electronic properties of 2 were investigated in dichloromethane by UV-vis-NIR absorption spectroscopy, 1 H NMR spectroscopy, and cyclic voltammetry. The electrochemical measurements showed four fully resolved, quasi-reversible one-electron-redox processes, implying that 2 can adopt five oxidation states in a potential window of only 0.8 V. Direct current (dc) magnetic measurements indicate dominant ferromagnetic coupling at room temperature, although the ground state is only weakly magnetic. On the basis of density functional theory and angular overlap model calculations, this magnetic behavior was explained as being due to two pairs of ferromagnetically coupled iron(II) ions ( J = -21 cm -1 using JŜ i ·Ŝ j convention) weakly antiferromagnetically coupled with each other. Alternating-current susceptibility data in the presence of a 2 kOe dc field and at frequencies up to 1.5 kHz revealed the onset of slow magnetic relaxation below 2.8 K, with the estimated energy barrier U eff / k B = 10.1(1.3) K.

  8. Broad absorption line symbiotic stars: highly ionized species in the fast outflow from MWC 560

    NASA Astrophysics Data System (ADS)

    Lucy, Adrian B.; Knigge, Christian; Sokoloski, J. L.

    2018-07-01

    In symbiotic binaries, jets and disc winds may be integral to the physics of accretion on to white dwarfs from cool giants. The persistent outflow from symbiotic star MWC 560 (≡V694 Mon) is known to manifest as broad absorption lines (BALs), most prominently at the Balmer transitions. We report the detection of high-ionization BALs from C IV, Si IV, N V, and He II in International Ultraviolet Explorer spectra obtained on 1990 April 29-30, when an optical outburst temporarily erased the obscuring `iron curtain' of absorption troughs from Fe II and similar ions. The C IV and Si IV BALs reached maximum radial velocities at least 1000 km s-1 higher than contemporaneous Mg II and He II BALs; the same behaviours occur in the winds of quasars and cataclysmic variables. An iron curtain lifts to unveil high-ionization BALs during the P Cygni phase observed in some novae, suggesting by analogy a temporary switch in MWC 560 from persistent outflow to discrete mass ejection. At least three more symbiotic stars exhibit broad absorption with blue edges faster than 1500 km s-1; high-ionization BALs have been reported in AS 304 (≡V4018 Sgr), while transient Balmer BALs have been reported in Z And and CH Cyg. These BAL-producing fast outflows can have wider opening angles than has been previously supposed. BAL symbiotics are short-time-scale laboratories for their giga-scale analogues, broad absorption line quasars (BALQSOs), which display a similarly wide range of ionization states in their winds.

  9. Broad absorption line symbiotic stars: highly ionized species in the fast outflow from MWC 560

    NASA Astrophysics Data System (ADS)

    Lucy, Adrian B.; Knigge, Christian; Sokoloski, J. L.

    2018-04-01

    In symbiotic binaries, jets and disk winds may be integral to the physics of accretion onto white dwarfs from cool giants. The persistent outflow from symbiotic star MWC 560 (≡V694 Mon) is known to manifest as broad absorption lines (BALs), most prominently at the Balmer transitions. We report the detection of high-ionization BALs from C IV, Si IV, N V, and He II in International Ultraviolet Explorer spectra obtained on 1990 April 29 - 30, when an optical outburst temporarily erased the obscuring `iron curtain' of absorption troughs from Fe II and similar ions. The C IV and Si IV BALs reached maximum radial velocities at least 1000 km s-1 higher than contemporaneous Mg II and He II BALs; the same behaviors occur in the winds of quasars and cataclysmic variables. An iron curtain lifts to unveil high-ionization BALs during the P Cygni phase observed in some novae, suggesting by analogy a temporary switch in MWC 560 from persistent outflow to discrete mass ejection. At least three more symbiotic stars exhibit broad absorption with blue edges faster than 1500 km s-1; high-ionization BALs have been reported in AS 304 (≡V4018 Sgr), while transient Balmer BALs have been reported in Z And and CH Cyg. These BAL-producing fast outflows can have wider opening angles than has been previously supposed. BAL symbiotics are short-timescale laboratories for their giga-scale analogs, broad absorption line quasars (BALQSOs), which display a similarly wide range of ionization states in their winds.

  10. Spectroscopic evidence for ternary surface complexes in the lead(II)-malonic acid-hematite system

    USGS Publications Warehouse

    Lenhart, J.J.; Bargar, J.R.; Davis, J.A.

    2001-01-01

    Using extended X-ray absorption fine structure (EXAFS) and attenuated total reflectance Fourier-transform infrared (ATR-FTIR) measurements, we examined the sorption of Pb(II) to hematite in the presence of malonic acid. Pb LIII-edge EXAFS measurements performed in the presence of malonate indicate the presence of both Fe and C neighbors, suggesting that a major fraction of surface-bound malonate is bonded to adsorbed Pb(II). In the absence of Pb(II), ATR-FTIR measurements of sorbed malonate suggest the formation of more than one malonate surface complex. The dissimilarity of the IR spectrum of malonate sorbed on hematite to those for aqueous malonate suggest at least one of the sorbed malonate species is directly coordinated to surface Fe atoms in an inner-sphere mode. In the presence of Pb, little change is seen in the IR spectrum for sorbed malonate, indicating that geometry of malonate as it coordinates to sorbed Pb(II) adions is similar to the geometry of malonate as it coordinates to Fe in the hematite surface. Fits of the raw EXAFS spectra collected from pH 4 to pH 8 result in average Pb-C distances of 2.98 to 3.14 A??, suggesting the presence of both four- and six-membered Pb-malonate rings. The IR results are consistent with this interpretation. Thus, our results suggest that malonate binds to sorbed Pb(II) adions, forming ternary metal-bridging surface complexes. ?? 2001 Academic Press.

  11. Ultraviolet interstellar lines in the spectrum of Pi Scorpii recorded at 2 kilometers per second resolution

    NASA Technical Reports Server (NTRS)

    Joseph, Charles L.; Jenkins, Edward B.

    1991-01-01

    A spectrum of Pi Scorpii has been recorded from 1003 to 1172 A with a maximum SNR of about 20 and a velocity resolution of 2.4 km/s. Three types of H I as well as two discrete H II regions are distinguished in velocity space, allowing independent analyses of physical conditions and abundances for the individual gas components. A direct evaluation of optical depths and column densities across the absorption features is applied for the first time to the dominant ionization stage of Fe, Si, and P. Based on an analysis of the spectrum, it is concluded that all of the Ti II absorption seen toward Pi Sco arises in the warm, neutral intercloud medium while the other elements have their maximum absorption associated with cold clouds. A conservative value of log delta less than -3.4 is inferred for the Ti depletion in the cold clouds, a value more extreme than any integrated, line-of-sight measurement made to date.

  12. Ferrous ammonium phosphate (FeNH₄PO₄) as a new food fortificant: iron bioavailability compared to ferrous sulfate and ferric pyrophosphate from an instant milk drink.

    PubMed

    Walczyk, Thomas; Kastenmayer, Peter; Storcksdieck Genannt Bonsmann, Stefan; Zeder, Christophe; Grathwohl, Dominik; Hurrell, Richard F

    2013-06-01

    The main purpose of this study was to establish bioavailability data in humans for the new (Fe) fortification compound ferrous ammonium phosphate (FAP), which was specially developed for fortification of difficult-to-fortify foods where soluble Fe compounds cannot be used due to their negative impact on product stability. A double-blind, randomized clinical trial with cross-over design was conducted to obtain bioavailability data for FAP in humans. In this trial, Fe absorption from FAP-fortified full-cream milk powder was compared to that from ferric pyrophosphate (FPP) and ferrous sulfate. Fe absorption was determined in 38 young women using the erythrocyte incorporation dual stable isotope technique (⁵⁷Fe, ⁵⁸Fe). Geometric mean Fe absorption from ferrous sulfate, FAP and FPP was 10.4, 7.4 and 3.3 %, respectively. Fe from FAP was significantly better absorbed from milk than Fe from FPP (p < 0.0001). Fe absorption from FAP was significantly lower than Fe absorption from ferrous sulfate, which was used as water-soluble reference compound (p = 0.0002). Absorption ratios of FAP and FPP relative to ferrous sulfate as a measure of relative bioavailability were 0.71 and 0.32, respectively. The results of the present studies show that replacing FPP with FAP in full-cream milk could significantly improve iron bioavailability.

  13. Spectroscopic characterization of iron-doped II-VI compounds for laser applications

    NASA Astrophysics Data System (ADS)

    Martinez, Alan

    The middle Infrared (mid-IR) region of the electromagnetic spectrum between 2 and 15 ?m has many features which are of interest to a variety of fields such as molecular spectroscopy, biomedical applications, industrial process control, oil prospecting, free-space communication and defense-related applications. Because of this, there is a demand for broadly tunable, laser sources operating over this spectral region which can be easily and inexpensively produced. II-VI semiconductor materials doped with transition metals (TM) such as Co 2+, Cr2+, or Fe2+ exhibit highly favorable spectroscopic characteristics for mid-IR laser applications. Among these TM dopants, Fe2+ has absorption and emission which extend the farthest into the longer wavelength portion of the mid-IR. Fe2+:II-VI crystals have been utilized as gain elements in laser systems broadly tunable over the 3-5.5 microm range [1] and as saturable absorbers to Q -switch [2] and mode-lock [3] laser cavities operating over the 2.7-3 microm. TM:II-VI laser gain elements can be fabricated inexpensively by means of post-growth thermal diffusion with large homogeneous dopant concentration and good optical quality[4,5]. The work outlined in this dissertation will focus on the spectroscopic characterization of TM-doped II-VI semiconductors. This work can be categorized into three major thrusts: 1) the development of novel laser materials, 2) improving and extending applications of TM:II-VI crystals as saturable absorbers, and 3) fabrication of laser active bulk crystals. Because current laser sources based on TM:II-VI materials do not cover the entire mid-IR spectral region, it is necessary to explore novel laser sources to extend available emissions toward longer wavelengths. The first objective of this dissertation is the spectroscopic characterization of novel ternary host crystals doped with Fe2+ ions. Using crystal field engineering, laser materials can be prepared with emissions placed in spectral regions not currently covered by available sources while maintaining absorption which overlaps with available pump sources. Because optimization of these materials requires extensive experimentation, a technique to fabricate and characterize novel crystals in powder form was developed, eliminating the need for the crystal growth. Powders were characterized using Raman, photoluminescence studies, and kinetics of luminescence. The first demonstration of random lasing of Fe:ZnCdTe powder at 6 microm was reported. These results show promise for the development of these TM-doped ternary II-VI compounds as laser gain media operating at 6 microm and longer. The second major objective was to study the performance of TM:II-VI elements as saturable absorber Q-switches and mode-lockers in flash lamp pumped Er:YAG and Er:Cr:YSGG cavities. Different cavity schemes were arranged to eliminate depolarization losses and improve Q-switching performance in Er:YAG and the first use of Cr:ZnSe to passively Q -switch an Er:Cr:YSGG cavity was demonstrated. While post-growth thermal diffusion is an effective way to prepare large-scale highly doped TM:II-VI laser elements, the diffusion rate of some ions into II-VI semiconductors is too low to make this method practical for large crystals. The third objective was to improve the rate of thermal diffusion of iron into II-VI semiconductor crystals by means of gamma-irradiation during the diffusion process. When exposed to a dose rate of 44 R/s during the diffusion process, the diffusion coefficient for Fe into ZnSe showed improvement of 60% and the diffusion coefficient of Fe into ZnS showed improvement of 30%.

  14. Iron Transformation Pathways and Redox Micro-Environments in Seafloor Sulfide-Mineral Deposits: Spatially Resolved Fe XAS and δ57/54Fe Observations

    PubMed Central

    Toner, Brandy M.; Rouxel, Olivier J.; Santelli, Cara M.; Bach, Wolfgang; Edwards, Katrina J.

    2016-01-01

    Hydrothermal sulfide chimneys located along the global system of oceanic spreading centers are habitats for microbial life during active venting. Hydrothermally extinct, or inactive, sulfide deposits also host microbial communities at globally distributed sites. The main goal of this study is to describe Fe transformation pathways, through precipitation and oxidation-reduction (redox) reactions, and examine transformation products for signatures of biological activity using Fe mineralogy and stable isotope approaches. The study includes active and inactive sulfides from the East Pacific Rise 9°50′N vent field. First, the mineralogy of Fe(III)-bearing precipitates is investigated using microprobe X-ray absorption spectroscopy (μXAS) and X-ray diffraction (μXRD). Second, laser-ablation (LA) and micro-drilling (MD) are used to obtain spatially-resolved Fe stable isotope analysis by multicollector-inductively coupled plasma-mass spectrometry (MC-ICP-MS). Eight Fe-bearing minerals representing three mineralogical classes are present in the samples: oxyhydroxides, secondary phyllosilicates, and sulfides. For Fe oxyhydroxides within chimney walls and layers of Si-rich material, enrichments in both heavy and light Fe isotopes relative to pyrite are observed, yielding a range of δ57Fe values up to 6‰. Overall, several pathways for Fe transformation are observed. Pathway 1 is characterized by precipitation of primary sulfide minerals from Fe(II)aq-rich fluids in zones of mixing between vent fluids and seawater. Pathway 2 is also consistent with zones of mixing but involves precipitation of sulfide minerals from Fe(II)aq generated by Fe(III) reduction. Pathway 3 is direct oxidation of Fe(II) aq from hydrothermal fluids to form Fe(III) precipitates. Finally, Pathway 4 involves oxidative alteration of pre-existing sulfide minerals to form Fe(III). The Fe mineralogy and isotope data do not support or refute a unique biological role in sulfide alteration. The findings reveal a dynamic range of Fe transformation pathways consistent with a continuum of micro-environments having variable redox conditions. These micro-environments likely support redox cycling of Fe and S and are consistent with culture-dependent and -independent assessments of microbial physiology and genetic diversity of hydrothermal sulfide deposits. PMID:27242685

  15. Iron transformation pathways and redox micro-environments in seafloor sulfide-mineral deposits: Spatially resolved Fe XAS and δ 57/54Fe observations

    DOE PAGES

    Toner, Brandy M.; Rouxel, Olivier J.; Santelli, Cara M.; ...

    2016-05-10

    Hydrothermal sulfide chimneys located along the global system of oceanic spreading centers are habitats for microbial life during active venting. Hydrothermally extinct, or inactive, sulfide deposits also host microbial communities at globally distributed sites. The main goal of this study is to describe Fe transformation pathways, through precipitation and oxidation-reduction (redox) reactions, and examine transformation products for signatures of biological activity using Fe mineralogy and stable isotope approaches. The study includes active and inactive sulfides from the East Pacific Rise 9°50'N vent field. First, the mineralogy of Fe(III)-bearing precipitates is investigated using microprobe X-ray absorption spectroscopy (μXAS) and X-ray diffractionmore » (μXRD). Second, laser-ablation (LA) and micro-drilling (MD) are used to obtain spatially-resolved Fe stable isotope analysis by multicollector-inductively coupled plasma-mass spectrometry (MC-ICP-MS). Eight Fe-bearing minerals representing three mineralogical classes are present in the samples: oxyhydroxides, secondary phyllosilicates, and sulfides. For Fe oxyhydroxides within chimney walls and layers of Si-rich material, enrichments in both heavy and light Fe isotopes relative to pyrite are observed, yielding a range of δ 57Fe values up to 6‰. Overall, several pathways for Fe transformation are observed. Pathway 1 is characterized by precipitation of primary sulfide minerals from Fe(II)aq-rich fluids in zones of mixing between vent fluids and seawater. Pathway 2 is also consistent with zones of mixing but involves precipitation of sulfide minerals from Fe(II)aq generated by Fe(III) reduction. Pathway 3 is direct oxidation of Fe(II) aq from hydrothermal fluids to form Fe(III) precipitates. Finally, Pathway 4 involves oxidative alteration of pre-existing sulfide minerals to form Fe(III). The Fe mineralogy and isotope data do not support or refute a unique biological role in sulfide alteration. The findings reveal a dynamic range of Fe transformation pathways consistent with a continuum of micro-environments having variable redox conditions. Lastly, these micro-environments likely support redox cycling of Fe and S and are consistent with culture-dependent and -independent assessments of microbial physiology and genetic diversity of hydrothermal sulfide deposits.« less

  16. Correlating Oxygen Evolution Catalysts Activity and Electronic Structure by a High-Throughput Investigation of Ni1-y-zFeyCrzOx

    PubMed Central

    Schwanke, Christoph; Stein, Helge Sören; Xi, Lifei; Sliozberg, Kirill; Schuhmann, Wolfgang; Ludwig, Alfred; Lange, Kathrin M.

    2017-01-01

    High-throughput characterization by soft X-ray absorption spectroscopy (XAS) and electrochemical characterization is used to establish a correlation between electronic structure and catalytic activity of oxygen evolution reaction (OER) catalysts. As a model system a quasi-ternary materials library of Ni1-y-zFeyCrzOx was synthesized by combinatorial reactive magnetron sputtering, characterized by XAS, and an automated scanning droplet cell. The presence of Cr was found to increase the OER activity in the investigated compositional range. The electronic structure of NiII and CrIII remains unchanged over the investigated composition spread. At the Fe L-edge a linear combination of two spectra was observed. These spectra were assigned to FeIII in Oh symmetry and FeIII in Td symmetry. The ratio of FeIII Oh to FeIII Td increases with the amount of Cr and a correlation between the presence of the FeIII Oh and a high OER activity is found. PMID:28287134

  17. Correlating Oxygen Evolution Catalysts Activity and Electronic Structure by a High-Throughput Investigation of Ni1-y-zFeyCrzOx

    NASA Astrophysics Data System (ADS)

    Schwanke, Christoph; Stein, Helge Sören; Xi, Lifei; Sliozberg, Kirill; Schuhmann, Wolfgang; Ludwig, Alfred; Lange, Kathrin M.

    2017-03-01

    High-throughput characterization by soft X-ray absorption spectroscopy (XAS) and electrochemical characterization is used to establish a correlation between electronic structure and catalytic activity of oxygen evolution reaction (OER) catalysts. As a model system a quasi-ternary materials library of Ni1-y-zFeyCrzOx was synthesized by combinatorial reactive magnetron sputtering, characterized by XAS, and an automated scanning droplet cell. The presence of Cr was found to increase the OER activity in the investigated compositional range. The electronic structure of NiII and CrIII remains unchanged over the investigated composition spread. At the Fe L-edge a linear combination of two spectra was observed. These spectra were assigned to FeIII in Oh symmetry and FeIII in Td symmetry. The ratio of FeIII Oh to FeIII Td increases with the amount of Cr and a correlation between the presence of the FeIII Oh and a high OER activity is found.

  18. Characterizing phosphorus speciation of Chesapeake Bay sediments using chemical extraction, 31P NMR, and X-ray absorption fine structure spectroscopy.

    PubMed

    Li, Wei; Joshi, Sunendra R; Hou, Guangjin; Burdige, David J; Sparks, Donald L; Jaisi, Deb P

    2015-01-06

    Nutrient contamination has been one of the lingering issues in the Chesapeake Bay because the bay restoration is complicated by temporally and seasonally variable nutrient sources and complex interaction between imported and regenerated nutrients. Differential reactivity of sedimentary phosphorus (P) pools in response to imposed biogeochemical conditions can record past sediment history and therefore a detailed sediment P speciation may provide information on P cycling particularly the stability of a P pool and the formation of one pool at the expense of another. This study examined sediment P speciation from three sites in the Chesapeake Bay: (i) a North site in the upstream bay, (ii) a middle site in the central bay dominated by seasonally hypoxic bottom water, and (iii) a South site at the bay-ocean boundary using a combination of sequential P extraction (SEDEX) and spectroscopic techniques, including (31)P NMR, P X-ray absorption near edge structure spectroscopy (XANES), and Fe extended X-ray absorption fine structure (EXAFS). Results from sequential P extraction reveal that sediment P is composed predominantly of ferric Fe-bound P and authigenic P, which was further confirmed by solid-state (31)P NMR, XANES, and EXAFS analyses. Additionally, solution (31)P NMR results show that the sediments from the middle site contain high amounts of organic P such as monoesters and diesters, compared to the other two sites, but that these compounds rapidly decrease with sediment depth indicating remineralized P could have precipitated as authigenic P. Fe EXAFS enabled to identify the changes in Fe mineral composition and P sinks in response to imposed redox condition in the middle site sediments. The presence of lepidocrocite, vermiculite, and Fe smectite in the middle site sediments indicates that some ferric Fe minerals can still be present along with pyrite and vivianite, and that ferric Fe-bound P pool can be a major P sink in anoxic sediments. These results provide improved insights into sediment P dynamics, particularly the rapid remineralization of organic P and the stability of Fe minerals and the ferric Fe-bound P pool in anoxic sediments in the Chesapeake Bay.

  19. Oxidative dissolution potential of biogenic and abiogenic TcO 2 in subsurface sediments

    NASA Astrophysics Data System (ADS)

    Fredrickson, James K.; Zachara, John M.; Plymale, Andrew E.; Heald, Steve M.; McKinley, James P.; Kennedy, David W.; Liu, Chongxuan; Nachimuthu, Ponnusamy

    2009-04-01

    Technetium-99 (Tc) is an important fission product contaminant associated with sites of nuclear fuels reprocessing and geologic nuclear waste disposal. Tc is highly mobile in its most oxidized state [Tc(VII)O4-] and less mobile in the reduced form [Tc(IV)O 2· nH 2O]. Here we investigate the potential for oxidation of Tc(IV) that was heterogeneously reduced by reaction with biogenic Fe(II) in two sediments differing in mineralogy and aggregation state; unconsolidated Pliocene-age fluvial sediment from the upper Ringold (RG) Formation at the Hanford Site and a clay-rich saprolite from the Field Research Center (FRC) background site on the Oak Ridge Site. Both sediments contained Fe(III) and Mn(III/IV) as redox active phases, but FRC also contained mass-dominant Fe-phyllosilicates of different types. Shewanella putrefaciens CN32 reduced Mn(III/IV) oxides and generated Fe(II) that was reactive with Tc(VII) in heat-killed, bioreduced sediment. After bioreduction and heat-killing, biogenic Fe(II) in the FRC exceeded that in RG by a factor of two. More rapid reduction rates were observed in the RG that had lower biogenic Fe(II), and less particle aggregation. EXAFS measurements indicated that the primary reduction product was a TcO 2-like phase in both sediments. The biogenic redox product Tc(IV) oxidized rapidly and completely in RG when contacted with air. Oxidation, in contrast, was slow and incomplete in the FRC, in spite of similar molecular scale speciation of Tc compared to RG. X-ray microprobe, electron microprobe, X-ray absorption spectroscopy, and micro X-ray diffraction were applied to the whole sediment and isolated Tc-containing particles. These analyses revealed that non-oxidizable Tc(IV) in the FRC existed as complexes with octahedral Fe(III) within intra-grain domains of 50-100 μm-sized, Fe-containing micas presumptively identified as celadonite. The markedly slower oxidation rates in FRC as compared to RG were attributed to mass-transfer-limited migration of O 2 into intra-aggregate and intraparticle domains where Tc(IV) existed; and the formation of unique, oxidation-resistant, intragrain Tc(IV)-Fe(III) molecular species.

  20. Synthesis, characterization and application of a new chelating resin for solid phase extraction, preconcentration and determination of trace metals in some dairy samples by flame atomic absorption spectrometry.

    PubMed

    Daşbaşı, Teslima; Saçmacı, Şerife; Çankaya, Nevin; Soykan, Cengiz

    2016-11-15

    In this study, a simple and rapid solid phase extraction/preconcentration procedure was developed for determination of Cd(II), Co(II), Cr(III), Cu(II), Fe(III), Mn(II), Pb(II), and Zn(II) trace metals by flame atomic absorption spectrometry (FAAS). A new chelating resin, poly(N-cyclohexylacrylamide-co-divinylbenzene-co-2-acrylamido-2-methyl-1-propanesulfonic acid) (NCA-co-DVB-co-AMPS) (hereafter CDAP) was synthesized and characterized. The influences of the analytical parameters such as pH of the sample solution, type and concentration of eluent, flow rates of the sample and eluent, volume of the sample and eluent, amount of chelating resin, and interference of ions were examined. The limit of detection (LOD) of analytes were found (3s) to be in the range of 0.65-1.90μgL(-1). Preconcentration factor (PF) of 200 and the relative standard deviation (RSD) of ⩽2% were achieved (n=11). The developed method was applied for determination of analytes in some dairy samples and certified reference materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Ligandless surfactant mediated solid phase extraction combined with Fe₃O₄ nano-particle for the preconcentration and determination of cadmium and lead in water and soil samples followed by flame atomic absorption spectrometry: multivariate strategy.

    PubMed

    Jalbani, N; Soylak, M

    2014-04-01

    In the present study, a microextraction technique combining Fe3O4 nano-particle with surfactant mediated solid phase extraction ((SM-SPE)) was successfully developed for the preconcentration/separation of Cd(II) and Pb(II) in water and soil samples. The analytes were determined by flame atomic absorption spectrometry (FAAS). The effective variables such as the amount of adsorbent (NPs), the pH, concentration of non-ionic (TX-114) and centrifugation time (min) were investigated by Plackett-Burman (PBD) design. The important variables were further optimized by central composite design (CCD). Under the optimized conditions, the detection limits (LODs) of Cd(II) and Pb(II) were 0.15 and 0.74 µg/L, respectively. The validation of the proposed procedure was checked by the analysis of certified reference materials of TMDA 53.3 fortified water and GBW07425 soil. The method was successfully applied for the determination of Cd(II) and Pb(II) in water and soil samples. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Copper(II)-rubeanic acid coprecipitation system for separation-preconcentration of trace metal ions in environmental samples for their flame atomic absorption spectrometric determinations.

    PubMed

    Soylak, Mustafa; Erdogan, Nilgun D

    2006-09-21

    A simple and facile preconcentration procedure based on the coprecipitation of trace heavy metal ions with copper(II)-rubeanic acid complex has been developed. The analytical parameters including pH, amounts of rubeanic acid, sample volume, etc. was investigated for the quantitative recoveries of Pb(II), Fe(III), Cd(II), Au(III), Pd(II) and Ni(II). No interferic effects were observed from the concomitant ions. The detection limits for analyte ions by 3 sigma were in the range of 0.14 microg/l for iron-3.4 microg/l for lead. The proposed coprecipitation method was successfully applied to water samples from Palas Lake-Kayseri, soil and sediment samples from Kayseri and Yozgat-Turkey.

  3. Electrochemical studies of DNA interaction and antimicrobial activities of MnII, FeIII, CoII and NiII Schiff base tetraazamacrocyclic complexes

    NASA Astrophysics Data System (ADS)

    Kumar, Anuj; Vashistha, Vinod Kumar; Tevatia, Prashant; Singh, Randhir

    2017-04-01

    Tetraazamacrocyclic complexes of MnII, FeIII, CoII and NiII have been synthesized by template method. These tetraazamacrocycles have been analyzed with various techniques like molar conductance, IR, UV-vis, mass spectral and cyclic voltammetric studies. On the basis of all these studies, octahedral geometry has been assigned to these tetraazamacrocyclic complexes. The DNA binding properties of these macrocyclic complexes have been investigated by electronic absorption spectra, fluorescence spectra, cyclic voltammetric and differential pulse voltammetric studies. The cyclic voltammetric data showed that ipc and ipa were effectively decreased in the presence of calf thymus DNA, which is a strong evidence for the interaction of these macrocyclic complexes with the calf thymus DNA (ct-DNA). The heterogeneous electron transfer rate constant found in the order: KCoII > KNiII > KMnII which indicates that CoII macrocyclic complex has formed a strong intercalated intermediate. The Stern-Volmer quenching constant (KSV) and voltammetric binding constant were found in the order KSV(CoII) > KSV(NiII) > KSV(MnII) and K+(CoII) > K+(NiII) > K+(MnII) which shows that CoII macrocyclic complex exhibits the high interaction affinity towards ct-DNA by the intercalation binding. Biological studies of the macrocyclic complexes compared with the standard drug like Gentamycin, have shown antibacterial activities against E. coli, P. aeruginosa, B. cereus, S. aureus and antifungal activity against C. albicans.

  4. Structure of short-range-ordered iron(III)-precipitates formed by iron(II) oxidation in water containing phosphate, silicate, and calcium

    NASA Astrophysics Data System (ADS)

    Voegelin, A.; Frommer, J.; Vantelon, D.; Kaegi, R.; Hug, S. J.

    2009-04-01

    The oxidation of Fe(II) in water leads to the formation of Fe(III)-precipitates that strongly affect the fate of nutrients and contaminants in natural and engineered systems. Examples include the cycling of As in rice fields irrigated with As-rich groundwater or the treatment of drinking water for As removal. Knowledge of the types of Fe(III)-precipitates forming in such systems is essential for the quantitative modeling of nutrient and contaminant dynamics and for the optimization of water purification techniques on the basis of a mechanistic understanding of the relevant biogeochemical processes. In this study, we investigated the local coordination of Fe, P, and Ca in Fe(III)-precipitates formed by aeration of synthetic Fe(II)-containing groundwater with variable composition (pH 7, 2-30 mg/L Fe(II), 2-20 mg/L phosphate-P, 2-20 mg/L silicate-Si, 8 mM Na-bicarbonate or 2.5 mM Ca-&1.5 mM Mg-bicarbonate). After 4 hours of oxidation, Fe(III)-precipitates were collected on 0.2 µm nylon filters and dried. The precipitates were analyzed by Fe K-edge EXAFS (XAS beamline, ANKA, Germany) and by P and Ca K-edge XANES spectroscopy (LUCIA beamline, SLS, Switzerland). The Fe K-edge EXAFS spectra indicated that local Fe coordination in the precipitates systematically shifted with water composition. As long as water contained P, mainly short-range-ordered Fe(III)-phosphate formed (with molar P/Fe ~0.5). In the absence of P, Fe(III) precipitated as hydrous ferric oxide at high Si/Fe>0.5, as ferrihydrite at intermediate Si/Fe, and mainly as lepidocrocite at Si/Fe<0.2. Analysis of the EXAFS by shell-fitting indicated that Fe(III)-phosphates mainly contained mono- or oligomeric (edge- or corner-sharing) Fe and that the linkage between neighboring Fe(III)-octahedra changed from predominantly edge-sharing in Si-rich hydrous ferric oxide to edge- and corner-sharing in ferrihydrite. Electron microscopic data showed that changes in local precipitate structure were systematically reflected in particle morphology and SAED patterns. The P K-edge XANES spectra revealed that phosphate was bound to both Fe as well as Ca (if present). The Ca K-edge XANES spectra showed that the mode of Ca uptake by the Fe(III)-precipitates shifted from mainly adsorption at high Fe/P to coprecipitation at low Fe/P ratio. Despite oversaturation, neither calcite nor hydroxyapatite formed to a significant extent. The results from this study indicated that, depending on water composition, Fe(II) oxidation in natural waters leads to different types of short-range-ordered Fe(III)-phases. Since these phases are expected to differ in their effect on contaminant and nutrient dynamics, their specific physical and chemical properties warrant further research. Methodologically, this work demonstrated the usefulness of investigating the local structure of short-range-ordered precipitates along compositional gradients and by combining the element-selective information from different X-ray absorption edges.

  5. A lactic acid-fermented oat gruel increases non-haem iron absorption from a phytate-rich meal in healthy women of childbearing age.

    PubMed

    Bering, Stine; Suchdev, Seema; Sjøltov, Laila; Berggren, Anna; Tetens, Inge; Bukhave, Klaus

    2006-07-01

    Lactic acid-fermented foods have been shown to increase Fe absorption in human subjects, possibly by lowering pH, activation of phytases, and formation of soluble complexes of Fe and organic acids. We tested the effect of an oat gruel fermented with Lactobacillus plantarum 299v on non-haem Fe absorption from a low-Fe bioavailability meal compared with a pasteurised, fermented oat gruel and non-fermented oat gruels. In a cross-over trial twenty-four healthy women with a mean age of 25 (sd 4) years were served (A) fermented gruel, (B) pasteurised fermented gruel, (C) pH-adjusted non-fermented gruel, and (D) non-fermented gruel with added organic acids. The meals were extrinsically labelled with 55Fe or 59Fe and consumed on 4 consecutive days, for example, in the order ABBA or BAAB followed by CDDC or DCCD in a second period. Fe absorption was determined from isotope activities in blood samples. The fermented gruel with live L. plantarum 299v increased Fe absorption significantly (P < 0.0001) compared with the pasteurised and non-fermented gruels. The lactic acid concentration in the fermented gruel was 19 % higher than in the pasteurised gruel, but the Fe absorption was increased by 50 %. In the gruel with organic acids, the lactic acid concentration was 52 % lower than in the pasteurised gruel, with no difference in Fe absorption. The fermented gruel increased non-haem Fe absorption from a phytate-rich meal in young women, indicating a specific effect of live L. plantarum 299v and not only an effect of the organic acids.

  6. Sensor materials for an intravascular fiber optic nitric oxide sensor

    NASA Astrophysics Data System (ADS)

    Soller, Babs R.; Parikh, Bhairavi R.; Stahl, Russell F.

    1996-04-01

    Nitric oxide (NO) is an important regulatory molecule in physiological processes including neurotransmission and the control of blood pressure. It is produced in excess during septic shock, the profound hypotensive state which accompanies severe infections. In-vivo measurement of NO would enhance the understanding of its varied biological roles. Our goal is the development of an intravascular fiber-optic sensor for the continuous measurement of NO. This study evaluated nitric oxide sensitive compounds as potential sensing materials in the presence and absence of oxygen. Using absorption spectroscopy we studied both the Fe II and Fe III forms of three biologically active hemes known to rapidly react with NO: hemoglobin, myoglobin, and cytochrome-c. The Fe II forms of hemoglobin and myoglobin and the Fe III form of cytochrome-c were found to have the highest sensitivity to NO. Cytochrome c (Fe III) is selective for NO even at high oxygen levels, while myoglobin is selective only under normal oxygen levels. NO concentrations as low as 1 (mu) M can be detected with our fiber-optic spectrometer using cytochrome c, and as low as 300 nM using myoglobin. Either of these materials would be adequate to monitor the increase in nitric oxide production during the onset of septic shock.

  7. Poly(methyl methacrylate) coating of soft magnetic amorphous and crystalline Fe,Co-B nanoparticles by chemical reduction.

    PubMed

    Fernández Barquín, L; Yedra Martínez, A; Rodríguez Fernández, L; Rojas, D P; Murphy, F J; Alba Venero, D; Ruiz González, L; González-Calbet, J; Fdez-Gubieda, M L; Pankhurst, Q A

    2012-03-01

    The structural and magnetic properties of a collection of nanoparticles coated by Poly(methyl methacrylate) through a wet chemical synthesis have been investigated. The particles display either an amorphous (M = Fe, Co) M-B arrangement or a mixed structure bcc-Fe and fcc-Co + amorphous M-B. Both show the presence of a metal oxi-hydroxide formed in aqueous reduction. The organic coating facilitates technological handling. The cost-effective synthesis involves a reduction in a Poly(methyl methacrylate) aqueous solution of iron(II) or cobalt(II) sulphates (< 0.5 M) by sodium borohydride (< 0.5 M). The particles present an oxidized component, as deduced from X-ray diffraction, Mössbauer and Fe- and Co K-edge X-ray absorption spectroscopy and electron microscopy. For the ferrous alloys, this Fe-oxide is alpha-goethite, favoured by the aqueous solution. The Poly(methyl methacrylate) coating is confirmed by Fourier transform infrared spectroscopy. In pure amorphous core alloys there is a drastic change of the coercivity from bulk to around 30 Oe in the nanoparticles. The mixed structured alloys also lie in the soft magnetic regime. Magnetisation values at room temperature range around 100 emu/g. The coercivity stems from multidomain particles and their agglomeration, triggering the dipolar interactions.

  8. The ultraviolet spectra of Alpha Aquilae and Alpha Canis Minoris

    NASA Technical Reports Server (NTRS)

    Morton, D. C.; Bruzual A., G.; Kurucz, R. L.; Spinrad, H.

    1977-01-01

    Scans of Alpha Aql (A7 IV, V) and Alpha CMi (F5 IV-V) obtained with the Copernicus satellite spectrometer over the wavelength range from 2100 to 3200 A are presented along with a spectrum of the integrated solar disk over the same range procured during a calibrated rocket flight. About 1500 fairly strong absorption lines in the Alpha CMi spectrum between 2400 and 2961 A are identified by comparison with a solar atlas and by using a theoretical spectrum synthesized from a blanketed LTE model with an effective temperature of 6500 K and a surface gravity of 10,000 cm/sec per sec. The Mg II resonance doublet at 2795.528 and 2802.704 A is found to be present in all three stars together with a discontinuity at 2635 A due to Fe II, Fe I, Cr I, and Mn II. It is concluded that the Mg II resonance lines and the 2635-A continuum break would be the best spectral features for estimating the redshift of a galaxy observed at low resolution provided the redshift is not less than about 0.75.

  9. Magnetic dispersive solid-phase extraction based on graphene oxide/Fe3 O4 @polythionine nanocomposite followed by atomic absorption spectrometry for zinc monitoring in water, flour, celery and egg.

    PubMed

    Babaei, Azar; Zeeb, Mohsen; Es-Haghi, Ali

    2018-07-01

    Magnetic graphene oxide nanocomposite has been proposed as a promising and sustainable sorbent for the extraction and separation of target analytes from food matrices. Sample preparation based on nanocomposite presents several advantages, such as desired efficiency, reasonable selectivity and high surface-area-to-volume ratio. A new graphene oxide/Fe 3 O 4 @polythionine (GO/Fe 3 O 4 @PTh) nanocomposite sorbent was introduced for magnetic dispersive solid-phase extraction and flame atomic absorption spectrometric detection of zinc(II) in water, flour, celery and egg. To fabricate the sorbent, an oxidative polymerization of thionine on the surface of magnetic GO was applied, while polythionine was simply employed as a surface modifier to improve extraction yield. The properties of the sorbent were characterized by transmission electron microscopy, scanning electron microscopy, X-ray diffraction, energy-dispersive X-ray analysis, vibrating sample magnetometry and Fourier transform-infrared spectroscopy. The calibration curve showed linearity in the range of 0.5-30 ng mL -1 . Limits of detection (S/N = 3) and quantification (S/N = 10) were 0.08 and 0.5 ng mL -1 , respectively. The method was applied for trace-level determination of Zn(II) in water and food samples, and its validation was investigated by recovery experiments and analyzing certified reference material. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  10. Iron loading site on the Fe-S cluster assembly scaffold protein is distinct from the active site.

    PubMed

    Rodrigues, Andria V; Kandegedara, Ashoka; Rotondo, John A; Dancis, Andrew; Stemmler, Timothy L

    2015-06-01

    Iron-sulfur (Fe-S) cluster containing proteins are utilized in almost every biochemical pathway. The unique redox and coordination chemistry associated with the cofactor allows these proteins to participate in a diverse set of reactions, including electron transfer, enzyme catalysis, DNA synthesis and signaling within several pathways. Due to the high reactivity of the metal, it is not surprising that biological Fe-S cluster assembly is tightly regulated within cells. In yeast, the major assembly pathway for Fe-S clusters is the mitochondrial ISC pathway. Yeast Fe-S cluster assembly is accomplished using the scaffold protein (Isu1) as the molecular foundation, with assistance from the cysteine desulfurase (Nfs1) to provide sulfur, the accessory protein (Isd11) to regulate Nfs1 activity, the yeast frataxin homologue (Yfh1) to regulate Nfs1 activity and participate in Isu1 Fe loading possibly as a chaperone, and the ferredoxin (Yah1) to provide reducing equivalents for assembly. In this report, we utilize calorimetric and spectroscopic methods to provide molecular insight into how wt-Isu1 from S. cerevisiae becomes loaded with iron. Isothermal titration calorimetry and an iron competition binding assay were developed to characterize the energetics of protein Fe(II) binding. Differential scanning calorimetry was used to identify thermodynamic characteristics of the protein in the apo state or under iron loaded conditions. Finally, X-ray absorption spectroscopy was used to characterize the electronic and structural properties of Fe(II) bound to Isu1. Current data are compared to our previous characterization of the D37A Isu1 mutant, and these suggest that when Isu1 binds Fe(II) in a manner not perturbed by the D37A substitution, and that metal binding occurs at a site distinct from the cysteine rich active site in the protein.

  11. Uniform Fe3O4 coating on flower-like ZnO nanostructures by atomic layer deposition for electromagnetic wave absorption.

    PubMed

    Wan, Gengping; Wang, Guizhen; Huang, Xianqin; Zhao, Haonan; Li, Xinyue; Wang, Kan; Yu, Lei; Peng, Xiange; Qin, Yong

    2015-11-21

    An elegant atomic layer deposition (ALD) method has been employed for controllable preparation of a uniform Fe3O4-coated ZnO (ZnO@Fe3O4) core-shell flower-like nanostructure. The Fe3O4 coating thickness of the ZnO@Fe3O4 nanostructure can be tuned by varying the cycle number of ALD Fe2O3. When serving as additives for microwave absorption, the ZnO@Fe3O4-paraffin composites exhibit a higher absorption capacity than the ZnO-paraffin composites. For ZnO@500-Fe3O4, the effective absorption bandwidth below -10 dB can reach 5.2 GHz and the RL values below -20 dB also cover a wide frequency range of 11.6-14.2 GHz when the coating thickness is 2.3 mm, suggesting its potential application in the treatment of the electromagnetic pollution problem. On the basis of experimental observations, a mechanism has been proposed to understand the enhanced microwave absorption properties of the ZnO@Fe3O4 composites.

  12. Surface reaction of SnII on goethite (α-FeOOH): surface complexation, redox reaction, reductive dissolution, and phase transformation.

    PubMed

    Dulnee, Siriwan; Scheinost, Andreas C

    2014-08-19

    To elucidate the potential risk of (126)Sn migration from nuclear waste repositories, we investigated the surface reactions of Sn(II) on goethite as a function of pH and Sn(II) loading under anoxic condition with O2 level < 2 ppmv. Tin redox state and surface structure were investigated by Sn K edge X-ray absorption spectroscopy (XAS), goethite phase transformations were investigated by high-resolution transmission electron microscopy and selected area electron diffraction. The results demonstrate the rapid and complete oxidation of Sn(II) by goethite and formation of Sn(IV) (1)E and (2)C surface complexes. The contribution of (2)C complexes increases with Sn loading. The Sn(II) oxidation leads to a quantitative release of Fe(II) from goethite at low pH, and to the precipitation of magnetite at higher pH. To predict Sn sorption, we applied surface complexation modeling using the charge distribution multisite complexation approach and the XAS-derived surface complexes. Log K values of 15.5 ± 1.4 for the (1)E complex and 19.2 ± 0.6 for the (2)C complex consistently predict Sn sorption across pH 2-12 and for two different Sn loadings and confirm the strong retention of Sn(II) even under anoxic conditions.

  13. A Nanoparticulate Ferritin-Core Mimetic Is Well Taken Up by HuTu 80 Duodenal Cells and Its Absorption in Mice Is Regulated by Body Iron12

    PubMed Central

    Latunde-Dada, Gladys O; Pereira, Dora IA; Tempest, Bethan; Ilyas, Hibah; Flynn, Angela C; Aslam, Mohamad F; Simpson, Robert J; Powell, Jonathan J

    2014-01-01

    Background: Iron (Fe) deficiency anemia remains the largest nutritional deficiency disorder worldwide. How the gut acquires iron from nano Fe(III), especially at the apical surface, is incompletely understood. Objective: We developed a novel Fe supplement consisting of nanoparticulate tartrate-modified Fe(III) poly oxo-hydroxide [here termed nano Fe(III)], which mimics the Fe oxide core of ferritin and effectively treats iron deficiency anemia in rats. Methods: We determined transfer to the systemic circulation of nano Fe(III) in iron-deficient and iron-sufficient outbread Swiss mouse strain (CD1) mice with use of 59Fe-labeled material. Iron deficiency was induced before starting the Fe-supplementation period through reduction of Fe concentrations in the rodent diet. A control group of iron-sufficient mice were fed a diet with adequate Fe concentrations throughout the study. Furthermore, we conducted a hemoglobin repletion study in which iron-deficient CD1 mice were fed for 7 d a diet supplemented with ferrous sulfate (FeSO4) or nano Fe(III). Finally, we further probed the mechanism of cellular acquisition of nano Fe(III) by assessing ferritin formation, as a measure of Fe uptake and utilization, in HuTu 80 duodenal cancer cells with targeted inhibition of divalent metal transporter 1 (DMT1) and duodenal cytochrome b (DCYTB) before exposure to the supplemented iron sources. Differences in gene expression were assessed by quantitative polymerase chain reaction. Results: Absorption (means ± SEMs) of nano Fe(III) was significantly increased in iron-deficient mice (58 ± 19%) compared to iron-sufficient mice (18 ± 17%) (P = 0.0001). Supplementation of the diet with nano Fe(III) or FeSO4 significantly increased hemoglobin concentrations in iron-deficient mice (170 ± 20 g/L, P = 0.01 and 180 ± 20 g/L, P = 0.002, respectively). Hepatic hepcidin mRNA expression reflected the nonheme-iron concentrations of the liver and was also comparable for both nano Fe(III)– and FeSO4-supplemented groups, as were iron concentrations in the spleen and duodenum. Silencing of the solute carrier family 11 (proton-coupled divalent metal ion transporter), member 2 (Slc11a2) gene (DMT1) significantly inhibited ferritin formation from FeSO4 (P = 0.005) but had no effect on uptake and utilization of nano Fe(III). Inhibiting DCYTB with an antibody also had no effect on uptake and utilization of nano Fe(III) but significantly inhibited ferritin formation from ferric nitrilotriacetate chelate (Fe-NTA) (P = 0.04). Similarly, cellular ferritin formation from nano Fe(III) was unaffected by the Fe(II) chelator ferrozine, which significantly inhibited uptake and utilization from FeSO4 (P = 0.009) and Fe-NTA (P = 0.005). Conclusions: Our data strongly support direct nano Fe(III) uptake by enterocytes as an efficient mechanism of dietary iron acquisition, which may complement the known Fe(II)/DMT1 uptake pathway. PMID:25342699

  14. Preferred site occupation of 3 d atoms in NixF e4 -xN (x =1 and 3) films revealed by x-ray absorption spectroscopy and magnetic circular dichroism

    NASA Astrophysics Data System (ADS)

    Takata, Fumiya; Ito, Keita; Takeda, Yukiharu; Saitoh, Yuji; Takanashi, Koki; Kimura, Akio; Suemasu, Takashi

    2018-02-01

    X-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism measurements were performed at the Ni and Fe L2 ,3 absorption edges for N ixF e4 -xN (x =1 and 3) epitaxial films. Spectral line-shape analysis and element-specific magnetic moment evaluations are presented. Shoulders at approximately 2 eV above the Ni L2 ,3 main peaks in the XAS spectrum of N i3FeN were interpreted to originate from hybridization of orbitals between Ni 3 d at face-centered (II) sites and N 2 p at body-centered sites, while such features were missing in NiF e3N film. Similar shoulders were observed at Fe L2 ,3 edges in both films. These results indicate that the orbitals of Ni atoms did not hybridize with those of N atoms in the NiF e3N film. Hence, Ni atoms preferentially occupied corner (I) sites, where the hybridization was weak because of the relatively long distance between Ni at I sites and N atoms. The relatively large magnetic moment deduced from sum-rule analysis of NiF e3N also showed a good agreement with the presence of Ni atoms at I sites.

  15. Characteristics of the Freshwater Cyanobacterium Microcystis aeruginosa Grown in Iron-Limited Continuous Culture

    PubMed Central

    Dang, T. C.; Fujii, M.; Rose, A. L.; Bligh, M.

    2012-01-01

    A continuous culturing system (chemostat) made of metal-free materials was successfully developed and used to maintain Fe-limited cultures of Microcystis aeruginosa PCC7806 at nanomolar iron (Fe) concentrations (20 to 50 nM total Fe). EDTA was used to maintain Fe in solution, with bioavailable Fe controlled by absorption of light by the ferric EDTA complex and resultant reduction of Fe(III) to Fe(II). A kinetic model describing Fe transformations and biological uptake was applied to determine the biologically available form of Fe (i.e., unchelated ferrous iron) that is produced by photoreductive dissociation of the ferric EDTA complex. Prediction by chemostat theory modified to account for the light-mediated formation of bioavailable Fe rather than total Fe was in good agreement with growth characteristics of M. aeruginosa under Fe limitation. The cellular Fe quota increased with increasing dilution rates in a manner consistent with the Droop theory. Short-term Fe uptake assays using cells maintained at steady state indicated that M. aeruginosa cells vary their maximum Fe uptake rate (ρmax) depending on the degree of Fe stress. The rate of Fe uptake was lower for cells grown under conditions of lower Fe availability (i.e., lower dilution rate), suggesting that cells in the continuous cultures adjusted to Fe limitation by decreasing ρmax while maintaining a constant affinity for Fe. PMID:22210212

  16. Effect of NaFeEDTA-fortified soy sauce on zinc absorption in children.

    PubMed

    Li, Min; Wu, Jinghuan; Ren, Tongxiang; Wang, Rui; Li, Weidong; Piao, Jianhua; Wang, Jun; Yang, Xiaoguang

    2015-03-01

    NaFeEDTA has been applied in many foods as an iron fortificant and is used to prevent iron deficiency in Fe-depleted populations. In China, soy sauce is fortified with NaFeEDTA to control iron deficiency. However, it is unclear whether Fe-fortified soy sauce affects zinc absorption. To investigate whether NaFeEDTA-fortified soy sauce affects zinc absorption in children, sixty children were enrolled in this study and randomly assigned to three groups (10 male children and 10 female children in each group). All children received daily 3 mg of (67)Zn and 1.2 mg of dysprosium orally, while the children in the three groups were supplemented with NaFeEDTA-fortified soy sauce (6 mg Fe, NaFeEDTA group), FeSO₄-fortified soy sauce (6 mg Fe, FeSO₄ group), and no iron-fortified soy sauce (control group), respectively. Fecal samples were collected during the experimental period and analyzed for the Zn content, (67)Zn isotope ratio and dysprosium content. The Fe intake from NaFeEDTA-fortified and FeSO₄-fortified groups was significantly higher than that in the control group (P < 0.0001). The daily total Zn intake was not significantly different among the three groups. There were no significant differences in fractional Zn absorption (FZA) (P = 0.3895), dysprosium recovery (P = 0.7498) and Zn absorption (P = 0.5940) among the three groups. Therefore, NaFeEDTA-fortified soy sauce does not affect Zn bioavailability in children.

  17. Two-iron rubredoxin of Pseudomonas oleovorans: production, stability and characterization of the individual iron-binding domains by optical, CD and NMR spectroscopies.

    PubMed

    Perry, A; Lian, L Y; Scrutton, N S

    2001-02-15

    A minigene encoding the C-terminal domain of the 2Fe rubredoxin of Pseudomonas oleovorans was created from the parental alk G gene contained in the expression plasmid pKK223-3. The vector directed the high-level production of the C-terminal domain of this rubredoxin; a simple procedure was used to purify the recombinant domain in the 1Fe form. The 1Fe form of the C-terminal domain was readily converted into the apoprotein and cadmium forms after precipitation with trichloroacetic acid and resolubilization in the presence or absence of cadmium chloride respectively. In steady-state assays, the recombinant 1Fe C-terminal domain is redox-active and able to transfer electrons from reduced rubredoxin reductase to cytochrome c. The absorption spectrum and dichroic features of the CD spectrum for the iron- and cadmium-substituted C-terminal domain are similar to those reported for the iron- and cadmium-substituted Desulfovibrio gigas rubredoxin [Henehen, Pountney, Zerbe and Vasak (1993) Protein Sci. 2, 1756-1764]. Difference absorption spectroscopy of the cadmium-substituted C-terminal domain revealed the presence of four Gaussian-resolved maxima at 202, 225, 240 and 276 nm; from Jørgensen's electronegativity theory, the 240 nm band is attributable to a CysS-Cd(II) charge-transfer excitation. Attempts to express the N-terminal domain of the 2Fe rubredoxin directly from a minigene were unsuccessful. However, the N-terminal domain was isolated through cleavage of an engineered 2Fe rubredoxin in which a factor Xa proteolysis site had been introduced into the putative interdomain linker. The N-terminal domain is characterized by absorption spectra typical of the 1Fe rubredoxins. The domain is folded as determined by CD and NMR spectroscopies and is redox-active. However, the N-terminal domain is less stable than the isolated C-terminal domain, a finding consistent with the known properties of the full-length 2Fe and cadmium-substituted Ps. oleovorans rubredoxin.

  18. An Iron(II)(1,3-bis(2'-pyridylimino)isoindoline) Complex as a Catalyst for Substrate Oxidation with H2O2. Evidence for a Transient Peroxodiiron(III) Species.

    PubMed

    Pap, József S; Cranswick, Matthew A; Balogh-Hergovich, E; Baráth, Gábor; Giorgi, Michel; Rohde, Gregory T; Kaizer, József; Speier, Gábor; Que, Lawrence

    2013-08-01

    The complex [Fe(indH)(solvent) 3 ](ClO 4 ) 2 ( 1 ) has been isolated from the reaction of equimolar amounts of 1,3-bis(2'-pyridylimino)isoindoline (indH) and Fe(ClO 4 ) 2 in acetonitrile and characterized by X-ray crystallography and several spectroscopic techniques. It is a suitable catalyst for the oxidation of thioanisoles and benzyl alcohols with H 2 O 2 as the oxidant. Hammett correlations and kinetic isotope effect experiments support the involvement of an electrophilic metal-based oxidant. A metastable green species ( 2 ) is observed when 1 is reacted with H 2 O 2 at -40 °C, which has been characterized to have a Fe III ( μ -O)( μ -O 2 )Fe III core on the basis of UV-Vis, electron paramagnetic resonance, resonance Raman, and X-ray absorption spectroscopic data.

  19. Preferential adsorption and surface precipitation of lead(II) ions onto anatase in artificially contaminated Dixie clay.

    PubMed

    Suzuki, Tasuma; Okita, Miyu; Kakoyama, Satoshi; Niinae, Masakazu; Nakata, Hideki; Fujii, Hiroshi; Tasaka, Yukio

    2017-09-15

    During TEM-EDS (transmission electron microscopy coupled with an X-ray energy dispersive spectrometer) analysis of Dixie clay artificially contaminated with Pb(II), we observed that Pb(II) was preferentially adsorbed and precipitated on the surface of TiO 2 . To deepen the understanding of the mechanism and importance of this phenomenon, batch sorption experiments, XANES (X-ray absorption near edge spectroscopy) analysis, and sequential extraction analysis were performed. The TiO 2 in Dixie clay was found to be anatase, and anatase showed a higher Pb(II) sorption propensity than rutile, α-FeOOH, and one of two MnO 2 investigated in this study. Our experimental results indicated that the Pb precipitates preferentially formed on the surface of anatase was Pb(II) hydroxide or Pb(II) oxide. Additionally, sequential extraction analysis showed that at least 32% and 42% of Pb(II) was sorbed onto anatase in the Dixie clay contaminated with a Pb content of 736mg Pb/kg and 1,958mg Pb/kg, respectively. These results demonstrated that in addition to Fe and Mn oxides that are well-known metal oxides that serve as sinks for Pb(II) in the soil environment, TiO 2 is also a metal oxide that controls the behavior and fate of Pb(II) in soils. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. The kinematics and morphology of cool galactic winds and halo gas from galaxies at 0.3 < z < 1.4

    NASA Astrophysics Data System (ADS)

    Rubin, Kate H. R.

    Large-scale redshift surveys tracing the evolution of the luminous components of galaxies have revealed both an increase in the number density of "red and dead" galaxies and a concomitant decline in the star formation rates (SFRs) of blue galaxies since z ˜ 1. The latter is predicted to be due to a decreasing cool gas supply over time; whereas the former may be explained by the theory of merger-driven galaxy evolution, which suggests that the merging of blue galaxies expels the interstellar medium (ISM), thereby quenching star formation in the remnant. While these theoretical explanations provide robust predictions for the evolution of the gaseous components of distant galaxies, we have few direct measurements of the location and kinematics of cool gas around galaxies beyond the local universe. This thesis uses three complementary observational techniques to provide new constraints on the kinematics and morphology of cool gas in galaxies at 0.3 < z < 1.4. First, we use spectra of ˜470 galaxies at 0.7 < z < 1.5 drawn from the Team Keck Treasury Redshift Survey to study absorption line profiles for the Mg II lambdalambda2796, 2803 and Fe II lambdalambda2586, 2600 transitions, which probe cool, photoionized gas with temperature T ˜ 10 4 K. By coadding several sub-samples of galaxy spectra, we identify gaseous outflows via the Doppler shift of the absorption lines, and find that outflows are ubiquitous in galaxies having SFR > 10 M⊙ yr-1 and stellar masses ≳1010.5M⊙ . By comparing these results to those of Weiner et al. (2009), who present a similar study of outflows in star-forming galaxies at z ˜ 1.4, we find that these outflows persist in high-mass galaxies as they age between z ˜ 1.4 and z ˜ 1. Using HST/ACS imaging of our galaxy sample, we present evidence for a weak trend of increasing outflow absorption strength with increasing galaxy SFR surface density (SigmaSFR). Theoretical studies suggest that a minimum SigmaSFR must be exceeded in the host galaxy for outflows to be driven by either radiation pressure or thermalized energy from supernovae. To test this directly, we use a similar technique to probe cool gas kinematics in the individual Keck/LRIS spectra of a sample of ˜120 galaxies at 0.3 < z < 1.4. These data permit modeling of Mg II and Fe II absorption lines to obtain, e.g., the cool gas outflow velocity and covering fraction. Using Spitzer/MIPS and GALEX imaging to determine SFRs in concert with HST/ACS imaging which enables measurements of the size of star-forming regions, we compare outflow velocity to SigmaSFR. We find that while we detect outflows over a range 0.005 M⊙ yr-1 kpc-2 < Sigma SFR < 1 M⊙ yr-1 kpc-2, outflows occur more frequently with increasing SigmaSFR. The absorption line studies described above provide strong constraints on, e.g., the cool gas velocities. However, they provide only weak constraints on the radial extent and morphology of the gas. Knowledge of the spatial extent of the outflow is essential for accurately estimating its mass and energy; measurements of these rates are in turn crucial to understanding the role of outflows in driving galaxy evolution. Next, we show that emission in Mg II and Fe II* fine-structure lines can provide novel constraints on the spatial extent of an outflow. We identify a starburst galaxy at z = 0.69 which exhibits emission and absorption in Mg II, yielding a P Cygni-like line profile. We demonstrate that this emission is spatially broader than the continuum emission and the emission from H II regions, and associate the Mg II and Fe II* emission with resonance-line scattering and fluorescence in the outflow. These features are common at z ˜ 1, and in principle yield the first direct constraint on the radial extent of the outflow in many distant galaxies. Finally, we present a study of the cool gas around a single galaxy at z = 0.47 using spectroscopy of a bright background galaxy at z = 0.7 at a transverse distance of 16.5 h-170 kpc. While cool halo gas is typically studied along sightlines to background QSOs, the use of background galaxies offers several advantages over more traditional techniques. Because the background galaxy is spatially extended, we probe absorption over a large (> 4 h-170 kpc) area in the foreground halo, and find that the gas exhibits a large velocity dispersion and high covering fraction over this area. Spectroscopy of the foreground host galaxy reveals that it experienced a burst of star formation ˜1 Gyr ago, and we suggest that the absorbing gas in the halo was most likely ejected or tidally stripped during this past violent event. As such, these results again place a novel constraint on the radial extent of cool gas originating in the ISM of a distant galaxy.

  1. Electrochemical (de)lithiation of silver ferrite and composites: mechanistic insights from ex situ, in situ, and operando X-ray techniques.

    PubMed

    Durham, Jessica L; Brady, Alexander B; Cama, Christina A; Bock, David C; Pelliccione, Christopher J; Zhang, Qing; Ge, Mingyuan; Li, Yue Ru; Zhang, Yiman; Yan, Hanfei; Huang, Xiaojing; Chu, Yong; Takeuchi, Esther S; Takeuchi, Kenneth J; Marschilok, Amy C

    2017-08-23

    The structure of pristine AgFeO 2 and phase makeup of Ag 0.2 FeO 1.6 (a one-pot composite comprised of nanocrystalline stoichiometric AgFeO 2 and amorphous γ-Fe 2 O 3 phases) was investigated using synchrotron X-ray diffraction. A new stacking-fault model was proposed for AgFeO 2 powder synthesized using the co-precipitation method. The lithiation/de-lithiation mechanisms of silver ferrite, AgFeO 2 and Ag 0.2 FeO 1.6 were investigated using ex situ, in situ, and operando characterization techniques. An amorphous γ-Fe 2 O 3 component in the Ag 0.2 FeO 1.6 sample is quantified. Operando XRD of electrochemically reduced AgFeO 2 and Ag 0.2 FeO 1.6 composites demonstrated differences in the structural evolution of the nanocrystalline AgFeO 2 component. As complimentary techniques to XRD, ex situ X-ray Absorption Spectroscopy (XAS) provided insight into the short-range structure of the (de)lithiated nanocrystalline electrodes, and a novel in situ high energy X-ray fluorescence nanoprobe (HXN) mapping measurement was applied to spatially resolve the progression of discharge. Based on the results, a redox mechanism is proposed where the full reduction of Ag + to Ag 0 and partial reduction of Fe 3+ to Fe 2+ occur on reduction to 1.0 V, resulting in a Li 1+y Fe III Fe II y O 2 phase. The Li 1+y Fe III Fe II y O 2 phase can then reversibly cycle between Fe 3+ and Fe 2+ oxidation states, permitting good capacity retention over 50 cycles. In the Ag 0.2 FeO 1.6 composite, a substantial amorphous γ-Fe 2 O 3 component is observed which discharges to rock salt LiFe 2 O 3 and Fe 0 metal phase in the 3.5-1.0 V voltage range (in parallel with the AgFeO 2 mechanism), and reversibly reoxidizes to a nanocrystalline iron oxide phase.

  2. Solid-Phase Fe Speciation along the Vertical Redox Gradients in Floodplains using XAS and Mössbauer Spectroscopies.

    PubMed

    Chen, Chunmei; Kukkadapu, Ravi K; Lazareva, Olesya; Sparks, Donald L

    2017-07-18

    Properties of Fe minerals are poorly understood in natural soils and sediments with variable redox conditions. In this study, we combined 57 Fe Mössbauer and Fe K-edge X-ray absorption spectroscopic (XAS) techniques to assess solid-phase Fe speciation along the vertical redox gradients of floodplains, which exhibited a succession of oxic, anoxic, and suboxic-oxic zones with increasing depth along the vertical profiles. The incised stream channel is bounded on the east by a narrow floodplain and a steep hillslope, and on the west by a broad floodplain. In the eastern floodplain, the anoxic conditions at the intermediate horizon (55-80 cm) coincided with lower Fe(III)-oxides (particularly ferrihydrite), in concurrence with a greater reduction of phyllosilicates(PS)-Fe(III) to PS-Fe(II), relative to the oxic near-surface and sandy gravel layers. In addition, the anoxic conditions in the eastern floodplain coincided with increased crystallinity of goethite, relative to the oxic layers. In the most reduced intermediate sediments at 80-120 cm of the western floodplain, no Fe(III)-oxides were detected, concurrent with the greatest PS-Fe(III) reduction (PS-Fe(II)/Fe(III) ratio ≈ 1.2 (Mössbauer) or 0.8 (XAS)). In both oxic near-surface horizon and oxic-suboxic gravel aquifers beneath the soil horizons, Fe(III)-oxides were mainly present as ferrihydrite with a much less amount of goethite, which preferentially occurred as nanogoethite or Al/Si-substituted goethite. Ferrihydrite with varying crystallinity or impurities such as organic matter, Al or Si, persisted under suboxic-oxic conditions in the floodplain. This study indicates that vertical redox gradients exert a major control on the quantity and speciation of Fe(III) oxides as well as the oxidation state of structural Fe in PS, which could significantly affect nutrient cycling and carbon (de)stabilization.

  3. Orbitally dependent kinetic exchange in a heterobimetallic pair: Ferromagnetic spin alignment and magnetic anisotropy in the cyano-bridged Cr(III)Fe(II) dimer

    NASA Astrophysics Data System (ADS)

    Palii, A. V.; Tsukerblat, B. S.; Verdaguer, M.

    2002-11-01

    The problem of the kinetic exchange interaction in the cyanide-bridged heterobinuclear dimers involving orbitally degenerate transition metal ions is considered. The developed approach is based on the concept of the effective Hamiltonian of the orbitally dependent kinetic exchange. We deduce this many-electron Hamiltonian on the microscopic background so that all relevant biorbital transfer processes are taken into account as well as the properties of the many-electron states. The bioctahedral cyanide-bridged Cr(III)Fe(II) dimer is considered in detail as an example distinctly exhibiting new quantitative and qualitative features of the orbitally dependent exchange and as a structural unit of three-dimensional ferromagnetic crystals {Fe(II)3)Cr(III)(CN62}[middle dot]13H2O. The proposed mechanism of the kinetic exchange involves the electron transfer from the double occupied t2 orbitals of Fe(II) [ground state 5T2(t2)4e2] to the half occupied t2 orbitals of Cr(III) [ground state 4A2(t2)3] resulting in the charge transfer state 3T1(t2)4Cr(II)- 6A1(t2)3e2 Fe(III) and the transfer between the half-occupied t2 orbitals of the metal ions resulting in the charge transfer state 3T1(t2)4Cr(II)- 4T2(t2)3e2 Fe(III). The effective Hamiltonian of the orbitally dependent exchange for the Cr(III)Fe(II) pair deduced within this theoretical framework describes competitive ferro- and antiferromagnetic contributions arising from these two charge transfer states. This Hamiltonian leads to a complex energy pattern, consisting of two interpenetrating Heisenberg-like schemes, one exhibiting ferromagnetic and another one antiferromagnetic splitting. The condition for the ferromagnetic spin alignment in the ground state is deduced. The orbitally dependent terms of the Hamiltonian are shown to give rise to a strong magnetic anisotropy of the system, this result as well as the condition for the spin alignment in the ground term are shown to be out of the scope of the Goodenough-Kanamori rules. Along with the full spin S the energy levels are labeled by the orbital quantum numbers providing thus the direct information about the magnetic anisotropy of the system. Under a reasonable estimation of the excitation energies based on the optical absorption data we conclude that the kinetic exchange in the cyanide-bridged Cr(III)Fe(II) pair leads to the ferromagnetic spin alignment exhibiting at the same time strong axial magnetic anisotropy with C4 easy axis of magnetization.

  4. Mining the HST "Advanced Spectral Library (ASTRAL)": The Evolution of Winds from non-coronal to hybrid giant stars

    NASA Astrophysics Data System (ADS)

    Nielsen, Krister E.; Carpenter, Ken G.; Kober, Gladys V.; Rau, Gioia

    2018-01-01

    The HST/STIS treasury program ASTRAL enables investigations of the character and dynamics of the wind and chromosphere of cool stars, using high quality spectral data. This paper shows how the wind features change with spectral class by comparing the non-coronal objects (Alpha Ori, Gamma Cru) with the hybrid stars (Gamma Dra, Beta Gem). In particular we study the intrinsic strength variation of the numerous FeII profiles observed in the near-ultraviolet HST spectrum that are sensitive to the wind opacity, turbulence and flow velocity. The FeII relative emission strength and wavelengths shifts between the absorption and emission components reflects the acceleration of the wind from the base of the chromosphere. We present the analysis of the outflowing wind characteristics when transitioning from the cool non-coronal objects toward the warmer objects with chromospheric emission from significantly hotter environments.

  5. Type II supernovae in low luminosity host galaxies

    NASA Astrophysics Data System (ADS)

    Gutiérrez, C. P.; Anderson, J. P.; Sullivan, M.; Dessart, L.; González-Gaitan, S.; Galbany, L.; Dimitriadis, G.; Arcavi, I.; Bufano, F.; Chen, T.-W.; Dennefeld, M.; Gromadzki, M.; Haislip, J. B.; Hosseinzadeh, G.; Howell, D. A.; Inserra, C.; Kankare, E.; Leloudas, G.; Maguire, K.; McCully, C.; Morrell, N.; E, F. Olivares; Pignata, G.; Reichart, D. E.; Reynolds, T.; Smartt, S. J.; Sollerman, J.; Taddia, F.; Takáts, K.; Terreran, G.; Valenti, S.; Young, D. R.

    2018-06-01

    We present an analysis of a new sample of type II core-collapse supernovae (SNe II) occurring within low-luminosity galaxies, comparing these with a sample of events in brighter hosts. Our analysis is performed comparing SN II spectral and photometric parameters and estimating the influence of metallicity (inferred from host luminosity differences) on SN II transient properties. We measure the SN absolute magnitude at maximum, the light-curve plateau duration, the optically thick duration, and the plateau decline rate in the V -band, together with expansion velocities and pseudo-equivalent-widths (pEWs) of several absorption lines in the SN spectra. For the SN host galaxies, we estimate the absolute magnitude and the stellar mass, a proxy for the metallicity of the host galaxy. SNe II exploding in low luminosity galaxies display weaker pEWs of Fe II λ5018, confirming the theoretical prediction that metal lines in SN II spectra should correlate with metallicity. We also find that SNe II in low-luminosity hosts have generally slower declining light curves and display weaker absorption lines. We find no relationship between the plateau duration or the expansion velocities with SN environment, suggesting that the hydrogen envelope mass and the explosion energy are not correlated with the metallicity of the host galaxy. This result supports recent predictions that mass-loss for red supergiants is independent of metallicity.

  6. Transcriptional and physiological analyses of Fe deficiency response in maize reveal the presence of Strategy I components and Fe/P interactions.

    PubMed

    Zanin, Laura; Venuti, Silvia; Zamboni, Anita; Varanini, Zeno; Tomasi, Nicola; Pinton, Roberto

    2017-02-13

    Under limited iron (Fe) availability maize, a Strategy II plant, improves Fe acquisition through the release of phytosiderophores (PS) into the rhizosphere and the subsequent uptake of Fe-PS complexes into root cells. Occurrence of Strategy-I-like components and interactions with phosphorous (P) nutrition has been hypothesized based on molecular and physiological studies in grasses. In this report transcriptomic analysis (NimbleGen microarray) of Fe deficiency response revealed that maize roots modulated the expression levels of 724 genes (508 up- and 216 down-regulated, respectively). As expected, roots of Fe-deficient maize plants overexpressed genes involved in the synthesis and release of 2'-deoxymugineic acid (the main PS released by maize roots). A strong modulation of genes involved in regulatory aspects, Fe translocation, root morphological modification, primary metabolic pathways and hormonal metabolism was induced by the nutritional stress. Genes encoding transporters for Fe 2+ (ZmNRAMP1) and P (ZmPHT1;7 and ZmPHO1) were also up-regulated under Fe deficiency. Fe-deficient maize plants accumulated higher amounts of P than the Fe-sufficient ones, both in roots and shoots. The supply of 1 μM 59 Fe, as soluble (Fe-Citrate and Fe-PS) or sparingly soluble (Ferrihydrite) sources to deficient plants, caused a rapid down-regulation of genes coding for PS and Fe(III)-PS transport, as well as of ZmNRAMP1 and ZmPHT1;7. Levels of 32 P absorption essentially followed the rates of 59 Fe uptake in Fe-deficient plants during Fe resupply, suggesting that P accumulation might be regulated by Fe uptake in maize plants. The transcriptional response to Fe-deficiency in maize roots confirmed the modulation of known genes involved in the Strategy II and revealed the presence of Strategy I components usually described in dicots. Moreover, data here presented provide evidence of a close relationship between two essential nutrients for plants, Fe and P, and highlight a key role played by Fe and P transporters to preserve the homeostasis of these two nutrients in maize plants.

  7. Iron deficiency, but not anemia, upregulates iron absorption in breast-fed peruvian infants.

    PubMed

    Hicks, Penni D; Zavaleta, Nelly; Chen, Zhensheng; Abrams, Steven A; Lönnerdal, Bo

    2006-09-01

    Iron absorption in adults is regulated by homeostatic mechanisms that decrease absorption when iron status is high. There are few data, however, regarding the existence of a similar homeostatic regulation in infants. We studied 2 groups of human milk-fed infants using (57)Fe (given as ferrous sulfate without any milk) and (58)Fe (given at the time of a breast-milk feeding) stable isotopes to determine whether healthy infants at risk for iron deficiency would regulate their iron absorption based on their iron status. We studied 20 Peruvian infants at 5-6 mo of age and 18 infants at 9-10 mo of age. We found no effect of infant hemoglobin concentration on iron absorption with 5-6 mo-old infants absorbing 19.2 +/- 2.1% and 9- to 10-mo-old infants absorbing 25.8 +/- 2.6% of the (57)Fe dose. For (58)Fe, 5- to 6-mo-old infants absorbed 42.6 +/- 5.0% and 9 to 10-mo-old infants absorbed 51.9 +/- 10.3%. Following log transformation, iron absorption from (57)Fe (r = -0.61, P = < 0.001) and (58)Fe (r = -0.61, P = < 0.001) were inversely correlated to serum ferritin (S-Ft). For both the (57)Fe and (58)Fe doses, infants with S-Ft <12 mg/L (n = 11) had significantly higher iron absorption than those with S-Ft >12 mg/L. We concluded that iron absorption in infants is related to iron status as assessed by serum ferritin but not hemoglobin concentration. Infants with low iron status upregulate iron absorption from breast milk at both 5-6 and 9-10 mo of age.

  8. Facile synthesis of Fe3O4/C composites for broadband microwave absorption properties

    NASA Astrophysics Data System (ADS)

    Liu, Xiang; Ma, Yating; Zhang, Qinfu; Zheng, Zhiming; Wang, Lai-Sen; Peng, Dong-Liang

    2018-07-01

    Rod-like and flower-like Fe3O4/C composites were successfully synthesized via a facile approach in aqueous phase. The morphologies, structures and static magnetic properties of as-prepared rod-like and flower-like Fe3O4/C composites were characterized thoroughly. The relative complex permittivity and permeability of Fe3O4/C/paraffin composites were recorded by a vector network analyzer (VNA) in the range of 1-18 GHz. The resonant-antiresonant electromagnetic behavior was observed simultaneously in both rod-like and flower-like Fe3O4/C composites. Moreover, the resonant-antiresonant behavior was explained using displacement current lag at the "core/shell" interface. The flower-like Fe3O4/C/paraffin composites show superior microwave absorption performance with minimum reflection loss (RL) of up to -18.73 dB at 15.37 GHz. Comparatively, the rod-like Fe3O4/C/paraffin composites have uncommon continuous trinal absorption peaks at a thickness of 2.5 mm that effectively broadens the absorption bandwidth which is from 8.0 to 13.4 GHz. Furthermore, the microwave absorption mechanism has been discussed to provide a novel design for microwave absorption materials.

  9. Iron bioavailability in 8-24-month-old Thai children from a micronutrient-fortified quick-cooking rice containing ferric ammonium citrate or a mixture of ferrous sulphate and ferric sodium ethylenediaminetetraacetic acid.

    PubMed

    Chavasit, Visith; Porasuphatana, Suparat; Suthutvoravut, Umaporn; Zeder, Christroph; Hurrell, Richard

    2015-12-01

    A quick-cooking rice, produced from broken rice, is a convenient ingredient for complementary foods in Thailand. The rice is fortified with micronutrients including iron during the processing procedure, which can cause unacceptable sensory changes. A quick-cooking rice fortified with ferric ammonium citrate (FAC) or a mixture of ferrous sulphate (FeSO4 ) and ferric sodium ethylenediaminetetraacetic acid (NaFeEDTA), with a 2:1 molar ratio of iron from FeSO4  : iron from NaFeEDTA (FeSO4  + NaFeEDTA), gave a product that was organoleptically acceptable. The study compared iron absorption by infants and young children fed with micronutrient-fortified quick-cooking rice containing the test iron compounds or FeSO4 . Micronutrient-fortified quick-cooking rice prepared as a traditional Thai dessert was fed to two groups of 15 8-24-month healthy Thai children. The iron fortificants were isotopically labelled with (57) Fe for the reference FeSO4 or (58) Fe for the tested fortificants, and iron absorption was quantified based on erythrocyte incorporation of the iron isotopes 14 days after feeding. The relative bioavailability of FAC and of the FeSO4  + NaFeEDTA was obtained by comparing their iron absorption with that of FeSO4 . Mean fractional iron absorption was 5.8% [±standard error (SE) 1.9] from FAC and 10.3% (±SE 1.9) from FeSO4  + NaFeEDTA. The relative bioavailability of FAC was 83% (P = 0.02). The relative bioavailability of FeSO4  + NaFeEDTA was 145% (P = 0.001). Iron absorption from the rice containing FAC or FeSO4  + NaFeEDTA was sufficiently high to be used in its formulation, although iron absorption from FeSO4  + NaFeEDTA was significantly higher (P < 0.00001). © 2015 John Wiley & Sons Ltd.

  10. Oxalic acid does not influence nonhaem iron absorption in humans: a comparison of kale and spinach meals.

    PubMed

    genannt Bonsmann, S Storcksdieck; Walczyk, T; Renggli, S; Hurrell, R F

    2008-03-01

    To evaluate the influence of oxalic acid (OA) on nonhaem iron absorption in humans. Two randomized crossover stable iron isotope absorption studies. Zurich, Switzerland. Sixteen apparently healthy women (18-45 years, <60 kg body weight), recruited by poster advertizing from the staff and student populations of the ETH, University and University Hospital of Zurich, Switzerland. Thirteen subjects completed both studies. Iron absorption was measured based on erythrocyte incorporation of (57)Fe or (58)Fe 14 days after the administration of labelled meals. In study I, test meals consisted of two wheat bread rolls (100 g) and either 150 g spinach with a native OA content of 1.27 g (reference meal) or 150 g kale with a native OA content of 0.01 g. In study II, 150 g kale given with a potassium oxalate drink to obtain a total OA content of 1.27 g was compared to the spinach meal. After normalization for the spinach reference meal absorption, geometric mean iron absorption from wheat bread rolls with kale (10.7%) did not differ significantly from wheat rolls with kale plus 1.26 g OA added as potassium oxalate (11.5%, P=0.86). Spinach was significantly higher in calcium and polyphenols than kale and absorption from the spinach meal was 24% lower compared to the kale meal without added OA, but the difference did not reach statistical significance (P>0.16). Potassium oxalate did not influence iron absorption in humans from a kale meal and our findings strongly suggest that OA in fruits and vegetables is of minor relevance in iron nutrition.

  11. Extrinsic labeling method may not accurately measure Fe absorption from cooked pinto beans (Phaseolus vulgaris): comparison of extrinsic and intrinsic labeling of beans.

    PubMed

    Jin, Fuxia; Cheng, Zhiqiang; Rutzke, Michael A; Welch, Ross M; Glahn, Raymond P

    2008-08-27

    Isotopic labeling of food has been widely used for the measurement of Fe absorption in determining requirements and evaluating the factors involved in Fe bioavailability. An extrinsic labeling technique will not accurately predict the total Fe absorption from foods unless complete isotopic exchange takes place between an extrinsically added isotope label and the intrinsic Fe of the food. We examined isotopic exchange in the case of both white beans and colored beans (Phaseolus vulgaris) with an in vitro digestion model. There are significant differences in (58)Fe/(56)Fe ratios between the sample digest supernatant and the pellet of extrinsically labeled pinto bean. The white bean digest shows significantly better equilibration of the extrinsic (58)Fe with the intrinsic (56)Fe. In contrast to the extrinsically labeled samples, both white and red beans labeled intrinsically with (58)Fe demonstrated consistent ratios of (58)Fe/(56)Fe in the bean meal, digest, supernatant, and pellet. It is possible that the polyphenolics in the bean seed coat may bind Fe and thus interfere with extrinsic labeling of the bean meals. These observations raise questions on the accuracy of studies that used extrinsic tags to measure Fe absorption from beans. Intrinsic labeling appears necessary to accurately measure Fe bioavailability from beans.

  12. Does ascorbic acid supplementation affect iron bioavailability in rats fed micronized dispersible ferric pyrophosphate fortified fruit juice?

    PubMed

    Haro-Vicente, Juan Francisco; Pérez-Conesa, Darío; Rincón, Francisco; Ros, Gaspar; Martínez-Graciá, Carmen; Vidal, Maria Luisa

    2008-12-01

    Food iron (Fe) fortification is an adequate approach for preventing Fe-deficiency anemia. Poorly water-soluble Fe compounds have good sensory attributes but low bioavailability. The reduction of the particle size of Fe fortificants and the addition of ascorbic acid might increase the bioavailability of low-soluble compounds. The present work aims to compare the Fe absorption and bioavailability of micronized dispersible ferric pyrophosphate (MDFP) (poorly soluble) to ferrous sufate (FS) (highly soluble) added to a fruit juice in presence or absence of ascorbic acid (AA) by using the hemoglobin repletion assay in rats. After a hemoglobin depletion period, four fruit juices comprised of (1) FS, (2) MDFP, (3) FS + AA, (4) MDFP + AA were produced and administered to a different group of rats (n = 18) over 21 days. During the repletion period, Fe balance, hemoglobin regeneration efficiency (HRE), relative bioavailability (RBV) and Fe tissue content were determined in the short, medium and long term. Fe absorption and bioavailability showed no significant differences between fortifying the fruit juice with FS or MDFP. The addition of AA to the juice enhanced Fe absorption during the long-term balance study within the same Fe source. HRE and Fe utilization increased after AA addition in both FS and MDFP groups in every period. Fe absorption and bioavailability from MDFP were comparable to FS added to a fruit juice in rats. Further, the addition of AA enhanced Fe absorption in the long term, as well as Fe bioavailability throughout the repletion period regardless of the Fe source employed.

  13. Foreign molecules and ions in beryl obtained by infrared and visible spectroscopy

    NASA Astrophysics Data System (ADS)

    Jelić, Ivana; Logar, Mihovil; Milošević, Maja

    2017-04-01

    Beryl minerals of Serbia were slightly studied in the last century and despite that there is some obtainable data about main characteristics there is a limited amount of information about foreign molecules in the mineral structure. Two beryl samples from different locations in Serbia were examined in detail but infrared spectroscopy (IR) and spectrophotometry (VIS) was used for determination of foreign molecules and ions in the structure and the obtained data is shown in this paper. The infrared (IR) and visible spectra (VIS) of two natural beryl samples indicate the presence of two types of water molecule, Fe2+, Fe3+ ions and CO3. The spectra of two types of water molecules can be recognized with molecular fundamental vibrations at 3687 cm-1 (asymmetric stretching) for type I, at 3574 cm-1 and 3585 cm-1 both symmetric stretching, and with deformation vibrations at 1627 cm-1 and 1632 cm-1 for type II. In range of symmetric stretching there is broad vibrational band which can be explained by presence of water molecules type II near alkali ions. Overtones and combinations of these fundamental vibrations have been identified. The type I molecules have their C2 symmetry axes perpendicular to the crystal C6 axis, while the type II molecules are rotated by 90 degrees and have their C2 symmetry axes parallel to the crystal C6 axis. Vibrational absorption frequency of 1425 cm-1 indicate the presence of CO3. Pale blue beryl is colored according to the relative intensities of two spectral features attributable to iron ions: a) a broad band in the extraordinary ray (Er) at 16000 cm-1 due to Fe2+ in a channel site and b) a broad band in range of 22500-31400 cm-1 in both ordinary ray (Or) and Er due to octahedral Fe3+ in the Al3+ site. Two other features, also attributable to iron, do not produce any visible coloration: a) an absorption edge at 12350 cm-1 in Or is due to Fe2+ in the octahedral site and b) a broad band in Er and Or, centered around 12350 cm-1, is due to Fe2+ in channel site. These spectral features are interpreted on the basis of the crystal field theory. Infrared and visible spectroscopy data of two natural beryl minerals from Serbia has shown that water molecules, carbonates and iron ions represent the main impurities in the crystal structure. Nature of the fluid inclusions and quantitative content of Fe2+ and Fe3+ ions remain to be examined in the future.

  14. Spin-glass behaviors in carrier polarity controlled Fe{sub 3−x}Ti{sub x}O{sub 4} semiconductor thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamahara, H., E-mail: yamahara@bioxide.t.u-tokyo.ac.jp; Seki, M.; Adachi, M.

    2015-08-14

    Carrier-type control of spin-glass (cluster spin-glass) is studied in order to engineer basic magnetic semiconductor elements using the memory functions of spin-glass. A key of carrier-polarity control in magnetite is the valence engineering between Fe(II) and Fe(III) that is achieved by Ti(IV) substitution. Single phases of (001)-oriented Fe{sub 3−x}Ti{sub x}O{sub 4} thin films have been obtained on spinel MgAl{sub 2}O{sub 4} substrates by pulsed laser deposition. Thermoelectric power measurements reveal that Ti-rich films (x = 0.8) show p-type conduction, while Ti-poor films (x = 0.6–0.75) show n-type conduction. The systematic Fe(III) reduction to Fe(II) followed by Ti(IV) substitution in the octahedral sublattice is confirmedmore » by the X-ray absorption spectra. All of the Fe{sub 3−x}Ti{sub x}O{sub 4} films (x = 0.6–0.8) exhibit ferrimagnetism above room temperature. Next, the spin-glass behaviors of Ti-rich Fe{sub 2.2}Ti{sub 0.8}O{sub 4} film are studied, since this magnetically diluted system is expected to exhibit the spin-glass behaviors. The DC magnetization and AC susceptibility measurements for the Ti-rich Fe{sub 2.2}Ti{sub 0.8}O{sub 4} film reveal the presence of the spin glass phase. Thermal- and magnetic-field-history memory effects are observed and are attributed to the long time-decay nature of remanent magnetization. The detailed analysis of the time-dependent thermoremanent magnetization reveals the presence of the cluster spin glass state.« less

  15. Mid-Infrared Properties of OH Megamaser Host Galaxies. I. Spitzer IRS Low- and High-Resolution Spectroscopy

    NASA Astrophysics Data System (ADS)

    Willett, Kyle W.; Darling, Jeremy; Spoon, Henrik W. W.; Charmandaris, Vassilis; Armus, Lee

    2011-03-01

    We present mid-infrared spectra and photometry from the Infrared Spectrograph on the Spitzer Space Telescope for 51 OH megamasers (OHMs), along with 15 galaxies confirmed to have no megamaser emission above L OH = 102.3 L sun. The majority of galaxies display moderate-to-deep 9.7 μm amorphous silicate absorption, with OHM galaxies showing stronger average absorption and steeper 20-30 μm continuum emission than non-masing galaxies. Emission from multiple polycyclic aromatic hydrocarbons (PAHs), especially at 6.2, 7.7, and 11.3 μm, is detected in almost all systems. Fine-structure atomic emission (including [Ne II], [Ne III], [S III], and [S IV]) and multiple H2 rotational transitions are observed in more than 90% of the sample. A subset of galaxies show emission from rarer atomic lines, such as [Ne V], [O IV], and [Fe II]. Fifty percent of the OHMs show absorption from water ice and hydrogenated amorphous carbon grains, while absorption features from CO2, HCN, C2H2, and crystalline silicates are also seen in several OHMs. Column densities of OH derived from 34.6 μm OH absorption are similar to those derived from 1667 MHz OH absorption in non-masing galaxies, indicating that the abundance of masing molecules is similar for both samples. This data paper presents full mid-infrared spectra for each galaxy, along with measurements of line fluxes and equivalent widths, absorption feature depths, and spectral indices.

  16. Mathematical model of zinc absorption: effects of dietary calcium, protein and iron on zinc absorption

    PubMed Central

    Miller, Leland V.; Krebs, Nancy F.; Hambidge, K. Michael

    2013-01-01

    A previously described mathematical model of Zn absorption as a function of total daily dietary Zn and phytate was fitted to data from studies in which dietary Ca, Fe and protein were also measured. An analysis of regression residuals indicated statistically significant positive relationships between the residuals and Ca, Fe and protein, suggesting that the presence of any of these dietary components enhances Zn absorption. Based on the hypotheses that (1) Ca and Fe both promote Zn absorption by binding with phytate and thereby making it unavailable for binding Zn and (2) protein enhances the availability of Zn for transporter binding, the model was modified to incorporate these effects. The new model of Zn absorption as a function of dietary Zn, phytate, Ca, Fe and protein was then fitted to the data. The proportion of variation in absorbed Zn explained by the new model was 0·88, an increase from 0·82 with the original model. A reduced version of the model without Fe produced an equally good fit to the data and an improved value for the model selection criterion, demonstrating that when dietary Ca and protein are controlled for, there is no evidence that dietary Fe influences Zn absorption. Regression residuals and testing with additional data supported the validity of the new model. It was concluded that dietary Ca and protein modestly enhanced Zn absorption and Fe had no statistically discernable effect. Furthermore, the model provides a meaningful foundation for efforts to model nutrient interactions in mineral absorption. PMID:22617116

  17. Mathematical model of zinc absorption: effects of dietary calcium, protein and iron on zinc absorption.

    PubMed

    Miller, Leland V; Krebs, Nancy F; Hambidge, K Michael

    2013-02-28

    A previously described mathematical model of Zn absorption as a function of total daily dietary Zn and phytate was fitted to data from studies in which dietary Ca, Fe and protein were also measured. An analysis of regression residuals indicated statistically significant positive relationships between the residuals and Ca, Fe and protein, suggesting that the presence of any of these dietary components enhances Zn absorption. Based on the hypotheses that (1) Ca and Fe both promote Zn absorption by binding with phytate and thereby making it unavailable for binding Zn and (2) protein enhances the availability of Zn for transporter binding, the model was modified to incorporate these effects. The new model of Zn absorption as a function of dietary Zn, phytate, Ca, Fe and protein was then fitted to the data. The proportion of variation in absorbed Zn explained by the new model was 0·88, an increase from 0·82 with the original model. A reduced version of the model without Fe produced an equally good fit to the data and an improved value for the model selection criterion, demonstrating that when dietary Ca and protein are controlled for, there is no evidence that dietary Fe influences Zn absorption. Regression residuals and testing with additional data supported the validity of the new model. It was concluded that dietary Ca and protein modestly enhanced Zn absorption and Fe had no statistically discernable effect. Furthermore, the model provides a meaningful foundation for efforts to model nutrient interactions in mineral absorption.

  18. Absorption Spectra of Fe, Mn, and Mg Water Complexes Calculated Using Density Functional Theory

    DTIC Science & Technology

    2013-08-20

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6390--13-9479 Absorption Spectra of Fe, Mn, and Mg Water Complexes Calculated Using ...ABSTRACT c. THIS PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Absorption Spectra of Fe, Mn, and Mg Water Complexes Calculated Using Density...structure associated with Fe, Mn, and Mg water complexes using time-dependent density functional theory (TD-DFT). Calculation of excited state resonance

  19. Four-Coordinate Iron(II) Diaryl Compounds with Monodentate N-Heterocyclic Carbene Ligation: Synthesis, Characterization, and Their Tetrahedral-Square Planar Isomerization in Solution.

    PubMed

    Liu, Yuesheng; Luo, Lun; Xiao, Jie; Wang, Lei; Song, You; Qu, Jingping; Luo, Yi; Deng, Liang

    2015-05-18

    The salt elimination reactions of (IPr2Me2)2FeCl2 (IPr2Me2 = 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene) with the corresponding aryl Grignard reagents afford [(IPr2Me2)2FeAr2] (Ar = Ph, 3; C6H4-p-Me, 4; C6H4-p-(t)Bu, 5; C6H3-3,5-(CF3)2, 6) in good yields. X-ray crystallographic studies revealed the presence of both tetrahedral and trans square planar isomers for 3 and 6 and the tetrahedral structures for 4 and 5. Magnetic susceptibility and (57)Fe Mössbauer spectrum measurements on the solid samples indicated the high-spin (S = 2) and intermediate-spin (S = 1) nature of the tetrahedral and square planar structures, respectively. Solution property studies, including solution magnetic susceptibility measurement, variable-temperature (1)H and (19)F NMR, and absorption spectroscopy, on 3-6, as well as an (57)Fe Mössbauer spectrum study on a frozen tetrahydrofuran solution of tetrahedral [(IPr2Me2)2(57)FePh2] suggest the coexistence of tetrahedral and trans square planar structures in solution phase. Density functional theory calculations on (IPr2Me2)2FePh2 disclosed that the tetrahedral and trans square planar isomers are close in energy and that the geometry isomerization can occur by spin-change-coupled geometric transformation on four-coordinate iron(II) center.

  20. Comparison of colorimetry and electrothermal atomic absorption spectroscopy for the quantification of non-transferrin bound iron in human sera.

    PubMed

    Jittangprasert, Piyada; Wilairat, Prapin; Pootrakul, Pensri

    2004-12-01

    This paper describes a comparison of two analytical techniques, one employing bathophenanthrolinedisulfonate (BPT), a most commonly-used reagent for Fe (II) determination, as chromogen and an electrothermal atomic absorption spectroscopy (ETAAS) for the quantification of non-transferrin bound iron (NTBI) in sera from thalassemic patients. Nitrilotriacetic acid (NTA) was employed as the ligand for binding iron from low molecular weight iron complexes present in the serum but without removing iron from the transferrin protein. After ultrafiltration the Fe (III)-NTA complex was then quantified by both methods. Kinetic study of the rate of the Fe (II)-BPT complex formation for various excess amounts of NTA ligand was also carried out. The kinetic data show that a minimum time duration (> 60 minutes) is necessary for complete complex formation when large excess of NTA is used. Calibration curves given by colorimetric and ETAAS methods were linear over the range of 0.15-20 microM iron (III). The colorimetric and ETAAS methods exhibited detection limit (3sigma) of 0.13 and 0.14 microM, respectively. The NTBI concentrations from 55 thalassemic serum samples measured employing BPT as chromogen were statistically compared with the results determined by ETAAS. No significant disagreement at 95% confidence level was observed. It is, therefore, possible to select any one of these two techniques for determination of NTBI in serum samples of thalassemic patients. However, the colorimetric procedure requires a longer analysis time because of a slow rate of exchange of NTA ligand with BPT, leading to the slow rate of formation of the colored complex.

  1. Color Tuning in Garnet Oxides: The Role of Tetrahedral Coordination Geometry for 3 d Metal Ions and Ligand-Metal Charge Transfer (Band-Gap Manipulation).

    PubMed

    Bhim, Anupam; Laha, Sourav; Gopalakrishnan, Jagannatha; Natarajan, Srinivasan

    2017-10-18

    We explored garnet-structured oxide materials containing 3d transition-metal ions (e.g., Co 2+ , Ni 2+ , Cu 2+ , and Fe 3+ ) for the development of new inorganic colored materials. For this purpose, we synthesized new garnets, Ca 3 Sb 2 Ga 2 ZnO 12 (I) and Ca 3 Sb 2 Fe 2 ZnO 12 (II), that were isostructural with Ca 3 Te 2 Zn 3 O 12 . Substitution of Co 2+ , Ni 2+ , and Cu 2+ at the tetrahedral Zn 2+ sites in I and II gave rise to brilliantly colored materials (different shades of blue, green, turquoise, and red). The materials were characterized by optical absorption spectroscopy and CIE chromaticity diagrams. The Fe 3+ -containing oxides showed band-gap narrowing (owing to strong sp-d exchange interactions between Zn 2+ and the transition-metal ion), and this tuned the color of these materials uniquely. We also characterized the color and optical absorption properties of Ca 3 Te 2 Zn 3-x Co x O 12 (0

  2. Synthesis, characterization, DFT calculations and biological studies of Mn(II), Fe(II), Co(II) and Cd(II) complexes based on a tetradentate ONNO donor Schiff base ligand

    NASA Astrophysics Data System (ADS)

    Abdel-Rahman, Laila H.; Ismail, Nabawia M.; Ismael, Mohamed; Abu-Dief, Ahmed M.; Ahmed, Ebtehal Abdel-Hameed

    2017-04-01

    This study highlights synthesis and characterization of a tetradentate ONNO Schiff base ligand namely (1, 1‧- (pyridine-2, 3-dimethyliminomethyl) naphthalene-2, 2‧-diol) and hereafter denotes as "HNDAP″ and selected metal complexes including Mn(II), Fe(II), Co(II) and Cd(II) as a central metal. HNDAP was synthesized from 1:2 M ratio condensation of 2, 3-diaminopyridine and 2- hydroxy-1-naphthaldhyde, respectively. The stoichiometric ratios of the prepared complexes were estimated using complementary techniques such as; elemental analyses (-C, H, N), FT-IR, magnetic measurements and molar conductivity. Furthermore, their physicochemical studies were carried out using thermal TGA, DTA and kinetic-thermodynamic studies along with DFT calculations. The results of elemental analyses showed that these complexes are present in a 1:1 metal-to- ligand molar ratio. Moreover, the magnetic susceptibilities values at room temperature revealed that Mn(II), Fe(II) and Co(II) complexes are paramagnetic in nature and have an octahedral (Oh) geometry. In contrast, Cd(II) is diamagnetic and stabilizes in square planar sites. The molar conductivity measurements indicated that all complexes are nonelectrolytes in dimethyl formamide. Spectral data suggested that the ligand is as tetradentate and coordinated with Co(II) ion through two phenolic OH and two azomethine nitrogen. However, for Mn(II), Fe(II) and Cd(II) complexes, the coordination occurred through two phenolic oxygen and two azomethine nitrogen with deprotonation of OH groups. The proposed chemical structures have been validated by quantum mechanics calculations. Antimicrobial activities of both the HNDAP Schiff base ligand and its metal complexes were tested against strains of Gram (-ve) E. coli and Gram (+ve) B. subtilis and S. aureus bacteria and C. albicans, A. flavus and T. rubrum fungi. All the prepared compounds showed good results of inhibition against the selected pathogenic microorganisms. The investigated HNDAP Schiff base complexes showed higher activity and stability than their corresponding HNDAP Schiff base ligand and the highest activity observed for Cd(II) complex. Moreover, the prepared Schiff base ligand and its Mn(II) and Co(II) complexes have been evaluated for their anticancer activities against two cancer cell lines namely; colon carcinoma cells (HCT-116 cell line) and hepatocellular carcinoma (Hep-G2) cell lines The interaction of Mn(II) and Co(II) complexes with calf thymus DNA (CT-DNA) was studied by absorption spectroscopic technique and viscosity measurements. Both complexes showed a successful interaction with CT-DNA via intercalation mode.

  3. An Atlas of Far-ultraviolet Spectra of the Zeta Aurigae Binary 31 Cygni with Line Identifications

    NASA Astrophysics Data System (ADS)

    Hagen Bauer, Wendy; Bennett, Philip D.

    2014-04-01

    The ζ Aurigae system 31 Cygni (K4 Ib + B4 V) was observed by the FUSE satellite during total eclipse and at three phases during chromospheric eclipse. We present the coadded, calibrated spectra and atlases with line identifications. During total eclipse, emission from high ionization states (e.g., Fe III and Cr III) shows asymmetric profiles redshifted from the systemic velocity, while emission from lower ionization states (e.g., Fe II and O I) appears more symmetric and is centered closer to the systemic velocity. Absorption from neutral and singly ionized elements is detected during chromospheric eclipse. Late in chromospheric eclipse, absorption from the K star wind is detected at a terminal velocity of ~80 km s-1. These atlases will be useful for interpreting the far-UV spectra of other ζ Aur systems, as the observed FUSE spectra of 32 Cyg, KQ Pup, and VV Cep during chromospheric eclipse resemble that of 31 Cyg.

  4. Millimeter-Wave Absorption as a Quality Control Tool for M-Type Hexaferrite Nanopowders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCloy, John S.; Korolev, Konstantin A.; Crum, Jarrod V.

    2013-01-01

    Millimeter wave (MMW) absorption measurements have been conducted on commercial samples of large (micrometer-sized) and small (nanometer-sized) particles of BaFe12O19 and SrFe12O19 using a quasi-optical MMW spectrometer and a series of backwards wave oscillators encompassing the 30-120 GHz range. Effective anisotropy of the particles calculated from the resonant absorption frequency indicates lower overall anisotropy in the nano-particles. Due to their high magnetocrystalline anisotropy, both BaFe12O19 and SrFe12O19 are expected to have spin resonances in the 45-55 GHz range. Several of the sampled BaFe12O19 powders did not have MMW absorptions, so they were further investigated by DC magnetization and x-ray diffractionmore » to assess magnetic behavior and structure. The samples with absent MMW absorption contained primarily iron oxides, suggesting that MMW absorption could be used for quality control in hexaferrite powder manufacture.« less

  5. Solid-phase extraction of some heavy metal ions on a double-walled carbon nanotube disk and determination by flame atomic absorption spectrometry.

    PubMed

    Karatepe, Aslihan; Soylak, Mustafa; Elçi, Latif

    2011-01-01

    A new preconcentration method was developed for the determination of trace amounts of Cu(II), Fe(III), Pb(II), Ni(II), and Cd(II) on a double-walled carbon nanotube disk. 4-(2-Thiazolylazo) resorcinol was used as a complexing reagent. The effects of parameters, including pH of the solutions, amounts of complexing reagent, eluent type, sample volume, flow rates of solutions, and matrix ions were examined for quantitative recoveries of the studied analyte ions. The retained metal ions were eluted by 2 M HNO3. The LOD values for the analytes were in the range of 0.7-4.4 microg/mL. Natural water samples and standard reference materials were analyzed by the presented method.

  6. Carbonate-mediated Fe(II) oxidation in the air-cathode fuel cell: a kinetic model in terms of Fe(II) speciation.

    PubMed

    Song, Wei; Zhai, Lin-Feng; Cui, Yu-Zhi; Sun, Min; Jiang, Yuan

    2013-06-06

    Due to the high redox activity of Fe(II) and its abundance in natural waters, the electro-oxidation of Fe(II) can be found in many air-cathode fuel cell systems, such as acid mine drainage fuel cells and sediment microbial fuel cells. To deeply understand these iron-related systems, it is essential to elucidate the kinetics and mechanisms involved in the electro-oxidation of Fe(II). This work aims to develop a kinetic model that adequately describes the electro-oxidation process of Fe(II) in air-cathode fuel cells. The speciation of Fe(II) is incorporated into the model, and contributions of individual Fe(II) species to the overall Fe(II) oxidation rate are quantitatively evaluated. The results show that the kinetic model can accurately predict the electro-oxidation rate of Fe(II) in air-cathode fuel cells. FeCO3, Fe(OH)2, and Fe(CO3)2(2-) are the most important species determining the electro-oxidation kinetics of Fe(II). The Fe(II) oxidation rate is primarily controlled by the oxidation of FeCO3 species at low pH, whereas at high pH Fe(OH)2 and Fe(CO3)2(2-) are the dominant species. Solution pH, carbonate concentration, and solution salinity are able to influence the electro-oxidation kinetics of Fe(II) through changing both distribution and kinetic activity of Fe(II) species.

  7. Red-excitation resonance Raman analysis of the nu(Fe=O) mode of ferryl-oxo hemoproteins.

    PubMed

    Ikemura, Kenichiro; Mukai, Masahiro; Shimada, Hideo; Tsukihara, Tomitake; Yamaguchi, Satoru; Shinzawa-Itoh, Kyoko; Yoshikawa, Shinya; Ogura, Takashi

    2008-11-05

    The Raman excitation profile of the nuFe O mode of horseradish peroxidase compound II exhibits a maximum at 580 nm. This maximum is located within an absorption band with a shoulder assignable to an oxygen-to-iron charge transfer band on the longer wavelength side of the alpha-band. Resonance Raman bands of the nuFe O mode of various ferryl-oxo type hemoproteins measured at 590 nm excitation indicate that many hemoproteins in the ferryl-oxo state have an oxygen-to-iron charge transfer band in the visible region. Since this red-excited resonance Raman technique causes much less photochemical damage in the proteins relative to blue-excited resonance Raman spectroscopy, it produces a higher signal-to-noise ratio and thus represents a powerful tool for investigations of ferryl-oxo intermediates of hemoproteins.

  8. Tuning optical absorption and photoexcited recombination dynamics in La1-xSrxFeO3-δ through A-site substitution and oxygen vacancies

    NASA Astrophysics Data System (ADS)

    Smolin, Sergey; Scafetta, Mark; Choquette, Amber; Sfeir, Matthew; Baxter, Jason; May, Steven

    We study optical absorption and recombination dynamics in La1-xSrxFeO3-δ thin films, uncovering the effects of tuning nominal Fe valence via A-site substitution and oxygen stoichiometry. Variable angle spectroscopic ellipsometry was used to measure static optical properties, revealing a linear increase in absorption coefficient at 1.25 eV and a red-shifting of the optical absorption edge with increasing Sr fraction. The absorption spectra can be similarly tuned through the introduction of oxygen vacancies, indicating the critical role that nominal Fe valence plays in optical absorption. Dynamic optoelectronic properties were studied with ultrafast transient reflectance spectroscopy, revealing similar nanosecond photoexcited carrier lifetimes for oxygen deficient and stoichiometric films with the same nominal Fe valence. These results demonstrate that while the static optical absorption is strongly dependent on Fe valence tuned through cation or anion stoichiometry, oxygen vacancies do not appear to play a significantly detrimental role in the recombination kinetics. Nsf: ECCS-1201957, MRI DMR-0922929, MRI DMR-1040166. This research used resources of the Center for Functional Nanomaterials, which is a U.S. DOE Office of Science Facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704.

  9. Biochemical, Kinetic, and Spectroscopic Characterization of Ruegeria pomeroyi DddW—A Mononuclear Iron-Dependent DMSP Lyase

    PubMed Central

    Brummett, Adam E.; Schnicker, Nicholas J.; Crider, Alexander; Todd, Jonathan D.; Dey, Mishtu

    2015-01-01

    The osmolyte dimethylsulfoniopropionate (DMSP) is a key nutrient in marine environments and its catabolism by bacteria through enzymes known as DMSP lyases generates dimethylsulfide (DMS), a gas of importance in climate regulation, the sulfur cycle, and signaling to higher organisms. Despite the environmental significance of DMSP lyases, little is known about how they function at the mechanistic level. In this study we biochemically characterize DddW, a DMSP lyase from the model roseobacter Ruegeria pomeroyi DSS-3. DddW is a 16.9 kDa enzyme that contains a C-terminal cupin domain and liberates acrylate, a proton, and DMS from the DMSP substrate. Our studies show that as-purified DddW is a metalloenzyme, like the DddQ and DddP DMSP lyases, but contains an iron cofactor. The metal cofactor is essential for DddW DMSP lyase activity since addition of the metal chelator EDTA abolishes its enzymatic activity, as do substitution mutations of key metal-binding residues in the cupin motif (His81, His83, Glu87, and His121). Measurements of metal binding affinity and catalytic activity indicate that Fe(II) is most likely the preferred catalytic metal ion with a nanomolar binding affinity. Stoichiometry studies suggest DddW requires one Fe(II) per monomer. Electronic absorption and electron paramagnetic resonance (EPR) studies show an interaction between NO and Fe(II)-DddW, with NO binding to the EPR silent Fe(II) site giving rise to an EPR active species (g = 4.29, 3.95, 2.00). The change in the rhombicity of the EPR signal is observed in the presence of DMSP, indicating that substrate binds to the iron site without displacing bound NO. This work provides insight into the mechanism of DMSP cleavage catalyzed by DddW. PMID:25993446

  10. Hubble Space Telescope STIS Observations of the Wolf-Rayet Star HD 5980 in the Small Magellanic Cloud. II. The Interstellar Medium Components

    NASA Astrophysics Data System (ADS)

    Koenigsberger, Gloria; Georgiev, Leonid; Peimbert, Manuel; Walborn, Nolan R.; Barbá, Rodolfo; Niemela, Virpi S.; Morrell, Nidia; Tsvetanov, Zlatan; Schulte-Ladbeck, Regina

    2001-01-01

    Observations of the interstellar and circumstellar absorption components obtained with the Hubble Space Telescope Space Telescope Imaging Spectrograph (STIS) along the line of sight toward the Wolf-Rayet-luminous blue variable (LBV) system HD 5980 in the Small Magellanic Cloud are analyzed. Velocity components from C I, C I*, C II, C II*, C IV, N I, N V, O I, Mg II, Al II, Si II, Si II*, Si III, Si IV, S II, S III, Fe II, Ni II, Be I, Cl I, and CO are identified, and column densities estimated. The principal velocity systems in our data are (1) interstellar medium (ISM) components in the Galactic disk and halo (Vhel=1.1+/-3, 9+/-2 km s-1) (2) ISM components in the SMC (Vhel=+87+/-6, +110+/-6, +132+/-6, +158+/-8, +203+/-15 km s-1) (3) SMC supernova remnant SNR 0057-7226 components (Vhel=+312+/-3, +343+/-3, +33, +64 km s-1) (4) circumstellar (CS) velocity systems (Vhel=-1020, -840, -630, -530, -300 km s-1) and (5) a possible system at -53+/-5 km s-1 (seen only in some of the Si II lines and marginally in Fe II) of uncertain origin. The supernova remnant SNR 0057-7226 has a systemic velocity of +188 km s-1, suggesting that its progenitor was a member of the NGC 346 cluster. Our data allow estimates to be made of Te~40,000 K, ne~100 cm-3, N(H)~(4-12)×1018 cm-2 and a total mass between 400 and 1000 Msolar for the supernova remnant (SNR) shell. We detect C I absorption lines primarily in the +132 and +158 km s-1 SMC velocity systems. As a result of the LBV-type eruptions in HD 5980, a fast-wind/slow-wind circumstellar interaction region has appeared, constituting the earliest formation stages of a windblown H II bubble surrounding this system. Variations over a timescale of 1 year in this circumstellar structure are detected. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  11. Trace of heavy metals in maternal and umbilical cord blood samples in association with birth outcomes in Baghdad, Iraq

    NASA Astrophysics Data System (ADS)

    Hasan Rhaif Al-Sahlanee, Mayyadah; Maizan Ramli, Ramzun; Abdul Hassan Ali, Miami; Fadhil Tawfiq, Nada; Zahirah Noor Azman, Nurul; Abdul Rahman, Azhar; Shahrim Mustafa, Iskandar; Noor Ashikin Nik Abdul Razak, Nik; Zakiah Yahaya, Nor; Mohammed Al-Marri, Hana; Syuhada Ayob, Nur; Zakaria, Nabela

    2017-10-01

    Trace elements are essential nutritional components in humans and inconvenient tissue content that have a significant influence on infant size. The aim of this study is to evaluate the effects of concentration of elements (uranium (U), lead (Pb) and iron (Fe)) and absorption of Pb and Fe on maternal and umbilical cord blood samples. The concentration and absorption of Pb and Fe in blood samples were determined by using atomic absorption spectrophotometry device, while the uranium concentration was determined by using CR-39 detector. Fifty women of age 16-44 years are involved in this study. Results show that the maximum and minimum values of both concentration and absorption in the maternal samples were for Pb and Fe, respectively. In addition, for umbilical cord, the maximum values of concentration and absorption were for Fe and the minimum concentration and absorption were for U and Pb, respectively. A significant correlation between maternal and umbilical cord blood samples was found. This indicates that the Pb, U and Fe elements can easily transfer from maternal to the fetal body which impacts the growth of fetus.

  12. Sodium pyrophosphate enhances iron bioavailability from bouillon cubes fortified with ferric pyrophosphate.

    PubMed

    Cercamondi, Colin I; Duchateau, Guus S M J E; Harika, Rajwinder K; van den Berg, Robin; Murray, Peter; Koppenol, Wieneke P; Zeder, Christophe; Zimmermann, Michael B; Moretti, Diego

    2016-08-01

    Fe fortification of centrally manufactured and frequently consumed condiments such as bouillon cubes could help prevent Fe deficiency in developing countries. However, Fe compounds that do not cause sensory changes in the fortified product, such as ferric pyrophosphate (FePP), exhibit low absorption in humans. Tetra sodium pyrophosphate (NaPP) can form soluble complexes with Fe, which could increase Fe bioavailability. Therefore, the aim of this study was to investigate Fe bioavailability from bouillon cubes fortified with either FePP only, FePP+NaPP, ferrous sulphate (FeSO4) only, or FeSO4+NaPP. We first conducted in vitro studies using a protocol of simulated digestion to assess the dialysable and ionic Fe, and the cellular ferritin response in a Caco-2 cell model. Second, Fe absorption from bouillon prepared from intrinsically labelled cubes (2·5 mg stable Fe isotopes/cube) was assessed in twenty-four Fe-deficient women, by measuring Fe incorporation into erythrocytes 2 weeks after consumption. Fe bioavailability in humans increased by 46 % (P<0·005) when comparing bouillons fortified with FePP only (4·4 %) and bouillons fortified with FePP+NaPP (6·4 %). Fe absorption from bouillons fortified with FeSO4 only and with FeSO4+NaPP was 33·8 and 27·8 %, respectively (NS). The outcome from the human study is in agreement with the dialysable Fe from the in vitro experiments. Our findings suggest that the addition of NaPP could be a promising strategy to increase Fe absorption from FePP-fortified bouillon cubes, and if confirmed by further research, for other fortified foods with complex food matrices as well.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Tao; Kukkadapu, Ravi K.; Griffin, Aron M.

    Fe(III)-oxides and Fe(III)-bearing phyllosilicates are the two major iron sources utilized as electron acceptors by dissimilatory iron-reducing bacteria (DIRB) in anoxic soils and sediments. Although there have been many studies of microbial Fe(III)-oxide and Fe(III)-phyllosilicate reduction with both natural and specimen materials, no controlled experimental information is available on the interaction between these two phases when both are available for microbial reduction. In this study, the model DIRB Geobacter sulfurreducens was used to examine the pathways of Fe(III) reduction in Fe(III)-oxide stripped subsurface sediment that was coated with different amounts of synthetic high surface area goethite. Cryogenic (12K) 57Fe Mössbauermore » spectroscopy was used to determine changes in the relative abundances of Fe(III)-oxide, Fe(III)-phyllosilicate, and phyllosilicate-associated Fe(II) (Fe(II)-phyllosilicate) in bioreduced samples. Analogous Mössbauer analyses were performed on samples from abiotic Fe(II) sorption experiments in which sediments were exposed to a quantity of exogenous soluble Fe(II) (FeCl22H2O) comparable to the amount of Fe(II) produced during microbial reduction. A Fe partitioning model was developed to analyze the fate of Fe(II) and assess the potential for abiotic Fe(II)-catalyzed reduction of Fe(III)-phyllosilicatesilicates. The microbial reduction experiments indicated that although reduction of Fe(III)-oxide accounted for virtually all of the observed bulk Fe(III) reduction activity, there was no significant abiotic electron transfer between oxide-derived Fe(II) and Fe(III)-phyllosilicatesilicates, with 26-87% of biogenic Fe(II) appearing as sorbed Fe(II) in the Fe(II)-phyllosilicate pool. In contrast, the abiotic Fe(II) sorption experiments showed that 41 and 24% of the added Fe(II) engaged in electron transfer to Fe(III)-phyllosilicate surfaces in synthetic goethite-coated and uncoated sediment. Differences in the rate of Fe(II) addition and system redox potential may account for the microbial and abiotic reaction systems. Our experiments provide new insight into pathways for Fe(III) reduction in mixed Fe(III)-oxide/Fe(III)-phyllosilicate assemblages, and provide key mechanistic insight for interpreting microbial reduction experiments and field data from complex natural soils and sediments.« less

  14. Easily Dispersible NiFe2O4/RGO Composite for Microwave Absorption Properties in the X-Band

    NASA Astrophysics Data System (ADS)

    Bateer, Buhe; Zhang, Jianjao; Zhang, Hongchen; Zhang, Xiaochen; Wang, Chunyan; Qi, Haiqun

    2018-01-01

    Composites with good dispersion and excellent microwave absorption properties have important applications. Therefore, an easily dispersible NiFe2O4/reduced graphene oxide (RGO) composite has been prepared conveniently through a simple hydrothermal method. Highly crystalline, small size (about 7 nm) monodispersed NiFe2O4 nanoparticles (NPs) are evenly distributed on the surface of RGO. The microwave absorbability revealed that the NiFe2O4/RGO composite exhibits excellent microwave absorption properties in the X-band (8-12 GHz), and the minimum reflection loss of the NiFe2O4/RGO composite is -27.7 dB at 9.2 GHz. The NiFe2O4/RGO composite has good dispersibility in nonpolar solvent, which facilitates the preparation of stable commercial microwave absorbing coatings. It can be a promising candidate for lightweight microwave absorption materials in many application fields.

  15. The Transiting Exocomets in the HD 172555 System

    NASA Technical Reports Server (NTRS)

    Grady, C. A.; Brown, A.; Kamp, I.; Roberge, A.; Riviere-Marichalar, P.; Welsh, B.

    2017-01-01

    The Earth is thought to have formed dry, in a part of the Solar Nebula deficient in organic material, and to have acquired its organics and water through bombardment by minor bodies. Observations of this process in well-dated systems can provide insight into the probable origin and composition of the bombarding parent bodies. Transiting cometary activity has previously been reported in Ca II for the late-A member of the 241 Myr old Pictoris Moving Group member, HD 172555(Kiefer et al. 2014). We present HST STIS and COS spectra of HD 172555 demonstrating that the star has chromospheric emission and variable in falling gas features in transitions of silicon and carbon ions at times when no Fe II absorption is seen in the UV data, and no Ca II absorption is seen in contemporary optical spectra. The lack of CO absorption and stable gas absorption at the system velocity is consistent with the absence of a cold Kuiper belt analog (Riviere-Marichalar et al. 2012) in this system. The presence of infall in some species at one epoch and others at different epochs suggests that, like Pictoris, there may be more than one family of exocomets. If perturbed into star-grazing orbits by the same mechanism as for Pic, these data suggest that the wide planet frequency among A-early F stars in the PMG is at least 37.5, well above the frequency estimated for young moving groups independent of host star spectral type.

  16. Inhibition of non-haem iron absorption in man by polyphenolic-containing beverages.

    PubMed

    Hurrell, R F; Reddy, M; Cook, J D

    1999-04-01

    The effects of different polyphenol-containing beverages on Fe absorption from a bread meal were estimated in adult human subjects from the erythrocyte incorporation of radio-Fe. The test beverages contained different polyphenol structures and were rich in either phenolic acids (chlorogenic acid in coffee), monomeric flavonoids (herb teas, camomile (Matricaria recutita L.), vervain (Verbena officinalis L.), lime flower (Tilia cordata Mill.), pennyroyal (Mentha pulegium L.) and peppermint (Mentha piperita L.), or complex polyphenol polymerization products (black tea and cocoa). All beverages were potent inhibitors of Fe absorption and reduced absorption in a dose-dependent fashion depending on the content of total polyphenols. Compared with a water control meal, beverages containing 20-50 mg total polyphenols/serving reduced Fe absorption from the bread meal by 50-70%, whereas beverages containing 100-400 mg total polyphenols/serving reduced Fe absorption by 60-90%. Inhibition by black tea was 79-94%, peppermint tea 84%, pennyroyal 73%, cocoa 71%, vervain 59%, lime flower 52% and camomile 47%. At an identical concentration of total polyphenols, black tea was more inhibitory than cocoa, and more inhibitory than herb teas camomile, vervain, lime flower and pennyroyal, but was of equal inhibition to peppermint tea. Adding milk to coffee and tea had little or no influence on their inhibitory nature. Our findings demonstrate that herb teas, as well as black tea, coffee and coca can be potent inhibitors of Fe absorption. This property should be considered when giving dietary advice in relation to Fe nutrition.

  17. Magnetostriction and complex permeability of [Fe62Co19Ga19/Py]5/glass multilayered films

    NASA Astrophysics Data System (ADS)

    Liu, Chi-Ching; Jen, Shien-Uang; Lin, Yu-Cha; Lai, Chih-Huang; Liao, Sheng-Chieh; Chien, Chia-Hua

    2015-07-01

    [Fe62Co19Ga19(x)/Py(40-x)]5/glass multilayered films, where x=0, 5, 10, 15, 20 nm, y=x(nm)/40(nm), and 0≤y≤1, were made by the magnetron sputtering method at room temperature. The total number of combined [Fe-Co-Ga/Py] unit-layers was five. The total film thickness (tf) was fixed at 200 nm. We have performed two kinds of experiments on these films: (i) the saturation magnetostriction (λS) measurement, and (ii) the complex permeability (μ=μR-jμI) experiment to find the resonance frequency (fR) as a function of external magnetic field (HE). By definition, the microwave power absorption Pabs at ferromagnetic resonance (FMR) for a metallic conductor is written as Pabs = [(μR2+ μI2)1/2 +μI ]1/2 . We define the half-width of the absorption peak Δf as Δf ≣ ΔfS+ΔfA, where ΔfS and ΔfA are the symmetric and asymmetric parts in Δf. The degree of asymmetry, ΔfA/Δf, of each absorption peak is associated with the structural and/or magnetic inhomogeneity in the film. The main findings from this study are summarized as follows: (A) maximum λS occurs in the y=1 film, and as y increases, λS increases; (B) biasing field for magnetostriction decreases greatly by adding Py layers; (C) the magnetostriction sensitivity remains almost constant in the range 0.4

  18. Complexes with Tunable Intramolecular Ferrocene to Ti(IV) Electronic Transitions: Models for Solid State Fe(II) to Ti(IV) Charge Transfer.

    PubMed

    Turlington, Michael D; Pienkos, Jared A; Carlton, Elizabeth S; Wroblewski, Karlee N; Myers, Alexis R; Trindle, Carl O; Altun, Zikri; Rack, Jeffrey J; Wagenknecht, Paul S

    2016-03-07

    Iron(II)-to-titanium(IV) metal-to-metal-charge transfer (MMCT) is important in the photosensitization of TiO2 by ferrocyanide, charge transfer in solid-state metal-oxide photocatalysts, and has been invoked to explain the blue color of sapphire, blue kyanite, and some lunar material. Herein, a series of complexes with alkynyl linkages between ferrocene (Fc) and Ti(IV) has been prepared and characterized by UV-vis spectroscopy and electrochemistry. Complexes with two ferrocene substituents include Cp2Ti(C2Fc)2, Cp*2Ti(C2Fc)2, and Cp2Ti(C4Fc)2. Complexes with a single ferrocene utilize a titanocene with a trimethylsilyl derivatized Cp ring, (TMS)Cp, and comprise the complexes (TMS)Cp2Ti(C2Fc)(C2R), where R = C6H5, p-C6H4CF3, and CF3. The complexes are compared to Cp2Ti(C2Ph)2, which lacks the second metal. Cyclic voltammetry for all complexes reveals a reversible Ti(IV/III) reduction wave and an Fe(II/III) oxidation that is irreversible for all complexes except (TMS)Cp2Ti(C2Fc)(C2CF3). All of the complexes with both Fc and Ti show an intense absorption (4000 M(-1)cm(-1) < ε < 8000 M(-1)cm(-1)) between 540 and 630 nm that is absent in complexes lacking a ferrocene donor. The energy of the absorption tracks with the difference between the Ti(IV/III) and Fe(III/II) reduction potentials, shifting to lower energy as the difference in potentials decreases. Reorganization energies, λ, have been determined using band shape analysis (2600 cm(-1) < λ < 5300 cm(-1)) and are in the range observed for other donor-acceptor complexes that have a ferrocene donor. Marcus-Hush-type analysis of the electrochemical and spectroscopic data are consistent with the assignment of the low-energy absorption as a MMCT band. TD-DFT analysis also supports this assignment. Solvatochromism is apparent for the MMCT band of all complexes, there being a bathochromic shift upon increasing polarizability of the solvent. The magnitude of the shift is dependent on both the electron density at Ti(IV) and the identity of the linker between the titanocene and the Fc. Complexes with a MMCT are photochemically stable, whereas Cp2Ti(C2Ph)2 rapidly decomposes upon photolysis.

  19. The outer atmosphere of the carbon star TX Piscium

    NASA Technical Reports Server (NTRS)

    Eriksson, K.; Gustafsson, B.; Johnson, H. R.; Querci, F.; Querci, M.

    1986-01-01

    A high-resolution LWP IUE spectrum of the bright N-type carbon star TX Psc demonstrates that the Mg II h and k emission profiles are strongly affected by absorption from Mg II, Mn I, probably Fe I, and possibly from molecules. The indication that the absorbing matter has a column density of not less than 10 to the 20th H atoms or molecules per sq cm is consistent with absorption in a slowly expanding envelope. The integrated Mg II line flux is found to be much greater than in 1981, and the radio CO (J = 1 - 0) line from the circumstellar shell is detected. Results for a column density of not larger than 10 to the 22nd H2 molecules/sq cm, and a radial velocity close to that of the star, are in agreement with those obtained from UV data. Some dust emission from carbon grains is suggested by the far infrared flux distribution, and a mass-loss rate estimation for the star of 10 to the -6th to 10 to the -8th solar masses is obtained.

  20. Effect of the oxidation rate and Fe(II) state on microbial nitrate-dependent Fe(III) mineral formation

    USGS Publications Warehouse

    Senko, John M.; Dewers , Thomas A.; Krumholz, Lee R.

    2005-01-01

    A nitrate-dependent Fe(II)-oxidizing bacterium was isolated and used to evaluate whether Fe(II) chemical form or oxidation rate had an effect on the mineralogy of biogenic Fe(III) (hydr)oxides resulting from nitrate-dependent Fe(II) oxidation. The isolate (designated FW33AN) had 99% 16S rRNA sequence similarity to Klebsiella oxytoca. FW33AN produced Fe(III) (hydr)oxides by oxidation of soluble Fe(II) [Fe(II)sol] or FeS under nitrate-reducing conditions. Based on X-ray diffraction (XRD) analysis, Fe(III) (hydr)oxide produced by oxidation of FeS was shown to be amorphous, while oxidation of Fe(II)sol yielded goethite. The rate of Fe(II) oxidation was then manipulated by incubating various cell concentrations of FW33AN with Fe(II)sol and nitrate. Characterization of products revealed that as Fe(II) oxidation rates slowed, a stronger goethite signal was observed by XRD and a larger proportion of Fe(III) was in the crystalline fraction. Since the mineralogy of Fe(III) (hydr)oxides may control the extent of subsequent Fe(III) reduction, the variables we identify here may have an effect on the biogeochemical cycling of Fe in anoxic ecosystems.

  1. Microbial Iron(II) Oxidation in Littoral Freshwater Lake Sediment: The Potential for Competition between Phototrophic vs. Nitrate-Reducing Iron(II)-Oxidizers

    PubMed Central

    Melton, E. D.; Schmidt, C.; Kappler, A.

    2012-01-01

    The distribution of neutrophilic microbial iron oxidation is mainly determined by local gradients of oxygen, light, nitrate and ferrous iron. In the anoxic top part of littoral freshwater lake sediment, nitrate-reducing and phototrophic Fe(II)-oxidizers compete for the same e− donor; reduced iron. It is not yet understood how these microbes co-exist in the sediment and what role they play in the Fe cycle. We show that both metabolic types of anaerobic Fe(II)-oxidizing microorganisms are present in the same sediment layer directly beneath the oxic-anoxic sediment interface. The photoferrotrophic most probable number counted 3.4·105 cells·g−1 and the autotrophic and mixotrophic nitrate-reducing Fe(II)-oxidizers totaled 1.8·104 and 4.5·104 cells·g−1 dry weight sediment, respectively. To distinguish between the two microbial Fe(II) oxidation processes and assess their individual contribution to the sedimentary Fe cycle, littoral lake sediment was incubated in microcosm experiments. Nitrate-reducing Fe(II)-oxidizing bacteria exhibited a higher maximum Fe(II) oxidation rate per cell, in both pure cultures and microcosms, than photoferrotrophs. In microcosms, photoferrotrophs instantly started oxidizing Fe(II), whilst nitrate-reducing Fe(II)-oxidizers showed a significant lag-phase during which they probably use organics as e− donor before initiating Fe(II) oxidation. This suggests that they will be outcompeted by phototrophic Fe(II)-oxidizers during optimal light conditions; as phototrophs deplete Fe(II) before nitrate-reducing Fe(II)-oxidizers start Fe(II) oxidation. Thus, the co-existence of the two anaerobic Fe(II)-oxidizers may be possible due to a niche space separation in time by the day-night cycle, where nitrate-reducing Fe(II)-oxidizers oxidize Fe(II) during darkness and phototrophs play a dominant role in Fe(II) oxidation during daylight. Furthermore, metabolic flexibility of Fe(II)-oxidizing microbes may play a paramount role in the conservation of the sedimentary Fe cycle. PMID:22666221

  2. Relative bioavailability of micronized, dispersible ferric pyrophosphate added to an apple juice drink.

    PubMed

    Roe, Mark A; Collings, Rachel; Hoogewerff, Jurian; Fairweather-Tait, Susan J

    2009-03-01

    Food iron fortification is a sustainable and relatively simple strategy to reduce/prevent iron deficiency but is a challenge for the food industry because of possible adverse organoleptic changes caused by the added iron. A micronized dispersible ferric pyrophosphate, trademarked as SunActive Fe, has recently been developed. SunActive Fe has a small particle size, is water soluble and may be suitable for fortifying liquid products. To determine the relative bioavailability of SunActive Fe and its suitability for addition to pure apple juice. Iron absorption from SunActive Fe added to pure apple juice (Minute Maid) was compared with absorption from ferrous sulphate, a highly bioavailable form of iron, in 15 women with relatively low iron stores. Both forms of iron were enriched with an iron stable isotope and iron absorption from the apple juice drinks was calculated from the isotopic enrichment of red blood cells 14 days after the last test meal. Although mean absorption of iron from SunActive Fe was significantly lower than from ferrous sulphate (5.5% compared with 9.1%), the mean bioavailability of SunActive Fe iron relative to ferrous sulphate was 0.6, indicating that it is a good source of bioavailable iron. Iron Absorption from SunActive Fe was positively correlated (r = 0.97, P = 0.01) with absorption from ferrous sulphate, and negatively correlated with serum ferritin concentration (ferrous sulphate r = -0.81, P < 0.001; SunActive Fe r = -0.76, P = 0.01). SunActive Fe was well absorbed from apple juice and is a potentially useful fortificant for liquid food products.

  3. The use of a polymer inclusion membrane in flow injection analysis for the on-line separation and determination of zinc.

    PubMed

    Zhang, Lujia L; Cattrall, Robert W; Kolev, Spas D

    2011-06-15

    This paper reports the first use of a polymer inclusion membrane (PIM) for on-line separation in flow injection analysis (FIA) involving simultaneous extraction and back-extraction. The FIA system containing the PIM separation module was used for the determination of Zn(II) in aqueous samples in the presence of Mg(II), Ca(II), Cd(II), Co(II), Ni(II), Cu(II), and Fe(III). The Fe(III) and Cu(II) interferences were eliminated by off-line precipitation with phosphate and on-line complexation with chloride, respectively. The concentration of Zn(II) was determined spectrophotometrically using 4-(2-pyridylazo) resorcinol (PAR). The optimal composition of the PIM consisted of 40% (m/m) di(2-ethlyhexyl) phosphoric acid (D2EHPA) as carrier, 10% (m/m) dioctyl phthalate (DOP) as plasticizer and 50% (m/m) poly(vinyl chloride) (PVC) as the base polymer. The optimized FIA system was characterized by a linear calibration curve in the range from 1.0 to 30.0 mg L(-1) Zn(II), a detection limit of 0.05 mg L(-1) and a relative standard deviation of 3.4% with a sampling rate of 4h(-1). Reproducible results were obtained for 20 replicate injections over a 5h period which demonstrated a good membrane stability. The FIA system was applied to the determination of Zn(II) in pharmaceuticals and samples from the galvanizing industry and very good agreement with atomic absorption spectrometry was obtained. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Optical and electrical studies of cerium mixed oxides

    NASA Astrophysics Data System (ADS)

    Sherly, T. R.; Raveendran, R.

    2014-10-01

    The fast development in nanotechnology makes enthusiastic interest in developing nanomaterials having tailor made properties. Cerium mixed oxide materials have received great attention due to their UV absorption property, high reactivity, stability at high temperature, good electrical property etc and these materials find wide applications in solid oxide fuel cells, solar control films, cosmetics, display units, gas sensors etc. In this study cerium mixed oxide compounds were prepared by co-precipitation method. All the samples were doped with Zn (II) and Fe (II). Preliminary characterizations such as XRD, SEM / EDS, TEM were done. UV - Vis, Diffuse reflectance, PL, FT-IR, Raman and ac conductivity studies of the samples were performed.

  5. THE CONNECTIONS BETWEEN THE UV AND OPTICAL Fe ii EMISSION LINES IN TYPE 1 AGNs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovacević-Dojcinović, Jelena; Popović, Luka Č., E-mail: jkovacevic@aob.bg.ac.rs, E-mail: lpopovic@aob.bg.ac.rs

    We investigate the spectral properties of the UV (λλ2650–3050 Å) and optical (λλ4000–5500 Å) Fe ii emission features in a sample of 293 Type 1 active galactic nuclei (AGNs) from the Sloan Digital Sky Survey database. We explore different correlations between their emission line properties, as well as the correlations with other emission lines from the spectral range. We find several interesting correlations and outline the most interesting results as follows. (i) There is a kinematical connection between the UV and optical Fe ii lines, indicating that the UV and optical Fe ii lines originate from the outer part ofmore » the broad line region, the so-called intermediate line region. (ii) The unexplained anticorrelations of the optical Fe ii equivalent width (EW Fe ii{sub opt}) versus EW [O iii] 5007 Å and EW Fe ii{sub opt} versus FWHM Hβ have not been detected for the UV Fe ii lines. (iii) The significant averaged redshift in the UV Fe ii lines, which is not present in optical Fe ii, indicates an inflow in the UV Fe ii emitting clouds, and probably their asymmetric distribution. (iv) Also, we confirm the anticorrelation between the intensity ratio of the optical and UV Fe ii lines and the FWHM of Hβ, and we find the anticorrelations of this ratio with the widths of Mg ii 2800 Å, optical Fe ii, and UV Fe ii. This indicates a very important role for the column density and microturbulence in the emitting gas. We discuss the starburst activity in high-density regions of young AGNs as a possible explanation of the detected optical Fe ii correlations and intensity line ratios of the UV and optical Fe ii lines.« less

  6. The UVES Large Program for testing fundamental physics I. Bounds on a change in α towards quasar HE 2217-2818

    NASA Astrophysics Data System (ADS)

    Molaro, P.; Centurión, M.; Whitmore, J. B.; Evans, T. M.; Murphy, M. T.; Agafonova, I. I.; Bonifacio, P.; D'Odorico, S.; Levshakov, S. A.; Lopez, S.; Martins, C. J. A. P.; Petitjean, P.; Rahmani, H.; Reimers, D.; Srianand, R.; Vladilo, G.; Wendt, M.

    2013-07-01

    Context. Absorption-line systems detected in quasar spectra can be used to compare the value of the fine-structure constant, α, measured today on Earth with its value in distant galaxies. In recent years, some evidence has emerged of small temporal and also spatial variations in α on cosmological scales. These variations may reach a fractional level of ≈ 10 ppm (parts per million). Aims: To test these claims we are conducting a Large Program of observations with the Very Large Telescope's Ultraviolet and Visual Echelle Spectrograph (UVES), and are obtaining high-resolution (R ≈ 60 000) and high signal-to-noise ratio (S/N ≈ 100) UVES spectra calibrated specifically for this purpose. Here we analyse the first complete quasar spectrum from this programme, that of HE 2217-2818. Methods: We applied the many multiplet method to measure α in five absorption systems towards this quasar: zabs = 0.7866, 0.9424, 1.5558, 1.6279 , and 1.6919. Results: The most precise result is obtained for the absorber at zabs = 1.6919 where 3 Fe ii transitions and Al ii λ1670 have high S/N and provide a wide range of sensitivities to α. The absorption profile is complex with several very narrow features, and it requires 32 velocity components to be fitted to the data. We also conducted a range of tests to estimate the systematic error budget. Our final result for the relative variation in α in this system is Δα/α = +1.3 ± 2.4stat ± 1.0sys ppm. This is one of the tightest current bounds on α-variation from an individual absorber. A second, separate approach to the data reduction, calibration, and analysis of this system yielded a slightly different result of -3.8 ppm, possibly suggesting a larger systematic error component than our tests indicated. This approach used an additional 3 Fe ii transitions, parts of which were masked due to contamination by telluric features. Restricting this analysis to the Fe ii transitions alone and using a modified absorption profile model gave a result that is consistent with the first approach, Δα/α = +1.1 ± 2.6stat ppm. The four other absorbers have simpler absorption profiles, with fewer and broader features, and offer transitions with a narrower range of sensitivities to α. They therefore provide looser bounds on Δα/α at the ≳10 ppm precision level. Conclusions: The absorbers towards quasar HE 2217-2818 reveal no evidence of any variation in α at the 3-ppm precision level (1σ confidence). If the recently reported 10-ppm dipolar variation in α across the sky is correct, the expectation at this sky position is (3.2-5.4) ± 1.7 ppm depending on dipole model used. Our constraint of Δα/α = +1.3 ± 2.4stat ± 1.0sys ppm is not inconsistent with this expectation. Based on observations taken at ESO Paranal Observatory. Program L 185.A-0745Tables 4-8 are available in electronic form at http://www.aanda.org

  7. Reassignment of the Iron (3) Absorption Bands in the Spectra of Mars

    NASA Technical Reports Server (NTRS)

    Sherman, D. M.

    1985-01-01

    Absorption features in the near-infrared and visible region reflectance spectra of Mars have been assigned to specific Fe (3+) crystal-field and o(2-) yields Fe(3+) charge transfer transitions. Recently, near-ultraviolet absorption spectra of iron oxides were obtained and the energies of o(2-) yields Fe(3+) charge-transfer (LMCT) transitions were determined from accurate SCF-X # alpha-SW molecular orbital calculations on (FeO6)(9-) and (FeO4)(5-) clusters. Both the theoretical and experimental results, together with existing data in the literature, show that some of the previous Fe(3+) band assignments in the spectra of Mars need to be revised. The theory of Fe(3+) spectra in minerals is discussed and applied to the spectrum of Mars.

  8. An Iron(II)(1,3-bis(2′-pyridylimino)isoindoline) Complex as a Catalyst for Substrate Oxidation with H2O2. Evidence for a Transient Peroxodiiron(III) Species

    PubMed Central

    Pap, József S.; Cranswick, Matthew A.; Balogh-Hergovich, É.; Baráth, Gábor; Giorgi, Michel; Rohde, Gregory T.; Kaizer, József; Speier, Gábor; Que, Lawrence

    2014-01-01

    The complex [Fe(indH)(solvent)3](ClO4)2 (1) has been isolated from the reaction of equimolar amounts of 1,3-bis(2′-pyridylimino)isoindoline (indH) and Fe(ClO4)2 in acetonitrile and characterized by X-ray crystallography and several spectroscopic techniques. It is a suitable catalyst for the oxidation of thioanisoles and benzyl alcohols with H2O2 as the oxidant. Hammett correlations and kinetic isotope effect experiments support the involvement of an electrophilic metal-based oxidant. A metastable green species (2) is observed when 1 is reacted with H2O2 at −40 °C, which has been characterized to have a FeIII(μ-O)(μ-O2)FeIII core on the basis of UV-Vis, electron paramagnetic resonance, resonance Raman, and X-ray absorption spectroscopic data. PMID:24587695

  9. Biogeochemistry of Fe(II) oxidation in a photosynthetic microbial mat: Implications for Precambrian Fe(II) oxidation

    NASA Astrophysics Data System (ADS)

    Trouwborst, Robert E.; Johnston, Anne; Koch, Gretchen; Luther, George W.; Pierson, Beverly K.

    2007-10-01

    We studied the role of microbial photosynthesis in the oxidation of Fe(II) to Fe(III) in a high Fe(II) and high Mn(II) hot spring devoid of sulfide and atmospheric oxygen in the source waters. In situ light and dark microelectrode measurements of Fe(II), Mn(II) and O 2 were made in the microbial mat consisting of cyanobacteria and anoxygenic photosynthetic Chloroflexus sp. We show that Fe(II) oxidation occurred when the mat was exposed to varying intensities of sunlight but not near infrared light. We did not observe any Mn(II) oxidation under any light or dark condition over the pH range 5-7. We observed the impact of oxygenic photosynthesis on Fe(II) oxidation, distinct from the influence of atmospheric O 2 and anoxygenic photosynthesis. In situ Fe(II) oxidation rates in the mats and cell suspensions exposed to light are consistent with abiotic oxidation by O 2. The oxidation of Fe(II) to form primary Fe(III) phases contributed to banded iron-formations (BIFs) during the Precambrian. Both oxygenic photosynthesis, which produces O 2 as an oxidizing waste product, and anoxygenic photosynthesis in which Fe(II) is used to fix CO 2 have been proposed as Fe(II) oxidation mechanisms. Although we do not know the specific mechanisms responsible for all Precambrian Fe(II) oxidation, we assessed the relative importance of both mechanisms in this modern hot spring environment. In this environment, cyanobacterial oxygen production accounted for all the observed Fe(II) oxidation. The rate data indicate that a modest population of cyanobacteria could have mediated sufficient Fe(II) oxidation for some BIFs.

  10. Photoreduction of Terrigenous Fe-Humic Substances Leads to Bioavailable Iron in Oceans.

    PubMed

    Blazevic, Amir; Orlowska, Ewelina; Kandioller, Wolfgang; Jirsa, Franz; Keppler, Bernhard K; Tafili-Kryeziu, Myrvete; Linert, Wolfgang; Krachler, Rudolf F; Krachler, Regina; Rompel, Annette

    2016-05-23

    Humic substances (HS) are important iron chelators responsible for the transport of iron from freshwater systems to the open sea, where iron is essential for marine organisms. Evidence suggests that iron complexed to HS comprises the bulk of the iron ligand pool in near-coastal waters and shelf seas. River-derived HS have been investigated to study their transport to, and dwell in oceanic waters. A library of iron model compounds and river-derived Fe-HS samples were probed in a combined X-ray absorption spectroscopy (XAS) and valence-to-core X-ray emission spectroscopy (VtC-XES) study at the Fe K-edge. The analyses performed revealed that iron complexation in HS samples is only dependent on oxygen-containing HS functional groups, such as carboxyl and phenol. The photoreduction mechanism of Fe III -HS in oceanic conditions into bioavailable aquatic Fe II forms, highlights the importance of river-derived HS as an iron source for marine organisms. Consequently, such mechanisms are a vital component of the upper-ocean iron biogeochemistry cycle.

  11. Determining Cloud Parameters with the Curve-Of-Growth: Application Eta Car

    NASA Technical Reports Server (NTRS)

    Vieira, G. L.; Gull, T. R.; Bruhweiler, F.; Nielsen, K. E.; Verner, E. M.

    2004-01-01

    We have investigated the NUV part of the Eta Car spectrum, using data with high spatial and high spectral resolving power obtained with the HST/STIS under the Treasury Program. The NUV spectrum of Eta Car Shows a great contribution of absorption features from neutral and singly ionized elements along the line-of-sight. A large number of velocity systems have been observed. The two most prominent, with Doppler shifts corresponding to -146 and -513 km/s respectively, are shown to be useful for investigations of the gaseous environments responsible for the absorption. The -146 and the -513 km/s velocity systems display different characteristics regarding the ionization state and spectral line width, which suggest that they originate at different distances from the central object. We have investigated the absorption structures before the spectroscopic minimum, occurring during the summer of 2003, with a standard curve-of-growth. We have independently derived the column density and the b-value for the Fe II (-146 km/s) and Ti II (-513 km/s) velocity systems. The excitation temperature has been determined for the -146 km/s velocity system using the photo-ionization code \\textsc(cloudy). The -146 km/s velocity structure shows noticeable variation over the spectroscopic minimum. The sudden appearance and disappearance of Ti II and V II are astonishing. We have made an attempt to analyze these variations with the curve-of-growth method and will present preliminary results.

  12. On the use of the optothermal window technique for the determination of iron (II) content in fortified commercial milk

    NASA Astrophysics Data System (ADS)

    Cardoso, S. L.; Dias, C. M. F.; Lima, J. A. P.; Massunaga, M. S. O.; da Silva, M. G.; Vargas, H.

    2003-01-01

    This work reports on the use of the optothermal window and a well-proven phenanthroline colorimetry method for determination of iron (II) content in a commercial fortified milk. Initially, iron (II) in distilled water was determined using a series of calibration samples with ferrous sulfate acting as the source of iron (II). In the following phase, this calibration methodology was applied to commercial milk as the sample matrix. The phenanthroline colorimetry [American Public Health Association, Washington, DC (1998)] was chosen in an attempt to achieve proper selectivity (i.e., to obtain the absorption band, the wavelength of which is centered near the radiation wavelength available for our experiments: Excitation wavelength at a 514-nm line of a 20-mW tunable Ar ion laser). Finally, samples of commercially available fortified milk were analyzed in an attempt to access Fe (II) content.

  13. Ferrocenyl-functionalised terpyridines and their transition-metal complexes: syntheses, structures and spectroscopic and electrochemical properties.

    PubMed

    Siemeling, Ulrich; Vor der Brüggen, Jens; Vorfeld, Udo; Neumann, Beate; Stammler, Anja; Stammler, Hans-George; Brockhinke, Andreas; Plessow, Regina; Zanello, Piero; Laschi, Franco; Fabrizi de Biani, Fabrizia; Fontani, Marco; Steenken, Steen; Stapper, Marion; Gurzadyan, Gagik

    2003-06-16

    Terpyridine ligands of the type Fc'-X-tpy (Fc'=ferrocenyl or octamethylferrocenyl, X=rigid spacer, tpy'=4'-substituted 2,2':6',2''-terpyridine) were prepared, crystallographically characterised and used for the synthesis of di- and trinuclear bis(terpyridine) complexes of RuII, FeII and ZnII. Donor-sensitiser dyads and triads based on RuII were thoroughly investigated by (spectro)electrochemistry, UV/Vis, transient absorption and luminescence spectroscopy, and an energy level scheme was derived on the basis of the data collected. Intramolecular quenching of the photoexcited RuII complexes by the redox-active Fc' groups can occur reductively and by energy transfer. Both the redox potential of the donor Fc' and the nature of the spacer X have a decisive influence on excited-state lifetimes and emission properties of the complexes. Some of the compounds show room-temperature luminescence, which is unprecedented for ferrocenyl-functionalised compounds of this kind.

  14. Speciation and distribution of copper in a mining soil using multiple synchrotron-based bulk and microscopic techniques.

    PubMed

    Yang, Jianjun; Liu, Jin; Dynes, James J; Peak, Derek; Regier, Tom; Wang, Jian; Zhu, Shenhai; Shi, Jiyan; Tse, John S

    2014-02-01

    Molecular-level understanding of soil Cu speciation and distribution assists in management of Cu contamination in mining sites. In this study, one soil sample, collected from a mining site contaminated since 1950s, was characterized complementarily by multiple synchrotron-based bulk and spatially resolved techniques for the speciation and distribution of Cu as well as other related elements (Fe, Ca, Mn, K, Al, and Si). Bulk X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopy revealed that soil Cu was predominantly associated with Fe oxides instead of soil organic matter. This agreed with the closest association of Cu to Fe by microscopic X-ray fluorescence (U-XRF) and scanning transmission X-ray microscopy (STXM) nanoanalysis, along with the non-occurrence of photoreduction of soil Cu(II) by quick Cu L3,2-edge XANES spectroscopy (Q-XANES) which often occurs when Cu organic complexes are present. Furthermore, bulk-EXAFS and STXM-coupled Fe L3,2-edge nano-XANES analysis revealed soil Cu adsorbed primarily to Fe(III) oxides by inner-sphere complexation. Additionally, Cu K-edge μ-XANES, L3,2-edge bulk-XANES, and successive Q-XANES results identified the presence of Cu2S rather than radiation-damage artifacts dominant in certain microsites of the mining soil. This study demonstrates the great benefits in use of multiple combined synchrotron-based techniques for comprehensive understanding of Cu speciation in heterogeneous soil matrix, which facilitates our prediction of Cu reactivity and environmental fate in the mining site.

  15. THE COMPLEX CIRCUMNUCLEAR ENVIRONMENT OF THE BROAD-LINE RADIO GALAXY 3C 390.3 REVEALED BY CHANDRA HETG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tombesi, F.; Kallman, T.; Leutenegger, M. A.

    2016-10-20

    We present the first high spectral resolution X-ray observation of the broad-line radio galaxy 3C 390.3 obtained with the high-energy transmission grating spectrometer on board the Chandra X-ray Observatory . The spectrum shows complex emission and absorption features in both the soft X-rays and Fe K band. We detect emission and absorption lines in the energy range E = 700–1000 eV associated with ionized Fe L transitions (Fe XVII–XX). An emission line at the energy of E ≃ 6.4 keV consistent with the Fe K α is also observed. Our best-fit model requires at least three different components: (i) amore » hot emission component likely associated with the hot interstellar medium in this elliptical galaxy with temperature kT = 0.5 ± 0.1 keV; (ii) a warm absorber with ionization parameter log ξ = 2.3 ± 0.5 erg s{sup −1} cm, column density log N {sub H} = 20.7 ± 0.1 cm{sup −2}, and outflow velocity v {sub out} < 150 km s{sup −1}; and (iii) a lowly ionized reflection component in the Fe K band likely associated with the optical broad-line region or the outer accretion disk. These evidences suggest the possibility that we are looking directly down the ionization cone of this active galaxy and that the central X-ray source only photoionizes along the unobscured cone. This is overall consistent with the angle-dependent unified picture of active galactic nuclei.« less

  16. The Complex Circumnuclear Environment of the Broad-Line Radio Galaxy 3C 390.3 Revealed by Chandra HETG

    NASA Technical Reports Server (NTRS)

    Tombesi, F.; Reeves, J. N.; Kallman, Timothy R.; Reynolds, C. S.; Mushotzky, R. F.; Braito, V.; Behar, E.; Leutenegger, Maurice A.; Cappi, M.

    2016-01-01

    We present the first high spectral resolution X-ray observation of the broad-line radio galaxy 3C 390.3 obtained with the high-energy transmission grating spectrometer on board the Chandra X-ray Observatory. The spectrum shows complex emission and absorption features in both the soft X-rays and Fe K band. We detect emission and absorption lines in the energy range E = 700-1000 eV associated with ionized Fe L transitions (Fe XVIIXX). An emission line at the energy of E approximately equal to 6.4 keV consistent with the Fe K alpha is also observed. Our best-fit model requires at least three different components: (i) a hot emission component likely associated with the hot interstellar medium in this elliptical galaxy with temperature kT = 0.5 +/- 0.1 keV; (ii) a warm absorber with ionization parameter log Epislon = 2.3 +/- 0.5 erg s(exp 1) cm, column density logN(sub H) = 20.7 +/- 0.1 cm(exp -2), and outflow velocity v(sub out) less than 150 km s(exp -1); and (iii) a lowly ionized reflection component in the Fe K band likely associated with the optical broad-line region or the outer accretion disk. These evidences suggest the possibility that we are looking directly down the ionization cone of this active galaxy and that the central X-ray source only photoionizes along the unobscured cone. This is overall consistent with the angle-dependent unified picture of active galactic nuclei.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swanner, E. D.; Bayer, T.; Wu, W.

    In this study, we couple iron isotope analysis to microscopic and mineralogical investigation of iron speciation during circumneutral Fe(II) oxidation and Fe(III) precipitation with photosynthetically produced oxygen. In the presence of the cyanobacterium Synechococcus PCC 7002, aqueous Fe(II) (Fe(II) aq) is oxidized and precipitated as amorphous Fe(III) oxyhydroxide minerals (iron precipitates, Fe ppt), with distinct isotopic fractionation (ε 56Fe) values determined from fitting the δ 56Fe(II) aq (1.79‰ and 2.15‰) and the δ 56Fe ppt (2.44‰ and 2.98‰) data trends from two replicate experiments. Additional Fe(II) and Fe(III) phases were detected using microscopy and chemical extractions and likely represent Fe(II)more » and Fe(III) sorbed to minerals and cells. The iron desorbed with sodium acetate (FeNaAc) yielded heavier δ 56Fe compositions than Fe(II) aq. Modeling of the fractionation during Fe(III) sorption to cells and Fe(II) sorption to Feppt, combined with equilibration of sorbed iron and with Fe(II) aq using published fractionation factors, is consistent with our resulting δ 56FeNaAc. The δ 56Fe ppt data trend is inconsistent with complete equilibrium exchange with Fe(II)aq. Because of this and our detection of microbially excreted organics (e.g., exopolysaccharides) coating Feppt in our microscopic analysis, we suggest that electron and atom exchange is partially suppressed in this system by biologically produced organics. These results indicate that cyanobacteria influence the fate and composition of iron in sunlit environments via their role in Fe(II) oxidation through O 2 production, the capacity of their cell surfaces to sorb iron, and the interaction of secreted organics with Fe(III) minerals.« less

  18. Efficient catalytic As(III) oxidation on the surface of ferrihydrite in the presence of aqueous Mn(II).

    PubMed

    Lan, Shuai; Ying, Hong; Wang, Xiaoming; Liu, Fan; Tan, Wenfeng; Huang, Qiaoyun; Zhang, Jing; Feng, Xionghan

    2018-01-01

    Arsenic is a carcinogenic element that exists primarily as arsenate [As(V)] and arsenite [As(III)] in the nature environment, with As(III) being more toxic and mobile of the two species. In addition, ferrihydrite, which is widely distributed in soils and aquatic environments, can catalyze the oxidation of Mn(II) and accelerate the formation of high-valence Mn, which can significantly influence the speciation, toxicity, and mobility of As when these species co-exist. In this context, we herein explored the mechanism of As(III) oxidation in the presence of ferrihydrite and Mn(II) using a kinetic approach combined with multiple spectroscopic techniques, including X-ray absorption near edge spectroscopy, in situ horizontal attenuated total-reflectance Fourier transform infrared spectroscopy, and in situ quick scanning X-ray absorption spectroscopy. Our results indicate that efficient As(III) oxidation by dissolved O 2 occurs on the surface of ferrihydrite in the presence of aqueous Mn(II). Compared with As(III) oxidation in the presence of ferrihydrite and Mn oxides (i.e., Mn oxides/hydroxides), the degree of As(III) oxidation in the ferrihydrite-Mn(II) system was significantly higher, and the majority of generated As(V) was adsorbed on the mineral (i.e., ferrihydrite) surface. Furthermore, As(III) oxidation was enhanced upon increasing both the molar ratio of Mn(II)/As(III) and the solution pH. The greater As(III) oxidation by O 2 in the ferrihydrite-Mn(II) system was mainly attributed to the formation of a strong oxidant of the instantaneous intermediate Mn(III) species via Mn(II) oxidation under catalysis by the ferrihydrite surface. Moreover, As(III) oxidation occurred mainly on the ferrihydrite surface and was accompanied by the regeneration of Mn(II), thereby rendering it recyclable. These results therefore provide new insights into the mechanism of As(III) oxidation on the surfaces of Fe oxides (i.e., Fe oxides/hydroxides) in the presence of aqueous Mn(II) as well as the new details regarding the electron transfer mechanisms between the As(III)-Mn(II, III)-O 2 species at the ferrihydrite surface, and could lead to novel approaches for As(III) contaminant remediation in the environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. HD 63021: An Ae Star with X-Ray Flux

    NASA Astrophysics Data System (ADS)

    Whelan, David G.; Labadie-Bartz, Jon; Chojnowski, S. Drew; Daglen, James; Hudson, Ken

    2018-05-01

    Balmer and Fe II (42) multiplet emission were discovered in a spectrum of HD 63021 on 10 April (UTC), 2018. Subsequent observations revealed variability in both photospheric absorption lines and Balmer line emission. In addition, it is an X-ray source, with a luminosity that is consistent with either a very strong stellar wind, or else the presence of a compact binary companion. Spectroscopic and photometric followup are planned to determine the nature of this source.

  20. Evidence for the Existence of Autotrophic Nitrate-Reducing Fe(II)-Oxidizing Bacteria in Marine Coastal Sediment

    PubMed Central

    Laufer, Katja; Røy, Hans; Jørgensen, Bo Barker

    2016-01-01

    ABSTRACT Nitrate-reducing Fe(II)-oxidizing microorganisms were described for the first time ca. 20 years ago. Most pure cultures of nitrate-reducing Fe(II) oxidizers can oxidize Fe(II) only under mixotrophic conditions, i.e., when an organic cosubstrate is provided. A small number of nitrate-reducing Fe(II)-oxidizing cultures have been proposed to grow autotrophically, but unambiguous evidence for autotrophy has not always been provided. Thus, it is still unclear whether or to what extent Fe(II) oxidation coupled to nitrate reduction is an enzymatically catalyzed and energy-yielding autotrophic process or whether Fe(II) is abiotically oxidized by nitrite from heterotrophic nitrate reduction. The aim of the present study was to find evidence for the existence of autotrophic nitrate-reducing Fe(II) oxidizers in coastal marine sediments. Microcosm incubations showed that with increasing incubation times, the stoichiometric ratio of reduced nitrate/oxidized Fe(II) [NO3−reduced/Fe(II)oxidized] decreased, indicating a decreasing contribution of heterotrophic denitrification and/or an increasing contribution of autotrophic nitrate-reducing Fe(II) oxidation over time. After incubations of sediment slurries for >10 weeks, nitrate-reducing activity ceased, although nitrate was still present. This suggests that heterotrophic nitrate reduction had ceased due to the depletion of readily available organic carbon. However, after the addition of Fe(II) to these batch incubation mixtures, the nitrate-reducing activity resumed, and Fe(II) was oxidized, indicating the activity of autotrophic nitrate-reducing Fe(II) oxidizers. The concurrent reduction of 14C-labeled bicarbonate concentrations unambiguously proved that autotrophic C fixation occurred during Fe(II) oxidation and nitrate reduction. Our results clearly demonstrated that autotrophic nitrate-reducing Fe(II)-oxidizing bacteria were present in the investigated coastal marine sediments. IMPORTANCE Twenty years after the discovery of nitrate-reducing Fe(II) oxidizers, it is still controversially discussed whether autotrophic nitrate-reducing Fe(II)-oxidizing microorganisms exist and to what extent Fe(II) oxidation in this reduction/oxidation process is enzymatically catalyzed or which role abiotic side reactions of Fe(II) with reactive N species play. Most pure cultures of nitrate-reducing Fe(II) oxidizers are mixotrophic; i.e., they need an organic cosubstrate to maintain their activity over several cultural transfers. For the few existing autotrophic isolates and enrichment cultures, either the mechanism of nitrate-reducing Fe(II) oxidation is not known or evidence for their autotrophic lifestyle is controversial. In the present study, we provide evidence for the existence of autotrophic nitrate-reducing Fe(II) oxidizers in coastal marine sediments. The evidence is based on stoichiometries of nitrate reduction and Fe(II) oxidation determined in microcosm incubations and the incorporation of carbon from CO2 under conditions that favor the activity of nitrate-reducing Fe(II) oxidizers. PMID:27496777

  1. Formation of Environmentally Persistent Free Radical (EPFR) in Iron(III) Cation-Exchanged Smectite Clay

    PubMed Central

    Nwosu, Ugwumsinachi G.; Roy, Amitava; dela Cruz, Albert Leo N.; Dellinger, Barry; Cook, Robert

    2016-01-01

    Environmentally persistent free radicals (EPFRs) have been found at a number of Superfund sites, with EPFRs being formed via a proposed redox process at ambient environmental conditions. The possibility of such a redox process taking place at ambient environmental conditions is studied utilizing a surrogate soil system of phenol and iron(III)-exchanged calcium montmorillonite clay, Fe(III)CaM. Sorption of phenol by the Fe(III)CaM is demonstrated by Fourier-transformed infra-red (FT-IR) spectroscopy, as evidenced by the peaks between 1345 cm−1 and 1595 cm−1, and at lower frequencies between 694 cm−1 and 806 cm−1, as well as X-ray diffraction (XRD) spectroscopy, as shown by an increase in interlayer spacing within Fe(III)CaM. The formation and characterization of the EPFRs is determined by electron paramagnetic resonance (EPR) spectroscopy, showing phenoxyl-type radical with a g-factor of 2.0034 and ΔHp-p of 6.1 G at an average concentration of 7.5 × 1017 spins/g. EPFRs lifetime data are indicative of oxygen and water molecules being responsible for EPFR decay. The change in the oxidation state of the iron redox center is studied by X-ray absorption near-edge structure (XANES) spectroscopy, showing that 23% of the Fe(III) is reduced to Fe(II). X-ray photoemission spectroscopy (XPS) results confirm the XANES results. These findings, when combined with the EPFR concentration data, demonstrate that the stoichiometry of the EPFR formation under the conditions of this study is 1.5 × 10−2 spins/Fe(II) atom. PMID:26647158

  2. Formation of environmentally persistent free radical (EPFR) in iron(III) cation-exchanged smectite clay.

    PubMed

    Nwosu, Ugwumsinachi G; Roy, Amitava; dela Cruz, Albert Leo N; Dellinger, Barry; Cook, Robert

    2016-01-01

    Environmentally persistent free radicals (EPFRs) have been found at a number of Superfund sites, with EPFRs being formed via a proposed redox process at ambient environmental conditions. The possibility of such a redox process taking place at ambient environmental conditions is studied utilizing a surrogate soil system of phenol and iron(III)-exchanged calcium montmorillonite clay, Fe(III)CaM. Sorption of phenol by the Fe(III)CaM is demonstrated by Fourier-transformed infra-red (FT-IR) spectroscopy, as evidenced by the peaks between 1345 cm(-1) and 1595 cm(-1), and at lower frequencies between 694 cm(-1) and 806 cm(-1), as well as X-ray diffraction (XRD) spectroscopy, as shown by an increase in interlayer spacing within Fe(III)CaM. The formation and characterization of the EPFRs is determined by electron paramagnetic resonance (EPR) spectroscopy, showing phenoxyl-type radical with a g-factor of 2.0034 and ΔHP-P of 6.1 G at an average concentration of 7.5 × 10(17) spins per g. EPFRs lifetime data are indicative of oxygen and water molecules being responsible for EPFR decay. The change in the oxidation state of the iron redox center is studied by X-ray absorption near-edge structure (XANES) spectroscopy, showing that 23% of the Fe(III) is reduced to Fe(II). X-ray photoemission spectroscopy (XPS) results confirm the XANES results. These findings, when combined with the EPFR concentration data, demonstrate that the stoichiometry of the EPFR formation under the conditions of this study is 1.5 × 10(-2) spins per Fe(II) atom.

  3. Intra- and inter-atomic optical transitions of Fe, Co, and Ni ferrocyanides studied using first-principles many-electron calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Shinta, E-mail: s-watanabe@nucl.nagoya-u.ac.jp, E-mail: j-onoe@nucl.nagoya-u.ac.jp; Sawada, Yuki; Nakaya, Masato

    We have investigated the electronic structures and optical properties of Fe, Co, and Ni ferrocyanide nanoparticles using first-principles relativistic many-electron calculations. The overall features of the theoretical absorption spectra for Fe, Ni, and Co ferrocyanides calculated using a first-principles many-electron method well reproduced the experimental one. The origins of the experimental absorption spectra were clarified by performing a configuration analysis based on the many-electron wave functions. For Fe ferrocyanide, the experimental absorption peaks originated from not only the charge-transfer transitions from Fe{sup 2+} to Fe{sup 3+} but also the 3d-3d intra-transitions of Fe{sup 3+} ions. In addition, the spin crossovermore » transition of Fe{sup 3+} predicted by the many-electron calculations was about 0.24 eV. For Co ferrocyanide, the experimental absorption peaks were mainly attributed to the 3d-3d intra-transitions of Fe{sup 2+} ions. In contrast to the Fe and Co ferrocyanides, Ni ferrocyanide showed that the absorption peaks originated from the 3d-3d intra-transitions of Ni{sup 3+} ions in a low-energy region, while from both the 3d-3d intra-transitions of Fe{sup 2+} ions and the charge-transfer transitions from Fe{sup 2+} to Ni{sup 3+} in a high-energy region. These results were quite different from those of density-functional theory (DFT) calculations. The discrepancy between the results of DFT calculations and those of many-electron calculations suggested that the intra- and inter-atomic transitions of transition metal ions are significantly affected by the many-body effects of strongly correlated 3d electrons.« less

  4. Second-Sphere Effects in Dinuclear FeIIIZnII Hydrolase Biomimetics: Tuning Binding and Reactivity Properties.

    PubMed

    Camargo, Tiago Pacheco; Neves, Ademir; Peralta, Rosely A; Chaves, Cláudia; Maia, Elene C P; Lizarazo-Jaimes, Edgar H; Gomes, Dawidson A; Bortolotto, Tiago; Norberto, Douglas R; Terenzi, Hernán; Tierney, David L; Schenk, Gerhard

    2018-01-02

    Herein, we report the synthesis and characterization of two dinuclear Fe III Zn II complexes [Fe III Zn II LP1] (1) and [Fe III Zn II LP2] (2), in which LP1 and LP2 are conjugated systems containing one and two pyrene groups, respectively, connected via the diamine -HN(CH 2 ) 4 NH- spacer to the well-known N 5 O 2 -donor H 2 L ligand (H 2 L = 2-bis{[(2-pyridylmethyl)aminomethyl]-6-[(2-hydroxybenzyl)(2-pyridylmethyl)]aminomethyl}-4-methylphenol). The complex [Fe III Zn II L1] (3), in which H 2 L was modified to H 2 L1, with a carbonyl group attached to the terminal phenol group, was included in this study for comparison purposes. 1 Both complexes 1 and 2 were satisfactorily characterized in the solid state and in solution. Extended X-ray absorption fine structure data for 1 and 3 in an acetonitrile solution show that the multiply bridged structure seen in the solid state of 3 is retained in solution. Potentiometric and UV-vis titration of 1 and 2 show that electrostatic interaction between the protonated amino groups and coordinated water molecules significantly decreases the pK a of the iron(III)-bound water compared to those of 3. On the other hand, catalytic activity studies using 1 and 2 in the hydrolysis of the activated substrate bis(2,4-dinitrophenyl)phosphate (BDNPP) resulted in a significant increase in the association of the substrate (K ass ≅ 1/K M ) compared to that of 3 because of electrostatic and hydrophobic interactions between BDNPP and the side-chain diaminopyrene of the ligands H 2 LP1 and H 2 LP2. In addition, the introduction of the pyrene motifs in 1 and 2 enhanced their activity toward DNA and as effective antitumor drugs, although the biochemical mechanism of the latter effect is currently under investigation. These complexes represent interesting examples of how to promote an increase in the activity of traditional artificial metal nucleases by introducing second-coordination-sphere effects.

  5. Structural Basis for Assembly of the MnIV/FeIII Cofactor in the Class Ic Ribonucleotide Reductase from Chlamydia trachomatis‡

    PubMed Central

    Dassama, Laura M.K.; Krebs, Carsten; Bollinger, J. Martin; Rosenzweig, Amy C.; Boal, Amie K.

    2013-01-01

    The class Ic ribonucleotide reductase (RNR) from Chlamydia trachomatis (Ct) employs a MnIV/FeIII cofactor in each monomer of its β2 subunit to initiate nucleotide reduction. The cofactor forms by reaction of MnII/FeII-β2 with O2. Previously, in vitro cofactor assembly from apo β2 and divalent metal ions produced a mixture of two forms, with Mn in site 1 (MnIV/FeIII) or site 2 (FeIII/MnIV), of which the more active MnIV/FeIII product predominates. Here we have addressed the basis for metal site-selectivity by solving X-ray crystal structures of apo, MnII, and MnII/FeII complexes of Ct β2. A structure obtained anaerobically with equimolar MnII, FeII, and apo protein reveals exclusive incorporation of MnII in site 1 and FeII in site 2, in contrast to the more modest site-selectivity achieved previously. Site-specificity is controlled thermodynamically by the apo protein structure, as only minor adjustments of ligands occur upon metal binding. Additional structures imply that, by itself, MnII binds in either site. Together the structures are consistent with a model for in vitro cofactor assembly in which FeII specificity for site 2 drives assembly of the appropriately configured heterobimetallic center, provided that FeII is substoichiometric. This model suggests that use of an MnIV/FeIII cofactor in vivo could be an adaptation to FeII limitation. A 1.8 Å resolution model of the MnII/FeII-β2 complex reveals additional structural determinants for activation of the cofactor, including a proposed site for side-on (η2) addition of O2 to FeII and a short (3.2 Å) MnII-FeII interionic distance, promoting formation of the MnIV/FeIV activation intermediate. PMID:23924396

  6. Modeling Fe II Emission and Revised Fe II (UV) Empirical Templates for the Seyfert 1 Galaxy I Zw 1

    NASA Astrophysics Data System (ADS)

    Bruhweiler, F.; Verner, E.

    2008-03-01

    We use the narrow-lined broad-line region (BLR) of the Seyfert 1 galaxy, I Zw 1, as a laboratory for modeling the ultraviolet (UV) Fe II 2100-3050 Å emission complex. We calculate a grid of Fe II emission spectra representative of BLR clouds and compare them with the observed I Zw 1 spectrum. Our predicted spectrum for log [nH/(cm -3) ] = 11.0, log [ΦH/(cm -2 s-1) ] = 20.5, and ξ/(1 km s-1) = 20, using Cloudy and an 830 level model atom for Fe II with energies up to 14.06 eV, gives a better fit to the UV Fe II emission than models with fewer levels. Our analysis indicates (1) the observed UV Fe II emission must be corrected for an underlying Fe II pseudocontinuum; (2) Fe II emission peaks can be misidentified as that of other ions in active galactic nuclei (AGNs) with narrow-lined BLRs possibly affecting deduced physical parameters; (3) the shape of 4200-4700 Å Fe II emission in I Zw 1 and other AGNs is a relative indicator of narrow-line region (NLR) and BLR Fe II emission; (4) predicted ratios of Lyα, C III], and Fe II emission relative to Mg II λ2800 agree with extinction corrected observed I Zw 1 fluxes, except for C IV λ1549 (5) the sensitivity of Fe II emission strength to microturbulence ξ casts doubt on existing relative Fe/Mg abundances derived from Fe II (UV)/Mg II flux ratios. Our calculated Fe II emission spectra, suitable for BLRs in AGNs, are available at http://iacs.cua.edu/people/verner/FeII. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 05-26555.

  7. Pore-scale characterization of biogeochemical controls on iron and uranium speciation under flow conditions.

    PubMed

    Pearce, Carolyn I; Wilkins, Michael J; Zhang, Changyong; Heald, Steve M; Fredrickson, Jim K; Zachara, John M

    2012-08-07

    Etched silicon microfluidic pore network models (micromodels) with controlled chemical and redox gradients, mineralogy, and microbiology under continuous flow conditions are used for the incremental development of complex microenvironments that simulate subsurface conditions. We demonstrate the colonization of micromodel pore spaces by an anaerobic Fe(III)-reducing bacterial species (Geobacter sulfurreducens) and the enzymatic reduction of a bioavailable Fe(III) phase within this environment. Using both X-ray microprobe and X-ray absorption spectroscopy, we investigate the combined effects of the precipitated Fe(III) phases and the microbial population on uranium biogeochemistry under flow conditions. Precipitated Fe(III) phases within the micromodel were most effectively reduced in the presence of an electron shuttle (AQDS), and Fe(II) ions adsorbed onto the precipitated mineral surface without inducing any structural change. In the absence of Fe(III), U(VI) was effectively reduced by the microbial population to insoluble U(IV), which was precipitated in discrete regions associated with biomass. In the presence of Fe(III) phases, however, both U(IV) and U(VI) could be detected associated with biomass, suggesting reoxidation of U(IV) by localized Fe(III) phases. These results demonstrate the importance of the spatial localization of biomass and redox active metals, and illustrate the key effects of pore-scale processes on contaminant fate and reactive transport.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coussy, Samuel; Grangeon, Sylvain; Bataillard, Philippe

    The prediction of the long term trace element mobility in anthropogenic soils would be a way to anticipate land management and should help in reusing slightly contaminated materials. In the present study, iron (Fe) and zinc (Zn) status evolution was investigated in a 100-year old Technosol. The site of investigation is an old brownfield located in the Nord-Pas-de-Calais region (France) which has not been reshaped since the beginning of the last century. The whole soil profile was sampled as a function of depth, and trace elements mobility at each depth was determined by batch leaching test. A specific focus onmore » Fe and Zn status was carried out by bulk analyses, such as selective dissolution, X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS). Fe and Zn status in the profile samples was also studied using laterally resolved techniques such as μ-particle induced X-ray emission (μ-PIXE) and μ-Rutherford backscattering spectroscopy (μ-RBS). The results indicate that (i) Fe is mainly under Fe(III) form, except a minor contribution of Fe(II) in the deeper samples, (ii) some Fe species inherited from the past have been weathered and secondary minerals are constituted of metal-bearing sulphates and Fe (hydr)oxides, (iii) ferrihydrite is formed during pedogenesis (iv) 20 to 30% more Fe (hydr)oxides are present in the surface than in depth and (v) Zn has tetrahedral coordination and is sorbed to phases of increasing crystallinity when depth increases. Zn-bearing phases identified in the present study are: complex Fe, Mn, Zn sulphides, sulphates, organic matter, and ferrihydrite. Soil formation on such material does not induce a dramatic increase of Zn solubility since efficient scavengers are concomitantly formed in the system. However, Technosols are highly heterogeneous and widely differ from one place to another. The behavior examined in this study is not generic and will depend on the type of Technosol and on the secondary minerals formed as well as on the nature and amount of organic matter.« less

  9. Reversal magnetization dependence with the Cr and Fe oxidation states in YFe1-xCrxO3 (0≤x≤1) perovskites

    NASA Astrophysics Data System (ADS)

    Fabian, F. A.; Pedra, P. P.; Moura, K. O.; Duque, J. G. S.; Meneses, C. T.

    2016-06-01

    In this work, we have carried out a detailed study of the magnetic and structural properties of YFe1-xCrxO3 (0≤x≤1) samples with orthorhombic structure obtained by co-precipitation method. Analysis of X-ray diffraction data using Rietveld refinement show that all samples present an orthorhombic crystal system with space group Pnma. Besides, we have observed a reduction of unit cell volume with increasing of the Cr concentration. SEM images show the formation of grains of micrometer order. X-ray Absorption near edge spectroscopy (XANES) measurements show a shift of absorption edge which can be indicate there is (i) different oxidation states to Fe and Cr ions and/or (ii) a changing in the point symmetry of Fe and Cr ions to the compounds. The magnetization measurements indicate a continuous decreasing of the magnetic transition temperature as function of chromium doping. The reversal magnetization effect was observed to concentrations around x=0.5. Besides, the deviation of the Curie-Weiss law and a weak ferromagnetic behavior observed at room temperature in the M vs H curves can be attributed to the strong magnetic interactions between the transition metals with different oxidation states.

  10. Non-Heme Iron Absorption and Utilization from Typical Whole Chinese Diets in Young Chinese Urban Men Measured by a Double-Labeled Stable Isotope Technique

    PubMed Central

    Yang, Lichen; Zhang, Yuhui; Wang, Jun; Huang, Zhengwu; Gou, Lingyan; Wang, Zhilin; Ren, Tongxiang; Piao, Jianhua; Yang, Xiaoguang

    2016-01-01

    Background This study was to observe the non-heme iron absorption and biological utilization from typical whole Chinese diets in young Chinese healthy urban men, and to observe if the iron absorption and utilization could be affected by the staple food patterns of Southern and Northern China. Materials and Methods Twenty-two young urban men aged 18–24 years were recruited and randomly assigned to two groups in which the staple food was rice and steamed buns, respectively. Each subject received 3 meals containing approximately 3.25 mg stable 57FeSO4 (the ratio of 57Fe content in breakfast, lunch and dinner was 1:2:2) daily for 2 consecutive days. In addition, approximately 2.4 mg 58FeSO4 was administered intravenously to each subject at 30–60 min after dinner each day. Blood samples were collected from each subject to measure the enrichment of the 57Fe and 58Fe. Fourteen days after the experimental diet, non-heme iron absorption was assessed by measuring 57Fe incorporation into red blood cells, and absorbed iron utilization was determined according to the red blood cell incorporation of intravenously infused 58Fe SO4. Results Non-heme iron intake values overall, and in the rice and steamed buns groups were 12.8 ±2.1, 11.3±1.3 and 14.3±1.5 mg, respectively; the mean 57Fe absorption rates were 11±7%, 13±7%, and 8±4%, respectively; and the mean infused 58Fe utilization rates were 85±8%, 84±6%, and 85±10%, respectively. There was no significantly difference in the iron intakes, and 57Fe absorption and infused 58Fe utilization rates between rice and steamed buns groups (all P>0.05). Conclusion We present the non-heme iron absorption and utilization rates from typical whole Chinese diets among young Chinese healthy urban men, which was not affected by the representative staple food patterns of Southern and Northern China. This study will provide a basis for the setting of Chinese iron DRIs. PMID:27099954

  11. Structural characterization of a non-heme iron active site in zeolites that hydroxylates methane

    DOE PAGES

    Snyder, Benjamin E. R.; Bottger, Lars H.; Bols, Max L.; ...

    2018-04-02

    Iron-containing zeolites exhibit unprecedented reactivity in the low-temperature hydroxylation of methane to form methanol. Reactivity occurs at a mononuclear ferrous active site, α-Fe(II), that is activated by N 2O to form the reactive intermediate α-O. This has been defined as an Fe(IV)=O species. Using nuclear resonance vibrational spectroscopy coupled to X-ray absorption spectroscopy, we probe the bonding interaction between the iron center, its zeolite lattice-derived ligands, and the reactive oxygen. α-O is found to contain an unusually strong Fe(IV)=O bond resulting from a constrained coordination geometry enforced by the zeolite lattice. As a result, density functional theory calculations clarify howmore » the experimentally determined geometric structure of the active site leads to an electronic structure that is highly activated to perform H-atom abstraction.« less

  12. Structural characterization of a non-heme iron active site in zeolites that hydroxylates methane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snyder, Benjamin E. R.; Bottger, Lars H.; Bols, Max L.

    Iron-containing zeolites exhibit unprecedented reactivity in the low-temperature hydroxylation of methane to form methanol. Reactivity occurs at a mononuclear ferrous active site, α-Fe(II), that is activated by N 2O to form the reactive intermediate α-O. This has been defined as an Fe(IV)=O species. Using nuclear resonance vibrational spectroscopy coupled to X-ray absorption spectroscopy, we probe the bonding interaction between the iron center, its zeolite lattice-derived ligands, and the reactive oxygen. α-O is found to contain an unusually strong Fe(IV)=O bond resulting from a constrained coordination geometry enforced by the zeolite lattice. As a result, density functional theory calculations clarify howmore » the experimentally determined geometric structure of the active site leads to an electronic structure that is highly activated to perform H-atom abstraction.« less

  13. Uptake of Nickel by Synthetic Mackinawite | Science Inventory ...

    EPA Pesticide Factsheets

    The uptake of aqueous Ni(II) by synthetic mackinawite (FeS) was examined in anaerobic batch experiments at near-neutral pH (5.2 to 8.4). Initial molar ratios of Ni(II) to FeS ranged from 0.008 to 0.83 and maximum Ni concentrations in mackinawite, expressed as the cation mol fraction, were as high as XNi = 0.56 (Fe1-xNixS; 0  x  1). Greater than 99% Ni removal from solution occurred when Ni loading remained below 0.13 ± 0.03 (1σ) mol Ni per mol FeS due to sorption of Ni at the mackinawite surface. Characterization of experimental solids using X-ray diffraction and Raman spectroscopy showed patterns characteristic of nanocrystalline mackinawite; no evidence of nickel monosulfide (α-NiS or millerite), polydymite (Ni3S4), or godlevskite [(Ni,Fe)9S8] formation was indicated regardless of the amount of Ni loading. Slight expansion of the c-axis correlated with increasing Ni content in synthetic mackinawite, from c = 5.07 ± 0.01 Å at XNi = 0.02 to c = 5.10 ± 0.01 Å at XNi = 0.38. Ni K-edge extended X-ray absorption fine structure (EXAFS) spectra of synthetic Ni-bearing mackinawite are similar in phase and amplitude to the Fe K-edge EXAFS spectrum of Ni-free mackinawite, indicating that the molecular environment of Ni2+ in Ni-bearing mackinawite is similar to that of Fe2+ in Ni-free mackinawite. EXAFS data fitting of Ni-bearing mackinawite with XNi = 0.42 indicated a coordination number of 4.04 ± 0.30 and an average Ni-S bond distance of 2.28 Å, in good a

  14. Synthesis, characterization, and photophysical properties of a series of supramolecular mixed-valence compounds.

    PubMed

    Pfennig, B W; Fritchman, V A; Hayman, K A

    2001-01-15

    The synthesis and characterization of 10 cyano-bridged trinuclear mixed-valence compounds of the form [(NH3)5M-NC-FeII(CN)4-CN-M'(NH3)5]n+ (M = RuIII, OsIII, CrIII, or PtIV; n = 2, 3, or 4) is reported. The electronic spectra of these supramolecular compounds exhibit a single intervalent (IT) absorption band for each nondegenerate Fe-->M/M' transition. The redox potential of the Fe(II) center is shifted more positive with the addition of each coordinated metal complex, while the redox potentials of the pendant metals vary only slightly from their dinuclear counterparts. As a result, the Fe-->M IT bands are blue-shifted from those in the corresponding dinuclear mixed-valence compounds. The energies of these IT bands show a linear correlation with the ground-state thermodynamic driving force, as predicted by classical electron transfer theory. Estimates of the degree of electronic coupling (Hab) between the metal centers using a theoretical analysis of the IT band shapes indicate that most of these values are similar to those for the corresponding dinuclear species. Notable exceptions occur for the Fe-->M IT transitions in Os-Fe-M (M = Cr or Pt). The enhanced electronic coupling in these two species can be explained as a result of excited state mixing between electron transfer and/or ligand-based charge transfer states and an intensity-borrowing mechanism. Additionally, the possibility of electronic coupling between the remote metal centers in the Ru-Fe-Ru species is discussed in order to explain the observation of two closely spaced redox waves for the degenerate Ru(III) acceptors.

  15. Transformation impacts of dissolved and solid phase Fe(II) on trichloroethylene (TCE) reduction in an iron-reducing bacteria (IRB) mixed column system: a mathematical model.

    PubMed

    Bae, Yeunook; Kim, Dooil; Cho, Hyun-Hee; Singhal, Naresh; Park, Jae-Woo

    2012-12-01

    In this research, we conducted trichloroethylene (TCE) reduction in a column filled with iron and iron-reducing bacteria (IRB) and developed a mathematical model to investigate the critical reactions between active species in iron/IRB/contaminant systems. The formation of ferrous iron (Fe(II)) in this system with IRB and zero-valent iron (ZVI, Fe(0)) coated with a ferric iron (Fe(III)) crust significantly affected TCE reduction and IRB respiration in various ways. This study presents a new framework for transformation property and reducing ability of both dissolved (Fe(II)(dissolved)) and solid form ferrous iron (Fe(II)(solid)). Results showed that TCE reduction was strongly depressed by Fe(II)(solid) rather than by other inhibitors (e.g., Fe(III) and lactate), suggesting that Fe(II)(solid) might reduce IRB activation due to attachment to IRB cells. Newly exposed Fe(0) from the released Fe(II)(dissolved) was a strong contributor to TCE reduction compared to Fe(II)(solid). In addition, our research confirmed that less Fe(II)(solid) production strongly supported long-term TCE reduction because it may create an easier TCE approach to Fe(0) or increase IRB growth. Our findings will aid the understanding of the contributions of iron media (e.g., Fe(II)(solid), Fe(II)(dissolved), Fe(III), and Fe(0)) to IRB for decontamination in natural groundwater systems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Coordination modes of tyrosinate-ligated catalase-type heme enzymes: magnetic circular dichroism studies of Plexaura homomalla allene oxide synthase, Mycobacterium avium ssp. paratuberculosis protein-2744c, and bovine liver catalase in their ferric and ferrous states.

    PubMed

    Bandara, D M Indika; Sono, Masanori; Bruce, Grant S; Brash, Alan R; Dawson, John H

    2011-12-01

    Bovine liver catalase (BLC), catalase-related allene oxide synthase (cAOS) from Plexaura homomalla, and a recently isolated protein from the cattle pathogen Mycobacterium avium ssp. paratuberculosis (MAP-2744c (MAP)) are all tyrosinate-ligated heme enzymes whose crystal structures have been reported. cAOS and MAP have low (<20%) sequence similarity to, and significantly different catalytic functions from, BLC. cAOS transforms 8R-hydroperoxy-eicosatetraenoic acid to an allene epoxide, whereas the MAP protein is a putative organic peroxide-dependent peroxidase. To elucidate factors influencing the functions of these and related heme proteins, we have investigated the heme iron coordination properties of these tyrosinate-ligated heme enzymes in their ferric and ferrous states using magnetic circular dichroism and UV-visible absorption spectroscopy. The MAP protein shows remarkable spectral similarities to cAOS and BLC in its native Fe(III) state, but clear differences from ferric proximal heme ligand His93Tyr Mb (myoglobin) mutant, which may be attributed to the presence of an Arg(+)-N(ω)-H···¯O-Tyr (proximal heme axial ligand) hydrogen bond in the first three heme proteins. Furthermore, the spectra of Fe(III)-CN¯, Fe(III)-NO, Fe(II)-NO (except for five-coordinate MAP), Fe(II)-CO, and Fe(II)-O(2) states of cAOS and MAP, but not H93Y Mb, are also similar to the corresponding six-coordinate complexes of BLC, suggesting that a tyrosinate (Tyr-O¯) is the heme axial ligand trans to the bound ligands in these complexes. The Arg(+)-N(ω)-H to ¯O-Tyr hydrogen bond would be expected to modulate the donor properties of the proximal tyrosinate oxyanion and, combined with the subtle differences in the catalytic site structures, affect the activities of cAOS, MAP and BLC. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Reduced molybenum-oxide-based core-shell hybrids: "blue" electrons are delocalized on the shell.

    PubMed

    Todea, Ana Maria; Szakács, Julia; Konar, Sanjit; Bögge, Hartmut; Crans, Debbie C; Glaser, Thorsten; Rousselière, Hélène; Thouvenot, René; Gouzerh, Pierre; Müller, Achim

    2011-06-06

    The present study refers to a variety of reduced metal-oxide core-shell hybrids, which are unique with regard to their electronic structure, their geometry, and their formation. They contain spherical {Mo72Fe30} Keplerate-type shells encapsulating Keggin-type polyoxomolybdates based on very weak interactions. Studies on the encapsulation of molybdosilicate as well as on the earlier reported molybdophosphate, coupled with the use of several physical methods for the characterization led to unprecedented results (see title). Upon standing in air at room temperature, acidified aqueous solutions obtained by dissolving sodium molybdate, iron(II) chloride, acetic acid, and molybdosilicic acid led to the precipitation of monoclinic greenish crystals (1). A rhombohedral variant (2) has also been observed. Upon drying at room temperature, compound 3 with a layer structure was obtained from 1 in a solid-state reaction based on cross-linking of the shells. The compounds 1, 2, and 3 have been characterized by a combination of methods including single-crystal X-ray crystallography, magnetic studies, as well as IR, Mössbauer, (resonance) Raman, and electronic absorption spectroscopy. In connection with detailed studies of the guest-free two-electron-reduced {Mo72Fe30}-type Keplerate (4) and of the previously reported molybdophosphate-based hybrids (including 31P NMR spectroscopy results), it is unambiguously proved that 1, 2, and 3 contain non-reduced Keggin ion cores and reduced {Mo72Fe30}-type shells. The results are discussed in terms of redox considerations (the shell as well as the core can be reduced) including those related to the reduction of "molybdates" by FeII being of interdisciplinary including catalytic interest (the MoVI/MoV and FeIII/FeII couples have very close redox potentials!), while also referring to the special formation of the hybrids based on chemical Darwinism.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yu-Qian; Modjaz, Maryam; Bianco, Federica B., E-mail: YL1260@nyu.edu, E-mail: mmodjaz@nyu.edu

    Super-luminous supernovae (SLSNe) are tremendously luminous explosions whose power sources and progenitors are highly debated. Broad-lined SNe Ic (SNe Ic-bl) are the only type of SNe that are connected with long-duration gamma-ray bursts (GRBs). Studying the spectral similarity and difference between the populations of hydrogen-poor SLSNe (SLSNe Ic) and of hydrogen-poor stripped-envelope core-collapse SNe, in particular SNe Ic and SNe Ic-bl, can provide crucial observations to test predictions of theories based on various power source models and progenitor models. In this paper, we collected all of the published optical spectra of 32 SLSNe Ic, 21 SNe Ic-bl, as well asmore » 17 SNe Ic, quantified their spectral features, constructed average spectra, and compared them in a systematic way using new tools we have developed. We find that SLSNe Ic and SNe Ic-bl, including those connected with GRBs, have comparable widths for their spectral features and average absorption velocities at all phases. Thus, our findings strengthen the connection between SLSNe Ic and GRBs. In particular, SLSNe Ic have average Fe ii λ 5169 absorption velocities of −15,000 ± 2600 km s{sup −1} at 10 days after peak, which are higher than those of SNe Ic by ∼7000 km s{sup −1} on average. SLSNe Ic also have significantly broader Fe ii λ 5169 lines than SNe Ic. Moreover, we find that such high absorption and width velocities of SLSNe Ic may be hard to explain with the interaction model, and none of the 13 SLSNe Ic with measured absorption velocities spanning over 10 days has a convincing flat velocity evolution, which is inconsistent with the magnetar model in one dimension. Lastly, we compare SN 2011kl, the first SN connected with an ultra-long GRB, with the mean spectrum of SLSNe Ic and of SNe Ic-bl.« less

  19. Kinetics of FeII-polyaminocarboxylate oxidation by molecular oxygen

    NASA Astrophysics Data System (ADS)

    Wilson, Jessica M.; Farley, Kevin J.; Carbonaro, Richard F.

    2018-03-01

    Complexation of iron by naturally-occurring and synthetic organic ligands has a large effect on iron oxidation and reduction rates which in turn affect the aqueous geochemistry of many other chemical constituents. In this study, the kinetics of FeII oxidation in the presence of the polyaminocarboxylate synthetic chelating agents ethylene glycol tetraacetic acid (EGTA) and trimethylenediamine-N,N,N‧,N‧-tetraacetic acid (TMDTA) was investigated over the pH range 5.50-8.53. Batch oxidation experiments in the presence of molecular oxygen were conducted using a 2:1 M concentration ratio of polyaminocarboxylate (ligand, L) to FeII. The experimental data resembled first order kinetics for the oxidation of FeII-L to FeIII-L and observed rate constants at pH 6.0 were comparable to rate constants for the oxidation of inorganic FeII. Similar to other structurally-similar FeII-polyaminocarboxylate complexes, oxidation rates of FeII-EGTA and FeII-TMDTA decrease with increasing pH, which is the opposite trend for the oxidation of FeII complexed with inorganic ligands. However, the oxidation rates of FeII complexed with EGTA and TMDTA were considerably lower (4-5 orders of magnitude) than FeII complexed to ethylenediaminetetraacetic acid (EDTA). The distinguishing feature of the slower-reacting complexes is that they have a longer backbone between diamine functional groups. An analytical equilibrium model was developed to determine the contributions of the species FeIIL2- and FeII(H)L- to the overall oxidation rate of FeII-L. Application of this model indicated that the protonated FeII(H)L species are more than three orders of magnitude more reactive than FeIIL2-. These rate constants were used in a coupled kinetic equilibrium numerical model where the ligand to iron ratio (TOTL:TOTFe) and pH were varied to evaluate the effect on the FeII oxidation rate. Overall, increasing TOTL:TOTFe for EGTA and TMDTA enhances FeII oxidation rates at lower pH and inhibits FeII oxidation rates at higher pH. Finally, this work demonstrates that the rate of FeII oxidation is very sensitive to the identity and structure of the polyaminocarboxylate chelating agent, which has implications for any metal or organic chemical that reacts either directly or indirectly with iron.

  20. [4Fe-4S]-cluster-depleted Azotobacter vinelandii ferredoxin I: a new 3Fe iron-sulfur protein.

    PubMed Central

    Stephens, P J; Morgan, T V; Devlin, F; Penner-Hahn, J E; Hodgson, K O; Scott, R A; Stout, C D; Burgess, B K

    1985-01-01

    Fe(CN)6(-3) oxidation of the aerobically isolated 7Fe Azotobacter vinelandii ferredoxin I, (7Fe)FdI, is a degradative reaction. Destruction of the [4Fe-4S] cluster occurs first, followed by destruction of the [3Fe-3S] cluster. At a Fe(CN)6(-3)/(7Fe)FdI concentration ratio of 20, the product is a mixture of apoprotein and protein containing only a [3Fe-3S] cluster, (3Fe)FdI. This protein mixture, after partial purification, has been characterized by absorption, CD, magnetic CD, and EPR and Fe x-ray absorption spectroscopies. EPR and magnetic CD spectra provide strong evidence that the [3Fe-3S] cluster in (3Fe)FdI is essentially identical in structure to that in (7Fe)FdI. Analysis of the extended x-ray absorption fine structure (EXAFS) of (3Fe)FdI finds Fe scattering at an average Fe...Fe distance of approximately equal to 2.7 A. The structure of the oxidized [3Fe-3S] cluster in solutions of oxidized (3Fe)FdI, and, by extension, of oxidized (7Fe)FdI, is thus different from that obtained by x-ray crystallography on oxidized (7Fe)FdI. Possible interpretations of this result are discussed. PMID:2994040

  1. Ultraviolet Changes of the Central Source and the Very Nearby Ejecta

    NASA Technical Reports Server (NTRS)

    Gull, Theodore R.; Nielsen, Krister; Vierira, Gladys; Hillier, John; Walborn, Nolan; Davidson, Kris

    2004-01-01

    We utilized the high spatial and high spectral resolution of the HST/STIS MAMA echelle modes in the ultraviolet (0.025 inch spatial resolution and 30,000 to 120,000 spectral resolving power) to view changes in and around Eta Carinae before and after the X-Ray drop which occurred on June 29, 2003 (M. Corcoran, IAUC 8160). Major changes in the spectra of the Central Source and nearby nebulosities occurred between June 22 and July 5. Visibility of the Central Source dropped, especially between 1175 and 1350 Angstroms, but not uniformly throughout the ultraviolet. This fading is likely due to multiple line absorptions both in the source and in the intervening ejecta. Nebular emission of Si III] and Fe III, located 0.09 sec. to the west, disappeared. By July 29, a bright feature extending up to 0.071 sec. east of the Central Source became prominent in broad emission lines near 2500 Angstroms, but was not noticeable longward of 2900 Angstroms. ACS/HRC imagery and STIS CCD spectra taken concurrently are being examined for larger scale changes. Numerous narrow velocity components between -146 and -585 kilometers per second were identified in spectra before the minimum. New components appeared primarily in Fe II absorption lines with velocities between -170 and -380 kilometers per second. While the lines of the -513 kilometers per second component did not change, most lines of the -146 kilometers per second component changed considerably. Lines originating from high energy levels diminished or disappeared, while lines originating from lower energy levels strengthened. Strong absorption lines of Ti II, not present before the X-Ray drop, appeared within seven days, but disappeared by July 29. Further analysis of these unprecedented data will provide significant new information about the structure of Eta Carinae and its periodic variations.

  2. Increasing the cooking temperature of meat does not affect nonheme iron absorption from a phytate-rich meal in women.

    PubMed

    Baech, Sussi B; Hansen, Marianne; Bukhave, Klaus; Kristensen, Lars; Jensen, Mikael; Sørensen, Sven S; Purslow, Peter P; Skibsted, Leif H; Sandström, Brittmarie

    2003-01-01

    The effect of increasing cooking temperatures of meat on nonheme iron absorption from a composite meal was investigated. Cysteine-containing peptides may have a role in the iron absorption enhancing effect of muscle proteins. Heat treatment can change the content of sulfhydryl groups produced from cysteine and thereby affect iron absorption. Twenty-one women (25 +/- 3 y) were served a basic meal without meat and two other meals consisting of the basic meal plus 75 g of pork meat cooked at 70, 95 or 120 degrees C. The meals were extrinsically labeled with (55)Fe or (59)Fe. Iron absorption was determined from measurements of whole-body (59)Fe retention and the activity of (55)Fe and (59)Fe in blood samples. Nonheme iron absorptions were 0.9 (0.5-4.0)% (P = 0.06), 0.7 (0.4-3.9)% (P = 0.1) and 2.0 (1.3-3.1)% (P < 0.001) greater when meat cooked at 70, 95 or 120 degrees C, respectively, was added to the basic meal. Increasing the cooking temperature of meat did not impair nonheme iron absorption compared with cooking at 70 degrees C. Because the cysteine content of meat decreased with increasing cooking temperature, this argues against a specific contribution of sulfhydryl groups from cysteine residues in the promotion of nonheme iron absorption by meat proteins.

  3. HST eclipse mapping of dwarf nova OY Carinae in quiescence: An 'Fe II curtain' with Mach approx. = 6 velocity dispersion veils the white dwarf

    NASA Technical Reports Server (NTRS)

    Horne, Keith; Marsh, T. R.; Cheng, F. H.; Hubeny, Ivan; Lanz, Theirry

    1994-01-01

    Hubble Space Telescope (HST) observations of the eclipsing dwarf nova OY Car in its quiescent state are used to isolate the ultraviolet spectrum (1150-2500 A at 9.2 A Full Width at Half Maximum (FWHM) resolution) of the white dwarf, the accretion disk, and the bright spot. The white dwarf spectrum has a Stark-broadened photospheric L(alpha) absorption, but is veiled by a forest of blended Fe II features that we attribute to absorption by intervening disk material. A fit gives T(sub w) approx. = 16.5 x 10(exp 3) K for the white dwarf with a solar-abundance, log g = 8 model atmosphere, and T approx. = 10(exp 4) K, n(sub e) approx. = 10(exp 13)/cu cm, N(sub H) approx. = 10(exp 22) sq cm, and velocity dispersion delta V approx. = 60 km/s for the veil of homogeneous solar-abundance local thermodynamic equilibrium (LTE) gas. The veil parameters probably measure characteristic physical conditions in the quiescent accretion disk or its chromosphere. The large velocity dispersion is essential for a good fit; it lowers (chi square)/778 from 22 to 4. Keplerian shear can produce the velocity dispersion if the veiling gas is located at R approx. = 5 R(sub W) with (delta R)/R approx. = 0.3, but this model leaves an unobscured view to the upper hemisphere of the white dwarf, incompatible with absorptions that are up to 80% deep. The veiling gas may be in the upper atmosphere of the disk near its outer rim, but we then require supersonic (Mach approx. = 6) but sub-Keplerian (delta V/V(sub Kep) approx. = 0.07) velocity disturbances in this region to produce both the observed radial velocity dispersion and vertical motions sufficient to elevate the gas to z/R = cos i = 0.12. Such motions might be driven by the gas stream, since it may take several Kepler periods to reestablish the disk's vertical hydrostatic equilibrium. The temperature and column density of the gas we see as Fe II absorption in the ultraviolet are similar to what is required to produce the strong Balmer jump and line emissions seen in optical spectra of OY Car and similar quiescent dwarf novae. The outer accretion disk is detected at mid-eclipse with a spectrum that rises from 0.05 to 0.3 mJy between 2000 and 2500 A, consistent with combinations of cool blackbodies, blended Fe II emission lines, and Balmer continuum emission. The total disk flux density is 0.5 mJy at 2500 A, and this shallow disk eclipse implies a roughly flat surface brightness distribution. The bright spot, somewhat bluer than the disk, has a flux density rising from 0.05 to 0.15 mJy between 1600 and 2500 A. The C IV emission line has a broad shallow eclipse, but the radial velocity variations observed during the eclipse do not clearly distinguish between a disk or wind origin. The only possible indications of boundary layer emission are fast UV flares that appear to arise from near the central object -- not from the bright spot.

  4. Iron-59 absorption from soy hulls: intrinsic vs extrinsic labeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lykken, G.I.; Mahalko, J.R.; Nielsen, E.J.

    As part of an evaluation of the validity of the extrinsic labeling technique for measuring iron absorption, absorption from soy hulls extrinsically labeled (/sup 59/Fe added to bread dough) was compared with that from soy hulls intrinsically labeled (/sup 59/Fe incorporated into the soy plant during growth). Century soybeans were grown in a greenhouse. After pods had formed and were filling, each plant was stem injected twice, at 3 day intervals, with 22 ..mu..Ci /sup 59/Fe as FeCl/sub 2/ in 25 ..mu..l of 0.5 M HCl solution. After the plants had senesced, the soybeans were harvested, dried, shelled and themore » hulls removed. Standard meals containing 3.5 mg Fe/meal and up to 0.06 ..mu..Ci /sup 59/Fe in a soy hull bun were fed on 2 consecutive days to free-living volunteers in a crossover design. Absorption of /sup 59/Fe was greater from intrinsically labeled soy hulls than from extrinsically labeled soy hulls, 20 +/- 20% vs 15 +/- 11% (n=14, p > 0.05 by paired t-test). Apparent absorption ranged from 1.3% to 77% from intrinsically labeled soy hulls and .5% to 29% from extrinsically labeled soy hulls with the highest absorption occurring in persons with low serum ferritin (S.F. < 8 ng/ml). These findings provide additional evidence that the extrinsic labeling method is a valid measure of iron bioavailability to humans.« less

  5. A Fe(II)/citrate/UV/PMS process for carbamazepine degradation at a very low Fe(II)/PMS ratio and neutral pH: The mechanisms.

    PubMed

    Ling, Li; Zhang, Dapeng; Fan, Chihhao; Shang, Chii

    2017-11-01

    A novel Fe(II)/citrate/UV/PMS process for degrading a model micropollutant, carbamazepine (CBZ), at a low Fe(II)/PMS ratio and neutral pH has been proposed in this study, and the mechanisms of radical generation in the system was explored. With a UV dose of 302.4 mJ/cm 2 , an initial pH of 7, and CBZ, PMS, Fe(II) and citrate at initial concentrations of 10, 100, 12 and 26 μM, respectively, the CBZ degradation efficiency reached 71% in 20 min in the Fe(II)/citrate/UV/PMS process, which was 4.7 times higher than that in either the citrate/UV/PMS or Fe(II)/citrate/PMS process. The enhanced CBZ degradation in the Fe(II)/citrate/UV/PMS process was mainly attributed to the continuous activation of PMS by the UV-catalyzed regenerated Fe(II) from a Fe(III)-citrate complex, [Fe 3 O(cit) 3 H 3 ] 2- , which not only maintained Fe(III) soluble at neutral pH, but also increased 6.6 and 2.6 times of its molar absorbance and quantum yield as compared to those of ionic Fe(III), respectively. In the Fe(II)/citrate/UV/PMS process, the SO 4 •- produced from the fast reaction between PMS and the initially-added Fe(II) contributed 11% of CBZ degradation. The PMS activation by the UV radiation and regenerated Fe(II) contributed additional 14% and 46% of CBZ removal, respectively. The low iron and citrate doses and the fast radical generation at neutral pH make the Fe(II)/citrate/UV/PMS process suitable for degrading recalcitrant organic compounds in potable water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Juan; Wang, Zheming; Belchik, Sara M.

    The Gram-negative bacterium Sideroxydans lithotrophicus ES-1 (ES-1) grows on FeCO{sub 3} or FeS at oxic-anoxic interfaces at circumneutral pH, and the ES-1-mediated Fe(II) oxidation occurs extracellularly. However, the molecular mechanisms underlying ES-1's ability to oxidize Fe(II) remain unknown. Survey of the ES-1 genome for the genes known for microbial extracellular Fe(II) oxidation revealed that it contained a three-gene cluster encoding an MtrA homologue, an MtrB homologue and a CymA homologue. The homologues of MtrA, MtrB and/or CymA were previously shown to be involved in extracellular Fe(II) oxidation by Rhodopseudomonas palustris TIE-1 and in extracellular Fe(III) reduction by Shewanella oneidensis MR-1more » (MR-1). To distinguish them from those found in MR-1, the identified homologues were named MtoAB and CymA{sub ES-1}, respectively. The gene for MtoA was cloned, and cloned mtoA partially complemented an MR-1 mutant without MtrA in ferrihydrite reduction. Following overexpression in MR-1 cells, recombinant MtoA was purified. Characterization of purified MtoA showed that it was a decaheme c-type cytochrome and oxidized soluble Fe(II). Oxidation of Fe(II) by MtoA was pH- and Fe(II)-complexing ligand-dependent. Under conditions tested, MtoA oxidized Fe(II) at pH ranging from 7-9, and optimal oxidation occurred at pH 9, possibly because of the attendant net increase of [Fe(OH){sup +}] at higher pH. MtoA oxidized Fe(II) complexed with different ligands at different rates. The reaction rates followed the order Fe(II)Cl2 > Fe(II)-citrate > Fe(III)-NTA > Fe(II)-EDTA with the second-order rate constants ranging from 5.5 x 10{sup -3} {micro}M{sup -1}s{sup -1} for oxidation of Fe(II)Cl{sub 2} to 1.0 x 10{sup -3} {micro}M{sup -1}s{sup -1} for oxidation of Fe(II)-EDTA. Thermodynamic modeling shows that redox reaction rate differences for the different Fe(II)-complexes correlated with estimated reaction-free energies. Collectively, these results suggest that MtoA is a functional Fe(II)-oxidizing protein that, by working in concert with MtoB and CymAES 1, may oxidize the Fe(II) on the bacterial surface and transfer released electrons across the bacterial cell envelope to the quinone pool in the inner membrane during extracellular Fe(II) oxidation by ES-1.« less

  7. Organic Exudates Enhance Iron Bioavailability to Trichodesmium (IMS101) by Modifying Fe Speciation

    NASA Astrophysics Data System (ADS)

    Tohidi Farid, H.; Rose, A.; Schulz, K.

    2016-02-01

    Although ferrous iron (Fe (II)) is believed to be the most readily absorbed form of Fe by cells, under alkaline and oxygenated conditions typical of marine environments, the thermodynamically stable Fe(III) state dominates. In marine environments, this Fe(III) is primarily presents as organic Fe(III)L complexes whose bioavailability is highly variable. However, it has been demonstrated that some eukaryotic marine algae are able to release organic ligands into their surrounding environments that change Fe bioavailability through complexation and/or redox reactions. Nevertheless, it is unclear how Fe(II) oxidation and Fe(III) reduction rates might be modified by these exudates and how this might increase or decrease iron bioavailability to microorganisms. Here, the role of natural organic ligands excreted by the cyanobacterium Trichodesmium erythraeum on the oxidation kinetics of Fe(II) was studied using the luminol chemiluminescence technique. The oxidation kinetics of Fe(II) were examined at nanomolar Fe concentrations in presence of different concentrations of EDTA and dissolved organic carbon exuded by Trichodesmium cells. The results indicated that an increase in the concentration of exuded organic matter, and consequently L:Fe(II) ratio, resulted in decreasing rates of Fe(II) oxidation by oxygen, primarily due to formation of Fe(II) complexes. Moreover, the results demonstrated that the exudates from Trichodesmium may be able to reduce Fe(III) to the more bioavailable Fe(II) state under some circumstances. This study therefore supports the ability of microorganisms to manipulate Fe bioavailability by releasing organic compounds into the extracellular environment that retard Fe(II) oxidation rates or reducing Fe(III) species to Fe(II). It also provides new insight into the potential mechanism(s) by which Trichdesmium may acquire Fe under conditions where Fe bioavailability is otherwise limited.

  8. Local Structure Determination of Carbon/Nickel Ferrite Composite Nanofibers Probed by X-ray Absorption Spectroscopy.

    PubMed

    Nilmoung, Sukunya; Kidkhunthod, Pinit; Maensiri, Santi

    2015-11-01

    Carbon/NiFe2O4 composite nanofibers have been successfully prepared by electrospinning method using a various concentration solution of Ni and Fe nitrates dispersed into polyacrylonitride (PAN) solution in N,N' dimethylformamide. The phase and mophology of PAN/NiFe2O4 composite samples were characterized and investigated by X-ray diffraction and scanning electron microscopy. The magnetic properties of the prepared samples were measured at ambient temperature by a vibrating sample magnetometer. It is found that all composite samples exhibit ferromagnetism. This could be local-structurally explained by the existed oxidation states of Ni2+ and Fe3+ in the samples. Moreover, local environments around Ni and Fe ions could be revealed by X-ray absorption spectroscopy (XAS) measurement including X-ray absorption near edge structure (XANES) and Extended X-ray absorption fine structure (EXAFS).

  9. The Fabrication and High-Efficiency Electromagnetic Wave Absorption Performance of CoFe/C Core-Shell Structured Nanocomposites

    NASA Astrophysics Data System (ADS)

    Wan, Gengping; Luo, Yongming; Wu, Lihong; Wang, Guizhen

    2018-03-01

    CoFe/C core-shell structured nanocomposites (CoFe@C) have been fabricated through the thermal decomposition of acetylene with CoFe2O4 as precursor. The as-prepared CoFe@C was characterized by X-ray powder diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, transmission electron microscopy, and thermogravimetric analysis. The results demonstrate that the carbon shell in CoFe@C has a poor crystallization with a thickness about 5-30 nm and a content approximately 48.5 wt.%. Due to a good combination between intrinsic magnetic properties and high-electrical conductivity, the CoFe@C exhibits not only excellent absorption intensity but also wide frequency bandwidth. The minimum RL value of CoFe@C can reach - 44 dB at a thickness of 4.0 mm, and RL values below - 10 dB is up to 4.3 GHz at a thickness of 2.5 mm. The present CoFe@C may be a potential candidate for microwave absorption application.

  10. Mechanochemical synthesis and intercalation of Ca(II)Fe(III)-layered double hydroxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferencz, Zs.; Szabados, M.; Varga, G.

    2016-01-15

    A mechanochemical method (grinding the components without added water – dry grinding, followed by further grinding in the presence of minute amount of water or NaOH solution – wet grinding) was used in this work for the preparation and intercalation of CaFe-layered double hydroxides (LDHs). Both the pristine LDHs and the amino acid anion (cystinate and tyrosinate) intercalated varieties were prepared by the two-step grinding procedure in a mixer mill. By systematically changing the conditions of the preparation method, a set of parameters could be determined, which led to the formation of close to phase-pure LDH. The optimisation procedure wasmore » also applied for the intercalation processes of the amino acid anions. The resulting materials were structurally characterised by a range of methods (X-ray diffractometry, scanning electron microscopy, energy dispersive analysis, thermogravimetry, X-ray absorption and infra-red spectroscopies). It was proven that this simple mechanochemical procedure was able to produce complex organic–inorganic nanocomposites: LDHs intercalated with amino acid anions. - Graphical abstract: Amino acid anion-Ca(II)Fe(III)-LDHs were successfully prepared by a two-step milling procedure. - Highlights: • Synthesis of pristine and amino acid intercalated CaFe-LDHs by two-step milling. • Identifying the optimum synthesis and intercalation parameters. • Characterisation of the samples with a range of instrumental methods.« less

  11. Identifying and Quantifying Chemical Forms of Sediment-Bound Ferrous Iron.

    NASA Astrophysics Data System (ADS)

    Kohler, M.; Kent, D. B.; Bekins, B. A.; Cozzarelli, I.; Ng, G. H. C.

    2015-12-01

    Aqueous Fe(II) produced by dissimilatory iron reduction comprises only a small fraction of total biogenic Fe(II) within an aquifer. Most biogenic Fe(II) is bound to sediments on ion exchange sites; as surface complexes and, possibly, surface precipitates; or incorporated into solid phases (e.g., siderite, magnetite). Different chemical forms of sediment-bound Fe(II) have different reactivities (e.g., with dissolved oxygen) and their formation or destruction by sorption/desorption and precipitation/dissolution is coupled to different solutes (e.g., major cations, H+, carbonate). We are quantifying chemical forms of sediment-bound Fe(II) using previously published extractions, novel extractions, and experimental studies (e.g., Fe isotopic exchange). Sediments are from Bemidji, Minnesota, where biodegradation of hydrocarbons from a burst oil pipeline has driven extensive dissimilatory Fe(III) reduction, and sites potentially impacted by unconventional oil and gas development. Generally, minimal Fe(II) was mobilized from ion exchange sites (batch desorption with MgCl2 and repeated desorption with NH4Cl). A < 2mm sediment fraction from the iron-reducing zone at Bemidji had 1.8umol/g Fe(II) as surface complexes or carbonate phases (sodium acetate at pH 5) of which ca. 13% was present as surface complexes (FerroZine extractions). Total bioavailable Fe(III) and biogenic Fe(II) (HCl extractions) was 40-50 umole/g on both background and iron-reducing zone sediments . Approximately half of the HCl-extractable Fe from Fe-reducing zone sediments was Fe(II) whereas 12 - 15% of Fe extracted from background sediments was present as Fe(II). One-third to one-half of the total biogenic Fe(II) extracted from sediments collected from a Montana prairie pothole located downgradient from a produced-water disposal pit was present as surface-complexed Fe(II).

  12. Spatially Resolved Metal Gas Clouds

    NASA Astrophysics Data System (ADS)

    Péroux, C.; Rahmani, H.; Arrigoni Battaia, F.; Augustin, R.

    2018-05-01

    We now have mounting evidences that the circumgalactic medium (CGM) of galaxies is polluted with metals processed through stars. The fate of these metals is however still an open question and several findings indicate that they remain poorly mixed. A powerful tool to study the low-density gas of the CGM is offered by absorption lines in quasar spectra, although the information retrieved is limited to 1D along the sightline. We report the serendipitous discovery of two close-by bright zgal=1.148 extended galaxies with a fortuitous intervening zabs=1.067 foreground absorber. MUSE IFU observations spatially probes kpc-scales in absorption in the plane of the sky over a total area spanning ˜30 kpc-2. We identify two [O II] emitters at zabs down to 21 kpc with SFR˜2 M⊙/yr. We measure small fractional variations (<30%) in the equivalent widths of Fe II and Mg II cold gas absorbers on coherence scales of 8kpc but stronger variation on larger scales (25kpc). We compute the corresponding cloud gas mass <2 × 109M⊙. Our results indicate a good efficiency of the metal mixing on kpc-scales in the CGM of a typical z˜1 galaxy. This study show-cases new prospects for mapping the distribution and sizes of metal clouds observed in absorption against extended background sources with 3D spectroscopy.

  13. Twelve years of IUE spectra of the interacting binary VV Cephei

    NASA Technical Reports Server (NTRS)

    Bauer, W. H.; Stencel, R. E.; Neff, D. H.

    1991-01-01

    All well-exposed high-resolution IUE spectra obtained of the eclipsing binary system VV Cephei (M2Iabep + B) are examined. High-temperature absorption features attributable to the hot companion were detected, indicating that the companion (or the inner regions of its accretion disk) are not as hot as a B1-B2 star. Doubling of Fe II (UV 1) lines, with an additional narrow component redshifted by about 60 km/sec, occurs only when the B star is behind the plane of the sky containing the M supergiant, suggesting the existence of mass transfer from the red to the blue star. Absorption features from neutral elements weaken dramatically during egress, while those from ionized elements remain at nearly constant strength. During egress from primary eclipse, the Mg II resonance doublet shows asymmetric double-peaked emission indicative of formation in an expanding chromosphere. It is concluded that the outer atmosphere of the M supergiant is highly clumped.

  14. Manganese inhibition of microbial iron reduction in anaerobic sediments

    USGS Publications Warehouse

    Lovley, D.R.; Phillips, E.J.P.

    1988-01-01

    Potential mechanisms for the lack of Fe(II) accumulation in Mn(IV)-containing anaerobic sediments were investigated. The addition of Mn(IV) to sediments in which Fe(II) reduction was the terminal electron-accepting process removed all the pore-water Fe(II), completely inhibited net Fe(III) reduction, and stimulated Mn(IV) reduction. Results demonstrate that preferential reduction of Mn(IV) by FE(III)-reducing bacteria cannot completely explain the lack of Fe(II) accumulation in anaerobic, Mn(IV)-containing sediments, and indicate that Mn(IV) oxidation of Fe(II) is the mechanism that ultimately prevents Fe(II) accumulation. -Authors

  15. Sunlight-Induced photochemical synthesis of Au nanodots on α-Fe2O3@Reduced graphene oxide nanocomposite and their enhanced heterogeneous catalytic properties.

    PubMed

    Bharath, G; Anwer, Shoaib; Mangalaraja, R V; Alhseinat, Emad; Banat, Fawzi; Ponpandian, N

    2018-04-09

    In this present study, we report the synthesis of Au nanodots on α-Fe 2 O 3 @reduced graphene oxide (RGO) based hetero-photocatalytic nanohybrids through a chlorophyll mediated photochemical synthesis. In this process, chlorophyll induces a rapid reduction (30 min) of Au 3+ ions to Au° metallic nanodots on α-Fe 2 O 3 @RGO surface under sunlight irradiation. The nucleation growth process, photo-induced electron-transfer mechanism and physico-chemical properties of the Au@α-Fe 2 O 3 @RGO ternary nanocomposites were systematically studied with various analytical techniques. This novel photochemical synthesis process is a cost-effective, convenient, surfactant-less, and scalable method. Moreover, the prepared ternary nanocomposites enhanced catalytic activity as compared to pure α-Fe 2 O 3 and α-Fe 2 O 3 @RGO. The advantages and synergistic effect of Au@α-Fe 2 O 3 @RGO exhibit, (i) a broader range of visible-light absorption due to visible light band gap of α-Fe 2 O 3 , (ii) lower recombination possibility of photo-generated electrons and holes due to effect of Au and (iii) faster electron transfer due to higher conductivity of RGO. Therefore, the prepared Au@α-Fe 2 O 3 @RGO hetero-photocatalytic nanohybrids exhibited a remarkable photocatalytic activity, thus enabling potential active hetero-photocatalyst for industrial and environmental applications.

  16. Potential for microbial oxidation of ferrous iron in basaltic glass.

    PubMed

    Xiong, Mai Yia; Shelobolina, Evgenya S; Roden, Eric E

    2015-05-01

    Basaltic glass (BG) is an amorphous ferrous iron [Fe(II)]-containing material present in basaltic rocks, which are abundant on rocky planets such as Earth and Mars. Previous research has suggested that Fe(II) in BG can serve as an energy source for chemolithotrophic microbial metabolism, which has important ramifications for potential past and present microbial life on Mars. However, to date there has been no direct demonstration of microbially catalyzed oxidation of Fe(II) in BG. In this study, three different culture systems were used to investigate the potential for microbial oxidation of Fe(II) in BG, including (1) the chemolithoautotrophic Fe(II)-oxidizing, nitrate-reducing "Straub culture"; (2) the mixotrophic Fe(II)-oxidizing, nitrate-reducing organism Desulfitobacterium frappieri strain G2; and (3) indigenous microorganisms from a streambed Fe seep in Wisconsin. The BG employed consisted of clay and silt-sized particles of freshly quenched lava from the TEB flow in Kilauea, Hawaii. Soluble Fe(II) or chemically reduced NAu-2 smectite (RS) were employed as positive controls to verify Fe(II) oxidation activity in the culture systems. All three systems demonstrated oxidation of soluble Fe(II) and/or structural Fe(II) in RS, whereas no oxidation of Fe(II) in BG material was observed. The inability of the Straub culture to oxidize Fe(II) in BG was particularly surprising, as this culture can oxidize other insoluble Fe(II)-bearing minerals such as biotite, magnetite, and siderite. Although the reason for the resistance of the BG toward enzymatic oxidation remains unknown, it seems possible that the absence of distinct crystal faces or edge sites in the amorphous glass renders the material resistant to such attack. These findings have implications with regard to the idea that Fe(II)-Si-rich phases in basalt rocks could provide a basis for chemolithotrophic microbial life on Mars, specifically in neutral-pH environments where acid-promoted mineral dissolution and utilization of dissolved Fe(II) as an energy source is not likely to take place.

  17. Microwave absorption properties of polypyrrole-SrFe12O19-TiO2-epoxy resin nanocomposites: Optimization using response surface methodology

    NASA Astrophysics Data System (ADS)

    Seyed Dorraji, M. S.; Rasoulifard, M. H.; Amani-Ghadim, A. R.; Khodabandeloo, M. H.; Felekari, M.; Khoshrou, M. R.; hajimiri, I.

    2016-10-01

    At a few works are discussed about formation of heterogeneous composites with different distribution of particle shape and size that are used for electromagnetic absorption purposes. In this study a novel heterogeneous nanocpmposites is investigated. The nanocomposite has been successfully prepared based on epoxy resin including various nano-metal oxides (TiO2, SrFe12O19) and polypyrrole (PPy) by sol-gel and the solution chemistry method, respectively. The performance of prepared nanocomposite in absorption of microwave in X-band range was investigated and transmission line method by X-band waveguide straight was used to measure EM parameters of nanocomposites. The Response surface methodology (RSM) with central composite design (CCD) was utilized to study the effects of the wt.% TiO2 in SrFe12O19, wt.% Tio2-SrFe12O19 in PPy and wt.% TiO2-SrFe12O19-PPy in epoxy resin, on the microwave absorption properties with the absorber thickness of only 2 mm. The proposed quadratic model was in accordance with the experimental results with correlation coefficient of 96.5%. The optimum condition for maximum microwave absorption efficiency were wt.% TiO2 in SrFe12O19 of 70, wt.% TiO2-SrFe12O19 in PPy of 10 and wt.% TiO2-SrFe12O19-PPy in epoxy of 25. The sample prepared in optimal conditions indicated reflection loss of -15 dB corresponding to 97% absorption, at the range of 9.2-10.8 GHz.

  18. HST/COS Far-ultraviolet Spectroscopic Analysis of U Geminorum Following a Wide Outburst

    NASA Astrophysics Data System (ADS)

    Godon, Patrick; Shara, Michael M.; Sion, Edward M.; Zurek, David

    2017-12-01

    We used the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope (HST) to obtain a series of four far-ultraviolet (FUV; 915-2148 Å) spectroscopic observations of the prototypical dwarf nova U Geminorum during its cooling following a two-week outburst. Our FUV spectral analysis of the data indicates that the white dwarf (WD) cools from a temperature of ˜41,500 K, 15 days after the peak of the outburst, to ˜36,250 K, 56 days after the peak of the outburst, assuming a massive WD (log(g) = 8.8) and a distance of 100.4 ± 3.7 pc. These results are self-consistent with a ˜1.1 M ⊙ WD with a 5000 ± 200 km radius. The spectra show absorption lines of H I, He II, C II III IV, N III IV, O VI, S IV, Si II III IV, Al III, Ar III, and Fe II, but no emission features. We find suprasolar abundances of nitrogen, confirming the anomalous high N/C ratio. The FUV light curve reveals a ±5% modulation with the orbital phase, showing dips near phases 0.25 and ˜0.75, where the spectra exhibit an increase in the depth of some absorption lines and in particular strong absorption lines from Si II, Al III, and Ar III. The phase dependence we observe is consistent with material overflowing the disk rim at the hot spot, reaching a maximum elevation near phase 0.75, falling back at smaller radii near phase 0.5 where it bounces off the disk surface, and again rising above the disk near phase ˜0.25. There is a large scatter in the absorption lines’ velocities, especially for the silicon lines, while the carbon lines seem to match more closely the orbital velocity of the WD. This indicates that many absorption lines are affected by—or form in—the overflowing stream material veiling the WD, making the analysis of the WD spectra more difficult. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555.

  19. Co7Fe3 and Co7Fe3@SiO2 Nanospheres with Tunable Diameters for High-Performance Electromagnetic Wave Absorption.

    PubMed

    Chen, Na; Jiang, Jian-Tang; Xu, Cheng-Yan; Yuan, Yong; Gong, Yuan-Xun; Zhen, Liang

    2017-07-05

    Ferromagnetic metal/alloy nanoparticles have attracted extensive interest for electromagnetic wave-absorbing applications. However, ferromagnetic nanoparticles are prone to oxidization and producing eddy currents, leading to the deterioration of electromagnetic properties. In this work, a simple and scalable liquid-phase reduction method was employed to synthesize uniform Co 7 Fe 3 nanospheres with diameters ranging from 350 to 650 nm for high-performance microwave absorption application. Co 7 Fe 3 @SiO 2 core-shell nanospheres with SiO 2 shell thicknesses of 30 nm were then fabricated via a modified Stöber method. When tested as microwave absorbers, bare Co 7 Fe 3 nanospheres with a diameter of 350 nm have a maximum reflection loss (RL) of 78.4 dB and an effective absorption with RL > 10 dB from 10 to 16.7 GHz at a small thickness of 1.59 mm. Co 7 Fe 3 @SiO 2 nanospheres showed a significantly enhanced microwave absorption capability for an effective absorption bandwidth and a shift toward a lower frequency, which is ascribed to the protection of the SiO 2 shell from direct contact among Co 7 Fe 3 nanospheres, as well as improved crystallinity and decreased defects upon annealing. This work illustrates a simple and effective method to fabricate Co 7 Fe 3 and Co 7 Fe 3 @SiO 2 nanospheres as promising microwave absorbers, and the design concept can also be extended to other ferromagnetic alloy particles.

  20. Potential Role of Nitrite for Abiotic Fe(II) Oxidation and Cell Encrustation during Nitrate Reduction by Denitrifying Bacteria

    PubMed Central

    Klueglein, Nicole; Zeitvogel, Fabian; Stierhof, York-Dieter; Floetenmeyer, Matthias; Konhauser, Kurt O.; Obst, Martin

    2014-01-01

    Microorganisms have been observed to oxidize Fe(II) at neutral pH under anoxic and microoxic conditions. While most of the mixotrophic nitrate-reducing Fe(II)-oxidizing bacteria become encrusted with Fe(III)-rich minerals, photoautotrophic and microaerophilic Fe(II) oxidizers avoid cell encrustation. The Fe(II) oxidation mechanisms and the reasons for encrustation remain largely unresolved. Here we used cultivation-based methods and electron microscopy to compare two previously described nitrate-reducing Fe(II) oxidizers ( Acidovorax sp. strain BoFeN1 and Pseudogulbenkiania sp. strain 2002) and two heterotrophic nitrate reducers (Paracoccus denitrificans ATCC 19367 and P. denitrificans Pd 1222). All four strains oxidized ∼8 mM Fe(II) within 5 days in the presence of 5 mM acetate and accumulated nitrite (maximum concentrations of 0.8 to 1.0 mM) in the culture media. Iron(III) minerals, mainly goethite, formed and precipitated extracellularly in close proximity to the cell surface. Interestingly, mineral formation was also observed within the periplasm and cytoplasm; intracellular mineralization is expected to be physiologically disadvantageous, yet acetate consumption continued to be observed even at an advanced stage of Fe(II) oxidation. Extracellular polymeric substances (EPS) were detected by lectin staining with fluorescence microscopy, particularly in the presence of Fe(II), suggesting that EPS production is a response to Fe(II) toxicity or a strategy to decrease encrustation. Based on the data presented here, we propose a nitrite-driven, indirect mechanism of cell encrustation whereby nitrite forms during heterotrophic denitrification and abiotically oxidizes Fe(II). This work adds to the known assemblage of Fe(II)-oxidizing bacteria in nature and complicates our ability to delineate microbial Fe(II) oxidation in ancient microbes preserved as fossils in the geological record. PMID:24271182

  1. Spectroscopic evidence for the role of a site of the di-iron catalytic center of ferritins in tuning the kinetics of Fe(ii) oxidation.

    PubMed

    Ebrahimi, Kourosh Honarmand; Bill, Eckhard; Hagedoorn, Peter-Leon; Hagen, Wilfred R

    2016-11-15

    Ferritin is a nanocage protein made of 24 subunits. Its major role is to manage intracellular concentrations of free Fe(ii) and Fe(iii) ions, which is pivotal for iron homeostasis across all domains of life. This function of the protein is regulated by a conserved di-iron catalytic center and has been the subject of extensive studies over the past 50 years. Yet, it has not been fully understood how Fe(ii) is oxidized in the di-iron catalytic center and it is not known why eukaryotic and microbial ferritins oxidize Fe(ii) with different kinetics. In an attempt to obtain a new insight into the mechanism of Fe(ii) oxidation and understand the origin of the observed differences in the catalysis of Fe(ii) oxidation among ferritins we studied and compared the mechanism of Fe(ii) oxidation in the eukaryotic human H-type ferritin (HuHF) and the archaeal ferritin from Pyrococcus furiosus (PfFtn). The results show that the spectroscopic characteristics of the intermediate of Fe(ii) oxidation and the Fe(iii)-products are the same in these two ferritins supporting the proposal of unity in the mechanism of Fe(ii) oxidation among eukaryotic and microbial ferritins. Moreover, we observed that a site in the di-iron catalytic center controls the distribution of Fe(ii) among subunits of HuHF and PfFtn differently. This observation explains the reported differences between HuHF and PfFtn in the kinetics of Fe(ii) oxidation and the amount of O 2 consumed per Fe(ii) oxidized. These results provide a fresh understanding of the mechanism of Fe(ii) oxidation by ferritins.

  2. Ferroportin mediates the intestinal absorption of iron from a nanoparticulate ferritin core mimetic in mice

    PubMed Central

    Aslam, Mohamad F.; Frazer, David M.; Faria, Nuno; Bruggraber, Sylvaine F. A.; Wilkins, Sarah J.; Mirciov, Cornel; Powell, Jonathan J.; Anderson, Greg J.; Pereira, Dora I. A.

    2014-01-01

    The ferritin core is composed of fine nanoparticulate Fe3+ oxohydroxide, and we have developed a synthetic mimetic, nanoparticulate Fe3+ polyoxohydroxide (nanoFe3+). The aim of this study was to determine how dietary iron derived in this fashion is absorbed in the duodenum. Following a 4 wk run-in on an Fe-deficient diet, mice with intestinal-specific disruption of the Fpn-1 gene (Fpn-KO), or littermate wild-type (WT) controls, were supplemented with Fe2+ sulfate (FeSO4), nanoFe3+, or no added Fe for a further 4 wk. A control group was Fe sufficient throughout. Direct intestinal absorption of nanoFe3+ was investigated using isolated duodenal loops. Our data show that FeSO4 and nanoFe3+ are equally bioavailable in WT mice, and at wk 8 the mean ± sem hemoglobin increase was 18 ± 7 g/L in the FeSO4 group and 30 ± 5 g/L in the nanoFe3+ group. Oral iron failed to be utilized by Fpn-KO mice and was retained in enterocytes, irrespective of the iron source. In summary, although nanoFe3+ is taken up directly by the duodenum its homeostasis is under the normal regulatory control of dietary iron absorption, namely via ferroportin-dependent efflux from enterocytes, and thus offers potential as a novel oral iron supplement.—Aslam, M. F., Frazer, D. M., Faria, N., Bruggraber, S. F. A., Wilkins, S. J., Mirciov, C., Powell, J. J., Anderson, G. J., Pereira, D. I. A. Ferroportin mediates the intestinal absorption of iron from a nanoparticulate ferritin core mimetic in mice. PMID:24776745

  3. Fe3O4 nanoparticles decorated MWCNTs @ C ferrite nanocomposites and their enhanced microwave absorption properties

    NASA Astrophysics Data System (ADS)

    Zhang, Kaichuang; Gao, Xinbao; Zhang, Qian; Chen, Hao; Chen, Xuefang

    2018-04-01

    Fe3O4 nanoparticles decorated MWCNTs @ C ferrite nanocomposites were synthesized using a co-precipitation method and a calcination process. As one kind absorbing material, we researched the electromagnetic absorption properties of the composites that were mixed with a filler loading of 80 wt% paraffin. In addition, we studied the influence of the magnetic nanoparticle content on the absorbing properties. The results showed that the frequency corresponding to the maximum absorptions shifted to lower frequency when the magnetic nanoparticles content increased. The Fe3O4 nanoparticles decorated MWCNTs @ C ferrite nanocomposites with approximately 60% Fe3O4 nanoparticles showed the best electromagnetic absorption properties. The maximum reflection loss was -52.47 dB with a thickness of 2.0 mm at 10.4 GHz.

  4. Synthesis Gas Conversion over Rh-Based Catalysts Promoted by Fe and Mn

    DOE PAGES

    Liu, Yifei; Göeltl, Florian; Ro, Insoo; ...

    2017-06-13

    Rh/SiO2 catalysts promoted with Fe and Mn are selective for synthesis gas conversion to oxygenates and light hydrocarbons at 523 K and 580 psi. Selective anchoring of Fe and Mn species on Rh nanoparticles was achieved by controlled surface reactions and was evidenced by ultraviolet–visible absorption spectroscopy, scanning transmission electron microscopy, and inductively coupled plasma absorption emission spectroscopy. The interaction between Rh and Fe promotes the selective production of ethanol through hydrogenation of acetaldehyde and enhances the selectivity toward C2 oxygenates, which include ethanol and acetaldehyde. The interaction between Rh and Mn increases the overall reaction rate and the selectivitymore » toward C2+ hydrocarbons. The combination of Fe and Mn on Rh/SiO2 results in trimetallic Rh-Fe-Mn catalysts that surpass the performance of their bimetallic counterparts. The highest selectivities toward ethanol (36.9%) and C2 oxygenates (39.6%) were achieved over the Rh-Fe-Mn ternary system with a molar ratio of 1:0.15:0.10, as opposed to the selectivities obtained over Rh/SiO2, which were 3.5% and 20.4%, respectively. The production of value-added oxygenates and C2+ hydrocarbons over this trimetallic catalyst accounted for 55% of the total products. X-ray photoelectron spectroscopy measurements suggest that significant fractions of the Fe and Mn species exist as metallic iron and manganese oxides on the Rh surface upon reduction. These findings are rationalized by density functional theory (DFT) calculations, which reveal that the exact state of metals on the surfaces is condition-dependent, with Mn present as Mn(I) and Mn(II) oxide on the Rh (211) step edges and Fe present as Fe(I) oxide on the step edge and metallic subsurface iron on both Rh steps and terraces. CO Fourier transform infrared spectroscopy and DFT calculations suggest that the binding of CO to Rh (211) step edges modified by Fe and/or manganese oxide is altered in comparison to CO adsorption on a clean Rh (211) surface. These results suggest that Mn2Ox species and Fe and Fe2O modify bonding at Rh step edges and shift reaction selectivity away from CH4.« less

  5. Kinetic model to explain the effect of ocean warming and acidification on the Fe(II) oxidation rate in oligotrophic and eutrophic natural waters

    NASA Astrophysics Data System (ADS)

    González-Dávila, M.; Samperio-Ramos, G.; Santana-Casiano, J. M.; Gonzallez, A. G.; Pérez-Almeida, N.

    2016-12-01

    The speciation of inorganic Fe(II) as a function of the pH and temperature have been modeled in order to elucidate the inorganic Fe(II) redox behavior over a wide range of scenarios of acidification and global warming of the upper ocean, as well as, changes due to natural ambient fluctuations of pH and temperature. In addition, a kinetic modeling approach has been carried out to elucidate the fractional contribution of most kinetically active Fe(II) species to the overall oxidation rate to improve our future and present knowledge with respect to redox iron chemistry in the marine systems. The kinetic model considers the interactions of Fe(II) with the major ions in seawater, including phosphate and silicate and the competition with copper with the ROS. The model has been applied to the experimental results in order to describe the effect of temperature and pH in the speciation of Fe(II) and to compute the fractional contribution of each Fe(II)-specie to the overall oxidation rate. The oxidation rates (kapp) of nanomolar levels of Fe(II) have been studied in seawater enriched with nutrients (SWEN) in air saturated conditions. The nutrient effect (nitrate, phosphate and silicate), on the oxidation of Fe(II), has been evaluated as a function of pH (7.2-8.2), temperature (5-35 ºC) and salinity (10-37.09). The oxidation of Fe(II) was faster in the presence of nutrient with the change in the Fe(II) oxidation rates (Δlogkapp) more intensive at higher temperatures over the entire pH range studied. From the model it can be observed that the inorganic speciation of Fe(II) is controlled largely by pH, either in SW or in SWEN. A greater presence of Fe-nutrient reactive species (FeH3SiO4+ and FePO4-) in SWEN at higher temperatures explained the changes in the oxidation process. The individual oxidation rates by oxygen, for the Fe(II) most kinetically active species (Fe2+, FeOH+, Fe(OH)2, FeCO3(OH)-, FeCO3, Fe(CO3)22-, FeH3SiO3+, FePO4-), were fitted as a function of the temperature.

  6. Insights into Nitrate-Reducing Fe(II) Oxidation Mechanisms through Analysis of Cell-Mineral Associations, Cell Encrustation, and Mineralogy in the Chemolithoautotrophic Enrichment Culture KS

    PubMed Central

    Nordhoff, M.; Tominski, C.; Halama, M.; Byrne, J. M.; Obst, M.; Behrens, S.

    2017-01-01

    ABSTRACT Most described nitrate-reducing Fe(II)-oxidizing bacteria (NRFeOB) are mixotrophic and depend on organic cosubstrates for growth. Encrustation of cells in Fe(III) minerals has been observed for mixotrophic NRFeOB but not for autotrophic phototrophic and microaerophilic Fe(II) oxidizers. So far, little is known about cell-mineral associations in the few existing autotrophic NRFeOB. Here, we investigate whether the designated autotrophic Fe(II)-oxidizing strain (closely related to Gallionella and Sideroxydans) or the heterotrophic nitrate reducers that are present in the autotrophic nitrate-reducing Fe(II)-oxidizing enrichment culture KS form mineral crusts during Fe(II) oxidation under autotrophic and mixotrophic conditions. In the mixed culture, we found no significant encrustation of any of the cells both during autotrophic oxidation of 8 to 10 mM Fe(II) coupled to nitrate reduction and during cultivation under mixotrophic conditions with 8 to 10 mM Fe(II), 5 mM acetate, and 4 mM nitrate, where higher numbers of heterotrophic nitrate reducers were present. Two pure cultures of heterotrophic nitrate reducers (Nocardioides and Rhodanobacter) isolated from culture KS were analyzed under mixotrophic growth conditions. We found green rust formation, no cell encrustation, and only a few mineral particles on some cell surfaces with 5 mM Fe(II) and some encrustation with 10 mM Fe(II). Our findings suggest that enzymatic, autotrophic Fe(II) oxidation coupled to nitrate reduction forms poorly crystalline Fe(III) oxyhydroxides and proceeds without cellular encrustation while indirect Fe(II) oxidation via heterotrophic nitrate-reduction-derived nitrite can lead to green rust as an intermediate mineral and significant cell encrustation. The extent of encrustation caused by indirect Fe(II) oxidation by reactive nitrogen species depends on Fe(II) concentrations and is probably negligible under environmental conditions in most habitats. IMPORTANCE Most described nitrate-reducing Fe(II)-oxidizing bacteria (NRFeOB) are mixotrophic (their growth depends on organic cosubstrates) and can become encrusted in Fe(III) minerals. Encrustation is expected to be harmful and poses a threat to cells if it also occurs under environmentally relevant conditions. Nitrite produced during heterotrophic denitrification reacts with Fe(II) abiotically and is probably the reason for encrustation in mixotrophic NRFeOB. Little is known about cell-mineral associations in autotrophic NRFeOB such as the enrichment culture KS. Here, we show that no encrustation occurs in culture KS under autotrophic and mixotrophic conditions while heterotrophic nitrate-reducing isolates from culture KS become encrusted. These findings support the hypothesis that encrustation in mixotrophic cultures is caused by the abiotic reaction of Fe(II) with nitrite and provide evidence that Fe(II) oxidation in culture KS is enzymatic. Furthermore, we show that the extent of encrustation caused by indirect Fe(II) oxidation by reactive nitrogen species depends on Fe(II) concentrations and is probably negligible in most environmental habitats. PMID:28455336

  7. THE Fe II EMISSION IN ACTIVE GALACTIC NUCLEI: EXCITATION MECHANISMS AND LOCATION OF THE EMITTING REGION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marinello, M.; Rodríguez-Ardila, A.; Garcia-Rissmann, A.

    2016-04-01

    We present a study of Fe ii emission in the near-infrared region (NIR) for 25 active galactic nuclei (AGNs) to obtain information about the excitation mechanisms that power it and the location where it is formed. We employ an NIR Fe ii template derived in the literature and find that it successfully reproduces the observed Fe ii spectrum. The Fe ii bump at 9200 Å detected in all objects studied confirms that Lyα fluorescence is always present in AGNs. The correlation found between the flux of the 9200 Å bump, the 1 μm lines, and the optical Fe ii implies that Lyα fluorescencemore » plays an important role in Fe ii production. We determined that at least 18% of the optical Fe ii is due to this process, while collisional excitation dominates the production of the observed Fe ii. The line profiles of Fe ii λ10502, O i λ11287, Ca ii λ8664, and Paβ were compared to gather information about the most likely location where they are emitted. We found that Fe ii, O i and Ca ii have similar widths and are, on average, 30% narrower than Paβ. Assuming that the clouds emitting the lines are virialized, we show that the Fe ii is emitted in a region twice as far from the central source than Paβ. The distance, though, strongly varies: from 8.5 light-days for NGC 4051 to 198.2 light-days for Mrk 509. Our results reinforce the importance of the Fe ii in the NIR to constrain critical parameters that drive its physics and the underlying AGN kinematics, as well as more accurate models aimed at reproducing this complex emission.« less

  8. Copernicus observations of distant unreddened stars. II - Line of sight to HD 50896

    NASA Technical Reports Server (NTRS)

    Shull, J. M.

    1977-01-01

    Copernicus UV data on interstellar lines toward HD 50896, a Wolf-Rayet star, are analyzed to study abundances and physical conditions in the line of sight. About 20% of the low-velocity neutral gas is contained in a dense cloud with 10% to 50% of its hydrogen in molecular form; the atomic abundances show typical interstellar depletions. The low-velocity H II gas may be associated with the high ionizing flux of the Wolf-Rayet star or with H II regions along the line of sight. Si III exhibits strong absorption shortward of the low-velocity H II gas, characteristic of a collisionally ionized component at 30,000 to 80,000 K; the possible connections with an unobserved supernova remnant or stellar mass loss are discussed. High-velocity features at 78 and -96 km/sec, in which Fe and Si are near their cosmic abundances, are also indicative of strong shocks.

  9. Facile synthesis of iron oxides/reduced graphene oxide composites: application for electromagnetic wave absorption at high temperature.

    PubMed

    Zhang, Lili; Yu, Xinxin; Hu, Hongrui; Li, Yang; Wu, Mingzai; Wang, Zhongzhu; Li, Guang; Sun, Zhaoqi; Chen, Changle

    2015-03-19

    Iron oxides/reduced graphene oxide composites were synthesized by facile thermochemical reactions of graphite oxide and FeSO4 · 7H2O. By adjusting reaction temperature, α-Fe2O3/reduced graphene oxide and Fe3O4/reduced graphene oxide composites can be obtained conveniently. Graphene oxide and reduced graphene oxide sheets were demonstrated to regulate the phase transition from α-Fe2O3 to Fe3O4 via γ-Fe2O3, which was reported for the first time. The hydroxyl groups attached on the graphene oxide sheets and H2 gas generated during the annealing of graphene oxide are believed to play an important role during these phase transformations. These samples showed good electromagnetic wave absorption performance due to their electromagnetic complementary effect. These samples possess much better electromagnetic wave absorption properties than the mixture of separately prepared Fe3O4 with rGO, suggesting the crucial role of synthetic method in determining the product properties. Also, these samples perform much better than commercial absorbers. Most importantly, the great stability of these composites is highly advantageous for applications as electromagnetic wave absorption materials at high temperatures.

  10. Facile synthesis of iron oxides/reduced graphene oxide composites: application for electromagnetic wave absorption at high temperature

    PubMed Central

    Zhang, Lili; Yu, Xinxin; Hu, Hongrui; Li, Yang; Wu, Mingzai; Wang, Zhongzhu; Li, Guang; Sun, Zhaoqi; Chen, Changle

    2015-01-01

    Iron oxides/reduced graphene oxide composites were synthesized by facile thermochemical reactions of graphite oxide and FeSO4·7H2O. By adjusting reaction temperature, α-Fe2O3/reduced graphene oxide and Fe3O4/reduced graphene oxide composites can be obtained conveniently. Graphene oxide and reduced graphene oxide sheets were demonstrated to regulate the phase transition from α-Fe2O3 to Fe3O4 via γ-Fe2O3, which was reported for the first time. The hydroxyl groups attached on the graphene oxide sheets and H2 gas generated during the annealing of graphene oxide are believed to play an important role during these phase transformations. These samples showed good electromagnetic wave absorption performance due to their electromagnetic complementary effect. These samples possess much better electromagnetic wave absorption properties than the mixture of separately prepared Fe3O4 with rGO, suggesting the crucial role of synthetic method in determining the product properties. Also, these samples perform much better than commercial absorbers. Most importantly, the great stability of these composites is highly advantageous for applications as electromagnetic wave absorption materials at high temperatures. PMID:25788158

  11. Combined Mössbauer spectroscopic, multi-edge X-ray absorption spectroscopic, and density functional theoretical study of the radical SAM enzyme spore photoproduct lyase.

    PubMed

    Silver, Sunshine C; Gardenghi, David J; Naik, Sunil G; Shepard, Eric M; Huynh, Boi Hanh; Szilagyi, Robert K; Broderick, Joan B

    2014-03-01

    Spore photoproduct lyase (SPL), a member of the radical S-adenosyl-L-methionine (SAM) superfamily, catalyzes the direct reversal of the spore photoproduct, a thymine dimer specific to bacterial spores, to two thymines. SPL requires SAM and a redox-active [4Fe-4S] cluster for catalysis. Mössbauer analysis of anaerobically purified SPL indicates the presence of a mixture of cluster states with the majority (40 %) as [2Fe-2S](2+) clusters and a smaller amount (15 %) as [4Fe-4S](2+) clusters. On reduction, the cluster content changes to primarily (60 %) [4Fe-4S](+). The speciation information from Mössbauer data allowed us to deconvolute iron and sulfur K-edge X-ray absorption spectra to uncover electronic (X-ray absorption near-edge structure, XANES) and geometric (extended X-ray absorption fine structure, EXAFS) structural features of the Fe-S clusters, and their interactions with SAM. The iron K-edge EXAFS data provide evidence for elongation of a [2Fe-2S] rhomb of the [4Fe-4S] cluster on binding SAM on the basis of an Fe···Fe scatterer at 3.0 Å. The XANES spectra of reduced SPL in the absence and presence of SAM overlay one another, indicating that SAM is not undergoing reductive cleavage. The X-ray absorption spectroscopy data for SPL samples and data for model complexes from the literature allowed the deconvolution of contributions from [2Fe-2S] and [4Fe-4S] clusters to the sulfur K-edge XANES spectra. The analysis of pre-edge features revealed electronic changes in the Fe-S clusters as a function of the presence of SAM. The spectroscopic findings were further corroborated by density functional theory calculations that provided insights into structural and electronic perturbations that can be correlated by considering the role of SAM as a catalyst or substrate.

  12. SUBARU/HDS STUDY OF HE 1015-2050: SPECTRAL EVIDENCE OF R CORONAE BOREALIS LIGHT DECLINE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goswami, Aruna; Aoki, Wako, E-mail: aruna@iiap.res.in

    2013-02-01

    Hydrogen deficiency and a sudden optical light decline of about 6-8 mag are two principal characteristics of R Coronae Borealis (RCB) stars. The high latitude carbon star HE 1015-2050 was identified as a hydrogen-deficient carbon star from low-resolution spectroscopy. Photometric data of the Catalina Real-Time Transient Survey gathered between 2006 February and 2012 May indicate that the object exhibits no variability. However, a high-resolution (R {approx} 50, 000) optical spectrum of this object obtained with the 8.2 m Subaru telescope using High Dispersion Spectrograph on the 2012 January 13 offers sufficient spectral evidence that the object is a cool HdCmore » star of RCB type undergoing light decline. In contrast to the Na I D broad absorption features seen in the low-resolution spectra on several occasions, the high-resolution spectrum exhibits Na I D{sub 2} and D{sub 1} features in emission. A few emission lines due to Mg I, Sc II, Ti I, Ti II, Fe II, and Ba I are also observed in the spectrum of this object for the first time. Such emission features combined with neutral and singly ionized lines of Ca, Ti, Fe, etc., in absorption are reportedly seen in RCBs spectra in the early stage of decline or during the recovery to maximum. Further, the light decline of RCBs is ascribed to the formation of a cloud of soot that obscures the visible photosphere. The presence of such circumstellar material is evident from the polarimetric observations with an estimated V-band percentage polarization of {approx}1.7% for this object.« less

  13. [Experimental study and correction of the absorption and enhancement effect between Ti, V and Fe].

    PubMed

    Tuo, Xian-Guo; Mu, Ke-Liang; Li, Zhe; Wang, Hong-Hui; Luo, Hui; Yang, Jian-Bo

    2009-11-01

    The absorption and enhancement effects in X-ray fluorescence analysis for Ti, V and Fe elements were studied in the present paper. Three bogus duality systems of Ti-V/Ti-Fe/V-Fe samples were confected and measured by X-ray fluorescence analysis technique using HPGe semiconductor detector, and the relation curve between unitary coefficient (R(K)) of element count rate and element content (W(K)) were obtained after the experiment. Having analyzed the degree of absorption and enhancement effect between every two elements, the authors get the result, and that is the absorption and enhancement effect between Ti and V is relatively distinctness, while it's not so distinctness in Ti-Fe and V-Fe. After that, a mathematics correction method of exponential fitting was used to fit the R(K)-W(K) curve and get a function equation of X-ray fluorescence count rate and content. Three groups of Ti-V duality samples were used to test the fitting method and the relative errors of Ti and V were less than 0.2% as compared to the actual results.

  14. Method of removing oxidized contaminants from water

    DOEpatents

    Amonette, James E.; Fruchter, Jonathan S.; Gorby, Yuri A.; Cole, Charles R.; Cantrell, Kirk J.; Kaplan, Daniel I.

    1998-01-01

    The present invention is a method for removing oxidized contaminant(s) from water. More specifically, the invention has the steps of contacting water containing the oxidized contaminant(s) with a layered aluminosilicate having Fe(II). The aluminosilicate may contain naturally occurring Fe(II), or the Fe(II) may be produced by reducing Fe(III) that is initially present. Reduction may be either by exposure to a chemical or biological reductant. Contacting the water containing oxidized contaminant(s) may be by (1) injection of Fe(II)-containing layered aluminosilicate, via a well, into a saturated zone where it is likely to intercept the contaminated water; (2) injection of contaminated water into a vessel containing the Fe(II)-bearing layered aluminosilicate; and (3) first reducing Fe(III) in the layered aluminosilicate to Fe(II) by injection of a biological or chemical reductant, into an aquifer or vessel having sufficient Fe(III)-bearing aluminosilicate to produce the necessary Fe(II).

  15. Method of removing oxidized contaminants from water

    DOEpatents

    Amonette, J.E.; Fruchter, J.S.; Gorby, Y.A.; Cole, C.R.; Cantrell, K.J.; Kaplan, D.I.

    1998-07-21

    The present invention is a method for removing oxidized contaminant(s) from water. More specifically, the invention has the steps of contacting water containing the oxidized contaminant(s) with a layered aluminosilicate having Fe(II). The aluminosilicate may contain naturally occurring Fe(II), or the Fe(II) may be produced by reducing Fe(III) that is initially present. Reduction may be either by exposure to a chemical or biological reductant. Contacting the water containing oxidized contaminant(s) may be by (1) injection of Fe(II)-containing layered aluminosilicate, via a well, into a saturated zone where it is likely to intercept the contaminated water; (2) injection of contaminated water into a vessel containing the Fe(II)-bearing layered aluminosilicate; and (3) first reducing Fe(III) in the layered aluminosilicate to Fe(II) by injection of a biological or chemical reductant, into an aquifer or vessel having sufficient Fe(III)-bearing aluminosilicate to produce the necessary Fe(II). 8 figs.

  16. Nonaqueous System of Iron-Based Ionic Liquid and DMF for the Oxidation of Hydrogen Sulfide and Regeneration by Electrolysis.

    PubMed

    Guo, Zhihui; Zhang, Tingting; Liu, Tiantian; Du, Jun; Jia, Bing; Gao, Shujing; Yu, Jiang

    2015-05-05

    To improve the hydrogen sulfide removal efficiency with the application of an iron-based imidazolium chloride ionic liquid (Fe(III)-IL) as desulfurizer, Fe(II) and N,N-dimethylformamide (DMF) are introduced to Fe(III)-IL to construct a new nonaqueous desulfurization system (Fe(III/II)-IL/DMF). Following desulfurization, the system can be regenerated using the controlled-potential electrolysis method. The addition of Fe(II) in Fe(III)-IL is beneficial for the hydrogen sulfide removal and the electrochemical regeneration of the desulfurizer. The addition of DMF in Fe(III/II)-IL does not change the structure of Fe(III/II)-IL but clearly decreases the acidity, increases the electrolytic current, and decreases the stability of the Fe-Cl bond in Fe(III/II)-IL. Fe(III/II)-IL/DMF can remove hydrogen sulfide and can be regenerated through an electrochemical method more efficiently than can Fe(III/II)-IL. After six cycles, the desulfurization efficiency remains higher than 98%, and the average conversion rate of Fe(II) is essentially unchanged. No sulfur peroxidation occurs, and the system remains stable. Therefore, this new nonaqueous system has considerable potential for removing H2S in pollution control applications.

  17. The binuclear nickel center in the A-cluster of acetyl-CoA synthase (ACS) and two biomimetic dinickel complexes studied by X-ray absorption and emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Schrapers, P.; Mebs, S.; Ilina, Y.; Warner, D. S.; Wörmann, C.; Schuth, N.; Kositzki, R.; Dau, H.; Limberg, C.; Dobbek, H.; Haumann, M.

    2016-05-01

    Acetyl-CoA synthase (ACS) is involved in the bacterial carbon oxide conversion pathway. The binuclear nickel sites in ACS enzyme and two biomimetic synthetic compounds containing a Ni(II)Ni(II) unit (1 and 2) were compared using XAS/XES. EXAFS analysis of ACS proteins revealed similar Ni-N/O/S bond lengths and Ni-Ni/Fe distances as in the crystal structure in oxidized ACS, but elongated Ni-ligand bonds in reduced ACS, suggesting more reduced nickel species. The XANES spectra of ACS and the dinickel complexes showed overall similar shapes, but less resolved pre-edge and edge features in ACS, attributed to more distorted square-planar nickel sites in particular in reduced ACS. DFT calculation of pre-edge absorption and Kβ2,5 emission features reproduced the experimental spectra of the synthetic complexes, was sensitive even to the small geometry differences in 1 and 2, and indicated low-spin Ni(II) sites. Comparison of nickel sites in proteins and biomimetic compounds is valuable for deducing structural and electronic differences in response to ligation and redox changes.

  18. An Ultraviolet Spectrum of the Tidal Disruption Flare ASASSN-14li

    NASA Astrophysics Data System (ADS)

    Cenko, S. Bradley; Cucchiara, Antonino; Roth, Nathaniel; Veilleux, Sylvain; Prochaska, J. Xavier; Yan, Lin; Guillochon, James; Maksym, W. Peter; Arcavi, Iair; Butler, Nathaniel R.; Filippenko, Alexei V.; Fruchter, Andrew S.; Gezari, Suvi; Kasen, Daniel; Levan, Andrew J.; Miller, Jon M.; Pasham, Dheeraj R.; Ramirez-Ruiz, Enrico; Strubbe, Linda E.; Tanvir, Nial R.; Tombesi, Francesco

    2016-02-01

    We present a Hubble Space Telescope Space Telescope Imaging Spectrograph spectrum of ASASSN-14li, the first rest-frame ultraviolet (UV) spectrum of a tidal disruption flare (TDF). The underlying continuum is well fit by a blackbody with {T}{UV}=3.5× {10}4 K, an order of magnitude smaller than the temperature inferred from X-ray spectra (and significantly more precise than previous efforts based on optical and near-UV photometry). Superimposed on this blue continuum, we detect three classes of features: narrow absorption from the Milky Way (probably a high-velocity cloud), and narrow absorption and broad (˜2000-8000 km s-1) emission lines at or near the systemic host velocity. The absorption lines are blueshifted with respect to the emission lines by Δv = -(250-400) km s-1. Due both to this velocity offset and the lack of common low-ionization features (Mg II, Fe II), we argue these arise from the same absorbing material responsible for the low-velocity outflow discovered at X-ray wavelengths. The broad nuclear emission lines display a remarkable abundance pattern: N III], N IV], and He II are quite prominent, while the common quasar emission lines of C III] and Mg II are weak or entirely absent. Detailed modeling of this spectrum will help elucidate fundamental questions regarding the nature of the emission processes at work in TDFs, while future UV spectroscopy of ASASSN-14li would help to confirm (or refute) the previously proposed connection between TDFs and “N-rich” quasars.

  19. An Ultraviolet Spectrum of the Tidal Disruption Flare ASASSN-14li

    NASA Technical Reports Server (NTRS)

    Cenko, S. Bradley; Cucchiara, Antonio; Roth, Nathaniel; Veilleux, Sylvain; Prochaska, J. Xavier; Yan, Lin; Guillochon, James; Maksym, W. Peter; Arcavi, Iair; Butler, Nathaniel R.

    2016-01-01

    We present a Hubble Space Telescope Space Telescope Imaging Spectrograph spectrum of ASASSN-14li, the first rest-frame ultraviolet (UV) spectrum of a tidal disruption flare (TDF). The underlying continuum is well fit by a blackbody with T(sub UV) = 3.5 x 10(exp. 4) K, an order of magnitude smaller than the temperature inferred from X-ray spectra (and significantly more precise than previous efforts based on optical and near-UV photometry).Superimposed on this blue continuum, we detect three classes of features: narrow absorption from the Milky Way (probably a high-velocity cloud), and narrow absorption and broad {approx. 2000-8000 km s(exp. -1)} emission lines at or near the systemic host velocity. The absorption lines are blueshifted with respect to the emission lines by Delta(sub v) = -(250-400) km s(exp. -1). Due both to this velocity offset and the lack of common low-ionization features (Mg II, Fe II), we argue these arise from the same absorbing material responsible for the low-velocity outflow discovered at X-ray wavelengths. The broad nuclear emission lines display a remarkable abundance pattern: N III], N IV], and He II are quite prominent, while the common quasar emission lines of C III] and Mg II are weak or entirely absent. Detailed modeling of this spectrum will help elucidate fundamental questions regarding the nature of the emission processes at work in TDFs, while future UV spectroscopy of ASASSN-14li would help to confirm (or refute) the previously proposed connection between TDFs and N-rich quasars.

  20. Hybrid absorbers composed of Fe3O4 thin film and magnetic composite sheet and enhancement of conduction noise absorption on a microstrip line

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Soo

    2015-05-01

    In response to develop wide-band noise absorbers with an improved low-frequency performance, this study investigates hybrid absorbers that are composed of conductive Fe3O4 thin film and magnetic composite sheets. The Fe3O4 films prepared via reactive sputtering exhibit a typical value of electrical resistivity of ≃10-4 Ωm. Rubber composites with flaky Fe-Si-Al particles of a high permeability and high permittivity are used as the magnetic sheet functioning as an electromagnetic shield barrier. Microstrip lines with a characteristic impedance of 50 Ω are used to measure the noise absorbing properties. For the Fe3O4 film with a low surface resistance and covered by the magnetic sheet, approximately 80% power absorption can be obtained at 1 GHz, which is significantly higher than that of the original magnetic sheet or Fe3O4 film. The high power absorption of the hybrid absorber is attributed to the enhanced ohmic loss of the Fe3O4 film through increased electric field strength bounded by the upper magnetic composite sheet. The noise absorption is further enhanced through increasing the electrical conductivity of the film containing more conductive phase (Fe3O4 + Fe), which can be prepared in a reduced oxygen partial pressure during reactive sputtering.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, T.; Griffin, A. M.; Gorski, C. A.

    Dissimilatory microbial reduction of solid-phase Fe(III)-oxides and Fe(III)-bearing phyllosilicates (Fe(III)-phyllosilicates) is an important process in anoxic soils, sediments, and subsurface materials. Although various studies have documented the relative extent of microbial reduction of single-phase Fe(III)-oxides and Fe(III)-phyllosilicates, detailed information is not available on interaction between these two processes in situations where both phases are available for microbial reduction. The goal of this research was to use the model dissimilatory iron-reducing bacterium (DIRB) Geobacter sulfurreducens to study Fe(III)-oxide vs. Fe(III)-phyllosilicate reduction in a range of subsurface materials and Fe(III)-oxide stripped versions of the materials. Low temperature (12K) Mossbauer spectroscopy was usedmore » to infer changes in the relative abundances of Fe(III)-oxide, Fe(III)-phyllosilicate, and phyllosilicate-associated Fe(II) (Fe(II)-phyllosilicate). A Fe partitioning model was employed to analyze the fate of Fe(II) and assess the potential for abiotic Fe(II)-catalyzed reduction of Fe(III)-phyllosilicates. The results showed that in most cases Fe(III)- oxide utilization dominated (70-100 %) bulk Fe(III) reduction activity, and that electron transfer from oxide-derived Fe(II) played only a minor role (ca. 10-20 %) in Fe partitioning. In addition, the extent of Fe(III)-oxide reduction was positively correlated to surface area-normalized cation exchange capacity and the phyllosilicate-Fe(III)/total Fe(III) ratio, which suggests that the phyllosilicates in the natural sediments promoted Fe(III)-oxide reduction by binding of oxide-derived Fe(II), thereby enhancing Fe(III)-oxide reduction by reducing or delaying the inhibitory effect that Fe(II) accumulation on oxide and DIRB cell surfaces has on Fe(III)-oxide reduction. In general our results suggest that although Fe(III)-oxide reduction is likely to dominate bulk Fe(III) reduction in most subsurface sediments, Fe(II) binding by phyllosilicates is likely to play a key role in controlling the long-term kinetics of Fe(III)-oxide reduction.« less

  2. Kineococcus radiotolerans Dps forms a heteronuclear Mn-Fe ferroxidase center that may explain the Mn-dependent protection against oxidative stress.

    PubMed

    Ardini, Matteo; Fiorillo, Annarita; Fittipaldi, Maria; Stefanini, Simonetta; Gatteschi, Dante; Ilari, Andrea; Chiancone, Emilia

    2013-06-01

    The ferroxidase center of DNA-binding protein from starved cells (Dps) is a major player in the iron oxidation/detoxification process that leads to a decreased reactive oxygen species production. The possible Mn(II) participation in this process has been studied in Dps from Kineococcus radiotolerans, a radiation-resistant bacterium with a high cytosolic Mn/Fe ratio and a high capacity to survive ionizing and stress conditions. The X-ray structure of recombinant K. radiotolerans Dps loaded with Mn(II) has been solved at 2.0Å resolution. Mn(II) binding to K. radiotolerans Dps and its effect on Fe(II) oxidation have been characterized in spectroscopic measurements. In K. radiotolerans Dps, the Fe-Fe ferroxidase center can have a Mn-Fe composition. Mn(II) binds only at the high affinity, so-called A site, whereas Fe(II) binds also at the low affinity, so-called B site. The Mn-Fe and Fe-Fe centers behave distinctly upon iron oxidation by O2. A site-bound Mn(II) or Fe(II) plays a catalytic role, while B site-bound Fe(II) behaves like a substrate and can be replaced by another Fe(II) after oxidation. When H2O2 is the Fe(II) oxidant, single electrons are transferred to aromatic residues near the ferroxidase center and give rise to intra-protein radicals thereby limiting OH release in solution. The presence of the Mn-Fe center results in significant differences in the development of such intra-protein radicals. Mn(II) bound at the Dps ferroxidase center A site undergoes redox cycling provided the B site contains Fe. The results provide a likely molecular mechanism for the protective role of Mn(II) under oxidative stress conditions as it participates in redox cycling in the hetero-binuclear ferroxidase center. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. The presence of Ti(II) centers in doped nanoscale TiO2 and TiO2-xNx

    NASA Astrophysics Data System (ADS)

    Mikulas, Tanya; Fang, Zongtang; Gole, James L.; White, Mark G.; Dixon, David A.

    2012-06-01

    Unusual trends are observed in the Ti (2s, 2p) XPS spectra of Fe(II) doped TiO2 and TiO2-xNx. The binding energy of Ti (2s, 2p) initially decreases with increasing Fe(II) concentration, as expected, but increases at higher Fe(II) doping levels. Density functional theory is used to analyze the results. The observed VB-XPS and core level XPS spectra are consistent with the facile charge transfer sequence Ti(IV) + Fe(II) → Ti(III) + Fe(III) followed by Ti(III) + Fe(II) → Ti(II) + Fe(III). The formed Ti(II) sites may be relevant to nanoparticle catalysis on TiO2 surfaces.

  4. Variation of iron redox kinetics and its relation with molecular composition of standard humic substances at circumneutral pH.

    PubMed

    Lee, Ying Ping; Fujii, Manabu; Kikuchi, Tetsuro; Terao, Koumei; Yoshimura, Chihiro

    2017-01-01

    Oxidation and reduction kinetics of iron (Fe) and proportion of steady-state Fe(II) concentration relative to total dissolved Fe (steady-state Fe(II) fraction) were investigated in the presence of various types of standard humic substances (HS) with particular emphasis on the photochemical and thermal reduction of Fe(III) and oxidation of Fe(II) by dissolved oxygen (O2) and hydrogen peroxide (H2O2) at circumneutral pH (pH 7-8). Rates of Fe(III) reduction were spectrophotometrically determined by a ferrozine method under the simulated sunlight and dark conditions, whereas rates of Fe(II) oxidation were examined in air-saturated solution using luminol chemiluminescence technique. The reduction and oxidation rate constants were determined to substantially vary depending on the type of HS. For example, the first-order rate constants varied by up to 10-fold for photochemical reduction and 7-fold for thermal reduction. The degree of variation in Fe(II) oxidation was larger for the H2O2-mediated reaction compared to the O2-mediated reaction (e.g., 15- and 3-fold changes for the former and latter reactions, respectively, at pH 8). The steady-state Fe(II) fraction under the simulated sunlight indicated that the Fe(II) fraction varies by up to 12-fold. The correlation analysis indicated that variation of Fe(II) oxidation is significantly associated with aliphatic content of HS, suggesting that Fe(II) complexation by aliphatic components accelerates Fe(II) oxidation. The reduction rate constant and steady-state Fe(II) fractions in the presence of sunlight had relatively strong positive relations with free radical content of HS, possibly due to the reductive property of radical semiquinone in HS. Overall, the findings in this study indicated that the Fe reduction and oxidation kinetics and resultant Fe(II) formation are substantially influenced by chemical properties of HS.

  5. Pore-Scale Characterization of Biogeochemical Controls on Iron and Uranium Speciation under Flow Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pearce, Carolyn I.; Wilkins, Michael J.; Zhang, Changyong

    2012-09-17

    Etched silicon microfluidic pore network models (micromodels) with controlled chemical and redox gradients, mineralogy, and microbiology under continuous flow conditions are used for the incremental development of complex microenvironments that simulate subsurface conditions. We demonstrate the colonization of micromodel pore spaces by an anaerobic Fe(III)-reducing bacterial species (Geobacter sulfurreducens) and the enzymatic reduction of a bioavailable Fe(III) phase within this environment. Using both X-ray Microprobe and X-ray Absorption Spectroscopy, we investigate the combined effects of the precipitated Fe(III) phases and the microbial population on uranium biogeochemistry under flow conditions. Precipitated Fe(III) phases within the micromodel were most effectively reduced inmore » the presence of an electron shuttle (AQDS), and Fe(II) ions adsorbed onto the precipitated mineral surface without inducing any structural change. In the absence of Fe(III), U(VI) was effectively reduced by the microbial population to insoluble U(IV), which was precipitated in discrete regions associated with biomass. In the presence of Fe(III) phases, however, both U(IV) and U(VI) could be detected associated with biomass, suggesting re-oxidation of U(IV) by localized Fe(III) phases. These results demonstrate the importance of the spatial localization of biomass and redox active metals, and illustrate the key effects of pore-scale processes on contaminant fate and reactive transport.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Chunmei; Kukkadapu, Ravi K.; Lazareva, Olesya

    Properties of Fe minerals are poorly understood in natural soils and sediments with variable redox conditions. In this study, we combined 57Fe Mössbauer and Fe K-edge X-ray absorption spectroscopic techniques to assess solid-phase Fe speciation along the vertical redox gradients of floodplain profiles, which exhibited a succession of oxic, anoxic and suboxic-oxic zones with increasing depth along the vertical profiles. The anoxic conditions at the intermediate horizon (55-80 cm) of the eastern floodplain resulted in extensive depletion of Fe(III)-oxides including both ferrihydrite and goethite, concurrent with a corresponding reduction of phyllosilicates(PS)-Fe(III) to PS-Fe(II). In addition, the anoxic conditions increased themore » crystallinity of Fe(III)-oxides in this reduced zone, relative to the oxic zones. In the most reduced intermediate sediments at 80-120cm of the western floodplain, the anoxic conditions drove the complete reductive dissolution of Fe(III) oxides, as well as the greatest reduction (48-55%) in PS-Fe(III). In both oxic near-surface horizon and oxic-suboxic gravel aquifers beneath the soil horizons, Fe(III)-oxides were mainly present as ferrihydrite with a less amount of goethite, which preferentially occurred as nanogoethite or Al/Si-substituted goethite. Ferrihydrite with varying crystallinity or impurities such as organic matter, Al or Si, persisted under suboxic-oxic conditions in the floodplain. This study indicates that vertical redox gradients exert a major control on the quantity and speciation of Fe(III) oxides as well as the oxidation state of structural Fe in PS, which could significantly affect nutrient cycling and carbon (de)stabilization.« less

  7. Insights into Nitrate-Reducing Fe(II) Oxidation Mechanisms through Analysis of Cell-Mineral Associations, Cell Encrustation, and Mineralogy in the Chemolithoautotrophic Enrichment Culture KS.

    PubMed

    Nordhoff, M; Tominski, C; Halama, M; Byrne, J M; Obst, M; Kleindienst, S; Behrens, S; Kappler, A

    2017-07-01

    Most described nitrate-reducing Fe(II)-oxidizing bacteria (NRFeOB) are mixotrophic and depend on organic cosubstrates for growth. Encrustation of cells in Fe(III) minerals has been observed for mixotrophic NRFeOB but not for autotrophic phototrophic and microaerophilic Fe(II) oxidizers. So far, little is known about cell-mineral associations in the few existing autotrophic NRFeOB. Here, we investigate whether the designated autotrophic Fe(II)-oxidizing strain (closely related to Gallionella and Sideroxydans ) or the heterotrophic nitrate reducers that are present in the autotrophic nitrate-reducing Fe(II)-oxidizing enrichment culture KS form mineral crusts during Fe(II) oxidation under autotrophic and mixotrophic conditions. In the mixed culture, we found no significant encrustation of any of the cells both during autotrophic oxidation of 8 to 10 mM Fe(II) coupled to nitrate reduction and during cultivation under mixotrophic conditions with 8 to 10 mM Fe(II), 5 mM acetate, and 4 mM nitrate, where higher numbers of heterotrophic nitrate reducers were present. Two pure cultures of heterotrophic nitrate reducers ( Nocardioides and Rhodanobacter ) isolated from culture KS were analyzed under mixotrophic growth conditions. We found green rust formation, no cell encrustation, and only a few mineral particles on some cell surfaces with 5 mM Fe(II) and some encrustation with 10 mM Fe(II). Our findings suggest that enzymatic, autotrophic Fe(II) oxidation coupled to nitrate reduction forms poorly crystalline Fe(III) oxyhydroxides and proceeds without cellular encrustation while indirect Fe(II) oxidation via heterotrophic nitrate-reduction-derived nitrite can lead to green rust as an intermediate mineral and significant cell encrustation. The extent of encrustation caused by indirect Fe(II) oxidation by reactive nitrogen species depends on Fe(II) concentrations and is probably negligible under environmental conditions in most habitats. IMPORTANCE Most described nitrate-reducing Fe(II)-oxidizing bacteria (NRFeOB) are mixotrophic (their growth depends on organic cosubstrates) and can become encrusted in Fe(III) minerals. Encrustation is expected to be harmful and poses a threat to cells if it also occurs under environmentally relevant conditions. Nitrite produced during heterotrophic denitrification reacts with Fe(II) abiotically and is probably the reason for encrustation in mixotrophic NRFeOB. Little is known about cell-mineral associations in autotrophic NRFeOB such as the enrichment culture KS. Here, we show that no encrustation occurs in culture KS under autotrophic and mixotrophic conditions while heterotrophic nitrate-reducing isolates from culture KS become encrusted. These findings support the hypothesis that encrustation in mixotrophic cultures is caused by the abiotic reaction of Fe(II) with nitrite and provide evidence that Fe(II) oxidation in culture KS is enzymatic. Furthermore, we show that the extent of encrustation caused by indirect Fe(II) oxidation by reactive nitrogen species depends on Fe(II) concentrations and is probably negligible in most environmental habitats. Copyright © 2017 American Society for Microbiology.

  8. Mössbauer, EPR, and Modeling Study of Iron Trafficking and Regulation in Δccc1 and CCC1-up Saccharomyces cerevisiae

    PubMed Central

    2015-01-01

    Strains lacking and overexpressing the vacuolar iron (Fe) importer CCC1 were characterized using Mössbauer and EPR spectroscopies. Vacuolar Fe import is impeded in Δccc1 cells and enhanced in CCC1-up cells, causing vacuolar Fe in these strains to decline and accumulate, respectively, relative to WT cells. Cytosolic Fe levels should behave oppositely. The Fe content of Δccc1 cells grown under low-Fe conditions was similar to that in WT cells. Most Fe was mitochondrial with some nonheme high spin (NHHS) FeII present. Δccc1 cells grown with increasing Fe concentration in the medium contained less total Fe, less vacuolar HS FeIII, and more NHHS FeII than in comparable WT cells. As the Fe concentration in the growth medium increased, the concentration of HS FeIII in Δccc1 cells increased to just 60% of WT levels, while NHHS FeII increased to twice WT levels, suggesting that the NHHS FeII was cytosolic. Δccc1 cells suffered more oxidative damage than WT cells, suggesting that the accumulated NHHS FeII promoted Fenton chemistry. The Fe concentration in CCC1-up cells was higher than in WT cells; the extra Fe was present as NHHS FeII and FeIII and as FeIII oxyhydroxide nanoparticles. These cells contained less mitochondrial Fe and exhibited less ROS damage than Δccc1 cells. CCC1-up cells were adenine-deficient on minimal medium; supplementing with adenine caused a decline of NHHS FeII suggesting that some of the NHHS FeII that accumulated in these cells was associated with adenine deficiency rather than the overexpression of CCC1. A mathematical model was developed that simulated changes in Fe distributions. Simulations suggested that only a modest proportion of the observed NHHS FeII in both strains was the cytosolic form of Fe that is sensed by the Fe import regulatory system. The remainder is probably generated by the reduction of the vacuolar NHHS FeIII species. PMID:24785783

  9. Mössbauer, EPR, and modeling study of iron trafficking and regulation in Δccc1 and CCC1-up Saccharomyces cerevisiae.

    PubMed

    Cockrell, Allison; McCormick, Sean P; Moore, Michael J; Chakrabarti, Mrinmoy; Lindahl, Paul A

    2014-05-13

    Strains lacking and overexpressing the vacuolar iron (Fe) importer CCC1 were characterized using Mössbauer and EPR spectroscopies. Vacuolar Fe import is impeded in Δccc1 cells and enhanced in CCC1-up cells, causing vacuolar Fe in these strains to decline and accumulate, respectively, relative to WT cells. Cytosolic Fe levels should behave oppositely. The Fe content of Δccc1 cells grown under low-Fe conditions was similar to that in WT cells. Most Fe was mitochondrial with some nonheme high spin (NHHS) Fe(II) present. Δccc1 cells grown with increasing Fe concentration in the medium contained less total Fe, less vacuolar HS Fe(III), and more NHHS Fe(II) than in comparable WT cells. As the Fe concentration in the growth medium increased, the concentration of HS Fe(III) in Δccc1 cells increased to just 60% of WT levels, while NHHS Fe(II) increased to twice WT levels, suggesting that the NHHS Fe(II) was cytosolic. Δccc1 cells suffered more oxidative damage than WT cells, suggesting that the accumulated NHHS Fe(II) promoted Fenton chemistry. The Fe concentration in CCC1-up cells was higher than in WT cells; the extra Fe was present as NHHS Fe(II) and Fe(III) and as Fe(III) oxyhydroxide nanoparticles. These cells contained less mitochondrial Fe and exhibited less ROS damage than Δccc1 cells. CCC1-up cells were adenine-deficient on minimal medium; supplementing with adenine caused a decline of NHHS Fe(II) suggesting that some of the NHHS Fe(II) that accumulated in these cells was associated with adenine deficiency rather than the overexpression of CCC1. A mathematical model was developed that simulated changes in Fe distributions. Simulations suggested that only a modest proportion of the observed NHHS Fe(II) in both strains was the cytosolic form of Fe that is sensed by the Fe import regulatory system. The remainder is probably generated by the reduction of the vacuolar NHHS Fe(III) species.

  10. Fe(II)/Cu(II) interaction on goethite stimulated by an iron-reducing bacteria Aeromonas Hydrophila HS01 under anaerobic conditions.

    PubMed

    Tao, Liang; Zhu, Zhen-Ke; Li, Fang-Bai; Wang, Shan-Li

    2017-11-01

    Copper is a trace element essential for living creatures, but copper content in soil should be controlled, as it is toxic. The physical-chemical-biological features of Cu in soil have a significant correlation with the Fe(II)/Cu(II) interaction in soil. Of significant interest to the current study is the effect of Fe(II)/Cu(II) interaction conducted on goethite under anaerobic conditions stimulated by HS01 (a dissimilatory iron reduction (DIR) microbial). The following four treatments were designed: HS01 with α-FeOOH and Cu(II) (T1), HS01 with α-FeOOH (T2), HS01 with Cu(II) (T3), and α-FeOOH with Cu(II) (T4). HS01 presents a negligible impact on copper species transformation (T3), whereas the presence of α-FeOOH significantly enhanced copper aging contributing to the DIR effect (T1). Moreover, the violent reaction between adsorbed Fe(II) and Cu(II) leads to the decreased concentration of the active Fe(II) species (T1), further inhibiting reactions between Fe(II) and iron (hydr)oxides and decelerating the phase transformation of iron (hydr)oxides (T1). From this study, the effects of the Fe(II)/Cu(II) interaction on goethite under anaerobic conditions by HS01 are presented in three aspects: (1) the accelerating effect of copper aging, (2) the reductive transformation of copper, and (3) the inhibition effect of the phase transformation of iron (hydr)oxides. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Production and Isomeric Distribution of Xanthylium Cation Pigments and Their Precursors in Wine-like Conditions: Impact of Cu(II), Fe(II), Fe(III), Mn(II), Zn(II), and Al(III).

    PubMed

    Guo, Anque; Kontoudakis, Nikolaos; Scollary, Geoffrey R; Clark, Andrew C

    2017-03-22

    This study establishes the influence of Cu(II), Fe(II), Fe(III), Zn(II), Al(III), and Mn(II) on the oxidative production of xanthylium cations from (+)-catechin and either tartaric acid or glyoxylic acid in model wine systems. The reaction was studied at 25 °C using UHPLC and LC-HRMS for the analysis of phenolic products and their isomeric distribution. In addition to the expected products, a colorless product, tentatively assigned as a lactone, was detected for the first time. The results show the importance of Fe ions and a synergistic influence of Mn(II) in degrading tartaric acid to glyoxylic acid, whereas the other metal ions had minimal activity in this mechanistic step. Fe(II) and Fe(III) were shown to mediate the (+)-catechin-glyoxylic acid addition reaction, a role previously attributed to only Cu(II). Importantly, the study demonstrates that C-8 addition products of (+)-catechin are promoted by Cu(II), whereas C-6 addition products are promoted by Fe ions.

  12. Effect of Fe (II) in low-nitrogen sewage on the reactor performance and microbial community of an ANAMMOX biofilter.

    PubMed

    Zhang, Xiaojing; Zhou, Yue; Zhao, Siyu; Zhang, Rongrong; Peng, Zhaoxue; Zhai, Hanfei; Zhang, Hongzhong

    2018-06-01

    In this study, the effect of Fe (II) on Anaerobic Ammonium Oxidation (ANAMMOX) process was investigated by step-wise increasing the Fe (II) in influent from 1 to 50 mg L -1 . The nitrogen removal, biofilm property and the microbial community were analyzed in each phase. Results showed that, the anaerobic ammonia-oxidizing bacteria (AAOB) bioactivity and the nitrogen removal of ANAMMOX system were slightly improved to 0.58 from the initial 0.51 kg m -3 d -1 by Fe (II) in 1-5 mg L -1 . The nitrogen removal was suppressed and could recover to the initial level during the same period under 10-20 mg L -1 Fe (II), while it did not recover to the initial level under 30 mg L -1 Fe (II) and showed no recovery performance under 50 mg L -1 Fe (II). The irreversible suppression threshold of Fe (II) was calculated as 50 mg L -1 . The iron content in ANAMMOX biofilm presented linear correlation with the influent Fe (II) in 1-20 mg L -1 , which then tended to be stable when Fe (II) was higher. Dehydrogenase activity (DHA) showed similar and faster response to Fe (II) than the microbial activity, and it was an effective pre-indicator for the nitrogen removal performance in the ANAMMOX system suffered Fe (II). The Fe (II) feeding firstly led to the relative abundance of AAOB decreased to 11.04% from the initial 35.46%, and finally picked up to 19.39% after the long-term acclimatization. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Surface complexation and precipitate geometry for aqueous Zn(II) sorption on ferrihydrite I: X-ray absorption extended fine structure spectroscopy analysis

    USGS Publications Warehouse

    Waychunas, G.A.; Fuller, C.C.; Davis, J.A.

    2002-01-01

    "Two-line" ferrihydrite samples precipitated and then exposed to a range of aqueous Zn solutions (10-5 to 10-3 M), and also coprecipitated in similar Zn solutions (pH 6.5), have been examined by Zn and Fe K-edge X-ray absorption spectroscopy. Typical Zn complexes on the surface have Zn-O distances of 1.97(0.2) A?? and coordination numbers of about 4.0(0.5), consistent with tetrahedral oxygen coordination. This contrasts with Zn-O distances of 2.11(.02) A?? and coordination numbers of 6 to 7 in the aqueous Zn solutions used in sample preparation. X-ray absorption extended fine structure spectroscopy (EXAFS) fits to the second shell of cation neighbors indicate as many as 4 Zn-Fe neighbors at 3.44(.04) A?? in coprecipitated samples, and about two Zn-Fe neighbors at the same distance in adsorption samples. In both sets of samples, the fitted coordination number of second shell cations decreases as sorption density increases, indicating changes in the number and type of available complexing sites or the onset of competitive precipitation processes. Comparison of our results with the possible geometries for surface complexes and precipitates suggests that the Zn sorption complexes are inner sphere and at lowest adsorption densities are bidentate, sharing apical oxygens with adjacent edge-sharing Fe(O,OH)6 octahedra. Coprecipitation samples have complexes with similar geometry, but these are polydentate, sharing apices with more than two adjacent edge-sharing Fe(O,OH)6 polyhedra. The results are inconsistent with Zn entering the ferrihydrite structure (i.e., solid solution formation) or formation of other Zn-Fe precipitates. The fitted Zn-Fe coordination numbers drop with increasing Zn density with a minimum of about 0.8(.2) at Zn/(Zn + Fe) of 0.08 or more. This change appears to be attributable to the onset of precipitation of zinc hydroxide polymers with mainly tetrahedral Zn coordination. At the highest loadings studied, the nature of the complexes changes further, and a second type of precipitate forms. This has a structure based on a brucite layer topology, with mainly octahedral Zn coordination. Amorphous zinc hydroxide samples prepared for comparison had a closely similar local structure. Analysis of the Fe K-edge EXAFS is consistent with surface complexation reactions and surface precipitation at high Zn loadings with little or no Fe-Zn solid solution formation. The formation of Zn-containing precipitates at solution conditions two or more orders of magnitude below their solubility limit is compared with other sorption and spectroscopic studies that describe similar behavior. Copyright ?? 2002 Elsevier Science Ltd.

  14. FeCoNi coated glass fibers in composite sheets for electromagnetic absorption and shielding behaviors

    NASA Astrophysics Data System (ADS)

    Lee, Joonsik; Jung, Byung Mun; Lee, Sang Bok; Lee, Sang Kwan; Kim, Ki Hyeon

    2017-09-01

    To evaluate the electromagnetic (EM) absorption and shield of magnetic composite sheet, we prepared the FeCoNi coated glass fibers filled in composite sheet. The FeCoNi was coated by electroless plating on glass fiber as a filler. The coated FeCoNi found that consist of mixtures of bcc and fcc phase. The magnetization and coercivity of coated FeCoNi are about 110 emu/g and 57 Oe, respectively. The permittivity and permeability of the FeCoNi composite sheet were about 21 and 1, respectively. Power absorption increased 95% with the increment of frequency up to 10 GHz. Inter-decoupling of this composite sheet showed maximum 30 dB at around 5.3 GHz, which is comparable to that of a conductive Cu foil. Shielding effectiveness (SE) was measured by using rectangular waveguide method. SE of composite obtained about 37 dB at X-band frequency region.

  15. Whole-genome sequence of Cupriavidus sp. strain BIS7, a heavy-metal-resistant bacterium.

    PubMed

    Hong, Kar Wai; Thinagaran, Dinaiz al; Gan, Han Ming; Yin, Wai-Fong; Chan, Kok-Gan

    2012-11-01

    Cupriavidus sp. strain BIS7 is a Malaysian tropical soil bacterium that exhibits broad heavy-metal resistance [Co(II), Zn(II), Ni(II), Se(IV), Cu(II), chromate, Co(III), Fe(II), and Fe(III)]. It is particularly resistant to Fe(II), Fe(III), and Zn(II). Here we present the assembly and annotation of its genome.

  16. Chemoselectivity-induced multiple interfaces in MWCNT/Fe3O4@ZnO heterotrimers for whole X-band microwave absorption.

    PubMed

    Wang, Zhijiang; Wu, Lina; Zhou, Jigang; Jiang, Zhaohua; Shen, Baozhong

    2014-11-07

    A chemoselective route to induce Fe3O4@ZnO core-shell nanoparticles decorating carbon nanotubes to form MWCNT/Fe3O4@ZnO heterotrimers has been developed. Charges are redistributed in the heterotrimers through C-O-Zn, C-O-Fe and Fe-O-Zn bondings, giving rise to multiple electronic phases. The generated significant interfacial polarization and synergetic interaction between dielectric and magnetic absorbers result in the MWCNT/Fe3O4@ZnO heterotrimers with high-performance microwave absorption in an entire X band.

  17. Ferrate(VI)-prompted removal of metals in aqueous media: mechanistic delineation of enhanced efficiency via metal entrenchment in magnetic oxides.

    PubMed

    Prucek, Robert; Tuček, Jiří; Kolařík, Jan; Hušková, Ivana; Filip, Jan; Varma, Rajender S; Sharma, Virender K; Zbořil, Radek

    2015-02-17

    The removal efficiency of heavy metal ions (cadmium(II), Cd(II); cobalt(II), Co(II); nickel(II), Ni(II); copper(II), Cu(II)) by potassium ferrate(VI) (K2FeO4, Fe(VI)) was studied as a function of added amount of Fe(VI) (or Fe) and varying pH. At pH = 6.6, the effective removal of Co(II), Ni(II), and Cu(II) from water was observed at a low Fe-to-heavy metal ion ratio (Fe/M(II) = 2:1) while a removal efficiency of 70% was seen for Cd(II) ions at a high Fe/Cd(II) weight ratio of 15:1. The role of ionic radius and metal valence state was explored by conducting similar removal experiments using Al(III) ions. The unique combination of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), in-field Mössbauer spectroscopy, and magnetization measurements enabled the delineation of several distinct mechanisms for the Fe(VI)-prompted removal of metal ions. Under a Fe/M weight ratio of 5:1, Co(II), Ni(II), and Cu(II) were removed by the formation of MFe2O4 spinel phase and partially through their structural incorporation into octahedral positions of γ-Fe2O3 (maghemite) nanoparticles. In comparison, smaller sized Al(III) ions got incorporated easily into the tetrahedral positions of γ-Fe2O3 nanoparticles. In contrast, Cd(II) ions either did not form the spinel ferrite structure or were not incorporated into the lattic of iron(III) oxide phase due to the distinct electronic structure and ionic radius. Environmentally friendly removal of heavy metal ions at a much smaller dosage of Fe than those of commonly applied iron-containing coagulants and the formation of ferrimagnetic species preventing metal ions leaching back into the environment and allowing their magnetic separation are highlighted.

  18. Iron uptake and magnetite biomineralization in the magnetotactic bacterium Magnetospirillum magneticum strain AMB-1: An iron isotope study

    NASA Astrophysics Data System (ADS)

    Amor, Matthieu; Busigny, Vincent; Louvat, Pascale; Tharaud, Mickaël; Gélabert, Alexandre; Cartigny, Pierre; Carlut, Julie; Isambert, Aude; Durand-Dubief, Mickaël; Ona-Nguema, Georges; Alphandéry, Edouard; Chebbi, Imène; Guyot, François

    2018-07-01

    Magnetotactic bacteria (MTB) produce intracellular, membrane-bounded magnetite [Fe(II)Fe(III)2O4] crystals in a genetically controlled way. They are ubiquitous in aquatic environments, and have been proposed to represent some of the most ancient biomineralizing organisms on Earth. Although tremendous advances have been made in constraining the mechanisms of magnetite formation in MTB, the precise biomineralization pathways are still a matter of debate. To further constrain the processes of Fe uptake and magnetite precipitation in MTB, Fe stable isotope measurements were carried out with the magnetotactic strain AMB-1 cultivated with Fe(III), Fe(II) or mixed Fe(III)/Fe(II) species in the growth media. The Fe isotope compositions of growth media before and after AMB-1 cultures, bacterial lysates (i.e. cells devoid of magnetite) and magnetite samples were measured. Single valence Fe(III) or Fe(II) growth media after AMB-1 cultures showed depletion in heavy Fe isotopes by 0.2 to 1.5‰ (δ56Fe), relative to the initial Fe source. Contrastingly, heavy Fe isotopes accumulated in the growth media supplemented with mixed Fe(III)/Fe(II) sources, with enrichment up to 0.25‰. These results support a preferential bacterial uptake of Fe(II) when both Fe(III) and Fe(II) are bioavailable. Bacterial lysates contained at least 50% of the total cellular Fe; thus, magnetite was not the main Fe reservoir in AMB-1 under the experimental conditions investigated in this study. In all cultures, bacterial lysates δ56Fe were 0.4 to 0.8‰ higher than the initial Fe sources, while magnetite δ56Fe were 1.2 to 2.5‰ lower. This depletion in heavy Fe isotopes of magnetite can be explained by partial reduction of Fe(III) to Fe(II) within the cell and subsequent magnetite precipitation. The data also show mass-independent fractionations (MIF) in odd (57Fe) but not in even (54Fe, 56Fe, 58Fe) isotopes, expressed mainly in magnetite crystals, and supporting a magnetic isotope effect on 57Fe. Bacterial Fe uptake and MIF patterns suggest that Fe(II) species can freely exchange between the intracellular and external media. Based on these observations, an integrative biogeochemical model for Fe uptake, cellular trafficking, and magnetite precipitation in AMB-1 is presented.

  19. Optical (diffuse reflectance) and Mossbauer spectroscopic study of nontronite and related Fe-bearing smectites

    USGS Publications Warehouse

    Sherman, David M.; Vergo, N.

    1988-01-01

    Near-ultraviolet to near-infrared optical (diffuse reflectance) spectra of several nontronites and related Fe-bearing smectites [(Fe2+,Fe3+)-bearing saponite and (Fe2+,Fe3+)-bearing montmorillonite] are presented and interpreted. Mossbauer spectra at 298 K are also presented to help interpret the optical spectra. The optical spectra of nontronites are dominated by the ligand field transitions of Fe3+ in octahedral coordination sites. In addition to the ligand field transitions of single Fe3+ cations, a broad absorption band centered near 22000 cm-1 is observed that may be due to the simultaneous excitation of two Fe3+ cations to the 4T1g (4G) state. Alternatively, this band may represent excitations to the 2A2g and 2T1g ligand field states. For most samples, the amount of tetrahedrally coordinated Fe3+ was below that detectable by Mossbauer spectroscopy (1-3% of total Fe). However, the optical spectra of all of the nontronites show an absorption band near 23000 cm-1. This band is assigned to the 6A1 ??? 4E,4A1 transition of tetrahedrally coordinated Fe3+. The optical spectra of mixed-valence Fe-bearing smectites show a broad absorption band at 14000-15000 cm-1 owing to Fe2+ ??? Fe3+ charge transfer. -from Authors

  20. Sorption Mechanisms of Cesium on Cu II2Fe II(CN) 6and Cu II3[Fe III(CN) 6] 2Hexacyanoferrates and Their Relation to the Crystalline Structure

    NASA Astrophysics Data System (ADS)

    Ayrault, S.; Jimenez, B.; Garnier, E.; Fedoroff, M.; Jones, D. J.; Loos-Neskovic, C.

    1998-12-01

    CuII2FeII(CN)6·xH2O and CuII3[FeIII(CN)6]2·xH2O can be prepared with reproducible chemical compositions and structures after careful washing. They have cubicFmoverline3mstructures with iron vacancies. In CuII2FeII(CN)6, copper occupies two different sites: Cu1 in position 4blinked to Fe through the CN groups, and Cu2 not linked to the CN groups and partially occupying the interstitial 24epositions. The second type of site is not present in CuII3[FeIII(CN)6]2. Sorption kinetics and isotherms were determined for cesium on both hexacyanoferrates by batch experiments. On CuII3[FeIII(CN)6]2, the maximum uptake is only 0.073 Cs/Fe (at./at.). On CuII2FeII(CN)6, the uptake reaches 1.5 Cs/Fe. The sorption kinetics include at least two steps: at1/2variation until approximately 72 h and then a slow evolution studied up to 6 months. The sorption mechanism is complex. The main process seems to be diffusion of ion pairs, followed by a reorganization of the solid, resulting in one or more new solid phases. The presence of the Cu2 site seems to play a favorable role in the sorption. Owing to its good midterm stability and the first rapid step of exchange, CuII2FeII(CN)6·xH2O seems to be one of the most promising compounds for the recovery of cesium from nuclear liquid wastes.

  1. How temperature determines formation of maghemite nanoparticles

    NASA Astrophysics Data System (ADS)

    Girod, Matthias; Vogel, Stefanie; Szczerba, Wojciech; Thünemann, Andreas F.

    2015-04-01

    We report on the formation of polymer-stabilized superparamagnetic single-core and multi-core maghemite nanoparticles. The particle formation was carried out by coprecipitation of Fe(II) and Fe(III) sulfate in a continuous aqueous process using a micromixer system. Aggregates containing 50 primary particles with sizes of 2 nm were formed at a reaction temperature of 30 °C. These particles aggregated further with time and were not stable. In contrast, stable single-core particles with a diameter of 7 nm were formed at 80 °C as revealed by small-angle X-ray scattering (SAXS) coupled in-line with the micromixer for particle characterization. X-ray diffraction and TEM confirmed the SAXS results. X-ray absorption near-edge structure spectroscopy (XANES) identified the iron oxide phase as maghemite.

  2. Separation and Determination of Fe(III) and Fe(II) in Natural and Waste Waters Using Silica Gel Sequentially Modified with Polyhexamethylene Guanidine and Tiron

    PubMed Central

    Maksimov, Nikolay; Trofimchuk, Anatoly; Zaporogets, Olga

    2017-01-01

    Silica gel, sequentially modified with polyhexamethylene guanidine and pyrocatechin-3,5-disulfonic acid (Tiron), was suggested for sorption separation and determination of Fe(III) and Fe(II). It was found that quantitative extraction of Fe(III) and its separation from Fe(II) were attained at pH 2.5–4.0, while quantitative extraction of Fe(II) was observed at pH 6.0–7.5. An intensive signal with g = 4.27, which is characteristic for Fe(III), appeared in EPR spectra of the sorbents after Fe(II) and Fe(III) sorption. During interaction between Fe(II) and Tiron, fixed on the sorbent surface, its oxidation up to Fe(III) occurred. Red-lilac complexes of the composition FeL3 were formed on the sorbent surface during sorption regardless of initial oxidation level of iron. Diffuse reflectance spectrum of surface complexes exhibited wide band with slightly expressed maxima at 480 and 510 nm. Procedures for separation and photometric determination of Fe(III) and Fe(II) at the joint presence and total Fe content determination as Fe(II) in waste and natural waters was developed. The limit of detection for iron was 0.05 μg per 0.100 g of the sorbent. The calibration graph was linear up to 20.0 μg of Fe per 0.100 g of the sorbent. The RSD in the determination of more than 0.2 μg of Fe was less than 0.06. PMID:29214095

  3. Fe(II)/Fe(III)-Catalyzed Intramolecular Didehydro-Diels-Alder Reaction of Styrene-ynes.

    PubMed

    Mun, Hyeon Jin; Seong, Eun Young; Ahn, Kwang-Hyun; Kang, Eun Joo

    2018-02-02

    The intramolecular didehydro-Diels-Alder reaction of styrene-ynes was catalyzed by Fe(II) and Fe(III) to produce various naphthalene derivatives under microwave heating conditions. Mechanistic calculations found that the Fe(II) catalyst activates the styrenyl diene in an inverse-electron-demand Diels-Alder reaction, and the consecutive dehydrogenation reaction can be promoted by either Fe(II)-catalyzed direct dehydrogenation or an Fe(III)-catalyzed rearomatization/dehydrogenation pathway.

  4. Normal cadmium uptake in microcytic anemia mk/mk mice suggests that DMT1 is not the only cadmium transporter in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Tomohito; Momoi, Kanae; Hosoyamada, Makoto

    2008-03-15

    Divalent metal transporter 1 (DMT1) is a mammalian iron (Fe) transporter and also transports Cadmium (Cd) in vitro. This study compared Cd absorption in DMT1-dysfunctional MK/Rej-{sup mk}/{sub mk} mice (mk/mk mice) and in DMT1-functional, Fe-deficient wild-type (WT) mice, to clarify the role of DMT1 in intestinal Cd absorption in vivo. Mice were given 1 ppm CdCl{sub 2} aq in drinking water for 2 weeks, and the concentrations of Cd and Fe in liver, kidney, and intestinal epithelium were subsequently determined. The Fe concentration in intestinal epithelia of WT mice was decreased in proportion to the level of dietary Fe limitation,more » while Cd accumulation under the same conditions was increased. DMT1 mRNA expression in the small intestine of Fe-deficient WT mice was clearly increased compared to that in Fe-sufficient WT mice. Iron deficiency resulted in up-regulation of Cd uptake in the intestine of Fe-deficient WT mice. The mk/mk mice have a mutation in DMT1 and loss of its function led to decreased intestinal Fe concentration. However, intestinal Cd accumulation was the same as in WT mice and it was also increased in Fe-deficient situation. There is the possibility that an unknown Cd pathway has taken a role on Cd intestinal absorption in vivo and that this pathway is regulated by food Fe concentrations. Therefore, DMT1 is not the sole transporter of intestinal cadmium absorption in vivo.« less

  5. The role of ligand covalency in the selective activation of metalloenediynes for Bergman cyclization

    PubMed Central

    Porter, Meghan R.; Zaleski, Jeffrey M.

    2017-01-01

    One of the key concerns with the development of radical-generating reactive therapeutics is the ability to control the activation event within a biological environment. To that end, a series of quinoline-metal-loenediynes of the form M(QuiED)·2Cl (M = Cu(II), Fe(II), Mg(II), or Zn(II)) and their independently synthesized cyclized analogs have been prepared in an effort to elucidate Bergman cyclization (BC) reactivity differences in solution. HRMS(ESI) establishes a solution stoichiometry of 1:1 metal to ligand with coordination of one chloride counter ion to the metal center. EPR spectroscopy of Cu(QuiED)·2Cl and Cu (QuiBD)·2Cl denotes an axially-elongated tetragonal octahedron (g║ > g⊥ > 2.0023) with a dx2–y2 ground state, while the electronic absorption spectrum reveals a pπ Cl→Cu(II) LMCT feature at 19,000 cm −1, indicating a solution structure with three nitrogens and a chloride in the equatorial plane with the remaining quinoline nitrogen and solvent in the axial positions. Investigations into the BC activity reveal formation of the cyclized product from the Cu(II) and Fe(II) complexes after 12 h at 45 °C in solution, while no product is observed for the Mg(II) or Zn(II) complexes under identical conditions. The basis of this reactivity difference has been found to be a steric effect leading to metal–ligand bond elongation and thus, a retardation of solution reactivity. These results demonstrate how careful consideration of ligand and complex structure may allow for a degree of control and selective activation of these reactive agents. PMID:28931964

  6. The role of ligand covalency in the selective activation of metalloenediynes for Bergman cyclization.

    PubMed

    Porter, Meghan R; Zaleski, Jeffrey M

    2016-01-08

    One of the key concerns with the development of radical-generating reactive therapeutics is the ability to control the activation event within a biological environment. To that end, a series of quinoline-metal-loenediynes of the form M( QuiED )·2Cl (M = Cu(II), Fe(II), Mg(II), or Zn(II)) and their independently synthesized cyclized analogs have been prepared in an effort to elucidate Bergman cyclization (BC) reactivity differences in solution. HRMS(ESI) establishes a solution stoichiometry of 1:1 metal to ligand with coordination of one chloride counter ion to the metal center. EPR spectroscopy of Cu( QuiED )·2Cl and Cu ( QuiBD )·2Cl denotes an axially-elongated tetragonal octahedron ( g ║ > g ⊥ > 2.0023) with a d x 2 - y 2 ground state, while the electronic absorption spectrum reveals a pπ Cl→Cu(II) LMCT feature at 19,000 cm -1 , indicating a solution structure with three nitrogens and a chloride in the equatorial plane with the remaining quinoline nitrogen and solvent in the axial positions. Investigations into the BC activity reveal formation of the cyclized product from the Cu(II) and Fe(II) complexes after 12 h at 45 °C in solution, while no product is observed for the Mg(II) or Zn(II) complexes under identical conditions. The basis of this reactivity difference has been found to be a steric effect leading to metal-ligand bond elongation and thus, a retardation of solution reactivity. These results demonstrate how careful consideration of ligand and complex structure may allow for a degree of control and selective activation of these reactive agents.

  7. Fe hydroxyphosphate precipitation and Fe(II) oxidation kinetics upon aeration of Fe(II) and phosphate-containing synthetic and natural solutions

    NASA Astrophysics Data System (ADS)

    van der Grift, B.; Behrends, T.; Osté, L. A.; Schot, P. P.; Wassen, M. J.; Griffioen, J.

    2016-08-01

    Exfiltration of anoxic Fe-rich groundwater into surface water and the concomitant oxidative precipitation of Fe are important processes controlling the transport of phosphate (PO4) from agricultural areas to aquatic systems. Here, we explored the relationship between solution composition, reaction kinetics, and the characteristics of the produced Fe hydroxyphosphate precipitates in a series of aeration experiments with anoxic synthetic water and natural groundwater. A pH stat device was used to maintain constant pH and to record the H+ production during Fe(II) oxidation in the aeration experiments in which the initial aqueous P/Fe ratios ((P/Fe)ini), oxygen concentration and pH were varied. In general, Fe(II) oxidation proceeded slower in the presence of PO4 but the decrease of the PO4 concentration during Fe(II) oxidation due to the formation of Fe hydroxyphosphates caused additional deceleration of the reaction rate. The progress of the reaction could be described using a pseudo-second-order rate law with first-order dependencies on PO4 and Fe(II) concentrations. After PO4 depletion, the Fe(II) oxidation rates increased again and the kinetics followed a pseudo-first-order rate law. The first-order rate constants after PO4 depletion, however, were lower compared to the Fe(II) oxidation in a PO4-free solution. Hence, the initially formed Fe hydroxyphosphates also affect the kinetics of continuing Fe(II) oxidation after PO4 depletion. Presence of aqueous PO4 during oxidation of Fe(II) led to the formation of Fe hydroxyphosphates. The P/Fe ratios of the precipitates ((P/Fe)ppt) and the recorded ratio of H+ production over decrease in dissolved Fe(II) did not change detectably throughout the reaction despite a changing P/Fe ratio in the solution. When (P/Fe)ini was 0.9, precipitates with a (P/Fe)ppt ratio of about 0.6 were formed. In experiments with (P/Fe)ini ratios below 0.6, the (P/Fe)ppt decreased with decreasing (P/Fe)ini and pH value. Aeration experiments with natural groundwater showed no principal differences in Fe(II) oxidation kinetics and in PO4 immobilisation dynamics compared with synthetic solutions with corresponding P/Fe ratio, pH and oxygen pressure. However, aeration of groundwater with relative high DOC concentrations and a low salinity lead to P-rich Fe colloids that were colloidally stable. The formation of a Fe hydroxyphosphate phase with a molar P/Fe ratio of 0.6 can be used for predictive modelling of PO4 immobilisation upon aeration of pH-neutral natural groundwater with an (P/Fe)ini ratio up to 1.5. These findings provide a solid basis for further studies on transport and bioavailability of phosphorus in streams, ditches and channels that receive anoxic Fe-rich groundwater.

  8. Iron Bioavailability Studies of the First Generation of Iron-Biofortified Beans Released in Rwanda.

    PubMed

    Glahn, Raymond; Tako, Elad; Hart, Jonathan; Haas, Jere; Lung'aho, Mercy; Beebe, Steve

    2017-07-21

    This paper represents a series of in vitro iron (Fe) bioavailability experiments, Fe content analysis and polyphenolic profile of the first generation of Fe biofortified beans ( Phaseolus vulgaris ) selected for human trials in Rwanda and released to farmers of that region. The objective of the present study was to demonstrate how the Caco-2 cell bioassay for Fe bioavailability can be utilized to assess the nutritional quality of Fe in such varieties and how they may interact with diets and meal plans of experimental studies. Furthermore, experiments were also conducted to directly compare this in vitro approach with specific human absorption studies of these Fe biofortified beans. The results show that other foods consumed with beans, such as rice, can negatively affect Fe bioavailability whereas potato may enhance the Fe absorption when consumed with beans. The results also suggest that the extrinsic labelling approach to measuring human Fe absorption can be flawed and thus provide misleading information. Overall, the results provide evidence that the Caco-2 cell bioassay represents an effective approach to evaluate the nutritional quality of Fe-biofortified beans, both separate from and within a targeted diet or meal plan.

  9. Iron Bioavailability Studies of the First Generation of Iron-Biofortified Beans Released in Rwanda

    PubMed Central

    Glahn, Raymond; Tako, Elad; Hart, Jonathan; Haas, Jere; Beebe, Steve

    2017-01-01

    This paper represents a series of in vitro iron (Fe) bioavailability experiments, Fe content analysis and polyphenolic profile of the first generation of Fe biofortified beans (Phaseolus vulgaris) selected for human trials in Rwanda and released to farmers of that region. The objective of the present study was to demonstrate how the Caco-2 cell bioassay for Fe bioavailability can be utilized to assess the nutritional quality of Fe in such varieties and how they may interact with diets and meal plans of experimental studies. Furthermore, experiments were also conducted to directly compare this in vitro approach with specific human absorption studies of these Fe biofortified beans. The results show that other foods consumed with beans, such as rice, can negatively affect Fe bioavailability whereas potato may enhance the Fe absorption when consumed with beans. The results also suggest that the extrinsic labelling approach to measuring human Fe absorption can be flawed and thus provide misleading information. Overall, the results provide evidence that the Caco-2 cell bioassay represents an effective approach to evaluate the nutritional quality of Fe-biofortified beans, both separate from and within a targeted diet or meal plan. PMID:28754026

  10. Effect of preparation and processing conditions on UV absorbing properties of hydroxyapatite-Fe2O3 sunscreen.

    PubMed

    C Teixeira, M A; Piccirillo, C; Tobaldi, D M; Pullar, R C; Labrincha, J A; Ferreira, M O; L Castro, P M; E Pintado, M M

    2017-02-01

    The development of innovative, safe and non-photocatalytic sunscreens is urgently needed, as it is essential to have sunscreen filters offering appropriate UV protection without damaging the environment and/or generating free radicals when in contact with the skin. Hydroxyapatite (Ca 10 (PO 4 ) 6 (OH) 2 , HAp) when substituted with iron has UV protection properties and is not photocatalytic; HAp was used to make a sunscreen filter by treating cod fish bones in an iron-containing solution, and then calcining them at 700°C. Here we present a systematic and advanced study on this material, to obtain a sunscreen with improved UV absorbing properties. Bones were treated with three different iron salts - Fe(II) chloride, Fe(II) lactate and Fe(III) nitrate - under various pH conditions. Results showed that Fe(II) chloride in basic pH led to the most effective iron inclusion. High energy ball milling or ultrasound were investigated to increase surface area and corresponding UV absorption; high energy ball milling treatment led to the best optical properties. The optimum powders were used to formulate UV protection creams, which showed Sun Protection Factor (SPF) values significantly superior to the control cream (up to 4.1). Moreover the critical wavelength (λ crit ) was >370nm (388-389nm) and UVA/UVB ratios were very close to 1. With these properties these sunscreens can be classified as broad UV protectors. Results also showed that combining these powders with other sunscreens (i.e. titanium dioxide), a synergic effect between the different components was also observed. This investigation showed that HAp-based sunscreens of marine origin are a valid alternative to commercial products, safe for the health of the customers and, being non-photocatalytic, do not pose a threat to the environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Thermodynamic controls on the kinetics of microbial low-pH Fe(II) oxidation.

    PubMed

    Larson, Lance N; Sánchez-España, Javier; Kaley, Bradley; Sheng, Yizhi; Bibby, Kyle; Burgos, William D

    2014-08-19

    Acid mine drainage (AMD) is a major worldwide environmental threat to surface and groundwater quality. Microbial low-pH Fe(II) oxidation could be exploited for cost-effective AMD treatment; however, its use is limited because of uncertainties associated with its rate and ability to remove Fe from solution. We developed a thermodynamic-based framework to evaluate the kinetics of low-pH Fe(II) oxidation. We measured the kinetics of low-pH Fe(II) oxidation at five sites in the Appalachian Coal Basin in the US and three sites in the Iberian Pyrite Belt in Spain and found that the fastest rates of Fe(II) oxidation occurred at the sites with the lowest pH values. Thermodynamic calculations showed that the Gibbs free energy of Fe(II) oxidation (ΔG(oxidation)) was also most negative at the sites with the lowest pH values. We then conducted two series of microbial Fe(II) oxidation experiments in laboratory-scale chemostatic bioreactors operated through a series of pH values (2.1-4.2) and found the same relationships between Fe(II) oxidation kinetics, ΔG(oxidation), and pH. Conditions that favored the fastest rates of Fe(II) oxidation coincided with higher Fe(III) solubility. The solubility of Fe(III) minerals, thus plays an important role on Fe(II) oxidation kinetics. Methods to incorporate microbial low-pH Fe(II) oxidation into active and passive AMD treatment systems are discussed in the context of these findings. This study presents a simplified model that describes the relationship between free energy and microbial kinetics and should be broadly applicable to many biogeochemical systems.

  12. Effects of FeCl3 additives on optical parameters of PVA

    NASA Astrophysics Data System (ADS)

    Latif, Duha M. A.; Chiad, Sami S.; Erhayief, Muhssen S.; Abass, Khalid H.; Habubi, Nadir F.; Hussin, Hadi A.

    2018-05-01

    PVA doped FeCl3 have been deposited utilizing casting technique. Absorption spectrum was registered in the wavelengths (300-900 nm) utilizing UV-Visible spectrophotometer. Optical constants behavior such as, absorbance, absorption coefficient, and skin depth were studied. It was found these parameters were increased as Fe content increase. While the extinction coefficient and optical conductivity was decreased. The energy gap of PVA-Fe films were decreased from 4 eV for the PVA film to 3.5 eV for the PVA: 4 % Fe film.

  13. Whole-Genome Sequence of Cupriavidus sp. Strain BIS7, a Heavy-Metal-Resistant Bacterium

    PubMed Central

    Hong, Kar Wai; Thinagaran, Dinaiz a/l; Gan, Han Ming; Yin, Wai-Fong

    2012-01-01

    Cupriavidus sp. strain BIS7 is a Malaysian tropical soil bacterium that exhibits broad heavy-metal resistance [Co(II), Zn(II), Ni(II), Se(IV), Cu(II), chromate, Co(III), Fe(II), and Fe(III)]. It is particularly resistant to Fe(II), Fe(III), and Zn(II). Here we present the assembly and annotation of its genome. PMID:23115161

  14. Ab initio calculations of the Fe(II) and Fe(III) isotopic effects in citrates, nicotianamine, and phytosiderophore, and new Fe isotopic measurements in higher plants

    NASA Astrophysics Data System (ADS)

    Moynier, Frédéric; Fujii, Toshiyuki; Wang, Kun; Foriel, Julien

    2013-05-01

    Iron is one of the most abundant transition metal in higher plants and variations in its isotopic compositions can be used to trace its utilization. In order to better understand the effect of plant-induced isotopic fractionation on the global Fe cycling, we have estimated by quantum chemical calculations the magnitude of the isotopic fractionation between different Fe species relevant to the transport and storage of Fe in higher plants: Fe(II)-citrate, Fe(III)-citrate, Fe(II)-nicotianamine, and Fe(III)-phytosiderophore. The ab initio calculations show firstly, that Fe(II)-nicotianamine is ˜3‰ (56Fe/54Fe) isotopically lighter than Fe(III)-phytosiderophore; secondly, even in the absence of redox changes of Fe, change in the speciation alone can create up to ˜1.5‰ isotopic fractionation. For example, Fe(III)-phytosiderophore is up to 1.5‰ heavier than Fe(III)-citrate2 and Fe(II)-nicotianamine is up to 1‰ heavier than Fe(II)-citrate. In addition, in order to better understand the Fe isotopic fractionation between different plant components, we have analyzed the iron isotopic composition of different organs (roots, seeds, germinated seeds, leaves and stems) from six species of higher plants: the dicot lentil (Lens culinaris), and the graminaceous monocots Virginia wild rye (Elymus virginicus), Johnsongrass (Sorghum halepense), Kentucky bluegrass (Poa pratensis), river oat (Uniola latifolia), and Indian goosegrass (Eleusine indica). The calculations may explain that the roots of strategy-II plants (Fe(III)-phytosiderophore) are isotopically heavier (by about 1‰ for the δ56Fe) than the upper parts of the plants (Fe transported as Fe(III)-citrate in the xylem or Fe(II)-nicotianamine in the phloem). In addition, we suggest that the isotopic variations observed between younger and older leaves could be explained by mixing of Fe received from the xylem and the phloem.

  15. The flaky porous Fe3O4 with tunable dimensions for enhanced microwave absorption performance in X and C bands

    NASA Astrophysics Data System (ADS)

    Zhao, Huanqin; Cheng, Yan; Liu, Wei; Yang, Zhihong; Zhang, Baoshan; Ji, Guangbin; Du, Youwei

    2018-07-01

    Special electric and magnetic characteristics make Fe3O4 widely applied in the electromagnetic (EM) wave absorption region. However, for pure Fe3O4, it is still a challenge to simultaneously obtain high absorption intensity and broadband absorption at a low thickness, owing to its low dielectric property. As we realized, flake configuration and the porous structure have obviously promote the EM wave absorption property. Because the former can lead to multi-reflection between flakes and the latter is conductive to interface polarization, flaky Fe3O4 with a porous and coarse surface was designed to overcome the deficiency of traditional Fe3O4 particles. The experimental results demonstrate that the flaky configuration is conductive to enhancing the dielectric coefficient and optimizing impedance matching. Moreover, the complex permittivity rises with the aspect ratio of the sheet. Under a suitable dimension, the flaky Fe3O4 could acquire targeted EM wave absorption capacity in the X band (8–12 GHz). In detail, the maximum reflection loss (RL) could reach a strong intensity of ‑49 dB at 2.05 mm. The effective absorption bandwidth (EAB) with RL below ‑10 dB is 4.32 (7.52–11.84) GHz, which is almost equivalent to the whole X band (8–12 GHz). Even more exciting, when regulating the thickness between 2.05 and 3.05 mm, the EAB could cover the entire C and X bands (4–12 GHz). This study provides a good reference for the future development of other ferromagnetic materials toward specific microwave bands.

  16. The flaky porous Fe3O4 with tunable dimensions for enhanced microwave absorption performance in X and C bands.

    PubMed

    Zhao, Huanqin; Cheng, Yan; Liu, Wei; Yang, Zhihong; Zhang, Baoshan; Ji, Guangbin; Du, Youwei

    2018-07-20

    Special electric and magnetic characteristics make Fe 3 O 4 widely applied in the electromagnetic (EM) wave absorption region. However, for pure Fe 3 O 4 , it is still a challenge to simultaneously obtain high absorption intensity and broadband absorption at a low thickness, owing to its low dielectric property. As we realized, flake configuration and the porous structure have obviously promote the EM wave absorption property. Because the former can lead to multi-reflection between flakes and the latter is conductive to interface polarization, flaky Fe 3 O 4 with a porous and coarse surface was designed to overcome the deficiency of traditional Fe 3 O 4 particles. The experimental results demonstrate that the flaky configuration is conductive to enhancing the dielectric coefficient and optimizing impedance matching. Moreover, the complex permittivity rises with the aspect ratio of the sheet. Under a suitable dimension, the flaky Fe 3 O 4 could acquire targeted EM wave absorption capacity in the X band (8-12 GHz). In detail, the maximum reflection loss (RL) could reach a strong intensity of -49 dB at 2.05 mm. The effective absorption bandwidth (EAB) with RL below -10 dB is 4.32 (7.52-11.84) GHz, which is almost equivalent to the whole X band (8-12 GHz). Even more exciting, when regulating the thickness between 2.05 and 3.05 mm, the EAB could cover the entire C and X bands (4-12 GHz). This study provides a good reference for the future development of other ferromagnetic materials toward specific microwave bands.

  17. Syntheses, structures, and properties of trinuclear complexes [M(bpca)(2)(M'(hfac)(2))(2)], constructed with the complexed bridging ligand [M(bpca)(2)] [M, M' = Ni(II), Mn(II); Cu(II), Mn(II); Fe(II), Mn(II); Ni(II), Fe(II); and Fe(II), Fe(II); Hbpca = Bis(2-pyridylcarbonyl)amine, Hhfac = Hexafluoroacetylacetone].

    PubMed

    Kamiyama, Asako; Noguchi, Tomoko; Kajiwara, Takashi; Ito, Tasuku

    2002-02-11

    Five trinuclear complexes [M(bpca)(2)(M'(hfac)(2))(2)] (where MM'(2) = NiMn(2), CuMn(2), FeMn(2), NiFe(2), and FeFe(2); Hbpca = bis(2-pyridylcarbonyl)amine; and Hhfac = hexafluoroacetylacetone) were synthesized almost quantitatively by the reaction of [M(bpca)(2)] and [M'(hfac)(2)] in 1:2 molar ratio, and their structures and magnetic properties were investigated. Three complexes, with M' = Mn, crystallize in the same space group, Pna2(1), whereas two complexes, with M' = Fe, crystallize in P4(1), and complexes within each set are isostructural to one another. In all complexes, [M(bpca)(2)] acts as a bis-bidentate bridging ligand to form a linear trinuclear complex in which three metal ions are arranged in the manner M'-M-M'. The central metal ion is in a strong ligand field created by the N(6) donor set, and hence the Fe(II) in the [Fe(bpca)(2)] moiety is in a low-spin state. The terminal metal ions (M') are surrounded by O(6) donor sets with a moderate ligand field, which leads to the high-spin configuration of Fe(II). Three metal ions in all complexes are almost collinear, and metal-metal distances are ca. 5.5 A. The magnetic behavior of NiMn(2) and NiFe(2) shows a weak ferromagnetic interaction between the central Ni(II) ion and the terminal Mn(II) or Fe(II) ions. In these complexes, sigma-spin orbitals of the central Ni(II) ion and those of terminal metal ions have different symmetry about a 2-fold rotation axis through the Ni-N(amide)-M'(terminal) atoms, and this results in orthogonality between the neighboring sigma-spin orbitals and thus ferromagnetic interactions.

  18. Comprehensive Experimental and Computational Spectroscopic Study of Hexacyanoferrate Complexes in Water: From Infrared to X-ray Wavelengths.

    PubMed

    Ross, Matthew; Andersen, Amity; Fox, Zachary W; Zhang, Yu; Hong, Kiryong; Lee, Jae-Hyuk; Cordones, Amy; March, Anne Marie; Doumy, Gilles; Southworth, Stephen H; Marcus, Matthew A; Schoenlein, Robert W; Mukamel, Shaul; Govind, Niranjan; Khalil, Munira

    2018-05-17

    We present a joint experimental and computational study of the hexacyanoferrate aqueous complexes at equilibrium in the 250 meV to 7.15 keV regime. The experiments and the computations include the vibrational spectroscopy of the cyanide ligands, the valence electronic absorption spectra, and Fe 1s core hole spectra using element-specific-resonant X-ray absorption and emission techniques. Density functional theory-based quantum mechanics/molecular mechanics molecular dynamics simulations are performed to generate explicit solute-solvent configurations, which serve as inputs for the spectroscopy calculations of the experiments spanning the IR to X-ray wavelengths. The spectroscopy simulations are performed at the same level of theory across this large energy window, which allows for a systematic comparison of the effects of explicit solute-solvent interactions in the vibrational, valence electronic, and core-level spectra of hexacyanoferrate complexes in water. Although the spectroscopy of hexacyanoferrate complexes in solution has been the subject of several studies, most of the previous works have focused on a narrow energy window and have not accounted for explicit solute-solvent interactions in their spectroscopy simulations. In this work, we focus our analysis on identifying how the local solvation environment around the hexacyanoferrate complexes influences the intensity and line shape of specific spectroscopic features in the UV/vis, X-ray absorption, and valence-to-core X-ray emission spectra. The identification of these features and their relationship to solute-solvent interactions is important because hexacyanoferrate complexes serve as model systems for understanding the photochemistry and photophysics of a large class of Fe(II) and Fe(III) complexes in solution.

  19. Water-chemistry data for selected springs, geysers, and streams in Yellowstone National Park, Wyoming, 1999-2000

    USGS Publications Warehouse

    Ball, James W.; McCleskey, R. Blaine; Nordstrom, D. Kirk; Holloway, JoAnn M.; Verplanck, Philip L.; Sturtevant, Sabin A.

    2002-01-01

    Sixty-seven water analyses are reported for samples collected from 44 hot springs and their overflow drainages and two ambient-temperature acid streams in Yellowstone National Park (YNP) during 1990-2000. Thirty-seven analyses are reported for 1999, 18 for June of 2000, and 12 for September of 2000. These water samples were collected and analyzed as part of research investigations in YNP on microbially mediated sulfur oxidation in stream water, arsenic and sulfur redox speciation in hot springs, and chemical changes in overflow drainages that affect major ions, redox species, and trace elements. Most samples were collected from sources in the Norris Geyser Basin. Two ambient-temperature acidic stream systems, Alluvium and Columbine Creeks and their tributaries in Brimstone Basin, were studied in detail. Analyses were performed at or near the sampling site, in an on-site mobile laboratory truck, or later in a USGS laboratory, depending on stability of the constituent and whether or not it could be preserved effectively. Water temperature, specific conductance, pH, Eh, dissolved oxygen (D.O.), and dissolved H2S were determined on-site at the time of sampling. Alkalinity, acidity, and F were determined within a few days of sample collection by titration with acid, titration with base, and ion-selective electrode or ion chromatography (IC), respectively. Concentrations of S2O3 and SxO6 were determined as soon as possible (minutes to hours later) by IC. Concentrations of Br, Cl, NH4, NO2, NO3, SO4, Fe(II), and Fe(total) were determined within a few days of sample collection. Densities were determined later in the USGS laboratory. Concentrations of Li and K were determined by flame atomic absorption spectrometry. Concentrations of Al, As(total), B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe(total), K, Li, Mg, Mn, Na, Ni, Pb, Se, Si, Sr, V, and Zn were determined by inductively-coupled plasma-optical emission spectrometry. Trace concentrations of Cd, Cr, Cu, Pb, and Sb were determined by Zeeman-corrected graphitefurnace atomic-absorption spectrometry. Trace concentrations of As(total) and As(III) were determined by hydride generation atomic-absorption spectrometry using a flow-injection analysis system. Concentrations of Cl, NO3, Br, and SO4 were determined by IC. Concentrations of Fe(II) and Fe(total) were determined by the ferrozine colorimetric method. Concentrations of NO2 were determined by colorimetry using matrix-matched standards. Concentrations of NH4 were determined by IC, with reanalysis by colorimetry where separation of Na and NH4 peaks was poor. Dissolved organic carbon (DOC) concentrations were determined by the wet persulfate oxidation method.

  20. Iron dynamics: Transformation of Fe(II)/Fe(III) during injection of natural organic matter in a sandy aquifer

    NASA Astrophysics Data System (ADS)

    Liang, Liyuan; McCarthy, John F.; Jolley, Louwanda W.; McNabb, J. Andrew; Mehlhorn, Tonia L.

    1993-05-01

    The dynamics of dissolved, colloidal, and deposited iron phases were examined during a forced-gradient field experiment. The experiment involved the injection of oxygenated water containing high levels of natural organic matter (NOM) into a sandy aquifer. The initial redox potential of the aquifer favored Fe(II) in the groundwater. The changes in the concentrations of Fe(II) and Fe(III) were observed in sampling wells. Under the increased dissolved oxygen (DO) conditions, Fe(II) oxygenation was rapid, resulting in the formation of Fe(III) (hydr) oxide colloids. The oxidation follows the rate law as given in STUMM and MORGAN (1981): d[ Fe(II)] /dt = - k obs[ O2( aq)] /[ H+] 2[ Fe(II)] , with a rate constant, kobs to be 1.9 × 10 -12 M min -1. For an averaged pH and DO of the groundwater, the half time of Fe(II) oxidation is 49 h. The NOM was postulated to stabilize the newly formed colloids, thereby increasing the turbidity in the groundwater. The additional increase in the colloidal fraction of Fe(III) oxide suggested that transport of the colloidal particles was occurring. At those locations where DO remained constantly low, the turbidity increase was moderate, and up to 80% of Fe(III) was in the dissolved phase (< 3000 mol. wt). The latter observation was attributed to the presence of NOM, forming Fe(III)-organic complexes. In addition, NOM may play a role in the oxygen consumption through a Fe(II)/Fe(III) catalyzed oxidation of organic matter as outlined by STUMM and MORGAN (1981, p. 469). In this mechanism, Fe(II) oxidation is slow, maintaining a near constant Fe(II) concentration, in agreement with field data. The overall increase in Fe(III) under low DO conditions was postulated to be a combination of (1) slow oxidation, (2) ligand-promoted and catalytic dissolution of deposited iron phases, and (3) the transport of newly formed iron oxide colloids along flow paths.

  1. Oxide ion diffusion mechanism related to Co and Fe ions in (Ba0.5Sr0.5)(Co0.8Fe0.2)O3-δ using in-situ X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Itoh, Takanori; Imai, Hideto

    2018-03-01

    The time changes of the white line and pre-edge intensities of Co and Fe K-edge in (Ba0.5Sr0.5)(Co0.8Fe0.2)O3-δ (BSCF) were observed to estimate the oxide ion diffusion related to Co and Fe ions by using in - situ X-ray absorption spectroscopy (XAS) during oxidation. The 20 μm self-standing BSCF film was prepared for in - situ XAS measurements. The time changes of absorption were fitted to the exponential decay function with two terms. The longer relaxation time (τ), related to the oxide ion diffusion during the oxidation of BSCF, is dependent on temperature. The oxide ion diffusion coefficients (D) were calculated from the τ s estimated by in - situ XAS. The values of the activation energy (Ea) for D related to Co K-edge white line, Co pre-edge, and Fe pre-edge were 1.8-2.0 eV. The value of Ea for D related to Fe K-edge white line, however, was higher than other absorption values at approximately 2.3 eV. We discussed the oxide ion diffusion mechanism related to Co and Fe ions in BSCF using in - situ XAS.

  2. A novel method of adrenaline concentration detection using fiber optical biosensor based on the catalysis of iron(II) phthalocyanine

    NASA Astrophysics Data System (ADS)

    Zhou, Xuan; Huang, Jun; Li, Mingtian; Wang, Bin

    2008-12-01

    As an effective alternative to the nature enzyme, metallophthalocyanine (MPc), having the advantages of easy accessibility, good stability and low cost, are used as catalyzer for the adrenaline (AD) oxidation. In this paper, the oxidation of AD by dioxygen using iron(II) phthalocyanine (FePc) as the catalyst was studied by electronic absorption spectra. The experimental results indicate that the oxidation product of AD catalyzed by FePc is adrenochrome with characteristic peaks at 298 nm and 267 nm. The catalytic activities of FePc are evaluated by the ratios of the absorbance at 298 nm of adrenochrome. The optimal concentration, pH and temperature for the oxidation of AD are 5.0×10-5 M, 8.0 and 55 oC, respectively. By using lock-in technology, the fiber optic adrenaline biosensor based on FePc catalysis and fluorescence quenching was fabricated and studied. A linear relationship between φ, the phase delay of the sensor head, and AD concentration was observed in the range of 2.0×10-6 to 9.0×10-6 M and 2.0×10-5 to 9.0×10-5 M. The standard deviation (SD) values are 4.7×10-8 (n = 5) and 5.9×10-7 (n = 5) M, respectively, while the detection limit is 4.0×10-7 M. The biosensor has the response time of about 15 min and the preferred reproducibility and stability.

  3. Kinetics of homogeneous and surface-catalyzed mercury(II) reduction by iron(II)

    USGS Publications Warehouse

    Amirbahman, Aria; Kent, Douglas B.; Curtis, Gary P.; Marvin-DiPasquale, Mark C.

    2013-01-01

    Production of elemental mercury, Hg(0), via Hg(II) reduction is an important pathway that should be considered when studying Hg fate in environment. We conducted a kinetic study of abiotic homogeneous and surface-catalyzed Hg(0) production by Fe(II) under dark anoxic conditions. Hg(0) production rate, from initial 50 pM Hg(II) concentration, increased with increasing pH (5.5–8.1) and aqueous Fe(II) concentration (0.1–1 mM). The homogeneous rate was best described by the expression, rhom = khom [FeOH+] [Hg(OH)2]; khom = 7.19 × 10+3 L (mol min)−1. Compared to the homogeneous case, goethite (α-FeOOH) and hematite (α-Fe2O3) increased and γ-alumina (γ-Al2O3) decreased the Hg(0) production rate. Heterogeneous Hg(0) production rates were well described by a model incorporating equilibrium Fe(II) adsorption, rate-limited Hg(II) reduction by dissolved and adsorbed Fe(II), and rate-limited Hg(II) adsorption. Equilibrium Fe(II) adsorption was described using a surface complexation model calibrated with previously published experimental data. The Hg(0) production rate was well described by the expression rhet = khet [>SOFe(II)] [Hg(OH)2], where >SOFe(II) is the total adsorbed Fe(II) concentration; khet values were 5.36 × 10+3, 4.69 × 10+3, and 1.08 × 10+2 L (mol min)−1 for hematite, goethite, and γ-alumina, respectively. Hg(0) production coupled to reduction by Fe(II) may be an important process to consider in ecosystem Hg studies.

  4. Effects of waterborne Fe(II) on juvenile turbot Scophthalmus maximus: analysis of respiratory rate, hematology and gill histology

    NASA Astrophysics Data System (ADS)

    Wu, Zhihao; You, Feng; Liu, Hongjun; Liu, Mengxia; Li, Jun; Zhang, Peijun

    2012-03-01

    The concentration of Fe(II) is high in some groundwater supplies used in turbot culture, and the toxicity of waterborne Fe(II) is unknown. We investigated the stress responses of juvenile turbot, Scophthalmus maximus, exposed to Fe(II) of different concentrations (0.01, 0.05, 0.1, 0.5, 1, and 2 mg/L) for 1, 7, 14, and 28 d, under the same ambient conditions of other parameters. Changes in respiratory rate, hematological parameters, and gill structure were determined. The results show that waterborne Fe(II) did not cause severe hematological perturbation to turbot. A low-medium Fe(II) concentration (lower than 0.1 mg/L) could boost the respiratory rate, and caused no or very limited damage to fish. A high Fe(II) concentration (0.1 mg/L or higher), however, caused gill damage, such as vacuoles in branchial lamellae, epithelial necrosis, and hypertrophy of epithelial cells, and even death after extended exposure time. Therefore, excess waterborne Fe(II) and long-term exposure to Fe(II) could be responsible for poor growth and high mortality of turbot in culture. The concentration of waterborne Fe(II) in turbot culture should be kept below 0.1 mg/L.

  5. Isocyanide or nitrosyl complexation to hemes with varying tethered axial base ligand donors: synthesis and characterization.

    PubMed

    Sharma, Savita K; Kim, Hyun; Rogler, Patrick J; A Siegler, Maxime; Karlin, Kenneth D

    2016-09-01

    A series of ferrous-heme 2,6-dimethylphenyl isocyanide (DIMPI) and ferrous-heme mononitrosyl complexes have been synthesized and characterized. The heme portion of the complexes studied is varied with respect to the nature of the axial ligand, including complexes, where it is covalently tethered to the porphyrinate periphery. Reduced heme complexes, [(F8)Fe(II)], [(P(Py))Fe(II)], [(P(Im))Fe(II)], and [(P(ImH))Fe(II)], where F8 = tetrakis(2,6-difluorophenyl)-porphyrinate and P(Py), P(Im), and P(ImH) are partially fluorinated tetraaryl porphyrinates with covalently appended axial base pyridyl/imidazolyl or histamine moieties, were employed; P(ImH) is a new construct. Room temperature addition of DIMPI to these iron(II) complexes affords the bis-isocyanide species [(F8)Fe(II)-(DIMPI)2] in the case of [(F8)Fe(II)], while for the other hemes, mono-DIMPI compounds are obtained, [(P(Py))Fe(II)-(DIMPI)] [(2)-DIMPI], [(P(Im))Fe(II)-(DIMPI)] [(3)-DIMPI], and [(P(ImH))Fe(II)-(DIMPI)] [(4)-DIMPI]. The structures of complexes (3)-DIMPI and (4)-DIMPI have been determined by single crystal X-ray crystallography, where interesting H…F(porphryinate aryl group) interactions are observed. (19)F-NMR spectra determined for these complexes suggest that H…F(porphyrinate aryl groups) attractions also occur in solution, the H atom coming either from the DIMPI methyl groups or from a porphyinate axial base imidazole or porphyrinate pyrrole. Similarly, we have used nitrogen monoxide to generate ferrous-nitrosyl complexes, a five-coordinate species for F8, [(F8)Fe(II)-(NO)], or low-spin six-coordinate compounds [(P(Py))Fe(II)-(NO)], [(P(Im))Fe(II)-(NO)], and [(P(ImH))Fe(II)-(NO)]. The DIMPI and mononitrosyl complexes have also been characterized using UV-Vis, IR, (1)H-NMR, and EPR spectroscopies.

  6. Bacterial Formation of As(V) and As(III) Ferric Oxyhydroxides in Acid Mine Drainage.

    NASA Astrophysics Data System (ADS)

    Morin, G.; Juillot, F.; Lebrun, S.; Casiot, C.; Elbaz-Poulichet, F.; Bruneel, O.; Personne, J.; Leblanc, M.; Ildefonse, P.; Calas, G.

    2002-12-01

    The oxidation of dissolved Fe(II) which is often promoted by acidophilic bacteria in acid mine drainage (AMD) and some hot springs, leads to the precipitation of Fe(III) oxy-hydroxides which incorporate toxic elements within their structure or adsorb them at their surface, thus limiting their mobility. In such complex natural systems, synchrotron-based techniques as X-ray absorption spectroscopy offer the opportunity to monitor surface/solution interactions as well as redox changes affecting the mobility and toxicity of trace elements as arsenic. Spatial and seasonal variations of the (bio-) oxidation of Fe(II) and As(III), and the subsequent precipitation of As-Fe gels, were followed by XANES, XRD, and SEM along the CarnoulŠs AMD (Gard, France). Chemical and mineralogical data collected on sediments, stromatolite, and bioassay samples showed that some indigenous bacteria living in the As-rich CarnoulŠs water ([As] = up to 350 mg.l-1) play an important role in the nature and composition of the solid phases that sequester arsenic at the site. The formation of nano-crystalline and amorphous As(III) ferric oxy-hydroxides has been related to the presence of bacteria able to oxidize Fe(II) but not As(III), which are only present in winter in the upstream area. A rare ferric arsenite sulfate oxy-hydroxide mineral was discovered in this context. Other types of bacteria, occurring in the downstream area whatever the season, are able to catalyze As(III) to As(V) oxidation and, provided that enough Fe(II) oxidizes, promote the formation of amorphous As(V) rich ferric oxy-hydroxides. These bacterially mediated reactions significantly reduce the concentration of dissolved As(III), which is more toxic and mobile than As(V), and might thus be helpful for designing As-removal processes. This work was supported by the French PEVS and ACI Ecologie Quantitative Programs and the PIRAMID EC program. ?Deceased, 26 October 1999 Juillot F., Ildefonse Ph., Morin G., Calas G., De Kersabiec A.M. and Benedetti M. Applied Geochemistry 8, 1031-1048 (1999). Morin G., Lecocq D., Juillot F., Ildefonse Ph., Calas Bull. Soc. Géol. Fr. 173, 281-291 (2002). Morin G., Juillot F., Casiot C., Bruneel O., Personné J-C., Elbaz-Poulichet F., Leblanc M., Ildefonse P. and Calas G. Environ. Sci. Technol (in review.)

  7. Copernicus observations of Betelgeuse and Antares

    NASA Technical Reports Server (NTRS)

    Bernat, A. P.; Lambert, D. L.

    1975-01-01

    Copernicus observations of the M-supergiants, alpha Ori and alpha Sco, are presented. The MgII h and k resonance lines are strongly in emission in both stars. The k line is highly asymmetric in both stars but the h line is symmetric. Upper limits for several other resonance lines are given for alpha Ori. The possibility is explored that the k line asymmetry is caused by overlying resonance lines of MnI and FeI formed in the cool circumstellar gas shells around these stars. Observations of the MnI 4030-4033 A lines are used to show that circumstellar shell absorption is too weak to explain the asymmetry. It is suggested that the absorption occurs in a cool turbulent region between the base of the circumstellar shell and the top of the chromosphere.

  8. Determination of ferrous and total iron in refractory spinels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amonette, James E.; Matyas, Josef

    2015-12-30

    Accurate and precise determination of the redox state of iron (Fe) in spinels presents a significant challenge due to their refractory nature. The resultant extreme conditions needed to obtain complete dissolution generally oxidize some of the Fe(II) initially present and thus prevent the use of colorimetric methods for Fe(II) measurements. To overcome this challenge we developed a hybrid oxidimetric/colorimetric approach, using Ag(I) as the oxidimetric reagent for determination of Fe(II) and 1,10-phenanthroline as the colorimetric reagent for determination of total Fe. This approach, which allows determination of Fe(II) and total Fe on the same sample, was tested on a seriesmore » of four geochemical reference materials and then applied to the analysis of Fe(Ni) spinel crystals isolated from simulated high-level-waste (HLW) glass and of several reagent magnetites. Results for the reference materials were in excellent agreement with published values, with the exception of USGS BIR-1, for which higher Fe(II) values and lower total Fe values were obtained. The Fe(Ni) spinels showed Fe(II) values at the detection limit (ca. 0.05 wt% Fe) and total Fe values slightly higher than obtained by total elemental analysis. For the magnetite samples, total Fe values were in agreement with reference results, but a wide range in Fe(II) values was obtained indicating various degrees of conversion to maghemite.« less

  9. [Reduction of nitrobenzene by iron oxides bound Fe(II) system at different pH values].

    PubMed

    Luan, Fu-Bo; Xie, Li; Li, Jun; Zhou, Qi

    2009-07-15

    Batch tests were conducted to investigate the reductive transformation of nitrobenzene by goethite, hematite, magnetite and steel converter slag bound Fe(II) system. And the reduction mechanism was explored at different pH values. Experimental results showed that hematite, magnetite and steel converter slag could adsorb Fe(II) on surfaces and form iron oxides bound Fe(II) system at pH from 6.5 to 7.0. The systems had strong reductive capacity and could reduce nitrobenzene to aniline. The reduction efficiency of nitrobenzene in surface bound Fe(II) system followed the sequence of magnetite, hematite and steel converter slag from high to low. The reduction efficiency of hematite and magnetite system increased with pH increasing. While it was almost pH independent in steel converter slag system. Although goethite adsorbed most of Fe(II) in solution, the adsorbed Fe(II) had no reductive activity for nitrobenzene. At pH 6.0, small amount of Fe(II) was adsorbed on magnetite and hematite and the systems did not show reductive activity for nitrobenzene. However, steel converter slag could adsorb Fe(II) at pH 6.0 and reduction efficiency almost equaled to the value at pH 7.0. When pH was above 7.5, dissolved Fe(II) could be converted to Fe(OH)2 and the newly formed Fe(OH)2 became the main redactor in the system. Under alkali condition, the presence of iron oxides inhibited the reduction capacity of system.

  10. Uranium(VI) reduction by nanoscale zero-valent iron in anoxic batch systems: the role of Fe(II) and Fe(III).

    PubMed

    Yan, Sen; Chen, Yongheng; Xiang, Wu; Bao, Zhengyu; Liu, Chongxuan; Deng, Baolin

    2014-12-01

    The role of Fe(II) and Fe(III) in U(VI) reduction by nanoscale zerovalent iron (nanoFe0) was investigated using two iron chelators 1,10-phenanthroline and triethanolamine (TEA) under a CO2-free anoxic condition. The results showed that U(VI) reduction was strongly inhibited by 1,10-phenanthroline and TEA in a pH range from 6.9 to 9.0. For instance, at pH 6.9 the observed U(VI) reduction rates decreased by 81% and 82% in the presence of 1,10-phenanthroline and TEA, respectively. The inhibition was attributed to the formation of stable complexes between 1,10-phenanthroline and Fe(II) or TEA and Fe(III). In the absence of iron chelators, U(VI) reduction can be enhanced by surface-bound Fe(II) on nanoFe0. Our results suggested that Fe(III) and Fe(II) possibly acted as an electron shuttle to ferry the electrons from nanoFe0 to U(VI), therefore a combined system with Fe(II), Fe(III) and nanoFe0 could facilitate U(VI) reductive immobilization in the contaminated groundwater.

  11. Uranium(VI) reduction by nanoscale zero-valent iron in anoxic batch systems: The role of Fe(II) and Fe(III)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Sen; Chen, Yongheng; Xiang, Wu

    2014-12-01

    The role of Fe(II) and Fe(III) on U(VI) reduction by nanoscale zerovalent iron (nanoFe0) was investigated using two iron chelators 1,10-phenanthroline and triethanolamine (TEA) under a CO2-free anoxic condition. The results showed U(VI) reduction was strongly inhibited by 1,10-phenanthroline and TEA in a pH range from 6.92 to 9.03. For instance, at pH 6.92 the observed U(VI) reduction rates decreased by 80.7% and 82.3% in the presence of 1,10-phenanthroline and TEA, respectively. The inhibition was attributed to the formation of stable complexes between 1,10-phenanthroline and Fe(II) or TEA and Fe(III). In the absence of iron chelators, U(VI) reduction can bemore » enhanced by surface-bound Fe(II) on nanoFe0. Our results suggested that Fe(III) and Fe(II) probably acted as an electron shuttle to mediate the transfer of electrons from nanoFe0 to U(VI), therefore a combined system with Fe(II), Fe(III) and nanoFe0 can facilitate the U(VI) reductive immobilization in the contaminated groundwater.« less

  12. The polarization and ultraviolet spectrum of Markarian 231

    NASA Technical Reports Server (NTRS)

    Smith, Paul S.; Schmidt, Gary D.; Allen, Richard G.; Angel, J. R. P.

    1995-01-01

    Ultraviolet spectropolarimetry acquired with the Hubble Space Telescope (HST) of the peculiar Seyfert galaxy Mrk 231 is combined with new high-quality ground-based measurements to provide the first, nearly complete, record of its linear polarization from 1575 to 7900 A. The accompanying ultraviolet spectrum portrays the heavily extinguished emission-line spectrum of the active nucleus plus the emergence of a blue continuum shortward of approximately 2400 A. In addition, absorption features due to He I lambda 3188, Mg I lambda 2853, Mg II lambda 2798, and especially several resonance multiplets of Fe II are identified with a well-known optical absorption system blueshifted approximately 4600 km/s with respect to emission lines. The continuum is attributed to approximately 10(exp 5) hot, young stars surrounding the nucleus. This component dilutes the polarized nuclear light, implying that the intrinsic polarization of the active galactic nucleus (AGN) spectrum approaches 20% at 2800 A. The rapid decline in degree of polarization toward longer wavelengths is best explained by the strongly frequency-dependent scattering cross section of dust grains coupled with modest starlight dilution. Peculiar S-shaped inflections in both the degree and position angle of polarization through H alpha and other major emission lines are interpreted as effects of scattering from two regions offset in velocity by several hundred km/s. A third source of (weakly) polarized flux is required to explain a nearly 40 deg rotation in position angle between 3200 and 1800 A. The displaced absorption features, polarimetry, and optical/infrared properties of Mrk 231 all point to its classification as a low-ionization, or Mg II broad absorption line quasar, in which most, if not all, lines of sight to the active nucleus are heavily obscured by dust and low-ionization gas clouds.

  13. Role of oxidants in enhancing dewaterability of anaerobically digested sludge through Fe (II) activated oxidation processes: hydrogen peroxide versus persulfate

    PubMed Central

    Song, Kang; Zhou, Xu; Liu, Yiqi; Gong, Yanyan; Zhou, Beibei; Wang, Dongbo; Wang, Qilin

    2016-01-01

    Improving dewaterability of sludge is important for the disposal of sludge in wastewater treatment plants (WWTPs). This study, for the first time, investigated the Fe(II) activated oxidization processes in improving anaerobically digested sludge (ADS) dewaterability. The combination of Fe(II) (0–100 mg/g total solids (TS)) and persulfate (0–1,000 mg/g TS) under neutral pH as well as the combination of Fe(II) (0–100 mg/g TS) and hydrogen peroxide (HP) (0–1,000 mg/g TS) under pH 3.0 were used to examine and compare their effect on the ADS dewaterability enhancement. The highest ADS dewaterability enhancement was attained at 25 mg Fe(II)/g TS and 50 mg HP/g TS, when the CST (CST: the capillary suction time, a sludge dewaterability indicator) was reduced by 95%. In contrast, the highest CST reduction in Fe(II)-persulfate conditioning was 90%, which was obtained at 50 mg Fe(II)/g TS and 250 mg persulfate/g TS. The results showed that Fe(II)-HP conditioning was comparable with Fe(II)-persulfate conditioning in terms of highest CST reduction. Economic analysis suggested that the Fe(II)-HP conditioning was more promising for improving ADS dewaterability compared with Fe(II)-persulfate conditioning, with the saving being up to $65,000 per year in a WWTP with a population equivalent of 100,000. PMID:27109500

  14. Oxidation of Structural Fe(II) in Biotite by Lithotrophic Fe(II)-oxidizing microorganisms

    NASA Astrophysics Data System (ADS)

    Shelobolina, E.; Blöthe, M.; Xu, H.; Konishi, H.; Roden, E.

    2008-12-01

    The potential for microbial involvement in the oxidation of Fe(II)-bearing phyllosilicates is an understudied aspect of soil/sediment Fe biogeochemistry. An important property of structural Fe in Fe-bearing smectites is their ability to undergo multiple redox cycles without being mobilized. An obvious choice of mineral substrate for enumeration/isolation of Fe(II)-oxidizing microorganisms would be reduced smectite. But reduced smectite is readily oxidized by air. That is why biotite was chosen as a substrate for this study. In contrast to smectite, biotite is more stable in the presence of air, but incapable of redox cycling. Once Fe(II) is oxidized, biotite is weathered to expendable 2:1 phyllosilicates or kaolinite. First, we evaluated the ability of a neutral-pH lithoautotrophic nitrate-reducing enrichment culture (MPI culture), recovered by Straub et al (Appl. Environ. Microbiol., 1996, 62:1458-1460) from a freshwater ditch, to oxidize two different specimens of biotite. The culture was capable of multiple transfers in anaerobic nitrate-containing biotite suspensions. The growth of MPI culture resulted in decrease of 0.5 N HCl-extractable Fe(II) content and simultaneous nitrate reduction. Cell yields were comparable to those observed for other neutral-pH lithoautotrophic Fe(II)-oxidizing bacteria. High resolution TEM examination revealed structural and chemical changes at the edges of oxidized biotite and formation of reddish amorphous precipitates dominated by Si and Fe. To further evaluate efficiency of biotite for recovery of oxygen- and nitrate-dependent Fe(II) oxidizing cultures microbial enumeration study was performed using subsoil from a site near Madison, WI. The soil is rich in Fe-bearing smectite and shows evidence of redoximorphic features. The enumeration of Fe(II) oxidizing organisms from this sediment showed 10-fold higher efficiency of biotite over soluble Fe(II) for recovery of Fe(II)-oxidizers. Isolation and identification of both aerobic and nitrate-utilizing Fe(II)-oxidizing cultures is under way. This study demonstrates that biotite can be effectively used to recover and study microorganisms involved in the oxidative side of iron redox cycle in phyllosilicates. Our findings also indicate that microbial redox metabolism has the potential to vastly accelerate the oxidative weathering of otherwise relatively stable Fe(II)-bearing phyllosilicates.

  15. Soft x-ray absorption spectra of ilmenite family.

    PubMed

    Agui, A; Mizumaki, M; Saitoh, Y; Matsushita, T; Nakatani, T; Fukaya, A; Torikai, E

    2001-03-01

    We have carried out soft x-ray absorption spectroscopy to study the electronic structure of ilmenite family, such as MnTiO3, FeTiO3, and CoTiO3 at the soft x-ray beamline, BL23SU, at the SPring-8. The Ti and M L2,3 absorption spectra of MTiO3 (M=Mn, Fe, and Co) show spectra of Ti4+ and M2+ electron configurations, respectively. Except the Fe L2,3 spectrum, those spectra were understood within the O(h) symmetry around the transition metal ions. The Fe L3-edge spectrum clearly shows a doublet peak at the L3 edge, which is attributed to Fe2+ state, moreover the very high-resolution the L-edge spectra of transition metals show fine structures. The spectra of those ilmenites are compared.

  16. Space Weathering in Olivine and the Mineralogy of (Some) M-Class Asteroids

    NASA Astrophysics Data System (ADS)

    Britt, Daniel; Kohout, Tomas; Schelling, Patrick; Consolmagno, Guy J.

    2014-11-01

    One aspect of space weathering of airless bodies is the production of nanophase iron (npFe0) from Fe bearing silicate minerals. The combined effects of low oxygen fugacity and solar-wind implanted H tend to result in strongly-reduced surfaces that can be chemically activated by heating due to micrometeorite impacts. The mineral kinetics of olivine makes it particularly vulnerable to reduction, decomposition, and npFe0 production. Kohout et al. has recently developed a new method of controlled npFe0 production on olivine powder grains that mimics the essential features of this weathering process and was developed to quantitatively evaluate spectral changes related to space weathering and presence of npFe0. Compared to fresh olivine the treated samples exhibit spectral characteristics of space weathering including spectral darkening, shallowing and attenuation of 1 µm olivine absorption band, and reddening. The attenuation of the 1 µm band significantly shrinks the band FWHM and shifts the much reduced band center to shorter wavelengths around 0.95 µm. These spectral changes are related to increasing amounts of npFe0 and the disruption of the crystal structure of the parent olivine. Significantly, the darkened, reddened, and band attenuated olivine spectra are a close match to a number of M-class asteroids. What is particularly interesting is the match with the weak absorption band near 0.95 µm seen in many M-class asteroids (i.e. 16 Psyche, 22 Kalliope, 55 Pandora to name a few). One of the major issues in asteroid science is the relative scarcity of olivine asteroids (the ”Great Dunite Shortage” coined by Bell et al in Asteroids II). One possibility worth further study is that asteroidal olivine may be hidden by the relative ease with which it weathers. The surface chemical and micrometeorite environment in the asteroid belt may produce over time a spectrum for an olivine-rich surface that is remarkably similar to that of an M-class asteroid.

  17. Metal based pharmacologically active agents: Synthesis, structural characterization, molecular modeling, CT-DNA binding studies and in vitro antimicrobial screening of iron(II) bromosalicylidene amino acid chelates

    NASA Astrophysics Data System (ADS)

    Abdel-Rahman, Laila H.; El-Khatib, Rafat M.; Nassr, Lobna A. E.; Abu-Dief, Ahmed M.; Ismael, Mohamed; Seleem, Amin Abdou

    2014-01-01

    In recent years, great interest has been focused on Fe(II) Schiff base amino acid complexes as cytotoxic and antitumor drugs. Thus a series of new iron(II) complexes based on Schiff bases amino acids ligands have been designed and synthesized from condensation of 5-bromosalicylaldehyde (bs) and α-amino acids (L-alanine (ala), L-phenylalanine (phala), L-aspartic acid (aspa), L-histidine (his) and L-arginine (arg)). The structure of the investigated iron(II) complexes was elucidated using elemental analyses, infrared, ultraviolet-visible, thermogravimetric analysis, as well as conductivity and magnetic susceptibility measurements. Moreover, the stoichiometry and the stability constants of the prepared complexes have been determined spectrophotometrically. The results suggest that 5-bromosalicylaldehyde amino acid Schiff bases (bs:aa) behave as dibasic tridentate ONO ligands and coordinate to Fe(II) in octahedral geometry according to the general formula [Fe(bs:aa)2]ṡnH2O. The conductivity values between 37 and 64 ohm-1 mol-1 cm2 in ethanol imply the presence of nonelectrolyte species. The structure of the complexes was validated using quantum mechanics calculations based on accurate DFT methods. Geometry optimization of the Fe-Schiff base amino acid complexes showed that all complexes had octahedral coordination. In addition, the interaction of these complexes with (CT-DNA) was investigated at pH = 7.2, by using UV-vis absorption, viscosity and agarose gel electrophoresis measurements. Results indicated that the investigated complexes strongly bind to calf thymus DNA via intercalative mode and showed a different DNA binding according to the sequence: bsari > bshi > bsali > bsasi > bsphali. Moreover, the prepared compounds are screened for their in vitro antibacterial and antifungal activity against three types of bacteria, Escherichia coli, Pseudomonas aeruginosa and Bacillus cereus and three types of anti fungal cultures, Penicillium purpurogenium, Aspergillus flavus and Trichotheium rosium. The results of these studies indicated that the metal complexes exhibit a stronger antibacterial and antifungal efficiency than their corresponding Schiff base amino acid ligands.

  18. Ferrate(VI)-Prompted Removal of Metals in Aqueous Media: Mechanistic Delineation of Enhanced Efficiency via Metal Entrenchment in Magnetic Oxides

    EPA Science Inventory

    The removal efficiency of heavy metal ions (cadmium(II) – Cd(II), cobalt(II) – Co(II), nickel(II) – Ni(II), and copper(II) – Cu(II)) by potassium ferrate(VI) (K2FeO4, Fe(VI)), was studied as a function of added amount of Fe(VI) (or Fe) and varying pH. At pH = 6.6, the effective r...

  19. The Mean Metal-line Absorption Spectrum of Damped Ly α Systems in BOSS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mas-Ribas, Lluís; Miralda-Escudé, Jordi; Pérez-Ràfols, Ignasi

    We study the mean absorption spectrum of the Damped Ly α (DLA) population at z ∼ 2.6 by stacking normalized, rest-frame-shifted spectra of ∼27,000 DLA systems from the DR12 of the Baryon Oscillation Spectroscopic Survey (BOSS)/SDSS-III. We measure the equivalent widths of 50 individual metal absorption lines in five intervals of DLA hydrogen column density, five intervals of DLA redshift, and overall mean equivalent widths for an additional 13 absorption features from groups of strongly blended lines. The mean equivalent width of low-ionization lines increases with N {sub H} {sub i}, whereas for high-ionization lines the increase is much weaker.more » The mean metal line equivalent widths decrease by a factor ∼1.1–1.5 from z ∼ 2.1 to z ∼ 3.5, with small or no differences between low- and high-ionization species. We develop a theoretical model, inspired by the presence of multiple absorption components observed in high-resolution spectra, to infer mean metal column densities from the equivalent widths of partially saturated metal lines. We apply this model to 14 low-ionization species and to Al iii, S iii, Si iii, C iv, Si iv, N v, and O vi. We use an approximate derivation for separating the equivalent width contributions of several lines to blended absorption features, and infer mean equivalent widths and column densities from lines of the additional species N i, Zn ii, C ii*, Fe iii, and S iv. Several of these mean column densities of metal lines in DLAs are obtained for the first time; their values generally agree with measurements of individual DLAs from high-resolution, high signal-to-noise ratio spectra when they are available.« less

  20. High-resolution ultraviolet observations of interstellar lines toward Zeta Persei observed with the balloon-borne ultraviolet stellar spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snow, T.P.; Lamers, H.J.G.L.M.; Joseph, C.L.

    1987-10-01

    The balloon-borne ultraviolet stellar spectrometer payload has been used to obtain high-resolution data on interstellar absorption lines toward Zeta Per. The only lines clearly present in the 2150-2450 region were several Fe II features, which show double structure. The two velocity components were sufficiently well separated that it was possible to construct separate curves of growth to derive the Fe II column densities for the individual components. These column densities and the component velocity separation were then used to compute a realistic two-component curve of growth for the line of sight to Zeta Per, which was then used to reanalyzemore » existing ultraviolet data from Copernicus. The results were generally similar to an earlier two-component analysis of the Copernicus data, with the important exception that the silicon depletion increased from near zero to about 1 dex. This makes the Zeta Per depletion pattern quite similar to those derived for other reddened lines of sight, supporting the viewpoint that the general diffuse interstellar medium has a nearly constant pattern of depletions. 31 references.« less

  1. Fe(II) formation after interaction of the amyloid β-peptide with iron-storage protein ferritin.

    PubMed

    Balejcikova, Lucia; Siposova, Katarina; Kopcansky, Peter; Safarik, Ivo

    2018-05-09

    The interaction of amyloid β-peptide (Aβ) with the iron-storage protein ferritin was studied in vitro. We have shown that Aβ during fibril formation process is able to reduce Fe(III) from the ferritin core (ferrihydrite) to Fe(II). The Aβ-mediated Fe(III) reduction yielded a two-times-higher concentration of free Fe(II) than the spontaneous formation of Fe(II) by the ferritin itself. We suggest that Aβ can also act as a ferritin-specific metallochaperone-like molecule capturing Fe(III) from the ferritin ferrihydrite core. Our observation may partially explain the formation of Fe(II)-containing minerals in human brains suffering by neurodegenerative diseases.

  2. Arsenic removal with iron(II) and iron(III) in waters with high silicate and phosphate concentrations.

    PubMed

    Roberts, Linda C; Hug, Stephan J; Ruettimann, Thomas; Billah, Morsaline; Khan, Abdul Wahab; Rahman, Mohammad Tariqur

    2004-01-01

    Arsenic removal by passive treatment, in which naturally present Fe(II) is oxidized by aeration and the forming iron(III) (hydr)oxides precipitate with adsorbed arsenic, is the simplest conceivable water treatment option. However, competing anions and low iron concentrations often require additional iron. Application of Fe(II) instead of the usually applied Fe(III) is shown to be advantageous, as oxidation of Fe(II) by dissolved oxygen causes partial oxidation of As(III) and iron(III) (hydr)oxides formed from Fe(II) have higher sorption capacities. In simulated groundwater (8.2 mM HCO3(-), 2.5 mM Ca2+, 1.6 mM Mg2+, 30 mg/L Si, 3 mg/L P, 500 ppb As(III), or As(V), pH 7.0 +/- 0.1), addition of Fe(II) clearly leads to better As removal than Fe(III). Multiple additions of Fe(II) further improved the removal of As(II). A competitive coprecipitation model that considers As(III) oxidation explains the observed results and allows the estimation of arsenic removal under different conditions. Lowering 500 microg/L As(III) to below 50 microg/L As(tot) in filtered water required > 80 mg/L Fe(III), 50-55 mg/L Fe(II) in one single addition, and 20-25 mg/L in multiple additions. With As(V), 10-12 mg/L Fe(II) and 15-18 mg/L Fe(III) was required. In the absence of Si and P, removal efficiencies for Fe(II) and Fe(III) were similar: 30-40 mg/L was required for As(II), and 2.0-2.5 mg/L was required for As(V). In a field study with 22 tubewells in Bangladesh, passive treatment efficiently removed phosphate, but iron contents were generally too low for efficient arsenic removal.

  3. Iron Bioavailability from Ferric Pyrophosphate in Extruded Rice Cofortified with Zinc Sulfate Is Greater than When Cofortified with Zinc Oxide in a Human Stable Isotope Study.

    PubMed

    Hackl, Laura; Zimmermann, Michael B; Zeder, Christophe; Parker, Megan; Johns, Paul W; Hurrell, Richard F; Moretti, Diego

    2017-03-01

    Background: Extruded rice grains are often cofortified with iron and zinc. However, it is uncertain if the addition of zinc to iron-fortified rice affects iron absorption and whether this is zinc-compound specific. Objective: We investigated whether zinc, added as zinc oxide (ZnO) or zinc sulfate (ZnSO 4 ), affects human iron absorption from extruded rice fortified with ferric pyrophosphate (FePP). Methods: In 19 iron-depleted Swiss women (plasma ferritin ≤16.5 μ/L) aged between 20 and 39 y with a normal body mass index (in kg/m 2 ; 18.7-24.8), we compared iron absorption from 4 meals containing fortified extruded rice with 4 mg Fe and 3 mg Zn. Three of the meals contained extruded rice labeled with FePP ( 57 FePP): 1 ) 1 meal without added zinc ( 57 FePP-Zn), 2 ) 1 cofortified with ZnO ( 57 FePP+ZnO), and 3 ) 1 cofortified with ZnSO 4 ( 57 FePP+ZnSO 4 ). The fourth meal contained extruded rice without iron or zinc, extrinsically labeled with ferrous sulfate ( 58 FeSO 4 ) added as a solution after cooking. All 4 meals contained citric acid. Iron bioavailability was measured by isotopic iron ratios in red blood cells. We also measured relative in vitro iron solubility from 57 FePP-Zn, 57 FePP+ZnO, and 57 FePP+ZnSO 4 expressed as a fraction of FeSO 4 solubility. Results: Geometric mean fractional iron absorption (95% CI) from 57 FePP+ZnSO 4 was 4.5% (3.4%, 5.8%) and differed from 57 FePP+ZnO (2.7%; 1.8%, 4.1%) ( P < 0.03); both did not differ from 57 FePP-Zn: 4.0% (2.8%, 5.6%). Relative iron bioavailabilities compared with 58 FeSO 4 were 62%, 57%, and 38% from 57 FePP+ZnSO 4 , 57 FePP-Zn, and 57 FePP+ZnO, respectively. In vitro solubility from 57 FePP+ZnSO 4 differed from that of 57 FePP-Zn (14.3%; P < 0.02) but not from that of 57 FePP+ZnO (10.2% compared with 13.1%; P = 0.08). Conclusions: In iron-depleted women, iron absorption from FePP-fortified extruded rice cofortified with ZnSO 4 was 1.6-fold (95% CI: 1.4-, 1.9-fold) that of rice cofortified with ZnO. These findings suggest that ZnSO 4 may be the preferable zinc cofortificant for optimal iron bioavailability of iron-fortified extruded rice. This trial was registered at clinicaltrials.gov as NCT02255942. © 2017 American Society for Nutrition.

  4. Reduction of aqueous transition metal species on the surfaces of Fe(II)-containing oxides

    USGS Publications Warehouse

    White, A.F.; Peterson, M.L.

    1996-01-01

    Experimental studies demonstrate that structural Fe(II) in magnetite and ilmenite heterogeneously reduce aqueous ferric, cupric, vanadate, and chromate ions at the oxide surfaces over a pH range of 1-7 at 25??C. For an aqueous transition metal m, such reactions are 3[Fe2+Fe3+2]O4(magnetite) + 2/nmz ??? 4[Fe3+2]O3(maghemite) + Fe2+ + 2/nmz-n and 3[Fe2+Ti]O3(ilmenite) + 2/nmz ??? Fe3+2Ti3O9(pseudorutile) + Fe2+ + 2/nmz-n, where z is the valance state and n is the charge transfer number. The half cell potential range for solid state oxidation [Fe(II)] ??? [Fe(III)] is -0.34 to -0.65 V, making structural Fe(II) a stronger reducing agent than aqueous Fe2+ (-0.77 V). Reduction rates for aqueous metal species are linear with time (up to 36 h), decrease with pH, and have rate constants between 0.1 and 3.3 ?? 10-10 mol m-2 s-1. Iron is released to solution both from the above reactions and from dissolution of the oxide surface. In the presence of chromate, Fe2+ is oxidized homogeneously in solution to Fe3+. X-ray photoelectron spectroscopy (XPS) denotes a Fe(III) oxide surface containing reduced Cr(III) and V(IV) species. Magnetite and ilmenite electrode potentials are insensitive to increases in divalent transition metals including Zn(II), Co(II), Mn(II), and Ni(II) and reduced V(IV) and Cr(III) but exhibit a log-linear concentration-potential response to Fe(III) and Cu(II). Complex positive electrode responses occur with increasing Cr(VI) and V(V) concentrations. Potential dynamic scans indicate that the high oxidation potential of dichromate is capable of suppressing the cathodic reductive dissolution of magnetite. Oxide electrode potentials are determined by the Fe(II)/Fe(III) composition of the oxide surface and respond to aqueous ion potentials which accelerate this oxidation process. Natural magnetite sands weathered under anoxic conditions are electrochemically reactive as demonstrated by rapid chromate reduction and the release of aqueous Fe(III) to experimental solution. In contrast, magnetite weathered under oxidizing vadose conditions show minimum reactivity toward chromate ions. The ability of Fe(II) oxides to reduce transition metals in soils and groundwaters will be strongly dependent on the redox environment.

  5. Reduction of aqueous transition metal species on the surfaces of Fe(II) -containing oxides

    NASA Astrophysics Data System (ADS)

    White, Art F.; Peterson, Maria L.

    1996-10-01

    Experimental studies demonstrate that structural Fe(II) in magnetite and ilmenite heterogeneously reduce aqueous ferric, cupric, vanadate, and chromate ions at the oxide surfaces over a pH range of 1-7 at 25°C. For an aqueous transition metal m, such reactions are 3[FeFe23+]O+2/nm→4[Fe23+]O+Fe+2/nm and 3[FeTi]O+→Fe23+TiO+Fe+2/nm, where z is the valance state and n is the charge transfer number. The half cell potential range for solid state oxidation [Fe(II)] → [Fe(III)] is -0.34 to -0.65 V, making structural Fe(II) a stronger reducing agent than aqueous Fe 2+ (-0.77 V). Reduction rates for aqueous metal species are linear with time (up to 36 h), decrease with pH, and have rate constants between 0.1 and 3.3 × 10 -10 mol m -2 s -1. Iron is released to solution both from the above reactions and from dissolution of the oxide surface. In the presence of chromate, Fe 2+ is oxidized homogeneously in solution to Fe 3+. X-ray photoelectron spectroscopy (XPS) denotes a Fe(III) oxide surface containing reduced Cr(III) and V(IV) species. Magnetite and ilmenite electrode potentials are insensitive to increases in divalent transition metals including Zn(II), Co(II), Mn(II), and Ni(II) and reduced V(IV) and Cr(III) but exhibit a log-linear concentration-potential response to Fe(III) and Cu(II). Complex positive electrode responses occur with increasing Cr(VI) and V(V) concentrations. Potential dynamic scans indicate that the high oxidation potential of dichromate is capable of suppressing the cathodic reductive dissolution of magnetite. Oxide electrode potentials are determined by the Fe(II)/Fe(III) composition of the oxide surface and respond to aqueous ion potentials which accelerate this oxidation process. Natural magnetite sands weathered under anoxic conditions are electrochemically reactive as demonstrated by rapid chromate reduction and the release of aqueous Fe(III) to experimental solution. In contrast, magnetite weathered under oxidizing vadose conditions show minimum reactivity toward chromate ions. The ability of Fe(II) oxides to reduce transition metals in soils and groundwaters will be strongly dependent on the redox environment.

  6. Core@shell@shell structured carbon-based magnetic ternary nanohybrids: Synthesis and their enhanced microwave absorption properties

    NASA Astrophysics Data System (ADS)

    Yang, Erqi; Qi, Xiaosi; Xie, Ren; Bai, Zhongchen; Jiang, Yang; Qin, Shuijie; Zhong, Wei; Du, Youwei

    2018-05-01

    High encapsulation efficiency of core@shell@shell structured carbon-based magnetic ternary nanohybrids have been synthesized in high yield by chemical vapor deposition of acetylene directly over octahedral-shaped Fe2O3 nanoparticles. By controlling the pyrolysis temperature, Fe3O4@Fe3C@carbon nanotubes (CNTs) and Fe@Fe3C@CNTs ternary nanohybrids could be selectively produced. The optimal RL values for the as-prepared ternary nanohybrids could reach up to ca. -46.7, -52.7 and -29.5 dB, respectively. The excellent microwave absorption properties of the obtaiend ternary nanohybrids were proved to ascribe to the quarter-wavelength matching model. Moreover, the as-prepared Fe@Fe3C@CNTs ternary nanohybrids displayed remarkably enhanced EM wave absorption capabilities compared to Fe3O4@Fe3C@CNTs due to their excellent dielectric loss abilities, good complementarities between the dielectric loss and the magnetic loss, and high attenuation constant. Generally, this strategy can be extended to explore other categories of core@shell or core@shell@shell structured carbon-based nanohybrids, which is very beneficial to accelerate the advancements of high performance MAMs.

  7. Stable Fe isotope fractionation during anaerobic microbial dissimilatory iron reduction at low pH

    NASA Astrophysics Data System (ADS)

    Chanda, P.; Amenabar, M. J.; Boyd, E. S.; Beard, B. L.; Johnson, C.

    2017-12-01

    In low-temperature anaerobic environments microbial dissimilatory iron reduction (DIR) plays an important role in Fe cycling. At neutral pH, sorption of aqueous Fe(II) (Fe(II)aq, produced by DIR) catalyzes isotopic exchange between Fe(II) and solid Fe(III), producing 56Fe/54Fe fractionations on the order of 3‰ during DIR[1,2,3]. At low pH, however, the absence of sorbed Fe(II) produces only limited abiologic isotopic exchange[4]. Here we investigated the scope of isotopic exchange between Fe(II)aq and ferric (hydr)oxides (ferrihydrite and goethite) and the associated stable Fe isotope fractionation during DIR by Acidianus strain DS80 at pH 3.0 and 80°C[5]. Over 19 days, 13% reduction of both minerals via microbial DIR was observed. The δ56Fe values of the fluid varied from -2.31 to -1.63‰ (ferrihydrite) and -0.45 to 0.02‰ (goethite). Partial leaching of bulk solid from each reactor with dilute HCl showed no sorption of Fe(II), and the surface layers of the solids were composed of Fe(III) with high δ56Fe values (ferrihydrite: 0.20 to 0.48‰ and goethite: 1.20 to 1.30‰). These results contrast with the lack of Fe isotope exchange in abiologic low-pH systems and indicate a key role for biology in catalyzing Fe isotope exchange between Fe(II)aq and Fe(III) solids, despite the absence of sorbed Fe(II). The estimated fractionation factor (ΔFeFe(III) -Fe(II)aq 2.6‰) from leaching of ferrihydrite is similar to the abiologic equilibrium fractionation factor ( 3.0‰)[3]. The fractionation factor (ΔFeFe(III) -Fe(II)aq 2.0‰) for goethite is higher than the abiologic fractionation factor ( 1.05‰)[2], but is consistent with the previously proposed "distorted surface layer" of goethite produced during the exchange with Fe(II)aq at neutral pH[1]. This study indicates that significant variations in Fe isotope compositions may be produced in low-pH environments where biological cycling of Fe occurs, in contrast to the expected lack of isotopic fractionation in low-pH abiologic systems, and such results bear on the search for biosignatures in Mars and Mars-analog settings. [1] Crosby et al., 2007 Geobiol. 5, 169-189 [2] Beard et al., 2010 Earth Planet. Sci. Lett. 295, 241-250 [3] Wu et al., 2011 Environ. Sci. Technol. 45, 1847-1852 [4] Reddy et al., 2015 Chem. Geol. 397, 118-127 [5] Amenabar et al., 2017 Nat. Geosci. In press

  8. CD, MCD and VTVH MCD Studies of Biferrous and Mixed-Valent myo-Inositol Oxygenase: Insights into Substrate Activation of O2 Reactivity

    PubMed Central

    Snyder, Rae Ana; Bell, Caleb B.; Diao, Yinghui; Krebs, Carsten; Bollinger, J. Martin; Solomon, Edward I.

    2013-01-01

    Myo-inositol oxygenase (MIOX) catalyzes the 4e− oxidation of myo-inositol (MI) to D-glucuronate using a substrate activated Fe(II)Fe(III) site. The biferrous and Fe(II)Fe(III) forms of MIOX were studied with circular dichroism (CD), magnetic circular dichroism (MCD), and variable temperature variable field (VTVH) MCD spectroscopies. The MCD spectrum of biferrous MIOX shows two ligand field (LF) transitions near 10,000 cm−1, split by ~2,000 cm−1, characteristic of 6 coordinate (6C) Fe(II) sites, indicating that the modest reactivity of the biferrous form toward O2 can be attributed to the saturated coordination of both irons. Upon oxidation to the Fe(II)Fe(III) state, MIOX shows two LF transitions in the ~10,000 cm−1 region, again implying a coordinatively saturated Fe(II) site. Upon MI binding, these split in energy to 5,200 cm−1 and 11,200 cm−1, showing that MI binding causes the Fe(II) to become coordinately unsaturated. VTVH MCD magnetization curves of unbound and MI-bound Fe(II)Fe(III) forms show that upon substrate binding, the isotherms become more nested, requiring that the exchange coupling and ferrous zero field splitting (ZFS) both decrease in magnitude. These results imply that MI binds to the ferric site, weakening the Fe(III)-μ-OH bond and strengthening the Fe(II)-μ-OH bond. This perturbation results in the release of a coordinated water from the Fe(II) that enables its O2 activation. PMID:24066857

  9. Metal-ligand Covalency of Iron Complexes from High-Resolution Resonant Inelastic X-ray Scattering

    PubMed Central

    Lundberg, Marcus; Kroll, Thomas; DeBeer, Serena; Bergmann, Uwe; Wilson, Samuel A.; Glatzel, Pieter; Nordlund, Dennis; Hedman, Britt; Hodgson, Keith O.; Solomon, Edward I.

    2013-01-01

    Data from Kα resonant inelastic X-ray scattering (RIXS) have been used to extract electronic structure information, i.e., the covalency of metal-ligand bonds, for four iron complexes using an experimentally based theoretical model. Kα RIXS involves resonant 1s → 3d excitation and detection of the 2p → 1s (Kα) emission. This two-photon process reaches similar final states as single-photon L-edge (2p → 3d) X-ray absorption spectroscopy (XAS), but involves only hard X-rays and can therefore be used to get high-resolution L-edge-like spectra for metal proteins, solution catalysts and their intermediates. To analyze the information content of Kα RIXS spectra, data have been collected for four characteristic σ-donor and π-backdonation complexes; ferrous tacn [FeII(tacn)2]Br2, ferrocyanide [FeII(CN)6]K4, ferric tacn [FeIII(tacn)2]Br3 and ferricyanide [FeIII(CN)6]K3. From these spectra metal-ligand covalencies can be extracted using a charge-transfer multiplet model, without previous information from the L-edge XAS experiment. A direct comparison of L-edge XAS and Kα RIXS spectra show that the latter reaches additional final states, e.g., when exciting into the eg (σ*) orbitals, and the splitting between final states of different symmetry provides an extra dimension that makes Kα RIXS a more sensitive probe of σ-bonding. Another key difference between L-edge XAS and Kα RIXS is the π-backbonding features in ferro- and ferricyanide that are significantly more intense in L-edge XAS compared to Kα RIXS. This shows that two methods are complimentary in assigning electronic structure. The Kα RIXS approach can thus be used as a stand-alone method, in combination with L-edge XAS for strongly covalent systems that are difficult to probe by UV/Vis spectroscopy, or as an extension to conventional absorption spectroscopy for a wide range of transition metal enzymes and catalysts. PMID:24131028

  10. Fe Isotope Fractionation During Fe(III) Reduction to Fe(II)

    NASA Astrophysics Data System (ADS)

    Baker, E. A.; Greene, S.; Hardin, E. E.; Hodierne, C. E.; Rosenberg, A.; John, S.

    2014-12-01

    The redox chemistry of Fe(III) and Fe(II) is tied to a variety of earth processes, including biological, chemical, or photochemical reduction of Fe(III) to Fe(II). Each process may fractionate Fe isotopes, but the magnitudes of the kinetic isotope effects have not been greatly explored in laboratory conditions. Here, we present the isotopic fractionation of Fe during reduction experiments under a variety of experimental conditions including photochemical reduction of Fe(III) bound to EDTA or glucaric acid, and chemical reduction of Fe-EDTA by sodium dithionite, hydroxylamine hydrochloride, Mn(II), and ascorbic acid. A variety of temperatures and pHs were tested. In all experiments, Fe(III) bound to an organic ligand was reduced in the presence of ferrozine. Ferrozine binds with Fe(II), forming a purple complex which allows us to measure the extent of reaction. The absorbance of the experimental solutions was measured over time to determine the Fe(II)-ferrozine concentration and thus the reduction rate. After about 5% of the Fe(III) was reduced, Fe(III)-EDTA and Fe(II)-ferrozine were separated using a C-18 column to which Fe(II)-ferrozine binds. The Fe(II) was eluted and purified through anion exchange chromatography for analysis of δ56Fe by MC-ICPMS. Preliminary results show that temperature and pH both affect reduction rate. All chemical reductants tested reduce Fe(III) at a greater rate as temperature increases. The photochemical reductant EDTA reduces Fe(III) at a greater rate under more acidic conditions. Comparison of the two photochemical reductants shows that glucaric acid reduces Fe(III) significantly faster than EDTA. For chemical reduction, the magnitude of isotopic fractionation depends on the reductant used. Temperature and pH also affect the isotopic fractionation of Fe. Experiments using chemical reductants show that an increase in temperature at low temperatures produces lighter 56Fe ratios, while at high temperatures some reductants produce heavier 56Fe ratios. The magnitude of isotope fractionation is not related to the reduction rate generalized over all reductants. The measured isotopic fractionations produce δ56Fe from -3.82 to +3.05 across all of the reductants tested, highlighting the large impact that redox chemistry may have on fractionating Fe isotopes in the environment.

  11. Bioavailability of iron in geophagic earths and clay minerals, and their effect on dietary iron absorption using an in vitro digestion/Caco-2 cell model.

    PubMed

    Seim, Gretchen L; Ahn, Cedric I; Bodis, Mary S; Luwedde, Flavia; Miller, Dennis D; Hillier, Stephen; Tako, Elad; Glahn, Raymond P; Young, Sera L

    2013-08-01

    Geophagy, the deliberate consumption of earth, is strongly associated with iron (Fe) deficiency. It has been proposed that geophagy may be practiced as a means to improve Fe status by increasing Fe intakes and, conversely, that geophagy may cause Fe deficiency by inhibiting Fe absorption. We tested these hypotheses by measuring Fe concentration and relative bioavailable Fe content of 12 samples of geophagic earth and 4 samples of pure clay minerals. Further, we assessed the impact of these samples on the bioavailability of Fe from an Fe-rich test meal (cooked white beans, WB). Fe concentrations were measured with inductively coupled plasma atomic emission spectroscopy. Fe bioavailability was determined using an in vitro digestion/Caco-2 cell model in which ferritin formation was used as an index of Fe bioavailability. Geophagic earth and clay mineral samples were evaluated with this model, both alone and in combination with WB (1 : 16 ratio, sample : WB). Median Fe concentration of the geophagic earth was 3485 (IQR 2462, 14 ,571) μg g⁻¹ and mean Fe concentration in the clay minerals was 2791 (±1782) μg g⁻¹. All specimens had Fe concentrations significantly higher (p ≤ 0.005) than the Fe concentration of WB (77 μg g⁻¹). Ferritin formation (i.e. Fe uptake) in cells exposed to geophagic earths and clay minerals was significantly lower than in cells exposed to WB (p ≤ 0.05) and Fe uptake responses of 11 of the 16 samples were not significantly different from the blank, indicating no bioavailable Fe. When samples were combined with WB, 5 of 16 had mean ferritin levels that were significantly lower (p ≤ 0.05, one tail) than the WB alone, indicating that the samples inhibited Fe uptake from the WB. None of the ferritin responses of cells exposed to both WB and earth/clay were significantly higher than WB alone. Thus, although geophagic earths and mineral clays are high in total Fe, very little of this Fe is bioavailable. Further, some geophagic earth and clay mineral samples inhibit Fe absorption from foods. In vivo research is warranted to confirm these observations and to determine if geophagic earth samples can be a source of Fe and/or inhibit Fe absorption.

  12. Bioavailability of iron in geophagic earths and clay minerals, and their effect on dietary iron absorption using an in vitro digestion/Caco-2 cell model

    PubMed Central

    Seim, Gretchen L.; Ahn, Cedric I.; Bodis, Mary S.; Luwedde, Flavia; Miller, Dennis D.; Hillier, Stephen; Tako, Elad; Glahn, Raymond P.; Young, Sera L.

    2014-01-01

    Geophagy, the deliberate consumption of earth, is strongly associated with iron (Fe) deficiency. It has been proposed that geophagy may be practiced as a means to improve Fe status by increasing Fe intakes and, conversely, that geophagy may cause Fe deficiency by inhibiting Fe absorption. We tested these hypotheses by measuring Fe concentration and relative bioavailable Fe content of 12 samples of geophagic earth and 4 samples of pure clay minerals. Further, we assessed the impact of these samples on the bioavailability of Fe from an Fe-rich test meal (cooked white beans, WB). Fe concentrations were measured with inductively coupled plasma atomic emission spectroscopy. Fe bioavailability was determined using an in vitro digestion/Caco-2 cell model in which ferritin formation was used as an index of Fe bioavailability. Geophagic earth and clay mineral samples were evaluated with this model, both alone and in combination with WB (1:16 ratio, sample:WB). Median Fe concentration of the geophagic earth was 3485 (IQR 2462, 14571) μg/g and mean Fe concentration in the clay minerals was 2791 (± 1782) μg/g. All specimens had Fe concentrations significantly higher (p ≤ 0.005) than the Fe concentration of WB (77 μg/g). Ferritin formation (i.e. Fe uptake) in cells exposed to geophagic earths and clay minerals was significantly lower than in cells exposed to WB (p ≤ 0.05) and Fe uptake responses of 11 of the 16 samples were not significantly different from the blank, indicating no bioavailable Fe. When samples were combined with WB, 5 of 16 had mean ferritin levels that were significantly lower (p ≤ 0.05, one tail) than the WB alone, indicating that the samples inhibited Fe uptake from the WB. None of the ferritin responses of cells exposed to both WB and earth/clay were significantly higher than WB alone. Thus, although geophagic earths and mineral clays are high in total Fe, very little of this Fe is bioavailable. Further, some geophagic earth and clay mineral samples inhibit Fe absorption from foods. In vivo research is warranted to confirm these observations and to determine if geophagic earth samples can be a source of Fe and/or inhibit Fe absorption. PMID:23787405

  13. Divalent metal ions modulated strong frustrated M(II)-Fe(III)3O (M = Fe, Mn, Mg) chains with metamagnetism only in a mixed valence iron complex.

    PubMed

    Wu, Qi-Long; Han, Song-De; Wang, Qing-Lun; Zhao, Jiong-Peng; Ma, Feng; Jiang, Xue; Liu, Fu-Chen; Bu, Xian-He

    2015-10-25

    Linking magnetically frustrated triangular FeO units by divalent metal ions (M(II) = Fe(II) for 1, Mn(II) for 2) gives isostructural 1D spin chains. Strong antiferromagnetic interactions were found in these complexes with significant frustrations but very interesting ferrimagnetic like transition and metamagnetism were found in mixed valence 1. By comparing the magnetic behaviours with isostructural complex 3 (with M(II) = Mg(II)), it is proposed that the spins of Fe(II) ions and Mn(II) ions have ferromagnetic and antiferromagnetic contributions respectively.

  14. Optical absorption and disorder in delafossites

    DOE PAGES

    Senty, Tess R.; Haycock, Barry; Lekse, Jonathan; ...

    2017-07-06

    Here, we present compelling experimental results of the optical characteristics of transparent oxide CuGaO 2 and related CuGa 1-xFe xO 2 (with 0.00 ≤ x ≤ 0.05) alloys, whereby the forbidden electronic transitions for CuGaO 2 become permissible in the presence of B-site (Ga sites) alloying with Fe. Our computational structural results imply a correlation between the global strain on the system and a decreased optical absorption edge. However, herein, we show that the relatively ordered CuGa 1-xFe xO 2 (for 0.00 ≤ x ≤ 0.04) structures exhibit much weaker vis-absorption compared to the relatively disordered CuGa 0.95Fe 0.05O 2.

  15. CaFe2O4 as a self-sufficient solar energy converter

    NASA Astrophysics Data System (ADS)

    Tablero, C.

    2017-10-01

    An ideal solar energy to electricity or fuel converter should work without the use of any external bias potential. An analysis of self-sufficiency when CaFe2O4 is used to absorb the sunlight is carried out based on the CaFe2O4 absorption coefficient. We started to obtain this coefficient theoretically within the experimental bandgap range in order to fix the interval of possible values of photocurrents, maximum absorption efficiencies, and photovoltages and thus that of self-sufficiency considering only the radiative processes. Also for single-gap CaFe2O4, we evaluate an alternative for increasing the photocurrent and maximum absorption efficiency based on inserting an intermediate band using high doping or alloying.

  16. Study of gamma ray energy absorption and exposure buildup factors for ferrites by geometric progression fitting method

    NASA Astrophysics Data System (ADS)

    Raut, S. D.; Awasarmol, V. V.; Shaikh, S. F.; Ghule, B. G.; Ekar, S. U.; Mane, R. S.; Pawar, P. P.

    2018-04-01

    The gamma ray energy absorption and exposure buildup factors (EABF and EBF) were calculated for ferrites such as cobalt ferrite (CoFe2O4), zinc ferrite (ZnFe2O4), nickel ferrite (NiFe2O4) and magnesium ferrite (MgFe2O4) using five parametric geometric progression (G-P fitting) formula in the energy range 0.015-15.00 MeV up to the penetration depth 40 mean free path (mfp). The obtained data of absorption and exposure buildup factors have been studied as a function of incident photon energy and penetration depth. The obtained EABF and EBF data are useful for radiation dosimetry and radiation therapy.

  17. Improving iron absorption from a Peruvian school breakfast meal by adding ascorbic acid or Na2EDTA.

    PubMed

    Davidsson, L; Walczyk, T; Zavaleta, N; Hurrell, R

    2001-02-01

    Iron-fortified school breakfasts have been introduced in Peru to combat childhood iron deficiency. We evaluated whether iron absorption from a school breakfast meal was improved by increasing the ascorbic acid content or by adding an alternative enhancer of iron absorption, Na2EDTA. In a crossover design, iron absorption from test meals was evaluated by erythrocyte incorporation of 58Fe and 57Fe. The test meals (wheat bread and a drink containing cereal, milk, and soy) contained 14 mg added Fe (as ferrous sulfate) including 2.0-2.6 mg 58Fe or 4.0-7.0 mg 57Fe. Geometric mean iron absorption increased significantly from 5.1% to 8.2% after the molar ratio of ascorbic acid to fortification iron was increased from 0.6:1 to 1.6:1 (P < 0.01; n = 9). Geometric mean iron absorption increased significantly from 2.9% to 3.8%, from 2.2% to 3.5%, and from 2.4% to 3.7% after addition of Na2EDTA at molar ratios relative to fortification iron of 0.3:1, 0.7:1, and 1:1, respectively, compared with test meals containing no added enhancers (P < 0.01; n = 10 for all). Iron absorption after addition of ascorbic acid (molar ratio 0.6:1) was not significantly different from that after addition of Na2EDTA (molar ratio 0.7:1). Ascorbic acid and Na2EDTA did not differ significantly in their enhancing effects on iron absorption at molar ratios of 0.6:1 to 0.7:1 relative to fortification iron. Additional ascorbic acid (molar ratio 1.6:1) increased iron absorption significantly. Increasing the molar ratio of Na2EDTA to fortification iron from 0.3:1 to 1:1 had no effect on iron absorption.

  18. Microbial production of isotopically light iron(II) in a modern chemically precipitated sediment and implications for isotopic variations in ancient rocks

    USGS Publications Warehouse

    Tangalos, G.E.; Beard, B.L.; Johnson, C.M.; Alpers, Charles N.; Shelobolina, E.S.; Xu, H.; Konishi, H.; Roden, E.E.

    2012-01-01

    The inventories and Fe isotope composition of aqueous Fe(II) and solid-phase Fe compounds were quantified in neutral-pH, chemically precipitated sediments downstream of the Iron Mountain acid mine drainage site in northern California, USA. The sediments contain high concentrations of amorphous Fe(III) oxyhydroxides [Fe(III)am] that allow dissimilatory iron reduction (DIR) to predominate over Fe–S interactions in Fe redox transformation, as indicated by the very low abundance of Cr(II)-extractable reduced inorganic sulfur compared with dilute HCl-extractable Fe. δ56Fe values for bulk HCl- and HF-extractable Fe were ≈ 0. These near-zero bulk δ56Fe values, together with the very low abundance of dissolved Fe in the overlying water column, suggest that the pyrite Fe source had near-zero δ56Fe values, and that complete oxidation of Fe(II) took place prior to deposition of the Fe(III) oxide-rich sediment. Sediment core analyses and incubation experiments demonstrated the production of millimolar quantities of isotopically light (δ56Fe ≈ -1.5 to -0.5‰) aqueous Fe(II) coupled to partial reduction of Fe(III)am by DIR. Trends in the Fe isotope composition of solid-associated Fe(II) and residual Fe(III)am are consistent with experiments with synthetic Fe(III) oxides, and collectively suggest an equilibrium Fe isotope fractionation between aqueous Fe(II) and Fe(III)am of approximately -2‰. These Fe(III) oxide-rich sediments provide a model for early diagenetic processes that are likely to have taken place in Archean and Paleoproterozoic marine sediments that served as precursors for banded iron formations. Our results suggest pathways whereby DIR could have led to the formation of large quantities of low-δ56Fe minerals during BIF genesis.

  19. Controls on Fe(II)-Activated Trace Element Release from Goethite and Hematite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frierdich, Andrew J.; Catalano, Jeffrey G.

    2012-03-26

    Electron transfer and atom exchange (ETAE) between aqueous Fe(II) and Fe(III) oxides induces surface growth and dissolution that affects trace element fate and transport. We have recently demonstrated Ni(II) cycling through goethite and hematite (adsorbed Ni incorporates into the mineral structure and preincorporated Ni releases to solution) during Fe(II)-Fe(III) ETAE. However, the chemical parameters affecting net trace element release remain unknown. Here, we examine the chemical controls on Ni(II) and Zn(II) release from Ni- and Zn-substituted goethite and hematite during reaction with Fe(II). Release follows a rate law consistent with surface reaction limited mineral dissolution and suggests that release occursmore » near sites of Fe(III) reductive dissolution during Fe(II)-Fe(III) ETAE. Metal substituent type affects reactivity; Zn release is more pronounced from hematite than goethite, whereas the opposite trend occurs for Ni. Buildup of Ni or Zn in solution inhibits further release but this resumes upon fluid exchange, suggesting that sustained release is possible under flow conditions. Mineral and aqueous Fe(II) concentrations as well as pH strongly affect sorbed Fe(II) concentrations, which directly control the reaction rates and final metal concentrations. Our results demonstrate that structurally incorporated trace elements are mobilized from iron oxides into fluids without abiotic or microbial net iron reduction. Such release may affect micronutrient availability, contaminant transport, and the distribution of redox-inactive trace elements in natural and engineered systems.« less

  20. Extreme optical Fe II emission in luminous IRAS active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Lipari, Sebastian; Terlevich, Roberto; Macchetto, F.

    1993-01-01

    Results of a program of studies and observations of strong optical Fe II emission in luminous and ultraluminous IRAS AGN are presented. New spectroscopic observations and studies of three known ultraluminous IRAS AGN with extreme optical Fe II emission, the discovery that PHL 1092 is a new ultraluminous IRAS AGN, and the detection of two new AGN with strongly variable flux in the optical Fe II emission lines are reported. These results are used to test the correlations between the Fe II emission and properties at other wavelengths such as the L(IR) and the radio emission. IR AGN with extreme Fe II emission are found to belong to a very important group of AGN, whose properties provide insight into the origin of the extreme Fe II emission and into the relation between the starburst and AGN phenomena.

  1. Influence of MnO2 decorated Fe nano cauliflowers on microwave absorption and impedance matching of polyvinylbutyral (PVB) matrix

    NASA Astrophysics Data System (ADS)

    Bora, Pritom J.; Porwal, Mayuri; Vinoy, K. J.; Ramamurthy, Praveen C.; Madras, Giridhar

    2016-09-01

    In this work, a promising, polyvinyl butryl (PVB)-MnO2 decorated Fe composite was synthesised and microwave absorption properties were studied for the most important frequency ranges i.e., X-band (8.2-12.4 GHz) and Ku-band (12.4-18 GHz). The microwave absorption of Fe nano cauliflower structure can be enhanced by MnO2 nanofiber coating. 10 wt% Fe-MnO2 nano cauliflower loaded PVB composite films (2 mm thick) shows an appreciable increase in microwave absorption properties. In X-band, the reflection loss (RL) of this composite decreases almost linearly to -7.5 dB, whereas in the Ku-band the minimum RL was found to be -15.7 dB at 14.7 GHz. Here it was observed that impedance matching is the primarily important factor responsible for enhanced microwave absorption. Further, enhancement of EM attenuation constant (α), dielectrics, scattering attenuation also bolsters the obtained results. This polymer composite can be considered as a novel microwave absorbing coating material.

  2. Crystal structure of K0.75[Fe(II) 3.75Fe(III) 1.25(HPO3)6]·0.5H2O, an open-framework iron phosphite with mixed-valent Fe(II)/Fe(III) ions.

    PubMed

    Larrea, Edurne S; Mesa, José Luis; Legarra, Estibaliz; Aguayo, Andrés Tomás; Arriortua, Maria Isabel

    2016-01-01

    Single crystals of the title compound, potassium hexa-phosphito-penta-ferrate(II,III) hemihydrate, K0.75[Fe(II) 3.75Fe(III) 1.25(HPO3)6]·0.5H2O, were grown under mild hydro-thermal conditions. The crystal structure is isotypic with Li1.43[Fe(II) 4.43Fe(III) 0.57(HPO3)6]·1.5H2O and (NH4)2[Fe(II) 5(HPO3)6] and exhibits a [Fe(II) 3.75Fe(III) 1.25(HPO3)6](0.75-) open framework with disordered K(+) (occupancy 3/4) as counter-cations. The anionic framework is based on (001) sheets of two [FeO6] octa-hedra (one with point group symmetry 3.. and one with point group symmetry .2.) linked along [001] through [HPO3](2-) oxoanions. Each sheet is constructed from 12-membered rings of edge-sharing [FeO6] octa-hedra, giving rise to channels with a radius of ca 3.1 Å where the K(+) cations and likewise disordered water mol-ecules (occupancy 1/4) are located. O⋯O contacts between the water mol-ecule and framework O atoms of 2.864 (5) Å indicate hydrogen-bonding inter-actions of medium strength. The infrared spectrum of the compound shows vibrational bands typical for phosphite and water groups. The Mössbauer spectrum is in accordance with the presence of Fe(II) and Fe(III) ions.

  3. Mössbauer properties of the diferric cluster and the differential iron(II)-binding affinity of the iron sites in protein R2 of class Ia Escherichia coli ribonucleotide reductase: a DFT/electrostatics study.

    PubMed

    Han, Wen-Ge; Sandala, Gregory M; Giammona, Debra Ann; Bashford, Donald; Noodleman, Louis

    2011-11-14

    The R2 subunit of class-Ia ribonucleotide reductase (RNR) from Escherichia coli (E. coli) contains a diiron active site. Starting from the apo-protein and Fe(II) in solution at low Fe(II)/apoR2 ratios, mononuclear Fe(II) binding is observed indicating possible different Fe(II) binding affinities for the two alternative sites. Further, based on their Mössbauer spectroscopy and two-iron-isotope reaction experiments, Bollinger et al. (J. Am. Chem. Soc., 1997, 119, 5976-5977) proposed that the site Fe1, which bonds to Asp84, should be associated with the higher observed (57)Fe Mössbauer quadrupole splitting (2.41 mm s(-1)) and lower isomer shift (0.45 mm s(-1)) in the Fe(III)Fe(III) state, site Fe2, which is further from Tyr122, should have a greater affinity for Fe(II) binding than site Fe1, and Fe(IV) in the intermediate X state should reside at site Fe2. In this paper, using density functional theory (DFT) incorporated with the conductor-like screening (COSMO) solvation model and with the finite-difference Poisson-Boltzmann self-consistent reaction field (PB-SCRF) methodologies, we have demonstrated that the observed large quadrupole splitting for the diferric state R2 does come from site Fe1(III) and it is mainly caused by the binding position of the carboxylate group of the Asp84 sidechain. Further, a series of active site clusters with mononuclear Fe(II) binding at either site Fe1 or Fe2 have been studied, which show that with a single dielectric medium outside the active site quantum region, there is no energetic preference for Fe(II) binding at one site over another. However, when including the explicit extended protein environment in the PB-SCRF model, the reaction field favors the Fe(II) binding at site Fe2 rather than at site Fe1 by ~9 kcal mol(-1). Therefore our calculations support the proposal of the previous Mössbauer spectroscopy and two-iron-isotope reaction experiments by Bollinger et al.

  4. Electron transfer and atom exchange between aqueous Fe(II) and structural Fe(III) in clays. Role in U and Hg(II) transformations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scherer, Michelle

    2016-08-31

    During this project, we investigated Fe electron transfer and atom exchange between aqueous Fe(II) and structural Fe(III) in clay minerals. We used selective chemical extractions, enriched Fe isotope tracer experiments, computational molecular modeling, and Mössbauer spectroscopy. Our findings indicate that structural Fe(III) in clay minerals is reduced by aqueous Fe(II) and that electron transfer occurs when Fe(II) is sorbed to either basal planes and edge OH-groups of clay mineral. Findings from highly enriched isotope experiments suggest that up to 30 % of the Fe atoms in the structure of some clay minerals exhanges with aqueous Fe(II). First principles calculations usingmore » a small polaron hopping approach suggest surprisingly fast electron mobility at room temperature in a nontronite clay mineral and are consistent with temperature dependent Mössbauer data Fast electron mobility suggests that electrons may be able to conduct through the mineral fast enough to enable exchange of Fe between the aqueous phase and clay mineral structure. over the time periods we observed. Our findings suggest that Fe in clay minerals is not as stable as previously thought.« less

  5. Divergent assembly mechanisms of the manganese/iron cofactors in R2lox and R2c proteins.

    PubMed

    Kutin, Yuri; Srinivas, Vivek; Fritz, Matthieu; Kositzki, Ramona; Shafaat, Hannah S; Birrell, James; Bill, Eckhard; Haumann, Michael; Lubitz, Wolfgang; Högbom, Martin; Griese, Julia J; Cox, Nicholas

    2016-09-01

    A manganese/iron cofactor which performs multi-electron oxidative chemistry is found in two classes of ferritin-like proteins, the small subunit (R2) of class Ic ribonucleotide reductase (R2c) and the R2-like ligand-binding oxidase (R2lox). It is unclear how a heterodimeric Mn/Fe metallocofactor is assembled in these two related proteins as opposed to a homodimeric Fe/Fe cofactor, especially considering the structural similarity and proximity of the two metal-binding sites in both protein scaffolds and the similar first coordination sphere ligand preferences of Mn II and Fe II . Using EPR and Mössbauer spectroscopies as well as X-ray anomalous dispersion, we examined metal loading and cofactor activation of both proteins in vitro (in solution). We find divergent cofactor assembly mechanisms for the two systems. In both cases, excess Mn II promotes heterobimetallic cofactor assembly. In the absence of Fe II , R2c cooperatively binds Mn II at both metal sites, whereas R2lox does not readily bind Mn II at either site. Heterometallic cofactor assembly is favored at substoichiometric Fe II concentrations in R2lox. Fe II and Mn II likely bind to the protein in a stepwise fashion, with Fe II binding to site 2 initiating cofactor assembly. In R2c, however, heterometallic assembly is presumably achieved by the displacement of Mn II by Fe II at site 2. The divergent metal loading mechanisms are correlated with the putative in vivo functions of R2c and R2lox, and most likely with the intracellular Mn II /Fe II concentrations in the host organisms from which they were isolated. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Balmer Absorption Lines in FeLoBALs

    NASA Astrophysics Data System (ADS)

    Aoki, K.; Iwata, I.; Ohta, K.; Tamura, N.; Ando, M.; Akiyama, M.; Kiuchi, G.; Nakanishi, K.

    2007-10-01

    We discovered non-stellar Balmer absorption lines in two many-narrow-trough FeLoBALs (mntBALs) by the near-infrared spectroscopy with Subaru/CISCO. Presence of the non-stellar Balmer absorption lines is known to date only in the Seyfert galaxy NGC 4151; thus our discovery is the first cases for quasars. Since all known active galactic nuclei with Balmer absorption lines share similar characteristics, it is suggested that there is a population of BAL quasars which have unique structures at their nuclei or unique evolutionary phase.

  7. Comparison on the Surface Structure Properties along with Fe(II) and Mn(II) Removal Characteristics of Rice Husk Ash, Inactive Saccharomyces cerevisiae Powder, and Rice Husk

    PubMed Central

    Jiang, Zhao; Cao, Bo; Su, Guangxia; Lu, Yan; Zhao, Jiaying; Shan, Dexin; Zhang, Xiuyuan; Wang, Ziyi

    2016-01-01

    This study selected solid wastes, such as rice husk ash (RHA), inactive Saccharomyces cerevisiae powder (ISP), and rice husk (RH), as the potential adsorbents for the removal of Fe(II) and Mn(II) in aqueous solution. The structural characteristics, functional groups, and elemental compositions were determined by scanning electron microscope (SEM) and Fourier translation infrared spectrum (FT-IR) analyses, respectively. Then the influence on the Fe(II) and Mn(II) removing efficiency by the factors, such as pH, adsorbent dosage, initial Fe(II) and Mn(II) concentration, and contact time, was investigated by the static batch test. The adsorption isotherm study results show that Langmuir equation can better fit the Fe(II) and Mn(II) adsorption process by the three adsorbents. The maximum adsorption amounts for Fe(II) were 6.211 mg/g, 4.464 mg/g, and 4.049 mg/g by RHA, ISP, and RH and for Mn(II) were 3.016 mg/g, 2.229 mg/g, and 1.889 mg/g, respectively. The adsorption kinetics results show that the pseudo-second-order kinetic model can better fit the Fe(II) and Mn(II) adsorption process. D-R model and thermodynamic parameters hint that the adsorption processes of Fe(II) and Mn(II) on the three adsorbents took place physically and the processes were feasible, spontaneous, and exothermic. PMID:28042571

  8. ANALYSIS OF OPTICAL Fe II EMISSION IN A SAMPLE OF ACTIVE GALACTIC NUCLEUS SPECTRA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovacevic, Jelena; Popovic, Luka C.; Dimitrijevic, Milan S., E-mail: jkovacevic@aob.bg.ac.r

    We present a study of optical Fe II emission in 302 active galactic nuclei (AGNs) selected from the Sloan Digital Sky Survey. We group the strongest Fe II multiplets into three groups according to the lower term of the transition (b{sup 4} F, a{sup 6} S, and a{sup 4} G terms). These approximately correspond to the blue, central, and red parts, respectively, of the 'iron shelf' around H{beta}. We calculate an Fe II template that takes into account transitions into these three terms and an additional group of lines, based on a reconstruction of the spectrum of I Zw 1.more » This Fe II template gives a more precise fit of the Fe II lines in broad-line AGNs than other templates. We extract Fe II, H{alpha}, H{beta}, [O III], and [N II] emission parameters and investigate correlations between them. We find that Fe II lines probably originate in an intermediate line region. We note that the blue, red, and central parts of the iron shelf have different relative intensities in different objects. Their ratios depend on continuum luminosity, FWHM H{beta}, the velocity shift of Fe II, and the H{alpha}/H{beta} flux ratio. We examine the dependence of the well-known anti-correlation between the equivalent widths of Fe II and [O III] on continuum luminosity. We find that there is a Baldwin effect for [O III] but an inverse Baldwin effect for the Fe II emission. The [O III]/Fe II ratio thus decreases with L {sub {lambda}5100}. Since the ratio is a major component of the Boroson and Green Eigenvector 1 (EV1), this implies a connection between the Baldwin effect and EV1 and could be connected with AGN evolution. We find that spectra are different for H{beta} FWHMs greater and less than {approx}3000 km s{sup -1}, and that there are different correlation coefficients between the parameters.« less

  9. High temperature extended x-ray absorption fine structure study of multiferroic BiFeO3

    NASA Astrophysics Data System (ADS)

    Raghavendra Reddy, V.; Meneghini, Carlo; Kothari, Deepti; Gupta, Ajay; Aquilanti, Giuliana

    2012-08-01

    Local atomic structure modifications around Fe atoms in polycrystalline multiferroic BiFeO3 are studied by Fe K edge x-ray absorption spectroscopy as a function of temperature across the Néel temperature (TN = 643 K) in order to reveal local structure modifications related to the magnetic transition. This work demonstrates that on crossing TN the local structure around Fe shows peculiar changes: the Fe-O bond lengths get shorter, the ligand symmetry increases and the Fe-O bond length disorder (σ2) deviates from Debye behaviour. These results suggest that the structural transition at the ferroelectric Curie temperature (TC = 1103 K) is anticipated by early local rearrangement of the structure starting already at TN.

  10. Functionalized polyethylene fibers for the selective capture of palladium ions from aqueous solution

    NASA Astrophysics Data System (ADS)

    Pang, Li-juan; Li, Rong; Hu, Jiang-tao; Zhang, Lin-juan; Zhang, Ming-xing; Yang, Chen-guang; Wu, Guo-zhong

    2018-03-01

    An innovative ultrahigh molecular weight polyethylene (UHMWPE) fibrous adsorbent was successfully synthesized via radiation grafting and applied to the selective capture of palladium ions from dilute aqueous solutions. The influence of the pH, initial Pd(II) concentration, and temperature on the adsorption performance was examined in a batch adsorption experiment. Pd K-edge extended X-ray absorption fine structure (EXAFS) spectra indicated that Pd(II) was immobilized on the adsorbent surface via a ligand exchange reaction that formed a stable UHMWPE-PMDA-Pd complex. Although the concentrations of coexisting ions (Cu(II), Zn(II), Cr(VI), Fe(III), and Ni(II)) in the solution were much higher than that of Pd(II), the adsorption capacity for Pd(II) of the as-prepared absorbent was significantly greater than that for other metal ions. Kinetic studies showed good correlation with the pseudo-second-order model. The maximum capacity for Pd(II) adsorption was approximately 221.8 mg·g-1 at 298 K. The adsorption behavior conformed to the Langmuir isotherm model. Thermodynamic studies revealed that the adsorption of Pd(II) was a feasible, spontaneous, and endothermic process.

  11. Syntheses, crystal structures, and magnetic properties of the oxalato-bridged mixed-valence complexes (FeII(bpm)3]2[FeIII2(ox)5].8H2O and FeII(bpm)3Na(H2O)2Fe(ox)(3).4H2O (bpm = 2,2'-bipyrimidine).

    PubMed

    Armentano, D; De Munno, G; Faus, J; Lloret, F; Julve, M

    2001-02-12

    The preparation and crystal structures of two oxalato-bridged FeII-FeIII mixed-valence compounds, [FeII(bpm)3]2[FeIII2(ox)5].8H2O (1) and FeII(bpm)3Na(H2O)2FeIII(ox)(3).4H2O (2) (bpm = 2,2'-bipyrimidine; ox = oxalate dianion) are reported here. Complex 1 crystallizes in the triclinic system, space group P1, with a = 10.998(2) A, b = 13.073(3) A, c = 13.308(3) A, alpha = 101.95(2) degrees, beta = 109.20(2) degrees, gamma = 99.89(2) degrees, and Z = 1. Complex 2 crystallizes in the monoclinic system, space group P2(1)/c, with a = 12.609(2) A, b = 19.670(5) A, c = 15.843(3) A, beta = 99.46(1) degrees, and Z = 4. The structure of complex 1 consists of centrosymmetric oxalato-bridged dinuclear high-spin iron(III) [Fe2(ox)5]2- anions, tris-chelated low-spin iron(II) [Fe(bpm)3]2+ cations, and lattice water molecules. The iron atoms are hexacoordinated: six oxygen atoms (iron(III)) from two bidentate and one bisbidentate oxalato ligands and six nitrogen atoms (iron(II)) from three bidentate bpm groups. The Fe(III)-O(ox) and Fe(II)-N(bpm) bond distances vary in the ranges 1.967(3)-2.099(3) and 1.967(4)-1.995(3) A, respectively. The iron(III)-iron(III) separation across the bridging oxalato is 5.449(2) A, whereas the shortest intermolecular iron(III)-iron(II) distance is 6.841(2) A. The structure of complex 2 consists of neutral heterotrinuclear Fe(bpm)2Na(H2O)2Fe(ox)3 units and water molecules of crystallization. The tris-chelated low-spin iron(II) ([Fe(bpm)3]2+) and high-spin iron(III) ([Fe(ox)3]3-) entities act as bidentate ligands (through two bpm-nitrogen and two oxalato-oxygen atoms, respectively) toward the univalent sodium cation, yielding the trinuclear (bpm)2Fe(II)-bpm-Na(I)-ox-Fe(III)(ox)2 complex. Two cis-coordinated water molecules complete the distorted octahedral surrounding of the sodium atom. The ranges of the Fe(II)-N(bpm) and Fe(III)-O(ox) bond distances [1.968(6)-1.993(5) and 1.992(6)-2.024(6) A, respectively] compare well with those observed in 1. The Na-N(bpm) bond lengths (2.548(7) and 2.677(7) A) are longer than those of Na-O(ox) (2.514(7) and 2.380(7) A) and Na-O(water) (2.334(15) and 2.356(12) A). The intramolecular Fe(II)...Fe(III) separation is 6.763(2) A, whereas the shortest intermolecular Fe(II)...Fe(II) and Fe(III)...Fe(III) distances are 8.152(2) and 8.992(2) A, respectively. Magnetic susceptibility measurements in the temperature range 2.0-290 K for 1 reveal that the high-spin iron(III) ions are antiferromagnetically coupled (J = -6.6 cm-1, the Hamiltonian being defined as H = -JS1.S2). The magnitude of the antiferromagnetic coupling through the bridging oxalato in the magneto-structurally characterized family of formula [M2(ox)5](2m-10)+ (M = Fe(III) (1), Cr(III), and Ni(II)) is analyzed and discussed by means of a simple orbital model.

  12. Heterobimetallic Complexes with MIII-(μ-OH)-MII Cores (MIII = Fe, Mn, Ga; MII = Ca, Sr, and Ba): Structural, Kinetic, and Redox Properties.

    PubMed

    Park, Young Jun; Cook, Sarah A; Sickerman, Nathaniel S; Sano, Yohei; Ziller, Joseph W; Borovik, A S

    2013-02-01

    The effects of redox-inactive metal ions on dioxygen activation were explored using a new Fe II complex containing a tripodal ligand with 3 sulfonamido groups. This iron complex exhibited a faster initial rate for the reduction of O 2 than its Mn II analog. Increases in initial rates were also observed in the presence of group 2 metal ions for both the Fe II and Mn II complexes, which followed the trend NMe 4 + < Ba II < Ca II = Sr II . These studies led to the isolation of heterobimetallic complexes containing Fe III -( μ -OH)-M II cores (M II = Ca, Sr, and Ba) and one with a [Sr II (OH)Mn III ] + motif. The analogous [Ca II (OH)Ga III ] + complex was also prepared and its solid state molecular structure is nearly identical to that of the [Ca II (OH)Fe III ] + system. Nuclear magnetic resonance studies indicated that the diamagnetic [Ca II (OH)Ga III ] + complex retained its structure in solution. Electrochemical measurements on the heterobimetallic systems revealed similar one-electron reduction potentials for the [Ca II (OH)Fe III ] + and [Sr II (OH)Fe III ] + complexes, which were more positive than the potential observed for [Ba II (OH)Fe III ] + . Similar results were obtained for the heterobimetallic Mn II complexes. These findings suggest that Lewis acidity is not the only factor to consider when evaluating the effects of group 2 ions on redox processes, including those within the oxygen-evolving complex of Photosystem II.

  13. Electromagnetic Wave Absorption Property of Graphene with FeO4 Nanoparticles.

    PubMed

    Yang, Cheng; Dai, Shenglong; Zhang, Xiaoyan; Zhao, Tianyu; Yan, Shaojiu; Zhao, Xiuying

    2016-02-01

    Nanomaterials consisting of various ratios of Fe3O4 and graphene (defined C-Fe3O4/GR) were pre- pared by an in situ coordination complex hydro-thermal synthesis method. The structure and morphology of the nanomaterials C-Fe3O4/GR obtained were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM). It was found that the Fe3O4 nanoparticles distributed on the surfaces of graphene, and had a spinel structure and a uniform chemical phase when the weight ratios of Fe3O4 to graphene oxide (GO) were 9:1 or 9:2. It was suggested that GO had been successfully reduced to graphene and the Fe3O4 nanoparticles were chemically bonded to graphene. The SQUID vibrating sample magnetometer (SQUID-VSM) indicated that the maximum of the saturation magnetization was 83.6 emmicro g(-1) when the mass ratio of Fe3O4 to GO was 9:2. Electromagnetic wave absorption showed that the chemical compound of Fe3O4 and graphene had a better electromagnetic property than the mechanical blend of Fe3O4 and graphene (M-Fe3O4/GR). The C-Fe3O4/GR had a reflection loss larger than -10 dB in the frequency range 12.9-17.0 GHz for an absorber thickness of 3 mm, and a maximum reflection loss of -12.3 dB at 14.8 GHz and a maximum reflection loss of -31.2 dB at 10.5 GHz for an absorber thickness of 10 mm. Theoretical analysis showed that the electromagnetic wave absorption behavior obeyed the quarter-wave principles. These results showed that the C-Fe3O4/GR nanomaterials can meet the requirements for some engineering applications, showing great application potential in electromagnetic wave absorption.

  14. Relationship Between Iron Valence States of Serpentine in CM Chondrites and Their Aqueous Alteration Degrees

    NASA Technical Reports Server (NTRS)

    Mikouchi, T.; Zolensky, M.; Satake, W.; Le, L.

    2012-01-01

    The 0.6-0.7 micron absorption band observed for C-type asteroids is caused by the presence of Fe(3+) in phyllosilicates . Because Fe-bearing phyllosilicates, especially serpentine, are the most dominant product of aqueous alteration in the most abundant carbonaceous chondrites, CM chondrites, it is important to understand the crystal chemistry of serpentine in CM chondrites to better understand spectral features of C-type asteroids. CM chondrites show variable degrees of aqueous alteration, which should be related to iron valences in serpentine. It is predicted that the Fe(3+)/Sum of (Fe) ratios of serpentine in CM chondrites decrease as alteration proceeds by Si and Fe(3+) substitutions from end-member cronstedtite to serpentine, which should be apparent in the absorption intensity of the 0.6-0.7 micron band from C-type asteroids. In fact, the JAXA Hayabusa 2 target (C-type asteroid: 1993 JU3) exhibits heterogeneous spectral features (0.7 micron absorption band disappears by rotation). From these points of view, we have analyzed iron valences of matrix serpentine in several CM chondrites which span the entire observed range of aqueous alteration using Synchrotron Radiation X-ray Absorption Near-Edge Structure (SR-XANES). In this abstract we discuss the relationship between obtained Fe(3+)/Sum of (Fe) ratios and alteration degrees by adding new data to our previous studies

  15. Comment on “Isotopic fractionation between Fe(III) and Fe(II) in aqueous solutions” by Clark Johnson et al., [Earth Planet. Sci. Lett. 195 (2002) 141–153

    USGS Publications Warehouse

    Bullen, Thomas D.; White, Arthur F.; Childs, Cyril W.

    2003-01-01

    In a recent contribution [1], Johnson et al. reported the equilibrium isotope fractionation factor between dissolved Fe(II) and Fe(III) in aqueous solutions at pH=2.5 and 5.5. They suggest that because the iron isotope fractionation observed in their experiments spans virtually the entire range observed in sedimentary rocks, Fe(II)–Fe(III) aqueous speciation may play a major role in determining iron isotope variations in nature where Fe(II) and Fe(III) can become physically separated. They discounted earlier conclusions by us and others [2] ;  [3] that significant equilibrium fractionation between specific coexisting Fe(II)- or Fe(III)-aqueous complexes (e.g., between aqueous Fe(II)(OH)x(aq)and Fe(II)(aq) ion) is capable of producing iron isotope contrasts that can be preserved in nature. This is an important contribution not only because the authors recognize the importance of abiotic equilibrium iron isotope fractionation in nature in contrast to previous assertions [4], but also because it will help to focus discussion on the development and evaluation of experimental approaches that can reveal abiotic fractionation mechanisms. However, in this Comment we propose that the experiments presented in this paper cannot be interpreted as straightforwardly as Johnson et al. contend. In particular, we show that in one of their critical experiments attainment of either isotope mass balance or equilibrium was not demonstrated, and thus the results of that experiment cannot be used to calculate an Fe(II)–Fe(III) equilibrium fractionation factor.

  16. The effect of biogenic Fe(II) on the stability and sorption of Co(II)EDTA 2- to goethite and a subsurface sediment

    NASA Astrophysics Data System (ADS)

    Zachara, John M.; Smith, Steven C.; Fredrickson, James K.

    2000-04-01

    Laboratory experiments were conducted with suspensions of goethite (α-FeOOH) and a subsurface sediment to assess the influence of bacterial iron reduction on the fate of Co(II)EDTA 2-, a representative metal-ligand complex of intermediate stability (log K Co(II)EDTA = 17.97). The goethite was synthetic (ca. 55 m 2/g) and the sediment was a Pleistocene age, Fe(III) oxide-containing material from the Atlantic coastal plain (Milford). Shewanella alga strain BrY, a dissimilatory iron reducing bacterium (DIRB), was used to promote Fe(III) oxide reduction. Sorption isotherms and pH adsorption edges were measured for Co 2+, Fe 2+, Co(II)EDTA 2-, and Fe(II)EDTA 2- on the two sorbents in 0.001 mol/L Ca(ClO 4) 2 to aid in experiment interpretation. Anoxic suspensions of the sorbents in PIPES buffer at pH 6.5-7.0 were spiked with Co(II)EDTA 2- (10 -5 mol/L, 60Co and 14EDTA labeled), inoculated with BrY (1-6 × 10 8 organisms/mL), and the headspace filled with a N 2/H 2 gas mix. The experiments were conducted under non-growth conditions. The medium did not contain PO 43- (with one exception), trace elements, or vitamins. The tubes were incubated under anoxic conditions at 25°C for time periods in excess of 100 d. Replicate tubes were sacrificed and analyzed at desired time periods for pH, Fe(II) TOT, Fe (aq)2+, 60Co, and 14EDTA. Abiotic analogue experiments were conducted where Fe (aq)2+ was added in increasing concentration to Co(II)EDTA 2-/mineral suspensions to simulate the influence of bacterial Fe(II) evolution. The DIRB generated Fe(II) from both goethite and the Milford sediment that was strongly sorbed by mineral surfaces. Aqueous Fe 2+ increased during the experiment as surfaces became saturated; Fe (aq)2+ induced the dissociation of Co(II)EDTA 2- into a mixture of Co 2+, Co(II)EDTA 2-, and Fe(II)EDTA 2- (log K Fe(II)EDTA = 15.98). The extent of dissociation of Co(II)EDTA 2- was greater in the subsurface sediment because it sorbed Fe(II) less strongly than did goethite. The post dissociation sorption behavior of Co 2+ was dependent on pH and the intrinsic sorptivity of the solid phases. Dissociation generally lead to an increase in the sorption (e.g., K d) of Co 2+ relative to EDTA 4- (form unspecified). Sorbed biogenic Fe(II) competed with free Co (aq)2+and reduced its sorption relative to unreduced material. It is concluded that cationic radionuclides such as 60Co or 239/240Pu, which may be mobilized from disposed wastes by complexation with EDTA 4-, may become immobilized in groundwater zones where dissimilatory bacterial iron reduction is operative.

  17. Unusual continuous dual absorption peaks in Ca-doped BiFeO3 nanostructures for broadened microwave absorption

    NASA Astrophysics Data System (ADS)

    Li, Zhong-Jun; Hou, Zhi-Ling; Song, Wei-Li; Liu, Xing-Da; Cao, Wen-Qiang; Shao, Xiao-Hong; Cao, Mao-Sheng

    2016-05-01

    Electromagnetic absorption materials have received increasing attention owing to their wide applications in aerospace, communication and the electronics industry, and multiferroic materials with both polarization and magnetic properties are considered promising ceramics for microwave absorption application. However, the insufficient absorption intensity coupled with the narrow effective absorption bandwidth has limited the development of high-performance multiferroic materials for practical microwave absorption. To address such issues, in the present work, we utilize interfacial engineering in BiFeO3 nanoparticles via Ca doping, with the purpose of tailoring the phase boundary. Upon Ca-substitution, the co-existence of both R3c and P4mm phases has been confirmed to massively enhance both dielectric and magnetic properties via manipulating the phase boundary and the destruction of the spiral spin structure. Unlike the commonly reported magnetic/dielectric hybrid microwave absorption composites, Bi0.95Ca0.05FeO3 has been found to deliver unusual continuous dual absorption peaks at a small thickness (1.56 mm), which has remarkably broadened the effective absorption bandwidth (8.7-12.1 GHz). The fundamental mechanisms based on the phase boundary engineering have been discussed, suggesting a novel platform for designing advanced multiferroic materials with wide applications.Electromagnetic absorption materials have received increasing attention owing to their wide applications in aerospace, communication and the electronics industry, and multiferroic materials with both polarization and magnetic properties are considered promising ceramics for microwave absorption application. However, the insufficient absorption intensity coupled with the narrow effective absorption bandwidth has limited the development of high-performance multiferroic materials for practical microwave absorption. To address such issues, in the present work, we utilize interfacial engineering in BiFeO3 nanoparticles via Ca doping, with the purpose of tailoring the phase boundary. Upon Ca-substitution, the co-existence of both R3c and P4mm phases has been confirmed to massively enhance both dielectric and magnetic properties via manipulating the phase boundary and the destruction of the spiral spin structure. Unlike the commonly reported magnetic/dielectric hybrid microwave absorption composites, Bi0.95Ca0.05FeO3 has been found to deliver unusual continuous dual absorption peaks at a small thickness (1.56 mm), which has remarkably broadened the effective absorption bandwidth (8.7-12.1 GHz). The fundamental mechanisms based on the phase boundary engineering have been discussed, suggesting a novel platform for designing advanced multiferroic materials with wide applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00223d

  18. Influence of Magnetite Stoichiometry on the Binding of Emerging Organic Contaminants.

    PubMed

    Cheng, Wei; Marsac, Rémi; Hanna, Khalil

    2018-01-16

    While the magnetite stoichiometry (i.e., Fe(II)/Fe(III) ratio) has been extensively studied for the reductive transformation of chlorinated or nitroaromatic compounds, no work exists examining the influence of stoichiometry of magnetite on its binding properties. This study, for the first time, demonstrates that the stoichiometry strongly affects the capacity of magnetite to bind not only quinolone antibiotics such as nalidixic acid (NA) and flumequine (FLU), but also salicylic acid (SA), natural organic matter (humic acid, HA), and dissolved silicates. Fe(II)-amendment of nonstoichiometric magnetite (Fe(II)/Fe(III) = 0.40) led to similar sorbed amounts of NA, FLU, SA, silicates or HA as compared to the stoichiometric magnetite (i.e., Fe(II)/Fe(III) = 0.50). At any pH between 6 and 10, all magnetites exhibiting similar Fe(II)/Fe(III) ratio in the solid phase showed similar adsorption properties for NA or FLU. This enhancement in binding capability of magnetite for NA is still observed in the presence of environmentally relevant ligands (e.g., 10 mg L -1 of HA or 100 μM of silicates). Using surface complexation modeling, it was shown that the NA-magnetite complexation constant does not vary with Fe(II)/Fe(III) between 0.24 and 0.40, but increases by 8 orders of magnitude when Fe(II)/Fe(III) increases from 0.40 to 0.50.

  19. Iron isotope fractionation during microbially stimulated Fe(II) oxidation and Fe(III) precipitation

    USGS Publications Warehouse

    Balci, N.; Bullen, T.D.; Witte-Lien, K.; Shanks, Wayne C.; Motelica, M.; Mandernack, K.W.

    2006-01-01

    Interpretation of the origins of iron-bearing minerals preserved in modern and ancient rocks based on measured iron isotope ratios depends on our ability to distinguish between biological and non-biological iron isotope fractionation processes. In this study, we compared 56Fe/54Fe ratios of coexisting aqueous iron (Fe(II)aq, Fe(III)aq) and iron oxyhydroxide precipitates (Fe(III)ppt) resulting from the oxidation of ferrous iron under experimental conditions at low pH (<3). Experiments were carried out using both pure cultures of Acidothiobacillus ferrooxidans and sterile controls to assess possible biological overprinting of non-biological fractionation, and both SO42- and Cl- salts as Fe(II) sources to determine possible ionic/speciation effects that may be associated with oxidation/precipitation reactions. In addition, a series of ferric iron precipitation experiments were performed at pH ranging from 1.9 to 3.5 to determine if different precipitation rates cause differences in the isotopic composition of the iron oxyhydroxides. During microbially stimulated Fe(II) oxidation in both the sulfate and chloride systems, 56Fe/54Fe ratios of residual Fe(II)aq sampled in a time series evolved along an apparent Rayleigh trend characterized by a fractionation factor ??Fe(III)aq-Fe(II)aq???1.0022. This fractionation factor was significantly less than that measured in our sterile control experiments (???1.0034) and that predicted for isotopic equilibrium between Fe(II)aq and Fe(III)aq (???1.0029), and thus might be interpreted to reflect a biological isotope effect. However, in our biological experiments the measured difference in 56Fe/54Fe ratios between Fe(III)aq, isolated as a solid by the addition of NaOH to the final solution at each time point under N2-atmosphere, and Fe(II)aq was in most cases and on average close to 2.9??? (??Fe(III)aq-Fe(II)aq ???1.0029), consistent with isotopic equilibrium between Fe(II)aq and Fe(III)aq. The ferric iron precipitation experiments revealed that 56Fe/54Fe ratios of Fe(III)aq were generally equal to or greater than those of Fe(III)ppt, and isotopic fractionation between these phases decreased with increasing precipitation rate and decreasing grain size. Considered together, the data confirm that the iron isotope variations observed in our microbial experiments are primarily controlled by non-biological equilibrium and kinetic factors, a result that aids our ability to interpret present-day iron cycling processes but further complicates our ability to use iron isotopes alone to identify biological processing in the rock record. ?? 2005 Elsevier Inc. All rights reserved.

  20. Effect Of Inorganic, Synthetic And Naturally Occurring Chelating Agents On Fe(II) Mediated Advanced Oxidation Of Chlorophenols

    EPA Science Inventory

    This study examines the feasibility and application of Advanced Oxidation Technologies (AOTs) for the treatment of chlorophenols that are included in US EPA priority pollutant list. A novel class of sulfate/hydroxyl radical-based homogeneous AOTs (Fe(II)/PS, Fe(II)/PMS, Fe(II)/H...

  1. TRANSFORMATION OF NITROSOBENZENES AND HYDROXYLANILINES BY FE II SPECIES: ELUCIDATION OF MECHANISM, EFFECT OF FERRIC OXIDES AND PH

    EPA Science Inventory

    Nitrosobenzenes, the first intermediates in the reduction of nitrobenzenes, were reduced by Fe(II) solutions as well as by Fe(II)-treated goethite suspensions (Fe(II)/G). Results indicate a reactivity trend in which electron-withdrawing groups in the para position increased the ...

  2. Degradation of Nitrobenzene Using Bio-Reduced Fe-Clays: Progress Towards the Development of an in-situ Groundwater Remediation Technology

    NASA Astrophysics Data System (ADS)

    White, M. L.; Fialips, C. I.

    2008-12-01

    Clay minerals are widely used in agricultural, industrial and environmental engineering applications due to their specific physical and chemical properties and their high abundance in soils in sediments. Currently however, Fe-bearing clays are not widely exploited in these applied fields. Fe-rich smectites, such as nontronite, can contain up to 20wt% of Fe2O3 as structural Fe(III) and if a suitable electron donor is available, this Fe(III) can be utilized by Fe-reducing bacteria as a terminal electron acceptor. When reduced, the overall reactivity of Fe-smectites changes, particularly where interactions with water and various organic compounds are involved. For instance, the presence of reduced Fe-smectites has been found to induce the degradation of certain organic contaminants found in groundwaters and the subsurface, e.g. chlorinated aliphatics and nitroaromatic compounds. The goal of this study is to develop an in-situ groundwater remediation technology that targets redox- sensitive organics, in the form of a permeable Bio Fe-clay barrier. To achieve this, the iron-reducing bacterium Shewanella algae BrY was first used to reduce structural FeIII in <2micron fractions of the Fe- rich smectite nontronite (NAu-2, 41.74wt% Fe2O3) and a Fe-bearing montmorrillonite (Speeton Clay, Yorkshire, UK, ~8wt% Fe2O3). S. algae BrY was able to reduce structural FeIII within these clays to maximum Fe(II)/Fe(II)+Fe(III) ratios 0.34 and 0.19 for the nontronite and Speeton Clay, respectively, in the presence and absence of the electron shuttle, AQDS (9, 10-anthraquinone-2, 6-disulfonic acid). These results are novel because the capability of S. algae BrY to reduce structural Fe(III) in smectite clays has not previously been tested. Nitrobenzene was selected as the test redox-sensitive organic compound as it is a common subsurface contaminant and is of global ecotoxicological concern. To test the capability of bio- reduced Fe-clays to transform nitrobenzene to aniline (the less toxic and more stable degradation product of nitrobenzene), nontronite suspensions with reduction levels of 20% and 30% were spiked with various concentrations of nitrobenzene and monitored for 5 days. Results showed that when reduced clay, S. algae BrY and AQDS were present, 100% of the nitrobenzene had been transformed to aniline within 24 hours. Further recent results suggest that bio-reduced nontronite alone is also capable of degrading nitrobenzene but at a slower rate than when AQDS is present. Future experiments will constrain absorption and degradation rates of nitrobenzene in contact with the reduced Fe-clays and the role(s) of the Fe-reducing bacteria. Results to date will be presented.

  3. Resonance Raman detection of the heme Fe(II)-NO/2-nitrovinyl species in myoglobin

    NASA Astrophysics Data System (ADS)

    Ioannou, Androulla; Pinakoulaki, Eftychia

    2018-01-01

    The six-coordinate heme Fe(II)-NO/2-nitrovinyl species in myoglobin has been detected and characterized by resonance Raman spectroscopy. The Fe(II)-14NO and 15N-O stretching frequencies of the ferrous heme nitrosyl/2-nitrovinyl species are detected at 560 and 1587 cm-1, frequencies that are similar to those observed in the Mb heme Fe(II)-NO species. For the 2-nitrovinyl (Ca=CbNO2) moiety, which is formed upon H-abstraction from the -CbH2 group, the νs(NO2) is observed at 1322 cm-1, the νas(NO2) at 1516 cm-1 and the ν(Ca=Cb14NO2)/ ν(Ca=Cb15NO2) at 1623/1615 cm-1. The frequencies of the 2-nitrovinyl are largely unaffected by NO2-/NO binding to the heme Fe(II)/(III). The properties of the six-coordinate heme Fe(II)-NO/2-nitrovinyl species are compared to those of six-coordinate heme Fe(II)-NO and the five-coordinate heme Fe(II)-NO species isolated from meat products.

  4. Using metatranscriptomics to understand the roles of Fe(II)-oxidizing microbes in marine hydrothermal vents

    NASA Astrophysics Data System (ADS)

    Glazer, B. T.; Mcallister, S.; Polson, S. W.; Chan, C. S. Y.

    2015-12-01

    Fe(II)-oxidizing microbes (FeOM) are thought to be key players in marine Fe cycling, particularly at hydrothermal vents. However, we do not have tools to track their activity, largely because we do not know the genes involved in neutrophilic chemolithotrophic Fe oxidation. Researchers have used gene homology between FeOM isolates to suggest several genes that may be involved in Fe(II) oxidation, including the Fe oxidase cyc2 found in the Zetaproteobacteria type strain Mariprofundus ferrooxydans, as well as all other known neutrophilic microaerophilic FeOM. Although many Zetaproteobacteria are found within natural Fe mats, close relatives of Fe(II)-oxidizing isolates are rarely present. Therefore, one goal of this study was to determine the activity of putative Fe(II) oxidation genes in dominant OTUs found in natural environments. We collected Fe mats from hydrothermal vents at Loihi Seamount, Hawaii, preserving RNA in situ. By analyzing metatranscriptomes of different Fe mat niches, we were able to determine the OTUs involved and the gene expression patterns associated with Fe(II) oxidation in the marine environment. Analysis of metatranscriptomic data confirms that the Zetaproteobacteria express the various genes necessary to support the Fe mat community through chemoautotrophic growth. Globally ubiquitous and even some rare species of the Zetaproteobacteria were active, with different relative abundances depending on Fe mat niches defined by fluid flow and geochemistry. Initial results show that genes thought to be involved in the electron transport pathway from Fe(II) to O2, including cyc2, are some of the most highly expressed genes in marine Fe microbial mats. Species-specific variants of these genes suggest that many of the Zetaproteobacteria species, spanning the breadth of the diversity of the class, are expressing genes necessary for Fe(II) oxidation within natural Fe mat niches. Understanding the differential expression of these genes in different niches will enable us to quantify the activity of marine FeOM and their effect on Fe and associated element cycling within deep and coastal marine systems.

  5. Characterization of Fe(II) oxidizing bacterial activities and communities at two acidic Appalachian coalmine drainage-impacted sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senko, John M.; Wanjugi, Pauline; Lucas, Melanie

    2008-06-12

    We characterized the microbiologically mediated oxidative precipitation of Fe(II) from coalminederived acidic mine drainage (AMD) along flow-paths at two sites in northern Pennsylvania. At the Gum Boot site, dissolved Fe(II) was efficiently removed from AMD whereas minimal Fe(II) removal occurred at the Fridays-2 site. Neither site received human intervention to treat the AMD. Culturable Fe(II) oxidizing bacteria were most abundant at sampling locations along the AMD flow path corresponding to greatest Fe(II) removal and where overlying water contained abundant dissolved O2. Rates of Fe(II) oxidation determined in laboratory-based sediment incubations were also greatest at these sampling locations. Ribosomal RNA intergenicmore » spacer analysis and sequencing of partial 16S rRNA genes recovered from sediment bacterial communities revealed similarities among populations at points receiving regular inputs of Fe(II)-rich AMD and provided evidence for the presence of bacterial lineages capable of Fe(II) oxidation. A notable difference between bacterial communities at the two sites was the abundance of Chloroflexi-affiliated 16S rRNA gene sequences in clone libraries derived from the Gum Boot sediments. Our results suggest that inexpensive and reliable AMD treatment strategies can be implemented by mimicking the conditions present at the Gum Boot field site.« less

  6. The Suzaku View of Highly Ionized Outflows in AGN. 1; Statistical Detection and Global Absorber Properties

    NASA Technical Reports Server (NTRS)

    Gofford, Jason; Reeves, James N.; Tombesi, Francesco; Braito, Valentina; Turner, T. Jane; Miller, Lance; Cappi, Massimo

    2013-01-01

    We present the results of a new spectroscopic study of Fe K-band absorption in active galactic nuclei (AGN). Using data obtained from the Suzaku public archive we have performed a statistically driven blind search for Fe XXV Healpha and/or Fe XXVI Lyalpha absorption lines in a large sample of 51 Type 1.0-1.9 AGN. Through extensive Monte Carlo simulations we find that statistically significant absorption is detected at E greater than or approximately equal to 6.7 keV in 20/51 sources at the P(sub MC) greater than or equal tov 95 per cent level, which corresponds to approximately 40 per cent of the total sample. In all cases, individual absorption lines are detected independently and simultaneously amongst the two (or three) available X-ray imaging spectrometer detectors, which confirms the robustness of the line detections. The most frequently observed outflow phenomenology consists of two discrete absorption troughs corresponding to Fe XXV Healpha and Fe XXVI Lyalpha at a common velocity shift. From xstar fitting the mean column density and ionization parameter for the Fe K absorption components are log (N(sub H) per square centimeter)) is approximately equal to 23 and log (Xi/erg centimeter per second) is approximately equal to 4.5, respectively. Measured outflow velocities span a continuous range from less than1500 kilometers per second up to approximately100 000 kilometers per second, with mean and median values of approximately 0.1 c and approximately 0.056 c, respectively. The results of this work are consistent with those recently obtained using XMM-Newton and independently provides strong evidence for the existence of very highly ionized circumnuclear material in a significant fraction of both radio-quiet and radio-loud AGN in the local universe.

  7. Iron-reducing bacteria accumulate ferric oxyhydroxide nanoparticle aggregates that may support planktonic growth

    PubMed Central

    Luef, Birgit; Fakra, Sirine C; Csencsits, Roseann; Wrighton, Kelly C; Williams, Kenneth H; Wilkins, Michael J; Downing, Kenneth H; Long, Philip E; Comolli, Luis R; Banfield, Jillian F

    2013-01-01

    Iron-reducing bacteria (FeRB) play key roles in anaerobic metal and carbon cycling and carry out biogeochemical transformations that can be harnessed for environmental bioremediation. A subset of FeRB require direct contact with Fe(III)-bearing minerals for dissimilatory growth, yet these bacteria must move between mineral particles. Furthermore, they proliferate in planktonic consortia during biostimulation experiments. Thus, a key question is how such organisms can sustain growth under these conditions. Here we characterized planktonic microbial communities sampled from an aquifer in Rifle, Colorado, USA, close to the peak of iron reduction following in situ acetate amendment. Samples were cryo-plunged on site and subsequently examined using correlated two- and three-dimensional cryogenic transmission electron microscopy (cryo-TEM) and scanning transmission X-ray microscopy (STXM). The outer membranes of most cells were decorated with aggregates up to 150 nm in diameter composed of ∼3 nm wide amorphous, Fe-rich nanoparticles. Fluorescent in situ hybridization of lineage-specific probes applied to rRNA of cells subsequently imaged via cryo-TEM identified Geobacter spp., a well-studied group of FeRB. STXM results at the Fe L2,3 absorption edges indicate that nanoparticle aggregates contain a variable mixture of Fe(II)–Fe(III), and are generally enriched in Fe(III). Geobacter bemidjiensis cultivated anaerobically in the laboratory on acetate and hydrous ferric oxyhydroxides also accumulated mixed-valence nanoparticle aggregates. In field-collected samples, FeRB with a wide variety of morphologies were associated with nano-aggregates, indicating that cell surface Fe(III) accumulation may be a general mechanism by which FeRB can grow while in planktonic suspension. PMID:23038172

  8. Iron-reducing bacteria accumulate ferric oxyhydroxide nanoparticle aggregates that may support planktonic growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luef, Birgit; Fakra, Sirine C.; Csencsits, Roseann

    2013-02-04

    Iron-reducing bacteria (FeRB) play key roles in anaerobic metal and carbon cycling and carry out biogeochemical transformations that can be harnessed for environmental bioremediation. A subset of FeRB require direct contact with Fe(III) bearing minerals for dissimilatory growth, yet these bacteria must move between mineral particles. Further, they proliferate in planktonic consortia during biostimulation experiments. Thus, a key question is how such organisms can sustain growth under these conditions. Here we characterized planktonic microbial communities sampled from an aquifer in Rifle, Colorado, USA close to the peak of iron reduction following in situ acetate amendment. Samples were cryo-plunged on sitemore » and subsequently examined using correlated 2- and 3- dimensional cryogenic transmission electron microscopy (cryo-TEM) and scanning transmission X-ray microscopy (STXM). Most cells had their outer membranes decorated with up to 150 nm diameter aggregates composed of a few nm wide amorphous, Fe-rich nanoparticles. Fluorescent in situ hybridization of lineage-specific probes applied to rRNA of cells subsequently imaged via cryo-TEM identified Geobacter spp., a well studied group of FeRB. STXM results at the Fe L2,3 absorption edges indicate that nanoparticle aggregates contain a variable mixture of Fe(II)-Fe(III), and are generally enriched in Fe(III). Geobacter bemidjiensis cultivated anaerobically in the laboratory on acetate and hydrous ferric oxyhydroxides also accumulated mixed valence nanoparticle aggregates. In field-collected samples, FeRB with a wide variety of morphologies were associated with nano-aggregates, indicating that cell-surface Fe(III) accumulation may be a general mechanism by which FeRB can grow while in planktonic suspension.« less

  9. Iron-reducing bacteria accumulate ferric oxyhydroxide nanoparticle aggregates that may support planktonic growth.

    PubMed

    Luef, Birgit; Fakra, Sirine C; Csencsits, Roseann; Wrighton, Kelly C; Williams, Kenneth H; Wilkins, Michael J; Downing, Kenneth H; Long, Philip E; Comolli, Luis R; Banfield, Jillian F

    2013-02-01

    Iron-reducing bacteria (FeRB) play key roles in anaerobic metal and carbon cycling and carry out biogeochemical transformations that can be harnessed for environmental bioremediation. A subset of FeRB require direct contact with Fe(III)-bearing minerals for dissimilatory growth, yet these bacteria must move between mineral particles. Furthermore, they proliferate in planktonic consortia during biostimulation experiments. Thus, a key question is how such organisms can sustain growth under these conditions. Here we characterized planktonic microbial communities sampled from an aquifer in Rifle, Colorado, USA, close to the peak of iron reduction following in situ acetate amendment. Samples were cryo-plunged on site and subsequently examined using correlated two- and three-dimensional cryogenic transmission electron microscopy (cryo-TEM) and scanning transmission X-ray microscopy (STXM). The outer membranes of most cells were decorated with aggregates up to 150 nm in diameter composed of ∼3 nm wide amorphous, Fe-rich nanoparticles. Fluorescent in situ hybridization of lineage-specific probes applied to rRNA of cells subsequently imaged via cryo-TEM identified Geobacter spp., a well-studied group of FeRB. STXM results at the Fe L(2,3) absorption edges indicate that nanoparticle aggregates contain a variable mixture of Fe(II)-Fe(III), and are generally enriched in Fe(III). Geobacter bemidjiensis cultivated anaerobically in the laboratory on acetate and hydrous ferric oxyhydroxides also accumulated mixed-valence nanoparticle aggregates. In field-collected samples, FeRB with a wide variety of morphologies were associated with nano-aggregates, indicating that cell surface Fe(III) accumulation may be a general mechanism by which FeRB can grow while in planktonic suspension.

  10. Unusual continuous dual absorption peaks in Ca-doped BiFeO3 nanostructures for broadened microwave absorption.

    PubMed

    Li, Zhong-Jun; Hou, Zhi-Ling; Song, Wei-Li; Liu, Xing-Da; Cao, Wen-Qiang; Shao, Xiao-Hong; Cao, Mao-Sheng

    2016-05-21

    Electromagnetic absorption materials have received increasing attention owing to their wide applications in aerospace, communication and the electronics industry, and multiferroic materials with both polarization and magnetic properties are considered promising ceramics for microwave absorption application. However, the insufficient absorption intensity coupled with the narrow effective absorption bandwidth has limited the development of high-performance multiferroic materials for practical microwave absorption. To address such issues, in the present work, we utilize interfacial engineering in BiFeO3 nanoparticles via Ca doping, with the purpose of tailoring the phase boundary. Upon Ca-substitution, the co-existence of both R3c and P4mm phases has been confirmed to massively enhance both dielectric and magnetic properties via manipulating the phase boundary and the destruction of the spiral spin structure. Unlike the commonly reported magnetic/dielectric hybrid microwave absorption composites, Bi0.95Ca0.05FeO3 has been found to deliver unusual continuous dual absorption peaks at a small thickness (1.56 mm), which has remarkably broadened the effective absorption bandwidth (8.7-12.1 GHz). The fundamental mechanisms based on the phase boundary engineering have been discussed, suggesting a novel platform for designing advanced multiferroic materials with wide applications.

  11. Position Assignment and Oxidation State Recognition of Fe and Co Centers in Heterometallic Mixed-Valent Molecular Precursors for the Low-Temperature Preparation of Target Spinel Oxide Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lieberman, Craig M.; Barry, Matthew C.; Wei, Zheng

    A series of mixed-valent, heterometallic (mixed-transition metal) diketonates that can be utilized as prospective volatile single-source precursors for the low-temperature preparation of M xM' 3–xO 4 spinel oxide materials is reported. Three iron–cobalt complexes with Fe/Co ratios of 1:1, 1:2, and 2:1 were synthesized by several methods using both solid-state and solution reactions. On the basis of nearly quantitative reaction yields, elemental analyses, and comparison of metal–oxygen bonds with those in homometallic analogues, heterometallic compounds were formulated as [Fe III(acac) 3][Co II(hfac) 2] (1), [Co II(hfac) 2][Fe III(acac) 3][Co II(hfac) 2] (2), and [Fe II(hfac) 2][Fe III(acac) 3][Co II(hfac) 2]more » (3). In the above heteroleptic complexes, the Lewis acidic, coordinatively unsaturated CoII/FeII centers chelated by two hexafluoroacetylacetonate (hfac) ligands maintain bridging interactions with oxygen atoms of acetylacetonate (acac) groups that chelate the neighboring Fe III metal ion. Preliminary assignment of Fe and Co positions/oxidation states in 1–3 drawn from X-ray structural investigation was corroborated by a number of complementary techniques. Single-crystal resonant synchrotron diffraction and neutron diffraction experiments unambiguously confirmed the location of Fe and Co sites in the molecules of dinuclear (1) and trinuclear (2) complexes, respectively. Direct analysis in real time mass spectrometry revealed the presence of Fe III- and Co II-based fragments in the gas phase upon evaporation of precursors 1 and 2 as well as of Fe III, Fe II, and Co II species for complex 3. Theoretical investigation of two possible “valent isomers”, [Fe III(acac) 3][Co II(hfac) 2] (1) and [Co III(acac) 3][Fe II(hfac) 2] (1'), provided an additional support for the metal site/oxidation state assignment giving a preference of 6.48 kcal/mol for the experimentally observed molecule 1. Magnetic susceptibility measurements data are in agreement with the presence of high-spin FeIII and CoII magnetic centers with weak anti-ferromagnetic coupling between those in molecules of 1 and 2. Highly volatile heterometallic complexes 1–3 were found to act as effective single-source precursors for the low-temperature preparation of iron–cobalt spinel oxides Fe xCo 3–xO 4 known as important materials for diverse energy-related applications.« less

  12. Redesigning the blue copper azurin into a redox-active mononuclear nonheme iron protein: preparation and study of Fe(II)-M121E azurin.

    PubMed

    Liu, Jing; Meier, Katlyn K; Tian, Shiliang; Zhang, Jun-Long; Guo, Hongchao; Schulz, Charles E; Robinson, Howard; Nilges, Mark J; Münck, Eckard; Lu, Yi

    2014-09-03

    Much progress has been made in designing heme and dinuclear nonheme iron enzymes. In contrast, engineering mononuclear nonheme iron enzymes is lagging, even though these enzymes belong to a large class that catalyzes quite diverse reactions. Herein we report spectroscopic and X-ray crystallographic studies of Fe(II)-M121E azurin (Az), by replacing the axial Met121 and Cu(II) in wild-type azurin (wtAz) with Glu and Fe(II), respectively. In contrast to the redox inactive Fe(II)-wtAz, the Fe(II)-M121EAz mutant can be readily oxidized by Na2IrCl6, and interestingly, the protein exhibits superoxide scavenging activity. Mössbauer and EPR spectroscopies, along with X-ray structural comparisons, revealed similarities and differences between Fe(II)-M121EAz, Fe(II)-wtAz, and superoxide reductase (SOR) and allowed design of the second generation mutant, Fe(II)-M121EM44KAz, that exhibits increased superoxide scavenging activity by 2 orders of magnitude. This finding demonstrates the importance of noncovalent secondary coordination sphere interactions in fine-tuning enzymatic activity.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shinn, Jong-Ho; Kim, Kee-Tae; Lee, Jae-Joon

    We present [Fe II] 1.644 μm features around ultracompact H II regions (UCHIIs) found on a quest for the ''footprint'' outflow features of UCHIIs—the features produced by outflowing materials ejected during an earlier, active accretion phase of massive young stellar objects (MYSOs). We surveyed 237 UCHIIs in the first Galactic quadrant, employing the CORNISH UCHII catalog and UWIFE data, which is an imaging survey in [Fe II] 1.644 μm performed with UKIRT-WFCAM under ∼0.''8 seeing conditions. The [Fe II] features were found around five UCHIIs, one of which was less plausible. We interpret the [Fe II] features to be shock-excitedmore » by outflows from YSOs and estimate the outflow mass-loss rates from the [Fe II] flux which are ∼1 × 10{sup –6}-4 × 10{sup –5} M {sub ☉} yr{sup –1}. We propose that the [Fe II] features might be the ''footprint'' outflow features, but more studies are required to clarify whether or not this is the case. This is based on the morphological relation between the [Fe II] and 5 GHz radio features, the outflow mass-loss rate, the travel time of the [Fe II] features, and the existence of several YSO candidates near the UCHIIs. The UCHIIs accompanying the [Fe II] features have relatively higher peak flux densities. The fraction of UCHIIs accompanying the [Fe II] features, 5/237, is small when compared to the ∼90% detection rate of high-velocity CO gas around UCHIIs. We discuss some possible explanations for the low detection rate.« less

  14. Interstellar detection of the intersystem line Si II lambda 2335 toward zeta Ophiuchi

    NASA Technical Reports Server (NTRS)

    Cardelli, Jason A.; Sofia, Ulysses J.; Savage, Blair D.; Keenan, Francis P.; Dufton, Philip L.

    1994-01-01

    We report on the detection of the weak intersystem transistion of Si II lambda 2335 A in the sight line toward zeta Oph using the Ech-B mode (3.5 km/s resolution) of the Goddard High Resolution Spectrograph. The high-quality spectrum is characterized by an empirically measured signal-to-noise of 450, in excellent agreement with that expected from photon-statistics. The measured equivalent width of the Si II line is W(sub lambda) = 0.48 +/- 0.12 mA. Using the new experimental f-value of Calamai, Smith, and Bergeson, we find a Si II column density of 2.34 (+/- 0.58) x 10(exp 15) atoms/sq cm and (Si/H)(sub zeta Oph) = 1.78 (+/- 0.44) x 10(exp -6) for the principal absorbing component(s) at v(sub sun) approx. = -15 km/s. Analysis of the Si II lambda 1808 absorption over the same velocity range using the new experimental f-value of Bergeson & Lawler yields a column density (corrected for saturation) that is consistent within the weak line errors and confirms the relative accuracies of these new f-values. Furthermore, these results indicate that accurate abundances can now be derived for Si II, particularly from the weak Si II lambda 2335 A since it is free of saturation effects. For the zeta Oph v(sub sun) approx. = -15 km/s component(s), we find that greater than 95% of the available cosmic abundance (i.e. the 1989 meteoritic abundances of Anders & Grevesse) of Mg, Fe, and Si is 'missing' from the gas phase and is presumably locked up in the dust. These elements are present in the dust grains in ratios of Fe/Si approximately equals 0.9 and Mg/Si approximately equals 1.1, consistent with the ratio of their cosmic abundances. These ratios are in sharp contrast to more diffuse clouds like those seen toward the high-latitude halo star HD 93521 where in the dust Fe/Si approximately equals 1.8 and Mg/Si approximately equals 2.1.

  15. Analysis of Heme Iron Coordination in DGCR8: The Heme-Binding Component of the Microprocessor Complex.

    PubMed

    Girvan, Hazel M; Bradley, Justin M; Cheesman, Myles R; Kincaid, James R; Liu, Yilin; Czarnecki, Kazimierz; Fisher, Karl; Leys, David; Rigby, Stephen E J; Munro, Andrew W

    2016-09-13

    DGCR8 is the RNA-binding partner of the nuclease Drosha. Their complex (the "Microprocessor") is essential for processing of long, primary microRNAs (pri-miRNAs) in the nucleus. Binding of heme to DGCR8 is essential for pri-miRNA processing. On the basis of the split Soret ultraviolet-visible (UV-vis) spectrum of ferric DGCR8, bis-thiolate sulfur (cysteinate, Cys(-)) heme iron coordination of DGCR8 heme iron was proposed. We have characterized DGCR8 heme ligation using the Δ276 DGCR8 variant and combined electron paramagnetic resonance (EPR), magnetic circular dichroism (MCD), electron nuclear double resonance, resonance Raman, and electronic absorption spectroscopy. These studies indicate DGCR8 bis-Cys heme iron ligation, with conversion from bis-thiolate (Cys(-)/Cys(-)) axial coordination in ferric DGCR8 to bis-thiol (CysH/CysH) coordination in ferrous DGCR8. Pri-miRNA binding does not perturb ferric DGCR8's optical spectrum, consistent with the axial ligand environment being separated from the substrate-binding site. UV-vis absorption spectra of the Fe(II) and Fe(II)-CO forms indicate discrete species exhibiting peaks with absorption coefficients substantially larger than those for ferric DGCR8 and that previously reported for a ferrous form of DGCR8. Electron-nuclear double resonance spectroscopy data exclude histidine or water as axial ligands for ferric DGCR8 and favor bis-thiolate coordination in this form. UV-vis MCD and near-infrared MCD provide data consistent with this conclusion. UV-vis MCD data for ferrous DGCR8 reveal features consistent with bis-thiol heme iron coordination, and resonance Raman data for the ferrous-CO form are consistent with a thiol ligand trans to the CO. These studies support retention of DGCR8 cysteine coordination upon reduction, a conclusion distinct from those of previous studies of a different ferrous DGCR8 isoform.

  16. The chemical abundances of the stellar populations in the Leo I and II dSph galaxies

    NASA Astrophysics Data System (ADS)

    Bosler, Tammy L.; Smecker-Hane, Tammy A.; Stetson, Peter B.

    2007-06-01

    We have obtained calcium abundances and radial velocities for 102 red giant branch (RGB) stars in the Leo I dwarf spheroidal galaxy (dSph) and 74 RGB stars in the Leo II dSph using the low-resolution spectrograph (LRIS) on the Keck I 10-m telescope. We report on the calcium abundances [Ca/H] derived from the strengths of the CaII triplet absorption lines at 8498, 8542 and 8662 Å in the stellar spectra using a new empirical CaII triplet calibration to [Ca/H]. The two galaxies have different average [Ca/H] values of -1.34 +/- 0.02 for Leo I and -1.65 +/- 0.02 for Leo II with intrinsic abundance dispersions of 1.2 and 1.0 dex, respectively. The typical random and total errors in derived abundances are 0.10 and 0.17 dex per star. For comparison to the existing literature, we also converted our CaII measurements to [Fe/H] on the scale of Carretta and Gratton (1997) though we discuss why this may not be the best determinant of metallicity; Leo I has a mean [Fe/H] = -1.34 and Leo II has a mean [Fe/H] = -1.59. The metallicity distribution function of Leo I is approximately Gaussian in shape with an excess at the metal-rich end, while that of Leo II shows an abrupt cut-off at the metal-rich end. The lower mean metallicity of Leo II is consistent with the fact that it has a lower luminosity, hence lower the total mass than Leo I; thus, the evolution of Leo II may have been affected more by mass lost in galactic winds. Our direct and independent measurement of the metallicity distributions in these dSph will allow a more accurate star-formation histories to be derived from future analysis of their colour-magnitude diagrams(CMDs). Data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. E-mail: tlbosler@yahoo.com

  17. Heterobimetallic Complexes with MIII-(μ-OH)-MII Cores (MIII = Fe, Mn, Ga; MII = Ca, Sr, and Ba): Structural, Kinetic, and Redox Properties

    PubMed Central

    Park, Young Jun; Cook, Sarah A.; Sickerman, Nathaniel S.; Sano, Yohei; Ziller, Joseph W.

    2013-01-01

    The effects of redox-inactive metal ions on dioxygen activation were explored using a new FeII complex containing a tripodal ligand with 3 sulfonamido groups. This iron complex exhibited a faster initial rate for the reduction of O2 than its MnII analog. Increases in initial rates were also observed in the presence of group 2 metal ions for both the FeII and MnII complexes, which followed the trend NMe4+ < BaII < CaII = SrII. These studies led to the isolation of heterobimetallic complexes containing FeIII-(μ-OH)-MII cores (MII = Ca, Sr, and Ba) and one with a [SrII(OH)MnIII]+ motif. The analogous [CaII(OH)GaIII]+ complex was also prepared and its solid state molecular structure is nearly identical to that of the [CaII(OH)FeIII]+ system. Nuclear magnetic resonance studies indicated that the diamagnetic [CaII(OH)GaIII]+ complex retained its structure in solution. Electrochemical measurements on the heterobimetallic systems revealed similar one-electron reduction potentials for the [CaII(OH)FeIII]+ and [SrII(OH)FeIII]+ complexes, which were more positive than the potential observed for [BaII(OH)FeIII]+. Similar results were obtained for the heterobimetallic MnII complexes. These findings suggest that Lewis acidity is not the only factor to consider when evaluating the effects of group 2 ions on redox processes, including those within the oxygen-evolving complex of Photosystem II. PMID:24058726

  18. Effect of Fe-substitution on the structure and magnetism of single crystals Mn2-xFexBO4

    NASA Astrophysics Data System (ADS)

    Platunov, M. S.; Kazak, N. V.; Knyazev, Yu. V.; Bezmaternykh, L. N.; Moshkina, E. M.; Trigub, A. L.; Veligzhanin, A. A.; Zubavichus, Y. V.; Solovyov, L. A.; Velikanov, D. A.; Ovchinnikov, S. G.

    2017-10-01

    Single crystalline Mn2-xFexBO4 with x = 0.3, 0.5, 0.7 grown by the flux method have been studied by means of X-ray diffraction and X-ray absorption spectroscopy at both Mn and Fe K edges. The compounds were found to crystallize in an orthorhombic warwickite structure (sp. gr. Pnam). The lattice parameters change linearly with x thus obeying the Vegard's law. The Fe3+ substitution for Mn3+ has been deduced from the X-ray absorption near-edge structure (XANES) spectra. Two energy positions of the absorption edges have been observed in Mn K-edge XANES spectra indicating the presence of manganese in two different oxidation states. Extended X-ray absorption fine structure (EXAFS) analysis has shown the reduction of local structural distortions upon Fe substitution. The magnetization data have revealed a spin-glass transition at TSG = 11, 14 and 18 K for x = 0.3, 0.5 and 0.7, respectively.

  19. In vitro evaluation of dietary compounds to reduce mercury bioavailability.

    PubMed

    Jadán-Piedra, Carlos; Vélez, Dinoraz; Devesa, Vicenta

    2018-05-15

    Mercury in foods, in inorganic form [Hg(II)] or as methylmercury (CH 3 Hg), can have adverse effects. Its elimination from foods is not technologically viable. To reduce human exposure, possible alternatives might be based on reducing its intestinal absorption. This study evaluates the ability of 23 dietary components to reduce the amount of mercury that is absorbed and reaches the bloodstream (bioavailability). We determined their effect on uptake of mercury in Caco-2 cells, a model of intestinal epithelium, exposed to Hg(II) and CH 3 Hg standards and to swordfish bioaccessible fractions. Cysteine, homocysteine, glutathione, quercetin, albumin and tannic reduce bioavailability of both mercury species. Fe(II), lipoic acid, pectin, epigallocatechin and thiamine are also effective for Hg(II). Some of these strategies also reduce Hg bioavailability in swordfish (glutathione, cysteine, homocysteine). Moreover, extracts and supplements rich in these compounds are also effective. This knowledge may help to define dietary strategies to reduce in vivo mercury bioavailability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Mid-infrared Flare of TDE Candidate PS16dtm: Dust Echo and Implications for the Spectral Evolution

    NASA Astrophysics Data System (ADS)

    Jiang, Ning; Wang, Tinggui; Yan, Lin; Xiao, Ting; Yang, Chenwei; Dou, Liming; Wang, Huiyuan; Cutri, Roc; Mainzer, Amy

    2017-11-01

    PS16dtm was classified as a candidate tidal disruption event in a dwarf Seyfert 1 galaxy with a low-mass black hole (˜ {10}6 {M}⊙ ) and has presented various intriguing photometric and spectra characteristics. Using the archival Wide-field Infrared Survey Explorer and the newly released NEOWISE data, we found that PS16dtm is experiencing a mid-infrared (MIR) flare that started ˜11 days before the first optical detection. Interpreting the MIR flare as a dust echo requires close pre-existing dust with a high covering factor and suggests that the optical flare may have brightened slowly for some time before it became bright detectable from the ground. More evidence is given at the later epochs. At the peak of the optical light curve, the new inner radius of the dust torus has grown to a much larger size (I.e., a factor of seven of the initial radius) due to the strong radiation field. At ˜150 days after the first optical detection, the dust temperature has dropped well below the sublimation temperature. Other peculiar spectral features shown by PS16dtm are the transient, prominent Fe II emission lines and outflows indicated by broad absorption lines detected during the optical flare. Our model explains the enhanced Fe II emission from iron that is newly released from the evaporated dust. The observed broad absorption line outflow could be explained by accelerated gas in the dust torus due to the radiation pressure.

  1. Effect of Dunaliella tertiolecta organic exudates on the Fe(II) oxidation kinetics in seawater.

    PubMed

    González, A G; Santana-Casiano, J M; González-Dávila, M; Pérez-Almeida, N; Suárez de Tangil, M

    2014-07-15

    The role played by the natural organic ligands excreted by the green algae Dunaliella tertiolecta on the Fe(II) oxidation rate constants was studied at different stages of growth. The concentration of dissolved organic carbon increased from 2.1 to 7.1 mg L(-1) over time of culture. The oxidation kinetics of Fe(II) was studied at nanomolar levels and under different physicochemical conditions of pH (7.2-8.2), temperature (5-35 °C), salinity (10-37), and dissolved organic carbon produced by cells (2.1-7.1 mg L(-1)). The experimental rate always decreased in the presence of organic exudates with respect to that in the control seawater. The Fe(II) oxidation rate constant was also studied in the context of Marcus theory, where ΔG° was 39.31-51.48 kJ mol(-1). A kinetic modeling approach was applied for computing the equilibrium and rate constants for Fe(II) and exudates present in solution, the Fe(II) speciation, and the contribution of each Fe(II) species to the overall oxidation rate constant. The best fit model took into account two acidity equilibrium constants for the Fe(II) complexing ligands with pKa,1=9.45 and pKa,2=4.9. The Fe(II) complexing constants were KFe(II)-LH=3×10(10) and KFe(II)-L=10(7), and the corresponding computed oxidation rates were 68±2 and 36±8 M(-1) min(-1), respectively.

  2. The effect of lipids, a lipid-rich ready-to-use therapeutic food, or a phytase on iron absorption from maize-based meals fortified with micronutrient powders.

    PubMed

    Monnard, Arnaud; Moretti, Diego; Zeder, Christophe; Steingötter, Andreas; Zimmermann, Michael B

    2017-06-01

    Background: Ready-to-use-therapeutic foods (RUTFs) high in lipid, protein, and iron are used to treat malnutrition. Lipids increase gastric residence time, which could increase iron absorption, particularly from poorly soluble iron compounds and in combination with phytase. Objectives: The objectives were to 1 ) assess the effect on iron absorption of a lipid emulsion given 20 min before or together with an iron-fortified maize meal and 2 ) assess iron absorption from a micronutrient powder (MNP) given with a nutrient-dense RUTF and/or a microbial phytase. Design: A total of 41 women participated in 3 studies. They consumed a maize meal fortified with isotopically labeled ferrous sulfate (FeSO 4 ; study 1) or ferric pyrophosphate (FePP; study 2). In studies 1 and 2, a lipid emulsion was given with or 20 min before the meal. In study 3, with the use of a 2 × 2 factorial design, subjects consumed a maize meal fortified with an MNP containing labeled FeSO 4 (MNP) given with an RUTF (MNP+RUTF), with a phytase (MNP+phytase), or both (MNP+RUTF+phytase). Iron absorption was assessed by isotope incorporation in erythrocytes 14 d after the test meals. Results: The lipid emulsion given either before or with the meal significantly increased iron absorption from FePP by 2.55-fold (95% CI: 1.48-, 4.37-fold; P = 0.001) but not from FeSO 4 There was a trend to increase iron absorption with the MNP+RUTF meal, which did not reach significance (1.21-fold; 95% CI: 0.92-, 1.61-fold; P = 0.060). The addition of phytase to MNP and MNP+RUTF significantly increased iron absorption by 1.85-fold (95% CI: 1.49-, 2.29-fold; P < 0.001), with no interaction between phytase and RUTF. Conclusions: In iron-fortified maize-based meals, the addition of lipids more than doubles iron absorption from FePP. Our results suggest the possibility of an enhancing effect on iron absorption of lipid-rich RUTFs, but more research is needed to determine this. This trial was registered at clinicaltrials.gov as NCT01991626. © 2017 American Society for Nutrition.

  3. Influence of organics and silica on Fe(II) oxidation rates and cell-mineral aggregate formation by the green-sulfur Fe(II)-oxidizing bacterium Chlorobium ferrooxidans KoFox - Implications for Fe(II) oxidation in ancient oceans

    NASA Astrophysics Data System (ADS)

    Gauger, Tina; Byrne, James M.; Konhauser, Kurt O.; Obst, Martin; Crowe, Sean; Kappler, Andreas

    2016-06-01

    Most studies on microbial phototrophic Fe(II) oxidation (photoferrotrophy) have focused on purple bacteria, but recent evidence points to the importance of green-sulfur bacteria (GSB). Their recovery from modern ferruginous environments suggests that these photoferrotrophs can offer insights into how their ancient counterparts grew in Archean oceans at the time of banded iron formation (BIF) deposition. It is unknown, however, how Fe(II) oxidation rates, cell-mineral aggregate formation, and Fe-mineralogy vary under environmental conditions reminiscent of the geological past. To address this, we studied the Fe(II)-oxidizer Chlorobium ferrooxidans KoFox, a GSB living in co-culture with the heterotrophic Geospirillum strain KoFum. We investigated the mineralogy of Fe(III) metabolic products at low/high light intensity, and in the presence of dissolved silica and/or fumarate. Silica and fumarate influenced the crystallinity and particle size of the produced Fe(III) minerals. The presence of silica also enhanced Fe(II) oxidation rates, especially at high light intensities, potentially by lowering Fe(II)-toxicity to the cells. Electron microscopic imaging showed no encrustation of either KoFox or KoFum cells with Fe(III)-minerals, though weak associations were observed suggesting co-sedimentation of Fe(III) with at least some biomass via these aggregates, which could support diagenetic Fe(III)-reduction. Given that GSB are presumably one of the most ancient photosynthetic organisms, and pre-date cyanobacteria, our findings, on the one hand, strengthen arguments for photoferrotrophic activity as a likely mechanism for BIF deposition on a predominantly anoxic early Earth, but, on the other hand, also suggest that preservation of remnants of Fe(II)-oxidizing GSB as microfossils in the rock record is unlikely.

  4. Effects of ferrous carbamoyl glycine on iron state and absorption in an iron-deficient rat model.

    PubMed

    Zhang, Yuzhe; Sun, Xiaoming; Xie, Chunyan; Shu, Xugang; Oso, Abimbola Oladele; Ruan, Zheng; Deng, Ze-Yuan; Wu, Xin; Yin, Yulong

    2015-11-01

    An iron-deficient rat model was established and used to determine the effects of different iron sources on iron metabolism and absorption. Iron-deficient rats were assigned to one of three treatment groups, and their diet was supplemented with deionized water (control), Fe-CGly, or FeSO4 for 8 days via intragastric administration. Blood samples were obtained for analysis of iron-related properties, and the small intestine and liver were removed for quantitative reverse transcription PCR of genes related to iron metabolism. The serum total iron-binding capacity (TIBC) levels of rats in Fe-CGly and FeSO4 supplementation groups was lower (P < 0.05) than that of the rats in the control group. The rats in Fe-CGly group exhibited higher (P < 0.05) plasma Fe and ferritin levels and lower (P < 0.05) TIBC levels compared with the rats in FeSO4 groups. The relative expression of liver hepcidin increased (P < 0.05) by tenfold and 80-fold in the Fe-CGly and FeSO4 groups, respectively, whereas divalent metal transporter 1, duodenal cytochrome b, and ferroportin 1 expression decreased (P < 0.05) in the duodenum in both Fe-CGly and FeSO4 group. A comparison between Fe-CGly and FeSO4 group showed that iron regulatory protein 1 (IRP1) and iron regulatory protein (IRP2) expressions were reduced (P < 0.05) in rats administered FeSO4 than in rats administered with Fe-Cgly. These results indicate that Fe-CGly rapidly improves the blood iron status and that IRP1 and IRP2 may play an important role in the intestinal absorption of Fe-CGly.

  5. Copernicus observations of Betelgeuse and Antares

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernat, A.P.; Lambert, D.L.

    1975-01-01

    Copernicus observations of the M-supergiants, ..cap alpha.. Ori and ..cap alpha.. Sco, are presented. The Mg II H and K resonance lines are strongly in emission in both stars. The K line is highly asymmetric in both stars but the H line is symmetric. Upper limits for several other resonance lines are given for ..cap alpha.. Ori. The possibility is explored that the K line asymmetry is caused by overlying resonance lines of Mn I and Fe I formed in the cool circumstellar gas shells around these stars. Observations of the Mn I 4030--4033 A lines are used to showmore » that circumstellar shell absorption is too weak to explain the asymmetry. It is suggested that the absorption occurs in a cool turbulent region between the base of the circumstellar shell and the top of the chromosphere. (auth)« less

  6. The Suzaku Observation of the Nucleus of the Radio Loud Active Galaxy Centaurus A: Constraints on Abundances in the Accreting Material

    NASA Technical Reports Server (NTRS)

    Markowitz, A.; Takahashi, T.A; Watanabe, S.; Nakazawa, K.; Fukazawa, Y.; Kokubun, M.; Makishima, K.; Awaki, H.; Bamba, A.; Isobe, N.; hide

    2007-01-01

    A Suzaku observation of the nucleus of the radio-loud AGN Centaurus A in 2005 has yielded a broadband spectrum spanning 0.3 to 250 keV. The hard X-rays are fit by two power laws, absorbed by columns of 1.5 and 7 x 10(exp 23) per square centimeter. The dual power-laws are consistent with previous suggestions that the powerlaw components are X-ray emission from the sub-pc VLBI jet and from Bondi accretion at the core, or are consistent with a partial covering interpretation. The soft band is dominated by thermal emission from the diffuse plasma and is fit well by a two-temperature VAPEC model, plus a third power-law component to account for scattered nuclear emission, kpc-scale jet emission, and emission from X-ray Binaries and other point sources. Narrow fluorescent emission lines from Fe, Si, S, Ar, Ca and Ni are detected. The width of the Fe Ka line yields a 200 light-day lower limit on the distance from the black hole to the line-emitting gas. K-shell absorption edges due to Fe, Ca, and S are detected. Elemental abundances are constrained via the fluorescent lines strengths, absorption edge depths and the diffuse plasma emission lines. The high metallicity ([Fe/H]=+0.l) of the circumnuclear material compared to that in the metal-poor outer halo suggests that the accreting material could not have originated in the outer halo unless enrichment by local star formation has occurred. Relative abundances are consistent with enrichment from Type II and Ia supernovae.

  7. Iron oxidation stimulates organic matter decomposition in humid tropical forest soils.

    PubMed

    Hall, Steven J; Silver, Whendee L

    2013-09-01

    Humid tropical forests have the fastest rates of organic matter decomposition globally, which often coincide with fluctuating oxygen (O2 ) availability in surface soils. Microbial iron (Fe) reduction generates reduced iron [Fe(II)] under anaerobic conditions, which oxidizes to Fe(III) under subsequent aerobic conditions. We demonstrate that Fe (II) oxidation stimulates organic matter decomposition via two mechanisms: (i) organic matter oxidation, likely driven by reactive oxygen species; and (ii) increased dissolved organic carbon (DOC) availability, likely driven by acidification. Phenol oxidative activity increased linearly with Fe(II) concentrations (P < 0.0001, pseudo R(2)  = 0.79) in soils sampled within and among five tropical forest sites. A similar pattern occurred in the absence of soil, suggesting an abiotic driver of this reaction. No phenol oxidative activity occurred in soils under anaerobic conditions, implying the importance of oxidants such as O2 or hydrogen peroxide (H2 O2 ) in addition to Fe(II). Reactions between Fe(II) and H2 O2 generate hydroxyl radical, a strong nonselective oxidant of organic compounds. We found increasing consumption of H2 O2 as soil Fe(II) concentrations increased, suggesting that reactive oxygen species produced by Fe(II) oxidation explained variation in phenol oxidative activity among samples. Amending soils with Fe(II) at field concentrations stimulated short-term C mineralization by up to 270%, likely via a second mechanism. Oxidation of Fe(II) drove a decrease in pH and a monotonic increase in DOC; a decline of two pH units doubled DOC, likely stimulating microbial respiration. We obtained similar results by manipulating soil acidity independently of Fe(II), implying that Fe(II) oxidation affected C substrate availability via pH fluctuations, in addition to producing reactive oxygen species. Iron oxidation coupled to organic matter decomposition contributes to rapid rates of C cycling across humid tropical forests in spite of periodic O2 limitation, and may help explain the rapid turnover of complex C molecules in these soils. © 2013 John Wiley & Sons Ltd.

  8. Life on the energetic edge: Iron oxidation by circumneutral lithotrophic bacteria in the wetland plant rhizosphere

    NASA Astrophysics Data System (ADS)

    Neubauer, S. C.; Emerson, D.; Megonigal, J. P.; Weiss, J. V.

    2002-05-01

    We have discovered a phylogenetically and genotypically coherent group of obligately lithotrophic Fe-oxidizing bacteria that grow at neutral pH and are globally distributed in a range of habitats, from the rhizosphere of freshwater wetlands to deep-sea hydrothermal vents. We have initiated bioreactor studies using pure cultures of these organisms to determine the significance of microbial Fe(II) oxidation at circumneutral pH and identify the biotic and abiotic variables that affect the partitioning between microbial and chemical oxidation. These studies have focused on strain BrT, which was isolated from an iron oxide precipitate in rhizosphere of a wetland plant. In one set of experiments, Fe(II) oxidation rates were measured before and after cultures of strain BrT were poisoned with sodium azide. These experiments indicated that 18 to 53 % of total iron oxidation was due to microbial metabolism. In a second set of experiments, Fe(II) was constantly added to bioreactors inoculated with live cells, killed cells, or no cells. A statistical model fit to the experimental data demonstrated that metabolic Fe(II) oxidation accounted for up to 62 % of total oxidation. Total Fe(II) oxidation rates in these experiments were strongly limited by the rate of Fe(II) delivery to the system, and were also influenced by O2 and total iron concentrations. Additionally, the model suggested that the microbes inhibited rates of abiotic Fe(II) oxidation, perhaps by binding Fe(II) to bacterial exopolymers. The net effect of strain BrT was to accelerate total oxidation rates by up to 18 % versus cell-free treatments. Using two independent techniques, we demonstrated that strain BrT actively metabolizes Fe(II) and can account for up to 50 to 60 % of total Fe(II) oxidation in laboratory cultures. These results suggest that neutrophilic Fe(II)-oxidizing bacteria may compete for limited O2 in the rhizosphere and influence the biogeochemistry of other elements including carbon, phosphorus, and sulfur.

  9. Nitric oxide removal by combined urea and FeIIEDTA reaction systems.

    PubMed

    He, Feiqiang; Deng, Xianhe; Chen, Min

    2017-02-01

    (NH 2 ) 2 CO as well as Fe II EDTA is an absorbent for simultaneous desulfurization and denitrification. However, they have their own drawbacks, like the oxidation of Fe II EDTA and the low solubility of NO in urea solution. To overcome these defects, A mixed absorbent containing both (NH 2 ) 2 CO and Fe II EDTA was employed. The effects of various operating parameters (urea and Fe II EDTA concentration, temperature, inlet oxygen concentration, pH value) on NO removal were examined in the packed tower. The results indicated that the NO removal efficiency increased with the decrease of oxygen concentration as well as the increase of Fe II EDTA concentration. The NO removal efficiency had little change with a range of 25-45 °C, and sharply decreased at the temperature of above 55 °C. The NO removal efficiency initially increases up to the maximum value and then decreases with the increase of pH value as well as the raise of urea concentration. In addition, the synergistic mechanism of (NH 2 ) 2 CO and Fe II EDTA on NO removal was investigated. Results showed that urea could react with Fe II EDTA-NO to produce Fe II EDTA, N 2 , and CO 2 , and hinder oxidation of Fe II EDTA. Finally, to evaluate the effect of SO 3 2- on NO removal, a mixed absorbent containing Fe II EDTA, urea, and Na 2 SO 3 was employed to absorb NO. The mixed absorbent could maintain more than 78% for 80 min at 25 °C, pH = 7.0, (NH 2 ) 2 CO concentration of 5 wt%, Fe II EDTA concentration of 0.02 M, O 2 concentration of 7% (v/v), and Na 2 SO 3 concentration of 0.2 M. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Oxidation of Fe(II) in rainwater.

    PubMed

    Willey, J D; Whitehead, R F; Kieber, R J; Hardison, D R

    2005-04-15

    Photochemically produced Fe(II) is oxidized within hours under environmentally realistic conditions in rainwater. The diurnal variation between photochemical production and reoxidation of Fe(II) observed in our laboratory accurately mimics the behavior of ferrous iron observed in field studies where the highest concentrations of dissolved Fe(ll) occur in afternoon rain during the period of maximum sunlight intensity followed by gradually decreasing concentrations eventually returning to early morning pre-light values. The experimental work presented here, along with the results of kinetics studies done by others, suggests thatthe primary process responsible for the decline in photochemically produced Fe(II) concentrations is oxidation by hydrogen peroxide. This reaction is first order with respect to both the concentrations of Fe(II) and H2O2. The second-order rate constant determined for six different authentic rain samples varied over an order of magnitude and was always less than or equal to the rate constant determined for this reaction in simple acidic solutions. Oxidation of photochemically produced ferrous iron by other oxidants including molecular oxygen, ozone, hydroxyl radical, hydroperoxyl/superoxide radical, and hexavalent chromium were found to be insignificant under the conditions present in rainwater. This study shows that Fe(II) occurs as at least two different chemical species in rain; photochemically produced Fe(II) that is oxidized over time periods of hours, and a background Fe(II) that is protected against oxidation, perhaps by organic complexation, and is stable against oxidation for days. Because the rate of oxidation of photochemically produced Fe(II) does not increase with increasing rainwater pH, the speciation of this more labile form of Fe(II) is also not controlled by simple hydrolysis reactions.

  11. Effects of oxyanions, natural organic matter, and bacterial cell numbers on the bioreduction of lepidocrocite ({gamma}-FeOOH) and the formation of secondary mineralization products.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Loughlin, E. J.; Gorski, C. A.; Scherer, M. M.

    Microbial reduction of Fe(III) oxides results in the production of Fe(II) and may lead to the subsequent formation of Fe(II)-bearing secondary mineralization products including magnetite, siderite, vivianite, chukanovite (ferrous hydroxy carbonate (FHC)), and green rust; however, the factors controlling the formation of specific Fe(II) phases are often not well-defined. This study examined effects of (i) a range of inorganic oxyanions (arsenate, borate, molybdate, phosphate, silicate, and tungstate), (ii) natural organic matter (citrate, oxalate, microbial extracellular polymeric substances [EPS], and humic substances), and (iii) the type and number of dissimilatory iron-reducing bacteria on the bioreduction of lepidocrocite and formation of Fe(II)-bearingmore » secondary mineralization products. The bioreduction kinetics clustered into two distinct Fe(II) production profiles. 'Fast' Fe(II) production kinetics [19-24 mM Fe(II) d-1] were accompanied by formation of magnetite and FHC in the unamended control and in systems amended with borate, oxalate, gellan EPS, or Pony Lake fulvic acid or having 'low' cell numbers. Systems amended with arsenate, citrate, molybdate, phosphate, silicate, tungstate, EPS from Shewanella putrefaciens CN32, or humic substances derived from terrestrial plant material or with 'high' cell numbers exhibited comparatively slow Fe(II) production kinetics [1.8-4.0 mM Fe(II) d-1] and the formation of green rust. The results are consistent with a conceptual model whereby competitive sorption of more strongly bound anions blocks access of bacterial cells and reduced electron-shuttling compounds to sites on the iron oxide surface, thereby limiting the rate of bioreduction.« less

  12. Enhanced Stability of the Fe(II)/Mn(II) State in a Synthetic Model of Heterobimetallic Cofactor Assembly.

    PubMed

    Kerber, William D; Goheen, Joshua T; Perez, Kaitlyn A; Siegler, Maxime A

    2016-01-19

    Heterobimetallic Mn/Fe cofactors are found in the R2 subunit of class Ic ribonucleotide reductases (R2c) and R2-like ligand binding oxidases (R2lox). Selective cofactor assembly is due at least in part to the thermodynamics of M(II) binding to the apoprotein. We report here equilibrium studies of Fe(II)/Mn(II) discrimination in the biomimetic model system H5(F-HXTA) (5-fluoro-2-hydroxy-1,3-xylene-α,α'-diamine-N,N,N',N'-tetraacetic acid). The homobimetallic F-HXTA complexes [Fe(H2O)6][1]2·14H2O and [Mn(H2O)6][2]2·14H2O (1 = [Fe(II)2(F-HXTA)(H2O)4](-); 2 = [Mn(II)2(F-HXTA)(H2O)4](-)) were characterized by single crystal X-ray diffraction. NMR data show that 1 retains its structure in solution (2 is NMR silent). Metal exchange is facile, and the heterobimetallic complex [Fe(II)Mn(II)(F-HXTA)(H2O)4](-) (3) is formed from mixtures of 1 and 2. (19)F NMR was used to quantify 1 and 3 in the presence of excess M(II)(aq) at various metal ratios, and equilibrium constants for Fe(II)/Mn(II) discrimination were calculated from these data. Fe(II) is preferred over Mn(II) with K1 = 182 ± 13 for complete replacement (2 ⇌ 1). This relatively modest preference is attributed to a hard-soft acid-base mismatch between the divalent cations and the polycarboxylate ligand. The stepwise constants for replacement are K2 = 20.1 ± 1.3 (2 ⇌ 3) and K3 = 9.1 ± 1.1 (3 ⇌ 1). K2 > K3 demonstrates enhanced stability of the heterobimetallic state beyond what is expected for simple Mn(II) → Fe(II) replacement. The relevance to Fe(II)/Mn(II) discrimination in R2c and R2lox proteins is discussed.

  13. Morphology, stability, and X-ray absorption spectroscopic study of iron oxide (Hematite) nanoparticles prepared by micelle nanolithography

    NASA Astrophysics Data System (ADS)

    Bera, Anupam; Bhattacharya, Atanu; Tiwari, N.; Jha, S. N.; Bhattacharyya, D.

    2018-03-01

    Currently, considerable effort is being made towards synthesis and characterization of iron oxide nanoparticles. In this article, we report on the preparation and characterization of iron oxide nanoparticle (NP) arrays supported on natively oxidized Si(100) surface. The NPs are synthesized by reverse micelle nanolithography technique and are then deposited onto natively oxidized Si(100) surface via spin-coating. Plasma oxidation followed by high temperature annealing results in a unimodal size distribution of pseudohexagonally-ordered array of iron oxide NPs (with ∼14 nm mean diameter and ∼5 nm mean height). High temperature annealing does not fragment the NPs. Particles are sinter-resistant: the unimodal arrays are robust with respect to thermal treatment. X-ray absorption spectroscopy (XAS), including X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS), reveals that structure of the iron oxide particle resembles closely the hematite α-Fe2O3 structure. Furthermore, with the help of EXAFS spectra, we eliminate the possibility of γ-Fe2O3, Fe3O4, FeO and FeO(OH) structures for the NPs.

  14. Iron oxidation kinetics and phosphate immobilization along the flow-path from groundwater into surface water

    NASA Astrophysics Data System (ADS)

    van der Grift, B.; Rozemeijer, J. C.; Griffioen, J.; van der Velde, Y.

    2014-06-01

    The retention of phosphorus in surface waters though co-precipitation of phosphate with Fe-oxyhydroxides during exfiltration of anaerobic Fe(II) rich groundwater is not well understood. We developed an experimental field set-up to study Fe(II) oxidation and P immobilization along the flow-path from groundwater to surface water in an agricultural experimental catchment of a small lowland river. We physically separated tube drain effluent from groundwater discharge before it entered a ditch in an agricultural field. Through continuous discharge measurements and weekly water quality sampling of groundwater, tube drain water, exfiltrated groundwater, and ditch water, we investigated Fe(II) oxidation kinetics and P immobilization processes. The oxidation rate inferred from our field measurements closely agreed with the general rate law for abiotic oxidation of Fe(II) by O2. Seasonal changes in climatic conditions affected the Fe(II) oxidation process. Lower pH and lower temperatures in winter (compared to summer) resulted in low Fe oxidation rates. After exfiltration to the surface water, it took a couple of days to more than one week before complete oxidation of Fe(II) is reached. In summer time, Fe oxidation rates were much higher. The Fe concentrations in the exfiltrated groundwater were low, indicating that dissolved Fe(II) is completely oxidized prior to inflow into a ditch. While the Fe oxidation rates reduce drastically from summer to winter, P concentrations remained high in the groundwater and an order of magnitude lower in the surface water throughout the year. This study shows very fast immobilisation of dissolved P during the initial stage of the Fe(II) oxidation proces which results in P-depleted water before Fe(II) is competly depleted. This cannot be explained by surface complexation of phosphate to freshly formed Fe-oxyhydroxides but indicates the formation of Fe(III)-phosphate precipitates. The formation of Fe(III)-phosphates at redox gradients seems an important geochemical mechanism in the transformation of dissolved phosphate to particulate phosphate and, therefore, a major control on the P retention in natural waters that drain anaerobic aquifers.

  15. Iron oxidation kinetics and phosphate immobilization along the flow-path from groundwater into surface water

    NASA Astrophysics Data System (ADS)

    van der Grift, B.; Rozemeijer, J. C.; Griffioen, J.; van der Velde, Y.

    2014-11-01

    The retention of phosphorus in surface waters through co-precipitation of phosphate with Fe-oxyhydroxides during exfiltration of anaerobic Fe(II) rich groundwater is not well understood. We developed an experimental field set-up to study Fe(II) oxidation and P immobilization along the flow-path from groundwater into surface water in an agricultural experimental catchment of a small lowland river. We physically separated tube drain effluent from groundwater discharge before it entered a ditch in an agricultural field. Through continuous discharge measurements and weekly water quality sampling of groundwater, tube drain water, exfiltrated groundwater, and surface water, we investigated Fe(II) oxidation kinetics and P immobilization processes. The oxidation rate inferred from our field measurements closely agreed with the general rate law for abiotic oxidation of Fe(II) by O2. Seasonal changes in climatic conditions affected the Fe(II) oxidation process. Lower pH and lower temperatures in winter (compared to summer) resulted in low Fe oxidation rates. After exfiltration to the surface water, it took a couple of days to more than a week before complete oxidation of Fe(II) is reached. In summer time, Fe oxidation rates were much higher. The Fe concentrations in the exfiltrated groundwater were low, indicating that dissolved Fe(II) is completely oxidized prior to inflow into a ditch. While the Fe oxidation rates reduce drastically from summer to winter, P concentrations remained high in the groundwater and an order of magnitude lower in the surface water throughout the year. This study shows very fast immobilization of dissolved P during the initial stage of the Fe(II) oxidation process which results in P-depleted water before Fe(II) is completely depleted. This cannot be explained by surface complexation of phosphate to freshly formed Fe-oxyhydroxides but indicates the formation of Fe(III)-phosphate precipitates. The formation of Fe(III)-phosphates at redox gradients seems an important geochemical mechanism in the transformation of dissolved phosphate to structural phosphate and, therefore, a major control on the P retention in natural waters that drain anaerobic aquifers.

  16. Static and dynamic optical properties of La 1-xSr xFeO 3-δ: The effects of A-site and oxygen stoichiometry

    DOE PAGES

    Sergey Y. Smolin; Sfeir, Matthew Y.; Scafetta, Mark D.; ...

    2015-12-09

    Perovskite oxides are a promising material class for photovoltaic and photocatalytic applications due to their visible band gaps, nanosecond recombination lifetimes, and great chemical diversity. However, there is limited understanding of the link between composition and static and dynamic optical properties, despite the critical role these properties play in the design of light-harvesting devices. To clarify these relationships, we systemically studied the optoelectronic properties in La 1-xSr xFeO 3-δ epitaxial films, uncovering the effects of A-site cation substitution and oxygen stoichiometry. Variable-angle spectroscopic ellipsometry was used to measure static optical properties, revealing a linear increase in absorption coefficient at 1.25more » eV and a red-shifting of the optical absorption edge with increasing Sr fraction. The absorption spectra can be similarly tuned through the introduction of oxygen vacancies, indicating the critical role that nominal Fe valence plays in optical absorption. Dynamic optoelectronic properties were studied with ultrafast transient reflectance spectroscopy, revealing similar nanosecond photoexcited carrier lifetimes for oxygen deficient and stoichiometric films with the same nominal Fe valence. Furthermore, these results demonstrate that while the static optical absorption is strongly dependent on nominal Fe valence tuned through cation or anion stoichiometry, oxygen vacancies do not appear to play a significantly detrimental role in the recombination kinetics.« less

  17. Stochastic Simulation of Isotopic Exchange Mechanisms for Fe(II)-Catalyzed Recrystallization of Goethite.

    PubMed

    Zarzycki, Piotr; Rosso, Kevin M

    2017-07-05

    Understanding Fe(II)-catalyzed transformations of Fe(III)-(oxyhydr)oxides is critical for correctly interpreting stable isotopic distributions and for predicting the fate of metal ions in the environment. Recent Fe isotopic tracer experiments have shown that goethite undergoes rapid recrystallization without phase change when exposed to aqueous Fe(II). The proposed explanation is oxidation of sorbed Fe(II) and reductive Fe(II) release coupled 1:1 by electron conduction through crystallites. Given the availability of two tracer exchange data sets that explore pH and particle size effects (e.g., Handler et al. Environ. Sci. Technol. 2014 , 48 , 11302 - 11311 ; Joshi and Gorski Environ. Sci. Technol. 2016 , 50 , 7315 - 7324 ), we developed a stochastic simulation that exactly mimics these experiments, while imposing the 1:1 constraint. We find that all data can be represented by this model, and unifying mechanistic information emerges. At pH 7.5 a rapid initial exchange is followed by slower exchange, consistent with mixed surface- and diffusion-limited kinetics arising from prominent particle aggregation. At pH 5.0 where aggregation and net Fe(II) sorption are minimal, that exchange is quantitatively proportional to available particle surface area and the density of sorbed Fe(II) is more readily evident. Our analysis reveals a fundamental atom exchange rate of ∼10 -5 Fe nm -2 s -1 , commensurate with some of the reported reductive dissolution rates of goethite, suggesting Fe(II) release is the rate-limiting step in the conduction mechanism during recrystallization.

  18. The optical properties of β-FeSi 2 fabricated by ion beam assisted sputtering

    NASA Astrophysics Data System (ADS)

    McKinty, C. N.; Kewell, A. K.; Sharpe, J. S.; Lourenço, M. A.; Butler, T. M.; Valizadeh, R.; Colligon, J. S.; Reeson Kirkby, K. J.; Homewood, K. P.

    2000-03-01

    β-FeSi 2 has been shown to have a minimum direct band gap of 0.87 eV [T.D. Hunt, K.J. Reeson, K.P. Homewood, S.W. Teon, R.M. Gwilliam, B.J. Sealy, Nucl. Instr. and Meth. B 84 (1994) 168-171] which leads to the opportunity for Si based opto-electronics, optical communications and optical interconnects. Electroluminescence has been reported from structures containing β-FeSi 2, which were produced by high dose ion implantation and annealing [D. Leong, M.A. Harry, K.J. Reeson, K.P. Homewood, Nature 387 (12 June 1987) 686]. In this paper we report the formation of β-FeSi 2 by ion beam assisted co-sputtering of Fe and Si in varying percentages. The layers were deposited with a varying Fe/Si ratio, with a Si capping layer applied to prevent oxidation. Separate regions of the sample were investigated at room temperature using optical absorption, to measure the band gap values. Absorption under the fundamental edge was also analysed at room temperature. Further investigations looked at the temperature dependence of the band gap and the absorption under the fundamental edge. The results showed that a variety of Fe/Si ratios produced β-FeSi 2, the formation of which was ascertained by the presence of a suitable band gap value [0.83-0.88 eV]. Absorption under the fundamental edge was shown to follow an exponential Urbach tail [C.H. Grein, S. John, Phys. Rev. B 39 (1989) 1140]. The temperature measurements are in good agreement with the Einstein model.

  19. Adsorption and detection of Escherichia coli using an Au substrate modified with a catecholate-type artificial siderophore-Fe3+ complex.

    PubMed

    Inomata, Tomohiko; Tanabashi, Hirohito; Funahashi, Yasuhiro; Ozawa, Tomohiro; Masuda, Hideki

    2013-12-07

    A catecholate-type artificial siderophore with a terminal-NH2 group (1) and its Fe(3+) complex (2) were prepared. Siderophore 1 was characterized by (1)H NMR, FT-IR, and ESI-TOF MS spectroscopy. The corresponding Fe(3+) complex 2 was obtained by reaction of 1 with Fe(acac)3. The absorption band at 500 nm (ε = 4670 M(-1) cm(-1) at pH 7.0) of the electronic absorption spectrum of 2 is assignable as the LMCT (O(catecholate) → Fe(3+)) absorption band. This band indicates the formation of the Fe(3+) complex of 1. The biological activity of 2 with respect to Escherichia coli was clearly confirmed by observing that it permeates into the cell membrane. The self-assembled monolayer of 2 on an Au substrate, 2/Au, was prepared and its preparation was confirmed by FT-IR reflection-absorption spectroscopy (IR-RAS) and cyclic voltammetry (CV). Furthermore, a quartz crystal microbalance (QCM) chip modified with 2 effectively adsorbed E. coli. M. flavescens, an organism which is incapable of synthesizing siderophores and must therefore use exogenous hydroxamate-type siderophores for growth, did not adsorb on 2/Au. In contrast, E. coli did not adsorb on the hydroxamate-type artificial siderophore-Fe(3+) complex (3)-modified Au substrate, 3/Au. These results provide preliminary evidence that microbes recognized Fe(3+) ion-bound siderophores on the surface. The detection limit of 2/Au was ∼10(4) CFU mL(-1).

  20. Biological regeneration of manganese (IV) and iron (III) for anaerobic metal oxide-mediated removal of pharmaceuticals from water.

    PubMed

    Liu, Wenbo; Langenhoff, Alette A M; Sutton, Nora B; Rijnaarts, Huub H M

    2018-05-18

    Applying manganese(IV)- or iron(III)-(hydr)oxides to remove pharmaceuticals from water could be attractive, due to the capacity of these metal oxides to remove pharmaceuticals and be regenerated. As pharmaceutical removal under anaerobic conditions is foreseen, Mn(IV) or Fe(III) regeneration under anaerobic conditions, or with minimum oxygen dosage, is preferred. In this study, batch experiments are performed to investigate (1) Mn(IV) and Fe(III) regeneration from Mn(II) and Fe(II); (2) the pharmaceutical removal during biological Mn(IV) and Fe(III) regeneration; and (3) anaerobic abiotic pharmaceutical removal with different Mn(IV) or Fe(III) species. Results show that biological re-oxidation of reduced Mn(II) to Mn(IV) occurs under oxygen-limiting conditions. Biological re-oxidation of Fe(II) to Fe(III) is obtained with nitrate under anaerobic conditions. Both bio-regenerated Mn(IV)-oxides and Fe(III)-hydroxides are amorphous. The pharmaceutical removal is insignificant by Mn(II)- or Fe(II)-oxidizing bacteria during regeneration. Finally, pharmaceutical removal is investigated with various Mn(IV) and Fe(III) sources. Anaerobic abiotic removal using Mn(IV) produced from drinking water treatment plants results in 23% metoprolol and 44% propranolol removal, similar to chemically synthesized Mn(IV). In contrast, Fe(III) from drinking water treatment plants outperformed chemically or biologically synthesized Fe(III); Fe (III) from drinking water treatment can remove 31-43% of propranolol via anaerobic abiotic process. In addition, one of the Fe(III)-based sorbents tested, FerroSorp ® RW, can also remove propranolol (20-25%). Biological regeneration of Mn(IV) and Fe(III) from the reduced species Mn(II) and Fe(II) could be more effective in terms of cost and treatment efficiency. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

Top