ORIGINS OF ABSORPTION SYSTEMS OF CLASSICAL NOVA V2659 CYG (NOVA CYG 2014)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arai, A.; Kawakita, H.; Shinnaka, Y.
2016-10-10
We report on high-dispersion spectroscopy results of a classical nova V2659 Cyg (Nova Cyg 2014) that are taken 33.05 days after the V -band maximum. The spectrum shows two distinct blueshifted absorption systems originating from H i, Fe ii, Ca ii, etc. The radial velocities of the absorption systems are −620 km s{sup −1}, and −1100 to −1500 km s{sup −1}. The higher velocity component corresponds to the P-Cygni absorption features frequently observed in low-resolution spectra. Much larger numbers of absorption lines are identified at the lower velocity. These mainly originate from neutral or singly ionized Fe-peak elements (Fe i,more » Ti ii, Cr ii, etc.). Based on the results of our spectroscopic observations, we discuss the structure of the ejecta of V2659 Cyg. We conclude that the low- and high-velocity components are likely to be produced by the outflow wind and the ballistic nova ejecta, respectively.« less
The optical re-brightening of nova M31N 2017-11a
NASA Astrophysics Data System (ADS)
Xu, Zhijian; Gao, Xing; Li, Yanxi; Zhao, Jingyuan; Zhang, Mi
2017-12-01
We report the initial discovery of the optical re-brightening of the Fe II class nova M31N 2017-11a (AT2017hvi = PTSS-17zap) which was first reported by PMO-Tsinghua Supernova Survey (PTSS, http://www.cneost.org/ptss/ ), (2017, TNS Discovery Report https://wis-tns.weizmann.ac.il/object/2017hvi) at r-Sloan magnitude 18.5 on 2017-11-04 16:41:02 UT. Spectroscopy by Williams & Darnley using the 2-m Liverpool telescope (ATel #10990) on 2017 Nov 20.11 UT, and by Fabrika et al., (ATel #10998) taken two days later at the Russian BTA telescope, showed Balmer emission lines together with numerous strong Fe II lines, confirming its classification as a classical Fe II class nova.
Optical and Near-infrared Study of Nova V2676 Oph 2012
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raj, A.; Das, R. K.; Walter, F. M., E-mail: ashish.raj@iiap.res.in
2017-02-01
We present optical spectrophotometric and near-infrared (NIR) photometric observations of the nova V2676 Oph covering the period from 2012 March 29 through 2015 May 8. The optical spectra and photometry of the nova have been taken from SMARTS and Asiago; the NIR photometry was obtained from SMARTS and Mt. Abu. The spectra were dominated by strong H i lines from the Balmer series, Fe ii, N i, and [O i] lines in the initial days, typical of an Fe ii type nova. The measured FWHM for the H β and H α lines was 800–1200 km s{sup −1}. There wasmore » pronounced dust formation starting 90 days after the outburst. The J − K color was the largest among recent dust-forming novae.« less
The Early Spectral Evolution of the Classical Nova ASASSN-15th in M33
NASA Astrophysics Data System (ADS)
Wagner, R. Mark; Neric, Marko; Darnley, Matt J.; Williams, Steven; Starrfield, Sumner; Woodward, Charles E.; Prieto, Jose Luis
2016-06-01
During the course of the All Sky Automated Survey for SuperNovae (ASAS-SN) a new transient source designated ASASSN-15th was identified on images of the nearby galaxy M33 obtained with the 14 cm Brutus telescope in Haleakala, Hawaii on 2015 Dec 1.4 UT at V ~ 16.5 mag. Given the location of the transient in M33 and its apparent V magnitude at discovery, the implied absolute visual magnitude was about -8.5 mag suggesting that the transient was a new classical nova outburst in M33. Optical spectroscopy obtained by us on 2015 Dec 2.3 showed broad emission lines of Balmer, Fe II, and Na I D with P Cygni-type line profiles superposed on a blue continuum. The spectrum was consistent with a Fe II-type classical nova in M33 discovered early in the outburst. Subsequent spectra obtained by us on 2015 Dec 10.9 UT showed significant evolution since our first spectrum in that the deep P Cygni-type line profiles seen earlier were now extremely shallow or had almost completely disappeared with the emission component growing in strength. Additional emission lines from O I, Si II, and possibly He I were also present. We obtained optical spectroscopy of ASASSN-15th on 17 epochs between 2015 Dec 1 and 2016 Feb 11 UT with the 2.4 m Hiltner telescope (+OSMOS) of the MDM Observatory, the 2 m fully robotic Liverpool Telescope (+SPRAT), and the 2 x 8.4 m Large Binocular Telescope (+MODS). We will present our spectroscopy and discuss the early evolution of ASASSN-15th in the context of Galactic Fe II-class novae.
0935+05 Supernova 1995D in NGC 2962
NASA Astrophysics Data System (ADS)
Waagen, Elizabeth O.
1995-02-01
Reiki Kushida of Yatsugatake South Base Observatory discovers 0935+05 Supernova 1995D in NGC 2962. Magnitude 14.0. Position RA 09h 40m 54.79s DEC +5° 08' 26.6" (2000). Nova AQL 95 confirmed spectroscopically "as a slow 'FE II'-class nova in its post-maximum phase of development. Requests continue to monitor 1436-63 Nova Cir 95.
Strong [Fe X] Emission and Deep Optical Eclipses of the Classical Nova V5593 Sgr 2012 No. 5
NASA Astrophysics Data System (ADS)
Starrfield, Sumner; Wagner, R. Mark; Walter, Frederick M.; Woodward, Charles E.; Schwarz, Greg; Krautter, Joachim
2016-01-01
V5593 Sgr was discovered by T. Kojima on 2012 July 16.512 UT at a magnitude of ~12.6. A low-resolution spectrum obtained by M. Fujii on 2012 July 18.572 UT confirmed that the object was indeed a Classical Nova. The AAVSO V-band light curve showed that the nova peaked near 11th mag on July 23-24 UT and subsequently declined in brightness with a t_2 of about 27 days making it a moderately fast nova. We obtained optical spectroscopy of V5593 Sgr between 2012 July 26 and 2013 February 19 UT with the SMARTS/CTIO 1.5 m telescope (+RC spectrograph) and then between 2014 August 25 and 2015 June 17 UT using the MDM Observatory 2.4 m Hiltner telescope (+CCDS), the 8.4 m Large Binocular Telescope (+MODS1), and the 6.5 m MMT (+BlueChannel). The SMARTS spectra confirmed the Fe II classification but showed that by 2013 February 19 UT the Fe II lines became much weaker and strong He II 468.5 nm and [Fe VII] 608.7 nm became prominent. A spectrum obtained on 2014 August 25 UT exhibited Balmer, He II, and [Fe VII] emission lines, but also for the first time, the presence of strong [Fe X] 637.4 nm emission with an observed intensity ratio with respect to Halpha of about 1.5. Other identified emission lines in our spectra included O VI, [Ca V], [Ca VI], [Ca VII], [Fe VI], [Fe XI], and [Fe XIV]. Surprisingly, [O III] emission was weak or absent. By 2015 June, a spectrum showed that the observed [Fe X]/Halpha intensity ratio had decreased to about 0.74. Contemporaneous optical photometry was obtained with the SMARTS/CTIO 1 m telescope (+ANDICAM) between 2014 March 19 and 2015 September 28 UT in the BVRIJHK bands. In agreement with our spectra in quiescence, V5593 Sgr is very red with (B-V) ~ 1 mag and (V-K) ~ 5 mag. The photometry shows ellipsoidal-like modulations with a peak-to-peak amplitude exceeding 2 mag in R and I. The modulation is seen in B through K; however, the amplitude is lower in JHK. Brief eclipses occur at the minimum of the ellipsoidal variation with a depth of at least 5 mag in R and I. The eclipse is seen in all bands covered by our observations. Two or more candidate periods may be consistent with the data. We will discuss these results in the context of other classical novae including GQ Mus and V723 Cas.
Swift observation of Nova Ophiuchi 2018 No.2 = PNV J17140261-2849237 = TCP J17140253-2849233
NASA Astrophysics Data System (ADS)
Sokolovsky, K.
2018-03-01
The nova candidate PNV J17140261-2849237 = TCP J17140253-2849233 was discovered by H. Nishimura, T. Kojima, K. Nishiyama and F. Kabashima. A. Takao reports the transient (9.5mag) visible at unfiltered images obtained on 2018-03-10.753 UT. Spectroscopic observations with the 2m Liverpool Telescope confirmed the transient to be a Fe II type nova (ATel #11398).
Bipolar gas outflow from the nova V458 Vul
NASA Astrophysics Data System (ADS)
Goranskij, V. P.; Barsukova, E. A.; Fatkhullin, T. A.
2010-06-01
Classical nova V458 Vul (N Vul 2007 No.1) was detected as a supersoft X-ray source by the Swift XRT (ATel#1246, #1603). This star is interesting with its spectral class change: features of Fe II class nova completely changed by features of He/N class in the SSS phase (T.N. Tarasova, IBVS No.5807). We performed spectral observations of V458 Vul with the Russian 6-m telescope BTA and spectral camera SCORPIO on 2010 June 9.84 UT.
NASA Astrophysics Data System (ADS)
Fabrika, S.; Sholukhova, O.; Vinokurov, A.; Valeev, A. F.; Solovyeva, Yu.; Hornoch, K.; Henze, M.; Shafter, A. W.
2017-11-01
We report optical spectroscopic confirmation of the two recent M31 nova candidates M31N 2017-11a (AT2017hvi) and M31N 2017-11c. The first nova was discovered on 2017-11-04.695 by PMO-Tsinghua Supernova Survey (PTSS-17zap); the second was discovered on 2017-11-12.465 by K. Nishiyama and F. Kabashima (=TCP J00414435+4108287).
Spectroscopic confirmation and photometry of the Fe II nova M31N 2018-01a (AT2018gw)
NASA Astrophysics Data System (ADS)
Fabrika, S.; Sholukhova, O.; Vinokurov, A.; Valeev, A. F.; Solovyeva, Yu.; Hornoch, K.; Henze, M.; Shafter, A. W.; Williams, S. C.; Darnley, M. J.
2018-01-01
We report optical spectroscopic confirmation of the recent M31 nova candidate M31N 2018-01a (AT2018gw) (= PNV J00444425+4142449) (= ATLAS18eat) discovered by Emmanuel Conseil on 2018 Jan. 10.860 UT. The spectral data were obtained on 2018 Jan. 17.746 UT using the Russian BTA telescope equipped with the SCORPIO spectrograph.
Fe II fluorescence and anomalous C IV doublet intensities in symbiotic novae
NASA Technical Reports Server (NTRS)
Michalitsianos, A. G.; Kafatos, M.; Meier, S. R.
1992-01-01
The variation of absolute intensities of Bowen-excited Fe II emission in the symbiotic stars RR Tel, RX Pup, and AG Peg is examined. The C IV doublet intensity ratios in RR Tel were not anomalous between 1979 and 1989, and the ratio had typical values within the optically thin range. The intensity of individual Fe II Bowen-excited lines is correlated with the C IV 1548.2 A flux, suggesting the presence of a foreground Fe II region in which fluorescent-excited material responds to flux variations of C IV 1548.2 A. In RX Pup the combined fluxes of Fe II Bowen-pumped lines can account for an appreciable fraction of the flux deficit in the C IV 1548.2 A line when the C IV doublet ratio is less than the optically thick limit of unity. The Fe II Bowen lines in RX Pup exhibit a velocity range from 0 to 80 km/s, where several strong Fe II emission lines correspond to deep absorption structure in the C IV 1548.2 A line profile. In AG Peg and C IV 1548.2 A flux deficit cannot be explained by Fe II fluorescent absorption alone when the C IV doublet ratio anomaly is at an extreme.
Nova Sco 2016 No. 2 = PNV J17225112-3158349 = ASASSN-16kd
NASA Astrophysics Data System (ADS)
Waagen, Elizabeth O.
2016-09-01
AAVSO Alert Notice 550 announces the independent discovery of Nova Sco 2016 No. 2 = ASASSN-16kd = PNV J17225112-3158349 = V1656 Sco by Shigehisa Fujikawa (Kan'onji, Kagawa, Japan) at unfiltered CCD magnitude 11.6 on 2016 September 06.481 UT; and by ASAS-SN (Stanek et al., ATel #9469) at 12.13 V on 2016 September 06.00 UT. Spectroscopy indicating that Nova Sco 2016 No. 2 is a highly reddened classical Fe II-type nova was obtained by Arai and Honda (CBET 4320); by Bohlsen (ATel #9477); by Bersier et al. (ATel #9478); and by Prieto et al. (ATel #9479). Finder charts with sequence may be created using the AAVSO Variable Star Plotter (https://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details.
Observations of the peculiar object MWC 560 in outburst
NASA Technical Reports Server (NTRS)
Michalitsianos, A. G.; Maran, S. P.; Oliversen, R. J.; Bopp, B.; Kontizas, E.
1991-01-01
The results of ultraviolet spectroscopy, photoelectric photometry, and supplemental high-resolution H(alpha) spectroscopy of a photometric outburst of MWC 560 are discussed. Ultraviolet spectra are shown to be consistent with the ejection of an optically thick shell that produced strong absorption blends of Fe II and Cr II. The velocities reported exceed by far those previously found in symbiotic stars or recurrent novas. In addition to the variable high-velocity system of broad absorption features, a relatively stable system of Mg II, Mg I, Fe II, Cr II, and other ionic absorptions is observed. It is pointed out that the spectroscopic phenomena in MWC 560 resemble those found in XX Ophiuchi, but the velocities in the MWC 560 are an order of magnitude higher than those found in XX Oph.
PNV J00424253+4115139 - A Luminous Fe II-class Nova in M31
NASA Astrophysics Data System (ADS)
Neric, M.; Wilber, A.; Wagner, R. M.; Starrfield, S.; Woodward, C. E.
2015-06-01
We obtained a spectrum (range: 398-686 nm; resolution 0.3 nm) of PNV J00424253+4115139 (ATEL #7584, #7586, and #7597) on 2015 June 7.435 UT with the 2.4 m Hiltner Telescope (+OSMOS) of the MDM Observatory on Kitt Peak, Arizona.
A Detailed Observational Analysis of V1324 Sco, the Most Gamma-Ray-luminous Classical Nova to Date
NASA Astrophysics Data System (ADS)
Finzell, Thomas; Chomiuk, Laura; Metzger, Brian D.; Walter, Frederick M.; Linford, Justin D.; Mukai, Koji; Nelson, Thomas; Weston, Jennifer H. S.; Zheng, Yong; Sokoloski, Jennifer L.; Mioduszewski, Amy; Rupen, Michael P.; Dong, Subo; Starrfield, Sumner; Cheung, C. C.; Woodward, Charles E.; Taylor, Gregory B.; Bohlsen, Terry; Buil, Christian; Prieto, Jose; Wagner, R. Mark; Bensby, Thomas; Bond, I. A.; Sumi, T.; Bennett, D. P.; Abe, F.; Koshimoto, N.; Suzuki, D.; Tristram, P. J.; Christie, Grant W.; Natusch, Tim; McCormick, Jennie; Yee, Jennifer; Gould, Andy
2018-01-01
It has recently been discovered that some, if not all, classical novae emit GeV gamma-rays during outburst, but the mechanisms involved in the production ofgamma-rays are still not well understood. We present here a comprehensive multiwavelength data set—from radio to X-rays—for the most gamma-ray-luminous classical nova to date, V1324 Sco. Using this data set, we show that V1324 Sco is a canonical dusty Fe II-type nova, with a maximum ejecta velocity of 2600 km s‑1 and an ejecta mass of a few × {10}-5 {M}ȯ . There is also evidence for complex shock interactions, including a double-peaked radio light curve which shows high brightness temperatures at early times. To explore why V1324 Sco was so gamma-ray luminous, we present a model of the nova ejecta featuring strong internal shocks and find that higher gamma-ray luminosities result from higher ejecta velocities and/or mass-loss rates. Comparison of V1324 Sco with other gamma-ray-detected novae does not show clear signatures of either, and we conclude that a larger sample of similarly well-observed novae is needed to understand the origin and variation of gamma-rays in novae.
NASA Astrophysics Data System (ADS)
Waagen, Elizabeth O.
2011-08-01
Announcement of discovery of Nova Lupi 2011 = PNV J14542000-5505030. Discovered by Nicholas Brown (Quinns Rocks, Western Australia) on 2011 Aug. 4.73 UT at unfiltered mag=10.2 (tmax 400 film). Posted on the IAU Central Bureau for Astronomical Telegrams Transient Object Confirmation Page (TOCP) as PNV J14542000-5505030. Spectra obtained by Fred Walter (SUNY Stony Brook) 2011 August 9.0132 UT with the SMARTS 1.5m RC spectrograph at Cerro Tololo and reported in ATEL #3536 confirms that the object is an Fe II nova near maximum. Initially announced in [vsnet-alert 13560] (Nicholas Brown) and in AAVSO Special Notice #247 (Arne Henden). Finder charts with sequence may be created using the AAVSO Variable Star Plotter (http://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details and observations.
Spectral and photometric study of the symbiotic nova RS ophiuchus in quiet phase
NASA Astrophysics Data System (ADS)
Kondratyeva, L.; Rspaev, F.; Krugov, M.; Serebryanskiy, A.
2017-07-01
The results of spectral and photometric study of the recurrent Nova RS Ophiuchus are presented and discussed. Observations were carried out in 2009-2016. During these eight years the fluxes of HI and FeII emission lines have slightly decreased by a factor of 3 - 4. Hα and Hβ exhibit double-peaked profiles with a central absorption. The ratio of the blue and red peaks intensities(V/R) varies from 0.3 to 1.0 for Hβ and from 0.4 to 0.7 for Hα. Possible correlations between changes of the ratio and other spectral parameters were investigated. Dependence of V/R on the radial velocity of absorbtion component is found out.
Modeling SOFIA/FORCAST spectra of the classical nova V5568 Sgr with 3D pyCloudy
NASA Astrophysics Data System (ADS)
Calvén, Emilia; Helton, L. Andrew; Sankrit, Ravi
2017-06-01
We present our first results modelling Nova V5668 Sgr using the pseudo-3D photoionization code pyCloudy (Morisset 2013). V5668 Sgr is a classical nova of the FeII class (Williams et al. 2015; Seach 2015) showing signs of a bipolar flow (Banerjee et al. 2015). We construct a grid of models, which use hour-glass morphologies and a range of C, N, O and Ne abundances, to fit a suite of spectroscopic data in the near and mid-IR obtained between 82 to 556 days after outburst. The spectra were obtained using the FORCAST mid-IR instrument onboard the NASA Stratospheric Observatory for Infrared Astronomy (SOFIA) and the 1.2m near-IR telescope of the Mount Abu Infrared Observatory. Additional photometric data from FORCAST, The STONY BROOK/SMARTS Atlas of (mostly) Southern Novae (Walter et al., 2012) and the American Association of Variable Star Observers (AAVSO) were used to supplement the spectral data to obtain the SED of the nova at different times during its evolution. The work presented here is the initial step towards developing a large database of 1D and 3D models that may be used to derive the elemental abundances and dust properties of classical novae.
Nova Sco 2011 No. 2 = PNV J16364440-4132340 = PNV J16364300-4132460
NASA Astrophysics Data System (ADS)
Waagen, Elizabeth O.
2011-09-01
Announcement of discovery of Nova Sco 2011 No. 2 = PNV J16364440-4132340 = PNV J16364300-4132460. Discovered independently by John Seach (Chatsworth Island, NSW, Australia, on 2011 Sep. 06.37 UT at mag=9.8 (DSLR)) and by Yuji Nakamura (Kameyama, Mie, Japan, on 2011 Sep. 06.4313 UT at mag=9.7 C (CCD)). Posted on the IAU Central Bureau for Astronomical Telegrams Transient Object Confirmation Page (TOCP) as PNV J16364440-4132340 (Nakamura) and PNV J16364300-4132460 (Seach); identifications consolidated in VSX under PNV J16364440-4132340. Spectra obtained by A. Arai et al. on 2011 Sep. 7.42 UT suggest a highly reddened Fe II-type classical nova. Spectra by F. Walter and J. Seron obtained Sep. 2011 8.091 UT confirm a young galactic nova; they report spectra are reminiscent of an early recurrent nova. Initially announced in AAVSO Special Notice #251 (Matthew Templeton) and IAU Central Bureau Electronic Telegram 2813 (Daniel W. E. Green, ed.). Finder charts with sequence may be created using the AAVSO Variable Star Plotter (http://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details and observations.
Spectroscopic Confirmation of TCP J07134590-2112330 as a Galactic Classical Nova in Canis Major
NASA Astrophysics Data System (ADS)
Strader, Jay; Chomiuk, Laura; Bahramian, Arash; Swihart, Sam
2018-03-01
TCP J07134590-2112330 was discovered by Yuji Nakamura on 2018 March 24.5 UT as a 12 mag optical transient. We obtained spectroscopic observations of TCP J07134590-2112330 with the Goodman spectrograph on the 4-m SOAR telescope on 2018 Mar 25.1 UT, with a low-resolution spectrum (R 1200) covering 3850-7850 A. The spectrum indicates that TCP J07134590-2112330 is a young classical nova, with strong hydrogen Balmer emission lines and additional strong lines of [O I] and Fe II. The Balmer lines show P Cygni profiles; the FWHM of the H alpha emission component is 1250 km/s, and the absorption trough extends to -2000 km/s.
The One Micron Fe II Lines in Active Galaxies and Emission Line Stars
NASA Astrophysics Data System (ADS)
Rudy, R. J.; Mazuk, S.; Puetter, R. C.; Hamann, F. W.
1999-05-01
The infrared multiplet of Fe II lines at 0.9997, 1.0501, 1.0863, and 1.1126 microns are particularly strong relative to other red and infrared Fe II features. They reach their greatest strength, relative to the hydrogen lines, in the Seyfert 1 galaxy I Zw 1, and are a common, although not ubiquitous feature, in the broad line regions of active galaxies. In addition, they are seen in a diverse assortment of Galactic sources including young stars, Herbig Ae and Be stars, luminous blue variables, proto-planetary nebulae, and symbiotic novae. They are probably excited by Lyman alpha florescence but the exact path of the cascade to their upper levels is uncertain. They arise in dense, sheltered regions of low ionization and are frequently observed together with the infrared Ca II triplet and the Lyman beta excited O I lines 8446 and 11287. The strengths of the four Fe II features, relative to each other, are nearly constant from object to object suggesting a statistical population of their common upper multiplet. Their intensities, in comparison to the Paschen lines, indicate that they can be important coolants for regions with high optical depths in the hydrogen lines. In addition to I Zw 1 and other active galaxies, we present spectra for the Galactic sources MWC 17, MWC 84, MWC 340, MWC 922, PU Vul, and M 1-92. We review the status of the Fe II observations and discuss the excitation process and possible implications. This work was supported by the IR&D program of the Aerospace Corporation. RCP and FWH acknowledge support from NASA.
Nova Sagittarii 2014 = PNV J18250860-2236024 AND Erratum
NASA Astrophysics Data System (ADS)
Waagen, Elizabeth O.
2014-02-01
Details of discovery of Nova Sagittarii 2014 (PNV J18250860-2236024) and procedures for observing and reporting observations are announced. Discovered by Sigeru Furuyama (Tone-machi, Ibaraki-ken, Japan) andreported by S. Nakano (Sumoto, Japan) at unfiltered CCD magnitude 8.7 on 2014 Jan. 26.857 UT. Coordinates: R.A. 18 25 08.60 Decl. = -22 36 02.4 (2000.0). Nova Sgr 2014 is Fe II-type classical nova past maximum, per low-resolution spectra obtained by A. Arai on 2014 Jan. 30.87 UT. Announced in IAU CBAT CBET 3802 (D. W. E. Green, ed.). Finder charts with sequence may be created using the AAVSO Variable Star Plotter (http://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details and observations. Also, an Erratum is reported. In AAVSO Alert Notice 496, Mati Morel (MMAT, Thornton, NSW, Australia) was credited with the discovery of the 1989 outburst of V745 Sco. The discoverer was William Liller (LIW, Vina del Mar, Chile), who observed V745 Sco on 1989 July 30.08 UT at magnitude 9.7 (PROBLICOM discovery using 2415 film with orange filter).
Near-Infrared Emission Lines of Nova Cassiopeiae 1995
NASA Astrophysics Data System (ADS)
Rudy, R. J.; Lynch, D. K.; Mazuk, S. M.; Venturini, C. C.; Puetter, R. C.
2000-12-01
The slow nova V 723 Cas (Nova Cas 1995) exhibits comparatively narrow emission features (FWHM 500 km sec-1) that make it ideal for classifying weak lines and lines blended with stronger features. We present spectra from 0.8-2.5 microns that track the gradual incrase in excitation of Nova Cas and discuss the emission lines that were present. During the period encompassed by these observations Nova Cas reached only moderate excitation-the most energetic coronal lines were [S VIII] 9913 and [Al IX] 20444; lines such as [S IX] 12523 that are prominent in some novae were not detected. Additional coronal lines present include [Si VI] 19641, [Ca VIII] 23205, and [Si VII] 24807. New lines identified include features of [Fe V], [Fe VI]. These iron features are not coronal lines, arising from transitions among low-lying terms rather than within the ground term itself. Also detected was [Ti VI] 17151 that was first identified in V1974 Cygni (Nova Cyg 1992), and possibly [Ti VII] 22050. Accurate wavelengths for a number of unidentified lines are also presented. These unidentified features are discussed with regard to their likely level of excitation and their presence in other novae. This work was supported by the IR&D program of the Aerospace Corporation. RCP acknowledges support from NASA.
NASA Technical Reports Server (NTRS)
Shore, S. N.; Wahlgren, G. M.; Augusteijn, T.; Liimets, T.; Koubsky, P.; Slechta, M.; Votruba, V.
2011-01-01
The nova outburst of V407 Cyg in 2010 Mar. 10 was the first observed for this star but its close resemblance to the well known symbiotic-like recurrent nova RS Oph suggests that it is also a member of this rare type of Galactic novae. The nova was the first detected at gamma-ray energies and is the first known nova explosion for this system. The extensive multiwavelength coverage of this outburst makes it an ideal comparison with the few other outbursts known for similar systems. We extend our previous analysis of the Mira and the expanding shock from the explosion to detail the time development of the photoionized Mira wind, circumstellar medium, and shocked circumstellar environment to derive their physical parameters and how they relate to large scale structure of the environment, extending the previous coverage to more than 500 days after outburst. We use optical spectra obtained at high resolution with the Nordic Optical Telescope (NOT) (R approx. =.45000 to 65000) and medium resolution Ondrejov Observatory (R approx. = 12000) data and compare the line variations with publicly available archival measurements at 30 GHz OVNR and at X-rays with Swift during the first four months of the outburst, through the end of the epoch of strong XR emission. We use nebular diagnostics and high resolution profile variations to derive the densities and locations of the extended emission. We find that the higher the ionization and/or the higher the excitation energy, the more closely the profiles resemble the He II/Ca V-type high velocity shock profile discussed in Paper I. This also accounts for the comparative development of the [N II] and [O III] isoelectronic transitions: the [O III] 4363A profile does not show the low velocity peaks while the excited [N II] 5754A does. If nitrogen is mainly N(+3) or higher in the shock, the upper state of the [N II] nebular lines will contribute but if the oxygen is O(+2) then this line is formed by recombination, masking the nebular contributor, and the lower states are collisionally quenched but emit from the low density surroundings. Absorption lines of Fe-peak ions formed in the Mira wind were visible as P Cyg profiles at low velocity before Day 69, around the time of the X-ray peak and we identified many absorption transitions without accompanying emission for metal lines. The H Balmer lines showed strong P Cyg absorption troughs that weakened during the 2010 observing period, through Day 128. The Fe-peak line profiles and flux variations were different for permitted and forbidden transitions: the E1 transitions were not visible after Day 128 but had shown a narrow peak superimposed on an extended (200 km/s) blue wing, while the M1 and E2 transitions persisted to Day 529, the last observation, and showed extended redshifted wings up of the same velocity. We distinguish the components from the shock, the photoionized environment, and the chromosphere and inner Mira wind using spectra taken more than one year after outburst. The multiple shells and radiative excitation phenomenology are similar to those recently cited for GRBs and SNIa .
NR TrA (Nova TrA 2008) monitoring in support of XMM observations
NASA Astrophysics Data System (ADS)
Waagen, Elizabeth O.
2017-03-01
Dr. Fred Walter (Stony Brook University) has requested AAVSO observers' assistance in monitoring NR TrA (Nova TrA 2008) in support of upcoming XMM Newton observations. The XMM observations will take place 2017 March 13 06:21 through March 14 10:34 UT. Walter writes: "NR TrA (Nova TrA 2008) is a compact eclipsing system with a 5.5 hour period. It was a normal Fe II nova that, upon reaching quiescence, took on the appearance of a super-soft source in the optical high state, which suggests an extremely high mass accretion rate. The optical spectrum is dominated by hot permitted lines of O VI, N V, C IV, and He II. Some nova-like variables have similar spectra, though generally without the hot emission lines. Primary eclipse is broad - nearly 40% of the orbit - and deeper at shorter wavelengths, which suggests the eclipse of a hot accretion disk. Primary eclipse depth is about 1 mag at V. There appears to be a shallow secondary eclipse.The primary aim [of the XMM observations] is to detect and characterize the eclipse at X-ray and UV wavelengths. We will obtain low cadence BVRI/JHK observations with SMARTS/Andicam. We request AAVSO support to obtain continuous photometric time series simultaneous with the XMM observation. Any filters are acceptable, but standard Johnson B, V or Cousins R, I are preferred. Clear filters are acceptable. Time resolution better than 5 minutes and uncertainties (outside of eclipse) <0.02 mag are preferred. The best ephemeris I have is: minimum light at JD 55956.822 + 0.219109E. This is based on data from 2013-2015." Finder charts with sequence may be created using the AAVSO Variable Star Plotter (https://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details.
Identifying and quantifying recurrent novae masquerading as classical novae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pagnotta, Ashley; Schaefer, Bradley E., E-mail: pagnotta@amnh.org
2014-06-20
Recurrent novae (RNe) are cataclysmic variables with two or more nova eruptions within a century. Classical novae (CNe) are similar systems with only one such eruption. Many of the so-called CNe are actually RNe for which only one eruption has been discovered. Since RNe are candidate Type Ia supernova progenitors, it is important to know whether there are enough in our Galaxy to provide the supernova rate, and therefore to know how many RNe are masquerading as CNe. To quantify this, we collected all available information on the light curves and spectra of a Galactic, time-limited sample of 237 CNemore » and the 10 known RNe, as well as exhaustive discovery efficiency records. We recognize RNe as having (1) outburst amplitude smaller than 14.5 – 4.5 × log (t {sub 3}), (2) orbital period >0.6 days, (3) infrared colors of J – H > 0.7 mag and H – K > 0.1 mag, (4) FWHM of Hα > 2000 km s{sup –1}, (5) high excitation lines, such as Fe X or He II near peak, (6) eruption light curves with a plateau, and (7) white dwarf mass greater than 1.2 M {sub ☉}. Using these criteria, we identify V1721 Aql, DE Cir, CP Cru, KT Eri, V838 Her, V2672 Oph, V4160 Sgr, V4643 Sgr, V4739 Sgr, and V477 Sct as strong RN candidates. We evaluate the RN fraction among the known CNe using three methods to get 24% ± 4%, 12% ± 3%, and 35% ± 3%. With roughly a quarter of the 394 known Galactic novae actually being RNe, there should be approximately a hundred such systems masquerading as CNe.« less
Near-infrared and optical studies of the highly obscured nova V1831 Aquilae (Nova Aquilae 2015)
NASA Astrophysics Data System (ADS)
Banerjee, D. P. K.; Srivastava, Mudit K.; Ashok, N. M.; Munari, U.; Hambsch, F.-J.; Righetti, G. L.; Maitan, A.
2018-01-01
Near-infrared (NIR) and optical photometry and spectroscopy are presented for the nova V1831 Aquilae, covering the early decline and dust-forming phases during the first ∼90 d after its discovery. The nova is highly reddened due to interstellar extinction. Based solely on the nature of the NIR spectrum, we are able to classify the nova to be of the Fe II class. The distance and extinction to the nova are estimated to be 6.1 ± 0.5 kpc and Av ∼ 9.02, respectively. Lower limits of the electron density, emission measure and ionized ejecta mass are made from a Case B analysis of the NIR Brackett lines, while the neutral gas mass is estimated from the optical [O I] lines. We discuss the cause of the rapid strengthening of the He I 1.0830-μm line during the early stages. V1831 Aql formed a modest amount of dust fairly early (∼19.2 d after discovery); the dust shell is not seen to be optically thick. Estimates of the dust temperature, dust mass and grain size are made. Dust formation commences around day 19.2 at a condensation temperature of 1461 ± 15 K, suggestive of a carbon composition, following which the temperature is seen to decrease gradually to 950 K. The dust mass shows a rapid initial increase, which we interpret as being due to an increase in the number of grains, followed by a period of constancy, suggesting the absence of grain destruction processes during this latter time. A discussion of the evolution of these parameters is made, including certain peculiarities seen in the grain radius evolution.
Optical evolution of Nova Ophiuchi 2007 = V2615 Oph
NASA Astrophysics Data System (ADS)
Munari, U.; Henden, A.; Valentini, M.; Siviero, A.; Dallaporta, S.; Ochner, P.; Tomasoni, S.
2008-06-01
The moderately fast Nova Oph 2007 reached maximum brightness on 2007 March 28 at V= 8.52, B-V=+1.12, V-RC=+0.76, V-IC=+1.59 and RC-IC=+0.83, after fast initial rise and a pre-maximum halt lasting a week. Decline times were tV2= 26.5, tB2= 30, tV3= 48.5 and tB3= 56.5 d. The distance to the nova is d= 3.7 ± 0.2 kpc, the height above the Galactic plane is z= 215 pc, the reddening is E(B-V) = 0.90 and the absolute magnitude at maximum is MmaxV=-7.2 and MmaxB=-7.0. The spectrum four days before maximum resembled a F6 supergiant, in an agreement with broad-band colours. It later developed into that of a standard `Fe ii'-class nova. Nine days past maximum, the expansion velocity estimated from the width of Hα emission component was ˜730 km s-1, and the displacement from it of the principal and diffuse-enhanced absorption systems was ˜650 and 1380 km s-1, respectively. Dust probably formed and disappeared during the period from 82 to 100 d past maximum, causing (at peak dust concentration) an extinction of ΔB= 1.8 mag and an extra ΔE(B-V) = 0.44 reddening.
Fluorine in the solar neighborhood: Chemical evolution models
NASA Astrophysics Data System (ADS)
Spitoni, E.; Matteucci, F.; Jönsson, H.; Ryde, N.; Romano, D.
2018-04-01
Context. In light of new observational data related to fluorine abundances in solar neighborhood stars, we present chemical evolution models testing various fluorine nucleosynthesis prescriptions with the aim to best fit those new data. Aim. We consider chemical evolution models in the solar neighborhood testing various nucleosynthesis prescriptions for fluorine production with the aim of reproducing the observed abundance ratios [F/O] versus [O/H] and [F/Fe] versus [Fe/H]. We study in detail the effects of various stellar yields on fluorine production. Methods: We adopted two chemical evolution models: the classical two-infall model, which follows the chemical evolution of halo-thick disk and thin disk phases; and the one-infall model, which is designed only for thin disk evolution. We tested the effects on the predicted fluorine abundance ratios of various nucleosynthesis yield sources, that is, asymptotic giant branch (AGB) stars, Wolf-Rayet (W-R) stars, Type II and Type Ia supernovae, and novae. Results: The fluorine production is dominated by AGB stars but the W-R stars are required to reproduce the trend of the observed data in the solar neighborhood with our chemical evolution models. In particular, the best model both for the two-infall and one-infall cases requires an increase by a factor of 2 of the W-R yields. We also show that the novae, even if their yields are still uncertain, could help to better reproduce the secondary behavior of F in the [F/O] versus [O/H] relation. Conclusions: The inclusion of the fluorine production by W-R stars seems to be essential to reproduce the new observed ratio [F/O] versus [O/H] in the solar neighborhood. Moreover, the inclusion of novae helps to reproduce the observed fluorine secondary behavior substantially.
High Resolution Optical Spectroscopy of the Classical Nova V5668 Sgr Showing the Presence of Lithium
NASA Astrophysics Data System (ADS)
Wagner, R. Mark; Woodward, Charles E.; Starrfield, Sumner; Ilyin, Ilya; Strassmeier, Klaus
2018-01-01
The classical nova (CN) V5668 Sgr was discovered on 2015 March 15.634 and initial optical spectra implied it was an Fe II-class CN. We obtained high resolution optical spectroscopy on 30 nights between 2015 April 3 and 2016 June 5 with the 2 x 8.4 m Large Binocular Telescope (LBT) and the 1.8 m Vatican Advanced Technology Telescope (VATT) using the Potsdam Echelle Polarimetric Spectroscopic Instrument (PEPSI). The spectra cover all or part of the 3830-9065 Å spectral region at a spectral resolution of up to 270,000 (1 km/s); the highest resolution currently available on any 8-10 m class telescope. The early spectra are dominated by emission lines of the Balmer and Paschen series of hydrogen, Fe II, Ca II, and Na I with P Cyg-type line profiles as well as emission lines of [O I]. Numerous interstellar lines and bands are readily apparent at high spectral resolution. The permitted line profiles show complex and dramatic variations in the multi-component P Cyg-type line profiles with time. We detect a weak blue-shifted absorption line at a velocity consistent with Li I 6708 Å when compared with the line profiles of Hβ, Fe II 5169 Å, and Na I D. This line is present in spectra obtained on 7 of 8 consecutive nights up to day 21 of the outburst; but absent on day 42 when it is evident that the ionization of the ejecta has significantly increased. The equivalent width of the line converted to a column density, and the resulting mass fraction, imply a significant enrichment of 7Li in the ejecta. 7Li is produced by the decay of unstable 7Be created during the thermonuclear runaway. The discovery of the resonance lines of 7Be II in the optical spectra of the recent CNe V339 Del, V2944 Oph, and V5668 Sgr by Tajitsu et al. (2016) and its subsequent decay to 7Li (half life of 53 days) suggests a significant enrichment of 7Li in the Galaxy from CNe is possible. Our observations of the Li I 6708 Å line in the early optical spectra of V5668 Sgr mark the second direct detection of Li in a CN following the detection of Li I in the early optical spectra of V1369 Cen by Izzo et al. (2015). SS acknowledges partial support from NSF and NASA grants to ASU. CEW acknowledges support from NASA.
NASA Technical Reports Server (NTRS)
Horne, Keith; Marsh, T. R.; Cheng, F. H.; Hubeny, Ivan; Lanz, Theirry
1994-01-01
Hubble Space Telescope (HST) observations of the eclipsing dwarf nova OY Car in its quiescent state are used to isolate the ultraviolet spectrum (1150-2500 A at 9.2 A Full Width at Half Maximum (FWHM) resolution) of the white dwarf, the accretion disk, and the bright spot. The white dwarf spectrum has a Stark-broadened photospheric L(alpha) absorption, but is veiled by a forest of blended Fe II features that we attribute to absorption by intervening disk material. A fit gives T(sub w) approx. = 16.5 x 10(exp 3) K for the white dwarf with a solar-abundance, log g = 8 model atmosphere, and T approx. = 10(exp 4) K, n(sub e) approx. = 10(exp 13)/cu cm, N(sub H) approx. = 10(exp 22) sq cm, and velocity dispersion delta V approx. = 60 km/s for the veil of homogeneous solar-abundance local thermodynamic equilibrium (LTE) gas. The veil parameters probably measure characteristic physical conditions in the quiescent accretion disk or its chromosphere. The large velocity dispersion is essential for a good fit; it lowers (chi square)/778 from 22 to 4. Keplerian shear can produce the velocity dispersion if the veiling gas is located at R approx. = 5 R(sub W) with (delta R)/R approx. = 0.3, but this model leaves an unobscured view to the upper hemisphere of the white dwarf, incompatible with absorptions that are up to 80% deep. The veiling gas may be in the upper atmosphere of the disk near its outer rim, but we then require supersonic (Mach approx. = 6) but sub-Keplerian (delta V/V(sub Kep) approx. = 0.07) velocity disturbances in this region to produce both the observed radial velocity dispersion and vertical motions sufficient to elevate the gas to z/R = cos i = 0.12. Such motions might be driven by the gas stream, since it may take several Kepler periods to reestablish the disk's vertical hydrostatic equilibrium. The temperature and column density of the gas we see as Fe II absorption in the ultraviolet are similar to what is required to produce the strong Balmer jump and line emissions seen in optical spectra of OY Car and similar quiescent dwarf novae. The outer accretion disk is detected at mid-eclipse with a spectrum that rises from 0.05 to 0.3 mJy between 2000 and 2500 A, consistent with combinations of cool blackbodies, blended Fe II emission lines, and Balmer continuum emission. The total disk flux density is 0.5 mJy at 2500 A, and this shallow disk eclipse implies a roughly flat surface brightness distribution. The bright spot, somewhat bluer than the disk, has a flux density rising from 0.05 to 0.15 mJy between 1600 and 2500 A. The C IV emission line has a broad shallow eclipse, but the radial velocity variations observed during the eclipse do not clearly distinguish between a disk or wind origin. The only possible indications of boundary layer emission are fast UV flares that appear to arise from near the central object -- not from the bright spot.
ERIC Educational Resources Information Center
Wootten, Marian; And Others
Separate formal evaluations were conducted of the following alternative schools in the Seattle Public Schools system: Nova, Orca, Summit K-12, Alternative School 1 (AS1), Alternative Elementary School II (AES II), and Alternative Elementary School III (AES III). These six documents, combined here as one item, describe the distinctive…
IUE short-wavelength high-dispersion line list for the symbiotic nova RR Telescopii
NASA Technical Reports Server (NTRS)
Aufdenberg, Jason P.
1993-01-01
An 820 minute and other long-exposure archival SWP IUE high-dispersion spectra of symbiotic star RR Tel have been combined to form a composite spectrum. In most of these spectra many lines are saturated, but weaker features appear above the continuum. Their wavelengths were measured from the composite spectrum and compared with the line list from a thorough study of RR Tel by Penston et al. (1983). Among the revised line list are 22 new line identifications from ions C III, O I, N I, Mg VI, Si I, S I, S IV, Fe II, and Ni II. N I exists inside RR Tel's H II region and is pumped by the hot component's continuum. The fluxes for all the lines in each of the spectra are presented. All of the observed ions show a secular flux decrease between 1978 and 1988. A list of SWP high-dispersion camera artifacts is also presented. The list was generated by comparing RR Tel spectra to a long-exposure sky flat.
Copernicus observations of Nova Cygni 1975
NASA Technical Reports Server (NTRS)
Jenkins, E. B.; Snow, T. P.; Upson, W. L.; Anderson, R.; Starrfield, S. G.; Gallagher, J. S.; Friedjung, M.; Linsky, J. L.; Henry, R. C.; Moos, H. W.
1977-01-01
Near-ultraviolet radiation from Nova Cygni 1975 was detected by the Copernicus satellite on five occasions from 1975 September 1 to 1975 September 9. The nova was not seen in the UV after this date. The principal result was the observation of a broad emission feature from the Mg II doublet at 2800 A. The absence of strong UV radiation at shorter wavelengths suggests that these lines are produced by collisional excitation in the outer layers of an expanding shell with electron temperature of approximately 4000 K. The absence of observed emission lines from highly ionized species indicates that the amount of material with log T between 4.4 and 5.7 is less than 0.001 times that which produces the Mg II emission. The continuum flux in the near-UV decreased as the nova evolved, showing that the total luminosity decreased as the nova faded in the visible.
NASA Astrophysics Data System (ADS)
Ribeiro, V. A. R. M.; Bode, M. F.; Williams, R. E.
2014-12-01
We modelled the late-time Hubble Space Telescope imaging of RS Ophiuchi with models from Ribeiro et al. (2009), which at the time due to the unknown availability of simultaneous ground-based spectroscopy left some open questions as to the evolution of the expanding nebular from the early to the late time observations. Initial emission line identifications suggest that no forbidden lines are present in the spectra and that the emission lines arising in the region of the WFPC2 F502N images are due to N II and He I + Fe II. The best model fit to the spectrum is one where the outer faster moving material expands linearly with time while the inner over-density material either suffered some deceleration or did not change in physical size. The origin of this inner over-density requires further exploration.
Igneous petrology of the new ureilites Nova 001 and Nullarbor 010
NASA Technical Reports Server (NTRS)
Triman, Allan H.; Berkley, John L.
1994-01-01
The Nova 001 (= Nuevo Mercurio (b)) and Nullarbor 010 meteorites are ureilites, both of which contain euhedral graphite crystals. The bulk of the meteorites are olivine (Fo79) and pyroxenes (Wo9En73Fs18, Wo3En77Fs20), with a few percent graphite and minor amounts of troilite, Ni-Fe metal, and possibly diamond. The rims of olivine grains are reduced (to Fo91) and contain abundant blebs of Fe metal. Silicate mineral grains are equant, anhedral, up to 2 mm across, and lack obvious preferred orientations. Euhedral graphite crystals (to 1 mm x 0.3 mm) are present at silicate grain boundaries, along boundaries and protruding into the silicates, and entirely within silicate mineral grains. Graphite euhedra are also present as radiating clusters and groups of parallel plates grains embedded in olivine; no other ureilite has comparable graphite textures. Minute lumps within graphite grains are possible diamond, inferred to be a result of shock. Other shock effects are limited to undulatory extinction and fracturing. Both ureilites have been weathered significantly. Considering their similar mineralogies, identical mineral compositions, and identical unusual textures, Nova 001 and Nullarbor 010 are probably paired. Based on olivine compositions, Nova 001 and Nullarbor 010 are in Group 1 (FeO-rich) of Berkley et al. (1980). Silicate mineral compositions are consistent with those of others known ureilites. The presence of euhedral graphite crystals within the silicate minerals is consistent with an igneous origin, and suggests that large proportions of silicate magma were present locally and crystallized in situ.
Discovery of a New Classical Nova Shell Around a Nova-like Cataclysmic Variable
NASA Astrophysics Data System (ADS)
Guerrero, Martín A.; Sabin, Laurence; Tovmassian, Gagik; Santamaría, Edgar; Michel, Raul; Ramos-Larios, Gerardo; Alarie, Alexandre; Morisset, Christophe; Bermúdez Bustamante, Luis C.; González, Chantal P.; Wright, Nicholas J.
2018-04-01
The morphology and optical spectrum of IPHASX J210204.7+471015, a nebula classified as a possible planetary nebula are, however, strikingly similar to those of AT Cnc, a classical nova shell around a dwarf nova. To investigate its true nature, we have obtained high-resolution narrowband [O III] and [N II] images and deep optical spectra. The nebula shows an arc of [N II]-bright knots notably enriched in nitrogen, while an [O III]-bright bow shock is progressing throughout the ISM. Diagnostic line ratios indicate that shocks are associated with the arc and bow shock. The central star of this nebula has been identified by its photometric variability. Time-resolved photometric and spectroscopic data of this source reveal a period of 4.26 hr, which is attributed to a binary system. The optical spectrum is notably similar to that of RW Sex, a cataclysmic variable star (CV) of the UX UMa nova-like (NL) type. Based on these results, we propose that IPHASX J210204.7 + 471015 is a classical nova shell observed around a CV-NL system in quiescence.
NASA Astrophysics Data System (ADS)
Whiteway, Sandra A.; Paine, Michael D.; Wells, Trudy A.; DeBlois, Elisabeth M.; Kilgour, Bruce W.; Tracy, Ellen; Crowley, Roger D.; Williams, Urban P.; Janes, G. Gregory
2014-12-01
This paper discusses toxicity test results on sediments from the Terra Nova offshore oil development. The Terra Nova Field is located on the Grand Banks approximately 350 km southeast of Newfoundland (Canada). The amphipod (Rhepoxynius abronius) survival and solid phase luminescent bacteria (Vibrio fischeri, or Microtox) assays were conducted on sediment samples collected from approximately 50 stations per program year around Terra Nova during baseline (1997), prior to drilling, and in 2000, 2001, 2002, 2004, 2006, 2008 and 2010 after drilling began. The frequency of toxic responses in the amphipod toxicity test was low. Of the ten stations that were toxic in environmental effects monitoring (EEM) years, only one (station 30(FE)) was toxic in more than one year and could be directly attributed to Terra Nova project activities. In contrast, 65 (18%) of 364 EEM samples were toxic to Microtox. Microtox toxicity in EEM years was not related to distance from Terra Nova drill centres or concentrations of >C10-C21 hydrocarbons or barium, the primary constituents of the synthetic-based drill muds used at Terra Nova. Of the variables tested, fines and strontium levels showed the strongest (positive) correlations with toxicity. Neither fines nor strontium levels were affected by drill cuttings discharge at Terra Nova, except at station 30(FE) (and that station was not toxic to Microtox). Benthic macro-invertebrate abundance, richness and diversity were greater in toxic than in non-toxic sediments. Therefore, Microtox responses indicating toxicity were associated with positive biological responses in the field. This result may have been an indirect function of the increased abundance of most invertebrate taxa in less sandy sediments with higher gravel content, where fines and strontium levels and, consequently, toxicity to Microtox were high; or chemical substances released by biodegradation of organic matter, where invertebrates are abundant, may be toxic to Microtox. Given the lack of association between Microtox results and discharge from Terra Nova, coupled with the confounding effects of other variables, the usefulness of Microtox toxicity tests within the context of environmental monitoring for the Terra Nova and, potentially, other offshore oil operations needs to be questioned. The amphipod toxicity tests showed that sediments in the vicinity of discharges of synthetic-based drilling mud cuttings are rarely toxic.
Orbital phase dependent IUE spectra of the nova like binary II Arietis
NASA Technical Reports Server (NTRS)
Guinan, E. F.; Sion, E. M.
1981-01-01
Nine low dispersion IUE spectra of the nova like binary TT Ari over its 3h17m orbital period were obtained. Four short wave spectra and five long wave spectra exhibit marked changes in line strength and continuum shape with orbital phase. The short wave spectra show the presence in absorption of C III, Lyman alpha, SiIII, NV, SiIV, CIV, HeII, AlIII, and NIV. The CIV shows a P Cygni profile on two of the spectra. Implications of these spectra for the nature of nova like variables are discussed.
Discovery and Classification of Nova in M31 : P60-M31-081230
NASA Astrophysics Data System (ADS)
Kasliwal, M. M.; Rau, A.; Salvato, M.; Cenko, S. B.; Ofek, E. O.; Quimby, R.; Kulkarni, S. R.
2009-01-01
On UT 2008 Dec 30.207, P60-FasTING (Palomar 60-inch Fast Transients In Nearby Galaxies) discovered an optical transient in M31 at RA(J2000) = 00:43:05.027, DEC(J2000)=+41:17:52.25, offset from the nucleus by 233.4"E,103.8"N. P60-M31-081230 had a brightness of g = 20.5 +/- 0.2 at discovery. It was not detected by P60 to g > 22.0 on Dec 29.140. There is no counterpart in SIMBAD. Follow-up spectroscopy with the Double Beam Spectrograph on the Palomar Hale telescope on Dec 31.104 revealed prominent Balmer emission and strong P Cygni profiles of several Fe II lines.
AT Cnc: A SECOND DWARF NOVA WITH A CLASSICAL NOVA SHELL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shara, Michael M.; Mizusawa, Trisha; Zurek, David
2012-10-20
We are systematically surveying all known and suspected Z Cam-type dwarf novae for classical nova shells. This survey is motivated by the discovery of the largest known classical nova shell, which surrounds the archetypal dwarf nova Z Camelopardalis. The Z Cam shell demonstrates that at least some dwarf novae must have undergone classical nova eruptions in the past, and that at least some classical novae become dwarf novae long after their nova thermonuclear outbursts, in accord with the hibernation scenario of cataclysmic binaries. Here we report the detection of a fragmented 'shell', 3 arcmin in diameter, surrounding the dwarf novamore » AT Cancri. This second discovery demonstrates that nova shells surrounding Z Cam-type dwarf novae cannot be very rare. The shell geometry is suggestive of bipolar, conical ejection seen nearly pole-on. A spectrum of the brightest AT Cnc shell knot is similar to that of the ejecta of the classical nova GK Per, and of Z Cam, dominated by [N II] emission. Galaxy Evolution Explorer FUV imagery reveals a similar-sized, FUV-emitting shell. We determine a distance of 460 pc to AT Cnc, and an upper limit to its ejecta mass of {approx}5 Multiplication-Sign 10{sup -5} M {sub Sun }, typical of classical novae.« less
Carbon X-ray absorption in the local ISM: fingerprints in X-ray Novae spectra
NASA Astrophysics Data System (ADS)
Gatuzz, Efraín; Ness, J.-U.; Gorczyca, T. W.; Hasoglu, M. F.; Kallman, Timothy R.; García, Javier A.
2018-06-01
We present a study of the C K-edge using high-resolution LETGS Chandra spectra of four novae during their super-soft-source (SSS) phase. We identified absorption lines due to C II Kα, C III Kα and C III Kβ resonances. We used these astronomical observations to perform a benchmarking of the atomic data, which involves wavelength shifts of the resonances and photoionization cross-sections. We used improved atomic data to estimate the C II and C III column densities. The absence of physical shifts for the absorption lines, the consistence of the column densities between multiple observations and the high temperature required for the SSS nova atmosphere modeling support our conclusion about an ISM origin of the respective absorption lines. Assuming a collisional ionization equilibrium plasma the maximum temperature derived from the ratio of C II/C III column densities of the absorbers correspond to Tmax < 3.05 × 104 K.
Synthetic Spectral Ananlysis of the Nova-Like Variable KQ Mon
NASA Astrophysics Data System (ADS)
Wolfe, Aaron; Sion, E.
2011-01-01
KQ Mon is classified as a nova-like variable with an uncertain orbital period of 0.128 d. Optical spectra (Zwitter, T. & Munari, U.1994, A&AS, 107, 503) reveal no emission lines but strong Balmer absorption features. High speed flickering has been observed indicative of accretion. IUE spectra reveal deep absorption lines due to C III, C II, Si III, Si IV, C IV, He II but no P Cygni profiles indicative of outflow. Its classification in Ritter and Kolb (2006) as a UX UMa type nova-like is uncertain. We have carried out the first synthetic spectral analysis of the IUE archival spectra of KQ Mon with realistic accretion disk models with vertical structure and high gravity photosphere models. The results of our model atmosphere and model accretion disk analyses are presented. We discuss the properties that we have derived for KQ Mon and compare KQ Mon with other nova-like variables viewed at low inclination. This work was supported in part by NSF grant AST0807892 to Villanova University.
Nova Southeastern University Calendars
Now / Request Info Giving Alumni Select A College Nova Southeastern University Abraham S. Fischler NSU has to offer undergraduate students. Student Life Learn why the years you spend at NSU will be II teams. Living on Campus On campus housing options for undergraduate and graduate students. Clubs
NASA Astrophysics Data System (ADS)
Arkhipova, V. P.; Esipov, V. F.; Ikonnikova, N. P.; Komissarova, G. V.
2015-03-01
The photoelectric UBV observations of the peculiar symbiotic star V1329 Cyg performed at the Crimean Station of the SAI-MSU during 245 nights over the period 2003-2014 are presented. The star's light curves since 1973 from the Crimean observations are shown. The brightness decline after its outburst over the last 40 years was . The phase color curves at phases 0.2 and 0.8 have maxima. Their qualitative interpretation in terms of the model of interacting winds in symbiotic binary star systems is proposed. The orbital period of the binary system has been redetermined. The spectroscopic observations at the 125-cm telescope of the Crimean Station from 1994 to 2014 have confirmed the change in the system's emission spectrum with orbital phase. The HI, He I, and Fe II line fluxes clearly trace the orbital motion. The Balmer hydrogen lines as well as the continuum at λ6000 and the V-band flux change by a factor of ˜3.5 from minimum to maximum light. The neutral helium lines change by a factor of 5. The high-excitation He II, [FeVII], [Ca VII] lines and the Raman O VI λ6825 line have shown changes in the fluxes by a factor of ˜2-3 weakly correlating with the orbital phase. The equivalent widths of the HI and He I lines are maximal at the star's maximum light and have distinct minima at phases 0.2 and 0.8, while the equivalent widths of the He II, [FeVII], and [CaVII] lines are minimal in the range of phases 0.2-0.8. The question about the location of the permitted and forbidden line emission zones in the binary system V1329 Cyg is discussed. The evolution of the emission spectrum for V1329 Cyg from 1980 to 2014 has been studied on the basis of new and archival data. A gradual decrease in the absolute fluxes of the nebular emission lines has been detected. The [O III] and [Fe VII] lines have weakened significantly. However, the [Fe X] λ6375 Å line has appeared and gradually strengthened, suggesting an increase in the degree of gas ionization in the line formation zone.
Libraries at Nova Southeastern University | Nova Southeastern University
NSU has to offer undergraduate students. Student Life Learn why the years you spend at NSU will be , dentistry, law, and psychology. Certificate Receive a graduate level certificate to enhance your skills II teams. Living on Campus On campus housing options for undergraduate and graduate students. Clubs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shara, Michael M.; Doyle, Trisha; Lauer, Tod R.
The extensive grid of numerical simulations of nova eruptions first predicted that some classical novae might significantly deviate from the Maximum Magnitude–Rate of Decline (MMRD) relation, which purports to characterize novae as standard candles. Kasliwal et al. have announced the observational detection of a new class of faint, fast classical novae in the Andromeda galaxy. These objects deviate strongly from the MMRD relationship, as predicted by Yaron et al. Recently, Shara et al. reported the first detections of faint, fast novae in M87. These previously overlooked objects are as common in the giant elliptical galaxy M87 as they are inmore » the giant spiral M31; they comprise about 40% of all classical nova eruptions and greatly increase the observational scatter in the MMRD relation. We use the extensive grid of the nova simulations of Yaron et al. to identify the underlying causes of the existence of faint, fast novae. These are systems that have accreted, and can thus eject, only very low-mass envelopes, of the order of 10 –7–10 –8 M ⊙, on massive white dwarfs. Such binaries include, but are not limited to, the recurrent novae. As a result, these same models predict the existence of ultrafast novae that display decline times, t 2, to be as short as five hours. We outline a strategy for their future detection.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shara, Michael M.; Doyle, Trisha; Zurek, David
The extensive grid of numerical simulations of nova eruptions from the work of Yaron et al. first predicted that some classical novae might significantly deviate from the Maximum Magnitude–Rate of Decline (MMRD) relation, which purports to characterize novae as standard candles. Kasliwal et al. have announced the observational detection of a new class of faint, fast classical novae in the Andromeda galaxy. These objects deviate strongly from the MMRD relationship, as predicted by Yaron et al. Recently, Shara et al. reported the first detections of faint, fast novae in M87. These previously overlooked objects are as common in the giantmore » elliptical galaxy M87 as they are in the giant spiral M31; they comprise about 40% of all classical nova eruptions and greatly increase the observational scatter in the MMRD relation. We use the extensive grid of the nova simulations of Yaron et al. to identify the underlying causes of the existence of faint, fast novae. These are systems that have accreted, and can thus eject, only very low-mass envelopes, of the order of 10{sup −7}–10{sup −8} M {sub ⊙}, on massive white dwarfs. Such binaries include, but are not limited to, the recurrent novae. These same models predict the existence of ultrafast novae that display decline times, t {sub 2,} to be as short as five hours. We outline a strategy for their future detection.« less
Shara, Michael M.; Doyle, Trisha; Lauer, Tod R.; ...
2017-04-20
The extensive grid of numerical simulations of nova eruptions first predicted that some classical novae might significantly deviate from the Maximum Magnitude–Rate of Decline (MMRD) relation, which purports to characterize novae as standard candles. Kasliwal et al. have announced the observational detection of a new class of faint, fast classical novae in the Andromeda galaxy. These objects deviate strongly from the MMRD relationship, as predicted by Yaron et al. Recently, Shara et al. reported the first detections of faint, fast novae in M87. These previously overlooked objects are as common in the giant elliptical galaxy M87 as they are inmore » the giant spiral M31; they comprise about 40% of all classical nova eruptions and greatly increase the observational scatter in the MMRD relation. We use the extensive grid of the nova simulations of Yaron et al. to identify the underlying causes of the existence of faint, fast novae. These are systems that have accreted, and can thus eject, only very low-mass envelopes, of the order of 10 –7–10 –8 M ⊙, on massive white dwarfs. Such binaries include, but are not limited to, the recurrent novae. As a result, these same models predict the existence of ultrafast novae that display decline times, t 2, to be as short as five hours. We outline a strategy for their future detection.« less
OGLE ATLAS OF CLASSICAL NOVAE. II. MAGELLANIC CLOUDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mróz, P.; Udalski, A.; Poleski, R.
2016-01-15
The population of classical novae in the Magellanic Clouds was poorly known because of a lack of systematic studies. There were some suggestions that nova rates per unit mass in the Magellanic Clouds were higher than in any other galaxy. Here, we present an analysis of data collected over 16 years by the OGLE survey with the aim of characterizing the nova population in the Clouds. We found 20 eruptions of novae, half of which are new discoveries. We robustly measure nova rates of 2.4 ± 0.8 yr{sup −1} (LMC) and 0.9 ± 0.4 yr{sup −1} (SMC) and confirm that the K-band luminosity-specific novamore » rates in both Clouds are 2–3 times higher than in other galaxies. This can be explained by the star formation history in the Magellanic Clouds, specifically the re-ignition of the star formation rate a few Gyr ago. We also present the discovery of the intriguing system OGLE-MBR133.25.1160, which mimics recurrent nova eruptions.« less
NASA Astrophysics Data System (ADS)
Yuan, Songhu; Liu, Xixiang; Liao, Wenjuan; Zhang, Peng; Wang, Xiaoming; Tong, Man
2018-02-01
Production of hydroxyl radicals (radOH) has been recently revealed upon oxygenation of sediments in redox-dynamic subsurface environments. In particular, Fe(II)-bearing clay minerals are the major sediment components contributing to radOH production upon oxygenation, and the produced radOH can oxidize contaminants and inactivate bacteria. Whereas, the mechanisms of radOH production from oxygenation of Fe(II)-bearing clay minerals remain elusive. The objectives of this study were to identify the structural variation of Fe(II) entities during the oxidation of Fe(II)-bearing clay minerals by O2, and to unravel the mechanisms of electron transfer within the mineral structure and from mineral to O2 for radOH production. Nontronite (NAu-2, 23% Fe) which was chemically reduced to 54.5% Fe(II) in total Fe was used as a model Fe(II)-bearing clay mineral. Production of radOH and oxidation of Fe(II) were measured during the oxidation of reduced NAu-2 by O2. A wide spectrum of spectroscopic techniques, including Fourier transform infrared spectroscopy (FTIR), Fe K-edge X-ray absorption spectroscopy (XAS), Mössbauer spectra, and X-ray photoelectron spectroscopy (XPS), were employed to explore the structural variation of Fe(II) entities in NAu-2 and the electron transfer within NAu-2 and from NAu-2 to O2. For 180 min oxidation of 1 g/L reduced NAu-2, a biphasic radOH production was observed, being quick within the initial 15 min and slow afterwards. Production of radOH correlates well with oxidation of Fe(II) in the reduced NAu-2. Within the initial 15 min, trioctahedral Fe(II)-Fe(II)-Fe(II) entities and edge Fe(II) in the reduced NAu-2 were preferentially and quickly oxidized, and electrons from the interior Fe(II)-Fe(II)-Fe(II) entities were most likely ejected from the basal siloxane plane to O2. Meanwhile, trioctahedral Fe(II)-Fe(II)-Fe(II) entities were mainly transformed to dioctahedral Fe(II)-Fe(II) entities. When the time of oxygenation was longer than 15 min, dioctahedral Al-Fe(II), Fe(II)-Fe(II) and Fe(II)-Fe(III) entities were slowly oxidized, and the interior electrons were transported through Fe(II)-O-Fe(III) linkages to edges and then ejected to O2. In the slow stage of oxidation, electrons from interior Fe(II) accumulated towards the near surface layers and fueled the regeneration of edge Fe(II) for radOH production. In both stages, one-electron transfer mechanism with the involvement of O2rad - and H2O2 applies for radOH production from the oxidation of structural Fe(II) by O2. The mechanisms unraveled in this study advance the understanding of reactive oxygen species (ROS) production and structural Fe variation when Fe(II)-bearing clay minerals are oxygenated in redox-dynamic systems.
Model Atmospheres for Novae in Outburst: Summary of Research
NASA Technical Reports Server (NTRS)
Hauschildt, Peter H.
1999-01-01
This paper presents a final report and summary of research on Model Atmospheres for Novae in Outburst. Some of the topics include: 1) Detailed NLTE (non-local thermodynamic equilibrium) Model Atmospheres for Novae during Outburst: II. Modeling optical and ultraviolet observations of Nova LMC 1988 #1; 2) A Non-LTE Line-Blanketed Stellar Atmosphere Model of the Early B Giant epsilon CMa; 3) Spectroscopy of Low Metallicity Stellar atmospheres; 4) Infrared Colors at the Stellar/Substellar Boundary; 5) On the abundance of Lithium in T CrB; 6) Numerical Solution of the Expanding Stellar Atmosphere Problem; and 7) The NextGen Model Atmosphere grid for 3000 less than or equal to T (sub eff) less than or equal to 10000K.
NASA Astrophysics Data System (ADS)
Gillespie, S. A.; Parikh, A.; Barton, C. J.; Faestermann, T.; José, J.; Hertenberger, R.; Wirth, H.-F.; de Séréville, N.; Riley, J. E.; Williams, M.
2017-08-01
Sulphur isotopic ratio measurements may help to establish the astrophysical sites in which certain presolar grains were formed. Nova model predictions of the 34S/32S ratio are, however, unreliable due to the lack of an experimental 34S(p ,γ )35Cl reaction rate. To this end, we have measured the 34S(3He,d )35Cl reaction at 20 MeV using a high resolution quadrupole-dipole-dipole-dipole magnetic spectrograph. Twenty-two levels over 6.2 MeV
Non-LTE model atmosphere analysis of Nova Cygni 1992
NASA Technical Reports Server (NTRS)
Hauschildt, P. H.; Starrfield, S.; Austin, S.; Wagner, R. M.; Shore, S. N.; Sonneborn, G.
1994-01-01
We use spherically symmetric non-local thermodynamic equilibrium (non-LTE), line-blanketed, expanding model atmospheres to analyze the International Ultraviolet Explorer (IUE) and optical spectra of Nova Cygni 1992 during the early phases of its outburst. We find that the first IUE spectrum obtained just after discovery on 1992 February 20, is best reproduced by a model atmosphere with a steep density gradient and homologous expansion, whereas the IUE and optical spectra obtained on February 24 show an extended, optically thick, wind structure. Therefore, we distinguish two phases of the early evolution of the nova photosphere: the initial, rapid, 'fireball' phase and the subsequent, much longer, optically thick 'wind' phase. The importance of line-blanketing in nova spectra is demonstrated. Our preliminary abundance analysis implies that hydrogen is depeleted in the ejecta, corresponding to abundance enhancements of Fe by a factor of approximately 2 and of CNO by more than a factor of 10 when compared to solar abundances. The synthetic spectra reproduce both the observed pseudo-continua as well as most of the observed features from the UV to the optical spectral range and demonstrate the importance of obtaining nearly simultaneous UV and optical spectra for performing accurate analyses of expanding stellar atmospheres (for both novae and supernovae).
Song, Wei; Zhai, Lin-Feng; Cui, Yu-Zhi; Sun, Min; Jiang, Yuan
2013-06-06
Due to the high redox activity of Fe(II) and its abundance in natural waters, the electro-oxidation of Fe(II) can be found in many air-cathode fuel cell systems, such as acid mine drainage fuel cells and sediment microbial fuel cells. To deeply understand these iron-related systems, it is essential to elucidate the kinetics and mechanisms involved in the electro-oxidation of Fe(II). This work aims to develop a kinetic model that adequately describes the electro-oxidation process of Fe(II) in air-cathode fuel cells. The speciation of Fe(II) is incorporated into the model, and contributions of individual Fe(II) species to the overall Fe(II) oxidation rate are quantitatively evaluated. The results show that the kinetic model can accurately predict the electro-oxidation rate of Fe(II) in air-cathode fuel cells. FeCO3, Fe(OH)2, and Fe(CO3)2(2-) are the most important species determining the electro-oxidation kinetics of Fe(II). The Fe(II) oxidation rate is primarily controlled by the oxidation of FeCO3 species at low pH, whereas at high pH Fe(OH)2 and Fe(CO3)2(2-) are the dominant species. Solution pH, carbonate concentration, and solution salinity are able to influence the electro-oxidation kinetics of Fe(II) through changing both distribution and kinetic activity of Fe(II) species.
NASA Astrophysics Data System (ADS)
Rivaro, Paola; Ianni, Carmela; Massolo, Serena; Abelmoschi, M. Luisa; De Vittor, Cinzia; Frache, Roberto
2011-05-01
The distribution of the dissolved labile and of the particulate Fe and Cu together with dissolved oxygen, nutrients, chlorophyll a and total particulate matter was investigated in the surface waters of Terra Nova Bay polynya in mid-January 2003. The measurements were conducted within the framework of the Italian Climatic Long-term Interactions of the Mass balance in Antarctica (CLIMA) Project activities. The labile dissolved fraction was operationally defined by employing the chelating resin Chelex-100, which retains free and loosely bound trace metal species. The dissolved labile Fe ranges from below the detection limit (0.15 nM) to 3.71 nM, while the dissolved labile Cu from below the detection limit (0.10 nM) to 0.90 nM. The lowest concentrations for both metals were observed at 20 m depth (the shallowest depth for which metals were measured). The concentration of the particulate Fe was about 5 times higher than the dissolved Fe concentration, ranging from 0.56 to 24.83 nM with an average of 6.45 nM. The concentration of the particulate Cu ranged from 0.01 to 0.71 nM with an average of 0.17 nM. The values are in agreement with the previous data collected in the same area. We evaluated the role of the Fe and Cu as biolimiting metals. The N:dissolved labile Fe ratios (18,900-130,666) would or would not allow a complete nitrate removal, on the basis of the N:Fe requirement ratios that we calculated considering the N:P and the C:P ratios estimated for diatoms. This finding partially agrees with the Si:N ratio that we found (2.29). Moreover we considered a possible influence of the dissolved labile Cu on the Fe uptake process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Tao; Kukkadapu, Ravi K.; Griffin, Aron M.
Fe(III)-oxides and Fe(III)-bearing phyllosilicates are the two major iron sources utilized as electron acceptors by dissimilatory iron-reducing bacteria (DIRB) in anoxic soils and sediments. Although there have been many studies of microbial Fe(III)-oxide and Fe(III)-phyllosilicate reduction with both natural and specimen materials, no controlled experimental information is available on the interaction between these two phases when both are available for microbial reduction. In this study, the model DIRB Geobacter sulfurreducens was used to examine the pathways of Fe(III) reduction in Fe(III)-oxide stripped subsurface sediment that was coated with different amounts of synthetic high surface area goethite. Cryogenic (12K) 57Fe Mössbauermore » spectroscopy was used to determine changes in the relative abundances of Fe(III)-oxide, Fe(III)-phyllosilicate, and phyllosilicate-associated Fe(II) (Fe(II)-phyllosilicate) in bioreduced samples. Analogous Mössbauer analyses were performed on samples from abiotic Fe(II) sorption experiments in which sediments were exposed to a quantity of exogenous soluble Fe(II) (FeCl22H2O) comparable to the amount of Fe(II) produced during microbial reduction. A Fe partitioning model was developed to analyze the fate of Fe(II) and assess the potential for abiotic Fe(II)-catalyzed reduction of Fe(III)-phyllosilicatesilicates. The microbial reduction experiments indicated that although reduction of Fe(III)-oxide accounted for virtually all of the observed bulk Fe(III) reduction activity, there was no significant abiotic electron transfer between oxide-derived Fe(II) and Fe(III)-phyllosilicatesilicates, with 26-87% of biogenic Fe(II) appearing as sorbed Fe(II) in the Fe(II)-phyllosilicate pool. In contrast, the abiotic Fe(II) sorption experiments showed that 41 and 24% of the added Fe(II) engaged in electron transfer to Fe(III)-phyllosilicate surfaces in synthetic goethite-coated and uncoated sediment. Differences in the rate of Fe(II) addition and system redox potential may account for the microbial and abiotic reaction systems. Our experiments provide new insight into pathways for Fe(III) reduction in mixed Fe(III)-oxide/Fe(III)-phyllosilicate assemblages, and provide key mechanistic insight for interpreting microbial reduction experiments and field data from complex natural soils and sediments.« less
NASA Astrophysics Data System (ADS)
Swanner, Elizabeth D.; Wu, Wenfang; Schoenberg, Ronny; Byrne, James; Michel, F. Marc; Pan, Yongxin; Kappler, Andreas
2015-09-01
Much interest exists in finding mineralogical, organic, morphological, or isotopic biosignatures for Fe(II)-oxidizing bacteria (FeOB) that are retained in Fe-rich sediments, which could indicate the activity of these organisms in Fe-rich seawater, more common in the Precambrian Era. To date, the effort to establish a clear Fe isotopic signature in Fe minerals produced by Fe(II)-oxidizing metabolisms has been thwarted by the large kinetic fractionation incurred as freshly oxidized aqueous Fe(III) rapidly precipitates as Fe(III) (oxyhydr)oxide minerals at near neutral pH. The Fe(III) (oxyhydr)oxide minerals resulting from abiotic Fe(II) oxidation are isotopically heavy compared to the Fe(II) precursor and are not clearly distinguishable from minerals formed by FeOB isotopically. However, in marine hydrothermal systems and Fe(II)-rich springs the minerals formed are often isotopically lighter than expected considering the fraction of Fe(II) that has been oxidized and experimentally-determined fractionation factors. We measured the Fe isotopic composition of aqueous Fe (Feaq) and the final Fe mineral (Feppt) produced in batch experiment using the marine Fe(II)-oxidizing phototroph Rhodovulum iodosum. The δ56Feaq data are best described by a kinetic fractionation model, while the evolution of δ56Feppt appears to be controlled by a separate fractionation process. We propose that soluble Fe(III), and Fe(II) and Fe(III) extracted from the Feppt may act as intermediates between Fe(II) oxidation and Fe(III) precipitation. Based on 57Fe Mössbauer spectroscopy, extended X-ray absorption fine structure (EXAFS) spectroscopy, and X-ray total scattering, we suggests these Fe phases, collectively Fe(II/III)interm, may consist of organic-ligand bound, sorbed, and/or colloidal Fe(II) and Fe(III) mineral phases that are isotopically lighter than the final Fe(III) mineral product. Similar intermediate phases, formed in response to organic carbon produced by FeOB and inorganic ligands (e.g., SiO44- or PO43-), may form in many natural Fe(II)-oxidizing environments. We propose that the formation of these intermediates is likely to occur in organic-rich systems, and thus may have controlled the ultimate isotopic composition of Fe minerals in systems where Fe(II) was being oxidized by or in the presence of microbes in Earth's past.
Senko, John M.; Dewers , Thomas A.; Krumholz, Lee R.
2005-01-01
A nitrate-dependent Fe(II)-oxidizing bacterium was isolated and used to evaluate whether Fe(II) chemical form or oxidation rate had an effect on the mineralogy of biogenic Fe(III) (hydr)oxides resulting from nitrate-dependent Fe(II) oxidation. The isolate (designated FW33AN) had 99% 16S rRNA sequence similarity to Klebsiella oxytoca. FW33AN produced Fe(III) (hydr)oxides by oxidation of soluble Fe(II) [Fe(II)sol] or FeS under nitrate-reducing conditions. Based on X-ray diffraction (XRD) analysis, Fe(III) (hydr)oxide produced by oxidation of FeS was shown to be amorphous, while oxidation of Fe(II)sol yielded goethite. The rate of Fe(II) oxidation was then manipulated by incubating various cell concentrations of FW33AN with Fe(II)sol and nitrate. Characterization of products revealed that as Fe(II) oxidation rates slowed, a stronger goethite signal was observed by XRD and a larger proportion of Fe(III) was in the crystalline fraction. Since the mineralogy of Fe(III) (hydr)oxides may control the extent of subsequent Fe(III) reduction, the variables we identify here may have an effect on the biogeochemical cycling of Fe in anoxic ecosystems.
Melton, E. D.; Schmidt, C.; Kappler, A.
2012-01-01
The distribution of neutrophilic microbial iron oxidation is mainly determined by local gradients of oxygen, light, nitrate and ferrous iron. In the anoxic top part of littoral freshwater lake sediment, nitrate-reducing and phototrophic Fe(II)-oxidizers compete for the same e− donor; reduced iron. It is not yet understood how these microbes co-exist in the sediment and what role they play in the Fe cycle. We show that both metabolic types of anaerobic Fe(II)-oxidizing microorganisms are present in the same sediment layer directly beneath the oxic-anoxic sediment interface. The photoferrotrophic most probable number counted 3.4·105 cells·g−1 and the autotrophic and mixotrophic nitrate-reducing Fe(II)-oxidizers totaled 1.8·104 and 4.5·104 cells·g−1 dry weight sediment, respectively. To distinguish between the two microbial Fe(II) oxidation processes and assess their individual contribution to the sedimentary Fe cycle, littoral lake sediment was incubated in microcosm experiments. Nitrate-reducing Fe(II)-oxidizing bacteria exhibited a higher maximum Fe(II) oxidation rate per cell, in both pure cultures and microcosms, than photoferrotrophs. In microcosms, photoferrotrophs instantly started oxidizing Fe(II), whilst nitrate-reducing Fe(II)-oxidizers showed a significant lag-phase during which they probably use organics as e− donor before initiating Fe(II) oxidation. This suggests that they will be outcompeted by phototrophic Fe(II)-oxidizers during optimal light conditions; as phototrophs deplete Fe(II) before nitrate-reducing Fe(II)-oxidizers start Fe(II) oxidation. Thus, the co-existence of the two anaerobic Fe(II)-oxidizers may be possible due to a niche space separation in time by the day-night cycle, where nitrate-reducing Fe(II)-oxidizers oxidize Fe(II) during darkness and phototrophs play a dominant role in Fe(II) oxidation during daylight. Furthermore, metabolic flexibility of Fe(II)-oxidizing microbes may play a paramount role in the conservation of the sedimentary Fe cycle. PMID:22666221
THE CONNECTIONS BETWEEN THE UV AND OPTICAL Fe ii EMISSION LINES IN TYPE 1 AGNs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovacević-Dojcinović, Jelena; Popović, Luka Č., E-mail: jkovacevic@aob.bg.ac.rs, E-mail: lpopovic@aob.bg.ac.rs
We investigate the spectral properties of the UV (λλ2650–3050 Å) and optical (λλ4000–5500 Å) Fe ii emission features in a sample of 293 Type 1 active galactic nuclei (AGNs) from the Sloan Digital Sky Survey database. We explore different correlations between their emission line properties, as well as the correlations with other emission lines from the spectral range. We find several interesting correlations and outline the most interesting results as follows. (i) There is a kinematical connection between the UV and optical Fe ii lines, indicating that the UV and optical Fe ii lines originate from the outer part ofmore » the broad line region, the so-called intermediate line region. (ii) The unexplained anticorrelations of the optical Fe ii equivalent width (EW Fe ii{sub opt}) versus EW [O iii] 5007 Å and EW Fe ii{sub opt} versus FWHM Hβ have not been detected for the UV Fe ii lines. (iii) The significant averaged redshift in the UV Fe ii lines, which is not present in optical Fe ii, indicates an inflow in the UV Fe ii emitting clouds, and probably their asymmetric distribution. (iv) Also, we confirm the anticorrelation between the intensity ratio of the optical and UV Fe ii lines and the FWHM of Hβ, and we find the anticorrelations of this ratio with the widths of Mg ii 2800 Å, optical Fe ii, and UV Fe ii. This indicates a very important role for the column density and microturbulence in the emitting gas. We discuss the starburst activity in high-density regions of young AGNs as a possible explanation of the detected optical Fe ii correlations and intensity line ratios of the UV and optical Fe ii lines.« less
Identification of Recurrent Novae in M31
NASA Astrophysics Data System (ADS)
Shafter, Allen W.; Rector, T. A.; Schweizer, F.; Bryan, J.
2014-01-01
Over roughly the past century a total of more than 900 optical transient events have been recorded in M31, the vast majority of which are believed to represent eruptions of classical novae. The impressive dataset of nova positions put together by Pietsch (http://www.mpe.mpg.de m31novae/opt/m31/) provides the opportunity to search for multiple nova outbursts from the same progenitor system, and thus to characterize the population of recurrent novae (RNe) in M31. In order to identify RNe candidates, we have searched for spatial near coincidences among the 945 recorded novae given in the Pietsch catalog through the end of August 2013. Given that the positions of many of the early novae are quite uncertain, we have set our initial screen to include nova pairs with nominal separations less than or equal to 6 arcsec. We have identified a total of 102 novae that pass this coarse screen. Of these, 78 novae form 39 pairs, 15 form five triples, four novae are part of a quad, and five novae form a quint. As demonstrated by Shafter, Rice and Daub (2009, presented at the "Wild Stars in the Old West II" conference, mintaka.sdsu.edu/faculty/shafter/extragalactic_novae/RNePoster4.pdf), the majority of the 102 novae surviving our initial screen are expected to be associated with chance positional near coincidences (especially near the nucleus), and are not RNe. To decide which candidates are indeed RNe, we have undertaken a study to locate the original discovery plates, CCD images or published finding charts, and to perform the necessary astrometry to identify which of our candidate RNe are chance positional coincidences, and which are RNe. For each candidate, we estimate the probability that the object is a chance positional coincidence as in Shafter et al. (2009). To date, we have been successful in identifying finding charts or original images for most of the candidates, and have found a total of 23 nova outbursts in M31 associated with 10 systems that are almost certainly RNe.
NASA Astrophysics Data System (ADS)
Trouwborst, Robert E.; Johnston, Anne; Koch, Gretchen; Luther, George W.; Pierson, Beverly K.
2007-10-01
We studied the role of microbial photosynthesis in the oxidation of Fe(II) to Fe(III) in a high Fe(II) and high Mn(II) hot spring devoid of sulfide and atmospheric oxygen in the source waters. In situ light and dark microelectrode measurements of Fe(II), Mn(II) and O 2 were made in the microbial mat consisting of cyanobacteria and anoxygenic photosynthetic Chloroflexus sp. We show that Fe(II) oxidation occurred when the mat was exposed to varying intensities of sunlight but not near infrared light. We did not observe any Mn(II) oxidation under any light or dark condition over the pH range 5-7. We observed the impact of oxygenic photosynthesis on Fe(II) oxidation, distinct from the influence of atmospheric O 2 and anoxygenic photosynthesis. In situ Fe(II) oxidation rates in the mats and cell suspensions exposed to light are consistent with abiotic oxidation by O 2. The oxidation of Fe(II) to form primary Fe(III) phases contributed to banded iron-formations (BIFs) during the Precambrian. Both oxygenic photosynthesis, which produces O 2 as an oxidizing waste product, and anoxygenic photosynthesis in which Fe(II) is used to fix CO 2 have been proposed as Fe(II) oxidation mechanisms. Although we do not know the specific mechanisms responsible for all Precambrian Fe(II) oxidation, we assessed the relative importance of both mechanisms in this modern hot spring environment. In this environment, cyanobacterial oxygen production accounted for all the observed Fe(II) oxidation. The rate data indicate that a modest population of cyanobacteria could have mediated sufficient Fe(II) oxidation for some BIFs.
New method for the direct determination of dissolved Fe(III) concentration in acid mine waters
To, T.B.; Nordstrom, D. Kirk; Cunningham, K.M.; Ball, J.W.; McCleskey, R. Blaine
1999-01-01
A new method for direct determination of dissolved Fe(III) in acid mine water has been developed. In most present methods, Fe(III) is determined by computing the difference between total dissolved Fe and dissolved Fe(II). For acid mine waters, frequently Fe(II) >> Fe(III); thus, accuracy and precision are considerably improved by determining Fe(III) concentration directly. The new method utilizes two selective ligands to stabilize Fe(III) and Fe(II), thereby preventing changes in Fe reduction-oxidation distribution. Complexed Fe(II) is cleanly removed using a silica-based, reversed-phase adsorbent, yielding excellent isolation of the Fe(III) complex. Iron(III) concentration is measured colorimetrically or by graphite furnace atomic absorption spectrometry (GFAAS). The method requires inexpensive commercial reagents and simple procedures that can be used in the field. Calcium(II), Ni(II), Pb(II), AI(III), Zn(II), and Cd(II) cause insignificant colorimetric interferences for most acid mine waters. Waters containing >20 mg of Cu/L could cause a colorimetric interference and should be measured by GFAAS. Cobalt(II) and Cr(III) interfere if their molar ratios to Fe(III) exceed 24 and 5, respectively. Iron(II) interferes when its concentration exceeds the capacity of the complexing ligand (14 mg/L). Because of the GFAAS elemental specificity, only Fe(II) is a potential interferent in the GFAAS technique. The method detection limit is 2 ??g/L (40 nM) using GFAAS and 20 ??g/L (0.4 ??M) by colorimetry.A new method for direct determination of dissolved Fe(III) in acid mine water has been developed. In most present methods, Fe(III) is determined by computing the difference between total dissolved Fe and dissolved Fe(II). For acid mine waters, frequently Fe(II)???Fe(III); thus, accuracy and precision are considerably improved by determining Fe(III) concentration directly. The new method utilizes two selective ligands to stabilize Fe(III) and Fe(II), thereby preventing changes in Fe reduction-oxidation distribution. Complexed Fe(II) is cleanly removed using a silica-based, reversed-phase adsorbent, yielding excellent isolation of the Fe(III) complex. Iron(III) concentration is measured colorimetrically or by graphite furnace atomic absorption spectrometry (GFAAS). The method requires inexpensive commercial reagents and simple procedures that can be used in the field. Calcium(II), Ni(II), Pb(II), Al(III), Zn(II), and Cd(II) cause insignificant colorimetric interferences for most acid mine waters. Waters containing >20 mg of Cu/L could cause a colorimetric interference and should be measured by GFAAS. Cobalt(II) and Cr(III) interfere if their molar ratios to Fe(III) exceed 24 and 5, respectively. Iron(II) interferes when its concentration exceeds the capacity of the complexing ligand (14 mg/L). Because of the GFAAS elemental specificity, only Fe(II) is a potential interferent in the GFAAS technique. The method detection limit is 2/??g/L (40 nM) using GFAAS and 20 ??g/L (0.4 ??M) by colorimetry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swanner, E. D.; Bayer, T.; Wu, W.
In this study, we couple iron isotope analysis to microscopic and mineralogical investigation of iron speciation during circumneutral Fe(II) oxidation and Fe(III) precipitation with photosynthetically produced oxygen. In the presence of the cyanobacterium Synechococcus PCC 7002, aqueous Fe(II) (Fe(II) aq) is oxidized and precipitated as amorphous Fe(III) oxyhydroxide minerals (iron precipitates, Fe ppt), with distinct isotopic fractionation (ε 56Fe) values determined from fitting the δ 56Fe(II) aq (1.79‰ and 2.15‰) and the δ 56Fe ppt (2.44‰ and 2.98‰) data trends from two replicate experiments. Additional Fe(II) and Fe(III) phases were detected using microscopy and chemical extractions and likely represent Fe(II)more » and Fe(III) sorbed to minerals and cells. The iron desorbed with sodium acetate (FeNaAc) yielded heavier δ 56Fe compositions than Fe(II) aq. Modeling of the fractionation during Fe(III) sorption to cells and Fe(II) sorption to Feppt, combined with equilibration of sorbed iron and with Fe(II) aq using published fractionation factors, is consistent with our resulting δ 56FeNaAc. The δ 56Fe ppt data trend is inconsistent with complete equilibrium exchange with Fe(II)aq. Because of this and our detection of microbially excreted organics (e.g., exopolysaccharides) coating Feppt in our microscopic analysis, we suggest that electron and atom exchange is partially suppressed in this system by biologically produced organics. These results indicate that cyanobacteria influence the fate and composition of iron in sunlit environments via their role in Fe(II) oxidation through O 2 production, the capacity of their cell surfaces to sorb iron, and the interaction of secreted organics with Fe(III) minerals.« less
Laufer, Katja; Røy, Hans; Jørgensen, Bo Barker
2016-01-01
ABSTRACT Nitrate-reducing Fe(II)-oxidizing microorganisms were described for the first time ca. 20 years ago. Most pure cultures of nitrate-reducing Fe(II) oxidizers can oxidize Fe(II) only under mixotrophic conditions, i.e., when an organic cosubstrate is provided. A small number of nitrate-reducing Fe(II)-oxidizing cultures have been proposed to grow autotrophically, but unambiguous evidence for autotrophy has not always been provided. Thus, it is still unclear whether or to what extent Fe(II) oxidation coupled to nitrate reduction is an enzymatically catalyzed and energy-yielding autotrophic process or whether Fe(II) is abiotically oxidized by nitrite from heterotrophic nitrate reduction. The aim of the present study was to find evidence for the existence of autotrophic nitrate-reducing Fe(II) oxidizers in coastal marine sediments. Microcosm incubations showed that with increasing incubation times, the stoichiometric ratio of reduced nitrate/oxidized Fe(II) [NO3−reduced/Fe(II)oxidized] decreased, indicating a decreasing contribution of heterotrophic denitrification and/or an increasing contribution of autotrophic nitrate-reducing Fe(II) oxidation over time. After incubations of sediment slurries for >10 weeks, nitrate-reducing activity ceased, although nitrate was still present. This suggests that heterotrophic nitrate reduction had ceased due to the depletion of readily available organic carbon. However, after the addition of Fe(II) to these batch incubation mixtures, the nitrate-reducing activity resumed, and Fe(II) was oxidized, indicating the activity of autotrophic nitrate-reducing Fe(II) oxidizers. The concurrent reduction of 14C-labeled bicarbonate concentrations unambiguously proved that autotrophic C fixation occurred during Fe(II) oxidation and nitrate reduction. Our results clearly demonstrated that autotrophic nitrate-reducing Fe(II)-oxidizing bacteria were present in the investigated coastal marine sediments. IMPORTANCE Twenty years after the discovery of nitrate-reducing Fe(II) oxidizers, it is still controversially discussed whether autotrophic nitrate-reducing Fe(II)-oxidizing microorganisms exist and to what extent Fe(II) oxidation in this reduction/oxidation process is enzymatically catalyzed or which role abiotic side reactions of Fe(II) with reactive N species play. Most pure cultures of nitrate-reducing Fe(II) oxidizers are mixotrophic; i.e., they need an organic cosubstrate to maintain their activity over several cultural transfers. For the few existing autotrophic isolates and enrichment cultures, either the mechanism of nitrate-reducing Fe(II) oxidation is not known or evidence for their autotrophic lifestyle is controversial. In the present study, we provide evidence for the existence of autotrophic nitrate-reducing Fe(II) oxidizers in coastal marine sediments. The evidence is based on stoichiometries of nitrate reduction and Fe(II) oxidation determined in microcosm incubations and the incorporation of carbon from CO2 under conditions that favor the activity of nitrate-reducing Fe(II) oxidizers. PMID:27496777
Dassama, Laura M.K.; Krebs, Carsten; Bollinger, J. Martin; Rosenzweig, Amy C.; Boal, Amie K.
2013-01-01
The class Ic ribonucleotide reductase (RNR) from Chlamydia trachomatis (Ct) employs a MnIV/FeIII cofactor in each monomer of its β2 subunit to initiate nucleotide reduction. The cofactor forms by reaction of MnII/FeII-β2 with O2. Previously, in vitro cofactor assembly from apo β2 and divalent metal ions produced a mixture of two forms, with Mn in site 1 (MnIV/FeIII) or site 2 (FeIII/MnIV), of which the more active MnIV/FeIII product predominates. Here we have addressed the basis for metal site-selectivity by solving X-ray crystal structures of apo, MnII, and MnII/FeII complexes of Ct β2. A structure obtained anaerobically with equimolar MnII, FeII, and apo protein reveals exclusive incorporation of MnII in site 1 and FeII in site 2, in contrast to the more modest site-selectivity achieved previously. Site-specificity is controlled thermodynamically by the apo protein structure, as only minor adjustments of ligands occur upon metal binding. Additional structures imply that, by itself, MnII binds in either site. Together the structures are consistent with a model for in vitro cofactor assembly in which FeII specificity for site 2 drives assembly of the appropriately configured heterobimetallic center, provided that FeII is substoichiometric. This model suggests that use of an MnIV/FeIII cofactor in vivo could be an adaptation to FeII limitation. A 1.8 Å resolution model of the MnII/FeII-β2 complex reveals additional structural determinants for activation of the cofactor, including a proposed site for side-on (η2) addition of O2 to FeII and a short (3.2 Å) MnII-FeII interionic distance, promoting formation of the MnIV/FeIV activation intermediate. PMID:23924396
Modeling Fe II Emission and Revised Fe II (UV) Empirical Templates for the Seyfert 1 Galaxy I Zw 1
NASA Astrophysics Data System (ADS)
Bruhweiler, F.; Verner, E.
2008-03-01
We use the narrow-lined broad-line region (BLR) of the Seyfert 1 galaxy, I Zw 1, as a laboratory for modeling the ultraviolet (UV) Fe II 2100-3050 Å emission complex. We calculate a grid of Fe II emission spectra representative of BLR clouds and compare them with the observed I Zw 1 spectrum. Our predicted spectrum for log [nH/(cm -3) ] = 11.0, log [ΦH/(cm -2 s-1) ] = 20.5, and ξ/(1 km s-1) = 20, using Cloudy and an 830 level model atom for Fe II with energies up to 14.06 eV, gives a better fit to the UV Fe II emission than models with fewer levels. Our analysis indicates (1) the observed UV Fe II emission must be corrected for an underlying Fe II pseudocontinuum; (2) Fe II emission peaks can be misidentified as that of other ions in active galactic nuclei (AGNs) with narrow-lined BLRs possibly affecting deduced physical parameters; (3) the shape of 4200-4700 Å Fe II emission in I Zw 1 and other AGNs is a relative indicator of narrow-line region (NLR) and BLR Fe II emission; (4) predicted ratios of Lyα, C III], and Fe II emission relative to Mg II λ2800 agree with extinction corrected observed I Zw 1 fluxes, except for C IV λ1549 (5) the sensitivity of Fe II emission strength to microturbulence ξ casts doubt on existing relative Fe/Mg abundances derived from Fe II (UV)/Mg II flux ratios. Our calculated Fe II emission spectra, suitable for BLRs in AGNs, are available at http://iacs.cua.edu/people/verner/FeII. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 05-26555.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Starcher, Autumn N.; Li, Wei; Kukkadapu, Ravi K.
Fe(II)-Al(III)-LDH (layered double hydroxide) phases have been shown to form from reactions of aqueous Fe(II) with Fe-free Al-bearing minerals (phyllosilicate/clays and Al-oxides). To our knowledge, the effect of small amounts of structural Fe(III) impurities in “neutral” clays on such reactions, however, were not studied. In this study to understand the role of structural Fe(III) impurity in clays, laboratory batch studies with pyrophyllite (10 g/L), an Al-bearing phyllosilicate, containing small amounts of structural Fe(III) impurities and 0.8 mM and 3 mM Fe(II) (both natural and enriched in 57Fe) were carried out at pH 7.5 under anaerobic conditions (4% H2 – 96%more » N2 atmosphere). Samples were taken up to 4 weeks for analysis by Fe-X-ray absorption spectroscopy and 57Fe Mössbauer spectroscopy. In addition to the precipitation of Fe(II)-Al(III)-LDH phases as observed in earlier studies with pure minerals (no Fe(III) impurities in the minerals), the analyses indicated formation of small amounts of Fe(III) containing solid(s), most probably hybrid a Fe(II)-Al(III)/Fe(III)-LDH phase. The mechanism of Fe(II) oxidation was not apparent but most likely was due to interfacial electron transfer from the sorbed Fe(II) to the structural Fe(III) and/or surface-sorption-induced electron-transfer from the sorbed Fe(II) to the clay lattice. Increase in the Fe(II)/Al ratio of the LDH with reaction time further indicated the complex nature of the samples. This research provides evidence for the formation of both Fe(II)-Al(III)-LDH and Fe(II)-Fe(III)/Al(III)-LDH-like phases during reactions of Fe(II) in systems that mimic the natural environments. Better understanding Fe phase formation in complex laboratory studies will improve models of natural redox systems.« less
Bae, Yeunook; Kim, Dooil; Cho, Hyun-Hee; Singhal, Naresh; Park, Jae-Woo
2012-12-01
In this research, we conducted trichloroethylene (TCE) reduction in a column filled with iron and iron-reducing bacteria (IRB) and developed a mathematical model to investigate the critical reactions between active species in iron/IRB/contaminant systems. The formation of ferrous iron (Fe(II)) in this system with IRB and zero-valent iron (ZVI, Fe(0)) coated with a ferric iron (Fe(III)) crust significantly affected TCE reduction and IRB respiration in various ways. This study presents a new framework for transformation property and reducing ability of both dissolved (Fe(II)(dissolved)) and solid form ferrous iron (Fe(II)(solid)). Results showed that TCE reduction was strongly depressed by Fe(II)(solid) rather than by other inhibitors (e.g., Fe(III) and lactate), suggesting that Fe(II)(solid) might reduce IRB activation due to attachment to IRB cells. Newly exposed Fe(0) from the released Fe(II)(dissolved) was a strong contributor to TCE reduction compared to Fe(II)(solid). In addition, our research confirmed that less Fe(II)(solid) production strongly supported long-term TCE reduction because it may create an easier TCE approach to Fe(0) or increase IRB growth. Our findings will aid the understanding of the contributions of iron media (e.g., Fe(II)(solid), Fe(II)(dissolved), Fe(III), and Fe(0)) to IRB for decontamination in natural groundwater systems. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Shujuan; Li, Nan; Zhang, Xinshen; Yang, Dongjing; Jiang, Heimei
2015-03-01
A simple and new low pressure ion chromatography combined with flow injection spectrophotometric procedure for determining Fe(II) and Fe(III) was established. It is based on the selective adsorption of low pressure ion chromatography column to Fe(II) and Fe(III), the online reduction reaction of Fe(III) and the reaction of Fe(II) in sodium acetate with phenanthroline, resulting in an intense orange complex with a suitable absorption at 515 nm. Various chemical (such as the concentration of colour reagent, eluant and reductive agent) and instrumental parameters (reaction coil length, reductive coil length and wavelength) were studied and were optimized. Under the optimum conditions calibration graph of Fe(II)/Fe(III) was linear in the Fe(II)/Fe(III) range of 0.040-1.0 mg/L. The detection limit of Fe(III) and Fe(II) was respectively 3.09 and 1.55 μg/L, the relative standard deviation (n = 10) of Fe(II) and Fe(III) 1.89% and 1.90% for 0.5 mg/L of Fe(II) and Fe(III) respectively. About 2.5 samples in 1 h can be analyzed. The interfering effects of various chemical species were studied. The method was successfully applied in the determination of water samples.
Kinetics of FeII-polyaminocarboxylate oxidation by molecular oxygen
NASA Astrophysics Data System (ADS)
Wilson, Jessica M.; Farley, Kevin J.; Carbonaro, Richard F.
2018-03-01
Complexation of iron by naturally-occurring and synthetic organic ligands has a large effect on iron oxidation and reduction rates which in turn affect the aqueous geochemistry of many other chemical constituents. In this study, the kinetics of FeII oxidation in the presence of the polyaminocarboxylate synthetic chelating agents ethylene glycol tetraacetic acid (EGTA) and trimethylenediamine-N,N,N‧,N‧-tetraacetic acid (TMDTA) was investigated over the pH range 5.50-8.53. Batch oxidation experiments in the presence of molecular oxygen were conducted using a 2:1 M concentration ratio of polyaminocarboxylate (ligand, L) to FeII. The experimental data resembled first order kinetics for the oxidation of FeII-L to FeIII-L and observed rate constants at pH 6.0 were comparable to rate constants for the oxidation of inorganic FeII. Similar to other structurally-similar FeII-polyaminocarboxylate complexes, oxidation rates of FeII-EGTA and FeII-TMDTA decrease with increasing pH, which is the opposite trend for the oxidation of FeII complexed with inorganic ligands. However, the oxidation rates of FeII complexed with EGTA and TMDTA were considerably lower (4-5 orders of magnitude) than FeII complexed to ethylenediaminetetraacetic acid (EDTA). The distinguishing feature of the slower-reacting complexes is that they have a longer backbone between diamine functional groups. An analytical equilibrium model was developed to determine the contributions of the species FeIIL2- and FeII(H)L- to the overall oxidation rate of FeII-L. Application of this model indicated that the protonated FeII(H)L species are more than three orders of magnitude more reactive than FeIIL2-. These rate constants were used in a coupled kinetic equilibrium numerical model where the ligand to iron ratio (TOTL:TOTFe) and pH were varied to evaluate the effect on the FeII oxidation rate. Overall, increasing TOTL:TOTFe for EGTA and TMDTA enhances FeII oxidation rates at lower pH and inhibits FeII oxidation rates at higher pH. Finally, this work demonstrates that the rate of FeII oxidation is very sensitive to the identity and structure of the polyaminocarboxylate chelating agent, which has implications for any metal or organic chemical that reacts either directly or indirectly with iron.
Ling, Li; Zhang, Dapeng; Fan, Chihhao; Shang, Chii
2017-11-01
A novel Fe(II)/citrate/UV/PMS process for degrading a model micropollutant, carbamazepine (CBZ), at a low Fe(II)/PMS ratio and neutral pH has been proposed in this study, and the mechanisms of radical generation in the system was explored. With a UV dose of 302.4 mJ/cm 2 , an initial pH of 7, and CBZ, PMS, Fe(II) and citrate at initial concentrations of 10, 100, 12 and 26 μM, respectively, the CBZ degradation efficiency reached 71% in 20 min in the Fe(II)/citrate/UV/PMS process, which was 4.7 times higher than that in either the citrate/UV/PMS or Fe(II)/citrate/PMS process. The enhanced CBZ degradation in the Fe(II)/citrate/UV/PMS process was mainly attributed to the continuous activation of PMS by the UV-catalyzed regenerated Fe(II) from a Fe(III)-citrate complex, [Fe 3 O(cit) 3 H 3 ] 2- , which not only maintained Fe(III) soluble at neutral pH, but also increased 6.6 and 2.6 times of its molar absorbance and quantum yield as compared to those of ionic Fe(III), respectively. In the Fe(II)/citrate/UV/PMS process, the SO 4 •- produced from the fast reaction between PMS and the initially-added Fe(II) contributed 11% of CBZ degradation. The PMS activation by the UV radiation and regenerated Fe(II) contributed additional 14% and 46% of CBZ removal, respectively. The low iron and citrate doses and the fast radical generation at neutral pH make the Fe(II)/citrate/UV/PMS process suitable for degrading recalcitrant organic compounds in potable water. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Juan; Wang, Zheming; Belchik, Sara M.
The Gram-negative bacterium Sideroxydans lithotrophicus ES-1 (ES-1) grows on FeCO{sub 3} or FeS at oxic-anoxic interfaces at circumneutral pH, and the ES-1-mediated Fe(II) oxidation occurs extracellularly. However, the molecular mechanisms underlying ES-1's ability to oxidize Fe(II) remain unknown. Survey of the ES-1 genome for the genes known for microbial extracellular Fe(II) oxidation revealed that it contained a three-gene cluster encoding an MtrA homologue, an MtrB homologue and a CymA homologue. The homologues of MtrA, MtrB and/or CymA were previously shown to be involved in extracellular Fe(II) oxidation by Rhodopseudomonas palustris TIE-1 and in extracellular Fe(III) reduction by Shewanella oneidensis MR-1more » (MR-1). To distinguish them from those found in MR-1, the identified homologues were named MtoAB and CymA{sub ES-1}, respectively. The gene for MtoA was cloned, and cloned mtoA partially complemented an MR-1 mutant without MtrA in ferrihydrite reduction. Following overexpression in MR-1 cells, recombinant MtoA was purified. Characterization of purified MtoA showed that it was a decaheme c-type cytochrome and oxidized soluble Fe(II). Oxidation of Fe(II) by MtoA was pH- and Fe(II)-complexing ligand-dependent. Under conditions tested, MtoA oxidized Fe(II) at pH ranging from 7-9, and optimal oxidation occurred at pH 9, possibly because of the attendant net increase of [Fe(OH){sup +}] at higher pH. MtoA oxidized Fe(II) complexed with different ligands at different rates. The reaction rates followed the order Fe(II)Cl2 > Fe(II)-citrate > Fe(III)-NTA > Fe(II)-EDTA with the second-order rate constants ranging from 5.5 x 10{sup -3} {micro}M{sup -1}s{sup -1} for oxidation of Fe(II)Cl{sub 2} to 1.0 x 10{sup -3} {micro}M{sup -1}s{sup -1} for oxidation of Fe(II)-EDTA. Thermodynamic modeling shows that redox reaction rate differences for the different Fe(II)-complexes correlated with estimated reaction-free energies. Collectively, these results suggest that MtoA is a functional Fe(II)-oxidizing protein that, by working in concert with MtoB and CymAES 1, may oxidize the Fe(II) on the bacterial surface and transfer released electrons across the bacterial cell envelope to the quinone pool in the inner membrane during extracellular Fe(II) oxidation by ES-1.« less
Organic Exudates Enhance Iron Bioavailability to Trichodesmium (IMS101) by Modifying Fe Speciation
NASA Astrophysics Data System (ADS)
Tohidi Farid, H.; Rose, A.; Schulz, K.
2016-02-01
Although ferrous iron (Fe (II)) is believed to be the most readily absorbed form of Fe by cells, under alkaline and oxygenated conditions typical of marine environments, the thermodynamically stable Fe(III) state dominates. In marine environments, this Fe(III) is primarily presents as organic Fe(III)L complexes whose bioavailability is highly variable. However, it has been demonstrated that some eukaryotic marine algae are able to release organic ligands into their surrounding environments that change Fe bioavailability through complexation and/or redox reactions. Nevertheless, it is unclear how Fe(II) oxidation and Fe(III) reduction rates might be modified by these exudates and how this might increase or decrease iron bioavailability to microorganisms. Here, the role of natural organic ligands excreted by the cyanobacterium Trichodesmium erythraeum on the oxidation kinetics of Fe(II) was studied using the luminol chemiluminescence technique. The oxidation kinetics of Fe(II) were examined at nanomolar Fe concentrations in presence of different concentrations of EDTA and dissolved organic carbon exuded by Trichodesmium cells. The results indicated that an increase in the concentration of exuded organic matter, and consequently L:Fe(II) ratio, resulted in decreasing rates of Fe(II) oxidation by oxygen, primarily due to formation of Fe(II) complexes. Moreover, the results demonstrated that the exudates from Trichodesmium may be able to reduce Fe(III) to the more bioavailable Fe(II) state under some circumstances. This study therefore supports the ability of microorganisms to manipulate Fe bioavailability by releasing organic compounds into the extracellular environment that retard Fe(II) oxidation rates or reducing Fe(III) species to Fe(II). It also provides new insight into the potential mechanism(s) by which Trichdesmium may acquire Fe under conditions where Fe bioavailability is otherwise limited.
Identifying and Quantifying Chemical Forms of Sediment-Bound Ferrous Iron.
NASA Astrophysics Data System (ADS)
Kohler, M.; Kent, D. B.; Bekins, B. A.; Cozzarelli, I.; Ng, G. H. C.
2015-12-01
Aqueous Fe(II) produced by dissimilatory iron reduction comprises only a small fraction of total biogenic Fe(II) within an aquifer. Most biogenic Fe(II) is bound to sediments on ion exchange sites; as surface complexes and, possibly, surface precipitates; or incorporated into solid phases (e.g., siderite, magnetite). Different chemical forms of sediment-bound Fe(II) have different reactivities (e.g., with dissolved oxygen) and their formation or destruction by sorption/desorption and precipitation/dissolution is coupled to different solutes (e.g., major cations, H+, carbonate). We are quantifying chemical forms of sediment-bound Fe(II) using previously published extractions, novel extractions, and experimental studies (e.g., Fe isotopic exchange). Sediments are from Bemidji, Minnesota, where biodegradation of hydrocarbons from a burst oil pipeline has driven extensive dissimilatory Fe(III) reduction, and sites potentially impacted by unconventional oil and gas development. Generally, minimal Fe(II) was mobilized from ion exchange sites (batch desorption with MgCl2 and repeated desorption with NH4Cl). A < 2mm sediment fraction from the iron-reducing zone at Bemidji had 1.8umol/g Fe(II) as surface complexes or carbonate phases (sodium acetate at pH 5) of which ca. 13% was present as surface complexes (FerroZine extractions). Total bioavailable Fe(III) and biogenic Fe(II) (HCl extractions) was 40-50 umole/g on both background and iron-reducing zone sediments . Approximately half of the HCl-extractable Fe from Fe-reducing zone sediments was Fe(II) whereas 12 - 15% of Fe extracted from background sediments was present as Fe(II). One-third to one-half of the total biogenic Fe(II) extracted from sediments collected from a Montana prairie pothole located downgradient from a produced-water disposal pit was present as surface-complexed Fe(II).
NASA Astrophysics Data System (ADS)
Munari, U.; Siviero, A.; Dallaporta, S.; Cherini, G.; Valisa, P.; Tomasella, L.
2011-04-01
The photometric and spectroscopic evolution of the He/N and very fast Nova Cyg 2008 N.2 (V2491 Cyg) is studied in detail. A primary maximum was reached at V = 7.45 ± 0.05 on April 11.37 (±0.1) 2008 UT, followed by a smooth decline characterized by t2V=4.8 days, and then a second maximum was attained at V = 9.49 ± 0.03, 14.5 days after the primary one. This is the only third nova to have displayed a secondary maximum, after V2362 Cyg and V1493 Aql. The development and energetics of the secondary maximum is studied in detail. The smooth decline that followed was accurately monitored until day +144 when the nova was 8.6 mag fainter than maximum brightness, well into its nebular phase, with its line and continuum emissivity declining as t-3. The reddening affecting the nova was EB- V = 0.23 ± 0.01, and the distance of 14 kpc places the nova at a height above the galactic plane of 1.1 kpc, larger than typical for He/N novae. The expansion velocity of the bulk of ejecta was 2000 km/s, with complex emission profiles and weak P-Cyg absorptions during the optically thick phase, and saddle-like profiles during the nebular phase. Photo-ionization analysis of the emission line spectrum indicates that the mass ejected by the outburst was 5.3 × 10 -6 M ⊙ and the mass fractions to be X = 0.573, Y = 0.287, Z = 0.140, with those of individual elements being N = 0.074, O = 0.049, Ne = 0.015. The metallicity of the accreted material was [Fe/H] = -0.25, in line with ambient value at the nova galacto-centric distance. Additional spectroscopic and photometric observations at days +477 and +831 show the nova returned to the brightness level of the progenitor and to have resumed the accretion onto the white dwarf.
ThomasArrigo, Laurel K; Mikutta, Christian; Byrne, James; Kappler, Andreas; Kretzschmar, Ruben
2017-06-20
In freshwater wetlands, organic flocs are often found enriched in trace metal(loid)s associated with poorly crystalline Fe(III)-(oxyhydr)oxides. Under reducing conditions, flocs may become exposed to aqueous Fe(II), triggering Fe(II)-catalyzed mineral transformations and trace metal(loid) release. In this study, pure ferrihydrite, a synthetic ferrihydrite-polygalacturonic acid coprecipitate (16.7 wt % C), and As- (1280 and 1230 mg/kg) and organic matter (OM)-rich (18.1 and 21.8 wt % C) freshwater flocs dominated by ferrihydrite and nanocrystalline lepidocrocite were reacted with an isotopically enriched 57 Fe(II) solution (0.1 or 1.0 mM Fe(II)) at pH 5.5 and 7. Using a combination of wet chemistry, Fe isotope analysis, X-ray absorption spectroscopy (XAS), 57 Fe Mössbauer spectroscopy and X-ray diffraction, we followed the Fe atom exchange kinetics and secondary mineral formation over 1 week. When reacted with Fe(II) at pH 7, pure ferrihydrite exhibited rapid Fe atom exchange at both Fe(II) concentrations, reaching 76 and 89% atom exchange in experiments with 0.1 and 1 mM Fe(II), respectively. XAS data revealed that it transformed into goethite (21%) at the lower Fe(II) concentration and into lepidocrocite (73%) and goethite (27%) at the higher Fe(II) concentration. Despite smaller Fe mineral particles in the coprecipitate and flocs as compared to pure ferrihydrite (inferred from Mössbauer-derived blocking temperatures), these samples showed reduced Fe atom exchange (9-30% at pH 7) and inhibited secondary mineral formation. No release of As was recorded for Fe(II)-reacted flocs. Our findings indicate that carbohydrate-rich OM in flocs stabilizes poorly crystalline Fe minerals against Fe(II)-catalyzed transformation by surface-site blockage and/or organic Fe(II) complexation. This hinders the extent of Fe atom exchange at mineral surfaces and secondary mineral formation, which may consequently impair Fe(II)-activated trace metal(loid) release. Thus, under short-term Fe(III)-reducing conditions facilitating the fast attainment of solid-solution equilibria (e.g., in stagnant waters), Fe-rich freshwater flocs are expected to remain an effective sink for trace elements.
Manganese inhibition of microbial iron reduction in anaerobic sediments
Lovley, D.R.; Phillips, E.J.P.
1988-01-01
Potential mechanisms for the lack of Fe(II) accumulation in Mn(IV)-containing anaerobic sediments were investigated. The addition of Mn(IV) to sediments in which Fe(II) reduction was the terminal electron-accepting process removed all the pore-water Fe(II), completely inhibited net Fe(III) reduction, and stimulated Mn(IV) reduction. Results demonstrate that preferential reduction of Mn(IV) by FE(III)-reducing bacteria cannot completely explain the lack of Fe(II) accumulation in anaerobic, Mn(IV)-containing sediments, and indicate that Mn(IV) oxidation of Fe(II) is the mechanism that ultimately prevents Fe(II) accumulation. -Authors
Potential for microbial oxidation of ferrous iron in basaltic glass.
Xiong, Mai Yia; Shelobolina, Evgenya S; Roden, Eric E
2015-05-01
Basaltic glass (BG) is an amorphous ferrous iron [Fe(II)]-containing material present in basaltic rocks, which are abundant on rocky planets such as Earth and Mars. Previous research has suggested that Fe(II) in BG can serve as an energy source for chemolithotrophic microbial metabolism, which has important ramifications for potential past and present microbial life on Mars. However, to date there has been no direct demonstration of microbially catalyzed oxidation of Fe(II) in BG. In this study, three different culture systems were used to investigate the potential for microbial oxidation of Fe(II) in BG, including (1) the chemolithoautotrophic Fe(II)-oxidizing, nitrate-reducing "Straub culture"; (2) the mixotrophic Fe(II)-oxidizing, nitrate-reducing organism Desulfitobacterium frappieri strain G2; and (3) indigenous microorganisms from a streambed Fe seep in Wisconsin. The BG employed consisted of clay and silt-sized particles of freshly quenched lava from the TEB flow in Kilauea, Hawaii. Soluble Fe(II) or chemically reduced NAu-2 smectite (RS) were employed as positive controls to verify Fe(II) oxidation activity in the culture systems. All three systems demonstrated oxidation of soluble Fe(II) and/or structural Fe(II) in RS, whereas no oxidation of Fe(II) in BG material was observed. The inability of the Straub culture to oxidize Fe(II) in BG was particularly surprising, as this culture can oxidize other insoluble Fe(II)-bearing minerals such as biotite, magnetite, and siderite. Although the reason for the resistance of the BG toward enzymatic oxidation remains unknown, it seems possible that the absence of distinct crystal faces or edge sites in the amorphous glass renders the material resistant to such attack. These findings have implications with regard to the idea that Fe(II)-Si-rich phases in basalt rocks could provide a basis for chemolithotrophic microbial life on Mars, specifically in neutral-pH environments where acid-promoted mineral dissolution and utilization of dissolved Fe(II) as an energy source is not likely to take place.
Klueglein, Nicole; Zeitvogel, Fabian; Stierhof, York-Dieter; Floetenmeyer, Matthias; Konhauser, Kurt O.; Obst, Martin
2014-01-01
Microorganisms have been observed to oxidize Fe(II) at neutral pH under anoxic and microoxic conditions. While most of the mixotrophic nitrate-reducing Fe(II)-oxidizing bacteria become encrusted with Fe(III)-rich minerals, photoautotrophic and microaerophilic Fe(II) oxidizers avoid cell encrustation. The Fe(II) oxidation mechanisms and the reasons for encrustation remain largely unresolved. Here we used cultivation-based methods and electron microscopy to compare two previously described nitrate-reducing Fe(II) oxidizers ( Acidovorax sp. strain BoFeN1 and Pseudogulbenkiania sp. strain 2002) and two heterotrophic nitrate reducers (Paracoccus denitrificans ATCC 19367 and P. denitrificans Pd 1222). All four strains oxidized ∼8 mM Fe(II) within 5 days in the presence of 5 mM acetate and accumulated nitrite (maximum concentrations of 0.8 to 1.0 mM) in the culture media. Iron(III) minerals, mainly goethite, formed and precipitated extracellularly in close proximity to the cell surface. Interestingly, mineral formation was also observed within the periplasm and cytoplasm; intracellular mineralization is expected to be physiologically disadvantageous, yet acetate consumption continued to be observed even at an advanced stage of Fe(II) oxidation. Extracellular polymeric substances (EPS) were detected by lectin staining with fluorescence microscopy, particularly in the presence of Fe(II), suggesting that EPS production is a response to Fe(II) toxicity or a strategy to decrease encrustation. Based on the data presented here, we propose a nitrite-driven, indirect mechanism of cell encrustation whereby nitrite forms during heterotrophic denitrification and abiotically oxidizes Fe(II). This work adds to the known assemblage of Fe(II)-oxidizing bacteria in nature and complicates our ability to delineate microbial Fe(II) oxidation in ancient microbes preserved as fossils in the geological record. PMID:24271182
Ebrahimi, Kourosh Honarmand; Bill, Eckhard; Hagedoorn, Peter-Leon; Hagen, Wilfred R
2016-11-15
Ferritin is a nanocage protein made of 24 subunits. Its major role is to manage intracellular concentrations of free Fe(ii) and Fe(iii) ions, which is pivotal for iron homeostasis across all domains of life. This function of the protein is regulated by a conserved di-iron catalytic center and has been the subject of extensive studies over the past 50 years. Yet, it has not been fully understood how Fe(ii) is oxidized in the di-iron catalytic center and it is not known why eukaryotic and microbial ferritins oxidize Fe(ii) with different kinetics. In an attempt to obtain a new insight into the mechanism of Fe(ii) oxidation and understand the origin of the observed differences in the catalysis of Fe(ii) oxidation among ferritins we studied and compared the mechanism of Fe(ii) oxidation in the eukaryotic human H-type ferritin (HuHF) and the archaeal ferritin from Pyrococcus furiosus (PfFtn). The results show that the spectroscopic characteristics of the intermediate of Fe(ii) oxidation and the Fe(iii)-products are the same in these two ferritins supporting the proposal of unity in the mechanism of Fe(ii) oxidation among eukaryotic and microbial ferritins. Moreover, we observed that a site in the di-iron catalytic center controls the distribution of Fe(ii) among subunits of HuHF and PfFtn differently. This observation explains the reported differences between HuHF and PfFtn in the kinetics of Fe(ii) oxidation and the amount of O 2 consumed per Fe(ii) oxidized. These results provide a fresh understanding of the mechanism of Fe(ii) oxidation by ferritins.
NASA Astrophysics Data System (ADS)
González-Dávila, M.; Samperio-Ramos, G.; Santana-Casiano, J. M.; Gonzallez, A. G.; Pérez-Almeida, N.
2016-12-01
The speciation of inorganic Fe(II) as a function of the pH and temperature have been modeled in order to elucidate the inorganic Fe(II) redox behavior over a wide range of scenarios of acidification and global warming of the upper ocean, as well as, changes due to natural ambient fluctuations of pH and temperature. In addition, a kinetic modeling approach has been carried out to elucidate the fractional contribution of most kinetically active Fe(II) species to the overall oxidation rate to improve our future and present knowledge with respect to redox iron chemistry in the marine systems. The kinetic model considers the interactions of Fe(II) with the major ions in seawater, including phosphate and silicate and the competition with copper with the ROS. The model has been applied to the experimental results in order to describe the effect of temperature and pH in the speciation of Fe(II) and to compute the fractional contribution of each Fe(II)-specie to the overall oxidation rate. The oxidation rates (kapp) of nanomolar levels of Fe(II) have been studied in seawater enriched with nutrients (SWEN) in air saturated conditions. The nutrient effect (nitrate, phosphate and silicate), on the oxidation of Fe(II), has been evaluated as a function of pH (7.2-8.2), temperature (5-35 ºC) and salinity (10-37.09). The oxidation of Fe(II) was faster in the presence of nutrient with the change in the Fe(II) oxidation rates (Δlogkapp) more intensive at higher temperatures over the entire pH range studied. From the model it can be observed that the inorganic speciation of Fe(II) is controlled largely by pH, either in SW or in SWEN. A greater presence of Fe-nutrient reactive species (FeH3SiO4+ and FePO4-) in SWEN at higher temperatures explained the changes in the oxidation process. The individual oxidation rates by oxygen, for the Fe(II) most kinetically active species (Fe2+, FeOH+, Fe(OH)2, FeCO3(OH)-, FeCO3, Fe(CO3)22-, FeH3SiO3+, FePO4-), were fitted as a function of the temperature.
Nordhoff, M.; Tominski, C.; Halama, M.; Byrne, J. M.; Obst, M.; Behrens, S.
2017-01-01
ABSTRACT Most described nitrate-reducing Fe(II)-oxidizing bacteria (NRFeOB) are mixotrophic and depend on organic cosubstrates for growth. Encrustation of cells in Fe(III) minerals has been observed for mixotrophic NRFeOB but not for autotrophic phototrophic and microaerophilic Fe(II) oxidizers. So far, little is known about cell-mineral associations in the few existing autotrophic NRFeOB. Here, we investigate whether the designated autotrophic Fe(II)-oxidizing strain (closely related to Gallionella and Sideroxydans) or the heterotrophic nitrate reducers that are present in the autotrophic nitrate-reducing Fe(II)-oxidizing enrichment culture KS form mineral crusts during Fe(II) oxidation under autotrophic and mixotrophic conditions. In the mixed culture, we found no significant encrustation of any of the cells both during autotrophic oxidation of 8 to 10 mM Fe(II) coupled to nitrate reduction and during cultivation under mixotrophic conditions with 8 to 10 mM Fe(II), 5 mM acetate, and 4 mM nitrate, where higher numbers of heterotrophic nitrate reducers were present. Two pure cultures of heterotrophic nitrate reducers (Nocardioides and Rhodanobacter) isolated from culture KS were analyzed under mixotrophic growth conditions. We found green rust formation, no cell encrustation, and only a few mineral particles on some cell surfaces with 5 mM Fe(II) and some encrustation with 10 mM Fe(II). Our findings suggest that enzymatic, autotrophic Fe(II) oxidation coupled to nitrate reduction forms poorly crystalline Fe(III) oxyhydroxides and proceeds without cellular encrustation while indirect Fe(II) oxidation via heterotrophic nitrate-reduction-derived nitrite can lead to green rust as an intermediate mineral and significant cell encrustation. The extent of encrustation caused by indirect Fe(II) oxidation by reactive nitrogen species depends on Fe(II) concentrations and is probably negligible under environmental conditions in most habitats. IMPORTANCE Most described nitrate-reducing Fe(II)-oxidizing bacteria (NRFeOB) are mixotrophic (their growth depends on organic cosubstrates) and can become encrusted in Fe(III) minerals. Encrustation is expected to be harmful and poses a threat to cells if it also occurs under environmentally relevant conditions. Nitrite produced during heterotrophic denitrification reacts with Fe(II) abiotically and is probably the reason for encrustation in mixotrophic NRFeOB. Little is known about cell-mineral associations in autotrophic NRFeOB such as the enrichment culture KS. Here, we show that no encrustation occurs in culture KS under autotrophic and mixotrophic conditions while heterotrophic nitrate-reducing isolates from culture KS become encrusted. These findings support the hypothesis that encrustation in mixotrophic cultures is caused by the abiotic reaction of Fe(II) with nitrite and provide evidence that Fe(II) oxidation in culture KS is enzymatic. Furthermore, we show that the extent of encrustation caused by indirect Fe(II) oxidation by reactive nitrogen species depends on Fe(II) concentrations and is probably negligible in most environmental habitats. PMID:28455336
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marinello, M.; Rodríguez-Ardila, A.; Garcia-Rissmann, A.
2016-04-01
We present a study of Fe ii emission in the near-infrared region (NIR) for 25 active galactic nuclei (AGNs) to obtain information about the excitation mechanisms that power it and the location where it is formed. We employ an NIR Fe ii template derived in the literature and find that it successfully reproduces the observed Fe ii spectrum. The Fe ii bump at 9200 Å detected in all objects studied confirms that Lyα fluorescence is always present in AGNs. The correlation found between the flux of the 9200 Å bump, the 1 μm lines, and the optical Fe ii implies that Lyα fluorescencemore » plays an important role in Fe ii production. We determined that at least 18% of the optical Fe ii is due to this process, while collisional excitation dominates the production of the observed Fe ii. The line profiles of Fe ii λ10502, O i λ11287, Ca ii λ8664, and Paβ were compared to gather information about the most likely location where they are emitted. We found that Fe ii, O i and Ca ii have similar widths and are, on average, 30% narrower than Paβ. Assuming that the clouds emitting the lines are virialized, we show that the Fe ii is emitted in a region twice as far from the central source than Paβ. The distance, though, strongly varies: from 8.5 light-days for NGC 4051 to 198.2 light-days for Mrk 509. Our results reinforce the importance of the Fe ii in the NIR to constrain critical parameters that drive its physics and the underlying AGN kinematics, as well as more accurate models aimed at reproducing this complex emission.« less
Method of removing oxidized contaminants from water
Amonette, James E.; Fruchter, Jonathan S.; Gorby, Yuri A.; Cole, Charles R.; Cantrell, Kirk J.; Kaplan, Daniel I.
1998-01-01
The present invention is a method for removing oxidized contaminant(s) from water. More specifically, the invention has the steps of contacting water containing the oxidized contaminant(s) with a layered aluminosilicate having Fe(II). The aluminosilicate may contain naturally occurring Fe(II), or the Fe(II) may be produced by reducing Fe(III) that is initially present. Reduction may be either by exposure to a chemical or biological reductant. Contacting the water containing oxidized contaminant(s) may be by (1) injection of Fe(II)-containing layered aluminosilicate, via a well, into a saturated zone where it is likely to intercept the contaminated water; (2) injection of contaminated water into a vessel containing the Fe(II)-bearing layered aluminosilicate; and (3) first reducing Fe(III) in the layered aluminosilicate to Fe(II) by injection of a biological or chemical reductant, into an aquifer or vessel having sufficient Fe(III)-bearing aluminosilicate to produce the necessary Fe(II).
Method of removing oxidized contaminants from water
Amonette, J.E.; Fruchter, J.S.; Gorby, Y.A.; Cole, C.R.; Cantrell, K.J.; Kaplan, D.I.
1998-07-21
The present invention is a method for removing oxidized contaminant(s) from water. More specifically, the invention has the steps of contacting water containing the oxidized contaminant(s) with a layered aluminosilicate having Fe(II). The aluminosilicate may contain naturally occurring Fe(II), or the Fe(II) may be produced by reducing Fe(III) that is initially present. Reduction may be either by exposure to a chemical or biological reductant. Contacting the water containing oxidized contaminant(s) may be by (1) injection of Fe(II)-containing layered aluminosilicate, via a well, into a saturated zone where it is likely to intercept the contaminated water; (2) injection of contaminated water into a vessel containing the Fe(II)-bearing layered aluminosilicate; and (3) first reducing Fe(III) in the layered aluminosilicate to Fe(II) by injection of a biological or chemical reductant, into an aquifer or vessel having sufficient Fe(III)-bearing aluminosilicate to produce the necessary Fe(II). 8 figs.
Guo, Zhihui; Zhang, Tingting; Liu, Tiantian; Du, Jun; Jia, Bing; Gao, Shujing; Yu, Jiang
2015-05-05
To improve the hydrogen sulfide removal efficiency with the application of an iron-based imidazolium chloride ionic liquid (Fe(III)-IL) as desulfurizer, Fe(II) and N,N-dimethylformamide (DMF) are introduced to Fe(III)-IL to construct a new nonaqueous desulfurization system (Fe(III/II)-IL/DMF). Following desulfurization, the system can be regenerated using the controlled-potential electrolysis method. The addition of Fe(II) in Fe(III)-IL is beneficial for the hydrogen sulfide removal and the electrochemical regeneration of the desulfurizer. The addition of DMF in Fe(III/II)-IL does not change the structure of Fe(III/II)-IL but clearly decreases the acidity, increases the electrolytic current, and decreases the stability of the Fe-Cl bond in Fe(III/II)-IL. Fe(III/II)-IL/DMF can remove hydrogen sulfide and can be regenerated through an electrochemical method more efficiently than can Fe(III/II)-IL. After six cycles, the desulfurization efficiency remains higher than 98%, and the average conversion rate of Fe(II) is essentially unchanged. No sulfur peroxidation occurs, and the system remains stable. Therefore, this new nonaqueous system has considerable potential for removing H2S in pollution control applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, T.; Griffin, A. M.; Gorski, C. A.
Dissimilatory microbial reduction of solid-phase Fe(III)-oxides and Fe(III)-bearing phyllosilicates (Fe(III)-phyllosilicates) is an important process in anoxic soils, sediments, and subsurface materials. Although various studies have documented the relative extent of microbial reduction of single-phase Fe(III)-oxides and Fe(III)-phyllosilicates, detailed information is not available on interaction between these two processes in situations where both phases are available for microbial reduction. The goal of this research was to use the model dissimilatory iron-reducing bacterium (DIRB) Geobacter sulfurreducens to study Fe(III)-oxide vs. Fe(III)-phyllosilicate reduction in a range of subsurface materials and Fe(III)-oxide stripped versions of the materials. Low temperature (12K) Mossbauer spectroscopy was usedmore » to infer changes in the relative abundances of Fe(III)-oxide, Fe(III)-phyllosilicate, and phyllosilicate-associated Fe(II) (Fe(II)-phyllosilicate). A Fe partitioning model was employed to analyze the fate of Fe(II) and assess the potential for abiotic Fe(II)-catalyzed reduction of Fe(III)-phyllosilicates. The results showed that in most cases Fe(III)- oxide utilization dominated (70-100 %) bulk Fe(III) reduction activity, and that electron transfer from oxide-derived Fe(II) played only a minor role (ca. 10-20 %) in Fe partitioning. In addition, the extent of Fe(III)-oxide reduction was positively correlated to surface area-normalized cation exchange capacity and the phyllosilicate-Fe(III)/total Fe(III) ratio, which suggests that the phyllosilicates in the natural sediments promoted Fe(III)-oxide reduction by binding of oxide-derived Fe(II), thereby enhancing Fe(III)-oxide reduction by reducing or delaying the inhibitory effect that Fe(II) accumulation on oxide and DIRB cell surfaces has on Fe(III)-oxide reduction. In general our results suggest that although Fe(III)-oxide reduction is likely to dominate bulk Fe(III) reduction in most subsurface sediments, Fe(II) binding by phyllosilicates is likely to play a key role in controlling the long-term kinetics of Fe(III)-oxide reduction.« less
Ardini, Matteo; Fiorillo, Annarita; Fittipaldi, Maria; Stefanini, Simonetta; Gatteschi, Dante; Ilari, Andrea; Chiancone, Emilia
2013-06-01
The ferroxidase center of DNA-binding protein from starved cells (Dps) is a major player in the iron oxidation/detoxification process that leads to a decreased reactive oxygen species production. The possible Mn(II) participation in this process has been studied in Dps from Kineococcus radiotolerans, a radiation-resistant bacterium with a high cytosolic Mn/Fe ratio and a high capacity to survive ionizing and stress conditions. The X-ray structure of recombinant K. radiotolerans Dps loaded with Mn(II) has been solved at 2.0Å resolution. Mn(II) binding to K. radiotolerans Dps and its effect on Fe(II) oxidation have been characterized in spectroscopic measurements. In K. radiotolerans Dps, the Fe-Fe ferroxidase center can have a Mn-Fe composition. Mn(II) binds only at the high affinity, so-called A site, whereas Fe(II) binds also at the low affinity, so-called B site. The Mn-Fe and Fe-Fe centers behave distinctly upon iron oxidation by O2. A site-bound Mn(II) or Fe(II) plays a catalytic role, while B site-bound Fe(II) behaves like a substrate and can be replaced by another Fe(II) after oxidation. When H2O2 is the Fe(II) oxidant, single electrons are transferred to aromatic residues near the ferroxidase center and give rise to intra-protein radicals thereby limiting OH release in solution. The presence of the Mn-Fe center results in significant differences in the development of such intra-protein radicals. Mn(II) bound at the Dps ferroxidase center A site undergoes redox cycling provided the B site contains Fe. The results provide a likely molecular mechanism for the protective role of Mn(II) under oxidative stress conditions as it participates in redox cycling in the hetero-binuclear ferroxidase center. Copyright © 2013 Elsevier B.V. All rights reserved.
The presence of Ti(II) centers in doped nanoscale TiO2 and TiO2-xNx
NASA Astrophysics Data System (ADS)
Mikulas, Tanya; Fang, Zongtang; Gole, James L.; White, Mark G.; Dixon, David A.
2012-06-01
Unusual trends are observed in the Ti (2s, 2p) XPS spectra of Fe(II) doped TiO2 and TiO2-xNx. The binding energy of Ti (2s, 2p) initially decreases with increasing Fe(II) concentration, as expected, but increases at higher Fe(II) doping levels. Density functional theory is used to analyze the results. The observed VB-XPS and core level XPS spectra are consistent with the facile charge transfer sequence Ti(IV) + Fe(II) → Ti(III) + Fe(III) followed by Ti(III) + Fe(II) → Ti(II) + Fe(III). The formed Ti(II) sites may be relevant to nanoparticle catalysis on TiO2 surfaces.
Lee, Ying Ping; Fujii, Manabu; Kikuchi, Tetsuro; Terao, Koumei; Yoshimura, Chihiro
2017-01-01
Oxidation and reduction kinetics of iron (Fe) and proportion of steady-state Fe(II) concentration relative to total dissolved Fe (steady-state Fe(II) fraction) were investigated in the presence of various types of standard humic substances (HS) with particular emphasis on the photochemical and thermal reduction of Fe(III) and oxidation of Fe(II) by dissolved oxygen (O2) and hydrogen peroxide (H2O2) at circumneutral pH (pH 7-8). Rates of Fe(III) reduction were spectrophotometrically determined by a ferrozine method under the simulated sunlight and dark conditions, whereas rates of Fe(II) oxidation were examined in air-saturated solution using luminol chemiluminescence technique. The reduction and oxidation rate constants were determined to substantially vary depending on the type of HS. For example, the first-order rate constants varied by up to 10-fold for photochemical reduction and 7-fold for thermal reduction. The degree of variation in Fe(II) oxidation was larger for the H2O2-mediated reaction compared to the O2-mediated reaction (e.g., 15- and 3-fold changes for the former and latter reactions, respectively, at pH 8). The steady-state Fe(II) fraction under the simulated sunlight indicated that the Fe(II) fraction varies by up to 12-fold. The correlation analysis indicated that variation of Fe(II) oxidation is significantly associated with aliphatic content of HS, suggesting that Fe(II) complexation by aliphatic components accelerates Fe(II) oxidation. The reduction rate constant and steady-state Fe(II) fractions in the presence of sunlight had relatively strong positive relations with free radical content of HS, possibly due to the reductive property of radical semiquinone in HS. Overall, the findings in this study indicated that the Fe reduction and oxidation kinetics and resultant Fe(II) formation are substantially influenced by chemical properties of HS.
NASA Astrophysics Data System (ADS)
Makita, Yunosuke; Ootsuka, Teruhisa; Fukuzawa, Yasuhiro; Otogawa, Naotaka; Abe, Hironori; Liu, Zhengxin; Nakayama, Yasuhiko
2006-04-01
β-FeSi II defined as a Kankyo (Environmentally Friendly) semiconductor is regarded as one of the 3-rd generation semiconductors after Si and GaAs. Versatile features about β-FeSi II are, i) high optical absorption coefficient (>10 5cm -1), ii) chemical stability at temperatures as high as 937°C, iii) high thermoelectric power (Seebeck coefficient of k ~ 10 -4/K), iv) a direct energy band-gap of 0.85 eV, corresponding to 1.5μm of quartz optical fiber communication, v) lattice constant nearly well-matched to Si substrate, vi) high resistance against the humidity, chemical attacks and oxidization. Using β-FeSi II films, one can fabricate various devices such as Si photosensors, solar cells and thermoelectric generators that can be integrated basically on Si-LSI circuits. β-FeSi II has high resistance against the exposition of cosmic rays and radioactive rays owing to the large electron-empty space existing in the electron cloud pertinent to β-FeSi II. Further, the specific gravity of β-FeSi II (4.93) is placed between Si (2.33) and GaAs ((5.33). These features together with the aforementioned high optical absorption coefficient are ideal for the fabrication of solar cells to be used in the space. To demonstrate fascinating capabilities of β-FeSi II, one has to prepare high quality β-FeSi II films. We in this report summarize the current status of β-FeSi II film preparation technologies. Modified MBE and facing-target sputtering (FTS) methods are principally discussed. High quality β-FeSi II films have been formed on Si substrates by these methods. Preliminary structures of n-β-FeSi II /p-Si and p-β-FeSi II /n-Si solar cells indicated an energy conversion efficiency of 3.7%, implying that β-FeSi II is practically a promising semiconductor for a photovoltaic device.
Nordhoff, M; Tominski, C; Halama, M; Byrne, J M; Obst, M; Kleindienst, S; Behrens, S; Kappler, A
2017-07-01
Most described nitrate-reducing Fe(II)-oxidizing bacteria (NRFeOB) are mixotrophic and depend on organic cosubstrates for growth. Encrustation of cells in Fe(III) minerals has been observed for mixotrophic NRFeOB but not for autotrophic phototrophic and microaerophilic Fe(II) oxidizers. So far, little is known about cell-mineral associations in the few existing autotrophic NRFeOB. Here, we investigate whether the designated autotrophic Fe(II)-oxidizing strain (closely related to Gallionella and Sideroxydans ) or the heterotrophic nitrate reducers that are present in the autotrophic nitrate-reducing Fe(II)-oxidizing enrichment culture KS form mineral crusts during Fe(II) oxidation under autotrophic and mixotrophic conditions. In the mixed culture, we found no significant encrustation of any of the cells both during autotrophic oxidation of 8 to 10 mM Fe(II) coupled to nitrate reduction and during cultivation under mixotrophic conditions with 8 to 10 mM Fe(II), 5 mM acetate, and 4 mM nitrate, where higher numbers of heterotrophic nitrate reducers were present. Two pure cultures of heterotrophic nitrate reducers ( Nocardioides and Rhodanobacter ) isolated from culture KS were analyzed under mixotrophic growth conditions. We found green rust formation, no cell encrustation, and only a few mineral particles on some cell surfaces with 5 mM Fe(II) and some encrustation with 10 mM Fe(II). Our findings suggest that enzymatic, autotrophic Fe(II) oxidation coupled to nitrate reduction forms poorly crystalline Fe(III) oxyhydroxides and proceeds without cellular encrustation while indirect Fe(II) oxidation via heterotrophic nitrate-reduction-derived nitrite can lead to green rust as an intermediate mineral and significant cell encrustation. The extent of encrustation caused by indirect Fe(II) oxidation by reactive nitrogen species depends on Fe(II) concentrations and is probably negligible under environmental conditions in most habitats. IMPORTANCE Most described nitrate-reducing Fe(II)-oxidizing bacteria (NRFeOB) are mixotrophic (their growth depends on organic cosubstrates) and can become encrusted in Fe(III) minerals. Encrustation is expected to be harmful and poses a threat to cells if it also occurs under environmentally relevant conditions. Nitrite produced during heterotrophic denitrification reacts with Fe(II) abiotically and is probably the reason for encrustation in mixotrophic NRFeOB. Little is known about cell-mineral associations in autotrophic NRFeOB such as the enrichment culture KS. Here, we show that no encrustation occurs in culture KS under autotrophic and mixotrophic conditions while heterotrophic nitrate-reducing isolates from culture KS become encrusted. These findings support the hypothesis that encrustation in mixotrophic cultures is caused by the abiotic reaction of Fe(II) with nitrite and provide evidence that Fe(II) oxidation in culture KS is enzymatic. Furthermore, we show that the extent of encrustation caused by indirect Fe(II) oxidation by reactive nitrogen species depends on Fe(II) concentrations and is probably negligible in most environmental habitats. Copyright © 2017 American Society for Microbiology.
2015-01-01
Strains lacking and overexpressing the vacuolar iron (Fe) importer CCC1 were characterized using Mössbauer and EPR spectroscopies. Vacuolar Fe import is impeded in Δccc1 cells and enhanced in CCC1-up cells, causing vacuolar Fe in these strains to decline and accumulate, respectively, relative to WT cells. Cytosolic Fe levels should behave oppositely. The Fe content of Δccc1 cells grown under low-Fe conditions was similar to that in WT cells. Most Fe was mitochondrial with some nonheme high spin (NHHS) FeII present. Δccc1 cells grown with increasing Fe concentration in the medium contained less total Fe, less vacuolar HS FeIII, and more NHHS FeII than in comparable WT cells. As the Fe concentration in the growth medium increased, the concentration of HS FeIII in Δccc1 cells increased to just 60% of WT levels, while NHHS FeII increased to twice WT levels, suggesting that the NHHS FeII was cytosolic. Δccc1 cells suffered more oxidative damage than WT cells, suggesting that the accumulated NHHS FeII promoted Fenton chemistry. The Fe concentration in CCC1-up cells was higher than in WT cells; the extra Fe was present as NHHS FeII and FeIII and as FeIII oxyhydroxide nanoparticles. These cells contained less mitochondrial Fe and exhibited less ROS damage than Δccc1 cells. CCC1-up cells were adenine-deficient on minimal medium; supplementing with adenine caused a decline of NHHS FeII suggesting that some of the NHHS FeII that accumulated in these cells was associated with adenine deficiency rather than the overexpression of CCC1. A mathematical model was developed that simulated changes in Fe distributions. Simulations suggested that only a modest proportion of the observed NHHS FeII in both strains was the cytosolic form of Fe that is sensed by the Fe import regulatory system. The remainder is probably generated by the reduction of the vacuolar NHHS FeIII species. PMID:24785783
Cockrell, Allison; McCormick, Sean P; Moore, Michael J; Chakrabarti, Mrinmoy; Lindahl, Paul A
2014-05-13
Strains lacking and overexpressing the vacuolar iron (Fe) importer CCC1 were characterized using Mössbauer and EPR spectroscopies. Vacuolar Fe import is impeded in Δccc1 cells and enhanced in CCC1-up cells, causing vacuolar Fe in these strains to decline and accumulate, respectively, relative to WT cells. Cytosolic Fe levels should behave oppositely. The Fe content of Δccc1 cells grown under low-Fe conditions was similar to that in WT cells. Most Fe was mitochondrial with some nonheme high spin (NHHS) Fe(II) present. Δccc1 cells grown with increasing Fe concentration in the medium contained less total Fe, less vacuolar HS Fe(III), and more NHHS Fe(II) than in comparable WT cells. As the Fe concentration in the growth medium increased, the concentration of HS Fe(III) in Δccc1 cells increased to just 60% of WT levels, while NHHS Fe(II) increased to twice WT levels, suggesting that the NHHS Fe(II) was cytosolic. Δccc1 cells suffered more oxidative damage than WT cells, suggesting that the accumulated NHHS Fe(II) promoted Fenton chemistry. The Fe concentration in CCC1-up cells was higher than in WT cells; the extra Fe was present as NHHS Fe(II) and Fe(III) and as Fe(III) oxyhydroxide nanoparticles. These cells contained less mitochondrial Fe and exhibited less ROS damage than Δccc1 cells. CCC1-up cells were adenine-deficient on minimal medium; supplementing with adenine caused a decline of NHHS Fe(II) suggesting that some of the NHHS Fe(II) that accumulated in these cells was associated with adenine deficiency rather than the overexpression of CCC1. A mathematical model was developed that simulated changes in Fe distributions. Simulations suggested that only a modest proportion of the observed NHHS Fe(II) in both strains was the cytosolic form of Fe that is sensed by the Fe import regulatory system. The remainder is probably generated by the reduction of the vacuolar NHHS Fe(III) species.
Tao, Liang; Zhu, Zhen-Ke; Li, Fang-Bai; Wang, Shan-Li
2017-11-01
Copper is a trace element essential for living creatures, but copper content in soil should be controlled, as it is toxic. The physical-chemical-biological features of Cu in soil have a significant correlation with the Fe(II)/Cu(II) interaction in soil. Of significant interest to the current study is the effect of Fe(II)/Cu(II) interaction conducted on goethite under anaerobic conditions stimulated by HS01 (a dissimilatory iron reduction (DIR) microbial). The following four treatments were designed: HS01 with α-FeOOH and Cu(II) (T1), HS01 with α-FeOOH (T2), HS01 with Cu(II) (T3), and α-FeOOH with Cu(II) (T4). HS01 presents a negligible impact on copper species transformation (T3), whereas the presence of α-FeOOH significantly enhanced copper aging contributing to the DIR effect (T1). Moreover, the violent reaction between adsorbed Fe(II) and Cu(II) leads to the decreased concentration of the active Fe(II) species (T1), further inhibiting reactions between Fe(II) and iron (hydr)oxides and decelerating the phase transformation of iron (hydr)oxides (T1). From this study, the effects of the Fe(II)/Cu(II) interaction on goethite under anaerobic conditions by HS01 are presented in three aspects: (1) the accelerating effect of copper aging, (2) the reductive transformation of copper, and (3) the inhibition effect of the phase transformation of iron (hydr)oxides. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sorption and reduction of selenite on chlorite surfaces in the presence of Fe(II) ions.
Baik, Min Hoon; Lee, Seung Yeop; Jeong, Jongtae
2013-12-01
The sorption and reduction of selenite on chlorite surfaces in the presence of Fe(II) ions were investigated as a function of pH, Se(IV) concentration, and Fe(II) concentration under an anoxic condition. The sorption of Se(IV) onto chlorite surfaces followed the Langmuir isotherm regardless of the presence of Fe(II) ions in the solution. The Se(IV) sorption was observed to be very low at all pH values when the solution was Fe(II)-free or the concentration of Fe(II) ions was as low as 0.5 mg/L. However, the Se(IV) sorption was enhanced at a pH > 6.5 when the Fe(II) concentration was higher than 5 mg/L because of the increased sorption of Fe(II) onto the chlorite surfaces. XANES (X-ray absorption near edge structure) spectra of the Se K-edge showed that most of the sorbed Se(IV) was reduced to Se(0) by Fe(II) sorbed onto the chlorite surfaces, especially at pH > 9. The combined results of field-emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD) also showed that elemental selenium and goethite were formed and precipitated on the chlorite surfaces during the sorption of selenite. Consequently it can be concluded that Se(IV) can be reduced to Se(0) in the presence of Fe(II) ions by the surface catalytic oxidation of Fe(II) into Fe(III) and the formation of goethite at neutral and particularly alkaline conditions. Thus the mobility of selenite in groundwater is expected to be reduced by the presence of a relatively higher concentration of Fe(II) in subsurface environments. Copyright © 2013 Elsevier Ltd. All rights reserved.
Guo, Anque; Kontoudakis, Nikolaos; Scollary, Geoffrey R; Clark, Andrew C
2017-03-22
This study establishes the influence of Cu(II), Fe(II), Fe(III), Zn(II), Al(III), and Mn(II) on the oxidative production of xanthylium cations from (+)-catechin and either tartaric acid or glyoxylic acid in model wine systems. The reaction was studied at 25 °C using UHPLC and LC-HRMS for the analysis of phenolic products and their isomeric distribution. In addition to the expected products, a colorless product, tentatively assigned as a lactone, was detected for the first time. The results show the importance of Fe ions and a synergistic influence of Mn(II) in degrading tartaric acid to glyoxylic acid, whereas the other metal ions had minimal activity in this mechanistic step. Fe(II) and Fe(III) were shown to mediate the (+)-catechin-glyoxylic acid addition reaction, a role previously attributed to only Cu(II). Importantly, the study demonstrates that C-8 addition products of (+)-catechin are promoted by Cu(II), whereas C-6 addition products are promoted by Fe ions.
Zhang, Xiaojing; Zhou, Yue; Zhao, Siyu; Zhang, Rongrong; Peng, Zhaoxue; Zhai, Hanfei; Zhang, Hongzhong
2018-06-01
In this study, the effect of Fe (II) on Anaerobic Ammonium Oxidation (ANAMMOX) process was investigated by step-wise increasing the Fe (II) in influent from 1 to 50 mg L -1 . The nitrogen removal, biofilm property and the microbial community were analyzed in each phase. Results showed that, the anaerobic ammonia-oxidizing bacteria (AAOB) bioactivity and the nitrogen removal of ANAMMOX system were slightly improved to 0.58 from the initial 0.51 kg m -3 d -1 by Fe (II) in 1-5 mg L -1 . The nitrogen removal was suppressed and could recover to the initial level during the same period under 10-20 mg L -1 Fe (II), while it did not recover to the initial level under 30 mg L -1 Fe (II) and showed no recovery performance under 50 mg L -1 Fe (II). The irreversible suppression threshold of Fe (II) was calculated as 50 mg L -1 . The iron content in ANAMMOX biofilm presented linear correlation with the influent Fe (II) in 1-20 mg L -1 , which then tended to be stable when Fe (II) was higher. Dehydrogenase activity (DHA) showed similar and faster response to Fe (II) than the microbial activity, and it was an effective pre-indicator for the nitrogen removal performance in the ANAMMOX system suffered Fe (II). The Fe (II) feeding firstly led to the relative abundance of AAOB decreased to 11.04% from the initial 35.46%, and finally picked up to 19.39% after the long-term acclimatization. Copyright © 2018 Elsevier Ltd. All rights reserved.
Whole-genome sequence of Cupriavidus sp. strain BIS7, a heavy-metal-resistant bacterium.
Hong, Kar Wai; Thinagaran, Dinaiz al; Gan, Han Ming; Yin, Wai-Fong; Chan, Kok-Gan
2012-11-01
Cupriavidus sp. strain BIS7 is a Malaysian tropical soil bacterium that exhibits broad heavy-metal resistance [Co(II), Zn(II), Ni(II), Se(IV), Cu(II), chromate, Co(III), Fe(II), and Fe(III)]. It is particularly resistant to Fe(II), Fe(III), and Zn(II). Here we present the assembly and annotation of its genome.
Prucek, Robert; Tuček, Jiří; Kolařík, Jan; Hušková, Ivana; Filip, Jan; Varma, Rajender S; Sharma, Virender K; Zbořil, Radek
2015-02-17
The removal efficiency of heavy metal ions (cadmium(II), Cd(II); cobalt(II), Co(II); nickel(II), Ni(II); copper(II), Cu(II)) by potassium ferrate(VI) (K2FeO4, Fe(VI)) was studied as a function of added amount of Fe(VI) (or Fe) and varying pH. At pH = 6.6, the effective removal of Co(II), Ni(II), and Cu(II) from water was observed at a low Fe-to-heavy metal ion ratio (Fe/M(II) = 2:1) while a removal efficiency of 70% was seen for Cd(II) ions at a high Fe/Cd(II) weight ratio of 15:1. The role of ionic radius and metal valence state was explored by conducting similar removal experiments using Al(III) ions. The unique combination of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), in-field Mössbauer spectroscopy, and magnetization measurements enabled the delineation of several distinct mechanisms for the Fe(VI)-prompted removal of metal ions. Under a Fe/M weight ratio of 5:1, Co(II), Ni(II), and Cu(II) were removed by the formation of MFe2O4 spinel phase and partially through their structural incorporation into octahedral positions of γ-Fe2O3 (maghemite) nanoparticles. In comparison, smaller sized Al(III) ions got incorporated easily into the tetrahedral positions of γ-Fe2O3 nanoparticles. In contrast, Cd(II) ions either did not form the spinel ferrite structure or were not incorporated into the lattic of iron(III) oxide phase due to the distinct electronic structure and ionic radius. Environmentally friendly removal of heavy metal ions at a much smaller dosage of Fe than those of commonly applied iron-containing coagulants and the formation of ferrimagnetic species preventing metal ions leaching back into the environment and allowing their magnetic separation are highlighted.
NASA Astrophysics Data System (ADS)
Amor, Matthieu; Busigny, Vincent; Louvat, Pascale; Tharaud, Mickaël; Gélabert, Alexandre; Cartigny, Pierre; Carlut, Julie; Isambert, Aude; Durand-Dubief, Mickaël; Ona-Nguema, Georges; Alphandéry, Edouard; Chebbi, Imène; Guyot, François
2018-07-01
Magnetotactic bacteria (MTB) produce intracellular, membrane-bounded magnetite [Fe(II)Fe(III)2O4] crystals in a genetically controlled way. They are ubiquitous in aquatic environments, and have been proposed to represent some of the most ancient biomineralizing organisms on Earth. Although tremendous advances have been made in constraining the mechanisms of magnetite formation in MTB, the precise biomineralization pathways are still a matter of debate. To further constrain the processes of Fe uptake and magnetite precipitation in MTB, Fe stable isotope measurements were carried out with the magnetotactic strain AMB-1 cultivated with Fe(III), Fe(II) or mixed Fe(III)/Fe(II) species in the growth media. The Fe isotope compositions of growth media before and after AMB-1 cultures, bacterial lysates (i.e. cells devoid of magnetite) and magnetite samples were measured. Single valence Fe(III) or Fe(II) growth media after AMB-1 cultures showed depletion in heavy Fe isotopes by 0.2 to 1.5‰ (δ56Fe), relative to the initial Fe source. Contrastingly, heavy Fe isotopes accumulated in the growth media supplemented with mixed Fe(III)/Fe(II) sources, with enrichment up to 0.25‰. These results support a preferential bacterial uptake of Fe(II) when both Fe(III) and Fe(II) are bioavailable. Bacterial lysates contained at least 50% of the total cellular Fe; thus, magnetite was not the main Fe reservoir in AMB-1 under the experimental conditions investigated in this study. In all cultures, bacterial lysates δ56Fe were 0.4 to 0.8‰ higher than the initial Fe sources, while magnetite δ56Fe were 1.2 to 2.5‰ lower. This depletion in heavy Fe isotopes of magnetite can be explained by partial reduction of Fe(III) to Fe(II) within the cell and subsequent magnetite precipitation. The data also show mass-independent fractionations (MIF) in odd (57Fe) but not in even (54Fe, 56Fe, 58Fe) isotopes, expressed mainly in magnetite crystals, and supporting a magnetic isotope effect on 57Fe. Bacterial Fe uptake and MIF patterns suggest that Fe(II) species can freely exchange between the intracellular and external media. Based on these observations, an integrative biogeochemical model for Fe uptake, cellular trafficking, and magnetite precipitation in AMB-1 is presented.
NASA Astrophysics Data System (ADS)
Ayrault, S.; Jimenez, B.; Garnier, E.; Fedoroff, M.; Jones, D. J.; Loos-Neskovic, C.
1998-12-01
CuII2FeII(CN)6·xH2O and CuII3[FeIII(CN)6]2·xH2O can be prepared with reproducible chemical compositions and structures after careful washing. They have cubicFmoverline3mstructures with iron vacancies. In CuII2FeII(CN)6, copper occupies two different sites: Cu1 in position 4blinked to Fe through the CN groups, and Cu2 not linked to the CN groups and partially occupying the interstitial 24epositions. The second type of site is not present in CuII3[FeIII(CN)6]2. Sorption kinetics and isotherms were determined for cesium on both hexacyanoferrates by batch experiments. On CuII3[FeIII(CN)6]2, the maximum uptake is only 0.073 Cs/Fe (at./at.). On CuII2FeII(CN)6, the uptake reaches 1.5 Cs/Fe. The sorption kinetics include at least two steps: at1/2variation until approximately 72 h and then a slow evolution studied up to 6 months. The sorption mechanism is complex. The main process seems to be diffusion of ion pairs, followed by a reorganization of the solid, resulting in one or more new solid phases. The presence of the Cu2 site seems to play a favorable role in the sorption. Owing to its good midterm stability and the first rapid step of exchange, CuII2FeII(CN)6·xH2O seems to be one of the most promising compounds for the recovery of cesium from nuclear liquid wastes.
The Early X-ray Emission From V382 Velorum (=Nove Vel 1999): An Internal Shock Model
NASA Technical Reports Server (NTRS)
Mukai, Koji; Ishida, Manabu
2000-01-01
We present the results of ASCA and RXTE observations of the early X-ray emission from the classical nova V382 Velorum. Its ASCA spectrum was hard (kT approximately 10 KeV) with a strong (10(exp 13)/sq cm) intrinsic absorption. In the subsequent RXTE data, the spectra became softer both due to a declining temperature and a diminishing column. We argue that this places the X-ray emission interior to the outermost ejecta produced by V382 Vel in 1999, and therefore must have been the result of a shock internal to the nova ejecta. The weakness of the Fe K.alpha lines probably indicates that the X-ray emitting plasmas are not in ionization equilibrium.
Maksimov, Nikolay; Trofimchuk, Anatoly; Zaporogets, Olga
2017-01-01
Silica gel, sequentially modified with polyhexamethylene guanidine and pyrocatechin-3,5-disulfonic acid (Tiron), was suggested for sorption separation and determination of Fe(III) and Fe(II). It was found that quantitative extraction of Fe(III) and its separation from Fe(II) were attained at pH 2.5–4.0, while quantitative extraction of Fe(II) was observed at pH 6.0–7.5. An intensive signal with g = 4.27, which is characteristic for Fe(III), appeared in EPR spectra of the sorbents after Fe(II) and Fe(III) sorption. During interaction between Fe(II) and Tiron, fixed on the sorbent surface, its oxidation up to Fe(III) occurred. Red-lilac complexes of the composition FeL3 were formed on the sorbent surface during sorption regardless of initial oxidation level of iron. Diffuse reflectance spectrum of surface complexes exhibited wide band with slightly expressed maxima at 480 and 510 nm. Procedures for separation and photometric determination of Fe(III) and Fe(II) at the joint presence and total Fe content determination as Fe(II) in waste and natural waters was developed. The limit of detection for iron was 0.05 μg per 0.100 g of the sorbent. The calibration graph was linear up to 20.0 μg of Fe per 0.100 g of the sorbent. The RSD in the determination of more than 0.2 μg of Fe was less than 0.06. PMID:29214095
Fe(II)/Fe(III)-Catalyzed Intramolecular Didehydro-Diels-Alder Reaction of Styrene-ynes.
Mun, Hyeon Jin; Seong, Eun Young; Ahn, Kwang-Hyun; Kang, Eun Joo
2018-02-02
The intramolecular didehydro-Diels-Alder reaction of styrene-ynes was catalyzed by Fe(II) and Fe(III) to produce various naphthalene derivatives under microwave heating conditions. Mechanistic calculations found that the Fe(II) catalyst activates the styrenyl diene in an inverse-electron-demand Diels-Alder reaction, and the consecutive dehydrogenation reaction can be promoted by either Fe(II)-catalyzed direct dehydrogenation or an Fe(III)-catalyzed rearomatization/dehydrogenation pathway.
NASA Astrophysics Data System (ADS)
van der Grift, B.; Behrends, T.; Osté, L. A.; Schot, P. P.; Wassen, M. J.; Griffioen, J.
2016-08-01
Exfiltration of anoxic Fe-rich groundwater into surface water and the concomitant oxidative precipitation of Fe are important processes controlling the transport of phosphate (PO4) from agricultural areas to aquatic systems. Here, we explored the relationship between solution composition, reaction kinetics, and the characteristics of the produced Fe hydroxyphosphate precipitates in a series of aeration experiments with anoxic synthetic water and natural groundwater. A pH stat device was used to maintain constant pH and to record the H+ production during Fe(II) oxidation in the aeration experiments in which the initial aqueous P/Fe ratios ((P/Fe)ini), oxygen concentration and pH were varied. In general, Fe(II) oxidation proceeded slower in the presence of PO4 but the decrease of the PO4 concentration during Fe(II) oxidation due to the formation of Fe hydroxyphosphates caused additional deceleration of the reaction rate. The progress of the reaction could be described using a pseudo-second-order rate law with first-order dependencies on PO4 and Fe(II) concentrations. After PO4 depletion, the Fe(II) oxidation rates increased again and the kinetics followed a pseudo-first-order rate law. The first-order rate constants after PO4 depletion, however, were lower compared to the Fe(II) oxidation in a PO4-free solution. Hence, the initially formed Fe hydroxyphosphates also affect the kinetics of continuing Fe(II) oxidation after PO4 depletion. Presence of aqueous PO4 during oxidation of Fe(II) led to the formation of Fe hydroxyphosphates. The P/Fe ratios of the precipitates ((P/Fe)ppt) and the recorded ratio of H+ production over decrease in dissolved Fe(II) did not change detectably throughout the reaction despite a changing P/Fe ratio in the solution. When (P/Fe)ini was 0.9, precipitates with a (P/Fe)ppt ratio of about 0.6 were formed. In experiments with (P/Fe)ini ratios below 0.6, the (P/Fe)ppt decreased with decreasing (P/Fe)ini and pH value. Aeration experiments with natural groundwater showed no principal differences in Fe(II) oxidation kinetics and in PO4 immobilisation dynamics compared with synthetic solutions with corresponding P/Fe ratio, pH and oxygen pressure. However, aeration of groundwater with relative high DOC concentrations and a low salinity lead to P-rich Fe colloids that were colloidally stable. The formation of a Fe hydroxyphosphate phase with a molar P/Fe ratio of 0.6 can be used for predictive modelling of PO4 immobilisation upon aeration of pH-neutral natural groundwater with an (P/Fe)ini ratio up to 1.5. These findings provide a solid basis for further studies on transport and bioavailability of phosphorus in streams, ditches and channels that receive anoxic Fe-rich groundwater.
Thermodynamic controls on the kinetics of microbial low-pH Fe(II) oxidation.
Larson, Lance N; Sánchez-España, Javier; Kaley, Bradley; Sheng, Yizhi; Bibby, Kyle; Burgos, William D
2014-08-19
Acid mine drainage (AMD) is a major worldwide environmental threat to surface and groundwater quality. Microbial low-pH Fe(II) oxidation could be exploited for cost-effective AMD treatment; however, its use is limited because of uncertainties associated with its rate and ability to remove Fe from solution. We developed a thermodynamic-based framework to evaluate the kinetics of low-pH Fe(II) oxidation. We measured the kinetics of low-pH Fe(II) oxidation at five sites in the Appalachian Coal Basin in the US and three sites in the Iberian Pyrite Belt in Spain and found that the fastest rates of Fe(II) oxidation occurred at the sites with the lowest pH values. Thermodynamic calculations showed that the Gibbs free energy of Fe(II) oxidation (ΔG(oxidation)) was also most negative at the sites with the lowest pH values. We then conducted two series of microbial Fe(II) oxidation experiments in laboratory-scale chemostatic bioreactors operated through a series of pH values (2.1-4.2) and found the same relationships between Fe(II) oxidation kinetics, ΔG(oxidation), and pH. Conditions that favored the fastest rates of Fe(II) oxidation coincided with higher Fe(III) solubility. The solubility of Fe(III) minerals, thus plays an important role on Fe(II) oxidation kinetics. Methods to incorporate microbial low-pH Fe(II) oxidation into active and passive AMD treatment systems are discussed in the context of these findings. This study presents a simplified model that describes the relationship between free energy and microbial kinetics and should be broadly applicable to many biogeochemical systems.
Whole-Genome Sequence of Cupriavidus sp. Strain BIS7, a Heavy-Metal-Resistant Bacterium
Hong, Kar Wai; Thinagaran, Dinaiz a/l; Gan, Han Ming; Yin, Wai-Fong
2012-01-01
Cupriavidus sp. strain BIS7 is a Malaysian tropical soil bacterium that exhibits broad heavy-metal resistance [Co(II), Zn(II), Ni(II), Se(IV), Cu(II), chromate, Co(III), Fe(II), and Fe(III)]. It is particularly resistant to Fe(II), Fe(III), and Zn(II). Here we present the assembly and annotation of its genome. PMID:23115161
NASA Astrophysics Data System (ADS)
Moynier, Frédéric; Fujii, Toshiyuki; Wang, Kun; Foriel, Julien
2013-05-01
Iron is one of the most abundant transition metal in higher plants and variations in its isotopic compositions can be used to trace its utilization. In order to better understand the effect of plant-induced isotopic fractionation on the global Fe cycling, we have estimated by quantum chemical calculations the magnitude of the isotopic fractionation between different Fe species relevant to the transport and storage of Fe in higher plants: Fe(II)-citrate, Fe(III)-citrate, Fe(II)-nicotianamine, and Fe(III)-phytosiderophore. The ab initio calculations show firstly, that Fe(II)-nicotianamine is ˜3‰ (56Fe/54Fe) isotopically lighter than Fe(III)-phytosiderophore; secondly, even in the absence of redox changes of Fe, change in the speciation alone can create up to ˜1.5‰ isotopic fractionation. For example, Fe(III)-phytosiderophore is up to 1.5‰ heavier than Fe(III)-citrate2 and Fe(II)-nicotianamine is up to 1‰ heavier than Fe(II)-citrate. In addition, in order to better understand the Fe isotopic fractionation between different plant components, we have analyzed the iron isotopic composition of different organs (roots, seeds, germinated seeds, leaves and stems) from six species of higher plants: the dicot lentil (Lens culinaris), and the graminaceous monocots Virginia wild rye (Elymus virginicus), Johnsongrass (Sorghum halepense), Kentucky bluegrass (Poa pratensis), river oat (Uniola latifolia), and Indian goosegrass (Eleusine indica). The calculations may explain that the roots of strategy-II plants (Fe(III)-phytosiderophore) are isotopically heavier (by about 1‰ for the δ56Fe) than the upper parts of the plants (Fe transported as Fe(III)-citrate in the xylem or Fe(II)-nicotianamine in the phloem). In addition, we suggest that the isotopic variations observed between younger and older leaves could be explained by mixing of Fe received from the xylem and the phloem.
Kamiyama, Asako; Noguchi, Tomoko; Kajiwara, Takashi; Ito, Tasuku
2002-02-11
Five trinuclear complexes [M(bpca)(2)(M'(hfac)(2))(2)] (where MM'(2) = NiMn(2), CuMn(2), FeMn(2), NiFe(2), and FeFe(2); Hbpca = bis(2-pyridylcarbonyl)amine; and Hhfac = hexafluoroacetylacetone) were synthesized almost quantitatively by the reaction of [M(bpca)(2)] and [M'(hfac)(2)] in 1:2 molar ratio, and their structures and magnetic properties were investigated. Three complexes, with M' = Mn, crystallize in the same space group, Pna2(1), whereas two complexes, with M' = Fe, crystallize in P4(1), and complexes within each set are isostructural to one another. In all complexes, [M(bpca)(2)] acts as a bis-bidentate bridging ligand to form a linear trinuclear complex in which three metal ions are arranged in the manner M'-M-M'. The central metal ion is in a strong ligand field created by the N(6) donor set, and hence the Fe(II) in the [Fe(bpca)(2)] moiety is in a low-spin state. The terminal metal ions (M') are surrounded by O(6) donor sets with a moderate ligand field, which leads to the high-spin configuration of Fe(II). Three metal ions in all complexes are almost collinear, and metal-metal distances are ca. 5.5 A. The magnetic behavior of NiMn(2) and NiFe(2) shows a weak ferromagnetic interaction between the central Ni(II) ion and the terminal Mn(II) or Fe(II) ions. In these complexes, sigma-spin orbitals of the central Ni(II) ion and those of terminal metal ions have different symmetry about a 2-fold rotation axis through the Ni-N(amide)-M'(terminal) atoms, and this results in orthogonality between the neighboring sigma-spin orbitals and thus ferromagnetic interactions.
NASA Astrophysics Data System (ADS)
Liang, Liyuan; McCarthy, John F.; Jolley, Louwanda W.; McNabb, J. Andrew; Mehlhorn, Tonia L.
1993-05-01
The dynamics of dissolved, colloidal, and deposited iron phases were examined during a forced-gradient field experiment. The experiment involved the injection of oxygenated water containing high levels of natural organic matter (NOM) into a sandy aquifer. The initial redox potential of the aquifer favored Fe(II) in the groundwater. The changes in the concentrations of Fe(II) and Fe(III) were observed in sampling wells. Under the increased dissolved oxygen (DO) conditions, Fe(II) oxygenation was rapid, resulting in the formation of Fe(III) (hydr) oxide colloids. The oxidation follows the rate law as given in STUMM and MORGAN (1981): d[ Fe(II)] /dt = - k obs[ O2( aq)] /[ H+] 2[ Fe(II)] , with a rate constant, kobs to be 1.9 × 10 -12 M min -1. For an averaged pH and DO of the groundwater, the half time of Fe(II) oxidation is 49 h. The NOM was postulated to stabilize the newly formed colloids, thereby increasing the turbidity in the groundwater. The additional increase in the colloidal fraction of Fe(III) oxide suggested that transport of the colloidal particles was occurring. At those locations where DO remained constantly low, the turbidity increase was moderate, and up to 80% of Fe(III) was in the dissolved phase (< 3000 mol. wt). The latter observation was attributed to the presence of NOM, forming Fe(III)-organic complexes. In addition, NOM may play a role in the oxygen consumption through a Fe(II)/Fe(III) catalyzed oxidation of organic matter as outlined by STUMM and MORGAN (1981, p. 469). In this mechanism, Fe(II) oxidation is slow, maintaining a near constant Fe(II) concentration, in agreement with field data. The overall increase in Fe(III) under low DO conditions was postulated to be a combination of (1) slow oxidation, (2) ligand-promoted and catalytic dissolution of deposited iron phases, and (3) the transport of newly formed iron oxide colloids along flow paths.
Kinetics of homogeneous and surface-catalyzed mercury(II) reduction by iron(II)
Amirbahman, Aria; Kent, Douglas B.; Curtis, Gary P.; Marvin-DiPasquale, Mark C.
2013-01-01
Production of elemental mercury, Hg(0), via Hg(II) reduction is an important pathway that should be considered when studying Hg fate in environment. We conducted a kinetic study of abiotic homogeneous and surface-catalyzed Hg(0) production by Fe(II) under dark anoxic conditions. Hg(0) production rate, from initial 50 pM Hg(II) concentration, increased with increasing pH (5.5–8.1) and aqueous Fe(II) concentration (0.1–1 mM). The homogeneous rate was best described by the expression, rhom = khom [FeOH+] [Hg(OH)2]; khom = 7.19 × 10+3 L (mol min)−1. Compared to the homogeneous case, goethite (α-FeOOH) and hematite (α-Fe2O3) increased and γ-alumina (γ-Al2O3) decreased the Hg(0) production rate. Heterogeneous Hg(0) production rates were well described by a model incorporating equilibrium Fe(II) adsorption, rate-limited Hg(II) reduction by dissolved and adsorbed Fe(II), and rate-limited Hg(II) adsorption. Equilibrium Fe(II) adsorption was described using a surface complexation model calibrated with previously published experimental data. The Hg(0) production rate was well described by the expression rhet = khet [>SOFe(II)] [Hg(OH)2], where >SOFe(II) is the total adsorbed Fe(II) concentration; khet values were 5.36 × 10+3, 4.69 × 10+3, and 1.08 × 10+2 L (mol min)−1 for hematite, goethite, and γ-alumina, respectively. Hg(0) production coupled to reduction by Fe(II) may be an important process to consider in ecosystem Hg studies.
NASA Astrophysics Data System (ADS)
Wu, Zhihao; You, Feng; Liu, Hongjun; Liu, Mengxia; Li, Jun; Zhang, Peijun
2012-03-01
The concentration of Fe(II) is high in some groundwater supplies used in turbot culture, and the toxicity of waterborne Fe(II) is unknown. We investigated the stress responses of juvenile turbot, Scophthalmus maximus, exposed to Fe(II) of different concentrations (0.01, 0.05, 0.1, 0.5, 1, and 2 mg/L) for 1, 7, 14, and 28 d, under the same ambient conditions of other parameters. Changes in respiratory rate, hematological parameters, and gill structure were determined. The results show that waterborne Fe(II) did not cause severe hematological perturbation to turbot. A low-medium Fe(II) concentration (lower than 0.1 mg/L) could boost the respiratory rate, and caused no or very limited damage to fish. A high Fe(II) concentration (0.1 mg/L or higher), however, caused gill damage, such as vacuoles in branchial lamellae, epithelial necrosis, and hypertrophy of epithelial cells, and even death after extended exposure time. Therefore, excess waterborne Fe(II) and long-term exposure to Fe(II) could be responsible for poor growth and high mortality of turbot in culture. The concentration of waterborne Fe(II) in turbot culture should be kept below 0.1 mg/L.
Sharma, Savita K; Kim, Hyun; Rogler, Patrick J; A Siegler, Maxime; Karlin, Kenneth D
2016-09-01
A series of ferrous-heme 2,6-dimethylphenyl isocyanide (DIMPI) and ferrous-heme mononitrosyl complexes have been synthesized and characterized. The heme portion of the complexes studied is varied with respect to the nature of the axial ligand, including complexes, where it is covalently tethered to the porphyrinate periphery. Reduced heme complexes, [(F8)Fe(II)], [(P(Py))Fe(II)], [(P(Im))Fe(II)], and [(P(ImH))Fe(II)], where F8 = tetrakis(2,6-difluorophenyl)-porphyrinate and P(Py), P(Im), and P(ImH) are partially fluorinated tetraaryl porphyrinates with covalently appended axial base pyridyl/imidazolyl or histamine moieties, were employed; P(ImH) is a new construct. Room temperature addition of DIMPI to these iron(II) complexes affords the bis-isocyanide species [(F8)Fe(II)-(DIMPI)2] in the case of [(F8)Fe(II)], while for the other hemes, mono-DIMPI compounds are obtained, [(P(Py))Fe(II)-(DIMPI)] [(2)-DIMPI], [(P(Im))Fe(II)-(DIMPI)] [(3)-DIMPI], and [(P(ImH))Fe(II)-(DIMPI)] [(4)-DIMPI]. The structures of complexes (3)-DIMPI and (4)-DIMPI have been determined by single crystal X-ray crystallography, where interesting H…F(porphryinate aryl group) interactions are observed. (19)F-NMR spectra determined for these complexes suggest that H…F(porphyrinate aryl groups) attractions also occur in solution, the H atom coming either from the DIMPI methyl groups or from a porphyinate axial base imidazole or porphyrinate pyrrole. Similarly, we have used nitrogen monoxide to generate ferrous-nitrosyl complexes, a five-coordinate species for F8, [(F8)Fe(II)-(NO)], or low-spin six-coordinate compounds [(P(Py))Fe(II)-(NO)], [(P(Im))Fe(II)-(NO)], and [(P(ImH))Fe(II)-(NO)]. The DIMPI and mononitrosyl complexes have also been characterized using UV-Vis, IR, (1)H-NMR, and EPR spectroscopies.
Determination of ferrous and total iron in refractory spinels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amonette, James E.; Matyas, Josef
2015-12-30
Accurate and precise determination of the redox state of iron (Fe) in spinels presents a significant challenge due to their refractory nature. The resultant extreme conditions needed to obtain complete dissolution generally oxidize some of the Fe(II) initially present and thus prevent the use of colorimetric methods for Fe(II) measurements. To overcome this challenge we developed a hybrid oxidimetric/colorimetric approach, using Ag(I) as the oxidimetric reagent for determination of Fe(II) and 1,10-phenanthroline as the colorimetric reagent for determination of total Fe. This approach, which allows determination of Fe(II) and total Fe on the same sample, was tested on a seriesmore » of four geochemical reference materials and then applied to the analysis of Fe(Ni) spinel crystals isolated from simulated high-level-waste (HLW) glass and of several reagent magnetites. Results for the reference materials were in excellent agreement with published values, with the exception of USGS BIR-1, for which higher Fe(II) values and lower total Fe values were obtained. The Fe(Ni) spinels showed Fe(II) values at the detection limit (ca. 0.05 wt% Fe) and total Fe values slightly higher than obtained by total elemental analysis. For the magnetite samples, total Fe values were in agreement with reference results, but a wide range in Fe(II) values was obtained indicating various degrees of conversion to maghemite.« less
[Reduction of nitrobenzene by iron oxides bound Fe(II) system at different pH values].
Luan, Fu-Bo; Xie, Li; Li, Jun; Zhou, Qi
2009-07-15
Batch tests were conducted to investigate the reductive transformation of nitrobenzene by goethite, hematite, magnetite and steel converter slag bound Fe(II) system. And the reduction mechanism was explored at different pH values. Experimental results showed that hematite, magnetite and steel converter slag could adsorb Fe(II) on surfaces and form iron oxides bound Fe(II) system at pH from 6.5 to 7.0. The systems had strong reductive capacity and could reduce nitrobenzene to aniline. The reduction efficiency of nitrobenzene in surface bound Fe(II) system followed the sequence of magnetite, hematite and steel converter slag from high to low. The reduction efficiency of hematite and magnetite system increased with pH increasing. While it was almost pH independent in steel converter slag system. Although goethite adsorbed most of Fe(II) in solution, the adsorbed Fe(II) had no reductive activity for nitrobenzene. At pH 6.0, small amount of Fe(II) was adsorbed on magnetite and hematite and the systems did not show reductive activity for nitrobenzene. However, steel converter slag could adsorb Fe(II) at pH 6.0 and reduction efficiency almost equaled to the value at pH 7.0. When pH was above 7.5, dissolved Fe(II) could be converted to Fe(OH)2 and the newly formed Fe(OH)2 became the main redactor in the system. Under alkali condition, the presence of iron oxides inhibited the reduction capacity of system.
Research Developments in Li-Paczyński Novae (II): Observational Aspect
NASA Astrophysics Data System (ADS)
Shan-qin, Wang; Zi-gao, Dai; Xue-feng, Wu
2016-10-01
Since the LP-Nova models were proposed, and the short gamma-ray burst (SGRB) afterglows were confirmed, people have actively made searches for the evidence of the existence of LP-Novae among the optical (or near-infrared) counterparts of SGRBs. In this paper, we first summarize these observational progresses before 2012 in Section 2. In Section 3 and 4, we respectively introduce the basic properties of GRBs 130603B and 060614, as well as the theoretical interpretation for their near-infrared (NIR) counterparts, and their NIR excess may be the signature of the existence of LP-Novae. In Section 5, we describe the basic properties of GRB 080503, and the theoretical interpretation for its optical and X-ray counterparts, and the later re-brightening of its optical and X-ray light curves is explained as the ejecta radiation (merger-nova radiation) of magnetar heating after the neutron star merging. If the interpretations for the SGRB-associated optical and infrared counterparts are correct, they may provide the first series of direct evidence to show that SGRBs and some special LGRBs are originated from the compact star mergers. Besides LP-novae (and merger-novae), the high-speed orbital motion before the compact star merging and the merger itself will produce strong gravitational-wave bursts (GWBs). In the coming era of gravitational wave detection, the theoretical and observational studies on the electromagnetic counterparts of compact star mergers will receive more and more attentions. Due to the larger uncertainty of GWB's location, the LP-Novae associated with GWBs can serve as the best candidates for the precise location of GWBs. The fast developing high-cadence and wide-field optical-NIR surveys will make effective explorations on the LP-Novae and similar phenomena, and interact the detection and research of gravitational waves. Therefore, in the last section we present the methods for the future detections of LP-Novae, and the prospect of their multi-messenger detections.
Yan, Sen; Chen, Yongheng; Xiang, Wu; Bao, Zhengyu; Liu, Chongxuan; Deng, Baolin
2014-12-01
The role of Fe(II) and Fe(III) in U(VI) reduction by nanoscale zerovalent iron (nanoFe0) was investigated using two iron chelators 1,10-phenanthroline and triethanolamine (TEA) under a CO2-free anoxic condition. The results showed that U(VI) reduction was strongly inhibited by 1,10-phenanthroline and TEA in a pH range from 6.9 to 9.0. For instance, at pH 6.9 the observed U(VI) reduction rates decreased by 81% and 82% in the presence of 1,10-phenanthroline and TEA, respectively. The inhibition was attributed to the formation of stable complexes between 1,10-phenanthroline and Fe(II) or TEA and Fe(III). In the absence of iron chelators, U(VI) reduction can be enhanced by surface-bound Fe(II) on nanoFe0. Our results suggested that Fe(III) and Fe(II) possibly acted as an electron shuttle to ferry the electrons from nanoFe0 to U(VI), therefore a combined system with Fe(II), Fe(III) and nanoFe0 could facilitate U(VI) reductive immobilization in the contaminated groundwater.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Sen; Chen, Yongheng; Xiang, Wu
2014-12-01
The role of Fe(II) and Fe(III) on U(VI) reduction by nanoscale zerovalent iron (nanoFe0) was investigated using two iron chelators 1,10-phenanthroline and triethanolamine (TEA) under a CO2-free anoxic condition. The results showed U(VI) reduction was strongly inhibited by 1,10-phenanthroline and TEA in a pH range from 6.92 to 9.03. For instance, at pH 6.92 the observed U(VI) reduction rates decreased by 80.7% and 82.3% in the presence of 1,10-phenanthroline and TEA, respectively. The inhibition was attributed to the formation of stable complexes between 1,10-phenanthroline and Fe(II) or TEA and Fe(III). In the absence of iron chelators, U(VI) reduction can bemore » enhanced by surface-bound Fe(II) on nanoFe0. Our results suggested that Fe(III) and Fe(II) probably acted as an electron shuttle to mediate the transfer of electrons from nanoFe0 to U(VI), therefore a combined system with Fe(II), Fe(III) and nanoFe0 can facilitate the U(VI) reductive immobilization in the contaminated groundwater.« less
Song, Kang; Zhou, Xu; Liu, Yiqi; Gong, Yanyan; Zhou, Beibei; Wang, Dongbo; Wang, Qilin
2016-01-01
Improving dewaterability of sludge is important for the disposal of sludge in wastewater treatment plants (WWTPs). This study, for the first time, investigated the Fe(II) activated oxidization processes in improving anaerobically digested sludge (ADS) dewaterability. The combination of Fe(II) (0–100 mg/g total solids (TS)) and persulfate (0–1,000 mg/g TS) under neutral pH as well as the combination of Fe(II) (0–100 mg/g TS) and hydrogen peroxide (HP) (0–1,000 mg/g TS) under pH 3.0 were used to examine and compare their effect on the ADS dewaterability enhancement. The highest ADS dewaterability enhancement was attained at 25 mg Fe(II)/g TS and 50 mg HP/g TS, when the CST (CST: the capillary suction time, a sludge dewaterability indicator) was reduced by 95%. In contrast, the highest CST reduction in Fe(II)-persulfate conditioning was 90%, which was obtained at 50 mg Fe(II)/g TS and 250 mg persulfate/g TS. The results showed that Fe(II)-HP conditioning was comparable with Fe(II)-persulfate conditioning in terms of highest CST reduction. Economic analysis suggested that the Fe(II)-HP conditioning was more promising for improving ADS dewaterability compared with Fe(II)-persulfate conditioning, with the saving being up to $65,000 per year in a WWTP with a population equivalent of 100,000. PMID:27109500
On the nature of the nova-like variable CD-42 deg 14462
NASA Technical Reports Server (NTRS)
Guinan, E. F.; Sion, E. M.
1981-01-01
Low dispersion long and short wavelength IUE spectra of the nova like system CD-42 deg 14462 were obtained on August 24 U.T. The short wave spectrum exhibits absorption features due to C III (lambda 1175), Lalpha 1216), NV (lambda1240), HeII (lambda 1640), SiIV (lambda1394), NIV (lambda1875) with CIV (lambda1550) as a P Cygni feature with blue shifted absorption suggesting the presence of material leaving the system. Possible interpretations of this object are discussed.
Oxidation of Structural Fe(II) in Biotite by Lithotrophic Fe(II)-oxidizing microorganisms
NASA Astrophysics Data System (ADS)
Shelobolina, E.; Blöthe, M.; Xu, H.; Konishi, H.; Roden, E.
2008-12-01
The potential for microbial involvement in the oxidation of Fe(II)-bearing phyllosilicates is an understudied aspect of soil/sediment Fe biogeochemistry. An important property of structural Fe in Fe-bearing smectites is their ability to undergo multiple redox cycles without being mobilized. An obvious choice of mineral substrate for enumeration/isolation of Fe(II)-oxidizing microorganisms would be reduced smectite. But reduced smectite is readily oxidized by air. That is why biotite was chosen as a substrate for this study. In contrast to smectite, biotite is more stable in the presence of air, but incapable of redox cycling. Once Fe(II) is oxidized, biotite is weathered to expendable 2:1 phyllosilicates or kaolinite. First, we evaluated the ability of a neutral-pH lithoautotrophic nitrate-reducing enrichment culture (MPI culture), recovered by Straub et al (Appl. Environ. Microbiol., 1996, 62:1458-1460) from a freshwater ditch, to oxidize two different specimens of biotite. The culture was capable of multiple transfers in anaerobic nitrate-containing biotite suspensions. The growth of MPI culture resulted in decrease of 0.5 N HCl-extractable Fe(II) content and simultaneous nitrate reduction. Cell yields were comparable to those observed for other neutral-pH lithoautotrophic Fe(II)-oxidizing bacteria. High resolution TEM examination revealed structural and chemical changes at the edges of oxidized biotite and formation of reddish amorphous precipitates dominated by Si and Fe. To further evaluate efficiency of biotite for recovery of oxygen- and nitrate-dependent Fe(II) oxidizing cultures microbial enumeration study was performed using subsoil from a site near Madison, WI. The soil is rich in Fe-bearing smectite and shows evidence of redoximorphic features. The enumeration of Fe(II) oxidizing organisms from this sediment showed 10-fold higher efficiency of biotite over soluble Fe(II) for recovery of Fe(II)-oxidizers. Isolation and identification of both aerobic and nitrate-utilizing Fe(II)-oxidizing cultures is under way. This study demonstrates that biotite can be effectively used to recover and study microorganisms involved in the oxidative side of iron redox cycle in phyllosilicates. Our findings also indicate that microbial redox metabolism has the potential to vastly accelerate the oxidative weathering of otherwise relatively stable Fe(II)-bearing phyllosilicates.
The removal efficiency of heavy metal ions (cadmium(II) – Cd(II), cobalt(II) – Co(II), nickel(II) – Ni(II), and copper(II) – Cu(II)) by potassium ferrate(VI) (K2FeO4, Fe(VI)), was studied as a function of added amount of Fe(VI) (or Fe) and varying pH. At pH = 6.6, the effective r...
Fe(II) formation after interaction of the amyloid β-peptide with iron-storage protein ferritin.
Balejcikova, Lucia; Siposova, Katarina; Kopcansky, Peter; Safarik, Ivo
2018-05-09
The interaction of amyloid β-peptide (Aβ) with the iron-storage protein ferritin was studied in vitro. We have shown that Aβ during fibril formation process is able to reduce Fe(III) from the ferritin core (ferrihydrite) to Fe(II). The Aβ-mediated Fe(III) reduction yielded a two-times-higher concentration of free Fe(II) than the spontaneous formation of Fe(II) by the ferritin itself. We suggest that Aβ can also act as a ferritin-specific metallochaperone-like molecule capturing Fe(III) from the ferritin ferrihydrite core. Our observation may partially explain the formation of Fe(II)-containing minerals in human brains suffering by neurodegenerative diseases.
Roberts, Linda C; Hug, Stephan J; Ruettimann, Thomas; Billah, Morsaline; Khan, Abdul Wahab; Rahman, Mohammad Tariqur
2004-01-01
Arsenic removal by passive treatment, in which naturally present Fe(II) is oxidized by aeration and the forming iron(III) (hydr)oxides precipitate with adsorbed arsenic, is the simplest conceivable water treatment option. However, competing anions and low iron concentrations often require additional iron. Application of Fe(II) instead of the usually applied Fe(III) is shown to be advantageous, as oxidation of Fe(II) by dissolved oxygen causes partial oxidation of As(III) and iron(III) (hydr)oxides formed from Fe(II) have higher sorption capacities. In simulated groundwater (8.2 mM HCO3(-), 2.5 mM Ca2+, 1.6 mM Mg2+, 30 mg/L Si, 3 mg/L P, 500 ppb As(III), or As(V), pH 7.0 +/- 0.1), addition of Fe(II) clearly leads to better As removal than Fe(III). Multiple additions of Fe(II) further improved the removal of As(II). A competitive coprecipitation model that considers As(III) oxidation explains the observed results and allows the estimation of arsenic removal under different conditions. Lowering 500 microg/L As(III) to below 50 microg/L As(tot) in filtered water required > 80 mg/L Fe(III), 50-55 mg/L Fe(II) in one single addition, and 20-25 mg/L in multiple additions. With As(V), 10-12 mg/L Fe(II) and 15-18 mg/L Fe(III) was required. In the absence of Si and P, removal efficiencies for Fe(II) and Fe(III) were similar: 30-40 mg/L was required for As(II), and 2.0-2.5 mg/L was required for As(V). In a field study with 22 tubewells in Bangladesh, passive treatment efficiently removed phosphate, but iron contents were generally too low for efficient arsenic removal.
Reduction of aqueous transition metal species on the surfaces of Fe(II)-containing oxides
White, A.F.; Peterson, M.L.
1996-01-01
Experimental studies demonstrate that structural Fe(II) in magnetite and ilmenite heterogeneously reduce aqueous ferric, cupric, vanadate, and chromate ions at the oxide surfaces over a pH range of 1-7 at 25??C. For an aqueous transition metal m, such reactions are 3[Fe2+Fe3+2]O4(magnetite) + 2/nmz ??? 4[Fe3+2]O3(maghemite) + Fe2+ + 2/nmz-n and 3[Fe2+Ti]O3(ilmenite) + 2/nmz ??? Fe3+2Ti3O9(pseudorutile) + Fe2+ + 2/nmz-n, where z is the valance state and n is the charge transfer number. The half cell potential range for solid state oxidation [Fe(II)] ??? [Fe(III)] is -0.34 to -0.65 V, making structural Fe(II) a stronger reducing agent than aqueous Fe2+ (-0.77 V). Reduction rates for aqueous metal species are linear with time (up to 36 h), decrease with pH, and have rate constants between 0.1 and 3.3 ?? 10-10 mol m-2 s-1. Iron is released to solution both from the above reactions and from dissolution of the oxide surface. In the presence of chromate, Fe2+ is oxidized homogeneously in solution to Fe3+. X-ray photoelectron spectroscopy (XPS) denotes a Fe(III) oxide surface containing reduced Cr(III) and V(IV) species. Magnetite and ilmenite electrode potentials are insensitive to increases in divalent transition metals including Zn(II), Co(II), Mn(II), and Ni(II) and reduced V(IV) and Cr(III) but exhibit a log-linear concentration-potential response to Fe(III) and Cu(II). Complex positive electrode responses occur with increasing Cr(VI) and V(V) concentrations. Potential dynamic scans indicate that the high oxidation potential of dichromate is capable of suppressing the cathodic reductive dissolution of magnetite. Oxide electrode potentials are determined by the Fe(II)/Fe(III) composition of the oxide surface and respond to aqueous ion potentials which accelerate this oxidation process. Natural magnetite sands weathered under anoxic conditions are electrochemically reactive as demonstrated by rapid chromate reduction and the release of aqueous Fe(III) to experimental solution. In contrast, magnetite weathered under oxidizing vadose conditions show minimum reactivity toward chromate ions. The ability of Fe(II) oxides to reduce transition metals in soils and groundwaters will be strongly dependent on the redox environment.
Reduction of aqueous transition metal species on the surfaces of Fe(II) -containing oxides
NASA Astrophysics Data System (ADS)
White, Art F.; Peterson, Maria L.
1996-10-01
Experimental studies demonstrate that structural Fe(II) in magnetite and ilmenite heterogeneously reduce aqueous ferric, cupric, vanadate, and chromate ions at the oxide surfaces over a pH range of 1-7 at 25°C. For an aqueous transition metal m, such reactions are 3[FeFe23+]O+2/nm→4[Fe23+]O+Fe+2/nm and 3[FeTi]O+→Fe23+TiO+Fe+2/nm, where z is the valance state and n is the charge transfer number. The half cell potential range for solid state oxidation [Fe(II)] → [Fe(III)] is -0.34 to -0.65 V, making structural Fe(II) a stronger reducing agent than aqueous Fe 2+ (-0.77 V). Reduction rates for aqueous metal species are linear with time (up to 36 h), decrease with pH, and have rate constants between 0.1 and 3.3 × 10 -10 mol m -2 s -1. Iron is released to solution both from the above reactions and from dissolution of the oxide surface. In the presence of chromate, Fe 2+ is oxidized homogeneously in solution to Fe 3+. X-ray photoelectron spectroscopy (XPS) denotes a Fe(III) oxide surface containing reduced Cr(III) and V(IV) species. Magnetite and ilmenite electrode potentials are insensitive to increases in divalent transition metals including Zn(II), Co(II), Mn(II), and Ni(II) and reduced V(IV) and Cr(III) but exhibit a log-linear concentration-potential response to Fe(III) and Cu(II). Complex positive electrode responses occur with increasing Cr(VI) and V(V) concentrations. Potential dynamic scans indicate that the high oxidation potential of dichromate is capable of suppressing the cathodic reductive dissolution of magnetite. Oxide electrode potentials are determined by the Fe(II)/Fe(III) composition of the oxide surface and respond to aqueous ion potentials which accelerate this oxidation process. Natural magnetite sands weathered under anoxic conditions are electrochemically reactive as demonstrated by rapid chromate reduction and the release of aqueous Fe(III) to experimental solution. In contrast, magnetite weathered under oxidizing vadose conditions show minimum reactivity toward chromate ions. The ability of Fe(II) oxides to reduce transition metals in soils and groundwaters will be strongly dependent on the redox environment.
Stable Fe isotope fractionation during anaerobic microbial dissimilatory iron reduction at low pH
NASA Astrophysics Data System (ADS)
Chanda, P.; Amenabar, M. J.; Boyd, E. S.; Beard, B. L.; Johnson, C.
2017-12-01
In low-temperature anaerobic environments microbial dissimilatory iron reduction (DIR) plays an important role in Fe cycling. At neutral pH, sorption of aqueous Fe(II) (Fe(II)aq, produced by DIR) catalyzes isotopic exchange between Fe(II) and solid Fe(III), producing 56Fe/54Fe fractionations on the order of 3‰ during DIR[1,2,3]. At low pH, however, the absence of sorbed Fe(II) produces only limited abiologic isotopic exchange[4]. Here we investigated the scope of isotopic exchange between Fe(II)aq and ferric (hydr)oxides (ferrihydrite and goethite) and the associated stable Fe isotope fractionation during DIR by Acidianus strain DS80 at pH 3.0 and 80°C[5]. Over 19 days, 13% reduction of both minerals via microbial DIR was observed. The δ56Fe values of the fluid varied from -2.31 to -1.63‰ (ferrihydrite) and -0.45 to 0.02‰ (goethite). Partial leaching of bulk solid from each reactor with dilute HCl showed no sorption of Fe(II), and the surface layers of the solids were composed of Fe(III) with high δ56Fe values (ferrihydrite: 0.20 to 0.48‰ and goethite: 1.20 to 1.30‰). These results contrast with the lack of Fe isotope exchange in abiologic low-pH systems and indicate a key role for biology in catalyzing Fe isotope exchange between Fe(II)aq and Fe(III) solids, despite the absence of sorbed Fe(II). The estimated fractionation factor (ΔFeFe(III) -Fe(II)aq 2.6‰) from leaching of ferrihydrite is similar to the abiologic equilibrium fractionation factor ( 3.0‰)[3]. The fractionation factor (ΔFeFe(III) -Fe(II)aq 2.0‰) for goethite is higher than the abiologic fractionation factor ( 1.05‰)[2], but is consistent with the previously proposed "distorted surface layer" of goethite produced during the exchange with Fe(II)aq at neutral pH[1]. This study indicates that significant variations in Fe isotope compositions may be produced in low-pH environments where biological cycling of Fe occurs, in contrast to the expected lack of isotopic fractionation in low-pH abiologic systems, and such results bear on the search for biosignatures in Mars and Mars-analog settings. [1] Crosby et al., 2007 Geobiol. 5, 169-189 [2] Beard et al., 2010 Earth Planet. Sci. Lett. 295, 241-250 [3] Wu et al., 2011 Environ. Sci. Technol. 45, 1847-1852 [4] Reddy et al., 2015 Chem. Geol. 397, 118-127 [5] Amenabar et al., 2017 Nat. Geosci. In press
Snyder, Rae Ana; Bell, Caleb B.; Diao, Yinghui; Krebs, Carsten; Bollinger, J. Martin; Solomon, Edward I.
2013-01-01
Myo-inositol oxygenase (MIOX) catalyzes the 4e− oxidation of myo-inositol (MI) to D-glucuronate using a substrate activated Fe(II)Fe(III) site. The biferrous and Fe(II)Fe(III) forms of MIOX were studied with circular dichroism (CD), magnetic circular dichroism (MCD), and variable temperature variable field (VTVH) MCD spectroscopies. The MCD spectrum of biferrous MIOX shows two ligand field (LF) transitions near 10,000 cm−1, split by ~2,000 cm−1, characteristic of 6 coordinate (6C) Fe(II) sites, indicating that the modest reactivity of the biferrous form toward O2 can be attributed to the saturated coordination of both irons. Upon oxidation to the Fe(II)Fe(III) state, MIOX shows two LF transitions in the ~10,000 cm−1 region, again implying a coordinatively saturated Fe(II) site. Upon MI binding, these split in energy to 5,200 cm−1 and 11,200 cm−1, showing that MI binding causes the Fe(II) to become coordinately unsaturated. VTVH MCD magnetization curves of unbound and MI-bound Fe(II)Fe(III) forms show that upon substrate binding, the isotherms become more nested, requiring that the exchange coupling and ferrous zero field splitting (ZFS) both decrease in magnitude. These results imply that MI binds to the ferric site, weakening the Fe(III)-μ-OH bond and strengthening the Fe(II)-μ-OH bond. This perturbation results in the release of a coordinated water from the Fe(II) that enables its O2 activation. PMID:24066857
Fe Isotope Fractionation During Fe(III) Reduction to Fe(II)
NASA Astrophysics Data System (ADS)
Baker, E. A.; Greene, S.; Hardin, E. E.; Hodierne, C. E.; Rosenberg, A.; John, S.
2014-12-01
The redox chemistry of Fe(III) and Fe(II) is tied to a variety of earth processes, including biological, chemical, or photochemical reduction of Fe(III) to Fe(II). Each process may fractionate Fe isotopes, but the magnitudes of the kinetic isotope effects have not been greatly explored in laboratory conditions. Here, we present the isotopic fractionation of Fe during reduction experiments under a variety of experimental conditions including photochemical reduction of Fe(III) bound to EDTA or glucaric acid, and chemical reduction of Fe-EDTA by sodium dithionite, hydroxylamine hydrochloride, Mn(II), and ascorbic acid. A variety of temperatures and pHs were tested. In all experiments, Fe(III) bound to an organic ligand was reduced in the presence of ferrozine. Ferrozine binds with Fe(II), forming a purple complex which allows us to measure the extent of reaction. The absorbance of the experimental solutions was measured over time to determine the Fe(II)-ferrozine concentration and thus the reduction rate. After about 5% of the Fe(III) was reduced, Fe(III)-EDTA and Fe(II)-ferrozine were separated using a C-18 column to which Fe(II)-ferrozine binds. The Fe(II) was eluted and purified through anion exchange chromatography for analysis of δ56Fe by MC-ICPMS. Preliminary results show that temperature and pH both affect reduction rate. All chemical reductants tested reduce Fe(III) at a greater rate as temperature increases. The photochemical reductant EDTA reduces Fe(III) at a greater rate under more acidic conditions. Comparison of the two photochemical reductants shows that glucaric acid reduces Fe(III) significantly faster than EDTA. For chemical reduction, the magnitude of isotopic fractionation depends on the reductant used. Temperature and pH also affect the isotopic fractionation of Fe. Experiments using chemical reductants show that an increase in temperature at low temperatures produces lighter 56Fe ratios, while at high temperatures some reductants produce heavier 56Fe ratios. The magnitude of isotope fractionation is not related to the reduction rate generalized over all reductants. The measured isotopic fractionations produce δ56Fe from -3.82 to +3.05 across all of the reductants tested, highlighting the large impact that redox chemistry may have on fractionating Fe isotopes in the environment.
Wu, Qi-Long; Han, Song-De; Wang, Qing-Lun; Zhao, Jiong-Peng; Ma, Feng; Jiang, Xue; Liu, Fu-Chen; Bu, Xian-He
2015-10-25
Linking magnetically frustrated triangular FeO units by divalent metal ions (M(II) = Fe(II) for 1, Mn(II) for 2) gives isostructural 1D spin chains. Strong antiferromagnetic interactions were found in these complexes with significant frustrations but very interesting ferrimagnetic like transition and metamagnetism were found in mixed valence 1. By comparing the magnetic behaviours with isostructural complex 3 (with M(II) = Mg(II)), it is proposed that the spins of Fe(II) ions and Mn(II) ions have ferromagnetic and antiferromagnetic contributions respectively.
The role of defects in Fe(II) – goethite electron transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrade de Notini, Luiza; Latta, Drew; Neumann, Anke
Despite accumulating experimental evidence for Fe(II)-Fe(III) oxide electron transfer, computational chemical calculations suggest that oxidation of sorbed Fe(II) is not energetically feasible unless defects are present. Here we used isotope specific 57Fe Mössbauer spectroscopy to investigate whether Fe(II)-goethite electron transfer is influenced by defects. Specifically, we heated the mineral to try to anneal the goethite surface and ground goethite to try to create defects. We found that heating goethite results in less oxidation of sorbed Fe(II) by goethite. When goethite was re-ground after heating, electron transfer was partially restored. X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) ofmore » heated and ground goethite confirm that heating and grinding alter the surface structure of the goethite. We propose that the heating process annealed the surface and decreased the number of sites where electron transfer could occur. Our experimental findings suggest that surface defects play an important role in Fe(II)-goethite electron transfer as suggested by computational calculations. Our finding that defects influence heterogeneous Fe(II)-goethite electron transfer has important implications for Fe(II) driven recrystallization of Fe oxides, as well as X and Y.« less
Tangalos, G.E.; Beard, B.L.; Johnson, C.M.; Alpers, Charles N.; Shelobolina, E.S.; Xu, H.; Konishi, H.; Roden, E.E.
2012-01-01
The inventories and Fe isotope composition of aqueous Fe(II) and solid-phase Fe compounds were quantified in neutral-pH, chemically precipitated sediments downstream of the Iron Mountain acid mine drainage site in northern California, USA. The sediments contain high concentrations of amorphous Fe(III) oxyhydroxides [Fe(III)am] that allow dissimilatory iron reduction (DIR) to predominate over Fe–S interactions in Fe redox transformation, as indicated by the very low abundance of Cr(II)-extractable reduced inorganic sulfur compared with dilute HCl-extractable Fe. δ56Fe values for bulk HCl- and HF-extractable Fe were ≈ 0. These near-zero bulk δ56Fe values, together with the very low abundance of dissolved Fe in the overlying water column, suggest that the pyrite Fe source had near-zero δ56Fe values, and that complete oxidation of Fe(II) took place prior to deposition of the Fe(III) oxide-rich sediment. Sediment core analyses and incubation experiments demonstrated the production of millimolar quantities of isotopically light (δ56Fe ≈ -1.5 to -0.5) aqueous Fe(II) coupled to partial reduction of Fe(III)am by DIR. Trends in the Fe isotope composition of solid-associated Fe(II) and residual Fe(III)am are consistent with experiments with synthetic Fe(III) oxides, and collectively suggest an equilibrium Fe isotope fractionation between aqueous Fe(II) and Fe(III)am of approximately -2. These Fe(III) oxide-rich sediments provide a model for early diagenetic processes that are likely to have taken place in Archean and Paleoproterozoic marine sediments that served as precursors for banded iron formations. Our results suggest pathways whereby DIR could have led to the formation of large quantities of low-δ56Fe minerals during BIF genesis.
Spherically symmetric, expanding, non-LTE model atmospheres for novae during their early stages
NASA Technical Reports Server (NTRS)
Hauschildt, P. H.; Wehrse, R.; Starrfield, S.; Shaviv, G.
1992-01-01
In the continuum and line-blanketed models presented here, nova atmospheres are characterized by a very slow decrease of density with increasing radius. This feature leads to very large geometrical extensions so that there are large temperature differences between the inner and outer parts of the line-forming regions. The theoretical spectra show a large IR excess and a small Balmer jump which may be either in absorption or in emission. For the parameters considered (effective temperature of about 10 exp 4 K, L = 2 x 10 exp 4 solar luminosities, outer boundary density of about 3 x 10 exp -15 g cm exp -3, mass-loss rate of 10 exp -5 solar masses/yr), most lines are in absorption. The effects of changes in the abundances of the heavy elements on the emergent spectra are discussed. The strong unidentified features observed in ultraviolet spectra of novae are found in actuality to be regions of transparency within the Fe 'forest'. Ultraviolet spectra obtained from the IUE archives are displayed, and spectral synthesis of these spectra is done using the theoretical atmospheres.
Controls on Fe(II)-Activated Trace Element Release from Goethite and Hematite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frierdich, Andrew J.; Catalano, Jeffrey G.
2012-03-26
Electron transfer and atom exchange (ETAE) between aqueous Fe(II) and Fe(III) oxides induces surface growth and dissolution that affects trace element fate and transport. We have recently demonstrated Ni(II) cycling through goethite and hematite (adsorbed Ni incorporates into the mineral structure and preincorporated Ni releases to solution) during Fe(II)-Fe(III) ETAE. However, the chemical parameters affecting net trace element release remain unknown. Here, we examine the chemical controls on Ni(II) and Zn(II) release from Ni- and Zn-substituted goethite and hematite during reaction with Fe(II). Release follows a rate law consistent with surface reaction limited mineral dissolution and suggests that release occursmore » near sites of Fe(III) reductive dissolution during Fe(II)-Fe(III) ETAE. Metal substituent type affects reactivity; Zn release is more pronounced from hematite than goethite, whereas the opposite trend occurs for Ni. Buildup of Ni or Zn in solution inhibits further release but this resumes upon fluid exchange, suggesting that sustained release is possible under flow conditions. Mineral and aqueous Fe(II) concentrations as well as pH strongly affect sorbed Fe(II) concentrations, which directly control the reaction rates and final metal concentrations. Our results demonstrate that structurally incorporated trace elements are mobilized from iron oxides into fluids without abiotic or microbial net iron reduction. Such release may affect micronutrient availability, contaminant transport, and the distribution of redox-inactive trace elements in natural and engineered systems.« less
Extreme optical Fe II emission in luminous IRAS active galactic nuclei
NASA Technical Reports Server (NTRS)
Lipari, Sebastian; Terlevich, Roberto; Macchetto, F.
1993-01-01
Results of a program of studies and observations of strong optical Fe II emission in luminous and ultraluminous IRAS AGN are presented. New spectroscopic observations and studies of three known ultraluminous IRAS AGN with extreme optical Fe II emission, the discovery that PHL 1092 is a new ultraluminous IRAS AGN, and the detection of two new AGN with strongly variable flux in the optical Fe II emission lines are reported. These results are used to test the correlations between the Fe II emission and properties at other wavelengths such as the L(IR) and the radio emission. IR AGN with extreme Fe II emission are found to belong to a very important group of AGN, whose properties provide insight into the origin of the extreme Fe II emission and into the relation between the starburst and AGN phenomena.
Larrea, Edurne S; Mesa, José Luis; Legarra, Estibaliz; Aguayo, Andrés Tomás; Arriortua, Maria Isabel
2016-01-01
Single crystals of the title compound, potassium hexa-phosphito-penta-ferrate(II,III) hemihydrate, K0.75[Fe(II) 3.75Fe(III) 1.25(HPO3)6]·0.5H2O, were grown under mild hydro-thermal conditions. The crystal structure is isotypic with Li1.43[Fe(II) 4.43Fe(III) 0.57(HPO3)6]·1.5H2O and (NH4)2[Fe(II) 5(HPO3)6] and exhibits a [Fe(II) 3.75Fe(III) 1.25(HPO3)6](0.75-) open framework with disordered K(+) (occupancy 3/4) as counter-cations. The anionic framework is based on (001) sheets of two [FeO6] octa-hedra (one with point group symmetry 3.. and one with point group symmetry .2.) linked along [001] through [HPO3](2-) oxoanions. Each sheet is constructed from 12-membered rings of edge-sharing [FeO6] octa-hedra, giving rise to channels with a radius of ca 3.1 Å where the K(+) cations and likewise disordered water mol-ecules (occupancy 1/4) are located. O⋯O contacts between the water mol-ecule and framework O atoms of 2.864 (5) Å indicate hydrogen-bonding inter-actions of medium strength. The infrared spectrum of the compound shows vibrational bands typical for phosphite and water groups. The Mössbauer spectrum is in accordance with the presence of Fe(II) and Fe(III) ions.
Han, Wen-Ge; Sandala, Gregory M; Giammona, Debra Ann; Bashford, Donald; Noodleman, Louis
2011-11-14
The R2 subunit of class-Ia ribonucleotide reductase (RNR) from Escherichia coli (E. coli) contains a diiron active site. Starting from the apo-protein and Fe(II) in solution at low Fe(II)/apoR2 ratios, mononuclear Fe(II) binding is observed indicating possible different Fe(II) binding affinities for the two alternative sites. Further, based on their Mössbauer spectroscopy and two-iron-isotope reaction experiments, Bollinger et al. (J. Am. Chem. Soc., 1997, 119, 5976-5977) proposed that the site Fe1, which bonds to Asp84, should be associated with the higher observed (57)Fe Mössbauer quadrupole splitting (2.41 mm s(-1)) and lower isomer shift (0.45 mm s(-1)) in the Fe(III)Fe(III) state, site Fe2, which is further from Tyr122, should have a greater affinity for Fe(II) binding than site Fe1, and Fe(IV) in the intermediate X state should reside at site Fe2. In this paper, using density functional theory (DFT) incorporated with the conductor-like screening (COSMO) solvation model and with the finite-difference Poisson-Boltzmann self-consistent reaction field (PB-SCRF) methodologies, we have demonstrated that the observed large quadrupole splitting for the diferric state R2 does come from site Fe1(III) and it is mainly caused by the binding position of the carboxylate group of the Asp84 sidechain. Further, a series of active site clusters with mononuclear Fe(II) binding at either site Fe1 or Fe2 have been studied, which show that with a single dielectric medium outside the active site quantum region, there is no energetic preference for Fe(II) binding at one site over another. However, when including the explicit extended protein environment in the PB-SCRF model, the reaction field favors the Fe(II) binding at site Fe2 rather than at site Fe1 by ~9 kcal mol(-1). Therefore our calculations support the proposal of the previous Mössbauer spectroscopy and two-iron-isotope reaction experiments by Bollinger et al.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scherer, Michelle
2016-08-31
During this project, we investigated Fe electron transfer and atom exchange between aqueous Fe(II) and structural Fe(III) in clay minerals. We used selective chemical extractions, enriched Fe isotope tracer experiments, computational molecular modeling, and Mössbauer spectroscopy. Our findings indicate that structural Fe(III) in clay minerals is reduced by aqueous Fe(II) and that electron transfer occurs when Fe(II) is sorbed to either basal planes and edge OH-groups of clay mineral. Findings from highly enriched isotope experiments suggest that up to 30 % of the Fe atoms in the structure of some clay minerals exhanges with aqueous Fe(II). First principles calculations usingmore » a small polaron hopping approach suggest surprisingly fast electron mobility at room temperature in a nontronite clay mineral and are consistent with temperature dependent Mössbauer data Fast electron mobility suggests that electrons may be able to conduct through the mineral fast enough to enable exchange of Fe between the aqueous phase and clay mineral structure. over the time periods we observed. Our findings suggest that Fe in clay minerals is not as stable as previously thought.« less
Divergent assembly mechanisms of the manganese/iron cofactors in R2lox and R2c proteins.
Kutin, Yuri; Srinivas, Vivek; Fritz, Matthieu; Kositzki, Ramona; Shafaat, Hannah S; Birrell, James; Bill, Eckhard; Haumann, Michael; Lubitz, Wolfgang; Högbom, Martin; Griese, Julia J; Cox, Nicholas
2016-09-01
A manganese/iron cofactor which performs multi-electron oxidative chemistry is found in two classes of ferritin-like proteins, the small subunit (R2) of class Ic ribonucleotide reductase (R2c) and the R2-like ligand-binding oxidase (R2lox). It is unclear how a heterodimeric Mn/Fe metallocofactor is assembled in these two related proteins as opposed to a homodimeric Fe/Fe cofactor, especially considering the structural similarity and proximity of the two metal-binding sites in both protein scaffolds and the similar first coordination sphere ligand preferences of Mn II and Fe II . Using EPR and Mössbauer spectroscopies as well as X-ray anomalous dispersion, we examined metal loading and cofactor activation of both proteins in vitro (in solution). We find divergent cofactor assembly mechanisms for the two systems. In both cases, excess Mn II promotes heterobimetallic cofactor assembly. In the absence of Fe II , R2c cooperatively binds Mn II at both metal sites, whereas R2lox does not readily bind Mn II at either site. Heterometallic cofactor assembly is favored at substoichiometric Fe II concentrations in R2lox. Fe II and Mn II likely bind to the protein in a stepwise fashion, with Fe II binding to site 2 initiating cofactor assembly. In R2c, however, heterometallic assembly is presumably achieved by the displacement of Mn II by Fe II at site 2. The divergent metal loading mechanisms are correlated with the putative in vivo functions of R2c and R2lox, and most likely with the intracellular Mn II /Fe II concentrations in the host organisms from which they were isolated. Copyright © 2016 Elsevier Inc. All rights reserved.
Jiang, Zhao; Cao, Bo; Su, Guangxia; Lu, Yan; Zhao, Jiaying; Shan, Dexin; Zhang, Xiuyuan; Wang, Ziyi
2016-01-01
This study selected solid wastes, such as rice husk ash (RHA), inactive Saccharomyces cerevisiae powder (ISP), and rice husk (RH), as the potential adsorbents for the removal of Fe(II) and Mn(II) in aqueous solution. The structural characteristics, functional groups, and elemental compositions were determined by scanning electron microscope (SEM) and Fourier translation infrared spectrum (FT-IR) analyses, respectively. Then the influence on the Fe(II) and Mn(II) removing efficiency by the factors, such as pH, adsorbent dosage, initial Fe(II) and Mn(II) concentration, and contact time, was investigated by the static batch test. The adsorption isotherm study results show that Langmuir equation can better fit the Fe(II) and Mn(II) adsorption process by the three adsorbents. The maximum adsorption amounts for Fe(II) were 6.211 mg/g, 4.464 mg/g, and 4.049 mg/g by RHA, ISP, and RH and for Mn(II) were 3.016 mg/g, 2.229 mg/g, and 1.889 mg/g, respectively. The adsorption kinetics results show that the pseudo-second-order kinetic model can better fit the Fe(II) and Mn(II) adsorption process. D-R model and thermodynamic parameters hint that the adsorption processes of Fe(II) and Mn(II) on the three adsorbents took place physically and the processes were feasible, spontaneous, and exothermic. PMID:28042571
ANALYSIS OF OPTICAL Fe II EMISSION IN A SAMPLE OF ACTIVE GALACTIC NUCLEUS SPECTRA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovacevic, Jelena; Popovic, Luka C.; Dimitrijevic, Milan S., E-mail: jkovacevic@aob.bg.ac.r
We present a study of optical Fe II emission in 302 active galactic nuclei (AGNs) selected from the Sloan Digital Sky Survey. We group the strongest Fe II multiplets into three groups according to the lower term of the transition (b{sup 4} F, a{sup 6} S, and a{sup 4} G terms). These approximately correspond to the blue, central, and red parts, respectively, of the 'iron shelf' around H{beta}. We calculate an Fe II template that takes into account transitions into these three terms and an additional group of lines, based on a reconstruction of the spectrum of I Zw 1.more » This Fe II template gives a more precise fit of the Fe II lines in broad-line AGNs than other templates. We extract Fe II, H{alpha}, H{beta}, [O III], and [N II] emission parameters and investigate correlations between them. We find that Fe II lines probably originate in an intermediate line region. We note that the blue, red, and central parts of the iron shelf have different relative intensities in different objects. Their ratios depend on continuum luminosity, FWHM H{beta}, the velocity shift of Fe II, and the H{alpha}/H{beta} flux ratio. We examine the dependence of the well-known anti-correlation between the equivalent widths of Fe II and [O III] on continuum luminosity. We find that there is a Baldwin effect for [O III] but an inverse Baldwin effect for the Fe II emission. The [O III]/Fe II ratio thus decreases with L {sub {lambda}5100}. Since the ratio is a major component of the Boroson and Green Eigenvector 1 (EV1), this implies a connection between the Baldwin effect and EV1 and could be connected with AGN evolution. We find that spectra are different for H{beta} FWHMs greater and less than {approx}3000 km s{sup -1}, and that there are different correlation coefficients between the parameters.« less
Armentano, D; De Munno, G; Faus, J; Lloret, F; Julve, M
2001-02-12
The preparation and crystal structures of two oxalato-bridged FeII-FeIII mixed-valence compounds, [FeII(bpm)3]2[FeIII2(ox)5].8H2O (1) and FeII(bpm)3Na(H2O)2FeIII(ox)(3).4H2O (2) (bpm = 2,2'-bipyrimidine; ox = oxalate dianion) are reported here. Complex 1 crystallizes in the triclinic system, space group P1, with a = 10.998(2) A, b = 13.073(3) A, c = 13.308(3) A, alpha = 101.95(2) degrees, beta = 109.20(2) degrees, gamma = 99.89(2) degrees, and Z = 1. Complex 2 crystallizes in the monoclinic system, space group P2(1)/c, with a = 12.609(2) A, b = 19.670(5) A, c = 15.843(3) A, beta = 99.46(1) degrees, and Z = 4. The structure of complex 1 consists of centrosymmetric oxalato-bridged dinuclear high-spin iron(III) [Fe2(ox)5]2- anions, tris-chelated low-spin iron(II) [Fe(bpm)3]2+ cations, and lattice water molecules. The iron atoms are hexacoordinated: six oxygen atoms (iron(III)) from two bidentate and one bisbidentate oxalato ligands and six nitrogen atoms (iron(II)) from three bidentate bpm groups. The Fe(III)-O(ox) and Fe(II)-N(bpm) bond distances vary in the ranges 1.967(3)-2.099(3) and 1.967(4)-1.995(3) A, respectively. The iron(III)-iron(III) separation across the bridging oxalato is 5.449(2) A, whereas the shortest intermolecular iron(III)-iron(II) distance is 6.841(2) A. The structure of complex 2 consists of neutral heterotrinuclear Fe(bpm)2Na(H2O)2Fe(ox)3 units and water molecules of crystallization. The tris-chelated low-spin iron(II) ([Fe(bpm)3]2+) and high-spin iron(III) ([Fe(ox)3]3-) entities act as bidentate ligands (through two bpm-nitrogen and two oxalato-oxygen atoms, respectively) toward the univalent sodium cation, yielding the trinuclear (bpm)2Fe(II)-bpm-Na(I)-ox-Fe(III)(ox)2 complex. Two cis-coordinated water molecules complete the distorted octahedral surrounding of the sodium atom. The ranges of the Fe(II)-N(bpm) and Fe(III)-O(ox) bond distances [1.968(6)-1.993(5) and 1.992(6)-2.024(6) A, respectively] compare well with those observed in 1. The Na-N(bpm) bond lengths (2.548(7) and 2.677(7) A) are longer than those of Na-O(ox) (2.514(7) and 2.380(7) A) and Na-O(water) (2.334(15) and 2.356(12) A). The intramolecular Fe(II)...Fe(III) separation is 6.763(2) A, whereas the shortest intermolecular Fe(II)...Fe(II) and Fe(III)...Fe(III) distances are 8.152(2) and 8.992(2) A, respectively. Magnetic susceptibility measurements in the temperature range 2.0-290 K for 1 reveal that the high-spin iron(III) ions are antiferromagnetically coupled (J = -6.6 cm-1, the Hamiltonian being defined as H = -JS1.S2). The magnitude of the antiferromagnetic coupling through the bridging oxalato in the magneto-structurally characterized family of formula [M2(ox)5](2m-10)+ (M = Fe(III) (1), Cr(III), and Ni(II)) is analyzed and discussed by means of a simple orbital model.
Park, Young Jun; Cook, Sarah A; Sickerman, Nathaniel S; Sano, Yohei; Ziller, Joseph W; Borovik, A S
2013-02-01
The effects of redox-inactive metal ions on dioxygen activation were explored using a new Fe II complex containing a tripodal ligand with 3 sulfonamido groups. This iron complex exhibited a faster initial rate for the reduction of O 2 than its Mn II analog. Increases in initial rates were also observed in the presence of group 2 metal ions for both the Fe II and Mn II complexes, which followed the trend NMe 4 + < Ba II < Ca II = Sr II . These studies led to the isolation of heterobimetallic complexes containing Fe III -( μ -OH)-M II cores (M II = Ca, Sr, and Ba) and one with a [Sr II (OH)Mn III ] + motif. The analogous [Ca II (OH)Ga III ] + complex was also prepared and its solid state molecular structure is nearly identical to that of the [Ca II (OH)Fe III ] + system. Nuclear magnetic resonance studies indicated that the diamagnetic [Ca II (OH)Ga III ] + complex retained its structure in solution. Electrochemical measurements on the heterobimetallic systems revealed similar one-electron reduction potentials for the [Ca II (OH)Fe III ] + and [Sr II (OH)Fe III ] + complexes, which were more positive than the potential observed for [Ba II (OH)Fe III ] + . Similar results were obtained for the heterobimetallic Mn II complexes. These findings suggest that Lewis acidity is not the only factor to consider when evaluating the effects of group 2 ions on redox processes, including those within the oxygen-evolving complex of Photosystem II.
Bullen, Thomas D.; White, Arthur F.; Childs, Cyril W.
2003-01-01
In a recent contribution [1], Johnson et al. reported the equilibrium isotope fractionation factor between dissolved Fe(II) and Fe(III) in aqueous solutions at pH=2.5 and 5.5. They suggest that because the iron isotope fractionation observed in their experiments spans virtually the entire range observed in sedimentary rocks, Fe(II)–Fe(III) aqueous speciation may play a major role in determining iron isotope variations in nature where Fe(II) and Fe(III) can become physically separated. They discounted earlier conclusions by us and others [2] ; [3] that significant equilibrium fractionation between specific coexisting Fe(II)- or Fe(III)-aqueous complexes (e.g., between aqueous Fe(II)(OH)x(aq)and Fe(II)(aq) ion) is capable of producing iron isotope contrasts that can be preserved in nature. This is an important contribution not only because the authors recognize the importance of abiotic equilibrium iron isotope fractionation in nature in contrast to previous assertions [4], but also because it will help to focus discussion on the development and evaluation of experimental approaches that can reveal abiotic fractionation mechanisms. However, in this Comment we propose that the experiments presented in this paper cannot be interpreted as straightforwardly as Johnson et al. contend. In particular, we show that in one of their critical experiments attainment of either isotope mass balance or equilibrium was not demonstrated, and thus the results of that experiment cannot be used to calculate an Fe(II)–Fe(III) equilibrium fractionation factor.
NASA Astrophysics Data System (ADS)
Zachara, John M.; Smith, Steven C.; Fredrickson, James K.
2000-04-01
Laboratory experiments were conducted with suspensions of goethite (α-FeOOH) and a subsurface sediment to assess the influence of bacterial iron reduction on the fate of Co(II)EDTA 2-, a representative metal-ligand complex of intermediate stability (log K Co(II)EDTA = 17.97). The goethite was synthetic (ca. 55 m 2/g) and the sediment was a Pleistocene age, Fe(III) oxide-containing material from the Atlantic coastal plain (Milford). Shewanella alga strain BrY, a dissimilatory iron reducing bacterium (DIRB), was used to promote Fe(III) oxide reduction. Sorption isotherms and pH adsorption edges were measured for Co 2+, Fe 2+, Co(II)EDTA 2-, and Fe(II)EDTA 2- on the two sorbents in 0.001 mol/L Ca(ClO 4) 2 to aid in experiment interpretation. Anoxic suspensions of the sorbents in PIPES buffer at pH 6.5-7.0 were spiked with Co(II)EDTA 2- (10 -5 mol/L, 60Co and 14EDTA labeled), inoculated with BrY (1-6 × 10 8 organisms/mL), and the headspace filled with a N 2/H 2 gas mix. The experiments were conducted under non-growth conditions. The medium did not contain PO 43- (with one exception), trace elements, or vitamins. The tubes were incubated under anoxic conditions at 25°C for time periods in excess of 100 d. Replicate tubes were sacrificed and analyzed at desired time periods for pH, Fe(II) TOT, Fe (aq)2+, 60Co, and 14EDTA. Abiotic analogue experiments were conducted where Fe (aq)2+ was added in increasing concentration to Co(II)EDTA 2-/mineral suspensions to simulate the influence of bacterial Fe(II) evolution. The DIRB generated Fe(II) from both goethite and the Milford sediment that was strongly sorbed by mineral surfaces. Aqueous Fe 2+ increased during the experiment as surfaces became saturated; Fe (aq)2+ induced the dissociation of Co(II)EDTA 2- into a mixture of Co 2+, Co(II)EDTA 2-, and Fe(II)EDTA 2- (log K Fe(II)EDTA = 15.98). The extent of dissociation of Co(II)EDTA 2- was greater in the subsurface sediment because it sorbed Fe(II) less strongly than did goethite. The post dissociation sorption behavior of Co 2+ was dependent on pH and the intrinsic sorptivity of the solid phases. Dissociation generally lead to an increase in the sorption (e.g., K d) of Co 2+ relative to EDTA 4- (form unspecified). Sorbed biogenic Fe(II) competed with free Co (aq)2+and reduced its sorption relative to unreduced material. It is concluded that cationic radionuclides such as 60Co or 239/240Pu, which may be mobilized from disposed wastes by complexation with EDTA 4-, may become immobilized in groundwater zones where dissimilatory bacterial iron reduction is operative.
Influence of Magnetite Stoichiometry on the Binding of Emerging Organic Contaminants.
Cheng, Wei; Marsac, Rémi; Hanna, Khalil
2018-01-16
While the magnetite stoichiometry (i.e., Fe(II)/Fe(III) ratio) has been extensively studied for the reductive transformation of chlorinated or nitroaromatic compounds, no work exists examining the influence of stoichiometry of magnetite on its binding properties. This study, for the first time, demonstrates that the stoichiometry strongly affects the capacity of magnetite to bind not only quinolone antibiotics such as nalidixic acid (NA) and flumequine (FLU), but also salicylic acid (SA), natural organic matter (humic acid, HA), and dissolved silicates. Fe(II)-amendment of nonstoichiometric magnetite (Fe(II)/Fe(III) = 0.40) led to similar sorbed amounts of NA, FLU, SA, silicates or HA as compared to the stoichiometric magnetite (i.e., Fe(II)/Fe(III) = 0.50). At any pH between 6 and 10, all magnetites exhibiting similar Fe(II)/Fe(III) ratio in the solid phase showed similar adsorption properties for NA or FLU. This enhancement in binding capability of magnetite for NA is still observed in the presence of environmentally relevant ligands (e.g., 10 mg L -1 of HA or 100 μM of silicates). Using surface complexation modeling, it was shown that the NA-magnetite complexation constant does not vary with Fe(II)/Fe(III) between 0.24 and 0.40, but increases by 8 orders of magnitude when Fe(II)/Fe(III) increases from 0.40 to 0.50.
Iron isotope fractionation during microbially stimulated Fe(II) oxidation and Fe(III) precipitation
Balci, N.; Bullen, T.D.; Witte-Lien, K.; Shanks, Wayne C.; Motelica, M.; Mandernack, K.W.
2006-01-01
Interpretation of the origins of iron-bearing minerals preserved in modern and ancient rocks based on measured iron isotope ratios depends on our ability to distinguish between biological and non-biological iron isotope fractionation processes. In this study, we compared 56Fe/54Fe ratios of coexisting aqueous iron (Fe(II)aq, Fe(III)aq) and iron oxyhydroxide precipitates (Fe(III)ppt) resulting from the oxidation of ferrous iron under experimental conditions at low pH (<3). Experiments were carried out using both pure cultures of Acidothiobacillus ferrooxidans and sterile controls to assess possible biological overprinting of non-biological fractionation, and both SO42- and Cl- salts as Fe(II) sources to determine possible ionic/speciation effects that may be associated with oxidation/precipitation reactions. In addition, a series of ferric iron precipitation experiments were performed at pH ranging from 1.9 to 3.5 to determine if different precipitation rates cause differences in the isotopic composition of the iron oxyhydroxides. During microbially stimulated Fe(II) oxidation in both the sulfate and chloride systems, 56Fe/54Fe ratios of residual Fe(II)aq sampled in a time series evolved along an apparent Rayleigh trend characterized by a fractionation factor ??Fe(III)aq-Fe(II)aq???1.0022. This fractionation factor was significantly less than that measured in our sterile control experiments (???1.0034) and that predicted for isotopic equilibrium between Fe(II)aq and Fe(III)aq (???1.0029), and thus might be interpreted to reflect a biological isotope effect. However, in our biological experiments the measured difference in 56Fe/54Fe ratios between Fe(III)aq, isolated as a solid by the addition of NaOH to the final solution at each time point under N2-atmosphere, and Fe(II)aq was in most cases and on average close to 2.9??? (??Fe(III)aq-Fe(II)aq ???1.0029), consistent with isotopic equilibrium between Fe(II)aq and Fe(III)aq. The ferric iron precipitation experiments revealed that 56Fe/54Fe ratios of Fe(III)aq were generally equal to or greater than those of Fe(III)ppt, and isotopic fractionation between these phases decreased with increasing precipitation rate and decreasing grain size. Considered together, the data confirm that the iron isotope variations observed in our microbial experiments are primarily controlled by non-biological equilibrium and kinetic factors, a result that aids our ability to interpret present-day iron cycling processes but further complicates our ability to use iron isotopes alone to identify biological processing in the rock record. ?? 2005 Elsevier Inc. All rights reserved.
This study examines the feasibility and application of Advanced Oxidation Technologies (AOTs) for the treatment of chlorophenols that are included in US EPA priority pollutant list. A novel class of sulfate/hydroxyl radical-based homogeneous AOTs (Fe(II)/PS, Fe(II)/PMS, Fe(II)/H...
Nitrosobenzenes, the first intermediates in the reduction of nitrobenzenes, were reduced by Fe(II) solutions as well as by Fe(II)-treated goethite suspensions (Fe(II)/G). Results indicate a reactivity trend in which electron-withdrawing groups in the para position increased the ...
Resonance Raman detection of the heme Fe(II)-NO/2-nitrovinyl species in myoglobin
NASA Astrophysics Data System (ADS)
Ioannou, Androulla; Pinakoulaki, Eftychia
2018-01-01
The six-coordinate heme Fe(II)-NO/2-nitrovinyl species in myoglobin has been detected and characterized by resonance Raman spectroscopy. The Fe(II)-14NO and 15N-O stretching frequencies of the ferrous heme nitrosyl/2-nitrovinyl species are detected at 560 and 1587 cm-1, frequencies that are similar to those observed in the Mb heme Fe(II)-NO species. For the 2-nitrovinyl (Ca=CbNO2) moiety, which is formed upon H-abstraction from the -CbH2 group, the νs(NO2) is observed at 1322 cm-1, the νas(NO2) at 1516 cm-1 and the ν(Ca=Cb14NO2)/ ν(Ca=Cb15NO2) at 1623/1615 cm-1. The frequencies of the 2-nitrovinyl are largely unaffected by NO2-/NO binding to the heme Fe(II)/(III). The properties of the six-coordinate heme Fe(II)-NO/2-nitrovinyl species are compared to those of six-coordinate heme Fe(II)-NO and the five-coordinate heme Fe(II)-NO species isolated from meat products.
NASA Astrophysics Data System (ADS)
Glazer, B. T.; Mcallister, S.; Polson, S. W.; Chan, C. S. Y.
2015-12-01
Fe(II)-oxidizing microbes (FeOM) are thought to be key players in marine Fe cycling, particularly at hydrothermal vents. However, we do not have tools to track their activity, largely because we do not know the genes involved in neutrophilic chemolithotrophic Fe oxidation. Researchers have used gene homology between FeOM isolates to suggest several genes that may be involved in Fe(II) oxidation, including the Fe oxidase cyc2 found in the Zetaproteobacteria type strain Mariprofundus ferrooxydans, as well as all other known neutrophilic microaerophilic FeOM. Although many Zetaproteobacteria are found within natural Fe mats, close relatives of Fe(II)-oxidizing isolates are rarely present. Therefore, one goal of this study was to determine the activity of putative Fe(II) oxidation genes in dominant OTUs found in natural environments. We collected Fe mats from hydrothermal vents at Loihi Seamount, Hawaii, preserving RNA in situ. By analyzing metatranscriptomes of different Fe mat niches, we were able to determine the OTUs involved and the gene expression patterns associated with Fe(II) oxidation in the marine environment. Analysis of metatranscriptomic data confirms that the Zetaproteobacteria express the various genes necessary to support the Fe mat community through chemoautotrophic growth. Globally ubiquitous and even some rare species of the Zetaproteobacteria were active, with different relative abundances depending on Fe mat niches defined by fluid flow and geochemistry. Initial results show that genes thought to be involved in the electron transport pathway from Fe(II) to O2, including cyc2, are some of the most highly expressed genes in marine Fe microbial mats. Species-specific variants of these genes suggest that many of the Zetaproteobacteria species, spanning the breadth of the diversity of the class, are expressing genes necessary for Fe(II) oxidation within natural Fe mat niches. Understanding the differential expression of these genes in different niches will enable us to quantify the activity of marine FeOM and their effect on Fe and associated element cycling within deep and coastal marine systems.
Characterization of β-FeSi II films as a novel solar cell semiconductor
NASA Astrophysics Data System (ADS)
Fukuzawa, Yasuhiro; Ootsuka, Teruhisa; Otogawa, Naotaka; Abe, Hironori; Nakayama, Yasuhiko; Makita, Yunosuke
2006-04-01
β-FeSi II is an attractive semiconductor owing to its extremely high optical absorption coefficient (α>10 5 cm -1), and is expected to be an ideal semiconductor as a thin film solar cell. For solar cell use, to prepare high quality β-FeSi II films holding a desired Fe/Si ratio, we chose two methods; one is a molecular beam epitaxy (MBE) method in which Fe and Si were evaporated by using normal Knudsen cells, and occasionally by e-gun for Si. Another one is the facing-target sputtering (FTS) method in which deposition of β-FeSi II films is made on Si substrate that is placed out of gas plasma cloud. In both methods to obtain β-FeSi II films with a tuned Fe/Si ratio, Fe/Si super lattice was fabricated by varying Fe and Si deposition thickness. Results showed significant in- and out-diffusion of host Fe and Si atoms at the interface of Si substrates into β-FeSi II layers. It was experimentally demonstrated that this diffusion can be suppressed by the formation of template layer between the epitaxial β-FeSi II layer and the substrate. The template layer was prepared by reactive deposition epitaxy (RDE) method. By fixing the Fe/Si ratio as precisely as possible at 1/2, systematic doping experiments of acceptor (Ga and B) and donor (As) impurities into β-FeSi II were carried out. Systematical changes of electron and hole carrier concentration in these samples along variation of incorporated impurities were observed through Hall effect measurements. Residual carrier concentrations can be ascribed to not only the remaining undesired impurities contained in source materials but also to a variety of point defects mainly produced by the uncontrolled stoichiometry. A preliminary structure of n-β-FeSi II/p-Si used as a solar cell indicated a conversion efficiency of 3.7%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Senko, John M.; Wanjugi, Pauline; Lucas, Melanie
2008-06-12
We characterized the microbiologically mediated oxidative precipitation of Fe(II) from coalminederived acidic mine drainage (AMD) along flow-paths at two sites in northern Pennsylvania. At the Gum Boot site, dissolved Fe(II) was efficiently removed from AMD whereas minimal Fe(II) removal occurred at the Fridays-2 site. Neither site received human intervention to treat the AMD. Culturable Fe(II) oxidizing bacteria were most abundant at sampling locations along the AMD flow path corresponding to greatest Fe(II) removal and where overlying water contained abundant dissolved O2. Rates of Fe(II) oxidation determined in laboratory-based sediment incubations were also greatest at these sampling locations. Ribosomal RNA intergenicmore » spacer analysis and sequencing of partial 16S rRNA genes recovered from sediment bacterial communities revealed similarities among populations at points receiving regular inputs of Fe(II)-rich AMD and provided evidence for the presence of bacterial lineages capable of Fe(II) oxidation. A notable difference between bacterial communities at the two sites was the abundance of Chloroflexi-affiliated 16S rRNA gene sequences in clone libraries derived from the Gum Boot sediments. Our results suggest that inexpensive and reliable AMD treatment strategies can be implemented by mimicking the conditions present at the Gum Boot field site.« less
Polarimetry and spectroscopy of the "oxygen flaring" DQ Herculis-like nova: V5668 Sagittarii (2015)
NASA Astrophysics Data System (ADS)
Harvey, E. J.; Redman, M. P.; Darnley, M. J.; Williams, S. C.; Berdyugin, A.; Piirola, V. E.; Fitzgerald, K. P.; O'Connor, E. G. P.
2018-03-01
Context. Classical novae are eruptions on the surface of a white dwarf in a binary system. The material ejected from the white dwarf surface generally forms an axisymmetric shell of gas and dust around the system. The three-dimensional structure of these shells is difficult to untangle when viewed on the plane of the sky. In this work a geometrical model is developed to explain new observations of the 2015 nova V5668 Sagittarii. Aim. We aim to better understand the early evolution of classical nova shells in the context of the relationship between polarisation, photometry, and spectroscopy in the optical regime. To understand the ionisation structure in terms of the nova shell morphology and estimate the emission distribution directly following the light curve's dust-dip. Methods: High-cadence optical polarimetry and spectroscopy observations of a nova are presented. The ejecta is modelled in terms of morpho-kinematics and photoionisation structure. Results: Initially observational results are presented, including broadband polarimetry and spectroscopy of V5668 Sgr nova during eruption. Variability over these observations provides clues towards the evolving structure of the nova shell. The position angle of the shell is derived from polarimetry, which is attributed to scattering from small dust grains. Shocks in the nova outflow are suggested in the photometry and the effect of these on the nova shell are illustrated with various physical diagnostics. Changes in density and temperature as the super soft source phase of the nova began are discussed. Gas densities are found to be of the order of 109 cm-3 for the nova in its auroral phase. The blackbody temperature of the central stellar system is estimated to be around 2.2 × 105 K at times coincident with the super soft source turn-on. It was found that the blend around 4640 Å commonly called "nitrogen flaring" is more naturally explained as flaring of the O II multiplet (V1) from 4638-4696 Å, i.e. "oxygen flaring". Conclusions: V5668 Sgr (2015) was a remarkable nova of the DQ Her class. Changes in absolute polarimetric and spectroscopic multi-epoch observations lead to interpretations of physical characteristics of the nova's evolving outflow. The high densities that were found early-on combined with knowledge of the system's behaviour at other wavelengths and polarimetric measurements strongly suggest that the visual "cusps" are due to radiative shocks between fast and slow ejecta that destroy and create dust seed nuclei cyclically.
Broad absorption line symbiotic stars: highly ionized species in the fast outflow from MWC 560
NASA Astrophysics Data System (ADS)
Lucy, Adrian B.; Knigge, Christian; Sokoloski, J. L.
2018-07-01
In symbiotic binaries, jets and disc winds may be integral to the physics of accretion on to white dwarfs from cool giants. The persistent outflow from symbiotic star MWC 560 (≡V694 Mon) is known to manifest as broad absorption lines (BALs), most prominently at the Balmer transitions. We report the detection of high-ionization BALs from C IV, Si IV, N V, and He II in International Ultraviolet Explorer spectra obtained on 1990 April 29-30, when an optical outburst temporarily erased the obscuring `iron curtain' of absorption troughs from Fe II and similar ions. The C IV and Si IV BALs reached maximum radial velocities at least 1000 km s-1 higher than contemporaneous Mg II and He II BALs; the same behaviours occur in the winds of quasars and cataclysmic variables. An iron curtain lifts to unveil high-ionization BALs during the P Cygni phase observed in some novae, suggesting by analogy a temporary switch in MWC 560 from persistent outflow to discrete mass ejection. At least three more symbiotic stars exhibit broad absorption with blue edges faster than 1500 km s-1; high-ionization BALs have been reported in AS 304 (≡V4018 Sgr), while transient Balmer BALs have been reported in Z And and CH Cyg. These BAL-producing fast outflows can have wider opening angles than has been previously supposed. BAL symbiotics are short-time-scale laboratories for their giga-scale analogues, broad absorption line quasars (BALQSOs), which display a similarly wide range of ionization states in their winds.
Broad absorption line symbiotic stars: highly ionized species in the fast outflow from MWC 560
NASA Astrophysics Data System (ADS)
Lucy, Adrian B.; Knigge, Christian; Sokoloski, J. L.
2018-04-01
In symbiotic binaries, jets and disk winds may be integral to the physics of accretion onto white dwarfs from cool giants. The persistent outflow from symbiotic star MWC 560 (≡V694 Mon) is known to manifest as broad absorption lines (BALs), most prominently at the Balmer transitions. We report the detection of high-ionization BALs from C IV, Si IV, N V, and He II in International Ultraviolet Explorer spectra obtained on 1990 April 29 - 30, when an optical outburst temporarily erased the obscuring `iron curtain' of absorption troughs from Fe II and similar ions. The C IV and Si IV BALs reached maximum radial velocities at least 1000 km s-1 higher than contemporaneous Mg II and He II BALs; the same behaviors occur in the winds of quasars and cataclysmic variables. An iron curtain lifts to unveil high-ionization BALs during the P Cygni phase observed in some novae, suggesting by analogy a temporary switch in MWC 560 from persistent outflow to discrete mass ejection. At least three more symbiotic stars exhibit broad absorption with blue edges faster than 1500 km s-1; high-ionization BALs have been reported in AS 304 (≡V4018 Sgr), while transient Balmer BALs have been reported in Z And and CH Cyg. These BAL-producing fast outflows can have wider opening angles than has been previously supposed. BAL symbiotics are short-timescale laboratories for their giga-scale analogs, broad absorption line quasars (BALQSOs), which display a similarly wide range of ionization states in their winds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lieberman, Craig M.; Barry, Matthew C.; Wei, Zheng
A series of mixed-valent, heterometallic (mixed-transition metal) diketonates that can be utilized as prospective volatile single-source precursors for the low-temperature preparation of M xM' 3–xO 4 spinel oxide materials is reported. Three iron–cobalt complexes with Fe/Co ratios of 1:1, 1:2, and 2:1 were synthesized by several methods using both solid-state and solution reactions. On the basis of nearly quantitative reaction yields, elemental analyses, and comparison of metal–oxygen bonds with those in homometallic analogues, heterometallic compounds were formulated as [Fe III(acac) 3][Co II(hfac) 2] (1), [Co II(hfac) 2][Fe III(acac) 3][Co II(hfac) 2] (2), and [Fe II(hfac) 2][Fe III(acac) 3][Co II(hfac) 2]more » (3). In the above heteroleptic complexes, the Lewis acidic, coordinatively unsaturated CoII/FeII centers chelated by two hexafluoroacetylacetonate (hfac) ligands maintain bridging interactions with oxygen atoms of acetylacetonate (acac) groups that chelate the neighboring Fe III metal ion. Preliminary assignment of Fe and Co positions/oxidation states in 1–3 drawn from X-ray structural investigation was corroborated by a number of complementary techniques. Single-crystal resonant synchrotron diffraction and neutron diffraction experiments unambiguously confirmed the location of Fe and Co sites in the molecules of dinuclear (1) and trinuclear (2) complexes, respectively. Direct analysis in real time mass spectrometry revealed the presence of Fe III- and Co II-based fragments in the gas phase upon evaporation of precursors 1 and 2 as well as of Fe III, Fe II, and Co II species for complex 3. Theoretical investigation of two possible “valent isomers”, [Fe III(acac) 3][Co II(hfac) 2] (1) and [Co III(acac) 3][Fe II(hfac) 2] (1'), provided an additional support for the metal site/oxidation state assignment giving a preference of 6.48 kcal/mol for the experimentally observed molecule 1. Magnetic susceptibility measurements data are in agreement with the presence of high-spin FeIII and CoII magnetic centers with weak anti-ferromagnetic coupling between those in molecules of 1 and 2. Highly volatile heterometallic complexes 1–3 were found to act as effective single-source precursors for the low-temperature preparation of iron–cobalt spinel oxides Fe xCo 3–xO 4 known as important materials for diverse energy-related applications.« less
Liu, Jing; Meier, Katlyn K; Tian, Shiliang; Zhang, Jun-Long; Guo, Hongchao; Schulz, Charles E; Robinson, Howard; Nilges, Mark J; Münck, Eckard; Lu, Yi
2014-09-03
Much progress has been made in designing heme and dinuclear nonheme iron enzymes. In contrast, engineering mononuclear nonheme iron enzymes is lagging, even though these enzymes belong to a large class that catalyzes quite diverse reactions. Herein we report spectroscopic and X-ray crystallographic studies of Fe(II)-M121E azurin (Az), by replacing the axial Met121 and Cu(II) in wild-type azurin (wtAz) with Glu and Fe(II), respectively. In contrast to the redox inactive Fe(II)-wtAz, the Fe(II)-M121EAz mutant can be readily oxidized by Na2IrCl6, and interestingly, the protein exhibits superoxide scavenging activity. Mössbauer and EPR spectroscopies, along with X-ray structural comparisons, revealed similarities and differences between Fe(II)-M121EAz, Fe(II)-wtAz, and superoxide reductase (SOR) and allowed design of the second generation mutant, Fe(II)-M121EM44KAz, that exhibits increased superoxide scavenging activity by 2 orders of magnitude. This finding demonstrates the importance of noncovalent secondary coordination sphere interactions in fine-tuning enzymatic activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qafoku, Odeta; Pearce, Carolyn I.; Neumann, Anke
Fe(II)-rich clay minerals found in subsurface redox transition zones (RTZs) can serve as important source of electron equivalents limiting the transport of redox active contaminants. While most laboratory reactivity studies are based on reduced model clays, the reactivity of naturally reduced clays in field samples remains poorly explored. Characterization of the clay size fraction of a fine-grained unit from RTZ interface at the Hanford site, Washington, including mineralogy, crystal chemistry, and Fe(II)/(III) content, indicates that ferruginous montmorillonite is the dominant mineralogical component. Oxic and anoxic fractions differ significantly in Fe(II) concentration, but FeTOTAL remains constant demonstrating no Fe loss duringmore » reduction-oxidation cycling. At its native pH of 8.6, the anoxic fraction despite its significant Fe(II) (~23% of FeTOTAL), exhibits minimal reactivity with TcO4- and CrO42- and much slower reaction kinetics than that measured in studies with biologically/chemically reduced model clays. Reduction capacity is enhanced by added Fe(II) (if Fe(II)SORBED >8% clay Fe(II)LABILE), however the kinetics of this conceptually surface-mediated reaction remain sluggish. Surface-sensitive Fe L-edge X-ray absorption spectroscopy shows that Fe(II)SORBED and the resulting reducing equivalents are not available in the outermost few nanometers of clay surfaces. Slow kinetics thus appear related to diffusion-limited access to electron equivalents retained within clay mineral.« less
Qafoku, Odeta; Pearce, Carolyn I; Neumann, Anke; Kovarik, Libor; Zhu, Mengqiang; Ilton, Eugene S; Bowden, Mark E; Resch, Charles T; Arey, Bruce W; Arenholz, Elke; Felmy, Andrew R; Rosso, Kevin M
2017-08-15
Fe(II)-rich clay minerals found in subsurface redox transition zones (RTZs) can serve as important sources of electron equivalents limiting the transport of redox-active contaminants. While most laboratory reactivity studies are based on reduced model clays, the reactivity of naturally reduced field samples remains poorly explored. Characterization of the clay size fraction of a fine-grained unit from the RTZ interface at the Hanford site, Washington, including mineralogy, crystal chemistry, and Fe(II)/(III) content, indicates that ferruginous montmorillonite is the dominant mineralogical component. Oxic and anoxic fractions differ significantly in Fe(II) natural content, but Fe TOTAL remains constant, demonstrating no Fe loss during its reduction-oxidation cyclings. At native pH of 8.6, the anoxic fraction, despite its significant Fe(II), ∼23% of Fe TOTAL , exhibits minimal reactivity with TcO 4 - and CrO 4 2- and much slower reaction kinetics than those measured in studies with biologically/chemically reduced model clays. Reduction capacity is enhanced by added/sorbed Fe(II) (if Fe(II) SORBED > 8% clay Fe(II) LABILE ); however, the kinetics of this conceptually surface-mediated reaction remain sluggish. Surface-sensitive Fe L-edge X-ray absorption spectroscopy shows that Fe(II) SORBED and the resulting reducing equivalents are not available in the outermost few nanometers of clay surfaces. Slow kinetics thus appear related to diffusion-limited access to electron equivalents retained within the clay mineral structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shinn, Jong-Ho; Kim, Kee-Tae; Lee, Jae-Joon
We present [Fe II] 1.644 μm features around ultracompact H II regions (UCHIIs) found on a quest for the ''footprint'' outflow features of UCHIIs—the features produced by outflowing materials ejected during an earlier, active accretion phase of massive young stellar objects (MYSOs). We surveyed 237 UCHIIs in the first Galactic quadrant, employing the CORNISH UCHII catalog and UWIFE data, which is an imaging survey in [Fe II] 1.644 μm performed with UKIRT-WFCAM under ∼0.''8 seeing conditions. The [Fe II] features were found around five UCHIIs, one of which was less plausible. We interpret the [Fe II] features to be shock-excitedmore » by outflows from YSOs and estimate the outflow mass-loss rates from the [Fe II] flux which are ∼1 × 10{sup –6}-4 × 10{sup –5} M {sub ☉} yr{sup –1}. We propose that the [Fe II] features might be the ''footprint'' outflow features, but more studies are required to clarify whether or not this is the case. This is based on the morphological relation between the [Fe II] and 5 GHz radio features, the outflow mass-loss rate, the travel time of the [Fe II] features, and the existence of several YSO candidates near the UCHIIs. The UCHIIs accompanying the [Fe II] features have relatively higher peak flux densities. The fraction of UCHIIs accompanying the [Fe II] features, 5/237, is small when compared to the ∼90% detection rate of high-velocity CO gas around UCHIIs. We discuss some possible explanations for the low detection rate.« less
Park, Young Jun; Cook, Sarah A.; Sickerman, Nathaniel S.; Sano, Yohei; Ziller, Joseph W.
2013-01-01
The effects of redox-inactive metal ions on dioxygen activation were explored using a new FeII complex containing a tripodal ligand with 3 sulfonamido groups. This iron complex exhibited a faster initial rate for the reduction of O2 than its MnII analog. Increases in initial rates were also observed in the presence of group 2 metal ions for both the FeII and MnII complexes, which followed the trend NMe4+ < BaII < CaII = SrII. These studies led to the isolation of heterobimetallic complexes containing FeIII-(μ-OH)-MII cores (MII = Ca, Sr, and Ba) and one with a [SrII(OH)MnIII]+ motif. The analogous [CaII(OH)GaIII]+ complex was also prepared and its solid state molecular structure is nearly identical to that of the [CaII(OH)FeIII]+ system. Nuclear magnetic resonance studies indicated that the diamagnetic [CaII(OH)GaIII]+ complex retained its structure in solution. Electrochemical measurements on the heterobimetallic systems revealed similar one-electron reduction potentials for the [CaII(OH)FeIII]+ and [SrII(OH)FeIII]+ complexes, which were more positive than the potential observed for [BaII(OH)FeIII]+. Similar results were obtained for the heterobimetallic MnII complexes. These findings suggest that Lewis acidity is not the only factor to consider when evaluating the effects of group 2 ions on redox processes, including those within the oxygen-evolving complex of Photosystem II. PMID:24058726
Redox characterization of the Fe(II)-catalyzed transformation of ferrihydrite to goethite
NASA Astrophysics Data System (ADS)
Jones, Adele M.; Collins, Richard N.; Waite, T. David
2017-12-01
The reduction potential of Fe(II)-Fe(III) (oxyhydr)oxide systems provides an important control on the biogeochemical cycling of redox-sensitive elements such as carbon and nitrogen as well as trace metals and organic contaminants in natural systems. As such, an in-depth understanding of the factors controlling the reduction potential of such systems is critical to predicting the likely transformation, transport and fate of these species in natural and perturbed environments. In this study the mineralogy and reduction potential of ferrihydrite suspensions at pH 6.50 and pH 7.00 were determined over the course of their Fe(II)-catalyzed transformation to lepidocrocite and goethite using X-ray absorption spectroscopy and mediated electrochemical approaches. The measured reduction potentials were compared to those of analogous Fe(II)-Fe(III) (oxyhydr)oxide suspensions reacted for 5 min containing pure ferrihydrite (Fh), lepidocrocite (L) and goethite (Gt). The reduction potentials of the pure Fe(II)-Fe(III) (oxyhydr)oxide suspensions were, respectively, +47.5, -13.5 and -122.3 mV vs. SHE at pH 6.5, and -22.9, -84.1 and -189.7 mV vs. SHE at pH 7. These values are in good agreement with reduction potentials calculated using the Nernst equation and reported thermodynamic solubility products indicating that these suspensions had reached equilibrium within 5 min. The reduction potential of the pH 6.50 Fe(II)-ferrihydrite suspension decreased from +47.4 mV to -126.4 mV over a week, and from -20.1 mV to -188.4 mV (all vs. SHE) after 24 h at pH 7. The changes in reduction potential over time matched well to those calculated from the relative proportion of each pure Fe(III) (oxyhydr)oxide present suggesting that Fe3+ activity was influenced by the mix of iron oxides present rather than the most insoluble solid species. Finally, evidence is provided that adsorbed Fe(II) has the capacity to reduce a significantly larger fraction of a reducible species than the aqueous Fe(II) species with which it is in equilibrium. As an Fe(III) (oxyhydr)oxide suspension in equilibrium with aqueous and adsorbed Fe(II) species possesses a single, unique reduction potential, this suggests that adsorbed Fe(II) is a more facile reductant than aqueous Fe(II).
Effect of Dunaliella tertiolecta organic exudates on the Fe(II) oxidation kinetics in seawater.
González, A G; Santana-Casiano, J M; González-Dávila, M; Pérez-Almeida, N; Suárez de Tangil, M
2014-07-15
The role played by the natural organic ligands excreted by the green algae Dunaliella tertiolecta on the Fe(II) oxidation rate constants was studied at different stages of growth. The concentration of dissolved organic carbon increased from 2.1 to 7.1 mg L(-1) over time of culture. The oxidation kinetics of Fe(II) was studied at nanomolar levels and under different physicochemical conditions of pH (7.2-8.2), temperature (5-35 °C), salinity (10-37), and dissolved organic carbon produced by cells (2.1-7.1 mg L(-1)). The experimental rate always decreased in the presence of organic exudates with respect to that in the control seawater. The Fe(II) oxidation rate constant was also studied in the context of Marcus theory, where ΔG° was 39.31-51.48 kJ mol(-1). A kinetic modeling approach was applied for computing the equilibrium and rate constants for Fe(II) and exudates present in solution, the Fe(II) speciation, and the contribution of each Fe(II) species to the overall oxidation rate constant. The best fit model took into account two acidity equilibrium constants for the Fe(II) complexing ligands with pKa,1=9.45 and pKa,2=4.9. The Fe(II) complexing constants were KFe(II)-LH=3×10(10) and KFe(II)-L=10(7), and the corresponding computed oxidation rates were 68±2 and 36±8 M(-1) min(-1), respectively.
NASA Astrophysics Data System (ADS)
Gauger, Tina; Byrne, James M.; Konhauser, Kurt O.; Obst, Martin; Crowe, Sean; Kappler, Andreas
2016-06-01
Most studies on microbial phototrophic Fe(II) oxidation (photoferrotrophy) have focused on purple bacteria, but recent evidence points to the importance of green-sulfur bacteria (GSB). Their recovery from modern ferruginous environments suggests that these photoferrotrophs can offer insights into how their ancient counterparts grew in Archean oceans at the time of banded iron formation (BIF) deposition. It is unknown, however, how Fe(II) oxidation rates, cell-mineral aggregate formation, and Fe-mineralogy vary under environmental conditions reminiscent of the geological past. To address this, we studied the Fe(II)-oxidizer Chlorobium ferrooxidans KoFox, a GSB living in co-culture with the heterotrophic Geospirillum strain KoFum. We investigated the mineralogy of Fe(III) metabolic products at low/high light intensity, and in the presence of dissolved silica and/or fumarate. Silica and fumarate influenced the crystallinity and particle size of the produced Fe(III) minerals. The presence of silica also enhanced Fe(II) oxidation rates, especially at high light intensities, potentially by lowering Fe(II)-toxicity to the cells. Electron microscopic imaging showed no encrustation of either KoFox or KoFum cells with Fe(III)-minerals, though weak associations were observed suggesting co-sedimentation of Fe(III) with at least some biomass via these aggregates, which could support diagenetic Fe(III)-reduction. Given that GSB are presumably one of the most ancient photosynthetic organisms, and pre-date cyanobacteria, our findings, on the one hand, strengthen arguments for photoferrotrophic activity as a likely mechanism for BIF deposition on a predominantly anoxic early Earth, but, on the other hand, also suggest that preservation of remnants of Fe(II)-oxidizing GSB as microfossils in the rock record is unlikely.
NASA Astrophysics Data System (ADS)
Boyanov, Maxim I.; O'Loughlin, Edward J.; Roden, Eric E.; Fein, Jeremy B.; Kemner, Kenneth M.
2007-04-01
The chemical reduction of U(VI) by Fe(II) is a potentially important pathway for immobilization of uranium in subsurface environments. Although the presence of surfaces has been shown to catalyze the reaction between Fe(II) and U(VI) aqueous species, the mechanism(s) responsible for the enhanced reactivity remain ambiguous. To gain further insight into the U-Fe redox process at a complexing, non-conducting surface that is relevant to common organic phases in the environment, we studied suspensions containing combinations of 0.1 mM U(VI), 1.0 mM Fe(II), and 4.2 g/L carboxyl-functionalized polystyrene microspheres. Acid-base titrations were used to monitor protolytic reactions, and Fe K-edge and U L-edge X-ray absorption fine structure spectroscopy was used to determine the valence and atomic environment of the adsorbed Fe and U species. In the Fe + surface carboxyl system, a transition from monomeric to oligomeric Fe(II) surface species was observed between pH 7.5 and pH 8.4. In the U + surface carboxyl system, the U(VI) cation was adsorbed as a mononuclear uranyl-carboxyl complex at both pH 7.5 and 8.4. In the ternary U + Fe + surface carboxyl system, U(VI) was not reduced by the solvated or adsorbed Fe(II) at pH 7.5 over a 4-month period, whereas complete and rapid reduction to U(IV) nanoparticles occurred at pH 8.4. The U(IV) product reoxidized rapidly upon exposure to air, but it was stable over a 4-month period under anoxic conditions. Fe atoms were found in the local environment of the reduced U(IV) atoms at a distance of 3.56 Å. The U(IV)-Fe coordination is consistent with an inner-sphere electron transfer mechanism between the redox centers and involvement of Fe(II) atoms in both steps of the reduction from U(VI) to U(IV). The inability of Fe(II) to reduce U(VI) in solution and at pH 7.5 in the U + Fe + carboxyl system is explained by the formation of a transient, "dead-end" U(V)-Fe(III) complex that blocks the U(V) disproportionation pathway after the first electron transfer. The increased reactivity at pH 8.4 relative to pH 7.5 is explained by the reaction of U(VI) with an Fe(II) oligomer, whereby the bonds between Fe atoms facilitate the transfer of a second electron to the hypothetical U(V)-Fe(III) intermediate. We discuss how this mechanism may explain the commonly observed higher efficiency of uranyl reduction by adsorbed or structural Fe(II) relative to aqueous Fe(II).
Iron oxidation stimulates organic matter decomposition in humid tropical forest soils.
Hall, Steven J; Silver, Whendee L
2013-09-01
Humid tropical forests have the fastest rates of organic matter decomposition globally, which often coincide with fluctuating oxygen (O2 ) availability in surface soils. Microbial iron (Fe) reduction generates reduced iron [Fe(II)] under anaerobic conditions, which oxidizes to Fe(III) under subsequent aerobic conditions. We demonstrate that Fe (II) oxidation stimulates organic matter decomposition via two mechanisms: (i) organic matter oxidation, likely driven by reactive oxygen species; and (ii) increased dissolved organic carbon (DOC) availability, likely driven by acidification. Phenol oxidative activity increased linearly with Fe(II) concentrations (P < 0.0001, pseudo R(2) = 0.79) in soils sampled within and among five tropical forest sites. A similar pattern occurred in the absence of soil, suggesting an abiotic driver of this reaction. No phenol oxidative activity occurred in soils under anaerobic conditions, implying the importance of oxidants such as O2 or hydrogen peroxide (H2 O2 ) in addition to Fe(II). Reactions between Fe(II) and H2 O2 generate hydroxyl radical, a strong nonselective oxidant of organic compounds. We found increasing consumption of H2 O2 as soil Fe(II) concentrations increased, suggesting that reactive oxygen species produced by Fe(II) oxidation explained variation in phenol oxidative activity among samples. Amending soils with Fe(II) at field concentrations stimulated short-term C mineralization by up to 270%, likely via a second mechanism. Oxidation of Fe(II) drove a decrease in pH and a monotonic increase in DOC; a decline of two pH units doubled DOC, likely stimulating microbial respiration. We obtained similar results by manipulating soil acidity independently of Fe(II), implying that Fe(II) oxidation affected C substrate availability via pH fluctuations, in addition to producing reactive oxygen species. Iron oxidation coupled to organic matter decomposition contributes to rapid rates of C cycling across humid tropical forests in spite of periodic O2 limitation, and may help explain the rapid turnover of complex C molecules in these soils. © 2013 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Neubauer, S. C.; Emerson, D.; Megonigal, J. P.; Weiss, J. V.
2002-05-01
We have discovered a phylogenetically and genotypically coherent group of obligately lithotrophic Fe-oxidizing bacteria that grow at neutral pH and are globally distributed in a range of habitats, from the rhizosphere of freshwater wetlands to deep-sea hydrothermal vents. We have initiated bioreactor studies using pure cultures of these organisms to determine the significance of microbial Fe(II) oxidation at circumneutral pH and identify the biotic and abiotic variables that affect the partitioning between microbial and chemical oxidation. These studies have focused on strain BrT, which was isolated from an iron oxide precipitate in rhizosphere of a wetland plant. In one set of experiments, Fe(II) oxidation rates were measured before and after cultures of strain BrT were poisoned with sodium azide. These experiments indicated that 18 to 53 % of total iron oxidation was due to microbial metabolism. In a second set of experiments, Fe(II) was constantly added to bioreactors inoculated with live cells, killed cells, or no cells. A statistical model fit to the experimental data demonstrated that metabolic Fe(II) oxidation accounted for up to 62 % of total oxidation. Total Fe(II) oxidation rates in these experiments were strongly limited by the rate of Fe(II) delivery to the system, and were also influenced by O2 and total iron concentrations. Additionally, the model suggested that the microbes inhibited rates of abiotic Fe(II) oxidation, perhaps by binding Fe(II) to bacterial exopolymers. The net effect of strain BrT was to accelerate total oxidation rates by up to 18 % versus cell-free treatments. Using two independent techniques, we demonstrated that strain BrT actively metabolizes Fe(II) and can account for up to 50 to 60 % of total Fe(II) oxidation in laboratory cultures. These results suggest that neutrophilic Fe(II)-oxidizing bacteria may compete for limited O2 in the rhizosphere and influence the biogeochemistry of other elements including carbon, phosphorus, and sulfur.
Nitric oxide removal by combined urea and FeIIEDTA reaction systems.
He, Feiqiang; Deng, Xianhe; Chen, Min
2017-02-01
(NH 2 ) 2 CO as well as Fe II EDTA is an absorbent for simultaneous desulfurization and denitrification. However, they have their own drawbacks, like the oxidation of Fe II EDTA and the low solubility of NO in urea solution. To overcome these defects, A mixed absorbent containing both (NH 2 ) 2 CO and Fe II EDTA was employed. The effects of various operating parameters (urea and Fe II EDTA concentration, temperature, inlet oxygen concentration, pH value) on NO removal were examined in the packed tower. The results indicated that the NO removal efficiency increased with the decrease of oxygen concentration as well as the increase of Fe II EDTA concentration. The NO removal efficiency had little change with a range of 25-45 °C, and sharply decreased at the temperature of above 55 °C. The NO removal efficiency initially increases up to the maximum value and then decreases with the increase of pH value as well as the raise of urea concentration. In addition, the synergistic mechanism of (NH 2 ) 2 CO and Fe II EDTA on NO removal was investigated. Results showed that urea could react with Fe II EDTA-NO to produce Fe II EDTA, N 2 , and CO 2 , and hinder oxidation of Fe II EDTA. Finally, to evaluate the effect of SO 3 2- on NO removal, a mixed absorbent containing Fe II EDTA, urea, and Na 2 SO 3 was employed to absorb NO. The mixed absorbent could maintain more than 78% for 80 min at 25 °C, pH = 7.0, (NH 2 ) 2 CO concentration of 5 wt%, Fe II EDTA concentration of 0.02 M, O 2 concentration of 7% (v/v), and Na 2 SO 3 concentration of 0.2 M. Copyright © 2016 Elsevier Ltd. All rights reserved.
Oxidation of Fe(II) in rainwater.
Willey, J D; Whitehead, R F; Kieber, R J; Hardison, D R
2005-04-15
Photochemically produced Fe(II) is oxidized within hours under environmentally realistic conditions in rainwater. The diurnal variation between photochemical production and reoxidation of Fe(II) observed in our laboratory accurately mimics the behavior of ferrous iron observed in field studies where the highest concentrations of dissolved Fe(ll) occur in afternoon rain during the period of maximum sunlight intensity followed by gradually decreasing concentrations eventually returning to early morning pre-light values. The experimental work presented here, along with the results of kinetics studies done by others, suggests thatthe primary process responsible for the decline in photochemically produced Fe(II) concentrations is oxidation by hydrogen peroxide. This reaction is first order with respect to both the concentrations of Fe(II) and H2O2. The second-order rate constant determined for six different authentic rain samples varied over an order of magnitude and was always less than or equal to the rate constant determined for this reaction in simple acidic solutions. Oxidation of photochemically produced ferrous iron by other oxidants including molecular oxygen, ozone, hydroxyl radical, hydroperoxyl/superoxide radical, and hexavalent chromium were found to be insignificant under the conditions present in rainwater. This study shows that Fe(II) occurs as at least two different chemical species in rain; photochemically produced Fe(II) that is oxidized over time periods of hours, and a background Fe(II) that is protected against oxidation, perhaps by organic complexation, and is stable against oxidation for days. Because the rate of oxidation of photochemically produced Fe(II) does not increase with increasing rainwater pH, the speciation of this more labile form of Fe(II) is also not controlled by simple hydrolysis reactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Loughlin, E. J.; Gorski, C. A.; Scherer, M. M.
Microbial reduction of Fe(III) oxides results in the production of Fe(II) and may lead to the subsequent formation of Fe(II)-bearing secondary mineralization products including magnetite, siderite, vivianite, chukanovite (ferrous hydroxy carbonate (FHC)), and green rust; however, the factors controlling the formation of specific Fe(II) phases are often not well-defined. This study examined effects of (i) a range of inorganic oxyanions (arsenate, borate, molybdate, phosphate, silicate, and tungstate), (ii) natural organic matter (citrate, oxalate, microbial extracellular polymeric substances [EPS], and humic substances), and (iii) the type and number of dissimilatory iron-reducing bacteria on the bioreduction of lepidocrocite and formation of Fe(II)-bearingmore » secondary mineralization products. The bioreduction kinetics clustered into two distinct Fe(II) production profiles. 'Fast' Fe(II) production kinetics [19-24 mM Fe(II) d-1] were accompanied by formation of magnetite and FHC in the unamended control and in systems amended with borate, oxalate, gellan EPS, or Pony Lake fulvic acid or having 'low' cell numbers. Systems amended with arsenate, citrate, molybdate, phosphate, silicate, tungstate, EPS from Shewanella putrefaciens CN32, or humic substances derived from terrestrial plant material or with 'high' cell numbers exhibited comparatively slow Fe(II) production kinetics [1.8-4.0 mM Fe(II) d-1] and the formation of green rust. The results are consistent with a conceptual model whereby competitive sorption of more strongly bound anions blocks access of bacterial cells and reduced electron-shuttling compounds to sites on the iron oxide surface, thereby limiting the rate of bioreduction.« less
Kerber, William D; Goheen, Joshua T; Perez, Kaitlyn A; Siegler, Maxime A
2016-01-19
Heterobimetallic Mn/Fe cofactors are found in the R2 subunit of class Ic ribonucleotide reductases (R2c) and R2-like ligand binding oxidases (R2lox). Selective cofactor assembly is due at least in part to the thermodynamics of M(II) binding to the apoprotein. We report here equilibrium studies of Fe(II)/Mn(II) discrimination in the biomimetic model system H5(F-HXTA) (5-fluoro-2-hydroxy-1,3-xylene-α,α'-diamine-N,N,N',N'-tetraacetic acid). The homobimetallic F-HXTA complexes [Fe(H2O)6][1]2·14H2O and [Mn(H2O)6][2]2·14H2O (1 = [Fe(II)2(F-HXTA)(H2O)4](-); 2 = [Mn(II)2(F-HXTA)(H2O)4](-)) were characterized by single crystal X-ray diffraction. NMR data show that 1 retains its structure in solution (2 is NMR silent). Metal exchange is facile, and the heterobimetallic complex [Fe(II)Mn(II)(F-HXTA)(H2O)4](-) (3) is formed from mixtures of 1 and 2. (19)F NMR was used to quantify 1 and 3 in the presence of excess M(II)(aq) at various metal ratios, and equilibrium constants for Fe(II)/Mn(II) discrimination were calculated from these data. Fe(II) is preferred over Mn(II) with K1 = 182 ± 13 for complete replacement (2 ⇌ 1). This relatively modest preference is attributed to a hard-soft acid-base mismatch between the divalent cations and the polycarboxylate ligand. The stepwise constants for replacement are K2 = 20.1 ± 1.3 (2 ⇌ 3) and K3 = 9.1 ± 1.1 (3 ⇌ 1). K2 > K3 demonstrates enhanced stability of the heterobimetallic state beyond what is expected for simple Mn(II) → Fe(II) replacement. The relevance to Fe(II)/Mn(II) discrimination in R2c and R2lox proteins is discussed.
NASA Astrophysics Data System (ADS)
van der Grift, B.; Rozemeijer, J. C.; Griffioen, J.; van der Velde, Y.
2014-06-01
The retention of phosphorus in surface waters though co-precipitation of phosphate with Fe-oxyhydroxides during exfiltration of anaerobic Fe(II) rich groundwater is not well understood. We developed an experimental field set-up to study Fe(II) oxidation and P immobilization along the flow-path from groundwater to surface water in an agricultural experimental catchment of a small lowland river. We physically separated tube drain effluent from groundwater discharge before it entered a ditch in an agricultural field. Through continuous discharge measurements and weekly water quality sampling of groundwater, tube drain water, exfiltrated groundwater, and ditch water, we investigated Fe(II) oxidation kinetics and P immobilization processes. The oxidation rate inferred from our field measurements closely agreed with the general rate law for abiotic oxidation of Fe(II) by O2. Seasonal changes in climatic conditions affected the Fe(II) oxidation process. Lower pH and lower temperatures in winter (compared to summer) resulted in low Fe oxidation rates. After exfiltration to the surface water, it took a couple of days to more than one week before complete oxidation of Fe(II) is reached. In summer time, Fe oxidation rates were much higher. The Fe concentrations in the exfiltrated groundwater were low, indicating that dissolved Fe(II) is completely oxidized prior to inflow into a ditch. While the Fe oxidation rates reduce drastically from summer to winter, P concentrations remained high in the groundwater and an order of magnitude lower in the surface water throughout the year. This study shows very fast immobilisation of dissolved P during the initial stage of the Fe(II) oxidation proces which results in P-depleted water before Fe(II) is competly depleted. This cannot be explained by surface complexation of phosphate to freshly formed Fe-oxyhydroxides but indicates the formation of Fe(III)-phosphate precipitates. The formation of Fe(III)-phosphates at redox gradients seems an important geochemical mechanism in the transformation of dissolved phosphate to particulate phosphate and, therefore, a major control on the P retention in natural waters that drain anaerobic aquifers.
NASA Astrophysics Data System (ADS)
van der Grift, B.; Rozemeijer, J. C.; Griffioen, J.; van der Velde, Y.
2014-11-01
The retention of phosphorus in surface waters through co-precipitation of phosphate with Fe-oxyhydroxides during exfiltration of anaerobic Fe(II) rich groundwater is not well understood. We developed an experimental field set-up to study Fe(II) oxidation and P immobilization along the flow-path from groundwater into surface water in an agricultural experimental catchment of a small lowland river. We physically separated tube drain effluent from groundwater discharge before it entered a ditch in an agricultural field. Through continuous discharge measurements and weekly water quality sampling of groundwater, tube drain water, exfiltrated groundwater, and surface water, we investigated Fe(II) oxidation kinetics and P immobilization processes. The oxidation rate inferred from our field measurements closely agreed with the general rate law for abiotic oxidation of Fe(II) by O2. Seasonal changes in climatic conditions affected the Fe(II) oxidation process. Lower pH and lower temperatures in winter (compared to summer) resulted in low Fe oxidation rates. After exfiltration to the surface water, it took a couple of days to more than a week before complete oxidation of Fe(II) is reached. In summer time, Fe oxidation rates were much higher. The Fe concentrations in the exfiltrated groundwater were low, indicating that dissolved Fe(II) is completely oxidized prior to inflow into a ditch. While the Fe oxidation rates reduce drastically from summer to winter, P concentrations remained high in the groundwater and an order of magnitude lower in the surface water throughout the year. This study shows very fast immobilization of dissolved P during the initial stage of the Fe(II) oxidation process which results in P-depleted water before Fe(II) is completely depleted. This cannot be explained by surface complexation of phosphate to freshly formed Fe-oxyhydroxides but indicates the formation of Fe(III)-phosphate precipitates. The formation of Fe(III)-phosphates at redox gradients seems an important geochemical mechanism in the transformation of dissolved phosphate to structural phosphate and, therefore, a major control on the P retention in natural waters that drain anaerobic aquifers.
Zarzycki, Piotr; Rosso, Kevin M
2017-07-05
Understanding Fe(II)-catalyzed transformations of Fe(III)-(oxyhydr)oxides is critical for correctly interpreting stable isotopic distributions and for predicting the fate of metal ions in the environment. Recent Fe isotopic tracer experiments have shown that goethite undergoes rapid recrystallization without phase change when exposed to aqueous Fe(II). The proposed explanation is oxidation of sorbed Fe(II) and reductive Fe(II) release coupled 1:1 by electron conduction through crystallites. Given the availability of two tracer exchange data sets that explore pH and particle size effects (e.g., Handler et al. Environ. Sci. Technol. 2014 , 48 , 11302 - 11311 ; Joshi and Gorski Environ. Sci. Technol. 2016 , 50 , 7315 - 7324 ), we developed a stochastic simulation that exactly mimics these experiments, while imposing the 1:1 constraint. We find that all data can be represented by this model, and unifying mechanistic information emerges. At pH 7.5 a rapid initial exchange is followed by slower exchange, consistent with mixed surface- and diffusion-limited kinetics arising from prominent particle aggregation. At pH 5.0 where aggregation and net Fe(II) sorption are minimal, that exchange is quantitatively proportional to available particle surface area and the density of sorbed Fe(II) is more readily evident. Our analysis reveals a fundamental atom exchange rate of ∼10 -5 Fe nm -2 s -1 , commensurate with some of the reported reductive dissolution rates of goethite, suggesting Fe(II) release is the rate-limiting step in the conduction mechanism during recrystallization.
Liu, Wenbo; Langenhoff, Alette A M; Sutton, Nora B; Rijnaarts, Huub H M
2018-05-18
Applying manganese(IV)- or iron(III)-(hydr)oxides to remove pharmaceuticals from water could be attractive, due to the capacity of these metal oxides to remove pharmaceuticals and be regenerated. As pharmaceutical removal under anaerobic conditions is foreseen, Mn(IV) or Fe(III) regeneration under anaerobic conditions, or with minimum oxygen dosage, is preferred. In this study, batch experiments are performed to investigate (1) Mn(IV) and Fe(III) regeneration from Mn(II) and Fe(II); (2) the pharmaceutical removal during biological Mn(IV) and Fe(III) regeneration; and (3) anaerobic abiotic pharmaceutical removal with different Mn(IV) or Fe(III) species. Results show that biological re-oxidation of reduced Mn(II) to Mn(IV) occurs under oxygen-limiting conditions. Biological re-oxidation of Fe(II) to Fe(III) is obtained with nitrate under anaerobic conditions. Both bio-regenerated Mn(IV)-oxides and Fe(III)-hydroxides are amorphous. The pharmaceutical removal is insignificant by Mn(II)- or Fe(II)-oxidizing bacteria during regeneration. Finally, pharmaceutical removal is investigated with various Mn(IV) and Fe(III) sources. Anaerobic abiotic removal using Mn(IV) produced from drinking water treatment plants results in 23% metoprolol and 44% propranolol removal, similar to chemically synthesized Mn(IV). In contrast, Fe(III) from drinking water treatment plants outperformed chemically or biologically synthesized Fe(III); Fe (III) from drinking water treatment can remove 31-43% of propranolol via anaerobic abiotic process. In addition, one of the Fe(III)-based sorbents tested, FerroSorp ® RW, can also remove propranolol (20-25%). Biological regeneration of Mn(IV) and Fe(III) from the reduced species Mn(II) and Fe(II) could be more effective in terms of cost and treatment efficiency. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Reddy, Guntakala Vikram; Akula, Sushma; Malgikar, Suryakanth; Babu, Palaparthy Raja; Reddy, Gooty Jagadish; Josephin, Johnson Juliet
2017-01-01
The present study aims to evaluate the efficacy of diode laser alone and in combination with desensitizing toothpastes in occluding dentinal tubules (both partially occluded and completely occluded tubules) by scanning electron microscope (SEM). Fifty human teeth were extracted, cervical cavities were prepared and etched with 17% ethylenediaminetetraacetic acid, and smear layer was removed to expose the tubules. The teeth were divided into five groups: Group I - Application of NovaMin-formulated toothpaste, Group II - Application of Pro-Argin ™ -formulated toothpaste, Group III - Application of diode laser in noncontact mode, Group IV - NovaMin-formulated toothpaste followed by laser irradiation, and Group V - Pro-Argin ™ -formulated toothpaste followed by laser irradiation. After treatment, quantitative analysis of occluded dentinal tubules was done by SEM analysis. The mean values of percentages of total occlusion of dentinal tubules in Groups I, II, III, IV, and V were 92.73% ± 1.38, 90.67% ± 1.86, 96.57% ± 0.64, 97.3% ± 0.68, and 96.9% ± 6.08, respectively. Addition of diode laser (Groups III, IV, and V) yielded a significant occlusion of the dentinal tubules when compared to desensitizing toothpastes alone (Groups I and II). Diode laser (Group III) has shown more efficacy in occluding dentinal tubules when compared with desensitizing toothpastes which was statistically significant ( P < 0.05). Among the five groups, NovaMin + diode laser (Group IV) showed the highest percentage of occluded dentinal tubules.
Mapolelo, Daphne T; Zhang, Bo; Naik, Sunil G; Huynh, Boi Hanh; Johnson, Michael K
2012-10-16
The ability of Azotobacter vinelandii(Nif)IscA to bind Fe has been investigated to assess the role of Fe-bound forms in NIF-specific Fe-S cluster biogenesis. (Nif)IscA is shown to bind one Fe(III) or one Fe(II) per homodimer and the spectroscopic and redox properties of both the Fe(III)- and Fe(II)-bound forms have been characterized using the UV-visible absorption, circular dichroism, and variable-temperature magnetic circular dichroism, electron paramagnetic resonance, Mössbauer and resonance Raman spectroscopies. The results reveal a rhombic intermediate-spin (S = 3/2) Fe(III) center (E/D = 0.33, D = 3.5 ± 1.5 cm(-1)) that is most likely 5-coordinate with two or three cysteinate ligands and a rhombic high spin (S = 2) Fe(II) center (E/D = 0.28, D = 7.6 cm(-1)) with properties similar to reduced rubredoxins or rubredoxin variants with three cysteinate and one or two oxygenic ligands. Iron-bound (Nif)IscA undergoes reversible redox cycling between the Fe(III)/Fe(II) forms with a midpoint potential of +36 ± 15 mV at pH 7.8 (versus NHE). l-Cysteine is effective in mediating release of free Fe(II) from both the Fe(II)- and Fe(III)-bound forms of (Nif)IscA. Fe(III)-bound (Nif)IscA was also shown to be a competent iron source for in vitro NifS-mediated [2Fe-2S] cluster assembly on the N-terminal domain of NifU, but the reaction occurs via cysteine-mediated release of free Fe(II) rather than direct iron transfer. The proposed roles of A-type proteins in storing Fe under aerobic growth conditions and serving as iron donors for cluster assembly on U-type scaffold proteins or maturation of biological [4Fe-4S] centers are discussed in light of these results.
Application of 57Fe-enriched synthetic ferrihydrite to speciate the product of bacterial reduction
NASA Astrophysics Data System (ADS)
Larsen, Ole; Bender Koch, Chr.
2000-07-01
We have sampled a clay lens with evidence of sulfide reduction from a texturally stratified sandy aquifer at Rømø, Denmark. A minor amount of synthetic, pure 57Fe ferrihydrite was added to this sample and allowed to react for up to three months. The initial sample, the 57Fe ferrihydrite, and samples taken from the reaction mixture were investigated by Mössbauer spectroscopy at temperatures between 15 and 298 K as sampled and following exposure to oxygen. The initial sample only contained Fe(II) (33% of the iron) and Fe(III) in silicates. The Fe(III) in the ferrihydrite is reduced to Fe(II) as evidenced by an increase of this component by bacterial activity. The Fe(II) component remains paramagnetic at temperatures down to 15 K. Similarly to naturally reduced sediments the new-formed Fe(II) is extremely reactive towards molecular oxygen. Following oxidation the reformed Fe(III) is found as ferrihydrite. The bonding of the Fe(II) is by electrostatical bonding (adsorbed) to the layer silicates as evidenced by a temperature scanning of the sample between 80 and 270 K.
Evidence for Fluorescent Fe II Emission from Extended Low Ionization Outflows in Obscured Quasars
NASA Astrophysics Data System (ADS)
Wang, Tinggui; Ferland, Gary J.; Yang, Chenwei; Wang, Huiyuan; Zhang, Shaohua
2016-06-01
Recent studies have shown that outflows in at least some broad absorption line (BAL) quasars are extended well beyond the putative dusty torus. Such outflows should be detectable in obscured quasars. We present four WISE selected infrared red quasars with very strong and peculiar ultraviolet Fe II emission lines: strong UV Fe II UV arising from transitions to ground/low excitation levels, and very weak Fe II at wavelengths longer than 2800 Å. The spectra of these quasars display strong resonant emission lines, such as C IV, Al III and Mg II but sometimes, a lack of non-resonant lines such as C III], S III and He II. We interpret the Fe II lines as resonantly scattered light from the extended outflows that are viewed nearly edge-on, so that the accretion disk and broad line region are obscured by the dusty torus, while the extended outflows are not. We show that dust free gas exposed to strong radiation longward of 912 Å produces Fe II emission very similar to that observed. The gas is too cool to collisionally excite Fe II lines, accounting for the lack of optical emission. The spectral energy distribution from the UV to the mid-infrared can be modeled as emission from a clumpy dusty torus, with UV emission being reflected/scattered light either by the dusty torus or the outflow. Within this scenario, we estimate a minimum covering factor of the outflows from a few to 20% for the Fe II scattering region, suggesting that Fe II BAL quasars are at a special stage of quasar evolution.
Chen, Chunmei; Thompson, Aaron
2018-01-16
Abiotic Fe(II) oxidation by O 2 commonly occurs in the presence of mineral sorbents and organic matter (OM) in soils and sediments; however, this tertiary system has rarely been studied. Therefore, we examined the impacts of mineral surfaces (goethite and γ-Al 2 O 3 ) and organic matter [Suwannee River fulvic acid (SRFA)] on Fe(II) oxidation rates and the resulting Fe(III) (oxyhydr)oxides under 21 and 1% pO 2 at pH 6. We tracked Fe dynamics by adding 57 Fe(II) to 56 Fe-labeled goethite and γ-Al 2 O 3 and characterized the resulting solids using 57 Fe Mössbauer spectroscopy. We found Fe(II) oxidation was slower at low pO 2 and resulted in higher-crystallinity Fe(III) phases. Relative to oxidation of Fe(II) (aq) alone, both goethite and γ-Al 2 O 3 surfaces increased Fe(II) oxidation rates regardless of pO 2 levels, with goethite being the stronger catalyst. Goethite surfaces promoted the formation of crystalline goethite, while γ-Al 2 O 3 favored nano/small particle or disordered goethite and some lepidocrocite; oxidation of Fe(II) aq alone favored lepidocrocite. SRFA reduced oxidation rates in all treatments except the mineral-free systems at 21% pO 2 , and SRFA decreased Fe(III) phase crystallinity, facilitating low-crystalline ferrihydrite in the absence of mineral sorbents, low-crystalline lepidocrocite in the presence of γ-Al 2 O 3 , but either crystalline goethite or ferrihydrite when goethite was present. This work highlights that the oxidation rate, the types of mineral surfaces, and OM control Fe(III) precipitate composition.
Evaluation of Fe(II) oxidation at an acid mine drainage site using laboratory-scale reactors
NASA Astrophysics Data System (ADS)
Brown, Juliana; Burgos, William
2010-05-01
Acid mine drainage (AMD) is a severe environmental threat to the Appalachian region of the Eastern United States. The Susquehanna and Potomac River basins of Pennsylvania drain to the Chesapeake Bay, which is heavily polluted by acidity and metals from AMD. This study attempted to unravel the complex relationships between AMD geochemistry, microbial communities, hydrodynamic conditions, and the mineral precipitates for low-pH Fe mounds formed downstream of deep mine discharges, such as Lower Red Eyes in Somerset County, PA, USA. This site is contaminated with high concentrations of Fe (550 mg/L), Mn (115 mg/L), and other trace metals. At the site 95% of dissolved Fe(II) and 56% of total dissolved Fe is removed without treatment, across the mound, but there is no change in the concentration of trace metals. Fe(III) oxides were collected across the Red Eyes Fe mound and precipitates were analyzed by X-ray diffraction, electron microscopy and elemental analysis. Schwertmannite was the dominant mineral phase with traces of goethite. The precipitates also contained minor amounts of Al2O3, MgO,and P2O5. Laboratory flow-through reactors were constructed to quantify Fe(II) oxidation and Fe removal over time at terrace and pool depositional facies. Conditions such as residence time, number of reactors in sequence and water column height were varied to determine optimal conditions for Fe removal. Reactors with sediments collected from an upstream terrace oxidized more than 50% of dissolved Fe(II) at a ten hour residence time, while upstream pool sediments only oxidized 40% of dissolved Fe(II). Downstream terrace and pool sediments were only capable of oxidizing 25% and 20% of Fe(II), respectively. Fe(II) oxidation rates measured in the reactors were determined to be between 3.99 x 10-8and 1.94 x 10-7mol L-1s-1. The sediments were not as efficient for total dissolved Fe removal and only 25% was removed under optimal conditions. The removal efficiency for all sediments decreased as residence time decreased and as water column depth increased. Control reactors with Co-60 irradiated sediments showed an increase in Fe concentration as a result of dissolution of the sediments; thus, it was concluded that Fe(II) oxidation in the reactors was a result of biological processes and not abiotic oxidation. It was also concluded that Fe(II) oxidation and removal rates were dependent upon geochemical gradients (pH, Fe(II) concentration) rather than depositional facies. Fluorescent in situ hybridization was also performed on field and reactor samples to determine which microbial communities were responsible for the highest Fe(II) oxidation rates.
Mössbauer study of novel iron(II) complexes synthesized with Schiff bases
NASA Astrophysics Data System (ADS)
Várhelyi, Cs.; Lengyel, A.; Homonnay, Z.; Szalay, R.; Pokol, Gy.; Szilágyi, I.-M.; Huszthy, P.; Papp, J.; Goga, F.; Golban, L.-M.; Várhelyi, M.; Tomoaia-Cotisel, M.; Szőke, Á.; Kuzmann, E.
2017-11-01
Novel [Fe(4-benzyl-2-hydroxyphenyl-propylidene)2ethylene-diamine], and [Fe (2,4,6-trihydroxy-benzyl-4-metoxiphenyl-methylidene)2ethylene-diamine] complexes were synthesized by reacting FeII salt with the indicated Schiff-base ligands. The compounds were characterized by57Fe Mössbauer spectroscopy, FTIR, UV-VIS, TG-DTA-DTG, MS, AFM, XRD, cyclic voltammetry and biological activity measurements. 295 K and 78 K Mössbauer spectra revealed that iron is dominantly in high spin FeII state in both complexes while simultaneously a minor low spin FeII was also present in both complexes, furthermore a minor high spin FeIII was observed in [Fe(2,4,6-trihydroxy-benzyl-4-metoxiphenyl- methylidene) 2ethylene-diamine], too.
Impacts of flocculation on the distribution and diagenesis of iron in boreal estuarine sediments
NASA Astrophysics Data System (ADS)
Jilbert, Tom; Asmala, Eero; Schröder, Christian; Tiihonen, Rosa; Myllykangas, Jukka-Pekka; Virtasalo, Joonas J.; Kotilainen, Aarno; Peltola, Pasi; Ekholm, Päivi; Hietanen, Susanna
2018-03-01
Iron (Fe) plays a key role in sedimentary diagenetic processes in coastal systems, participating in various redox reactions and influencing the burial of organic carbon. Large amounts of Fe enter the marine environment from boreal river catchments associated with dissolved organic matter (DOM) and as colloidal Fe oxyhydroxides, principally ferrihydrite. However, the fate of this Fe pool in estuarine sediments has not been extensively studied. Here we show that flocculation processes along a salinity gradient in an estuary of the northern Baltic Sea efficiently transfer Fe and OM from the dissolved phase into particulate material that accumulates in the sediments. Flocculation of Fe and OM is partially decoupled. This is likely due to the presence of discrete colloidal ferrihydrite in the freshwater Fe pool, which responds differently from DOM to estuarine mixing. Further decoupling of Fe from OM occurs during sedimentation. While we observe a clear decline with distance offshore in the proportion of terrestrial material in the sedimentary particulate organic matter (POM) pool, the distribution of flocculated Fe in sediments is modulated by focusing effects. Labile Fe phases are most abundant at a deep site in the inner basin of the estuary, consistent with input from flocculation and subsequent focusing. The majority of the labile Fe pool is present as Fe (II), including both acid-volatile sulfur (AVS)-bound Fe and unsulfidized phases. The ubiquitous presence of unsulfidized Fe (II) throughout the sediment column suggests Fe (II)-OM complexes derived from reduction of flocculated Fe (III)-OM, while other Fe (II) phases are likely derived from the reduction of flocculated ferrihydrite. Depth-integrated rates of Fe (II) accumulation (AVS-Fe + unsulfidized Fe (II) + pyrite) for the period 1970-2015 are greater in the inner basin of the estuary with respect to a site further offshore, confirming higher rates of Fe reduction in near-shore areas. Mössbauer 57Fe spectroscopy shows that refractory Fe is composed largely of superparamagnetic Fe (III), high-spin Fe (II) in silicates, and, at one station, also oxide minerals derived from past industrial activities. Our results highlight that the cycling of Fe in boreal estuarine environments is complex, and that the partial decoupling of Fe from OM during flocculation and sedimentation is key to understanding the role of Fe in sedimentary diagenetic processes in coastal areas.
SIMULATIONS OF THE SYMBIOTIC RECURRENT NOVA V407 CYG. I. ACCRETION AND SHOCK EVOLUTIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Kuo-Chuan; Ricker, Paul M.; Taam, Ronald E., E-mail: kuo-chuan.pan@unibas.ch, E-mail: pmricker@illinois.edu, E-mail: r-taam@northwestern.edu, E-mail: taam@asiaa.sinica.edu.tw
2015-06-10
The shock interaction and evolution of nova ejecta with wind from a red giant (RG) star in a symbiotic binary system are investigated via three-dimensional hydrodynamics simulations. We specifically model the 2010 March outburst of the symbiotic recurrent nova V407 Cygni from its quiescent phase to its eruption phase. The circumstellar density enhancement due to wind–white-dwarf interaction is studied in detail. It is found that the density-enhancement efficiency depends on the ratio of the orbital speed to the RG wind speed. Unlike another recurrent nova, RS Ophiuchi, we do not observe a strong disk-like density enhancement, but instead observe anmore » aspherical density distribution with ∼20% higher density in the equatorial plane than at the poles. To model the 2010 outburst, we consider several physical parameters, including the RG mass-loss rate, nova eruption energy, and ejecta mass. A detailed study of the shock interaction and evolution reveals that the interaction of shocks with the RG wind generates strong Rayleigh–Taylor instabilities. In addition, the presence of the companion and circumstellar density enhancement greatly alter the shock evolution during the nova phase. Depending on the model, the ejecta speed after sweeping out most of the circumstellar medium decreases to ∼100–300 km s{sup −1}, which is consistent with the observed extended redward emission in [N ii] lines in 2011 April.« less
NASA Astrophysics Data System (ADS)
Beller, H. R.; Zhou, P.; Legler, T. C.; Chakicherla, A.; O'Day, P. A.
2013-12-01
Thiobacillus denitrificans is a chemolithoautotrophic bacterium capable of anaerobic, nitrate-dependent U(IV) and Fe(II) oxidation, both of which can strongly influence the long-term efficacy of in situ reductive immobilization of uranium in contaminated aquifers. We previously identified two c-type cytochromes involved in nitrate-dependent U(IV) oxidation in T. denitrificans and hypothesized that c-type cytochromes would also catalyze Fe(II) oxidation, as they have been found to play this role in anaerobic phototrophic Fe(II)-oxidizing bacteria. Here we report on efforts to identify genes associated with nitrate-dependent Fe(II) oxidation, namely (a) whole-genome transcriptional studies [using FeCO3, Fe2+, and U(IV) oxides as electron donors under denitrifying conditions], (b) Fe(II) oxidation assays performed with knockout mutants targeting primarily highly expressed or upregulated c-type cytochromes, and (c) random transposon-mutagenesis studies with screening for Fe(II) oxidation. Assays of mutants for 26 target genes, most of which were c-type cytochromes, indicated that none of the mutants tested were significantly defective in nitrate-dependent Fe(II) oxidation. The non-defective mutants included the c1-cytochrome subunit of the cytochrome bc1 complex (complex III), which has relevance to a previously proposed role for this complex in nitrate-dependent Fe(II) oxidation and to current concepts of reverse electron transfer. Of the transposon mutants defective in Fe(II) oxidation, one mutant with a disrupted gene associated with NADH:ubiquinone oxidoreductase (complex I) was ~35% defective relative to the wild-type strain; this strain was similarly defective in nitrate reduction with thiosulfate as the electron donor. Overall, our results indicate that nitrate-dependent Fe(II) oxidation in T. denitrificans is not catalyzed by the same c-type cytochromes involved in U(IV) oxidation, nor have other c-type cytochromes yet been implicated in the process.
Kinetics and Products of Chromium(VI) Reduction by Iron(II/III)-Bearing Clay Minerals.
Joe-Wong, Claresta; Brown, Gordon E; Maher, Kate
2017-09-05
Hexavalent chromium is a water-soluble pollutant, the mobility of which can be controlled by reduction of Cr(VI) to less soluble, environmentally benign Cr(III). Iron(II/III)-bearing clay minerals are widespread potential reductants of Cr(VI), but the kinetics and pathways of Cr(VI) reduction by such clay minerals are poorly understood. We reacted aqueous Cr(VI) with two abiotically reduced clay minerals: an Fe-poor montmorillonite and an Fe-rich nontronite. The effects of ionic strength, pH, total Fe content, and the fraction of reduced structural Fe(II) [Fe(II)/Fe(total)] were examined. The last variable had the largest effect on Cr(VI) reduction kinetics: for both clay minerals, the rate constant of Cr(VI) reduction varies by more than 3 orders of magnitude with Fe(II)/Fe(total) and is described by a linear free energy relationship. Under all conditions examined, Cr and Fe K-edge X-ray absorption near-edge structure spectra show that the main Cr-bearing product is a Cr(III)-hydroxide and that Fe remains in the clay structure after reacting with Cr(VI). This study helps to quantify our understanding of the kinetics of Cr(VI) reduction by Fe(II/III)-bearing clay minerals and may improve predictions of Cr(VI) behavior in subsurface environments.
Schwartz, Jennifer K; Liu, Xiaofeng S; Tosha, Takehiko; Diebold, Adrienne; Theil, Elizabeth C; Solomon, Edward I
2010-12-14
DNA protection during starvation (Dps) proteins are miniferritins found in bacteria and archaea that provide protection from uncontrolled Fe(II)/O radical chemistry; thus the catalytic sites are targets for antibiotics against pathogens, such as anthrax. Ferritin protein cages synthesize ferric oxymineral from Fe(II) and O(2)/H(2)O(2), which accumulates in the large central cavity; for Dps, H(2)O(2) is the more common Fe(II) oxidant contrasting with eukaryotic maxiferritins that often prefer dioxygen. To better understand the differences in the catalytic sites of maxi- versus miniferritins, we used a combination of NIR circular dichroism (CD), magnetic circular dichroism (MCD), and variable-temperature, variable-field MCD (VTVH MCD) to study Fe(II) binding to the catalytic sites of the two Bacillus anthracis miniferritins: one in which two Fe(II) react with O(2) exclusively (Dps1) and a second in which both O(2) or H(2)O(2) can react with two Fe(II) (Dps2). Both result in the formation of iron oxybiomineral. The data show a single 5- or 6-coordinate Fe(II) in the absence of oxidant; Fe(II) binding to Dps2 is 30× more stable than Dps1; and the lower limit of K(D) for binding a second Fe(II), in the absence of oxidant, is 2-3 orders of magnitude weaker than for the binding of the single Fe(II). The data fit an equilibrium model where binding of oxidant facilitates formation of the catalytic site, in sharp contrast to eukaryotic M-ferritins where the binuclear Fe(II) centers are preformed before binding of O(2). The two different binding sequences illustrate the mechanistic range possible for catalytic sites of the family of ferritins.
Near-Infrared [Fe II] and H2 Study of the Galactic Supernova Remnants
NASA Astrophysics Data System (ADS)
Lee, Yong-Hyun; Koo, Bon-Chul; Lee, Jae-Joon; Jaffe, Daniel T.; Burton, Michael G.; Ryder, Stuart D.
2018-01-01
We have searched for near-infrared (NIR) [Fe II] (1.644 μm) and H2 1-0 S(1) (2.122 μm) emission features associated with Galactic supernova remnants (SNRs) using the narrow-band imaging surveys UWIFE / UWISH2 (UKIRT Widefield Infrared Survey for [Fe II] / H2). Both surveys cover about 180 square degrees of the first Galactic quadrant (7° < l < 65° -1.3° < b < +1.3°), and a total of 79 SNRs are falling in the survey area. We have found 19 [Fe II]- and 19 H2-emitting SNRs, giving a detection rate of 24%. Eleven SNRs show both emission features. Some of the SNRs show bright, complex, and interesting structures that have never been reported in previous studies. The brightest SNR in the both emission is W49B, contributing ~70% of the total [Fe II] luminosity of the detected SNRs. The total [Fe II] luminosity, however, is considerably less than what we would expect from the SN rate of our Galaxy.Among the SNRs showing both [Fe II] and H2 emission lines, some SNRs show the “[Fe II]-H2 reversal” phenomenon, i.e., the H2 emission features are detected outside the [Fe II] emission boundary. We carried out high resolution (R~40,000) NIR H- and K-band spectroscopy of the five SNRs showing the [Fe II]-H2 reversal (G11.2-0.3, KES 73, W44, 3C 396, W49B) using IGRINS (Immersion GRating INfrared Spectrograph). Various ro-vibrational H2 lines have been detected, which are used to derive the kinematic distances to the SNRs and to investigate the origin of the H2 emission. The detected H2 lines show broad line width (> 10 km s-1) and line flux ratios of thermal excitation. We discuss the origin of the extended H2 emission features beyond the the [Fe II] emission boundary.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Chunmei; Kukkadapu, Ravi K.; Sparks, Donald L.
2015-08-10
The poorly crystalline Fe(III) hydroxide ferrihydrite is an important sink for organic matter (OM), nutrients and contaminants in soils and sediments. Aqueous Fe(II) is known to catalyze the transformation of ferrihydrite to more crystalline and thus less reactive phases. While coprecipitation of OM with ferrihydrite could be a common process in many environments due to changes in pH, redox potential or ionic strength, little is known about the impacts of coprecipitated OM on Fe(II)-catalyzed ferrihydrite transformation and its consequences for C dynamics. Accordingly, we explored the extent and pathways of Fe(II)-induced transformation of OM-ferrihydrite coprecipitates and subsequent C mobility. Mössbauermore » spectroscopic results indicated that the coprecipitated OM within ferrihydrite weakened the inter-particle magnetic interactions and decreased average particle size. The coprecipitated OM resulted in diminished Fe(II)-induced ferrihydrite transformation and thus preservation of ferrihydrite. The secondary mineral profiles upon Fe(II) reaction with ferrihydrite were a function of OM content and Fe(II) concentration. At low Fe(II) levels, OM completely inhibited goethite formation and stimulated lepidocrocite formation. At high Fe(II) levels, whereas goethite was formed in the presence of OM, OM reduced the amount of goethite and magnetite formation and increased the formation of lepidocrcocite. The solid-phase C content remained unchanged after reaction, while OM desorpability by H2PO4- was enhanced following reaction of OM-ferrihydrites with aqueous Fe(II). These findings provide insights into the reactivity of natural ferrihydrite containing OM in soils and sediments and the subsequent impact on mineral evolution and C dynamics.« less
Effect of pH and Fe/U ratio on the U(VI) removal rate by the synergistic effect of Fe(II) and O2
NASA Astrophysics Data System (ADS)
Fu, Yukui; Luo, Yingfeng; Fang, Qi; Xie, Yanpei; Wang, Zhihong; Zhu, Xiangyu
2018-02-01
As for the decommissioned uranium deposits of acid in-situ leaching, both of the concentrations of U(VI) and Fe(II) are relatively high in groundwater. In the presence of O2, the oxidation of Fe(II) into Fe(III) that forms Fe-hydroxides could effectively remove U(VI) in the forms of sorption or co-precipitation. In this process, pH condition and Fe content will have a significant effect on the U(VI) removal rate by the synergistic effect of Fe(II) and O2. In the present work, a series of batch experiments were carried out to investigate the effect of pH values and Fe/U mass ratio on the U(VI) removal rate by the synergistic effect of Fe(II) and O2. Experiment results show that the removal rate of U(VI) is mainly controlled by pH and secondly by Fe/U mass ratio. In the neutral conditions with pH at 7 and 8, the removal rate of U(VI) reaches up to 90% for all solutions with different initial Fe(II) concentrations. The optimal pH for the removal rate of U(VI) is above 7. In the acidic conditions with pH below 6, the effect of Fe/U mass ratio on the removal rate of U(VI) becomes more obvious and the optimal Fe/U mass ratio for U(VI) removal is 1:2.
NASA Astrophysics Data System (ADS)
Zheng, Xin-Yuan; Beard, Brian L.; Reddy, Thiruchelvi R.; Roden, Eric E.; Johnson, Clark M.
2016-08-01
Precambrian Si-rich sedimentary rocks, including cherts and banded iron formations (BIFs), record a >7‰ spread in 30Si/28Si ratios (δ30Si values), yet interpretation of this large variability has been hindered by the paucity of data on Si isotope exchange kinetics and equilibrium fractionation factors in systems that are pertinent to Precambrian marine conditions. Using the three-isotope method and an enriched 29Si tracer, a series of experiments were conducted to constrain Si isotope exchange kinetics and fractionation factors between amorphous Fe(III)-Si gel, a likely precursor to Precambrian jaspers and BIFs, and aqueous Si in artificial Archean seawater under anoxic conditions. Experiments were conducted at room temperature, and in the presence and absence of aqueous Fe(II) (Fe(II)aq). Results of this study demonstrate that Si solubility is significantly lower for Fe-Si gel than that of amorphous Si, indicating that seawater Si concentrations in the Precambrian may have been lower than previous estimates. The experiments reached ∼70-90% Si isotope exchange after a period of 53-126 days, and the highest extents of exchange were obtained where Fe(II)aq was present, suggesting that Fe(II)-Fe(III) electron-transfer and atom-exchange reactions catalyze Si isotope exchange through breakage of Fe-Si bonds. All experiments except one showed little change in the instantaneous solid-aqueous Si isotope fractionation factor with time, allowing extraction of equilibrium Si isotope fractionation factors through extrapolation to 100% isotope exchange. The equilibrium 30Si/28Si fractionation between Fe(III)-Si gel and aqueous Si (Δ30Sigel-aqueous) is -2.30 ± 0.25‰ (2σ) in the absence of Fe(II)aq. In the case where Fe(II)aq was present, which resulted in addition of ∼10% Fe(II) in the final solid, creating a mixed Fe(II)-Fe(III) Si gel, the equilibrium fractionation between Fe(II)-Fe(III)-Si gel and aqueous Si (Δ30Sigel-aqueous) is -3.23 ± 0.37‰ (2σ). Equilibrium Si isotope fractionation for Fe-Si gel systems is significantly larger in magnitude than estimates of a near-zero solid-aqueous fractionation factor between pure Si gel and aqueous Si, indicating a major influence of Fe atoms on Si-O bonds, and hence the isotopic properties, of Fe-Si gel. Larger Si isotope fractionation in the Fe(II)-bearing systems may be caused by incorporation of Fe(II) into the solid structure, which may further weaken Fe-Si bonds and thus change the Si isotope fractionation factor. The relatively large Si isotope fractionation for Fe-Si gel, relative to pure Si gel, provides a new explanation for the observed contrast in δ30Si values in the Precambrian BIFs and cherts, as well as an explanation for the relatively negative δ30Si values in BIFs, in contrast to previous proposals that the more negative δ30Si values in BIFs reflect hydrothermal sources of Si or sorption to Fe oxides/hydroxides.
Identifying and Quantifying the Intermediate Processes during Nitrate-Dependent Iron(II) Oxidation.
Jamieson, James; Prommer, Henning; Kaksonen, Anna H; Sun, Jing; Siade, Adam J; Yusov, Anna; Bostick, Benjamin
2018-05-15
Microbially driven nitrate-dependent iron (Fe) oxidation (NDFO) in subsurface environments has been intensively studied. However, the extent to which Fe(II) oxidation is biologically catalyzed remains unclear because no neutrophilic iron-oxidizing and nitrate reducing autotroph has been isolated to confirm the existence of an enzymatic pathway. While mixotrophic NDFO bacteria have been isolated, understanding the process is complicated by simultaneous abiotic oxidation due to nitrite produced during denitrification. In this study, the relative contributions of biotic and abiotic processes during NDFO were quantified through the compilation and model-based interpretation of previously published experimental data. The kinetics of chemical denitrification by Fe(II) (chemodenitrification) were assessed, and compelling evidence was found for the importance of organic ligands, specifically exopolymeric substances secreted by bacteria, in enhancing abiotic oxidation of Fe(II). However, nitrite alone could not explain the observed magnitude of Fe(II) oxidation, with 60-75% of overall Fe(II) oxidation attributed to an enzymatic pathway for investigated strains: Acidovorax ( A.) strain BoFeN1, 2AN, A. ebreus strain TPSY, Paracoccus denitrificans Pd 1222, and Pseudogulbenkiania sp. strain 2002. By rigorously quantifying the intermediate processes, this study eliminated the potential for abiotic Fe(II) oxidation to be exclusively responsible for NDFO and verified the key contribution from an additional, biological Fe(II) oxidation process catalyzed by NDFO bacteria.
Fe(II) oxidation during acid mine drainage neutralization in a pilot-scale Sequencing Batch Reactor.
Zvimba, J N; Mathye, M; Vadapalli, V R K; Swanepoel, H; Bologo, L
2013-01-01
This study investigated Fe(II) oxidation during acid mine drainage (AMD) neutralization using CaCO3 in a pilot-scale Sequencing Batch Reactor (SBR) of hydraulic retention time (HRT) of 90 min and sludge retention time (SRT) of 360 min in the presence of air. The removal kinetics of Fe(II), of initial concentration 1,033 ± 0 mg/L, from AMD through oxidation to Fe(III) was observed to depend on both pH and suspended solids, resulting in Fe(II) levels of 679 ± 32, 242 ± 64, 46 ± 16 and 28 ± 0 mg/L recorded after cycles 1, 2, 3 and 4 respectively, with complete Fe(II) oxidation only achieved after complete neutralization of AMD. Generally, it takes 30 min to completely oxidize Fe(II) during cycle 4, suggesting that further optimization of SBR operation based on both pH and suspended solids manipulation can result in significant reduction of the number of cycles required to achieve acceptable Fe(II) oxidation for removal as ferric hydroxide. Overall, complete removal of Fe(II) during AMD neutralization is attractive as it promotes recovery of better quality waste gypsum, key to downstream gypsum beneficiation for recovery of valuables, thereby enabling some treatment-cost recovery and prevention of environmental pollution from dumping of sludge into landfills.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boparai, Hardiljeet K.; Comfort, Steve; Satapanajaru, Tunlawit
Zerovalent iron barriers have become a viable treatment for field-scale cleanup of various ground water contaminants. While contact with the iron surface is important for contaminant destruction, the interstitial pore water within and near the iron barrier will be laden with aqueous, adsorbed and precipitated FeII phases. These freshly precipitated iron minerals could play an important role in transforming high explosives (HE). Our objective was to determine the transformation of RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine), HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine), and TNT (2,4,6-trinitrotoluene) by freshly precipitated iron FeII/FeIII minerals. This was accomplished by quantifying the effects of initial FeII concentration, pH, and the presence of aquifermore » solids (FeIII phases) on HE transformation rates. Results showed that at pH 8.2, freshly precipitated iron minerals transformed RDX, HMX, and TNT with reaction rates increasing with increasing FeII concentrations. RDX and HMX transformations in these solutions also increased with increasing pH (5.8-8.55). By contrast, TNT transformation was not influenced by pH (6.85-8.55) except at pH values <6.35. Transformations observed via LC/MS included a variety of nitroso products (RDX, HMX) and amino degradation products (TNT). XRD analysis identified green rust and magnetite as the dominant iron solid phases that precipitated from the aqueous FeII during HE treatment under anaerobic conditions. Geochemical modeling also predicted FeII activity would likely be controlled by green rust and magnetite. These results illustrate the important role freshly precipitated FeII/FeIII minerals in aqueous FeII solutions play in the transformation of high explosives.« less
Modulation of oxygen production in Archaean oceans by episodes of Fe(II) toxicity
NASA Astrophysics Data System (ADS)
Swanner, Elizabeth D.; Mloszewska, Aleksandra M.; Cirpka, Olaf A.; Schoenberg, Ronny; Konhauser, Kurt O.; Kappler, Andreas
2015-02-01
Oxygen accumulated in the surface waters of the Earth's oceans and atmosphere several hundred million years before the Great Oxidation Event between 2.4 and 2.3 billion years ago. Before the Great Oxidation Event, periods of enhanced submarine volcanism associated with mantle plume events supplied Fe(II) to sea water. These periods generally coincide with the disappearance of indicators of the presence of molecular oxygen in Archaean sedimentary records. The presence of Fe(II) in the water column can lead to oxidative stress in some organisms as a result of reactions between Fe(II) and oxygen that produce reactive oxygen species. Here we test the hypothesis that the upwelling of Fe(II)-rich, anoxic water into the photic zone during the late Archaean subjected oxygenic phototrophic bacteria to Fe(II) toxicity. In laboratory experiments, we found that supplying Fe(II) to the anoxic growth medium housing a common species of planktonic cyanobacteria decreased both the efficiency of oxygenic photosynthesis and their growth rates. We suggest that this occurs because of increasing intracellular concentrations of reactive oxygen species. We use geochemical modelling to show that Fe(II) toxicity in conditions found in the late Archaean photic zone could have substantially inhibited water column oxygen production, thus decreasing fluxes of oxygen to the atmosphere. We therefore propose that the timing of atmospheric oxygenation was controlled by the timing of submarine, plume-type volcanism, with Fe(II) toxicity as the modulating factor.
NASA Astrophysics Data System (ADS)
Garg, Shikha; Jiang, Chao; David Waite, T.
2015-09-01
The various pathways contributing to the formation and decay of Fe(II) in the presence of Suwanee River Fulvic Acid (SRFA) in acidic solutions are investigated here both in the presence and absence of light and over the pH range of 3-5. Our results show that ligand to metal charge transfer (LMCT) is the dominant pathway for photochemical Fe(III) reduction and resultant Fe(II) formation over the pH range examined. In comparison, under non-irradiated conditions, Fe(III) reduction occurs, for the most part, as a result of the presence of hydroquinone-like moieties in SRFA. Irradiation of SRFA also results in the generation of both long-lived and short-lived Fe(II) oxidants with the long-lived Fe(II) oxidant similar to semiquinone-like radicals with these radicals formed via superoxide-mediated oxidation of the hydroquinone-like moieties present in SRFA. Dioxygen plays an important role in production of the long-lived Fe(II) oxidant since generation of superoxide occurs via reduction of dioxygen. The short-lived Fe(II) oxidant is similar to peroxyl radicals which are generated via hydroxylation of organic moieties. The overall rate of generation of both the short- and long-lived Fe(II) oxidants is dependent on pH with the generation rates of these oxidants increasing with increase in pH. Based on our experimental data, we have developed a kinetic model that satisfactorily describes all Fe transformations observed in SRFA solutions over the pH range 3-5 under non-irradiated, previously irradiated and continuously irradiated conditions. Fe species undergo continual cycling between Fe(II) and Fe(III) oxidation states with Fe(II)-Fe(III) turnover frequencies in the presence of 10 mg.L-1 SRFA of 17.3, 27.4 and 33.2 h-1 at pH 3, 3.5 and 4 on continuous photolysis compared to turnover frequencies of 1.9, 2.5 and 2.9 h-1 at pH 3, 3.5 and 4 in the dark.
Liu, Zhi-Pan; Hu, P
2002-05-08
We have carried out extensive density functional theory (DFT) calculations for possible redox states of the active center in Fe-only hydrogenases. The active center is modeled by [(H(CH(3))S)(CO)(CN(-))Fe(p)(mu-DTN)(mu-CO)Fe(d)(CO)(CN(-))(L)](z)() (z is the net charge in the complex; Fe(p)= the proximal Fe, Fe(d) = the distal Fe, DTN = (-SCH(2)NHCH(2)S-), L is the ligand that bonds with the Fe(d) at the trans position to the bridging CO). Structures of possible redox states are optimized, and CO stretching frequencies are calculated. By a detailed comparison of all the calculated structures and the vibrational frequencies with the available experimental data, we find that (i) the fully oxidized, inactive state is an Fe(II)-Fe(II) state with a hydroxyl (OH(-)) group bonded at the Fe(d), (ii) the oxidized, active state is an Fe(II)-Fe(I) complex which is consistent with the assignment of Cao and Hall (J. Am. Chem. Soc. 2001, 123, 3734), and (iii) the fully reduced state is a mixture with the major component being a protonated Fe(I)-Fe(I) complex and the other component being its self-arranged form, Fe(II)-Fe(II) hydride. Our calculations also show that the exogenous CO can strongly bond with the Fe(II)-Fe(I) species, but cannot bond with the Fe(I)-Fe(I) complex. This result is consistent with experiments that CO tends to inhibit the oxidized, active state, but not the fully reduced state. The electronic structures of all the redox states have been analyzed. It is found that a frontier orbital which is a mixing state between the e(g) of Fe and the 2 pi of the bridging CO plays a key role concerning the reactivity of Fe-only hydrogenases: (i) it is unoccupied in the fully oxidized, inactive state, half-occupied in the oxidized, active state, and fully occupied in the fully reduced state; (ii) the e(g)-2 pi orbital is a bonding state, and this is the key reason for stability of the low oxidation states, such as Fe(I)-Fe(I) complexes; and (iii) in the e(g)-2 pi orbital more charge accumulates between the bridging CO and the Fe(d) than between the bridging CO and the Fe(p), and the occupation increase in this orbital will enhance the bonding between the bridging CO and the Fe(d), leading to the bridging-CO shift toward the Fe(d).
Mitsunobu, Satoshi; Zhu, Ming; Takeichi, Yasuo; Ohigashi, Takuji; Suga, Hiroki; Jinno, Muneaki; Makita, Hiroko; Sakata, Masahiro; Ono, Kanta; Mase, Kazuhiko; Takahashi, Yoshio
2016-01-01
We herein investigated the mechanisms underlying the contact leaching process in pyrite bioleaching by Acidithiobacillus ferrooxidans using scanning transmission X-ray microscopy (STXM)-based C and Fe near edge X-ray absorption fine structure (NEXAFS) analyses. The C NEXAFS analysis directly showed that attached A. ferrooxidans produces polysaccharide-abundant extracellular polymeric substances (EPS) at the cell-pyrite interface. Furthermore, by combining the C and Fe NEXAFS results, we detected significant amounts of Fe(II), in addition to Fe(III), in the interfacial EPS at the cell-pyrite interface. A probable explanation for the Fe(II) in detected EPS is the leaching of Fe(II) from the pyrite. The detection of Fe(II) also indicates that Fe(III) resulting from pyrite oxidation may effectively function as an oxidizing agent for pyrite at the cell-pyrite interface. Thus, our results imply that a key role of Fe(III) in EPS, in addition to its previously described role in the electrostatic attachment of the cell to pyrite, is enhancing pyrite dissolution. PMID:26947441
Surface catalysis of uranium(VI) reduction by iron(II)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liger, E.; Charlet, L.; Van Cappellen, P.
1999-10-01
Colloidal hematite ({alpha}-Fe{sub 2}O{sub 3}) is used as model solid to investigate the kinetic effect of specific adsorption interactions on the chemical reduction of uranyl (U{sup VI}O{sub 2}{sup 2+}) by ferrous iron. Acid-base titrations and Fe(II) and uranyl adsorption experiments are performed on hematite suspensions, under O{sub 2}- and CO{sub 2}-free conditions. The results are explained in terms of a constant capacitance surface complexation model of the hematite-aqueous solution interface. Two distinct Fe(II) surface complexes are required to reproduce the data: ({equivalent{underscore}to}Fe{sup III}OFe{sup II}){sup +} (or {equivalent{underscore}to}Fe{sup III}OFe{sup II}(OH{sub 2}){sub n}{sup +}) and {equivalent{underscore}to}Fe{sup III}OFe{sup II}OH{sup 0} (or {equivalent{underscore}to}Fe{sup III}OFe{supmore » II}(OH{sub 2}){sub n{minus}1}OH{sup 0}). The latter complex represents a significant fraction of total adsorbed Fe(II) at pH {gt} 6.5. Uranyl binding to the hematite particles is characterized by a sharp adsorption edge between pH 4 and pH 5.5. Because of the absence of competing aqueous carbonate complexes, uranyl remains completely adsorbed at pH {gt} 7. A single mononuclear surface complex accounts for the adsorption of uranyl over the entire range of experimental conditions. Although thermodynamically feasible, no reaction between uranyl and Fe(II) is observed in homogeneous solution at pH 7.5, for periods of up to three days. In hematite suspensions, however, surface-bound uranyl reacts on a time scale of hours. Based on Fourier Transformed Infrared spectra, chemical reduction of U(VI) is inferred to be the mechanism responsible for the disappearance of uranyl. The kinetics of uranyl reduction are quantified by measuring the decrease with time of the concentration of U(VI) extractable from the hematite particles by NaHCO{sub 3}. In the presence of excess Fe(II), the initial rate of U(VI) reduction exhibits a first-order dependence on the concentration of adsorbed uranyl. The pseudo-first-order rate constant varies with pH (range, 6--7.5) and the total (dissolved + adsorbed) concentration of Fe(II) (range, 2--160 {micro}M). When analyzing the rate data in terms of the calculated surface speciation, the variability of the rate constant can be accounted for entirely by changes in the concentration of the Fe(II) monohydroxo surface complex {equivalent{underscore}to}Fe{sup III}OFe{sup II}OH{sup 0}. Therefore, the rate law is derived for the hematite-catalyzed reduction of uranyl by Fe(II), where the bimolecular rate constant {kappa} has a value of 399 {+-} 25 M{sup {minus}1} min{sup {minus}1} at 25 C. The hydroxo surface complex is the rate-controlling reductant species, because it provides the most favorable coordination environment in which electrons are removed from Fe(II). Natural particulate matter collected in the hypolimnion of a seasonally stratified lake also causes the rapid reduction of uranyl by Fe(II), Ferrihydrite, identified in the particulate matter by X-ray diffraction, is one possible mineral phase accelerating the reaction between U(VI) and Fe(II). At near-neutral pH and total Fe(II) levels less than 1 mM, the pseudo-first-order rate constants of chemical U(VI) reduction, measured in the presence of the hematite and lake particles, are of the same order of magnitude as the highest corresponding rate coefficients for enzymatic U(VI) reduction in bacterial cultures. Hence, based on the results of this study, surface-catalyzed U(VI) reduction by Fe(II) is expected to be a major pathway of uranium immobilization in a wide range of redox-stratified environments.« less
Infrared Spectroscopy of Pa-beta and [Fe II] Emission in NGC 4151
NASA Technical Reports Server (NTRS)
Knop, R. A.; Armus, L.; Larkin, J. E.; Matthews, K.; Shupe, D. L.; Soifer, B. T.
1996-01-01
We present spatially resolved 1.24-1.30 micron spectroscopy with a resolution of 240 km/s of the Seyfert 1.5 galaxy NGC 4151. Broad Pa-beta, narrow Pa-beta, and narrow [Fe II] (lambda = 1.2567 micron) emission lines are identified in the spectrum. Additionally, a spatially unresolved narrow component probably due to [S ix] (lambda = 1.25235 micron) is observed on the nucleus. The narrow Pa-beta and [Fe II] lines are observed to be extended over a scale of 5 sec. The spatial variation of the velocity centers of the Pa-beta and [Fe II] lines show remarkable similarity, and additionally show similarities to the velocity structure previously observed in ground based spectroscopy of [O III] emission in NGC 4151. This leads to the conclusion that the [Fe II] emission arises in clouds in the Seyfert narrow line region that are physically correlated with those narrow line clouds responsible for the optical emission. The [Fe II] emission line, however, is significantly wider than the Pa-beta emission line along the full spatial extent of the observed emission. This result suggests that despite the correlation between the bulk kinematics of Pa-beta and [Fe II], there is an additional process, perhaps fast shocks from a wind in the Seyfert nucleus, contributing to the [Fe II] emission.
Paraskevopoulou, Patrina; Ai, Lin; Wang, Qiuwen; Pinnapareddy, Devender; Acharyya, Rama; Dinda, Rupam; Das, Purak; Çelenligil-Çetin, Remle; Floros, Georgios; Sanakis, Yiannis; Choudhury, Amitava; Rath, Nigam P.; Stavropoulos, Pericles
2009-01-01
A family of triphenylamido-amine ligands of the general stoichiometry LxH3 = [R-NH-(2-C6H4)]3N (R = 4-t-BuPh (L1H3), 3,5-t-Bu2Ph (L2H3), 3,5-(CF3)2Ph (L3H3), CO-t-Bu (L4H3) 3,5-Cl2Ph (L5H3), COPh (L6H3), CO-i-Pr (L7H3), COCF3 (L8H3), i-Pr (L9H3)) has been synthesized and characterized, featuring a rigid triphenylamido-amine scaffold and an array of stereoelectronically diverse aryl, acyl and alkyl substituents (R). These ligands are deprotonated by potassium hydride in THF or DMA and reacted with anhydrous FeCl2 to afford a series of ferrous complexes, exhibiting stoichiometric variation and structural complexity. The prevalent [(Lx)Fe(II)–solv]− structures (Lx = L1, L2, L3, L5, solv = THF; Lx = L8, solv = DMA; Lx = L6, L8, solv = MeCN), reveal a distorted trigonal bipyramidal geometry, featuring ligand-derived [N3,amidoNamine] coordination and solvent attachment trans to the Namine atom. Specifically for [(L8)Fe(II)–DMA]−, an Namido residue is coordinated as the corresponding Nimino moiety (Fe–N(Ar)=C(CF3)–O−). In contrast, compounds [(L4)Fe(II)] −, [(L6)2Fe(II)2]2−, [K(L7)2Fe(II)2]22− and [K(L9)Fe]2 are all solvent-free in their coordination sphere and exhibit four-coordinate geometries of significant diversity. In particular, [(L4)Fe(II)]− demonstrates coordination of one amidato residue via the O-atom end (Fe–O–C(t-Bu)=N(Ar)). Furthermore, [(L6)2Fe(II)2]2− and [K(L7)2Fe(II)2]22− are similar structures exhibiting bridging amidato residues (Fe–N(Ar)–C(R)=O–Fe) in dimeric structural units. Finally the structure of [K(L9)Fe]2 is the only example featuring a minimal [N3,amidoNamine] coordination sphere around each Fe(II) site. All compounds have been characterized by a variety of physicochemical techniques, including Mössbauer spectroscopy and electrochemistry, to reveal electronic attributes that are responsible for a range of Fe(II)/Fe(III) redox potentials exceeding 1.0 V. PMID:19950956
Stapleton, Brian; Walker, Lawrence R; Logan, Timothy M
2013-03-19
Thermodynamic measurements of Fe(II) binding and activation of repressor function in the iron-dependent repressor from Mycobacterium tuberculosis (IdeR) are reported. IdeR, a member of the diphtheria toxin repressor family of proteins, regulates iron homeostasis and contributes to the virulence response in M. tuberculosis. Although iron is the physiological ligand, this is the first detailed analysis of iron binding and activation in this protein. The results showed that IdeR binds 2 equiv of Fe(II) with dissociation constants that differ by a factor of 25. The high- and low-affinity iron binding sites were assigned to physical binding sites I and II, respectively, using metal binding site mutants. IdeR was also found to contain a high-affinity Zn(II) binding site that was assigned to physical metal binding site II through the use of binding site mutants and metal competition assays. Fe(II) binding was modestly weaker in the presence of Zn(II), but the coupled metal binding-DNA binding affinity was significantly stronger, requiring 30-fold less Fe(II) to activate DNA binding compared to Fe(II) alone. Together, these results suggest that IdeR is a mixed-metal repressor, where Zn(II) acts as a structural metal and Fe(II) acts to trigger the physiologically relevant promoter binding. This new model for IdeR activation provides a better understanding of IdeR and the biology of iron homeostasis in M. tuberculosis.
Application of calcium peroxide activated with Fe(II)-EDDS complex in trichloroethylene degradation.
Zhang, Xiang; Gu, Xiaogang; Lu, Shuguang; Miao, Zhouwei; Xu, Minhui; Fu, Xiaori; Qiu, Zhaofu; Sui, Qian
2016-10-01
This study was conducted to assess the application of calcium peroxide (CP) activated with Fe(II) chelated by (S,S)-ethylenediamine-N,N'-disuccinic acid (EDDS) to enhance trichloroethylene (TCE) degradation in aqueous solution. It was indicated that EDDS prevented soluble iron from precipitation, and the optimum molar ratio of Fe(II)/EDDS to accelerate TCE degradation was 1/1. The influences of initial TCE, CP and Fe(II)-EDDS concentration were also investigated. The combination of CP and Fe(II)-EDDS complex rendered the efficient degradation of TCE at near neutral pH range. Chemical probe and scavenger tests identified that TCE degradation mainly owed to the oxidation of HO while O2(-) promoted HO generation. Cl(-), HCO3(-) and humic acid were found to inhibit CP/Fe(II)-EDDS performance on different levels. In conclusion, the application of CP activated with Fe(II)-EDDS complex is a promising technology in chemical remediation of groundwater, while further research in practical implementation is needed. Copyright © 2016 Elsevier Ltd. All rights reserved.
2013-01-01
This study introduces a newly isolated, genetically tractable bacterium (Pseudogulbenkiania sp. strain MAI-1) and explores the extent to which its nitrate-dependent iron-oxidation activity is directly biologically catalyzed. Specifically, we focused on the role of iron chelating ligands in promoting chemical oxidation of Fe(II) by nitrite under anoxic conditions. Strong organic ligands such as nitrilotriacetate and citrate can substantially enhance chemical oxidation of Fe(II) by nitrite at circumneutral pH. We show that strain MAI-1 exhibits unambiguous biological Fe(II) oxidation despite a significant contribution (∼30–35%) from ligand-enhanced chemical oxidation. Our work with the model denitrifying strain Paracoccus denitrificans further shows that ligand-enhanced chemical oxidation of Fe(II) by microbially produced nitrite can be an important general side effect of biological denitrification. Our assessment of reaction rates derived from literature reports of anaerobic Fe(II) oxidation, both chemical and biological, highlights the potential competition and likely co-occurrence of chemical Fe(II) oxidation (mediated by microbial production of nitrite) and truly biological Fe(II) oxidation. PMID:23402562
Potentiometric and electrokinetic signatures of iron(II) interactions with (α,γ)-Fe2O3.
Toczydłowska, Diana; Kędra-Królik, Karolina; Nejbert, Krzysztof; Preočanin, Tajana; Rosso, Kevin M; Zarzycki, Piotr
2015-10-21
The electrochemical signatures of Fe(II) interactions with iron(III) oxides are poorly understood, despite their importance in controlling the amount of mobilized iron. Here, we report the potentiometric titration of α,γ-Fe2O3 oxides exposed to Fe(II) ions. We monitored in situ surface and ζ potentials, the ratio of mobilized ferric to ferrous, and the periodically analyzed nanoparticle crystal structure using X-ray diffraction. Electrokinetic potential reveals weak but still noticeable specific sorption of Fe(II) to the oxide surface under acidic conditions, and pronounced adsorption under alkaline conditions that results in a surface potential reversal. By monitoring the aqueous iron(II/III) fraction, we found that the addition of Fe(II) ions produces platinum electrode response consistent with the iron solubility-activity curve. Although, XRD analysis showed no evidence of γ-Fe2O3 transformations along the titration pathway despite iron cycling between aqueous and solid reservoirs, the magnetite formation cannot be ruled out.
Studies on different iron source absorption by in situ ligated intestinal loops of broilers.
Jia, Y F; Jiang, M M; Sun, J; Shi, R B; Liu, D S
2015-02-01
The objective of this study was to investigate the iron source absorption in the small intestine of broiler. In situ ligated intestinal loops of 70 birds were poured into one of seven solutions, including inorganic iron (FeSO4, Fe2(SO4)3), organic Fe glycine chelate (Fe-Gly(II), Fe-Gly(III)), the mixtures (FeSO4 with glycine (Fe+Gly(II)), Fe2(SO4)3 with glycine (Fe+Gly(III)), and no Fe source (control). The total volume of 3-mL solution (containing 1 mg of elemental Fe) was injected into intestinal loops, and then 120-min incubation was performed. Compared with inorganic iron groups, in which higher FeSO4 absorption than Fe2(SO4)3 was observed, supplementation with organic Fe glycine chelate significantly increased the Fe concentration in the duodenum and jejunum (P < 0.05), however, decreased DMT1 and DcytB messenger RNA (mRNA) levels (P < 0.05). Organic Fe glycine chelate (Fe-Gly(II), Fe-Gly(III)) increased serum iron concentration (SI), compared with inorganic 3 valence iron groups (Fe2(SO4)3 and Fe+Gly(III)) (P < 0.05); moreover, lower TIBC value was observed for the chelate (P < 0.05); however, mixture of inorganic iron and glycine did not have a positive role at DMT1 and DcytB mRNA levels, SI and Fe concentrations in the small intestine. Those results indicated that the absorption of organic Fe glycine chelate was more effective than that of inorganic Fe, and the orders of iron absorption in the small intestine were: Fe-Gly(II), Fe-Gly(III) > FeSO4, Fe+Gly(II) > Fe2(SO4)3, Fe+Gly(III). Additionally, the simple mixture of inorganic iron and glycine could not increase Fe absorption, and the duodenum was the main site of Fe absorption in the intestines of broilers and the ileum absorbed iron rarely.
A subsurface Fe-silicate weathering microbiome
NASA Astrophysics Data System (ADS)
Napieralski, S. A.; Buss, H. L.; Roden, E. E.
2017-12-01
Traditional models of microbially mediated weathering of primary Fe-bearing minerals often invoke organic ligands (e.g. siderophores) used for nutrient acquisition. However, it is well known that the oxidation of Fe(II) governs the overall rate of Fe-silicate mineral dissolution. Recent work has demonstrated the ability of lithtrophic iron oxidizing bacteria (FeOB) to grow via the oxidation of structural Fe(II) in biotite as a source of metabolic energy with evidence suggesting a direct enzymatic attack on the mineral surface. This process necessitates the involvement of dedicated outer membrane proteins that interact with insoluble mineral phases in a process known as extracellular electron transfer (EET). To investigate the potential role FeOB in a terrestrial subsurface weathering system, samples were obtained from the bedrock-saprolite interface (785 cm depth) within the Rio Icacos Watershed of the Luquillo Mountains in Puerto Rico. Prior geochemical evidence suggests the flux of Fe(II) from the weathering bedrock supports a robust lithotrophic microbial community at depth. Current work confirms the activity of microorganism in situ, with a marked increase in ATP near the bedrock-saprolite interface. Regolith recovered from the interface was used as inoculum to establish enrichment cultures with powderized Fe(II)-bearing minerals serving as the sole energy source. Monitoring of the Fe(II)/Fe(total) ratio and ATP generation suggests growth of microorganisms coupled to the oxidation of mineral bound Fe(II). Analysis of 16S rRNA gene and shotgun metagenomic libraries from in situ and enrichment culture samples lends further support to FeOB involvement in the weathering process. Multiple metagenomic bins related to known FeOB, including Betaproteobacteria genera, contain homologs to model EET systems, including Cyc2 and MtoAB. Our approach combining geochemistry and metagenomics with ongoing microbiological and genomic characterization of novel isolates obtained from enrichment cultures provides insight into the role of FeOB in Fe(II)-mineral alteration as well as furthering our understanding of the biotic reactions contributing the globally important biogeochemical phenomenon of chemical weathering.
Heller, Maija I.; Lam, Phoebe J.; Moffett, James W.; ...
2017-05-19
Oxygen minimum zones (OMZs) have been proposed to be an important source of dissolved iron (Fe) into the interior ocean. However, previous studies in OMZs have shown a sharp decrease in total dissolved Fe (dFe) and/or dissolved Fe(II) (dFe(II)) concentrations at the shelf-break, despite constant temperature, salinity and continued lack of oxygen across the shelf-break. The loss of both total dFe and dFe(II) suggests a conversion of the dFe to particulate form, but studies that have coupled the reduction-oxidation (redox) speciation of both dissolved and particulate phases have not previously been done. Here in this work, we have measured themore » redox speciation and concentrations of both dissolved and particulate forms of Fe in samples collected during the U.S. GEOTRACES Eastern tropical Pacific Zonal Transect (EPZT) cruise in 2013 (GP16). This complete data set allows us to assess possible mechanisms for loss of dFe. We observed an offshore loss of dFe(II) within the oxygen deficient zone (ODZ), where dissolved oxygen is undetectable, accompanied by an increase in total particulate Fe (pFe). Total pFe concentrations were highest in the upper ODZ. X-ray absorption spectroscopy revealed that the pFe maximum was primarily in the Fe(III) form as Fe(III) oxyhydroxides. The remarkable similarity in the distributions of total particulate iron and nitrite suggests a role for nitrite in the oxidation of dFe(II) to pFe(III). Lastly, we present a conceptual model for the rapid redox cycling of Fe that occurs in ODZs, despite the absence of oxygen.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heller, Maija I.; Lam, Phoebe J.; Moffett, James W.
Oxygen minimum zones (OMZs) have been proposed to be an important source of dissolved iron (Fe) into the interior ocean. However, previous studies in OMZs have shown a sharp decrease in total dissolved Fe (dFe) and/or dissolved Fe(II) (dFe(II)) concentrations at the shelf-break, despite constant temperature, salinity and continued lack of oxygen across the shelf-break. The loss of both total dFe and dFe(II) suggests a conversion of the dFe to particulate form, but studies that have coupled the reduction-oxidation (redox) speciation of both dissolved and particulate phases have not previously been done. Here in this work, we have measured themore » redox speciation and concentrations of both dissolved and particulate forms of Fe in samples collected during the U.S. GEOTRACES Eastern tropical Pacific Zonal Transect (EPZT) cruise in 2013 (GP16). This complete data set allows us to assess possible mechanisms for loss of dFe. We observed an offshore loss of dFe(II) within the oxygen deficient zone (ODZ), where dissolved oxygen is undetectable, accompanied by an increase in total particulate Fe (pFe). Total pFe concentrations were highest in the upper ODZ. X-ray absorption spectroscopy revealed that the pFe maximum was primarily in the Fe(III) form as Fe(III) oxyhydroxides. The remarkable similarity in the distributions of total particulate iron and nitrite suggests a role for nitrite in the oxidation of dFe(II) to pFe(III). Lastly, we present a conceptual model for the rapid redox cycling of Fe that occurs in ODZs, despite the absence of oxygen.« less
NASA Astrophysics Data System (ADS)
Heller, Maija I.; Lam, Phoebe J.; Moffett, James W.; Till, Claire P.; Lee, Jong-Mi; Toner, Brandy M.; Marcus, Matthew A.
2017-08-01
Oxygen minimum zones (OMZs) have been proposed to be an important source of dissolved iron (Fe) into the interior ocean. However, previous studies in OMZs have shown a sharp decrease in total dissolved Fe (dFe) and/or dissolved Fe(II) (dFe(II)) concentrations at the shelf-break, despite constant temperature, salinity and continued lack of oxygen across the shelf-break. The loss of both total dFe and dFe(II) suggests a conversion of the dFe to particulate form, but studies that have coupled the reduction-oxidation (redox) speciation of both dissolved and particulate phases have not previously been done. Here we have measured the redox speciation and concentrations of both dissolved and particulate forms of Fe in samples collected during the U.S. GEOTRACES Eastern tropical Pacific Zonal Transect (EPZT) cruise in 2013 (GP16). This complete data set allows us to assess possible mechanisms for loss of dFe. We observed an offshore loss of dFe(II) within the oxygen deficient zone (ODZ), where dissolved oxygen is undetectable, accompanied by an increase in total particulate Fe (pFe). Total pFe concentrations were highest in the upper ODZ. X-ray absorption spectroscopy revealed that the pFe maximum was primarily in the Fe(III) form as Fe(III) oxyhydroxides. The remarkable similarity in the distributions of total particulate iron and nitrite suggests a role for nitrite in the oxidation of dFe(II) to pFe(III). We present a conceptual model for the rapid redox cycling of Fe that occurs in ODZs, despite the absence of oxygen.
Mohamed, Gehad G; El-Gamel, Nadia E A
2005-04-01
Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and UO(2)(II) complexes with the ligand 2-tert-butylaminomethylpyridine-6-carboxylic acid methylester (HL(2)) have been prepared and characterized by elemental analyses, molar conductance, magnetic moment, thermal analysis and spectral data. 1:1 M:HL(2) complexes, with the general formula [M(HL(2))X(2)].nH(2)O (where M = Co(II) (X = Cl, n = 0), Ni(II) (X = Cl, n = 3), Cu(II) (grey colour, X = AcO, n = 1), Cu(II) (yellow colour, X = Cl, n = 0) and Zn(II) (X = Br, n = 0). In addition, the Fe(III) and UO(2)(II) complexes of the type 1:2 M:HL(2) and with the formulae [Fe(L(2))(2)]Cl and [UO(2)(HL(2))(2)](NO(3))(2) are prepared. From the IR data, it is seen that HL(2) ligand behaves as a terdentate ligand coordinated to the metal ions via the pyridyl N, carboxylate O and protonated NH group; except the Fe(III) complex, it coordinates via the deprotonated NH group. This is supported by the molar conductance data, which show that all the complexes are non-electrolytes, while the Fe(III) and UO(2)(II) complexes are 1:1 electrolytes. IR and H1-NMR spectral studies suggest a similar behaviour of the Zn(II) complex in solid and solution states. From the solid reflectance spectral data and magnetic moment measurements, the complexes have a trigonal bipyramidal (Co(II), Ni(II), Cu(II) and Zn(II) complexes) and octahedral (Fe(III), UO(2)(II) complexes) geometrical structures. The thermal behaviour of the complexes is studied and the different dynamic parameters are calculated applying Coats-Redfern equation.
Atmospheric Processing of Volcanic Glass: Effects on Iron Solubility and Redox Speciation.
Maters, Elena C; Delmelle, Pierre; Bonneville, Steeve
2016-05-17
Volcanic ash from explosive eruptions can provide iron (Fe) to oceanic regions where this micronutrient limits primary production. Controls on the soluble Fe fraction in ash remain poorly understood but Fe solubility is likely influenced during atmospheric transport by condensation-evaporation cycles which induce large pH fluctuations. Using glass powder as surrogate for ash, we experimentally simulate its atmospheric processing via cycles of pH 2 and 5 exposure. Glass fractional Fe solubility (maximum 0.4%) is governed by the pH 2 exposure duration rather than by the pH fluctuations, however; pH 5 exposure induces precipitation of Fe-bearing nanoparticles which (re)dissolve at pH 2. Glass leaching/dissolution release Fe(II) and Fe(III) which are differentially affected by changes in pH; the average dissolved Fe(II)/Fetot ratio is ∼0.09 at pH 2 versus ∼0.18 at pH 5. Iron release at pH 2 from glass with a relatively high bulk Fe(II)/Fetot ratio (0.5), limited aqueous Fe(II) oxidation at pH 5, and possibly glass-mediated aqueous Fe(III) reduction may render atmospherically processed ash a significant source of Fe(II) for phytoplankton. By providing new insight into the form(s) of Fe associated with ash as wet aerosol versus cloud droplet, we improve knowledge of atmospheric controls on volcanogenic Fe delivery to the ocean.
Acidity and hydrogen exchange dynamics of iron(II)-bound nitroxyl in aqueous solution.
Gao, Yin; Toubaei, Abouzar; Kong, Xianqi; Wu, Gang
2014-10-20
Nitroxyl-iron(II) (HNO-Fe(II)) complexes are often unstable in aqueous solution, thus making them very difficult to study. Consequently, many fundamental chemical properties of Fe(II)-bound HNO have remained unknown. Using a comprehensive multinuclear ((1)H, (15)N, (17)O) NMR approach, the acidity of the Fe(II)-bound HNO in [Fe(CN)5(HNO)](3-) was investigated and its pK(a) value was determined to be greater than 11. Additionally, HNO undergoes rapid hydrogen exchange with water in aqueous solution and this exchange process is catalyzed by both acid and base. The hydrogen exchange dynamics for the Fe(II)-bound HNO have been characterized and the obtained benchmark values, when combined with the literature data on proteins, reveal that the rate of hydrogen exchange for the Fe(II)-bound HNO in the interior of globin proteins is reduced by a factor of 10(6). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Formation of iron (hydr)oxides during the abiotic oxidation of Fe(II) in the presence of arsenate.
Song, Jia; Jia, Shao-Yi; Yu, Bo; Wu, Song-Hai; Han, Xu
2015-08-30
Abiotic oxidation of Fe(II) is a common pathway in the formation of Fe (hydr)oxides under natural conditions, however, little is known regarding the presence of arsenate on this process. In hence, the effect of arsenate on the precipitation of Fe (hydr)oxides during the oxidation of Fe(II) is investigated. Formation of arsenic-containing Fe (hydr)oxides is constrained by pH and molar ratios of As:Fe during the oxidation Fe(II). At pH 6.0, arsenate inhibits the formation of lepidocrocite and goethite, while favors the formation of ferric arsenate with the increasing As:Fe ratio. At pH 7.0, arsenate promotes the formation of hollow-structured Fe (hydr)oxides containing arsenate, as the As:Fe ratio reaches 0.07. Arsenate effectively inhibits the formation of magnetite at pH 8.0 even at As:Fe ratio of 0.01, while favors the formation of lepidocrocite and green rust, which can be latterly degenerated and replaced by ferric arsenate with the increasing As:Fe ratio. This study indicates that arsenate and low pH value favor the slow growth of dense-structured Fe (hydr)oxides like spherical ferric arsenate. With the rapid oxidation rate of Fe(II) at high pH, ferric (hydr)oxides prefer to precipitate in the formation of loose-structured Fe (hydr)oxides like lepidocrocite and green rust. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhuang, J Ming; Hobenshield, Evan; Walsh, Tony
2009-02-01
A two-stage (I and II) lab-scale treatment system has been studied for arsenic removal from water using Fe(II) and lignosulphonates with aeration. In stage I, using an Fe/As mole ratio of 1.5-2.5 at a pH of around 6.5-7.5, the dissolved arsenic can be reduced with Fe(II) oxidation-precipitation from an initial 72 mg L(-1) to < 2 mg L(-1). The generated sludge is entirely recycled to the second tank of stage II. In the first tank of stage II, the water is further treated with the same amount of Fe(II) as that used in stage I, in the presence of lignosulphonates and aeration. The air-oxidization of Fe(II) to Fe(III) is continued for about 30 minutes at a pH of around 7.0-8.0. The water output from the first tank is transferred to the second tank in which mixing under aeration occurs with the sludge recycled from stage I. Accordingly, the dissolved arsenic in the effluent is reduced to < 0.1 mg L(-1). The results show that this two-stage process can save more than 50% of total chemical costs, and reduce the amount of sludge by more than 50%, in comparison with the conventional Fe(III)/lime-treatment process. According to US EPA regulations, the final Fe-As sludge is classified as non-hazardous materials by the Toxicity Characteristic Leaching Procedure. But, the study shows that the instability of Fe-As sludge could be influenced by some factors, such as higher pH levels, a longer water-leaching time and larger water-leaching volume, leading to the liberation of more dissolvable As species. After being treated with Ligmet stabilizer, the Fe-As sludge showed an improved stability under varying pH conditions and large amounts of water leaching. The treated Fe-As sludge is suitable for landfill disposal.
Schwertmannite stability in anoxic Fe(II)-rich aqueous solution
NASA Astrophysics Data System (ADS)
Paikaray, Susanta; Schröder, Christian; Peiffer, Stefan
2017-11-01
Schwertmannite (SHM) is a powerful scavenger for As(III) leading to As(III)-enriched precipitates around acid mine drainage environments that may become exposed to aqueous Fe(II). In this study we have investigated the stability of pure SHM and SHM containing 0.92 wt% As(III) under Fe(II)aq-rich (0.4-1.0 mM) anoxic conditions using XRD, SEM, Mössbauer and FTIR spectroscopic techniques. Schwertmannite transformation proceeded through an alkalinity-driven pathway releasing sulfate and a Fe(II)-catalyzed pathway that generated lepidocrocite and goethite at pH 6 and 6.9 in the presence of 1 mM Fe(II)aq. Lepidocrocite was found to be needle shaped if the SHM contained As(III) and platy for pure SHM. Goethite had a poor degree of crystallinity in As(III) containing SHM. Pre-adsorption of As(III) inhibited the extent of SHM transformation. Fe(II) sorption onto SHM was pH dependent and reflected a sorption edge with complete consumption at pH 6.9, while only ∼20% were adsorbed at pH 5. Surface coverage with Fe(II) appears to be the key parameter controlling extent and products of the transformation process. As(III) concentrations in solution are controlled by two mechanisms: (1) exchange of As(III) for sulfate upon alkalinity-driven transformation of schwertmannite and (2) re-adsorption to new phases formed upon Fe(II)-catalyzed transformation. The adsorbed As(III) has inhibited the extent of transformation and was partly released with the maximum release at pH 5 (0.5%) in the absence of Fe(II)aq.
Follow-up Observations of SDSS and CRTS Candidate Cataclysmic Variables II
NASA Astrophysics Data System (ADS)
Szkody, Paula; Everett, Mark E.; Dai, Zhibin; Serna-Grey, Donald
2018-01-01
Spectra of 38 candidate or known cataclysmic variables are presented. Most are candidate dwarf novae or systems containing possible highly magnetic white dwarfs, while a few (KR Aur, LS Peg, V380 Oph, and V694 Mon) are previously known objects caught in unusual states. Individual spectra are used to confirm a dwarf nova nature or other classification while radial velocities of 15 systems provide orbital periods and velocity amplitudes that aid in determining the nature of the objects. Our results substantiate a polar nature for four objects, find an eclipsing SW Sex star below the period gap, another as a likely intermediate polar, as well as two dwarf novae with periods in the middle of the gap. Based on observations obtained with the Apache Point Observatory (APO) 3.5 m telescope, which is owned and operated by the Astrophysical Research Consortium (ARC).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zarzycki, Piotr; Rosso, Kevin M.
Understanding Fe(II)-catalyzed transformations of Fe(III)- (oxyhydr)oxides is critical for correctly interpreting stable isotopic distributions and for predicting the fate of metal ions in the environment. Recent Fe isotopic tracer experiments have shown that goethite undergoes rapid recrystallization without phase change when exposed to aqueous Fe(II). The proposed explanation is oxidation of sorbed Fe(II) and reductive Fe(II) release coupled 1:1 by electron conduction through crystallites. Given the availability of two tracer exchange data sets that explore pH and particle size effects (e.g., Handler et al. Environ. Sci. Technol. 2014, 48, 11302-11311; Joshi and Gorski Environ. Sci. Technol. 2016, 50, 7315-7324), wemore » developed a stochastic simulation that exactly mimics these experiments, while imposing the 1:1 constraint. We find that all data can be represented by this model, and unifying mechanistic information emerges. At pH 7.5 a rapid initial exchange is followed by slower exchange, consistent with mixed surface- and diffusion-limited kinetics arising from prominent particle aggregation. At pH 5.0 where aggregation and net Fe(II) sorption are minimal, that exchange is quantitatively proportional to available particle surface area and the density of sorbed Fe(II) is more readily evident. Our analysis reveals a fundamental atom exchange rate of ~10-5 Fe nm-2 s-1, commensurate with some of the reported reductive dissolution rates of goethite, suggesting Fe(II) release is the rate-limiting step in the conduction mechanism during recrystallization.« less
Porewater inputs drive Fe redox cycling in the water column of a temperate mangrove wetland
NASA Astrophysics Data System (ADS)
Holloway, Ceylena J.; Santos, Isaac R.; Rose, Andrew L.
2018-07-01
Iron is a vital micronutrient within coastal marine ecosystems, playing an integral role in the scale and dynamics of primary production and carbon cycling in the world's oceans. We investigated the relative importance of in situ Fe(II) production from photochemical, microbial and thermal Fe reduction in the surface water column as well as advective porewater inputs in a temperate saline wetland in Australia containing mangrove and saltmarsh vegetation. The diel average concentration of Fe(II) (0.63 ± 0.21 μM, accounting for >70% of the total dissolved Fe present in surface water) was much higher than commonly reported in oxygenated marine waters despite high dissolved oxygen concentrations (81-112% saturation), pH (7.7-7.8) and salinity (33-36) that favor Fe oxidation. In situ production of Fe(II) in the surface water column was primarily driven by microbial processes rather than photochemical and thermal reduction, with a maximum production rate of 4.9 × 10-3 nM s-1. Advective porewater Fe(II) inputs to the wetland averaged over a diel cycle (3.0 × 10-1 nM s-1) were an order of magnitude greater than the combined Fe(II) production rate from autochthonous water column processes (1.0 × 10-2 nM s-1). A bottom up model based on the estimated individual fluxes was used to explain the high Fe(II) concentrations measured during a 24 h time series experiment. Combined, different lines of evidence suggest that advective porewater exchange provides significant quantities of Fe(II) to the estuarine wetland.
Fe(II)-induced transformation from ferrihydrite to lepidocrocite and goethite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Hui; Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 China; Li Ping
2007-07-15
The transformation of Fe(II)-adsorbed ferrihydrite was studied. Data tracking the formation of products as a function of pH, temperature and time is presented. The results indicate that trace of Fe(II) adsorbed on ferrihydrite can accelerate its transformation obviously. The products are lepidocrocite and/or goethite and/or hematite, which is different from those without Fe(II). That is, Fe(II) not only accelerates the transformation of ferrihydrite but also leads to the formation of lepidocrocite by a new path. The behavior of Fe(II) is shown in two aspects-catalytic dissolution-reprecipitation and catalytic solid-state transformation. The results indicate that a high temperature and a high pH(inmore » the range from 5 to 9) are favorable to solid-state transformation and the formation of hematite, while a low temperature and a low pH are favorable to dissolution-reprecipitation mechanism and the formation of lepidocrocite. Special attentions were given to the formation mechanism of lepidocrocite and goethite. - Graphical abstract: Fe(II)-adsorbed ferrihydrite can rapidly transform into lepidocrocite or/and goethite or/and hematite. Which product dominates depends on the transformation conditions of ferrihydrite such as temperature, pH, reaction time, etc. In the current system, there exist two transformation mechanisms. One is dissolution/reprecipitation and the other is solid-state transformation. The transformation mechanisms from Fe(II)-adsorbed ferrihydrite to lepidocrocite and goethite were investigated.« less
Decontamination of TCE- and U-rich waters by granular iron: Role of sorbed Fe(II)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charlet, L.; Liger, E.; Gerasimo, P.
1998-01-01
Uranium (UO{sub 2}{sup 2+}) and chlorinated aliphatics [tetrachloroethane (PCE) and trichloroethane (TCE)] can be reduced and thus immobilized or degraded, respectively, by the same abiotic mechanism. In this mechanism the reduction reaction is coupled to the oxidation of Fe(II) sorbed on iron corrosion products such as hematite. This is indicated by the equilibrium E{sub h} values measured during uranium immobilization and PCE degradation reactions of zerovalent iron. These values fit closely with those measured in the Fe(II)-{alpha}Fe{sub 2}O{sub 3}-H{sub 2}O system (in the absence of U or PCE), not those of the Fe(o)/Fe(II) or H{sub 2}(g)/H{sub 2}O couples. Because ironmore » (II) is very unstable in environments that are not strictly anaerobic, Fe(o) serves as a source of Fe(II). The reduction kinetic rate, analyzed in detail for the reduction of U(VI), is found to be a function of the concentration of OH{sup {minus}}, Fe{sup 2+} and reactive surface sites, and is given in terms of sorbed species concentrations by {l_brace}d[U(VI)]{sub ads}{r_brace}/dt = {l_brace}{minus}k{prime}[{triple_bond}FeOFeOH{sup 0}][U(VI)]{sub ads}{r_brace}. This rate law applies to organic pollutants as well, as long as they can be reduced by surface Fe(II): {l_brace}d[Pollutant]{r_brace}/dt = {l_brace}{minus}k{prime}[{triple_bond}FeOFeOH{sup 0}][Pollutant]{r_brace}. This mechanism suggests new possibilities for the improvement of low-cost decontamination techniques for U- and chlorinated aliphatic-rich waters.« less
Use of ferrous iron by metallo-β-lactamases.
Cahill, Samuel T; Tarhonskaya, Hanna; Rydzik, Anna M; Flashman, Emily; McDonough, Michael A; Schofield, Christopher J; Brem, Jürgen
2016-10-01
Metallo-β-lactamases (MBLs) catalyse the hydrolysis of almost all β-lactam antibacterials including the latest generation carbapenems and are a growing worldwide clinical problem. It is proposed that MBLs employ one or two zinc ion cofactors in vivo. Isolated MBLs are reported to use transition metal ions other than zinc, including copper, cadmium and manganese, with iron ions being a notable exception. We report kinetic and biophysical studies with the di-iron(II)-substituted metallo-β-lactamase II from Bacillus cereus (di-Fe(II) BcII) and the clinically relevant B1 subclass Verona integron-encoded metallo-β-lactamase 2 (di-Fe(II) VIM-2). The results reveal that MBLs can employ ferrous iron in catalysis, but with altered kinetic and inhibition profiles compared to the zinc enzymes. A crystal structure of di-Fe(II) BcII reveals only small overall changes in the active site compared to the di-Zn(II) enzyme including retention of the di-metal bridging water; however, the positions of the metal ions are altered in the di-Fe(II) compared to the di-Zn(II) structure. Stopped-flow analyses reveal that the mechanism of nitrocefin hydrolysis by both di-Fe(II) BcII and di-Fe(II) VIM-2 is altered compared to the di-Zn(II) enzymes. Notably, given that the MBLs are the subject of current medicinal chemistry efforts, the results raise the possibility the Fe(II)-substituted MBLs may be of clinical relevance under conditions of low zinc availability, and reveal potential variation in inhibitor activity against the differently metallated MBLs. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
The effects of iron(II) on the kinetics of arsenic oxidation and sorption on manganese oxides.
Wu, Yun; Li, Wei; Sparks, Donald L
2015-11-01
In this study, As(III) oxidation kinetics by a poorly-crystalline phyllomanganate (δ-MnO2) in the presence and absence of dissolved Fe(II) was investigated using stirred-flow and batch experiments. Chemically synthetic δ-MnO2 was reacted with four influent solutions, containing the same As(III) concentration but different Fe(II) concentrations, at pH 6. The results show an initial rapid As(III) oxidation by δ-MnO2, which is followed by an appreciably slow reaction after 8h. In the presence of Fe(II), As(III) oxidation is inhibited due to the competitive oxidation of Fe(II) as well as the formation of Fe(III)-(hydr)oxides on the δ-MnO2 surface. However, the sorption of As(III), As(V) and Mn(II) are increased, for the newly formed Fe(III)-(hydr)oxides provide additional sorption sites. This study suggests that the competitive oxidation of Fe(II) and consequently the precipitation of Fe(III) compounds on the δ-MnO2 surface play an important role in As(III) oxidation and As sequestration. Understanding these processes would be helpful in developing in situ strategies for remediation of As-contaminated waters and soils. Copyright © 2015 Elsevier Inc. All rights reserved.
Gao, Jiaojiao; Xing, Feifei; Bai, Yueling; Zhu, Shourong
2014-06-07
A new neuromelanin-like ketocatechol-containing iminodiacetic acid ligand, (N-(3,4-dihydroxyl)phenacylimino)diacetic acid (H4L), which is also quite similar to compounds found in insect cuticle, has been synthesized and characterized. The X-ray crystal structure of H4L has been successfully determined. Proton binding and coordination with Fe(III), Cu(II), and Zn(II) have been studied by potentiometric titrations and UV-vis spectrophotometry in aqueous solution. UV spectra of H4L in the absence and presence of different metal ions indicate complexes formed with the catechol moiety of H4L in aqueous solution. Visible spectra and NMR reveal that H4L with Fe(III), Cu(II), and Zn(II) can all give stable mono-(ML) and dinuclear complexes [M(ML)]. Fe(III) can also form {Fe(FeL)2} and {Fe(FeL)3} species with sufficient base. The process is accompanied by a drastic color change from light blue to deep-blue to wine-red. The Fe(III)-Cu(II) heteronuclear complex also exists in aqueous solution whose spectra are similar to the homonuclear Fe(III) complex. However, the spectra of {Fe(CuL)} shifted to a longer wavelength and {Fe(CuL)2} and {Fe(CuL)3} shifted to a shorter wavelength. Keto-enol tautomerism was observed in weak basic aqueous solution as indicated by (1)H NMR spectra. The reaction products of Cu(II) complex with H2O2 depend on the H2O2 concentration and pH value. Low concentrations of H2O2 oxidize H4L to a series of semiquinone and quinone compounds with absorption maxima at 314-400 nm, while a high concentration of H2O2 oxidizes H4L to colorless muconic acid derivatives. NaIO4 gives different oxidase products, but no 2,4,5-trihydroxyphenylalanine quinone (TPQ)-like hydroxyquinone can be found.
Beller, Harry R.; Zhou, Peng; Legler, Tina C.; Chakicherla, Anu; Kane, Staci; Letain, Tracy E.; A. O’Day, Peggy
2013-01-01
Thiobacillus denitrificans is a chemolithoautotrophic bacterium capable of anaerobic, nitrate-dependent U(IV) and Fe(II) oxidation, both of which can strongly influence the long-term efficacy of in situ reductive immobilization of uranium in contaminated aquifers. We previously identified two c-type cytochromes involved in nitrate-dependent U(IV) oxidation in T. denitrificans and hypothesized that c-type cytochromes would also catalyze Fe(II) oxidation, as they have been found to play this role in anaerobic phototrophic Fe(II)-oxidizing bacteria. Here we report on efforts to identify genes associated with nitrate-dependent Fe(II) oxidation, namely (a) whole-genome transcriptional studies [using FeCO3, Fe2+, and U(IV) oxides as electron donors under denitrifying conditions], (b) Fe(II) oxidation assays performed with knockout mutants targeting primarily highly expressed or upregulated c-type cytochromes, and (c) random transposon-mutagenesis studies with screening for Fe(II) oxidation. Assays of mutants for 26 target genes, most of which were c-type cytochromes, indicated that none of the mutants tested were significantly defective in nitrate-dependent Fe(II) oxidation. The non-defective mutants included the c1-cytochrome subunit of the cytochrome bc1 complex (complex III), which has relevance to a previously proposed role for this complex in nitrate-dependent Fe(II) oxidation and to current concepts of reverse electron transfer. A transposon mutant with a disrupted gene associated with NADH:ubiquinone oxidoreductase (complex I) was ~35% defective relative to the wild-type strain; this strain was similarly defective in nitrate reduction with thiosulfate as the electron donor. Overall, our results indicate that nitrate-dependent Fe(II) oxidation in T. denitrificans is not catalyzed by the same c-type cytochromes involved in U(IV) oxidation, nor have other c-type cytochromes yet been implicated in the process. PMID:24065960
Reddy, Guntakala Vikram; Akula, Sushma; Malgikar, Suryakanth; Babu, Palaparthy Raja; Reddy, Gooty Jagadish; Josephin, Johnson Juliet
2017-01-01
Background: The present study aims to evaluate the efficacy of diode laser alone and in combination with desensitizing toothpastes in occluding dentinal tubules (both partially occluded and completely occluded tubules) by scanning electron microscope (SEM). Materials and Methods: Fifty human teeth were extracted, cervical cavities were prepared and etched with 17% ethylenediaminetetraacetic acid, and smear layer was removed to expose the tubules. The teeth were divided into five groups: Group I – Application of NovaMin-formulated toothpaste, Group II – Application of Pro-Argin™-formulated toothpaste, Group III – Application of diode laser in noncontact mode, Group IV – NovaMin-formulated toothpaste followed by laser irradiation, and Group V – Pro-Argin™-formulated toothpaste followed by laser irradiation. After treatment, quantitative analysis of occluded dentinal tubules was done by SEM analysis. Results: The mean values of percentages of total occlusion of dentinal tubules in Groups I, II, III, IV, and V were 92.73% ± 1.38, 90.67% ± 1.86, 96.57% ± 0.64, 97.3% ± 0.68, and 96.9% ± 6.08, respectively. Addition of diode laser (Groups III, IV, and V) yielded a significant occlusion of the dentinal tubules when compared to desensitizing toothpastes alone (Groups I and II). Conclusion: Diode laser (Group III) has shown more efficacy in occluding dentinal tubules when compared with desensitizing toothpastes which was statistically significant (P < 0.05). Among the five groups, NovaMin + diode laser (Group IV) showed the highest percentage of occluded dentinal tubules. PMID:29398853
Fadda, Angela; Barberis, Antonio; Sanna, Daniele
2018-02-01
The Fenton reaction is used to produce hydroxyl radicals for the evaluation of the antioxidant activity of plant extracts. In this paper the parameters affecting the production of hydroxyl radicals and their spin trapping with DMPO were studied. The use of quinolinic acid (Quin) as an Fe(II) ligand was proposed for antioxidant activity determination of Green tea, orange juice and asparagus extracts. Quin, buffers and pH affect the DMPO-OH signal intensity of the EPR spectra. Quin/Fe(II) and low pH enhance the OH generation. Phosphate and Tris-HCl buffers decrease the signal intensity measured in Fe(II)-sulfate and Fe(II)-Quin systems. The extracts were analyzed with Fenton systems containing Fe(II)-sulfate and Fe(II)-Quin with and without buffer. The highest activity was shown with Fe(II)-Quin without buffer, this system being less influenced by pH and chelating agents present in the extracts. This paper will help researchers to better design spin trapping experiments for food matrices. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Narazaki, Aiko; Kurosaki, Ryozo; Sato, Tadatake; Kawaguchi, Yoshizo; Niino, Hiroyuki
2007-02-01
We printed FeSi II micro-dot array on various kinds of substrates utilizing laser-induced forward transfer (LIFT). An amorphous FeSi II was deposited by sputtering on a transparent plate as a source film. A single KrF excimer laser pulse through a mask-projection system was imaged with a small micrometer-sized grid pattern onto a film/plate interface, resulting in the deposition of FeSi II micro-dot array on a facing substrate with a high number density of 10 4 mm -2. FeSi II in the β crystalline phase is a promising eco-friendly semiconductor because of NIR electroluminescence used for optical networking as well as abundant components reserve on the earth and non-toxicity. However, the β-FeSi II film fabrication generally required high-temperature multi-processes which hamper its integration and performance reproducibility. Using the LIFT of micro-dot array, we succeeded in room-temperature preparation of β-FeSi II. Micro-Raman spectroscopy confirmed the β crystalline phase in the micro-dots deposited on an unheated silica glass substrate. Thus, the LIFT is useful for integrating functional micro-dot array accompanied by the crystallization at lower temperatures.
Breast Cancer Epidemiology in Puerto Rico
2014-08-01
April 20: a. Poster: Effects of herbal enzyme bromelain against breast cancer cell line. Paroulek, Jaffe and Rathinavelu. Nova Southeastern Univ. 3...Canada. ii. American College of Sports Medicine 2009 in Seattle, Washington (May 27-30) 4. Thursday, May 28: a. Session: Exercise interventions in...Clinical Medicine II – Medical i. Effect of comprehensive exercise on lymphedema in breast cancer survivors: a pilot study. Oki, Troumbley, Walker
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ilgen, Anastasia G.; Kruichak, Jessica N.; Artyushkova, Kateryna
Adsorption and redox transformations on clay mineral surfaces are prevalent in surface environments. We examined the redox reactivity of iron Fe(II)/Fe(III) associated with natural and synthetic ferric nontronites. Specifically, we assessed how Fe(II) residing in the octahedral sheets, or Fe(II) adsorbed at the edge sites alters redox activity of nontronites. To probe the redox activity we used arsenic (As) and selenium (Se). Activation of both synthetic and natural ferric nontronites was. observed following the introduction of Fe(II) into predominantly-Fe(III) octahedral sheets or through the adsorption of Fe(II) onto the mineral surface. The oxidation of As(III) to As(V) was observed viamore » catalytic (oxic conditions) and, to a lesser degree, via direct (anoxic conditions) pathways. We provide experimental evidence for electron transfer from As(III) to Fe(111) at the natural and synthetic nontronite surfaces, and illustrate that only a fraction of structural Fe(III) is accessible for redox transformations. We show that As adsorbed onto natural and synthetic nontronites forms identical adsorption complexes, namely inner-sphere binuclear bidentate. In conclusion, we show that the formation of an inner-sphere adsorption complex may be a necessary step for the redox transformation via catalytic or direct oxidation pathways.« less
Ilgen, Anastasia G.; Kruichak, Jessica N.; Artyushkova, Kateryna; ...
2017-08-29
Adsorption and redox transformations on clay mineral surfaces are prevalent in surface environments. We examined the redox reactivity of iron Fe(II)/Fe(III) associated with natural and synthetic ferric nontronites. Specifically, we assessed how Fe(II) residing in the octahedral sheets, or Fe(II) adsorbed at the edge sites alters redox activity of nontronites. To probe the redox activity we used arsenic (As) and selenium (Se). Activation of both synthetic and natural ferric nontronites was. observed following the introduction of Fe(II) into predominantly-Fe(III) octahedral sheets or through the adsorption of Fe(II) onto the mineral surface. The oxidation of As(III) to As(V) was observed viamore » catalytic (oxic conditions) and, to a lesser degree, via direct (anoxic conditions) pathways. We provide experimental evidence for electron transfer from As(III) to Fe(111) at the natural and synthetic nontronite surfaces, and illustrate that only a fraction of structural Fe(III) is accessible for redox transformations. We show that As adsorbed onto natural and synthetic nontronites forms identical adsorption complexes, namely inner-sphere binuclear bidentate. In conclusion, we show that the formation of an inner-sphere adsorption complex may be a necessary step for the redox transformation via catalytic or direct oxidation pathways.« less
Anaerobic Redox Cycling of Iron by Freshwater Sediment Microorganisms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, Karrie A.; Urrutia, Matilde M.; Churchill, Perry F.
2006-01-01
The potential for microbially-mediated anaerobic redox cycling of iron (Fe) was examined in a first-generation enrichment culture of freshwater wetland sediment microorganisms. MPN enumerations revealed the presence of significant populations of Fe(III)-reducing (ca. 108 cells mL-1) and Fe(II)-oxidizing, nitrate-reducing organisms (ca. 105 cells mL-1) in the sediment used to inoculate the enrichment cultures. Nitrate reduction commenced immediately following inoculation of acetate-containing (ca. 1 mM) medium with a small quantity (1% vol/vol) of wetland sediment, and resulted in the transient accumulation of NO2- and production of a mixture of end-products including NH4+. Fe(III) oxide (high surface area goethite) reduction took placemore » - after NO3- was depleted and continued until all the acetate was utilized. Addition of NO3 after Fe(III) reduction ceased resulted in the immediate oxidation of Fe(II) coupled to reduction of + NO3-to NH4 . No significant NO2- accumulation was observed during nitrate-dependent Fe(II) oxidation. No Fe(II) oxidation occurred in pasteurized controls. Microbial community structure in the enrichment was monitored by DGGE analysis of PCR amplified 16s rDNA and RT-PCR amplified 16S rRNA, as well as by construction of 16S rDNA clone libraries for four different time points during the experiment. Strong similarities in dominant members of the microbial community were observed in the Fe(III) reduction and nitrate-dependent Fe(II) oxidation phases of the experiment, specifically the common presence of organisms closely related (= 95% sequence similarity) to the genera Geobacter and Dechloromonas. These results indicate that the wetland sediments contained organisms such as Geobacter sp. which are capable of both + dissimilatory Fe(III) reduction and oxidation of Fe(II) with reduction of NO3-reduction to NH4 . Our findings suggest that microbially-catalyzed nitrate-dependent Fe(II) oxidation has the potential to contribute to a dynamic anaerobic Fe redox cycle in freshwater sediments.« less
Minato, Takuo; Aravena, Daniel; Ruiz, Eliseo; Yamaguchi, Kazuya; Mizuno, Noritaka; Suzuki, Kosuke
2018-06-01
In this paper, the synthesis and magnetic properties of mononuclear Fe III -containing polyoxometalates (POMs) with different types of heteroatoms, TBA 7 H 10 [(A-α-XW 9 O 34 ) 2 Fe] (II X , X = Ge, Si; TBA = tetra- n-butylammonium), are reported. In these POMs, mononuclear highly distorted six-coordinate octahedral [FeO 6 ] 9- units are sandwiched by two trivacant lacunary units [A-α-XW 9 O 34 ] 10- (X = Ge, Si). These POMs exhibit field-induced slow magnetic relaxation based on the single high-spin Fe III magnetic center ( S = 5/2). Combining experiment and ab initio calculations, we investigated the effect of heteroatoms of the lacunary units on the field-induced slow magnetic relaxation of these POMs. By changing the heteroatoms from Si (II Si ) to Ge (II Ge ), the coordination geometry around the Fe III ion is mildly changed. Concretely, the axial Fe-O bond length in II Ge is shortened compared with that in II Si , and consequently the distortion of the [FeO 6 ] 9- unit in II Ge from the ideal octahedral coordination geometry becomes larger than that in II Si . The effective demagnetization barrier of II Ge (11.4 K) is slightly larger than that of II Si (9.2 K). Multireference ab initio calculations predict zero-field splitting parameters in good agreement with experiment. Although the differences in the coordination geometries and magnetic properties of II Ge and II Si are quite small, ab initio calculations indicate subtle changes in the magnetic anisotropy which are in line with the observed magnetic relaxation properties.
The MUSE Hubble Ultra Deep Field Survey. VII. Fe II* emission in star-forming galaxies
NASA Astrophysics Data System (ADS)
Finley, Hayley; Bouché, Nicolas; Contini, Thierry; Paalvast, Mieke; Boogaard, Leindert; Maseda, Michael; Bacon, Roland; Blaizot, Jérémy; Brinchmann, Jarle; Epinat, Benoît; Feltre, Anna; Marino, Raffaella Anna; Muzahid, Sowgat; Richard, Johan; Schaye, Joop; Verhamme, Anne; Weilbacher, Peter M.; Wisotzki, Lutz
2017-11-01
Non-resonant Fe II* (λ2365, λ2396, λ2612, λ2626) emission can potentially trace galactic winds in emission and provide useful constraints to wind models. From the 3.15' × 3.15' mosaic of the Hubble Ultra Deep Field (UDF) obtained with the VLT/MUSE integral field spectrograph, we identify a statistical sample of 40 Fe II* emitters and 50 MgIII (λλ2796,2803) emitters from a sample of 271 [O II]λλ3726,3729 emitters with reliable redshifts from z = 0.85-1.50 down to 2 × 10-18 (3σ) ergs s-1 cm-2 (for [O II]), covering the M⋆ range from 108-1011 M⊙. The Fe II* and Mg II emitters follow the galaxy main sequence, but with a clear dichotomy. Galaxies with masses below 109 M⊙ and star formation rates (SFRs) of ≲ 1 M⊙ yr-1 have MgIII emission without accompanying Fe II* emission, whereas galaxies with masses above 1010 M⊙ and SFRs ≳ 10 M⊙ yr-1 have Fe II* emission without accompanying MgIII emission. Between these two regimes, galaxies have both MgIII and Fe II* emission, typically with MgIII P Cygni profiles. Indeed, the MgIII profile shows a progression along the main sequence from pure emission to P Cygni profiles to strong absorption, due to resonant trapping. Combining the deep MUSE data with HST ancillary information, we find that galaxies with pure MgIII emission profiles have lower SFR surface densities than those with either MgIII P Cygni profiles or Fe II* emission. These spectral signatures produced through continuum scattering and fluorescence, MgIII P Cygni profiles and Fe II* emission, are better candidates for tracing galactic outflows than pure MgIII emission, which may originate from HIII regions. We compare the absorption and emission rest-frame equivalent widths for pairs of FeIII transitions to predictions from outflow models and find that the observations consistently have less total re-emission than absorption, suggesting either dust extinction or non-isotropic outflow geometries.
Reductive Dechlorination of Carbon Tetrachloride by Soil With Ferrous and Bisulfide
NASA Astrophysics Data System (ADS)
Choi, K.; Lee, W.
2008-12-01
Batch and column experiments were conducted to investigate the effect of concentration of reductants, contact time to activate reductive capacity, and pH on reductive dechlorination by soil with Fe(II) and HS- in this study. Carbon tetrachloride (CT) was used as a representative target organic compound. Sorption kinetic and isotherm tests were performed to investigate the influence of adsorption on the soil surface. Target compound in the soil suspension reached sorption equilibrium in 4 hours and the type of isotherm was well fitted by a linear type isotherm. In batch experiment, kinetic rate constants for the reductive dechlorination of CT increased with increasing the concentration of the reductants (Fe(II) and HS-). However, Fe(II) was a much more effective reductant, producing higher k values than those of HS-. The contact time of one day for the soil with HS- and that of four hours with Fe(II) showed the highest reaction rates. Additionally, the rate constants increased with the increase of pH in soil suspension with Fe(II) (5.2~8) and HS- (8.3~10.3), respectively. In column experiment, the soil column with Fe(II) showed larger bed volumes (13.76) to reach a column breakthrough than that with HS- indicating the treatment of Fe(II) is more effective for the reductive dechlorination of CT. To enhance reductive capacity of soil column under an acidic condition, CaO addition to the column treated with Fe(II) showed better results for the reductive dechlorination of CT than that of HS-. Fe(II) showed better CT dechlorination than HS- in batch and column reactors therefore, it can be used as an effective reducing agent for the treatment of soil contaminated with chlorinated organic compounds.
Trimethoprim degradation by Fenton and Fe(II)-activated persulfate processes.
Wang, Shizong; Wang, Jianlong
2018-01-01
Trimethoprim is a pollutant ubiquitous in the environment due to its extensive application, and it cannot be effectively removed by conventional wastewater treatment processes. In this study, the Fenton and the Fe(II)-activated persulfate processes were employed to degrade trimethoprim in an aqueous solution. The results showed that the concentration of persulfate, H 2 O 2 and Fe(II) a had significant influence on the degradation of trimethoprim in both processes. De-ionized water spiked with trimethoprim resulted in the complete degradation of trimethoprim (0.05 mM) by the mineralization of 54.9% of Fenton's reagent when the concentrations of H 2 O 2 and Fe(II) were 1 mM and 0.05 mM, respectively. In contrast, 73.4% of trimethoprim was degraded by the mineralization of 40.5% of the Fe(II)-activated persulfate process when the concentration of persulfate and Fe(II) were each 4 mM. Intermediate compounds with different m/z were detected for the Fenton and the Fe(II)-activated persulfate processes, indicating alternative degradation pathways. In the actual wastewater spiked with trimethoprim, the removal efficiency of trimethoprim decreased to 35.8% and 43.6%, respectively, for the Fenton and the Fe(II)-activated persulfate processes. In addition, the decomposition efficiencies for hydrogen peroxide and persulfate were 43.8% and 92.5%, respectively, which was lower than those in the de-ionized water system. These results demonstrated that wastewater components had a negative influence on trimethoprim degradation and the decomposition of the oxidants (persulfate and H 2 O 2 ). In summary, the Fe(II)-activated persulfate process could be used as an alternative technology for treating trimethoprim-containing wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.
Biosorption of Fe(II) and Mn(II) Ions from Aqueous Solution by Rice Husk Ash
Zhao, Jiaying; Jiang, Zhao; Shan, Dexin; Lu, Yan
2014-01-01
Rice husk ash (RHA), an agricultural waste, was used as biosorbent for the removal of Iron(II) and Manganese(II) ions from aqueous solutions. The structural and morphological characteristics of RHA and its elemental compositions before and after adsorption of Fe(II) and Mn(II) were determined by scanning electron microscopic (SEM) and X-ray fluorescence (XRF) analyses. Batch experiments were carried out to determine the influence of initial pH, contact time, adsorbent dosage, and initial concentration on the removal of Fe(II) and Mn(II) ions. Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) models were applied to describe the biosorption isotherm of the metal ions by RHA. The correlation coefficient (R 2) of Langmuir and Freundlich isotherm models equals 0.995 and 0.901 for Fe(II), 0.9862 and 0.8924 for Mn(II), respectively, so the Langmuir model fitted the equilibrium data better than the Freundlich isotherm model. The mean free energy values evaluated from the D-R model indicated that the biosorption of Fe(II) and Mn(II) onto RHA was physical in nature. Experimental data also showed that the biosorption processes of both metal ions complied with the pseudo-second-order kinetics. PMID:24982918
NASA Astrophysics Data System (ADS)
Maguire, K.; Sim, S. A.; Shingles, L.; Spyromilio, J.; Jerkstrand, A.; Sullivan, M.; Chen, T.-W.; Cartier, R.; Dimitriadis, G.; Frohmaier, C.; Galbany, L.; Gutiérrez, C. P.; Hosseinzadeh, G.; Howell, D. A.; Inserra, C.; Rudy, R.; Sollerman, J.
2018-03-01
The late-time spectra of Type Ia supernovae (SNe Ia) are powerful probes of the underlying physics of their explosions. We investigate the late-time optical and near-infrared spectra of seven SNe Ia obtained at the VLT with XShooter at >200 d after explosion. At these epochs, the inner Fe-rich ejecta can be studied. We use a line-fitting analysis to determine the relative line fluxes, velocity shifts, and line widths of prominent features contributing to the spectra ([Fe II], [Ni II], and [Co III]). By focussing on [Fe II] and [Ni II] emission lines in the ˜7000-7500 Å region of the spectrum, we find that the ratio of stable [Ni II] to mainly radioactively-produced [Fe II] for most SNe Ia in the sample is consistent with Chandrasekhar-mass delayed-detonation explosion models, as well as sub-Chandrasekhar mass explosions that have metallicity values above solar. The mean measured Ni/Fe abundance of our sample is consistent with the solar value. The more highly ionised [Co III] emission lines are found to be more centrally located in the ejecta and have broader lines than the [Fe II] and [Ni II] features. Our analysis also strengthens previous results that SNe Ia with higher Si II velocities at maximum light preferentially display blueshifted [Fe II] 7155 Å lines at late times. Our combined results lead us to speculate that the majority of normal SN Ia explosions produce ejecta distributions that deviate significantly from spherical symmetry.
Novel Pelagic Iron-Oxidizing Zetaproteobacteria from the Chesapeake Bay Oxic-Anoxic Transition Zone.
Chiu, Beverly K; Kato, Shingo; McAllister, Sean M; Field, Erin K; Chan, Clara S
2017-01-01
Chemolithotrophic iron-oxidizing bacteria (FeOB) could theoretically inhabit any environment where Fe(II) and O 2 (or nitrate) coexist. Until recently, marine Fe-oxidizing Zetaproteobacteria had primarily been observed in benthic and subsurface settings, but not redox-stratified water columns. This may be due to the challenges that a pelagic lifestyle would pose for Zetaproteobacteria, given low Fe(II) concentrations in modern marine waters and the possibility that Fe oxyhydroxide biominerals could cause cells to sink. However, we recently cultivated Zetaproteobacteria from the Chesapeake Bay oxic-anoxic transition zone, suggesting that they can survive and contribute to biogeochemical cycling in a stratified estuary. Here we describe the isolation, characterization, and genomes of two new species, Mariprofundus aestuarium CP-5 and Mariprofundus ferrinatatus CP-8, which are the first Zetaproteobacteria isolates from a pelagic environment. We looked for adaptations enabling strains CP-5 and CP-8 to overcome the challenges of living in a low Fe redoxcline with frequent O 2 fluctuations due to tidal mixing. We found that the CP strains produce distinctive dreadlock-like Fe oxyhydroxide structures that are easily shed, which would help cells maintain suspension in the water column. These oxides are by-products of Fe(II) oxidation, likely catalyzed by the putative Fe(II) oxidase encoded by the cyc2 gene, present in both CP-5 and CP-8 genomes; the consistent presence of cyc2 in all microaerophilic FeOB and other FeOB genomes supports its putative role in Fe(II) oxidation. The CP strains also have two gene clusters associated with biofilm formation (Wsp system and the Widespread Colonization Island) that are absent or rare in other Zetaproteobacteria. We propose that biofilm formation enables the CP strains to attach to FeS particles and form flocs, an advantageous strategy for scavenging Fe(II) and developing low [O 2 ] microenvironments within more oxygenated waters. However, the CP strains appear to be adapted to somewhat higher concentrations of O 2 , as indicated by the presence of genes encoding aa 3 -type cytochrome c oxidases, but not the cbb 3 -type found in all other Zetaproteobacteria isolate genomes. Overall, our results reveal adaptations for life in a physically dynamic, low Fe(II) water column, suggesting that niche-specific strategies can enable Zetaproteobacteria to live in any environment with Fe(II).
Novel Pelagic Iron-Oxidizing Zetaproteobacteria from the Chesapeake Bay Oxic–Anoxic Transition Zone
Chiu, Beverly K.; Kato, Shingo; McAllister, Sean M.; Field, Erin K.; Chan, Clara S.
2017-01-01
Chemolithotrophic iron-oxidizing bacteria (FeOB) could theoretically inhabit any environment where Fe(II) and O2 (or nitrate) coexist. Until recently, marine Fe-oxidizing Zetaproteobacteria had primarily been observed in benthic and subsurface settings, but not redox-stratified water columns. This may be due to the challenges that a pelagic lifestyle would pose for Zetaproteobacteria, given low Fe(II) concentrations in modern marine waters and the possibility that Fe oxyhydroxide biominerals could cause cells to sink. However, we recently cultivated Zetaproteobacteria from the Chesapeake Bay oxic–anoxic transition zone, suggesting that they can survive and contribute to biogeochemical cycling in a stratified estuary. Here we describe the isolation, characterization, and genomes of two new species, Mariprofundus aestuarium CP-5 and Mariprofundus ferrinatatus CP-8, which are the first Zetaproteobacteria isolates from a pelagic environment. We looked for adaptations enabling strains CP-5 and CP-8 to overcome the challenges of living in a low Fe redoxcline with frequent O2 fluctuations due to tidal mixing. We found that the CP strains produce distinctive dreadlock-like Fe oxyhydroxide structures that are easily shed, which would help cells maintain suspension in the water column. These oxides are by-products of Fe(II) oxidation, likely catalyzed by the putative Fe(II) oxidase encoded by the cyc2 gene, present in both CP-5 and CP-8 genomes; the consistent presence of cyc2 in all microaerophilic FeOB and other FeOB genomes supports its putative role in Fe(II) oxidation. The CP strains also have two gene clusters associated with biofilm formation (Wsp system and the Widespread Colonization Island) that are absent or rare in other Zetaproteobacteria. We propose that biofilm formation enables the CP strains to attach to FeS particles and form flocs, an advantageous strategy for scavenging Fe(II) and developing low [O2] microenvironments within more oxygenated waters. However, the CP strains appear to be adapted to somewhat higher concentrations of O2, as indicated by the presence of genes encoding aa3-type cytochrome c oxidases, but not the cbb3-type found in all other Zetaproteobacteria isolate genomes. Overall, our results reveal adaptations for life in a physically dynamic, low Fe(II) water column, suggesting that niche-specific strategies can enable Zetaproteobacteria to live in any environment with Fe(II). PMID:28769885
The catalytic center of ferritin regulates iron storage via Fe(II)-Fe(III) displacement.
Honarmand Ebrahimi, Kourosh; Bill, Eckhard; Hagedoorn, Peter-Leon; Hagen, Wilfred R
2012-11-01
A conserved iron-binding site, the ferroxidase center, regulates the vital iron storage role of the ubiquitous protein ferritin in iron metabolism. It is commonly thought that two Fe(II) simultaneously bind the ferroxidase center and that the oxidized Fe(III)-O(H)-Fe(III) product spontaneously enters the cavity of ferritin as a unit. In contrast, in some bacterioferritins and in archaeal ferritins a persistent di-iron prosthetic group in this center is believed to mediate catalysis of core formation. Using a combination of binding experiments and isotopically labeled (57)Fe(II), we studied two systems in comparison: the ferritin from the hyperthermophilic archaeal anaerobe Pyrococcus furiosus (PfFtn) and the eukaryotic human H ferritin (HuHF). The results do not support either of the two paradigmatic models; instead they suggest a unifying mechanism in which the Fe(III)-O-Fe(III) unit resides in the ferroxidase center until it is sequentially displaced by Fe(II).
Organic acids influence iron uptake in the human epithelial cell line Caco-2.
Salovaara, Susan; Sandberg, Ann-Sofie; Andlid, Thomas
2002-10-09
It has previously been suggested that organic acids enhance iron absorption. We have studied the effect of nine organic acids on the absorption of Fe(II) and Fe(III) in the human epithelial cell line Caco-2. The effect obtained was dose-dependent, and the greatest increase (43-fold) was observed for tartaric acid (4 mmol/L) on Fe(III) (10 micromol/L). Tartaric, malic, succinic, and fumaric acids enhanced Fe(II) and Fe(III) uptake. Citric and oxalic acid, on the other hand, inhibited Fe(II) uptake but enhanced Fe(III) uptake. Propionic and acetic acid increased the Fe(II) uptake, but had no effect on Fe(III) uptake. Our results show a correlation between absorption pattern and chemical structure; e.g. hydroxyl groups, in addition to carboxyls, were connected with a positive influence. The results may be important for elucidating factors affecting iron bioavailability in the small intestine and for the development of foods with improved iron bioavailability.
Kozak, J; Paluch, J; Węgrzecka, A; Kozak, M; Wieczorek, M; Kochana, J; Kościelniak, P
2016-02-01
Spectrophotometric sequential injection system (SI) is proposed to automate the method of simultaneous determination of Fe(II) and Fe(III) on the basis of parameters of a single peak. In the developed SI system, sample and mixture of reagents (1,10-phenanthroline and sulfosalicylic acid) are introduced into a vessel, where in an acid environment (pH≅3) appropriate compounds of Fe(II) and Fe(III) with 1,10-phenanthroline and sulfosalicylic acid are formed, respectively. Then, in turn, air, sample, EDTA and sample again, are introduced into a holding coil. After the flow reversal, a segment of air is removed from the system by an additional valve and as EDTA replaces sulfosalicylic acid forming a more stable colorless compound with Fe(III), a complex signal is registered. Measurements are performed at wavelength 530 nm. The absorbance measured at minimum of the negative peak and the area or the absorbance measured at maximum of the signal can be used as measures corresponding to Fe(II) and Fe(III) concentrations, respectively. The time of the peak registration is about 2 min. Two-component calibration has been applied to analysis. Fe(II) and Fe(III) can be determined within the concentration ranges of 0.04-4.00 and 0.1-5.00 mg L(-1), with precision less than 2.8% and 1.7% (RSD), respectively and accuracy better than 7% (RE). The detection limit is 0.04 and 0.09 mg L(-1) for Fe(II) and Fe(III), respectively. The method was applied to analysis of artesian water samples. Copyright © 2015 Elsevier B.V. All rights reserved.
(Fe II) emission from high-density regions in the Orion Nebula
NASA Technical Reports Server (NTRS)
Bautista, Manuel A.; Pradhan, Anil K.; Osterbrock, Donald E.
1994-01-01
Direct spectroscopic evidence of high-density regions in the Orion Nebula, N(sub e) approximately equals 10(exp 5)-10(exp 7)/cu cm, is obtained from the forbidden optical and near-IR (Fe II) emission lines, using new atomic data. Calculations for level populations and line ratios are carried out using 16, 35, and 142 level collisional-radiative models for Fe II. Estimates of Fe(+) abundances derived from the near-infrared and the optical line intensities are consistent with a high density of 10(exp 6)/cu cm in the (Fe II) emitting regions. Important consequences for abundance determinations in the nebula are pointed out.
Study of manganese binding to the ferroxidase centre of human H-type ferritin.
Ardini, Matteo; Howes, Barry D; Fiorillo, Annarita; Falvo, Elisabetta; Sottini, Silvia; Rovai, Donella; Lantieri, Marco; Ilari, Andrea; Gatteschi, Dante; Spina, Gabriele; Chiancone, Emilia; Stefanini, Simonetta; Fittipaldi, Maria
2018-05-01
Ferritins are ubiquitous and conserved proteins endowed with enzymatic ferroxidase activity, that oxidize Fe(II) ions at the dimetal ferroxidase centre to form a mineralized Fe(III) oxide core deposited within the apo-protein shell. Herein, the in vitro formation of a heterodimetal cofactor constituted by Fe and Mn ions has been investigated in human H ferritin (hHFt). Namely, Mn and Fe binding at the hHFt ferroxidase centre and its effects on Fe(II) oxidation have been investigated by UV-Vis ferroxidation kinetics, fluorimetric titrations, multifrequency EPR, and preliminary Mössbauer spectroscopy. Our results show that in hHFt, both Fe(II) and Mn(II) bind the ferroxidase centre forming a Fe-Mn cofactor. Moreover, molecular oxygen seems to favour Mn(II) binding and increases the ferroxidation activity of the Mn-loaded protein. The data suggest that Mn influences the Fe binding and the efficiency of the ferroxidation reaction. The higher efficiency of the Mn-Fe heterometallic centre may have a physiological relevance in specific cell types (i.e. glia cells), where the concentration of Mn is the same order of magnitude as iron. Copyright © 2018 Elsevier Inc. All rights reserved.
Phonsri, Wasinee; Macedo, David S; Vignesh, Kuduva R; Rajaraman, Gopalan; Davies, Casey G; Jameson, Guy N L; Moubaraki, Boujemaa; Ward, Jas S; Kruger, Paul E; Chastanet, Guillaume; Murray, Keith S
2017-05-23
A family of halogen-substituted Schiff base iron(II) complexes, [Fe II (qsal-X) 2 ], (qsal-X=5-X-N-(8-quinolyl)salicylaldimines)) in which X=F (1), Cl (2), Br (3) or I (4) has been investigated in detail. Compound 1 shows a temperature invariant high spin state, whereas the others all show abrupt spin transitions, at or above room temperature, namely, 295 K (X=I) up to 342 K (X=Br), these being some of the highest T 1/2 values obtained, to date, for Fe II N/O species. We have recently reported subtle symmetry breaking in [Fe II (qsal-Cl) 2 ] 2 with two spin transition steps occurring at 308 and 316 K. A photomagnetic study reveals almost full HS conversion of [Fe II (qsal-I) 2 ] 4 at low temperature (T(LIESST)=54 °K). The halogen substitution effects on the magnetic properties, as well as the crystal packing of the [Fe II (qsal-X) 2 ] compounds and theoretical calculations, are discussed in depth, giving important knowledge for the design of new spin crossover materials. In comparison to the well known iron(III) analogues, [Fe III (qsal-X) 2 ] + , the two extra π-π and P4AE interactions found in [Fe II (qsal-X) 2 ] compounds, are believed to be accountable for the spin transitions occurring at ambient temperatures. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Shelobolina, Evgenya; Konishi, Hiromi; Xu, Huifang; Benzine, Jason; Xiong, Mai Yia; Wu, Tao; Blöthe, Marco; Roden, Eric
2012-01-01
The biogeochemistry of phyllosilicate–Fe redox cycling was studied in a Phalaris arundinacea (reed canary grass) dominated redoximorphic soil from Shovelers Sink, a small glacial depression near Madison, WI. The clay size fraction of Shovelers Sink soil accounts for 16% of the dry weight of the soil, yet contributes 74% of total Fe. The dominant mineral in the clay size fraction is mixed layer illite–smectite, and in contrast to many other soils and sediments, Fe(III) oxides are present in low abundance. We examined the Fe biogeochemistry of Shovelers Sink soils, estimated the abundance of Fe redox cycling microorganisms, and isolated in pure culture representative phyllosilicate–Fe oxidizing and reducing organisms. The abundance of phyllosilicate–Fe reducing and oxidizing organisms was low compared to culturable aerobic heterotrophs. Both direct isolation and dilution-to-extinction approaches using structural Fe(II) in Bancroft biotite as a Fe(II) source, and O2 as the electron acceptor, resulted in recovery of common rhizosphere organisms including Bradyrhizobium spp. and strains of Cupriavidus necator and Ralstonia solanacearum. In addition to oxidizing biotite and soluble Fe(II) with O2, each of these isolates was able to oxidize Fe(II) in reduced NAu-2 smectite with NO3- as the electron acceptor. Oxidized NAu-2 smectite or amorphous Fe(III) oxide served as electron acceptors for enrichment and isolation of Fe(III)-reducing microorganisms, resulting in recovery of a strain related to Geobacter toluenoxydans. The ability of the recovered microorganisms to cycle phyllosilicate–Fe was verified in an experiment with native Shovelers Sink clay. This study confirms that Fe in the native Shovelers Sink clay is readily available for microbial redox transformation and can be cycled by the Fe(III)-reducing and Fe(II)-oxidizing microorganisms recovered from the soil. PMID:22493596
Shelobolina, Evgenya; Konishi, Hiromi; Xu, Huifang; Benzine, Jason; Xiong, Mai Yia; Wu, Tao; Blöthe, Marco; Roden, Eric
2012-01-01
The biogeochemistry of phyllosilicate-Fe redox cycling was studied in a Phalaris arundinacea (reed canary grass) dominated redoximorphic soil from Shovelers Sink, a small glacial depression near Madison, WI. The clay size fraction of Shovelers Sink soil accounts for 16% of the dry weight of the soil, yet contributes 74% of total Fe. The dominant mineral in the clay size fraction is mixed layer illite-smectite, and in contrast to many other soils and sediments, Fe(III) oxides are present in low abundance. We examined the Fe biogeochemistry of Shovelers Sink soils, estimated the abundance of Fe redox cycling microorganisms, and isolated in pure culture representative phyllosilicate-Fe oxidizing and reducing organisms. The abundance of phyllosilicate-Fe reducing and oxidizing organisms was low compared to culturable aerobic heterotrophs. Both direct isolation and dilution-to-extinction approaches using structural Fe(II) in Bancroft biotite as a Fe(II) source, and O(2) as the electron acceptor, resulted in recovery of common rhizosphere organisms including Bradyrhizobium spp. and strains of Cupriavidus necator and Ralstonia solanacearum. In addition to oxidizing biotite and soluble Fe(II) with O(2), each of these isolates was able to oxidize Fe(II) in reduced NAu-2 smectite with [Formula: see text] as the electron acceptor. Oxidized NAu-2 smectite or amorphous Fe(III) oxide served as electron acceptors for enrichment and isolation of Fe(III)-reducing microorganisms, resulting in recovery of a strain related to Geobacter toluenoxydans. The ability of the recovered microorganisms to cycle phyllosilicate-Fe was verified in an experiment with native Shovelers Sink clay. This study confirms that Fe in the native Shovelers Sink clay is readily available for microbial redox transformation and can be cycled by the Fe(III)-reducing and Fe(II)-oxidizing microorganisms recovered from the soil.
Zhang, Yi-Quan; Luo, Cheng-Lin; Wu, Xin-Bao; Wang, Bing-Wu; Gao, Song
2014-04-07
Until now, the expressions of the anisotropic energy barriers Δξ and ΔA, using the uniaxial magnetic anisotropy D, the intrachain coupling strength J, and the high-spin ground state S for single-chain magnets (SCMs) in the intermediate region between the Ising and the Heisenberg limits, were unknown. To explore this relationship, we used density functional theory and ab initio methods to obtain expressions of Δξ and ΔA in terms of D, J, and S of six R4Fe(II)-Re(IV)Cl4(CN)2 (R = diethylformamide (1), dibutylformamide (2), dimethylformamide (3), dimethylbutyramide (4), dimethylpropionamide (5), and diethylacetamide (6)) SCMs in the intermediate region. The ΔA value for compounds 1-3 was very similar to the magnetic anisotropic energy of a single Fe(II), while the value of Δξ was predicted using the exchange interaction of Fe(II) with the neighboring Re(IV), which could be expressed as 2JSReSFe. Similar to compounds 1-3, the anisotropy energy barrier ΔA of compounds 4 and 5 was also equal to (Di - Ei)SFe(2), but the correlation energy Δξ was closely equal to 2JSReSFe(cos 98.4 - cos 180) due to the reversal of the spins on the opposite Fe(II). For compound 6, one unit cell of Re(IV)Fe(II) was regarded as a domain wall since it had two different Re(IV)-Fe(II) couplings. Thus, the Δξ of compound 6 was expressed as 4J″SRe1Fe1SRe2Fe2, where J″ was the coupling constant of the neighboring unit cells of Re1Fe1 and Re2Fe2, and ΔA was equal to the anisotropic energy barrier of one domain wall given by DRe1Fe1(S(2)Re1Fe1 - 1/4).
Enhanced degradation of benzene by percarbonate activated with Fe(II)-glutamate complex.
Fu, Xiaori; Gu, Xiaogang; Lu, Shuguang; Miao, Zhouwei; Xu, Minhui; Zhang, Xiang; Danish, Muhammad; Cui, Hang; Farooq, Usman; Qiu, Zhaofu; Sui, Qian
2016-04-01
Effective degradation of benzene was achieved in sodium percarbonate (SPC)/Fe(II)-Glu system. The presence of glutamate (Glu) could enhance the regeneration of Fe(III) to Fe(II), which ensures the benzene degradation efficiency at wider pH range and eliminate the influence of HCO3 (-) in low concentration. Meanwhile, the significant scavenging effects of high HCO3 (-) concentration could also be overcome by increasing the Glu/SPC/Fe(II)/benzene molar ratio. Free radical probe compound tests, free radical scavenger tests, and electron paramagnetic resonance (EPR) analysis were conducted to explore the reaction mechanism for benzene degradation, in which hydroxyl radical (HO•) and superoxide anion radical (O2 (•-)) were confirmed as the predominant species responsible for benzene degradation. In addition, the results obtained in actual groundwater test strongly indicated that SPC/Fe(II)-Glu system is applicable for the remediation of benzene-contaminated groundwater in practice.
cis-2,2'-Bipyrimidine-bridged polynuclear complex: a stairway-like mixed-valent {Fe(4)} cluster.
Alborés, Pablo; Rentschler, Eva
2010-10-04
We report the first example of a polynuclear discrete coordination compound exhibiting only bpym bridges and containing a first-row d transition metal. A smooth self-assembly one-pot synthetic route, starting from simply FeCl(2) and FeCl(3) hydrates, allowed us to prepare a tetranuclear Fe(4) cluster with a stairway-like structure and the formula cis-{[(H(2)O)Cl(3)Fe(III)-μ(bpym)Fe(II)Cl(2)]}(2)-μ(bpym) (1) . All spectroscopic data suggest that complex 1 is a valence-localized mixed-valent Fe(II)-Fe(III) cluster with typical Mössbauer lines for both sites, which do not change with temperature. Reflectance spectroscopy did not allow one to distinguish an intervalence charge-transfer band. However, time-dependent density functional theory (DFT) calculations predict a weak high-energy Fe(II) → Fe(III) transition. Regarding the magnetic properties, the high-spin Fe(II) and Fe(III) ions interact in a weakly antiferromagnetic way with isotropic J constants of only a few wavenumbers as derived from direct-current susceptibility and magnetization data. Broken-symmetry DFT calculations support these observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sameshima, H.; Yoshii, Y.; Kawara, K., E-mail: sameshima@cc.kyoto-su.ac.jp
2017-01-10
We present an analysis of Mg ii λ 2798 and Fe ii UV emission lines for archival Sloan Digital Sky Survey (SDSS) quasars to explore the diagnostics of the magnesium-to-iron abundance ratio in a broad-line region cloud. Our sample consists of 17,432 quasars selected from the SDSS Data Release 7 with a redshift range of 0.72 < z < 1.63. A strong anticorrelation between the Mg ii equivalent width (EW) and the Eddington ratio is found, while only a weak positive correlation is found between the Fe ii EW and the Eddington ratio. To investigate the origin of these differing behaviors ofmore » Mg ii and Fe ii emission lines, we perform photoionization calculations using the Cloudy code, where constraints from recent reverberation mapping studies are considered. We find from calculations that (1) Mg ii and Fe ii emission lines are created at different regions in a photoionized cloud, and (2) their EW correlations with the Eddington ratio can be explained by just changing the cloud gas density. These results indicate that the Mg ii/Fe ii flux ratio, which has been used as a first-order proxy for the Mg/Fe abundance ratio in chemical evolution studies with quasar emission lines, depends largely on the cloud gas density. By correcting this density dependence, we propose new diagnostics of the Mg/Fe abundance ratio for a broad-line region cloud. In comparing the derived Mg/Fe abundance ratios with chemical evolution models, we suggest that α -enrichment by mass loss from metal-poor intermediate-mass stars occurred at z ∼ 2 or earlier.« less
Habila, Mohamed A; ALOthman, Zeid A; El-Toni, Ahmed Mohamed; Labis, Joselito Puzon; Soylak, Mustafa
2016-07-01
Interference of organic compounds in the matrix of heavy metal solution could suppress their pre-concentration and detection processes. Therefore, this work aimed to develop simple and facile methods for separation of heavy metals before ICP-MS analysis. Fe3O4@SiO2@TiO2 core-double shell magnetic adsorbent was prepared and characterized by TEM, SEM, FTIR, XRD and surface area, and tested for Magnetic Solid Phase Extraction (MSPE) of Cu(II), Zn(II), Cd(II) and Pb(II). TEM micrograph of Fe3O4@SiO2@TiO2 reveals the uniform coating of TiO2 layer of about 20nm onto the Fe3O4@SiO2 nanoparticles and indicates that all nanoparticles are monodispersed and uniform. The saturation magnetization from the room-temperature hysteresis loops of Fe3O4 and Fe3O4@SiO2@TiO2 was found to be 72 and 40emug(-1), respectively, suggesting good separability of the nanoparticles. The Fe3O4@SiO2@TiO2 showed maximum adsorption capacity of 125, 137, 148 and 160mgg(-1) for Cu(II), Zn(II), Cd(II) and Pb(II) respectively, and the process was found to fit with the second order kinetic model and Langmuir isotherm. Fe3O4@SiO2@TiO2 showed efficient photocatalytic decomposition for tartrazine and sunset yellow (consider as Interfering organic compounds) in aqueous solution under the irradiation of UV light. The maximum recovery% was achieved at pH 5, by elution with 10mL of 2M nitric acid solution. The LODs were found to be 0.066, 0.049, 0.041 and 0.082µgL(-1) for Cu(II), Zn(II), Cd(II) and Pb(II), respectively while the LOQs were found to be 0.20, 0.15, 0.12 and 0.25µgL(-1) for Cu(II), Zn(II), Cd(II) and Pb(II), respectively. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Devillers, M.; Ladrière, J.
1993-03-01
57Fe Mössbauer investigations are carried out on a wide series of heterometallic diaquadiformato Fe(II)/ M(II) complexes with M = Mn, Co, Ni, Cu, and Zn to provide a local picture of the coordination environment of the 57Fe 2+ ions as a function of (i) the nature of the host cation and (ii) the relative amounts of both metals in the matrix (between 50 and 0.25 at.% Fe). Information is obtained on the quantitative distribution of both metals between the two structurally nonequivalent lattice sites and on the local geometry around the dopant atom in each crystal site. In the mixed Fe-Cu complexes. Fe 2+ ions are preferentially incorporated in the tetrahydrated site; in Cu-rich Fe xCu 1- x(HCO 2) 2· 2H 2O, the 57Fe 2+ ions located in the hexaformato-coordinated site are surrounded by an axially compressed octahedron of formate ligands which contrasts with the elongated configuration observed in the pure iron compound and in the other mixed systems. Semiquantitative estimations of the tetragonal field splitting and of the extent of metal-ligand interactions are proposed from the temperature dependence of the quadrupole splitting values.
Biolabile ferrous iron bearing nanoparticles in glacial sediments
NASA Astrophysics Data System (ADS)
Hawkings, Jon R.; Benning, Liane G.; Raiswell, Rob; Kaulich, Burkhard; Araki, Tohru; Abyaneh, Majid; Stockdale, Anthony; Koch-Müller, Monika; Wadham, Jemma L.; Tranter, Martyn
2018-07-01
Glaciers and ice sheets are a significant source of nanoparticulate Fe, which is potentially important in sustaining the high productivity observed in the near-coastal regions proximal to terrestrial ice cover. However, the bioavailability of particulate iron is poorly understood, despite its importance in the ocean Fe inventory. We combined high-resolution imaging and spectroscopy to investigate the abundance, morphology and valence state of particulate iron in glacial sediments. Our results document the widespread occurrence of amorphous and Fe(II)-rich and Fe(II)-bearing nanoparticles in Arctic glacial meltwaters and iceberg debris, compared to Fe(III)-rich dominated particulates in an aeolian dust sample. Fe(II) is thought to be highly biolabile in marine environments. Our work shows that glacially derived Fe is more labile than previously assumed, and consequently that glaciers and ice sheets are therefore able to export potentially bioavailable Fe(II)-containing nanoparticulate material to downstream ecosystems, including those in a marine setting. Our findings provide further evidence that Greenland Ice Sheet meltwaters may provide biolabile particulate Fe that may fuel the large summer phytoplankton bloom in the Labrador Sea, and that Fe(II)-rich particulates from a region of very high productivity downstream of a polar ice sheet may be glacial in origin.
Kanaparthi, Dheeraj; Pommerenke, Bianca; Casper, Peter; Dumont, Marc G
2013-08-01
Anaerobic nitrate-dependent Fe(II) oxidation is widespread in various environments and is known to be performed by both heterotrophic and autotrophic microorganisms. Although Fe(II) oxidation is predominantly biological under acidic conditions, to date most of the studies on nitrate-dependent Fe(II) oxidation were from environments of circumneutral pH. The present study was conducted in Lake Grosse Fuchskuhle, a moderately acidic ecosystem receiving humic acids from an adjacent bog, with the objective of identifying, characterizing and enumerating the microorganisms responsible for this process. The incubations of sediment under chemolithotrophic nitrate-dependent Fe(II)-oxidizing conditions have shown the enrichment of TM3 group of uncultured Actinobacteria. A time-course experiment done on these Actinobacteria showed a consumption of Fe(II) and nitrate in accordance with the expected stoichiometry (1:0.2) required for nitrate-dependent Fe(II) oxidation. Quantifications done by most probable number showed the presence of 1 × 10(4) autotrophic and 1 × 10(7) heterotrophic nitrate-dependent Fe(II) oxidizers per gram fresh weight of sediment. The analysis of microbial community by 16S rRNA gene amplicon pyrosequencing showed that these actinobacterial sequences correspond to ~0.6% of bacterial 16S rRNA gene sequences. Stable isotope probing using (13)CO2 was performed with the lake sediment and showed labeling of these Actinobacteria. This indicated that they might be important autotrophs in this environment. Although these Actinobacteria are not dominant members of the sediment microbial community, they could be of functional significance due to their contribution to the regeneration of Fe(III), which has a critical role as an electron acceptor for anaerobic microorganisms mineralizing sediment organic matter. To the best of our knowledge this is the first study to show the autotrophic nitrate-dependent Fe(II)-oxidizing nature of TM3 group of uncultured Actinobacteria.
Liu, Tongxu; Li, Xiaomin; Zhang, Wei; Hu, Min; Li, Fangbai
2014-06-01
Klebsiella pneumoniae L17 is a fermentative bacterium that can reduce iron oxide and generate electricity under anoxic conditions, as previously reported. This study reveals that K. pneumoniae L17 is also capable of dissimilatory nitrate reduction, producing NO2(-), NH4(+), NO and N2O under anoxic conditions. The presence of Fe(III) oxides (i.e., α-FeOOH, γ-FeOOH, α-Fe2O3 and γ-Fe2O3) significantly accelerates the reduction of nitrate and generation of electricity by K. pneumoniae L17, which is similar to a previous report regarding another fermentative bacterium, Bacillus. No significant nitrate reduction was observed upon treatment with Fe(2+) or α-FeOOH+Fe(2+), but a slight facilitation of nitrate reduction and electricity generation was observed upon treatment with L17+Fe(2+). This result suggests that aqueous Fe(II) or mineral-adsorbed Fe(II) cannot reduce nitrate abiotically but that L17 can catalyze the reduction of nitrate and generation of electricity in the presence of Fe(II) (which might exist as cell surface-bound Fe(II)). To rule out the potential effect of Fe(II) produced by L17 during microbial iron reduction, treatments with the addition of TiO2 or Al2O3 instead of Fe(III) oxides also exhibited accelerated microbial nitrate reduction and electricity generation, indicating that cell-mineral sorption did account for the acceleration effect. However, the acceleration caused by Fe(III) oxides is only partially attributed to the cell surface-bound Fe(II) and cell-mineral sorption but may be driven by the iron oxide conduction band-mediated electron transfer from L17 to nitrate or an electrode, as proposed previously. The current study extends the diversity of bacteria of which nitrate reduction and electricity generation can be facilitated by the presence of iron oxides and confirms the positive role of Fe(III) oxides on microbial nitrate reduction and electricity generation by particular fermentative bacteria in anoxic environments. Copyright © 2014 Elsevier Inc. All rights reserved.
Human calprotectin affects the redox speciation of iron.
Nakashige, Toshiki G; Nolan, Elizabeth M
2017-08-16
We report that the metal-sequestering human host-defense protein calprotectin (CP, S100A8/S100A9 oligomer) affects the redox speciation of iron (Fe) in bacterial growth media and buffered aqueous solution. Under aerobic conditions and in the absence of an exogenous reducing agent, CP-Ser (S100A8(C42S)/S100A9(C3S) oligomer) depletes Fe from three different bacterial growth media preparations over a 48 h timeframe (T = 30 °C). The presence of the reducing agent β-mercaptoethanol accelerates this process and allows CP-Ser to deplete Fe over a ≈1 h timeframe. Fe-depletion assays performed with metal-binding-site variants of CP-Ser show that the hexahistidine (His 6 ) site, which coordinates Fe(ii) with high affinity, is required for Fe depletion. An analysis of Fe redox speciation in buffer containing Fe(iii) citrate performed under aerobic conditions demonstrates that CP-Ser causes a time-dependent increase in the [Fe(ii)]/[Fe(iii)] ratio. Taken together, these results indicate that the hexahistidine site of CP stabilizes Fe(ii) and thereby shifts the redox equilibrium of Fe to the reduced ferrous state under aerobic conditions. We also report that the presence of bacterial metabolites affects the Fe-depleting activity of CP-Ser. Supplementation of bacterial growth media with an Fe(iii)-scavenging siderophore (enterobactin, staphyloferrin B, or desferrioxamine B) attenuates the Fe-depleting activity of CP-Ser. This result indicates that formation of Fe(iii)-siderophore complexes blocks CP-mediated reduction of Fe(iii) and hence the ability of CP to coordinate Fe(ii). In contrast, the presence of pyocyanin (PYO), a redox-cycling phenazine produced by Pseudomonas aeruginosa that reduces Fe(iii) to Fe(ii), accelerates Fe depletion by CP-Ser under aerobic conditions. These findings indicate that the presence of microbial metabolites that contribute to metal homeostasis at the host/pathogen interface can affect the metal-sequestering function of CP.
Na7 [Fe2S6 ] , Na2 [FeS2 ] and Na2 [FeSe2 ] : New 'reduced' sodium chalcogenido ferrates
NASA Astrophysics Data System (ADS)
Stüble, Pirmin; Peschke, Simon; Johrendt, Dirk; Röhr, Caroline
2018-02-01
Three new 'reduced' FeII containing sodium chalcogenido ferrates were obtained applying a reductive synthetic route. The mixed-valent sulfido ferrate Na7 [Fe2S6 ] , which forms bar-shaped crystals with metallic greenish luster, was synthesized in pure phase from natural pyrite and elemental sodium at a maximum temperature of 800 °C. Its centrosymmetric triclinic structure (SG P 1 bar , a = 764.15(2), b = 1153.70(2), c = 1272.58(3) pm, α = 62.3325 (7) , β = 72.8345 (8) , γ = 84.6394 (8) ° , Z = 3, R1 = 0.0185) exhibits two crystallographically different [Fe2S6 ] 7 - dimers of edge-sharing [FeS4 ] tetrahedra, with somewhat larger Fe-S distances than in the fully oxidized FeIII dimers of e.g. Na6 [Fe2III S6 ] . In contrast to the localized AFM ordered pure di-ferrates(III), the Curie-Weiss behavior of the magnetic susceptibility proves the rarely observed valence-delocalized S = 9/2 state of the mixed-valent FeIII /FeII dimer. The nearly spin-only value of the magnetic moment combined with the chemical bonding not generally differing from that in pure ferrates(II) and (III), provides a striking argument, that the reduction of the local Fe spin moments observed in all condensed sulfido ferrate moieties is connected with the AFM spin ordering. The two isotypic ferrates(II) Na2 [FeS2 ] and Na2 [FeSe2 ] with chain-like structural units (SG Ibam, a = 643.54(8)/ 660.81(1), b = 1140.2(2)/1190.30(2) c = 562.90(6)/585.59(1) pm, Z = 4, R1 = 0.0372/0.0466) crystallize in the K2 [ZnO2 ] -type structure. Although representing merely further members of the common series of chalcogenido metallates(II) Na2 [MIIQ2 ] , these two new phases, together with Na6 [FeS4 ] and Li2 [FeS2 ] , are the only examples of pure FeII alkali chalcogenido ferrates. The new compounds allow for a general comparison of di- and chain ferrates(II) and (III) and mixed-valent analogs concerning the electronic and magnetic properties (including Heisenberg super-exchange and double-exchange interactions) based on the comprehensive literature and own DFT band structure calculations.
Park, Sunhwa; Kim, Dong-Hun; Lee, Ji-Hoon; Hur, Hor-Gil
2014-01-01
Ferrous iron has been known to function as an electron source for iron-oxidizing microorganisms in both anoxic and oxic environments. A diversity of bacteria has been known to oxidize both soluble and solid-phase Fe(II) forms coupled to the reduction of nitrate. Here, we show for the first time Fe(II) oxidation by Sphaerotilus natans strain DSM 6575T under mixotrophic condition. Sphaerotilus natans has been known to form a sheath structure enclosing long chains of rod-shaped cells, resulting in a thick biofilm formation under oxic conditions. Here, we also demonstrate that strain DSM 6575T grows mixotrophically with pyruvate, Fe(II) as electron donors and nitrate as an electron acceptor and single cells of strain DSM 6575T are dominant under anoxic conditions. Furthermore, strain DSM 6575T forms nanoball-shaped amorphous Fe(III) oxide minerals encrusting on the cell surfaces through the mixotrophic iron oxidation reaction under anoxic conditions. We propose that cell encrustation results from the indirect Fe(II) oxidation by biogenic nitrite during nitrate reduction and that causes the bacterial morphological change to individual rod-shaped single cells from filamentous sheath structures. This study extends the group of existing microorganisms capable of mixotrophic Fe(II) oxidation by a new strain, S. natans strain DSM 6575T, and could contribute to biogeochemical cycles of Fe and N in the environment. PMID:24965827
NASA Astrophysics Data System (ADS)
Jew, A. D.; Dustin, M. K.; Harrison, A. L.; Joe-Wong, C. M.; Thomas, D.; Maher, K.; Brown, G. E.; Bargar, J.
2016-12-01
Due to the rapid growth of hydraulic fracturing in the United States, understanding the cause for the rapid production drop off of new wells over the initial months of production is paramount. One possibility for the production decrease is pore occlusion caused by the oxidation of Fe(II)-bearing phases resulting in Fe(III) precipitates. To understand the release and fate of Fe in the shale systems, we reacted synthesized fracture fluid at 80oC with shale from four different geological localities (Marcellus Fm., Barnett Fm., Eagle Ford Fm., and Green River Fm.). A variety of wet chemical and synchrotron-based techniques (XRF mapping and x-ray absorption spectroscopy) were used to understand Fe release and solid phase Fe speciation. Solution pH was found to be the greatest factor for Fe release. Carbonate-poor Barnett and Marcellus shale showed rapid Fe release into solution followed by a plateau or significant drop in Fe concentrations indicating mineral precipitation. Conversely, in high carbonate shales, Eagle Ford and Green River, no Fe was detected in solution indicating fast Fe oxidation and precipitation. For all shale samples, bulk Fe EXAFS data show that a significant amount of Fe in the shales is bound directly to organic carbon. Throughout the course of the experiments inorganic Fe(II) phases (primarily pyrite) reacted while Fe(II) bound to C showed no indication of reaction. On the micron scale, XRF mapping coupled with μ-XANES spectroscopy showed that at pH < 4.0, Fe(III) bearing phases precipitated as diffuse surface precipitates of ferrihydrite, goethite, and magnetite away from Fe(II) point sources. In near circum-neutral pH systems, Fe(III)-bearing phases (goethite and hematite) form large particles 10's of μm's in diameter near Fe(II) point sources. Idealized systems containing synthesized fracturing fluid, dissolved ferrous chloride, and bitumen showed that bitumen released during reaction with fracturing fluids is capable of oxidizing Fe(II) to Fe(III) at pH's 2.0 and 7.0. This indicates that bitumen can play a large role in Fe oxidation and speciation in the subsurface. This work shows that shale mineralogy has a significant impact on the morphology and phases of Fe(III) precipitates in the subsurface which in turn can significantly impact subsurface solution flow.
In situ Fe-sulfide coating for arsenic removal under reducing conditions
NASA Astrophysics Data System (ADS)
Xie, Xianjun; Liu, Yaqing; Pi, Kunfu; Liu, Chongxuan; Li, Junxia; Duan, Mengyu; Wang, Yanxin
2016-03-01
An in situ Fe-sulfide coating approach has been developed for As-contaminated groundwater remediation. Alternate injection of Fe(II), O2-free water and S2- can realize Fe-sulfide coating onto quartz sands with minor changes in porosity. As(III) uptake experiment indicated that the retardation factor for As(III) was 37 and dynamic retention capacity was 44.94 mg As(III)/g Fe, which was much higher than the maximum adsorption capacity for As(III) by FeS and FeS2. This result indicated that adsorption cannot be the only mechanism for As(III) uptake by Fe-sulfide coating layer. The SEM image and FTIR spectra results suggested that interaction between As(III) and Fe-sulfides and formation of As-sulfide precipitates could significantly contribute to As(III) uptake by Fe-sulfide coating layer. Alternate injection of Fe(II) + As(III) and S2- was conducted to simulate in situ As immobilization from real groundwater. The SEM image showed that the quartz sands were mainly covered by crystalline framboidal pyrite after such amendment. The breakthrough of As(III) was not observed during this experiment and the removal capacity for As(III) was 109.7 mg As/g Fe. The As(III) immobilization mechanism during alternate injection of Fe(II) + As(III) and S2- was significantly different from that of As(III) uptake by Fe-sulfide coating. The direct interaction between As(III) and S2- produced As-sulfides contributed to the high As(III) removal capacity during alternate injection of Fe(II) + As(III) and S2-. This result indicated that alternate injection of Fe(II) and S2- approach has an attractive application for As-contaminated groundwater remediation under strongly reducing environment.
In situ Fe-sulfide coating for arsenic removal under reducing conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Xianjun; Liu, Yaqing; Pi, Kunfu
2016-03-01
An in situ Fe-sulfide coating approach has been developed for As-contaminated groundwater remediation. Alternate injection of Fe(II), O 2-free water and S 2$-$ can realize Fe-sulfide coating onto quartz sands with minor changes in porosity. As(III) uptake experiment indicated that the retardation factor for As(III) was 37 and dynamic retention capacity was 44.94 mg As(III)/g Fe, which was much higher than the maximum adsorption capacity for As(III) by FeS and FeS 2. This result indicated that adsorption cannot be the only mechanism for As(III) uptake by Fe-sulfide coating layer. The SEM image and FTIR spectra results suggested that interaction betweenmore » As(III) and Fe-sulfides and formation of As-sulfide precipitates could significantly contribute to As(III) uptake by Fe-sulfide coating layer. Alternate injection of Fe(II) + As(III) and S 2$-$ was conducted to simulate in situ As immobilization from real groundwater. The SEM image showed that the quartz sands were mainly covered by crystalline framboidal pyrite after such amendment. The breakthrough of As(III) was not observed during this experiment and the removal capacity for As(III) was 109.7 mg As/g Fe. The As(III) immobilization mechanism during alternate injection of Fe(II) + As(III) and S 2$-$ was significantly different from that of As(III) uptake by Fe-sulfide coating. The direct interaction between As(III) and S 2$-$ produced As-sulfides contributed to the high As(III) removal capacity during alternate injection of Fe(II) + As(III) and S 2$-$. This result indicated that alternate injection of Fe(II) and S 2$-$ approach has an attractive application for As-contaminated groundwater remediation under strongly reducing environment.« less
Wang, Lei; Zhang, Junjie; Duan, Zhenghua; Sun, Hongwen
2017-06-01
Photodegradation of nonylphenol tri-ethoxylate (NPEO 3 ) in aqueous solution, and the effects of Fe(III) or Fe(II) were studied. The increasing degradation kinetics of NPEO 3 were observed when 500µM Fe(III) or Fe(II) was present in the solutions. Altered formation of NPEO oligomers with shorter EO chains, including nonyphenol (NP), NPEO 1 and NPEO 2 , was observed in water and in solutions containing Fe(III) or Fe(II). The molar percentage yields of NP and NPEO 1,2 production from NPEO 3 photodegradation were approximately 20% in NPEO 3 solution, while NPEO 3 solution with Fe(III), this percentage increased to approximately 50%. In solution with Fe(II), the molar balance between the photodegradation of NPEO 3 and the production of NP and NPEO 1,2 was observed. A luminescent bacterium, Vibrio fischeri, was used to identify changes in the toxicity of NPEO 3 solutions during the photodegradation process under different conditions, while dose addition (DA) model was used to estimate the toxicity of products. Toxicity of NPEO 3 /water solution increased significantly following the irradiation of UVA/UVB mixture. In contrast, obviously decreasing toxicity was observed when NPEO 3 underwent photodegradation in the presence of Fe(III). Copyright © 2017. Published by Elsevier Inc.
Carballal, Sebastián; Cuevasanta, Ernesto; Yadav, Pramod K.; Gherasim, Carmen; Ballou, David P.; Alvarez, Beatriz; Banerjee, Ruma
2016-01-01
Cystathionine β-synthase (CBS) is a pyridoxal phosphate-dependent enzyme that catalyzes the condensation of homocysteine with serine or with cysteine to form cystathionine and either water or hydrogen sulfide, respectively. Human CBS possesses a noncatalytic heme cofactor with cysteine and histidine as ligands, which in its oxidized state is relatively unreactive. Ferric CBS (Fe(III)-CBS) can be reduced by strong chemical and biochemical reductants to Fe(II)-CBS, which can bind carbon monoxide (CO) or nitric oxide (NO•), leading to inactive enzyme. Alternatively, Fe(II)-CBS can be reoxidized by O2 to Fe(III)-CBS, forming superoxide radical anion (O2˙̄). In this study, we describe the kinetics of nitrite (NO2−) reduction by Fe(II)-CBS to form Fe(II)NO•-CBS. The second order rate constant for the reaction of Fe(II)-CBS with nitrite was obtained at low dithionite concentrations. Reoxidation of Fe(II)NO•-CBS by O2 showed complex kinetic behavior and led to peroxynitrite (ONOO−) formation, which was detected using the fluorescent probe, coumarin boronic acid. Thus, in addition to being a potential source of superoxide radical, CBS constitutes a previously unrecognized source of NO• and peroxynitrite. PMID:26867575
NASA Astrophysics Data System (ADS)
González-Dávila, M.; Santana-González, C.; Santana-Casiano, J. M.
2017-12-01
The eruptive process that took place in October 2011 in the submarine volcano Tagoro off the Island of El Hierro (Canary Island) and the subsequent degasification stage, five months later, have increased the concentration of TdFe(II) (Total dissolved iron(II)) in the waters nearest to the volcanic edifice. In order to detect any variation in concentrations of TdFe(II) due to hydrothermal emissions, three cruises were carried out two years after the eruptive process in October 2013, March 2014, May 2015, March 2016 and November 2016. The results from these cruises confirmed important positive anomalies in TdFe(II), which coincided with negatives anomalies in pHF,is (pH in free scale, at in situ conditions) located in the proximity of the main cone. Maximum values in TdFe(II) both at the surface, associated to chlorophyll a maximum, and at the sea bottom, were also observed, showing the important influence of organic complexation and particle re-suspension processes. Temporal variability studies were carried out over periods ranging from hours to days in the stations located over the main and two secondary cones in the volcanic edifice with positive anomalies in TdFe(II) concentrations and negative anomalies in pHF,is values. Observations showed an important variability in both pHF,is and TdFe(II) concentrations, which indicated the volcanic area was affected by a degasification process that remained in the volcano after the eruptive phase had ceased. Fe(II) oxidation kinetic studies were also undertaken in order to analyze the effects of the seawater properties in the proximities of the volcano on the oxidation rate constants and t1/2 (half-life time) of ferrous iron. The increased TdFe(II) concentrations and the low associated pHF,is values acted as an important fertilization event in the seawater around the Tagoro volcano at the Island of El Hierro providing optimal conditions for the regeneration of the area.
Brantner, Justin S.; Haake, Zachary J.; Burwick, John E.; Menge, Christopher M.; Hotchkiss, Shane T.; Senko, John M.
2014-01-01
We evaluated the depth-dependent geochemistry and microbiology of sediments that have developed via the microbially-mediated oxidation of Fe(II) dissolved in acid mine drainage (AMD), giving rise to a 8–10 cm deep “iron mound” that is composed primarily of Fe(III) (hydr)oxide phases. Chemical analyses of iron mound sediments indicated a zone of maximal Fe(III) reducing bacterial activity at a depth of approximately 2.5 cm despite the availability of dissolved O2 at this depth. Subsequently, Fe(II) was depleted at depths within the iron mound sediments that did not contain abundant O2. Evaluations of microbial communities at 1 cm depth intervals within the iron mound sediments using “next generation” nucleic acid sequencing approaches revealed an abundance of phylotypes attributable to acidophilic Fe(II) oxidizing Betaproteobacteria and the chloroplasts of photosynthetic microeukaryotic organisms in the upper 4 cm of the iron mound sediments. While we observed a depth-dependent transition in microbial community structure within the iron mound sediments, phylotypes attributable to Gammaproteobacterial lineages capable of both Fe(II) oxidation and Fe(III) reduction were abundant in sequence libraries (comprising ≥20% of sequences) from all depths. Similarly, abundances of total cells and culturable Fe(II) oxidizing bacteria were uniform throughout the iron mound sediments. Our results indicate that O2 and Fe(III) reduction co-occur in AMD-induced iron mound sediments, but that Fe(II)-oxidizing activity may be sustained in regions of the sediments that are depleted in O2. PMID:24860562
NASA Astrophysics Data System (ADS)
Shoenfelt, E. M.; Winckler, G.; Lamy, F.; Bostick, B. C.
2017-12-01
The iron (Fe) in dust deposited to the Fe-limited Southern Ocean plays an important role in ocean biogeochemistry and global climate. For instance, increases in dust-borne Fe deposition in the subantarctic Southern Ocean have been linked to increases in productivity and part of the CO2 drawdown of the last glacial cycle [1]. Notably, bioavailable Fe impacts productivity rather than total Fe. While it has long been understood that Fe mineralogy impacts Fe bioavailability in general, our understanding of the mineralogy of Fe in dust in specific is limited to that in modern dust sources. Reduced mineral Fe in dust has been shown to be more bioavailable than oxidized mineral iron, as it is more readily dissolved [2], and it is more easily utilized directly by a model diatom [3]. Our previous work focusing on South American dust sources shows that glacial activity is associated with higher Fe(II) fractions in dust-borne minerals, due to the physical weathering of Fe(II)-rich silicates in bedrock [3]. Thus, we hypothesize that there were higher Fe(II) fractions in dust deposited during cold glacial periods where ice sheets were more widespread. Using synchrotron-based X-ray absorption spectroscopy, we have reconstructed the mineralogy of Fe deposited to Southern Ocean sediment cores from the subantarctic South Atlantic (TN057-6/ODP Site 1090) and South Pacific (PS7/56-1) through the last glacial cycle, creating the first paleorecord of Fe mineralogy and its associated bioavailability. During cold glacial periods there is a higher fraction of reduced Fe - in the form of Fe(II) silicates - deposited to the sediments compared to warm interglacial periods. Thus, Fe(II) content is directly correlated with dust input. The presence of Fe(II) silicates rather than products of diagenesis such as pyrite suggests that these Fe(II) minerals are physically weathered from bedrock and preserved rather than produced in the sediment. This result suggests that not only was there more dust and Fe deposited to the Southern Ocean during glacial periods, glacial Fe was also more bioavailable due to the importance of glacial activity to high latitude dust formation. [1] A. Martinez-Garcia et al., Science 343 (2014). [2] A. W. Schroth et al., Nat. Geosci. 2 (2009). [3] E. M. Shoenfelt et al., Sci. Adv. 3(6), DOI:10.1126/sciadv.1700314 (2017).
NASA Astrophysics Data System (ADS)
Taylor, S. D.; Marcano, M. C.; Becker, U.
2017-01-01
This study investigates how the intrinsic chemical and electronic properties of mineral surfaces and their associated electron transfer (ET) pathways influence the reduction of U(VI) by surface-associated Fe(II). Density functional theory (DFT), including the Hubbard U correction to the exchange-correlation functional, was used to investigate sorption/redox reactions and ET mechanisms between Fe(II) and U(VI) coadsorbed on isostructural, periodic (0 0 1) surfaces of the insulator corundum (α-Al2O3) vs. the semiconductor hematite (α-Fe2O3). Furthermore, the coadsorbed Fe(II) and U(VI) ions are spatially separated from one another on the surfaces (⩾5.9 Å) to observe whether electronic-coupling through the semiconducting hematite surface facilitates ET between the adsorbates, a phenomenon known as the proximity effect. The calculations show that the different chemical and electronic properties between the isostructural corundum and hematite (0 0 1) surfaces lead to considerably different ET mechanisms between Fe(II) and U(VI). ET on the insulating corundum (0 0 1) surface is limited by the adsorbates' structural configuration. When Fe(II) and U(VI) are spatially separated and do not directly interact with one another (e.g. via an inner-sphere complex), U(VI) reduction by Fe(II) cannot occur as there is no physical pathway enabling ET between the adsorbates. In contrast to the insulating corundum (0 0 1) surface, the hematite (0 0 1) surface can potentially participate in ET reactions due to the high number of electron acceptor sites from the Fe d-states near the Fermi level at the hematite surface. The adsorption of Fe(II) also introduces d-states near the Fermi level as well as shifts unoccupied d-states of the Fe cations at the hematite surface to lower energies, making the surface more conductive. In turn, electronic coupling through the surface can link the spatially separated adsorbates to one another and provide distinct ET pathways for an electron from Fe(II) to travel through the hematite surface and reach U(VI). The progression and extent of ET occurring on the semiconducting hematite (0 0 1) surface via the proximity effect depends on the electronic properties of the surface. ET between the spatially separated U(VI) and Fe(II) occurs most readily when orbitals between the Fe and U adsorbates overlap with those of neighboring O and Fe ions at the hematite surface, as shown by calculations without the Hubbard U correction. Analyses of the spins densities confirm that the U and Fe adsorbates were reduced and oxidized, respectively, (acquiring 0.33 μB and 0.11-0.20 μB, respectively), while Fe cations at the hematite surface were reduced (losing ⩽0.6 μB). If electrons are highly localized, the amount of orbital mixing and electronic coupling through the hematite surface decreases and in turn leads to a lower degree of spin transfer, as predicted by calculations with the Hubbard U correction. Thus, the proximity effect is a potential mechanism on semiconducting surfaces facilitating surface-mediated redox reactions, although its significance varies depending on the electronic properties and subsequent charge-carrying ability of the surface. These results provide insight into ET pathways and mechanisms on insulating Al- and semiconducting Fe oxide surfaces influencing the reduction U(VI) by Fe(II) that may subsequently limit uranium's transport in the subsurface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scherer, Michelle M.; Rosso, Kevin M.
Despite decades of research on the reactivity and stable isotope properties of Fe oxides, the ability to describe the redox behavior of Fe oxides in the environment is still quite limited. This is due, in large part, to the analytical and spatial complexities associated with studying microscopic processes at the Fe oxide-water interface. This project had the long-term vision of filling this gap by developing a detailed understanding of the relationship between interfacial ET processes, surface structure and charge, and mineral semiconducting properties. We focused on the Fe(III)-oxides and oxyhydroxides because of their geochemical preponderance, versatility in synthesis of compositionally,more » structurally, and morphologically tailored phases, and because they are amenable to a wide range of surface and bulk properties characterization. In particular, reductive transformation of phases such as hematite (α-Fe 2O 3) and goethite (α-FeOOH) in aqueous solution can serve as excellent model systems for studies of electron conduction processes, as well as provide valuable insights into effect of nanoscale conductive materials on contaminant fate at DOE sites. More specifically, the goal of the Iowa component of this project was to use stable Fe isotope measurements to simultaneously measure isotope specific oxidation states and concentrations of Fe at the hematite-water and goethite-water interface. This work builds on our previous work where we used an innovative combination of 57Fe Mössbauer spectroscopy and high precision isotope ratio measurements (MC-ICP-MS) to probe the dynamics of the reaction of aqueous Fe(II) with goethite. Mössbauer spectroscopy detects 57Fe only among all other Fe isotopes and we have capitalized on this to spectroscopically demonstrate Fe(II)-Fe(III) electron transfer between sorbed Fe(II) and Fe(III) oxides (Handler, et al., 2009; Gorski, et al. 2010; Rosso et al., 2010). By combining the Mössbauer spectroscopy and stable isotopes measurements, we have been able to simultaneously track the oxidation state and isotope concentration of the bulk Fe oxide and aqueous Fe. One of our most compelling findings is that despite the apparent stability of the Fe(II)-goethite system, there is actually a tremendous amount of Fe atom cycling occurring between the aqueous phase and the bulk goethite as indicated by the isotopic composition of both phases approaching the mass balance average (Handler et al., 2009). How such extensive re-crystallization and Fe atom exchange can occur with no significant morphological change is a fascinating question. Based on previous work from PI Rosso’s group showing that a potential gradient across hematite crystal faces leads to conduction through hematite and growth and dissolution at separate crystal faces we proposed that a redox-driven recrystallization could be occurring that would explain the extensive mixing observed with the isotope data. From our previous studies utilizing Mössbauer spectroscopy, we know that sorption of Fe(II) onto goethite results in electron transfer between the sorbed Fe(II) and the structural Fe(III) in goethite. Oxidation of the sorbed Fe(II) produces growth of goethite on goethite (i.e., homoepitaxy), as well as injection of an electron into goethite. It is possible that electron transfer from sorbed Fe(II) occurs across a potential gradient, and that Fe(II) atoms are dissolved at a different location on the goethite surface. These newly-reduced Fe(II) atoms could then dissolve into the aqueous phase, exposing fresh Fe(III) goethite to the aqueous phase. Through a repeated series of these five steps of sorption–electron transfer–crystal growth–conduction– dissolution, a redox-driven conveyor belt, could be established that would allow all of the goethite to be eventually exposed to the aqueous phase and exchanged. This surface-mediated recrystallization process would result in similar Fe isotope distributions in the aqueous phase and goethite particle, as we have observed here. It would also result in a stable aqueous Fe(II) concentration, if there were equal rates of goethite growth and dissolution.« less
NASA Astrophysics Data System (ADS)
Rivaro, Paola; Luisa Abelmoschi, Maria; Grotti, Marco; Ianni, Carmela; Magi, Emanuele; Margiotta, Francesca; Massolo, Serena; Saggiomo, Vincenzo
2012-04-01
Surface water (<100 m) samples were collected from the Terra Nova Bay polynya region of the Ross Sea (Antarctica) in January 2006, with the aim of evaluating the individual and combined effects of hydrographic structure, iron and copper concentration and availability on the phytoplankton growth. The measurements were conducted within the framework of the Climatic Long Term Interaction for the Mass-balance in Antarctica (CLIMA) Project of the Programma Nazionale di Ricerca in Antartide activities. Dissolved oxygen, nutrients, phytoplankton pigments and concentration and complexation of dissolved trace metals were determined. Experimental data were elaborated by Principal Component Analysis (PCA). As a result of solar heating and freshwater inputs from melting sea-ice, the water column was strongly stratified with an Upper Mixed Layer 4-16 m deep. The integrated Chl a in the layer 0-100 m ranged from 60 mg m-2 to 235 mg m-2, with a mean value of 138 mg m-2. The pigment analysis showed that diatoms dominated the phytoplankton assemblage. Major nutrients were generally high, with the lowest concentration at the surface and they were never fully depleted. The Si:N drawdown ratio was close to the expected value of 1 for Fe-replete diatoms. We evaluated both the total and the labile dissolved fraction of Fe and Cu. The labile fraction was operationally defined by employing the chelating resin Chelex-100, which retains free and loosely bound trace metal species. The total dissolved Fe ranged from 0.48 to 3.02 nM, while the total dissolved Cu from 3.68 to 6.84 nM. The dissolved labile Fe ranged from below the detection limit (0.15 nM) to 1.22 nM, and the dissolved labile Cu from 0.31 to 1.59 nM, respectively. The labile fractions measured at 20 m were significantly lower than values in 40-100 m samples. As two stations were re-sampled 5 days later, we evaluated the short-term variability of the physical and biogeochemical properties. In particular, in a re-sampled station at 20 m, the total dissolved Fe increased and the total dissolved Cu decreased, while their labile fraction was relatively steady. As a result of the increase in total Fe, the percentage of the labile Fe decreased. An increase of the Si:N, Si:P and Si:FUCO ratios was measured also in the re-sampled station. On this basis, we speculated that a switch from a Fe-replete to a Fe-deplete condition was occurring.
NASA Astrophysics Data System (ADS)
Kitazawa, Takafumi; Kishida, Takanori; Kawasaki, Takeshi; Takahashi, Masashi
2017-11-01
We have prepared the 2D spin crossover complexes Fe(L)2Pd(CN)4 (L = py : 1a; py-D5 : 1b and py-15N : 1c). 1a has been characterised by 57Fe Mossbauer spectroscopic measurements, single crystal X-ray determination and SQUID measurements. The Mössbauer spectra for 1a indicate that the iron(II) spin states are in high spin states at 298 K and are in low spin states at 77 K. The crystal structures of 1a at 298 K and 90 K also show the high spin state and the low spin state respectively, associated with the Fe(II)-N distances. The spin transition temperature range of 1a is higher than that of Fe(py)2Ni(CN)4 since Pd(II) ions are larger and heavier than Ni(II) ions. SQUID data indicate isotope effects among 1a, 1b and 1c are observed in very small shifts of the transition temperatures probably due to larger and heavier Pd(II) ions. The delicate shifts would be associated with subtle balances between different vibrations around Fe(II) atoms and electronic factors.
NASA Astrophysics Data System (ADS)
Shen, Xiaofang; Wang, Qin; Chen, WenLing; Pang, Yuehong
2014-10-01
Cysteine functionalized Fe3O4 magnetic nanoparticles (Cys-Fe3O4 MNPs) were prepared facilely for Hg(II) removal from aqueous solutions. Using Fe2+ as precursors, air as oxidant and Cys as protectant, this novel material was one-pot synthesis at room temperature by oxidation-precipitation method with the assistance of sonication. The MNPs were characterized by TEM, VSM, FTIR, X-ray powder diffraction analysis (XRD) and TGA methods. Under the optimum experimental conditions, the removal efficiency was as high as 95% and the maximum sorption capacity is found to be 380 mg/mol for Hg(II). Study on adsorption kinetics shows that adsorption of Hg(II) onto Cys-Fe3O4 MNPs follows pseudo-first-order kinetic model and the adsorption rate constant was 0.22 min-1. Additionally, the Hg(II)-loaded Cys-Fe3O4 MNPs could be easily regenerated up to 95% using 1.0 M acetic acid. These results indicated that Cys-Fe3O4 MNPs is a potentially attractive material for the removal of Hg(II) from water.
Acid-tolerant microaerophilic Fe(II)-oxidizing bacteria promote Fe(III)-accumulation in a fen.
Lüdecke, Claudia; Reiche, Marco; Eusterhues, Karin; Nietzsche, Sandor; Küsel, Kirsten
2010-10-01
The ecological importance of Fe(II)-oxidizing bacteria (FeOB) at circumneutral pH is often masked in the presence of O(2) where rapid chemical oxidation of Fe(II) predominates. This study addresses the abundance, diversity and activity of microaerophilic FeOB in an acidic fen (pH ∼ 5) located in northern Bavaria, Germany. Mean O(2) penetration depth reached 16 cm where the highest dissolved Fe(II) concentrations (up to 140 µM) were present in soil water. Acid-tolerant FeOB cultivated in gradient tubes were most abundant (10(6) cells g(-1) peat) at the 10-20 cm depth interval. A stable enrichment culture was active at up to 29% O(2) saturation and Fe(III) accumulated 1.6 times faster than in abiotic controls. An acid-tolerant, microaerophilic isolate (strain CL21) was obtained which was closely related to the neutrophilic, lithoautotrophic FeOB Sideroxydans lithotrophicus strain LD-1. CL21 oxidized Fe(II) between pH 4 and 6.0, and produced nanoscale-goethites with a clearly lower mean coherence length (7 nm) perpendicular to the (110) plane than those formed abiotically (10 nm). Our results suggest that an acid-tolerant population of FeOB is thriving at redox interfaces formed by diffusion-limited O(2) transport in acidic peatlands. Furthermore, this well-adapted population is successfully competing with chemical oxidation and thereby playing an important role in the microbial iron cycle. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.
Physical conditions in CaFe interstellar clouds
NASA Astrophysics Data System (ADS)
Gnaciński, P.; Krogulec, M.
2008-01-01
Interstellar clouds that exhibit strong Ca I and Fe I lines are called CaFe clouds. Ionisation equilibrium equations were used to model the column densities of Ca II, Ca I, K I, Na I, Fe I and Ti II in CaFe clouds. We find that the chemical composition of CaFe clouds is solar and that there is no depletion into dust grains. CaFe clouds have high electron densities, n_e≈1 cm-3, that lead to high column densities of neutral Ca and Fe.
Ma, Xiao; Lin, Chen-Sheng; Hu, Sheng-Min; Tan, Chun-Hong; Wen, Yue-Hong; Sheng, Tian-Lu; Wu, Xin-Tao
2014-06-02
To investigate how the central metalloligand geometry influences distant or vicinal metal-to-metal charge-transfer (MMCT) properties of polynuclear complexes, cis- and trans-isomeric heterotrimetallic complexes, and their one- and two-electron oxidation products, cis/trans-[Cp(dppe)Fe(II)NCRu(II)(phen)2CN-Fe(II)(dppe)Cp][PF6]2 (cis/trans-1[PF6]2), cis/trans-[Cp(dppe)Fe(II)NCRu(II)(phen)2CNFe(III)-(dppe)Cp][PF6]3 (cis/trans-1[PF6]3) and cis/trans-[Cp(dppe)Fe(III)NCRu(II)(phen)2CN-Fe(III)(dppe)Cp][PF6]4 (cis/trans-1[PF6]4) have been synthesized and characterized. Electrochemical measurements show the presence of electronic interactions between the two external Fe(II) atoms of the cis- and trans-isomeric complexes cis/trans-1[PF6]2. The electronic properties of all these complexes were studied and compared by spectroscopic techniques and TDDFT//DFT calculations. As expected, both mixed valence complexes cis/trans-1[PF6]3 exhibited different strong absorption signals in the NIR region, which should mainly be attributed to a transition from an MO that is delocalized over the Ru(II)-CN-Fe(II) subunit to a Fe(III) d orbital with some contributions from the co-ligands. Moreover, the NIR transition energy in trans-1[PF6]3 is lower than that in cis-1[PF6]3, which is related to the symmetry of their molecular orbitals on the basis of the molecular orbital analysis. Also, the electronic spectra of the two-electron oxidized complexes show that trans-1[PF6]4 possesses lower vicinal Ru(II) → Fe(III) MMCT transition energy than cis-1[PF6]4. Moreover, the assignment of MMCT transition of the oxidized products and the differences of the electronic properties between the cis and trans complexes can be well rationalized using TDDFT//DFT calculations. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Real-time redox speciation of iron in estuarine and coastal surface waters.
Huang, Yongming; Yuan, Dongxing; Zhu, Yong; Feng, Sichao
2015-03-17
An automated, shipboard-use system was developed for real-time speciation of iron in coastal surface waters. It comprised a towed Fish underway sampler and a modified reverse flow injection analysis system with a liquid waveguide capillary flow cell-spectrophotometric detection device. The detection was based on the reaction between ferrozine and Fe(II). The detection limits of 0.3 and 0.7 nM were achieved for Fe(II) and Fe(II+III), together with their respective dynamic linear ranges of 0.5-250 and 0.9-250 nM. The system was successfully deployed and run consecutively for about 1 week during a cruise in August 2009 to the East China Sea off the Changjiang Estuary. The distribution of operationally defined field dissolvable Fe(II) and Fe(II+III) (expressed as Fea(II) and Fea(II+III)) in these areas was obtained, which showed that both Fea(II) and Fea(II+III) concentrations decreased with salinity when there were relatively high Fea(II) concentrations (up to about 120 nM) near shore. A distinct distribution of Fea(II) to Fea(II+III) ratios was also revealed, with a ratio of 0.58 in the water off Changjiang Estuary and 0.19 in the open ocean.
Sol-gel based optical sensor for determination of Fe (II): a novel probe for iron speciation.
Samadi-Maybodi, Abdolraouf; Rezaei, Vida; Rastegarzadeh, Saadat
2015-02-05
A highly selective optical sensor for Fe (II) ions was developed based on entrapment of a sensitive reagent, 2,4,6-tri(2-pyridyl)-s-triazine (TPTZ), in a silica sol-gel thin film coated on a glass substrate. The thin films fabricated based on tetraethoxysilane (TEOS) as precursor, sol-gel pH∼3, water:alkoxyde ratio of 4:1 and TPTZ concentration of 0.112 mol L(-1). The influence of sol-gel parameters on sensing behavior of the fabricated sensor was also investigated. The fabricated sensor can be used for determination of Fe (II) ion with an outstanding high selectivity over a dynamic range of 5-115 ng mL(-1) and a detection limit of 1.68 ng mL(-1). It also showed reproducible results with relative standard deviation of 3.5% and 1.27% for 10 and 90 ng mL(-1) of Fe (II), respectively, along with a fast response time of ∼120 s. Total iron also was determined after reduction of Fe (III) to Fe (II) using ascorbic acid as reducing agent. Then, the concentration of Fe (III) was calculated by subtracting the concentration of Fe (II) from the total iron concentration. Interference studies showed a good selectivity for Fe (II) with trapping TPTZ into sol-gel matrix and appropriately adjusting the structure of doped sol-gel. The sensor was compared with other sensors and was applied to determine iron in different water samples with good results. Copyright © 2014 Elsevier B.V. All rights reserved.
Cheng, Xiaoxiang; Liang, Heng; Ding, An; Tang, Xiaobin; Liu, Bin; Zhu, Xuewu; Gan, Zhendong; Wu, Daoji; Li, Guibai
2017-04-15
Ferrous iron/peroxymonosulfate (Fe(II)/PMS) oxidation was employed as a pretreatment method for ultrafiltration process to control membrane fouling caused by natural organic matter, including humic acid (HA), sodium alginate (SA), bovine serum albumin (BSA), and their mixture (HA-SA-BSA). To evaluate the mechanism of fouling mitigation, the effects of Fe(II)/PMS pretreatment on the characteristics of feed water were examined. The degradation of atrazine (ATZ) was also investigated and the species of generated radicals were preliminarily determined. Under the test exposure (15 and 50 μM), Fe(II)/PMS pretreatment effectively mitigated membrane fouling caused by HA, SA and HA-SA-BSA mixture, and the performance improved with the increase of Fe(II) or PMS dose; whereas aggravated BSA fouling at lower doses and fouling alleviation was observed only at a higher dose (50/50 μΜ). The fouling mitigation was mainly attributed to the effective reduction of organic loadings by coagulation with in-situ formed Fe(III). Its performance was comparable or even slightly higher than single coagulation with Fe(III), most likely due to the oxidation by Fe(II)/PMS process. Fe(II)/PMS oxidation showed better performance in reducing DOC and UV 254 , fluorescence intensities of fluorescent components and UV-absorbing compounds than single coagulation. In addition, Fe(II)/PMS pretreatment was efficient in ATZ degradation due to the generation of sulfate and hydroxyl radicals, whereas coagulation was ineffective to remove it. Copyright © 2017 Elsevier Ltd. All rights reserved.
Smith, Richard L.; Kent, Douglas B.; Repert, Deborah A.; Böhlke, J.K.
2017-01-01
Nitrate has become an increasingly abundant potential electron acceptor for Fe(II) oxidation in groundwater, but this redox couple has not been well characterized within aquifer settings. To investigate this reaction and some of its implications for redox-sensitive groundwater contaminants, we conducted an in situ field study in a wastewater-contaminated aquifer on Cape Cod. Long-term (15 year) geochemical monitoring within the contaminant plume indicated interacting zones with variable nitrate-, Fe(II)-, phosphate-, As(V)-, and As(III)-containing groundwater. Nitrate and phosphate were derived predominantly from wastewater disposal, whereas Fe(II), As(III), and As(V) were mobilized from the aquifer sediments. Multiple natural gradient, anoxic tracer tests were conducted in which nitrate and bromide were injected into nitrate-free, Fe(II)-containing groundwater. Prior to injection, aqueous Fe(II) concentrations were approximately 175 μM, but sorbed Fe(II) accounted for greater than 90% of the total reactive Fe(II) in the aquifer. Nitrate reduction was stimulated within 1 m of transport for 100 μM and 1000 μM nitrate additions, initially producing stoichiometric quantities of nitrous oxide (>300 μM N). In subsequent injections at the same site, nitrate was reduced even more rapidly and produced less nitrous oxide, especially over longer transport distances. Fe(II) and nitrate concentrations decreased together and were accompanied by Fe(III) oxyhydroxide precipitation and decreases in dissolved phosphate, As(III), and As(V) concentrations. Nitrate N and O isotope fractionation effects during nitrate reduction were approximately equal (ε15N/ε18O = 1.11) and were similar to those reported for laboratory studies of biological nitrate reduction, including denitrification, but unlike some reported effects on nitrate by denitrification in aquifers. All constituents affected by the in situ tracer experiments returned to pre-injection levels after several weeks. Additionally, Fe(II)-oxidizing, nitrate-reducing microbial enrichment cultures were obtained from aquifer sediments. Growth experiments with the cultures sequentially produced nitrite and nitrous oxide from nitrate while simultaneously oxidizing Fe(II). Field and culture results suggest that nitrogen oxide reduction and Fe(II) oxidation in the aquifer are a complex interaction of coupled biotic and abiotic reactions. Overall, the results of this study demonstrate that anoxic nitrate-dependent iron oxidation can occur in groundwater; that it could control iron speciation; and that the process can impact the mobility of other chemical species (e.g., phosphate and arsenic) not directly involved in the oxidation–reduction reaction.
NASA Astrophysics Data System (ADS)
Smith, Richard L.; Kent, Douglas B.; Repert, Deborah A.; Böhlke, J. K.
2017-01-01
Nitrate has become an increasingly abundant potential electron acceptor for Fe(II) oxidation in groundwater, but this redox couple has not been well characterized within aquifer settings. To investigate this reaction and some of its implications for redox-sensitive groundwater contaminants, we conducted an in situ field study in a wastewater-contaminated aquifer on Cape Cod. Long-term (15 year) geochemical monitoring within the contaminant plume indicated interacting zones with variable nitrate-, Fe(II)-, phosphate-, As(V)-, and As(III)-containing groundwater. Nitrate and phosphate were derived predominantly from wastewater disposal, whereas Fe(II), As(III), and As(V) were mobilized from the aquifer sediments. Multiple natural gradient, anoxic tracer tests were conducted in which nitrate and bromide were injected into nitrate-free, Fe(II)-containing groundwater. Prior to injection, aqueous Fe(II) concentrations were approximately 175 μM, but sorbed Fe(II) accounted for greater than 90% of the total reactive Fe(II) in the aquifer. Nitrate reduction was stimulated within 1 m of transport for 100 μM and 1000 μM nitrate additions, initially producing stoichiometric quantities of nitrous oxide (>300 μM N). In subsequent injections at the same site, nitrate was reduced even more rapidly and produced less nitrous oxide, especially over longer transport distances. Fe(II) and nitrate concentrations decreased together and were accompanied by Fe(III) oxyhydroxide precipitation and decreases in dissolved phosphate, As(III), and As(V) concentrations. Nitrate N and O isotope fractionation effects during nitrate reduction were approximately equal (ε15N/ε18O = 1.11) and were similar to those reported for laboratory studies of biological nitrate reduction, including denitrification, but unlike some reported effects on nitrate by denitrification in aquifers. All constituents affected by the in situ tracer experiments returned to pre-injection levels after several weeks. Additionally, Fe(II)-oxidizing, nitrate-reducing microbial enrichment cultures were obtained from aquifer sediments. Growth experiments with the cultures sequentially produced nitrite and nitrous oxide from nitrate while simultaneously oxidizing Fe(II). Field and culture results suggest that nitrogen oxide reduction and Fe(II) oxidation in the aquifer are a complex interaction of coupled biotic and abiotic reactions. Overall, the results of this study demonstrate that anoxic nitrate-dependent iron oxidation can occur in groundwater; that it could control iron speciation; and that the process can impact the mobility of other chemical species (e.g., phosphate and arsenic) not directly involved in the oxidation-reduction reaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomaszewski, Elizabeth J.; Lee, Seungyeol; Rudolph, Jared
Chromium (Cr) is a toxic metal that causes a myriad of health problems and enters the environment as a result of anthropogenic activities and/or natural processes. The toxicity and solubility of chromium is linked to its oxidation state; Cr(III) is poorly soluble and relatively nontoxic, while Cr(VI) is soluble and a known carcinogen. Solid Fe(II) in iron-bearing minerals, such as pyrite, magnetite, and green rusts, reduce the oxidation state of chromium, reducing its toxicity and mobility. However, these minerals are not the only potential sources of solid-associated Fe(II) available for Cr(VI) reduction. For example, ferric (Fe(III)) (hydr)oxides, such as goethitemore » or hematite, can have Fe(II) in the solid without phase transformation; however, the reactivity of Fe(II) within Fe(III) (hydr)oxides with contaminants, has not been previously investigated. Here, we cyclically react goethite with dissolved Fe(II) followed by dissolved O2, leading to the formation of reactive Fe(II) associated with goethite. In separate reactors, the reactivity of this Fe(II) is probed under oxic conditions, by exposure to chromate (CrO42 -) after either one, two, three or four redox cycles. Cr is not present during redox cycling; rather, it is introduced to a subset of the solid after each oxidation half-cycle. Analysis of X-ray absorption near edge structure (XANES) spectra reveals that the extent of Cr(VI) reduction to Cr(III) depends not only on solid Fe(II) content but also surface area and mean size of ordered crystalline domains, determined by BET surface area analysis and X-ray diffraction (XRD), respectively. Shell-by-shell fitting of the extended X-ray absorption fine structure (EXAFS) spectra demonstrates chromium forms both single and double corner sharing complexes on the surface of goethite, in addition to sorbed Cr(III) species. Finally, transmission electron microscope (TEM) imaging and X-ray energy-dispersive spectroscopy (EDS) illustrate that Cr preferentially localizes on the (100) face of goethite, independent of the number of redox cycles goethite undergoes. This work demonstrates that under oxic conditions, solid Fe(II) associated with goethite resulting from rapid redox cycling is reactive and available for electron transfer to Cr(VI), suggesting Fe(III) (hydr)oxides may act as reservoirs of reactive electron density, even in oxygen saturated environments.« less
NASA Technical Reports Server (NTRS)
Johansson, Sveneric; Carpenter, Kenneth G.
1988-01-01
Two fluorescence processes operating in atmospheres of cool stars, symbiotic stars, and the Sun are presented. Two emission lines, at 1347.03 and 1360.17 A, are identified as fluorescence lines of Cr II and Fe II. The lines are due to transitions from highly excited levels, which are populated radiatively by the hydrogen Lyman alpha line due to accidental wavelength coincidences. Three energy levels, one in Cr II and two in Fe II, are reported.
Green Rust: Its Electrochemical Generation, Characterization, and Implications
2009-02-01
FeOOH), and lepidocrocite ( γ -FeOOH) in well-aerated systems, and hematite (α- Fe2O3 ) maghemite (δ- Fe2O3 ) or magnetite (Fe3O4) in oxygen-depleted...ferric hydroxides that belong to a family of minerals known as layered double hydroxides ( LDH ). Its general formula is [FeII(6-x) FeIIIx (OH)12]x+[Ax...of ferrous and ferric hydroxides that belong to a family of minerals known as layered double hydroxides ( LDH ). Its general formula is [FeII (6-x) FeIII
NASA Astrophysics Data System (ADS)
Druschel, Gregory K.; Emerson, David; Sutka, R.; Suchecki, P.; Luther, George W., III
2008-07-01
Neutrophilic iron oxidizing bacteria (FeOB) must actively compete with rapid abiotic processes governing Fe(II) oxidation and as a result have adapted to primarily inhabit low-O 2 environments where they can more successfully compete with abiotic Fe(II) oxidation. The spatial distribution of these microorganisms can be observed through the chemical gradients they affect, as measured using in situ voltammetric analysis for dissolved Fe(II), Fe(III), O 2, and FeS (aq). Field and laboratory determination of the chemical environments inhabited by the FeOB were coupled with detailed kinetic competition studies for abiotic and biotic oxidation processes using a pure culture of FeOB to quantify the geochemical niche these organisms inhabit. In gradient culture tubes, the maximum oxygen levels, which were associated with growth bands of Sideroxydans lithotrophicus (ES-1, a novel FeOB), were 15-50 μM. Kinetic measurements made on S. lithotrophicus compared biotic/abiotic (killed control) Fe oxidation rates. The biotic rate can be a significant and measurable fraction of the total Fe oxidation rate below O 2 concentrations of approximately 50 μM, but biotic Fe(II) oxidation (via the biotic/abiotic rate comparison) becomes difficult to detect at higher O 2 levels. These results are further supported by observations of conditions supporting FeOB communities in field settings. Variablity in cell densities and cellular activity as well as variations in hydrous ferrous oxide mineral quantities significantly affect the laboratory kinetic rates. The microbial habitat (or geochemical niche) where FeOB are active is thus largely controlled by the competition between abiotic and biotic kinetics, which are dependent on Fe(II) concentration, P O2, temperature and pH in addition to the surface area of hydrous ferric oxide minerals and the cell density/activity of FeOB. Additional field and lab culture observations suggest a potentially important role for the iron-sulfide aqueous molecular cluster, FeS (aq), in the overall cycling of iron associated with the environments these microorganisms inhabit.
NASA Astrophysics Data System (ADS)
Bhatt, Pramod; Mukadam, M. D.; Mandal, B. P.; Yusuf, S. M.
2018-04-01
The one-dimensional (1-D) single chain molecular magnet [{FeII(Δ)FeII(Λ)}0.5{CrII(Δ)CrII(Λ)}0.5(ox)2(phen)2] is hydrothermally synthesized using oxalate (ox) and phenanthroline (phen) ligands with transition metal ions (Fe and Cr). The compound is characterized using x-ray diffraction, dc magnetization measurements and P-E ferroelectric loop measurements. The diffraction analysis using Rietveld refinement confirms a single phase formation of the compound in monoclinic structure with space group of P21. The compound crystallizes in 1-D chain like structure containing two different crystallographic sites of metal ions (Δ- and Λ-), which are bridged by the ox ligand and Phen ligand. These two metals site are different in bond length and bond angles results lattice distortions. The lattice distortion induces ferroelectric behavior in the compound which is discussed in terms of lattice distortion induced dipole moments.
Dippon, Urs; Pantke, Claudia; Porsch, Katharina; Larese-Casanova, Phil; Kappler, Andreas
2012-06-19
The mobility of toxic metals and the transformation of organic pollutants in the environment are influenced and in many cases even controlled by iron minerals. Therefore knowing the factors influencing iron mineral formation and transformation by Fe(II)-oxidizing and Fe(III)-reducing bacteria is crucial for understanding the fate of contaminants and for the development of remediation technologies. In this study we followed mineral formation by the nitrate-reducing Fe(II)-oxidizing strain Acidovorax sp. BoFeN1 in the presence of the crystalline Fe(III) (oxyhydr)oxides goethite, magnetite and hematite added as potential nucleation sites. Mössbauer spectroscopy analysis of minerals precipitated by BoFeN1 in (57)Fe(II)-spiked microbial growth medium showed that goethite was formed in the absence of mineral additions as well as in the presence of goethite or hematite. The presence of magnetite minerals during Fe(II) oxidation induced the formation of magnetite in addition to goethite, while the addition of humic substances along with magnetite also led to goethite but no magnetite. This study showed that mineral formation not only depends on the aqueous geochemical conditions but can also be affected by the presence of mineral nucleation sites that initiate precipitation of the same underlying mineral phases.
Ferrate(VI) oxidation of zinc-cyanide complex.
Yngard, Ria; Damrongsiri, Seelawut; Osathaphan, Khemarath; Sharma, Virender K
2007-10-01
Zinc-cyanide complexes are found in gold mining effluents and in metal finishing rinse water. The effect of Zn(II) on the oxidation of cyanide by ferrate(VI) (Fe(VI)O(4)(2-), Fe(VI)) was thus investigated by studying the kinetics of the reaction of Fe(VI) with cyanide present in a potassium salt of a zinc cyanide complex (K(2)Zn(CN)(4)) and in a mixture of Zn(II) and cyanide solutions as a function of pH (9.0-11.0). The rate-law for the oxidation of Zn(CN)(4)(2-) by Fe(VI) was found to be -d[Fe(VI)]/dt=k[Fe(VI)][Zn(CN)(4)(2-)](0.5). The rate constant, k, decreased with an increase in pH. The effect of temperature (15-45 degrees C) on the oxidation was studied at pH 9.0, which gave an activation energy of 45.7+/-1.5kJmol(-1). The cyanide oxidation rate decreased in the presence of the Zn(II) ions. However, Zn(II) ions had no effect on the cyanide removal efficiency by Fe(VI) and the stoichiometry of Fe(VI) to cyanide was approximately 1:1; similar to the stoichiometry in absence of Zn(II) ions. The destruction of cyanide by Fe(VI) resulted in cyanate. The experiments on removal of cyanide from rinse water using Fe(VI) demonstrated complete conversion of cyanide to cyanate.
Pb(II) removal from water using Fe-coated bamboo charcoal with the assistance of microwaves.
Zhang, Zengsheng; Wang, Xuejiang; Wang, Yin; Xia, Siqing; Chen, Ling; Zhang, Yalei; Zhao, Jianfu
2013-05-01
Bamboo charcoal (BC) was used as starting material to prepare iron-modified bamboo charcoal (Fe-MBC) by its impregnation in FeCl3 and HNO3 solutions simultaneously, followed by microwave heating. The material can be used as an adsorbent for Pb(II) contaminants removal in water. The composites were prepared with Fe molar concentration of 0.5, 1.0 and 2.0 mol/L and characterized by means of N2 adsorption-desorption isotherms, X-ray diffraction spectroscopy (XRD), scanning electron microscopy coupled with energy dispersive X-ray spectrometry (SEM-EDS), Fourier transform infrared (FT-IR) and point of zero charge (pH(pzc)) measurements. Nitrogen adsorption analyses showed that the BET specific surface area and total pore volume increased with iron impregnation. The adsorbent with Fe molar concentration of 2 mol/L (2Fe-MBC) exhibited the highest surface area and produced the best pore structure. The Pb(II) adsorption process of 2Fe-MBC and BC were evaluated in batch experiments and 2Fe-MBC showed an excellent adsorption capability for removal Pb(II). The adsorption of Pb(II) strongly depended on solution pH, with maximum values at pH 5.0. The ionic strength had a significant effect on the adsorption at pH < 6.0. The adsorption isotherms followed the Langmuir isotherm model well, and the maximum adsorption capacity for Pb(II) was 200.38 mg/g for 2Fe-MBC. The adsorption processes were well fitted by a pseudo second-order kinetic model. Thermodynamic parameters showed that the adsorption of Pb(II) onto Fe-MBC was feasible, spontaneous, and exothermic under the studied conditions, and the ion exchange mechanism played an significant role. These results have important implications for the design of low-cost and effective adsorbents in the removal of Pb(II) from wastewater.
NASA Astrophysics Data System (ADS)
Zhang, Shuai; Nakano, Kazuhiko; Yu, Huimin; Shen, Zhongyao
2014-03-01
Reduction of Cd (II) in liquor by solid zero valent Fe nanoparticles (ZVFeNPs) is a liquid-solid biphasic reaction in which the reduction efficiency was often lowered by either aggregation of ZVFeNPs or coating of the generated ZVCd. In light of the filamentous nanostructure of bacteriophage M13 with ˜2700 copies of pVIII protein in delicate distribution at the coat, a novel dual dispersing reduction route was designed by introducing two different kinds of M13 with Fe-binding specificity (Fe-s-M13) and Cd-binding specificity (Cd-s-M13) to disperse ZVFeNPs and Cd (II) ions, respectively. The Fe-s-M13 was used for synthesis of the ZVFeNPs/Fe-s-M13 complex, where ZVFeNPs were uniformly dispersed into small nanoparticles (5-10 nm) on Fe-s-M13. The engineered Cd-s-M13, constructed by genetic recombination of pVIII through inserting the gene of a biopanned 7-mer Cd-specific peptide (SCPICPG) into the N-terminus of pVIII gene, was used for Cd (II) dispersion before reduction. The dispersed complex of Cd(II)/Cd-s-M13 was rapidly reduced by complex of ZVFeNPs/Fe-s-M13. Kinetics results showed that the initial reduction rate and final reduction ratio of Cd (II) increased by 35.7% and 16.4%, respectively, through dispersion of ZVFeNPs by Fe-s-M13; they improved again by 53.6% and 37.0%, respectively, through further dispersion of Cd (II) by Cd-s-M13. TEM and EDS results revealed that the acceleration effect of the dual dispersing reduction was arising from uniform dispersion of the small ZVFeNPs and separate deposition of the reduced ZVCd on the two different M13 phages.
Therien, Jesse B; Artz, Jacob H; Poudel, Saroj; Hamilton, Trinity L; Liu, Zhenfeng; Noone, Seth M; Adams, Michael W W; King, Paul W; Bryant, Donald A; Boyd, Eric S; Peters, John W
2017-01-01
The first generation of biochemical studies of complex, iron-sulfur-cluster-containing [FeFe]-hydrogenases and Mo-nitrogenase were carried out on enzymes purified from Clostridium pasteurianum (strain W5). Previous studies suggested that two distinct [FeFe]-hydrogenases are expressed differentially under nitrogen-fixing and non-nitrogen-fixing conditions. As a result, the first characterized [FeFe]-hydrogenase (CpI) is presumed to have a primary role in central metabolism, recycling reduced electron carriers that accumulate during fermentation via proton reduction. A role for capturing reducing equivalents released as hydrogen during nitrogen fixation has been proposed for the second hydrogenase, CpII. Biochemical characterization of CpI and CpII indicated CpI has extremely high hydrogen production activity in comparison to CpII, while CpII has elevated hydrogen oxidation activity in comparison to CpI when assayed under the same conditions. This suggests that these enzymes have evolved a catalytic bias to support their respective physiological functions. Using the published genome of C. pasteurianum (strain W5) hydrogenase sequences were identified, including the already known [NiFe]-hydrogenase, CpI, and CpII sequences, and a third hydrogenase, CpIII was identified in the genome as well. Quantitative real-time PCR experiments were performed in order to analyze transcript abundance of the hydrogenases under diazotrophic and non-diazotrophic growth conditions. There is a markedly reduced level of CpI gene expression together with concomitant increases in CpII gene expression under nitrogen-fixing conditions. Structure-based analyses of the CpI and CpII sequences reveal variations in their catalytic sites that may contribute to their alternative physiological roles. This work demonstrates that the physiological roles of CpI and CpII are to evolve and to consume hydrogen, respectively, in concurrence with their catalytic activities in vitro , with CpII capturing excess reducing equivalents under nitrogen fixation conditions. Comparison of the primary sequences of CpI and CpII and their homologs provides an initial basis for identifying key structural determinants that modulate hydrogen production and hydrogen oxidation activities.
Therien, Jesse B.; Artz, Jacob H.; Poudel, Saroj; ...
2017-07-12
Here, the first generation of biochemical studies of complex, iron-sulfur-cluster-containing [FeFe]-hydrogenases and Mo-nitrogenase were carried out on enzymes purified from Clostridium pasteurianum (strain W5). Previous studies suggested that two distinct [FeFe]-hydrogenases are expressed differentially under nitrogen-fixing and non-nitrogen-fixing conditions. As a result, the first characterized [FeFe]-hydrogenase (CpI) is presumed to have a primary role in central metabolism, recycling reduced electron carriers that accumulate during fermentation via proton reduction. A role for capturing reducing equivalents released as hydrogen during nitrogen fixation has been proposed for the second hydrogenase, CpII. Biochemical characterization of CpI and CpII indicated CpI has extremely high hydrogenmore » production activity in comparison to CpII, while CpII has elevated hydrogen oxidation activity in comparison to CpI when assayed under the same conditions. This suggests that these enzymes have evolved a catalytic bias to support their respective physiological functions. Using the published genome of C. pasteurianum (strain W5) hydrogenase sequences were identified, including the already known [NiFe]-hydrogenase, CpI, and CpII sequences, and a third hydrogenase, CpIII was identified in the genome as well. Quantitative real-time PCR experiments were performed in order to analyze transcript abundance of the hydrogenases under diazotrophic and non-diazotrophic growth conditions. There is a markedly reduced level of CpI gene expression together with concomitant increases in CpII gene expression under nitrogen-fixing conditions. Structure-based analyses of the CpI and CpII sequences reveal variations in their catalytic sites that may contribute to their alternative physiological roles. This work demonstrates that the physiological roles of CpI and CpII are to evolve and to consume hydrogen, respectively, in concurrence with their catalytic activities in vitro, with CpII capturing excess reducing equivalents under nitrogen fixation conditions. Comparison of the primary sequences of CpI and CpII and their homologs provides an initial basis for identifying key structural determinants that modulate hydrogen production and hydrogen oxidation activities.« less
Therien, Jesse B.; Artz, Jacob H.; Poudel, Saroj; Hamilton, Trinity L.; Liu, Zhenfeng; Noone, Seth M.; Adams, Michael W. W.; King, Paul W.; Bryant, Donald A.; Boyd, Eric S.; Peters, John W.
2017-01-01
The first generation of biochemical studies of complex, iron-sulfur-cluster-containing [FeFe]-hydrogenases and Mo-nitrogenase were carried out on enzymes purified from Clostridium pasteurianum (strain W5). Previous studies suggested that two distinct [FeFe]-hydrogenases are expressed differentially under nitrogen-fixing and non-nitrogen-fixing conditions. As a result, the first characterized [FeFe]-hydrogenase (CpI) is presumed to have a primary role in central metabolism, recycling reduced electron carriers that accumulate during fermentation via proton reduction. A role for capturing reducing equivalents released as hydrogen during nitrogen fixation has been proposed for the second hydrogenase, CpII. Biochemical characterization of CpI and CpII indicated CpI has extremely high hydrogen production activity in comparison to CpII, while CpII has elevated hydrogen oxidation activity in comparison to CpI when assayed under the same conditions. This suggests that these enzymes have evolved a catalytic bias to support their respective physiological functions. Using the published genome of C. pasteurianum (strain W5) hydrogenase sequences were identified, including the already known [NiFe]-hydrogenase, CpI, and CpII sequences, and a third hydrogenase, CpIII was identified in the genome as well. Quantitative real-time PCR experiments were performed in order to analyze transcript abundance of the hydrogenases under diazotrophic and non-diazotrophic growth conditions. There is a markedly reduced level of CpI gene expression together with concomitant increases in CpII gene expression under nitrogen-fixing conditions. Structure-based analyses of the CpI and CpII sequences reveal variations in their catalytic sites that may contribute to their alternative physiological roles. This work demonstrates that the physiological roles of CpI and CpII are to evolve and to consume hydrogen, respectively, in concurrence with their catalytic activities in vitro, with CpII capturing excess reducing equivalents under nitrogen fixation conditions. Comparison of the primary sequences of CpI and CpII and their homologs provides an initial basis for identifying key structural determinants that modulate hydrogen production and hydrogen oxidation activities. PMID:28747909
Panda, Rashmishree; Berlinguette, Curtis P; Zhang, Yugen; Holm, Richard H
2005-08-10
Synthesis of an analogue of the C-cluster of C. hydrogenoformans carbon monoxide dehydrogenase requires formation of a planar Ni(II) site and attachment of an exo iron atom in the core unit NiFe(4)S(5). The first objective has been achieved by two reactions: (i) displacement of Ph(3)P or Bu(t)()NC at tetrahedral Ni(II) sites of cubane-type [NiFe(3)S(4)](+) clusters with chelating diphosphines, and (ii) metal atom incorporation into a cuboidal [Fe(3)S(4)](0) cluster with a M(0) reactant in the presence of bis(1,2-dimethylphosphino)ethane (dmpe). The isolated product clusters [(dmpe)MFe(3)S(4)(LS(3))](2-) (M = Ni(II) (9), Pd(II) (12), Pt(II) (13); LS(3) = 1,3,5-tris((4,6-dimethyl-3-mercaptophenyl)thio)-2,4,6-tris(p-tolylthio)benzene(3-)) contain the cores [MFe(3)(mu(2)-S)(mu(3)-S)(3)](+) having planar M(II)P(2)S(2) sites and variable nonbonding M...S distances of 2.6-3.4 A. Reaction (i) involves a tetrahedral --> planar Ni(II) structural change between isomeric cubane and cubanoid [NiFe(3)S(4)](+) cores. Based on the magnetic properties of 12 and earlier considerations, the S = (5)/(2) ground state of the cubanoid cluster arises from the [Fe(3)S(4)](-) fragment, whereas the S = (3)/(2) ground state of the cubane cluster is a consequence of antiferromagnetic coupling between the spins of Ni(2+) (S = 1) and [Fe(3)S(4)](-). Other substitution reactions of [NiFe(3)S(4)](+) clusters and 1:3 site-differentiated [Fe(4)S(4)](2+) clusters are described, as are the structures of 12, 13, [(Me(3)P)NiFe(3)S(4)(LS(3))](2-), and [Fe(4)S(4)(LS(3))L'](2-) (L' = Me(2)NC(2)H(4)S(-), Ph(2)P(O)C(2)H(4)S(-)). This work significantly expands our initial report of cluster 9 (Panda et al. J. Am. Chem. Soc. 2004, 126, 6448-6459) and further demonstrates that a planar M(II) site can be stabilized within a cubanoid [NiFe(3)S(4)](+) core.
New detections of arsenic, selenium, and other heavy elements in two metal-poor stars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roederer, Ian U.; Schatz, Hendrik; Beers, Timothy C.
2014-08-10
We use the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope to obtain new high-quality spectra covering the 1900 ≤λ ≤ 2360 Å wavelength range for two metal-poor stars, HD 108317 and HD 128279. We derive abundances of Cu II, Zn II, As I, Se I, Mo II, and Cd II, which have not been detected previously in either star. Abundances derived for Ge I, Te I, Os II, and Pt I confirm those derived from lines at longer wavelengths. We also derive upper limits from the non-detection of W II, Hg II, Pb II, and Bi I.more » The mean [As/Fe] ratio derived from these two stars and five others in the literature is unchanged over the metallicity range –2.8 < [Fe/H] <–0.6, ([As/Fe]) = +0.28 ± 0.14 (σ = 0.36 dex). The mean [Se/Fe] ratio derived from these two stars and six others in the literature is also constant, ([Se/Fe]) = +0.16 ± 0.09 (σ = 0.26 dex). The As and Se abundances are enhanced relative to a simple extrapolation of the iron-peak abundances to higher masses, suggesting that this mass region (75 ≤A ≤ 82) may be the point at which a different nucleosynthetic mechanism begins to dominate the quasi-equilibrium α-rich freezeout of the iron peak. ([Cu II/Cu I]) = +0.56 ± 0.23 in HD 108317 and HD 128279, and we infer that lines of Cu I may not be formed in local thermodynamic equilibrium in these stars. The [Zn/Fe], [Mo/Fe], [Cd/Fe], and [Os/Fe] ratios are also derived from neutral and ionized species, and each ratio pair agrees within the mutual uncertainties, which range from 0.15 to 0.52 dex.« less
NASA Astrophysics Data System (ADS)
Bose, S.; Thrash, J. C.; Coates, J. D.
2008-12-01
Iron oxidation is a novel anaerobic metabolism where microorganisms obtain reducing equivalents from the oxidization of Fe(II) and assimilate carbon from organic carbon compounds or CO2. Recent evidence indicates that in combination with the activity of dissimilatory Fe(III)-reducing bacteria, anaerobic microbial Fe(II) oxidation can also contribute to the global iron redox cycle. Studies have also proved that Fe(II)- oxidation is ubiquitous in diverse environments and produce a broad range of insoluble iron forms as end products. These biogenic Fe(III)-oxides and mixed valence Fe minerals have a very high adsorption capacity of heavy metals and radionuclides. Adsorption and immobilization by these biogenic Fe phases produced at circumneutral pH, is now considered a very effective mode of remediation of radionuclides like Uranium, especially under variable redox conditions. By coupling soluble and insoluble Fe(II) oxidation with nitrate and perchlorate as terminal electron acceptors in-situ, anaerobic Fe-oxidation can also be used for environmental cleanup of Fe through Fe-mineral precipitation, as well as nitrate and perchlorate through reduction. Coupling of Fe as the sole electron and energy source to the reduction of perchlorate or nitrate boosts the metabolism without building up biomass hence also taking care of biofouling. To understand the mechanisms by which microorganisms can grow at circumneutral pH by mesophilic, anaerobic iron oxidation and the ability of microorganisms to reduce nitrate and perchlorate coupled to iron oxidation recent work in our lab involved the physiological characterization of Dechlorospirillum strain VDY which was capable of anaerobic iron-oxidation with either nitrate or perchlorate serving as terminal electron acceptor. Under non-growth conditions, VDY oxidized 3mM Fe(II) coupled to nitrate reduction, and 2mM Fe(II) coupled to perchlorate reduction, in 24 hours. It contained a copy of the RuBisCO cbbM subunit gene which was differentially regulated. With perchlorate as the sole terminal electron acceptor, cbbM was expressed under autotrophic growth with hydrogen as the electron donor but not during heterotrophic growth on acetate, indicating a putative carbon-fixation pathway. Similarly, Ferrutens uranioxidens strain 2002 was also capable of autotrophic growth during nitrate-dependent iron oxidation, although the carbon fixation pathway has yet to be identified. Anoxic XPRD analysis of the biogenic end products of nitrate-dependent Fe(II) oxidation by Diaphorobacter sp. strain TPSY and strain 2002 indicated the gradual appearance of green rust (GR II) with cacoxenite and lepidocrocite from the precursor vivianite over 81 days. SEM and TEM showed the presence of hexagonal plate like crystals surrounding the bacterial cells whose morphology closely resembled GR II, indicating a very low redox potential and a weakly acidic to weakly basic pH. Mixotrophic growth incubations of strain TPSY with 1, 5 and 10 mM Fe(II) showed markedly different end products. The identity of the mineral phases and the reason behind this difference is currently under investigation.
Oxidation of aquatic pollutants by ferrous-oxalate complexes under dark aerobic conditions.
Lee, Jaesang; Kim, Jungwon; Choi, Wonyong
2014-06-15
This study evaluates the ability of Fe(II)-oxalate complexes for the generation of OH through oxygen reduction and the oxidative degradation of aquatic pollutants under dark aerobic conditions (i.e., with oxygen but without light). The degradation of 4-chlorophenol (4-CP) was rapid in the mixture of Fe(2+) and oxalate prepared using ultrapure water, but was absent without either Fe(2+) or oxalate. The formation of Fe(II)-oxalate complexes enables two-electron reduction of oxygen to generate H2O2 and subsequent production of OH. The significant inhibition of 4-CP degradation in the presence of H2O2 and OH scavenger confirms such mechanisms. The degradation experiments with varying [Fe(2+)], [oxalate], and initial pH demonstrated that the degradation rate depends on [Fe(II)(Ox)2(2-)], but the degree of degradation is primarily determined by [Fe(II)(Ox)2(2-)]+[Fe(II)(Ox)(0)]. Efficient degradation of diverse aquatic pollutants, especially phenolic pollutants, was observed in the Fe(II)-oxalate complexes system, wherein the oxidation efficacy was primarily correlated with the reaction rate constant between pollutant and OH. The effect of various organic ligands (oxalate, citrate, EDTA, malonate, and acetate) on the degradation kinetics of 4-CP was investigated. The highest efficiency of oxalate for the oxidative degradation is attributed to its high capability to enhance the reducing power and low reactivity with OH. Copyright © 2014 Elsevier B.V. All rights reserved.
Photoreduction fuels biogeochemical cycling of iron in Spain's acid rivers
Gammons, C.H.; Nimick, D.A.; Parker, S.R.; Snyder, D.M.; McCleskey, R. Blaine; Amils, R.; Poulson, S.R.
2008-01-01
A number of investigations have shown that photoreduction of Fe(III) causes midday accumulations of dissolved Fe(II) in rivers and lakes, leading to large diel (24-h) fluctuations in the concentration and speciation of total dissolved iron. Less well appreciated is the importance of photoreduction in providing chemical energy for bacteria to thrive in low pH waters. Diel variations in water chemistry from the highly acidic (pH 2.3 to 3.1) Ri??o Tinto, Ri??o Odiel, and Ri??o Agrio of southwestern Spain (Iberian Pyrite Belt) resulted in daytime increases in Fe(II) concentration of 15 to 66????M at four diel sampling locations. Dissolved Fe(II) concentrations increased with solar radiation, and one of the stream sites showed an antithetic relationship between dissolved Fe(II) and Fe(III) concentrations; both results are consistent with photoreduction. The diel data were used to estimate rates of microbially catalyzed Fe(II) oxidation (1 to 3??nmol L- 1 s- 1) and maximum rates of Fe(III) photoreduction (1.7 to 4.3??nmol L- 1 s- 1). Bioenergetic calculations indicate that the latter rates are sufficient to build up a population of Fe-oxidizing bacteria to the levels observed in the Ri??o Tinto in about 30??days. We conclude that photoreduction plays an important role in the bioenergetics of the bacterial communities of these acidic rivers, which have previously been shown to be dominated by autotrophic Fe(II)-oxidizers such as Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans. Given the possibility of the previous existence of acidic, Fe(III)-rich water on Mars, photoreduction may be an important process on other planets, a fact that could have implications to astrobiological research. ?? 2008 Elsevier B.V. All rights reserved.
Youngvises, Napaporn; Suwannasaroj, Kittigan; Jakmunee, Jaroon; AlSuhaimi, Awadh
2017-05-01
Multi-reverse flow injection analysis (Mr-FIA) integrated with multi-optical sensor was developed and optimized for the simultaneous determination of multi ions; Mn(II), Fe(II), Cu(II) and Fe(III) in water samples. The sample/standard solutions were propelled making use of a four channels peristaltic pump whereas 4 colorimetric reagents specific for the metal ions were separately injected in sample streams using multi-syringe pump. The color zones that formed in the individual mixing coils were then streamed into multi-channels spectrometer, which comprised of four flows through cell and four pairs of light emitting diode and photodiode, whereby signals were measured concurrently. The linearity range (along with detection limit, µgL -1 ) was 0.050-3.0(16), 0.30-2.0 (11), 0.050-1.0(12) and 0.10-1.0(50)mgL -1 , for Mn(II), Fe(II), Cu(II) and Fe(III), respectively. In the interim, the correlation coefficients were 0.9924-0.9942. The percentages relative standard deviation was less than 3. The proposed system was applied successfully to determine targeted metal ions simultaneously in natural water with high sample throughput and low reagent consumption, thus it satisfies the criteria of Green Analytical Chemistry (GAC) and its goals. Copyright © 2016 Elsevier B.V. All rights reserved.
Synthesis of nanometer-sized fayalite and magnesium-iron(II) mixture olivines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qafoku, Odeta; Ilton, Eugene S.; Bowden, Mark E.
Olivines are divalent orthosilicates with important geologic, biological, and industrial significance and are typically comprised of mixtures of Mg2+ and Fe2+ ranging from forsterite (Mg2SiO4) to fayalite (Fe2SiO4). Investigating the role of Fe(II) in olivine reactivity requires the ability to synthesize olivines that are nanometer-sized, have different percentages of Mg2+ and Fe2+, and have good bulk and surface purity. This article demonstrates a new method for synthesizing nanosized fayalite and Mg-Fe mixture olivines. First, carbonaceous precursors are generated from sucrose, PVA, colloidal silica, Mg2+, and Fe3+. Second, these precursors are calcined in air to burn carbon and create mixtures ofmore » Fe(III)-oxides, forsterite, and SiO2. Finally, calcination in reducing CO-CO2 gas buffer leads to Fe(II)-rich olivines. XRD, Mössbauer, and IR analyses verify good bulk purity and composition. XPS indicates that surface iron is in its reduced Fe(II) form, and surface Si is consistent with olivine. SEM shows particle sizes predominately between 50 and 450 nm, and BET surface areas are 2.8-4.2 m2/g. STEM HAADF analysis demonstrates even distributions of Mg and Fe among the available M1 and M2 sites of the olivine crystals. These nanosized Fe(II)-rich olivines are suitable for laboratory studies with in situ probes that require mineral samples with high reactivity at short timescales.« less
The role of copper and oxalate in the redox cycling of iron in atmospheric waters
NASA Astrophysics Data System (ADS)
Sedlak, David L.; Hoigné, Jürg
During daytime, the redox cycling of dissolved iron compounds in atmospheric waters, and the related in-cloud transformations of photooxidants, are affected by reactions of Fe and Cu with hydroperoxy (HO 2) and superoxide (O 2-) radicals and the photoreduction of Fe(III)-oxalato complexes. We have investigated several of the important chemical reactions in this redox cycle, through laboratory simulation of the system, using γ-radiation to produce HO 2/O 2-. At concentrations comparable to those measured in atmospheric waters, the redox cycling of Fe was dramatically affected by the presence of oxalate and trace concentrations of Cu. At concentrations more than a hundred times lower than Fe, Cu consumed most of the HO 2/O 2-, and cycled between the Cu(II) and Cu(I) forms. Cu + reacted with FeOH 2+ to produce Fe(II) and Cu(II), with a second order rate constant of approximately 3 × 10 7 M -1s -1. The presence of oxalate resulted in the formation of Fe(III)-oxalato complexes that were essentially unreactive with HO 2/O 2-. Only at high oxalate concentrations was the Fe(II)C 2O 4 complex also formed, and it reacted relatively rapidly with hydrogen peroxide ( k = (3.1 ± 0.6) × 10 4 M -1s -1). Simulations incorporating measurements for other redox mechanisms, including oxidation by ozone, indicate that, during daytime, Fe should be found mostly in the ferrous oxidation state, and that reactions of FeOH 2+ with Cu(I) and HO 2/O 2-, and to a lesser degree, the photolysis of Fe(III)-oxalato complexes, are important mechanisms of Fe reduction in atmospheric waters. The catalytic effect of Cu(II)/Cu(I) and Fe(III)/Fe(II) should also significantly increase the sink function of the atmospheric liquid phase for HO 2 present in a cloud. A simple kinetic model for the reactions of Fe, Cu and HO 2/O 2-, accurately predicted the changes in Fe oxidation states that occurred when authentic fogwater samples were exposed to HO 2/O 2-.
Fujinami, Takeshi; Nishi, Koshiro; Matsumoto, Naohide; Iijima, Seiichiro; Halcrow, Malcolm A; Sunatsuki, Yukinari; Kojima, Masaaki
2011-12-07
Two Fe(II) complexes fac-[Fe(II)(HL(n-Pr))(3)]Cl·Y (Y = AsF(6) (1) and BF(4) (2)) were synthesized, where HL(n-Pr) is 2-methylimidazole-4-yl-methylideneamino-n-propyl. Each complex-cation has the same octahedral N(6) geometry coordinated by three bidentate ligands and assumes facial-isomerism, fac-[Fe(II)(HL(n-Pr))(3)](2+) with Δ- and Λ-enantiomorphs. Three imidazole groups per Δ- or Λ-fac-[Fe(II)(HL(n-Pr))(3)](2+) are hydrogen-bonded to three Cl(-) ions or, from the viewpoint of the Cl(-) ion, one Cl(-) ion is hydrogen-bonded to three neighbouring fac-[Fe(II)(HL(n-Pr))(3)](2+) cations. The 3 : 3 NH···Cl(-) hydrogen bonds between Δ- or Λ-fac-[Fe(II)(HL(n-Pr))(3)](2+) and Cl(-) generate two kinds of assembly structures. The directions of the 3 : 3 NH···Cl(-) hydrogen bonds and hence the resulting assembly structures are determined by the size of the anion Y, though Y is not involved into the network structure and just accommodated in the cavity. Compound 1 has a 1D ladder structure giving a larger cavity, in which the Δ- and Λ-fac-[Fe(II)(HL(n-Pr))(3)](2+) enantiomorphs are bridged by two NH···Cl(-) hydrogen bonds. Compound 2 has a 2D network structure with a net unit of a cyclic trimer of {fac-[Fe(II)(HL(n-Pr))(3)](2+)···Cl(-)}(3) giving a smaller cavity, in which Δ- or Λ-fac-[Fe(II)(HL(n-Pr))(3)](2+) species with the same chirality are linked by NH···Cl(-) hydrogen bonds to give a homochiral 2D network structure. Magnetic susceptibility and Mössbauer spectral measurements demonstrated that compound 1 showed an abrupt one-step spin crossover with 4.0 K thermal hysteresis of T(c↓) = 125.5 K and T(c↑) = 129.5 K and compound 2 showed no spin transition and stayed in the high-spin state over the 5-300 K temperature range.
Structure Characterization and Properties of K-Containing Copper Hexacyanoferrate
Ojwang, Dickson O.; Grins, Jekabs; Wardecki, Dariusz; ...
2016-06-03
Copper hexacyanoferrate, Cu II[Fe III(CN) 6] 2/3 nH 2O, was synthesized, and varied amounts of K + ions were inserted via reduction by K 2S 2O 3 (aq). Ideally, the reaction can be written as Cu II[Fe III(CN) 6] 2/3∙ nH 2O + 2x/3K + + 2x/3e⁻ ↔K 2x/3Cu II[Fe II xFe III 1- x(CN) 6] 2/3 nH 2O. Infrared, Raman, and Mössbauer spectroscopy studies show that Fe III is continuously reduced to Fe II with increasing x, accompanied by a decrease of the a-axis of the cubic Fmore » $$m\\bar{3}$$m unit cell. Elemental analysis of K by inductively coupled plasma shows that the insertion only begins when a significant fraction, ~20% of the Fe III, has already been reduced. Thermogravimetric analysis shows a fast exchange of water with ambient atmosphere and a total weight loss of ~26 wt % upon heating to 180 °C, above which the structure starts to decompose. The crystal structures of Cu II[Fe III(CN) 6] 2/3∙ nH 2O and K 2/3Cu[Fe(CN) 6] 2/3∙ nH 2O were refined using synchrotron X-ray powder diffraction data. In both, one-third of the Fe(CN) 6 groups are vacant, and the octahedron around Cu II is completed by water molecules. In the two structures, difference Fourier maps reveal three additional zeolitic water sites (8c, 32f, and 48g) in the center of the cavities formed by the Cu N C Fe framework. In conclusion, the K-containing compound shows an increased electron density at two of these sites (32f and 48g), indicating them to be the preferred positions for the K + ions.« less
Ferritin ion channel disorder inhibits Fe(II)/O2 reactivity at distant sites.
Tosha, Takehiko; Behera, Rabindra K; Theil, Elizabeth C
2012-11-05
Ferritins, a complex, mineralized, protein nanocage family essential for life, provide iron concentrates and oxidant protection. Protein-based ion channels and Fe(II)/O(2) catalysis initiate conversion of thousands of Fe atoms to caged, ferritin Fe(2)O(3)·H(2)O minerals. The ion channels consist of six helical segments, contributed by 3 of 12 or 24 polypeptide subunits, around the 3-fold cage axes. The channel structure guides entering Fe(II) ions toward multiple, catalytic, diiron sites buried inside ferritin protein helices, ~20 Å away from channel internal exits. The catalytic product, Fe(III)-O(H)-Fe(III), is a mineral precursor; mineral nucleation begins inside the protein cage with mineral growth in the central protein cavity (5-8 nm diameter). Amino acid substitutions that changed ionic or hydrophobic channel interactions R72D, D122R, and L134P increased ion channel structural disorder (protein crystallographic analyses) and increased Fe(II) exit [chelated Fe(II) after ferric mineral reduction/dissolution]. Since substitutions of some channel carboxylate residues diminished ferritin catalysis with no effect on Fe(II) exit, such as E130A and D127A, we investigated catalysis in ferritins with altered Fe(II) exit, R72D, D122R and L134P. The results indicate that simply changing the ionic properties of the channels, as in the R72D variant, need not change the forward catalytic rate. However, both D122R and L134P, which had dramatic effects on ferritin catalysis, also caused larger effects on channel structure and order, contrasting with R72D. All three amino acid substitutions, however, decreased the stability of the catalytic intermediate, diferric peroxo, even though overall ferritin cage structure is very stable, resisting 80 °C and 6 M urea. The localized structural changes in ferritin subdomains that affect ferritin function over long distances illustrate new properties of the protein cage in natural ferritin function and for applied ferritin uses.
Xiang, Bo; Ling, Dong; Lou, Han; Gu, Hongbo
2017-03-05
A functionalized magnetic nickel ferrite/manganese dioxide (NiFe 2 O 4 /MnO 2 ) with 3D hierarchical flower-like and core-shell structure was synthesized by a facile hydrothermal approach and applied for the removal of Pb(II) ions from aqueous solutions. Batch adsorption experiments were conducted to study the effect of solution pH, initial Pb(II) concentration, and dose of absorbents on the Pb(II) removal by NiFe 2 O 4 /MnO 2 . The NiFe 2 O 4 /MnO 2 nanocomposites showed the fast Pb(II) adsorption performance with the maximum adsorption capacity of 85.78mgg -1 . The adsorption kinetics of Pb(II) onto NiFe 2 O 4 /MnO 2 obeyed a pseudo-second-order model. The isothermal experimental results indicated that the Langmuir model was fitted better than the Freundlich model, illustrating a monolayer adsorption process for Pb(II) onto NiFe 2 O 4 /MnO 2 . Meanwhile, the NiFe 2 O 4 /MnO 2 was easily separated from the solution by an external magnet within a short period of time and still exhibited almost 80% removal capacity after six regenerations. The NiFe 2 O 4 /MnO 2 is expected to be a new promising adsorbent for heavy metal removal. Copyright © 2016 Elsevier B.V. All rights reserved.
Jung, Bahngmi; Batchelor, Bill
2008-03-01
Transformation of 1,1,2,2-tetrachloroethane (1,1,2,2-TeCA) by Fe(II) in 10% cement slurries was characterized using a batch reactor system. 1,1,2,2-TeCA was completely converted to trichloroethylene (TCE) within 1h in all experiments, even in controls with cement that did not include Fe(II). Therefore, complete degradation of 1,1,2,2-TeCA depends on the behavior of TCE. The half-life of TCE was observed to be 15d when concentrations of Fe(II) and 1,1,2,2-TeCA were 98mM and 0.245mM, respectively. The kinetics of TCE removal was observed to be dependent on Fe(II) dose, pH and initial substrate concentration. Pseudo-first-order rate constants linearly increased with Fe(II) dose up to 198mM when initial target concentration was 0.245mM. Pseudo-first-order kinetics generally described the degradation reactions of TCE at a specific initial concentration, but a modified Langmuir-Hinshelwood model was necessary to describe the degradation kinetics of TCE over a wide range of initial concentrations. A surface reaction of TCE on active solids, which were formed from Fe(II) and products of cement hydration appears to control observed TCE degradation kinetics.
Ito, Fumiya; Nishiyama, Takahiro; Shi, Lei; Mori, Masahiko; Hirayama, Tasuku; Nagasawa, Hideko; Yasui, Hiroyuki; Toyokuni, Shinya
2016-08-05
Iron is an essential nutrient for every type of life on earth. However, excess iron is cytotoxic and can lead to an increased cancer risk in humans. Catalytic ferrous iron [Fe(II)] is an initiator of the Fenton reaction, which causes oxidative stress by generating hydroxyl radicals. Recently, it became possible to localize catalytic Fe(II) in situ with a turn-on fluorescent probe, RhoNox-1. Here, we screened each organ/cell of rats to globally evaluate the distribution of catalytic Fe(II) and found that eosinophils showed the highest abundance. In various cells, lysosomes were the major organelle, sharing ∼40-80% of RhoNox-1 fluorescence. We then used an ovalbumin-induced allergic peritonitis model to study the dynamics of catalytic Fe(II). Peritoneal lavage revealed that the total iron contents per cell were significantly decreased, whereas an increase in the number of inflammatory cells (macrophages, neutrophils, eosinophils and lymphocytes) resulted in an increased total iron content of the peritoneal inflammatory cells. Notably, macrophages, eosinophils and neutrophils exhibited significantly increased catalytic Fe(II) with increased DMT1 expression and decreased ferritin expression, though catalytic Fe(II) was significantly decreased in the peritoneal lavage fluid. In conclusion, catalytic Fe(II) in situ more directly reflects cellular activity and the accompanying pathology than total iron does. Copyright © 2016 Elsevier Inc. All rights reserved.
Nitric oxide activation by distal redox modulation in tetranuclear iron nitrosyl complexes.
de Ruiter, Graham; Thompson, Niklas B; Lionetti, Davide; Agapie, Theodor
2015-11-11
A series of tetranuclear iron complexes displaying a site-differentiated metal center was synthesized. Three of the metal centers are coordinated to our previously reported ligand, based on a 1,3,5-triarylbenzene motif with nitrogen and oxygen donors. The fourth (apical) iron center is coordinatively unsaturated and appended to the trinuclear core through three bridging pyrazolates and an interstitial μ4-oxide moiety. Electrochemical studies of complex [LFe3(PhPz)3OFe][OTf]2 revealed three reversible redox events assigned to the Fe(II)4/Fe(II)3Fe(III) (-1.733 V), Fe(II)3Fe(III)/Fe(II)2Fe(III)2 (-0.727 V), and Fe(II)2Fe(III)2/Fe(II)Fe(III)3 (0.018 V) redox couples. Combined Mössbauer and crystallographic studies indicate that the change in oxidation state is exclusively localized at the triiron core, without changing the oxidation state of the apical metal center. This phenomenon is assigned to differences in the coordination environment of the two metal sites and provides a strategy for storing electron and hole equivalents without affecting the oxidation state of the coordinatively unsaturated metal. The presence of a ligand-binding site allowed the effect of redox modulation on nitric oxide activation by an Fe(II) metal center to be studied. Treatment of the clusters with nitric oxide resulted in binding of NO to the apical iron center, generating a {FeNO}(7) moiety. As with the NO-free precursors, the three reversible redox events are localized at the iron centers distal from the NO ligand. Altering the redox state of the triiron core resulted in significant change in the NO stretching frequency, by as much as 100 cm(-1). The increased activation of NO is attributed to structural changes within the clusters, in particular, those related to the interaction of the metal centers with the interstitial atom. The differences in NO activation were further shown to lead to differential reactivity, with NO disproportionation and N2O formation performed by the more electron-rich cluster.
Berber, Hale; Alpdogan, Güzin
2017-01-01
In this study, poly(glycidyl methacrylate-methyl methacrylate-divinylbenzene) was synthesized in the form of microspheres, and then functionalized by 2-aminobenzothiazole ligand. The sorption properties of these functionalized microspheres were investigated for separation, preconcentration and determination of Al(III), Fe(II), Co(II), Cu(II), Cd(II) and Pb(II) ions using flame atomic absorption spectrometry. The optimum pH values for quantitative sorption were 2 - 4, 5 - 8, 6 - 8, 4 - 6, 2 - 6 and 2 - 3 for Al(III), Fe(II), Co(II), Cu(II), Cd(II) and Pb(II), respectively, and also the highest sorption capacity of the functionalized microspheres was found to be for Cu(II) with the value of 1.87 mmol g -1 . The detection limits (3σ; N = 6) obtained for the studied metals in the optimal conditions were observed in the range of 0.26 - 2.20 μg L -1 . The proposed method was successfully applied to different beverage samples for the determination of Al(III), Fe(II), Co(II), Cu(II), Cd(II) and Pb(II) ions, with the relative standard deviation of <3.7%.
Effects of tillage on the Fe oxides activation in soil
NASA Astrophysics Data System (ADS)
Chi, Guangyu; Chen, Xin; Shi, Yi; Wang, Jun; Zheng, Taihui
2009-07-01
Since mid-1950s, the wetland ecosystems in Sanjiang Plain of Northeast China have been experiencing greater changes in land use, which had negative effects on the soil environments. This study assessed the effects of soil tillage on the activation of soil Fe in the region. The test ecosystems included natural wetland, paddy field and upland field converted from wetland. Soil samples at the depths of 0-10 cm, 10-20 cm, 20-30 cm, 30-40 cm, 40-60 cm, 60-90 cm and 90-120 cm were collected from each of the ecosystems for the analysis of vertical distribution of soil pH, organic carbon, chelate Fe oxides and Fe(II). The results showed that the conversion of wetland into paddy field and upland field induced a decrease of organic carbon content in 0-10 cm soil layer by 61.8% (P <0.05) and 70.0% (P < 0.05), respectively. The correlations among iron forms and soil organic carbon showed that chelate Fe oxides and Fe(II) was correlated positively with soil organic carbon and chelate ratio had a more positive relationship with organic carbon than chelate Fe oxides and Fe(II). The results of chelate Fe oxides, Fe(II) and chelate ratio of Fe suggested that reclamation could prevent the Fe activation and organic matter is credited for having an important influence on the process of Fe activation.
Mihucz, Victor G; Csog, Árpád; Fodor, Ferenc; Tatár, Enikő; Szoboszlai, Norbert; Silaghi-Dumitrescu, Luminiţa; Záray, Gyula
2012-04-15
Poplar (Populus jacquemontiana var. glauca cv. Kopeczkii) was grown in hydroponics containing 10 μM Cd(II), Ni(II) or Pb(II), and Fe as Fe(III) EDTA or Fe(III) citrate in identical concentrations. The present study was designed to compare the accumulation and distribution of Fe, Cd, Ni and Pb within the different plant compartments. Generally, Fe and heavy-metal accumulation were higher by factor 2-7 and 1.6-3.3, respectively, when Fe(III) citrate was used. Iron transport towards the shoot depended on the Fe(III) chelate and, generally, on the heavy metal used. Lead was accumulated only in the root. The amounts of Fe and heavy metals accumulated by poplar were very similar to those of cucumber grown in an identical way, indicating strong Fe uptake regulation of these two Strategy I plants: a cultivar and a woody plant. The Strategy I Fe uptake mechanism (i.e. reducing Fe(III) followed by Fe(II) uptake), together with the Fe(III) chelate form in the nutrient solution had significant effects on Fe and heavy metal uptake. Poplar appears to show phytoremediation potential for Cd and Ni, as their transport towards the shoot was characterized by 51-54% and 26-48% depending on the Fe(III) supply in the nutrient solution. Copyright © 2012 Elsevier GmbH. All rights reserved.
Debaryomyces hansenii: A Model System for Marine Molecular Biology
1991-12-31
Gajadhar et al. 1991), Plasmodium berghei (Gunderson et al. 1986), Oytricha nova (Elwood et al. 1985), Paramecium terraurelia (Sogin and Elwood, 1986...berg J Paramecium tenaurelia Dyctelioniiw discoideum 0.1 II -ifTorzdospra delbrueckii 52 Can&&d glabrata Saccharomyces cerevisiae 98 Kluyveromyces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Yun; Kukkadapu, Ravi K.; Livi, Kenneth J. T.
The redox state and speciation of metalloid arsenic (As) determine its toxicity and mobility. Knowledge of biogeochemical processes influencing the As redox state is therefore important to understand and predict its environmental behavior. Many previous studies examined As(III) oxidation by various Mn-oxides, but little is known the environmental influences (e.g. co-existing ions) on such process. In this study, we investigated the mechanisms of As(III) oxidation by a poorly crystalline hexagonal birnessite (δ-MnO2) in the presence of Fe(II) using X-ray absorption spectroscopy (XAS), Mössbauer spectroscopy and transmission electron microscopy (TEM) coupled with energy-dispersive X-ray spectroscopy (EDS). As K-edge X-ray absorption nearmore » edge spectroscopy (XANES) analysis revealed that, at low Fe(II) concentration (100 μM), As(V) was the predominant As species on the solid phase, while at higher Fe(II) concentration (200-1000 μM), both As(III) and As(V) were sorbed on the solid phase. As K-edge extended X-ray absorption fine structure spectroscopy (EXAFS) analysis showed an increasing As-Mn/Fe distance over time, indicating As prefers to bind with the newly formed Fe(III)-(hydr)oxides. As adsorbed on Fe(III)-(hydr)oxides as a bidentate binuclear corner-sharing complex. Both Mössbauer and TEM-EDS investigations demonstrated that the oxidized Fe(III) products formed during Fe(II) oxidation by δ-MnO2 were predominantly ferrihydrite, goethite, and ferric arsenate like compounds. However, Fe EXAFS analysis also suggested the formation of a small amount of lepidocrocite. The Mn K-edge XANES data indicated that As(III) and Fe(II) oxidation occurs as a two electron transfer with δ-MnO2 and the observed Mn(III) is due to conproportionation of surface sorbed Mn(II) with Mn(IV) in δ-MnO2 structure. This study reveals that the mechanisms of As(III) oxidation by δ-MnO2 in the presence of Fe(II) are very complex, involving many simultaneous reactions, and the formation of Fe(III)-(hydr)oxides plays a very important role in reducing As mobility.« less
Vertical distribution of Fe and Fe(III)-reducing bacteria in the sediments of Lake Donghu, China.
Tian, Cuicui; Wang, Chunbo; Tian, Yingying; Wu, Xingqiang; Xiao, Bangding
2015-08-01
In lake sediments, iron (Fe) is the most versatile element, and the redox cycling of Fe has a wide influence on the biogeochemical cycling of organic and inorganic substances. The aim of the present study was to analyze the vertical distribution of Fe and Fe(III)-reducing bacteria (FeRB) in the surface sediment (30 cm) of Lake Donghu, China. At the 3 sites we surveyed, FeRB and Fe(II)-oxidizing bacteria (FeOB) coexisted in anoxic sediments. Geobacter-related FeRB accounted for 5%-31% of the total Bacteria, while Gallionella-related FeOB accounted for only 0.1%-1.3%. A significant correlation between the relative abundance of poorly crystalline Fe and Geobacter spp. suggested that poorly crystalline Fe favored microbial Fe(III) reduction. Poorly crystalline Fe and Geobacter spp. were significantly associated with solid-phase Fe(II) and total inorganic phosphorus levels. Pore water Fe(II) concentrations negatively correlated with NO3(-) at all sites. We concluded that Geobacter spp. were abundant in the sediments of Lake Donghu, and the redox of Fe might participate in the cycling of nitrogen and phosphorus in sediments. These observations provided insight into the roles of microbial Fe cycling in lake sediments.
Mejia, Jacqueline; Roden, Eric E; Ginder-Vogel, Matthew
2016-04-05
Oscillations between reducing and oxidizing conditions are observed at the interface of anaerobic/oxic and anaerobic/anoxic environments, and are often stimulated by an alternating flux of electron donors (e.g., organic carbon) and electron acceptors (e.g., O2 and NO3(-)). In iron (Fe) rich soils and sediments, these oscillations may stimulate the growth of both Fe-reducing bacteria (FeRB) and Fe-oxidizing bacteria (FeOB), and their metabolism may induce cycling between Fe(II) and Fe(III), promoting the transformation of Fe (hydr)oxide minerals. Here, we examine the mineralogical evolution of lepidocrocite and ferrihydrite, and the adaptation of a natural microbial community to alternating Fe-reducing (anaerobic with addition of glucose) and Fe-oxidizing (with addition of nitrate or air) conditions. The growth of FeRB (e.g., Geobacter) is stimulated under anaerobic conditions in the presence of glucose. However, the abundance of these organisms depends on the availability of Fe(III) (hydr)oxides. Redox cycling with nitrate results in decreased Fe(II) oxidation thereby decreasing the availability of Fe(III) for FeRB. Additionally, magnetite is detected as the main product of both lepidocrocite and ferrihydrite reduction. In contrast, introduction of air results in increased Fe(II) oxidation, increasing the availability of Fe(III) and the abundance of Geobacter. In the lepidocrocite reactors, Fe(II) oxidation by dissolved O2 promotes the formation of ferrihydrite and lepidocrocite, whereas in the ferrihydrite reactors we observe a decrease in magnetite stoichiometry (e.g., oxidation). Understanding Fe (hydr)oxide transformation under environmentally relevant redox cycling conditions provides insight into nutrient availability and transport, contaminant mobility, and microbial metabolism in soils and sediments.
NASA Astrophysics Data System (ADS)
Parenteau, M.; Jahnke, L. L.; Cady, S. L.; Pierson, B.
2011-12-01
Banded Iron Formations (BIFs) are widespread Precambrian sedimentary deposits that accumulated in deep ocean basins or shallow platformal areas with inputs of reduced iron (Fe(II)) and silica from deep ocean hydrothermal activity. There is debate as to whether abiotic or biotic mechanisms were responsible for the oxidation of aqueous Fe(II) and the subsequent accumulation of ferric iron (Fe(III)) mineral assemblages in BIFs. Biotic Fe(II) oxidation could have occurred indirectly as a result of the photosynthetic production of oxygen by cyanobacteria, or could have been directly mediated by anoxygenic phototrophs or chemolithotrophs. The anoxygenic use of Fe(II) as an electron donor for photosynthesis has also been hypothesized in cyanobacteria, representing another biotic mechanism by which Fe(II) could be oxidized in BIFs. This type of photoferrotrophic metabolism may also represent a key step in the evolution of oxygenic photosynthesis. Members of our group have speculated that an intermediate reductant such as Fe(II) could have acted as a transitional electron donor before water. The widespread abundance of Fe(II) in Archean and Neoproterozoic ferruginous oceans would have made it particularly suitable as an electron donor for photosynthesis. We have been searching for modern descendants of such an ancestral "missing link" cyanobacterium in the phototrophic mats at Chocolate Pots, a hot spring in Yellowstone National Park with a constant outflow of anoxic Fe(II)-rich thermal water. Our physiological ecology study of the Synechococcus-Chloroflexi mat using C-14 bicarbonate uptake and autoradiography experiments revealed that the cyanobacteria grow anoxygenically using Fe(II) as an electron donor for photosynthesis in situ. An initial set of similar experiments substituting C-13 bicarbonate as the tracer was used to characterize labeling of the community lipid biomarker signature and confirm the C-14 results. Under light conditions with and without Fe(II), the C-13 label was greatly enriched in the cyanobacterial lipid biomarker n-heptadecane, while dark controls showed no incorporation. No significant incorporation was noted in the Chloroflexi lipid biomarker wax esters, suggesting that Chloroflexus and Roseiflexus grow as photoheterotrophs in these mats. A complimentary study of the microbial biosignatures produced in these mats revealed iron-permineralized carbonaceous microfossils of the candidate photoferrotrophs. Diagnostic lipid biomarkers of the cyanobacteria included n-heptadecane, mid-chain branched mono- and dimethyl analogs and, most notably, 2-methylhopanoids. Wax esters and a long chain tri-unsaturated alkene were proxies for the Chloroflexi. Our work has for the first time identified 2-methylhopanoids in a modern iron-mineralized cyanobacterial mat where the cyanobacteria have been shown to grow anoxygenically using Fe(II) as an electron donor for photosynthesis. We are also currently screening the JGI Yellowstone Community Sequencing Project metagenomic data from this mat for the molecular basis of this type of photoferrotrophic metabolism.
Bacterial Fe(II) oxidation distinguished by long-range correlation in redox potential
NASA Astrophysics Data System (ADS)
Enright, Allison M. L.; Ferris, F. Grant
2016-05-01
The kinetics of bacterial Fe(II) oxidation was investigated 297 m underground at the Äspö Hard Rock Laboratory (near Oskarshamn, Sweden) under steady state groundwater flow conditions in a flow-through cell containing well-developed flocculent mats of bacteriogenic iron oxides (BIOS). Pseudo first-order rate constants of 0.004 min-1 and 0.009 min-1 were obtained for chemical and bacterial Fe(II) oxidation, respectively, based on the 104 min retention time of groundwater in the flow cell, inlet Fe(II) concentration of 21.0 ± 0.5 µm, outlet Fe(II) concentration of 8.5 ± 0.7 µm, as well as constant pH = - log H+ of 7.42 ± 0.01, dissolved O2 concentration of 0.11 ± 0.01 mg/L, and groundwater temperature of 12.4 ± 0.1°C. Redox potential was lower at the BIOS-free inlet (-135.4 ± 1.16 mV) compared to inside BIOS within the flow cell (-112.6 ± 1.91 mV), consistent with the Nernst relationship and oxidation of Fe(II) to Fe(III). Further evaluation of the redox potential time series data using detrended fluctuation analysis (DFA) revealed power law scaling in the amplitude of fluctuations over increasing intervals of time with significantly different (p < 0.01) DFA α scaling exponents of 1.89 ± 0.03 for BIOS and 1.67 ± 0.06 at the inlet. These α values not only signal the presence of long-range correlation in the redox potential time series measurements but also distinguish between the slower rate of chemical Fe(II) oxidation at the inlet and faster rate accelerated by FeOB in BIOS.
Influence of Oxalate on Ni Fate during Fe(II)-Catalyzed Recrystallization of Hematite and Goethite.
Flynn, Elaine D; Catalano, Jeffrey G
2018-06-05
During biogeochemical iron cycling at redox interfaces, dissolved Fe(II) induces the recrystallization of Fe(III) oxides. Oxalate and other organic acids promote dissolution of these minerals and may also induce recrystallization. These processes may redistribute trace metals among the mineral bulk, mineral surface, and aqueous solution. However, the impact of interactions among organic acids, dissolved Fe(II), and iron oxide minerals on trace metal fate in such systems is unclear. The present study thus explores the effect of oxalate on Ni release from and incorporation into hematite and goethite in the absence and presence of Fe(II). When Ni is initially structurally incorporated into the iron oxides, both oxalate and dissolved Fe(II) promote the release of Ni to aqueous solution. When both species are present, their effects on Ni release are synergistic at pH 7 but inhibitory at pH 4, indicating that cooperative and competitive interactions vary with pH. In contrast, oxalate suppresses Ni incorporation into goethite and hematite during Fe(II)-induced recrystallization, decreasing the proportion of Ni substituting in a mineral structure by up to 36%. These observations suggest that at redox interfaces oxalate largely enhances trace metal mobility. In such settings, oxalate, and likely other organic acids, may thus enhance micronutrient availability and inhibit contaminant sequestration.
Bai, Yaohui; Chang, Yangyang; Liang, Jinsong; Chen, Chen; Qu, Jiuhui
2016-12-01
High concentrations of iron (Fe(II)) and manganese (Mn(II)) often occur simultaneously in groundwater. Previously, we demonstrated that Fe(II) and Mn(II) could be oxidized to biogenic Fe-Mn oxides (BFMO) via aeration and microbial oxidation, and the formed BFMO could further oxidize and adsorb other pollutants (e.g., arsenic (As(III)) and antimony (Sb(III))). To apply this finding to groundwater remediation, we established four quartz-sand columns for treating groundwater containing Fe(II), Mn(II), As(III), and Sb(III). A Mn-oxidizing bacterium (Pseudomonas sp. QJX-1) was inoculated into two parallel bioaugmented columns. Long-term treatment (120 d) showed that bioaugmentation accelerated the formation of Fe-Mn oxides, resulting in an increase in As and Sb removal. The bioaugmented columns also exhibited higher overall treatment effect and anti-shock load capacity than that of the non-bioaugmented columns. To clarify the causal relationship between the microbial community and treatment effect, we compared the biomass of active bacteria (reverse-transcribed real-time PCR), bacterial community composition (Miseq 16S rRNA sequencing) and community function (metagenomic sequencing) between the bioaugmented and non-bioaugmented columns. Results indicated that the QJX1 strain grew steadily and attached onto the filter material surface in the bioaugmented columns. In general, the inoculated strain did not significantly alter the composition of the indigenous bacterial community, but did improve the relative abundances of xenobiotic metabolism genes and Mn oxidation gene. Thus, bioaugmentation intensified microbial degradation/utilization for the direct removal of pollutants and increased the formation of Fe-Mn oxides for the indirect removal of pollutants. Our study provides an alternative method for the treatment of groundwater containing high Fe(II), Mn(II) and As/Sb. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hamada-Kanazawa, Michiko; Kouda, Makiko; Odani, Akira; Matsuyama, Kaori; Kanazawa, Kiyoka; Hasegawa, Tatsuya; Narahara, Masanori; Miyake, Masaharu
2010-01-01
The compound beta-citryl-L-glutamate (beta-CG) was initially isolated from developing brains, while it has also been found in high concentrations in testes and eyes. However, its functional roles are unclear. To evaluate its coordination with metal ions, we performed pH titration experiments. The stability constant, logbeta(pqr) for M(p)(beta-CG)(q)H(r) was calculated from pH titration data, which showed that beta-CG forms relatively strong complexes with Fe(III), Cu(II), Fe(II) and Zn(II). beta-CG was also found able to solubilize Fe more effectively from Fe(OH)(2) than from Fe(OH)(3). Therefore, we examined the effects of beta-CG on Fe-dependent reactive oxygen species (ROS)-generating systems, as well as the potential ROS-scavenging activities of beta-CG and metal ion-(beta-CG) complexes. beta-CG inhibited the Fe-dependent degradation of deoxyribose and Fe-dependent damage to DNA or plasmid DNA in a dose-dependent manner, whereas it had no effect on Cu-mediated DNA damage. In addition, thermodynamic data showed that beta-CG in a physiological pH solution is an Fe(II) chelator rather than an Fe(III) chelator. Taken together, these findings suggest that beta-CG is an endogenous low molecular weight Fe chelator.
Fe uptake from meso and D,L-racemic Fe(o,o-EDDHA) isomers by strategy I and II plants.
Cerdán, Mar; Alcañiz, Sara; Juárez, Margarita; Jordá, Juana D; Bermúdez, Dolores
2006-02-22
One of the most efficient fertilizers to correct Fe deficiency in calcareous soils and waters with high bicarbonate content is based on ferric ethylenediamine-N,N'-bis(o-hydroxyphenylacetic) acid [Fe(o,o-EDDHA)]. Fe(o,o-EDDHA) forms two groups of geometric isomers known as meso and D,L-racemic. To determine the Fe uptake from meso and D,L-racemic Fe(o,o-EDDHA), four iron-efficient plants, two plants representative of strategy I (tomato and pepper) and two plants representative of strategy II (wheat and oats), were grown in hydroponic culture. Results indicated that strategy II plants took up iron from both Fe(o,o-EDDHA) isomers equally. However, strategy I plants took mainly the iron associated with the meso form (the lowest stability isomer).
Lee, Ying Ping; Fujii, Manabu; Kikuchi, Tetsuro; Natsuike, Masafumi; Ito, Hiroaki; Watanabe, Toru; Yoshimura, Chihiro
2017-08-01
Ferrous iron (Fe[II]) oxidation by dissolved oxygen was investigated in the Shizugawa Bay watershed with particular attention given to the effect of dissolved organic matter (DOM) properties on Fe(II) oxidation. To cover a wide spectrum of DOM composition, water samples were collected from various water sources including freshwater (e.g., river water and wastewater effluent) and coastal seawater. Measurement of nanomolar Fe(II) oxidation by using luminol chemiluminescence under dark, air-saturated conditions at 25 °C indicated that spatio-temporal variation of the second-order rate constant (6.7-74.5 M -1 s -1 ) was partially explained by the variation of the sample pH (7.5-8.6). However, at comparable pH values, the oxidation rates for freshwater were generally greater than those for coastal seawater. The substantial decline in oxidation rate constant after the removal of humic-type (allochthonous) DOM suggested that this hydrophobic DOM is a key factor that accelerates the Fe(II) oxidation in the freshwater samples. Observed lower oxidation rates for coastal seawater compared with freshwater and organic ligand-free seawater were likely associated with microbially derived autochthonous DOM, and the variation of Fe(II) oxidation at a fixed pH was best described by fluorescence index that represents the proportion of autochthonous and allochthonous DOM in natural waters. Consistently, Fe(II) oxidation was found to be slower in the presence of cellular exudates from phytoplankton. The present study highlighted the significant effect of DOM composition on the Fe(II) oxidation in inland and coastal waters. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yin, Ruichuan; Mo, Jiezhen; Dai, Jiayin; Wang, Hailin
2017-06-16
Ten-eleven translocation (Tet) family proteins are Fe(II)- and 2-oxoglutarate-dependent dioxygenases that regulate the dynamics of DNA methylation by catalyzing the oxidation of DNA 5-methylcytosine (5mC). To exert physiologically important functions, redox-active iron chelated in the catalytic center of Tet proteins directly involves the oxidation of the multiple substrates. To understand the function and interaction network of Tet dioxygenases, it is interesting to obtain high affinity and a specific inhibitor. Surprisingly, here we found that natural Ni(II) ion can bind to the Fe(II)-chelating motif (HXD) with an affinity of 7.5-fold as high as Fe(II). Consistently, we further found that Ni(II) ion can displace the cofactor Fe(II) of Tet dioxygenases and inhibit Tet-mediated 5mC oxidation activity with an estimated IC 50 of 1.2 μM. Essentially, Ni(II) can be used as a high affinity and selective inhibitor to explore the function and dynamics of Tet proteins.
Scott, Durelle T.; Runkel, Robert L.; McKnight, Diane M.; Voelker, Bettina M.; Kimball, Briant A.; Carraway, Elizabeth R.
2003-01-01
An in-stream injection of two dissolved organic acids (phthalic and aspartic acids) was performed in an acidic mountain stream to assess the effects of organic acids on Fe photoreduction and H2O2 cycling. Results indicate that the fate of Fe is dependent on a net balance of oxidative and reductive processes, which can vary over a distance of several meters due to changes in incident light and other factors. Solution phase photoreduction rates were high in sunlit reaches and were enhanced by the organic acid addition but were also limited by the amount of ferric iron present in the water column. Fe oxide photoreduction from the streambed and colloids within the water column resulted in an increase in the diurnal load of total filterable Fe within the experimental reach, which also responded to increases in light and organic acids. Our results also suggest that Fe(II) oxidation increased in response to the organic acids, with the result of offsetting the increase in Fe(II) from photoreductive processes. Fe(II) was rapidly oxidized to Fe(III) after sunset and during the day within a well-shaded reach, presumably through microbial oxidation. H2O 2, a product of dissolved organic matter photolysis, increased downstream to maximum concentrations of 0.25 ??M midday. Kinetic calculations show that the buildup of H2O2 is controlled by reaction with Fe(III), but this has only a small effect on Fe(II) because of the small formation rates of H2O2 compared to those of Fe(II). The results demonstrate the importance of incorporating the effects of light and dissolved organic carbon into Fe reactive transport models to further our understanding of the fate of Fe in streams and lakes.
The flat bottomed lines of Vega
NASA Astrophysics Data System (ADS)
Monier, R.; Gebran, M.; Royer, F.; Kılıcoǧlu, T.
2017-12-01
Using one high dispersion high quality spectrum of Vega (HR7001, A0V) obtained with the échelle spectrograph SOPHIE at Observatoire de Haute Provence, we have measured the centroids of 149 flat bottomed lines. The model atmosphere and spectrum synthesis modeling of the spectrum of Vega allows us to provide identifications for all these lines. Most of these lines are due to C I, O I, Mg I, Al I, Ca I, Sc II,Ti II, Cr I, Cr II, Mn I, Fe I, Fe II, Sr II, Ba II, the large majority being due to neutral species, in particular Fe I.
NASA Astrophysics Data System (ADS)
Szabó, László; Herman, Krisztian; Leopold, Nicolae; Buzumurgă, Claudia; Chiş, Vasile
2011-06-01
The surface-enhanced Raman scattering (SERS) spectra of Eriochrome Black T (EBT) and its Cu(II), Fe(III), Mn(II) and Pb(II) complexes were recorded using a hydroxylamine reduced silver colloid. Molecular geometry optimization, molecular electrostatic potential (MEP) distribution and vibrational frequencies calculation were performed at B3LYP/6-31G(d) level of theory for the EBT molecule and its Cu(EBT), Fe(EBT) and Mn(EBT) metal complexes. Differentiation between EBT complexes of Cu(II), Fe(III), Mn(II) and Pb(II) is shown by the SERS spectral features of each complex.
Zhang, Qingchun; Jin, Bo; Shi, Zhaotao; Wang, Xiaofang; Lei, Shan; Tang, Xingyan; Liang, Hua; Liu, Qiangqiang; Gong, Mei; Peng, Rufang
2017-06-01
A new tris(dopamine) derivative, containing three dopamine chelate moieties which were attached to a trimesic acid molecular scaffold, has been prepared and fully characterized by NMR, FTIR and HRMS. The solution thermodynamic stability of the chelator with Fe(III), Mg(II), Zn(II) and Fe(II) ions was investigated. Results demonstrated that the chelator exhibited effective binding ability and improved selectivity to Fe(III) ion. The chelator possessed affinity similar to that of diethylenetriaminepentaacetic acid chelator for Fe(III) ion. The high affinity could be attributed to the favorable geometric arrangement between the chelator and Fe(III) ion coordination preference. The chelator also exhibited high antioxidant activity and nontoxicity to neuron-like rat pheochromocytoma cells. Hence, the chelator could be used as chelating agent for iron overload situations without depleting essential metal ions, such as Mg(II) and Zn(II) ions. Copyright © 2017. Published by Elsevier Inc.
Dhifet, Mondher; Belkhiria, Mohamed Salah; Daran, Jean-Claude; Nasri, Habib
2009-07-22
As part of a systematic investigation for a number of Fe(II) porphyrin complexes used as biomimetic models for cytochrome P450, crystals of the title compound, [K(C(18)H(36)N(2)O(6))][Fe(II)(C(64)H(64)N(8)O(4))(HS)], were prepared. The compound exhibits a non-planar conformation with major ruffling and saddling distortions. The average equatorial iron-pyrrole N atom [Fe-N(p) = 2.102 (2) Å] bond length and the distance between the Fe(II) atom and the 24-atom core of the porphyrin ring (Fe-P(C)= 0.558 Å) are typical for high-spin iron(II) penta-coordinate porphyrinates. One of the tert-butyl groups in the structure is disordered over two sets with occupancies of 0.84 and 0.16.
Nanoparticulate mackinawite formation; a stopped and continuous flow XANES and EXAFS investigation
NASA Astrophysics Data System (ADS)
Butler, I. B.; Bell, A. M.; Charnock, J. M.; Rickard, D.; Vaughan, D. J.; Oldroyd, A.
2009-12-01
The sequestration of sulfur and iron within sedimentary iron sulfides, and ultimately as pyrite, is a major sink in global biogeochemical cycles of those elements and has impacts on global carbon and oxygen cycles. The formation of the metastable black iron (II) monosulfide mackinawite is a key process because mackinawite forms in aqueous solutions where the Fe(II) and S(-II) IAP exceeds mackinawite’s Ksp. Mackinawite is the first formed iron sulfide phase, a consequence of Ostwald’s step rule and is a reactant phase during the formation of thermodynamically stable sedimentary iron sulfide minerals such as pyrite. The reaction of dissolved Fe(II) and sulfide is extremely fast and reactions in the environmentally significant near-neutral pH range tend to completion in <1 second. We have combined stopped and continuous flow techniques with X-ray absorption spectroscopy to evaluate the products of the fast precipitation kinetics of mackinawite over millisecond timescales. EXAFS spectra and data collected during flow experiments were compared with those from a well characterised freeze-dried nanoparticulate mackinawite standard and with published data. Published work has used Rietveld crystal structure refinement to determine bond distances of 2.2558 and 2.5976Å for Fe-S and Fe-Fe respectively. In our experiments Fe K edge XANES is consistent with tetrahedrally coordinated Fe in the precipitated sulfide phase. EXAFS data show that local Fe-S and Fe-Fe coordination and interatomic distances (Fe-S = 2.24Å; Fe-Fe = 2.57Å) are consistent with those determined for the standard mackinawite and published data. The coordination and spacing are developed in the precipitated phase after <10ms reaction at pH5, and considerably faster in experiments at near neutral to alkaline pH. No evidence for phases structurally intermediate between hexaqua Fe(II) and precipitated mackinawite was observed. Aqueous FeS° cluster complexes previously identified as intermediates during mackinawite formation and iron sulfide mineral transformations did not contribute significantly to the EXAFS spectra collected. For environmental, geological and biogeochemical applications, the precipitation of the mineral mackinawite can be considered to proceed rapidly from aqueous Fe(II) and S(-II) ions to the nanoparticulate crystalline mineral. The materials labelled “disordered mackinawite”, or “amorphous FeS” phase which have been widely quoted in the iron sulfide literature do not form at any stage of the precipitation of mackinawite from aqueous solutions. Physical and chemical properties previously ascribed to an amorphous or disordered structure are a consequence of the nanoparticulate form of the first precipitated solid.
Phototrophic Fe(II)-oxidation in the chemocline of a ferruginous meromictic lake
Walter, Xavier A.; Picazo, Antonio; Miracle, Maria R.; Vicente, Eduardo; Camacho, Antonio; Aragno, Michel; Zopfi, Jakob
2014-01-01
Precambrian Banded Iron Formation (BIF) deposition was conventionally attributed to the precipitation of iron-oxides resulting from the abiotic reaction of ferrous iron (Fe(II)) with photosynthetically produced oxygen. Earliest traces of oxygen date from 2.7 Ga, thus raising questions as to what may have caused BIF precipitation before oxygenic photosynthesis evolved. The discovery of anoxygenic phototrophic bacteria thriving through the oxidation of Fe(II) has provided support for a biological origin for some BIFs, but despite reports suggesting that anoxygenic phototrophs may oxidize Fe(II) in the environment, a model ecosystem of an ancient ocean where they are demonstrably active was lacking. Here we show that anoxygenic phototrophic bacteria contribute to Fe(II) oxidation in the water column of the ferruginous sulfate-poor, meromictic lake La Cruz (Spain). We observed in-situ photoferrotrophic activity through stimulation of phototrophic carbon uptake in the presence of Fe(II), and determined light-dependent Fe(II)-oxidation by the natural chemocline microbiota. Moreover, a photoferrotrophic bacterium most closely related to Chlorobium ferrooxidans was enriched from the ferruginous water column. Our study for the first time demonstrates a direct link between anoxygenic photoferrotrophy and the anoxic precipitation of Fe(III)-oxides in a ferruginous water column, providing a plausible mechanism for the bacterial origin of BIFs before the advent of free oxygen. However, photoferrotrophs represent only a minor fraction of the anoxygenic phototrophic community with the majority apparently thriving by sulfur cycling, despite the very low sulfur content in the ferruginous chemocline of Lake La Cruz. PMID:25538702
MID-INFRARED SPECTROSCOPIC OBSERVATIONS OF THE DUST-FORMING CLASSICAL NOVA V2676 OPH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawakita, Hideyo; Arai, Akira; Shinnaka, Yoshiharu
2017-02-01
The dust-forming nova V2676 Oph is unique in that it was the first nova to provide evidence of C{sub 2} and CN molecules during its near-maximum phase and evidence of CO molecules during its early decline phase. Observations of this nova have revealed the slow evolution of its lightcurves and have also shown low isotopic ratios of carbon ({sup 12}C/{sup 13}C) and nitrogen ({sup 14}N/{sup 15}N) in its envelope. These behaviors indicate that the white dwarf (WD) star hosting V2676 Oph is a CO-rich WD rather than an ONe-rich WD (typically larger in mass than the former). We performed mid-infraredmore » spectroscopic and photometric observations of V2676 Oph in 2013 and 2014 (respectively 452 and 782 days after its discovery). No significant [Ne ii] emission at 12.8 μ m was detected at either epoch. These provided evidence for a CO-rich WD star hosting V2676 Oph. Both carbon-rich and oxygen-rich grains were detected in addition to an unidentified infrared feature at 11.4 μ m originating from polycyclic aromatic hydrocarbon molecules or hydrogenated amorphous carbon grains in the envelope of V2676 Oph.« less
NASA Astrophysics Data System (ADS)
Arakaki, T.; Kinjo, M.; Shiroma, K.; Shibata, M.; Miyake, T.; Hirakawa, T.; Sakugawa, H.
2003-12-01
Hydroxyl radical formation was studied by detecting concentration of formate in solutions of hydrated formaldehyde, HOOH, and Fe(III) or Cu(II). Oxidation of hydrated formaldehyde by OH radical is known to form formate. Formate formation increased by about 4 times when the solution underwent freezing and thawing. Although the reaction mechanisms are not clearly understood, we believe that the concentration effect of freezing enhanced the catalytic reactions between HOOH and Fe(III) or Cu(II) and the reduction of transition metals, i.e., Fe(III) to Fe(II) and Cu(II) to Cu(I). The concentration effect also enhanced reactions between Fe(II) and HOOH or Cu(I) and HOOH, which generated OH radical (freeze-Fenton reaction). Study of the effects of pH showed that formate formation was the highest at pH = 4.0, indicating that the speciation of Fe(III) affected the formation of formate. Concentration-dependent experiments demonstrated that Fe is probably the limiting agent under typical atmospheric conditions. Our results suggested that the freezing process could be an important source of hydroxyl radical in high cloud, winter fog, rime ice and freezing acidic rain, and more importantly, a potentially additional oxidation mechanism in the atmosphere.
Xu, Lingshun; Wu, Zongfang; Jin, Yuekang; Ma, Yunsheng; Huang, Weixin
2013-08-07
We have employed XPS and TDS to study the adsorption and surface reactions of H2O, CO and HCOOH on an FeO(111)/Pt(111) inverse model catalyst. The FeO(111)-Pt(111) interface of the FeO(111)/Pt(111) inverse model catalyst exposes coordination-unsaturated Fe(II) cations (Fe(II)CUS) and the Fe(II)CUS cations are capable of modifying the reactivity of neighbouring Pt sites. Water facilely dissociates on the Fe(II)CUS cations at the FeO(111)-Pt(111) interface to form hydroxyls that react to form both water and H2 upon heating. Hydroxyls on the Fe(II)CUS cations can react with CO(a) on the neighbouring Pt(111) sites to produce CO2 at low temperatures. Hydroxyls act as the co-catalyst in the CO oxidation by hydroxyls to CO2 (PROX reaction), while they act as one of the reactants in the CO oxidation by hydroxyls to CO2 and H2 (WGS reaction), and the recombinative reaction of hydroxyls to produce H2 is the rate-limiting step in the WGS reaction. A comparison of reaction behaviors between the interfacial CO(a) + OH reaction and the formate decomposition reaction suggest that formate is the likely surface intermediate of the CO(a) + OH reaction. These results provide some solid experimental evidence for the associative reaction mechanism of WGS and PROX reactions catalyzed by Pt/oxide catalysts.
Oscillator strengths for ionized iron and manganese
NASA Technical Reports Server (NTRS)
De Boer, K. S.; Pottasch, S. R.; Morton, D. C.; York, D. G.
1974-01-01
The observed strengths of interstellar absorption lines of Fe II and Mn II in the spectra of alpha Vir, beta Cen, pi Sco, and zeta Oph along with laboratory f values of some of these lines between 2343 and 2606 A have been used to determine curves of growth for these ions and the f-values of ten lines of Fe II and three lines of Mn II between 1055 and 1261 A. The Fe and Mn abundances are derived.
NASA Astrophysics Data System (ADS)
Gauger, Tina; Konhauser, Kurt; Kappler, Andreas
2016-04-01
Due to the lack of an ozone layer in the Archean, ultraviolet radiation (UVR) reached early Earth's surface almost unattenuated; as a consequence, a terrestrial biosphere in the form of biological soil crusts would have been highly susceptible to lethal doses of irradiation. However, a self-produced external screen in the form of nanoparticular Fe(III) minerals could have effectively protected those early microorganisms. In this study, we use viability studies by quantifying colony-forming units (CFUs), as well as Fe(II) oxidation and nitrate reduction rates, to show that encrustation in biogenic and abiogenic Fe(III) minerals can protect a common soil bacteria such as the nitrate-reducing Fe(II)-oxidizing microorganisms Acidovorax sp. strain BoFeN1 and strain 2AN from harmful UVC radiation. Analysis of DNA damage by quantifying cyclobutane pyrimidine dimers (CPD) confirmed the protecting effect by Fe(III) minerals. This study suggests that Fe(II)-oxidizing microorganisms, as would have grown in association with mafic and ultramafic soils/outcrops, would have been able to produce their own UV screen, enabling them to live in terrestrial habitats on early Earth.
Gauger, Tina; Konhauser, Kurt; Kappler, Andreas
2016-04-01
Due to the lack of an ozone layer in the Archean, ultraviolet radiation (UVR) reached early Earth's surface almost unattenuated; as a consequence, a terrestrial biosphere in the form of biological soil crusts would have been highly susceptible to lethal doses of irradiation. However, a self-produced external screen in the form of nanoparticular Fe(III) minerals could have effectively protected those early microorganisms. In this study, we use viability studies by quantifying colony-forming units (CFUs), as well as Fe(II) oxidation and nitrate reduction rates, to show that encrustation in biogenic and abiogenic Fe(III) minerals can protect a common soil bacteria such as the nitrate-reducing Fe(II)-oxidizing microorganisms Acidovorax sp. strain BoFeN1 and strain 2AN from harmful UVC radiation. Analysis of DNA damage by quantifying cyclobutane pyrimidine dimers (CPD) confirmed the protecting effect by Fe(III) minerals. This study suggests that Fe(II)-oxidizing microorganisms, as would have grown in association with mafic and ultramafic soils/outcrops, would have been able to produce their own UV screen, enabling them to live in terrestrial habitats on early Earth.
Jouanneau, Y; Duport, C; Meyer, C; Gaillard, J
1992-01-01
The 7Fe ferredoxin of Rhodobacter capsulatus (FdII) could be expressed in Escherichia coli by cloning the fdxA gene coding for FdII downstream from the lac promoter. The expressed recombinant ferredoxin appeared as a brown protein which was specifically recognized in E. coli cell-free extracts by anti-FdII serum. The purified recombinant ferredoxin was indistinguishable from R. capsulatus FdII on the basis of its molecular, redox and spectroscopic properties. These results indicate that the [3Fe-4S] and [4Fe-4S] clusters were correctly inserted into the recombinant ferredoxin. Images Fig. 2. PMID:1325780
Sandwich-like nano-system for simultaneous removal of Cr(VI) and Cd(II) from water and soil.
Wang, Dongfang; Zhang, Guilong; Dai, Zhangyu; Zhou, Linglin; Bian, Po; Zheng, Kang; Wu, Zhengyan; Cai, Dongqing
2018-05-07
In this work, a novel nano-system with sandwich-like structure was synthesized via face-to-face combination of two pieces of waste cotton fabrics (CFs) carrying ferrous sulfide (FeS) and carboxyl-functionalized ferroferric oxide (CFFM) respectively, and the obtained nano system was named as FeS/CFFM/CF. Therein, FeS has high reduction and adsorption capabilities for hexavalent chromium (Cr(VI)), CFFM possesses a high adsorption ability on cadmium ion (Cd(II)) through electrostatics attraction and chelation, and CF displays high immobilization ability for FeS and CFFM and adsorption performance on Cd(II). FeS/CFFM/CF could simultaneously remove Cr(VI) and Cd(II) from water, inhibit the uptake of Cr and Cd by fish and water spinach, ensuring the food safety. Besides, this technology could efficiently control migration of Cr(VI) and Cd(II) in sand-soil mixture, which was favorable to prevent their wide diffusion. Importantly, FeS/CFFM/CF possessed a high flexibility and could be conveniently produced with needed scale and shape, and easily separated from water and soil, displaying a promising approach to remediate Cr(VI)/Cd(II)-contaminated water and soil and a huge application potential.
Park, Sunhwa; Kim, Dong-Hun; Lee, Ji-Hoon; Hur, Hor-Gil
2014-10-01
Ferrous iron has been known to function as an electron source for iron-oxidizing microorganisms in both anoxic and oxic environments. A diversity of bacteria has been known to oxidize both soluble and solid-phase Fe(II) forms coupled to the reduction of nitrate. Here, we show for the first time Fe(II) oxidation by Sphaerotilus natans strain DSM 6575(T) under mixotrophic condition. Sphaerotilus natans has been known to form a sheath structure enclosing long chains of rod-shaped cells, resulting in a thick biofilm formation under oxic conditions. Here, we also demonstrate that strain DSM 6575(T) grows mixotrophically with pyruvate, Fe(II) as electron donors and nitrate as an electron acceptor and single cells of strain DSM 6575(T) are dominant under anoxic conditions. Furthermore, strain DSM 6575(T) forms nanoball-shaped amorphous Fe(III) oxide minerals encrusting on the cell surfaces through the mixotrophic iron oxidation reaction under anoxic conditions. We propose that cell encrustation results from the indirect Fe(II) oxidation by biogenic nitrite during nitrate reduction and that causes the bacterial morphological change to individual rod-shaped single cells from filamentous sheath structures. This study extends the group of existing microorganisms capable of mixotrophic Fe(II) oxidation by a new strain, S. natans strain DSM 6575(T) , and could contribute to biogeochemical cycles of Fe and N in the environment. © 2014 The Authors. FEMS Microbiology Ecology published by John Wiley & Sons Ltd on behalf of Federation of European Microbiological Societies.
[Fe(III)(dmbpy)(CN)4]-: a new building block for designing single-chain magnets.
Toma, Luminita Marilena; Pasán, Jorge; Ruiz-Pérez, Catalina; Lloret, Francesc; Julve, Miguel
2012-11-28
We herein present the synthesis and magneto-structural study of a new family of heterobimetallic chains of general formula {[Fe(III)(dmbpy)(CN)(4)](2)M(II)(H(2)O)(2)}(n)·pnH(2)O [dmbpy = 4,4'-dimethyl-2,2'-bipyridine; M = Mn (2), Cu (3), Ni (4) and Co (5) with p = 4 (2), 3 (3), 9 (4) and 3.5 (5)] which were prepared by using the mononuclear PPh(4)[Fe(III)(dmbpy)(CN)(4)]·3H(2)O (1) building block (PPh(4)(+) = tetraphenylphosphonium) as a ligand toward fully solvated M(II) ions. The structure of 1 consists of discrete [Fe(III)(dmbpy)(CN)(4)](-) anions, tetraphenylphosphonium cations and noncoordinated water molecules. Complexes 2-5 are isostructural compounds whose structure consists of neutral 4,2-wave like heterobimetallic chains of formula {[Fe(III)(dmbpy)(CN)(4)](2)M(II)(H(2)O)(2)}(n) where the [Fe(III)(dmbpy)(CN)(4)](-) entity adopts a bis-monodentate coordination mode toward trans-[M(II)(H(2)O)(2)] units through two of its four cyanide groups in cis positions. 1 exhibits the magnetic behaviour of magnetically isolated six-coordinate low-spin Fe(III) complexes with an important orbital contribution. 2 behaves as ferrimagnetic Fe(III)(2)Mn(II) chains, whereas 3-5 exhibit intrachain ferromagnetic couplings between the low-spin Fe(III) and either Cu(II) (3), Ni (4) or Co(II) (5) as well as frequency-dependence of the out-of-phase ac susceptibility signals below 3.0 (3), 5.5 (4) and 5.0 K (5). The relaxation time and the energy to reverse the magnetization of 3-5 are related to the anisotropy of the M(II) center and to the intra- and interchain magnetic interactions. Unprecedentedly in the world of cyanide-bearing complexes, 5 exhibits a double slow relaxation of the magnetization.
Weber, Frank-Andreas; Hofacker, Anke F; Voegelin, Andreas; Kretzschmar, Ruben
2010-01-01
Arsenic (As) in soils and sediments is commonly mobilized when anoxic conditions promote microbial iron (Fe) and As reduction. Recent laboratory studies and field observations have suggested a decoupling between Fe and As reduction and release, but the links between these processes are still not well understood. In microcosm experiments, we monitored the formation of Fe(II) and As(III) in the porewater and in the soil solid-phase during flooding of a contaminated floodplain soil at temperatures of 23, 14, and 5 degrees C. At all temperatures, flooding induced the development of anoxic conditions and caused increasing concentrations of dissolved Fe(II) and As(III). Decreasing the temperature from 23 to 14 and 5 degrees C strongly slowed down soil reduction and Fe and As release. Speciation of As in the soil solid-phase by X-ray absorption spectroscopy (XAS) and extraction of the Fe(II) that has formed by reductive Fe(III) (hydr)oxide dissolution revealed that less than 3.9% of all As(III) and less than 3.2% of all Fe(II) formed during 52 days of flooding at 23 degrees C were released into the porewater, although 91% of the initially ascorbate-extractable Fe and 66% of the total As were reduced. The amount of total As(III) formed during soil reduction was linearly correlated to the amount of total Fe(II) formed, indicating that the rate of As(V) reduction was controlled by the rate of microbial Fe(III) (hydr)oxide reduction.
Substituting Fe for two of the four Mn ions in photosystem II-effects on water-oxidation.
Semin, Boris K; Seibert, Michael
2016-06-01
We have investigated the interaction of Fe(II) cations with Ca-depleted PSII membranes (PSII[-Ca,4Mn]) in the dark and found that Fe(II) incubation removes 2 of 4 Mn ions from the tetranuclear Mn cluster of the photosynthetic O2-evolving complex (OEC). The reduction of Mn ions in PSII(-Ca,4Mn) by Fe(II) and the concomitant release of two Mn(II) cations is accompanied by the binding of newly generated Fe(III) in at least one vacated Mn site. Flash-induced chlorophyll (Chl) fluorescence yield measurements of this new 2Mn/nFe cluster (PSII[-Ca,2Mn,nFe]) show that charge recombination in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) occurs between Qa (-) and the remaining Mn/Fe cluster (but not YZ (●)) in the OEC, and extraction of 2 Mn occurs uniformly in all PSII complexes. No O2 evolution is observed, but the heteronuclear metal cluster in PSII(-Ca,2Mn,nFe) samples is still able to supply electrons for reduction of the exogenous electron acceptor, 2,6-dichlorophrenolindophenol, by photooxidizing water and producing H2O2 in the absence of an exogenous donor as seen previously with PSII(-Ca,4Mn). Selective extraction of Mn or Fe cations from the 2Mn/nFe heteronuclear cluster demonstrates that the high-affinity Mn-binding site is occupied by one of the iron cations. It is notable that partial water-oxidation function still occurs when only two Mn cations are present in the PSII OEC.
Iron cycling under oscillatory redox conditions: from observations to processes
NASA Astrophysics Data System (ADS)
Meile, C. D.; Chen, C.; Barcellos, D.; Wilmoth, J.; Thompson, A.
2017-12-01
Fe oxyhydroxides play a critical role in soils through their role as structural entities, their high sorption capacity, their role as terminal electron acceptors in the respiration of organic matter, as well as their potential to affect the reactivity of that organic matter. In soils that undergo repeated fluctuations in O2 concentrations, soil iron undergoes transformations between reduced and oxidized forms. The rate of Fe(II) oxidation can govern the nature of Fe(III) oxyhydroxides formed, and hence can affect rates of OC mineralization under suboxic conditions. But it remains unclear if this same behavior occurs in soils, where Fe(II) is mainly present as surface complexes. We documented the impact of such redox oscillations on iron cycling through targeted experiments, in which the magnitude and frequency of redox oscillations were varied systematically on soils from the Luquillo Critical Zone Observatory, Puerto Rico. Our observations demonstrated that higher O2 concentrations led to a faster Fe(II) oxidation and resulted in less crystalline Fe(III)-oxyhydroxides than lower O2 concentrations. We further studied the dynamics of iron phases by amending soil slurries with isotopically-labeled 57Fe(II) and developed a numerical model to quantify the individual processes. Our model showed a higher rate of Fe(III) reduction and increased sorption capacity following the oxidation of Fe(II) at high O2 levels than at low O2 levels, and revealed rapid Fe atom exchange between solution and solid phase. Concurrent measurements of CO2 in our oscillation experiments further illustrated the importance O2 fluctuations on coupled Fe-C dynamics.
NASA Astrophysics Data System (ADS)
Samperio-Ramos, Guillermo; González-Dávila, Melchor; Santana-Casiano, J. Magdalena
2018-06-01
The kinetics of Fe redox transformations are of crucial importance in determining the bioavailability of iron, due to inorganic Fe(II) and Fe weakly organic complexes being the most easily assimilated species by phytoplankton. The role played by the natural organic ligands excreted by the cyanobacteria Synecococcus PCC 7002 on the iron redox chemistry was studied at different stages of growth, considering changes in the organic exudation of the cyanobacteria, associated with growth under two different scenarios of iron availability. The oxidation/reduction processes of iron were studied at nanomolar levels and under different physicochemical conditions of pH (7.2- 8.2), temperature (5- 35 °C) and salinity (10- 37). The presence of natural organic exudates of Synechococcus affected the redox behavior of iron. A pH-dependent and photo-induced Fe(III) reduction process was detected in the presence of exudates produced under Fe-Low conditions. Photolytic reactions also modified the reactivity of those exudates with respect to Fe(II), increasing its lifetime in seawater. Without light mediated processes, organic ligands excreted under iron deficient conditions intensified the Fe(II) oxidation at pH < 7.5. The organic exudates released under High-Fe conditions retarded the Fe(II) oxidation rate, as a function of DOC produced. The changes in the apparent oxidation rate were fitted to polynomial functions for both of the Fe-scenarios considered. A kinetic modeling approach to describe the speciation and the contribution of individual Fe(II) species to the overall oxidation rate was applied, considering the experimental data and delimiting the equilibrium and redox constants between iron and the major ligands present in solution. Two organic type ligands for the exudates of Synechococcus PCC 7002, with different iron-chelation properties were included in the model. The Fe(II) speciation was radically affected when organic ligands were considered. The individual contributions to the overall Fe(II) oxidation rate demonstrated that these organic ligands played a key role in the oxidation process, although their contributions were dependent on the prescribed iron conditions. The study, therefore, suggests that the variability in the composition and nature of organic exudates released, due to iron availability conditions, might determine the redox behaviour of iron in seawater.
Mohamed, Gehad G; El-Gamel, Nadia E A
2004-11-01
The ternary piroxicam (Pir; 4-hydroxy-2-methyl-N-(2-pyridyl)-2H-1,2-benzothiazine-3-carboxamide 1,1-dioxide) complexes of Fe(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) with various amino acids (AA) such as glycine (Gly) or DL-phenylalanine (PhA) were prepared and characterized by elemental analyses, molar conductance, IR, UV-Vis, magnetic moment, diffuse reflectance and X-ray powder diffraction. The UV-Vis spectra of Pir and the effect of metal chelation on the different interligand transitions are discussed in detailed manner. IR and UV-Vis spectra confirm that Pir behaves as a neutral bidentate ligand coordinated to the metal ions via the pyridine-N and carbonyl group of the amide moiety. Gly molecule acted as a uninegatively monodentate ligand and coordinate to the metal ions through its carboxylic group, in addition PhA acted as a uninegatively bidentate ligand and coordinate to the metal ions through its carboxylic and amino groups. All the chelates have octahedral geometrical structures while Cu(II)- and Zn(II)-ternary chelates with PhA have square planar geometrical structures. The molar conductance data reveal that most of these chelates are non electrolytes, while Fe(III)-Pir-Gly, Co(II)-, Ni(II)-, Cu(II)- and Zn(II)-Pir-PhA chelates were 1:1 electrolytes. X-ray powder diffraction is used as a new tool to estimate the crystallinity of chelates as well as to elucidate their geometrical structures.
NASA Astrophysics Data System (ADS)
Mohamed, Gehad G.; El-Gamel, Nadia E. A.
2004-11-01
The ternary piroxicam (Pir; 4-hydroxy-2-methyl- N-(2-pyridyl)-2H-1,2-benzothiazine-3-carboxamide 1,1-dioxide) complexes of Fe(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) with various amino acids (AA) such as glycine (Gly) or DL-phenylalanine (PhA) were prepared and characterized by elemental analyses, molar conductance, IR, UV-Vis, magnetic moment, diffuse reflectance and X-ray powder diffraction. The UV-Vis spectra of Pir and the effect of metal chelation on the different interligand transitions are discussed in detailed manner. IR and UV-Vis spectra confirm that Pir behaves as a neutral bidentate ligand coordinated to the metal ions via the pyridine- N and carbonyl group of the amide moiety. Gly molecule acted as a uninegatively monodentate ligand and coordinate to the metal ions through its carboxylic group, in addition PhA acted as a uninegatively bidentate ligand and coordinate to the metal ions through its carboxylic and amino groups. All the chelates have octahedral geometrical structures while Cu(II)- and Zn(II)-ternary chelates with PhA have square planar geometrical structures. The molar conductance data reveal that most of these chelates are non electrolytes, while Fe(III)-Pir-Gly, Co(II)-, Ni(II)-, Cu(II)- and Zn(II)-Pir-PhA cheletes were 1:1 electrolytes. X-ray powder diffraction is used as a new tool to estimate the crystallinity of chelates as well as to elucidate their geometrical structures.
Iron Cycling in Sediment of the North Atlantic: Preliminary Results from R/V Knorr Expedition 223
NASA Astrophysics Data System (ADS)
Anderson, C. H.; Estes, E. R.; Dyar, M. D.; Murray, R. W.; Spivack, A. J.; Sauvage, J.; McKinley, C. C.; Present, T. M.; Homola, K.; Pockalny, R. A.; D'Hondt, S.
2015-12-01
Iron (Fe) in marine sediments is a significant microbial electron acceptor [Fe(III)] in suboxic conditions and is an electron donor [Fe(II)] in oxic conditions. In the transition from oxic to suboxic sediment, a portion of solid Fe is reduced and mobilized as soluble Fe(II) into interstitial water during the oxidation of organic matter. The presence of Fe and its oxidation state in oxic sediment provides insight into an important metabolic and mineral reaction pathway in subseafloor sediment. We recovered bulk sediment and interstitial water at western North Atlantic sites during Expedition 223 on the R/V Knorr in November, 2014. The expedition targeted regions with predominantly oxic sediment and regions with predominantly anoxic sediment, ideal for investigating redox Fe cycling between solid and aqueous phases. At Site 10 (14.4008N, 50.6209W, 4455m water depth), interstitial dissolved oxygen is depleted within the upper few meters of sediment. At Site 12 (29.6767N, 58.3285W, 5637m water depth), interstitial dissolved oxygen is present throughout the cored sediment column (10s of meters). Here we present total solid Fe concentration for 45 bulk sediment samples and total aqueous Fe and Mn concentrations for 50 interstitial water samples analyzed via ICP-ES. We additionally present Fe(II) and Fe(III) speciation results from 10 solid sediment samples determined by Mossbauer spectroscopy. We trace downcore fluctuations in Fe in solid and aqueous phases to understand Fe cycling in oxic, suboxic, and transitional regimes. Our preliminary data indicate that solid Fe concentration ranges from 4-6 wt % at the oxic site; aqueous Fe ranges from below detection to 20μM and aqueous Mn ranges from 1 to 125 μM at the anoxic site. In the anoxic sediment (Site 10), 86-90% of the total Fe is oxidized [Fe(III)] and 10-14% as reduced [Fe(II)], compared to 3-6% as reduced [Fe(II)] at the oxic site (Site 12), even in sediment as old as 25 million years.
NASA Astrophysics Data System (ADS)
Li, Jin-Hua; Liu, Hui; Wei, Li; Wang, Guo-Ming
2015-10-01
Two novel FeII-oxalate framework with the formulas of [NH4][FeIILi3(C2O4)3] (1) and [NH4]2[FeII(C2O4)2]·H2O (2) have been prepared by an oxalic acid flux approach and structurally characterized by IR, elemental analysis, thermogravimetric analysis, single-crystal and powder X-ray diffraction. Heterometallic compound 1 displays a three-dimensional (3D) framework with a pto topology, while homometallic compound 2 features a pillar-layer architecture with a hms topology. Thermal analysis indicates that the two compounds can be stable up to 300 °C and 200 °C, respectively. Magnetic investigations suggest that the FeII ions in 1 and 2 exhibit weak magnetic exchange interactions.
NASA Astrophysics Data System (ADS)
Horneman, A.; van Geen, A.; Kent, D. V.; Mathe, P. E.; Zheng, Y.; Dhar, R. K.; O'Connell, S.; Hoque, M. A.; Aziz, Z.; Shamsudduha, M.; Seddique, A. A.; Ahmed, K. M.
2004-09-01
This study reexamines the notion that extensive As mobilization in anoxic groundwater of Bangladesh is intimately linked to the dissolution of Fe oxyhydroxides on the basis of analyses performed on a suite of freshly collected samples of aquifer material. Detailed sediment profiles extending to 40 to 70 m depth below the surface were obtained at six sites where local groundwater As concentrations were known to span a wide range. The sediment properties that were measured include (1) the proportion of Fe(II) in the Fe fraction leached in hot 1.2 N HCl, (2) diffuse spectral reflectance, and (3) magnetic susceptibility. In parallel with local concentrations of dissolved As ranging from <5 to 600 μg/L, Fe(II)/Fe ratios in shallow (gray) Holocene sands tended to gradually increase with depth from values of 0.3 to 0.5 to up to 0.9. In deeper (orange) aquifers of presumed Pleistocene age that were separated from shallow sands by a clay layer and contained <5 μg/L dissolved As, leachable Fe(II)/Fe ratios averaged ˜0.2. There was no consistent relation between sediment Fe(II)/Fe and dissolved Fe concentrations in groundwater in nearby wells. The reflectance measurements indicate a systematic linear relation (R 2 of 0.66; n = 151) between the first derivative transform of the reflectance at 520 nm and Fe(II)/Fe. The magnetic susceptibility of the shallow aquifer sands ranged from 200 to 3600 (x 10 -9 m 3/kg SI) and was linearly related (R 2 of 0.75; n = 29) to the concentrations of minerals that could be magnetically separated (0.03 to 0.79% dry weight). No systematic depth trends in magnetic susceptibility were observed within the shallow sands, although the susceptibility of deeper low-As aquifers was low (up to ˜200 × 10 -9 m 3/kg SI). This set of observations, complemented by incubation results described in a companion paper by van Geen et al. (this volume), suggests that the release of As is linked to the transformation of predominantly Fe (III) oxyhydroxide coatings on sand particles to Fe(II) or mixed Fe(II/III) solid phases with a flatter reflectance spectrum such as siderite, vivianite, or magnetite, without necessarily resulting in the release of Fe to groundwater. The very low As/Fe ratio of magnetically separated minerals compared to the As/Fe of bulk acid leachate (2 vs. 40 10 -6, respectively) suggests that such a transformation could be accompanied by a significant redistribution of As to a mobilizable phase on the surface of aquifer particles.
Interaction of selenite with reduced Fe and/or S species: An XRD and XAS study.
Finck, Nicolas; Dardenne, Kathy
2016-05-01
In this study, we investigated the interaction between selenite and either Fe((II))aq or S((-II))aq in solution, and the results were used to investigate the interaction between Se((IV))aq and FeS in suspension. The reaction products were characterized by a combination of methods (SEM, XRD and XAS) and the reaction mechanisms were identified. In a first experiment, Se((IV))aq was reduced to Se((0)) by interaction with Fe((II))aq which was oxidized to Fe((III)), but the reaction was only partial. Subsequently, some Fe((III)) produced akaganeite (β-FeOOH) and the release of proton during that reaction decreased the pH. The pH decrease changed the Se speciation in solution which hindered further Se((IV)) reduction by Fe((II))aq. In a second experiment, Se((IV))aq was quantitatively reduced to Se((0)) by S((-II))aq and the reaction was fast. Two sulfide species were needed to reduce one Se((IV)), and the observed pH increase was due to a proton consumption. For both experiments, experimental results are consistent with expectations based on the oxidation reduction potential of the various species. Upon interaction with FeS, Se((IV))aq was reduced to Se((0)) and minute amounts of pyrite were detected, a consequence of partial mackinawite oxidation at surface sulfur sites. These results are of prime importance with respect to safe deep disposal of nuclear waste which contains the long-lived radionuclide (79)Se. This study shows that after release of (79)Se((IV)) upon nuclear waste matrix corrosion, selenite can be reduced in the near field to low soluble Se((0)) by interaction with Fe((II))aq and/or S((-II))aq species. Because the solubility of Se((0)) species is significantly lower than that of Se((IV)), selenium will become much less (bio)available and its migration out of deep HLW repositories may be drastically hindered. Copyright © 2016. Published by Elsevier B.V.
Kreitman, Gal Y; Danilewicz, John C; Jeffery, David W; Elias, Ryan J
2016-05-25
Sulfidic off-odors arising during wine production are frequently removed by Cu(II) fining. In part 1 of this study ( 10.1021/acs.jafc.6b00641 ), the reaction of H2S and thiols with Cu(II) was examined; however, the interaction of iron and copper is also known to play an important synergistic role in mediating non-enzymatic wine oxidation. The interaction of these two metals in the oxidation of H2S and thiols (cysteine, 3-sulfanylhexan-1-ol, and 6-sulfanylhexan-1-ol) was therefore examined under wine-like conditions. H2S and thiols (300 μM) were reacted with Fe(III) (100 or 200 μM) alone and in combination with Cu(II) (25 or 50 μM), and concentrations of H2S and thiols, oxygen, and acetaldehyde were monitored over time. H2S and thiols were shown to be slowly oxidized in the presence of Fe(III) alone and were not bound to Fe(III) under model wine conditions. However, Cu(II) added to model wine containing Fe(III) was quickly reduced by H2S and thiols to form Cu(I) complexes, which then rapidly reduced Fe(III) to Fe(II). Oxidation of Fe(II) in the presence of oxygen regenerated Fe(III) and completed the iron redox cycle. In addition, sulfur-derived oxidation products were observed, and the formation of organic polysulfanes was demonstrated.
Application of a Depositional Facies Model to an Acid Mine Drainage Site▿ †
Brown, Juliana F.; Jones, Daniel S.; Mills, Daniel B.; Macalady, Jennifer L.; Burgos, William D.
2011-01-01
Lower Red Eyes is an acid mine drainage site in Pennsylvania where low-pH Fe(II) oxidation has created a large, terraced iron mound downstream of an anoxic, acidic, metal-rich spring. Aqueous chemistry, mineral precipitates, microbial communities, and laboratory-based Fe(II) oxidation rates for this site were analyzed in the context of a depositional facies model. Depositional facies were defined as pools, terraces, or microterracettes based on cm-scale sediment morphology, irrespective of the distance downstream from the spring. The sediments were composed entirely of Fe precipitates and cemented organic matter. The Fe precipitates were identified as schwertmannite at all locations, regardless of facies. Microbial composition was studied with fluorescence in situ hybridization (FISH) and transitioned from a microaerophilic, Euglena-dominated community at the spring, to a Betaproteobacteria (primarily Ferrovum spp.)-dominated community at the upstream end of the iron mound, to a Gammaproteobacteria (primarily Acidithiobacillus)-dominated community at the downstream end of the iron mound. Microbial community structure was more strongly correlated with pH and geochemical conditions than depositional facies. Intact pieces of terrace and pool sediments from upstream and downstream locations were used in flowthrough laboratory reactors to measure the rate and extent of low-pH Fe(II) oxidation. No change in Fe(II) concentration was observed with 60Co-irradiated sediments or with no-sediment controls, indicating that abiotic Fe(II) oxidation was negligible. Upstream sediments attained lower effluent Fe(II) concentrations compared to downstream sediments, regardless of depositional facies. PMID:21097582
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Linduo; Dong, Hailiang; Kukkadapu, Ravi K.
Nitrate contamination in soils, sediments, and water bodies is a significant issue. Although much is known about nitrate degradation in these environments, especially via microbial pathways, a complete understanding of all degradation processes, especially in clay mineral-rich soils, is still lacking. The objective of this study was to study the potential of removing nitrate contaminant using structural Fe(II) in clay mineral nontronite. Specifically, the coupled processes of microbial oxidation of Fe(II) in microbially reduced nontronite (NAu-2) and nitrate reduction by Pseudogulbenkiania species strain 2002 was investigated. Bio-oxidation experiments were conducted in bicarbonate-buffered medium under both growth and nongrowth conditions. Themore » extents of Fe(II) oxidation and nitrate reduction were measured by wet chemical methods. X-ray diffraction (XRD), scanning and transmission electron microscopy (SEM and TEM), and 57Fe-Mössbauer spectroscopy were used to observe mineralogical changes associated with Fe(III) reduction and Fe(II) oxidation in nontronite. The bio-oxidation extent under growth and nongrowth conditions reached 93% and 57%, respectively. Over the same time period, nitrate was completely reduced under both conditions to nitrogen gas (N2), via an intermediate product nitrite. Magnetite was a mineral product of nitrate-dependent Fe(II) oxidation, as evidenced by XRD data and TEM diffraction patterns. The results of this study highlight the importance of iron-bearing clay minerals in the global nitrogen cycle with potential applications in nitrate removal in soils.« less
Han, J; Koutmos, M; Ahmad, S A; Coucouvanis, D
2001-11-05
A general method for the synthesis of high nuclearity Mo/Fe/S clusters is presented and involves the reductive coupling of the (Et(4)N)(2)[(Cl(4)-cat)MoOFeS(2)Cl(2)] (I) and (Et(4)N)(2)[Fe(2)S(2)Cl(4)] (II) clusters. The reaction of I and II with Fe(PR(3))(2)Cl(2) or sodium salts of noncoordinating anions such as NaPF(6) or NaBPh(4) in the presence of PR(3) (R = Et, (n)Pr, or (n)Bu) affords (Cl(4)-cat)(2)Mo(2)Fe(6)S(8)(PR(3))(6) [R = Et (IIIa), (n)Pr (IIIb), (n)Bu (IIIc)], Fe(6)S(6)(PEt(3))(4)Cl(2) (IV) and (PF(6))[Fe(6)S(8)(P(n)Pr(3))(6)] (V) as byproducts. The isolation of (Et(4)N)[Fe(PEt(3))Cl(3)] (VI), NaCl, and SPEt(3) supports a reductive coupling mechanism. Cluster IV and V also have been synthesized by the reductive self-coupling of compound II. The reductive coupling reaction between I and II by PEt(3) and NaPF(6) in a 1:1 ratio produces the (Et(4)N)(2)[(Cl(4)-cat)Mo(L)Fe(3)S(4)Cl(3)] clusters [L = MeCN (VIIa), THF (VIIb)]. The hitherto unknown [(Cl(4)-cat)(2)Mo(2)Fe(2)S(3)O(PEt(3))(3)Cl](+) cluster (VIII) has been isolated as the 2:1 salt of the (Fe(PEt(3))(2)(MeCN)(4))(2+) cation after the reductive self-coupling reaction of I in the presence of Fe(PEt(3))(2)Cl(2). Cluster VIII crystallizes in the monoclinic space group P2(1)/c with a = 11.098(3) A, b = 22.827(6) A, c = 25.855(6) A, beta = 91.680(4) degrees, and Z = 4. The formal oxidation states of metal atoms in VIII have been assigned as Mo(III), Mo(IV), Fe(II), and Fe(III) on the basis of zero-field Mössbauer spectra. The Fe(PEt(3))(2)(MeCN)(4) cation of VIII is also synthesized independently, isolated as the BPh(4)(-) salt (IX), and has been structurally characterized. The reductive coupling of compound I also affords in low yield the new (Cl(4)-cat)(2)Mo(2)Fe(3)S(5)(PEt(3))(5) cluster (X) as a byproduct. Cluster X crystallizes in the monoclinic space group P2(1)/n with a = 14.811(3) A, b = 22.188(4) A, c = 21.864(4) A, beta = 100.124(3) degrees, and Z = 4 and the structure shows very short Mo-Fe, Fe-Fe, Mo-S, Fe-S bonds. The oxidation states of the metal atoms in this neutral cluster (X) have been assigned as Mo(IV)Mo(III)Fe(II)Fe(II)Fe(III) based on zero-field Mössbauer and magnetic measurement. All Fe atoms are high spin and two of the three Fe-Fe distances are found at 2.4683(9) A and 2.4721(9) A.
Ethylene Participates in the Regulation of Fe Deficiency Responses in Strategy I Plants and in Rice.
Lucena, Carlos; Romera, Francisco J; García, María J; Alcántara, Esteban; Pérez-Vicente, Rafael
2015-01-01
Iron (Fe) is very abundant in most soils but its availability for plants is low, especially in calcareous soils. Plants have been divided into Strategy I and Strategy II species to acquire Fe from soils. Strategy I species apply a reduction-based uptake system which includes all higher plants except the Poaceae. Strategy II species apply a chelation-based uptake system which includes the Poaceae. To cope with Fe deficiency both type of species activate several Fe deficiency responses, mainly in their roots. These responses need to be tightly regulated to avoid Fe toxicity and to conserve energy. Their regulation is not totally understood but some hormones and signaling substances have been implicated. Several years ago it was suggested that ethylene could participate in the regulation of Fe deficiency responses in Strategy I species. In Strategy II species, the role of hormones and signaling substances has been less studied. However, in rice, traditionally considered a Strategy II species but that possesses some characteristics of Strategy I species, it has been recently shown that ethylene can also play a role in the regulation of some of its Fe deficiency responses. Here, we will review and discuss the data supporting a role for ethylene in the regulation of Fe deficiency responses in both Strategy I species and rice. In addition, we will review the data about ethylene and Fe responses related to Strategy II species. We will also discuss the results supporting the action of ethylene through different transduction pathways and its interaction with other signals, such as certain Fe-related repressive signals occurring in the phloem sap. Finally, the possible implication of ethylene in the interactions among Fe deficiency responses and the responses to other nutrient deficiencies in the plant will be addressed.
Ethylene Participates in the Regulation of Fe Deficiency Responses in Strategy I Plants and in Rice
Lucena, Carlos; Romera, Francisco J.; García, María J.; Alcántara, Esteban; Pérez-Vicente, Rafael
2015-01-01
Iron (Fe) is very abundant in most soils but its availability for plants is low, especially in calcareous soils. Plants have been divided into Strategy I and Strategy II species to acquire Fe from soils. Strategy I species apply a reduction-based uptake system which includes all higher plants except the Poaceae. Strategy II species apply a chelation-based uptake system which includes the Poaceae. To cope with Fe deficiency both type of species activate several Fe deficiency responses, mainly in their roots. These responses need to be tightly regulated to avoid Fe toxicity and to conserve energy. Their regulation is not totally understood but some hormones and signaling substances have been implicated. Several years ago it was suggested that ethylene could participate in the regulation of Fe deficiency responses in Strategy I species. In Strategy II species, the role of hormones and signaling substances has been less studied. However, in rice, traditionally considered a Strategy II species but that possesses some characteristics of Strategy I species, it has been recently shown that ethylene can also play a role in the regulation of some of its Fe deficiency responses. Here, we will review and discuss the data supporting a role for ethylene in the regulation of Fe deficiency responses in both Strategy I species and rice. In addition, we will review the data about ethylene and Fe responses related to Strategy II species. We will also discuss the results supporting the action of ethylene through different transduction pathways and its interaction with other signals, such as certain Fe-related repressive signals occurring in the phloem sap. Finally, the possible implication of ethylene in the interactions among Fe deficiency responses and the responses to other nutrient deficiencies in the plant will be addressed. PMID:26640474
Cheng, Xiaoxiang; Liang, Heng; Ding, An; Zhu, Xuewu; Tang, Xiaobin; Gan, Zhendong; Xing, Jiajian; Wu, Daoji; Li, Guibai
2017-11-01
Coagulation and ozonation have been widely used as pretreatments for ultrafiltration (UF) membrane in drinking water treatment. While beneficial, coagulation or ozonation alone is unable to both efficiently control membrane fouling and product water quality in many cases. Thus, in this study an emerging alternative of ferrous iron/peroxymonosulfate (Fe(II)/PMS), which can act as both an oxidant and a coagulant was employed prior to UF for treatment of natural surface water, and compared with conventional coagulation and ozonation. The results showed that the Fe(II)/PMS-UF system exhibited the best performance for dissolved organic carbon removal, likely due to the dual functions of coagulation and oxidation in the single process. The fluorescent and UV-absorbing organic components were more susceptible to ozonation than Fe(II)/PMS treatment. Fe(II)/PMS and ozonation pretreatments significantly increased the removal efficiency of atrazine, p-chloronitrobenzene and sulfamethazine by 12-76% and 50-94%, respectively, whereas coagulation exerted a minor influence. The Fe(II)/PMS pretreatment also showed the best performance for the reduction of both reversible and irreversible membrane fouling, and the performance was hardly affected by membrane pore size and surface hydrophobicity. In addition, the characterization of hydraulic irreversible organic foulants confirmed its effectiveness. These results demonstrate the potential advantages of applying Fe(II)/PMS as a pretreatment for UF to simultaneously control membrane fouling and improve the permeate quality. Copyright © 2017 Elsevier Ltd. All rights reserved.
SPECTRAL OPTICAL MONITORING OF THE NARROW-LINE SEYFERT 1 GALAXY Ark 564
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shapovalova, A. I.; Burenkov, A. N.; Popovic, L. C.
2012-09-15
We present the results of a long-term (1999-2010) spectral optical monitoring campaign of the active galactic nucleus (AGN) Ark 564, which shows a strong Fe II line emission in the optical. This AGN is a narrow-line Seyfert 1 (NLS1) galaxy, a group of AGNs with specific spectral characteristics. We analyze the light curves of the permitted H{alpha}, H{beta}, optical Fe II line fluxes, and the continuum flux in order to search for a time lag between them. Additionally, in order to estimate the contribution of iron lines from different multiplets, we fit the H{beta} and Fe II lines with amore » sum of Gaussian components. We find that during the monitoring period the spectral variation (F{sub max}/F{sub min}) of Ark 564 is between 1.5 for H{alpha} and 1.8 for the Fe II lines. The correlation between the Fe II and H{beta} flux variations is of higher significance than that of H{alpha} and H{beta} (whose correlation is almost absent). The permitted-line profiles are Lorentzian-like and do not change shape during the monitoring period. We investigate, in detail, the optical Fe II emission and find different degrees of correlation between the Fe II emission arising from different spectral multiplets and the continuum flux. The relatively weak and different degrees of correlations between permitted lines and continuum fluxes indicate a rather complex source of ionization of the broad-line emission region.« less
Cravotta, Charles A.
2015-01-01
Watershed-scale monitoring, field aeration experiments, and geochemical equilibrium and kinetic modeling were conducted to evaluate interdependent changes in pH, dissolved CO2, O2, and Fe(II) concentrations that typically take place downstream of net-alkaline, circumneutral coal-mine drainage (CMD) outfalls and during aerobic treatment of such CMD. The kinetic modeling approach, using PHREEQC, accurately simulates observed variations in pH, Fe(II) oxidation, alkalinity consumption, and associated dissolved gas concentrations during transport downstream of the CMD outfalls (natural attenuation) and during 6-h batch aeration tests on the CMD using bubble diffusers (enhanced attenuation). The batch aeration experiments demonstrated that aeration promoted CO2 outgassing, thereby increasing pH and the rate of Fe(II) oxidation. The rate of Fe(II) oxidation was accurately estimated by the abiotic homogeneous oxidation rate law −d[Fe(II)]/dt = k1·[O2]·[H+]−2·[Fe(II)] that indicates an increase in pH by 1 unit at pH 5–8 and at constant dissolved O2 (DO) concentration results in a 100-fold increase in the rate of Fe(II) oxidation. Adjusting for sample temperature, a narrow range of values for the apparent homogeneous Fe(II) oxidation rate constant (k1′) of 0.5–1.7 times the reference value of k1 = 3 × 10−12 mol/L/min (for pH 5–8 and 20 °C), reported by Stumm and Morgan (1996), was indicated by the calibrated models for the 5-km stream reach below the CMD outfalls and the aerated CMD. The rates of CO2 outgassing and O2ingassing in the model were estimated with first-order asymptotic functions, whereby the driving force is the gradient of the dissolved gas concentration relative to equilibrium with the ambient atmosphere. Although the progressive increase in DO concentration to saturation could be accurately modeled as a kinetic function for the conditions evaluated, the simulation of DO as an instantaneous equilibrium process did not affect the model results for Fe(II) or pH. In contrast, the model results for pH and Fe(II) were sensitive to the CO2 mass transfer rate constant (kL,CO2a). The value of kL,CO2a estimated for the stream (0.010 min−1) was within the range for the batch aeration experiments (0–0.033 min−1). These results indicate that the abiotic homogeneous Fe(II) oxidation rate law, with adjustments for variations in temperature and CO2 outgassing rate, may be applied to predict changes in aqueous iron and pH for net-alkaline, ferruginous waters within a stream (natural conditions) or a CMD treatment system (engineered conditions).
NASA Astrophysics Data System (ADS)
Gaunt, H. E.; Bernard, B.; Hidalgo, S.; Proaño, A.; Wright, H. M. N.; Mothes, P. A.; Criollo, E.
2016-12-01
The eruptive process that took place in October 2011 in the submarine volcano Tagoro off the Island of El Hierro (Canary Island) and the subsequent degasification stage, five months later, have increased the concentration of TdFe(II) (Total dissolved iron(II)) in the waters nearest to the volcanic edifice. In order to detect any variation in concentrations of TdFe(II) due to hydrothermal emissions, three cruises were carried out two years after the eruptive process in October 2013, March 2014, May 2015, March 2016 and November 2016. The results from these cruises confirmed important positive anomalies in TdFe(II), which coincided with negatives anomalies in pHF,is (pH in free scale, at in situ conditions) located in the proximity of the main cone. Maximum values in TdFe(II) both at the surface, associated to chlorophyll a maximum, and at the sea bottom, were also observed, showing the important influence of organic complexation and particle re-suspension processes. Temporal variability studies were carried out over periods ranging from hours to days in the stations located over the main and two secondary cones in the volcanic edifice with positive anomalies in TdFe(II) concentrations and negative anomalies in pHF,is values. Observations showed an important variability in both pHF,is and TdFe(II) concentrations, which indicated the volcanic area was affected by a degasification process that remained in the volcano after the eruptive phase had ceased. Fe(II) oxidation kinetic studies were also undertaken in order to analyze the effects of the seawater properties in the proximities of the volcano on the oxidation rate constants and t1/2 (half-life time) of ferrous iron. The increased TdFe(II) concentrations and the low associated pHF,is values acted as an important fertilization event in the seawater around the Tagoro volcano at the Island of El Hierro providing optimal conditions for the regeneration of the area.
Reactive Fe(II) layers in deep-sea sediments
NASA Astrophysics Data System (ADS)
König, Iris; Haeckel, Matthias; Drodt, Matthias; Suess, Erwin; Trautwein, Alfred X.
1999-05-01
The percentage of the structural Fe(II) in clay minerals that is readily oxidized to Fe(III) upon contact with atmospheric oxygen was determined across the downcore tan-green color change in Peru Basin sediments. This latent fraction of reactive Fe(II) was only found in the green strata, where it proved to be large enough to constitute a deep reaction layer with respect to the pore water O 2 and NO 3-. Large variations were detected in the proportion of the reactive Fe(II) concentration to the organic matter content along core profiles. Hence, the commonly observed tan-green color change in marine sediments marks the top of a reactive Fe(II) layer, which may represent the major barrier to the movement of oxidation fronts in pelagic subsurface sediments. This is also demonstrated by numerical model simulations. The findings imply that geochemical barriers to pore water oxidation fronts form diagenetically in the sea floor wherever the stage of iron reduction is reached, provided that the sediments contain a significant amount of structural iron in clay minerals.
Biogenic Magnetite Formation through Anaerobic Biooxidation of Fe(II)
Chaudhuri, Swades K.; Lack, Joseph G.; Coates, John D.
2001-01-01
The presence of isotopically light carbonates in association with fine-grained magnetite is considered to be primarily due to the reduction of Fe(III) by Fe(III)-reducing bacteria in the environment. Here, we report on magnetite formation by biooxidation of Fe(II) coupled to denitrification. This metabolism offers an alternative environmental source of biogenic magnetite. PMID:11375205
Oxidation of Fe(II) to Fe(III) is an important reaction in drinking water treatment and distribution systems, and the ferric particles that form are a major source of consumer complaints of colored water. Ferrous iron is found naturally in many ground waters and can be released ...
A dithiolate-bridged (CN)2(CO)Fe-Ni complex reproducing the IR bands of [NiFe] hydrogenase.
Tanino, Soichiro; Li, Zilong; Ohki, Yasuhiro; Tatsumi, Kazuyuki
2009-03-16
A dithiolate-bridged dinuclear Fe-Ni complex, which has the desired fac-(CN)(2)(CO) ligand set at iron, has been synthesized. Its CN/CO bands in the IR spectrum reproduce those of the Ni-A, Ni-B, and Ni-SU states, which indicate that these octahedral Fe(II) centers have similar electronic properties. This result verifies the assignment of a (CN)(2)(CO)Fe(II) moiety in the active site of [NiFe] hydrogenase.
Shakeri Yekta, Sepehr; Lindmark, Amanda; Skyllberg, Ulf; Danielsson, Asa; Svensson, Bo H
2014-03-30
The objective of the present study was to assess major chemical reactions and chemical forms contributing to solubility and speciation of Fe(II), Co(II), and Ni(II) during anaerobic digestion of sulfur (S)-rich stillage in semi-continuous stirred tank biogas reactors (SCSTR). These metals are essential supplements for efficient and stable performance of stillage-fed SCSTR. In particular, the influence of reduced inorganic and organic S species on kinetics and thermodynamics of the metals and their partitioning between aqueous and solid phases were investigated. Solid phase S speciation was determined by use of S K-edge X-ray absorption near-edge spectroscopy. Results demonstrated that the solubility and speciation of supplemented Fe were controlled by precipitation of FeS(s) and formation of the aqueous complexes of Fe-sulfide and Fe-thiol. The relatively high solubility of Co (∼ 20% of total Co content) was attributed to the formation of compounds other than Co-sulfide and Co-thiol, presumably of microbial origin. Nickel had lower solubility than Co and its speciation was regulated by interactions with FeS(s) (e.g. co-precipitation, adsorption, and ion substitution) in addition to precipitation/dissolution of discrete NiS(s) phase and formation of aqueous Ni-sulfide complexes. Copyright © 2014 Elsevier B.V. All rights reserved.
Supernova Remnants in the UWIFE and UWISH2 Surveys
NASA Astrophysics Data System (ADS)
Lee, Yong-Hyun; Koo, Bon-Chul; Lee, Jae-Joon
2016-06-01
We have searched for near-infrared [Fe II] (1.644 µm) and H2 1-0 S(1) (2.122 µm) emission features associated with Galactic supernova remnants (SNRs) using the narrow-band imaging surveys UWIFE/ UWISH2 (UKIRT Widefield Infrared Survey for [Fe II] / H2). Both surveys cover about 180 square degrees of the first Galactic quadrant (7° < l < 62°; -1.5° < b < +1.5°), and a total of 79 SNRs are falling in the survey area among the currently known 294 Galactic SNRs. The images show diffuse structures as deep as the surface brightness limit of 10-19 W m-2 arcsec-2 which is comparable with a 5σ detection limit of point sources of 18 mag. In order to inspect the narrow-band features, we subtracted H and K-band continuum images obtained from the UKIDSS GPS (UKIRT Infrared Deep Sky Survey of the Galactic Plane) from the [Fe II] and H2 narrow-band images, respectively. By this time, we have found 19 [Fe II]- and 18 H2-emitting SNRs, and these are likely to increase in future as we inspect the images in more detail. Some of the SNRs show bright, complex, and interesting structures that have never been reported in previous studies. Since [Fe II] and H2 lines trace dense atomic and molecular gases associated with SNR shocks, our results can help us understand the environment and evolution of individual SNRs. Among the SNRs showing both [Fe II] and H2 emission lines, some SNRs show the “[Fe II]-H2 reversal” phenomenon, i.e., the H2 emission features are detected outside the [Fe II] emission boundary. This is opposite to the standard picture: If the shocks are driven by the same blast wave, we expect the H2 filaments to be closer to the explosion center than the [Fe II] filaments. In this presentation, we show several examples of such SNRs detected in our study, and present high resolution (R ˜ 40,000) H and K-band spectra of H2 emission features obtained by using IGRINS (Immersion Grating Infrared Spectrograph).
Supernova Remnants in the UWIFE and UWISH2 Surveys
NASA Astrophysics Data System (ADS)
Lee, Yong-Hyun
2016-06-01
We have searched for near-infrared [Fe II] (1.644 μm) and H2 1-0 S(1) (2.122 μm) emission features associated with Galactic supernova remnants (SNRs) using the narrow-band imaging surveys UWIFE/ UWISH2 (UKIRT Widefield Infrared Survey for [Fe II] / H2 ). Both surveys cover about 180 square degrees of the first Galactic quadrant (7 {circ} < l < 62 {circ} ; -1.5 {circ} < b < +1.5 {circ} ), and a total of 79 SNRs are falling in the survey area among the currently known 294 Galactic SNRs. The images show diffuse structures as deep as the surface brightness limit of 10^(-19) W m^(-2) arcsec^(-2) which is comparable with a 5σ detection limit of point sources of 18 mag. In order to inspect the narrow-band features, we subtracted H and K-band continuum images obtained from the UKIDSS GPS (UKIRT Infrared Deep Sky Survey of the Galactic Plane) from the [Fe II] and H2 narrow-band images, respectively. By this time, we have found 19 [Fe II]- and 18 H2 -emitting SNRs, and these are likely to increase in future as we inspect the images in more detail. Some of the SNRs show bright, complex, and interesting structures that have never been reported in previous studies. Since [Fe II] and H2 lines trace dense atomic and molecular gases associated with SNR shocks, our results can help us understand the environment and evolution of individual SNRs. Among the SNRs showing both [Fe II] and H2 emission lines, some SNRs show the “[Fe II]-H2 reversal” phenomenon, i.e., the H2 emission features are detected outside the [Fe II] emission boundary. This is opposite to the standard picture: If the shocks are driven by the same blast wave, we expect the H2 filaments to be closer to the explosion center than the [Fe II] filaments. In this presentation, we show several examples of such SNRs detected in our study, and present high resolution (R 40,000) H and K-band spectra of H2 emission features obtained by using IGRINS (Immersion Grating Infrared Spectrograph).
NASA Astrophysics Data System (ADS)
Rouxel, Olivier; Toner, Brandy; Germain, Yoan; Glazer, Brian
2018-01-01
Low-temperature hydrothermal vents, such as those encountered at Loihi Seamount, harbor abundant microbial communities and provide ideal systems to test hypotheses on biotic versus abiotic formation of hydrous ferric oxide (FeOx) deposits at the seafloor. Hydrothermal activity at Loihi Seamount produces abundant microbial mats associated with rust-colored FeOx deposits and variably encrusted with Mn-oxyhydroxides. Here, we applied Fe isotope systematics together with major and trace element geochemistry to study the formation mechanisms and preservation of such mineralized microbial mats. Iron isotope composition of warm (<60 °C), Fe-rich and H2S-depleted hydrothermal fluids yielded δ56Fe values near +0.1‰, indistinguishable from basalt values. Suspended particles in the vent fluids and FeOx deposits recovered nearby active vents yielded systematically positive δ56Fe values. The enrichment in heavy Fe isotopes between +1.05‰ and +1.43‰ relative to Fe(II) in vent fluids suggest partial oxidation of Fe(II) during mixing of the hydrothermal fluid with seawater. By comparing the results with experimentally determined Fe isotope fractionation factors, we determined that less than 20% of Fe(II) is oxidized within active microbial mats, although this number may reach 80% in aged or less active deposits. These results are consistent with Fe(II) oxidation mediated by microbial processes considering the expected slow kinetics of abiotic Fe oxidation in low oxygen bottom water at Loihi Seamount. In contrast, FeOx deposits recovered at extinct sites have distinctly negative Fe-isotope values down to -1.77‰ together with significant enrichment in Mn and occurrence of negative Ce anomalies. These results are best explained by the near-complete oxidation of an isotopically light Fe(II) source produced during the waning stage of hydrothermal activity under more oxidizing conditions. Light Fe isotope values of FeOx are therefore generated by subsurface precipitation of isotopically heavy Fe-oxides rather than by the activity of dissimilatory Fe reduction in the subsurface. Overall, Fe-isotope compositions of microbial mats at Loihi Seamount display a remarkable range between -1.2‰ and +1.6‰ which indicate that Fe isotope compositions of hydrothermal Fe-oxide precipitates are particularly sensitive to local environmental conditions where they form, and are less sensitive to abiotic versus biotic origins. It follows that FeOx deposits at Loihi Seamount provides important modern analogues for ancient seafloor Fe-rich deposits allowing for testing hypotheses about the biogeochemical cycling of Fe isotopes on early Earth.
Quark-nova remnants. I. The leftover debris with applications to SGRs, AXPs, and XDINs
NASA Astrophysics Data System (ADS)
Ouyed, R.; Leahy, D.; Niebergal, B.
2007-10-01
We explore the formation and evolution of debris ejected around quark stars in the Quark Nova scenario, and the application to Soft Gamma-ray Repeaters (SGRs) and Anomolous X-ray Pulsars (AXPs). If an isolated neutron star explodes as a Quark Nova, an iron-rich shell of degenerate matter forms from its crust. This model can account for many of the observed features of SGRs and AXPs such as: (i) the two types of bursts (giant and regular); (ii) the spin-up and spin-down episodes during and following the bursts with associated increases in dot{P}; (iii) the energetics of the boxing day burst, SGR1806+20; (iv) the presence of an iron line as observed in SGR1900+14; (v) the correlation between the far-infrared and the X-ray fluxes during the bursting episode and the quiescent phase; (vi) the hard X-ray component observed in SGRs during the giant bursts, and (vii) the discrepancy between the ages of SGRs/AXPs and their supernova remnants. We also find a natural evolutionary relationship between SGRs and AXPs in our model which predicts that the youngest SGRs/AXPs are the most likely to exhibit strong bursting. Many features of X-ray Dim Isolated Neutron stars (XDINs) are also accounted for in our model such as, (i) the two-component blackbody spectra; (ii) the absorption lines around 300 eV; and (iii) the excess optical emission. Table 1 is only available in electronic form at http://www.aanda.org
Xie, Xia; Yang, Yang; Zhou, Henghui; Li, Meixian; Zhu, Zhiwei
2018-03-01
Magnetic impurities of lithium ion battery degrade both the capacity and cycling rates, even jeopardize the safety of the battery. During the material manufacture of LiFePO 4 , two opposite and extreme cases (trace impurity Fe(II) with high content of Fe(III) background in FePO 4 of initial end and trace Fe(III) with high content of Fe(II) background in LiFePO 4 of terminal end) can result in the generation of magnetic impurities. Accurate determination of impurities and precise evaluation of raw material or product are necessary to ensure reliability, efficiency and economy in lithium ion battery manufacture. Herein, two kinds of rapid, simple, and sensitive capillary electrophoresis (CE) methods are proposed for quality monitoring of initial and terminal manufacture of LiFePO 4 based lithium ion batteries. The key to success includes the smart use of three common agents 1,10-phenanthroline (phen), EDTA and cetyltrimethyl ammonium bromide (CTAB) in sample solution or background electrolyte (BGE), as well as sample stacking technique of CE feature. Owing to the combination of field-enhanced sample injection (FESI) technique with high stacking efficiency, detection limits of 2.5nM for Fe(II) and 0.1μM for Fe(III) were obtained corresponding to high content of Fe(III) and Fe(II), respectively. The good recoveries and reliability demonstrate that the developed methods are accurate approaches for quality monitoring of LiFePO 4 manufacture. Copyright © 2017 Elsevier B.V. All rights reserved.
ORGANIZATION II, NOVA SCIENCE UNIT 3.
ERIC Educational Resources Information Center
Broward County Schools, Fort Lauderdale, FL.
THE ORGANIZATION OF THE NATURE OF SCIENCE IS EMPHASIZED THROUGH A FOCUS ON CHEMICAL REACTIONS. SIMILARITIES OF THE REACTIONS OF THE HALOGENS WITH THE ALKALI METALS OF LITHIUM, SODIUM, POTASSIUM, AND HYDROGEN ARE INTRODUCED TO THE STUDENT. STUDENTS ARE INTRODUCED TO THE PERIODIC TABLE OF ELEMENTS WHICH EMPHASIZES THE ORGANIZATION OF CHEMICAL…
Asiago spectroscopic classification of 5 ASASSN SNe
NASA Astrophysics Data System (ADS)
Tomasella, L.; Benetti, S.; Cappellaro, E.; Turatto, M.
2018-04-01
The Asiago Transient Classification Program (Tomasella et al. 2014, AN, 335, 841) reports the spectroscopic classification of ASASSN-18ii,ASASSN-18it, ASASSN-18iv, ASASN-18iw, ASASSN-18iu discovered during the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014) (Atel #11178).
NASA Astrophysics Data System (ADS)
Hall, S. J.; Silver, W. L.
2011-12-01
Anaerobic conditions have been proposed to impose a "latch" on soil organic matter decomposition by inhibiting the activity of extracellular enzymes that catalyze the transformation of organic polymers into monomers for microbial assimilation. Here, we tested the hypothesis that anaerobiosis inhibits soil hydrolytic enzyme activity in a humid tropical forest ecosystem in Puerto Rico. We sampled surface and sub-surface soil from each of 59 plots (n = 118) stratified across distinct topographical zones (ridges, slopes, and valleys) known to vary in soil oxygen (O2) concentrations, and measured the potential activity of five hydrolytic enzymes that decompose carbon (C), nitrogen (N), and phosphorus (P) substrates. We measured reduced iron (Fe (II)) concentrations in soil extractions to provide a spatially and temporally integrated index of anaerobic microbial activity, since iron oxides constitute the dominant anaerobic terminal electron acceptor in this ecosystem. Surprisingly, we observed positive relationships between Fe (II) concentrations and the activity of all enzymes that we assayed. Linear mixed effects models that included Fe (II) concentration, topographic position, and their interaction explained between 30 to 70 % of the variance of enzyme activity of β-1,4-glucosidase, β-cellobiohydrolase, β-xylosidase, N-acetylglucosaminidase, and acid phosphatase. Soils from ridges and slopes contained between 10 and 800 μg Fe (II) g-1 soil, and exhibited consistently positive relationships (p < 0.0001) between Fe (II) and enzyme activity. Valley soils did not display significant relationships between enzyme activity and Fe (II), although they displayed variation in soil Fe (II) concentrations similar to ridges and slopes. Overall, valleys exhibited lower enzyme activity and lower Fe (II) concentrations than ridges or slopes, possibly related to decreased root biomass and soil C. Our data provide no indication that anaerobiosis suppresses soil enzyme activity, but rather that high rates of decomposition induce a higher proportion of anaerobiosis soil microsites. The spatial patterns of Fe (II) concentrations that we observed also support this hypothesis. Soil Fe (II) concentrations were significantly greater in ridges than in slopes or valleys, in spite of the fact that slopes and valleys tend to experience higher soil moisture and lower bulk soil O2 concentrations. In our samples, Fe (II) concentrations correlated only weakly with ambient soil moisture, suggesting the importance of biological demand in controlling O2 availability as opposed to physical limitations on O2 diffusion imposed by soil moisture. In sum, our data suggest that anaerobic conditions do not necessarily constrain enzyme activity in humid tropical forest soils, and may not provide a proximate control on soil C storage in these ecosystems as has been recently proposed.
NASA Astrophysics Data System (ADS)
Gonzalez, D.
2017-12-01
Inhalation of fine particulate matter (PM2.5) has long been associated with adverse health outcomes. However, the causative agents and underlying mechanisms for these health effects have yet to be identified. One hypothesis is that PM2.5 deposited in the alveoli produce an excess of highly reactive radicals, leading to oxidative stress. The OH radical may be the most physiologically damaging, capable of oxidizing of lipids, proteins and DNA. Due to the variability and uncertainty in PM2.5 composition, the components that contribute to OH formation are not well understood. Soluble Fe is a component of PM2.5that produces OH under physiological conditions. Humic-like substances are water soluble organics found in biomass burning and tobacco smoke. Humic-like substances are capable of binding to Fe and enhancing OH formation, but this chemistry is not well understood. In this work, we use soil derived fulvic acid as a surrogate for Humic-like substances and investigate its effect on OH formation from Fe(II) under conditions relevant to the lungs. We use a fluorescent OH trapping probe, chemical kinetics and thermodynamic modeling to investigate OH formation from fulvic acid and Fe(II) dissolved in simulated and human lung fluids. In simulated lung fluid, we find that fulvic acid binds to Fe(II) and enhances the rate of key reactions that form OH. When fulvic acid is added to human lung fluids containing Fe(II), an enhancement of OH formation is observed. In human lung fluid, fulvic acid and metal binding proteins compete for Fe binding. These metal binding proteins are typically not found in simulated lung fluids. Results show that fulvic acid strongly binds Fe(II) and catalyzes key reactions that form OH in both simulated and human lung fluids. These results may help explain the role of Humic-like substances and Fe in oxidative stress and adverse health outcomes. Furthermore, we suggest that future studies employ simulated lung fluids containing metal binding proteins to better reflect human lung fluids.
Oxidative removal of Mn(II) from solution catalysed by the γ-FeOOH (lepidocrocite) surface
NASA Astrophysics Data System (ADS)
Sung, Windsor; Morgan, James J.
1981-12-01
A laboratory study was undertaken to ascertain the role of surface catalysis in Mn(II) oxidative removal. γ-FeOOH, a ferric oxyhydroxide formed by O2 oxidation of ferrous iron in solution, was studied in the following ways: surface charge characteristics by acid base titration, adsorption of Mn(II) and surface oxidation of Mn(II). A rate law was formulated to account for the effects of pH and the amount of surface on the surface oxidation rate of Mn(II). The presence of milli-molar levels of γ-FeOOH was shown to reduce significantly the half-life of Mn(II) in 0.7 M NaCl from hundreds of hours to hours. The numerical values of the surface rate constants for the γ-FeOOH and that reported for colloidal MnO2 are comparable in order of magnitude.
A diketiminate-bound diiron complex with a bridging carbonate ligand
Sadique, Azwana R.; Brennessel, William W.; Holland, Patrick L.
2009-01-01
Reduction of carbon dioxide by a diiron(I) complex gives μ-carbonato-κ3 O:O′,O′′-bis{[2,2,6,6-tetramethyl-3,5-bis(2,4,6-triisopropylphenyl)heptane-2,5-diiminate(1−)-κ2 N,N′]iron(II)} toluene disolvate, [Fe2(C41H65N)2(CO3)]·2C7H8, a diiron(II) species with a bridging carbonate ligand. The asymmetric unit contains one diiron complex and two cocrystallized toluene solvent molecules that are distributed over three sites, one with atoms in general positions and two in crystallographic sites. Both FeII atoms are η2-coordinated to diketiminate ligands, but η1- and η2-coordinated to the bridging carbonate ligand. Thus, one FeII center is three-coordinate and the other is four-coordinate. The bridging carbonate ligand is nearly perpendicular to the iron–diketiminate plane of the four-coordinate FeII center and parallel to the plane of the three-coordinate FeII center. PMID:19407402
Equilibrium and kinetics of adsorption of phosphate onto iron-doped activated carbon.
Wang, Zhengfang; Nie, Er; Li, Jihua; Yang, Mo; Zhao, Yongjun; Luo, Xingzhang; Zheng, Zheng
2011-08-01
Two series of activated carbons modified by Fe (II) and Fe (III) (denoted as AC/N-Fe(II) and AC/N-Fe(III)), respectively, were used as adsorbents for the removal of phosphate in aqueous solutions. The synthesized adsorbent materials were investigated by different experimental analysis means. The adsorption of phosphate on activated carbons has been studied in kinetic and equilibrium conditions taking into account the adsorbate concentration, temperature, and solution pH as major influential factors. Maximum removals of phosphate are obtained in the pH range of 3.78-6.84 for both adsorbents. Langmuir isotherm adsorption equation well describes the experimental adsorption isotherms. Kinetic studies revealed that the adsorption process followed a pseudo-second order kinetic model. Results suggest that the main phase formed in AC/N-Fe(II) and AC/N-Fe(III) is goethite and akaganeite, respectively; the presence of iron oxides significantly affected the surface area and the pore structure of the activated carbon. Studies revealed that iron-doped activated carbons were effective in removing phosphate. AC/N-Fe(II) has a higher phosphate removal capacity than AC/N-Fe(III), which could be attributed to its better intra-particle diffusion and higher binding energy. The activation energy for adsorption was calculated to be 22.23 and 10.89 kJ mol(-1) for AC/N-Fe(II) and AC/N-Fe(III), respectively. The adsorption process was complex; both surface adsorption and intra-particle diffusion were simultaneously occurring during the process and contribute to the adsorption mechanism.
Oxygenation of Ediacaran Ocean recorded by iron isotopes
NASA Astrophysics Data System (ADS)
Fan, Haifeng; Zhu, Xiangkun; Wen, Hanjie; Yan, Bin; Li, Jin; Feng, Lianjun
2014-09-01
The increase in atmospheric oxygen during the late Neoproterozoic Era (ca. 800-542 Ma) may have stimulated the oxygenation of the deep oceans and the evolution of macroscopic multicellular organisms. However, the mechanism and magnitude of Neoproterozoic oxygenation remain uncertain. We present Fe isotopes, Fe species and other geochemical data for two sections of the Doushantuo Formation (ca. 635-551 Ma) deposited after the Nantuo glacial episode in the Yangtze Gorge area, South China. It is highlighted that highly positive δ56Fe values reflect a lower oxidation rate of Fe(II)aq under ferruginous conditions, and in turn near zero δ56Fe values indicate oxidizing conditions. Our study suggests that during the deposition of the bottom of Member II of the Doushantuo Formation the shallow seawater was oxic, but the deep water was characterized by ferruginous conditions, which is consistent with a redox chemical stratification model. Subsequent anoxic conditions under shallow seawater, represented by positive δ56Fe and negative δ13Ccarb excursions, should be ascribed to the upwelling of Fe(II)aq and dissolved organic carbon (DOC)-rich anoxic deep seawater. The oxidation of Fe (II)aq and DOC-rich anoxic deep seawater upon mixing with oxic shallow water provides an innovative explanation for the well-known negative δ13Ccarb excursions (ENC2) and positive δ56Fe excursions in the middle of Doushantuo Formation. Meanwhile, the upwelling Fe (II)aq- and DOC-rich anoxic deep seawater could increase photosynthetic activity. The balance between oxygen consumption and production was most important criteria for the oxygenation of Early Ediacaran Ocean and diversity of eukaryotic organisms.
White, A.F.; Peterson, M.L.
1998-01-01
The reduction of aqueous transition metal species at the surfaces of Fe(II)- containing oxides has important ramifications in predicting the transport behavior in ground water aquifers. Experimental studies using mineral suspensions and electrodes demonstrate that structural Fe(II) heterogeneously reduces aqueous ferric, cupric, vanadate and chromate ions on magnetite and ilmenite surfaces. The rates of metal reduction on natural oxides is strongly dependent on the extent of surface passivation and redox conditions in the weathering environment. Synchrotron studies show that surface oxidation of Fe(II)-containing oxide minerals decreases their capacity for Cr(VI) reduction at hazardous waste disposal sites.
Chen, Yiling; Zhang, Huichun
2013-10-01
Rapid reduction of carbadox (CDX), olaquindox and several other aromatic N-oxides were investigated in aqueous solution containing Fe(II) and tiron. Consistent with previous work, the 1:2 Fe(II)-tiron complex, FeL2(6-), is the dominant reactive species as its concentration linearly correlates with the observed rate constant kobs under various conditions. The N-oxides without any side chains were much less reactive, suggesting direct reduction of the N-oxides is slow. UV-vis spectra suggest FeL2(6-) likely forms 5- or 7-membered rings with CDX and olaquindox through the N and O atoms on the side chain. The formed inner-sphere complexes significantly facilitated electron transfer from FeL2(6-) to the N-oxides. Reduction products of the N-oxides were identified by HPLC/QToF-MS to be the deoxygenated analogs. QSAR analysis indicated neither the first electron transfer nor N-O bond cleavage is the rate-limiting step. Calculations of the atomic spin densities of the anionic N-oxides confirmed the extensive delocalization between the aromatic ring and the side chain, suggesting complex formation can significantly affect the reduction kinetics. Our results suggest the complexation facilitated N-oxide reduction by Fe(II)-tiron involves a free radical mechanism, and the subsequent deoxygenation might also benefit from the weak complexation of Fe(II) with the N-oxide O atom.
VizieR Online Data Catalog: Formation of MW halo and its dwarf satellites (Mashonkina+, 2017)
NASA Astrophysics Data System (ADS)
Mashonkina, L.; Jablonka, P.; Pakhomov, Yu; Sitnova, T.; North, P.
2017-04-01
Tables A.1 and A.2 from the article are presented. The first table contains atomic parameters of FeI/II and TiI/II lines. The second atmospheric parameters and FeI/II, TiI/II nLTE abundances. (2 data files).
Non-enzymatic U(VI) interactions with biogenic mackinawite
NASA Astrophysics Data System (ADS)
Veeramani, H.; Qafoku, N. P.; Kukkadapu, R. K.; Murayama, M.; Hochella, M. F.
2011-12-01
Reductive immobilization of hexavalent uranium [U(VI)] by stimulation of dissimilatory metal and/or sulfate reducing bacteria (DMRB or DSRB) has been extensively researched as a remediation strategy for subsurface U(VI) contamination. These bacteria derive energy by reducing oxidized metals as terminal electron acceptors, often utilizing organic substrates as electron donors. Thus, when evaluating the potential for in-situ uranium remediation in heterogeneous subsurface media, it is important to understand how the presence of alternative electron acceptors such as Fe(III) and sulfate affect U(VI) remediation and the long term behavior and reactivity of reduced uranium. Iron, an abundant subsurface element, represents a substantial sink for electrons from DMRB, and the reduction of Fe(III) leads to the formation of dissolved Fe(II) or to reactive biogenic Fe(II)- and mixed Fe(II)/Fe(III)- mineral phases. Consequently, abiotic U(VI) reduction by reactive forms of biogenic Fe(II) minerals could be a potentially important process for uranium immobilization. In our study, the DMRB Shewanella putrefaciens CN32 was used to synthesize a biogenic Fe(II)-bearing sulfide mineral: mackinawite, that has been characterized by XRD, SEM, HRTEM and Mössbauer spectroscopy. Batch experiments involving treated biogenic mackinawite and uranium (50:1 molar ratio) were carried out at room temperature under strict anoxic conditions. Following complete removal of uranium from solution, the biogenic mackinawite was analyzed by a suite of analytical techniques including XAS, HRTEM and Mössbauer spectroscopy to determine the speciation of uranium and investigate concomitant Fe(II)-phase transformation. Determining the speciation of uranium is critical to success of a remediation strategy. The present work elucidates non-enzymatic/abiotic molecular scale redox interactions between biogenic mackinawite and uranium.
Fe II emission lines. I - Chromospheric spectra of red giants
NASA Technical Reports Server (NTRS)
Judge, P. G.; Jordan, C.
1991-01-01
A 'difference filtering' algorithm developed by Ayers (1979) is used to construct high-quality high-dispersion long-wavelength IUE spectra of three giant stars. Measurements of all the emission lines seen between 2230 and 3100 A are tabulated. The emission spectrum of Fe II is discussed in comparison with other lines whose formation mechanisms are well understood. Systematic changes in the Fe II spectrum are related to the different physical conditions in the three stars, and examples are given of line profiles and ratios which can be used to determine conditions in the outer atomspheres of giants. It is concluded that most of the Fe II emission results from collisional excitation and/or absorption of photospheric photons at optical wavelengths, but some lines are formed by fluorescence, being photoexcited by other strong chromospheric lines. Between 10 and 20 percent of the radiative losses of Fe II arise from 10 eV levels radiatively excited by the strong chromospheric H Ly-alpha line.
Lead and selenite adsorption at water–goethite interfaces from first principles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leung, Kevin; Criscenti, Louise J.
Here, the complexation of toxic and/or radioactive ions on to mineral surfaces is an important topic in geochemistry. We apply periodic-boundary-conditions density functional theory (DFT) molecular dynamics simulations to examine the coordination of Pb(II),more » $${\\rm SeO}_3^{2-}$$ , and their contact ion pairs to goethite (1 0 1) and (2 1 0) surfaces. The multitude of Pb(II) adsorption sites and possibility of Pb(II)-induced FeOH deprotonation make this a complex problem. At surface sites where Pb(II) is coordinated to three FeO and/or FeOH groups, and with judicious choices of FeOH surface group protonation states, the predicted Fe–Pb distances are in good agreement with EXAFS measurements. Trajectories where Pb(II) is in part coordinated to only two surface Fe–O groups exhibit larger fluctuations in Pb–O distances. Pb(II)/$${\\rm SeO}_3^{2-}$$ contact ion pairs are at least metastable on goethite (2 1 0) surfaces if the $${\\rm SeO}_3^{2-}$$ has a monodentate Se–O–Fe bond. Our DFT-based molecular dynamics calculations are a prerequisite for calculations of finite temperature equilibrium binding constants of Pb(II) and Pb(II)/$${\\rm SeO}_3^{2-}$$ ion pairs to goethite adsorption sites.« less
Lead and selenite adsorption at water–goethite interfaces from first principles
Leung, Kevin; Criscenti, Louise J.
2017-08-04
Here, the complexation of toxic and/or radioactive ions on to mineral surfaces is an important topic in geochemistry. We apply periodic-boundary-conditions density functional theory (DFT) molecular dynamics simulations to examine the coordination of Pb(II),more » $${\\rm SeO}_3^{2-}$$ , and their contact ion pairs to goethite (1 0 1) and (2 1 0) surfaces. The multitude of Pb(II) adsorption sites and possibility of Pb(II)-induced FeOH deprotonation make this a complex problem. At surface sites where Pb(II) is coordinated to three FeO and/or FeOH groups, and with judicious choices of FeOH surface group protonation states, the predicted Fe–Pb distances are in good agreement with EXAFS measurements. Trajectories where Pb(II) is in part coordinated to only two surface Fe–O groups exhibit larger fluctuations in Pb–O distances. Pb(II)/$${\\rm SeO}_3^{2-}$$ contact ion pairs are at least metastable on goethite (2 1 0) surfaces if the $${\\rm SeO}_3^{2-}$$ has a monodentate Se–O–Fe bond. Our DFT-based molecular dynamics calculations are a prerequisite for calculations of finite temperature equilibrium binding constants of Pb(II) and Pb(II)/$${\\rm SeO}_3^{2-}$$ ion pairs to goethite adsorption sites.« less
Effect of iron ion on doxycycline photocatalytic and Fenton-based autocatatalytic decomposition.
Bolobajev, Juri; Trapido, Marina; Goi, Anna
2016-06-01
Doxycycline plays a key role in Fe(III)-to-Fe(II) redox cycling and therefore in controlling the overall reaction rate of the Fenton-based process (H2O2/Fe(III)). This highlights the autocatalytic profile of doxycycline degradation. Ferric iron reduction in the presence of doxycycline relied on doxycycline-to-Fe(III) complex formation with an ensuing reductive release of Fe(II). The lower ratio of OH-to-contaminant in an initial H2O2/Fe(III) oxidation step than in that of classical Fenton (H2O2/Fe(II)) decreased the doxycycline degradation rate. The quantum yield of doxycycline in direct UV-C photolysis was 3.1 × 10(-3) M E(-1). In spite of doxycycline-Fe(III) complexes could produce the adverse effect on the doxycycline degradation in the UV/Fe(III) system some acceleration of the rate was observed upon irradiation of the Fe(III)-hydroxy complex. Acidic reaction media (pH 3.0) and the molar ratio of DC/Fe(III) = 2/1 favored the complex formation. Doxycycline close degradation rates and complete mineralization achieved for 120 min (Table 1) with both UV/H2O2 and UV/H2O2/Fe(III) indicated the unsubstantial role of the reduction of Fe(III) to Fe(II) in UV/H2O2/Fe(III) system efficacy. Thus, factors such as doxycycline's ability to form complexes with ferric iron and the ability of complexes to participate in a reductive pathway should be considered at a technological level in process optimization, with chemistry based on iron ion catalysis to enhance the doxycycline oxidative pathway. Copyright © 2016 Elsevier Ltd. All rights reserved.
Interactions between magnetite and humic substances: redox reactions and dissolution processes.
Sundman, Anneli; Byrne, James M; Bauer, Iris; Menguy, Nicolas; Kappler, Andreas
2017-10-19
Humic substances (HS) are redox-active compounds that are ubiquitous in the environment and can serve as electron shuttles during microbial Fe(III) reduction thus reducing a variety of Fe(III) minerals. However, not much is known about redox reactions between HS and the mixed-valent mineral magnetite (Fe 3 O 4 ) that can potentially lead to changes in Fe(II)/Fe(III) stoichiometry and even dissolve the magnetite. To address this knowledge gap, we incubated non-reduced (native) and reduced HS with four types of magnetite that varied in particle size and solid-phase Fe(II)/Fe(III) stoichiometry. We followed dissolved and solid-phase Fe(II) and Fe(III) concentrations over time to quantify redox reactions between HS and magnetite. Magnetite redox reactions and dissolution processes with HS varied depending on the initial magnetite and HS properties. The interaction between biogenic magnetite and reduced HS resulted in dissolution of the solid magnetite mineral, as well as an overall reduction of the magnetite. In contrast, a slight oxidation and no dissolution was observed when native and reduced HS interacted with 500 nm magnetite. This variability in the solubility and electron accepting and donating capacity of the different types of magnetite is likely an effect of differences in their reduction potential that is correlated to the magnetite Fe(II)/Fe(III) stoichiometry, particle size, and crystallinity. Our study suggests that redox-active HS play an important role for Fe redox speciation within minerals such as magnetite and thereby influence the reactivity of these Fe minerals and their role in biogeochemical Fe cycling. Furthermore, such processes are also likely to have an effect on the fate of other elements bound to the surface of Fe minerals.
NASA Astrophysics Data System (ADS)
Stander, A.; Nelms, M.; Wilkinson, K.; Dyar, M. D.; Cardace, D.
2013-12-01
The reduced status of mantle rocks is a possible controller and indicator of deep life habitat, due to interactions between water and ultramafic (Fe, Mg-rich) minerals, which, under reducing conditions, can yield copious free hydrogen, which is an energy source for rock-hosted chemosynthetic life. In this work, Mössbauer spectroscopy was used to parameterize the redox status of Fe in altering peridotites of the Coast Range Ophiolite (CRO) in California, USA and Zambales Ophiolite (ZO) in the Philippines. Fe-bearing minerals were identified and data were collected for the percentages of Fe(III)and Fe(II)and bulk Fe concentration. Thin section analysis shows that relict primary olivines and spinels generally constitute a small percentage of the ZO and CRO rock, and given satisfactory estimates of the volume of the ultramafic units of the ZO and CRO, a stoichiometric H2 production can be estimated. In addition, ZO serpentinites are ~63,000 ppm Fe in bulk samples; they contain ~41-58% Fe(III)and ~23-34% Fe(II) in serpentine and relict minerals along with ~8-30% of the total Fe as magnetite. CRO serpentinites are ~42,000 ppm Fe in bulk samples; they contain ~15-50% Fe(III), ~22-88% Fe(II) in serpentine and relict minerals, and ~0-52% of total Fe is in magnetite (Fe(II)Fe(III)2O4). Assuming stoichiometric production of H2, and given the following representation of serpentinization 2(FeO)rock + H2O → (Fe2O3)rock +H2, we calculated the maximum quantity of hydrogen released and yet to be released through the oxidation of Fe(II). Given that relatively high Fe(III)/Fetotal values can imply higher water:rock ratios during rock alteration (Andreani et al., 2013), we can deduce that ZO ultramafics in this study have experienced a net higher water:rock ratio than CRO ultramafics. We compare possible H2 yields and contrast the tectonic and alteration histories of the selected ultramafic units. (M. Andreani, M. Muñoz, C. Marcaillou, A. Delacour, 2013, μXANES study of iron redox state in serpentine during oceanic serpentinization, Lithos, Available online 20 April 2013)
Liu, Xixiang; Yuan, Songhu; Tong, Man; Liu, Deng
2017-04-15
Reduction by Fe(II)-bearing silicate minerals has been proposed as an important mechanism for the attenuation of chlorinated hydrocarbons (CHCs) in anoxic subsurfaces. The redox condition of subsurface often changes from anoxic to oxic due to natural processes and human activities, but little is known about the transformation of CHCs induced by Fe(II)-bearing silicate minerals under oxic conditions. This study reveals that trichloroethylene (TCE) can be efficiently oxidized during the oxygenation of reduced nontronite at pH 7.5, whereas the reduction was negligible under anoxic conditions. The maximum oxidation of TCE (initially 1 mg/L) attained 89.6% for 3 h oxygenation of 2 g/L nontronite with 50% reduction extent. TCE oxidation is attributed to the strongly oxidizing hydroxyl radicals (OH) produced by the oxygenation of Fe(II) in nontronite. Fe(II) on the edges is preferentially oxygenated for OH production, and the interior Fe(II) serves as an electron pool to regenerate the Fe(II) on the edges. Oxidation of TCE could be sustainable through chemically or biologically reducing the oxidized silicate minerals. Our findings present a new mechanism for the transformation of CHCs and other redox-active substances in the redox-fluctuation environments. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yao, Xian-Zhi; Guo, Zheng; Yuan, Qing-Hong; Liu, Zhong-Gang; Liu, Jin-Huai; Huang, Xing-Jiu
2014-08-13
This study attempts to understand the intrinsic impact of different morphologies of nanocrystals on their electrochemical stripping behaviors toward heavy metal ions. Two differently shaped Fe3O4 nanocrystals, i.e., (100)-bound cubic and (111)-bound octahedral, have been synthesized for the experiments. Electrochemical results indicate that Fe3O4 nanocrystals with different shapes show different stripping behaviors toward heavy metal ions. Octahedral Fe3O4 nanocrystals show better electrochemical sensing performances toward the investigated heavy metal ions such as Zn(II), Cd(II), Pb(II), Cu(II), and Hg(II), in comparison with cubic ones. Specifically, Pb(II) is found to have the best stripping performance on both the (100) and (111) facets. To clarify these phenomena, adsorption abilities of as-prepared Fe3O4 nanocrystals have been investigated toward heavy metal ions. Most importantly, combined with theoretical calculations, their different electrochemical stripping behaviors in view of facet effects have been further studied and enclosed at the level of molecular/atom. Finally, as a trial to find a disposable platform completely free from noble metals, the potential application of the Fe3O4 nanocrystals for electrochemical detection of As(III) in drinking water is demonstrated.
Semin, B. K.; Davletshina, L. N.; Seibert, M.; ...
2017-11-11
Extraction of Mn cations from the oxygen-evolving complex (OEC) of Ca-depleted PSII membranes (PSII[-Ca,4Mn]) by reductants like hydroquinone (H 2Q) occurs with lower efficiency at acidic pH (2Mn/reaction center [RC] are extracted at pH 5.7) than at neutral pH (3Mn/RC are extracted at pH 6.5) [Semin et al. Photosynth. Res. 125 (2015) 95]. Fe(II) also extracts Mn cations from PSII(-Ca,4Mn), but only 2Mn/RC at pH 6.5, forming a heteronuclear 2Mn/2Fe cluster [Semin and Seibert, J. Bioenerg. Biomembr. 48 (2016) 227]. Here we investigated the efficiency of Mn extraction by Fe(II) at acidic pH and found that Fe(II) cations can extractmore » only 1Mn/RC from PSII(-Ca,4Mn) membranes at pH 5.7, forming a 3Mn/1Fe cluster.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Semin, B. K.; Davletshina, L. N.; Seibert, M.
Extraction of Mn cations from the oxygen-evolving complex (OEC) of Ca-depleted PSII membranes (PSII[-Ca,4Mn]) by reductants like hydroquinone (H 2Q) occurs with lower efficiency at acidic pH (2Mn/reaction center [RC] are extracted at pH 5.7) than at neutral pH (3Mn/RC are extracted at pH 6.5) [Semin et al. Photosynth. Res. 125 (2015) 95]. Fe(II) also extracts Mn cations from PSII(-Ca,4Mn), but only 2Mn/RC at pH 6.5, forming a heteronuclear 2Mn/2Fe cluster [Semin and Seibert, J. Bioenerg. Biomembr. 48 (2016) 227]. Here we investigated the efficiency of Mn extraction by Fe(II) at acidic pH and found that Fe(II) cations can extractmore » only 1Mn/RC from PSII(-Ca,4Mn) membranes at pH 5.7, forming a 3Mn/1Fe cluster.« less
Weber, Katharina; Erdem, Özlen F; Bill, Eckhard; Weyhermüller, Thomas; Lubitz, Wolfgang
2014-06-16
A series of four [S2Ni(μ-S)2FeCp*Cl] compounds with different tetradentate thiolate/thioether ligands bound to the Ni(II) ion is reported (Cp* = C5Me5). The {S2Ni(μ-S)2Fe} core of these compounds resembles structural features of the active site of [NiFe] hydrogenases. Detailed analyses of the electronic structures of these compounds by Mössbauer and electron paramagnetic resonance spectroscopy, magnetic measurements, and density functional theory calculations reveal the oxidation states Ni(II) low spin and Fe(II) high spin for the metal ions. The same electronic configurations have been suggested for the Cred1 state of the C-cluster [NiFeu] subsite in carbon monoxide dehydrogenases (CODH). The Ni-Fe distance of ∼3 Å excludes a metal-metal bond between nickel and iron, which is in agreement with the computational results. Electrochemical experiments show that iron is the redox active site in these complexes, performing a reversible one-electron oxidation. The four complexes are discussed with regard to their similarities and differences both to the [NiFe] hydrogenases and the C-cluster of Ni-containing CODH.
Kataria, Navish; Garg, V K
2018-06-04
This study focused on the synthesis and characterization of novel magnetic iron oxide nanoparticles loaded sawdust carbon (Fe 3 O 4 /SC) and EDTA modified Fe 3 O 4 /SC (EDTA@Fe 3 O 4 /SC) nanocomposites (ncs) by low cost biogenic green synthesis approach and their application for Cd (II) removal from aqueous medium in batch mode. In isotherm studies, Langmuir and Freundlich models are best fitted to Cd (II) removal data. Langmuir maximum adsorption capacity of EDTA@Fe 3 O 4 /SC ncs was found to be 63.3, 22.4 and 25 mg/g that is greater than maximum adsorption capacity of Fe 3 O 4 /SC ncs that is 51, 18.9 and 15 mg/g at the adsorbent doses of 0.4, 1.2 and 2.0 g/L, respectively. Cd (II) adsorption rate is well explained by Pseudo-second order model. Cd (II) adsorption process is spontaneous and endothermic in nature expressed by Enthalpy, Entropy and Free Energy change. The results of regeneration studies showed that EDTA modified Fe 3 O 4 /SC ncs is promising, low cost and eco-friendly for heavy metal adsorption. Copyright © 2018 Elsevier Ltd. All rights reserved.
Küsel, K; Dorsch, T; Acker, G; Stackebrandt, E
1999-08-01
To evaluate the microbial populations involved in the reduction of Fe(III) in an acidic, iron-rich sediment, the anaerobic flow of supplemental carbon and reductant was evaluated in sediment microcosms at the in situ temperature of 12 degrees C. Supplemental glucose and cellobiose stimulated the formation of Fe(II); 42 and 21% of the reducing equivalents that were theoretically obtained from glucose and cellobiose, respectively, were recovered in Fe(II). Likewise, supplemental H(2) was consumed by acidic sediments and yielded additional amounts of Fe(II) in a ratio of approximately 1:2. In contrast, supplemental lactate did not stimulate the formation of Fe(II). Supplemental acetate was not consumed and inhibited the formation of Fe(II). Most-probable-number estimates demonstrated that glucose-utilizing acidophilic Fe(III)-reducing bacteria approximated to 1% of the total direct counts of 4', 6-diamidino-2-phenylindole-stained bacteria. From the highest growth-positive dilution of the most-probable-number series at pH 2. 3 supplemented with glucose, an isolate, JF-5, that could dissimilate Fe(III) was obtained. JF-5 was an acidophilic, gram-negative, facultative anaerobe that completely oxidized the following substrates via the dissimilation of Fe(III): glucose, fructose, xylose, ethanol, glycerol, malate, glutamate, fumarate, citrate, succinate, and H(2). Growth and the reduction of Fe(III) did not occur in the presence of acetate. Cells of JF-5 grown under Fe(III)-reducing conditions formed blebs, i.e., protrusions that were still in contact with the cytoplasmic membrane. Analysis of the 16S rRNA gene sequence of JF-5 demonstrated that it was closely related to an Australian isolate of Acidiphilium cryptum (99.6% sequence similarity), an organism not previously shown to couple the complete oxidation of sugars to the reduction of Fe(III). These collective results indicate that the in situ reduction of Fe(III) in acidic sediments can be mediated by heterotrophic Acidiphilium species that are capable of coupling the reduction of Fe(III) to the complete oxidation of a large variety of substrates including glucose and H(2).
Iron(II) porphyrins induced conversion of nitrite into nitric oxide: A computational study.
Zhang, Ting Ting; Liu, Yong Dong; Zhong, Ru Gang
2015-09-01
Nitrite reduction to nitric oxide by heme proteins was reported as a protective mechanism to hypoxic injury in mammalian physiology. In this study, the pathways of nitrite reduction to nitric oxide mediated by iron(II) porphyrin (P) complexes, which were generally recognized as models for heme proteins, were investigated by using density functional theory (DFT). In view of two type isomers of combination of nitrite and Fe(II)(P), N-nitro- and O-nitrito-Fe(II)-porphyrin complexes, and two binding sites of proton to the different O atoms of nitrite moiety, four main pathways for the conversion of nitrite into nitric oxide mediated by iron(II) porphyrins were proposed. The results indicate that the pathway of N-bound Fe(II)(P)(NO2) isomer into Fe(III)(P)(NO) and water is similar to that of O-bound isomer into nitric oxide and Fe(III)(P)(OH) in both thermodynamical and dynamical aspects. Based on the initial computational studies of five-coordinate nitrite complexes, the conversion of nitrite into NO mediated by Fe(II)(P)(L) complexes with 14 kinds of proximal ligands was also investigated. Generally, the same conclusion that the pathways of N-bound isomers are similar to those of O-bound isomer was obtained for iron(II) porphyrin with ligands. Different effects of ligands on the reduction reactions were also found. It is notable that the negative proximal ligands can improve reactive abilities of N-nitro-iron(II) porphyrins in the conversion of nitrite into nitric oxide compared to neutral ligands. The findings will be helpful to expand our understanding of the mechanism of nitrite reduction to nitric oxide by iron(II) porphyrins. Copyright © 2015 Elsevier Inc. All rights reserved.
Uranium Reduction by Fe(II) in the Presence of Montmorillonite and Nontronite.
Tsarev, Sergey; Waite, T David; Collins, Richard N
2016-08-02
Uranium(VI) interactions with three smectites (one montmorillonite and two nontronites - NAu1 and NAu2) were examined with 0, 1, and 2 mM aqueous concentrations of Fe(II) over the pH range of 3-9.5 in a background electrolyte of 100 mM NaCl and 1 mM CaCl2 in equilibration with 400 ppmv CO2(g) ([U(VI)] = 4 μM and 0.5 g smectite/L). In the absence of Fe(II), no differences were observed in the U(VI) sorption curves for the three clay minerals. In the presence of 1 or 2 mM Fe(II), under anoxic conditions, U(VI) uptake by the smectites changed slightly between ∼pH 3 and 6; however, uranium uptake increased significantly above ∼pH 6 and was proportional to the concentration of Fe(II) added to the system, particularly at pH values >8. The uptake of Fe(II) showed a sharp edge starting from ∼pH 6.5 with 95%-100% uptake occurring at pH values >7.5, with no difference observed between the iron-rich nontronites and montmorillonite. After 3 days of reaction at pH 7.6 (i.e., above the Fe(II) "sorption" edge), U(VI) was transformed to a mixture of U(IV) and U(VI) sorption complexes, and after 14 days of reaction, 100% of the U was found to be reduced to U(IV) in the form of nanocrystalline uraninite. In contrast, U remained as sorbed species until 14 days of reaction at pH 6.5. Ferrihydrite (NAu1), lepidocrocite, and magnetite (NAu2) were detected as secondary mineralization products upon reaction of the nontronites with Fe(II) but appeared to have no effect on the partitioning or speciation of uranium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Starcher, Autumn N.; Elzinga, Evert J.; Sparks, Donald L.
Previous research demonstrated the formation of single divalent metal (Co, Ni, and ZnAl) and mixed divalent metal (NiZnAl) layered double hydroxide (LDH) phases from reactions of the divalent metal with Al-bearing substrates and soils in both laboratory experiments and in the natural environment. Recently Fe(II)-Al-LDH phases have been found in laboratory batch reaction studies, and although they have yet to be found in the natural environment. Potential locations of Fe(II)-Al-LDH phases in nature include areas with suboxic and anoxic conditions. Because these areas can be environments of significant contaminant accumulation, it is important to understand the possible interactions and impactsmore » of contaminant elements on LDH phase formation. One such contaminant, Zn, can also form as an LDH and has been found to form as a mixed divalent layered hydroxide phase. To understand how Zn impacts the formation of Fe(II)-Al-LDH phase formation and kinetics, 3 mM or 0.8 mM Fe(II) and 0.8 mM Zn were batch reacted with either 10 g/L pyrophyllite or 7.5 g/L γ-Al2O3 for up to three months under anoxic conditions. Aqueous samples were analyzed by inductively coupled plasma optical emission spectrometry (ICP-OES) and solid samples were analyzed with X-ray absorption spectroscopy (XAS). Shell-by-shell fits of Fe(II) and co-sorption samples with pyrophyllite show the formation of a mixed divalent metal (Fe(II)-Zn-Al) layered hydroxide phase, while Fe(II) and Zn co-sorption samples with γ-Al2O3 produce Fe(II)-Al-LDH phases and Zn in inner-sphere complexation with the γ-Al2O3. This study demonstrates the formation of a mixed divalent metal layered hydroxide and further iterates the importance of sorbent reactivity on LDH phase formation.« less
de Ruiter, Graham; Carsch, Kurtis M; Gul, Sheraz; Chatterjee, Ruchira; Thompson, Niklas B; Takase, Michael K; Yano, Junko; Agapie, Theodor
2017-04-18
We report the synthesis, characterization, and reactivity of [LFe 3 (PhPz) 3 OMn( s PhIO)][OTf] x (3: x=2; 4: x=3), where 4 is one of very few examples of iodosobenzene-metal adducts characterized by X-ray crystallography. Access to these rare heterometallic clusters enabled differentiation of the metal centers involved in oxygen atom transfer (Mn) or redox modulation (Fe). Specifically, 57 Fe Mössbauer and X-ray absorption spectroscopy provided unique insights into how changes in oxidation state (Fe III 2 Fe II Mn II vs. Fe III 3 Mn II ) influence oxygen atom transfer in tetranuclear Fe 3 Mn clusters. In particular, a one-electron redox change at a distal metal site leads to a change in oxygen atom transfer reactivity by ca. two orders of magnitude. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Application of sequential extraction analysis to Pb(II) recovery by zerovalent iron-based particles.
Zhu, Neng-Min; Xu, Yan-Sheng; Dai, Lichun; Zhang, Yun-Fei; Hu, Guo-Quan
2018-06-05
Zerovalent iron (ZVI) is an environmental-friendly reactive reagent for recovering heavy metals. However, the detailed recovery mechanism remains unclear due to a lack of quantitative analysis of recovery products. Herein, microscale ZVI, nanoscale ZVI and Ni/Fe nanoparticles were used to recover Pb(II) in aqueous solution and a sequential extraction procedure (SEP) was applied to determine the formed lead species quantitatively. At high initial Pb(II) concentration (500 mg L -1 ), more than 99.5% of Pb(II) was immobilized by Ni/Fe and n-ZVI, whereas m-ZVI caused inferior recovery efficiency (<25%). XRD and XPS results revealed that Pb(II) was reduced to Pb 0 prior to the formation of metal hydroxides as the external shell of ZVI. SEP results showed that the fraction bound to carbonates (PbO), fraction bound to iron oxides and exchangeable fraction were the main lead species conducted by Ni/Fe, n-ZVI and m-ZVI, respectively. Consequently, (co-)precipitation and specific adsorption dominated Pb(II) recovery by Ni/Fe and n-ZVI, whereas m-ZVI conducted Pb(II) recovery mainly via weak adsorption. The reactivity of ZVI toward Pb(II) followed the increasing order of m-ZVI < n-ZVI ≤ Ni/Fe. The detailed mechanisms of Pb(II) recovery conducted by different ZVI were proposed. Copyright © 2018 Elsevier B.V. All rights reserved.
Widger, Leland R.; Jiang, Yunbo; Siegler, Maxime; Kumar, Devesh; Latifi, Reza; de Visser, Sam P.; Jameson, Guy N.L.; Goldberg, David P.
2013-01-01
The known iron(II) complex [FeII(LN3S)(OTf)] (1) was used as starting material to prepare the new biomimetic (N4S(thiolate)) iron(II) complexes [FeII(LN3S)(py)](OTf) (2) and [FeII(LN3S)(DMAP)](OTf) (3), where LN3S is a tetradentate bis(imino)pyridine (BIP) derivative with a covalently tethered phenylthiolate donor. These complexes were characterized by X-ray crystallography, UV-vis, 1H NMR, and Mössbauer spectroscopy, as well as electrochemistry. A nickel(II) analogue, [NiII(LN3S)](BF4) (5), was also synthesized and characterized by structural and spectroscopic methods. Cyclic voltammetric studies showed 1 – 3 and 5 undergo a single reduction process with E1/2 between −0.9 to −1.2 V versus Fc+/Fc. Treatment of 3 with 0.5% Na/Hg amalgam gave the mono-reduced complex [Fe(LN3S)(DMAP)]0 (4), which was characterized by X-ray crystallography, UV-vis, EPR (g = [2.155, 2.057, 2.038]) and Mössbauer (δ = 0.33 mm s−1; ΔEQ = 2.04 mm s−1) spectroscopies. Computational methods (DFT) were employed to model complexes 3 – 5. The combined experimental and computational studies show that 1 – 3 are 5-coordinate, high-spin (S = 2) FeII complexes, whereas 4 is best described as a 5-coordinate, intermediate-spin (S = 1) FeII complex antiferromagnetically coupled to a ligand radical. This unique electronic configuration leads to an overall doublet spin (Stotal = ½) ground state. Complexes 2 and 3 are shown to react with O2 to give S-oxygenated products, as previously reported for 1. In contrast, the mono-reduced 4 appears to react with O2 to give a mixture of S- and Fe-oxygenates. The nickel(II) complex 5 does not react with O2, and even when the mono-reduced nickel complex is produced, it appears to undergo only outer-sphere oxidation with O2. PMID:23992096
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katherine Barbeau
2007-04-10
Recent mesoscale iron fertilization studies in the Southern Ocean (e.g. SOIREE, EisenEx, SOFeX) have demonstrated the importance of iron as a limiting factor for phytoplankton growth in these high nutrient, low-chlorophyll (HNLC) waters. Results of these experiments have demonstrated that factors which influence the biological availability of the iron supplied to phytoplankton are crucial in bloom development, longevity, and generation of carbon export flux. These findings have important implications for the future development of iron fertilization protocols to enhance carbon sequestration in high-latitude oceans. In particular, processes which lead to the mobilization and retention of iron in dissolved form inmore » the upper ocean are important in promoting continued biological availability of iron. Such processes can include photochemical redox cycling, which leads to the formation of soluble reduced iron, Fe(II), within iron-enriched waters. Creation of effective fertilization schemes will thus require more information about Fe(II) photoproduction in Southern Ocean waters as a means to retain new iron within the euphotic zone. To contribute to our knowledge base in this area, this project was funded by DOE with a goal of characterizing the production and retention of dissolved Fe as Fe(II) in an area of the southern Drake Passage near the Shackleton Transverse Ridge, a region with a strong recurrent chlorophyll gradient which is believed to be a site of natural iron enrichment in the Southern Ocean. This area was the focus of a multidisciplinary NSF/OPP-funded investigation in February 2004 (OPP02-30443, lead PI Greg Mitchell, SIO/UCSD) to determine the influence of mesoscale circulation and iron transport with regard to the observed patterns in sea surface chlorophyll in the region near the Shackleton Transverse Ridge. A number of parameters were assessed across this gradient in order to reveal interactions between plankton community structure and iron distributions. As a co-PI in the NSF/OPP-funded project, I was responsible for iron addition incubation and radiotracer experiments, and analysis of iron chemistry, including iron-organic speciation. This final technical report describes the results of my DOE funded project to analyse reduced iron species using an FeLume flow injection analysis chemiluminescence system as an extension of my work on the NSF/OPP project. On the cruise in 2004, spatial and temporal gradients in Fe(II) were determined, and on-board incubations were conducted to study Fe(II) lifetime and production. Following the cruise a further series of experiments was conducted in my laboratory to study Fe(II) lifetimes and photoproduction under conditions typical of high latitude waters. The findings of this study suggest that, in contrast to results observed during mesoscale iron addition experiments, steady-state levels of Fe(II) are likely to remain low (below detection) even within a significant gradient in dissolved Fe concentrations produced as a result of natural iron enrichment processes. Fe(II) is likely to be produced, however, as a reactive intermediate associated with photochemical reactions in surface waters. While Fe(II) lifetimes measured in the field in this study were commensurate with those determined in previously published Southern Ocean work, Fe(II) lifetimes reflective of realistic Southern Ocean environmental conditions have proven difficult to determine in a laboratory setting, due to contamination by trace levels of H2O2. Laboratory experiments demonstrated that direct ligand-to-metal charge transfer reactions of strong Fe(III)-organic complexes do appear to be a viable source of available Fe(II) in Antarctic waters, and further studies are needed to characterize the temperature dependence of this phenomenon.« less
Intermediate P* from soluble methane monooxygenase contains a diferrous cluster.
Banerjee, Rahul; Meier, Katlyn K; Münck, Eckard; Lipscomb, John D
2013-06-25
During a single turnover of the hydroxylase component (MMOH) of soluble methane monooxygenase from Methylosinus trichosporium OB3b, several discrete intermediates are formed. The diiron cluster of MMOH is first reduced to the Fe(II)Fe(II) state (H(red)). O₂ binds rapidly at a site away from the cluster to form the Fe(II)Fe(II) intermediate O, which converts to an Fe(III)Fe(III)-peroxo intermediate P and finally to the Fe(IV)Fe(IV) intermediate Q. Q binds and reacts with methane to yield methanol and water. The rate constants for these steps are increased by a regulatory protein, MMOB. Previously reported transient kinetic studies have suggested that an intermediate P* forms between O and P in which the g = 16 EPR signal characteristic of the reduced diiron cluster of H(red) and O is lost. This was interpreted as signaling oxidation of the cluster, but a low level of accumulation of P* prevented further characterization. In this study, three methods for directly detecting and trapping P* are applied together to allow its spectroscopic and kinetic characterization. First, the MMOB mutant His33Ala is used to specifically slow the decay of P* without affecting its formation rate, leading to its nearly quantitative accumulation. Second, spectra-kinetic data collection is used to provide a sensitive measure of the formation and decay rate constants of intermediates as well as their optical spectra. Finally, the substrate furan is included to react with Q and quench its strong chromophore. The optical spectrum of P* closely mimics those of H(red) and O, but it is distinctly different from that of P. The reaction cycle rate constants allowed prediction of the times for maximal accumulation of the intermediates. Mössbauer spectra of rapid freeze-quench samples at these times show that the intermediates are formed at almost exactly the predicted levels. The Mössbauer spectra show that the diiron cluster of P*, quite unexpectedly, is in the Fe(II)Fe(II) state. Thus, the loss of the g = 16 EPR signal results from a change in the electronic structure of the Fe(II)Fe(II) center rather than oxidation. The similarity of the optical and Mössbauer spectra of H(red), O, and P* suggests that only subtle changes occur in the electronic and physical structure of the diiron cluster as P* forms. Nevertheless, the changes that do occur are necessary for O₂ to be activated for hydrocarbon oxidation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerr, Andrew T.; Kumalah, Sayon A.; Holman, K. T.
2013-10-06
The reaction of two η5-cyclopentadienyliron(II)-functionalized terephthalate and phthalate metalloligands, namely [(η5-C5H5)FeII(η6-1,4-HO2CC6H4CO2H)][(η5-C5H5)FeII(η6-1,4-HO2CC6H4CO2)][PF6] and [(η5-C5H5)FeII(η6-1,2-HO2CC6H4CO2H)][(η5-C5H5)FeII(η6-1,2-HO2CC6H4CO2)][PF6]—hereafter [H2 CpFeTP][HCpFeTP][PF6] and [H2 CpFeP][HCpFeP][PF6], respectively—with [UO2(NO3)2]·6H2O under hydrothermal conditions yielded four new coordination polymers; (1) [(UO2)F(HCpFeTP)(PO4H2)]·2H2O, (2) [(UO2)2(CpFeTP)4]·5H2O, (3) [(UO2)2F3(H2O)(CpFeP)], and (4) [H2 CpFeP][UO2F3]. The use of metalloligands has proven to be a viable route towards the incorporation of a secondary metal center into uranyl bearing materials. Depending upon the protonation state, the iron sandwich metalloligands may vary from zwitterionic neutral or monoanionic coordinating species as observed in compounds 1–3, or a positively charged species that hydrogen bonds with anionic [UO2F3]- chains as observed in 4.more » Further, the hydrolysis of the charge balancing PF6 - anion increases the diversity of UO2 2+ coordinating species by contributing both F- and PO4 3- anions (1, 3, 4). The luminescent properties of 1–4 were also studied and revealed the absence of uranyl emission, suggestive of a possible energy transfer from the uranyl cation to the iron(II) metal center.« less
Odabaş, Zafer; Dumludağ, Fatih; Ozkaya, Ali Riza; Yamauchi, Seigo; Kobayashi, Nagao; Bekaroğlu, Ozer
2010-09-21
The mononuclear Fe(II) phthalocyanine 2 and ball-type homobinuclear Fe(II)-Fe(II) and Cu(II)-Cu(II) phthalocyanines, 3 and 4 respectively, were synthesized from the corresponding 4,4'-[1,1'-methylenebis-(naphthalene-2,1-diyl)]bis(oxy)diphthalonitrile 1, and then ball-type heterobinuclear Fe(II)-Cu(II) phthalocyanine 5 was synthesized from 2. The novel compounds 4 and 5 have been characterized by elemental analysis, UV/vis, IR and MALDI-TOF mass spectroscopies. Electron paramagnetic resonance and magnetic circular dichroism measurements of 3, 4 and 5 were also examined. The voltammetric measurements of the complexes showed the formation of various electrochemically stable ligand- and metal-based mixed-valence species, due to the intramolecular interactions between the two MPc units, especially in ball-type binuclear iron(II) phthalocyanine. Impedance spectroscopy and d.c. conductivity measurements of 4 and 5 were performed as a function of temperature (295-523 K) and frequency (40-10(5) Hz). While room temperature impedance spectra consist of a curved line, a transformation into a full semicircle with increasing temperature was observed for both compounds.
Widger, Leland R.; Siegler, Maxime A.
2013-01-01
The unsymmetrical iron(II) bis(imino)pyridine complexes [FeII(LN3SMe)(H2O)3](OTf)2 (1), and [FeII(LN3SMe)Cl2] (2) were synthesized and their reactivity with O2 was examined. Complexes 1 and 2 were characterized by single crystal X-ray crystallography, LDI-MS, 1H-NMR and elemental analysis. The LN3SMe ligand was designed to incorporate a single sulfide donor and relies on the bis(imino)pyridine scaffold. This scaffold was selected for its ease of synthesis and its well-precedented ability to stabilize Fe(II) ions. Complexes 1 and 2 ware prepared via a metal-assisted template reaction from the unsymmetrical pyridyl ketone precursor 2-(O=CMe)-6-(2,6-(iPr2-C6H3N=CMe)-C5H3N. Reaction of 1 with O2 was shown to afford the S-oxygenated sulfoxide complex [Fe(LN3S(O)Me)(OTf)]2+(3), whereas compound 2, under the same reaction conditions, afforded the corresponding sulfone complex [Fe(LN3S(O2)Me)Cl]2+ (4). PMID:23878411
Synthetic Models for Nickel-Iron Hydrogenase Featuring Redox-Active Ligands.
Schilter, David; Gray, Danielle L; Fuller, Amy L; Rauchfuss, Thomas B
2017-05-01
The nickel-iron hydrogenase enzymes efficiently and reversibly interconvert protons, electrons, and dihydrogen. These redox proteins feature iron-sulfur clusters that relay electrons to and from their active sites. Reported here are synthetic models for nickel-iron hydrogenase featuring redox-active auxiliaries that mimic the iron-sulfur cofactors. The complexes prepared are Ni II (μ-H)Fe II Fe II species of formula [(diphosphine)Ni(dithiolate)(μ-H)Fe(CO) 2 (ferrocenylphosphine)] + or Ni II Fe I Fe II complexes [(diphosphine)Ni(dithiolate)Fe(CO) 2 (ferrocenylphosphine)] + (diphosphine = Ph 2 P(CH 2 ) 2 PPh 2 or Cy 2 P(CH 2 ) 2 PCy 2 ; dithiolate = - S(CH 2 ) 3 S - ; ferrocenylphosphine = diphenylphosphinoferrocene, diphenylphosphinomethyl(nonamethylferrocene) or 1,1'-bis(diphenylphosphino)ferrocene). The hydride species is a catalyst for hydrogen evolution, while the latter hydride-free complexes can exist in four redox states - a feature made possible by the incorporation of the ferrocenyl groups. Mixed-valent complexes of 1,1'-bis(diphenylphosphino)ferrocene have one of the phosphine groups unbound, with these species representing advanced structural models with both a redox-active moiety (the ferrocene group) and a potential proton relay (the free phosphine) proximal to a nickel-iron dithiolate.
Magnetite solubility and phase stability in alkaline media at elevated temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ziemniak, S.E.; Jones, M.E.; Combs, K.E.S.
Magnetite, Fe{sub 3}O{sub 4}, is the dominant oxide constituent of the indigenous corrosion layers that form on iron base alloys in high purity, high temperature water. The apparent simultaneous stability of two distinct oxidation states of iron in this metal oxide is responsible for its unique solubility behavior. The present work was undertaken to extend the experimental and theoretical bases for estimating solubilities of an iron corrosion product (Fe{sub 3}O{sub 4}/Fe(OH){sub 2}) over a broader temperature range and in the presence of complexing, pH-controlling reagents. These results indicate that a surface layer of ferrous hydroxide controls magnetite solubility behavior atmore » low temperatures in much the same manner as a surface layer of nickel(II) hydroxide was previously reported to control the low temperature solubility behavior of NiO. The importance of Fe(III) ion complexes implies not only that most previously-derived thermodynamic properties of the Fe(OH){sub 3}{sup {minus}} ion are incorrect, but that magnetite phase stability probably shifts to favor a sodium ferric hydroxyphosphate compound in alkaline sodium phosphate solutions at elevated temperatures. The test methodology involved pumping alkaline solutions of known composition through a bed of Fe{sub 3}O{sub 4} granules and analyzing the emerging solution for Fe. Two pH-controlling reagents were tested: sodium phosphate and ammonia. Equilibria for the following reactions were described in thermodynamic terms: (a) Fe(OH){sub 2}/Fe{sub 3}O{sub 4} dissolution and transformation, (b) Fe(II) and Fe(III) ion hydroxocomplex formation (hydrolysis), (c) Fe(II) ion amminocomplex formation, and (d) Fe(II) and Fe(III) ion phosphatocomplex formation. 36 refs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toczydlowska, Diana; Kedra-Krolik, Karolina; Nejbert, Krzysztof
The role of surface electrostatics on the reductive dissolution of iron (III) oxides is poorly understood, despite its importance in controlling the amount of mobilized iron. We report the potentiometric titration of the a; y -Fe2O3 oxides exposed to reductants and complexing ligands (Fe(II), ascorbate, oxalate, malonate). We monitored in situ surface and potentials, the ratio of mobilized ferric to ferrous ions, and periodically analyzed nanoparticle crystal structure using X-ray diffraction. We found that addition of Fe2+ ions produces a response consistent with the iron solubilityactivity curve, whereas the presence of ascorbate significantly decreases the amount of mobilized Fe(III) duemore » to reduction to Fe(II). In addition, XRD analysis proved that y-Fe2O3 particles remain structurally unchanged along the titration pathway despite iron cycling between aqueous and solid reservoirs. Our studies, suggest that the surface redoxactivity of iron oxides is primarily governed by the balance between Fe(III) and Fe(II) ions in aqueous phase, which may be easily altered by complexing and reducing agents.« less
BI Crucis - A new symbiotic star
NASA Technical Reports Server (NTRS)
Henize, K. G.; Carlson, E. D.
1980-01-01
A Mount Stromlo spectrogram of BI Cru taken in 1962 shows emission lines of H I, He I, He II, Fe II, N III, and the forbidden O III, forbidden Ne III, and forbidden S II transitions superposed on a weak bluish continuum. A spectrogram by Allen in 1974 shows emission lines of H I and Fe II and possibly weak He I, forbidden Fe II, and forbidden O I lines superposed on an M-star absorption spectrum. The object is evidently a symbiotic star showing large variations in its spectral character. Significant differences exist in the mean ion velocities and appear to be correlated with ionization potential.
Kuznetsova, A A; Lukyanets, E A; Solovyeva, L I; Knorre, D G; Fedorova, O S
2008-12-01
Design of chemically modified oligonucleotides for regulation of gene expression has attracted considerable attention over the past decades. One actively pursued approach involves antisense or antigene oligonucleotide constructs carrying reactive groups, many of these based on transition metal complexes. The complexes of Fe(II) and Co(II) with phthalocyanines are extremely good catalysts of oxidation of organic compounds with molecular oxygen and hydrogen peroxide. The binding of positively charged Fe(II) and Co(II) phthalocyanines with single- and double-stranded DNA was investigated. It was shown that these phthalocyanines interact with nucleic acids through an outside binding mode. The site-directed modification of single-stranded DNA by O2 and H2O2 in the presence of dimeric complexes of negatively and positively charged Fe(II) and Co(II) phthalocyanines was investigated. These complexes were formed directly on single-stranded DNA through interaction between negatively charged phthalocyanine in conjugate and positively charged phthalocyanine in solution. The resulting oppositely charged phthalocyanine complexes showed significant increase of catalytic activity compared with monomeric forms of phthalocyanines Fe(II) and Co(II). These complexes catalyzed the DNA oxidation with high efficacy and led to direct DNA strand cleavage. It was determined that oxidation of DNA by molecular oxygen catalyzed by complex of Fe(II)-phthalocyanines proceeds with higher rate than in the case of Co(II)-phthalocyanines but the latter led to a greater extent of target DNA modification.
NASA Astrophysics Data System (ADS)
Chaudhuri, Dipankar; , Joseph Martin Bollinger, Jr.
2008-07-01
The kinetics of Fe(II) binding to Escherichia coli Ribonucleotide reductase (R2) has been studied using rapid kinetics techniques including chemical quenched flow (CQF) Mössbauer spectroscopy. Based on the stopped flow absorption (SF-Abs) and CQF Mössbauer spectroscopy results, the pre-steady kinetics of binding of Fe(II) to the two sites A and B on R2 have been established with attendant conformational changes. Fe (II) binds to Site B tighter and faster and these and other results provide important information towards the di-iron cofactor assembly mechanism in R2 and could have possible implications for the development of modified and new anticancer and antiviral drugs.
Masuda, Hiroshi; Shimochi, Erika; Hamada, Tatsuro; Senoura, Takeshi; Kobayashi, Takanori; Aung, May Sann; Ishimaru, Yasuhiro; Ogo, Yuko; Nakanishi, Hiromi; Nishizawa, Naoko K
2017-01-01
Iron (Fe) deficiency is a critical agricultural problem, especially in calcareous soil, which is distributed worldwide. Rice plants take up Fe(II) from soil through a OsIRT1 transporter (Strategy I-related system) and also take up Fe(III) via a phytosiderophore-based system (Strategy II system). However, rice plants are susceptible to low-Fe conditions because they have low Fe(III) reduction activity and low-level phytosiderophore secretion. Previously, we produced transgenic rice plants expressing a mutationally reconstructed yeast ferric chelate reductase, refre1/372, under the control of the OsIRT1 promoter. This transgenic rice line exhibited higher Fe(III) chelate reductase activity and tolerance to Fe deficiency. In addition, we produced transgenic rice overexpressing the Fe deficiency-inducible transcription factor, OsIRO2, which regulates the expression of various genes involved in the strategy II Fe(III) uptake system, including OsNAS1, OsNAAT1, OsDMAS1, OsYSL15, and TOM1. This transgenic rice exhibited improved phytosiderophore secretion ability and tolerance to Fe deficiency. In the present research, transgenic rice plants that possess both the OsIRT1 promoter-refre1/372 and the 35S promoter-OsIRO2 (RI lines) were produced to enhance both Strategy I Fe(II) reductase ability and Strategy II phytosiderophore productivity. RI lines exhibited enhanced tolerance to Fe-deficient conditions at the early and middle-late stages of growth in calcareous soil, compared to both the non-transgenic line and lines harboring either OsIRT1 promoter-refre1/372 or 35S promoter-OsIRO2 alone. RI lines also exhibited a 9-fold higher yield than the non-transgenic line. Moreover, we successfully produced Fe-deficiency-tolerant Tachisugata rice, which is a high-biomass variety used as fodder. Collectively, our results demonstrate that combined enhancement of two Fe uptake systems in rice is highly effective in conferring tolerance to low Fe availability in calcareous soil.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Yun; Li, Wei; Sparks, Donald L.
2015-10-18
Arsenic (As) mobility in the environment is greatly affected by its oxidation state and the degree to which it is sorbed on metal oxide surfaces. Manganese (Mn) and iron (Fe) oxides are ubiquitous solids in terrestrial systems and have high sorptive capacities for many trace metals, including As. Although numerous studies have studied the effects of As adsorption and desorption onto Fe and Mn oxides individually, the fate of As within mixed systems representative of natural environments has not been resolved. In this research, As(III) was initially reacted with a poorly crystalline phyllomanganate (δ-MnO 2) in the presence of Fe(II)more » prior to desorption. This initial reaction resulted in the sorption of both As(III) and As(V) on mixed Fe/Mn-oxides surfaces. A desorption study was carried out using two environmentally significant ions, phosphate (PO 4 3–) and calcium (Ca 2+). Both a stirred-flow technique and X-ray absorption fine-structure spectroscopy (XAFS) analysis were used to investigate As desorption behavior. Results showed that when As(III)/Fe(II) = 1:1 in the initial reaction, only As(V) was desorbed, agreeing with a previous study showing that As(III) is not associated with the Fe/Mn-oxides. When As(III)/Fe(II) = 1:10 in the initial reaction, both As(III) and As(V) can be desorbed from the Fe/Mn-oxide surface, and more As(III) is desorbed than As(V). Neither of the desorbents used in this study completely removed As(III) or As(V) from the Fe/Mn-oxides surface. However, the As desorption fraction decreases with increasing Fe(II) concentration in the initial reactions.« less
Tetrachloroethene degradation by reducing-agent enhanced Fe(II)/Fe(III) catalyzed percarbonate
NASA Astrophysics Data System (ADS)
Miao, Z.; Brusseau, M. L.; Lu, S.; Gu, X.; Yan, N.; Qiu, Z.; Sui, Q.
2015-12-01
This project investigated the effect of reducing agents on the degradation of tetrachloroethene(PCE) by Fe(II)/Fe(III) catalyzed sodium percarbonate (SPC). SPC possesses similar function as liquid H2O2, such that free H2O2 is released into solution when percarbonate is mixed with water. The addition of reducing agents, including hydroxylamine hydrochloride, sodium sulfite, ascorbic acid and sodium ascorbate, accelerated the Fe(III)/Fe(II) redoxcycle, leading to a relatively steady Fe(II) concentration and higher production of free radicals. This, in turn, resulted in enhanced PCE oxidation by SPC, with almost complete PCE removal obtained for appropriate Fe and SPC concentrations.The results of chemical probe tests, using nitrobenzene and carbon tetrachloride, demonstrated that HO● was the predominant radical in the system and that O2●-played a minor role. This was further confirmed by the results of electron paramagnetic resonance measurements and salicylic acid hydroxylationanalysis by high performance liquid chromatography(HPLC). PCE degradation decreased significantly with the addition of isopropanol, a strong HO● scavenger, supporting the hypothesis that HO● was primarily responsible for PCE degradation. It should be noted that the release of Cl- was slightly delayed in the first 20 mins, indicating that intermediate products were produced. However, gas chromatography mass spectrometry (GC/MS) analysis did not detect any chlorinated organic compound except PCE, indicating these intermediates were quickly degraded, which resulted in the complete conversion of PCE to CO2. In conclusion, the use of reducing agents to enhance Fe(II)/Fe(III) catalyzed SPC oxidation appears to be a promising approach for the rapid degradation of organic contaminants in groundwater.
Wu, Yun; Li, Wei; Sparks, Donald L
2015-11-17
Arsenic (As) mobility in the environment is greatly affected by its oxidation state and the degree to which it is sorbed on metal oxide surfaces. Manganese (Mn) and iron (Fe) oxides are ubiquitous solids in terrestrial systems and have high sorptive capacities for many trace metals, including As. Although numerous studies have studied the effects of As adsorption and desorption onto Fe and Mn oxides individually, the fate of As within mixed systems representative of natural environments has not been resolved. In this research, As(III) was initially reacted with a poorly crystalline phyllomanganate (δ-MnO2) in the presence of Fe(II) prior to desorption. This initial reaction resulted in the sorption of both As(III) and As(V) on mixed Fe/Mn-oxides surfaces. A desorption study was carried out using two environmentally significant ions, phosphate (PO4(3-)) and calcium (Ca(2+)). Both a stirred-flow technique and X-ray absorption fine-structure spectroscopy (XAFS) analysis were used to investigate As desorption behavior. Results showed that when As(III)/Fe(II) = 1:1 in the initial reaction, only As(V) was desorbed, agreeing with a previous study showing that As(III) is not associated with the Fe/Mn-oxides. When As(III)/Fe(II) = 1:10 in the initial reaction, both As(III) and As(V) can be desorbed from the Fe/Mn-oxide surface, and more As(III) is desorbed than As(V). Neither of the desorbents used in this study completely removed As(III) or As(V) from the Fe/Mn-oxides surface. However, the As desorption fraction decreases with increasing Fe(II) concentration in the initial reactions.
Iodometric determination of peroxydiphosphate in the presence of copper(II) or iron(II) as catalyst.
Kapoor, S; Sharma, P D; Gupta, Y K
1975-09-01
Peroxydiphosphate can be determined iodometrically in the presence of a large excess of potassium iodide with copper(II) or iron(II) as catalyst through the operation of the Cu(II)/Cu(I) or Fe(II)/Fe(III) cycle. The method is applicable in HClO(4), H(2)SO(4), HCl and CH(3)COOH acid media in the range 0.1-1.0M studied. Nickel, manganese(II), cobalt(II), silver, chloride and phosphate are without effect.
Ultraviolet Fe VII absorption and Fe II emission lines of central stars of planetary nebulae
NASA Technical Reports Server (NTRS)
Cheng, Kwang-Ping; Feibelman, Walter A.; Bruhweiler, Frederick C.
1991-01-01
The SWP camera of the IUE satellite was used in the high-dispersion mode to search for Fe VII absorption and Fe II high-excitation emission lines in five additional very hot central stars of planetary nebulae. Some of the Fe VII lines were detected at 1208, 1239, and 1332 A in all the objects of this program, LT 5, NGC 6058, NGC 7094, A43, and Lo 1 (= K1-26), as well as some of the Fe II emission lines at A 1360, 1776, 1869, 1881, 1884, and 1975 A. Two additional objects, NGC 2867 and He 2-131, were obtained from the IUE archive and were evaluated. The present study probably exhausts the list of candidates that are sufficiently bright and hot to be reached with the high-dispersion mode of the IUE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Frances N.; Um, Wooyong; Taylor, Christopher D.
2016-05-17
Iron oxides and oxyhydroxides play an important role in minimizing the mobility of redox-sensitive elements in engineered and natural environments. For the radionuclide technetium-99 (Tc), these phases hold promise as primary hosts for increasing Tc loading into glass waste form matrices, or as secondary sinks during the long-term storage of nuclear materials. Recent experiments show that the inverse spinel, magnetite [Fe(II)Fe(III)2O4], can incorporate Tc(IV) into its octahedral sub-lattice, and in that same class of materials, trevorite [Ni(II)Fe(III)2O4] is also being investigated for its ability to host Tc(IV). However, questions remain regarding the most energetically favorable charge-compensation mechanism for Tc(IV) incorporationmore » in each structure, which will affect Tc behavior under changing waste processing or storage conditions. Here, quantum-mechanical methods were used to evaluate incorporation energies and optimized lattice bonding environments for three different, charge-balanced Tc(IV) incorporation mechanisms in magnetite and trevorite. In both cases, the removal of two octahedral Fe(II) or Ni(II) ions upon the addition of Tc(IV) to an octahedral site is the most stable mechanism, relative to the creation of octahedral Fe(III) defects or increasing octahedral Fe(II) content. Following hydration-energy corrections, Tc(IV) incorporation into magnetite is energetically favorable while an energy barrier exists for trevorite.« less
Li, Wei; Zhao, Jingkai; Zhang, Lei; Xia, Yinfeng; Liu, Nan; Li, Sujing; Zhang, Shihan
2016-01-01
A novel chemical absorption-biological reduction (CABR) integrated process, employing ferrous ethylenediaminetetraacetate (Fe(II)EDTA) as a solvent, is deemed as a potential option for NOx removal from the flue gas. Previous work showed that the Fe(II)EDTA concentration was critical for the NOx removal in the CABR process. In this work, the pathway of FeEDTA (Fe(III)/Fe(II)-EDTA) transformation was investigated to assess its impact on the NOx removal in a biofilter. Experimental results revealed that the FeEDTA transformation involved iron precipitation and EDTA degradation. X-ray photoelectron spectroscopy analysis confirmed the iron was precipitated in the form of Fe(OH)3. The iron mass balance analysis showed 44.2% of the added iron was precipitated. The EDTA degradation facilitated the iron precipitation. Besides chemical oxidation, EDTA biodegradation occurred in the biofilter. The addition of extra EDTA helped recover the iron from the precipitation. The transformation of FeEDTA did not retard the NO removal. In addition, EDTA rather than the iron concentration determined the NO removal efficiency. PMID:26743930
Magnetic properties of Fe-doped organic-inorganic nanohybrids
NASA Astrophysics Data System (ADS)
Silva, N. J. O.; Amaral, V. S.; Carlos, L. D.; de Zea Bermudez, V.
2003-05-01
We present a magnetic study of Fe-doped diureasils (siloxane-based networks to which poly(ethylene oxide)-based chains are grafted by urea cross linkages doped with Fe(II) or Fe(III) ions. Structural studies show that the Fe(II) ions interact mainly with the organic chain, whereas the incorporation of Fe(III) leads to the formation of iron-based nanoclusters, with radius increasing from 20 to 40 Å. Fe(II)-doped samples behave as simple paramagnets, with μeff=5.32μB. Fe(III)-doped hybrids present antiferromagnetic interactions, with TN increasing with Fe(III) concentration up to 13.6 K for 6% doping. Thermal irreversibility was observed below ˜40 K and is stronger for higher concentrations. The coercive fields (HC) are of the order of 1000 Oe at 5 K. Hysteresis cycles are shifted to negative fields, revealing the presence of exchange anisotropy interactions with exchange fields (HE) of the order of 100 Oe. Both fields decrease rapidly with increasing temperature. We analyze this behavior in terms of the contribution of surface spin disorder to exchange anisotropy.
As(III) oxidation by MnO2 during groundwater treatment.
Gude, J C J; Rietveld, L C; van Halem, D
2017-03-15
The top layer of natural rapid sand filtration was found to effectively oxidise arsenite (As(III)) in groundwater treatment. However, the oxidation pathway has not yet been identified. The aim of this study was to investigate whether naturally formed manganese oxide (MnO 2 ), present on filter grains, could abiotically be responsible for As(III) oxidation in the top of a rapid sand filter. For this purpose As(III) oxidation with two MnO 2 containing powders was investigated in aerobic water containing manganese(II) (Mn(II)), iron(II) (Fe(II)) and/or iron(III) (Fe(III)). The first MnO 2 powder was a very pure - commercially available - natural MnO 2 powder. The second originated from a filter sand coating, produced over 22 years in a rapid filter during aeration and filtration. Jar test experiments showed that both powders oxidised As(III). However, when applying the MnO 2 in aerated, raw groundwater, As(III) removal was not enhanced compared to aeration alone. It was found that the presence of Fe(II)) and Mn(II) inhibited As(III) oxidation, as Fe(II) and Mn(II) adsorption and oxidation were preferred over As(III) on the MnO 2 surface (at pH 7). Therefore it is concluded that just because MnO 2 is present in a filter bed, it does not necessarily mean that MnO 2 will be available to oxidise As(III). However, unlike Fe(II), the addition of Fe(III) did not hinder As(III) oxidation on the MnO 2 surface; resulting in subsequent effective As(V) removal by the flocculating hydrous ferric oxides. Copyright © 2016 Elsevier Ltd. All rights reserved.
Inhibition of bacterial oxidation of ferrous iron by lead nitrate in sulfate-rich systems
Wang, Hongmei; Gong, Linfeng; Cravotta,, Charles A.; Yang, Xiaofen; Tuovinen, Olli H.; Dong, Hailiang; Fu, Xiang
2013-01-01
Inhibition of bacterial oxidation of ferrous iron (Fe(II)) by Pb(NO3)2 was investigated with a mixed culture of Acidithiobacillus ferrooxidans. The culture was incubated at 30 °C in ferrous-sulfate medium amended with 0–24.2 mM Pb(II) added as Pb(NO3)2. Anglesite (PbSO4) precipitated immediately upon Pb addition and was the only solid phase detected in the abiotic controls. Both anglesite and jarosite (KFe3(SO4)2(OH)6) were detected in inoculated cultures. Precipitation of anglesite maintained dissolved Pb concentrations at 16.9–17.6 μM regardless of the concentrations of Pb(NO3)2 added. Fe(II) oxidation was suppressed by 24.2 mM Pb(NO3)2 addition even when anglesite was removed before inoculation. Experiments with 0–48 mM KNO3 demonstrated that bacterial Fe(II) oxidation decreased as nitrate concentration increased. Therefore, inhibition of Fe(II) oxidation at 24.2 mM Pb(NO3)2 addition resulted from nitrate toxicity instead of Pb addition. Geochemical modeling that considered the initial precipitation of anglesite to equilibrium followed by progressive oxidation of Fe(II) and the precipitation of jarosite and an amorphous iron hydroxide phase, without allowing plumbojarosite to precipitate were consistent with the experimental time-series data on Fe(II) oxidation under biotic conditions. Anglesite precipitation in mine tailings and other sulfate-rich systems maintains dissolved Pb concentrations below the toxicity threshold of A. ferrooxidans.
ERIC Educational Resources Information Center
Cameron, James D.
2003-01-01
Provides an institutional case study of St. Francis Xavier University in Nova Scotia, a church-related college, regarding how post-World War II social trends reconfigured Canadian universities and substantially altered the undergraduate experience. Found that rising enrollments, physical plant expansion, faculty laicization, the campaign for…
CA II K-line metallicity indicator for field RR Lyrae stars
NASA Astrophysics Data System (ADS)
Clementini, Gisella; Tosi, Monica; Merighi, Roberto
In order to check and, possibly, improve the Preston's Delta S calibration scale, CCD spectra have been obtained for 25 field RR Lyrae variables. Eleven of the program stars have values of (Fe/H) derived by Butler and Deming (1979) from the Fe II lines' strength. For them we find that the equivalent width of the Ca II K line is extremely well correlated to the (Fe/H) values, the best fit relation being: (Fe/H) = 0.43W(K) - 2.75 where W(K) is the equivalent width of the K line. We conclude that the use of the K line equivalent width is at present the best method to derive the (Fe/H) abundance of the RR Lyrae stars.
Coexistence of Fe(II)- and Mn(II)-oxidizing bacteria govern the formation of deep sea umber deposits
NASA Astrophysics Data System (ADS)
Peng, Xiaotong; Ta, Kaiwen; Chen, Shun; Zhang, Lijuan; Xu, Hengchao
2015-11-01
The genesis of umber deposits has remained controversial for several decades. Recently, microbial Fe(II) oxidation associated with low-temperature diffuse venting has been identified as a key process for the formation of umber deposits, but the exact biogeochemical mechanisms involved to the precipitation of Mn oxides in umber deposits still remain unknown. Here, we used nano secondary ion mass spectrometer, synchrotron-based X-ray absorption spectroscopy, electron microscopy, and molecular techniques to demonstrate the coexistence of two types of metal-oxidizing bacteria within deep-sea hydrothermal umber deposits at the South Mid-Atlantic Ridge, where we found unique spheroids composed of biogenic Fe oxyhydroxides and Mn oxides in the deposits. Our data show that Fe oxyhydroxides and Mn oxides are metabolic by-products of lithotrophic Fe(II)-oxidizing bacteria and heterotrophic Mn(II)-oxidizing bacteria, respectively. The hydrothermal vents fuel lithotrophic microorganisms, which constitute a trophic base that might support the activities of heterogenic Mn(II)-oxidizing bacteria. The biological origin of umber deposits shed light on the importance of geomicrobiological interaction in triggering the formation of metalliferous deposits, with important implications for the generation of submarine Mn deposits and crusts.
NASA Astrophysics Data System (ADS)
Peacock, Caroline L.; Sherman, David M.
2004-06-01
We measured the adsorption of Cu(II) onto goethite (α-FeOOH), hematite (α-Fe 2O 3) and lepidocrocite (γ-FeOOH) from pH 2-7. EXAFS spectra show that Cu(II) adsorbs as (CuO 4H n) n-6 and binuclear (Cu 2O 6H n) n-8 complexes. These form inner-sphere complexes with the iron (hydr)oxide surfaces by corner-sharing with two or three edge-sharing Fe(O,OH) 6 polyhedra. Our interpretation of the EXAFS data is supported by ab initio (density functional theory) geometries of analogue Fe 2(OH) 2(H 2O) 8Cu(OH) 4and Fe 3(OH) 4(H 2O) 10Cu 2(OH) 6 clusters. We find no evidence for surface complexes resulting from either monodentate corner-sharing or bidentate edge-sharing between (CuO 4H n) n-6 and Fe(O,OH) 6 polyhedra. Sorption isotherms and EXAFS spectra show that surface precipitates have not formed even though we are supersaturated with respect to CuO and Cu(OH) 2. Having identified the bidentate (FeOH) 2Cu(OH) 20 and tridentate (Fe 3O(OH) 2)Cu 2(OH) 30 surface complexes, we are able to fit the experimental copper(II) adsorption data to the reactions 3( FeOH)+2 Cu2++3 H2O=( Fe3O( OH) 2) Cu2( OH) 30+4 H+ and 2( FeOH)+ Cu2++2 H2O=( FeOH) 2Cu( OH) 20+2 H+. The two stability constants are similar for the three iron (hydr)oxide phases investigated.
Pereira, Dora I.A.; Bruggraber, Sylvaine F.A.; Faria, Nuno; Poots, Lynsey K.; Tagmount, Mani A.; Aslam, Mohamad F.; Frazer, David M.; Vulpe, Chris D.; Anderson, Gregory J.; Powell, Jonathan J.
2014-01-01
Iron deficiency is the most common nutritional disorder worldwide with substantial impact on health and economy. Current treatments predominantly rely on soluble iron which adversely affects the gastrointestinal tract. We have developed organic acid-modified Fe(III) oxo-hydroxide nanomaterials, here termed nano Fe(III), as alternative safe iron delivery agents. Nano Fe(III) absorption in humans correlated with serum iron increase (P < 0.0001) and direct in vitro cellular uptake (P = 0.001), but not with gastric solubility. The most promising preparation (iron hydroxide adipate tartrate: IHAT) showed ~80% relative bioavailability to Fe(II) sulfate in humans and, in a rodent model, IHAT was equivalent to Fe(II) sulfate at repleting haemoglobin. Furthermore, IHAT did not accumulate in the intestinal mucosa and, unlike Fe(II) sulfate, promoted a beneficial microbiota. In cellular models, IHAT was 14-fold less toxic than Fe(II) sulfate/ascorbate. Nano Fe(III) manifests minimal acute intestinal toxicity in cellular and murine models and shows efficacy at treating iron deficiency anaemia. From the Clinical Editor This paper reports the development of novel nano-Fe(III) formulations, with the goal of achieving a magnitude less intestinal toxicity and excellent bioavailability in the treatment of iron deficiency anemia. Out of the tested preparations, iron hydroxide adipate tartrate met the above criteria, and may become an important tool in addressing this common condition. PMID:24983890
9-Triptycenecarboxylate-Bridged Diiron(II) Complexes
Friedle, Simone; Kodanko, Jeremy J.; Fornace, Kyrstin L.; Lippard, Stephen J.
2008-01-01
The synthesis and characterization of diiron(II) complexes supported by 9-triptycenecarboxylate ligands (-O2CTrp) is described. The interlocking nature of the triptycenecarboxylates facilitates formation of quadruply bridged diiron(II) complexes of the type [Fe2(μ-O2CTrp)4(L)2] (L = THF, pyridine or imidazole derivative) with a paddlewheel geometry. A systematic lengthening of the Fe-Fe distance occurs with the increase in steric bulk of the neutral donor L, resulting in values of up to 3 Å without disassembly of the paddlewheel structure. Reactions with an excess of water do not lead to decomposition of the diiron(II) core, indicating that these quadruply bridged complexes are of exceptional stability. The red-colored complexes [Fe2(μ-O2CTrp)4(4-AcPy)2] (10) and [Fe2(μ-O2CTrp)4(4-CNPy)2] (11) exhibit solvent-dependent thermochromism in coordinating solvents that was studied by variable temperature UV-vis spectroscopy. Reaction of [Fe2(μ-O2CTrp)4(THF)2] with N,N,N’,N’-tetramethylethylenediamine (TMEDA), tetra-n-butyl ammonium thiocyanate, or excess 2-methylimidazole resulted in the formation of mononuclear complexes [Fe(O2CTrp)2(TMEDA)] (13), (n-Bu4N)2[Fe(O2CTrp)2(SCN)2] (14), and [Fe(O2CTrp)2(2-MeIm)2] (15) having an O4/N2 coordination sphere composition. PMID:19915653
Liu, Mingyang; Yang, Lijun; Zhang, Lei
2016-12-01
In this study, a functionalized magnetic hollow porous oval-shape NiFe 2 O 4 (MHPO-NiFe 2 O 4 ) was designed by a facile synthesis procedure, and employed as magnetic solid phase extraction (MSPE) material to extract several heavy metal ions. As-prepared MHPO-NiFe 2 O 4 exhibited superior adsorption capacities of 20.17, 16.64, 16.82, 9.69 and 16.58mgg -1 , for Cu(II), Cd(II), Cr(III), Co(II) and Zn(II), and was then used to detect these heavy metals elements in real samples by combining with inductively coupled plasma optical emission spectroscopy (ICP-OES). The possible mechanism of the enrichment of heavy metals ions on MHPO-NiFe 2 O 4 was proposed, which involved the dominant adsorption and desorption. The detection limits were as low as 0.015, 0.13, 0.062, 0.035 and 0.46μgL -1 for Cu(II), Cd(II), Cr(III), Co(II) and Zn(II), respectively. A good repeatability was obtained with the relative standard deviation (RSD) of 3.87%. Moreover, the method was successfully utilized for the analysis of five heavy metals in real samples (cabbage, lettuce, apple, seawater), with satisfactory recoveries in the range of 92-108%. Copyright © 2016 Elsevier B.V. All rights reserved.
Chen, Zhe; Tang, Ye-Tao; Zhou, Can; Xie, Shu-Ting; Xiao, Shi; Baker, Alan J M; Qiu, Rong-Liang
2017-05-01
Cadmium contaminated rice from China has become a global food safety issue. Some research has suggested that chelate addition to substrates can affect metal speciation and plant metal content. We investigated the mitigation of Cd accumulation in hydroponically-grown rice supplied with EDTANa 2 Fe(II) or EDDHAFe(III). A japonica rice variety (Nipponbare) was grown in modified Kimura B solution containing three concentrations (0, 10, 100 μΜ) of the iron chelates EDTANa 2 Fe(II) or EDDHAFe(III) and 1 μΜ Cd. Metal speciation in solution was simulated by Geochem-EZ; growth and photosynthetic efficiency of rice were evaluated, and accumulation of Cd and Fe in plant parts was determined. Net Cd fluxes in the meristematic zone, growth zone, and maturation zone of roots were monitored by a non-invasive micro-test technology. Expression of Fe- and Cd-related genes in Fe-sufficient or Fe-deficient roots and leaves were studied by QRT-PCR. Compared to Fe deficiency, a sufficient or excess supply of Fe chelates significantly enhanced rice growth by elevating photosynthetic efficiency. Both Fe chelates increased the Fe content and decreased the Cd content of rice organs, except for the Cd content of roots treated with excess EDDHAFe(III). Compared to EDDHAFe(III), EDTANa 2 Fe(II) exhibited better mitigation of Cd accumulation in rice by generating the EDTANa 2 Cd complex in solution, decreasing net Cd influx and increasing net Cd efflux in root micro-zones. Application of EDTANa 2 Fe(II) and EDDHAFe(III) also reduced Cd accumulation in rice by inhibiting expression of genes involved in transport of Fe and Cd in the xylem and phloem. The 'win-win' situation of Fe biofortification and Cd mitigation in rice was achieved by application of Fe chelates. Root-to-stem xylem transport of Cd and redistribution of Cd in leaves by phloem transport can be regulated in rice through the use of Fe chelates that influence Fe availability and Fe-related gene expression. Fe fertilization decreased Cd influx and increased Cd efflux in rice roots. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effects of Coating Materials and Mineral Additives on Nitrate Reduction by Zerovalent Iron
NASA Astrophysics Data System (ADS)
Kim, K. H.; Jeong, H. Y.; Lee, S.; Kang, N.; Choi, H. J.; Park, M.
2015-12-01
In efforts to facilitate nitrate removal, a variety of coating materials and mineral additives were assessed for their effects on the nitrate reduction by zerovalent iron (ZVI). Coated ZVIs were prepared by reacting Fe particles with Cr(III), Co(II), Ni(II), Cu(II), and S(-II) solutions under anoxic conditions, with the resultant materials named Cr/Fe, Co/Fe, Ni/Fe, Cu/Fe, and FeS/Fe, respectively. The mineral additives used, synthesized or purchased, included goethite, magnetite, and hydrous ferric oxide (HFO). Kinetic experiments were performed using air-tight serum vials containing 1.0 g Fe (uncoated or coated forms) in 15 mL of 100 mg NO3×N/L solutions with pH buffered at 7.0. To monitor the reaction progress, the solution phase was analyzed for NO3-, NO2-, and NH4+ on an ion chromatography, while the headspace was analyzed for H2, N2, and O2 on a gas chromatography. By uncoated Fe, ca. 60% of nitrate was reductively transformed for 3.6 h, with NH4+ being the predominant product. Compared with uncoated one, Cr/Fe, Co/Fe, and Cu/Fe showed faster removal rates of nitrate. The observed reactivity enhancement was thought to result from additional reduction of nitrate by H atoms adsorbed on the surface of Cr, Co, or Cu metal. In contrast, both Ni/Fe and FeS/Fe showed slower removal of nitrate than uncoated Fe. In both cases, the coating, which highly disfavors the adsorption of nitrate, would form on the Fe surface. When goethite, HFO, and magnetite were amended, the nitrate reduction by Fe was significantly increased, with the effect being most evident with HFO. Although not capable of reducing nitrate, the mineral additives would serve as crystal nuclei for the corrosion products of Fe, thus making the development of passivation layers on the Fe surface less. In the future, we will perform a kinetic modeling of the experimental data to assess the relative contribution of multiple reaction paths in the nitrate reduction by Fe.
N2O production in the Fe(II)(EDTA)-NO reduction process: the effects of carbon source and pH.
Chen, Jun; Wang, Lei; Zheng, Ji; Chen, Jianmeng
2015-07-01
Chemical absorption-biological reduction (BioDeNOx), which uses Fe(II)(EDTA) as a complexing agent for promoting the mass transfer efficiency of NO from gas to water, is a promising technology for removing nitric oxide (NO) from flue gases. The carbon source and pH are important parameters for Fe(II)(EDTA)-NO (the production of absorption) reduction and N2O emissions from BioDeNOx systems. Batch tests were performed to evaluate the effects of four different carbon sources (i.e., methanol, ethanol, sodium acetate, and glucose) on Fe(II)(EDTA)-NO reduction and N2O emissions at an initial pH of 7.2 ± 0.2. The removal efficiency of Fe(II)(EDTA)-NO was 93.9%, with a theoretical rate of 0.77 mmol L(-1) h(-1) after 24 h of operation. The highest N2O production was 0.025 mmol L(-1) after 3 h when glucose was used as the carbon source. The capacities of the carbon sources to enhance the activity of the Fe(II)(EDTA)-NO reductase enzyme decreased in the following order based on the C/N ratio: glucose > ethanol > sodium acetate > methanol. Over the investigated pH range of 5.5-8.5, the Fe(II)(EDTA)-NO removal efficiency was highest at a pH of 7.5, with a theoretical rate of 0.88 mmol L(-1) h(-1). However, the N2O production was lowest at a pH of 8.5. The primary effect of pH on denitrification resulted from the inhibition of nosZ in acidic conditions.
ERIC Educational Resources Information Center
Mehra, M. C.; Rioux, J.
1982-01-01
Experimental procedures, typical observations, and results for the simultaneous analysis of Fe(III) and Cu(II) in a solution are discussed. The method is based on selective interaction between the two ions and potassium hexacyanoruthenate(II) in acid solution involving no preliminary sample preparations. (Author/JN)
Haron, Md Jelas; Jahangirian, Hossein; Silong, Sidik; Yusof, Nor Azah; Kassim, Anuar; Rafiee-Moghaddam, Roshanak; Mahdavi, Behnam; Peyda, Mazyar; Abdollahi, Yadollah; Amin, Jamileh
2012-01-01
Liquid-liquid iron(III) extraction was investigated using benzyl fatty hydroxamic acids (BFHAs) and methyl fatty hydroxamic acids (MFHAs) as chelating agents through the formation of iron(III) methyl fatty hydroxamate (Fe-MFHs) or iron(III) benzyl fatty hydroxamate (Fe-BFHs) in the organic phase. The results obtained under optimized conditions, showed that the chelating agents in hexane extract iron(III) at pH 1.9 were realized effectively with a high percentage of extraction (97.2% and 98.1% for MFHAs and BFHAs, respectively). The presence of a large amount of Mg(II), Ni(II), Al(III), Mn(II) and Co(II) ions did affect the iron(III) extraction. Finally stripping studies for recovering iron(III) from organic phase (Fe-MFHs or Fe-BFHs dissolved in hexane) were carried out at various concentrations of HCl, HNO3 and H2SO4. The results showed that the desired acid for recovery of iron(III) was 5 M HCl and quantitative recovery of iron(III) was achieved from Fe(III)-MFHs and Fe(III)-BFHs solutions in hexane containing 5 mg/L of Fe(III). PMID:22408444
NASA Astrophysics Data System (ADS)
Zhang, Wei; Zhu, Wanyan; Xu, Wutong; Wang, Yan; Li, Ning; Zhang, Tingting; Wang, Hui
2017-12-01
Core-shell structured Fe3O4@PPy microspheres are synthesized successfully through a facile polyol reduction method in combination with a modified Stöber method. We show that the as-prepared Fe3O4@PPy microspheres with high saturation magnetization, superparamagnetism, and good dispersibility have a high efficient adsorption capacity for high efficient removal of Pb(II) ions of up to 391.71 mg g-1 and a fast adsorption equilibrium time of 20 min. Furthermore, the lead-adsorbed Fe3O4@PPy microspheres can be rapidly separated from solution because of the excellent superparamagnetic properties. The composite Fe3O4@PPy microspheres are characterized using X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and vibrating sample magnetometer (VSM). The adsorption data from our experiments show that the adsorption process fits well with the pseudosecond- order kinetic model and the adsorption isotherm follows the Langmuir isotherm model. The thermodynamic studies show that the adsorption of Pb(II) on Fe3O4@PPy microspheres is an endothermic and spontaneous process. Comprehensive comparison among adsorbents for the removal of Pb(II) ions that literature reported, reusability, high adsorption efficiency, fast adsorption equilibrium, and rapid magnetic separation make these Fe3O4@PPy microspheres very promising application for removal of Pb(II) ions from contaminated water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ascenzi, Paolo; National Institute for Infectious Diseases I.R.C.C.S. 'Lazzaro Spallanzani', Via Portuense 292, I-00149 Roma; Imperi, Francesco
Human serum albumin (HSA) participates to heme scavenging, in turn HSA-heme binds gaseous diatomic ligands at the heme-Fe-atom. Here, the effect of abacavir and warfarin on denitrosylation kinetics of HSA-heme-Fe(II)-NO (i.e., k{sub off}) is reported. In the absence of drugs, the value of k{sub off} is (1.3 {+-} 0.2) x 10{sup -4} s{sup -1}. Abacavir and warfarin facilitate NO dissociation from HSA-heme-Fe(II)-NO, the k{sub off} value increases to (8.6 {+-} 0.9) x 10{sup -4} s{sup -1}. From the dependence of k{sub off} on the drug concentration, values of the dissociation equilibrium constant for the abacavir and warfarin binding to HSA-heme-Fe(II)-NOmore » (i.e., K = (1.2 {+-} 0.2) x 10{sup -3} M and (6.2 {+-} 0.7) x 10{sup -5} M, respectively) were determined. The increase of k{sub off} values reflects the stabilization of the basic form of HSA-heme-Fe by ligands (e.g., abacavir and warfarin) that bind to Sudlow's site I. This event parallels the stabilization of the six-coordinate derivative of the HSA-heme-Fe(II)-NO atom. Present data highlight the allosteric modulation of HSA-heme-Fe(II) reactivity by heterotropic effectors.« less
Li, Yujie; He, Xiaoman; Hu, Huimin; Zhang, Tingting; Qu, Jun; Zhang, Qiwu
2018-05-21
Excessive existences of nutrients such as phosphate in the aqueous environment remain as a heavy concern although many researches have been reported for dealing with their removal. Based on the understanding toward the interactions of Fe compounds with phosphate and carbonate from many available researches, we designed a very simple and efficient approach for phosphate removal by using in situ generated fresh trivalent Fe composition through the interaction of Fe(II) as FeSO 4 on CaCO 3 . Addition and agitation of Fe(II) and CaCO 3 simultaneously to phosphate solution allowed an amorphous Fe(III)-P or Ca-Fe(III)-P precipitation, with a phosphate removal rate close to 100%, to reduce the residual phosphorus concentration less than 0.03 mg/L from 100 mg/L, reaching the discharge limit, even with the addition amounts of CaCO 3 as low as a stoichiometric ratio of CaCO 3 /PO 4 3- at 0.9 and ratio of Fe(II)/PO 4 3- at 1.5, and the percent of P 2 O 5 in the precipitate was as high as 19.4% enough as phosphate source for fertilizer production. Different from the alkaline process with enough OH - group, the slow hydrolysis of CaCO 3 resulting in low concentration of OH - group for the formation of Fe(OH) 2 , which was oxidized soon by air into trivalent Fe, achieved a continuous generation of fresh ferric composition for phosphate precipitation and could avoid its rapid formation and subsequent transformation into stable FeOOH of large particle size to lose the activity. These results based on the synergistic effect of using CaCO 3 and Fe(II) together may have applications in the treatment of eutrophic wastewater through a process with many advantages of easy operation and low-cost besides the high removal efficiency with phosphate percentage inside the precipitate high enough to serve for fertilizer production. Copyright © 2018 Elsevier Ltd. All rights reserved.
Cysteine-functionalized silica-coated magnetite nanoparticles as potential nanoadsorbents
NASA Astrophysics Data System (ADS)
Enache, Daniela F.; Vasile, Eugenia; Simonescu, Claudia M.; Răzvan, Anca; Nicolescu, Alina; Nechifor, Aurelia-Cristina; Oprea, Ovidiu; Pătescu, Rodica-Elena; Onose, Cristian; Dumitru, Florina
2017-09-01
Fe3O4, Fe3O4@SiO2, and Fe3O4@SiO2@ICPTES-cysteine MNPs have been prepared by the deposition of silica onto magnetite nanoparticles via controlled hydrolysis of TEOS. The new formed silica surface has been functionalized by grafting 3-(triethoxysilyl) propyl isocyanate (ICPTES) and, subsequently, by condensation of isocyanate moiety with cysteine. The morphology of magnetic silica nanoparticles has been investigated by FTIR, PXRD, TEM-HRTEM/SEM/EDX as well as TG experiments. HRTEM microscopy revealed that the Fe3O4, Fe3O4@SiO2 and Fe3O4@SiO2@ICPTES-cysteine nanoparticles are all of spherical shape with particle of ca. 10-30 nm diameters and the silica-coated magnetites have a core-shell structure. Fe3O4, Fe3O4@SiO2, and Fe3O4@SiO2@ICPTES-cysteine MNPs have been tested for their sorption capacity of Pb(II) from synthetic aqueous solutions and the influence of pH solution, contact time, initial heavy metal ion concentrations, and adsorption isotherms on the sorption behavior were also studied. The kinetic studies revealed that the Pb(II) sorption process is mainly controlled by chemical mechanisms. Fe3O4@SiO2@ICPTES-cysteine, with a sorption capacity of 81.8 mg Pb(II)/g, has the potential to be an efficient Pb(II) adsorbent.
Survey of Period Variations of Superhumps in SU UMa-Type Dwarf Novae. II The Second Year (2009-2010)
NASA Astrophysics Data System (ADS)
Kato, Taichi; Maehara, Hiroyuki; Uemura, Makoto; Henden, Arne; de Miguel, Enrique; Miller, Ian; Dubovsky, Pavol A.; Kudzej, Igor; Kiyota, Seiichiro; Hambsch, Franz-Josef; Tanabe, Kenji; Imamura, Kazuyoshi; Kunitomi, Nanae; Takagi, Ryosuke; Nose, Mikiha; Akazawa, Hidehiko; Masi, Gianluca; Nakagawa, Shinichi; Iino, Eriko; Noguchi, Ryo; Matsumoto, Katsura; Fujii, Daichi; Kobayashi, Hiroshi; Ogura, Kazuyuki; Ohtomo, Sachi; Yamashita, Kousei; Yanagisawa, Hirofumi; Itoh, Hiroshi; Bolt, Greg; Monard, Berto; Ohshima, Tomohito; Shears, Jeremy; Ruiz, Javier; Imada, Akira; Oksanen, Arto; Nelson, Peter; Gomez, Tomas L.; Staels, Bart; Boyd, David; Voloshina, Irina B.; Krajci, Thomas; Crawford, Tim; Stockdale, Chris; Richmond, Michael; Morelle, Etienne; Novák, Rudolf; Nogami, Daisaku; Ishioka, Ryoko; Brady, Steve; Simonsen, Mike; Pavlenko, Elena P.; Ringwald, Frederick A.; Kuramoto, Tetsuya; Miyashita, Atsushi; Pickard, Roger D.; Hynek, Tomáš; Dvorak, Shawn; Stubbings, Rod; Muyllaert, Eddy
2010-12-01
Continued from Kato et al. (2009, PASJ, 61, S395), we collected the times of superhump maxima for 68 SU UMa-type dwarf novae, mainly observed during the 2009-2010 season. The newly obtained data confirmed the basic findings reported in Kato et al. (ibid.): the presence of stages A-C and the predominance of positive period derivatives during stage B in systems with superhump periods shorter than 0.07 d. There was a systematic difference in the period derivatives for the systems with superhump periods longer than 0.075 d between this study and Kato et al. (ibid.). We suggest that this difference was possibly caused by a relative lack of frequently outbursting SU UMa-type dwarf novae in this period regime in the present study. We recorded a strong beat phenomenon during the 2009 superoutburst of IY UMa. A close correlation between the beat period and the superhump period suggests that the changing angular velocity of the apsidal motion of the elliptical disk is responsible for the variation of the superhump periods. We also described three new WZ Sge-type objects with established early superhumps and one with likely early superhumps. We suggest that two systems, VX For and EL UMa, are WZ Sge-type dwarf novae with multiple rebrightenings. The O - C variation in OT J213806.6+261957 suggests that the frequent absence of rebrightenings in very short-Porb objects can be the result of a sustained superoutburst plateau at the epoch when usual SU UMa-type dwarf novae return to quiescence, preceding a rebrightening. We also present a formulation for a variety of Bayesian extensions to traditional period analyses.
The Spectroscopic Evolution of Nova Cygni 1992
NASA Astrophysics Data System (ADS)
Moro-Martin, A.; Garnavich, P. M.; Noriega-Crespo, A.; Alpert, A.
1996-12-01
Optical spectroscopic observations of Nova Cygni 1992 spanning 4 years are modeled in this study. The data were obtained primarily with the DAO 1.8m telescope and cover a wavelength range from ~ 3200 - 8000 Angstroms. The observations begin on May 92 (85 days after the outburst) and end on June 1996, i.e. during most of the optically thin evolutionary phase. The spectra were modeled in a relatively straightforward way by using the flux predicted by a photoionization code [1] for most of the emission lines (down to 0.1% of Hβ ) and transforming these numbers into a synthetic spectrum. There are, however, significant differences in the detailed procedure in comparison with similar works [2]. First, the photoionization models were run at a fixed abundance value for the most prominent elements (i.e. H, He, C, O, N, Ne, Fe, etc) over the entire time sequence. Second, the brightest lines, e.g. [Ne V], [Ne III], [O III] and the Balmer lines, were initially used as guide to match the observations. The rest of the spectra, which includes the fainter lines, were then directly predicted by the photoionization code. Considering the complicated structure of the shell [3], the lack of well defined values of its gas density and our limited knowledge of the time evolution of the surface temperature of the photoionization source, the comparison between models and observations agrees remarkably well. It was found that the time evolution of some of the Iron coronal lines, [Fe VII] 6087 Angstroms and [Fe X] 6374 Angstroms, closely follows that of the X-rays [4]. [1] Ferland, G.J 1993, CLOUDY, U. of Kentucky Dept. Phys & Astr. Internal Report. [2] Austin et al. 1992, AJ, 111, 869 [3] Paresce, Livio, Hack & Korista (1995) A&A, 299, 823 [4] Krautter et al. (1996), ApJ, 456, 788
Zhu, Mengfei; Zhu, Li; Wang, Jianlong; Yue, Tianli; Li, Ronghua; Li, Zhonghong
2017-07-01
Removing heavy metal ions from aqueous solutions is one of the most challenging separations. In situ oxidized Fe 3 O 4 membranes using 316L porous stainless steel filter tube have shown great potential for removing anion Cr(VI). Here we report the performances of the in situ oxidized Fe 3 O 4 membranes for removing two toxic cations Cd(II) and Pb(II) commonly existing in water and their potential applications for drinking water purification. The membranes exhibited high removal efficiency: 97% at pH 9.0 for Cd(II) of 1.0 mg/L initial concentration and 100% at pH 5.0-6.0 for Pb(II) of 5.0 mg/L initial concentration. The maximum adsorption capabilities were estimated at 0.800 mg/g and 2.251 mg/g respectively for Cd(II) and Pb(II) at 318 K by the Langmuir model. Results of batch tests revealed the existence of electrostatic attraction and chemisorption. XRD and FT-IR analyses indicated that the chemisorption might be the insertion of Cd(II) and Pb(II) into the Fe 3 O 4 crystal faces of 311 and 511 to form mononuclear or binuclear coordination with O atoms of Fe-O 6 groups. Competitive adsorption of Cd(II) and Pb(II) in binary solutions revealed a preferential adsorption for Pb(II). Na 2 EDTA solution was used to regenerate the membranes, and the maximum desorption ratio was 90.29% and 99.75% respectively for Cd(II) and Pb(II). The membranes were able to efficiently lower Cd(II) and Pb(II) concentrations to meet the drinking water standards recommended by the World Health Organization and are promising for engineering applications aimed at drinking water purification. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Inskeep, William P.; Macur, Richard E.; Harrison, Gregory; Bostick, Benjamin C.; Fendorf, Scott
2004-08-01
Acid-sulfate-chloride (pH˜3) geothermal springs in Yellowstone National Park (YNP) often contain Fe(II), As(III), and S(-II) at discharge, providing several electron donors for chemolithotrophic metabolism. The microbial populations inhabiting these environments are inextricably linked with geochemical processes controlling the behavior of As and Fe. Consequently, the objectives of the current study were to (i) characterize Fe-rich microbial mats of an ASC thermal spring, (ii) evaluate the composition and structure of As-rich hydrous ferric oxides (HFO) associated with these mats, and (iii) identify microorganisms that are potentially responsible for mat formation via the oxidation of Fe(II) and or As(III). Aqueous and solid phase mat samples obtained from a spring in Norris Basin, YNP (YNP Thermal Inventory NHSP35) were analyzed using a complement of chemical, microscopic and spectroscopic techniques. In addition, molecular analysis (16S rDNA) was used to identify potentially dominant microbial populations within different mat locations. The biomineralization of As-rich HFO occurs in the presence of nearly equimolar aqueous As(III) and As(V) (˜12 μM), and ˜ 48 μM Fe(II), forming sheaths external to microbial cell walls. These solid phases were found to be poorly ordered nanocrystalline HFO containing mole ratios of As(V):Fe(III) of 0.62 ± 0.02. The bonding environment of As(V) and Fe(III) is consistent with adsorption of arsenate on edge and corner positions of Fe(III)-OH octahedra. Numerous archaeal and bacterial sequences were identified (with no closely related cultured relatives), along with several 16S sequences that are closely related to Acidimicrobium, Thiomonas, Metallosphaera and Marinithermus isolates. Several of these cultured relatives have been implicated in Fe(II) and or As(III) oxidation in other low pH, high Fe, and high As environments (e.g. acid-mine drainage). The unique composition and morphologies of the biomineralized phases may be useful as modern-day analogs for identifying microbial life in past Fe-As rich environments.
DISSECTING THE QUASAR MAIN SEQUENCE: INSIGHT FROM HOST GALAXY PROPERTIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Jiayi; Shen, Yue
2015-05-01
The diverse properties of broad-line quasars appear to follow a well-defined main sequence along which the optical Fe ii strength increases. It has been suggested that this sequence is mainly driven by the Eddington ratio (L/L{sub Edd}) of the black hole (BH) accretion. Shen and Ho demonstrated with quasar clustering analysis that the average BH mass decreases with increasing Fe ii strength when quasar luminosity is fixed, consistent with this suggestion. Here we perform an independent test by measuring the stellar velocity dispersion σ{sub *} (hence, the BH mass via the M–σ{sub *} relation) from decomposed host spectra in low-redshiftmore » Sloan Digital Sky Survey quasars. We found that at fixed quasar luminosity, σ{sub *} systematically decreases with increasing Fe ii strength, confirming that the Eddington ratio increases with Fe ii strength. We also found that at fixed luminosity and Fe ii strength, there is little dependence of σ{sub *} on the broad Hβ FWHM. These new results reinforce the framework that the Eddington ratio and orientation govern most of the diversity seen in broad-line quasar properties.« less
How Metal Substitution Affects the Enzymatic Activity of Catechol-O-Methyltransferase
Sparta, Manuel; Alexandrova, Anastassia N.
2012-01-01
Catechol-O-methyltransferase (COMT) degrades catecholamines, such as dopamine and epinephrine, by methylating them in the presence of a divalent metal cation (usually Mg(II)), and S-adenosyl-L-methionine. The enzymatic activity of COMT is known to be vitally dependent on the nature of the bound metal: replacement of Mg(II) with Ca(II) leads to a complete deactivation of COMT; Fe(II) is slightly less than potent Mg(II), and Fe(III) is again an inhibitor. Considering the fairly modest role that the metal plays in the catalyzed reaction, this dependence is puzzling, and to date remains an enigma. Using a quantum mechanical / molecular mechanical dynamics method for extensive sampling of protein structure, and first principle quantum mechanical calculations for the subsequent mechanistic study, we explicate the effect of metal substitution on the rate determining step in the catalytic cycle of COMT, the methyl transfer. In full accord with experimental data, Mg(II) bound to COMT is the most potent of the studied cations and it is closely followed by Fe(II), whereas Fe(III) is unable to promote catalysis. In the case of Ca(II), a repacking of the protein binding site is observed, leading to a significant increase in the activation barrier and higher energy of reaction. Importantly, the origin of the effect of metal substitution is different for different metals: for Fe(III) it is the electronic effect, whereas in the case of Ca(II) it is instead the effect of suboptimal protein structure. PMID:23056605
Mackinawite (FeS) Reduces Mercury(II) under Sulfidic Conditions
2015-01-01
Mercury (Hg) is a toxicant of global concern that accumulates in organisms as methyl Hg. The production of methyl Hg by anaerobic bacteria may be limited in anoxic sediments by the sequestration of divalent Hg [Hg(II)] into a solid phase or by the formation of elemental Hg [Hg(0)]. We tested the hypothesis that nanocrystalline mackinawite (tetragonal FeS), which is abundant in sediments where Hg is methylated, both sorbs and reduces Hg(II). Mackinawite suspensions were equilibrated with dissolved Hg(II) in batch reactors. Examination of the solid phase using Hg LIII-edge extended X-ray absorption fine structure (EXAFS) spectroscopy showed that Hg(II) was indeed reduced in FeS suspensions. Measurement of purgeable Hg using cold vapor atomic fluorescence spectrometry (CVAFS) from FeS suspensions and control solutions corroborated the production of Hg(0) that was observed spectroscopically. However, a fraction of the Hg(II) initially added to the suspensions remained in the divalent state, likely in the form of β-HgS-like clusters associated with the FeS surface or as a mixture of β-HgS and surface-associated species. Complexation by dissolved S(-II) in anoxic sediments hinders Hg(0) formation, but, by contrast, Hg(II)–S(-II) species are reduced in the presence of mackinawite, producing Hg(0) after only 1 h of reaction time. The results of our work support the idea that Hg(0) accounts for a significant fraction of the total Hg in wetland and estuarine sediments. PMID:25180562
NASA Astrophysics Data System (ADS)
Siefert, Ronald L.; Johansen, Anne M.; Hoffmann, Michael R.
1999-02-01
Atmospheric deposition of iron (Fe) to certain regions of the oceans is an important nutrient source of Fe to the biota, and the ability of the biota to uptake Fe is dependent on the speciation of the Fe. Therefore understanding the speciation of Fe in the atmosphere is critical to understanding the role of Fe as a nutrient source in surface ocean waters. Labile ferrous iron (Fe(II)) concentrations as well as total concentrations for Fe and other important trace metals, cations, and anions were determined over the Arabian Sea for two nonconsecutive months during 1995. Ambient aerosol samples were collected during the Indian Ocean intermonsoon and southwest monsoon seasons over the Arabian Sea. Sampling took place aboard the German research vessel Meteor in the months of May (leg M32/3; intermonsoon) and July/August (leg M32/5; southwest monsoon). Both cruise tracks followed the 65th east meridian, traveling for 30 days each (from north to south during leg M32/3 and from south to north during leg M32/5). A high-volume dichotomous virtual impactor with an aerodynamic cutoff size of 3 μm was used to collect the fine and coarse aerosol fractions for metal analysis. A low volume collector was used to collect aerosol samples for anion and cation analysis. The analysis for labile-Fe(II) was done immediately after sample collection to minimize any possible Fe redox reactions which might occur during sample storage. The analytical procedure involved filter extraction in a formate/formic acid buffered solution at pH 4.2 followed by colorimetric quantification of soluble Fe(II). Metals, anions, and cations were analyzed after the cruise. Total atmospheric aqueous-labile-Fe(II) concentrations during the intermonsoon were between 4.75 and <0.4 ng m-3, of which most (>80%) was present in the fine fraction (<3.0 μm). During the southwest monsoon, atmospheric aqueous-labile-Fe(II) concentrations were consistently below the detection limit (<0.34 to <0.089 ng m-3, depending on the volume of air sampled). Air mass back trajectories (5 day, three dimensional) showed that air masses sampled during the southwest monsoon had advected over the open Indian Ocean, while air masses sampled during the intermonsoon had advected over northeast Africa, the Saudi Arabian peninsula, and southern Asia. These calculations were consistent with the results of the statistical analysis performed on the data set which showed that the variance due to crustal species during the intermonsoon samples was greater than the variance due to crustal species during the southwest monsoon. The factor scores for the crustal components were also greater when the back trajectories had advected over the nearby continental masses. Principal component analysis was also performed with the intermonsoon samples where aqueous labile Fe(II) was above the detection limit. Aqueous labile Fe(II) did not correlate well with other species indicating possible atmospheric processing of the iron during advection.
Giri, Nitai Charan; Passantino, Lisa; Sun, Hong; Zoroddu, Maria Antonietta; Costa, Max; Maroney, Michael J.
2013-01-01
Occupational and/or environmental exposure to nickel has been implicated in various types of cancer, and in vitro exposure to nickel compounds results in accumulation of Ni(II) ions in cells. One of the major targets of Ni(II) ions inside the cell is Fe(II)- and αKG-dependent dioxygenases. Using JMJD2A and JMJD2C as examples, we show that JMJD2 family of histone demethylases, which are products of putative oncogenes as well as Fe(II)- and αKG-dependent dioxygenases, are highly sensitive to inhibition by Ni(II) ions. In this work, X-ray absorption spectroscopy (XAS) has been used to investigate the Fe(II) active site of truncated JMJD2A and JMJD2C (1 – 350 aa) in the presence and absence of αKG and/or substrate to obtain mechanistic details of the early steps in catalysis that precede O2 binding in histone demethylation by the JMJD2 family of histone demethylases. Zinc K-edge XAS has been performed on the resting JMJD2A (with iron in the active site) to confirm the presence of the expected structural zinc site. XAS of the Ni(II)-substituted enzymes has also been performed to investigate the inhibition of these enzymes by Ni(II) ions. Our XAS results indicate that the five-coordinate Fe(II) center in the resting enzyme is retained in the binary and ternary complexes. In contrast, the Ni(II) center is six-coordinate in the resting enzyme, binary and ternary complexes. XAS results indicate that both Fe(II) and Ni(II) bind αKG in the binary and ternary complexes. The electron density build-up that is observed at the Fe(II) center in the presence of αKG and substrate is not observed at the Ni(II) center. Thus, both electronic and steric factors are responsible for Ni-induced inhibition of the JMJD2 family of histone demethylases. Ni-induced inhibition of these enzymes may explain the alteration of the epigenetic mechanism of gene expression that is responsible for Ni-induced carcinogenesis. PMID:23692052
Synthesis, characterization and antimicrobial studies of Schiff base complexes
NASA Astrophysics Data System (ADS)
Zafar, Hina; Ahmad, Anis; Khan, Asad U.; Khan, Tahir Ali
2015-10-01
The Schiff base complexes, MLCl2 [M = Fe(II), Co(II), Ni(II), Cu(II) and Zn(II)] have been synthesized by the template reaction of respective metal ions with 2-acetylpyrrole and 1,3-diaminopropane in 1:2:1 M ratio. The complexes have been characterized by elemental analyses, ESI - mass, NMR (1H and 13C), IR, XRD, electronic and EPR spectral studies, magnetic susceptibility and molar conductance measurements. These studies show that all the complexes have octahedral arrangement around the metal ions. The molar conductance measurements of all the complexes in DMSO indicate their non-electrolytic nature. The complexes were screened for their antibacterial activity in vitro against Gram-positive (Streptococcus pyogenes) and Gram-negative (Klebsiella pneumoniae) bacteria. Among the metal complexes studied the copper complex [CuLCl2], showed highest antibacterial activity nearly equal to standard drug ciprofloxacin. Other complexes also showed considerable antibacterial activity. The relative order of activity against S. Pyogenes is as Cu(II) > Zn(II) > Co(II) = Fe(II) > Ni(II) and with K. Pneumonia is as Cu(II) > Co(II) > Zn(II) > Fe(II) > Ni(II).
Fe N-Heterocyclic Carbene Complexes as Promising Photosensitizers.
Liu, Yizhu; Persson, Petter; Sundström, Villy; Wärnmark, Kenneth
2016-08-16
The photophysics and photochemistry of transition metal complexes (TMCs) has long been a hot field of interdisciplinary research. Rich metal-based redox processes, together with a high variety in electronic configurations and excited-state dynamics, have rendered TMCs excellent candidates for interconversion between light, chemical, and electrical energies in intramolecular, supramolecular, and interfacial arrangements. In specific applications such as photocatalytic organic synthesis, photoelectrochemical cells, and light-driven supramolecular motors, light absorption by a TMC-based photosensitizer and subsequent excited-state energy or electron transfer constitute essential steps. In this context, TMCs based on rare and expensive metals, such as ruthenium and iridium, are frequently employed as photosensitizers, which is obviously not ideal for large-scale implementation. In the search for abundant and environmentally benign solutions, six-coordinate Fe(II) complexes (Fe(II)L6) have been widely considered as highly desirable alternatives. However, not much success has been achieved due to the extremely short-lived triplet metal-to-ligand charge transfer ((3)MLCT) excited state that is deactivated by low-lying metal-centered (MC) states on a 100 fs time scale. A fundamental strategy to design useful Fe-based photosensitizers is thus to destabilize the MC states relative to the (3)MLCT state by increasing the ligand field strength, with special focus on making eg σ* orbitals on the Fe center energetically less accessible. Previous efforts to directly transplant successful strategies from Ru(II)L6 complexes unfortunately met with limited success in this regard, despite their close chemical kinship. In this Account, we summarize recent promising results from our and other groups in utilizing strongly σ-donating N-heterocyclic carbene (NHC) ligands to make strong-field Fe(II)L6 complexes with significantly extended (3)MLCT lifetimes. Already some of the first homoleptic bis(tridentate) complexes incorporating (CNHC^Npyridine^CNHC)-type ligands gratifyingly resulted in extension of the (3)MLCT lifetime by more than 2 orders of magnitude compared to the parental [Fe(tpy)2](2+) (tpy = 2,2':6',2″-terpyridine) complex. Quantum chemical (QC) studies also revealed that the (3)MC instead of the (5)MC state likely dictates the deactivation of the (3)MLCT state, a behavior distinct from traditional Fe(II)L6 complexes but rather resembling Ru analogues. A heteroleptic Fe(II) NHC complex featuring mesoionic bis(1,2,3-triazol-5-ylidene) (btz) ligands also delivered a 100-fold elongation of the (3)MLCT lifetime relative to its parental [Fe(bpy)3](2+) (bpy = 2,2'-bipyridine) complex. Again, a Ru-like deactivation mechanism of the (3)MLCT state was indicated by QC studies. With a COOH-functionalized homoleptic complex, a record (3)MLCT lifetime of 37 ps was recently observed on an Al2O3 nanofilm. As a proof of concept, it was further demonstrated that the significant improvement in the (3)MLCT lifetime indeed benefits efficient light harvesting with Fe(II) NHC complexes. For the first time, close-to-unity electron injection from the lowest-energy (3)MLCT state to a TiO2 nanofilm was achieved by a stable Fe(II) complex. This is in complete contrast to conventional Fe(II)L6-derived photosensitizers that could only make use of high-energy photons. These exciting results significantly broaden the understanding of the fundamental photophysics and photochemistry of d(6) Fe(II) complexes. They also open up new possibilities to develop solar energy-converting materials based on this abundant, inexpensive, and intrinsically nontoxic element.
Catalytic Mechanisms of Fe(II)- and 2-Oxoglutarate-dependent Oxygenases*
Martinez, Salette; Hausinger, Robert P.
2015-01-01
Mononuclear non-heme Fe(II)- and 2-oxoglutarate (2OG)-dependent oxygenases comprise a large family of enzymes that utilize an Fe(IV)-oxo intermediate to initiate diverse oxidative transformations with important biological roles. Here, four of the major types of Fe(II)/2OG-dependent reactions are detailed: hydroxylation, halogenation, ring formation, and desaturation. In addition, an atypical epimerization reaction is described. Studies identifying several key intermediates in catalysis are concisely summarized, and the proposed mechanisms are explained. In addition, a variety of other transformations catalyzed by selected family members are briefly described to further highlight the chemical versatility of these enzymes. PMID:26152721
Wu, Xinyuan; Huang, Tao; Lekich, Travis T; Sommer, Roger D; Weare, Walter W
2015-06-01
Heterobimetallic complexes composed only of first-row transition metals [(TMTAA)V(IV)═O→M(II)Py5Me2](OTf)2 (TMTAA = 7,16-dihydro-6,8,15,17-tetramethyldibenzo[b,i][1,4,8,11]tetraazacyclotetradecine; Py5Me2 = 2,6-bis(1,1-bis(2-pyridyl)ethyl)pyridine; M = Mn(II), Fe(II), Co(II), Ni(II), Cu(II); OTf = trifluoromethanesulfonate) have been synthesized through a dative interaction between a terminal oxido and M(II) metal centers. This is the first series of V(IV)═O→M(II) heterobimetallic complexes containing an unsupported oxido bridge. Among these five complexes, only V(IV)═O→Fe(II) (3b) has a clear new absorption band upon formation of the dinuclear species (502 nm, ε = 1700 M(-1) cm(-1)). This feature is assigned to a metal-to-metal charge transfer (MMCT) transition from V(IV) to Fe(II), which forms a V(V)-O-Fe(I) excited state. This assignment is supported by electrochemical data, electronic absorption profiles, and resonance Raman spectroscopy and represents the first report of visible-light induced MMCT in a heterobimetallic oxido-bridged molecule where the electron originates on a d(1) metal center.
Jing, Wenjie; Lu, Yuexiang; Wang, Feiyang; He, Liuying; Sun, Jingwei; Liu, Yueying
2018-05-12
A time-resolved phosphorescence (TRP) is applied to the highly sensitive determination of Fe(II) ions. The method is based on the use of a phosphorescent probe consisting of cysteine-bridged Mn-doped ZnS quantum dots (Mn/ZnS QDs). The presence of cysteine enhances the phosphorescence of the QDs and also increases the efficiency of quenching caused by Fe(II) ions. This results in strongly improved selectivity for Fe(II). The linear response is obtained in the concentration range of 50-1000 nM with a 19 nM detection limit. Phosphorescence is recorded at excitation/emission peaks of 301/602 nm. The interference of short-lived fluorescent and scattering background from the biological fluids is eliminated by using the TRP mode with a delay time of 200 μs. The determination of Fe(II) in human serum samples spiked at a 150 nM level gave a 92.4% recovery when using the TRP mode, but only 52.4% when using steady-state phosphorescence. This demonstrates that this probe along with TRP detection enables highly sensitive and accurate determination of Fe(II) in serum. Graphical abstract Schematic of a novel phosphorescent method for the detection of Fe 2+ ions based on cysteine-bridged Mn-doped ZnS quantum dots. The sensitivity of this assay greatly increases due to the addition of cysteine. Interferences by short-lived auto-fluorescence and the scattering light from the biological fluids is eliminated by using time-resolved phosphorescence mode.
Chelation of Cu(II), Zn(II), and Fe(II) by Tannin Constituents of Selected Edible Nuts
Karamać, Magdalena
2009-01-01
The tannin fractions isolated from hazelnuts, walnuts and almonds were characterised by colorimetric assays and by an SE-HPLC technique. The complexation of Cu(II) and Zn(II) was determined by the reaction with tetramethylmurexide, whereas for Fe(II), ferrozine was employed. The walnut tannins exhibited a significantly weaker reaction with the vanillin/HCl reagent than hazelnut and almond tannins, but the protein precipitation capacity of the walnut fraction was high. The SE-HPLC chromatogram of the tannin fraction from hazelnuts revealed the presence of oligomers with higher molecular weights compared to that of almonds. Copper ions were most effectively chelated by the constituents of the tannin fractions of hazelnuts, walnuts and almonds. At a 0.2 mg/assay addition level, the walnut tannins complexed almost 100% Cu(II). The Fe(II) complexation capacities of the tannin fractions of walnuts and hazelnuts were weaker in comparison to that of the almond tannin fraction, which at a 2.5 mg/assay addition level, bound Fe(II) by ~90%. The capacity to chelate Zn(II) was quite varied for the different nut tannin fractions: almond tannins bound as much as 84% Zn(II), whereas the value for walnut tannins was only 8.7%; and for hazelnut tannins, no Zn(II) chelation took place at the levels tested. PMID:20054482
Chelation of Cu(II), Zn(II), and Fe(II) by tannin constituents of selected edible nuts.
Karamać, Magdalena
2009-12-22
The tannin fractions isolated from hazelnuts, walnuts and almonds were characterised by colorimetric assays and by an SE-HPLC technique. The complexation of Cu(II) and Zn(II) was determined by the reaction with tetramethylmurexide, whereas for Fe(II), ferrozine was employed. The walnut tannins exhibited a significantly weaker reaction with the vanillin/HCl reagent than hazelnut and almond tannins, but the protein precipitation capacity of the walnut fraction was high. The SE-HPLC chromatogram of the tannin fraction from hazelnuts revealed the presence of oligomers with higher molecular weights compared to that of almonds. Copper ions were most effectively chelated by the constituents of the tannin fractions of hazelnuts, walnuts and almonds. At a 0.2 mg/assay addition level, the walnut tannins complexed almost 100% Cu(II). The Fe(II) complexation capacities of the tannin fractions of walnuts and hazelnuts were weaker in comparison to that of the almond tannin fraction, which at a 2.5 mg/assay addition level, bound Fe(II) by approximately 90%. The capacity to chelate Zn(II) was quite varied for the different nut tannin fractions: almond tannins bound as much as 84% Zn(II), whereas the value for walnut tannins was only 8.7%; and for hazelnut tannins, no Zn(II) chelation took place at the levels tested.
Ultraviolet Fe VII absorption and Fe II emission lines of central stars of planetary nebulae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Kwang-Ping; Feibelman, W.A.; Bruhweiler, F.C.
1991-08-01
The SWP camera of the IUE satellite was used in the high-dispersion mode to search for Fe VII absorption and Fe II high-excitation emission lines in five additional very hot central stars of planetary nebulae. Some of the Fe VII lines were detected at 1208, 1239, and 1332 A in all the objects of this program, LT 5, NGC 6058, NGC 7094, A43, and Lo 1 (= K1-26), as well as some of the Fe II emission lines at A 1360, 1776, 1869, 1881, 1884, and 1975 A. Two additional objects, NGC 2867 and He 2-131, were obtained from themore » IUE archive and were evaluated. The present study probably exhausts the list of candidates that are sufficiently bright and hot to be reached with the high-dispersion mode of the IUE. 17 refs.« less
Mössbauer spectroscopic studies on the iron forms of deep-sea sediments
NASA Astrophysics Data System (ADS)
Drodt, M.; Trautwein, A. X.; König, I.; Suess, E.; Koch, C. Bender
Mössbauer spectroscopy was applied to characterize the valence states Fe(II) and Fe(III) in sedimentary minerals from a core of the Peru Basin. The procedure in unraveling this information includes temperature-dependent measurements from 275 K to very low temperature (300 mK) in zero-field and also at 4.2 K in an applied field (up to 6.2 T) and by mathematical procedures (least-squares fits and spectral simulations) in order to resolve individual spectral components. The depth distribution of the amount of Fe(II) is about 11% of the total Fe to a depth of 19 cm with a subsequent steep increase (within 3 cm) to about 37%, after which it remains constant to the lower end of the sediment core (at about 40 cm). The steep increase of the amount of Fe(II) defines a redox boundary which coincides with the position where the tan/green color transition of the sediment occurs. The isomer shifts and quadrupole splittings of Fe(II) and Fe(III) in the sediment are consistent with hexacoordination by oxygen or hydroxide ligands as in oxide and silicate minerals. Goethite and traces of hematite are observed only above the redox boundary, with a linear gradient extending from about 20% of the total Fe close to the sediment surface to about zero at the redox boundary. The superparamagnetic relaxation behavior allows to estimate the order of magnitude for the size of the largest goethite and hematite particles within the particle-site distribution, e.g. 170 Å and 50 Å, respectively. The composition of the sediment spectra recorded at 300 mK in zero-field, apart from the contributions due to goethite and hematite, resembles that of the sheet silicates smectite, illite and chlorite, which have been identified as major constituents of the sediment in the <2 μm fraction by X-ray diffraction. The specific ``ferromagnetic'' type of magnetic ordering in the sediment, as detected at 4.2 K in an applied field, also resembles that observed in sheet silicates and indicates that both Fe(II) and Fe(III) are involved in magnetic ordering. This ``ferromagnetic'' behavior is probably due to the double-exchange mechanism known from other mixed-valence Fe(II)-Fe(III) systems. A significant part of the clay-mineral iron is redox sensitive. It is proposed that the color change of the sediment at the redox boundary from tan to green is related to the increase of Fe(II)-Fe(III) pairs in the layer silicates, because of the intervalence electron transfer bands which are caused by such pairs.
The effect of ionic interactions on the oxidation of metals in natural waters
NASA Astrophysics Data System (ADS)
Millero, Frank J.
1985-02-01
The effect of ionic interactions of the major components of natural waters on the oxidation of Cu(I) and Fe(II) has been examined. The various ion pairs of these metals have been shown to have different rates of oxidation. For Fe(II), the chloride and sulfate ion pairs are not easily oxidized. The measured decrease in the rate constant at a fixed pH in chloride and sulfate solutions agrees very well with the values predicted. The effect of pH (6 to 8) on the oxidation of Fe(II) in water and seawater have been shown to follow the rate equation -d in [Fe(II)]/dt = k 1β 1α Fe/[H +] + k 2β 2α Fe/[H +] 2 where k1 and k2 are the pseudo first order rate constants, β1 and β2 are the hydrolysis constants for Fe(OH) + and Fe(OH) 0. The value of αFE is the fraction of free Fe 2+. The value of k1 (2.0 ±0.5 min-1) in water and seawater are similar within experimental error. The value of k2 (1.2 × 10 5 min -1) in seawater is 28% of its value in water in reasonable agreement with predictions using an ion pairing model. For the oxidation of Cu(I) a rate equation of the form -d ln [Cu(I)]/dt = k 0α Cu+ k 1β 1α Cu[Cl] was found where k0 (14.1 sec -1) and k1 (3.9 sec -1) are the pseudo first order rate constants for the oxidation of Cu + and CuCl 0, β1 is the formation constant for CuCl 0 and αCu is the fraction of free Cu +. Thus, unlike the results for Fe(II), Cu(I) chloride complexes have measurable rates of oxidation.
Nishida, Yusuke; Lee, Yong-Min; Nam, Wonwoo; Fukuzumi, Shunichi
2014-06-04
A non-heme iron(IV)-oxo complex, [(TMC)Fe(IV)(O)](2+) (TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane), was formed by oxidation of an iron(II) complex ([(TMC)Fe(II)](2+)) with dioxygen (O2) and tetraphenylborate (BPh4(-)) in the presence of scandium triflate (Sc(OTf)3) in acetonitrile at 298 K via autocatalytic radical chain reactions rather than by a direct O2 activation pathway. The autocatalytic radical chain reaction is initiated by scandium ion-promoted electron transfer from BPh4(-) to [(TMC)Fe(IV)(O)](2+) to produce phenyl radical (Ph(•)). The chain propagation step is composed of the addition of O2 to Ph(•) and the reduction of the resulting phenylperoxyl radical (PhOO(•)) by scandium ion-promoted electron transfer from BPh4(-) to PhOO(•) to produce phenyl hydroperoxide (PhOOH), accompanied by regeneration of phenyl radical. PhOOH reacts with [(TMC)Fe(II)](2+) to yield phenol (PhOH) and [(TMC)Fe(IV)(O)](2+). Biphenyl (Ph-Ph) was formed via the radical chain autoxidation of BPh3 by O2. The induction period of the autocatalytic radical chain reactions was shortened by addition of a catalytic amount of [(TMC)Fe(IV)(O)](2+), whereas addition of a catalytic amount of ferrocene that can reduce [(TMC)Fe(IV)(O)](2+) resulted in elongation of the induction period. Radical chain autoxidation of BPh4(-) by O2 also occurred in the presence of Sc(OTf)3 without [(TMC)Fe(IV)(O)](2+), initiating the autocatalytic oxidation of [(TMC)Fe(II)](2+) with O2 and BPh4(-) to yield [(TMC)Fe(IV)(O)](2+). Thus, the general view for formation of non-heme iron(IV)-oxo complexes via O2-binding iron species (e.g., Fe(III)(O2(•-))) without contribution of autocatalytic radical chain reactions should be viewed with caution.
Hayashi, Takahiro; Miner, Kyle D.; Yeung, Natasha; Lin, Ying-Wu; Lu, Yi; Moënne-Loccoz, Pierre
2011-01-01
Denitrifying NO reductases are evolutionarily related to the superfamily of heme-copper terminal oxidases. These transmembrane protein complexes utilize a heme-nonheme diiron center to reduce two NO molecules to N2O. To understand this reaction, the diiron site has been modeled using sperm whale myoglobin as a scaffold and mutating distal residues Leu-29 and Phe-43 to histidines, and Val-68 to a glutamic acid to create a nonheme FeB site. The impact of incorporation of metal ions at this engineered site on the reaction of the ferrous heme with one NO was examined by UV-vis absorption, EPR, resonance Raman, and FTIR spectroscopies. UV-vis absorption and resonance Raman spectra demonstrate that the first NO molecule binds to the ferrous heme, but while the apoproteins and CuI- or ZnII-loaded proteins show characteristic EPR signatures of S = 1/2 six-coordinate heme {FeNO}7 species observable at liquid nitrogen temperature, the FeII-loaded proteins are EPR silent at ≥ 30 K. Vibrational modes from the heme [Fe-N-O] unit are identified in the RR and FTIR spectra using 15NO and 15N18O. The apo- and CuI-bound proteins exhibit ν(FeNO) and ν(NO) that are only marginally distinct from those reported for native myoglobin. However, binding of FeII at the FeB site shifts the heme ν(FeNO) by +17 cm-1 and the ν(NO) by -50 cm-1 to 1549 cm-1. This low ν(NO) is without precedent for a six-coordinate heme {FeNO}7 species and suggests that the NO group adopts a strong nitroxyl character stabilized by electrostatic interaction with the nearby nonheme FeII. Detection of a similarly low ν(NO) in the ZnII-loaded protein supports this interpretation. PMID:21634416
Tu, Zhifeng; He, Qun; Chang, Xijun; Hu, Zheng; Gao, Ru; Zhang, Lina; Li, Zhenhua
2009-09-07
A novel method that utilizes 1-(2-formamidoethyl)-3-phenylurea-modified activated carbon (AC-1-(2-formamidoethyl)-3-phenylurea) as a solid-phase extractant has been developed for simultaneous preconcentration of trace Cr(III), Cu(II), Fe(III) and Pb(II) prior to the measurement by inductively coupled plasma atomic emission spectrometry (ICP-AES). Experimental conditions for effective adsorption of trace levels of Cr(III), Cu(II), Fe(III) and Pb(II) were optimized using batch and column procedures in detail. The optimum pH value for the separation of metal ions simultaneously on the new sorbent was 4. And the adsorbed metal ions could be completely eluted by using 2.0 mL 2.0 mol L(-1) HCl solution. Common coexisting ions did not interfere with the separation and determination of target metal ions. The maximum static adsorption capacity of the sorbent at optimum conditions was found to be 39.8, 39.9, 77.8 and 17.3 mg g(-1) for Cr(III), Cu(II), Fe(III) and Pb(II), respectively. The detection limits of the method were found to be 0.15, 0.41, 0.27 and 0.36 ng mL(-1) for Cr(III), Cu(II), Fe(III) and Pb(II), respectively. The relative standard deviation (RSD) of the method was lower than 4.0% (n=8). The method was successfully applied for the preconcentration of trace Cr(III), Cu(II), Fe(III) and Pb(II) in natural and certified samples with satisfactory results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terao, K.; Nagao, T.; Toba, Y.
2016-12-20
One of the important unsettled problems regarding active galactic nuclei (AGNs) is the major ionization mechanism of gas clouds in AGN narrow-line regions (NLRs). In order to investigate this issue, we present our J -band spectroscopic observations of a sample of 26 nearby Seyfert galaxies. In our study, we use the flux ratio of the following two forbidden emission lines, [Fe ii]1.257 μ m and [P ii]1.188 μ m, because it is known that this ratio is sensitive to the ionization mechanism. We obtain the [Fe ii]/[P ii] flux ratio or its lower limit for 19 objects. In addition tomore » our data, we compile this flux ratio (or its lower limit) for 23 nearby Seyfert galaxies from the literature. Based on the collected data, we find that three Seyfert galaxies show very large lower limits of the [Fe ii]/[P ii] flux ratios (≳10): NGC 2782, NGC 5005, and Mrk 463. It is thus suggested that the contribution of the fast shock in the gas excitation is significantly large for them. However, more than half of the Seyfert galaxies in our sample show moderate [Fe ii]/[P ii] flux ratios (∼2), which is consistent with pure photoionization by power-law ionizing continuum emission. We also find that the [Fe ii]/[P ii] flux ratio shows no clear correlation with the radio loudness, suggesting that the radio jet is not the primary origin of shocks in NLRs of Seyfert galaxies.« less
Ma, Baiwen; Qi, Jing; Wang, Xing; Ma, Min; Miao, Shiyu; Li, Wenjiang; Liu, Ruiping; Liu, Huijuan; Qu, Jiuhui
2018-05-21
Although ultrafiltration (UF) membranes are highly beneficial for removing algae, the removal process causes serious UF membrane fouling. To avoid the unfavorable effects of algal cells that have been damaged by oxidants, our previous study reported a novel, moderate pre-oxidation method (KMnO 4 -Fe(II) process) that aimed to achieve a balance between the release of intracellular organic matter and enhanced algae removal. This study further investigated the performance of a UF membrane with KMnO 4 -Fe(II) pretreatment in the presence of algae-laden reservoir water after a long running time. We found that algae could be completely removed, membrane fouling was significantly alleviated, and the overall performance was much better than that of Fe(III) coagulation alone. The transmembrane pressure (TMP) during Fe(III) coagulation increased to 42.8 kPa, however, that of the KMnO 4 -Fe(II) process only increased to 25.1 kPa for after running for 90 d. The slower transmembrane pressure was attributed to the larger floc size, higher surface activity, and inactivation of algae. Although there was little effect on microorganism development, lower microorganism abundance (20.7%) was observed during the KMnO 4 -Fe(II) process than during coagulation alone (44.9%) due to the release of extracellular polymeric substances. We also found that the floc cake layer was easily removed by washing, and many of the original membrane pores were clearly observed. Further analysis demonstrated that the effluent quality was excellent, especially its turbidity, chromaticity, and Mn and Fe concentrations. Based on the outstanding UF membrane performance, it may be concluded that the KMnO 4 -Fe(II) process exhibits considerable potential for application in the treatment of algae-laden water. Copyright © 2018. Published by Elsevier Ltd.
Pi, Kunfu; Wang, Yanxin; Xie, Xianjun; Ma, Teng; Liu, Yaqing; Su, Chunli; Zhu, Yapeng; Wang, Zhiqiang
2017-02-01
Severe health problems due to elevated arsenic (As) in groundwater have made it urgent to develop cost-effective technologies for As removal. This field experimental study tested the feasibility of in-situ As immobilization via As incorporation into newly formed biogenic Fe(II) sulfides in a typical As-affected strongly reducing aquifer at the central part of Datong Basin, China. After periodic supply of FeSO 4 into the aquifer for 25 d to stimulate microbial sulfate reduction, dissolved sulfide concentrations increased during the experiment, but the supplied Fe(II) reacted quickly with sulfide to form Fe(II)-sulfides existing majorly as mackinawite as well as a small amount of pyrite-like minerals in sediments, thereby restricting sulfide build-up in groundwater. After the completion of field experiment, groundwater As concentration decreased from an initial average value of 593 μg/L to 159 μg/L, with an overall As removal rate of 73%, and it further declined to 136 μg/L adding the removal rate up to 77% in 30 d after the experiment. The arsenite/As total ratio gradually increased over time, making arsenite to be the predominant species in groundwater residual As. The good correlations between dissolved Fe(II), sulfide and As concentrations, the increased abundance of As in newly-formed Fe sulfides as well as the reactive-transport modeling results all indicate that As could have been adsorbed onto and co-precipitated with Fe(II)-sulfide coatings once microbial sulfate reduction was stimulated after FeSO 4 supply. Under the strongly reducing conditions, sulfide may facilitate arsenate reduction into arsenite and promote As incorporation into pyrite or arsenopyrite. Therefore, the major mechanisms for the in-situ As-contaminated groundwater remediation can be As surface-adsorption on and co-precipitation with Fe(II) sulfides produced during the experimental period. Copyright © 2016. Published by Elsevier Ltd.
Rapid and sensitive insulated isothermal PCR for point-of-need feline leukaemia virus detection.
Wilkes, Rebecca P; Anis, Eman; Dunbar, Dawn; Lee, Pei-Yu A; Tsai, Yun-Long; Lee, Fu-Chun; Chang, Hsiao-Fen G; Wang, Hwa-Tang T; Graham, Elizabeth M
2018-04-01
Objectives Feline leukaemia virus (FeLV), a gamma retrovirus, causes diseases of the feline haematopoietic system that are invariably fatal. Rapid and accurate testing at the point-of-need (PON) supports prevention of virus spread and management of clinical disease. This study evaluated the performance of an insulated isothermal PCR (iiPCR) that detects proviral DNA, and a reverse transcription (RT)-iiPCR that detects both viral RNA and proviral DNA, for FeLV detection at the PON. Methods Mycoplasma haemofelis, feline coronavirus, feline herpesvirus, feline calicivirus and feline immunodeficiency virus were used to test analytical specificity. In vitro transcribed RNA, artificial plasmid, FeLV strain American Type Culture Collection VR-719 and a clinical FeLV isolate were used in the analytical sensitivity assays. A retrospective study including 116 clinical plasma and serum samples that had been tested with virus isolation, real-time PCR and ELISA, and a prospective study including 150 clinical plasma and serum samples were implemented to evaluate the clinical performances of the iiPCR-based methods for FeLV detection. Results Ninety-five percent assay limit of detection was calculated to be 16 RNA and five DNA copies for the RT-iiPCR, and six DNA copies for the iiPCR. Both reactions had analytical sensitivity comparable to a reference real-time PCR (qPCR) and did not detect five non-target feline pathogens. The clinical performance of the RT-iiPCR and iiPCR had 98.82% agreement (kappa[κ] = 0.97) and 100% agreement (κ = 1.0), respectively, with the qPCR (n = 85). The agreement between an automatic nucleic extraction/RT-iiPCR system and virus isolation to detect FeLV in plasma or serum was 95.69% (κ = 0.95) and 98.67% (κ = 0.85) in a retrospective (n = 116) and a prospective (n = 150) study, respectively. Conclusions and relevance These results suggested that both RT-iiPCR and iiPCR assays can serve as reliable tools for PON FeLV detection.
NASA Astrophysics Data System (ADS)
Tuczek, F.; Spiering, H.; Gütlich, P.
1990-06-01
Magnetic-field Mössbauer emission spectra of 57Co in MgO single crystals covering a broad velocity range and measured up to high signal-to-noise ratios are presented. In accordance with a previous study, three charge states of 57Fe are found after 57Co(EC)57Fe (EC stands for electron capture). The evaluation of the Fe(III) fraction indicates nonthermalized populations of the 6A1 ground-state Zeeman levels. The field, temperature, and angular dependences of these populations are evaluated and display qualitative differences to the findings in 57Co/LiNbO3. The implications of the cubic symmetry on the spin-selective ground-state population are considered. In addition, a completely analogous phenomenon is evidenced for the first time within an Fe(II) electronic manifold, namely, the Γ5g ground state of Fe(II) in MgO, after the nuclear decay. In contrast to the Fe(III) case, these populations are not static within the Mössbauer time window. It turns out that the attainment of thermal equilibrium can be conveniently observed by changing the field value, evidencing a direct relaxation process at 4.2 K within Γ5g. The relaxation rates are compatible with static strain data; an initial alignment is observed. Finally, there is strong evidence that the Fe(I) fraction is also populated out of thermal equilibrium. In addition to these ground-state spectra, two features are present that may be attributed to metastable excited states of Fe(II) and Fe(III). It is described in detail how these various contributions can be disentangled.
Biological Redox Cycling Of Iron In Nontronite And Its Potential Application In Nitrate Removal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Linduo; Dong, Hailiang; Kukkadapu, Ravi K.
2015-05-05
Redox cycling of structural Fe in phyllosilicates provides a potential method to remediate nitrate contamination in natural environment. Past research has only studied chemical redox cycles or a single biologically mediated redox cycle of Fe in phyllosilicates. The objective of this research was to study three microbially driven redox cycles of Fe in one phyllosilicate, nontronite (NAu-2). During the reduction phase structural Fe(III) in NAu-2 served as electron acceptor, lactate as electron donor, AQDS as electron shuttle, and dissimilatory Fe(III)-reducing bacteria Shewanella putrefaciens CN32 as mediator in bicarbonate-buffered and PIPES-buffered media. During the oxidation phase, biogenic Fe(II) served an electronmore » donor, nitrate as electron acceptor, and nitrate-dependent Fe(II)-oxidizing bacteria Pseudogulbenkiania sp. strain 2002 as mediator in the same media. For all three cycles, structural Fe in NAu-2 was able to reversibly undergo 3 redox cycles without significant reductive or oxidative dissolution. X-ray diffraction and scanning and transmission electron microscopy revealed that NAu-2 was the dominant residual mineral throughout the 3 redox cycles with some dissolution textures but no significant secondary mineralization. Mössbauer spectroscopy revealed that Fe(II) in bio-reduced samples likely occurred in two distinct environments, at edges and the interior of the NAu-2 structure. Nitrate was completely reduced to nitrogen gas under both buffer conditions and this extent and rate did not change with Fe redox cycles. Mössbauer spectroscopy further revealed that nitrate reduction was coupled to predominant/preferred oxidation of edge Fe(II). These results suggest that structural Fe in phyllosilicates may represent a renewable source to continuously remove nitrate in natural environments.« less
Ba2F2Fe(1.5)Se3: An Intergrowth Compound Containing Iron Selenide Layers.
Driss, Dalel; Janod, Etienne; Corraze, Benoit; Guillot-Deudon, Catherine; Cario, Laurent
2016-03-21
The iron selenide compound Ba2F2Fe(1.5)Se3 was synthesized by a high-temperature ceramic method. The single-crystal X-ray structure determination revealed a layered-like structure built on [Ba2F2](2+) layers of the fluorite type and iron selenide layers [Fe(1.5)Se3](2-). These [Fe1.5Se3](2-) layers contain iron in two valence states, namely, Fe(II+) and Fe(III+) located in octahedral and tetrahedral sites, respectively. Magnetic measurements are consistent with a high-spin state for Fe(II+) and an intermediate-spin state for Fe(III+). Moreover, susceptibility and resistivity measurements demonstrate that Ba2F2Fe(1.5)Se3 is an antiferromagnetic insulator.
Qi, Jing; Lan, Huachun; Liu, Ruiping; Liu, Huijuan; Qu, Jiuhui
2018-06-15
The coagulation/flocculation/flotation (C/F/F) process is becoming a popular method for algae-laden water treatment. However, the efficiency of flotation is highly dependent on the ability of the preceding coagulation/flocculation process to form flocculated algae flocs. This study aims to improve the Microcystis aeruginosa flotation efficiency from algae cell and organic matter aspects by applying Fe(II)-regulated pretreatment enhanced Al coagulation process. The ability of the C/F/F process to remove cyanobacterial cells can be enhanced from 8% to 99% at a Fe(II) dose of 30 μM. The Al dose needed can be reduced by more than half while achieving successful flotation. The introduced Fe(II) after KMnO 4 can not only realize moderate pre-oxidation of cyanobacterial cells, but also form in-situ Fe(III). The DOC value can also be decreased significantly due to the formation of in-situ Fe(III), which is more efficient in dissolved organic matter (DOM) removal compared with pre-formed Fe(III). In addition, the gradually hydrolyzed in-situ Fe(III) can facilitate the hydrolysis of Al as a dual-coagulant and promote the clustering and cross-linking of Al hydrolyzates, which can enhance the formation of size-controlled algae flocs. Finally, the size-controlled algae flocs can be effectively floated by the bubbles released in the flotation process due to the efficient collision and attachment between flocs and bubbles. Therefore, the efficient flotation of algae cell and organic matter can be realized by the Fe(II) regulated moderate pre-oxidation of M. aeruginosa and formation of size-controlled algae flocs. Copyright © 2018 Elsevier Ltd. All rights reserved.
Far-infrared spectrophotometry of SN 1987A - Days 265 and 267
NASA Technical Reports Server (NTRS)
Moseley, S. H.; Dwek, E.; Silverberg, R. F.; Glaccum, W.; Graham, J. R.; Loewenstein, R. F.
1989-01-01
The paper presents 16-66-micron spectra of SN 1987A taken on days 266 and 268 after core collapse. The spectrum consists of a nearly flat continuum, strong emission lines of hydrogen, and fine-structure lines of Fe II, Fe III, Co II, S I, and possibly Fe I, Ni II, and S III. From the relative strength of three lines which arise from transitions within the ground and excited states of Fe II, the temperature and a lower limit on the density of the line-emitting region are derived. From the line strengths, the abundances of Fe and S I, the end products of explosive nucleosynthesis in the supernova are estimated. An upper limit is also set to the amount of Co II remaining in the mantle. The low measured mass of Fe suggests that the ejecta are clumpy. The flat continuum is most likely free-free emission from the expanding supernova ejecta. About 35 percent of this emission arises from the ionized metals in the mantle; the rest arises from ionized hydrogen. At the time of these observations, there is no evidence for any emission from dust that may have formed in the supernova ejecta or from preexisting dust in the surrounding medium.
Dynamics of Chromium(VI) Removal from Drinking Water by Iron Electrocoagulation.
Pan, Chao; Troyer, Lyndsay D; Catalano, Jeffrey G; Giammar, Daniel E
2016-12-20
The potential for new U.S. regulations for Cr(VI) in drinking water have spurred strong interests in improving technologies for Cr(VI) removal. This study examined iron electrocoagulation for Cr(VI) removal at conditions directly relevant to drinking water treatment. Cr(VI) is chemically reduced to less soluble Cr(III) species by the Fe(II) produced from an iron anode, and XANES spectra indicate that the Cr is entirely Cr(III) in solid-phases produced in electrocoagulation. The dynamics of Cr(VI) removal in electrocoagulation at pH 6 and pH 8 at both oxic and anoxic conditions can be described by a new model that incorporates Fe(II) release from the anode and heterogeneous and homogeneous reduction of Cr(VI) by Fe(II). Heterogeneous Cr(VI) reduction by adsorbed Fe(II) was critical to interpreting Cr(VI) removal at pH 6, and the Fe- and Cr-containing EC product was found to catalyze the redox reaction. Dissolved oxygen (DO) did not observably inhibit Cr(VI) removal because Fe(II) reacts with DO more slowly than it does with Cr(VI), and Cr(VI) removal was faster at higher pH. Even in the presence of common groundwater solutes, iron electrocoagulation lowered Cr(VI) concentrations to levels well below California's 10 μg/L.
Evidence for a cool wind from the K2 dwarf in the detached binary V471 Tauri
NASA Technical Reports Server (NTRS)
Mullan, D. J.; Sion, E. M.; Bruhweiler, F. C.; Carpenter, K. G.
1989-01-01
Evidence for mass loss from the K2 dwarf in V471 Tauri is found in the form of discrete absorption features in lines of various elements (Mg, Fe, Cr, Mn) and ionization stages (Mg I, Mg II, Fe I, Fe II). Resonant Mg II absorption indicates a mass loss rate of at least 10 to the -11th solar masses per year. The wind appears to be cool (no more than a few times 10,000 K).
Legrand, Ludovic; El Figuigui, Alaaeddine; Mercier, Florence; Chausse, Annie
2004-09-01
This work describes the heterogeneous reaction between FeII in carbonate green rust and aqueous chromate, in NaHCO3 solutions at 25 degrees C, and at pH values of 9.3-9.6. Evidence for reduction of CrVI to CrIII and concomitant solid-state oxidation of lattice FeII to FeIII was found from FeII titration and from structural analysis of the solids using FTIR, XRD, SEM, and XPS methods. Results indicate the formation of ferric oxyhydroxycarbonate and the concomitant precipitation of CrIII monolayers at the surface of the iron compound that induce passivation effects and progressive rate limitations. The number of CrIII monolayers formed at the completion of the reaction depends on [FeII]t=0, the molar concentration of FeII(solid) at t=0; on [n(o)]t=0, the molar concentration of reaction sites present at the surface of the solid phase at t=0; and on [CrVI]t=0, the molar concentration of CrVI at t=0. Kinetic data were modeled using a model based on the formation of successive CrIII monolayers, -(d[CrVI]/dt) = sigma(1)j k(i)[S] [CrVI]([n(i - 1)] - [n(i)]) with k(i)[S] (in s(-1) L mol(-1)), the rate coefficient of formation of CrIII monolayer i, and [n(i)] and [n(i - 1)], the molar concentration of CrIII precipitated in monolayer i and monolayer i - 1, respectively. Good matching curves were obtained with kinetic coefficients: k(1)[S] = 5-8 x 10(-4), k(2)[S] = 0.5-3 x 10(-5), and k(3)[S] about 1.7 x 10(-6) s(-1) m(-2) L. The CrVI removal efficiency progressively decreases along with the accumulation of CrIII monolayers at the surface of carbonate green rust particles. In the case of thick green rust particles resulting from the corrosion of iron in permeable reactive barriers, the quantity of FeII readily accessible for efficient CrVI removal should be rather low.
NASA Astrophysics Data System (ADS)
Helton, Lorren Andrew
2010-12-01
Classical novae (CNe) are violent thermonuclear explosions arising on the surface of white dwarfs in binary systems and are contributors to the chemical evolution of the interstellar medium through the production and ejection of copious amounts of metal-rich material. Observations and modeling of CNe eruptions illuminate numerous fundamental processes of astrophysical interest, including non-equilibrium thermonuclear runaway, radiative processes in dynamic nebular environments, binary star interaction, as well as dust condensation and grain growth. Here I summarize key findings from selected Galactic CNe observed as part of a 5 year, panchromatic optical/infrared observing campaign using Spitzer, Gemini, and other ground based optical facilities. In particular, I present detailed analysis of nova V1065 Centauri, including photoionization analysis of the emission lines, which enabled the derivation of abundances in the ejecta, and radiative transport modeling of the dust emission features, which allowed determination of the composition and characteristics of the dust in this system. I present analysis of three novae, V1974 Cygni, V382 Velorum, and V1494 Aquilae, observed from 4.4--15.5 years after outburst, discuss the characteristics of the nebulae at these late times, and estimate the abundances in their ejecta. In the case of V1494 Aql, I also report the first detection of neon. Finally, I present observations of three novae, DZ Crucis, V2361 Cygni, and V2362 Cygni, that exhibited unidentified infrared (UIR) features in their mid-infrared spectra, which exhibited unusual characteristics. I relate these features to other dusty novae in which features with similar characteristics were observed, and discuss possible sources for the UIR carriers. Analysis of the data obtained in the CNe monitoring campaign presented here highlights the need for synoptic observations obtained with broad wavelength coverage. Observations of V1065 Cen, which exhibited spectra rich in metals (e.g O, Ne, Mg, S, Ar, and Fe) produced during the thermonuclear runaway and through dredge up from the surface layers of the underlying WD, yielded robust estimates of WD composition, ejecta mass, and absolute abundances in the ejecta. Dusty novae such as V1065 Cen, V2362 Cyg, and V2361 Cyg, produced a variety of grain types as revealed by emission features characteristic of silicates, hydrogenated amorphous carbon dust, and PAH-like molecules, often in the same system. This data set is exceptional in that observations of many targets commenced immediately after eruption and followed the development for hundreds of days post-outburst providing unique insight into the evolution of conditions within the ejecta including the complete cycle of growth, processing, and dissipation of dust grains.
Kreamer, Naomi N; Costa, Flavia; Newman, Dianne K
2015-02-24
The physiological resistance of pathogens to antimicrobial treatment is a severe problem in the context of chronic infections. For example, the mucus-filled lungs of cystic fibrosis (CF) patients are readily colonized by diverse antibiotic-resistant microorganisms, including Pseudomonas aeruginosa. Previously, we showed that bioavailable ferrous iron [Fe(II)] is present in CF sputum at all stages of infection and constitutes a significant portion of the iron pool at advanced stages of lung function decline [R. C. Hunter et al., mBio 4(4):e00557-13, 2013]. P. aeruginosa, a dominant CF pathogen, senses Fe(II) using a two-component signal transduction system, BqsRS, which is transcriptionally active in CF sputum [R. C. Hunter et al., mBio 4(4):e00557-13, 2013; N. N. Kreamer, J. C. Wilks, J. J. Marlow, M. L. Coleman, and D. K. Newman, J Bacteriol 194:1195-1204, 2012]. Here, we show that an RExxE motif in BqsS is required for BqsRS activation. Once Fe(II) is sensed, BqsR binds a tandem repeat DNA sequence, activating transcription. The BqsR regulon--defined through iterative bioinformatic predictions and experimental validation--includes several genes whose products are known to drive antibiotic resistance to aminoglycosides and polymyxins. Among them are genes encoding predicted determinants of polyamine transport and biosynthesis. Compared to the wild type, bqsS and bqsR deletion mutants are sensitive to high levels of Fe(II), produce less spermidine in high Fe(II), and are more sensitive to tobramycin and polymyxin B but not arsenate, chromate, or cefsulodin. BqsRS thus mediates a physiological response to Fe(II) that guards the cell against positively charged molecules but not negatively charged stressors. These results suggest Fe(II) is an important environmental signal that, via BqsRS, bolsters tolerance of a variety of cationic stressors, including clinically important antimicrobial agents. Clearing chronic infections is challenging due to the physiological resistance of opportunistic pathogens to antibiotics. Effective treatments are hindered by a lack of understanding of how these organisms survive in situ. Fe(II) is typically present at micromolar levels in soils and sedimentary habitats, as well as in CF sputum. All P. aeruginosa strains possess a two-component system, BqsRS, that specifically senses extracellular Fe(II) at low micromolar concentrations. Our work shows that BqsRS protects the cell against cationic perturbations to the cell envelope as well as low pH and reduction potential (Eh), conditions under which Fe(2+) is stable. Fe(II) can thus be understood as a proxy for a broader environmental state; the cellular response to its detection may help rationalize the resistance of P. aeruginosa to clinically important cationic antibiotics. This finding demonstrates the importance of considering environmental chemistry when exploring mechanisms of microbial survival in habitats that include the human body. Copyright © 2015 Kreamer et al.
Ligand-controlled Fe mobilization catalyzed by adsorbed Fe(II) on Fe(hydr)oxides
NASA Astrophysics Data System (ADS)
Kang, Kyounglim; Biswakarma, Jagannath; Borowski, Susan C.; Hug, Stephan J.; Hering, Janet G.; Schenkeveld, Walter D. C.; Kraemer, Stephan M.
2017-04-01
Dissolution of Fe(hydr)oxides is a key process in biological iron acquisition. Due to the low solubility of iron oxides in environments with a circumneutral pH, organisms may exude organic compounds catalyzing iron mobilization by reductive and ligand controlled dissolution mechanisms. Recently, we have shown synergistic effects between reductive dissolution and ligand-controlled dissolution that may operate in biological iron acquisition. The synergistic effects were observed in Fe mobilization from single goethite suspensions as well as in suspensions containing calcareous soil[1],[2]. However, how the redox reaction accelerates Fe(hydr)oxide dissolution by ligands is not studied intensively. In our study, we hypothesized that electron transfer to structural Fe(III) labilizes the Fe(hydr)oxide structure, and that this can accelerate ligand controlled dissolution. Systematical batch dissolution experiments were carried out under anoxic conditions at environmentally relevant pH values in which various Fe(hydr)oxides (goethite, hematite, lepidocrocite) interacted with two different types of ligand (desferrioxamine B (DFOB) and N,N'-Di(2-hydroxybenzyl)ethylenediamine-N,N'-diacetic acid monohydrochloride (HBED)). Electron transfer to the structure was induced by adsorbing Fe(II) to the mineral surface at various Fe(II) concentrations. Our results show a distinct catalytic effect of adsorbed Fe(II) on ligand controlled dissolution, even at submicromolar Fe(II) concentrations. We observed the effect for a range of iron oxides, but it was strongest in lepidocrocite, most likely due to anisotropy in conductivity leading to higher near-surface concentration of reduced iron. Our results demonstrate that the catalytic effect of reductive processes on ligand controlled dissolution require a very low degree of reduction making this an efficient process for biological iron acquisition and a potentially important effect in natural iron cycling. References 1. Wang, Z. M.; Schenkeveld, W. D. C.; Kraemer, S. M.; Giammar, D. E. Environ. Sci. Technol. 2015, 49, (12), 7236-7244. 2. Schenkeveld, W. D. C.; Wang, Z. M.; Giammar, D. E.; Kraemer, S. M. Environ. Sci. Technol. 2016, 50, (12), 6381-6388.
Sun, Wenjie; Sierra-Alvarez, Reyes; Milner, Lily; Oremland, Ron; Field, Jim A.
2014-01-01
The objective of this study was to explore a bioremediation strategy based on injecting NO3− to support the anoxic oxidation of ferrous iron (Fe(II)) and arsenite (As(III)) in the subsurface as a means to immobilize As in the form of arsenate (As(V)) adsorbed onto biogenic ferric (Fe(III)) (hydr)oxides. Continuous flow sand filled columns were used to simulate a natural anaerobic groundwater and sediment system with co-occurring As(III) and Fe(II) in the presence (SF1) or absence (SF2) of nitrate, respectively. During operation for 250 days, the average influent arsenic concentration of 567 µg l−1 was reduced to 10.6 (±9.6) µg l−1 in the effluent of column SF1. The cumulative removal of Fe(II) and As(III) in SF1 was 6.5–10-fold higher than that in SF2. Extraction and measurement of the mass of iron and arsenic immobilized on the sand packing of the columns was close to the iron and arsenic removed from the aqueous phase during column operation. The dominant speciation of the immobilized iron and arsenic was Fe(III) and As(V) in SF1, compared with Fe(II) and As(III) in SF2. The speciation was confirmed by XRD and XPS. The results indicate that microbial oxidation of As(III) and Fe(II) linked to denitrification resulted in the enhanced immobilization of aqueous arsenic in anaerobic environments by forming Fe(III) (hydr)oxides coated sands with adsorbed As(V). PMID:19764221
Inhibition of bacterial oxidation of ferrous iron by lead nitrate in sulfate-rich systems.
Wang, Hongmei; Gong, Linfeng; Cravotta, Charles A; Yang, Xiaofen; Tuovinen, Olli H; Dong, Hailiang; Fu, Xiang
2013-01-15
Inhibition of bacterial oxidation of ferrous iron (Fe(II)) by Pb(NO(3))(2) was investigated with a mixed culture of Acidithiobacillus ferrooxidans. The culture was incubated at 30 °C in ferrous-sulfate medium amended with 0-24.2 mM Pb(II) added as Pb(NO(3))(2). Anglesite (PbSO(4)) precipitated immediately upon Pb addition and was the only solid phase detected in the abiotic controls. Both anglesite and jarosite (KFe(3)(SO(4))(2)(OH)(6)) were detected in inoculated cultures. Precipitation of anglesite maintained dissolved Pb concentrations at 16.9-17.6 μM regardless of the concentrations of Pb(NO(3))(2) added. Fe(II) oxidation was suppressed by 24.2 mM Pb(NO(3))(2) addition even when anglesite was removed before inoculation. Experiments with 0-48 mM KNO(3) demonstrated that bacterial Fe(II) oxidation decreased as nitrate concentration increased. Therefore, inhibition of Fe(II) oxidation at 24.2 mM Pb(NO(3))(2) addition resulted from nitrate toxicity instead of Pb addition. Geochemical modeling that considered the initial precipitation of anglesite to equilibrium followed by progressive oxidation of Fe(II) and the precipitation of jarosite and an amorphous iron hydroxide phase, without allowing plumbojarosite to precipitate were consistent with the experimental time-series data on Fe(II) oxidation under biotic conditions. Anglesite precipitation in mine tailings and other sulfate-rich systems maintains dissolved Pb concentrations below the toxicity threshold of A. ferrooxidans. Copyright © 2012 Elsevier B.V. All rights reserved.
Line Identifications in the Far Ultraviolet Spectrum of the Eclipsing Binary System 31 Cygni
NASA Astrophysics Data System (ADS)
Hagen Bauer, Wendy; Bennett, P. D.
2011-05-01
The eclipsing binary system 31 Cygni (K4 Ib + B3 V) was observed at several phases with the Far Ultraviolet Spectrosocopic Explorer (FUSE) satellite. During total eclipse, a rich emission spectrum was observed, produced by scattering of hot star photons in the extended wind of the K supergiant. The system was observed during deep chromospheric eclipse, and 2.5 months after total eclipse ended. We present an atlas of line identifications in these spectra. During total eclipse, emission features from C II , C III, N I, N II, N III, O I, Si II, P II, P III, S II, S III, Ar I, Cr III, Fe II, Fe III, and Ni II were detected. The strongest emission features arise from N II. These lines appear strongly in absorption during chromospheric eclipse, and even 2.5 months after total eclipse, the absorption bottoms out on the underlying emission seen during total eclipse. The second strongest features in the emission spectrum arise from Fe III. Any chromospheric Fe III absorption is buried within strong chromospheric absorption from other species, mainly Fe II. The emission profiles of most of the doubly-ionized species are red-shifted relative to the systemic velocity, with asymmetric profiles with a steeper long-wavelength edge. Emission profiles from singly-ionized species tend to be more symmetric and centered near the systemic velocity. In deep chromospheric eclipse, absorption features are seen from neutral and singly-ionized species, arising from lower levels up to 3 eV. Many strong chromospheric features are doubled in the observation obtained during egress from eclipse. The 31 Cygni spectrum taken 2.5 months after total eclipse ended ws compared to single-star B spectra from the FUSE archives. There was still some additional chromospheric absorption from strong low-excitation Fe II, O I and Ar I.
The active quiescence of HR Del (Nova Del 1967). The ex-nova HR Del
NASA Astrophysics Data System (ADS)
Selvelli, P.; Friedjung, M.
2003-04-01
This new UV study of the ex-nova HR Del is based on all of the data obtained with the International Ultraviolet Explorer (IUE) satellite, and includes the important series of spectra taken in 1988 and 1992 that have not been analyzed so far. This has allowed us to make a detailed study of both the long-timescale and the short-timescale UV variations, after the return of the nova, around 1981-1982, to the pre-outburst optical magnitude. After the correction for the reddening (EB-V=0.16), adopting a distance d =850 pc we have derived a mean UV luminosity close to LUV ~ 56 Lsun, the highest value among classical novae in ``quiescence". Also the ``average" optical absolute magnitude (Mv=+2.30) is indicative of a bright object. The UV continuum luminosity, the HeII 1640 Å emission line luminosity, and the optical absolute magnitude all give a mass accretion rate dot {M} very close to 1.4x 10-7 Msun yr-1, if one assumes that the luminosity of the old nova is due to a non-irradiated accretion disk. The UV continuum has declined by a factor less than 1.2 over the 13 years of the IUE observations, while the UV emission lines have faded by larger factors. The continuum distribution is well fitted with either a black body of 33 900 K, or a power-law Flambda ~ lambda -2.20. A comparison with the grid of models of Wade & Hubeny (\\cite{Wade}) indicates a low M1 value and a relatively high dot {M} but the best fittings to the continuum and the line spectrum come from different models. We show that the ``quiescent" optical magnitude at mv ~ 12 comes from the hot component and not from the companion star. Since most IUE observations correspond to the ``quiescent" magnitude at mv ~ 12, the same as in the pre-eruption stage, we infer that the pre-nova, for at least 70 years prior to eruption, was also very bright at near the same LUV, Mv, dot {M}, and T values as derived in the present study for the ex-nova. The wind components in the P Cyg profiles of the CIV 1550 Å and NV 1240 Å resonance lines are strong and variable on short timescales, with vedge up to -5000 km s-1, a remarkably high value. The phenomenology of the short-time variations of the wind indicates the presence of an inhomogeneous outflow. We discuss the nature of the strong UV continuum and wind features and the implications of the presence of a ``bright" state a long time before and after outburst on our present knowledge of the pre-nova and post-nova behavior. Based on observations made with the International Ultraviolet Explorer and de-archived from the ESA VILSPA Database. }
NASA Astrophysics Data System (ADS)
Silver, W. L.; Hall, S. J.; Thompson, A.; Yang, W. H.
2014-12-01
The abundance of redox active Fe minerals has the potential to alter the storage and loss of C, contribute to gaseous N emissions, and control P retention in upland tropical forest soils. High concentrations of short-range order Fe minerals led to Fe(II) production rates of 26-206 μg g d-1 under short-term low redox conditions (Chacón et al. 2006, Liptzin and Silver 2009, Dubinsky et al. 2010). Potential C mineralization from Fe(II) reduction was 34-263 g CO2-C m-2 y-1, C losses equivalent to approximately 10-60 % of annual litterfall production in this forest. Decreased acidity during Fe reduction can destabilize soil aggregates and lead to C losses. Iron is rapidly reoxidized during aerobic periods, which can subsequently lead to C stabilization via complexation reactions. Fe oxidation can also stimulate C losses via pH-driven dissolved organic C production and directly via Fenton reactions. In laboratory experiments, rates of CO2 production were strongly linearly correlated with Fe(II) loss under aerobic conditions, increasing by 0.51 ± 0.02 µg CO2-C g soil h-1 respired for each mg of Fe(II) g-1 soil oxidized or sorbed (Hall and Silver 2013). Iron oxidation has also been linked to dissimilatory NO3- reduction to NH4+ leading to N retention in ecosystems. Fe(III) reduction coupled with NH4+ oxidation (Feammox) can lead to N losses as dinitrogen gas (N2) or nitrous oxide (N2O), a potent greenhouse gas. Estimates suggest that Feammox resulted in gaseous N losses of 1-4 kg N ha-1 y-1 (Yang et al. 2012), rates equivalent to total denitrification in this forest. Oxidized Fe can strongly bind P decreasing it's availability to plant roots. While this is commonly cited as a potential limitation to net primary production in tropical forests, it also helps to retain P in ecosystems with high rainfall and potential leaching losses. Microbial biomass P availability increased significantly with Fe(II) production, suggesting the P mobilized during Fe(II) reduction was rapidly immobilized into biological pools (Liptzin and Silver 2009). Data suggest that Fe-redox cycling may decrease P limitation to NPP, and help maintain forest nutrient stocks. In summary, our results highlight the biogeochemical significance of Fe cycling in upland soils environments and its important role in the dynamics of humid tropical forests.
The reduction of chromium (VI) by iron (II) in aqueous solutions
NASA Astrophysics Data System (ADS)
Pettine, Maurizio; D'Ottone, Luca; Campanella, Luigi; Millero, Frank J.; Passino, Roberto
1998-05-01
The rates of the reduction of Cr(VI) with Fe(II) were measured in NaCl, NaClO 4, and natural seawater as a function of pH (1.5-8.7), temperature (5-40°C) and ionic strength (I = 0.01-2 M). The pseudo first-order rate constant (log k 1) showed a parabolic dependence on pH decreasing from 1.5 to 4.5 and increasing from 5.5 to 8.7. The kinetics of the reaction in these two regions of pH also showed different influences of temperature, ionic strength, and reductant concentration. The rate of Cr(VI) reduction is described by the general expression -d[Cr(VI)]/dt = k [Cr(VI)] [Fe(II)] where k (M -1 min -1) can be determined from the log k=6.74-1.01 pH-188.5/T for the pH range 1.5-4.5 (σ = 0.2) and log k=11.93+0.95 pH-4260.1/T-1.06 I 0.5 for the pH range 5-8.7 (σ = 0.2) from 5 to 40°C and 0.01 to 2 M ionic strength. The effect of pH, temperature, and ionic strength on the reaction indicates that the reactions at low pH are due to H2CrO4+ Fe2+limit→k H2 A-Feproducts While the reactions at high pH are due to HCrO4-+ FeOH+limit→k HA-FeOHproductsHCrO4-+ Fe(OH)2limit→k HA-Fe(OH)2 products The overall rate expression over the entire pH range can be determined from (H 2A = H 2CrO 4) k=k H2 A-Feα( H2A)α( Fe2+)+k HA-FeOHα( HA-)α( FeOH+)+k HA-Fe(OH)2 α( HA-)α( Fe(OH)2) where k H2A-Fe = 5 x 10 6, k HA-FeOH = 1 x 10 6, k HA-Fe (OH)2= 5 x 10 11. In oxic aqueous systems Cr(VI) competes with O 2 in the oxidation of Fe(II) and an extension of the rate law for Cr(VI) reduction with Fe(II) in oxygenated solutions is proposed. The application of this extended rate law to environmental conditions suggests that this reaction influences the distribution of oxidized and reduced species of chromium in oxic and anoxic waters.
Jones, Bassey O; John, Odiyo O; Luke, Chimuka; Ochieng, Aoyi; Bassey, Bridget J
2016-07-15
The ability of mucilage from Dicerocaryum eriocarpum (DE) plant to act as biosorption medium in the removal of metals ions from aqueous solution was investigated. Functional groups present in the mucilage were identified using Fourier transform infrared spectroscopy (FTIR). Mucilage was modified with sodium and potassium chlorides. This was aimed at assessing the biosorption efficiency of modified mucilage: potassium mucilage (PCE) and sodium mucilage (SCE) and comparing it with non-modified deionised water mucilage (DCE) in the uptake of metal ions. FTIR results showed that the functional groups providing the active sites in PCE and SCE and DCE include: carboxyl, hydroxyl and carbonyl groups. The chloride used in the modification of the mucilage did not introduce new functional groups but increased the intensity of the already existing functional groups in the mucilage. Results from biosorption experiment showed that DE mucilage displays good binding affinity with metals ions [Zn(II), Cd(II) Ni(II), Cr(III) and Fe(II)] in the aqueous solution. Increase in the aqueous solution pH, metal ions initial concentration and mucilage concentration increased the biosorption efficiency of DE mucilage. The maximum contact time varied with each species of metal ions. Optimum pH for [Zn(II), Cd(II) Ni(II) and Fe(II)] occurred at pH 4 and pH 6 for Cr(III). Kinetic models result fitted well to pseudo-second-order with a coefficient values of R(2) = 1 for Cd(II), Ni(II), Cr(III), Fe(II) and R(2) = 0.9974 for Zn(II). Biosorption isotherms conforms best with Freundlich model for all the metal ions with correlation factors of 0.9994, 0.9987, 0.9554, 0.9621 and 0.937 for Zn(II), Ni(II), Fe(II), Cr(III) and Cd(II), respectively. Biosorption capacity of DE mucilage was 0.010, 2.387, 4.902, 0688 and 0.125 for Zn(II), Cr(III), Fe(II), Cd(II) and Ni(II) respectively. The modified mucilage was found to be highly efficient in the removal of metal ions than the unmodified mucilage. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yatskin, Michael M.; Zatovsky, Igor V.; Baumer, Vyacheslav N.; Ogorodnyk, Ivan V.; Slobodyanik, Nikolay S.
2012-01-01
KMg0.09Fe1.91(PO4)2, potassium [iron(II)/magnesium] iron(III) bis(orthophosphate), is a solid solution derived from compounds with general formula KM IIFe(PO4)2 (M II = Fe, Cu), in which the Mg atoms substitute Fe atoms only in the octahedrally surrounded sites. The framework of the structure is built up from [FeO5] trigonal bipyramids and [MO6] (M = (Fe, Mg) octahedra sharing corners and edges and connected by two types of bridging PO4 tetrahedra. The K+ cations are nine-coordinated and are situated in channels running along [101]. PMID:22719280
Electrode reactions of iron oxide-hydroxide colloids.
Mahmoudi, Leila; Kissner, Reinhard
2014-11-07
Small-sized FeO(OH) colloids stabilised by sugars, commercially available for the clinical treatment of iron deficiency, show two waves during cathodic polarographic sweeps, or two current maxima with stationary electrodes, in neutral to slightly alkaline aqueous medium. Similar signals are observed with Fe(III) in alkaline media, pH > 12, containing citrate in excess. Voltammetric and polarographic responses reveal a strong influence of fast adsorption processes on gold and mercury. Visible spontaneous accumulation was also observed on platinum. The voltammetric signal at more positive potential is caused by Fe(III)→Fe(II) reduction, while the one at more negative potential has previously been assigned to Fe(II)→Fe(0) reduction. However, the involvement of adsorption phenomena leads us to the conclusion that the second cathodic current is caused again by Fe(III)→Fe(II), of species deeper inside the particles than those causing the first wave. This is further supported by X-ray photoelectron spectra obtained after FeO(OH) particle adsorption and reduction on a gold electrode surface. The same analysis suggests that sucrose stabilising the colloid is still bound to the adsorbed material, despite dilution and rinsing.
Pereira, Dora I A; Bruggraber, Sylvaine F A; Faria, Nuno; Poots, Lynsey K; Tagmount, Mani A; Aslam, Mohamad F; Frazer, David M; Vulpe, Chris D; Anderson, Gregory J; Powell, Jonathan J
2014-11-01
Iron deficiency is the most common nutritional disorder worldwide with substantial impact on health and economy. Current treatments predominantly rely on soluble iron which adversely affects the gastrointestinal tract. We have developed organic acid-modified Fe(III) oxo-hydroxide nanomaterials, here termed nano Fe(III), as alternative safe iron delivery agents. Nano Fe(III) absorption in humans correlated with serum iron increase (P < 0.0001) and direct in vitro cellular uptake (P = 0.001), but not with gastric solubility. The most promising preparation (iron hydroxide adipate tartrate: IHAT) showed ~80% relative bioavailability to Fe(II) sulfate in humans and, in a rodent model, IHAT was equivalent to Fe(II) sulfate at repleting haemoglobin. Furthermore, IHAT did not accumulate in the intestinal mucosa and, unlike Fe(II) sulfate, promoted a beneficial microbiota. In cellular models, IHAT was 14-fold less toxic than Fe(II) sulfate/ascorbate. Nano Fe(III) manifests minimal acute intestinal toxicity in cellular and murine models and shows efficacy at treating iron deficiency anaemia. This paper reports the development of novel nano-Fe(III) formulations, with the goal of achieving a magnitude less intestinal toxicity and excellent bioavailability in the treatment of iron deficiency anemia. Out of the tested preparations, iron hydroxide adipate tartrate met the above criteria, and may become an important tool in addressing this common condition. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.
Iron Redox Transformations And Phosphorous Cycling In Tropical Soils
NASA Astrophysics Data System (ADS)
Peretyazhko, T.; Sposito, G.
2003-12-01
We are investigating the hypothesis that in highly weathered tropical soils iron oxidation-reduction reactions may mediate phosphorous solubility. In these soils phosphorous may be removed from the plant-available soil pool by sorption to Fe(III) oxides and by precipitation with Fe(III) to form insoluble minerals. The reduction of iron during episodic anoxic conditions has the potential to release phosphorous in a plant available form. We aim to explore the factors controlling Fe reduction and to evaluate the role of Fe reduction in P solubilization. Soil samples were collected along a toposequence (ridge-slope-valley) in the Luquillo Experimental Forest, Puerto Rico. Besides precipitation, the valley soils receive additional water through subsurface and upland runoff. These soils are poorly-drained and, therefore, periodically saturated with water, which creates anoxic conditions. Two series of incubation experiments were carried out on air-dried and freshly-sampled valley soils. During a 14-day incubation period, increasing production of Fe(II) was detected in both types of soil sample. We also found positive correlations between the concentrations of soluble Fe(II), pH, and soluble P. In general, the total amounts of Fe(II) and P produced were higher in the air-dried soil, mainly due to differences in microbial activity. To examine further the factors controlling Fe reduction and P solubilization, we are performing soil incubation experiments in the presence of "electron shuttle" compound (AQDS). SEM and STXM techniques will be applied to detect the formation of Fe(II) secondary minerals.
NASA Astrophysics Data System (ADS)
Grabb, Kalina C.; Buchwald, Carolyn; Hansel, Colleen M.; Wankel, Scott D.
2017-01-01
Under anaerobic conditions, the environmental reduction of nitrate (NO3-) and nitrite (NO2-) to more reduced forms is widely regarded as being microbially catalyzed. However, the chemical reduction of oxidized nitrogen species by reduced iron (Fe(II)), whether mineral-bound or surface-associated, may also occur under environmentally relevant conditions. Here we examine the nitrogen (N) and oxygen (O) stable isotope dynamics of the chemical reduction of NO2- by mineral associated Fe(II) (chemodenitrification) and its production of the potent greenhouse gas nitrous oxide (N2O). By shedding light on factors controlling kinetics of the reaction and its corresponding dual isotopic expression in the reactant NO2- and product N2O, this work contributes to a growing body of work aiming to improve our ability to identify chemodenitrification in the environment. Consistent with previous studies, we find that while homogenous reactions between aqueous NO2- and Fe(II) were kinetically slow, heterogeneous reactions involving Fe(II)-containing minerals often catalyzed considerable nitrite loss. In particular, rapid reduction of NO2- was catalyzed by the Fe-rich smectite clay mineral nontronite as well as the mixed Fe(II)-Fe(III) oxyhydroxide phase green rust. These minerals serve as both a source of reduced iron within the mineral structure as well as a surface for promoting the reactivity of Fe(II). However, even in the presence of aqueous Fe(II), experiments with low-Fe and non-Fe containing minerals showed little to no NO2- loss, perhaps suggesting a more dominant role for structural iron during chemodenitrification. When catalyzed by nontronite and green rust, N and O isotope effects for chemodenitrification (15εcDNF and 18εcDNF) ranged from 2 to 11‰ and 4 to 10‰, respectively, with lower values generally observed at higher reaction rates. Higher reaction rates were also linked to higher molar yields of N2O (up to 31%), highlighting a strong potential for chemodenitrification to produce N2O - especially relative to its production by microbial pathways, which typically exhibit yields <1%. The intramolecular 15N site preference (SP) of the linear N2O molecule (the difference in δ15N between the central and outer atoms), reflective of different production mechanisms, was also measured for N2O produced during green rust catalyzed chemodenitrification. Relative to values measured in other recent studies of chemodenitrification, SP values were consistently high (+26.5‰ ± 0.8‰), especially relative to N2O produced via bacterial denitrification (SP ∼ 0‰). Finally, the coupling of 18εcDNF and 15εcDNF at a ratio of ∼1 during green rust catalyzed chemodenitrification contrasts distinctly with recently characterized bacterial nitrite reduction, potentially permitting disentangling of both processes under well-constrained conditions. This study contributes to the broader understanding of the potential relevance for mineral-derived Fe(II) to promote the reduction of nitrite and consequent production of N2O, especially in iron-rich systems hosting dynamic redox oscillations, including hyporheic zones, estuarine sediments and groundwater aquifers.
NASA Astrophysics Data System (ADS)
Veiga, Nicolás; Macho, Israel; Gómez, Kerman; González, Gabriel; Kremer, Carlos; Torres, Julia
2015-10-01
Among myo-inositol phosphates, the most abundant in nature is the myo-inositol hexakisphosphate, InsP6. Although it is known to be vital to cell functioning, the biochemical research into its metabolism needs chemical and structural analysis of all the protonation, complexation and precipitation processes that it undergoes in the biological media. In view of its high negative charge at physiological level, our group has been leading a thorough research into the InsP6 chemical and structural behavior in the presence of the alkali and alkaline earth metal ions essential for life. The aim of this article is to extend these studies, dealing with the chemical and structural features of the InsP6 interaction with biologically relevant 3d transition metal ions (Fe(II), Fe(III), Mn(II), Co(II), Ni(II), Cu(II) and Zn(II)), in a non-interacting medium and under simulated physiological conditions. The metal-complex stability constants were determined by potentiometry, showing under ligand-excess conditions the formation of mononuclear species in different protonation states. Under metal ion excess, polymetallic species were detected for Fe(II), Fe(III), Zn(II) and Cu(II). Additionally, the 31P NMR and UV-vis spectroscopic studies provided interesting structural aspects of the strong metal ion-InsP6 interaction.
NASA Astrophysics Data System (ADS)
Djouhra, Aggoun; Ali, Ourari; Ramiro, Ruiz-Rosas; Emilia, Morallon
2017-09-01
A new colorimetric receptor HL, acting as a bidentate Schiff base ligand, has been synthesized by condensation of 2-methoxybenzylamine on 2,3-dihydroxybenzaldehyde in a methanolic solution. Interestingly, this chelating agent can selectively detect Cu2 +, Co2 +, Fe2 + and Fe3 + ions with a simple and an easy-to-make, well defined naked-eye visible color changes in two different solvents like acetonitrile and methanol. This bidentate ligand coordinates three metal ions of Co(II), Cu(II) and Fe(II) via nitrogen and oxygen atoms. The molecular structures of the synthesized compounds were elucidated by various physicochemical properties such as the elemental analysis, FT-IR, HNMR, UV-Vis and the Mass spectrometry. The resulting general formulae [M(L)2·H2O] (M(II) = Cu, Fe, Co) are proposed as mononuclear complexes. The solvatochromism properties of these compounds were studied with their absorption spectra using different solvents as methanol (MeOH), acetonitrile (AN), tetrahydrofuran (THF), dimethylformamid (DMF), dimethylsulfoxid (DMSO) and dichloromethane (DC). The Electrochemical behavior of copper complex was explored in DMF solutions by cyclic voltammetry (CV) with two working electrodes: glassy carbon (GC) and platinum electrode (Pt). This study reveals that copper complex shows successively two redox systems as CuIII/II and CuII/I. The FeIII/II and CoII/I redox systems have also been studied in DMF and DMSO media.
NASA Astrophysics Data System (ADS)
Fantola Lazzarini, Anna L.; Lazzarini, Ennio
The o-Ps quenching reactions promoted in aqueous solutions by the following six cyanocomplexes: [Fe(CN) 6] 4-; [Co(CN) 6] 3-; [Zn(CN) 4] 2-; [Cd(CN) 6] 2-; [Fe(CN) 6] 3-; [Ni(CN) 4] 2- were investigated. The first four reactions probably consist in o-Ps addition across the CN bond, their rate constants at room temperature, Tr, being ⩽(0.04±0.02) × 10 9 M -1 s -1, i.e. almost at the limit of experimental errors. The rate constant of the fifth reaction, in o-Ps oxydation, at Tr is (20.3±0.4) × 10 9 M -1 s -1. The [Ni(CN) 4] 2-k value at Tr, is (0.27±0.01) × 10 9 M -1 s -1, i.e. 100 times less than the rate constants of o-Ps oxydation, but 10 times larger than those of the o-Ps addition across the CN bond. The [Ni(CN) 4] 2- reaction probably results in formation of the following positronido complex: [Ni(CN) 4Ps] 2-. However, it is worth noting that the existence of such a complex is only indirectly deduced. In fact it arises from comparison of the [Ni(CN) 4] 2- rate constant with those of the Fe(II), Zn(II), Cd(II), and Co(III) cyanocomplexes, which, like the Ni(II) cyanocomplex, do not promote o-Ps oxydation or spin exchange reactions.
Present and Past Impact of Glacially Sourced Dust on Iron Fertilization of the Southern Ocean
NASA Astrophysics Data System (ADS)
Shoenfelt, E. M.; Winckler, G.; Kaplan, M. R.; Sambrotto, R.; Bostick, B. C.
2016-12-01
An increase in iron-containing dust flux and a more efficient biological pump in the Southern Ocean have been associated with the CO2 drawdown and global cooling of the Last Glacial Maximum (LGM). While iron (Fe) mineralogy is known to affect Fe bioavailability through its impact on Fe solubility, there are limited studies investigating the importance of Fe mineralogy in dust fluxes to the Southern Ocean, and no previous studies investigating interactions between eukaryotic phytoplankton and particulate-phase Fe in natural dusts applicable to Southern Ocean environments. Since physically weathered bedrock becomes less soluble as it becomes weathered and oxidized, we hypothesized that glacially sourced dusts would contain more Fe(II)-rich primary minerals and would be more bioavailable than dusts from areas not impacted by glaciers. We used a series of natural dusts from Patagonia as the sole Fe source in incubation experiments with the model diatom Phaeodactylum tricornutum, and evaluated Fe bioavailability using culture growth rates, cell density, and variable fluorescence. Monod curves were also used to evaluate the efficiency of the different particulates as sources of nutrient Fe. Using these Monod curves fit to growth rates plotted against particulate Fe concentrations, we observed that 1) Fe(II)-rich primary silicates were significantly more effective as an Fe source to diatoms than Fe(III)-rich oxides, that 2) Fe(II) content itself was responsible for the difference in Fe bioavailability/efficiency of the Fe nutrient source, and that 3) surface interactions with the particulates were important. In an effort to explore the possibility that Fe mineralogy impacted Fe bioavailability in past oceans, we will present our hypotheses regarding productivity and Fe mineralogy/bioavailability through the last glacial cycle.
Bao, Shuangyou; Tang, Lihong; Li, Kai; Ning, Ping; Peng, Jinhui; Guo, Huibin; Zhu, Tingting; Liu, Ye
2016-01-15
Amino-functionalized Fe3O4@SiO2 magnetic nano-adsorbent was used as a novel sorbent to highly selective removal of Zn(II) ion from hot-dip galvanizing pickling waste in the presence of Fe(II). These hot-dip galvanizing pickling waste mainly contain ZnCl2 and FeCl2 in aqueous HCl media. The properties of this magnetic adsorbent were examined by transmission electron microscopy (TEM), powder X-ray diffraction (XRD), infrared spectrometer (FT-IR) and BET surface area measurements. Various factors influencing the adsorption of Zn(II) ion such as initial concentration of metal ions, the amount of adsorbent, pH value of the solutions, the concentration of coexisting iron ion were investigated by batch experiments. The results indicated that the adsorption equilibrium data obeyed the Freundlich model with maximum adsorption capacities for Zn(II) to 169.5mg/g. The maximum adsorption occurred at pH 5±0.1 and Fe(II) interferences had no obvious influence. This work provides a potential and unique technique for zinc ion removal from hot-dip galvanizing pickling waste. Copyright © 2015 Elsevier Inc. All rights reserved.
Kozubal, M; Macur, R E; Korf, S; Taylor, W P; Ackerman, G G; Nagy, A; Inskeep, W P
2008-02-01
Novel thermophilic crenarchaea have been observed in Fe(III) oxide microbial mats of Yellowstone National Park (YNP); however, no definitive work has identified specific microorganisms responsible for the oxidation of Fe(II). The objectives of the current study were to isolate and characterize an Fe(II)-oxidizing member of the Sulfolobales observed in previous 16S rRNA gene surveys and to determine the abundance and distribution of close relatives of this organism in acidic geothermal springs containing high concentrations of dissolved Fe(II). Here we report the isolation and characterization of the novel, Fe(II)-oxidizing, thermophilic, acidophilic organism Metallosphaera sp. strain MK1 obtained from a well-characterized acid-sulfate-chloride geothermal spring in Norris Geyser Basin, YNP. Full-length 16S rRNA gene sequence analysis revealed that strain MK1 exhibits only 94.9 to 96.1% sequence similarity to other known Metallosphaera spp. and less than 89.1% similarity to known Sulfolobus spp. Strain MK1 is a facultative chemolithoautotroph with an optimum pH range of 2.0 to 3.0 and an optimum temperature range of 65 to 75 degrees C. Strain MK1 grows optimally on pyrite or Fe(II) sorbed onto ferrihydrite, exhibiting doubling times between 10 and 11 h under aerobic conditions (65 degrees C). The distribution and relative abundance of MK1-like 16S rRNA gene sequences in 14 acidic geothermal springs containing Fe(III) oxide microbial mats were evaluated. Highly related MK1-like 16S rRNA gene sequences (>99% sequence similarity) were consistently observed in Fe(III) oxide mats at temperatures ranging from 55 to 80 degrees C. Quantitative PCR using Metallosphaera-specific primers confirmed that organisms highly similar to strain MK1 comprised up to 40% of the total archaeal community at selected sites. The broad distribution of highly related MK1-like 16S rRNA gene sequences in acidic Fe(III) oxide microbial mats is consistent with the observed characteristics and growth optima of Metallosphaera-like strain MK1 and emphasizes the importance of this newly described taxon in Fe(II) chemolithotrophy in acidic high-temperature environments of YNP.
Benzine, Jason; Shelobolina, Evgenya; Xiong, Mai Yia; Kennedy, David W; McKinley, James P; Lin, Xueju; Roden, Eric E
2013-01-01
Microorganisms capable of reducing or oxidizing structural iron (Fe) in Fe-bearing phyllosilicate minerals were enriched and isolated from a subsurface redox transition zone at the Hanford 300 Area site in eastern Washington, USA. Both conventional and in situ "i-chip" enrichment strategies were employed. One Fe(III)-reducing Geobacter (G. bremensis strain R1, Deltaproteobacteria) and six Fe(II) phyllosilicate-oxidizing isolates from the Alphaproteobacteria (Bradyrhizobium japonicum strains 22, is5, and in8p8), Betaproteobacteria (Cupriavidus necator strain A5-1, Dechloromonas agitata strain is5), and Actinobacteria (Nocardioides sp. strain in31) were recovered. The G. bremensis isolate grew by oxidizing acetate with the oxidized form of NAu-2 smectite as the electron acceptor. The Fe(II)-oxidizers grew by oxidation of chemically reduced smectite as the energy source with nitrate as the electron acceptor. The Bradyrhizobium isolates could also carry out aerobic oxidation of biotite. This is the first report of the recovery of a Fe(II)-oxidizing Nocardioides, and to date only one other Fe(II)-oxidizing Bradyrhizobium is known. The 16S rRNA gene sequences of the isolates were similar to ones found in clone libraries from Hanford 300 sediments and groundwater, suggesting that such organisms may be present and active in situ. Whole genome sequencing of the isolates is underway, the results of which will enable comparative genomic analysis of mechanisms of extracellular phyllosilicate Fe redox metabolism, and facilitate development of techniques to detect the presence and expression of genes associated with microbial phyllosilicate Fe redox cycling in sediments.
Fe-phyllosilicate redox cycling organisms from a redox transition zone in Hanford 300 Area sediments
Benzine, Jason; Xiong, Mai Yia; Kennedy, David W.; McKinley, James P.; Lin, Xueju; Roden, Eric E.
2013-01-01
Microorganisms capable of reducing or oxidizing structural iron (Fe) in Fe-bearing phyllosilicate minerals were enriched and isolated from a subsurface redox transition zone at the Hanford 300 Area site in eastern Washington, USA. Both conventional and in situ “i-chip” enrichment strategies were employed. One Fe(III)-reducing Geobacter (G. bremensis strain R1, Deltaproteobacteria) and six Fe(II) phyllosilicate-oxidizing isolates from the Alphaproteobacteria (Bradyrhizobium japonicum strains 22, is5, and in8p8), Betaproteobacteria (Cupriavidus necator strain A5-1, Dechloromonas agitata strain is5), and Actinobacteria (Nocardioides sp. strain in31) were recovered. The G. bremensis isolate grew by oxidizing acetate with the oxidized form of NAu-2 smectite as the electron acceptor. The Fe(II)-oxidizers grew by oxidation of chemically reduced smectite as the energy source with nitrate as the electron acceptor. The Bradyrhizobium isolates could also carry out aerobic oxidation of biotite. This is the first report of the recovery of a Fe(II)-oxidizing Nocardioides, and to date only one other Fe(II)-oxidizing Bradyrhizobium is known. The 16S rRNA gene sequences of the isolates were similar to ones found in clone libraries from Hanford 300 sediments and groundwater, suggesting that such organisms may be present and active in situ. Whole genome sequencing of the isolates is underway, the results of which will enable comparative genomic analysis of mechanisms of extracellular phyllosilicate Fe redox metabolism, and facilitate development of techniques to detect the presence and expression of genes associated with microbial phyllosilicate Fe redox cycling in sediments. PMID:24379809