Sample records for fe layer thickness

  1. Study of interlayer coupling between FePt and FeCoB thin films through MgO spacer layer

    NASA Astrophysics Data System (ADS)

    Singh, Sadhana; Kumar, Dileep; Gupta, Mukul; Reddy, V. Raghvendra

    2017-05-01

    Interlayer exchange coupling between hard-FePt and soft-FeCoB magnetic layers has been studied with increasing thickness of insulator MgO spacer layer in FePt/MgO/FeCoB sandwiched structure. A series of the samples were prepared in identical condition using ion beam sputtering method and characterized for their magnetic and structural properties using magneto-optical Kerr effect (MOKE) and X-ray reflectivity measurements. The nature of coupling between FePt and FeCoB was found to be ferromagnetic which decreases exponentially with increasing thickness of MgO layer. At very low thickness of MgO layer, both layers were found strongly coupled thus exhibiting coherent magnetization reversal. At higher thickness, both layers were found decoupled and magnetization reversal occurred at different switching fields. Strong coupling at very low thickness is attributed to pin holes in MgO layer which lead to direct coupling whereas on increasing thickness, coupling may arise due to magneto-static interactions.

  2. Giant magnetoresistance (GMR) behavior of electrodeposited NiFe/Cu multilayers: Dependence of non-magnetic and magnetic layer thicknesses

    NASA Astrophysics Data System (ADS)

    Kuru, Hilal; Kockar, Hakan; Alper, Mursel

    2017-12-01

    Giant magnetoresistance (GMR) behavior in electrodeposited NiFe/Cu multilayers was investigated as a function of non-magnetic (Cu) and ferromagnetic (NiFe) layer thicknesses, respectively. Prior to the GMR analysis, structural and magnetic analyses of the multilayers were also studied. The elemental analysis of the multilayers indicated that the Cu and Ni content in the multilayers increase with increasing Cu and NiFe layer thickness, respectively. The structural studies by X-ray diffraction revealed that all multilayers have face centred cubic structure with preferred (1 1 0) crystal orientation as their substrates. The magnetic properties studied with the vibrating sample magnetometer showed that the magnetizations of the samples are significantly affected by the layer thicknesses. Saturation magnetisation, Ms increases from 45 to 225 emu/cm3 with increasing NiFe layer thickness. The increase in the Ni content of the multilayers with a small Fe content causes an increase in the Ms. And, the coercivities ranging from 2 to 24 Oe are between the soft and hard magnetic properties. Also, the magnetic easy axis of the multilayers was found to be in the film plane. Magnetoresistance measurements showed that all multilayers exhibited the GMR behavior. The GMR magnitude increases with increasing Cu layer thickness and reaches its maximum value of 10% at the Cu layer thickness of 1 nm, then it decreases. And similarly, the GMR magnitude increases and reaches highest value of pure GMR (10%) for the NiFe layer thickness of 3 nm, and beyond this point GMR decreases with increasing NiFe layer thickness. Some small component of the anisotropic magnetoresistance was also observed at thin Cu and thick NiFe layer thicknesses. It is seen that the highest GMR values up to 10% were obtained in electrodeposited NiFe/Cu multilayers up to now. The structural, magnetic and magnetoresistance properties of the NiFe/Cu were reported via the variations of the thicknesses of Cu and NiFe layers with stressing the role of layer thicknesses on the high GMR behavior.

  3. Magnetic and electrical properties of FeSi/FeSi-ZrO 2 multilayers prepared by EB-PVD

    NASA Astrophysics Data System (ADS)

    Bi, Xiaofang; Lan, Weihua; Ou, Shengquan; Gong, Shengkai; Xu, Huibin

    2003-04-01

    FeSi/FeSi-ZrO 2 and FeSi/ZrO 2 multilayer materials were prepared by electron beam physical vapor deposition with the FeSi-ZrO 2 layer thickness about 0.6 μm, and their magnetic and electrical properties were studied as a function of FeSi layer thickness. With increasing FeSi layer thickness from 0.3 to 3 μm, the coercivity decreased from 0.92 to 0.31 kA/m and the saturation magnetization changed from 164 to 186 emu/g. The effect of the layer number on the magnetic properties was discussed in terms of interfacial mixing and oxidation. It was also discovered that the magnetic properties of the multilayer materials were affected by the spacer material, exhibiting higher saturation magnetization and lower coercivity for the FeSi/FeSi-ZrO 2 than those for the FeSi/ZrO 2 with the same individual layer thicknesses. This behavior could be explained by the weaker magnetic interaction between FeSi layers separated by the non-magnetic ZrO 2 layer. Furthermore, the electrical resistivity changed from 1850 to 1250 μΩ cm for the multilayer materials for the FeSi thickness increasing from 0.30 to 3 μm.

  4. Study of ion beam sputtered Fe/Si interfaces as a function of Si layer thickness

    NASA Astrophysics Data System (ADS)

    Kumar, Anil; Brajpuriya, Ranjeet; Singh, Priti

    2018-01-01

    The exchange interaction in metal/semiconductor interfaces is far from being completely understood. Therefore, in this paper, we have investigated the nature of silicon on the Fe interface in the ion beam deposited Fe/Si/Fe trilayers keeping the thickness of the Fe layers fixed at 3 nm and varying the thickness of the silicon sandwich layer from 1.5 nm to 4 nm. Grazing incidence x-ray diffraction and atomic force microscopy techniques were used, respectively, to study the structural and morphological changes in the deposited films as a function of layer thickness. The structural studies show silicide formation at the interfaces during deposition and better crystalline structure of Fe layers at a lower spacer layer thickness. The magnetization behavior was investigated using magneto-optical Kerr effect, which clearly shows that coupling between the ferromagnetic layers is highly influenced by the semiconductor spacer layer thickness. A strong antiferromagnetic coupling was observed for a value of tSi = 2.5 nm but above this value an unexpected behavior of hysteresis loop (step like) with two coercivity values is recorded. For spacer layer thickness greater than 2.5 nm, an elemental amorphous Si layer starts to appear in the spacer layer in addition to the silicide layer at the interfaces. It is observed that in the trilayer structure, Fe layers consist of various stacks, viz., Si doped Fe layers, ferromagnetic silicide layer, and nonmagnetic silicide layer at the interfaces. The two phase hysteresis loop is explained on the basis of magnetization reversal of two ferromagnetic layers, independent of each other, with different coercivities. X-ray photo electron spectroscopy technique was also used to study interfaces characteristics as a function of tSi.

  5. The effect of the MgO buffer layer thickness on magnetic anisotropy in MgO/Fe/Cr/MgO buffer/MgO(001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozioł-Rachwał, Anna, E-mail: a.koziolrachwal@aist.go.jp; AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, al. Mickiewicza 30, 30-059 Kraków; Nozaki, Takayuki

    2016-08-28

    The relationship between the magnetic properties and MgO buffer layer thickness d was studied in epitaxial MgO/Fe(t)/Cr/MgO(d) layers grown on MgO(001) substrate in which the Fe thickness t ranged from 0.4 nm to 1.1 nm. For 0.4 nm ≤ t ≤ 0.7 nm, a non-monotonic coercivity dependence on the MgO buffer thickness was shown by perpendicular magneto-optic Kerr effect magnetometry. For thicker Fe films, an increase in the buffer layer thickness resulted in a spin reorientation transition from perpendicular to the in-plane magnetization direction. Possible origins of these unusual behaviors were discussed in terms of the suppression of carbon contamination at the Fe surface and changes inmore » the magnetoelastic anisotropy in the system. These results illustrate a method to control magnetic anisotropy in MgO/Fe/Cr/MgO(d) via an appropriate choice of MgO buffer layer thickness d.« less

  6. Superconducting and Magnetic Properties of Vanadium/iron Superlattices.

    NASA Astrophysics Data System (ADS)

    Wong, Hong-Kuen

    A novel ultrahigh vacuum evaporator was constructed for the preparation of superlattice samples. The thickness control was much better than an atomic plane. With this evaporator we prepared V/Fe superlattice samples on (0001) sapphire substrates with different thicknesses. All samples showed a good bcc(110) structure. Mossbauer experiments showed that the interface mixing extended a distance of about one atomic plane indicating an almost rectangular composition profile. Because of this we were able to prepare samples with layer thickness approaching one atomic plane. Even with ultrathin Fe layers, the samples are ferromagnetic, at least at lower temperatures. Superparamagnetism and spin glass states were not seen. In the absence of an external field, the magnetic moments lie close to the film plane. In addition to this shape anisotropy, there is some uniaxial anisotropy. No magnetic dead layers have been observed. The magnetic moments within the Fe layers vary little with the distance from the interfaces. At the interfaces the Fe moment is reduced and an antiparallel moment is induced on the vanadium atoms. It is observed that ultrathin Fe layers behave in a 2D fashion when isolated by sufficiently thick vanadium layers; however, on thinning the vanadium layers, a magnetic coupling between the Fe layers has been observed. We also studied the superconducting properties of V/Fe sandwiches and superlattices. In both cases, the Fe layer, a strong pair-breaker, suppresses the superconducting transition temperature consistent with the current knowledge of the magnetic proximity effect. For the sandwiches with thin (thick) vanadium layers, the temperature dependence of the upper critical fields is consistent with the simple theory for a 2D (3D) superconductor. For the superlattices, when the vanadium layer is on the order of the BCS coherence length and the Fe layer is only a few atomic planes thick, a 2D-3D crossover has been observed in the temperature dependence of the parallel upper critical field. This implies the coexistence of superconductivity and ferromagnetism. We observe three dimensional behavior for thinner Fe layers ((TURN)1 atomic plane) and two dimensional behavior for thicker Fe layers (greater than 10 atomic planes).

  7. Effect of capping layer on interlayer coupling in synthetic spin valves

    NASA Astrophysics Data System (ADS)

    Li, Kebin; Qiu, Jinjun; Han, Guchang; Guo, Zaibing; Zheng, Yuankai; Wu, Yihong; Li, Jinshan

    2005-01-01

    The magnetic and transport properties of high quality synthetic spin-valves with the structure of Ta/NiFe/IrMn/CoFe/Ru/CoFe/NOL/CoFe/Cu/CoFe/CL were studied by using magnetoresistance measurements. Here Ti, Hf, and Al are used as the capping layer. It is found that both the thickness and materials properties of the capping layers can affect the interlayer coupling field. The interlayer coupling field oscillates weakly with respect to the thickness of the Ti and Hf capping layers. Extremely strong ferromagnetic coupling has been observed when the thickness of the Al capping layer is in a certain range where resonant exchange coupling takes place. The strength of the interlayer coupling is inversely proportional to the square of the thickness of the spacer. It is a typical characteristic of quantum size effect.

  8. Effect of the spin-twist structure on the spin-wave dynamics in Fe{sub 55}Pt{sub 45}/Ni{sub 80}Fe{sub 20} exchange coupled bi-layers with varying Ni{sub 80}Fe{sub 20} thickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pal, Semanti; Barman, Saswati, E-mail: saswati@bose.res.in; Barman, Anjan, E-mail: abarman@bose.res.in

    2014-05-07

    We have investigated optically induced ultrafast magnetization dynamics of a series of Fe{sub 55}Pt{sub 45}/Ni{sub 80}Fe{sub 20} exchange spring bi-layers with varying Ni{sub 80}Fe{sub 20} thickness. Rich spin-wave spectra are observed; whose frequency shows a strong dependence on the Ni{sub 80}Fe{sub 20} layer thickness. Micromagnetic simulations based on a simplified magnetic microstructure were able to reproduce the experimental data qualitatively. The spin twist structure introduced in the Ni{sub 80}Fe{sub 20} layer gives rise to new modes in the composite system as opposed to the bare Ni{sub 80}Fe{sub 20} films.

  9. Spectral ellipsometry as a method for characterization of nanosized films with ferromagnetic layers

    NASA Astrophysics Data System (ADS)

    Hashim, H.; Singkh, S. P.; Panina, L. V.; Pudonin, F. A.; Sherstnev, I. A.; Podgornaya, S. V.; Shpetnyi, I. A.; Beklemisheva, A. V.

    2017-11-01

    Nanosized films with ferromagnetic layers are widely used in nanoelectronics, sensor systems and telecommunications. Their properties may strongly differ from those of bulk materials that is on account of interfaces, intermediate layers and diffusion. In the present work, spectral ellipsometry and magnetooptical methods are adapted for characterization of the optical parameters and magnetization processes in two- and three-layer Cr/NiFe, Al/NiFe and Cr(Al)/Ge/NiFe films onto a sitall substrate for various thicknesses of Cr and Al layers. At a layer thickness below 20 nm, the complex refractive coefficients depend pronouncedly on the thickness. In two-layer films, remagnetization changes weakly over a thickness of the top layer, but the coercive force in three-layer films increases by more than twice upon remagnetization, while increasing the top layer thickness from 4 to 20 nm.

  10. Fe-Al interface intermixing and the role of Ti, V, and Zr as a stabilizing interlayer at the interface

    NASA Astrophysics Data System (ADS)

    Priyantha, W.; Smith, R. J.; Chen, H.; Kopczyk, M.; Lerch, M.; Key, C.; Nachimuthu, P.; Jiang, W.

    2009-03-01

    Fe-Al bilayer interfaces with and without interface stabilizing layers (Ti, V, Zr) were fabricated using dc magnetron sputtering. Intermixing layer thickness and the effectiveness of the stabilizing layer (Ti, V, Zr) at the interface were studied using Rutherford backscattering spectrometry (RBS) and x-ray reflectometry (XRR). The result for the intermixing thickness of the AlFe layer is always higher when Fe is deposited on Al as compared to when Al is deposited on Fe. By comparing measurements with computer simulations, the thicknesses of the AlFe layers were determined to be 20.6 Å and 41.1 Å for Al/Fe and Fe/Al bilayer systems, respectively. The introduction of Ti and V stabilizing layers at the Fe-Al interface reduced the amount of intermixing between Al and Fe, consistent with the predictions of model calculations. The Zr interlayer, however, was ineffective in stabilizing the Fe-Al interface in spite of the chemical similarities between Ti and Zr. In addition, analysis suggests that the Ti interlayer is not effective in stabilizing the Fe-Al interface when the Ti interlayer is extremely thin (˜3 Å) for these sputtered metallic films.

  11. Improvement of perpendicular anisotropy of columnar FePt-ZrO2-C films with FePt insert layer

    NASA Astrophysics Data System (ADS)

    Dong, Kaifeng; Mo, Wenqin; Jin, Fang; Song, Junlei; Cheng, Weimin; Wang, Haiwei

    2018-05-01

    The effects of various thicknesses of FePt insert layer on the microstructure and magnetic properties of FePt-ZrO2-C thin films have been investigated. It is found that with inserting 0.4 nm FePt films between the TiON intermediate layer and FePt-ZrO2-C layer, the perpendicular anisotropy indicated by Hc⊥/Hc//ratio would increase from 4 to 13.1, suggesting the perpendicular anisotropy could be improved a lot with using FePt insert layer. Simultaneously, the FePt grains of FePt-ZrO2-C thin films maintained columnar structure and the grain isolation could also be improved in a certain degree. With further increase of the FePt insert layer thickness, although the perpendicular anisotropy was still larger than that without FePt insert layer, the grain size of the FePt-ZrO2-C films would increase and the isolation would be deteriorated.

  12. Antiferromagnetic layer thickness dependence of noncollinear uniaxial and unidirectional anisotropies in NiFe/FeMn/CoFe trilayers

    NASA Astrophysics Data System (ADS)

    Choi, Hyeok-Cheol; You, Chun-Yeol; Kim, Ki-Yeon; Lee, Jeong-Soo; Shim, Je-Ho; Kim, Dong-Hyun

    2010-06-01

    We have investigated the dependence of magnetic anisotropies of the exchange-biased NiFe/FeMn/CoFe trilayers on the antiferromagnetic (AF) layer thickness (tAF) by measuring in-plane angular-dependent ferromagnetic resonance fields. The resonance fields of NiFe and CoFe sublayers are shifted to lower and higher values compared to those of single unbiased ferromagnetic (F) layers, respectively, due to the interfacial exchange coupling when tAF≥2nm . In-plane angular dependence of resonance field reveals that uniaxial and unidirectional anisotropies coexist in the film plane, however, they are not collinear with each other. It is found that these peculiar noncollinear anisotropies significantly depend on tAF . The angle of misalignment displays a maximum around tAF=5nm and converges to zero when tAF is thicker than 10 nm. Contributions from thickness-dependent AF anisotropy and spin frustrations at both F/AF interfaces due to the structural imperfections should be accounted in order to understand the AF-layer thickness dependence of noncollinear magnetic anisotropies.

  13. Buffer layer dependence of magnetoresistance effects in Co2Fe0.4Mn0.6Si/MgO/Co50Fe50 tunnel junctions

    NASA Astrophysics Data System (ADS)

    Sun, Mingling; Kubota, Takahide; Takahashi, Shigeki; Kawato, Yoshiaki; Sonobe, Yoshiaki; Takanashi, Koki

    2018-05-01

    Buffer layer dependence of tunnel magnetoresistance (TMR) effects was investigated in Co2Fe0.4Mn0.6Si (CFMS)/MgO/Co50Fe50 magnetic tunnel junctions (MTJs). Pd, Ru and Cr were selected for the buffer layer materials, and MTJs with three different CFMS thicknesses (30, 5, and 0.8 nm) were fabricated. A maximum TMR ratio of 136% was observed in the Ru buffer layer sample with a 30-nm-thick CFMS layer. TMR ratios drastically degraded for the CFMS thickness of 0.8 nm, and the values were 26% for Cr buffer layer and less than 1% for Pd and Ru buffer layers. From the annealing temperature dependence of the TMR ratios, amounts of interdiffusion and effects from the lattice mismatch were discussed.

  14. Effect of Layer Thickness in Selective Laser Melting on Microstructure of Al/5 wt.%Fe2O3 Powder Consolidated Parts

    PubMed Central

    Hao, Liang

    2014-01-01

    In situ reaction was activated in the powder mixture of Al/5 wt.%Fe2O3 by using selective laser melting (SLM) to directly fabricate aluminium metal matrix composite parts. The microstructural characteristics of these in situ consolidated parts through SLM were investigated under the influence of thick powder bed, 75 μm layer thickness, and 50 μm layer thickness in various laser powers and scanning speeds. It was found that the layer thickness has a strong influence on microstructural outcome, mainly attributed to its impact on oxygen content of the matrix. Various microstructural features (such as granular, coralline-like, and particulate appearance) were observed depending on the layer thickness, laser power, and scanning speed. This was associated with various material combinations such as pure Al, Al-Fe intermetallics, and Al(-Fe) oxide phases formed after in situ reaction and laser rapid solidification. Uniformly distributed very fine particles could be consolidated in net-shape Al composite parts by using lower layer thickness, higher laser power, and lower scanning speed. The findings contribute to the new development of advanced net-shape manufacture of Al composites by combining SLM and in situ reaction process. PMID:24526879

  15. Self-current induced spin-orbit torque in FeMn/Pt multilayers

    NASA Astrophysics Data System (ADS)

    Xu, Yanjun; Yang, Yumeng; Yao, Kui; Xu, Baoxi; Wu, Yihong

    2016-05-01

    Extensive efforts have been devoted to the study of spin-orbit torque in ferromagnetic metal/heavy metal bilayers and exploitation of it for magnetization switching using an in-plane current. As the spin-orbit torque is inversely proportional to the thickness of the ferromagnetic layer, sizable effect has only been realized in bilayers with an ultrathin ferromagnetic layer. Here we demonstrate that, by stacking ultrathin Pt and FeMn alternately, both ferromagnetic properties and current induced spin-orbit torque can be achieved in FeMn/Pt multilayers without any constraint on its total thickness. The critical behavior of these multilayers follows closely three-dimensional Heisenberg model with a finite Curie temperature distribution. The spin torque effective field is about 4 times larger than that of NiFe/Pt bilayer with a same equivalent NiFe thickness. The self-current generated spin torque is able to switch the magnetization reversibly without the need for an external field or a thick heavy metal layer. The removal of both thickness constraint and necessity of using an adjacent heavy metal layer opens new possibilities for exploiting spin-orbit torque for practical applications.

  16. Effect of double layer thickness on magnetoelectric coupling in multiferroic BaTiO3-Bi0.95Gd0.05FeO3 multilayers

    NASA Astrophysics Data System (ADS)

    Hohenberger, S.; Lazenka, V.; Temst, K.; Selle, S.; Patzig, C.; Höche, T.; Grundmann, M.; Lorenz, M.

    2018-05-01

    The effect of double-layer thickness and partial substitution of Bi3+ by Gd3+ is demonstrated for multiferroic BaTiO3–BiFeO3 2–2 heterostructures. Multilayers of 15 double layers of BaTiO3 and Bi0.95Gd0.05FeO3 were deposited onto (0 0 1) oriented SrTiO3 substrates by pulsed laser deposition with various double layer thicknesses. X-ray diffraction and high resolution transmission electron microscopy investigations revealed a systematic strain tuning with layer thickness via coherently strained interfaces. The multilayers show increasingly enhanced magnetoelectric coupling with reduced double layer thickness. The maximum magnetoelectric coupling coefficient was measured to be as high as 50.8 V cm‑1 Oe‑1 in 0 T DC bias magnetic field at room temperature, and 54.9 V cm‑1 Oe‑1 above 3 T for the sample with the thinnest double layer thickness of 22.5 nm. This enhancement is accompanied by progressively increasing perpendicular magnetic anisotropy and compressive out-of-plane strain. To understand the origin of the enhanced magnetoelectric coupling in such multilayers, the temperature and magnetic field dependency of is discussed. The magnetoelectric performance of the Gd3+ substituted samples is found to be slightly enhanced when compared to unsubstituted BaTiO3–BiFeO3 multilayers of comparable double-layer thickness.

  17. Simple electrodepositing of CoFe/Cu multilayers: Effect of ferromagnetic layer thicknesses

    NASA Astrophysics Data System (ADS)

    Tekgül, Atakan; Alper, Mürsel; Kockar, Hakan

    2017-01-01

    The CoFe/Cu magnetic multilayers were produced by changing CoFe ferromagnetic layers from 3 nm to 10 nm using electrodeposition. By now, the thinnest Cu (0.5 nm) layer thicknesses were used to see whether the GMR effect in the multilayers can be obtained or not since the pinning of non-magnetic layer between the ferromagnetic layers is required. For the proper depositions, the cyclic voltammograms was used, and the current-time transients were obtained. The Cu and CoFe layers were deposited at a cathode potential of -0.3 and -1.5 V with respect to saturated calomel electrode, respectively. From the XRD patterns, the multilayers were shown to be fcc crystal structures. For the magnetization measurements, saturation magnetization increases from 160 to 600 kA/m from 3 to 8 nm ferromagnetic layer thicknesses. And, the coercivity values increase until the 8 nm of the CoFe layer thickness. It is seen that the thin Cu layer (fixed at 0.5 nm) and pinholes support the random magnetization orientation and thus all multilayers exhibited the giant magnetoresistance (GMR) effect, and the highest GMR value was observed about 5.5%. And, the variation of GMR field sensitivity was calculated. The results show that the GMR and GMR sensitivity are compatible among the multilayers. The CoFe/Cu magnetic multilayers having GMR properties are used in GMR sensors and hard disk drive of the nano-technological devices.

  18. STRESS-INDUCED ASYMMETRIC MAGNETOIMPEDANCE EFFECT IN Ni80Fe20/Cu COMPOSITE WIRES

    NASA Astrophysics Data System (ADS)

    Lv, Wenxing; Li, Xin; Xie, Wenhui; Zhao, Qiang; Zhao, Zhenjie

    The magnetoimpedance effect of Ni80Fe20/Cu composited wires was experimentally investigated by varying the Ni80Fe20 coating thickness. An asymmetric MI behavior with a tunable linear region around zero magnetic field by altering the thickness of Ni80Fe20 layer was demonstrated. And the MI behavior was governed by the different anisotropy induced by the residual local stress in the multi-layer region. In addition, our investigation also suggested that the interactions between interface phase and outer phase of coating layer decreased with thickness, resulting in the domination of the asymmetric MI characteristic. For thickness of 485nm, the sensitivity was up to 225%/Oe from -2 Oe to 2 Oe, providing a promising candidate for linear sensor application.

  19. The Interface Structure of FeSe Thin Film on CaF2 Substrate and its Influence on the Superconducting Performance.

    PubMed

    Qiu, Wenbin; Ma, Zongqing; Patel, Dipak; Sang, Lina; Cai, Chuanbing; Shahriar Al Hossain, Mohammed; Cheng, Zhenxiang; Wang, Xiaolin; Dou, Shi Xue

    2017-10-25

    The investigations into the interfaces in iron selenide (FeSe) thin films on various substrates have manifested the great potential of showing high-temperature-superconductivity in this unique system. In present work, we obtain FeSe thin films with a series of thicknesses on calcium fluoride (CaF 2 ) (100) substrates and glean the detailed information from the FeSe/CaF 2 interface by using scanning transmission electron microscopy (STEM). Intriguingly, we have found the universal existence of a calcium selenide (CaSe) interlayer with a thickness of approximate 3 nm between FeSe and CaF 2 in all the samples, which is irrelevant to the thickness of FeSe layers. A slight Se deficiency occurs in the FeSe layer due to the formation of CaSe interlayer. This Se deficiency is generally negligible except for the case of the ultrathin FeSe film (8 nm in thickness), in which the stoichiometric deviation from FeSe is big enough to suppress the superconductivity. Meanwhile, in the overly thick FeSe layer (160 nm in thickness), vast precipitates are found and recognized as Fe-rich phases, which brings about degradation in superconductivity. Consequently, the thickness dependence of superconducting transition temperature (T c ) of FeSe thin films is investigated and one of our atmosphere-stable FeSe thin film (127 nm) possesses the highest T c onset /T c zero as 15.1 K/13.4 K on record to date in the class of FeSe thin film with practical thickness. Our results provide a new perspective for exploring the mechanism of superconductivity in FeSe thin film via high-resolution STEM. Moreover, approaches that might improve the quality of FeSe/CaF 2 interfaces are also proposed for further enhancing the superconducting performance in this system.

  20. Perpendicular exchange coupling effects in ferrimagnetic TbFeCo/GdFeCo hard/soft structures

    NASA Astrophysics Data System (ADS)

    Wang, Ke; Wang, Yahong; Ling, Fujin; Xu, Zhan

    2018-04-01

    Bilayers consisting of magnetically hard TbFeCo and soft GdFeCo alloy were fabricated. Exchange-spring and sharp switching in a step-by-step fashion were observed in the TbFeCo/GdFeCo hard/soft bilayers with increasing GdFeCo thickness. A perpendicular exchange bias field of several hundred Oersteds is observed from the shift of minor loops pinned by TbFeCo layer. The perpendicular exchange energy is derived to be in the range of 0.18-0.30 erg/cm2. The exchange energy is shown to increase with the thickness of GdFeCo layer in the bilayers, which can be attributed to the enhanced perpendicular anisotropy of GdFeCo layer in our experimental range.

  1. Self-current induced spin-orbit torque in FeMn/Pt multilayers

    PubMed Central

    Xu, Yanjun; Yang, Yumeng; Yao, Kui; Xu, Baoxi; Wu, Yihong

    2016-01-01

    Extensive efforts have been devoted to the study of spin-orbit torque in ferromagnetic metal/heavy metal bilayers and exploitation of it for magnetization switching using an in-plane current. As the spin-orbit torque is inversely proportional to the thickness of the ferromagnetic layer, sizable effect has only been realized in bilayers with an ultrathin ferromagnetic layer. Here we demonstrate that, by stacking ultrathin Pt and FeMn alternately, both ferromagnetic properties and current induced spin-orbit torque can be achieved in FeMn/Pt multilayers without any constraint on its total thickness. The critical behavior of these multilayers follows closely three-dimensional Heisenberg model with a finite Curie temperature distribution. The spin torque effective field is about 4 times larger than that of NiFe/Pt bilayer with a same equivalent NiFe thickness. The self-current generated spin torque is able to switch the magnetization reversibly without the need for an external field or a thick heavy metal layer. The removal of both thickness constraint and necessity of using an adjacent heavy metal layer opens new possibilities for exploiting spin-orbit torque for practical applications. PMID:27185656

  2. Iron layer-dependent surface-enhanced raman scattering of hierarchical nanocap arrays

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Sun, Huanhuan; Zhao, Yue; Gao, Renxian; Wang, Yaxin; Liu, Yang; Zhang, Yongjun; Hua, Zhong; Yang, Jinghai

    2017-11-01

    In this report, we fabricated the multi-layer Ag/Fe/Ag sandwich cap-shaped films on monolayer non-closed packed (ncp) polystyrene colloidal particle (PSCP) templates through a layer-by-layer (LBL) depositing method. This research focused on the surface-enhanced Raman scattering (SERS) effect of the thickness of the deposited Fe film which was controlled by the sputtering time. The SERS intensities were increased firstly, and then decreased as the thickness of Fe layer grows gradually, which is attributed to the charge transition from the Fermi level of the Ag NPs to Fe layer. The use of multi-layer Ag/Fe/Ag sandwich cap-shaped films enables us to evaluate the contribution of surface plasmon resonance and charge distribution between Ag and Fe to SERS enhancement. Our work introduced a novel system (Ag/Fe/Ag) for high performance SERS and extended the SERS application of Fe. Furthermore, we have designed the Ag/Fe/Ag SERS-active substrate as the immunoassay chip for quantitative determination of AFP-L3 which is the biomarker of hepatocellular carcinoma (HCC). The proposed research demonstrates that the SERS substrates with Ag/Fe/Ag sandwich cap-shaped arrays have a high sensitivity for bioassay.

  3. Magnetic properties of Pr-Fe-B thick-film magnets deposited on Si substrates with glass buffer layer

    NASA Astrophysics Data System (ADS)

    Nakano, M.; Kurosaki, A.; Kondo, H.; Shimizu, D.; Yamaguchi, Y.; Yamashita, A.; Yanai, T.; Fukunaga, H.

    2018-05-01

    In order to improve the magnetic properties of PLD-made Pr-Fe-B thick-film magnets deposited on Si substrates, an adoption of a glass buffer layer was carried out. The glass layer could be fabricated under the deposition rate of approximately 70 μm/h on a Si substrate using a Nd-YAG pulse laser in the vacuum atmosphere. The use of the layer enabled us to reduce the Pr content without a mechanical destruction and enhance (BH)max value by approximately 20 kJ/m3 compared with the average value of non-buffer layered Pr-Fe-B films with almost the same thickness. It is also considered that the layer is also effective to apply a micro magnetization to the films deposited on Si ones.

  4. Depth resolved lattice-charge coupling in epitaxial BiFeO3 thin film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hyeon Jun; Lee, Sung Su; Kwak, Jeong Hun

    2016-12-01

    For epitaxial films, a critical thickness (t c) can create a phenomenological interface between a strained bottom layer and a relaxed top layer. Here, we present an experimental report of how the tc in BiFeO 3 thin films acts as a boundary to determine the crystalline phase, ferroelectricity, and piezoelectricity in 60 nm thick BiFeO 3/SrRuO 3/SrTiO 3 substrate. We found larger Fe cation displacement of the relaxed layer than that of strained layer. In the time-resolved X-ray microdiffraction analyses, the piezoelectric response of the BiFeO 3 film was resolved into a strained layer with an extremely low piezoelectric coefficientmore » of 2.4 pm/V and a relaxed layer with a piezoelectric coefficient of 32 pm/V. The difference in the Fe displacements between the strained and relaxed layers is in good agreement with the differences in the piezoelectric coefficient due to the electromechanical coupling.« less

  5. Depth resolved lattice-charge coupling in epitaxial BiFeO3 thin film

    PubMed Central

    Lee, Hyeon Jun; Lee, Sung Su; Kwak, Jeong Hun; Kim, Young-Min; Jeong, Hu Young; Borisevich, Albina Y.; Lee, Su Yong; Noh, Do Young; Kwon, Owoong; Kim, Yunseok; Jo, Ji Young

    2016-01-01

    For epitaxial films, a critical thickness (tc) can create a phenomenological interface between a strained bottom layer and a relaxed top layer. Here, we present an experimental report of how the tc in BiFeO3 thin films acts as a boundary to determine the crystalline phase, ferroelectricity, and piezoelectricity in 60 nm thick BiFeO3/SrRuO3/SrTiO3 substrate. We found larger Fe cation displacement of the relaxed layer than that of strained layer. In the time-resolved X-ray microdiffraction analyses, the piezoelectric response of the BiFeO3 film was resolved into a strained layer with an extremely low piezoelectric coefficient of 2.4 pm/V and a relaxed layer with a piezoelectric coefficient of 32 pm/V. The difference in the Fe displacements between the strained and relaxed layers is in good agreement with the differences in the piezoelectric coefficient due to the electromechanical coupling. PMID:27929103

  6. Effect of annealing on magnetoresistance and microstructure of multilayered CoFe/Cu systems with different buffer layer

    NASA Astrophysics Data System (ADS)

    Bannikova, N. S.; Milyaev, M. A.; Naumova, L. I.; Proglyado, V. V.; Krinitsina, T. P.; Chernyshova, T. A.; Ustinov, V. V.

    2015-02-01

    The effects of annealing on the structure, magnetic hysteresis, and magnetoresistance of [Co90Fe10(15 Å)/Cu(23 Å)] n superlattices with Cr and Co90Fe10 buffer layers of different thicknesses have been studied. The optimum temperature and time of annealing that increase the magnetoresistance were shown to depend on the buffer layer thickness. The coefficients of effective interlayer diffusion due to the annealing have been determined.

  7. Comparison of reproduce signal and noise of conventional and keepered CoCrTa/Cr thin film media

    NASA Astrophysics Data System (ADS)

    Sin, Kyusik; Ding, Juren; Glijer, Pawel; Sivertsen, John M.; Judy, Jack H.; Zhu, Jian-Gang

    1994-05-01

    We studied keepered high coercivity CoCrTa/Cr thin film media with a Cr isolation layer between the CoCrTa storage and an overcoating of an isotropic NiFe soft magnetic layer. The influence of the thickness of the NiFe and Cr layers, and the effects of head bias current on the signal output and noise, were studied using a thin film head. The reproduced signal increased by 7.3 dB, but the signal-to-noise ratio decreased by 4 dB at a linear density of 2100 fr/mm (53.3 kfr/in.) with a 1000 Å thick NiFe keeper layer. The medium noise increased with increasing NiFe thickness and the signal output decreased with decreasing Cr thickness. A low output signal obtained with very thin Cr may be due to magnetic interactions between the keeper layer and magnetic media layer. It is observed that signal distortion and timing asymmetry of the output signals depend on the thickness of the keeper layer and the head bias current. The signal distortion increased and the timing asymmetry decreased as the head bias current was increased. These results may be associated with different permeability of the keeper under the poles of the thin film head due to the superposition of head bias and bit fields.

  8. Dependency of tunneling magneto-resistance on Fe insertion-layer thickness in Co{sub 2}Fe{sub 6}B{sub 2}/MgO-based magnetic tunneling junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chae, Kyo-Suk; Samsung Electronics Co., Ltd., San #16 Banwol-dong, Hwasung-City, Gyeonggi-Do 445-701; Park, Jea-Gun, E-mail: parkjgL@hanyang.ac.kr

    For Co{sub 2}Fe{sub 6}B{sub 2}/MgO-based perpendicular magnetic tunneling junctions spin valves with [Co/Pd]{sub n}-synthetic-antiferromagnetic (SyAF) layers, the tunneling-magneto-resistance (TMR) ratio strongly depends on the nanoscale Fe insertion-layer thickness (t{sub Fe}) between the Co{sub 2}Fe{sub 6}B{sub 2} pinned layer and MgO tunneling barrier. The TMR ratio rapidly increased as t{sub Fe} increased up to 0.4 nm by improving the crystalline linearity of a MgO tunneling barrier and by suppressing the diffusion of Pd atoms from a [Co/Pd]{sub n}-SyAF. However, it abruptly decreased by further increasing t{sub Fe} in transferring interfacial-perpendicular magnetic anisotropy into the IMA characteristic of the Co{sub 2}Fe{sub 6}B{sub 2}more » pinned layer. Thus, the TMR ratio peaked at t{sub Fe} = 0.4 nm: i.e., 120% at 29 Ωμm{sup 2}.« less

  9. Growth kinetics of borided layers: Artificial neural network and least square approaches

    NASA Astrophysics Data System (ADS)

    Campos, I.; Islas, M.; Ramírez, G.; VillaVelázquez, C.; Mota, C.

    2007-05-01

    The present study evaluates the growth kinetics of the boride layer Fe 2B in AISI 1045 steel, by means of neural networks and the least square techniques. The Fe 2B phase was formed at the material surface using the paste boriding process. The surface boron potential was modified considering different boron paste thicknesses, with exposure times of 2, 4 and 6 h, and treatment temperatures of 1193, 1223 and 1273 K. The neural network and the least square models were set by the layer thickness of Fe 2B phase, and assuming that the growth of the boride layer follows a parabolic law. The reliability of the techniques used is compared with a set of experiments at a temperature of 1223 K with 5 h of treatment time and boron potentials of 2, 3, 4 and 5 mm. The results of the Fe 2B layer thicknesses show a mean error of 5.31% for the neural network and 3.42% for the least square method.

  10. Simulation of the lunar surface emission and inversion of the lunar regolith thickness using fusion of optical and microwave remote sensing data

    NASA Astrophysics Data System (ADS)

    Jin, Y.-Q.

    begin table htbp begin center begin tabular p 442pt hline A correspondence of the lunar regolith layer thickness to the lunar digital elevation mapping DEM is presented to construct the global distribution of lunar regolith layer thickness Based on some measurements the physical temperature distribution over the lunar surface is proposed Albedo of the lunar nearside at the wavelengths 0 42 0 65 0 75 0 95 mu m from the telescopic observation is employed to construct the spatial distribution of the FeO TiO 2 on the lunar regolith layer A statistic relationship between the DEM and FeO TiO 2 content of the lunar nearside is then extended to construction of FeO TiO 2 content of the lunar farside Thus the dielectric permittivity of global lunar regolith layer can be determined par Based on all theses conditions brightness temperature of the lunar regolith layer in passive microwave remote sensing which is planned for China s Chang-E lunar project is numerically simulated by a parallel layer model using the fluctuation dissipation theorem par Furthermore taking these simulations as observations an inversion method of the lunar regolith layer thickness is developed by using three- or two-channels brightness temperatures When the FeO TiO 2 content is low and the four channels brightness temperatures in Chang-E project are well distinguishable the regolith layer thickness and physical temperature of the underlying lunar rocky media can be inverted by the three-channels approach When the FeO TiO 2 content is so high that the

  11. Formation of thick stratiform Fe-Ti oxide layers in layered intrusion and frequent replenishment of fractionated mafic magma: Evidence from the Panzhihua intrusion, SW China

    NASA Astrophysics Data System (ADS)

    Song, Xie-Yan; Qi, Hua-Wen; Hu, Rui-Zhong; Chen, Lie-Meng; Yu, Song-Yue; Zhang, Jia-Fei

    2013-03-01

    Panzhihua intrusion is one of the largest layered intrusions that hosts huge stratiform Fe-Ti oxide layers in the central part of the Emeishan large igneous province, SW China. Up to 60 m thick stratiform massive Fe-Ti oxide layers containing 85 modal% of magnetite and ilmenite and overlying magnetite gabbro compose cyclic units of the Lower Zone of the intrusion. The cyclic units of the Middle Zone consist of magnetite gabbro and overlying gabbro. In these cyclic units, contents of Fe2O3(t), TiO2 and Cr and Fe3+/Ti4+ ratio of the rocks decrease upward, Cr content of magnetite and forsterite percentage of olivine decrease as well. The Upper Zone consists of apatite gabbro characterized by enrichment of incompatible elements (e.g., 12-18 ppm La, 20-28 ppm Y) and increasing of Fe3+/Ti4+ ratio (from 1.3 to 2.3) upward. These features indicate that the Panzhihua intrusion was repeatedly recharged by more primitive magma and evolved magmas had been extracted. Calculations using MELTS indicate that extensive fractionation of olivine and clinopyroxene in deep level resulted in increasing Fe and Ti contents in the magma. When these Fe-Ti-enriched magmas were emplaced along the base of the Panzhihua intrusion, Fe-Ti oxides became an early crystallization phase, leading to a residual magma of lower density. We propose that the unusually thick stratiform Fe-Ti oxide layers resulted from coupling of gravity settling and sorting of the crystallized Fe-Ti oxides from Fe-Ti-enriched magmas and frequent magma replenishment along the floor of the magma chamber.

  12. Non-local detection of spin dynamics via spin rectification effect in yttrium iron garnet/SiO{sub 2}/NiFe trilayers near simultaneous ferromagnetic resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soh, Wee Tee, E-mail: a0046479@u.nus.edu; Ong, C. K.; Peng, Bin

    2015-08-15

    The spin rectification effect (SRE), a phenomenon that generates dc voltages from ac microwave fields incident onto a conducting ferromagnet, has attracted widespread attention due to its high sensitivity to ferromagnetic resonance (FMR) as well as its relevance to spintronics. Here, we report the non-local detection of yttrium iron garnet (YIG) spin dynamics by measuring SRE voltages from an adjacent conducting NiFe layer up to 200 nm thick. In particular, we detect, within the NiFe layer, SRE voltages stemming from magnetostatic surface spin waves (MSSWs) of the adjacent bulk YIG which are excited by a shorted coaxial probe. These non-localmore » SRE voltages within the NiFe layer that originates from YIG MSSWs are present even in 200 nm-thick NiFe films with a 50 nm thick SiO{sub 2} spacer between NiFe and YIG, thus strongly ruling out the mechanism of spin-pumping induced inverse spin Hall effect in NiFe as the source of these voltages. This long-range influence of YIG dynamics is suggested to be mediated by dynamic fields generated from YIG spin precession near YIG/NiFe interface, which interacts with NiFe spins near the simultaneous resonance of both spins, to generate a non-local SRE voltage within the NiFe layer.« less

  13. Cooling field and ion-beam bombardment effects on exchange bias behavior in NiFe/(Ni,Fe)O bilayers.

    PubMed

    Lin, K W; Wei, M R; Guo, J Y

    2009-03-01

    The dependence of the cooling field and the ion-beam bombardment on the exchange bias effects in NiFe/(Ni,Fe)O bilayers were investigated. The positive exchange bias was found in the zero-field-cooled (ZFC) process whereas a negative exchange bias occurred in the FC process. The increased exchange field, H(ex) with increasing (Ni,Fe)O thicknesses indicates the thicker the AF (Ni,Fe)O, the stronger the exchange coupling between the NiFe layer and the (Ni,Fe)O layer. In addition, the dependence of the H(ex) (ZFC vs. FC) on the (Ni,Fe)O thicknesses reflects the competition between the applied magnetic field and the (Ni,Fe)O surface layer exchange coupled to the NiFe layer. Further, an unusual oscillating exchange bias was observed in NiFe/(Ni,Fe)O bilayers that results from the surface of the (Ni,Fe)O layer being bombarded with different Ar-ion energies using End-Hall deposition voltages (V(EH)) from 0 to 150 V. The behavior of the H(ex) and the H(c) with the V(EH) is attributed to the surface spin reorientation that is due to moderate ion-beam bombardment effects on the surface of the (Ni,Fe)O layer. Whether the (Ni,Fe)O antiferromagnetic spins are coupled to the NiFe moments antiferromagnetically or ferromagnetically changes the sign of the exchange bias.

  14. Perpendicular magnetic anisotropy and spin reorientation transition in L1{sub 0} FePt films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, Jae Young; Lee, Nyun Jong; Kim, Tae Hee

    2011-04-01

    We investigated the thickness and composition dependence of perpendicular magnetic anisotropy (PMA) in L1{sub 0} Fe{sub 1-x}Pt{sub x} (x = 0.4, 0.5, and 0.55) films. The FePt films with different thicknesses of 35 and 70 A were grown at the substrate temperature T{sub s} = 300 deg. C by molecular beam epitaxy coevaporation technique. A (001)-oriented epitaxial L1{sub 0} FePt film was grown on the thin (001)-oriented fcc Pt layer, while a poorly crystallized FePt film was formed on the (111)-textured Pt layer. Our results showed that, at a fixed thickness of 70 A, the PMA of FePt alloy filmsmore » is enhanced as Pt content increases from 40% to 55%.« less

  15. Specific features of the inverse magnetoelectric effect in two-layered Tb0.12Dy0.2Fe0.68-PbZr0.53Ti0.47O3 composites

    NASA Astrophysics Data System (ADS)

    Kalgin, A. V.; Gridnev, S. A.; Gribe, Z. H.

    2014-07-01

    The two-layered Tb0.12Dy0.2Fe0.68-PbZr0.53Ti0.47O3 magnetoelectric composites have been prepared by the deposition of ferromagnetic layers of different thicknesses from a thoroughly mixed Tb0.12Dy0.2Fe0.68 ferromagnetic powder and an epoxy glue on preliminarily polarized PbZr0.53Ti0.47O3 piezoelectric layers. The dependences of the inverse magnetoelectric effect on the frequency and strength of an electric field, the strength of a constant magnetic field, the thickness of a ferromagnetic layer, the average size of Tb0.12Dy0.2Fe0.68 grains in the ferromagnetic layer, and the temperature have been determined. Conditions for the maximum magnetoelectric response have been established.

  16. Prediction of Layer Thickness in Molten Borax Bath with Genetic Evolutionary Programming

    NASA Astrophysics Data System (ADS)

    Taylan, Fatih

    2011-04-01

    In this study, the vanadium carbide coating in molten borax bath process is modeled by evolutionary genetic programming (GEP) with bath composition (borax percentage, ferro vanadium (Fe-V) percentage, boric acid percentage), bath temperature, immersion time, and layer thickness data. Five inputs and one output data exist in the model. The percentage of borax, Fe-V, and boric acid, temperature, and immersion time parameters are used as input data and the layer thickness value is used as output data. For selected bath components, immersion time, and temperature variables, the layer thicknesses are derived from the mathematical expression. The results of the mathematical expressions are compared to that of experimental data; it is determined that the derived mathematical expression has an accuracy of 89%.

  17. Electron scattering characteristics of polycrystalline metal transition films by in-situ electrical resistance measurements

    NASA Astrophysics Data System (ADS)

    Trindade, I. G.; Leitão, D.; Fermento, R.; Pogorelev, Y.; Sousa, J. B.

    2009-08-01

    In-situ electrical resistance measurements were performed to obtain the scattering characteristics of very thin polycrystalline metal transition magnetic alloys grown by ion beam deposition (IBD) on specific underlayers. The experimental curves show size effects at small film thicknesses and important differences between Co 85Fe 15 and Ni 81Fe 19 thin layers grown on identical underlayers of Ta70 Å/Ru13 Å. The largest difference was observed in Ni 81Fe 19 films grown on underlayers of amorphous Ta70 Å. The experimental curves of electrical resistivity/conductivity variation with layer thickness were well fit within the Mayadas and Shatzkes (M-S) model, assuming specific formulations for grain growth with layer thickness.

  18. B Layers and Adhesion on Armco Iron Substrate

    NASA Astrophysics Data System (ADS)

    Elias-Espinosa, M.; Ortiz-Domínguez, M.; Keddam, M.; Flores-Rentería, M. A.; Damián-Mejía, O.; Zuno-Silva, J.; Hernández-Ávila, J.; Cardoso-Legorreta, E.; Arenas-Flores, A.

    2014-08-01

    In this work, a kinetic model was suggested to evaluate the boron diffusion coefficient in the Fe2B layers grown on the Armco iron substrate by the powder-pack boriding. This thermochemical treatment was carried out in the temperature range of 1123-1273 K for treatment times ranging from 2 to 8 h. The boron diffusion coefficient in the Fe2B layers was estimated by solving the mass balance equation at the (Fe2B/substrate) interface with an inclusion of boride incubation time. To validate the present model, the simulated value of Fe2B layer thickness was compared with the experimental value obtained at 1253 K for a treatment time of 5 h. The morphology of Fe2B layers was observed by SEM and optical microscopy. Metallographic studies showed that the boride layer has a saw-tooth morphology in all the samples. The layer thickness measurements were done with the help of MSQ PLUS software. The Fe2B phase was identified by x-ray diffraction method. Finally, the adherence of Fe2B layers on the Armco iron substrate was qualitatively evaluated by using the Daimler-Benz Rockwell-C indentation technique. In addition, the estimated value of boron activation energy was compared to the literature data.

  19. Anodic activation of iron corrosion in clay media under water-saturated conditions at 90 degrees C: characterization of the corrosion interface.

    PubMed

    Schlegel, Michel L; Bataillon, Christian; Blanc, Cécile; Prêt, Dimitri; Foy, Eddy

    2010-02-15

    To understand the process governing iron corrosion in clay over centuries, the chemical and mineralogical properties of solids formed by free or anodically activated corrosion of iron in water-saturated clay at 90 degrees C over 4 months were probed using microscopic and spectroscopic techniques. Free corrosion led to the formation of an internal discontinuous thin (<3 microm thick) magnetite layer, an external layer of Fe-rich phyllosilicate, and a clay transformation layer containing Ca-doped siderite (Ca(0.2)Fe(0.8)CO(3)). The thickness of corroded iron equaled approximately 5-7 microm, consistent with previous studies. Anodic polarization resulted in unequally distributed corrosion, with some areas corrosion-free and others heavily corroded. Activated corrosion led to the formation of an inner magnetite layer, an intermediate Fe(2)CO(3)(OH)(2) (chukanovite) layer, an outer layer of Fe-rich 7 A-phyllosilicate, and a transformed matrix layer containing siderite (FeCO(3)). The corroded thickness was estimated to 85 microm, less than 30% of the value expected from the supplied anodic charge. The difference was accounted for by reoxidation at the anodically polarized surface of cathodically produced H(2)(g). Thus, free or anodically activated corroding conditions led to structurally similar interfaces, indicating that anodic polarization can be used to probe the long-term corrosion of iron in clay. Finally, corrosion products retained only half of Fe oxidized by anodic activation. Missing Fe probably migrated in the clay, where it could interact with radionuclides released by alteration of nuclear glass.

  20. Interface perpendicular magnetic anisotropy in ultrathin Ta/NiFe/Pt layered structures

    NASA Astrophysics Data System (ADS)

    Hirayama, Shigeyuki; Kasai, Shinya; Mitani, Seiji

    2018-01-01

    Interface perpendicular magnetic anisotropy (PMA) in ultrathin Ta/NiFe/Pt layered structures was investigated through magnetization measurements. Ta/NiFe/Pt films with NiFe layer thickness (t) values of 2 nm or more showed typical in-plane magnetization curves, which was presumably due to the dominant contribution of the shape magnetic anisotropy. The thickness dependence of the saturation magnetization of the entire NiFe layer (M s) was well analyzed using the so-called dead-layer model, showing that the magnetically active part of the NiFe layer has saturation magnetization (M\\text{s}\\text{act}) independent of t and comparable to the bulk value. In the perpendicular direction, the saturation field H k was found to clearly decrease with decreasing t, while the effective field of shape magnetic anisotropy due to the active NiFe saturation magnetization M\\text{s}\\text{act} should be independent of t. These observations show that there exists interface PMA in the layered structures. The interface PMA energy density was determined to be ∼0.17 erg/cm2 using the dead-layer model. Motivated by the correlation observed between M s and H k, we also attempted to interpret the experimental results using an alternative approach beyond the dead-layer model; however, it gives only implications on the incomplete validity of the dead-layer model and no better understanding.

  1. Dependence of spin pumping and spin transfer torque upon Ni81Fe19 thickness in Ta/Ag /Ni 81Fe19/Ag/Co 2MnGe /Ag /Ta spin-valve structures

    NASA Astrophysics Data System (ADS)

    Durrant, C. J.; Shelford, L. R.; Valkass, R. A. J.; Hicken, R. J.; Figueroa, A. I.; Baker, A. A.; van der Laan, G.; Duffy, L. B.; Shafer, P.; Klewe, C.; Arenholz, E.; Cavill, S. A.; Childress, J. R.; Katine, J. A.

    2017-10-01

    Spin pumping has been studied within Ta / Ag / Ni81Fe19 (0-5 nm) / Ag (6 nm) / Co2MnGe (5 nm) / Ag / Ta large-area spin-valve structures, and the transverse spin current absorption of Ni81Fe19 sink layers of different thicknesses has been explored. In some circumstances, the spin current absorption can be inferred from the modification of the Co2MnGe source layer damping in vector network analyzer ferromagnetic resonance (VNA-FMR) experiments. However, the spin current absorption is more accurately determined from element-specific phase-resolved x-ray ferromagnetic resonance (XFMR) measurements that directly probe the spin transfer torque (STT) acting on the sink layer at the source layer resonance. Comparison with a macrospin model allows the real part of the effective spin mixing conductance to be extracted. We find that spin current absorption in the outer Ta layers has a significant impact, while sink layers with thicknesses of less than 0.6 nm are found to be discontinuous and superparamagnetic at room temperature, and lead to a noticeable increase of the source layer damping. For the thickest 5-nm sink layer, increased spin current absorption is found to coincide with a reduction of the zero frequency FMR linewidth that we attribute to improved interface quality. This study shows that the transverse spin current absorption does not follow a universal dependence upon sink layer thickness but instead the structural quality of the sink layer plays a crucial role.

  2. Role of the antiferromagnetic pinning layer on spin wave properties in IrMn/NiFe based spin-valves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gubbiotti, G., E-mail: gubbiotti@fisica.unipg.it; Tacchi, S.; Del Bianco, L.

    2015-05-07

    Brillouin light scattering (BLS) was exploited to study the spin wave properties of spin-valve (SV) type samples basically consisting of two 5 nm-thick NiFe layers (separated by a Cu spacer of 5 nm), differently biased through the interface exchange coupling with an antiferromagnetic IrMn layer. Three samples were investigated: a reference SV sample, without IrMn (reference); one sample with an IrMn underlayer (10 nm thick) coupled to the bottom NiFe film; one sample with IrMn underlayer and overlayer of different thickness (10 nm and 6 nm), coupled to the bottom and top NiFe film, respectively. The exchange coupling with the IrMn, causing the insurgence ofmore » the exchange bias effect, allowed the relative orientation of the NiFe magnetization vectors to be controlled by an external magnetic field, as assessed through hysteresis loop measurements by magneto-optic magnetometry. Thus, BLS spectra were acquired by sweeping the magnetic field so as to encompass both the parallel and antiparallel alignment of the NiFe layers. The BLS results, well reproduced by the presented theoretical model, clearly revealed the combined effects on the spin dynamic properties of the dipolar interaction between the two NiFe films and of the interface IrMn/NiFe exchange coupling.« less

  3. Electric poling and electromechanical characterization of 0.1-mm-thick sensor films and 0.2-mm-thick cable layers from piezoelectric poly(vinylidene fluoride-trifluoroethylene).

    PubMed

    Wegener, Michael; Gerhard-Multhaupt, Reimund

    2003-07-01

    Piezoelectric polymers have been proposed for many sensor and actuator applications. Among these, piezoelectric polymer films with thicknesses between several tens and a few hundreds of micrometers as well as coaxial cables with piezoelectric polymer layers are highly suitable and attractive for the detection of mechanical loads. In addition to good piezoelectric properties, materials for such sensors should have high mechanical strength. Therefore, the most common materials are nonporous piezoelectric polymers, such as polyvinylidene fluoride (PVDF) or its copolymer with trifluoroethylene (P(VDF-TrFE)). Here, P(VDF-TrFE) polymer films as well as the operating principle and the geometry of piezoelectric polymer cables are described. As active piezoelectric cable layer, P(VDF-TrFE) (76/24) was employed. After electrical poling with one or more point-to-cable corona discharges, the polarization in the P(VDF-TrFE) layer was investigated. Poling parameters, such as electric field and poling time, were varied. The resulting polarization was characterized with measurements of polarization profiles across the film or the cable-layer thickness as well as with the determination of other electromechanical quantities. The optimized poling process yields good piezoelectric properties in the piezoelectric polymer layers as well as useful sensor properties of the piezoelectric polymer cable, which are assessed and discussed.

  4. Tailored surface structure of LiFePO4/C nanofibers by phosphidation and their electrochemical superiority for lithium rechargeable batteries.

    PubMed

    Lee, Yoon Cheol; Han, Dong-Wook; Park, Mihui; Jo, Mi Ru; Kang, Seung Ho; Lee, Ju Kyung; Kang, Yong-Mook

    2014-06-25

    We offer a brand new strategy for enhancing Li ion transport at the surface of LiFePO4/C nanofibers through noble Li ion conducting pathways built along reduced carbon webs by phosphorus. Pristine LiFePO4/C nanofibers composed of 1-dimensional (1D) LiFePO4 nanofibers with thick carbon coating layers on the surfaces of the nanofibers were prepared by the electrospinning technique. These dense and thick carbon layers prevented not only electrolyte penetration into the inner LiFePO4 nanofibers but also facile Li ion transport at the electrode/electrolyte interface. In contrast, the existing strong interactions between the carbon and oxygen atoms on the surface of the pristine LiFePO4/C nanofibers were weakened or partly broken by the adhesion of phosphorus, thereby improving Li ion migration through the thick carbon layers on the surfaces of the LiFePO4 nanofibers. As a result, the phosphidated LiFePO4/C nanofibers have a higher initial discharge capacity and a greatly improved rate capability when compared with pristine LiFePO4/C nanofibers. Our findings of high Li ion transport induced by phosphidation can be widely applied to other carbon-coated electrode materials.

  5. Heusler alloys with bcc tungsten seed layers for GMR junctions

    NASA Astrophysics Data System (ADS)

    Frost, William; Hirohata, Atsufumi

    2018-05-01

    We demonstrate that polycrystalline Co2FeSi Heusler alloys films can be grown with perpendicular anisotropy without the use of an MgO interface. By heating the substrate to 400 °C prior to deposition and using a tungsten seed layer perpendicular anisotropy is induced in the Heusler layer. This is maintained as the thickness of the Co2FeSi is increased up to 12.5 nm. The layers with thickness dependent coercivity can be implemented into a giant magnetoresistance structure leading to spin-valve behaviour without the need for an exchange biased pinned layer.

  6. Ultra-thin L1{sub 0}-FePt for perpendicular anisotropy L1{sub 0}-FePt/Ag/[Co/Pd]{sub 30} pseudo spin valves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Pin; Chow, Gan Moog; Chen, Jing-Sheng, E-mail: msecj@nus.edu.sg

    2014-05-07

    Perpendicular anisotropy L1{sub 0}-FePt/Ag/[Co/Pd]{sub 30} pseudo spin valves (PSVs) with ultra-thin L1{sub 0}-FePt alloy free layer possessing high anisotropy and thermal stability have been fabricated and studied. The thickness of the L1{sub 0}-FePt layer was varied between 2 and 4 nm. The PSV became increasingly decoupled with reduced L1{sub 0}-FePt thickness due to the larger difference between the coercivity of the L1{sub 0}-FePt and [Co/Pd]{sub 30} films. The PSV with an ultra-thin L1{sub 0}-FePt free layer of 2 nm displayed a high K{sub u} of 2.21 × 10{sup 7} ergs/cm{sup 3}, high thermal stability of 84 and a largest giant magnetoresistance of 0.54%.

  7. Synthesis and magnetic properties of the thin film exchange spring system of MnBi/FeCo

    NASA Astrophysics Data System (ADS)

    Sabet, S.; Hildebrandt, E.; Alff, L.

    2017-10-01

    Manganese bismuth thin films with a nominal thickness of ∼40 nm were grown at room temperature onto quartz glass substrate in a DC magnetron sputtering unit. In contrast to the usual multilayer approach, the MnBi films were deposited using a single sputtering target with a stoichiometry of Mn55Bi45 (at. %). A subsequent in-situ annealing step was performed in vacuum in order to form the ferromagnetic LTP of MnBi. X-ray diffraction confirmed the formation of a textured LTP MnBi hard phase after annealing at 330 °C. This film shows a maximum saturation magnetization of 530 emu/cm3, high out-of-plane coercivity of 15 kOe induced by unreacted bismuth. The exchange coupling effect was investigated by deposition of a second layer of FeCo with 1 nm and 2 nm thickness onto the LTP MnBi films. The MnBi/FeCo double layer showed as expected higher saturation magnetization with increasing thickness of the FeCo layer while the coercive field remained constant. The fabrication of the MnBi/FeCo double layer for an exchange spring magnet was facilitated by deposition from a single stoichiometric target.

  8. Magnetoresistance of antiferromagnetic Ir22Mn78-pinned spin filter specular spin valves

    NASA Astrophysics Data System (ADS)

    Hwang, J. Y.; Kim, M. Y.; Rhee, J. R.; Lee, S. S.; Hwang, D. G.; Yu, S. C.; Lee, H. B.

    2004-06-01

    Specular spin valves (SSVs) having the spin filter layer (SFL) in contact with the ultrathin free layer of composition Ta3/NiFe2/IrMn7/CoFe1/(NOL1)/CoFe2/Cu1.8/CoFe(tF)/Cu(tSF)/(NOL2)/Ta3.5 (in nm) deposited by magnetron sputtering were studied. For these antiferromagnetic Ir22Mn78-pinned spin filter specular spin valve (SFSSV) films, an optimal magnetoresistance (MR) ratio of 11.9% was obtained when both the free layer thickness (tF) and the SFL thickness (tSF) were 1.5 nm, and a MR ratio higher than 11% was maintained even when tF was reduced to 1.0 nm. This was due to an increase of specular electrons by the nano-oxide layer (NOL) and of current shunting through the SFL. Moreover, the interlayer coupling field (Hint) between the free layer and pinned layer could be explained by considering the RKKY and magnetostatic coupling. The coercivity of the free layer (Hcf) was significantly reduced as compared to traditional spin valves (TSV), and remained as low as 4 Oe when tF varied from 1 to 4 nm. It was found that the SFL made it possible to reduce the free layer thickness and enhance the MR ratio without degrading the soft magnetic property of the free layer.

  9. Dependence of spin pumping and spin transfer torque upon Ni 81 Fe 19 thickness in Ta / Ag / Ni 81 Fe 19 / Ag / Co 2 MnGe / Ag / Ta spin-valve structures

    DOE PAGES

    Durrant, C. J.; Shelford, L. R.; Valkass, R. A. J.; ...

    2017-10-18

    Spin pumping has been studied within Ta / Ag / Ni 81Fe 19 (0–5 nm) / Ag (6 nm) / Co 2MnGe (5 nm) / Ag / Ta large-area spin-valve structures, and the transverse spin current absorption of Ni 81Fe 19 sink layers of different thicknesses has been explored. In some circumstances, the spin current absorption can be inferred from the modification of the Co 2MnGe source layer damping in vector network analyzer ferromagnetic resonance (VNA-FMR) experiments. However, the spin current absorption is more accurately determined from element-specific phase-resolved x-ray ferromagnetic resonance (XFMR) measurements that directly probe the spin transfermore » torque (STT) acting on the sink layer at the source layer resonance. Comparison with a macrospin model allows the real part of the effective spin mixing conductance to be extracted. We find that spin current absorption in the outer Ta layers has a significant impact, while sink layers with thicknesses of less than 0.6 nm are found to be discontinuous and superparamagnetic at room temperature, and lead to a noticeable increase of the source layer damping. For the thickest 5-nm sink layer, increased spin current absorption is found to coincide with a reduction of the zero frequency FMR linewidth that we attribute to improved interface quality. Furthermore, this study shows that the transverse spin current absorption does not follow a universal dependence upon sink layer thickness but instead the structural quality of the sink layer plays a crucial role.« less

  10. Dependence of spin pumping and spin transfer torque upon Ni 81 Fe 19 thickness in Ta / Ag / Ni 81 Fe 19 / Ag / Co 2 MnGe / Ag / Ta spin-valve structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durrant, C. J.; Shelford, L. R.; Valkass, R. A. J.

    Spin pumping has been studied within Ta / Ag / Ni 81Fe 19 (0–5 nm) / Ag (6 nm) / Co 2MnGe (5 nm) / Ag / Ta large-area spin-valve structures, and the transverse spin current absorption of Ni 81Fe 19 sink layers of different thicknesses has been explored. In some circumstances, the spin current absorption can be inferred from the modification of the Co 2MnGe source layer damping in vector network analyzer ferromagnetic resonance (VNA-FMR) experiments. However, the spin current absorption is more accurately determined from element-specific phase-resolved x-ray ferromagnetic resonance (XFMR) measurements that directly probe the spin transfermore » torque (STT) acting on the sink layer at the source layer resonance. Comparison with a macrospin model allows the real part of the effective spin mixing conductance to be extracted. We find that spin current absorption in the outer Ta layers has a significant impact, while sink layers with thicknesses of less than 0.6 nm are found to be discontinuous and superparamagnetic at room temperature, and lead to a noticeable increase of the source layer damping. For the thickest 5-nm sink layer, increased spin current absorption is found to coincide with a reduction of the zero frequency FMR linewidth that we attribute to improved interface quality. Furthermore, this study shows that the transverse spin current absorption does not follow a universal dependence upon sink layer thickness but instead the structural quality of the sink layer plays a crucial role.« less

  11. Layer thickness dependence of the current-induced effective field vector in Ta|CoFeB|MgO.

    PubMed

    Kim, Junyeon; Sinha, Jaivardhan; Hayashi, Masamitsu; Yamanouchi, Michihiko; Fukami, Shunsuke; Suzuki, Tetsuhiro; Mitani, Seiji; Ohno, Hideo

    2013-03-01

    Current-induced effective magnetic fields can provide efficient ways of electrically manipulating the magnetization of ultrathin magnetic heterostructures. Two effects, known as the Rashba spin orbit field and the spin Hall spin torque, have been reported to be responsible for the generation of the effective field. However, a quantitative understanding of the effective field, including its direction with respect to the current flow, is lacking. Here we describe vector measurements of the current-induced effective field in Ta|CoFeB|MgO heterostructrures. The effective field exhibits a significant dependence on the Ta and CoFeB layer thicknesses. In particular, a 1 nm thickness variation of the Ta layer can change the magnitude of the effective field by nearly two orders of magnitude. Moreover, its sign changes when the Ta layer thickness is reduced, indicating that there are two competing effects contributing to it. Our results illustrate that the presence of atomically thin metals can profoundly change the landscape for controlling magnetic moments in magnetic heterostructures electrically.

  12. Interface influence on the properties of Co90Fe10 films on soft magnetic underlayers - Magnetostrictive and Mössbauer spectrometry studies

    NASA Astrophysics Data System (ADS)

    Szumiata, Tadeusz; Gzik-Szumiata, Małgorzata; Brzózka, Katarzyna; Górka, Bogumił; Gawroński, Michał; Caruana Finkel, Anastasia; Reeves-McLaren, Nik; Morley, Nicola A.

    2016-03-01

    The main aim of the work was to show the correlation between magnetostrictive properties and microstructure of 25 nm thick Co90Fe10 films deposited on soft magnetic underlayers. A special attention was paid to the role of the interface region. In the case of Co90Fe10 on 25 nm and 35 nm thick METGLAS underlayers one can resolve in conversion electron Mössbauer spectra two hyperfine field distributions (high-field and medium-field ones) corresponding to both constituents of bilayers. Analogical distributions describe the spectra of Co90Fe10 on 25 nm and 35 nm thick Ni81Fe19 underlayers, however an additional low-field, smeared component has been observed. It has been attributed to the interface layer (of partially disordered structure) between magnetostrictive layer and soft magnetic layer. Such interpretation is backed up by the obtained strong correlation between mean hyperfine field value and magnetostriction constant of the films. The investigated bilayers are good candidates for MRAM devices.

  13. Variation of superconducting transition temperature by proximity effect in NbN/FeN bilayers

    NASA Astrophysics Data System (ADS)

    Hwang, Tae-Jong; Kim, Dong-Ho

    2017-09-01

    We report on the proximity effect in superconductor/ferromagnet bilayers made of a new combination of NbN for the superconductor and FeN for the ferromagnet. The bilayers were prepared by reactive magnetron sputtering on a thermally oxidized Si substrate. For a constant NbN layer thickness, the superconducting transition temperatures of the bilayers exhibited a nonmonotonic dependence on the thickness of the FeN layer. The results were interpreted in terms of the proximity effect between the superconductor and ferromagnetic materials.

  14. Analyzing the Boundary Thermal Resistance of Epitaxially Grown Fe2VAl/W Layers by Picosecond Time-Domain Thermoreflectance

    NASA Astrophysics Data System (ADS)

    Hiroi, Satoshi; Choi, Seongho; Nishino, Shunsuke; Seo, Okkyun; Chen, Yanna; Sakata, Osami; Takeuchi, Tsunehiro

    2018-06-01

    To gain deep insight into the mechanism of phonon scattering at grain boundaries, we investigated the boundary thermal resistance by using picosecond pulsed-laser time-domain thermoreflectance for epitaxially grown W/Fe2VAl/W films. By using radio-frequency magnetron sputtering, we prepared a series of the three-layer films whose Fe2VAl thickness ranged from 1 nm to 37 nm. The fine oscillation of reflectivity associated with the top W layer clearly appeared in synchrotron x-ray reflectivity measurements, indicating a less obvious mixture of elements at the boundary. The areal heat diffusion time, obtained from the time-domain thermoreflectance signal in the rear-heating front-detection configuration, reduced rapidly in samples whose Fe2VAl layer was thinner than 15 nm. The ˜ 10% mismatch in lattice constant between Fe2VAl and W naturally produced the randomly distributed lattice stress near the boundary, causing an effective increase of boundary thermal resistance in the thick samples, but the stress became homogeneous in the thinner layers, which reduced the scattering probability of phonons.

  15. Finite-size effects and magnetic exchange coupling in thin CoO layers

    NASA Astrophysics Data System (ADS)

    Ambrose, Thomas Francis

    Finite size effects in CoO have been observed in CoO/SiOsb2 multilayers. The Neel temperatures of the CoO layers, as determined by dc susceptibility measurements, follow a finite-size scaling relation with a shift exponent lambda = 1.55 ± 0.05. This determined exponent is close to the theoretical value for finite size scaling in an Ising system. The value of the zero temperature correlation length has also been determined to be 18A, while antiferromagnetic ordering persists down to a CoO layer thickness of 10A. The properties of exchange biasing have been extensively studied in NiFe/CoO bilayers. The effects of the cooling field (Hsb{FC}), up to 50 kOe, on the resultant exchange field (Hsb{E}) and coercivity (Hsb{C}) have been examined. The value of Hsb{E} increases rapidly at low cooling fields (Hsb{FC} < 1kOe) and levels off for Hsb{FC} larger than 4 kOe. The value of Hsb{C} also depends upon Hsb{FC}, but less sensitively. The bilayer thickness also influences exchange biasing. We find that Hsb{E} varies inversely proprotional to both tsb{FM} and tsb{AF} where tsb{FM} and tsb{AF} are the ferromagnetic and antiferromagnetic layer thickness respectively. Because of the 1/tsb{AF}, the simple picture of interfacial coupling between ferromagnet and antiferromagnet spins appears to be inadequate. The assertion of long range coupling between ferromagnetic and antiferromagnetic layers has been verified by the observation of antiferromagnetic exchange coupling across spacer layers in NiFe/NM/CoO trilayers, where NM is a non-magnetic material. Exchange biasing has been observed in trilayers with metallic spacer layers up to 50A thick using Ag, Cu and Au, while no exchange field was observed for insulating spacer layers of any thickness using Alsb2Osb3, SiOsb2 and MgO. The temperature dependence of Hsb{E} and Hsb{C} and the effect of the deposition order have been studied in a series of bilayer (NiFe/CoO and CoO/NiFe) and trilayer (NiFe/CoO/NiFe) films. A profound difference in Hsb{E} was observed in samples with NiFe deposited on top of CoO compared to samples with CoO deposited on top of NiFe. When CoO is on top of NiFe Hsb{E} varies linearly with temperature, while for samples with NiFe on top of CoO Hsb{E} has a plateau followed by a rapid decrease. These distinct temperature dependences have been reproduced in NiFe/CoO/NiFe trilayers which contain both geometries. Structural analysis using Transmission Electron Microscopy indicate no apparent differences in the top and bottom interfaces. The angular dependence of the exchange coupling in a NiFe/CoO bilayer has been measured. Both Hsb{E} and Hsb{C} with unidirectional and uniaxial characteristics, respectively, are integral parts of the exchange coupling. The values of Hsb{E} can be expressed by a series of odd angle cosine terms, while the values of Hsb{C} can be expressed by a series of even angle cosine terms. Finally, exchange biasing has been used to "spin engineer" ferromagnetic layers in NiFe/CoO/NiFe trilayers. Four different spin structures have been observed. A phase diagram, for the four spin structures and the conditions with which each spin structure is obtained, has been determined. (Abstract shortened by UMI.)

  16. A Simple Kinetic Model for the Growth of Fe2B Layers on AISI 1026 Steel During the Powder-pack Boriding

    NASA Astrophysics Data System (ADS)

    Flores-Rentería, M. A.; Ortiz-Domínguez, M.; Keddam, M.; Damián-Mejía, O.; Elias-Espinosa, M.; Flores-González, M. A.; Medina-Moreno, S. A.; Cruz-Avilés, A.; Villanueva-Ibañez, M.

    2015-02-01

    This work focused on the determination of boron diffusion coefficient through the Fe2B layers on AISI 1026 steel using a mathematical model. The suggested model solves the mass balance equation at the (Fe2B/substrate) interface. This thermochemical treatment was carried out in the temperature range of 1123-1273 K for a treatment time ranging from 2 to 8 h. The generated boride layers were characterized by different experimental techniques such as light optical microscopy, scanning electron microscopy, XRD analysis and the Daimler-Benz Rockwell-C indentation technique. As a result, the boron activation energy for AISI 1026 steel was estimated as 178.4 kJ/mol. Furthermore, this kinetic model was validated by comparing the experimental Fe2B layer thickness with the predicted one at a temperature of 1253 K for 5 h of treatment. A contour diagram relating the layer thickness to the boriding parameters was proposed to be used in practical applications.

  17. Predictive modeling of crystal accumulation in high-level waste glass melters processing radioactive waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matyáš, Josef; Gervasio, Vivianaluxa; Sannoh, Sulaiman E.

    The effectiveness of HLW vitrification is limited by precipitation/accumulation of spinel crystals [(Fe, Ni, Mn, Zn)(Fe, Cr)2O4] in the glass discharge riser of Joule-heated ceramic melters during idling. These crystals do not affect glass durability; however, if accumulated in thick layer, they can clog the melter and prevent discharge of molten glass into canisters. To address this problem, an empirical model was developed that can predict thicknesses of accumulated layers as a function of glass composition. This model predicts well the accumulation of single crystals and/or small-scale agglomerates, but, excessive agglomeration observed in high-Ni-Fe glass resulted in an under-prediction ofmore » accumulated layers, which gradually worsen over time as an increased number of agglomerates formed. Accumulation rate of ~53.8 ± 3.7 µm/h determined for this glass will result in ~26 mm thick layer in 20 days of melter idling.« less

  18. Predictive modeling of crystal accumulation in high-level waste glass melters processing radioactive waste

    NASA Astrophysics Data System (ADS)

    Matyáš, Josef; Gervasio, Vivianaluxa; Sannoh, Sulaiman E.; Kruger, Albert A.

    2017-11-01

    The effectiveness of high-level waste vitrification at Hanford's Waste Treatment and Immobilization Plant may be limited by precipitation/accumulation of spinel crystals [(Fe, Ni, Mn, Zn)(Fe, Cr)2O4] in the glass discharge riser of Joule-heated ceramic melters during idling. These crystals do not affect glass durability; however, if accumulated in thick layers, they can clog the melter and prevent discharge of molten glass into canisters. To address this problem, an empirical model was developed that can predict thicknesses of accumulated layers as a function of glass composition. This model predicts well the accumulation of single crystals and/or small-scale agglomerates, but excessive agglomeration observed in high-Ni-Fe glass resulted in an underprediction of accumulated layers, which gradually worsened over time as an increased number of agglomerates formed. The accumulation rate of ∼53.8 ± 3.7 μm/h determined for this glass will result in a ∼26 mm-thick layer after 20 days of melter idling.

  19. Exchange coupled CoPt/FePtC media for heat assisted magnetic recording

    NASA Astrophysics Data System (ADS)

    Dutta, Tanmay; Piramanayagam, S. N.; Ru, Tan Hui; Saifullah, M. S. M.; Bhatia, C. S.; Yang, Hyunsoo

    2018-04-01

    L10 FePtC granular media are being studied as potential future magnetic recording media and are set to be used in conjunction with heat assisted magnetic recording (HAMR) to enable recording at write fields within the range of current day recording heads. Media structures based on a FePtC storage layer and a capping layer can alleviate the switching field distribution (SFD) requirements of HAMR and reduce the noise originating from the writing process. However, the current designs suffer from SFD issues due to high temperature writing. To overcome this problem, we study a CoPt/FePtC exchange coupled composite structure, where FePtC serves as the storage layer and CoPt (with higher Curie temperature, Tc) as the capping layer. CoPt remains ferromagnetic at near Tc of FePtC. Consequently, the counter exchange energy from CoPt would reduce the noise resulting from the adjacent grain interactions during the writing process. CoPt/FePtC bilayer samples with different thicknesses of CoPt were investigated. Our studies found that CoPt forms a continuous layer at a thickness of 6 nm and leads to considerable reduction in the saturation field and its distribution.

  20. Phase constitution in the interfacial region of laser penetration brazed magnesium–steel joints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, Yugang; Han, Duanfeng, E-mail: handuanfeng@gmail.com; Xu, Xiangfang

    2014-07-01

    The phase constitution in the interfacial region of laser penetration brazed magnesium–steel joints was investigated using electron microscopy. From the distribution of elements, the transition zone was mainly composed of elements Mg and Fe along with some Al and O. Furthermore, the transition layer consisted mainly of intermetallic compounds and metal oxides. The compounds were identified as Al-rich phases, such as Mg{sub 17}Al{sub 12}, Mg{sub 2}Al{sub 3}, FeAl and Fe{sub 4}Al{sub 13}. More noteworthy was that the thickness of the transition layer was determined by Fe–Al compounds. The presence of FeAl and Fe{sub 4}Al{sub 13} was a result of themore » complex processes that were associated with the interfacial reaction of solid steel and liquid Mg–Al alloy. - Highlights: • A technology of laser penetration brazed Mg alloy and steel has been developed. • The interface of Mg/Fe dissimilar joints was investigated using electron microscopy. • The transition layer consisted of intermetallic compounds and metal oxides. • Moreover, the thickness of transition layer was determined by Fe/Al compounds. • The presence of FeAl and Fe{sub 4}Al{sub 13} was associated with the interfacial reaction.« less

  1. Impact of fluorine based reactive chemistry on structure and properties of high moment magnetic material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaoyu, E-mail: xiaoyu.yang@wdc.com; Chen, Lifan; Han, Hongmei

    The impact of the fluorine-based reactive ion etch (RIE) process on the structural, electrical, and magnetic properties of NiFe and CoNiFe-plated materials was investigated. Several techniques, including X-ray fluorescence, 4-point-probe, BH looper, transmission electron microscopy (TEM), and electron energy loss spectroscopy (EELS), were utilized to characterize both bulk film properties such as thickness, average composition, Rs, ρ, Bs, Ms, and surface magnetic “dead” layers' properties such as thickness and element concentration. Experimental data showed that the majority of Rs and Bs changes of these bulk films were due to thickness reduction during exposure to the RIE process. ρ and Msmore » change after taking thickness reduction into account were negligible. The composition of the bulk films, which were not sensitive to surface magnetic dead layers with nano-meter scale, showed minimum change as well. It was found by TEM and EELS analysis that although both before and after RIE there were magnetic dead layers on the top surface of these materials, the thickness and element concentration of the layers were quite different. Prior to RIE, dead layer was actually native oxidation layers (about 2 nm thick), while after RIE dead layer consisted of two sub-layers that were about 6 nm thick in total. Sub-layer on the top was native oxidation layer, while the bottom layer was RIE “damaged” layer with very high fluorine concentration. Two in-situ RIE approaches were also proposed and tested to remove such damaged sub-layers.« less

  2. Cathodic Electrodeposition of Ni-Mo on Semiconducting NiFe2 O4 for Photoelectrochemical Hydrogen Evolution in Alkaline Media.

    PubMed

    Wijten, Jochem H J; Jong, Ronald P H; Mul, Guido; Weckhuysen, Bert M

    2018-04-25

    Photocathodes for hydrogen evolution from water were made by electrodeposition of Ni-Mo layers on NiFe 2 O 4 substrates, deposited by spin coating on F:SnO 2 -glass. Analysis confirmed the formation of two separate layers, without significant reduction of NiFe 2 O 4 . Bare NiFe 2 O 4 was found to be unstable under alkaline conditions during (photo)electrochemistry. To improve the stability significantly, the deposition of a bifunctional Ni-Mo layer through a facile electrodeposition process was performed and the composite electrodes showed stable operation for at least 1 h. Moreover, photocurrents up to -2.1 mA cm -2 at -0.3 V vs. RHE were obtained for Ni-Mo/NiFe 2 O 4 under ambient conditions, showing that the new combination functions as both a stabilizing and catalytic layer for the photoelectrochemical evolution of hydrogen. The photoelectrochemical response of these composite electrodes decreased with increasing NiFe 2 O 4 layer thickness. Transient absorption spectroscopy showed that the lifetime of excited states is short and on the ns timescale. An increase in lifetime was observed for NiFe 2 O 4 of large layer thickness, likely explained by decreasing the defect density in the primary layer(s), as a result of repetitive annealing at elevated temperature. The photoelectrochemical and transient absorption spectroscopy results indicated that a short charge carrier lifetime limits the performance of Ni-Mo/NiFe 2 O 4 photocathodes. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Spontaneous perpendicular exchange bias effect in L10-MnGa/FeMn bilayers grown by molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Zhao, X. P.; Lu, J.; Mao, S. W.; Yu, Z. F.; Wei, D. H.; Zhao, J. H.

    2018-01-01

    We report on the spontaneous perpendicular exchange bias effect in as-grown L10-MnGa/FeMn bilayers. An FeMn layer with different thicknesses is introduced as an antiferromagnetic layer to couple with single-crystalline ferromagnetic L10-MnGa, which is epitaxially grown on a GaAs (001) substrate by molecular-beam epitaxy. The perpendicular exchange bias shows a strong dependence on both the thickness of the FeMn layer and the measurement temperature. A large spontaneous perpendicular exchange bias up to 8.9 kOe is achieved in L10-MnGa/FeMn bilayers at 5 K without any external magnetic treatment. The corresponding effective interfacial exchange energy Jeff is estimated to be 1.4 mJ/m2. The spontaneous perpendicular exchange bias effect in the (001) textured L10-MnGa/FeMn bilayers paves the way for spintronic devices based on exchange biased perpendicularly magnetized materials.

  4. Investigation of diffusional interaction between P91 grade ferritic steel and Fe-15 wt.%B alloy and study of kinetics of boride formation at high temperature

    NASA Astrophysics Data System (ADS)

    Rai, Arun Kumar; Vijayashanthi, N.; Tripathy, H.; Hajra, R. N.; Raju, S.; Murugesan, S.; Saroja, S.

    2017-11-01

    In the present study, the feasibility of employing the indigenously developed ferroboron alloy (Fe-15 wt.%B) as an alternate neutron shield material in combination with 9Cr-based ferritic steel (P91) clad in future Indian fast breeder reactors (FBR), has been investigated from a metallurgical perspective. Towards this goal, a series of diffusion couple experiments have been conducted at three different temperatures namely, 600, 700 and 800 °C for time durations up to 5000 h. The thickness of interaction layer has been monitored using standard metallographic procedures. The experiments revealed that ferroboron/P91 combination exhibited a tendency to form complex intermetallic borides at the interface. The structural and microstructural characterization of the interface confirmed that the reaction layer consists predominantly of borides of Fe and Cr of type FeB, Fe2B, (Fe,Cr)2B and (Fe,Cr)B. The measured variation of interaction layer thickness as a function of time and temperature have been modelled in terms of diffusion mediated interaction. The growth kinetics of borided layer has followed the parabolic law at each temperature, and the apparent activation energy for boride layer formation is found to be of the order of 115 kJ mol-1. This indicates that the kinetics of boriding could be governed by diffusion of B into the P91 matrix. Based on the findings of present study, an extrapolative estimate of the clad attack thickness at 550 °C for 60 years of operating time has been made and it turns out to be 210 ± 15 μm, which is less than the clad thickness of FBR shielding subassembly (4 mm) [1]. Thus, this study confirms that at testing temperatures from 550 to 600 °C, the ferroboron/P91 steel combination can be safely employed for shielding subassembly applications in fast reactors.

  5. Spin pumping damping and magnetic proximity effect in Pd and Pt spin-sink layers

    NASA Astrophysics Data System (ADS)

    Caminale, M.; Ghosh, A.; Auffret, S.; Ebels, U.; Ollefs, K.; Wilhelm, F.; Rogalev, A.; Bailey, W. E.

    2016-07-01

    We investigated the spin pumping damping contributed by paramagnetic layers (Pd, Pt) in both direct and indirect contact with ferromagnetic Ni81Fe19 films. We find a nearly linear dependence of the interface-related Gilbert damping enhancement Δ α on the heavy-metal spin-sink layer thicknesses tN in direct-contact Ni81Fe19 /(Pd, Pt) junctions, whereas an exponential dependence is observed when Ni81Fe19 and (Pd, Pt) are separated by 3 nm Cu. We attribute the quasilinear thickness dependence to the presence of induced moments in Pt, Pd near the interface with Ni81Fe19 , quantified using x-ray magnetic circular dichroism measurements. Our results show that the scattering of pure spin current is configuration-dependent in these systems and cannot be described by a single characteristic length.

  6. Iron silicide formation at different layers of (Fe/Si)3 multilayered structures determined by conversion electron Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Badía-Romano, L.; Rubín, J.; Magén, C.; Bürgler, D. E.; Bartolomé, J.

    2014-07-01

    The morphology and the quantitative composition of the Fe-Si interface layer forming at each Fe layer of a (Fe/Si)3 multilayer have been determined by means of conversion electron Mössbauer spectroscopy (CEMS) and high-resolution transmission electron microscopy (HRTEM). For the CEMS measurements, each layer was selected by depositing the Mössbauer active 57Fe isotope with 95% enrichment. Samples with Fe layers of nominal thickness dFe = 2.6 nm and Si spacers of dSi = 1.5 nm were prepared by thermal evaporation onto a GaAs(001) substrate with an intermediate Ag(001) buffer layer. HRTEM images showed that Si layers grow amorphous and the epitaxial growth of the Fe is good only for the first deposited layer. The CEMS spectra show that at all Fe/Si and Si/Fe interfaces a paramagnetic c-Fe1-xSi phase is formed, which contains 16% of the nominal Fe deposited in the Fe layer. The bottom Fe layer, which is in contact with the Ag buffer, also contains α-Fe and an Fe1-xSix alloy that cannot be attributed to a single phase. In contrast, the other two layers only comprise an Fe1-xSix alloy with a Si concentration of ≃0.15, but no α-Fe.

  7. Application Prospects of Multilayer Film Shields for Space Research Instrumentation

    NASA Astrophysics Data System (ADS)

    Nyunt, P. W.; Vlasik, K. F.; Grachev, V. M.; Dmitrenko, V. V.; Novikov, A. S.; Petrenko, D. V.; Ulin, S. E.; Uteshev, Z. M.; Chernysheva, I. V.; Shustov, A. E.

    We have studied the magnetic properties of multilayer film cylindrical configuration shields (MFS) based on NiFe / Cu. The studied samples were prepared by electrode position. MFS were constituted by alternating layers of NiFe and Cu, deposited on an aluminum cylinder with diameter of 4 cm, length of 13 cm and 0.5 cm thickness. The thickness of each ferromagnetic layer varied from 10 to 150 μm, and the thickness of Cu layers was 5 μm. Five-samples in which the number of ferromagnetic layers varied from 3 to 45 and copper - from 2 to 44 were tested. The best shielding efficiency was achieved at the maximum number of layers and comprised about 102. Permalloy multilayer foil shield at the same total thickness has several times less efficiency in comparison with MFS. The description of a prototype of the charged particles telescope for space application is presented. Results of its testing regarding sensitivity to the constant magnetic field are described.

  8. Giant voltage-controlled magnetic anisotropy effect in a crystallographically strained CoFe system

    NASA Astrophysics Data System (ADS)

    Kato, Yushi; Yoda, Hiroaki; Saito, Yoshiaki; Oikawa, Soichi; Fujii, Keiko; Yoshiki, Masahiko; Koi, Katsuhiko; Sugiyama, Hideyuki; Ishikawa, Mizue; Inokuchi, Tomoaki; Shimomura, Naoharu; Shimizu, Mariko; Shirotori, Satoshi; Altansargai, Buyandalai; Ohsawa, Yuichi; Ikegami, Kazutaka; Tiwari, Ajay; Kurobe, Atsushi

    2018-05-01

    We experimentally demonstrate a giant voltage-controlled magnetic anisotropy (VCMA) coefficient in a crystallographically strained CoFe layer (∼15 monolayers in thickness) in a MgO/CoFe/Ir system. We observed a strong applied voltage dependence of saturation field and an asymmetric concave behavior with giant VCMA coefficients of ‑758 and 1043 fJ V‑1 m‑1. The result of structural analysis reveals epitaxial growth in MgO/CoFe/Ir layers and the orientation relationship MgO(001)[110] ∥ CoFe(001)[100] ∥ Ir(001)[110]. The CoFe layer has a bcc structure and a tetragonal distortion due to the lattice mismatch; therefore, the CoFe layer has a large perpendicular magnetic anisotropy.

  9. Difference between blocking and Néel temperatures in the exchange biased Fe3O4/CoO system.

    PubMed

    van der Zaag, P J; Ijiri, Y; Borchers, J A; Feiner, L F; Wolf, R M; Gaines, J M; Erwin, R W; Verheijen, M A

    2000-06-26

    The blocking temperature T(B) has been determined as a function of the antiferromagnetic layer thickness in the Fe3O4/CoO exchange biased system. For CoO layers thinner than 50 A, T(B) is reduced below the Néel temperature T(N) of bulk CoO (291 K), independent of crystallographic orientation or film substrate ( alpha-Al2O3, SrTiO3, and MgO). Neutron diffraction studies show that T(B) does not track the CoO ordering temperature and, hence, that this reduction in T(B) does not arise from finite-size scaling. Instead, the ordering temperature of the CoO layers is enhanced above the bulk T(N) for layer thicknesses approximately less than or equal to 100 A due to the proximity of magnetic Fe3O4 layers.

  10. The influence of nano-oxide layer on magnetostriction of sensing layer in bottom spin valves

    NASA Astrophysics Data System (ADS)

    Qiu, J. J.; Han, G. C.; Li, K. B.; Liu, Z. Y.; Zong, B. Y.; Wu, Y. H.

    2006-05-01

    The magnetostriction coefficient (λs) of ultrathin sputtered polycrystalline as-deposited and annealed Ta/Ni81Fe19(t)/Ta films was studied as a function of the thickness. λs and magnetoresistance (MR) of bottom-type spin valves (SVs) with nano-oxide layer (NOL) added in the pinned layer were investigated by using NiFe, Co90Fe10, and CoFe/NiFe/CoFe layers as free layer (FL), respectively. λs of SV with NOL increased slightly except that of CoFe FL. NOLs were added at different positions to study the effects of NOL on λs of CoFe FL. All λs of CoFe FL change from negative to positive and its absolute value also increases significantly with CoFeOx related NOL added below. Our λs and surface roughness results indicated that the structure of the film not the roughness dominates λs of ultrathin FL in SVs.

  11. Tunneling-Magnetoresistance Ratio Comparison of MgO-Based Perpendicular-Magnetic-Tunneling-Junction Spin Valve Between Top and Bottom Co2Fe6B2 Free Layer Structure.

    PubMed

    Lee, Du-Yeong; Lee, Seung-Eun; Shim, Tae-Hun; Park, Jea-Gun

    2016-12-01

    For the perpendicular-magnetic-tunneling-junction (p-MTJ) spin valve with a nanoscale-thick bottom Co2Fe6B2 free layer ex situ annealed at 400 °C, which has been used as a common p-MTJ structure, the Pt atoms of the Pt buffer layer diffused into the MgO tunneling barrier. This transformed the MgO tunneling barrier from a body-centered cubic (b.c.c) crystallized layer into a mixture of b.c.c, face-centered cubic, and amorphous layers and rapidly decreased the tunneling-magnetoresistance (TMR) ratio. The p-MTJ spin valve with a nanoscale-thick top Co2Fe6B2 free layer could prevent the Pt atoms diffusing into the MgO tunneling barrier during ex situ annealing at 400 °C because of non-necessity of a Pt buffer layer, demonstrating the TMR ratio of ~143 %.

  12. Fe/Rh (100) multilayer magnetism probed by x-ray magnetic circular dichroism

    NASA Astrophysics Data System (ADS)

    Tomaz, M. A.; Ingram, D. C.; Harp, G. R.; Lederman, D.; Mayo, E.; O'brien, W. L.

    1997-09-01

    We report the layer-averaged magnetic moments of both Fe and Rh in sputtered Fe/Rh (100) multilayer thin films as measured by x-ray magnetic circular dichroism. We observe two distinct regimes in these films. The first is characterized by Rh moments of at least 1μB, Fe moments enhanced as much as 30% above bulk, and a bct crystal structure. The second regime is distinguished by sharp declines of both Fe and Rh moments accompanied by a transition to an fct crystal lattice. The demarcation between the two regions is identified as the layer thickness for which both bct and fct phases first coexist, which we term the critical thickness tcrit. We attribute the change in magnetic behavior to the structural transformation.

  13. NiFeCo/Cu superlattices with high magnetoresistive sensitivity and weak hysteresis

    NASA Astrophysics Data System (ADS)

    Bannikova, N. S.; Milyaev, M. A.; Naumova, L. I.; Krinitsina, T. P.; Patrakov, E. I.; Proglyado, V. V.; Chernyshova, T. A.; Ustinov, V. V.

    2016-10-01

    The microstructure and the magetoresistive characteristics of [NiFeCo/Cu]8 superlattices prepared by magnetron sputtering with various thickness of the buffer NiFeCr layer and exhibiting a giant magnetoresistive effect have been studied. It has been found that these nanostructures are formed with a strong or weak hysteresis depending on the structure (bcc or fcc) formed in the NiFeCr buffer layer. The method of the substantial decrease in the hysteresis loop width of the magnetoresistance by using the composite Ta/NiFeCr buffer layer has been suggested.

  14. Molecular layers of ZnPc and FePc on Au(111) surface: Charge transfer and chemical interaction

    NASA Astrophysics Data System (ADS)

    Ahmadi, Sareh; Shariati, M. Nina; Yu, Shun; Göthelid, Mats

    2012-08-01

    We have studied zinc phthalocyanine (ZnPc) and iron phthalocyanine (FePc) thick films and monolayers on Au(111) using photoelectron spectroscopy and x-ray absorption spectroscopy. Both molecules are adsorbed flat on the surface at monolayer. ZnPc keeps this orientation in all investigated coverages, whereas FePc molecules stand up in the thick film. The stronger inter-molecular interaction of FePc molecules leads to change of orientation, as well as higher conductivity in FePc layer in comparison with ZnPc, which is reflected in thickness-dependent differences in core-level shifts. Work function changes indicate that both molecules donate charge to Au; through the π-system. However, the Fe3d derived lowest unoccupied molecular orbital receives charge from the substrate when forming an interface state at the Fermi level. Thus, the central atom plays an important role in mediating the charge, but the charge transfer as a whole is a balance between the two different charge transfer channels; π-system and the central atom.

  15. Field-dependent magnetization of BiFeO 3 in ultrathin La 0.7Sr 0.3MnO 3/BiFeO 3 superlattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitzsimmons, Michael R.; Jia, Quanxi X.; Singh, Surendra

    2015-12-02

    We report the observation of field-induced magnetization of BiFeO 3 (BFO) in an ultrathin La 0.7Sr 0.3MnO 3 (LSMO)/BFO superlattice using polarized neutron reflectivity (PNR). The depth dependent structure and magnetic characterization of subnano layer thick (thickness ~ 0.7 nm each) LSMO/BFO hetrostructure is carried out using X-ray reflectivity and PNR techniques. Our PNR results indicate parallel alignment of magnetization as well as enhancement in magnetic moment across LSMO/BFO interfaces. The study showed an increase in average magnetization on increasing applied magnetic field at 10K. As a result, we observed a saturation magnetization of 110 ± 15 kA/m (~0.8 μmore » B/Fe) for ultrathin BFO layer (~2 unit cell) sandwiched between ultrathin LSMO layers (~ 2 unit cell).« less

  16. Method for disclosing invisible physical properties in metal-ferroelectric-insulator-semiconductor gate stacks

    NASA Astrophysics Data System (ADS)

    Sakai, Shigeki; Zhang, Wei; Takahashi, Mitsue

    2017-04-01

    In metal-ferroelectric-insulator-semiconductor gate stacks of ferroelectric-gate field effect transistors (FeFETs), it is impossible to directly obtain curves of polarization versus electric field (P f-E f) in the ferroelectric layer. The P f-E f behavior is not simple, i.e. the P f-E f curves are hysteretic and nonlinear, and the hysteresis curve width depends on the electric field scan amplitude. Unless the P f-E f relation is known, the field E f strength cannot be solved when the voltage is applied between the gate meal and the semiconductor substrate, and thus P f-E f cannot be obtained after all. In this paper, the method for disclosing the relationships among the polarization peak-to-peak amplitude (2P mm_av), the electric field peak-to-peak amplitude (2E mm_av), and the memory window (E w) in units of the electric field is presented. To get P mm_av versus E mm_av, FeFETs with different ferroelectric-layer thicknesses should be prepared. Knowing such essential physical parameters is helpful and in many cases enough to quantitatively understand the behavior of FeFETs. The method is applied to three groups. The first one consists of SrBi2Ta2O9-based FeFETs. The second and third ones consist of Ca x Sr1-x Bi2Ta2O9-based FeFETs made by two kinds of annealing. The method can clearly differentiate the characters of the three groups. By applying the method, ferroelectric relationships among P mm_av, E mm_av, and E w are well classified in the three groups according to the difference of the material kinds and the annealing conditions. The method also evaluates equivalent oxide thickness (EOT) of a dual layer of a deposited high-k insulator and a thermally-grown SiO2-like interfacial layer (IL). The IL thickness calculated by the method is consistent with cross-sectional image of the FeFETs observed by a transmission electron microscope. The method successfully discloses individual characteristics of the ferroelectric and the insulator layers hidden in the gate stack of a FeFET.

  17. Predictive modeling of crystal accumulation in high-level waste glass melters processing radioactive waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matyáš, Josef; Gervasio, Vivianaluxa; Sannoh, Sulaiman E.

    We present that the effectiveness of high-level waste vitrification at Hanford's Waste Treatment and Immobilization Plant may be limited by precipitation/accumulation of spinel crystals [(Fe, Ni, Mn, Zn)(Fe, Cr) 2O 4] in the glass discharge riser of Joule-heated ceramic melters during idling. These crystals do not affect glass durability; however, if accumulated in thick layers, they can clog the melter and prevent discharge of molten glass into canisters. To address this problem, an empirical model was developed that can predict thicknesses of accumulated layers as a function of glass composition. This model predicts well the accumulation of single crystals and/ormore » small-scale agglomerates, but excessive agglomeration observed in high-Ni-Fe glass resulted in an underprediction of accumulated layers, which gradually worsened over time as an increased number of agglomerates formed. In conclusion, the accumulation rate of ~53.8 ± 3.7 μm/h determined for this glass will result in a ~26 mm-thick layer after 20 days of melter idling.« less

  18. Predictive modeling of crystal accumulation in high-level waste glass melters processing radioactive waste

    DOE PAGES

    Matyáš, Josef; Gervasio, Vivianaluxa; Sannoh, Sulaiman E.; ...

    2017-08-30

    We present that the effectiveness of high-level waste vitrification at Hanford's Waste Treatment and Immobilization Plant may be limited by precipitation/accumulation of spinel crystals [(Fe, Ni, Mn, Zn)(Fe, Cr) 2O 4] in the glass discharge riser of Joule-heated ceramic melters during idling. These crystals do not affect glass durability; however, if accumulated in thick layers, they can clog the melter and prevent discharge of molten glass into canisters. To address this problem, an empirical model was developed that can predict thicknesses of accumulated layers as a function of glass composition. This model predicts well the accumulation of single crystals and/ormore » small-scale agglomerates, but excessive agglomeration observed in high-Ni-Fe glass resulted in an underprediction of accumulated layers, which gradually worsened over time as an increased number of agglomerates formed. In conclusion, the accumulation rate of ~53.8 ± 3.7 μm/h determined for this glass will result in a ~26 mm-thick layer after 20 days of melter idling.« less

  19. Thickness dependence of exchange anisotropy for (0 0 1) oriented Mn 89Pt 11/NiFe and Mn 80Ir 20/NiFe bilayers

    NASA Astrophysics Data System (ADS)

    Kume, T.; Yamato, T.; Kato, T.; Tsunashima, S.; Iwata, S.

    2007-03-01

    Antiferromagnetic layer thickness dependences of exchange anisotropy for (0 0 1) oriented Mn 89Pt 11 ( tAF nm)/Ni 80Fe 20 (5 nm) and Mn 80Ir 20 ( tAF nm)/Ni 80Fe 20 (5 nm) were investigated. For Mn 89Pt 11/NiFe, the exchange bias field appeared at tAF⩾5 nm. This critical thickness was found to be thicker than that of Mn 80Ir 20/NiFe ( tAF=3 nm). The thickness dependence of exchange bias field agreed well with that of 1-fold Fourier amplitude estimated from in-plane torque curves. The large coercivity of about 100 Oe was found for Mn 89Pt 11/NiFe at tAF=30 nm compared to that of Mn 80Ir 20/NiFe. The large coercivity in Mn 89Pt 11/NiFe bilayers seems to result from the large 4-fold anisotropy in their torque curve.

  20. Effect of MgO spacer and annealing on interface and magnetic properties of ion beam sputtered NiFe/Mg/MgO/CoFe layer structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhusan Singh, Braj; Chaudhary, Sujeet

    2012-09-15

    The effect of variation in the thickness of ion assisted ion beam sputtered MgO spacer layer deposited at oxygen ion assisted energy of 50 eV on the extent of magnetic coupling of NiFe and CoFe layers in Si/NiFe(10 nm)/Mg(1 nm)/MgO(2,4,6 nm)/CoFe(10 nm) sandwich structure is investigated. At MgO spacer layer thickness of 4 nm, the separate reversal of magnetizations of the two ferromagnetic layers is observed in the hystresis loop recorded along easy direction. This results in a 3.5 Oe wide plateau like region during magnetization reversal, which became 4.5 Oe at 6 nm thin MgO. At 2 nm thinmore » MgO, the absence of plateau during magnetization reversal region revealed ferromagnetic coupling between the two ferromagnetic layers, which is understood to arise due to the growth of very thin and low density (1.22 gm/cc) MgO spacer layer, indicating the presence of pinholes as revealed by x-ray reflectometry. After vaccum annealing (200 Degree-Sign C/1 h), the plateau region for 4 and 6 nm thin MgO case decreased to 1.5 Oe and 2.0 Oe, respectively, due to enhanced interface roughness/mixing. In addition, an enhancement of the in-plane magnetic anisotropy is also observed.« less

  1. Effect of heavy metal layer thickness on spin-orbit torque and current-induced switching in Hf|CoFeB|MgO structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akyol, Mustafa; Department of Physics, University of Çukurova, Adana 01330; Jiang, Wanjun

    We study the heavy metal layer thickness dependence of the current-induced spin-orbit torque (SOT) in perpendicularly magnetized Hf|CoFeB|MgO multilayer structures. The damping-like (DL) current-induced SOT is determined by vector anomalous Hall effect measurements. A non-monotonic behavior in the DL-SOT is found as a function of the thickness of the heavy-metal layer. The sign of the DL-SOT changes with increasing the thickness of the Hf layer in the trilayer structure. As a result, in the current-driven magnetization switching, the preferred direction of switching for a given current direction changes when the Hf thickness is increased above ∼7 nm. Although there might bemore » a couple of reasons for this unexpected behavior in DL-SOT, such as the roughness in the interfaces and/or impurity based electric potential in the heavy metal, one can deduce a roughness dependence sign reversal in DL-SOT in our trilayer structure.« less

  2. Neutron-driven gamma-ray laser

    DOEpatents

    Bowman, Charles D.

    1990-01-01

    A lasing cylinder emits laser radiation at a gamma-ray wavelength of 0.87 .ANG. when subjected to an intense neutron flux of about 400 eV neutrons. A 250 .ANG. thick layer of Be is provided between two layers of 100 .ANG. thick layer of .sup.57 Co and these layers are supported on a foil substrate. The coated foil is coiled to form the lasing cylinder. Under the neutron flux .sup.57 Co becomes .sup.58 Co by neutron absorption. The .sup.58 Co then decays to .sup.57 Fe by 1.6 MeV proton emission. .sup.57 Fe then transitions by mesne decay to a population inversion for lasing action at 14.4 keV. Recoil from the proton emission separates the .sup.57 Fe from the .sup.57 Co and into the Be, where Mossbauer emission occurs at a gamma-ray wavelength.

  3. Negative tunneling magnetoresistance of Fe/MgO/NiO/Fe magnetic tunnel junction: Role of spin mixing and interface state

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Yan, X. H.; Guo, Y. D.; Xiao, Y.

    2017-08-01

    Motivated by a recent tunneling magnetoresistance (TMR) measurement in which the negative TMR is observed in MgO/NiO-based magnetic tunnel junctions (MTJs), we have performed systematic calculations of transmission, current, and TMR of Fe/MgO/NiO/Fe MTJ with different thicknesses of NiO and MgO layers based on noncollinear density functional theory and non-equilibrium Green's function theory. The calculations show that, as the thickness of NiO and MgO layers is small, the negative TMR can be obtained which is attributed to the spin mixing effect and interface state. However, in the thick MTJ, the spin-flipping scattering becomes weaker, and thus, the MTJs recover positive TMR. Based on our theoretical results, we believe that the interface state at Fe/NiO interface and the spin mixing effect induced by noncollinear interfacial magnetization will play important role in determining transmission and current of Fe/MgO/NiO/Fe MTJ. The results reported here will be important in understanding the electron tunneling in MTJ with the barrier made by transition metal oxide.

  4. Dependency of anti-ferro-magnetic coupling strength on Ru spacer thickness of [Co/Pd]{sub n}-synthetic-anti-ferro-magnetic layer in perpendicular magnetic-tunnel-junctions fabricated on 12-inch TiN electrode wafer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chae, Kyo-Suk; Samsung Electronics Co., Ltd., San #16 Banwol-dong, Hwasung-City, Gyeonggi-Do 445-701; Shim, Tae-Hun

    We investigated the Ru spacer-thickness effect on the anti-ferro-magnetic coupling strength (J{sub ex}) of a [Co/Pd]{sub n}-synthetic-anti-ferro-magnetic layer fabricated with Co{sub 2}Fe{sub 6}B{sub 2}/MgO based perpendicular-magnetic-tunneling-junction spin-valves on 12-in. TiN electrode wafers. J{sub ex} peaked at a certain Ru spacer-thickness: specifically, a J{sub ex} of 0.78 erg/cm{sup 2} at 0.6 nm, satisfying the J{sub ex} criteria for realizing the mass production of terra-bit-level perpendicular-spin-transfer-torque magnetic-random-access-memory. Otherwise, J{sub ex} rapidly degraded when the Ru spacer-thickness was less than or higher than 0.6 nm. As a result, the allowable Ru thickness variation should be controlled less than 0.12 nm to satisfy the J{sub ex} criteria. However,more » the Ru spacer-thickness did not influence the tunneling-magneto-resistance (TMR) and resistance-area (RA) of the perpendicular-magnetic-tunneling-junction (p-MTJ) spin-valves since the Ru spacer in the synthetic-anti-ferro-magnetic layer mainly affects the anti-ferro-magnetic coupling efficiency rather than the crystalline linearity of the Co{sub 2}Fe{sub 6}B{sub 2} free layer/MgO tunneling barrier/Co{sub 2}Fe{sub 6}B{sub 2} pinned layer, although Co{sub 2}Fe{sub 6}B{sub 2}/MgO based p-MTJ spin-valves ex-situ annealed at 275 °C achieved a TMR of ∼70% at a RA of ∼20 Ω μm{sup 2}.« less

  5. Template assisted strain tuning and phase stabilization in epitaxial BiFeO3 thin films

    NASA Astrophysics Data System (ADS)

    Saj Mohan M., M.; Ramadurai, Ranjith

    2018-04-01

    Strain engineering is a key to develop novel properties in functional materials. We report a strain mediated phase stabilization and epitaxial growth of bismuth ferrite(BiFeO3) thin films on LaAlO3 (LAO) substrates. The strain in the epitaxial layer is controlled by controlling the thickness of bottom electrode where the thickness of the BFO is kept constant. The thickness of La0.7Sr0.3MnO3(LSMO) template layer was optimized to grow completely strained tetragonal, tetragonal/rhombohedral mixed phase and fully relaxed rhombohedral phase of BFO layers. The results were confirmed with coupled-θ-2θ scan, and small area reciprocal space mapping. The piezoelectric d33 (˜ 45-48 pm/V) coefficient of the mixed phase was relatively larger than the strained tetragonal and relaxed rhombohedral phase for a given thickness.

  6. Coercivity enhancement of Dy-coated Nd-Fe-B flakes by crystallization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukunaga, H.; Sugimoto, Y.; Nakano, M.

    2011-04-01

    The coercivity of isotropic Dy-coated Nd-Fe-B flakes was enhanced by crystallization and simultaneous diffusion of Dy from their surfaces. Amorphous Dy-coated Nd-Fe-B flakes were crystallized by heating them to 923 K 2over a 2 min period followed by rapid cooling. During crystallization, the Dy on the surface diffused into the flakes. This low-temperature rapid annealing produced flakes with fine grains and the Dy diffusion enhanced their coercivity. The coercivity after crystallization increased with increasing Dy layer thickness, although the remanence decreased when the layer thickness exceeded 3 {mu}m. Thick coatings of over 6 {mu}m resulted in the formation of DyFe{submore » 2}, which degraded the magnetic properties of the crystallized flakes. Flakes with a 3-{mu}m-thick coating exhibited excellent magnetic properties after annealing: They had a coercivity of 1880 kA/m and a remanence of 78 emu/g. This coercivity is approximately 500 kA/m higher than that of uncoated flakes, whereas the remanence is comparable to that of uncoated flakes.« less

  7. Control of Reaction Kinetics During Friction Stir Processing

    DOE PAGES

    Das, Shamiparna; Martinez, Nelson Y.; Mishra, Rajiv S.; ...

    2017-02-17

    Friction stir processing (FSP) was used to successfully embed galfenol particles into aluminum (AA 1100 Al) matrix uniformly. But, intermetallic layer of Al 3Fe was formed around the galfenol particles. We estimated the activation energy for Al 3Fe formation during FSP, and attempts were made to minimize the Al 3Fe layer thickness. By changing the processing conditions, FSP successfully eliminated the intermetallic layer. Therefore, FSP, in addition to microstructural control, can successfully fabricate intermetallic-free embedded regions by controlling the reaction kinetics.

  8. Spin-valve Josephson junctions for cryogenic memory

    NASA Astrophysics Data System (ADS)

    Niedzielski, Bethany M.; Bertus, T. J.; Glick, Joseph A.; Loloee, R.; Pratt, W. P.; Birge, Norman O.

    2018-01-01

    Josephson junctions containing two ferromagnetic layers are being considered for use in cryogenic memory. Our group recently demonstrated that the ground-state phase difference across such a junction with carefully chosen layer thicknesses could be controllably toggled between zero and π by switching the relative magnetization directions of the two layers between the antiparallel and parallel configurations. However, several technological issues must be addressed before those junctions can be used in a large-scale memory. Many of these issues can be more easily studied in single junctions, rather than in the superconducting quantum interference device (SQUID) used for phase-sensitive measurements. In this work, we report a comprehensive study of spin-valve junctions containing a Ni layer with a fixed thickness of 2.0 nm and a NiFe layer of thickness varying between 1.1 and 1.8 nm in steps of 0.1 nm. We extract the field shift of the Fraunhofer patterns and the critical currents of the junctions in the parallel and antiparallel magnetic states, as well as the switching fields of both magnetic layers. We also report a partial study of similar junctions containing a slightly thinner Ni layer of 1.6 nm and the same range of NiFe thicknesses. These results represent the first step toward mapping out a "phase diagram" for phase-controllable spin-valve Josephson junctions as a function of the two magnetic layer thicknesses.

  9. Effect of heat treatment on interface driven magnetic properties of CoFe films

    NASA Astrophysics Data System (ADS)

    Singh, Akhilesh Kr.; Hsu, Jen-Hwa

    2017-06-01

    We report systematic studies on non-magnetic Ta underlayer and cap layer driven microstructural and magnetic properties at a wide temperature range for CoFe films. All the films were grown at room temperature and post annealed at different annealing temperatures (TA = 200 °C, 250 °C, 300 °C, 350 °C, 400 °C and 450 °C). The in-plane magnetic hysteresis (M-H) loops of 10 nm thick CoFe single layer films, grown directly on thermally oxidized Si substrate, exhibit anisotropic nature for TA above 250 °C. However, the CoFe (10 nm) films grown on the 5 nm thick Ta underlayer show reduced anisotropy. Moreover, with underlayer and cap layers (2 nm) the anisotropy is disappeared. The in-plane coercivity (HC) shows a strong variation with TA, underlayer and cap layers. HC increases significantly with Ta underlayer and cap layers. The out of plane M-H loops exhibit increase in the remanence magnetization and squareness with both Ta underlayer and cap layers due to transition of in-plane magnetization component to the out of plane direction. The atomic force microscopic observations revealed that grain/particle size and shape depend strongly on TA and Ta layers. Moreover, a large reduction in the surface roughness is observed with the Ta cap layer. The magnetic domain patterns depend on the TA, and Ta layers. However, for Ta/CoFe/Ta films no clear domains were observed for all the TA. Hence, the Ta cap layers not only protect the CoFe magnetic layer against the heat treatment, but also show a smooth surface at a wide temperature range. These results could be discussed on the basis of random anisotropy model, TA, underlayer and cap layers driven microstructure and magnetization orientation of the CoFe films.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, Li; Thompson, Gregory, E-mail: gthompson@eng.ua.edu

    A series of 40–2 nm bilayer spacing Ti/Fe multilayers were sputter-deposited. As the length scale of individual Ti layers equaled to 2 nm, Ti phase transforms from a hexagonal close packed (hcp)-to-body centered cubic (bcc) crystal structures for equal layer thicknesses in Ti/Fe multilayers. Further equal reductions in bilayer spacing to less than 1 nm resulted in an additional transformation from a crystalline to amorphous structure. Atom probe tomography reveals significant intermixing between layers which contributes to the observed phase transformations. Real-time, intrinsic growth stress measurements were also performed to relate the adatom mobility to these phase transformations. For the hcp Ti/bcc Femore » multilayers of equivalent volume fractions, the multilayers undergo an overall tensile stress state to a compressive stress state with decreasing bilayer thickness for the multilayers. When the above phase transformations occurred, a modest reduction in the overall compressive stress of the multilayer was noted. Depending on the Fe thickness, the Ti growth was observed to be a tensile to compressive growth change to a purely compressive growth for thinner bilayer spacing. Fe retained a tensile growth stress regardless of the bilayer spacing studied.« less

  11. Novel behaviors of anomalous Hall effect in TbFeCo ferrimagnetic thin films

    NASA Astrophysics Data System (ADS)

    Ando, Ryo; Komine, Takashi; Sato, Shiori; Kaneta, Shingo; Hara, Yoshiaki

    2018-05-01

    We investigate the temperature dependence and the thickness dependence of anomalous Hall effect (AHE) of TbFeCo ultra-thin films under high magnetic field. The sign change on temperature dependence of AHE in 20nm-thick TbFeCo film with rare-earth (RE) rich composition was observed. The AHE sign at low temperature is negative while it gradually becomes positive as the temperature increases. Moreover, the AHE sign for 5nm-thick TbFeCo film remains positive while that for 50nm-thick TbFeCo film remains negative at temperature in the range from 5 K to 400 K. The similar thickness dependence of AHE in TM-rich samples was also observed. From the mean-field approximation, the sign change temperature in AHE is related to the compensation temperature and the existence of interfacial region, which has the TM-rich composition and the weak anisotropy. Therefore, We clarified that the novel behavior of AHE sign changes in TbFeCo thin films with different thickness can be explained by the interfacial layer with weak anisotropy and two phase model.

  12. TEM/STEM study of Zircaloy-2 with protective FeAl(Cr) layers under simulated BWR environment and high-temperature steam exposure

    NASA Astrophysics Data System (ADS)

    Park, Donghee; Mouche, Peter A.; Zhong, Weicheng; Mandapaka, Kiran K.; Was, Gary S.; Heuser, Brent J.

    2018-04-01

    FeAl(Cr) thin-film depositions on Zircaloy-2 were studied using transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) with respect to oxidation behavior under simulated boiling water reactor (BWR) conditions and high-temperature steam. Columnar grains of FeAl with Cr in solid solution were formed on Zircaloy-2 coupons using magnetron sputtering. NiFe2O4 precipitates on the surface of the FeAl(Cr) coatings were observed after the sample was exposed to the simulated BWR environment. High-temperature steam exposure resulted in grain growth and consumption of the FeAl(Cr) layer, but no delamination at the interface. Outward Al diffusion from the FeAl(Cr) layer occurred during high-temperature steam exposure (700 °C for 3.6 h) to form a 100-nm-thick alumina oxide layer, which was effective in mitigating oxidation of the Zircaloy-2 coupons. Zr intermetallic precipitates formed near the FeAl(Cr) layer due to the inward diffusion of Fe and Al. The counterflow of vacancies in response to the Al and Fe diffusion led to porosity within the FeAl(Cr) layer.

  13. Uniform Fe3O4 coating on flower-like ZnO nanostructures by atomic layer deposition for electromagnetic wave absorption.

    PubMed

    Wan, Gengping; Wang, Guizhen; Huang, Xianqin; Zhao, Haonan; Li, Xinyue; Wang, Kan; Yu, Lei; Peng, Xiange; Qin, Yong

    2015-11-21

    An elegant atomic layer deposition (ALD) method has been employed for controllable preparation of a uniform Fe3O4-coated ZnO (ZnO@Fe3O4) core-shell flower-like nanostructure. The Fe3O4 coating thickness of the ZnO@Fe3O4 nanostructure can be tuned by varying the cycle number of ALD Fe2O3. When serving as additives for microwave absorption, the ZnO@Fe3O4-paraffin composites exhibit a higher absorption capacity than the ZnO-paraffin composites. For ZnO@500-Fe3O4, the effective absorption bandwidth below -10 dB can reach 5.2 GHz and the RL values below -20 dB also cover a wide frequency range of 11.6-14.2 GHz when the coating thickness is 2.3 mm, suggesting its potential application in the treatment of the electromagnetic pollution problem. On the basis of experimental observations, a mechanism has been proposed to understand the enhanced microwave absorption properties of the ZnO@Fe3O4 composites.

  14. High surface stability of magnetite on bi-layer Fe3O4/Fe/MgO(0 0 1) films under 1 MeV Kr+ ion irradiation

    NASA Astrophysics Data System (ADS)

    Kim-Ngan, N.-T. H.; Krupska, M.; Balogh, A. G.; Malinsky, P.; Mackova, A.

    2017-12-01

    We investigate the stability of the bi-layer Fe3O4/Fe(0 0 1) films grown epitaxially on MgO(0 0 1) substrates with the layer thickness in the range of 25-100 nm upon 1 MeV Kr+ ion irradiation. The layer structure and layer composition of the films before and after ion irradiation were studied by XRR, RBS and RBS-C techniques. The interdiffusion and intermixing was analyzed. No visible change in the RBS spectra was observed upon irradiation with ion fluence below 1015 Kr cm-2. The bi-layer structure and the stoichiometric Fe3O4 layer on the surface were well preserved after Kr+ ion irradiation at low damage levels, although the strong intermixing implied a large interfacial (Fe x O y ) and (Fe, Mg)O y layer respective at Fe3O4-Fe and Fe-MgO interface. The high ion fluence of 3.8  ×  1016 Kr cm-2 has induced a complete oxidization of the buffer Fe layer. Under such Kr fluence, the stoichiometry of the Fe3O4 surface layer was still preserved indicating its high stability. The entire film contains Fe x O y -type composition at ion fluence large than 5.0  ×  1016 Kr cm-2.

  15. X-ray reflectivity of ruthenium nano-oxide layer in a CoFe-Ru-CoFe trilayer system

    NASA Astrophysics Data System (ADS)

    Asghari Zadeh, Saeid; Sutton, Mark; Altonian, Zaven; Mao, Ming; Lee, Chih-Ling

    2006-03-01

    A grazing incidence X-ray reflectivity technique is used to determine electron density profile(EDP) as a function of depth in CoFe-Ru-CoFe and CoFe-Ru nano oxide layer(NOL)-CoFe trilayers. Four trilayers with ruthenium thicknesses of 8,8.5 and 9 å.08cm and one with Ru8.5.05cmå.05cmNOL, prepared by a dc planetary sputtering system, were investigated. For all samples, EDP shows a central peak which is related to the Ru layer. Natural oxidation in all samples introduces a graded EDP of the top CoFe layer that decreases gradually to zero. The large surface resistivity of Ru8.5 å.05cm NOL compared to Ru 8.5å.08cm can be related to the remarkable difference between their EDP.

  16. Sequential magnetic switching in Fe/MgO(001) superlattices

    NASA Astrophysics Data System (ADS)

    Magnus, F.; Warnatz, T.; Palsson, G. K.; Devishvili, A.; Ukleev, V.; Palisaitis, J.; Persson, P. O. Å.; Hjörvarsson, B.

    2018-05-01

    Polarized neutron reflectometry is used to determine the sequence of magnetic switching in interlayer exchange coupled Fe/MgO(001) superlattices in an applied magnetic field. For 19.6 Å thick MgO layers we obtain a 90∘ periodic magnetic alignment between adjacent Fe layers at remanence. In an increasing applied field the top layer switches first followed by its second-nearest neighbor. For 16.4 Å MgO layers, a 180∘ periodic alignment is obtained at remanence and with increasing applied field the layer switching starts from the two outermost layers and proceeds inwards. This sequential tuneable switching opens up the possibility of designing three-dimensional magnetic structures with a predefined discrete switching sequence.

  17. Fluoride Thin Films: from Exchange Bias to Multferroicity

    NASA Astrophysics Data System (ADS)

    Johnson, Trent A.

    This dissertation concerns research into the growth and characterization fluoride thin films by molecular beam epitaxy. After a discussion of relevant background material and experimental procedures in the first two chapters, we study exchange bias in magnetic multilayers incorporating the uniaxial antiferromagnet FeF2, grown to varying thicknesses, sandwiched between ferromagnetic Co layers with fixed thicknesses of 5 and 20 nm. Several bilayers with only the 20 nm thick Co layer were grown for comparative study. The samples were grown on Al2O3 (112¯0) substrates at room temperature. In-situ RHEED and x-ray diffraction indicated the films were polycrystalline. The films were determined to have low surface and interlayer roughness, as determined by AFM and x-ray reflectivity. After field-cooling to below the Neel temperature of FeF2 in a magnetic field of 1 kOe, magnetic hysteresis loops were measured as a function of temperature. We found that both layers had a negative exchange bias, with the exchange bias of the thinner layer larger than that of the thicker layer. In addition, the coercivity below the blocking temperature TB of the thinner layer was significantly larger than that of the thick layer, even though the coercivity of the two layers was the same for T > TB. The exchange bias effect, manifested by a shift in these hysteresis loops, showed a strong dependence on the thickness of the antiferromagnet. Anisotropic magnetoresistance measurements provided additional insight into the magnetization reversal mechanism within the ferromagnets. The thickness dependent exchange anisotropy of trilayer and bilayer samples is explained by adapting a random field model to the antiferromagnet/ferromagnet interface. Finally, We investigate the temperature dependent growth, as well as the magnetic and ferroelectric properties of thin films of the multiferroic compounds BaMF4, where M = Fe, Co, Ni. The films were grown to thicknesses of 50 or 100 nm on single crystal Al2O3 (0001) substrates. X-ray diffraction showed that this family of films grew epitaxially in the (010) orientation, but were twinned in the plane, with three domain orientations rotated by 120 degrees relative to one another. Measurements of the remanent hysteresis via interdigitated electrodes showed that the compounds M = Co, and Ni were ferroelectric, but no switching behavior was observed in the Fe system at electric fields up to 400 kV/cm. Measurements of the field-cooled and zero-field-cooled magnetic moment confirmed low temperature antiferromagnetic behavior, and found new weak ferromagnetic phases induced by strain.

  18. Magnetization reversal and inverted magnetoresistance of exchange-biased spin valves with a gadolinium layer

    NASA Astrophysics Data System (ADS)

    Milyaev, M.; Naumova, L.; Chernyshova, T.; Proglyado, V.; Kamensky, I.; Krinitsina, T.; Ryabukhina, M.; Ustinov, V.

    2017-03-01

    FeMn-based spin valves with a gadolinium layer have been fabricated by magnetron sputtering. The magnetoresistive properties of the spin valves have been investigated at temperatures of 80-293 K. Temperature-induced switching between low- and high-resistance magnetic states has been revealed. Realization of the low- or high-resistance states depends on which magnetic moment dominates in the exchange-coupled Gd/CoFe, of Gd or CoFe. It has been shown that the switching temperature depends on the thickness of the gadolinium layer.

  19. Variable variance Preisach model for multilayers with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Franco, A. F.; Gonzalez-Fuentes, C.; Morales, R.; Ross, C. A.; Dumas, R.; Åkerman, J.; Garcia, C.

    2016-08-01

    We present a variable variance Preisach model that fully accounts for the different magnetization processes of a multilayer structure with perpendicular magnetic anisotropy by adjusting the evolution of the interaction variance as the magnetization changes. We successfully compare in a quantitative manner the results obtained with this model to experimental hysteresis loops of several [CoFeB/Pd ] n multilayers. The effect of the number of repetitions and the thicknesses of the CoFeB and Pd layers on the magnetization reversal of the multilayer structure is studied, and it is found that many of the observed phenomena can be attributed to an increase of the magnetostatic interactions and subsequent decrease of the size of the magnetic domains. Increasing the CoFeB thickness leads to the disappearance of the perpendicular anisotropy, and such a minimum thickness of the Pd layer is necessary to achieve an out-of-plane magnetization.

  20. Effect of surface state on the oxidation behavior of welded 308L in simulated nominal primary water of PWR

    NASA Astrophysics Data System (ADS)

    Ming, Hongliang; Zhang, Zhiming; Wang, Jiazhen; Zhu, Ruolin; Ding, Jie; Wang, Jianqiu; Han, En-Hou; Ke, Wei

    2015-05-01

    The oxidation behavior of 308L weld metal (WM) with different surface state in the simulated nominal primary water of pressurized water reactor (PWR) was studied by scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) analyzer and X-ray photoelectron spectroscopy (XPS). After 480 h immersion, a duplex oxide film composed of a Fe-rich outer layer (Fe3O4, Fe2O3 and a small amount of NiFe2O4, Ni(OH)2, Cr(OH)3 and (Ni, Fe)Cr2O4) and a Cr-rich inner layer (FeCr2O4 and NiCr2O4) can be formed on the 308L WM samples with different surface state. The surface state has no influence on the phase composition of the oxide films but obviously affects the thickness of the oxide films and the morphology of the oxides (number & size). With increasing the density of dislocations and subgrain boundaries in the cold-worked superficial layer, the thickness of the oxide film, the number and size of the oxides decrease.

  1. Effect of heavy metal layer thickness on spin-orbit torque and current-induced switching in Hf|CoFeB|MgO structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akyol, Mustafa; Jiang, Wanjun; Yu, Guoqiang

    We study the heavy metal layer thickness dependence of the current-induced spin-orbit torque (SOT) in perpendicularly magnetized Hf broken vertical bar CoFeB broken vertical bar MgO multilayer structures. The damping-like (DL) current-induced SOT is determined by vector anomalous Hall effect measurements. A non-monotonic behavior in the DL-SOT is found as a function of the thickness of the heavy-metal layer. The sign of the DL-SOT changes with increasing the thickness of the Hf layer in the trilayer structure. As a result, in the current-driven magnetization switching, the preferred direction of switching for a given current direction changes when the Hf thicknessmore » is increased above similar to 7 nm. Although there might be a couple of reasons for this unexpected behavior in DL-SOT, such as the roughness in the interfaces and/or impurity based electric potential in the heavy metal, one can deduce a roughness dependence sign reversal in DL-SOT in our trilayer structure.« less

  2. Studies on high-moment soft magnetic FeCo/Co thin films

    NASA Astrophysics Data System (ADS)

    Fu, Yu; Yang, Zheng; Matsumoto, Mitsunori; Liu, Xiao-Xi; Morisako, Akimitsu

    2006-06-01

    The dependences of soft magnetic properties and microstructures of the sputtered FeCo (=Fe65Co35) films on Co underlayer thickness tCo, FeCo thickness tFeCo, substrate temperature Ts and target-substrate spacing dT-S are studied. FeCo single layer generally shows a high coercivity with no obvious magnetic anisotropy. Excellent soft magnetic properties with saturation magnetization μ0Ms of 2.35 T and hard axis coercivity Hch of 0.25 kA/m in FeCo films can be achieved by introducing a Co underlayer. It is shown that sandwiching a Co underlayer causes a change in orientation and reduction in grain size from 70 nm to about 10 nm in the FeCo layer. The magnetic softness can be explained by the Hoffmann's ripple theory due to the effect of grain size. The magnetic anisotropy can be controlled by changing dT-S and a maximum of 14.3 kA/m for anisotropic field Hk is obtained with dT-S=18.0 cm.

  3. Study of perpendicular anisotropy L1{sub 0}-FePt pseudo spin valves using a micromagnetic trilayer model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Pin, E-mail: hopin@mit.edu; Data Storage Institute, Agency of Science, Technology and Research - A*STAR, 117608 Singapore; Evans, Richard F. L.

    2015-06-07

    A trilayer micromagnetic model based on the Landau-Lifshitz-Bloch equation of motion is utilized to study the properties of L1{sub 0}-FePt/TiN/L1{sub 0}-FePt pseudo spin valves (PSVs) in direct comparison with experiment. Theoretical studies give an insight on the crystallographic texture, magnetic properties, reversal behavior, interlayer coupling effects, and magneto-transport properties of the PSVs, in particular, with varying thickness of the top L1{sub 0}-FePt and TiN spacer. We show that morphological changes in the FePt layers, induced by varying the FePt layer thickness, lead to different hysteresis behaviors of the samples, caused by changes in the interlayer and intralayer exchange couplings. Suchmore » effects are important for the optimization of the PSVs due to the relationship between the magnetic properties, domain structures, and the magnetoresistance of the device.« less

  4. Magnetotransport properties of spin-valve structures with Mg spacer layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez-Boubeta, C., E-mail: cboubeta@gmail.com; Ferrante, Y.; Graduate School of Excellence, Materials Science in Mainz, 55128 Mainz

    2015-01-19

    A theoretical prediction by Wang et al. [Phys. Rev. B 82, 054405 (2010)] suggests the preferential transmission of majority-spin states with Δ{sub 1} symmetry across a magnesium interlayer in Fe/Mg/MgO/Fe based magnetic tunnel junctions. Here, we report experiments to probe this question in CoFe/Mg/CoFe structures. We find that the strength of the interlayer coupling decays exponentially with increasing the spacer thickness, however, a non-monotonic variation of the magnetoresistance as a function of the Mg layer is observed. These data may help revisit the role of the insertion of a Mg interface layer in MgO-based devices.

  5. Anomalous correlation effects and unique phase diagram of electron-doped FeSe revealed by photoemission spectroscopy

    PubMed Central

    Wen, C. H. P.; Xu, H. C.; Chen, C.; Huang, Z. C.; Lou, X.; Pu, Y. J.; Song, Q.; Xie, B. P.; Abdel-Hafiez, Mahmoud; Chareev, D. A.; Vasiliev, A. N.; Peng, R.; Feng, D. L.

    2016-01-01

    FeSe layer-based superconductors exhibit exotic and distinctive properties. The undoped FeSe shows nematicity and superconductivity, while the heavily electron-doped KxFe2−ySe2 and single-layer FeSe/SrTiO3 possess high superconducting transition temperatures that pose theoretical challenges. However, a comprehensive study on the doping dependence of an FeSe layer-based superconductor is still lacking due to the lack of a clean means of doping control. Through angle-resolved photoemission spectroscopy studies on K-dosed thick FeSe films and FeSe0.93S0.07 bulk crystals, here we reveal the internal connections between these two types of FeSe-based superconductors, and obtain superconductivity below ∼46 K in an FeSe layer under electron doping without interfacial effects. Moreover, we discover an exotic phase diagram of FeSe with electron doping, including a nematic phase, a superconducting dome, a correlation-driven insulating phase and a metallic phase. Such an anomalous phase diagram unveils the remarkable complexity, and highlights the importance of correlations in FeSe layer-based superconductors. PMID:26952215

  6. Role of Cu layer thickness on the magnetic anisotropy of pulsed electrodeposited Ni/Cu/Ni tri-layer

    NASA Astrophysics Data System (ADS)

    Dhanapal, K.; Prabhu, D.; Gopalan, R.; Narayanan, V.; Stephen, A.

    2017-07-01

    The Ni/Cu/Ni tri-layer film with different thickness of Cu layer was deposited using pulsed electrodeposition method. The XRD pattern of all the films show the formation of fcc structure of nickel and copper. This shows the orientated growth in the (2 2 0) plane of the layered films as calculated from the relative intensity ratio. The layer formation in the films were observed from cross sectional view using FE-SEM and confirms the decrease in Cu layer thickness with decreasing deposition time. The magnetic anisotropy behaviour was measured using VSM with two different orientations of layered film. This shows that increasing anisotropy energy with decreasing Cu layer thickness and a maximum of  -5.13  ×  104 J m-3 is observed for copper deposited for 1 min. From the K eff.t versus t plot, development of perpendicular magnetic anisotropy in the layered system is predicted below 0.38 µm copper layer thickness.

  7. Structural changes of macula and optic disk of the fellow eye in patients with nonarteritic anterior ischemic optic neuropathy.

    PubMed

    Duman, R; Yavas, G F; Veliyev, I; Dogan, M; Duman, R

    2018-05-10

    The aim was to assess the ganglion cell complex (GCC) thickness, retinal nerve fiber layer (RNFL) thickness and optic disk features in the affected eyes (AE) and unaffected fellow eyes (FE) of subjects with unilateral nonarteritic anterior ischemic optic neuropathy (NAION) and to compare with healthy control eyes (CE) using spectral domain-optical coherence tomography (SD-OCT). This study included 28 patients and age, sex and refraction-matched 28 control subjects. Mean GCC thickness and peripapillary RNFL thickness in four quadrants measured by cirrus SD-OCT were evaluated in both AE and FE of patients and CE. In addition, optic disk measurements obtained with OCT were evaluated. Mean GCC thickness was significantly lower in AE compared with both FE and CE (P < 0.001), and mean GCC thickness in FE was significantly lower than CE (P = 0.022). In addition, mean RNFL thickness in superior and nasal quadrants significantly decreased in FE compared with CE (P = 0.020 and 0.010, respectively). Furthermore, AE had significantly greater optic disk cupping compared with both FE and CE (P < 0.001). GCC and RNFL thickness decreased significantly at late stages of NAION, in both AE and FE compared with CE, suggesting that some subclinical structural changes may occur in FE despite lack of obvious visual symptoms. In addition, there was no significant difference in optic disk features between the CE and FE. And significantly greater optic disk cupping in the AE compared with both FE and CE supports the acquired enlargement of cupping after the onset of NAION.

  8. Magnetoresistance enhancement in specular, bottom-pinned, Mn83Ir17 spin valves with nano-oxide layers

    NASA Astrophysics Data System (ADS)

    Veloso, A.; Freitas, P. P.; Wei, P.; Barradas, N. P.; Soares, J. C.; Almeida, B.; Sousa, J. B.

    2000-08-01

    Bottom-pinned Mn83Ir17 spin valves with enhanced specular scattering were fabricated, showing magnetoresistance (MR) values up to 13.6%, lower sheet resistance R□ and higher ΔR□. Two nano-oxide layers (NOL) are grown on both sides of the CoFe/Cu/CoFe spin valve structure by natural oxidation or remote plasma oxidation of the starting CoFe layer. Maximum MR enhancement is obtained after just 1 min plasma oxidation. Rutherford backscattering analysis shows that a 15±2 Å oxide layer grows at the expense of the initial (prior to oxidation) CoFe layer, with ˜12% reduction of the initial 40 Å CoFe thickness. X-ray reflectometry indicates that Kiessig fringes become better defined after NOL growth, indicating smoother inner interfaces, in agreement with the observed decrease of the spin valve ferromagnetic Néel coupling.

  9. Nanoscale Inhomogeneous Superconductivity in Fe(Te1-xSex) Probed by Nanostructure Transport.

    PubMed

    Yue, Chunlei; Hu, Jin; Liu, Xue; Sanchez, Ana M; Mao, Zhiqiang; Wei, Jiang

    2016-01-26

    Among iron-based superconductors, the layered iron chalcogenide Fe(Te1-xSex) is structurally the simplest and has attracted considerable attention. It has been speculated from bulk studies that nanoscale inhomogeneous superconductivity may inherently exist in this system. However, this has not been directly observed from nanoscale transport measurements. In this work, through simple micromechanical exfoliation and high-precision low-energy ion milling thinning, we prepared Fe(Te0.5Se0.5) nanoflakes with various thicknesses and systematically studied the correlation between the thickness and superconducting phase transition. Our result revealed a systematic thickness-dependent evolution of superconducting transition. When the thickness of the Fe(Te0.5Se0.5) flake is reduced to less than the characteristic inhomogeneity length (around 12 nm), both the superconducting current path and the metallicity of the normal state in Fe(Te0.5Se0.5) atomic sheets are suppressed. This observation provides the first transport evidence for the nanoscale inhomogeneous nature of superconductivity in Fe(Te1-xSex).

  10. Perpendicular magnetic anisotropy in Mo/Co2FeAl0.5Si0.5/MgO/Mo multilayers with optimal Mo buffer layer thickness

    NASA Astrophysics Data System (ADS)

    Saravanan, L.; Raja, M. Manivel; Prabhu, D.; Pandiyarasan, V.; Ikeda, H.; Therese, H. A.

    2018-05-01

    Perpendicular Magnetic Anisotropy (PMA) was realized in as-deposited Mo(10)/Co2FeAl0.5Si0.5(CFAS)(3)/MgO(0.5)/Mo multilayer stacks with large perpendicular magnetic anisotropy energy (Keff). PMA of this multilayer is found to be strongly dependent on the thickness of the individual CFAS (tCFAS), Mo (tMo) and MgO (tMgO) layers and annealing temperatures. The interactions at the Mo/CFAS/MgO interfaces are critical to induce PMA and are tuned by the interfacial oxidation. The major contribution to PMA is due to iron oxide at the CFAS/MgO interface. X-ray diffraction (XRD) and infrared spectroscopic (FT-IR) studies further ascertain this. However, an adequate oxidation of MgO and the formation of (0 2 4) and (0 1 8) planes of α-Fe2O3 at the optimal Mo buffer layer thickness is mainly inducing PMA in Mo/CFAS/MgO/Mo stack. Microstructural changes in the films are observed by atomic force microscopy (AFM). X-ray photoelectron spectroscopy (XPS) demonstrates the oxidation of CFAS/MgO interface and the formation of Fe-O bonds confirming that the real origin of PMA in Mo/CFAS/MgO is due to hybridization of Fe (3dz2) and O (2pz) orbitals and the resulted spin-orbit interaction at their interface. The half-metallic nature CFAS with Mo layer exhibiting PMA can be a potential candidate as p-MTJs electrodes for the new generation spintronic devices.

  11. The role of the (111) texture on the exchange bias and interlayer coupling effects observed in sputtered NiFe/IrMn/Co trilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castro, I. L.; Nascimento, V. P.; Passamani, E. C.

    2013-05-28

    Magnetic properties of sputtered NiFe/IrMn/Co trilayers grown on different seed layers (Cu or Ta) deposited on Si (100) substrates were investigated by magnetometry and ferromagnetic resonance measurements. Exchange bias effect and magnetic spring behavior have been studied by changing the IrMn thickness. As shown by X-ray diffraction, Ta and Cu seed layers provoke different degrees of (111) fcc-texture that directly affect the exchange bias and indirectly modify the exchange spring coupling behavior. Increasing the IrMn thickness, it was observed that the coupling angle between the Co and NiFe ferromagnetic layers increases for the Cu seed system, but it reduces formore » the Ta case. The results were explained considering (i) different anisotropies of the Co and IrMn layers induced by the different degree of the (111) texture and (ii) the distinct exchange bias set at the NiFe/IrMn and IrMn/Co interfaces in both systems. The NiFe and Co interlayer coupling angle is strongly correlated with both exchange bias and exchange magnetic spring phenomena. It was also shown that the highest exchange bias field occurs when an unstressed L1{sub 2} IrMn structure is stabilized.« less

  12. Determination of intrinsic spin Hall angle in Pt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yi; Deorani, Praveen; Qiu, Xuepeng

    2014-10-13

    The spin Hall angle in Pt is evaluated in Pt/NiFe bilayers by spin torque ferromagnetic resonance measurements and is found to increase with increasing the NiFe thickness. To extract the intrinsic spin Hall angle in Pt by estimating the total spin current injected into NiFe from Pt, the NiFe thickness dependent measurements are performed and the spin diffusion in the NiFe layer is taken into account. The intrinsic spin Hall angle of Pt is determined to be 0.068 at room temperature and is found to be almost constant in the temperature range of 13–300 K.

  13. Preparation and electrical properties of Cr 2O 3 gate insulator embedded with Fe dot

    NASA Astrophysics Data System (ADS)

    Yokota, Takeshi; Kuribayashi, Takaaki; Murata, Shotaro; Gomi, Manabu

    2008-09-01

    We investigated the electrical properties of a metal (Au)/insulator (magneto-electric materials: Cr 2O 3)/magnetic materials (Fe)/tunnel layer (Cr 2O 3)/semiconductor (Si) capacitor. This capacitor shows the typical capacitance-voltage ( C- V) properties of an Si-MIS capacitor with hysteresis depending on the Fe dispersibility which is determined by the deposition condition. The C- V curve of the only sample having a 0.5 nm Fe layer was seen to have a hysteresis window with a clockwise trace, indicating that electrons have been injected into the ultra-thin Fe layer. The samples having Fe layers of other thicknesses show a counterclockwise trace, which indicates that the film has mobile ionic charges due to the dispersed Fe. These results indicated that the charge-injection site, which works as a memory, in the Cr 2O 3 can be prepared by Fe insertion, which is deposited using well-controlled conditions. The results also revealed the possibility of an MIS capacitor containing both ferromagnetic materials and an ME insulating layer in a single system.

  14. Large lattice mismatch effects on the epitaxial growth and magnetic properties of FePt films

    NASA Astrophysics Data System (ADS)

    Deng, Jinyu; Dong, Kaifeng; Yang, Ping; Peng, Yingguo; Ju, Ganping; Hu, Jiangfeng; Chow, Gan Moog; Chen, Jingsheng

    2018-01-01

    Heteroepitaxial film growth is crucial for magnetic and electronic devices. In this work, we reported the effects of the large lattice mismatch and film thickness on the epitaxial growth and magnetic properties of FePt films on ZrxTi1-xN (0 0 1) intermediate layer. FePt films with different thickness were deposited on ZrTiN intermediate layers with various doping concentration of TiN in ZrN. The increase in doping concentration of TiN caused a decrease in the lattice parameters of ZrTiN intermediate layer. It was found that (0 0 1) epitaxy of FePt 10 nm films was only achieved on ZrTiN intermediate layer when the TiN composition was ≥25 vol%, while (0 0 1) texture of 5 nm films was achieved on ZrTiN intermediate layer with a minimum of 50 vol% TiN composition. The in-plane lattice constants of FePt and Zr0.70Ti0.30N (25 vol% TiN) were 3.870 Å and 4.476 Å, respectively, which resulted in a lattice mismatch as large as 15.7%. These large lattice mismatch heterostructures adopted 7/6 domain matching epitaxy. The magneto-crystalline anisotropy of FePt films was improved with the increase in lattice mismatch. Intrinsic magnetic properties were extrapolated for FePt (30 nm)/Zr0.70Ti0.30N (30 nm)/TaN (30 nm)/MgO, and the Ms(0 K) and K1(0 K) were 1042 emu/cc and 5.10 × 107 erg/cc, respectively, which is comparable to that of bulk L10 FePt.

  15. Magnetic and structural characterization of ultra-thin Fe (222) films

    NASA Astrophysics Data System (ADS)

    Loving, Melissa G.; Brown, Emily E.; Rizzo, Nicholas D.; Ambrose, Thomas F.

    2018-05-01

    Varied thickness body centered cubic (BCC) ultrathin Fe films (10-50Å) have been sputter deposited onto Si (111) substrates. BCC Fe with the novel (222) texture was obtained by H- terminating the Si (111) starting substrate then immediately depositing the magnetic films. Structural results derived from grazing incidence x-ray diffraction and x-ray reflectivity confirm the crystallographic texture, film thickness, and interface roughness. Magnetic results indicate that Fe (222) exhibits soft magnetic switching (easy axis), high anisotropy (hard axis), which is maintained across the thickness range, and a positive magnetostriction (for the thicker film layers). The observed soft magnetic switching in this system makes it an ideal candidate for future magnetic memory development as well as other microelectronics applications that utilize magnetic materials.

  16. Brillouin light scattering study of Fe 15 Å /Pd x multilayers

    NASA Astrophysics Data System (ADS)

    From, M.; Cheng, Li; Altounian, Zaven

    2004-03-01

    Brillouin light scattering (BLS) measurements have been carried out on a series of sputtered Fe/Pd multilayers. The Fe thickness in all samples was 15 Å and the Pd spacer thickness ranged from 6 to 43 Å. We compared the composition and magnetic field dependence of the BLS spectra with a single parameter fit of a new BLS model calculation by John Cochran (Phys. Rev. B 64 (2001) 134406). The data are consistent with a surface anisotropy fit parameter of KS=0.35±0.05 ergs/cm 2 except at the thinnest Pd thickness where it is perhaps not surprising that there is some discrepancy with the model since it assumes zero intermixing between the Fe and Pd layers.

  17. Adhesive and Cohesive Strength in FeB/Fe2B Systems

    NASA Astrophysics Data System (ADS)

    Meneses-Amador, A.; Blancas-Pérez, D.; Corpus-Mejía, R.; Rodríguez-Castro, G. A.; Martínez-Trinidad, J.; Jiménez-Tinoco, L. F.

    2018-05-01

    In this work, FeB/Fe2B systems were evaluated by the scratch test. The powder-pack boriding process was performed on the surface of AISI M2 steel. The mechanical parameters, such as yield stress and Young's modulus of the boride layer, were obtained by the instrumented indentation technique. Residual stresses produced on the boride layer were estimated by using the x-ray diffraction (XRD) technique. The scratch test was performed in order to evaluate the cohesive/adhesive strength of the FeB/Fe2B coating. In addition, a numerical evaluation of the scratch test on boride layers was performed by the finite element method. Maximum principal stresses were related to the failure mechanisms observed by the experimental scratch test. Shear stresses at the interfaces of the FeB/Fe2B/substrate system were also evaluated. Finally, the results obtained provide essential information about the effect of the layer thickness, the residual stresses, and the resilience modulus on the cohesive/adhesive strength in FeB/Fe2B systems.

  18. Spin-orbit torque in Cr/CoFeAl/MgO and Ru/CoFeAl/MgO epitaxial magnetic heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wen, Zhenchao; Kim, Junyeon; Sukegawa, Hiroaki

    2016-05-15

    We study the spin-orbit torque (SOT) effective fields in Cr/CoFeAl/MgO and Ru/CoFeAl/MgO magnetic heterostructures using the adiabatic harmonic Hall measurement. High-quality perpendicular-magnetic-anisotropy CoFeAl layers were grown on Cr and Ru layers. The magnitudes of the SOT effective fields were found to significantly depend on the underlayer material (Cr or Ru) as well as their thicknesses. The damping-like longitudinal effective field (ΔH{sub L}) increases with increasing underlayer thickness for all heterostructures. In contrast, the field-like transverse effective field (ΔH{sub T}) increases with increasing Ru thickness while it is almost constant or slightly decreases with increasing Cr thickness. The sign of ΔH{submore » L} observed in the Cr-underlayer devices is opposite from that in the Ru-underlayer devices while ΔH{sub T} shows the same sign with a small magnitude. The opposite directions of ΔH{sub L} indicate that the signs of spin Hall angle in Cr and Ru are opposite, which are in good agreement with theoretical predictions. These results show sizable contribution from SOT even for elements with small spin orbit coupling such as 3d Cr and 4d Ru.« less

  19. Effects of thickness and annealing condition on magnetic properties and thermal stabilities of Ta/Nd/NdFeB/Nd/Ta sandwiched films

    NASA Astrophysics Data System (ADS)

    Liu, Wen-Feng; Zhang, Min-Gang; Zhang, Ke-Wei; Zhang, Hai-Jie; Xu, Xiao-Hong; Chai, Yue-Sheng

    2016-11-01

    Ta/Nd/NdFeB/Nd/Ta sandwiched films are deposited by magnetron sputtering on Si (100) substrates, and subsequently annealed in vacuum at different temperatures for different time. It is found that both the thickness of NdFeB and Nd layer and the annealing condition can affect the magnetic properties of Ta/Nd/NdFeB/Nd/Ta films. Interestingly, the thickness and annealing temperature show the relevant behaviors that can affect the magnetic properties of the film. The high coercivity of 24.1 kOe (1 Oe = 79.5775 A/m) and remanence ratio (remanent magnetization/saturation magnetization) of 0.94 can be obtained in a Ta/Nd(250 nm)/NdFeB(600 nm)/Nd(250 nm)/Ta film annealed for 3 min at 1023 K. In addition, the thermal stability of the film is also linked to the thickness of NdFeB and Nd layer and the annealing temperature as well. The excellent thermal stability can be achieved in a Ta/Nd(250 nm)/NdFeB(600 nm)/Nd(250 nm)/Ta film annealed at 1023 K. Program supported by the National Natural Science Foundation of China (Grant No. 51305290), the Higher Education Technical Innovation Project of Shanxi Province, China (Grant No. 2013133), the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals of Shanxi Province, China (Grant No. 2015003), and the Program for the Key Team of Scientific and Technological Innovation of Shanxi Province, China (Grant No. 2013131009).

  20. Surfactant properties of oxygen in the homoepitaxial growth of Fe: a MDS study

    NASA Astrophysics Data System (ADS)

    Moroni, R.; Bisio, F.; Gussoni, A.; Canepa, M.; Mattera, L.

    2001-06-01

    The growth of ultra thin iron films (up to a thickness of 5-6 ML) on O(1×1)-Fe/Ag(0 0 1) has been investigated by means of He reflectivity ( RHe) and metastable de-excitation spectroscopy. The presence of oxygen induces a quasi-ideal layer-by-layer growth at variance with the case of the homoepitaxial growth of iron on Fe(0 0 1). The surface electronic density of states suddenly changes upon the deposition of the first half of a monolayer. After the sudden change in the first stages of the growth, the surface density of states of both O 2p and Fe 3d states remains essentially unchanged, irrespectively of the thickness of the deposited film. This provides a clear indication that oxygen floats at the surface acting as a surfactant for the growth of iron on O(1×1)-Fe/Ag(0 0 1). The stationary fraction of oxygen that remains on the topmost layer as growth proceeds depends on the substrate temperature. Post-growth annealing up to 650 K restores the initial coverage of oxygen and the ordered O(1×1) phase.

  1. Interface or bulk scattering in the semiclassical theory for spin valves

    NASA Astrophysics Data System (ADS)

    Wang, L.; McMahon, W. J.; Liu, B.; Wu, Y. H.; Chong, C. T.

    2004-06-01

    By taking into account spin asymmetries of the interface transmissions and the bulk mean free paths, we have treated pure interface, non-pure interface, bulk, and interface plus bulk scattering within the semiclassical Boltzmann theory. First, the optimizations of NOL (nano-oxide-layers) insertions in bottom, synthetic, and dual spin valves and the variations of the giant magnetoresistance (GMR) with the thickness of the free layer have been examined. For non-pure interface, bulk, and interface plus bulk scattering, qualitative trends of GMR versus NOL positions in spin valves are similar to each other. For pure interface scattering, there is no optimized NOL insertion positions and the blocking effect of the NOL inserted in the spacer remains effective as other three kinds of scattering. The GMR ratio for bulk scattering simply approaches zero when the free layer thickness becomes short; in contrast, for interface scattering or interface plus bulk scattering, the GMR ratio is nonzero at zero thickness of the free layer. Second, the relationships between GMR and specular and diffusive scattering have been explored. As far as specular reflection is concerned, our results imply that for a realistic bottom spin filter spin valve, Ta/NiFe/IrMn/CoFe/Cu/CoFe/Cu/Ta, roughness of the surfaces of Ta and the interfaces of Ta/NiFe, NiFe/IrMn, pinned layer/spacer, and spacer/free layer may lead to large GMR. We also find that the enhancement of GMR due to surface specular reflection is only a pure interface effect. The dependences of GMR on the specular transmissions roughly follow square relations. The trends of GMR against the spin-down diffusive scattering depend on the values of the spin-up transmission. Finally, impurity scattering was investigated and our semiclassical results are in qualitative agreement with the experiments and the quantum theory.

  2. Evidence of a reduction reaction of oxidized iron/cobalt by boron atoms diffused toward naturally oxidized surface of CoFeB layer during annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, Soshi, E-mail: sato.soshi@cies.tohoku.ac.jp; Honjo, Hiroaki; Niwa, Masaaki

    2015-04-06

    We have investigated the redox reaction on the surface of Ta/CoFeB/MgO/CoFeB magnetic tunnel junction stack samples after annealing at 300, 350, and 400 °C for 1 h using angle-resolved X-ray photoelectron spectroscopy for precise analysis of the chemical bonding states. At a capping tantalum layer thickness of 1 nm, both the capping tantalum layer and the surface of the underneath CoFeB layer in the as-deposited stack sample were naturally oxidized. By comparison of the Co 2p and Fe 2p spectra among the as-deposited and annealed samples, reduction of the naturally oxidized cobalt and iron atoms occurred on the surface of the CoFeB layer.more » The reduction reaction was more significant at higher annealing temperature. Oxidized cobalt and iron were reduced by boron atoms that diffused toward the surface of the top CoFeB layer. A single CoFeB layer was prepared on SiO{sub 2}, and a confirmatory evidence of the redox reaction with boron diffusion was obtained by angle-resolved X-ray photoelectron spectroscopy analysis of the naturally oxidized surface of the CoFeB single layer after annealing. The redox reaction is theoretically reasonable based on the Ellingham diagram.« less

  3. Characterization of oxide scales grown on alloy 310S stainless steel after long term exposure to supercritical water at 500 °C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behnamian, Yashar, E-mail: behnamia@ualberta.ca

    The oxide scale grown of static capsules made of alloy 310S stainless steel was investigated by exposure to the supercritical water at 500 °C 25 MPa for various exposure times up to 20,000 h. Characterization techniques such as X-ray diffraction, scanning/transmission electron microscopy, energy dispersive spectroscopy, and fast Fourier transformation were employed on the oxide scales. The elemental and phase analyses indicated that long term exposure to the SCW resulted in the formation of scales identified as Fe{sub 3}O{sub 4} (outer layer), Fe-Cr spinel (inner layer), Cr{sub 2}O{sub 3} (transition layer) on the substrate, and Ni-enrichment (chrome depleted region) inmore » the alloy 310S. It was found that the layer thickness and weight gain vs. exposure time followed parabolic law. The oxidation mechanism and scales grown on the alloy 310S stainless steel exposed to SCW are discussed. - Highlights: •Oxidation of alloy 310S stainless steel exposed to SCW (500 °C/25 MPa) •The layer thickness and weight gain vs. exposure time followed parabolic law. •Oxide layers including Fe{sub 3}O{sub 4} (outer), Fe-Cr spinel (inner) and Cr{sub 2}O{sub 3} (transition) •Ni element is segregated by the selective oxidation of Cr.« less

  4. Multiple antiferromagnet/ferromagnet interfaces as a probe of grain-size-dependent exchange bias in polycrystalline Co/Fe 50Mn 50

    NASA Astrophysics Data System (ADS)

    Bolon, Bruce T.; Haugen, M. A.; Abin-Fuentes, A.; Deneen, J.; Carter, C. B.; Leighton, C.

    2007-02-01

    We have used ferromagnet/antiferromagnet/ferromagnet trilayers and ferromagnet/antiferromagnet multilayers to probe the grain size dependence of exchange bias in polycrystalline Co/Fe 50Mn 50. X-ray diffraction and transmission electron microscopy show that the Fe 50Mn 50 (FeMn) grain size increases with increasing FeMn thickness in the Co (30 Å)/FeMn system. Hence, in Co(30 Å)/FeMn( tAF Å)/Co(30 Å) trilayers the two Co layers sample different FeMn grain sizes at the two antiferromagnet/ferromagnet interfaces. For FeMn thicknesses above 100 Å, where simple bilayers have a thickness-independent exchange bias, we are therefore able to deduce the influence of FeMn grain size on the exchange bias and coercivity (and their temperature dependence) simply by measuring trilayer and multilayer samples with varying FeMn thicknesses. This can be done while maintaining the (1 1 1) orientation, and with little variation in interface roughness. Increasing the average grain size from 90 to 135 Å results in a fourfold decrease in exchange bias, following an inverse grain size dependence. We interpret the results as being due to a decrease in uncompensated spin density with increasing antiferromagnet grain size, further evidence for the importance of defect-generated uncompensated spins.

  5. Ruthenium nano-oxide layer in CoFe-Ru-CoFe trilayer system: An x-ray reflectivity study

    NASA Astrophysics Data System (ADS)

    Asgharizadeh, S.; Sutton, M.; Altounian, Z.; Mao, M.; Lee, C. L.

    2008-05-01

    A grazing incidence x-ray reflectivity technique is used to determine the electron density profile as a function of depth in CoFe-Ru-CoFe and CoFe-Ru nano-oxide layer (NOL)-CoFe trilayers. Four trilayers with ruthenium thicknesses of 8, 8.5, and 9Å and one with Ru 8.5Å NOL, prepared by a dc planetary sputtering system, were investigated. For all samples, the electron density profile (EDP) shows a central peak that is related to the Ru layer. Natural oxidation in all of the samples introduces a graded EDP of the top CoFe layers, which decreases gradually to zero. The large surface resistivity of Ru 8.5Å NOL as compared to Ru 8.5Å is related to the remarkable difference between their EDPs. EDP changes have also been investigated in Ru NOL trilayers after annealing at 280°C. The Ru phase in the EDP was observed to confirm the thermal stability of the spacer layer after annealing.

  6. Application of laser in seam welding of dissimilar steel to aluminium joints for thick structural components

    NASA Astrophysics Data System (ADS)

    Meco, S.; Pardal, G.; Ganguly, S.; Williams, S.; McPherson, N.

    2015-04-01

    Laser welding-brazing technique, using a continuous wave (CW) fibre laser with 8000 W of maximum power, was applied in conduction mode to join 2 mm thick steel (XF350) to 6 mm thick aluminium (AA5083-H22), in a lap joint configuration with steel on the top. The steel surface was irradiated by the laser and the heat was conducted through the steel plate to the steel-aluminium interface, where the aluminium melts and wets the steel surface. The welded samples were defect free and the weld micrographs revealed presence of a brittle intermetallic compounds (IMC) layer resulting from reaction of Fe and Al atoms. Energy Dispersive Spectroscopy (EDS) analysis indicated the stoichiometry of the IMC as Fe2Al5 and FeAl3, the former with maximum microhardness measured of 1145 HV 0.025/10. The IMC layer thickness varied between 4 to 21 μm depending upon the laser processing parameters. The IMC layer showed an exponential growth pattern with the applied specific point energy (Esp) at a constant power density (PD). Higher PD values accelerate the IMC layer growth. The mechanical shear strength showed a narrow band of variation in all the samples (with the maximum value registered at 31.3 kN), with a marginal increase in the applied Esp. This could be explained by the fact that increasing the Esp results into an increase in the wetting and thereby the bonded area in the steel-aluminium interface.

  7. Research on microstructure properties of the TiC/Ni-Fe-Al coating prepared by laser cladding technology

    NASA Astrophysics Data System (ADS)

    Jiao, Junke; Xu, Zifa; Zan, Shaoping; Zhang, Wenwu; Sheng, Liyuan

    2017-10-01

    In this paper, the laser cladding method was used to preparation the TiC reinforced Ni-Fe-Al coating on the Ni base superalloy. The Ti/Ni-Fe-Al powder was preset on the Ni base superalloy and the powder layer thickness is 0.5mm. A fiber laser was used the melting Ti/Ni-Fe-Al powder in an inert gas environment. The shape of the cladding layer was tested using laser scanning confocal microscope (LSCM) under different cladding parameters such as the laser power, the melting velocity and the defocused amount. The microstructure, the micro-hardness was tested by LSCM, SEM, Vickers hardness tester. The test result showed that the TiC particles was distributed uniformly in the cladding layer and hardness of the cladding layer was improved from 180HV to 320HV compared with the Ni-Fe-Al cladding layer without TiC powder reinforced, and a metallurgical bonding was produced between the cladding layer and the base metal. The TiC powder could make the Ni-Fe-Al cladding layer grain refining, and the more TiC powder added in the Ni-Fe-Al powder, the smaller grain size was in the cladding layer.

  8. Current-perpendicular-to-the-plane magnetoresistance from large interfacial spin-dependent scattering between Co{sub 50}Fe{sub 50} magnetic layer and In-Zn-O conductive oxide spacer layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakatani, T. M., E-mail: Tomoya.Nakatani@hgst.com; Childress, J. R.

    2015-06-28

    We have investigated electrically conductive indium-zinc-oxide (IZO) deposited by magnetron sputtering as spacer layer for current-perpendicular-to-the-plane giant magnetoresistance sensor devices. Spin-valves with a Co{sub 50}Fe{sub 50}/IZO/Co{sub 50}Fe{sub 50} trilayer showed resistance-area product (RA) ranging from 110 to 250 mΩ μm{sup 2}, significantly larger than all-metal structures with Ag or Cu spacers (∼40 mΩ μm{sup 2}). Magnetoresistance ratios (ΔR/R) of 2.5% to 5.5% depending on the IZO spacer thickness (1.5–6.0 nm), corresponding to ΔRA values from 3 to 13 mΩ μm{sup 2}, were obtained. The values of ΔRA with the IZO spacers and Co{sub 50}Fe{sub 50} magnetic layers were significantly larger than thosemore » with conventional metal spacers and Co{sub 50}Fe{sub 50} magnetic layers (∼1–2 mΩ μm{sup 2}). The dependence of ΔRA on the magnetic layer thickness suggests that the larger ΔRA obtained with IZO spacer is due to a large interfacial spin-dependent scattering caused by the large specific resistance at the Co{sub 50}Fe{sub 50}/IZO interface. From structural characterization by TEM and the observed dependence of the RA dispersion on device size, the electric current flowing through the IZO spacer is thought to be laterally uniform, similar to normal metal spacers.« less

  9. Increased magnetic damping in ultrathin films of Co2FeAl with perpendicular anisotropy

    NASA Astrophysics Data System (ADS)

    Takahashi, Y. K.; Miura, Y.; Choi, R.; Ohkubo, T.; Wen, Z. C.; Ishioka, K.; Mandal, R.; Medapalli, R.; Sukegawa, H.; Mitani, S.; Fullerton, E. E.; Hono, K.

    2017-06-01

    We estimated the magnetic damping constant α of Co2FeAl (CFA) Heusler alloy films of different thicknesses with an MgO capping layer by means of time-resolved magneto-optical Kerr effect and ferromagnetic resonance measurements. CFA films with thicknesses of 1.2 nm and below exhibited perpendicular magnetic anisotropy arising from the presence of the interface with MgO. While α increased gradually with decreasing CFA film thickness down to 1.2 nm, it was increased substantially when the thickness was reduced further to 1.0 nm. Based on the microstructure analyses and first-principles calculations, we attributed the origin of the large α in the ultrathin CFA film primarily to the Al deficiency in the CFA layer, which caused an increase in the density of states and thereby in the scatterings of their spins.

  10. Magnetic anisotropies and rotational hysteresis in Ni81Fe19/Fe50Mn50 films: A study by torque magnetometry and anisotropic magnetoresistance

    NASA Astrophysics Data System (ADS)

    da Silva, O. E.; de Siqueira, J. V.; Kern, P. R.; Garcia, W. J. S.; Beck, F.; Rigue, J. N.; Carara, M.

    2018-04-01

    Exchange bias properties of NiFe/FeMn thin films have been investigated through X-ray diffraction, hysteresis loops, angular measurements of anisotropic magnetoresistance (AMR) and magnetic torque. As first predicted by Meiklejohn and Bean we found a decrease on the bias field as the NiFe layer thickness increases. However such reduction is not as strong as expected and it was attributed to the increase on the number of uncompensed antiferromagnetic spins resulting from the increase on the number of FeMn grains at the interface as the thickness of the NiFe layer is increased. The angular evolution of AMR and the magnetic torque were calculated and compared to the experimental ones using the minimization of the free magnetic energy and finding the magnetization equilibrium angle. The free energy, for each grain of the polycrystalline sample, is composed by the following terms: Zeeman, uniaxial, unidirectional and the rotatable energies. While from the AMR curves we obtain stable anisotropy fields independently on the measuring fields, from the torque curves we obtain increasing values of the uniaxial and rotatable fields, as the measuring field is increased. These results were attributed to the physical origin and sensitivity of the two different techniques. Magnetoresistance is mainly sensitive to the inner portion of the ferromagnetic layer, and the torque brings out information of the whole ferromagnetic layer including the interface of the layers. In this way, we believe that the increase in the uniaxial and rotatable values were due to an increase on the volume of the ferromagnetic layer, near the interfaces, which is made to rotate with the measuring field. Studying the rotational hysteresis by both techniques allows to separately obtain the contributions coming from the inner portion of ferromagnetic layer and from the interface.

  11. Dose dependence of radiation damage in nano-structured amorphous SiOC/crystalline Fe composite

    DOE PAGES

    Su, Qing; Price, Lloyd; Shao, Lin; ...

    2015-10-29

    Here, through examination of radiation tolerance properties of amorphous silicon oxycarbide (SiOC) and crystalline Fe composite to averaged damage levels, from approximately 8 to 30 displacements per atom (dpa), we demonstrated that the Fe/SiOC interface and the Fe/amorphous Fe xSi yO z interface act as efficient defect sinks and promote the recombination of vacancies and interstitials. For thick Fe/SiOC multilayers, a clear Fe/SiOC interface remained and no irradiation-induced mixing was observed even after 32 dpa. For thin Fe/SiOC multilayers, an amorphous Fe xSi yO z intermixed layer was observed to form at 8 dpa, but no further layer growth wasmore » observed for higher dpa levels.« less

  12. Brillouin Light Scattering study of Fe/Pd multilayers

    NASA Astrophysics Data System (ADS)

    From, Milton; Cheng, Li; Altounian, Zaven

    2002-03-01

    We have performed a series of Brillouin light scattering (BLS) measurements on sputtered multilayers in order to test a recent calculation[1] that predicts that the majority of spin-wave modes present in a magnetic multilayer will not be seen by BLS due to destructive interference between light scattered by different layers in the structure. We have measured the BLS spectra of a series of Si(100) + Pdx + [Fe/Pdx] x 25 sputtered multilayers. The thickness of the Fe layers was 1.5 nm and the Pd thicknesses examined were x = 0.5nm, 1.0nm, 1.5nm, 2.5nm, and 4.0nm. The BLS instrument used was a 4-pass Fabry-Perot interferometer operated in the back-scattering geometry with 514.5 nm laser light. We obtain good 2-parameter fits of the model calculation to the data for all values of Pd thickness and for applied magnetic fields in the range 0 < H < 0.7 T. [1]J.F. Cochran, Phys Rev B, vol. 64, 134406 (2001)

  13. Structural Secrets of Multiferroic Interfaces

    NASA Astrophysics Data System (ADS)

    Meyerheim, H. L.; Klimenta, F.; Ernst, A.; Mohseni, K.; Ostanin, S.; Fechner, M.; Parihar, S.; Maznichenko, I. V.; Mertig, I.; Kirschner, J.

    2011-02-01

    We present an experimental and theoretical study of the geometric structure of ultrathin BaTiO3 films grown on Fe(001). Surface x-ray diffraction reveals that the films are terminated by a BaO layer, while the TiO2 layer is next to the top Fe layer. Cations in termination layers have incomplete oxygen shells inducing strong vertical relaxations. Onset of polarization is observed at a minimum thickness of two unit cells. Our findings are supported by first-principles calculations providing a quantitative insight into the multiferroic properties on the atomic scale.

  14. Magnetic behaviour of multisegmented FeCoCu/Cu electrodeposited nanowires

    NASA Astrophysics Data System (ADS)

    Núñez, A.; Pérez, L.; Abuín, M.; Araujo, J. P.; Proenca, M. P.

    2017-04-01

    Understanding the magnetic behaviour of multisegmented nanowires (NWs) is a major key for the application of such structures in future devices. In this work, magnetic/non-magnetic arrays of FeCoCu/Cu multilayered NWs electrodeposited in nanoporous alumina templates are studied. Contrarily to most reports on multilayered NWs, the magnetic layer thickness was kept constant (30 nm) and only the non-magnetic layer thickness was changed (0 to 80 nm). This allowed us to tune the interwire and intrawire interactions between the magnetic layers in the NW array creating a three-dimensional (3D) magnetic system without the need to change the template characteristics. Magnetic hysteresis loops, measured with the applied field parallel and perpendicular to the NWs’ long axis, showed the effect of the non-magnetic Cu layer on the overall magnetic properties of the NW arrays. In particular, introducing Cu layers along the magnetic NW axis creates domain wall nucleation sites that facilitate the magnetization reversal of the wires, as seen by the decrease in the parallel coercivity and the reduction of the perpendicular saturation field. By further increasing the Cu layer thickness, the interactions between the magnetic segments, both along the NW axis and of neighbouring NWs, decrease, thus rising again the parallel coercivity and the perpendicular saturation field. This work shows how one can easily tune the parallel and perpendicular magnetic properties of a 3D magnetic layer system by adjusting the non-magnetic layer thickness.

  15. Fabrication of novel chitosan/PAN/magnetic ZSM-5 zeolite coated sponges for absorption of oil from water surfaces.

    PubMed

    Samadi, Saman; Yazd, Shabnam Sharif; Abdoli, Hossein; Jafari, Pooya; Aliabadi, Majid

    2017-12-01

    In the present study, the chitosan (bottom layer)/polyacrylonitrile (top layer, PAN) nanofibers were coated on the sponge surface. The synthesized magnetic Fe 3 O 4 - ZSM-5 nanozeolites have been loaded into the chitosan/PAN nanofibers to increase the performance of nanofibers toward absorption of lubricating oil, motor oil and pump oil from water surfaces. Scanning electron microscope (SEM), Transmission electron microscope (TEM) and X-ray diffraction (XRD) analysis were used to characterize the synthesized nanozeolites. The morphology and wettability of nanofibers were determined using SEM and water contact angle tests. The influence of Fe 3 O 4 - ZSM-5 nanozeolite content and chitosan/PAN/Fe 3 O 4 - ZSM-5 nanofiber thickness was evaluated on the potential of sponges for oils absorption. The maximum capacity of the chitosan/PAN/Fe 3 O 4 - ZSM-5 nanofibers coated sponges for absorption of motor oil, lubricating oil and pump oil was found to be 99.4, 95.3 and 88.1g/g, in Fe 3 O 4 - ZSM-5 2wt.% and nanofiber thickness of 12μm (chitosan layer of 2μm and PAN layer of 10μm). The reusability of nanofibrous sponges showed that the hydrophobic chitosan/PAN/Fe 3 O 4 - ZSM-5 nanofibers coated sponges can be easily reused in water-oil separation for many cycles. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Double-pinned magnetic tunnel junction sensors with spin-valve-like sensing layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Z. H.; Huang, L.; Feng, J. F., E-mail: jiafengfeng@iphy.ac.cn

    2015-08-07

    MgO magnetic tunnel junction (MTJ) sensors with spin-valve-like sensing layers of Ir{sub 22}Mn{sub 78} (6)/Ni{sub 80}Fe{sub 20} (t{sub NiFe} = 20–70)/Ru (0.9)/Co{sub 40}Fe{sub 40}B{sub 20} (3) (unit: nm) have been fabricated. A linear field dependence of magnetoresistance for these MTJ sensors was obtained by carrying out a two-step field annealing process. The sensitivity and linear field range can be tuned by varying the thickness of NiFe layer and annealing temperature, and a high sensitivity of 37%/mT has been achieved in the MTJ sensors with 70 nm NiFe at the optimum annealing temperature of 230 °C. Combining the spin-valve-like sensing structure and a soft magneticmore » NiFe layer, MTJ sensors with relatively wide field sensing range have been achieved and could be promising for showing high sensitivity magnetic field sensing applications.« less

  17. Effects of channel thickness on oxide thin film transistor with double-stacked channel layer

    NASA Astrophysics Data System (ADS)

    Lee, Kimoon; Kim, Yong-Hoon; Yoon, Sung-Min; Kim, Jiwan; Oh, Min Suk

    2017-11-01

    To improve the field effect mobility and control the threshold voltage ( V th ) of oxide thin film transistors (TFTs), we fabricated the oxide TFTs with double-stacked channel layers which consist of thick Zn-Sn-O (ZTO) and very thin In-Zn-O (IZO) layers. We investigated the effects of the thickness of thin conductive layer and the conductivity of thick layer on oxide TFTs with doublestacked channel layer. When we changed the thickness of thin conductive IZO channel layer, the resistivity values were changed. This resistivity of thin channel layer affected on the saturation field effect mobility and the off current of TFTs. In case of the thick ZTO channel layer which was deposited by sputtering in Ar: O2 = 10: 1, the device showed better performances than that which was deposited in Ar: O2 = 1: 1. Our TFTs showed high mobility ( μ FE ) of 40.7 cm2/Vs and V th of 4.3 V. We assumed that high mobility and the controlled V th were caused by thin conductive IZO layer and thick stable ZTO layer. Therefore, this double-stacked channel structure can be very promising way to improve the electrical characteristics of various oxide thin film transistors.

  18. TEM and AES investigations of the natural surface nano-oxide layer of an AISI 316L stainless steel microfibre.

    PubMed

    Ramachandran, Dhanya; Egoavil, Ricardo; Crabbe, Amandine; Hauffman, Tom; Abakumov, Artem; Verbeeck, Johan; Vandendael, Isabelle; Terryn, Herman; Schryvers, Dominique

    2016-11-01

    The chemical composition, nanostructure and electronic structure of nanosized oxide scales naturally formed on the surface of AISI 316L stainless steel microfibres used for strengthening of composite materials have been characterised using a combination of scanning and transmission electron microscopy with energy-dispersive X-ray, electron energy loss and Auger spectroscopy. The analysis reveals the presence of three sublayers within the total surface oxide scale of 5.0-6.7 nm thick: an outer oxide layer rich in a mixture of FeO.Fe 2 O 3 , an intermediate layer rich in Cr 2 O 3 with a mixture of FeO.Fe 2 O 3 and an inner oxide layer rich in nickel. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  19. Dependence of Interfacial Dzyaloshinskii-Moriya Interaction on Layer Thicknesses in Ta /Co -Fe -B /TaOx Heterostructures from Brillouin Light Scattering

    NASA Astrophysics Data System (ADS)

    Chaurasiya, Avinash Kumar; Choudhury, Samiran; Sinha, Jaivardhan; Barman, Anjan

    2018-01-01

    The interfacial Dzyaloshinskii-Moriya interaction (IDMI) has recently drawn extensive research interest due to its fundamental role in stabilizing chiral spin textures in ultrathin ferromagnets, which are suitable candidates for future magnetic-memory devices. Here, we explore the ferromagnetic and heavy-metal layer-thickness dependence of IDMI in technologically important Ta /Co20Fe60B20/TaOx heterostructures by measuring nonreciprocity in spin-wave frequency using the Brillouin light-scattering technique. The observed value of the IDMI constant agrees with that obtained from a separate measurement of in-plane angular dependence of frequency nonreciprocity, which is also in good agreement with the theory predicted by Cortes-Ortuno and Landeros. Linear scaling behavior of IDMI with the inverse of Co-Fe-B thicknesses suggests that IDMI originates primarily from the interface in these heterostructures, whereas we observe a weak dependence of Ta thickness on the strength of IDMI. Importantly, the observed value of the IDMI constant is reasonably large by a factor of 3 compared to annealed Ta /Co -Fe -B /MgO heterostructures. We propose that the observation of large IDMI is likely due to the absence of boron diffusion towards the Ta /Co -Fe -B interface as the heterostructures are as deposited. Our detailed investigation opens up a route to designing thin-film heterostructures with the tailored IDMI constant for controlling Skyrmion-based magnetic-memory devices.

  20. Optimizing the dual elemental thermal reactive deposition time in carbide layer formation on SUJ2 tool steel

    NASA Astrophysics Data System (ADS)

    Mochtar, Myrna Ariati; Putra, Wahyuaji Narottama; Mahardika, Bayu

    2018-05-01

    This paper presents developments contributing to the improvement of thermo-reactive deposition (TRD) process in producing hard carbide layers, on automotive components application. The problem in using FeV powder as a coating material that has been applied in the industries is it is high cost. In this study, FeCr powder coating material was mixed into FeV powder with a ratio of 35:65 weight percent. The SUJ2 steel pins components are processed at 980° C, with varying TRD time was 4,6,8 and 10 hours. Scanning Electron microscope (SEM), Electron Probe Micro Analyzer (EPMA) and X-ray diffraction (XRD) were applied to analyze the coating layers. The thickness of the carbide layer formed will increase with the longer processing time, which thickness at 4-10 hours is increase from 22.7 to 29.7 micron. The gained thickness tends to be homogeneous. Increasing the TRD process holding time results in a higher hardness of the carbide layerwith hardness at 4, 6, 8 and 10 hours is 2049, 2184, 2175 and 2343 HV. The wear rate at TRD holding time of 4-10 hours with the Ogoshi method was reduced from 5.1 × 10-4 mm3/m to 2.5 × 10-4 mm3/m. Optical microscope observations shows that substrate phases consisting of pearlite and cementite and grains that tend to enlarge with the addition of time. Carbide compounds that are formed are vanadium carbide (V8C7, V6C5, V2C) and chromium carbide (Cr3C2, Cr23C7, Cr3C7). While EDS-Linescan results show complex phase (Fe, V, Cr) xC formed. The research shows that addition of FeCr into FeV powder in TRD process in 980°C with optimum time of 10 hours processing meet the mechanical properties requirement of automotive components.

  1. Magnetic moments, coupling, and interface interdiffusion in Fe/V(001) superlattices

    NASA Astrophysics Data System (ADS)

    Schwickert, M. M.; Coehoorn, R.; Tomaz, M. A.; Mayo, E.; Lederman, D.; O'brien, W. L.; Lin, Tao; Harp, G. R.

    1998-06-01

    Epitaxial Fe/V(001) multilayers are studied both experimentally and by theoretical calculations. Sputter-deposited epitaxial films are characterized by x-ray diffraction, magneto-optical Kerr effect, and x-ray magnetic circular dichroism. These results are compared with first-principles calculations modeling different amounts of interface interdiffusion. The exchange coupling across the V layers is observed to oscillate, with antiferromagnetic peaks near the V layer thicknesses tV~22, 32, and 42 Å. For all films including superlattices and alloys, the average V magnetic moment is antiparallel to that of Fe. The average V moment increases slightly with increasing interdiffusion at the Fe/V interface. Calculations modeling mixed interface layers and measurements indicate that all V atoms are aligned with one another for tV<~15 Å, although the magnitude of the V moment decays toward the center of the layer. This ``transient ferromagnetic'' state arises from direct (d-d) exchange coupling between V atoms in the layer. It is argued that the transient ferromagnetism suppresses the first antiferromagnetic coupling peak between Fe layers, expected to occur at tV~12 Å.

  2. Material growth and characterization for solid state devices

    NASA Technical Reports Server (NTRS)

    Stefanakos, E. K.; Collis, W. J.; Abul-Fadl, A.; Iyer, S.

    1984-01-01

    Manganese was used as the dopant for p-type InGaAs layers grown on semi-insulating (Fe-doped) and n-type (Sn-doped) InP substrates. Optical, electrical (Hall) and SIMS measurements were used to characterize the layers. Mn-diffusion into the substrate (during the growth of In GaAs) was observed only when Fe-doped substrates were used. Quaternary layers of two compositions corresponding to wavelengths (energy gaps) of approximated 1.52 micrometers were successfully grown at a constant temperature of 640 C and InP was grown in the temperature range of 640 C to 655 C. A study of the effect of pulses on the growth velocity of InP indicated no significant change as long as the average applied current was kept constant. A system for depositing films of Al2O3 by the pyrolysis of aluminum isopropoxide was designed and built. Deposited layers on Si were characterized with an ellipsometer and exhibited indices of refraction between 1.582 and 1.622 for films on the order of 3000 A thick. Undoped and p-type (Mn-doped) InGaAs epitaxial layers were also grown on Fe-doped InP substrates through windows in sputtered SiO2 (3200 A thick) layers.

  3. Post-mortem analysis on LiFePO4|Graphite cells describing the evolution & composition of covering layer on anode and their impact on cell performance

    NASA Astrophysics Data System (ADS)

    Lewerenz, Meinert; Warnecke, Alexander; Sauer, Dirk Uwe

    2017-11-01

    During cyclic aging of lithium-ion batteries the formation of a μm-thick covering layer on top of the anode facing the separator is found on top of the anode. In this work several post-mortem analyses of cyclic aged cylindrical LFP|Graphite cells are evaluated to give a detailed characterization of the covering layer and to find possible causes for the evolution of such a layer. The analyses of the layer with different methods return that it consists to high percentage of plated active lithium, deposited Fe and products of a solid electrolyte interphase (SEI). The deposition is located mainly in the center of the cell symmetrical to the coating direction. The origin of these depositions is assumed in locally overcharged particles, Fe deposition or inhomogeneous distribution of capacity density. As a secondary effect the deposition on one side increases the thickness locally; thereafter a pressure-induced overcharging due to charge agglomeration of the back side of the anode occurs. Finally a compact and dense covering layer in a late state of aging leads to deactivation of the covered parts of the anode and cathode due to suppressed lithium-ion conductivity. This leads to increasing slope of capacity fade and increase of internal resistance.

  4. Influence of film thickness and Fe doping on LPG sensing properties of Mn3O4 thin film grown by SILAR method

    NASA Astrophysics Data System (ADS)

    Belkhedkar, M. R.; Ubale, A. U.

    2018-05-01

    Nanocrystalline Fe doped and undoped Mn3O4 thin films have been deposited by Successive Ionic Layer Adsorption and Reaction (SILAR) method onto glass substrates using MnCl2 and NaOH as cationic and anionic precursors. The grazing incidence X-ray diffraction (GIXRD) and field emission scanning electron microscopy (FESEM)) have been carried out to analyze structural and surface morphological properties of the films. The LPG sensing performance of Mn3O4thin films have been studied by varying temperature, concentration of LPG, thickness of the film and doping percentage of Fe. The LPG response of the Mn3O4thin films were found to be enhances with film thickness and decreases with increased Fe doping (0 to 8 wt. %) at 573 K temperature.

  5. Large exchange bias induced by polycrystalline Mn3Ga antiferromagnetic films with controlled layer thickness

    NASA Astrophysics Data System (ADS)

    Wu, Haokaifeng; Sudoh, Iori; Xu, Ruihan; Si, Wenshuo; Vaz, C. A. F.; Kim, Jun-young; Vallejo-Fernandez, Gonzalo; Hirohata, Atsufumi

    2018-05-01

    Polycrystalline Mn3Ga layers with thickness in the range from 6–20 nm were deposited at room temperature by a high target utilisation sputtering. To investigate the onset of exchange-bias, a ferromagnetic Co0.6Fe0.4 layer (3.3–9 nm thick) capped with 5 nm Ta, were subsequently deposited. X-ray diffraction measurements confirm the presence of Mn3Ga (0 0 0 2) and (0 0 0 4) peaks characteristic of the D019 antiferromagnetic structure. The 6 nm thick Mn3Ga film shows the largest exchange bias of 430 Oe at 120 K with a blocking temperature of 225 K. The blocking temperature is found to decrease with increasing Mn3Ga thickness. These results in combination with x-ray reflectivity measurements confirm that the quality of the Mn3Ga/Co0.6Fe0.4 interface controls the exchange bias, with the sharp interface with the 6-nm-thick Mn3Ga inducing the largest exchange bias. The magneto-crystalline anisotropy for 6 nm thick Mn3Ga thin film sample is calculated to be . Such a binary antiferromagnetic Heusler alloy is compatible with the current memory fabrication process and hence has a great potential for antiferromagnetic spintronics.

  6. Structural secrets of multiferroic interfaces.

    PubMed

    Meyerheim, H L; Klimenta, F; Ernst, A; Mohseni, K; Ostanin, S; Fechner, M; Parihar, S; Maznichenko, I V; Mertig, I; Kirschner, J

    2011-02-25

    We present an experimental and theoretical study of the geometric structure of ultrathin BaTiO(3) films grown on Fe(001). Surface x-ray diffraction reveals that the films are terminated by a BaO layer, while the TiO(2) layer is next to the top Fe layer. Cations in termination layers have incomplete oxygen shells inducing strong vertical relaxations. Onset of polarization is observed at a minimum thickness of two unit cells. Our findings are supported by first-principles calculations providing a quantitative insight into the multiferroic properties on the atomic scale. © 2011 American Physical Society

  7. Investigation of magnetization dynamics damping in Ni80Fe20/Nd-Cu bilayer at room temperature

    NASA Astrophysics Data System (ADS)

    Fan, Wei; Fu, Qiang; Qian, Qian; Chen, Qian; Liu, Wanling; Zhou, Xiaochao; Yuan, Honglei; Yue, Jinjin; Huang, Zhaocong; Jiang, Sheng; Kou, Zhaoxia; Zhai, Ya

    2018-05-01

    Focusing on the Ni80Fe20 (Py)/Nd-Cu bilayers, the magnetization dynamic damping from spin pumping effect is investigated systematically by doping itinerant Cu in rear earth metal Nd. Various Ta/Py/Nd1-xCux/Ta/Si films with x = 0%, 16%, 38%, 46% and 58% are prepared by magnetron sputtering. For every content of Cu, the thickness of Nd-Cu layer is changed from 1 nm to 32 nm. The damping coefficient increases with increasing the thickness of Nd-Cu layer, which shows the trend of the spin pumping behavior. Also, with increasing Cu concentration in the Nd-Cu layer, the damping coefficient decreases, implying that the spin-orbit coupling in Nd-Cu layer is indeed cut down by high itinerant of Cu dopants. It is interesting that the spin diffusion length (λSD) in the Nd-Cu layer for different Cu dopants is not found to increase monotonously.

  8. In situ study of electric field controlled ion transport in the Fe/BaTiO3 interface

    NASA Astrophysics Data System (ADS)

    Merkel, D. G.; Bessas, D.; Bazsó, G.; Jafari, A.; Rüffer, R.; Chumakov, A. I.; Khanh, N. Q.; Sajti, Sz; Celse, J.-P.; Nagy, D. L.

    2018-01-01

    Electric field controlled ion transport and interface formation of iron thin films on a BaTiO3 substrate have been investigated by in situ nuclear resonance scattering and x-ray reflectometry techniques. At early stage of deposition, an iron-II oxide interface layer was observed. The hyperfine parameters of the interface layer were found insensitive to the evaporated layer thickness. When an electric field was applied during growth, a 10 Å increase of the nonmagnetic/magnetic thickness threshold and an extended magnetic transition region was measured compared to the case where no field was applied. The interface layer was found stable under this threshold when further evaporation occurred, contrary to the magnetic layer where the magnitude and orientation of the hyperfine magnetic field vary continuously. The obtained results of the growth mechanism and of the electric field effect of the Fe/BTO system will allow the design of novel applications by creating custom oxide/metallic nanopatterns using laterally inhomogeneous electric fields during sample preparation.

  9. Features of surface phase formation during case-hardening of iron- and titanium-based alloys

    NASA Astrophysics Data System (ADS)

    Vintaikin, B. E.; Kamynin, A. V.; Kraposhin, V. S.; Smirnov, A. E.; Terezanova, K. V.; Cherenkova, S. A.; Sheykina, V. I.

    2017-11-01

    The article provides a detailed analysis of formation features for surface phases in technical iron and Cr20-Ni80 alloy samples that undergo case-hardening at a temperature of 850°C for 2, 4 and 6 hours of saturation in two different environments: acetylene, and molten salt consisting of sodium tetraborate and amorphous boron. We carried out an X-ray phase analysis to determine the phase structure of surface material layers that formed as a result of the case-hardening process. We discovered that after carburising it was possible to detect Fe3C and Fe-α phases on the surface of technical iron samples, and after boriding we found FeB, Fe2B and Fe3B phases; we noted a lack of characteristic Fe-α and Fe-γ peaks on the X-ray diffraction pattern. We detected many different phases in the Cr20-Ni80 alloy after the same type of case-hardening. Titanium oxides appeared after case-hardening of titanium in air at 800°C. We provide data on surface structure of samples subjected to vacuum carburising: over a 2 to 6 hour interval, the layer thickness is a parabolic function of time. When carrying out electrolysis-free liquid boriding, increasing exposure time from 2 to 6 hours alters the thickness of the strengthened layer only slightly, so, when carrying out case-hardening, it is less efficient to increase saturation time in molten salt containing sodium tetraborate and amorphous boron.

  10. Fine-tuning the Wall Thickness of Ordered Mesoporous Graphene by Exploiting Ligand Exchange of Colloidal Nanocrystals

    NASA Astrophysics Data System (ADS)

    Han, Dandan; Yan, Yancui; Wei, Jishi; Wang, Biwei; Li, Tongtao; Guo, Guannan; Yang, Dong; Xie, Songhai; Dong, Angang

    2017-12-01

    Because of their unique physical properties, three-dimensional (3D) graphene has attracted enormous attention over the past years. However, it is still a challenge to precisely control the layer thickness of 3D graphene. Here, we report a novel strategy to rationally adjust the wall thickness of ordered mesoporous graphene (OMG). By taking advantage of ligand exchange capability of colloidal Fe3O4 nanocrystals, we are able to fine-tune the wall thickness of OMG from 2 to 6 layers of graphene by tailoring the hydrocarbon ligands attached to the nanocrystal surface. When evaluated as electrocatalyst for oxygen reduction reaction upon S and N doping, the 4-layer OMG is found to show better catalytic performance compared with its 2- and 6-layer counterparts, which we attribute to the enhanced exposure of active sites resulting from its ultrathin wall thickness and high surface area.

  11. Impedance spectroscopy and microstructural characterization of the corrosion behavior of FeCrAl alloy in lead-bismuth eutectic

    NASA Astrophysics Data System (ADS)

    Chen, Xiang; Haasch, Rick; Stubbins, James F.

    2012-12-01

    The corrosion behavior of FeCrAl alloy in Lead-Bismuth Eutectic (LBE) saturated with oxygen at 550 °C was investigated. Impedance Spectroscopy (IS) measurement was made continuously on one specimen during the entire LBE exposure test to characterize the corrosion kinetics. Various microanalysis techniques, including SEM, EDS, XRD, AES, and XPS were used to analyze the corrosion products of post-exposure specimens. It was found that a very thin, adherent alumina oxide layer formed on the specimen surface and was able to protect the alloy from the corrosion attack in LBE. The thickness of the alumina surface layer increased very slowly with time reaching about 837 nm in average thickness after exposure for 3600-h in LBE. The IS measurements match the microanalysis results in three respects: first, a non-zero impedance measurement agrees with the existence of a continuous surface oxide layer; second, a general increase of the impedance was observed during the real-time IS measurement which means that the IS measurements reflect the growth rate of the oxide layer; and third, the oxide film thickness derived from the IS data compares favorably with the SEM film thickness measurements which establishes the validity of using IS to monitor the real-time corrosion kinetics of alloys in LBE.

  12. Ion irradiation-induced easy-cone anisotropy in double-MgO free layers for perpendicular magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Teixeira, B. M. S.; Timopheev, A. A.; Caçoilo, N. F. F.; Auffret, S.; Sousa, R. C.; Dieny, B.; Alves, E.; Sobolev, N. A.

    2018-05-01

    We have used the ferromagnetic resonance in the X-band (9.37 GHz) to investigate the effect of 400 keV Ar+ irradiation on the perpendicular magnetic anisotropy (PMA) and Gilbert damping parameter, α, of double-MgO free layers designed for application in perpendicular magnetic tunnel junctions. The samples comprised a MgO/Fe72Co8B20/X(0.2 nm)/Fe72Co8B20/MgO layer stack, where X stands for an ultrathin Ta or W spacer. Samples with two different total FeCoB layer thicknesses, tFCB = 3.0 nm and tFCB = 2.6 nm, were irradiated with ion fluences ranging from 1012 cm-2 to 1016 cm-2. The effective first-order PMA field, BK1, decreased nearly linearly with the logarithm of the fluence for both FeCoB thicknesses and spacer elements. The decrease in BK1, which is likely caused by an ion-induced intermixing at the FeCoB/MgO interfaces, resulted in a reorientation of the magnetization of the free layers with tFCB = 2.6 nm, initially exhibiting a perpendicular easy-axis anisotropy. For intermediate fluences, 1013 cm-2 and 1014 cm-2, easy-cone states with different cone angles could be induced in the free layer with a W spacer. Importantly, no corresponding increase in the Gilbert damping was observed. This study shows that ion irradiation can be used to tune the easy-cone anisotropy in perpendicular magnetic tunnel junctions, which is interesting for spintronic applications such as spin-torque magnetic memory devices, oscillators, and sensors.

  13. Self-organized nano-structuring of CoO islands on Fe(001)

    NASA Astrophysics Data System (ADS)

    Brambilla, A.; Picone, A.; Giannotti, D.; Riva, M.; Bussetti, G.; Berti, G.; Calloni, A.; Finazzi, M.; Ciccacci, F.; Duò, L.

    2016-01-01

    The realization of nanometer-scale structures through bottom-up strategies can be accomplished by exploiting a buried network of dislocations. We show that, by following appropriate growth steps in ultra-high vacuum molecular beam epitaxy, it is possible to grow nano-structured films of CoO coupled to Fe(001) substrates, with tunable sizes (both the lateral size and the maximum height scale linearly with coverage). The growth mode is discussed in terms of the evolution of surface morphology and chemical interactions as a function of the CoO thickness. Scanning tunneling microscopy measurements reveal that square mounds of CoO with lateral dimensions of less than 25 nm and heights below 10 atomic layers are obtained by growing few-nanometers-thick CoO films on a pre-oxidized Fe(001) surface covered by an ultra-thin Co buffer layer. In the early stages of growth, a network of misfit dislocations develops, which works as a template for the CoO nano-structuring. From a chemical point of view, at variance with typical CoO/Fe interfaces, neither Fe segregation at the surface nor Fe oxidation at the buried interface are observed, as seen by Auger electron spectroscopy and X-ray Photoemission Spectroscopy, respectively.

  14. Observation of super high energy big family with large scale Fe emulsion chambers

    NASA Technical Reports Server (NTRS)

    1985-01-01

    In order to get higher efficiencies for detecting hadrons and to make technical improvements in the chamber structure, the Mt. Kambala Emulsion Chamber Collaboration constructed 57 sq. m. of Fe chamber, with thickness 29 c.u.(1c.u.=17.6 mm Fe), using 300 tons of Fe plates and made the first exposure from Sept., 1982 to May, 1984. The photosensitive layers consist of X-ray films of Sakura N type, Fuji No. 100 type and Tianjin III type, some of them contain also emulsion plates of Fuji ET7B type. They are inserted between the Fe plates at 2 c.u., beginning at 5 c.u. from the chamber top. In a number of blocks, 3 mm spacings are provided at every 2 c.u. of Fe plates to facilitate the replacement of photosensitive layers, without disassembling the chamber. On the bottom of the chamber Fe plates of thickness 9 mm are placed in order to shield the chamber from the radioactivities of the ground. An event, numbered K2 58 of visible energy sigma E sub gamma = 7345 TeV was found in this exposure. No obvious halo is seen in the event and all the showers are clearly separated and easy to measure. A brief report of the preliminary results is presented.

  15. Formation of Fe3O4@SiO2@C/Ni hybrids with enhanced catalytic activity and histidine-rich protein separation.

    PubMed

    Zhang, Yanwei; Zhang, Min; Yang, Jinbo; Ding, Lei; Zheng, Jing; Xu, Jingli; Xiong, Shenglin

    2016-09-21

    In this paper, we have developed an extended Stöber method to construct a Ni(2+)-polydopamine (PDA) complex thin coating on Fe3O4@SiO2 spheres, which can be carbonized to produce hybrid composites with metallic nickel nanoparticles embedded in a PDA-derived thin graphitic carbon layer (named Fe3O4@SiO2@C/Ni). Interestingly, by introducing a thin SiO2 spacer layer between PDA-Ni(2+) and Fe3O4, the reverse electron transfer from PDA to Fe3O4 is probably able to be suppressed in the calcination process, which leads to the in situ reduction of only Ni(2+) by PDA instead of Fe3O4 and Ni(2+). Consequently, the size and density of nickel nanoparticles on the surface of SiO2@Fe3O4 can be finely adjusted. Moreover, it is found that the ability of tuning nickel nanoparticles is mainly dependent on the thickness of the spacer layer. When the thickness of the SiO2 spacer is beyond the electron penetration depth, the size and density of nickel nanoparticles can be exactly tuned. The as-prepared Fe3O4@SiO2@C/Ni was employed as the catalyst to investigate the catalytic performance in the reduction of 4-nitrophenol (4-NP); furthermore, nickel nanoparticles decorated on Fe3O4@SiO2@C spheres display a strong affinity to His-tagged proteins (BHb and BSA) via a specific metal affinity force between polyhistidine groups and nickel nanoparticles.

  16. Effect of Mg interlayer on perpendicular magnetic anisotropy of CoFeB films in MgO/Mg/CoFeB/Ta structure

    NASA Astrophysics Data System (ADS)

    Ma, Q. L.; Iihama, S.; Kubota, T.; Zhang, X. M.; Mizukami, S.; Ando, Y.; Miyazaki, T.

    2012-09-01

    The effects of Mg metallic interlayer on the magnetic properties of thin CoFeB films in MgO/Mg (tMg)/CoFeB (1.2 nm)/Ta structures were studied in this letter. Our experimental result shows that the CoFeB film exhibits perpendicular magnetic anisotropy (PMA) when the CoFeB and MgO layers are separated by a metallic Mg layer with a maximum thickness of 0.8 nm. The origin of PMA was discussed by considering the preferential transmission of the Δ1 symmetry preserved by the Mg interlayer in crystallized MgO/Mg/CoFeB/Ta. In addition, the thin Mg interlayer also contributes to enhancing the thermal stability and reducing the effective damping constant and coercivity of the CoFeB film.

  17. Thermoelectric properties of Zn4Sb3/CeFe(4-x)CoxSb12 nano-layered superlattices modified by MeV Si ion beam

    NASA Astrophysics Data System (ADS)

    Budak, S.; Guner, S.; Minamisawa, R. A.; Muntele, C. I.; Ila, D.

    2014-08-01

    We prepared multilayers of superlattice thin film system with 50 periodic alternating nano-layers of semiconducting half-Heusler β-Zn4Sb3 and skutterudite CeFe2Co2Sb12 compound thin films using ion beam assisted deposition (IBAD) with Au layers deposited on both sides as metal contacts. The deposited multilayer thin films have alternating layers about 5 nm thick. The total thickness of the multilayer system is 275 nm. The superlattices were then bombarded by 5 MeV Si ion at six different fluences to form nano-cluster structures. The film thicknesses and composition were monitored by Rutherford backscattering spectrometry (RBS) before and after MeV ion bombardment. We have measured the thermoelectric efficiency, Figure of Merit ZT, of the fabricated device by measuring the cross plane thermal conductivity by the 3rd harmonic (3ω) method, the cross plane Seebeck coefficient, and the electrical conductivity using the van der Pauw method before and after the MeV ion bombardments. We reached the remarkable thermoelectric Figure of Merit results at optimal fluences.

  18. Anisotropy of the upper critical field and its thickness dependence in superconducting FeSe electric-double-layer transistors

    NASA Astrophysics Data System (ADS)

    Shiogai, Junichi; Kimura, Shojiro; Awaji, Satoshi; Nojima, Tsutomu; Tsukazaki, Atsushi

    2018-05-01

    Anisotropy of superconductivity is one of the fundamental physical parameters for understanding layered iron-based superconductors (IBSs). Here we investigated the anisotropic response of resistive transition as a function of thickness (d ) in iron selenide (FeSe) based electric-double-layer transistors (EDLTs) on SrTi O3 , which exhibit superconducting transition temperatures Tc as high as 40 K below d =10 nm . According to the analyses of the in-plane (Hc2 //) and out-of-plane (Hc2 ⊥) upper critical fields (Hc 2) and the magnetic field angle dependence of the resistance (Rs-θ ) in ultrathin condition, we found that the anisotropy factor ɛ0=Hc2 ///Hc2 ⊥ is 7.4 in the thin limit of d ˜1 nm , which is larger than that of bulk IBSs. In addition, we observed the shorter out-of-plane coherence length ξc of 0.19 nm compared to the c -axis lattice constant, which implies the confinement of the order parameter in the one unit cell FeSe. These findings suggest that high-Tc superconductivity in the ultrathin FeSe-EDLT exhibits an anisotropic three-dimensional (3D) or quasi-two-dimensional (2D) nature rather than the pure 2D one, leading to the robust superconductivity. Moreover, we carried out the systematic evaluation of the anisotropic Hc 2 against thickness reduction in the FeSe channel. The in-plane Hc 2 as a function of normalized temperature T /Tc is almost independent of d until the thin limit condition. On the other hand, the out-of-plane Hc 2 near T /Tc˜1 decreases with increasing d , resulting in the increase of ɛ0 at around Tc to 32.0 at the thick condition of d =9.3 nm , which is also confirmed by Rs-θ measurements. The counterintuitive behavior can be attributed to the degree of coupling strength between two electron-rich layers possessing a high superconducting order parameter induced by electrostatic gating at the top interface and charge transfer from SrTi O3 substrates at the bottom interface. Besides a large Hc2 ⊥ for d =9.3 nm exceeding 20 T even at T =0.8 Tc , we observe the decoupling crossover of the two superconducting layers at low temperature, which is a unique feature for the high-Tc FeSe-EDLT on SrTi O3 .

  19. Low-reflective wire-grid polarizers with absorptive interference overlayers.

    PubMed

    Suzuki, Motofumi; Takada, Akio; Yamada, Takatoshi; Hayasaka, Takashi; Sasaki, Kouji; Takahashi, Eiji; Kumagai, Seiji

    2010-04-30

    Wire-grid (WG) polarizers with low reflectivity for visible light have been successfully developed. We theoretically consider the optical properties of simple sandwich structures of absorptive layer/transparent layer (gap layer)/high-reflective mirrors and found that it is possible to develop an antireflection (AR) coating owing to the interference along with the absorption in the absorptive layer. A wide variety of materials can be used for AR coatings by tuning the thicknesses of both the absorptive and the gap layers. This AR concept has been applied to reduce the reflectance of WG polarizers of Al. FeSi(2) as an absorptive layer has been deposited by the glancing angle deposition technique immediately on the top of Al wires covered with a thin SiO(2) layer as a gap layer. For the optimum combination of the thicknesses of FeSi(2) and SiO(2), the reflectance becomes lower than a few per cent, independent of the polarization, whereas the transmission polarization properties remain good. Because low-reflective (LR) WG polarizers are completely composed of inorganic materials, they are useful for applications requiring high-temperature durability such as liquid crystal projection displays.

  20. Effect of metallic capping layers on the superconductivity in FeSe thin films.

    NASA Astrophysics Data System (ADS)

    Shibayev, Pavel; Salehi, Maryam; Moon, Jisoo; Oh, Seongshik; Oh Lab Team

    In the past few years, there has been an increased interest in understanding the superconducting behavior of iron selenide (FeSe). Past efforts of others aimed at growing FeSe thin films yielded some success in reaching a Tc of 40K, but at present there is a stark lack of consensus among groups working on this problem. We set a goal of growing FeSe on insulating SrTiO3 (STO) substrates by optimizing both the growth temperature and the protection layer. In our quest to achieve this, we concentrate on keeping track of each compound's structural evolution with temperature via RHEED, an aspect often overlooked in papers describing FeSe growth, thus presenting a unique perspective to tackling this multifaceted challenge. Our group has grown 1, 3, and 30 unit-cell thick FeSe on STO using a state-of-the-art molecular beam epitaxy (MBE) system in our lab. Crucially, we expect to search for superconductivity in FeSe capped by unprecedented metallic protection layers. In addition, the FeSe/STO heterostructures with FeTe protection layers will be grown to enable comparison of existing transport data and scanning tunneling spectra (STS) to data involving our own novel cappings. Support: NSF EFRI Scholars program (1542798), EPiQS Initiative (GBMF4418).

  1. The Ultrathin Limit and Dead-layer Effects in Local Polarization Switching of BiFeO3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maksymovych, Petro; Huijben, Mark; Pan, Minghu

    Using piezoresponse force microscopy in ultra-high vacuum, polarization switching has been detected and quantified in epitaxial BiFeO3 films from 200 down to ~ 4 unit cells. Local remnant piezoresponse was used to infer the applied electric field inside the ferroelectric volume, and account for the elusive effect of dead-layers in ultrathin films. The dead-layer manifested itself in the slower than anticipated decrease of the switching bias with film thickness, yielding apparent Kay-Dunn scaling of the switching field, while the statistical analysis of hysteresis loops revealed lateral variation of the dead-layer with sub-10 nm resolution.

  2. X-ray magneto-optic KERR effect studies of spring magnet heterostructures.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kortright, J. B.; Kim, S.-K.; Fullerton, E. E.

    2000-11-01

    The complex 3-dimensional magnetization reversal behavior of Sin-Co/Fe exchange spring films is used to test the sensitivity of different resonant soft x-ray magneto-optical Kerr effect (MOKE) measurements to changes in longitudinal and transverse moments within the SOIIFe layer and to changes in these moments in depth within the Fe layer. As in the visible MOKE, changes in longitudinal and net transverse moments are resolved by measuring both Kerr rotation and intensity loops in the near the Fe 2p core resonance. These x-ray MOKE signals measured using linear incident polarization are more directly interpreted in terms of longitudinal and transverse momentsmore » than are the same signals measured using elliptical polarization. Varying photon energy near the Fe L3line is shown to be an effective means of resolving distinctly different reversal behavior at the top and bottom of the 20 nm thick Fe layer resulting from the strong exchange coupling at the Sin-Co/Fe interface. Measured x-ray MOKE spectra and signals are in qualitative agreement with those calculated using standard magneto-optical formalisms incorporating interference between different layers and measured helicity-dependent magneto-optical constants for Fe.« less

  3. Aluminium alloyed iron-silicide/silicon solar cells: A simple approach for low cost environmental-friendly photovoltaic technology.

    PubMed

    Kumar Dalapati, Goutam; Masudy-Panah, Saeid; Kumar, Avishek; Cheh Tan, Cheng; Ru Tan, Hui; Chi, Dongzhi

    2015-12-03

    This work demonstrates the fabrication of silicide/silicon based solar cell towards the development of low cost and environmental friendly photovoltaic technology. A heterostructure solar cells using metallic alpha phase (α-phase) aluminum alloyed iron silicide (FeSi(Al)) on n-type silicon is fabricated with an efficiency of 0.8%. The fabricated device has an open circuit voltage and fill-factor of 240 mV and 60%, respectively. Performance of the device was improved by about 7 fold to 5.1% through the interface engineering. The α-phase FeSi(Al)/silicon solar cell devices have promising photovoltaic characteristic with an open circuit voltage, short-circuit current and a fill factor (FF) of 425 mV, 18.5 mA/cm(2), and 64%, respectively. The significant improvement of α-phase FeSi(Al)/n-Si solar cells is due to the formation p(+-)n homojunction through the formation of re-grown crystalline silicon layer (~5-10 nm) at the silicide/silicon interface. Thickness of the regrown silicon layer is crucial for the silicide/silicon based photovoltaic devices. Performance of the α-FeSi(Al)/n-Si solar cells significantly depends on the thickness of α-FeSi(Al) layer and process temperature during the device fabrication. This study will open up new opportunities for the Si based photovoltaic technology using a simple, sustainable, and los cost method.

  4. Interplay between out-of-plane anisotropic L1{sub 1}-type CoPt and in-plane anisotropic NiFe layers in CoPt/NiFe exchange springs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saravanan, P.; Defence Metallurgical Research Laboratory, Hyderabad 500058; Hsu, Jen-Hwa, E-mail: jhhsu@phys.ntu.edu.tw

    2014-06-28

    Films of L1{sub 1}-type CoPt/NiFe exchange springs were grown with different NiFe (Permalloy) layer thickness (t{sub NiFe} = 0–10 nm). X-ray diffraction analysis reveals that the characteristic peak position of NiFe(111) is not affected by the CoPt-layer—confirming the absence of any inter-diffusion between the CoPt and NiFe layers. Magnetic studies indicate that the magnetization orientation of NiFe layer can be tuned through varying t{sub NiFe} and the perpendicular magnetic anisotropy of L1{sub 1}-type CoPt/NiFe films cannot sustain for t{sub NiFe} larger than 3.0 nm due to the existence of exchange interaction at the interface of L1{sub 1}-CoPt and NiFe layers. Magnetic force microscopy analysismore » on the as-grown samples shows the changes in morphology from maze-like domains with good contrast to hazy domains when t{sub NiFe} ≥ 3.0 nm. The three-dimensional micro-magnetic simulation results demonstrate that the magnetization orientation in NiFe layer is not uniform, which continuously increases from the interface to the top of NiFe layer. Furthermore, the tilt angle of the topmost NiFe layers can be changed over a very wide range from a small number to about 75° by varying t{sub NiFe} from 1 to 10 nm. It is worth noting that there is an abrupt change in the magnetization direction at the interface, for all the t{sub NiFe} investigated. The results of present study demonstrate that the tunable tilted exchange springs can be realized with L1{sub 1}-type CoPt/NiFe bilayers for future applications in three-axis magnetic sensors or advanced spintronic devices demanding inclined magnetic anisotropy.« less

  5. Ledge-type Co/L1{sub 0}-FePt exchange-coupled composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Speliotis, Th.; Giannopoulos, G.; Niarchos, D.

    2016-06-21

    FePt-based exchange-coupled composites consisting of a magnetically hard L1{sub 0}-FePt phase exchange-coupled with a soft ferromagnetic material are promising candidates for future ultra-high density (>1 Tbit/in{sup 2}) perpendicular magnetic recording media, also being of interest for other applications including spin torque oscillators and micro-electro-mechanical systems, among others. In this paper, the effect of the thickness of a soft Co layer (3 < th{sub Co} < 20 nm) on the magnetic behavior of ledge-type fcc(100)-Co/L1{sub 0}(001)-FePt composites deposited on an MgO (100) substrate is systematically studied by combining morpho-structural analyses and angular magnetization measurements. Starting from a film consisting of isolated L1{submore » 0}(001)–FePt islands, the ledge-type structure was obtained by depositing a Co layer that either covered the FePt islands or filled-up the inter-island region, gradually forming a continuous layer with increasing Co thickness. A perpendicular anisotropy was maintained up to th{sub Co} ∼ 9.5 nm and a significant reduction in the coercivity (about 50% for th{sub Co} ∼ 3 nm) with the increase in th{sub Co} was observed, indicating that, by coupling hard FePt and soft Co phases in a ledge-type configuration, the writability can be greatly improved. Recoil loops' measurements confirmed the exchange-coupled behavior, reinforcing a potential interest in these systems for future magnetic recording media.« less

  6. MBE growth and FMR, BLS and MOKE studies of exchange coupling in Fe whisker/Cr/Fe(001) and in Fe/Cu/Fe(001) 'loose spin' structures

    NASA Astrophysics Data System (ADS)

    Heinrich, B.; From, M.; Cochran, J. F.; Kowalewski, M.; Atlan, D.; Celinski, Z.; Myrtle, K.

    1995-02-01

    The exchange coupling has been studied in structures which consist of two ferromagnetic layers separated by non-ferromagnetic spacers (trilayers). The exchange coupling was measured using FMR and BLS techniques in the temperature range 77-400 K. Two systems were investigated: (a) Fe whisker/Cr/Fe(001) and (b) Fe/Cr/Fe(001). The oscillatory thickness dependence of the exchange coupling through a spin-density wave Cr spacer will be discussed and compared with recent data obtained by other groups. Cu interlayers were deposited either in a pure form, or a single monolayer of {Cu}/{Fe} alloy ('loose spins') was inserted between two pure bcc Cu(001) layers. Several such 'loose spin' structures were engineered to test the behavior of 'loose spin' structures. It was found that the presence of Fe impurity atoms has a strong tendency to decrease the direct bilinear exchange coupling. The contribution of 'loose spins' to the exchange coupling can be made significant, and even dominant, by a suitable choice of the RKKY coupling energy between the 'loose spins' and the surrounding ferromagnetic layers.

  7. Perpendicular magnetic anisotropy and magnetization dynamics in oxidized CoFeAl films

    PubMed Central

    Wu, Di; Zhang, Zhe; Li, Le; Zhang, Zongzhi; Zhao, H. B.; Wang, J.; Ma, B.; Jin, Q. Y.

    2015-01-01

    Half-metallic Co-based full-Heusler alloys with perpendicular magnetic anisotropy (PMA), such as Co2FeAl in contact with MgO, are receiving increased attention recently due to its full spin polarization for high density memory applications. However, the PMA induced by MgO interface can only be realized for very thin magnetic layers (usually below 1.3 nm), which would have strong adverse effects on the material properties of spin polarization, Gilbert damping parameter, and magnetic stability. In order to solve this issue, we fabricated oxidized Co50Fe25Al25 (CFAO) films with proper thicknesses without employing the MgO layer. The samples show controllable PMA by tuning the oxygen pressure (PO2) and CFAO thickness (tCFAO), large perpendicular anisotropy field of ~8.0 kOe can be achieved at PO2 = 12% for the sample of tCFAO = 2.1 nm or at PO2 = 7% for tCFAO = 2.8 nm. The loss of PMA at thick tCFAO or high PO2 results mainly from the formation of large amount of CoFe oxides, which are superparamagnetic at room temperature but become hard magnetic at low temperatures. The magnetic CFAO films, with strong PMA in a relatively wide thickness range and small intrinsic damping parameter below 0.028, would find great applications in developing advanced spintronic devices. PMID:26190066

  8. Electrical spin injection into GaAs based light emitting diodes using perpendicular magnetic tunnel junction-type spin injector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, B. S.; Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190; Barate, P.

    Remanent electrical spin injection into an InGaAs/GaAs based quantum well light emitting diode is realized by using a perpendicularly magnetized MgO/CoFeB/Ta/CoFeB/MgO spin injector. We demonstrate that the Ta interlayer plays an important role to establish the perpendicular magnetic anisotropy and the thickness of Ta interlayer determines the type of exchange coupling between the two adjacent CoFeB layers. They are ferromagnetically or antiferromagnetically coupled for a Ta thickness of 0.5 nm or 0.75 nm, respectively. A circular polarized electroluminescence (P{sub c}) of about 10% is obtained at low temperature and at zero magnetic field. The direction of the electrically injected spins is determinedmore » only by the orientation of the magnetization of the bottom CoFeB layer which is adjacent to the MgO/GaAs interface. This work proves the critical role of the bottom CoFeB/MgO interface on the spin-injection and paves the way for the electrical control of spin injection via magnetic tunnel junction-type spin injector.« less

  9. Enhanced annealing stability and perpendicular magnetic anisotropy in perpendicular magnetic tunnel junctions using W layer

    NASA Astrophysics Data System (ADS)

    Chatterjee, Jyotirmoy; Sousa, Ricardo C.; Perrissin, Nicolas; Auffret, Stéphane; Ducruet, Clarisse; Dieny, Bernard

    2017-05-01

    The magnetic properties of the perpendicular storage electrode (buffer/MgO/FeCoB/Cap) were studied as a function of annealing temperature by replacing Ta with W and W/Ta cap layers with variable thicknesses. W in the cap boosts up the annealing stability and increases the effective perpendicular anisotropy by 30% compared to the Ta cap. Correspondingly, an increase in the FeCoB critical thickness characterizing the transition from perpendicular to in-plane anisotropy was observed. Thicker W layer in the W(t)/Ta 1 nm cap layer makes the storage electrode highly robust against annealing up to 570 °C. The stiffening of the overall stack resulting from the W insertion due to its very high melting temperature seems to be the key mechanism behind the extremely high thermal robustness. The Gilbert damping constant of FeCoB with the W/Ta cap was found to be lower when compared with the Ta cap and stable with annealing. The evolution of the magnetic properties of bottom pinned perpendicular magnetic tunnel junctions (p-MTJ) stack with the W2/Ta1 nm cap layer shows back-end-of-line compatibility with increasing tunnel magnetoresistance up to the annealing temperature of 425 °C. The pMTJ thermal budget is limited by the synthetic antiferromagnetic hard layer which is stable up to 425 °C annealing temperature while the storage layer is stable up to 455 °C.

  10. Thermal stability of spin valves based on a synthetic antiferromagnet and Fe50Mn50 alloy

    NASA Astrophysics Data System (ADS)

    Milyaev, M. A.; Naumova, L. I.; Proglyado, V. V.; Chernyshova, T. A.; Blagodatkov, D. V.; Kamenskii, I. Yu.; Ustinov, V. V.

    2015-11-01

    Magnetron sputtering was used to prepare spin valves with the Ta/Ni80Fe20/Co90Fe10/Cu/Co90Fe10/Ru/Co90Fe10/Fe50Mn50/Ta composition. Changes in the functional characteristics of the spin valves were studied in a temperature range of-180 to +160°C. The maximum temperature at which the functional characteristics of spin valve remain unchanged was shown to depend on the relationship of thicknesses of Co90Fe10 layers separated by the Ru interlayer.

  11. Silicon doped hafnium oxide (HSO) and hafnium zirconium oxide (HZO) based FeFET: A material relation to device physics

    NASA Astrophysics Data System (ADS)

    Ali, T.; Polakowski, P.; Riedel, S.; Büttner, T.; Kämpfe, T.; Rudolph, M.; Pätzold, B.; Seidel, K.; Löhr, D.; Hoffmann, R.; Czernohorsky, M.; Kühnel, K.; Thrun, X.; Hanisch, N.; Steinke, P.; Calvo, J.; Müller, J.

    2018-05-01

    The recent discovery of ferroelectricity in thin film HfO2 materials renewed the interest in ferroelectric FET (FeFET) as an emerging nonvolatile memory providing a potential high speed and low power Flash alternative. Here, we report more insight into FeFET performance by integrating two types of ferroelectric (FE) materials and varying their properties. By varying the material type [HfO2 (HSO) versus hafnium zirconium oxide (HZO)], optimum content (Si doping/mixture ratio), and film thickness, a material relation to FeFET device physics is concluded. As for the material type, an improved FeFET performance is observed for HZO integration with memory window (MW) comparable to theoretical values. For different Si contents, the HSO based FeFET exhibited a MW trend with different stabilized phases. Similarly, the HZO FeFET shows MW dependence on the Hf:Zr mixture ratio. A maximized MW is obtained with cycle ratios of 16:1 (HfO2:Si) and 1:1 (Hf:Zr) as measured on HSO and HZO based FeFETs, respectively. The thickness variation shows a trend of increasing MW with the increased FE layer thickness confirming early theoretical predictions. The FeFET material aspects and stack physics are discussed with insight into the interplay factors, while optimum FE material parameters are outlined in relation to performance.

  12. Ferroelectric FET for nonvolatile memory application with two-dimensional MoSe2 channels

    NASA Astrophysics Data System (ADS)

    Wang, Xudong; Liu, Chunsen; Chen, Yan; Wu, Guangjian; Yan, Xiao; Huang, Hai; Wang, Peng; Tian, Bobo; Hong, Zhenchen; Wang, Yutao; Sun, Shuo; Shen, Hong; Lin, Tie; Hu, Weida; Tang, Minghua; Zhou, Peng; Wang, Jianlu; Sun, Jinglan; Meng, Xiangjian; Chu, Junhao; Li, Zheng

    2017-06-01

    Graphene and other two-dimensional materials have received considerable attention regarding their potential applications in nano-electronics. Here, we report top-gate nonvolatile memory field-effect transistors (FETs) with different layers of MoSe2 nanosheets channel gated by ferroelectric film. The conventional gate dielectric of FETs was replaced by a ferroelectric thin film that provides a ferroelectric polarization electric field, and therefore defined as an Fe-FET where the poly (vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) was used as the gate dielectric. Among the devices with MoSe2 channels of different thicknesses, the device with a single layer of MoSe2 exhibited a large hysteresis of electronic transport with an over 105 write/erase ratio, and displayed excellent retention and endurance performance. The possible mechanism of the device’s good properties was qualitatively analyzed using band theory. Additionally, a comprehensive study comparing the memory properties of MoSe2 channels of different thicknesses is presented. Increasing the numbers of MoSe2 layers was found to cause a reduced memory window. However, MoSe2 thickness of 5 nm yielded a write/erase ratio of more than 103. The results indicate that, based on a Fe-FET structure, the combination of two-dimensional semiconductors and organic ferroelectric gate dielectrics shows good promise for future applications in nonvolatile ferroelectric memory.

  13. Effect of Discharge Time on Plasma Electrolytic Borocarbonitriding of Pure Iron

    NASA Astrophysics Data System (ADS)

    Jin, Xiaoyue; Wu, Jie; Wang, Bin; Yang, Xuan; Chen, Lin; Qu, Yao; Xue, Wenbin

    The plasma electrolytic borocarbonitriding (PEB/C/N) process on pure iron was carried out in 25% borax solution with glycerine and carbamide additives under different discharge time at 360V. The morphology and structure of PEB/C/N hardened layers were analyzed by SEM and XRD. The hardness profiles of hardened layers were measured by microhardness test. Corrosion behavior of PEB/C/N layers was evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). Their wear performance was carried out using a pin-disc friction and wear tester under dry sliding test. The PEB/C/N samples mainly consisted of α-Fe, Fe2B, Fe3C, FeN, FeB, Fe2O3 and Fe4N phases, and the Fe2B phase was the dominant phase in the boride layer. It was found that the thickness of boride layer increased with the discharge time and reached 14μm after 60min treatment. The microhardness of the boride layer was up to 2100HV, which was much higher than that of the bare pure iron (about 150HV). After PEB/C/N treatment, the corrosion resistance of pure iron was slightly improved. The friction coefficient of PEB/C/N treated pure iron decreased to 0.129 from 0.556 of pure iron substrate. The wear rate of the PEB/C/N layer after 60min under dry sliding against ZrO2 ball was only 1/10 of that of the bare pure iron. The PEB/C/N treatment is an effective way to improve the wear behavior of pure iron.

  14. Stability domain of alumina thermally grown on Fe-Cr-Al-based model alloys and modified surface layers exposed to oxygen-containing molten Pb

    NASA Astrophysics Data System (ADS)

    Jianu, A.; Fetzer, R.; Weisenburger, A.; Doyle, S.; Bruns, M.; Heinzel, A.; Hosemann, P.; Mueller, G.

    2016-03-01

    The paper gives experimental results concerning the morphology, composition, structure and thickness of the oxide scales grown on Fe-Cr-Al-based bulk alloys during exposure to oxygen-containing molten lead. The results are discussed and compared with former results obtained on Al-containing surface layers, modified by melting with intense pulsed electron beam and exposed to similar conditions. The present and previous results provide the alumina stability domain and also the criterion of the Al/Cr ratio for the formation of a highly protective alumina layer on the surface of Fe-Cr-Al-based alloys and on modified surface layers exposed to molten lead with 10-6 wt.% oxygen at 400-600 °C. The protective oxide scales, grown on alumina-forming Fe-Cr-Al alloys under the given experimental conditions, were transient aluminas, namely, kappa-Al2O3 and theta-Al2O3.

  15. Formation and investigation of ultrathin layers of Co2FeSi ferromagnetic alloy synthesized on silicon covered with a CaF2 barrier layer

    NASA Astrophysics Data System (ADS)

    Grebenyuk, G. S.; Gomoyunova, M. V.; Pronin, I. I.; Vyalikh, D. V.; Molodtsov, S. L.

    2016-03-01

    Ultrathin (∼2 nm) films of Co2FeSi ferromagnetic alloy were formed on silicon by solid-phase epitaxy and studied in situ. Experiments were carried out in an ultrahigh vacuum (UHV) using substrates of Si(1 1 1) single crystals covered with a 5 nm thick CaF2 barrier layer. The elemental and phase composition as well as the magnetic properties of the synthesized films were analyzed by photoelectron spectroscopy using synchrotron radiation and by magnetic linear dichroism in photoemission of Fe 3p and Co 3p electrons. The study shows that the synthesis of the Co2FeSi ferromagnetic alloy occurs in the temperature range of 200-400 °C. At higher temperatures, the films become island-like and lose their ferromagnetic properties, as the CaF2 barrier layer is unable to prevent a mass transfer between the film and the Si substrate, which violates the stoichiometry of the alloy.

  16. Finite element modelling to assess the effect of surface mounted piezoelectric patch size on vibration response of a hybrid beam

    NASA Astrophysics Data System (ADS)

    Rahman, N.; Alam, M. N.

    2018-02-01

    Vibration response analysis of a hybrid beam with surface mounted patch piezoelectric layer is presented in this work. A one dimensional finite element (1D-FE) model based on efficient layerwise (zigzag) theory is used for the analysis. The beam element has eight mechanical and a variable number of electrical degrees of freedom. The beams are also modelled in 2D-FE (ABAQUS) using a plane stress piezoelectric quadrilateral element for piezo layers and a plane stress quadrilateral element for the elastic layers of hybrid beams. Results are presented to assess the effect of size of piezoelectric patch layer on the free and forced vibration responses of thin and moderately thick beams under clamped-free and clamped-clamped configurations. The beams are subjected to unit step loading and harmonic loading to obtain the forced vibration responses. The vibration control using in phase actuation potential on piezoelectric patches is also studied. The 1D-FE results are compared with the 2D-FE results.

  17. In situ study of heavy ion irradiation response of immiscible Cu/Fe multilayers

    DOE PAGES

    Chen, Youxing; Li, Nan; Bufford, Daniel Charles; ...

    2016-04-09

    By providing active defect sinks that capture and annihilate radiation induced defect clusters immiscible metallic multilayers with incoherent interfaces can effectively reduce defect density in ion irradiated metals. Although it is anticipated that defect density within the layers should vary as a function of distance to the layer interface, there is, to date, little in situ TEM evidence to validate this hypothesis. In our study monolithic Cu films and Cu/Fe multilayers with individual layer thickness, h, of 100 and 5 nm were subjected to in situ Cu ion irradiation at room temperature to nominally 1 displacement-per-atom inside a transmission electronmore » microscope. Rapid formation and propagation of defect clusters were observed in monolithic Cu, whereas fewer defects with smaller dimensions were generated in Cu/Fe multilayers with smaller h. Moreover, in situ video shows that the cumulative defect density in Cu/Fe 100 nm multilayers indeed varies, as a function of distance to the layer interfaces, supporting a long postulated hypothesis.« less

  18. Pt thickness dependence of spin Hall effect switching of in-plane magnetized CoFeB free layers studied by differential planar Hall effect

    NASA Astrophysics Data System (ADS)

    Mihajlović, G.; Mosendz, O.; Wan, L.; Smith, N.; Choi, Y.; Wang, Y.; Katine, J. A.

    2016-11-01

    We introduce a differential planar Hall effect method that enables the experimental study of spin orbit torque switching of in-plane magnetized free layers in a simple Hall bar device geometry. Using this method, we study the Pt thickness dependence of switching currents and show that they decrease monotonically down to the minimum experimental thickness of ˜5 nm, while the critical current and power densities are very weakly thickness dependent, exhibiting the minimum values of Jc0 = 1.1 × 108 A/cm2 and ρJc0 2=0.6 ×1012 W/cm 3 at this minimum thickness. Our results suggest that a significant reduction of the critical parameters could be achieved by optimizing the free layer magnetics, which makes this technology a viable candidate for fast, high endurance and low-error rate applications such as cache memories.

  19. Origin of Lamellar Magnetism (Invited)

    NASA Astrophysics Data System (ADS)

    McEnroe, S. A.; Robinson, P.; Fabian, K.; Harrison, R. J.

    2010-12-01

    The theory of lamellar magnetism arose through search for the origin of the strong and extremely stable remanent magnetization (MDF>100 mT) recorded in igneous and metamorphic rocks containing ilmenite with exsolution lamellae of hematite, or hematite with exsolution lamellae of ilmenite. Properties of rocks producing major remanent magnetic anomalies could not be explained by PM ilmenite or CAF hematite alone. Monte Carlo modeling of chemical and magnetic interactions in such intergrowths at high temperature indicated the presence of "contact layers" one cation layer thick at (001) interfaces of the two phases. Contact layers, with chemical composition different from layers in the adjacent phases, provide partial relief of ionic charge imbalance at interfaces, and can be common, not only in magnetic minerals. In rhombohedral Fe-Ti oxides, magnetic moments of 2 Fe2+Fe3+ contact layers (2 x 4.5µB) on both sides of a lamella, are balanced by the unbalanced magnetic moment of 1 Fe3+ hematite layer (1 x 5µB), to produce a net uncompensated ferrimagnetic "lamellar moment" of 4µB. Bulk lamellar moment is not proportional to the amount of magnetic oxide, but to the quantity of magnetically "in-phase" lamellar interfaces, with greater abundance and smaller thickness of lamellae, extending down to 1-2 nm. The proportion of "magnetically in-phase" lamellae relates to the orientation of (001) interfaces to the magnetizing field during exsolution, hence highest in samples with a strong lattice-preferred orientation of (001) parallel to the field during exsolution. The nature of contact layers, ~0.23 nm thick, with Fe2+Fe3+ charge ordering postulated by the Monte Carlo models, was confirmed by bond-valence and DFT calculations, and, their presence confirmed by Mössbauer measurements. Hysteresis experiments on hematite with nanoscale ilmenite at temperatures below 57 K, where ilmenite becomes AF, demonstrate magnetic exchange bias produced by strong coupling across phase interfaces. Interface coupling, with nominal magnetic moments perpendicular and parallel to (001), is facilitated by magnetic moments in hematite near interfaces that are a few degrees out of the (001) plane, proved by neutron diffraction experiments. When a ~b.y.-old sample, with a highly stable NRM, is ZF cooled below 57 K, it shows bimodal exchange bias, indicating the presence of two lamellar populations that are magnetically "out-of-phase", and incidentally proving the existence of lamellar magnetism. Lamellar magnetism may enhance the strength and stability of remanence in samples with magnetite or maghemite lamellae in pure hematite, or magnetite lamellae in ilmenite, where coarse magnetite or maghemite alone would be multi-domain. Here the "contact layers" should be a complex hybrid of 2/3-filled rhombohedral layers parallel to (001) and 3/4-filled cubic octahedral layers parallel to (111), with a common octahedral orientation confirmed by TEM observations. Here, because of different layer populations, the calculated lamellar moment may be higher than in the purely rhombohedral example.

  20. Effects of post-deposition magnetic field annealing on magnetic properties of NiO/Co90Fe10 bilayers

    NASA Astrophysics Data System (ADS)

    Zheng, Chao; Su, Shan; Chiu, Chun-Cheng; Skoropata, Elizabeth; Desautels, Ryan D.; van Lierop, Johan; Lin, Ko-Wei; Pong, Philip W. T.

    2018-01-01

    The ferromagnetic (FM)/antiferromagnetic (AF) bilayer structures have drawn intensive attention because of their wide applications in modern spintronic devices. While abundant published works have been reported on the interface effects of the FM/AF bilayers caused by the magnetic field annealing (MFA) process, the volume effects caused by the MFA treatment have been rarely considered. In this work, the microstructural and magnetic properties of the NiO/CoFe bilayers with various CoFe thicknesses were investigated under different annealing temperatures. At high annealing temperature, the interlayer mixing and exchange coupling between NiO and CoFe layers were promoted and consequently the interface effects were facilitated. The interfacial oxides acted as pinning centers and randomly pinned the FM domains, leading to an increase of coercivity and a considerable degradation of uniaxial anisotropy. The increase of coercivity was also contributed by the enhancement of the interfacial exchange coupling between the NiO and CoFe layers after MFA. As the CoFe thickness increased, the volume effects tended to dominate over the interface effects, resulting in the preservation the uniaxially anisotropic features of CoFe. These results indicate that both the coercivity and anisotropic features of the NiO/CoFe bilayers can be directly affected by the MFA process, opening up the possibility of modifying the magnetism in the NiO/CoFe bilayers and offering an effective way to improve the performance of modern spintronic devices.

  1. Recoil hysteresis of Sm -Co/Fe exchange-spring bilayers

    NASA Astrophysics Data System (ADS)

    Kang, K.; Lewis, L. H.; Jiang, J. S.; Bader, S. D.

    2005-12-01

    The exchange-spring behavior found in Sm-Co (20nm)/Fe epitaxial bilayer films was investigated by analyzing major hysteresis and recoil curves as a function of anneal conditions. The hard layer consists of nanocrystalline intermetallic Sm-Co hexagonal phases (majority phase Sm2Co7 with SmCo3 and SmCo5). Recoil curves, obtained from the successive removal to remanence and reapplication of an increasingly negative field from the major demagnetization curve, reveal the reversible and irreversible components of the magnetization. The Sm-Co thickness was fixed at 20nm while the Fe thicknesses of 10 and 20nm were studied, with ex situ annealing carried out in evacuated, sealed silica tubes at different temperatures. The peak in the recoil curve area is associated with the coercivity of the hard phase. The development of the soft component magnetization is revealed by the departure of the recoil area from zero with application of a reverse field. These two features together confirm that annealing stabilizes the 10nm Fe bilayer sample against local magnetic reversal while it weakens the 20nm bilayer sample. Furthermore, in both its as-deposited and annealed states the Sm -Co/Fe bilayer of 10nm Fe thickness always displays a higher exchange field and smaller recoil loop areas than the bilayer of 20nm Fe thickness, consistent with a stronger exchange response and more reversible magnetization in the former.

  2. Spin injection into silicon in three-terminal vertical and four-terminal lateral devices with Fe/Mg/MgO/Si tunnel junctions having an ultrathin Mg insertion layer

    NASA Astrophysics Data System (ADS)

    Sato, Shoichi; Nakane, Ryosho; Hada, Takato; Tanaka, Masaaki

    2017-12-01

    We demonstrate that the spin injection/extraction efficiency is enhanced by an ultrathin Mg insertion layer (⩽2 nm) in Fe /Mg /MgO /n+-Si tunnel junctions. In diode-type vertical three-terminal devices fabricated on a Si substrate, we observe the narrower three-terminal Hanle (N-3TH) signals indicating true spin injection into Si and estimate the spin polarization in Si to be 16% when the thickness of the Mg insertion layer is 1 nm, whereas no N-3TH signal is observed without the Mg insertion. This means that the spin injection/extraction efficiency is enhanced by suppressing the formation of a magnetically dead layer at the Fe/MgO interface. We also observe clear spin transport signals, such as nonlocal Hanle signals and spin-valve signals, in a lateral four-terminal device with the same Fe /Mg /MgO /n+-Si tunnel junctions fabricated on a Si-on-insulator substrate. It is found that both the intensity and linewidth of the spin signals are affected by the geometrical effects (device geometry and size). We have derived analytical functions taking into account the device structures, including channel thickness and electrode size, and estimated important parameters: spin lifetime and spin polarization. Our analytical functions explain the experimental results very well. Our study shows the importance of suppressing a magnetically dead layer and provides a unified understanding of spin injection/detection signals in different device geometries.

  3. CoFe2O4-TiO2 and CoFe2O4-ZnO thin film nanostructures elaborated from colloidal chemistry and atomic layer deposition.

    PubMed

    Clavel, Guylhaine; Marichy, Catherine; Willinger, Marc-Georg; Ravaine, Serge; Zitoun, David; Pinna, Nicola

    2010-12-07

    CoFe(2)O(4)-TiO(2) and CoFe(2)O(4)-ZnO nanoparticles/film composites were prepared from directed assembly of colloidal CoFe(2)O(4) in a Langmuir-Blodgett monolayer and atomic layer deposition (ALD) of an oxide (TiO(2) or ZnO). The combination of these two methods permits the use of well-defined nanoparticles from colloidal chemistry, their assembly on a large scale, and the control over the interface between a ferrimagnetic material (CoFe(2)O(4)) and a semiconductor (TiO(2) or ZnO). Using this approach, architectures can be assembled with a precise control from the Angstrom scale (ALD) to the micrometer scale (Langmuir-Blodgett film). The resulting heterostructures present well-calibrated thicknesses. Electron microscopy and magnetic measurement studies give evidence that the size of the nanoparticles and their intrinsic magnetic properties are not altered by the various steps involved in the synthesis process. Therefore, the approach is suitable to obtain a layered composite with a quasi-monodisperse layer of ferrimagnetic nanoparticles embedded in an ultrathin film of semiconducting material.

  4. Bio-Inspired Hierarchical Nanofibrous Fe3O4-TiO2-Carbon Composite as a High-Performance Anode Material for Lithium-Ion Batteries.

    PubMed

    Li, Shun; Wang, Mengya; Luo, Yan; Huang, Jianguo

    2016-07-13

    A bioinspired hierarchical nanofibrous Fe3O4-TiO2-carbon composite was fabricated by employing natural cellulose substance (e.g., filter paper) as both the scaffold and the carbon source and showed improved electrochemical performances when it is employed as an anode material for lithium-ion batteries. FeOOH nanoparticles were first grown uniformly onto the surface of the titania thin-layer precoated cellulose nanofibers, and thereafter, the as-prepared FeOOH-TiO2-cellulose composite was calcined and carbonized in argon atmosphere at 500 °C for 6 h to produce the Fe3O4-TiO2-carbon composite. The resultant composite possesses a hierarchical structure that was faithfully inherited from the initial cellulose substance, which was composed of titania-coated carbon fibers with corncob-like shaped Fe3O4 nanoparticles immobilized on the surfaces. The diameter of the composite nanofiber is ca. 100-200 nm, and the diameter of the Fe3O4 nanoparticle is about 30 nm, which is coated with an ultrathin carbon layer with a thickness about 3 nm. This composite displayed superior lithium-ion storage performance. It showed a first-cycle discharge capacity of 1340 mAh/g, delivering a stable reversible capacity of ca. 525 mAh/g after 100 charge-discharge cycles at a current density of 100 mA/g, and the efficiency is as high as ca. 95% of the theoretical value. This is much higher than those of the commercial Fe3O4 powder (160 mAh/g) and the Fe3O4-carbon counter material (310 mAh/g). It was demonstrated that the thin titania precoating layer (thickness ca. 3-5 nm) is necessary for the high content loading of the Fe3O4 nanoparticles onto the carbon nanofibers. Owing to the unique three-dimensional porous network structure of the carbon-fiber scaffold, together with the ultrathin outer carbon-coating layer, the composite showed significantly improved cycling stability and rate capability.

  5. Effect of exchange coupling on magnetic property in Sm-Co/α-Fe layered system

    NASA Astrophysics Data System (ADS)

    C, X. Sang; G, P. Zhao; W, X. Xia; X, L. Wan; F, J. Morvan; X, C. Zhang; L, H. Xie; J, Zhang; J, Du; A, R. Yan; P, Liu

    2016-03-01

    The hysteresis loops as well as the spin distributions of Sm-Co/α-Fe bilayers have been investigated by both three-dimensional (3D) and one-dimensional (1D) micromagnetic calculations, focusing on the effect of the interface exchange coupling under various soft layer thicknesses ts. The exchange coupling coefficient Ahs between the hard and soft layers varies from 1.8 × 10-6 erg/cm to 0.45 × 10-6 erg/cm, while the soft layer thickness increases from 2 nm to 10 nm. As the exchange coupling decreases, the squareness of the loop gradually deteriorates, both pinning and coercive fields rise up monotonically, and the nucleation field goes down. On the other hand, an increment of the soft layer thickness leads to a significant drop of the nucleation field, the deterioration of the hysteresis loop squareness, and an increase of the remanence. The simulated loops based on the 3D and 1D methods are consistent with each other and in good agreement with the measured loops for Sm-Co/α-Fe multilayers. Project supported by the National Natural Science Foundation of China (Grant Nos. 11074179 and 10747007), the National Basic Research Program of China (Grant No. 2014CB643702), the Zhejiang Provincial Natural Science Foundation of China (Grant No. LY14E010006), the Construction Plan for Scientific Research Innovation Teams of Universities in Sichuan Province, China (Grant No. 12TD008), the Scientific Research Foundation for the Returned Overseas Chinese Scholars of the Education Ministry, China, and the Program for Key Science and Technology Innovation Team of Zhejiang Province, China (Grant No. 2013TD08).

  6. Crystal-to-glass-transition induced elastic anomaly of cerium-iron multilayer films and texture-related mechanical properties after hydrogenation

    NASA Astrophysics Data System (ADS)

    Hassdorf, R.; Arend, M.; Felsch, W.

    1995-04-01

    The flexural modulus EF of pure and hydrided cerium-iron multilayer films has been measured at 300 K as a function of the modulation wavelength Λ using a vibrating-reed technique. EF is strongly correlated to the structure of the layered systems. In the pure Ce/Fe multilayers, the Fe sublayers show a structural transition from an amorphous to the bcc crystalline phase for a thickness near 20 Å. At this transition, the modulus EF is reduced by ~70%. The elastic softening occurs already, as a precursor to the structural change, for the crystalline Fe sublayers somewhat above the thickness for amorphous growth. This behavior reveals close similarities to the crystal-to-glass transition in bulk metallic alloys and compounds which seems to be driven by a shear instability of the crystal lattice. Hydrogenation leads to multilayers built of CeH~2/Fe. The Fe sublayers grow in the bcc structure above 10 Å, with a pronounced (110) or (111) texture for low- or room-temperature deposition. The flexural moduli are larger as compared to the nonhydrided multilayers and distinctly different for the two Fe textures. A simple calculation shows that the texture-related differences mainly result from the bulk properties of the Fe layers, but a contribution of interfacial effects cannot be excluded.

  7. Structure and magnetic properties of Co2FeSi film deposited on Si/SiO2 substrate with Cr buffer layer

    NASA Astrophysics Data System (ADS)

    Chatterjee, Payel; Basumatary, Himalay; Raja, M. Manivel

    2018-05-01

    Co2FeSi thin films of 25 nm thickness with 50 nm thick Cr buffer layer was deposited on thermally oxidized Si substrates. Structural and magnetic properties of the films were studied as a function of annealing temperature and substrate temperatures. While the coercivity increases with increase in annealing temperature, it is found to decrease with increase in substrate temperature. A minimum coercivity of 18 Oe has been obtained for the film deposited at 550°C substrate temperature. This was attributed to the formation of L12 phase as observed from the GIXRD studies. The films with a good combination of soft magnetic properties and L21 crystal structure are suitable for spintronic applications.

  8. Weakly bound water structure, bond valence saturation and water dynamics at the goethite (100) surface/aqueous interface: ab initio dynamical simulations

    DOE PAGES

    Chen, Ying; Bylaska, Eric J.; Weare, John H.

    2017-03-31

    Many important geochemical and biogeochemical reactions occur in the mineral/formation water interface of the highly abundant mineral, goethite (α-Fe(OOH). Ab-initio molecular dynamics (AIMD) simulations of the goethite α-FeOOH (100) surface and the structure, water bond formation and dynamics of water molecules in the mineral/aqueous interface are presented. Here, several exchange correlation functionals were employed (PBE96, PBE96+Grimme, and PBE0) in the simulations of a (3 x 2) goethite surface with 65 absorbed water molecules in a 3D-periodic supercell (a=30 Å, FeOOH slab ~12 Å thick, solvation layer ~18 Å thick).

  9. Weakly bound water structure, bond valence saturation and water dynamics at the goethite (100) surface/aqueous interface: ab initio dynamical simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ying; Bylaska, Eric J.; Weare, John H.

    Many important geochemical and biogeochemical reactions occur in the mineral/formation water interface of the highly abundant mineral, goethite (α-Fe(OOH). Ab-initio molecular dynamics (AIMD) simulations of the goethite α-FeOOH (100) surface and the structure, water bond formation and dynamics of water molecules in the mineral/aqueous interface are presented. Here, several exchange correlation functionals were employed (PBE96, PBE96+Grimme, and PBE0) in the simulations of a (3 x 2) goethite surface with 65 absorbed water molecules in a 3D-periodic supercell (a=30 Å, FeOOH slab ~12 Å thick, solvation layer ~18 Å thick).

  10. Grain size engineering for ferroelectric Hf{sub 0.5}Zr{sub 0.5}O{sub 2} films by an insertion of Al{sub 2}O{sub 3} interlayer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Han Joon; Park, Min Hyuk; Kim, Yu Jin

    2014-11-10

    The degradation of ferroelectric (FE) properties of atomic layer deposited Hf{sub 0.5}Zr{sub 0.5}O{sub 2} films with increasing thickness was mitigated by inserting 1 nm-thick Al{sub 2}O{sub 3} interlayer at middle position of the thickness of the FE film. The large P{sub r} of 10 μC/cm{sup 2}, which is 11 times larger than that of single layer Hf{sub 0.5}Zr{sub 0.5}O{sub 2} film with equivalent thickness, was achieved from the films as thick as 40 nm. The Al{sub 2}O{sub 3} interlayer could interrupt the continual growth of Hf{sub 0.5}Zr{sub 0.5}O{sub 2} films, and the resulting decrease of grain size prevented the formation of non-ferroelectricmore » monoclinic phase. The Al{sub 2}O{sub 3} interlayer also largely decreased the leakage current of the Hf{sub 0.5}Zr{sub 0.5}O{sub 2} films.« less

  11. Magnetoresistance of layered structures with alternating in-plane and perpendicular anisotropies

    NASA Astrophysics Data System (ADS)

    Stobiecki, F.; Szymański, B.; Luciński, T.; Dubowik, J.; Urbaniak, M.; Röll, K.

    2004-11-01

    The magnetic properties of (Ni83Fe17/Au/Co/Au) multilayers with different thickness of Au (0.5⩽tAu⩽3 nm) and Co (0.2⩽tCo⩽1.5 nm) layers were characterized. For tAu⩾1.5 nm independent magnetization reversal of Ni-Fe and Co was found. Increase of tCo for (Ni83Fe17-2 nm/Au-3 nm/Co-tCo/Au-3 nm)15 multilayers results in a sequence of transformations in the magnetic properties due to changes in Co microstructure: from superparamagnetic to ferromagnetic clusters at tCo≈0.3 nm, from discontinuous to continuous layers at tCo≈0.6 nm and from perpendicular to in-plane anisotropy at tCo≈1.2 nm.

  12. Magnetic properties of sputtered Permalloy/molybdenum multilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romera, M.; Ciudad, D.; Maicas, M.

    2011-10-15

    In this work, we report the magnetic properties of sputtered Permalloy (Py: Ni{sub 80}Fe{sub 20})/molybdenum (Mo) multilayer thin films. We show that it is possible to maintain a low coercivity and a high permeability in thick sputtered Py films when reducing the out-of-plane component of the anisotropy by inserting thin film spacers of a non-magnetic material like Mo. For these kind of multilayers, we have found coercivities which are close to those for single layer films with no out-of-plane anisotropy. The coercivity is also dependent on the number of layers exhibiting a minimum value when each single Py layer hasmore » a thickness close to the transition thickness between Neel and Bloch domain walls.« less

  13. Structure and magnetism of epitaxially strained Pd(001) films on Fe(001): Experiment and theory

    NASA Astrophysics Data System (ADS)

    Fullerton, Eric E.; Stoeffler, D.; Ounadjela, K.; Heinrich, B.; Celinski, Z.; Bland, J. A. C.

    1995-03-01

    We present an experimental and theoretical description of the structure and magnetism of epitaxially strained Pd(001) films on Fe(001) and in Fe/Pd/Fe(001) trilayers. The structure is determined by combining reflection high-energy electron diffraction and x-ray diffraction. For Fe/Au(001) bilayers and Fe/Pd/Au(001) trilayers grown by molecular-beam epitaxy on Ag(001), the Fe and Au layers are well represented by their bulk structure, whereas, thin Pd layers have a face-centered tetragonal structure with an in-plane expansion of 4.2% and an out-of-plane contraction of 7.2% (c/a=0.89). Theoretical ab initio studies of the interfacial structure indicate that the structural ground state of the epitaxially strained Pd layer is well described by a fct structure which maintains the bulk Pd atomic volume with small deviations at the interface. For Fe/Pd/Fe trilayers, the interlayer coupling oscillates with a period of 4 monolayers (ML) on a ferromagnetic background that crosses to weak antiferromagnetic coupling for thicknesses >12 ML of Pd. Strong ferromagnetic coupling observed below 5 ML of Pd indicates that 2 ML of Pd at each interface are ferromagnetically ordered. Theoretical studies of Fe3Pdn superlattices (where n is the number of Pd atomic layers) determine the polarization of the Pd layer and the interlayer magnetic coupling to depend strongly on the c/a ratio of the Pd layers. Modeling of a Pd layer with a constant-volume fct structure and one monolayer interfacial roughness find that the first 2 ML of the Pd is polarized in close agreement with the experimental results. Polarized neutron reflectivity results on an Fe(5.6 ML)/Pd(7 ML)/Au(20 ML) sample determine the average moment per Fe atom of 2.66+/-0.05μB. Calculations for the same structure show that this value is consistent with the induced Pd polarization.

  14. Aluminium alloyed iron-silicide/silicon solar cells: A simple approach for low cost environmental-friendly photovoltaic technology

    PubMed Central

    Kumar Dalapati, Goutam; Masudy-Panah, Saeid; Kumar, Avishek; Cheh Tan, Cheng; Ru Tan, Hui; Chi, Dongzhi

    2015-01-01

    This work demonstrates the fabrication of silicide/silicon based solar cell towards the development of low cost and environmental friendly photovoltaic technology. A heterostructure solar cells using metallic alpha phase (α-phase) aluminum alloyed iron silicide (FeSi(Al)) on n-type silicon is fabricated with an efficiency of 0.8%. The fabricated device has an open circuit voltage and fill-factor of 240 mV and 60%, respectively. Performance of the device was improved by about 7 fold to 5.1% through the interface engineering. The α-phase FeSi(Al)/silicon solar cell devices have promising photovoltaic characteristic with an open circuit voltage, short-circuit current and a fill factor (FF) of 425 mV, 18.5 mA/cm2, and 64%, respectively. The significant improvement of α-phase FeSi(Al)/n-Si solar cells is due to the formation p+−n homojunction through the formation of re-grown crystalline silicon layer (~5–10 nm) at the silicide/silicon interface. Thickness of the regrown silicon layer is crucial for the silicide/silicon based photovoltaic devices. Performance of the α-FeSi(Al)/n-Si solar cells significantly depends on the thickness of α-FeSi(Al) layer and process temperature during the device fabrication. This study will open up new opportunities for the Si based photovoltaic technology using a simple, sustainable, and los cost method. PMID:26632759

  15. Collective magnetic response of inhomogeneous nanoisland FeNi films around the percolation transition

    NASA Astrophysics Data System (ADS)

    Kovaleva, Natalia N.; Bagdinov, Anton V.; Stupakov, Alexandr; Dejneka, Alexandr; Demikhov, Evgenii I.; Gorbatsevich, Alexandr A.; Pudonin, Fedor A.; Kugel, Kliment I.; Kusmartsev, Feodor V.

    2018-04-01

    By using superconducting quantum interference device (SQUID) magnetometry, we investigated anisotropic high-field ( H ≲ 7T) low-temperature (10 K) magnetization response of inhomogeneous nanoisland FeNi films grown by rf sputtering deposition on Sitall (TiO2) glass substrates. In the grown FeNi films, the FeNi layer nominal thickness varied from 0.6 to 2.5 nm, across the percolation transition at the d c ≃ 1.8 nm. We discovered that, beyond conventional spin-magnetism of Fe21Ni79 permalloy, the extracted out-of-plane magnetization response of the nanoisland FeNi films is not saturated in the range of investigated magnetic fields and exhibits paramagnetic-like behavior. We found that the anomalous out-of-plane magnetization response exhibits an escalating slope with increase in the nominal film thickness from 0.6 to 1.1 nm, however, it decreases with further increase in the film thickness, and then practically vanishes on approaching the FeNi film percolation threshold. At the same time, the in-plane response demonstrates saturation behavior above 1.5-2T, competing with anomalously large diamagnetic-like response, which becomes pronounced at high magnetic fields. It is possible that the supported-metal interaction leads to the creation of a thin charge-transfer (CT) layer and a Schottky barrier at the FeNi film/Sitall (TiO2) interface. Then, in the system with nanoscale circular domains, the observed anomalous paramagnetic-like magnetization response can be associated with a large orbital moment of the localized electrons. In addition, the inhomogeneous nanoisland FeNi films can possess spontaneous ordering of toroidal moments, which can be either of orbital or spin origin. The system with toroidal inhomogeneity can lead to anomalously strong diamagnetic-like response. The observed magnetization response is determined by the interplay between the paramagnetic- and diamagnetic-like contributions.

  16. Air pollution-aerosol interactions produce more bioavailable iron for ocean ecosystems.

    PubMed

    Li, Weijun; Xu, Liang; Liu, Xiaohuan; Zhang, Jianchao; Lin, Yangting; Yao, Xiaohong; Gao, Huiwang; Zhang, Daizhou; Chen, Jianmin; Wang, Wenxing; Harrison, Roy M; Zhang, Xiaoye; Shao, Longyi; Fu, Pingqing; Nenes, Athanasios; Shi, Zongbo

    2017-03-01

    It has long been hypothesized that acids formed from anthropogenic pollutants and natural emissions dissolve iron (Fe) in airborne particles, enhancing the supply of bioavailable Fe to the oceans. However, field observations have yet to provide indisputable evidence to confirm this hypothesis. Single-particle chemical analysis for hundreds of individual atmospheric particles collected over the East China Sea shows that Fe-rich particles from coal combustion and steel industries were coated with thick layers of sulfate after 1 to 2 days of atmospheric residence. The Fe in aged particles was present as a "hotspot" of (insoluble) iron oxides and throughout the acidic sulfate coating in the form of (soluble) Fe sulfate, which increases with degree of aging (thickness of coating). This provides the "smoking gun" for acid iron dissolution, because iron sulfate was not detected in the freshly emitted particles and there is no other source or mechanism of iron sulfate formation in the atmosphere.

  17. Tuning the band structure and superconductivity in single-layer FeSe by interface engineering.

    PubMed

    Peng, R; Xu, H C; Tan, S Y; Cao, H Y; Xia, M; Shen, X P; Huang, Z C; Wen, C H P; Song, Q; Zhang, T; Xie, B P; Gong, X G; Feng, D L

    2014-09-26

    The interface between transition metal compounds provides a rich playground for emergent phenomena. Recently, significantly enhanced superconductivity has been reported for single-layer FeSe on Nb-doped SrTiO3 substrate. Yet it remains mysterious how the interface affects the superconductivity. Here we use in situ angle-resolved photoemission spectroscopy to investigate various FeSe-based heterostructures grown by molecular beam epitaxy, and uncover that electronic correlations and superconducting gap-closing temperature (Tg) are tuned by interfacial effects. Tg up to 75 K is observed in extremely tensile-strained single-layer FeSe on Nb-doped BaTiO3, which sets a record high pairing temperature for both Fe-based superconductor and monolayer-thick films, providing a promising prospect on realizing more cost-effective superconducting device. Moreover, our results exclude the direct correlation between superconductivity and tensile strain or the energy of an interfacial phonon mode, and highlight the critical and non-trivial role of FeSe/oxide interface on the high Tg, which provides new clues for understanding its origin.

  18. Semiconductor Ceramic Mn0.5Fe1.5O3-Fe2O3 from Natural Minerals as Ethanol Gas Sensors

    NASA Astrophysics Data System (ADS)

    Aliah, H.; Syarif, D. G.; Iman, R. N.; Sawitri, A.; Sanjaya WS, M.; Nurul Subkhi, M.; Pitriana, P.

    2018-05-01

    In this research, Mn and Fe-based ceramic gas sensing were fabricated and characterized. This research used natural mineral which is widely available in Indonesia and intended to observe the characteristics of Mn and Fe-based semiconducting material. Fabricating process of the thick films started by synthesizing the ceramic powder of Fe(OH)3 and Mn oxide material using the precipitation method. The deposition from precipitation method previously was calcined at a temperature of 800 °C to produce nanoparticle powder. Nanoparticle powder that contains Mn and Fe oxide was mixed with an organic vehicle (OV) to produce a paste. Then, the paste was layered on the alumina substrate by using the screen printing method. XRD method was utilized to characterize the thick film crystal structure that has been produced. XRD spectra showed that the ceramic layer was formed from the solid Mn0.5Fe1.5O3 (bixbyite) and Fe2O3. In addition, the electrical properties (resistance) examination was held in the room that contains air and ethanol to determine the sensor sensitivity of ethanol gas. The sensor resistance decreases as the ethanol gas was added, showing that the sensor was sensitive to ethanol gas and an n-type semiconductor. Gas sensor exhibit sensitive characterization of ethanol gas on the concentration of (100 to 300) ppm at a temperature of (150 to 200) °C. This showed that the Mn0.5Fe1.5O3-Fe2O3 ceramic semiconductor could be utilized as the ethanol gas detector.

  19. A new record of silica-rich coating on carbonate substrates in southeast-central Iran: Constraints on geochemical signatures

    NASA Astrophysics Data System (ADS)

    Aftabi, Alijan; Atapour, Habibeh

    2018-10-01

    There exist few data on the geochemical signatures and occurrence of silica-rich coatings developed on siliceous carbonate substrates. The rock coatings in the Maran-e-Galu area in southeast-central Iran are composed of four layers; a lower thick layer (1 mm) of silica, a lower thin film of Fe-Mn oxide, an upper thick (1 mm) silica-rich layer, and an upper thin film of Fe-Mn oxide. Energy dispersive X-ray spectrometer (EDS), X-ray diffraction and bulk coating geochemistry data obtained by XRF and ICP-MS highlight that the 1-3 mm thick silica-rich coatings occur as a silica glaze of opal composition on the siliceous carbonate substrate. The coatings were probably formed by the interaction of rainfall, water vapor or dew with silicate and carbonate-rich detrital atmospheric dust, releasing H4SiO4with a pH of 5-10 in this semiarid-arid desert environment. This led to the formation of silica gels as well as minor Fe-Mn oxide gels by evaporation and supersaturation, and finally changed to the black brown silica glaze probably at ambient temperatures of >40 °C Major and minor element signatures are consistent with the known silica glazes, displaying enrichment in Ba, Sr, P, and LREEs with little to no Eu and Ce anomalies and a weak Tm anomaly. However, the very low content of aluminum oxide is well correlated with the known classified silica glaze of genetic type 1, reflecting the absence of detrital clay minerals. The low Fe and Mn contents in bulk coatings (3.6 and 10 magnitudes lower than crustal abundance, respectively) and lack of biochemical processes in the atmospheric dust highlight the semiarid-arid climate setting. We thereby conclude that a new variant of silica glaze of 1-3 mm thickness could form on siliceous carbonate substrates under an alkaline pH in semiarid-arid regions.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zohar, S.; Choi, Y.; Love, D. M.

    We use X-ray Excited Luminescence Microscopy to investigate the elemental and layer resolved magnetic reversal in an interlayer exchange coupled (IEC) epitaxial Fe/Cr wedge/Co heterostructure. The transition from strongly coupled parallel Co-Fe reversal for Cr thickness t(Cr) < 0.34 nm to weakly coupled layer independent reversal for t(Cr) > 1.5 nm is punctuated at 0.34 < t(Cr) < 1.5 nm by a combination of IEC guided domain wall motion and stationary zig zag domain walls. Domain walls nucleated at switching field minima are guided by IEC spatial gradients and collapse at switching field maxima.

  1. Hydrogen-isotope permeation barrier

    DOEpatents

    Maroni, Victor A.; Van Deventer, Erven H.

    1977-01-01

    A composite including a plurality of metal layers has a Cu-Al-Fe bronze layer and at least one outer layer of a heat and corrosion resistant metal alloy. The bronze layer is ordinarily intermediate two outer layers of metal such as austenitic stainless steel, nickel alloys or alloys of the refractory metals. The composite provides a barrier to hydrogen isotopes, particularly tritium that can reduce permeation by at least about 30 fold and possibly more below permeation through equal thicknesses of the outer layer material.

  2. The influence of interface on spin pumping effect in Ni{sub 80}Fe{sub 20} /Tb bilayer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yue, Jinjin; Jiang, Sheng; Zhang, Dong

    2016-05-15

    Focusing on the interface effect of the Ni{sub 80}Fe{sub 20} (Py)/terbium (Tb) bilayer, the influence of interface on the magnetization dynamic damping is investigated systematically. Two series of Py (12 nm)/Tb (d nm) films with and without copper (Cu) (1 nm) interlayer are deposited on silicon (Si) substrates by DC magnetron sputtering at room temperature. From vibrating sample magnetometer (VSM) measurements, the saturation magnetization (M{sub s}) decreases with increasing Tb thickness in Py/Tb bilayer while the decrease of M{sub s} is suppressed efficiently by inserting a Cu layer with even 1 nm of thickness. From the frequency dependence of ferromagneticmore » resonance (FMR) linewidth, we can obtain the Gilbert damping coefficient (α), α is found to exhibit an extreme enhancement in comparison to the single Py layer and shows an increasing trend with increasing Tb thickness. By inserting the Cu layer, α decreases significantly. From theoretical fitting, the spin diffusion length (λ{sub SD}) and spin mixing conductance (g{sup ↑↓}) are determined. It shows that the interface structure influences the spin mixing conductance but not the spin diffusion length.« less

  3. Evidence for a π junction in Nb/Ni 0.96V0.04/Nb trilayers revealed by superfluid density measurements

    NASA Astrophysics Data System (ADS)

    Hinton, M. J.; Steers, Stanley; Peters, Bryan; Yang, F. Y.; Lemberger, T. R.

    2016-07-01

    We report measurements of the superfluid density, λ-2(T ) , in ferromagnet-on-superconductor (F/S) bilayers and S/F/S' trilayers comprising Nb with Ni, Py, CoFe, and NiV ferromagnets. Bilayers provide information about F/S interface transparency and the T dependence of λ-2 that inform interpretation of trilayer data. The Houzet-Meyer theory accounts well for the measured dependence of λ-2(0 ) and Tc of F/S bilayers on thickness of F layer, dF, except that λ-2(0 ) is slightly under expectations for CoFe/Nb bilayers. For Nb/F/Nb' trilayers, we are able to extract Tc and and λ-2 for both Nb layers when F is thick enough to weaken interlayer coupling. The lower "Tc" is actually a crossover identified by onset of superfluid in the lower-Tc Nb layer. For Nb/NiV/Nb' trilayers, λ-2(0 ) versus dF for both Nb layers has a minimum followed by a recovery, suggestive of a π junction.

  4. Depth profiling of marker layers using x-ray waveguide structures

    NASA Astrophysics Data System (ADS)

    Gupta, Ajay; Rajput, Parasmani; Saraiya, Amit; Reddy, V. R.; Gupta, Mukul; Bernstorff, Sigrid; Amenitsch, H.

    2005-08-01

    It is demonstrated that x-ray waveguide structures can be used for depth profiling of a marker layer inside the guiding layer with an accuracy of better than 0.2 nm. A combination of x-ray fluorescence and x-ray reflectivity measurements can provide detailed information about the structure of the guiding layer. The position and thickness of the marker layer affect different aspects of the angle-dependent x-ray fluorescence pattern, thus making it possible to determine the structure of the marker layer in an unambiguous manner. As an example, effects of swift heavy ion irradiation on a Si/M/Si trilayer ( M=Fe , W), forming the cavity of the waveguide structure, have been studied. It is found that in accordance with the prediction of thermal spike model, Fe is much more sensitive to swift heavy ion induced modifications as compared to W, even in thin film form. However, a clear evidence of movement of the Fe marker layer towards the surface is observed after irradiation, which cannot be understood in terms of the thermal spike model alone.

  5. Formation of macroscopic surface layers on Fe(0) electrocoagulation electrodes during an extended field trial of arsenic treatment.

    PubMed

    van Genuchten, Case M; Bandaru, Siva R S; Surorova, Elena; Amrose, Susan E; Gadgil, Ashok J; Peña, Jasquelin

    2016-06-01

    Extended field trials to remove arsenic (As) via Fe(0) electrocoagulation (EC) have demonstrated consistent As removal from groundwater to concentrations below 10 μg L(-1). However, the coulombic performance of long-term EC field operation is lower than that of laboratory-based systems. Although EC electrodes used over prolonged periods show distinct passivation layers, which have been linked to decreased treatment efficiency, the spatial distribution and mineralogy of such surface layers have not been investigated. In this work, we combine wet chemical measurements with sub-micron-scale chemical maps and selected area electron diffraction (SAED) to determine the chemical composition and mineral phase of surface layers formed during long-term Fe(0) EC treatment. We analyzed Fe(0) EC electrodes used for 3.5 months of daily treatment of As-contaminated groundwater in rural West Bengal, India. We found that the several mm thick layer that formed on cathodes and anodes consisted of primarily magnetite, with minor fractions of goethite. Spatially-resolved SAED patterns also revealed small quantities of CaCO3, Mn oxides, and SiO2, the source of which was the groundwater electrolyte. We propose that the formation of the surface layer contributes to decreased treatment performance by preventing the migration of EC-generated Fe(II) to the bulk electrolyte, where As removal occurs. The trapped Fe(II) subsequently increases the surface layer size at the expense of treatment efficiency. Based on these findings, we discuss several simple and affordable methods to prevent the efficiency loss due to the surface layer, including alternating polarity cycles and cleaning the Fe(0) surface mechanically or via electrolyte scouring. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. RHEED oscillations in spinel ferrite epitaxial films grown by conventional planar magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Ojima, T.; Tainosho, T.; Sharmin, S.; Yanagihara, H.

    2018-04-01

    Real-time in situ reflection high energy electron diffraction (RHEED) observations of Fe3O4, γ-Fe2O3, and (Co,Fe)3O4 films on MgO(001) substrates grown by a conventional planar magnetron sputtering was studied. The change in periodical intensity of the specular reflection spot in the RHEED images of three different spinel ferrite compounds grown by two different sputtering systems was examined. The oscillation period was found to correspond to the 1/4 unit cell of each spinel ferrite, similar to that observed in molecular beam epitaxy (MBE) and pulsed laser deposition (PLD) experiments. This suggests that the layer-by-layer growth of spinel ferrite (001) films is general in most physical vapor deposition (PVD) processes. The surfaces of the films were as flat as the surface of the substrate, consistent with the observed layer-by-layer growth process. The observed RHEED oscillation indicates that even a conventional sputtering method can be used to control film thickness during atomic layer depositions.

  7. A double Fe-Ti oxide and Fe-sulphide liquid immiscibility in the Itsindro Gabbro Complex, Madagascar

    NASA Astrophysics Data System (ADS)

    Augé, Thierry; Bailly, Laurent; Roig, Jean-Yves

    2017-11-01

    The petrology and mineralogy of the Itsindro complex in south-central Madagascar has been investigated through samples obtained from the 320.7 m-deep Lanjanina borehole. The section consists of a 254 m-thick pyroxenite unit with interbedded gabbro layers that overlies a gabbro unit and is itself overlain by a 19 m-thick granite unit. Most of the structures are sub-horizontal. A weak magmatic layering is locally observed but at the scale of the core, the intrusion does not appear to be a layered complex. Pyroxenite and gabbro show a systematic disseminated mineralization consisting of Fe-Ti-P oxides and Fe-(Cu-Ni) sulphides that takes the form of ilmenite-titanomagnetite ± apatite and pyrrhotite ± chalcopyrite ± pentlandite. In the upper zone, from 90 to 72 m, sub-massive centimetre-to decimetre-sized layers of oxides and sulphides comprise a total of 16 m of sub-massive sulphide (the main mineralized zone). In this mineralized zone the oxide/sulphide ratio is close to 1/1. The sulphide is strongly dominated by pyrrhotite, which may locally contain inclusions of molybdenite crystals with the Re sulphide rheniite (ReS2). Oxides are generally euhedral, included in or attached to the Fe-sulphide, and also locally form sub-massive centimetre-sized bands. Apatite as a cumulus phase is ubiquitous. Locally it may account for 30% of the ore-rich samples and some samples consist of apatite-Fe-Ti oxides-Fe-Cu-Ni sulphides with virtually no silicate. Apatite is the main REE carrier but the total REE content remains low (<90 ppm). Mineral compositions and whole rock geochemistry indicate that the rocks are highly differentiated, and in spite of a relatively limited thickness, the differentiation process is observed. Two zones can be distinguished: from the bottom to 162.8 m we see a decrease in the Mg number of olivine and pyroxene, and a drop in TiO2 and Al2O3 for the latter. A reverse trend is then observed within the pyroxenite unit from the 162.8 m level upwards. The main mineralized zone is located in the upper part of this unit, about 70 m above this discontinuity. The highly differentiated Fe-Ti-P facies of the Lanjanina series in the Itsindro Gabbro Complex have been interpreted as corresponding to the Fe-Ti-P rich, Si-poor member remaining after an immiscible segregation of an evolved mafic magma. The granite dykes and the overlying granite unit represent the second, Si-rich member of the immiscibility process. The presence of large amounts of sulphide is attributed to sulphur contamination of the Fe-Ti-rich liquid. Fe-Ti oxides will tend to crystallize on the sulphide droplets and the accumulation of dense Fe-sulphides (liquid) and associated Fe-Ti oxides (solid) will result in this complex and unusual association taking the form of a net texture.

  8. Chemical variations in the Triple Group of the Skaergaard intrusion: insights for the mineralization and crystallization process

    NASA Astrophysics Data System (ADS)

    Nielsen, T. F.; Bernstein, S.

    2009-12-01

    The 54 Ma. old Skaergaard intrusion ( East Greenland) is a type example for fractionation of basaltic melt along the Fenner Trend. The Triple Group is the upper most 100 m of the Middle Zone and consists of FeTi-oxide rich layered gabbro with three distinct leugabbro layers 2-5 m thick ( L-layers; L1-L3, 2-5m thick) and a less marked layer (L0) c.20 m below L1. These are the most marked of many such layers. Apart from the pronounced layering the lower part of the Triple Group also hosts a world class Au-PGE mineralization. The mineralization is perfectly concordant with the L-layers, and the Triple Group invites investigation of the relationship between host and mineralization. The mineralization includes 5 main levels defined by palladium concentration. The chemical variation across the mineralization is covered by ca. 250 bulk major and trace element compositions, each representing 25cm of stratigraphy giving a continuum of ca. 60m. Proportions of normative plagioclase (plag) and pyroxene (px, including cpx and opx) are complementary, except in mineralized gabbro which is rich in FeTi-oxides. Cumulus ilmenite (ilm) is strongly enriched in layers (7m apart). They occur in both plag- and px-rich gabbro, whereas magnetite (mt) shows no simple correlation with ilm and is mainly a poikilitic intercumulus phase. The L-layers are composed of an upper part rich in plag and px and poor in FeTi-oxides, and a lower part rich in plag and FeTi-oxides and poor in px. The marked breaks in the mineralogy in the L-layers separate one layered succession from the next. The layered successions consist of a lower oxide-poor px-plag adcumulate, followed by complex mesocratic orthocumulate with poikilitic interstitial FeTi-oxide, and an upper part of increasingly simple plag-rich adcumulate with decreasing content of interstitial mt. The Au-PGE mineralized levels are found in the complex FeTi-rich gabbros at and in the base of the leucogabbro layers. The stratigraphic variation in density and densities of melt and liquidus phases suggest plag to have neutral buoyancy (floating), whereas all other phases would sink. The repeated successions are suggested to be the result of repeated “self-stratification” in the mush zone at the crystallization front, characterized by separation of px and plag leaving a transitional zone enriched in Fe-rich melt. In this melt, crystallization of mt led to S-saturation and formation of immiscible sulfide globules (30µm) in which PGE-minerals crystallize. During solidification, residual or immiscible Si-rich melt and volatiles rose from the transitional zone and took Au, Ag, Pt, Te, As, Pb, Sb, Sn, a.o. along to the main magma above and at late stage to granophyric veins. The Fe-enriched gabbros in the transitional zone are commonly accepted as average gabbros, but are in the Triple Group mixes of cumulus phases and evolved Fe-rich melt and should be used with care in the modeling of lines of liquid descent.

  9. Double-layer neutron shield design as neutron shielding application

    NASA Astrophysics Data System (ADS)

    Sariyer, Demet; Küçer, Rahmi

    2018-02-01

    The shield design in particle accelerators and other high energy facilities are mainly connected to the high-energy neutrons. The deep penetration of neutrons through massive shield has become a very serious problem. For shielding to be efficient, most of these neutrons should be confined to the shielding volume. If the interior space will become limited, the sufficient thickness of multilayer shield must be used. Concrete and iron are widely used as a multilayer shield material. Two layers shield material was selected to guarantee radiation safety outside of the shield against neutrons generated in the interaction of the different proton energies. One of them was one meter of concrete, the other was iron-contained material (FeB, Fe2B and stainless-steel) to be determined shield thicknesses. FLUKA Monte Carlo code was used for shield design geometry and required neutron dose distributions. The resulting two layered shields are shown better performance than single used concrete, thus the shield design could leave more space in the interior shielded areas.

  10. Conductive, magnetic and structural properties of multilayer films

    NASA Astrophysics Data System (ADS)

    Kotov, L. N.; Turkov, V. K.; Vlasov, V. S.; Lasek, M. P.; Kalinin, Yu E.; Sitnikov, A. V.

    2013-12-01

    Composite-semiconductor and composite-dielectric multilayer films were obtained by the ion beam sputtering method in the argon and hydrogen atmospheres with compositions: {[(Co45-Fe45-Zr10)x(Al2O3)y]-[α-Si]}120, {[(Co45-Ta45-Nb10)x(SiO2)y]-[SiO2]}56, {[(Co45-Fe45-Zr10)x(Al2O3)y]-[α-Si:H]}120. The images of surface relief and distribution of the dc current on composite layer surface were obtained with using of atomic force microscopy (AFM). The dependencies of specific electric resistance, ferromagnetic resonance (FMR) fields and width of line on metal (magnetic) phase concentration x and nanolayers thickness of multilayer films were obtained. The characteristics of FMR depend on magnetic interaction among magnetic granules in the composite layers and between the layers. These characteristics depend on the thickness of composite and dielectric or semiconductor nanolayers. The dependences of electric microwave losses on the x and alternating field frequency were investigated.

  11. Improved fabrication of focused single element P(VDF–TrFE) transducer for high frequency ultrasound applications

    PubMed Central

    Jeong, Jong Seob; Shung, K. Kirk

    2013-01-01

    We present an improved fabrication technique for the focused single element poly (vinylidene fluoride–trifluoroethylene) P(VDF–TrFE) transducer. In this work, a conductive epoxy for a backing layer was directly bonded to the 25 μm thick P(VDF–TrFE) film and thus made it easy to conform the aperture of the P(VDF–TrFE) transducer. Two prototype focused P(VDF–TrFE) transducers with disk- and ring-type aperture were fabricated and their performance was evaluated using the UBM (Ultrasound Biomicroscopy) system with a wire phantom. All transducers had a spherically focused aperture with a low f-number (focal depth/aperture size = 1). The center frequency of the disk-type P(VDF–TrFE) transducer was 23 MHz and −6 dB bandwidth was 102%. The ring-type P(VDF–TrFE) transducer had 20 MHz center frequency and −6 dB bandwidth of 103%. The measured pulse echo signal had reduced reverberation due to no additional adhesive layer between the P(VDF–TrFE) film and the backing layer. Hence, the proposed method is promising to fabricate a single element transducer using P(VDF–TrFE) film for high frequency applications. PMID:23021238

  12. Epitaxy of Fe/Cu/Si(1 1 1) ultrathin films: an Auger electron diffraction study

    NASA Astrophysics Data System (ADS)

    Castrucci, P.; Gunnella, R.; Bernardini, R.; Montecchiari, A.; Carboni, R.; De Crescenzi, M.

    2001-06-01

    Epitaxial Fe films, with thickness in the range between 1 and 50 ML (monolayer, ML), were grown in ultrahigh vacuum conditions on the 7×7 reconstructed (1 1 1)-Si surface. The films were evaporated on a Cu thick buffer layer to avoid iron silicides formation. Auger electron diffraction (AED) technique has been used to investigate the growth of the pseudomorphic film of fcc γ-Fe(1 1 1) and the successive growth of bcc Fe(1 1 0) domains in the Kurdjumov-Sachs orientation. The early stages of growth have been carefully investigated through AED to assess the pseudomorphism of iron γ-phase. AED patterns clearly show the presence of diffraction features that are fingerprints of the existence of a few bcc arranged atomic structures even for 1 ML iron coverage.

  13. The magnetic properties of a magnetic detector using oxidized amorphous Co 95- xFe 5(BSi) x alloys

    NASA Astrophysics Data System (ADS)

    Ahn, S. J.; Kim, C. K.; Kim, S. J.; Choi, D. K.; O'Handley, R. C.

    2000-07-01

    A comparative oxidation study of several amorphous Co 75- xFe 5(BSi) 20+ x alloys was carried out. Reentrant magnetization behavior and field-induced anisotropy which are of a critical importance for a magnetic detector were obtained after oxidation of the amorphous Co-rich ribbons. During this oxidation, the ribbons develop surface oxides which are primarily nonmagnetic borosilicate or a combination of borosilicate and magnetic oxides such CoO or FeO. Beneath this lies a 100-1000 Å thick Co-rich magnetic alloy which may be either HCP or FCC in its crystal structure. The thickness of the Co-crystallized layer is determined by the type of the surface oxides. The oxidation products such as appear to affect the reentrant magnetization behavior of Co-rich amorphous alloys significantly. We have determined the amount of metalloids (a critical concentration of B and Si) which is necessary to form a continuous layer of the most thermodynamically stable oxide, in our case borosilicate, on the surface. We also observed that there is a good correlation between reentrant magnetization and the thickness of Co layer. The best reentrant M- H loop for the magnetic detector was obtained in ribbons with a surface borate-rich borosilicate since it ensures conditions such as (1) metalloid depletion in the substrate and (2) formation of oxygen impurity faults in Co grains that are required for strong reentrant magnetization behavior.

  14. Superb electromagnetic wave-absorbing composites based on large-scale graphene and carbon nanotube films.

    PubMed

    Li, Jinsong; Lu, Weibang; Suhr, Jonghwan; Chen, Hang; Xiao, John Q; Chou, Tsu-Wei

    2017-05-24

    Graphene has sparked extensive research interest for its excellent physical properties and its unique potential for application in absorption of electromagnetic waves. However, the processing of stable large-scale graphene and magnetic particles on a micrometer-thick conductive support is a formidable challenge for achieving high reflection loss and impedance matching between the absorber and free space. Herein, a novel and simple approach for the processing of a CNT film-Fe 3 O 4 -large scale graphene composite is studied. The Fe 3 O 4 particles with size in the range of 20-200 nm are uniformly aligned along the axial direction of the CNTs. The composite exhibits exceptionally high wave absorption capacity even at a very low thickness. Minimum reflection loss of -44.7 dB and absorbing bandwidth of 4.7 GHz at -10 dB are achieved in composites with one-layer graphene in six-layer CNT film-Fe 3 O 4 prepared from 0.04 M FeCl 3 . Microstructural and theoretical studies of the wave-absorbing mechanism reveal a unique Debye dipolar relaxation with an Eddy current effect in the absorbing bandwidth.

  15. Distal Impact Ejecta from the Gulf of Carpentaria: Have We Found Cometary Fragments as Part of the Ejecta Suite?

    NASA Astrophysics Data System (ADS)

    Rodriguez, L. E.; Abbott, D. H.; Breger, D.

    2011-12-01

    Analysis using light microscopy, analytical scanning electron microscopy, and measurements of the magnetic susceptibility of five sediment cores (MD 28-MD 32) from the Gulf of Carpentaria have revealed that each has had an impact layer less than a centimeter (10s to 100s of micrometers) thick prior to bioturbation. The present stratigraphic thickness of the impact layer (result of bioturbation) within every core was determined based on whether or not we had observed at least one of the following impact ejecta: FeNiCrCl (a recent discovery), metallic spherules (some of which consisted of Fe and Ni), or chlorinated hydrocarbon; the highest peak of magnetic susceptibility correlated with the highest concentration of impact ejecta. We used modeling of the magnetic susceptibility of a hematite-calcium carbonate mixture to constrain the minimum thickness of the impact ejecta layer (prior to bioturbation). Until recently we had been unaware that the red, glassy, semi-spherules we found within the impact layer were in fact FeNiCrCl. Nickel is not abundant within the Earth's crust, thus it is highly likely that these fragments are cometary debris from an impact event within the Gulf of Carpentaria. Furthermore, SEM analysis has confirmed that the chlorinated hydrocarbon was not PVC contamination from the coring process; with such high levels of chlorine the results strongly suggest that the material was a by product of a marine water impact event. In addition, by using impact modeling we deduced that the observed impact ejecta layer could not have been transported via an impact generated tsunami. The model also predicts that the layer could have been produced by a cometary impact event (average velocity 51 km/s) that would have produced the 12 km crater at the site of the Tabban crater candidate.

  16. Uniform, dense arrays of vertically aligned, large-diameter single-walled carbon nanotubes.

    PubMed

    Han, Zhao Jun; Ostrikov, Kostya

    2012-04-04

    Precisely controlled reactive chemical vapor synthesis of highly uniform, dense arrays of vertically aligned single-walled carbon nanotubes (SWCNTs) using tailored trilayered Fe/Al(2)O(3)/SiO(2) catalyst is demonstrated. More than 90% population of thick nanotubes (>3 nm in diameter) can be produced by tailoring the thickness and microstructure of the secondary catalyst supporting SiO(2) layer, which is commonly overlooked. The proposed model based on the atomic force microanalysis suggests that this tailoring leads to uniform and dense arrays of relatively large Fe catalyst nanoparticles on which the thick SWCNTs nucleate, while small nanotubes and amorphous carbon are effectively etched away. Our results resolve a persistent issue of selective (while avoiding multiwalled nanotubes and other carbon nanostructures) synthesis of thick vertically aligned SWCNTs whose easily switchable thickness-dependent electronic properties enable advanced applications in nanoelectronic, energy, drug delivery, and membrane technologies.

  17. Permanent magnetic properties of NdFe12Nx sputtered films epitaxially grown on V buffer layer

    NASA Astrophysics Data System (ADS)

    Sato, T.; Ohsuna, T.; Yano, M.; Kato, A.; Kaneko, Y.

    2017-08-01

    To clarify the magnetic properties of the NdFe12Nx compound, which shows promise as a high-performance permanent magnet material, NdFe12Nx epitaxial films fabricated by using a V underlayer on MgO (100) single-crystalline substrates were investigated. Nd-Fe films deposited on a V underlayer consist of NdFe12 grains, which have a c-axis orientation perpendicular to the film plane, as well as α-Fe and Nd2Fe17 phases. In the Nd-Fe-N film obtained by subsequent nitridation of the Nd-Fe film, NdFe12Nx grains grew as the dominant phase, and the volume fractions of α-Fe phases dropped below 5%. A Nd-Fe-N film with a thickness of 50 nm exhibits a saturation magnetization (Ms) of 1.7 T, an anisotropy field (HA) of ˜60 kOe, a magnetocrystalline anisotropy energy (K1) of ˜4.1 MJ/m3, and a coercivity (Hc) of 1.7 kOe. The Hc of a Nd-Fe-N film with a thickness of 25 nm is 4.3 kOe. These results indicate that NdFe12Nx compounds have a superior Ms compared to Nd-Fe-B magnets, while the enhancement in Hc is indispensable.

  18. Influence of Sporadic E layers on Mesospheric Na and Fe Layers over Arecibo

    NASA Astrophysics Data System (ADS)

    Raizada, S.; Tepley, C. A.; Zhou, Q.; Sarkhel, S.; Mathews, J. D.; Aponte, N.; Kerr, R.

    2014-12-01

    Arecibo offers unique opportunity to investigate the structure of the mesospheric metal layers and their response to Sporadic E as observed by the incoherent scatter radar data. Previous studies have shown higher occurrences of sporadic activity in the neutral Fe layers as compared to Na at mid-latitudes. Other studies demonstrated that Sporadic Na (NaS) layers are more common at low and high latitudes as compared to FeS. It is important to note that case studies based on a few nights of observations are significant as they can shed more light on factors that are important on short term scales. These efforts can also help in evaluation of the role played by these factors in the climatological or global studies. In this study, we have used two adjacent nights of simultaneous Na and Fe data obtained using resonance lidars at Arecibo, while the co-located Incoherent Scatter Radar (ISR) provides information about Sporadic E (ES). On both the nights (17 and 18 March 2004) ES was observed with electron densities exceeding 3000 electrons/cc. Some interesting observations are worth noting: The Fe main layer (below 90 km) was stronger than the corresponding sporadic layer around 95 km. However, Na data displayed a weaker main layer below 90 km with stronger NaS activity. Hence, the ratio of densities determined within layers of 3 km thickness centered at 97 km and at 87 km are less than 1 for Fe and exceeds 1 in the case of Na. A correlation analysis between Na/Ne and Fe/Ne also displays dissimilarities in the 94-100 km altitude range. An onsite all-sky imager recorded similar wave activities on both the nights with both ripple and band type structures that were observed in the 557.7 nm airglow. We will discuss the dissimilar response of Na and Fe to Sporadic E activity in relation to neutralization lifetimes of their respective ions and their sensitivity to temperatures.

  19. Structure and high temperature oxidation of mechanical alloyed Fe-Al coating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aryanto, Didik, E-mail: Didik-phys@yahoo.co.id, E-mail: didi027@lipi.go.id; Sudiro, Toto; Wismogroho, Agus S.

    2016-04-19

    The structure and high temperature oxidation resistance of Fe-Al coating on low carbon steel were investigated. The Fe-Al coating was deposited on the surface of low carbon steel using a mechanical alloying method. The coating was then annealed at 600°C for 2 hour in a vacuum of 5 Pa. The cyclic-oxidation tests of low carbon steel, Fe-Al coatings with and without annealing were performed at 600°C for up to 60h in air. The structure of oxidized samples was studied by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy X-ray spectroscopy (EDS). The results show that the Fe-Al coatingsmore » exhibit high oxidation resistance compared to the uncoated steel. After 60 h exposure, the uncoated steel formed mainly Fe{sub 3}O{sub 4} and Fe{sub 2}O{sub 3} layers with the total thickness of around 75.93 µm. Fe-Al coating without annealing formed a thin oxide layer, probably (Fe,Al){sub 2}O{sub 3}. Meanwhile, for annealed sample, EDX analysis observed the formation of two Fe-Al layers with difference in elements concentration. The obtained results suggest that the deposition of Fe-Al coating on low carbon steel can improve the oxidation resistance of low carbon steel.« less

  20. Atomic mixing induced by swift heavy ion irradiation of Fe/Zr multilayers

    NASA Astrophysics Data System (ADS)

    Jaouen, C.; Michel, A.; Pacaud, J.; Dufour, C.; Bauer, Ph.; Gervais, B.

    1999-01-01

    The mechanism of ion induced mixing and phase change was studied for Fe/Zr multilayers, and specifically for the case of swift heavy ions giving rise to a very large electronic excitation of the target. The multilayers had a modulation of 7.6 nm and an overall composition Fe 69Zr 31. The Zr layers were amorphous whereas the Fe ones were crystalline (bcc) with a very strong (1 1 0) texture in the growth direction. The phase transformation and the composition changes were analysed using the structural and magnetic properties of the Fe component by means of a detailed analysis of the X-ray diffraction profiles and with the aid of backscattering Mössbauer spectroscopy. A complete mixing was observed at a fluence of 10 13 U/cm 2. Both phenomena, the dose dependence of the ion beam mixed amorphous non-magnetic phase and the quantitative evolution of the crystalline iron layer thickness, suggest that mixing occurs in a two-stage process. At an initial stage, an anisotropic diffusion of iron atoms in the amorphous zirconium layers takes place along the interface, while subsequent ion bombardment leads to a generalised transformation through the whole of the Fe layer. Finally, the implications of these observations are discussed in comparison to the plastic deformation phenomena reported for amorphous alloys.

  1. Spin scattering asymmetric coefficients and enhanced specific interfacial resistance of fully epitaxial current-perpendicular-to-plane giant magnetoresistance spin valves using alternate monatomic layered [Fe/Co]n and a Ag spacer layer

    NASA Astrophysics Data System (ADS)

    Jung, J. W.; Shiozaki, R.; Doi, M.; Sahashi, M.

    2011-04-01

    Using current-perpendicular-to-plane (CPP) giant magnetoresistance (GMR) measurement, we have evaluated the bulk and interface spin scattering asymmetric coefficients, βF and γF/N and the specific interfacial resistance, AR*F/N, for exchange-biased spin-valves consisting of artificially ordered B2 structure Fe50Co50 and Ag spacer layer. Artificially epitaxial ordered Fe50Co50 superlattices have been successfully fabricated on MgO (001) substrate by alternate monatomic layer (AML) deposition at a substrate temperature of 75 °C. The structural properties of the full epitaxial trilayer, AML[Fe/Co]n/Ag/AML[Fe/Co]n, on the Ag electrode have been confirmed by in situ reflection high-energy electron diffraction and transmission electron diffraction microscopy. A considerably large resistance-area product change and MR ratio (ΔRA > 3 mΩμm2 and MR ratio ˜5%) were confirmed even at thin AML[Fe/Co]n layer at room temperature (RT) in our spin-valve elements. The estimated values of βF and γF/N were 0.80 and 0.84 ± 0.02, respectively, from the Valet-Fert theory analysis of ΔRA as a function of thickness of the ferromagnetic layer (3, 4, and 5 nm) on the basis of the two-current model.

  2. Effect of Isothermal Hold on the Microstructural Evolution of the Stainless Steel 304L/Zircaloy-4 Interface

    NASA Astrophysics Data System (ADS)

    Lebaili, A.; Taouinet, M.; Nibou, D.; Lebaili, S.; Hodaj, F.

    2017-07-01

    The transition from solid-state bonding of the stainless steel 304L/Zircaloy-4 diffusion couple to a partial liquid-phase bonding is important for the bonding process at temperatures ranging from 950 to 1050 °C. In this study, the temperature at which a melting process occurs at the interface after 45 min of isothermal holdings is determined experimentally. This melting process leads to a drastic change in the thickness of the reaction products zone (RPZ) as well as on its microstructure. Diffusion couples were characterized by SEM-EDS, and quantitative chemical analyses of different phases are performed by EPMA. The RPZ consists of three layers: the (α-Fe-Cr) phase layer and two layers consisting of Zr(Fe,Cr)2 (ɛ), Zr2(Fe,Ni) and (α-Zr) phases. The thickness of these layers strongly depends on the holding temperature. The analysis allowed the description of the physicochemical phenomena occurring during isothermal holding as well as during cooling. The solidification paths are determined at 1000, 1020 and 1050 °C. Hardness tests are performed on the bonded samples in order to qualify the mechanical properties of different phases of the RPZ. This study leads to a better understanding of the complex phenomena intervening in the joining process which is very useful for applications in industrial scale.

  3. Current-induced spin-orbit torque switching of perpendicularly magnetized Hf|CoFeB|MgO and Hf|CoFeB|TaO{sub x} structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akyol, Mustafa; Department of Physics, University of Çukurova, Adana 01330; Yu, Guoqiang

    2015-04-20

    We study the effect of the oxide layer on current-induced perpendicular magnetization switching properties in Hf|CoFeB|MgO and Hf|CoFeB|TaO{sub x} tri-layers. The studied structures exhibit broken in-plane inversion symmetry due to a wedged CoFeB layer, resulting in a field-like spin-orbit torque (SOT), which can be quantified by a perpendicular (out-of-plane) effective magnetic field. A clear difference in the magnitude of this effective magnetic field (H{sub z}{sup FL}) was observed between these two structures. In particular, while the current-driven deterministic perpendicular magnetic switching was observed at zero magnetic bias field in Hf|CoFeB|MgO, an external magnetic field is necessary to switch the CoFeBmore » layer deterministically in Hf|CoFeB|TaO{sub x}. Based on the experimental results, the SOT magnitude (H{sub z}{sup FL} per current density) in Hf|CoFeB|MgO (−14.12 Oe/10{sup 7} A cm{sup −2}) was found to be almost 13× larger than that in Hf|CoFeB|TaO{sub x} (−1.05 Oe/10{sup 7} A cm{sup −2}). The CoFeB thickness dependence of the magnetic switching behavior, and the resulting  H{sub z}{sup FL} generated by in-plane currents are also investigated in this work.« less

  4. Magnetic characteristics and nanostructures of FePt granular films with GeO2 segregant

    NASA Astrophysics Data System (ADS)

    Ono, Takuya; Moriya, Tomohiro; Hatayama, Masatoshi; Tsumura, Kaoru; Kikuchi, Nobuaki; Okamoto, Satoshi; Kitakami, Osamu; Shimatsu, Takehito

    2017-01-01

    To realize a granular film composed of L10-FePt grains with high uniaxial magnetic anisotropy energy, Ku, and segregants for energy-assisted magnetic recording, a FePt-GeO2/FePt-C stacked film was investigated in the engineering process. The FePt-GeO2/FePt-C stacked film fabricated at a substrate temperature of 450 °C realized uniaxial magnetic anisotropy, Kugrain , of about 2.5 × 107 erg/cm3, which is normalized by the volume fraction of FePt grains, and a granular structure with an averaged grain size of 7.7 nm. As the thickness of the FePt-GeO2 upper layer was increased to 9 nm, the Ku values were almost constant. That result differs absolutely from the thickness dependences of the other oxide segregant materials such as SiO2 and TiO2. Such differences on the oxide segregant are attributed to their chemical bond. The strong covalent bond of GeO2 is expected to result in high Ku of the FePt-GeO2/FePt-C stacked films.

  5. Infrared extinction and microwave absorption properties of hybrid Fe3O4@SiO2@Ag nanospheres synthesized via a facile seed-mediated growth route.

    PubMed

    Chen, Yongpeng; Li, Shichuan; Wei, Xuebin; Tang, Runze; Zhou, Zunning

    2018-06-21

    Fe3O4@SiO2@Ag ternary hybrid nanoparticles were synthesized via a facile seed-mediated growth route. X-ray diffraction (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM) measurements were used to characterize the as-prepared product. The results indicated that the nanoparticles exhibited excellent magnetic properties and an extremely dense structure with Ag layer thicknesses of 30 nm, 40 nm, and 50 nm. Furthermore, the microwave shielding effectiveness exceeded 20 dB over almost the entire frequency range (2-18 GHz), and the effectiveness obviously improved as the thickness of the Ag layer increased. In addition, the IR extinction coefficient of the nanoparticles was calculated by a finite-difference time-domain (FDTD) method, which showed that the nanoparticles can inherit the extinction performance of pure silver when the Ag shell thickness was 30 nm. Specifically, after assembling into chains, the peak position of the IR extinction curves displayed a significant redshift and an intensity increase as the number of nanoparticles increased in the chain, which dramatically promoted the IR extinction capability. As a result, the Fe3O4@SiO2@Ag nanoparticles are expected to be used as a new multispectral interference material. © 2018 IOP Publishing Ltd.

  6. Magnetic interactions in anisotropic Nd-Dy-Fe-Co-B/α-Fe multilayer magnets

    NASA Astrophysics Data System (ADS)

    Dai, Z. M.; Liu, W.; Zhao, X. T.; Han, Z.; Kim, D.; Choi, C. J.; Zhang, Z. D.

    2016-10-01

    The magnetic properties and the possible interaction mechanisms of anisotropic soft- and hard-magnetic multilayers have been investigated by altering the thickness of different kinds of spacer layers. The metal Ta and the insulating oxides MgO, Cr2O3 have been chosen as spacer layers to investigate the characteristics of the interactions between soft- and hard-magnetic layers in the anisotropic Nd-Dy-Fe-Co-B/α-Fe multilayer system. The dipolar and exchange interaction between hard and soft phases are evaluated with the help of the first order reversal curve method. The onset of the nucleation field and the magnetization reversal by domain wall movement are also evident from the first-order-reversal-curve measurements. Reversible/irreversible distributions reveal the natures of the soft- and hard-magnetic components. Incoherent switching fields are observed and the calculations show the semiquantitative contributions of hard and soft components to the system. An antiferromagnetic spacer layer will weaken the interaction between ferromagnetic layers and the effective interaction length decreases. As a consequence, the dipolar magnetostatic interaction may play an important role in the long-range interaction in anisotropic multilayer magnets.

  7. Analysis of Interface Properties of Hybrid Pre-stressed Strengthening RC Beams with Crack

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie Zhihong; Huang Peiyan; Guo Yongchang

    2010-05-21

    A finite element (FE) analysis model of interface layer is established for the pre-stressed CFS-GFS hybrid strengthened beams. An elastic solution for the interfacial stress in the adhesive layer of the retrofitted beams is developed as well. The analytical results were compared with the FE results of interfacial stresses in the beams with different thickness of the adhesive and the fibre sheet. Different heights of Cracks in the interfacial layer of the concrete beam are considered in FE Model. Analysis results show the strengthening pattern is of excellent interface performance and the strength of the fiber sheet can be effectivelymore » utilized. The results also indicate the shear and normal stresses in the interfacial layer of the concrete beam release at the locations of the cracks and reach the maximal value before the concrete cracked. The shear and normal stresses in the adhesive layer increase abruptly, and the cracks in the adhesive layer then appear. The axial stresses of hybrid fiber sheet near the cracks decrease locally at the sites of the concrete cracks.« less

  8. Surface passivation of Fe{sub 3}O{sub 4} nanoparticles with Al{sub 2}O{sub 3} via atomic layer deposition in a rotating fluidized bed reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Chen-Long; Deng, Zhang; Cao, Kun

    2016-07-15

    Iron(II,III) oxide (Fe{sub 3}O{sub 4}) nanoparticles have shown great promise in many magnetic-related applications such as magnetic resonance imaging, hyperthermia treatment, and targeted drug delivery. Nevertheless, these nanoparticles are vulnerable to oxidation and magnetization loss under ambient conditions, and passivation is usually required for practical applications. In this work, a home-built rotating fluidized bed (RFB) atomic layer deposition (ALD) reactor was employed to form dense and uniform nanoscale Al{sub 2}O{sub 3} passivation layers on Fe{sub 3}O{sub 4} nanoparticles. The RFB reactor facilitated the precursor diffusion in the particle bed and intensified the dynamic dismantling of soft agglomerates, exposing every surfacemore » reactive site to precursor gases. With the aid of in situ mass spectroscopy, it was found that a thicker fluidization bed formed by larger amount of particles increased the residence time of precursors. The prolonged residence time allowed more thorough interactions between the particle surfaces and the precursor gas, resulting in an improvement of the precursor utilization from 78% to nearly 100%, even under a high precursor feeding rate. Uniform passivation layers around the magnetic cores were demonstrated by both transmission electron microscopy and the statistical analysis of Al mass concentrations. Individual particles were coated instead of the soft agglomerates, as was validated by the specific surface area analysis and particle size distribution. The results of thermogravimetric analysis suggested that 5 nm-thick ultrathin Al{sub 2}O{sub 3} coatings could effectively protect the Fe{sub 3}O{sub 4} nanoparticles from oxidation. The x-ray diffraction patterns also showed that the magnetic core crystallinity of such passivated nanoparticles could be well preserved under accelerated oxidation conditions. The precise thickness control via ALD maintained the saturation magnetization at 66.7 emu/g with a 5 nm-thick Al{sub 2}O{sub 3} passivation layer. This good preservation of the magnetic properties with superior oxidation resistance will be beneficial for practical magnetic-based applications.« less

  9. Unveiling structural, chemical and magnetic interfacial peculiarities in ε-Fe2O3/GaN (0001) epitaxial films.

    PubMed

    Ukleev, Victor; Suturin, Sergey; Nakajima, Taro; Arima, Taka-Hisa; Saerbeck, Thomas; Hanashima, Takayasu; Sitnikova, Alla; Kirilenko, Demid; Yakovlev, Nikolai; Sokolov, Nikolai

    2018-06-07

    The metastable ε-Fe 2 O 3 is known to be the most intriguing ferrimagnetic and multiferroic iron oxide phase exhibiting a bunch of exciting physical properties both below and above room temperature. The present paper unveils the structural and magnetic peculiarities of a few nm thick interface layer discovered in these films by a number of techniques. The polarized neutron reflectometry data suggests that the interface layer resembles GaFeO 3 in composition and density and is magnetically softer than the rest of the ε-Fe 2 O 3 film. While the in-depth density variation is in agreement with the transmission electron microscopy measurements, the layer-resolved magnetization profiles are qualitatively consistent with the unusual wasp-waist magnetization curves observed by superconducting quantum interference device magnetometry. Interestingly a noticeable Ga diffusion into the ε-Fe 2 O 3 films has been detected by secondary ion mass spectroscopy providing a clue to the mechanisms guiding the nucleation of exotic metastable epsilon ferrite phase on GaN at high growth temperature and influencing the interfacial properties of the studied films.

  10. Direct imaging of electron transfer and its influence on superconducting pairing at FeSe/SrTiO3 interface

    PubMed Central

    Zhao, Weiwei; Li, Mingda; Chang, Cui-Zu; Jiang, Jue; Wu, Lijun; Liu, Chaoxing; Moodera, Jagadeesh S.; Zhu, Yimei; Chan, Moses H. W.

    2018-01-01

    The exact mechanism responsible for the significant enhancement of the superconducting transition temperature (Tc) of monolayer iron selenide (FeSe) films on SrTiO3 (STO) over that of bulk FeSe is an open issue. We present the results of a coordinated study of electrical transport, low temperature electron energy-loss spectroscopy (EELS), and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) measurements on FeSe/STO films of different thicknesses. HAADF-STEM imaging together with EELS mapping across the FeSe/STO interface shows direct evidence of electrons transferred from STO to the FeSe layer. The transferred electrons were found to accumulate within the first two atomic layers of the FeSe films near the STO substrate. An additional Se layer is also resolved to reside between the FeSe film and the TiOx-terminated STO substrate. Our transport results found that a positive backgate applied from STO is particularly effective in enhancing Tc of the films while minimally changing the carrier density. This increase in Tc is due to the positive backgate that “pulls” the transferred electrons in FeSe films closer to the interface and thus enhances their coupling to interfacial phonons and also the electron-electron interaction within FeSe films. PMID:29556528

  11. Direct imaging of electron transfer and its influence on superconducting pairing at FeSe/SrTiO 3 interface

    DOE PAGES

    Zhao, Weiwei; Li, Mingda; Chang, Cui -Zu; ...

    2018-03-16

    The exact mechanism responsible for the significant enhancement of the superconducting transition temperature (T c) of monolayer iron selenide (FeSe) films on SrTiO 3 (STO) over that of bulk FeSe is an open issue. We present the results of a coordinated study of electrical transport, low temperature electron energy-loss spectroscopy (EELS), and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) measurements on FeSe/STO films of different thicknesses. HAADF-STEM imaging together with EELS mapping across the FeSe/STO interface shows direct evidence of electrons transferred from STO to the FeSe layer. The transferred electrons were found to accumulate within the first twomore » atomic layers of the FeSe films near the STO substrate. An additional Se layer is also resolved to reside between the FeSe film and the TiO x-terminated STO substrate. Our transport results found that a positive backgate applied from STO is particularly effective in enhancing T c of the films while minimally changing the carrier density. Furthermore, this increase in T c is due to the positive backgate that “pulls” the transferred electrons in FeSe films closer to the interface and thus enhances their coupling to interfacial phonons and also the electron-electron interaction within FeSe films.« less

  12. Stiffness distribution in insect cuticle: a continuous or a discontinuous profile?

    PubMed

    Rajabi, H; Jafarpour, M; Darvizeh, A; Dirks, J-H; Gorb, S N

    2017-07-01

    Insect cuticle is a biological composite with a high degree of complexity in terms of both architecture and material composition. Given the complex morphology of many insect body parts, finite-element (FE) models play an important role in the analysis and interpretation of biomechanical measurements, taken by either macroscopic or nanoscopic techniques. Many previous studies show that the interpretation of nanoindentation measurements of this layered composite material is very challenging. To develop accurate FE models, it is of particular interest to understand more about the variations in the stiffness through the thickness of the cuticle. Considering the difficulties of making direct measurements, in this study, we use the FE method to analyse previously published data and address this issue numerically. For this purpose, sets of continuous or discontinuous stiffness profiles through the thickness of the cuticle were mathematically described. The obtained profiles were assigned to models developed based on the cuticle of three insect species with different geometries and layer configurations. The models were then used to simulate the mechanical behaviour of insect cuticles subjected to nanoindentation experiments. Our results show that FE models with discontinuous exponential stiffness gradients along their thickness were able to predict the stress and deformation states in insect cuticle very well. Our results further suggest that, for more accurate measurements and interpretation of nanoindentation test data, the ratio of the indentation depth to cuticle thickness should be limited to 7% rather than the traditional '10% rule'. The results of this study thus might be useful to provide a deeper insight into the biomechanical consequences of the distinct material distribution in insect cuticle and also to form a basis for more realistic modelling of this complex natural composite. © 2017 The Author(s).

  13. Ultra-high power capabilities in amorphous FePO4 thin films

    NASA Astrophysics Data System (ADS)

    Gandrud, Knut B.; Nilsen, Ola; Fjellvåg, Helmer

    2016-02-01

    Record breaking electrochemical properties of FePO4 have been found through investigation of the thickness dependent electrochemical properties of amorphous thin film electrodes. Atomic layer deposition was used for production of thin films of amorphous FePO4 with highly accurate thickness and topography. Electrochemical characterization of these thin film electrodes revealed that the thinner electrodes behave in a pseudocapacitive manner even at high rates of Li+ de/intercalation, which enabled specific powers above 1 MW kg-1 FePO4 to be obtained with minimal capacity loss. In addition, a self-enhancing kinetic effect was observed during cycling enabling more than 10,000 cycles at current rates approaching that of a supercapacitor (11s charge/discharge). The current findings may open for construction of ultra-high power battery electrodes that combines the energy density of batteries with the power capabilities of supercapacitors.

  14. Enhancement of superconducting transition temperature in FeSe electric-double-layer transistor with multivalent ionic liquids

    NASA Astrophysics Data System (ADS)

    Miyakawa, Tomoki; Shiogai, Junichi; Shimizu, Sunao; Matsumoto, Michio; Ito, Yukihiro; Harada, Takayuki; Fujiwara, Kohei; Nojima, Tsutomu; Itoh, Yoshimitsu; Aida, Takuzo; Iwasa, Yoshihiro; Tsukazaki, Atsushi

    2018-03-01

    We report on an enhancement of the superconducting transition temperature (Tc) of the FeSe-based electric-double-layer transistor (FeSe-EDLT) by applying the multivalent oligomeric ionic liquids (ILs). The IL composed of dimeric cation (divalent IL) enables a large amount of charge accumulation on the surface of the FeSe ultrathin film, resulting in inducing electron-rich conduction even in a rather thick 10 nm FeSe channel. The onset Tc in FeSe-EDLT with the divalent IL is enhanced to be approaching about 50 K at the thin limit, which is about 7 K higher than that in EDLT with conventional monovalent ILs. The enhancement of Tc is a pronounced effect of the application of the divalent IL, in addition to the large capacitance, supposing preferable interface formation of ILs driven by geometric and/or Coulombic effect. The present finding strongly indicates that multivalent ILs are powerful tools for controlling and improving physical properties of materials.

  15. Characterization of Fe3O4/SiO2/Gd2O(CO3)2 core/shell/shell nanoparticles as T1 and T2 dual mode MRI contrast agent.

    PubMed

    Yang, Meicheng; Gao, Lipeng; Liu, Kai; Luo, Chunhua; Wang, Yiting; Yu, Lei; Peng, Hui; Zhang, Wen

    2015-01-01

    Core/shell/shell structured Fe3O4/SiO2/Gd2O(CO3)2 nanoparticles were successfully synthesized. Their properties as a new type of T1-T2 dual model contrast agent for magnetic resonance imaging were investigated. Due to the introduce of a separating SiO2 layer, the magnetic coupling between Gd2O(CO3)2 and Fe3O4 could be modulated by the thickness of SiO2 layer and produce appropriate T1 and T2 signal. Additionally, the existence of Gd(3+) enhances the transverse relaxivity of Fe3O4 possibly because of the magnetic coupling between Gd(3+) and Fe3O4. The Fe3O4/SiO2/Gd2O(CO3)2 nanoparticles exhibit good biocompatibility, showing great potential for biomedical applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Tuning static and dynamic properties of FeGa/NiFe heterostructures

    NASA Astrophysics Data System (ADS)

    Rementer, Colin R.; Fitzell, Kevin; Xu, Qiang; Nordeen, Paul; Carman, Gregory P.; Wang, Yuanxun E.; Chang, Jane P.

    2017-06-01

    In this work, the frequency-dependent magnetic properties of sputtered Galfenol/Permalloy (Fe85Ga15/Ni81Fe19 or FeGa/NiFe) magnetic multilayers were examined to tailor their magnetic softness, loss at microwave frequencies, permeability, and magnetoelasticity, leveraging the magnetic softness and low loss of NiFe and the high saturation magnetostriction (λs) and magnetization (MS) of FeGa. The total volume of each material and their ratio were kept constant, and the number of alternating layers was increased (with decreasing individual layer thickness) to assess the role of increasing interfaces in these magnetic heterostructures. A systematic change was observed as the number of bilayers or interfaces increases: a seven-bilayer structure results in an 88% reduction in coercivity and a 55% reduction in ferromagnetic resonance linewidth at the X-band compared to a single phase FeGa film, while maintaining a high relative permeability of 700. The magnetostriction was slightly reduced by the addition of NiFe but was still maintained at up to 67% that of single phase FeGa. The tunability of these magnetic heterostructures makes them excellent candidates for RF magnetic applications requiring strong magnetoelastic coupling and low loss.

  17. Transport and spin transfer torques in Fe/MgO/Fe tunnel barriers.

    NASA Astrophysics Data System (ADS)

    Heiliger, Christian

    2008-03-01

    The prediction of very high tunneling magnetoresistance (TMR) ratios in crystalline Fe/MgO/Fe [1,2] tunnel junctions has been verified by a number of experiments [3,4]. The high TMR can be understood in terms of the electronic structure of the system. In MgO the δ1 states at the Brillouin zone center decay the most slowly and dominate the tunnelling current. For coherent interfaces, which are achievable due to the small lattice mismatch between Fe and MgO, these δ1 states at the Brillouin zone center are half-metallic in the Fe layers. The dominance of the δ1 states and their half-metallicity cause the high tunnelling magnetoresistance measured in Fe/MgO/Fe tunnel junctions [5]. For the spin transfer torque, we calculate the linear response for small currents and voltages. Our calculations show that the half metallicity of the Fe δ1 states leads to a strong localization of the spin transfer torque to the interface. As a result, the linear current dependence of the torque in the plane of the two magnetizations is independent of the free layer thickness for more than three monolayers of Fe. For perfect samples we also find a linear current dependence of the out-of-plane component. However, this linear piece oscillates rapidly with thickness and averages to zero in the presence of structural imperfections like thickness fluctuation, in agreement with experiment [6]. In this talk I discuss the bias dependence of the TMR and spin transfer torque effects mentioned above and the influence on them of the following factors: the interface structure Fe/MgO, the barrier thickness, and the structure of the leads [7]. This work has been supported in part by the NIST-CNST/UMD-NanoCenter Cooperative Agreement. [1] W. Butler, X.-G. Zhang, T. Schulthess, J. MacLaren, Phys. Rev. B 63 (2001) 054416. [2] J. Mathon, A. Umerski, Phys. Rev. B 63 (2001) 220403. [3] S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, K. Ando, Nature Materials 3 (2004) 868. [4] S.S.P. Parkin, C. Kaiser, A. Panchula, P.M. Rice, B. Hughes, M. Samant, S.-H. Yang Nature Materials 3 (2004) 862. [5] C. Heiliger, P. Zahn, I. Mertig, Materials Today 9 (2006) 46. [6] J. C. Sankey, P. M. Braganca, A. G. F. Garcia, I. N. Krivorotov, R. A. Buhrman, and D. C. Ralph, Phys. Rev. Lett. 96 (2006) 227601. [7] C. Heiliger, M.Gradhand, P. Zahn, I. Mertig, Phys. Rev. Lett. 99 (2007) 066804.

  18. Surface topography and electrical properties in Sr2FeMoO6 films studied at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Angervo, I.; Saloaro, M.; Mäkelä, J.; Lehtiö, J.-P.; Huhtinen, H.; Paturi, P.

    2018-03-01

    Pulsed laser deposited Sr2FeMoO6 thin films were investigated for the first time with scanning tunneling microscopy and spectroscopy. The results confirm atomic scale layer growth, with step-terrace structure corresponding to a single lattice cell scale. The spectroscopy research reveals a distribution of local electrical properties linked to structural deformation in the initial thin film layers at the film substrate interface. Significant hole structure giving rise to electrically distinctive regions in thinner film also seems to set a thickness limit for the thinnest films to be used in applications.

  19. Low resistance AL2O3 magnetic tunnel junctions optimized through in situ conductance measurements

    NASA Astrophysics Data System (ADS)

    Wolfman, J.; Mauri, D.; Lin, T.; Yang, J.; Chen, T.

    2005-06-01

    In situ electrical conductance is used to monitor the growth and natural oxidation of aluminum on top of a CoFe electrode. Light oxidation is found to enhance the electron specular scattering of the CoFe/vacuum interface. Aluminum deposited onto CoFe intermixes to a depth of a few atomic layers, however, subsequent natural oxidation tends to reverse this interdiffusion through oxygen-driven A1 segregation. At the right A1 thickness, natural oxidation creates a clean and specular CoFe /AlOx interface very similar to the best achievable CoFe/vacuum interface. For thicker A1, natural oxidation leaves behind underoxidized AlOx and most importantly an interdiffused CoFe /Al interface. Using 2Torr×150-s natural oxidation, we have fabricated magnetic tunnel junctions (MTJs) with a peak tunnel magnetoresistance (TMR) of 18% for a resistance area product of 7Ωμm2, at the A1 metal thickness of 6 Å. With the same oxidation process TMR drops to only 8% when A1 is increased to 9 Å. Contrary to the accepted view, we do not attribute this TMR drop to A1 underoxidation, but primarily to the interdiffusion at the CoFe /Al interface. This assertion is strongly supported by a second set of MTJs differing only by the insertion of a nano-oxide layer (NOL) on top of CoFe. In this case when Al is increased from 6 to 9 Å, the TMR does not drop but increases from 16% to 27%. This is significant because NOL is found to effectively prevent Al diffusion into CoFe. NOL is also found to act as a reservoir of oxygen, which is subsequently consumed by Al.

  20. Facile deposition of gold nanoparticles on core-shell Fe3O4@polydopamine as recyclable nanocatalyst

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Yeh, Yaowen; Liu, Rui; You, Jinmao; Qu, Fengli

    2015-07-01

    A simple and green method for the controllable synthesis of core-shell Fe3O4 polydopamine nanoparticles (Fe3O4@PDA NPs) with tunable shell thickness and their application as a recyclable nanocatalyst support is presented. Magnetite Fe3O4 NPs formed in a one-pot process by the hydrothermal approach with a diameter of ˜240 nm were coated with a polydopamine shell layer with a tunable thickness of 15-45 nm. The facile deposition of Au NPs atop Fe3O4@PDA NPs was achieved by utilizing PDA as both the reducing agent and the coupling agent. The satellite nanocatalysts exhibited high catalytic performance for the reduction of p-nitrophenol. Furthermore, the recovery and reuse of the catalyst was demonstrated 8 times without detectible loss in activity. The synergistic combination of unique features of PDA and magnetic nanoparticles establishes these core-shell NPs as a versatile platform for potential applications.

  1. Air pollution–aerosol interactions produce more bioavailable iron for ocean ecosystems

    PubMed Central

    Li, Weijun; Xu, Liang; Liu, Xiaohuan; Zhang, Jianchao; Lin, Yangting; Yao, Xiaohong; Gao, Huiwang; Zhang, Daizhou; Chen, Jianmin; Wang, Wenxing; Harrison, Roy M.; Zhang, Xiaoye; Shao, Longyi; Fu, Pingqing; Nenes, Athanasios; Shi, Zongbo

    2017-01-01

    It has long been hypothesized that acids formed from anthropogenic pollutants and natural emissions dissolve iron (Fe) in airborne particles, enhancing the supply of bioavailable Fe to the oceans. However, field observations have yet to provide indisputable evidence to confirm this hypothesis. Single-particle chemical analysis for hundreds of individual atmospheric particles collected over the East China Sea shows that Fe-rich particles from coal combustion and steel industries were coated with thick layers of sulfate after 1 to 2 days of atmospheric residence. The Fe in aged particles was present as a “hotspot” of (insoluble) iron oxides and throughout the acidic sulfate coating in the form of (soluble) Fe sulfate, which increases with degree of aging (thickness of coating). This provides the “smoking gun” for acid iron dissolution, because iron sulfate was not detected in the freshly emitted particles and there is no other source or mechanism of iron sulfate formation in the atmosphere. PMID:28275731

  2. Space weathering of silicate regoliths with various FeO contents: New insights from laser irradiation experiments and theoretical spectral simulations

    NASA Astrophysics Data System (ADS)

    Moroz, Lyuba V.; Starukhina, Larissa V.; Rout, Surya Snata; Sasaki, Sho; Helbert, Jörn; Baither, Dietmar; Bischoff, Addi; Hiesinger, Harald

    2014-06-01

    To investigate effects of micrometeorite bombardment on optical spectra and composition of planetary and asteroid regoliths with low Fe contents, we irradiated samples of a Fe-poor plagioclase feldspar (andesine-labradorite) using a nanosecond pulsed laser. We measured reflectance spectra of irradiated and non-irradiated areas of the samples (pressed pellets) between 0.5 and 18 μm and performed SEM/EDS and TEM studies of the samples. Bulk FeO content of 0.72 wt.% in the samples is comparable, for example, to FeO content in silicates on the surface of Mercury, that was recently mapped by NASA's MESSENGER mission and will be spectrally mapped by remote sensing instruments MERTIS and SYMBIO-SYS on board the ESA BepiColombo spacecraft. We also employed theoretical spectral modeling to characterize optical alteration caused by formation of nano- and submicrometer Fe0 inclusions within space-weathered surface layers and grain rims of a Fe-poor regolith. The laser-irradiated surface layer of plagioclase reveals significant melting, while reflectance spectra show mild darkening and reddening in the visible and near-infrared (VNIR). Our spectral modeling indicates that the optical changes observed in the visible require reduction of bulk FeO (including Fe from mineral impurities found in the sample) and formation of nanophase (np) Fe0 within the glassy surface layer. A vapor deposit, if present, is optically too thin to contribute to optical modification of the investigated samples or to cause space weathering-induced optical alteration of Fe-poor regoliths in general. Due to low thickness of vapor deposits, npFe0 formation in the latter can cause darkening and reddening only for a regolith with rather high bulk Fe content. Our calculations show that only a fraction of bulk Fe is likely to be converted to npFe0 in nanosecond laser irradiation experiments and probably in natural regolith layers modified by space weathering. The previously reported differences in response of different minerals to laser irradiation, and probably to space weathering-induced heating are likely controlled by their differences in electrical conductivities and melting points. For a given mineral grain, its susceptibility to melting/vaporization is also affected by electric conductivities of adjacent grains of other minerals in the regolith. Published nanosecond laser irradiation experiments simulate optical alteration of immature regoliths, since only the uppermost surface layer of an irradiated pellet is subject to heating. According to our calculations, if regolith particles due to impact-induced turnover are mantled with npFe0-bearing rims of the same thickness, then even low contents of Fe similar to our sample or Mercury' surface can cause significant darkening and reddening, provided a melt layer, rather than a thin vapor deposit is involved into npFe0 formation. All spectral effects observed in the thermal infrared (TIR) after irradiation of our feldspar sample are likely to be associated with textural changes. We expect that mineralogical interpretation of the BepiColombo MERTIS infrared spectra of Mercury between 7 and 17 μm will be influenced mostly by textural effects (porosity, comminution) and impact glass formation rather than formation of npFe0 inclusions.

  3. Electrodeposited Nanolaminated CoNiFe Cores for Ultracompact DC-DC Power Conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, J; Kim, M; Herrault, F

    2015-09-01

    Laminated metallic alloy cores (i.e., alternating layers of thin film metallic alloy and insulating material) of appropriate lamination thickness enable suppression of eddy current losses at high frequencies. Magnetic cores comprised of many such laminations yield substantial overall magnetic volume, thereby enabling high-power operation. Previously, we reported nanolaminated permalloy (Ni-80 Fe-20) cores based on a sequential electrodeposition technique, demonstrating negligible eddy current losses at peak flux densities up to 0.5 T and operating at megahertz frequencies. This paper demonstrates improved performance of nanolaminated cores comprising tens to hundreds of layers of 300-500-nm-thick CoNiFe films that exhibit superior magnetic properties (e.g.,more » higher saturation flux density and lower coercivity) than permalloy. Nanolaminated CoNiFe cores can be operated up to a peak flux density of 0.9 T, demonstrating improved power handling capacity and exhibiting 30% reduced volumetric core loss, attributed to lowered hysteresis losses compared to the nanolaminated permalloy core of the same geometry. Operating these cores in a buck dc-dc power converter at a switching frequency of 1 MHz, the nanolaminated CoNiFe cores achieved a conversion efficiency exceeding 90% at output power levels up to 7 W, compared to an achieved permalloy core conversion efficiency below 86% at 6 W.« less

  4. Synthesis of 1D Fe₃O₄/P(MBAAm-co-MAA) nanochains as stabilizers for Ag nanoparticles and templates for hollow mesoporous structure, and their applications in catalytic reaction and drug delivery.

    PubMed

    Zhang, Wei; Si, Xiaowei; Liu, Bin; Bian, Guomin; Qi, Yonglin; Yang, Xinlin; Li, Chenxi

    2015-10-15

    One-dimensional (1D) magnetic Fe3O4/P(MBAAm-co-MAA) nanochains were prepared by distillation-precipitation polymerization of MBAAm and MAA in the presence of Fe3O4 nanoparticles as building blocks under a magnetic heating stirrer, which played two critical roles: serving as magnetic field to induce the self-assembly of Fe3O4 nanoparticles into 1D nanochains and providing thermal energy to induce the polymerization of MAA and MBAAm on the surface of the Fe3O4 nanoparticles. The thickness of the P(MBAAm-co-MAA) layer can be easily tuned by adjusting the successive polymerization steps. The polymer layer that contained carboxyl groups was used as stabilizers for loading Ag nanoparticles and the reaction locus for deposition of outer silica layer via a sol-gel method in presence of C18TMS as the pore directing agent for tri-layer nanochains. The corresponding hollow mesoporous silica nanochains with movable maghemite cores (γ-Fe2O3@mSiO2) were produced after removal of the polymer mid-layer and the alkyl groups of the pore directing agent via calcination of the tri-layer nanochains at high temperature. The Fe3O4/P(MBAAm-co-MAA)/Ag nanochains exhibited a highly catalytic efficiency and well reusable property toward the reduction of nitrophenol. Furthermore, the γ-Fe2O3@mSiO2 nanochains possessed hollow mesoporous structure and high specific surface area (197.2 m(2) g(-1)) were used as a drug carrier, which displayed a controlled release property. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Observation of hidden atomic order at the interface between Fe and topological insulator Bi2Te3.

    PubMed

    Sánchez-Barriga, Jaime; Ogorodnikov, Ilya I; Kuznetsov, Mikhail V; Volykhov, Andrey A; Matsui, Fumihiko; Callaert, Carolien; Hadermann, Joke; Verbitskiy, Nikolay I; Koch, Roland J; Varykhalov, Andrei; Rader, Oliver; Yashina, Lada V

    2017-11-22

    To realize spintronic devices based on topological insulators (TIs), well-defined interfaces between magnetic metals and TIs are required. Here, we characterize atomically precisely the interface between the 3d transition metal Fe and the TI Bi 2 Te 3 at different stages of its formation. Using photoelectron diffraction and holography, we show that after deposition of up to 3 monolayers Fe on Bi 2 Te 3 at room temperature, the Fe atoms are ordered at the interface despite the surface disorder revealed by our scanning-tunneling microscopy images. We find that Fe occupies two different sites: a hollow adatom deeply relaxed into the Bi 2 Te 3 quintuple layers and an interstitial atom between the third (Te) and fourth (Bi) atomic layers. For both sites, our core-level photoemission spectra and density-functional theory calculations demonstrate simultaneous chemical bonding of Fe to both Te and Bi atoms. We further show that upon deposition of Fe up to a thickness of 20 nm, the Fe atoms penetrate deeper into the bulk forming a 2-5 nm interface layer containing FeTe. In addition, excessive Bi is pushed down into the bulk of Bi 2 Te 3 leading to the formation of septuple layers of Bi 3 Te 4 within a distance of ∼25 nm from the interface. Controlling the magnetic properties of the complex interface structures revealed by our work will be of critical importance when optimizing the efficiency of spin injection in TI-based devices.

  6. Perpendicular magnetic anisotropy in Ta|Co{sub 40}Fe{sub 40}B{sub 20}|MgAl{sub 2}O{sub 4} structures and perpendicular CoFeB|MgAl{sub 2}O{sub 4}|CoFeB magnetic tunnel junction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, B. S.; Li, D. L.; Yuan, Z. H.

    2014-09-08

    Magnetic properties of Co{sub 40}Fe{sub 40}B{sub 20} (CoFeB) thin films sandwiched between Ta and MgAl{sub 2}O{sub 4} layers have been systematically studied. For as-grown state, Ta/CoFeB/MgAl{sub 2}O{sub 4} structures exhibit good perpendicular magnetic anisotropy (PMA) with interface anisotropy K{sub i} = 1.22 erg/cm{sup 2}, which further increases to 1.30 erg/cm{sup 2} after annealing, while MgAl{sub 2}O{sub 4}/CoFeB/Ta multilayer shows in-plane magnetic anisotropy and must be annealed in order to achieve PMA. For bottom CoFeB layer, the thickness window for PMA is from 0.6 to 1.0 nm, while that for top CoFeB layer is between 0.8 and 1.4 nm. Perpendicular magnetic tunnel junctions (p-MTJs) with a coremore » structure of CoFeB/MgAl{sub 2}O{sub 4}/CoFeB have also been fabricated and tunneling magnetoresistance ratio of about 36% at room temperature and 63% at low temperature have been obtained. The intrinsic excitations in the p-MTJs have been identified by inelastic electron-tunneling spectroscopy.« less

  7. Critical current oscillations of elliptical Josephson junctions with single-domain ferromagnetic layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glick, Joseph A.; Khasawneh, Mazin A.; Niedzielski, Bethany M.

    We report that josephson junctions containing ferromagnetic layers are of considerable interest for the development of practical cryogenic memory and superconducting qubits. Such junctions exhibit a ground-state phase shift of π for certain ranges of ferromagnetic layer thicknesses. We present studies of Nb based micron-scale elliptically shaped Josephson junctions containing ferromagnetic barriers of Ni 81Fe 19 or Ni 65Fe 15Co 20. By applying an external magnetic field, the critical current of the junctions is found to follow characteristic Fraunhofer patterns and display sharp switching behavior suggestive of single-domain magnets. The high quality of the Fraunhofer patterns enables us to extractmore » the maximum value of the critical current even when the peak is shifted significantly outside the range of the data due to the magnetic moment of the ferromagnetic layer. The maximum value of the critical current oscillates as a function of the ferromagnetic barrier thickness, indicating transitions in the phase difference across the junction between values of zero and π. Lastly, we compare the data to previous work and to models of the 0-π transitions based on existing theories.« less

  8. Critical current oscillations of elliptical Josephson junctions with single-domain ferromagnetic layers

    DOE PAGES

    Glick, Joseph A.; Khasawneh, Mazin A.; Niedzielski, Bethany M.; ...

    2017-10-06

    We report that josephson junctions containing ferromagnetic layers are of considerable interest for the development of practical cryogenic memory and superconducting qubits. Such junctions exhibit a ground-state phase shift of π for certain ranges of ferromagnetic layer thicknesses. We present studies of Nb based micron-scale elliptically shaped Josephson junctions containing ferromagnetic barriers of Ni 81Fe 19 or Ni 65Fe 15Co 20. By applying an external magnetic field, the critical current of the junctions is found to follow characteristic Fraunhofer patterns and display sharp switching behavior suggestive of single-domain magnets. The high quality of the Fraunhofer patterns enables us to extractmore » the maximum value of the critical current even when the peak is shifted significantly outside the range of the data due to the magnetic moment of the ferromagnetic layer. The maximum value of the critical current oscillates as a function of the ferromagnetic barrier thickness, indicating transitions in the phase difference across the junction between values of zero and π. Lastly, we compare the data to previous work and to models of the 0-π transitions based on existing theories.« less

  9. Phase Sensitive Measurements of Ferromagnetic Josephson Junctions for Cryogenic Memory Applications

    NASA Astrophysics Data System (ADS)

    Niedzielski, Bethany Maria

    A Josephson junction is made up of two superconducting layers separated by a barrier. The original Josephson junctions, studied in the early 1960's, contained an insulating barrier. Soon thereafter, junctions with normal-metal barriers were also studied. Ferromagnetic materials were not even theoretically considered as a barrier layer until around 1980, due to the competing order between ferromagnetic and superconducting systems. However, many exciting physical phenomena arise in hybrid superconductor/ferromagnetic devices, including devices where the ground state phase difference between the two superconductors is shifted by pi. Since their experimental debut in 2001, so-called pi junctions have been demonstrated by many groups, including my own, in systems with a single ferromagnetic layer. In this type of system, the phase of the junction can be set to either 0 or pi depending on the thickness of the ferromagnetic layer. Of interest, however, is the ability to control the phase of a single junction between the 0 and pi states. This was theoretically shown to be possible in a system containing two ferromagnetic layers (spin-valve junctions). If the materials and their thicknesses are properly chosen to manipulate the electron pair correlation function, then the phase state of a spin-valve Josephson junction should be capable of switching between the 0 and ? phase states when the magnetization directions of the two ferromagnetic layers are oriented in the antiparallel and parallel configurations, respectively. Such a phase-controllable junction would have immediate applications in cryogenic memory, which is a necessary component to an ultra-low power superconducting computer. A fully superconducting computer is estimated to be orders of magnitude more energy-efficient than current semiconductor-based supercomputers. The goal of this work was to experimentally verify this prediction for a phase-controllable ferromagnetic Josephson junction. To address this complicated system, first, studies of junctions with only a single ferromagnetic junction were required to determine the 0-pi transition thickness of that material, the decay of the critical current through the junction with thickness, and the switching field of the material. The materials studied included NiFeMo, NiFe, Ni, and NiFeCo. Additionally, roughness studies of several different superconducting base electrodes and normal metal buffer and spacer layers were performed to determine the optimum junction layers. The ferromagnetic layers used were on the order of 1-2 nm thick, so a smooth growth template is imperative to maintain continuous films with in-plane magnetizations. Lastly, single junction spin-valve samples were studied. We are not equipped to measure the phase of a single junction, but series of samples where one ferromagnetic layer is systematically varied in thickness can inform the proper thicknesses needed for 0-pi switching based on relative critical current values between the parallel and antiparallel magnetic configurations. Utilizing this background information, two spin-valve samples were incorporated in a superconducting loop so that the relative phase of the two junctions could be investigated. Through this process, the first phase-controllable ferromagnetic Josephson junctions were experimentally demonstrated using phase-sensitive measurement techniques. This provided the proof of concept for the Josephson Magnetic Random Access Memory (JMRAM), a superconducting memory system in development at Northrop Grumman, with whom we collaborate on this work. Phase-controllable systems were successfully demonstrated using two different magnetic material stacks and verified with several analysis techniques.

  10. Double-spiral magnetic structure of the Fe/Cr multilayer revealed by nuclear resonance reflectivity

    NASA Astrophysics Data System (ADS)

    Andreeva, M. A.; Baulin, R. A.; Chumakov, A. I.; Rüffer, R.; Smirnov, G. V.; Babanov, Y. A.; Devyaterikov, D. I.; Milyaev, M. A.; Ponomarev, D. A.; Romashev, L. N.; Ustinov, V. V.

    2018-01-01

    We have studied the magnetization depth profiles in a [57Fe (dFe) /Cr (dCr) ]30 multilayer with ultrathin Fe layers and nominal thickness of the chromium spacers dCr≈2.0 nm using nuclear resonance scattering of synchrotron radiation. The presence of a broad pure-magnetic half-order (1/2) Bragg reflection has been detected at zero external field. The joint fit of the reflectivity curves and Mössbauer spectra of reflectivity measured near the critical angle and at the "magnetic" peak reveals that the magnetic structure of the multilayer is formed by two spirals, one in the odd and another one in the even iron layers, with the opposite signs of rotation. The double-spiral structure starts from the surface with the almost-antiferromagnetic alignment of the adjacent Fe layers. The rotation of the two spirals leads to nearly ferromagnetic alignment of the two magnetic subsystems at some depth, where the sudden turn of the magnetic vectors by ˜180∘ (spin flop) appears, and both spirals start to rotate in opposite directions. The observation of this unusual double-spiral magnetic structure suggests that the unique properties of giant magnetoresistance devices can be further tailored using ultrathin magnetic layers.

  11. Vortex pinning in artificially layered Ba(Fe,Co)2As2 film

    NASA Astrophysics Data System (ADS)

    Oh, M. J.; Lee, Jongmin; Seo, Sehun; Yoon, Sejun; Seo, M. S.; Park, S. Y.; Kim, Ho-Sup; Ha, Dong-Woo; Lee, Sanghan; Jo, Youn Jung

    2018-06-01

    Static high critical current densities (Jc) > 1 MA/cm2 with magnetic field parallel or perpendicular to c-axis were realized in Co-doped/undoped multilayerd BaFe2As2 films. We made a current bridge by FIB to allow precise measurements, and confirmed that the boundary quality using FIB was considerably better than the quality achieved using a laser. The presence of a high in-plane Jc suggested the existence of c-axis correlated vortex pinning centers. To clarify the relationship between the Jc performance and superstructures, we investigated the magnetic flux pinning mechanism using scaling theory of the volume pinning force Fp(H). The Jc(H) curves, Fp/Fp,max vs. h = H/Hirr curves, and parameters p and q depended on the characteristics of the flux pinning mechanism. It was found that the dominant pinning mechanism of Co-doped/undoped multilayerd BaFe2As2 films was Δl-pinning and the inserted undoped BaFe2As2 layers remained non-superconducting. The dominant pin geometry varied when the magnetic field direction changed. It was concluded that the artificially layered BaFe2As2 film is a 3-D superconductor due to its long correlation length compared to the thickness of the non-superconducting layer.

  12. Carbon Nanotube Microarrays Grown on Nanoflake Substrates

    NASA Technical Reports Server (NTRS)

    Schmidt, Howard K.; Hauge, Robert H.; Pint, Cary; Pheasant, Sean

    2013-01-01

    This innovation consists of a new composition of matter where single-walled carbon nanotubes (SWNTs) are grown in aligned arrays from nanostructured flakes that are coated in Fe catalyst. This method of growth of aligned SWNTs, which can yield well over 400 percent SWNT mass per unit substrate mass, exceeds current yields for entangled SWNT growth. In addition, processing can be performed with minimal wet etching treatments, leaving aligned SWNTs with superior properties over those that exist in entangled mats. The alignment of the nanotubes is similar to that achieved in vertically aligned nanotubes, which are called "carpets. " Because these flakes are grown in a state where they are airborne in a reactor, these flakes, after growing SWNTs, are termed "flying carpets. " These flakes are created in a roll-to-roll evaporator system, where three subsequent evaporations are performed on a 100-ft (approx. =30-m) roll of Mylar. The first layer is composed of a water-soluble "release layer, " which can be a material such as NaCl. After depositing NaCl, the second layer involves 40 nm of supporting layer material . either Al2O3 or MgO. The thickness of the layer can be tuned to synthesize flakes that are larger or smaller than those obtained with a 40-nm deposition. Finally, the third layer consists of a thin Fe catalyst layer with a thickness of 0.5 nm. The thickness of this layer ultimately determines the diameter of SWNT growth, and a layer that is too thick will result in the growth of multiwalled carbon nanotubes instead of single-wall nanotubes. However, between a thickness of 0.5 nm to 1 nm, single-walled carbon nanotubes are known to be the primary constituent. After this three-layer deposition process, the Mylar is rolled through a bath of water, which allows catalyst-coated flakes to detach from the Mylar. The flakes are then collected and dried. The method described here for making such flakes is analogous to that which is used to make birefringent ink that is coated on U.S. currency. After deposition, the growth is carried out in a hot-filament chemical vapor deposition apparatus. A tungsten hot filament placed in the flow of H2 at a temperature greater than 1,600 C creates atomic hydrogen, which serves to reduce the Fe catalyst into a metallic state. The catalyst can now precipitate SWNTs in the presence of growth gases. The gases used for the experiments reported are C2H2, H2O, and H2, at rates of 2, 2, and 400 standard cubic centimeters per minute (sccm), respectively. In order to retain the flakes, a cage is constructed by spot welding stainless steel or copper mesh to form an enclosed area, in which the flakes are placed prior to growth. This allows growth gases and atomic hydrogen to reach the flakes, but does not allow the flakes, which rapidly nucleate SWNTs, to escape from the cage.

  13. Physical properties of spin-valve films grown on naturally oxidized metal nano-oxide surfaces

    NASA Astrophysics Data System (ADS)

    Mao, Ming; Cerjan, Charlie; Kools, Jacques

    2002-05-01

    The physical properties of spin-valve films NiFe 25 Å/CoFe 10 Å/Cu(tCu)/CoFe 30 Å/IrMn 70 Å/Ta 20 Å with graded Cu layer thickness (tCu=18-45 Å) grown on the surface of metal nano-oxide layers (NOLs) were studied. The NOLs were formed from ultrathin Al, Cr, Cu, Nb, Ta, CoFe, NiFe, and NiFeCr layers by natural oxidation. The growth of the spin-valve films on NOLs has led to an enhancement in giant magnetoresistance value by up to 48%. A corresponding reduction in minimum film resistance by over 10% confirms that this enhancement originates from an increase in the mean free path of spin-polarized electrons due to the resultant specular reflection at the nano-oxide surfaces. A wide spectrum of oscillatory interlayer exchange coupling dependence on tCu for these NOL-bearing films suggests that a specular nano-oxide surface does not necessarily result in a smoother multilayer structure. The observation of an enhanced exchange biasing among these spin-valve films appears in contradiction to the observed deterioration of their crystallographic quality. As an important application, TaOx, CrOx, and NbOx could be employed as an alternative to AlOx as the barrier layer for magnetic tunnel junctions.

  14. Ballistic Simulation Method for Lithium Ion Batteries (BASIMLIB) Using Thick Shell Composites (TSC) in LS-DYNA

    DTIC Science & Technology

    2016-08-04

    BAllistic SImulation Method for Lithium Ion Batteries (BASIMLIB) using Thick Shell Composites (TSC) in LS-DYNA Venkatesh Babu, Dr. Matt Castanier, Dr...Objective • Objective and focus of this work is to develop a – Robust simulation methodology to model lithium - ion based batteries in its module and full...unlimited  Lithium Ion Phosphate (LiFePO4) battery cell, module and pack was modeled in LS-DYNA using both Thin Shell Layer (TSL) and Thick Shell

  15. Mineralogy and stratigraphy of phyllosilicate-bearing and dark mantling units in the greater Mawrth Vallis/west Arabia Terra area: Constraints on geological origin

    USGS Publications Warehouse

    Noe Dobrea, E.Z.; Bishop, J.L.; McKeown, N.K.; Fu, R.; Rossi, C.M.; Michalski, J.R.; Heinlein, C.; Hanus, V.; Poulet, F.; Mustard, R.J.F.; Murchie, S.; McEwen, A.S.; Swayze, G.; Bibring, J.-P.; Malaret, E.; Hash, C.

    2010-01-01

    Analyses of MRO/CRISM images of the greater Mawrth Vallis region of Mars affirm the presence of two primary phyllosilicate assemblages throughout a region ∼1000 × 1000 km. These two units consist of an Fe/Mg-phyllosilicate assemblage overlain by an Al-phyllosilicate and hydrated silica assemblage. The lower unit contains Fe/Mg-smectites, sometimes combined with one or more of these other Fe/Mg-phyllosilicates: serpentine, chlorite, biotite, and/or vermiculite. It is more than 100 m thick and finely layered at meter scales. The upper unit includes Al-smectite, kaolin group minerals, and hydrated silica. It is tens of meters thick and finely layered as well. A common phyllosilicate stratigraphy and morphology is observed throughout the greater region wherever erosional windows are present. This suggests that the geologic processes forming these units must have occurred on at least a regional scale. Sinuous ridges (interpreted to be inverted channels) and narrow channels cut into the upper clay-bearing unit suggesting that aqueous processes were prevalent after, and possibly during, the deposition of the layered units. We propose that layered units may have been deposited at Mawrth Vallis and then subsequently altered to form the hydrated units. The Fe/Mg-phyllosilicate assemblage is consistent with hydrothermal alteration or pedogenesis of mafic to ultramafic rocks. The Al-phyllosilicate/hydrated silica unit may have formed through alteration of felsic material or via leaching of basaltic material through pedogenic alteration or a mildly acidic environment. These phyllosilicate-bearing units are overlain by a darker, relatively unaltered, and indurated material that has probably experienced a complex geological history.

  16. Characterization of β-FeSi II films as a novel solar cell semiconductor

    NASA Astrophysics Data System (ADS)

    Fukuzawa, Yasuhiro; Ootsuka, Teruhisa; Otogawa, Naotaka; Abe, Hironori; Nakayama, Yasuhiko; Makita, Yunosuke

    2006-04-01

    β-FeSi II is an attractive semiconductor owing to its extremely high optical absorption coefficient (α>10 5 cm -1), and is expected to be an ideal semiconductor as a thin film solar cell. For solar cell use, to prepare high quality β-FeSi II films holding a desired Fe/Si ratio, we chose two methods; one is a molecular beam epitaxy (MBE) method in which Fe and Si were evaporated by using normal Knudsen cells, and occasionally by e-gun for Si. Another one is the facing-target sputtering (FTS) method in which deposition of β-FeSi II films is made on Si substrate that is placed out of gas plasma cloud. In both methods to obtain β-FeSi II films with a tuned Fe/Si ratio, Fe/Si super lattice was fabricated by varying Fe and Si deposition thickness. Results showed significant in- and out-diffusion of host Fe and Si atoms at the interface of Si substrates into β-FeSi II layers. It was experimentally demonstrated that this diffusion can be suppressed by the formation of template layer between the epitaxial β-FeSi II layer and the substrate. The template layer was prepared by reactive deposition epitaxy (RDE) method. By fixing the Fe/Si ratio as precisely as possible at 1/2, systematic doping experiments of acceptor (Ga and B) and donor (As) impurities into β-FeSi II were carried out. Systematical changes of electron and hole carrier concentration in these samples along variation of incorporated impurities were observed through Hall effect measurements. Residual carrier concentrations can be ascribed to not only the remaining undesired impurities contained in source materials but also to a variety of point defects mainly produced by the uncontrolled stoichiometry. A preliminary structure of n-β-FeSi II/p-Si used as a solar cell indicated a conversion efficiency of 3.7%.

  17. Low power loss and field-insensitive permeability of Fe-6.5%Si powder cores with manganese oxide-coated particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Junnan, E-mail: junnanli1991@163.com, E-mail: rzhgong@hust.edu.cn; Wang, Xian; Xu, Xiaojun

    Fe-6.5%Si alloy powders coated with manganese oxides using an innovative in situ process were investigated. The in-situ coating of the insulating oxides was realized with a KMnO{sub 4} solution by a chemical process. The insulating manganese oxides with mixed valance state were verified by X-ray photoelectron spectroscopy analysis. The thickness of the insulating layer on alloy particles was determined to be in a range of 20–210 nm, depending upon the KMnO{sub 4} concentration. The powder core loss and the change in permeability under a DC-bias field were measured at frequencies ranging from 50 to 100 kHz. The experiments indicated that themore » Fe-6.5%Si powder cores with a 210 nm-thick manganese oxide layer not only showed a low core loss of 459 mW/cm{sup 3} at 100 kHz but also showed a small reduction in permeability (μ(H)/μ(0) = 85% for μ = 42) at a DC-bias field of 80 Oe. This work has defined a novel pathway to realizing low core loss and field-insensitive permeability for Fe-Si powder cores.« less

  18. Surface structure of MgO underlayer with Ti diffusion for (002) oriented L10 FePt-based heat assisted magnetic recording media

    NASA Astrophysics Data System (ADS)

    Hinata, Sintaro; Jo, Shin; Saito, Shin

    2018-05-01

    Surface morphology of the MgO layer and magnetic properties of FePt-C layer deposited on the MgO were investigated for the FePt-based heat assisted magnetic recording media. Stacking structure of the underlayer for the FePt-C layer was MgO (0-5 nm)/Cr80Mn20 (0-30 nm)/Cr50Ti50 (0-50 nm)/glass sub.. Surface observation result for the MgO film by using an atomic force microscope revealed the existence of nodules with a height of about 2 nm and a network-like convex structure with a height difference of about sub nm (boundary wall, BW) on the MgO crystal grain boundary. Density of the nodules largely depends on the surface roughness of the CrTi layer, RaCrTi and it is suppressed from 10 to 2/0.5 μm2 by reducing RaCrTi from 420 to 260 pm. Height of the BW depends on thickness of the MgO layer, tMgO and it can be suppressed by reducing tMgO to less than 4 nm. From the cross-sectional energy dispersive x-ray mapping, it is clarified that the BW is formed by atomic diffusion of Ti atoms from CrTi layer due to the substrate heating process, and a compound consists of Mg, Ti and O atoms. This BW can be used as a template to magnetically isolate the FePt column in the FePt-based granular film, such as FePt-SiO2, if the size of the BW is reduced to less than 10 nm. M-H loop of the FePt-C granular film deposited on the underlayer showed that the nodule and BW induce oxidation of the FePt grains, and reduction of intergranular exchange coupling.

  19. Single-Walled Carbon Nanotube Dominated Micron-Wide Stripe Patterned-Based Ferroelectric Field-Effect Transistors with HfO2 Defect Control Layer

    NASA Astrophysics Data System (ADS)

    Tan, Qiuhong; Wang, Qianjin; Liu, Yingkai; Yan, Hailong; Cai, Wude; Yang, Zhikun

    2018-04-01

    Ferroelectric field-effect transistors (FeFETs) with single-walled carbon nanotube (SWCNT) dominated micron-wide stripe patterned as channel, (Bi,Nd)4Ti3O12 films as insulator, and HfO2 films as defect control layer were developed and fabricated. The prepared SWCNT-FeFETs possess excellent properties such as large channel conductance, high on/off current ratio, high channel carrier mobility, great fatigue endurance performance, and data retention. Despite its thin capacitance equivalent thickness, the gate insulator with HfO2 defect control layer shows a low leakage current density of 3.1 × 10-9 A/cm2 at a gate voltage of - 3 V.

  20. Single-Walled Carbon Nanotube Dominated Micron-Wide Stripe Patterned-Based Ferroelectric Field-Effect Transistors with HfO2 Defect Control Layer.

    PubMed

    Tan, Qiuhong; Wang, Qianjin; Liu, Yingkai; Yan, Hailong; Cai, Wude; Yang, Zhikun

    2018-04-27

    Ferroelectric field-effect transistors (FeFETs) with single-walled carbon nanotube (SWCNT) dominated micron-wide stripe patterned as channel, (Bi,Nd) 4 Ti 3 O 12 films as insulator, and HfO 2 films as defect control layer were developed and fabricated. The prepared SWCNT-FeFETs possess excellent properties such as large channel conductance, high on/off current ratio, high channel carrier mobility, great fatigue endurance performance, and data retention. Despite its thin capacitance equivalent thickness, the gate insulator with HfO 2 defect control layer shows a low leakage current density of 3.1 × 10 -9  A/cm 2 at a gate voltage of - 3 V.

  1. Magnetic characteristics of a high-layer-number NiFe/FeMn multilayer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paterson, G. W., E-mail: gary.paterson@glasgow.ac.uk; Gonçalves, F. J. T.; McFadzean, S.

    2015-11-28

    We report the static and dynamic magnetic characteristics of a high-layer-number NiFe/FeMn multilayer test structure with potential applications in broadband absorber and filter devices. To allow fine control over the absorption linewidths and to understand the mechanisms governing the resonances in a tailored structure similar to that expected to be used in real world applications, the multilayer was intentionally designed to have layer thickness and interface roughness variations. Magnetometry measurements show that the sample has complex hysteresis loops with features consistent with single ferromagnetic film reversals. Characterisation by transmission electron microscopy allows us to correlate the magnetic properties with structuralmore » features, including the film widths and interface roughnesses. Analysis of resonance frequencies from broadband ferromagnetic resonance measurements as a function of field magnitude and orientation provide values of the local exchange bias, rotatable anisotropy, and uniaxial anisotropy fields for specific layers in the stack and explain the observed mode softening. The linewidths of the multilayer are adjustable around the bias field, approaching twice that seen at larger fields, allowing control over the bandwidth of devices formed from the structure.« less

  2. Multiple resonance peaks of FeCo thin films with NiFe underlayer

    NASA Astrophysics Data System (ADS)

    Zhong, Xiaoxi; Soh, Wee Tee; Phuoc, Nguyen N.; Liu, Ying; Ong, C. K.

    2015-01-01

    Under zero external magnetic fields, single-layer FeCo thin films exhibit no ferromagnetic resonance (FMR) peaks, while multiple FMR peaks were obtained by growing FeCo thin films on NiFe underlayers with various thicknesses up to 50 nm. Comprehensive investigations of the dynamic magnetic properties and origin of the peaks were conducted through measurements of microwave permeability via a shorted microstrip perturbation technique. Through fitted values of saturation magnetization Ms, uniaxial anisotropy HKsta, and rotatable anisotropy HKrot extracted from the FMR experiments, it was found that two of the three resonance peaks originate from FeCo, and the third from NiFe. The two magnetic phases of FeCo grains are found to have different values of HKrot and explained by the exchange interaction between FeCo and NiFe grains.

  3. Synthesis of green Fe3+/glucose/rGO electrode for supercapacitor application assisted by chemical exfoliation process from burning coconut shell

    NASA Astrophysics Data System (ADS)

    Putra, Gilang B. A.; Pradana, Herdy Y.; Soenaryo, Dimas E. T.; Baqiya, Malik A.; Darminto

    2018-04-01

    For the goal of large, environmental - friendly, renewable, and inexpensive energy storage, the development of supercapacitor electrodes is needed, by anchoring transition metal oxide (Fe3+ ion) as pseudo capacitor electrode material with reduced graphene oxide (rGO) from an old coconut shell as electrochemical double layer capacitor (EDLC). This porous electrode composite is prepared by sonication and chemical exfoliation assisted by acid. Synthesis of supercapacitor is also added by glucose, which acts as a spacer between layers of rGO to increase the capacitance, also as binder between the materials used. Combining Fe3+ with old coconut shell rGO give high specific capacitance of up to 99 F/g at a potential window of -1 V to 1 V. The Fe3+/glucose/rGO electrode has thickness of up to 57 nm (from PSA result) and give a uniform distribution from EDX mapping with disperse Fe domains and not bonding with rGO.

  4. Titanium magnetic polarization at the Fe/BaTiO3 interfaces: An effect of ferroelectric polarization discontinuity

    NASA Astrophysics Data System (ADS)

    Paul, Amitesh; Zheng, Jian-Guo; Aoki, Toshihiro

    2017-10-01

    The exotic magnetic phenomena and the associated functionalities have attracted extensive scientific interest in fundamental physics and cater to the purpose of the novel material search. In this article, with a combination of the electron energy-loss spectroscopy and the X-ray absorption spectroscopy, we have investigated the interfacial Fe atoms and the induced ferromagnetic moment of Ti atoms in Fe/BaTiO3 (BTO) heterostructures. The samples were grown with two different BTO thicknesses, thus resulting in two different states of distorted oxygen environments or different electrostatic potentials. We demonstrate that in these systems, the electronic and magnetic proximity effects remain coupled as the ferroelectric polar discontinuity is held responsible for an induced transfer of the interface electrons. These electrons migrate from the Fe2+ layers to the Ti(4+)-δ layers with the hybridization via O-2p oxide orbitals into Ti orbitals to screen the ferroelectric polarization. These findings, in charge neutral BaO-TiO2 and FeO layers or nonpolar/nopolar interface, essentially underline the central role of the covalent bonding in defining the spin-electronic properties.

  5. Decarburizing Annealing of Technical Alloy Fe - 3% Si

    NASA Astrophysics Data System (ADS)

    Lobanov, M. L.; Gomzikov, A. I.; Akulov, S. V.; Pyatygin, A. I.

    2005-09-01

    Results of a study illustrating the effect of temperature and moisture content in the atmosphere (5% H2 + 95% N2) on the removal of carbon and oxidation of the surface layer of technical alloy Fe - 3% Si (electrical anisotropic steel of the nitride-copper production variant) are presented. Variation of the concentration of silicon over the thickness of the surface layer is studied. The types of phases forming on the surface and their influence on the occurrence of the processes are determined. Annealing parameters (temperature and moisture content of the atmosphere) at which the processes of decarburization and oxidation are decelerated and even stopped are established.

  6. Magnetic properties of the surface layer and its magnetic interaction with the interior of Nd-Fe-B sintered magnets

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kurima; Nakamura, Michi-hide; Urushibata, Kimiko

    2015-05-01

    The magnetization and demagnetization mechanisms in the mechanically polished surface layers (SL) of the c-plane and a-b plane of Nd-Fe-B sintered magnets were investigated. The magnetic interaction between the SL and the interior of the magnet was clarified by using vibrating sample magnetometer measurements of a whole sample and magneto-force microscopy observations of the domain structure of the SL layer. The polishing eliminated the Nd-rich grain boundary phases, which was only about 2 nm thick, from the SL crystal grains in the sintered magnets. The a-b plane polishing caused the independent magnetic reversal of the a-b plane SL, which was about 5.5 μm thick, as in the platy samples. The coercivities (μ0Hc) of the SL were less than 0.3 T. In contrast, the c-plane polishing did not produce independent magnetic reversal of the SL, although the coercivity of bulk samples was clearly decreased by the formation of the c-plane SL. The grains in the SL should form clusters that alter the demagnetizing factors, depending on the shape of cluster as a magnetic unit. The magnetic interaction among the SL crystal grains is expected to play an important role in the coercivity mechanism of Nd-Fe-B sintered magnets.

  7. Perpendicular magnetic anisotropy in CoXPd100-X alloys for magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Clark, B. D.; Natarajarathinam, A.; Tadisina, Z. R.; Chen, P. J.; Shull, R. D.; Gupta, S.

    2017-08-01

    CoFeB/MgO-based perpendicular magnetic tunnel junctions (p-MTJ's) with high anisotropy and low damping are critical for spin-torque transfer random access memory (STT-RAM). Most schemes of making the pinned CoFeB fully perpendicular require ferrimagnets with high damping constants, a high temperature-grown L10 alloy, or an overly complex multilayered synthetic antiferromagnet (SyAF). We report a compositional study of perpendicular CoxPd alloy-pinned Co20Fe60B20/MgO based MTJ stacks, grown at moderate temperatures in a planetary deposition system. The perpendicular anisotropy of the CoxPd alloy films can be tuned based on the layer thickness and composition. The films were characterized by alternating gradient magnetometry (AGM), energy-dispersive X-rays (EDX), and X-ray diffraction (XRD). Current-in-plane tunneling (CIPT) measurements have also been performed on the compositionally varied CoxPd MTJ stacks. The CoxPd alloy becomes fully perpendicular at approximately x = 30% (atomic fraction) Co. Full-film MTJ stacks of Si/SiO2/MgO (13)/CoXPd100-x (50)/Ta (0.3)/CoFeB (1)/MgO (1.6)/CoFeB (1)/Ta (5)/Ru (10), with the numbers enclosed in parentheses being the layer thicknesses in nm, were sputtered onto thermally oxidized silicon substrates and in-situ lamp annealed at 400 °C for 5 min. CIPT measurements indicate that the highest TMR is observed for the CoPd composition with the highest perpendicular magnetic anisotropy.

  8. Thickness Dependence of the Dzyaloshinskii-Moriya Interaction in Co2 FeAl Ultrathin Films: Effects of Annealing Temperature and Heavy-Metal Material

    NASA Astrophysics Data System (ADS)

    Belmeguenai, M.; Roussigné, Y.; Bouloussa, H.; Chérif, S. M.; Stashkevich, A.; Nasui, M.; Gabor, M. S.; Mora-Hernández, A.; Nicholson, B.; Inyang, O.-O.; Hindmarch, A. T.; Bouchenoire, L.

    2018-04-01

    The interfacial Dzyaloshinskii-Moriya interaction (IDMI) is investigated in Co2FeAl (CFA) ultrathin films of various thicknesses (0.8 nm ≤tCFA≤2 nm ) grown by sputtering on Si substrates, using Pt, W, Ir, and MgO buffer or/and capping layers. Vibrating sample magnetometry reveals that the magnetization at saturation (Ms ) for the Pt- and Ir-buffered films is higher than the usual Ms of CFA due to the proximity-induced magnetization (PIM) in Ir and Pt estimated to be 19% and 27%, respectively. The presence of PIM in these materials is confirmed using x-ray resonant magnetic reflectivity. Moreover, while no PIM is induced in W, higher PIM is obtained with Pt when it is used as a buffer layer rather than a capping layer. Brillouin light scattering in the Damon-Eshbach geometry is used to investigate the thickness dependences of the IDMI constants from the spin-wave nonreciprocity and the perpendicular anisotropy field versus the annealing temperature. The IDMI sign is found to be negative for Pt /CFA and Ir /CFA , while it is positive for W /CFA . The thickness dependence of the effective IDMI constant for stacks involving Pt and W shows the existence of two regimes similar to that of the perpendicular anisotropy constant due to the degradation of the interfaces as the CFA thickness approaches a critical thickness. The surface IDMI and anisotropy constants of each stack are determined for the thickest samples where a linear thickness dependence of the effective IDMI constant and the effective magnetization are observed. The interface anisotropy and IDMI constants investigated for the Pt /CFA /MgO system show different trends with the annealing temperature. The decrease of the IDMI constant with increasing annealing temperature is probably due to the electronic structure changes at the interfaces, while the increase of the interface anisotropy constant is coherent with the interface quality and disorder enhancement.

  9. High frequency electromagnetic properties of interstitial-atom-modified Ce2Fe17NX and its composites

    NASA Astrophysics Data System (ADS)

    Li, L. Z.; Wei, J. Z.; Xia, Y. H.; Wu, R.; Yun, C.; Yang, Y. B.; Yang, W. Y.; Du, H. L.; Han, J. Z.; Liu, S. Q.; Yang, Y. C.; Wang, C. S.; Yang, J. B.

    2014-07-01

    The magnetic and microwave absorption properties of the interstitial atom modified intermetallic compound Ce2Fe17NX have been investigated. The Ce2Fe17NX compound shows a planar anisotropy with saturation magnetization of 1088 kA/m at room temperature. The Ce2Fe17NX paraffin composite with a mass ratio of 1:1 exhibits a permeability of μ ' = 2.7 at low frequency, together with a reflection loss of -26 dB at 6.9 GHz with a thickness of 1.5 mm and -60 dB at 2.2 GHz with a thickness of 4.0 mm. It was found that this composite increases the Snoek limit and exhibits both high working frequency and permeability due to its high saturation magnetization and high ratio of the c-axis anisotropy field to the basal plane anisotropy field. Hence, it is possible that this composite can be used as a high-performance thin layer microwave absorber.

  10. Metalliclike behavior of the exchange coupling in (001) Fe/MgO/Fe junctions

    NASA Astrophysics Data System (ADS)

    Bellouard, C.; Duluard, A.; Snoeck, E.; Lu, Y.; Negulescu, B.; Lacour, D.; Senet, C.; Robert, S.; Maloufi, N.; Andrieu, S.; Hehn, M.; Tiusan, C.

    2017-10-01

    Exchange magnetic coupling between Fe electrodes through a thin MgO interlayer in epitaxial junctions has been investigated as a function of temperature, MgO thickness, and interface quality. Depending on the MgO thickness, which has been varied from 1.5 to 4 monolayers, two opposite temperature dependences are clearly disentangled. For a thin MgO spacer, the main component decreases with temperature following a metalliclike behavior. On the contrary, for the thickest MgO layers, the main component increases with temperature, following an Arrhenius law. Moreover, the insertion of a monoatomic roughness at the bottom MgO interface, induced by the addition of a fraction of a Fe monolayer, exacerbates the metallic features as an oscillatory behavior from antiferromagnetic to ferromagnetic is observed. These results allow questioning the simple tunneling mechanism usually invoked for MgO coupling, and suggest a crossover behavior of the thin MgO spacer from metallic to insulating with a progressive opening of the gap.

  11. Large magnetization and high Curie temperature in highly disordered nanoscale Fe2CrAl thin films

    NASA Astrophysics Data System (ADS)

    Dulal, Rajendra P.; Dahal, Bishnu R.; Forbes, Andrew; Pegg, Ian L.; Philip, John

    2017-02-01

    We have successfully grown nanoscale Fe2CrAl thin films on polished Si/SiO2 substrates using an ultra-high vacuum deposition with a base pressure of 9×10-10 Torr. The thickness of thin films ranges from 30 to 100 nm. These films exhibit cubic crystal structure with lattice disorder and display ferromagnetic behavior. The Curie temperature is greater than 400 K, which is much higher than that reported for bulk Fe2CrAl. The magnetic moments of the films varies from 2.5 to 2.8 μB per formula unit, which is larger than the reported bulk values. Thus, the disordered nanoscale Fe2CrAl films exhibit strong Fe-Fe exchange interactions through Fe-Cr-Fe and Fe-Al-Fe layers, resulting in both a large magnetization and a high Curie temperature.

  12. Fabrication and Characterization of Plasma Electrolytic Borocarburized Layers on Q235 Low-Carbon Steel at Different Discharge Voltages

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Wu, Jie; Jin, Xiaoyue; Wu, Xiaoling; Wu, Zhenglong; Xue, Wenbin

    The influence of applied voltage on the plasma electrolytic borocarburizing (PEB/C) layer of Q235 low-carbon steel in high-concentration borax solution was investigated. XRD and XPS spectra of PEB/C layer confirmed that the modified boride layer mainly consisted of Fe2B phase, and the FeB phase only exists in the loose top layer. The applied voltage on Q235 steel played a key role in determining the properties of hardened layers. The thickness and microhardness of boride layers increased with the increase of the applied voltage, which led to superior corrosion and wear resistances of Q235 low-carbon steel. The diffusion coefficient (D) of boride layer at 280, 300 and 330V increased with borocarburizing temperature and ranged from 0.062×10-12m2/s to 0.462×10-12m2/s. The activation energy (Q) of boride layer growth during PEB/C treatment was only 52.83kJṡmol-1, which was much lower than that of the conventional boriding process.

  13. Electronic and magnetic properties of iron doped zirconia: Theory and experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Debernardi, A., E-mail: alberto.debernardi@mdm.imm.cnr.it; Sangalli, D.; Lamperti, A.

    We systematically investigated, both theoretically and experimentally, Zr{sub 1−x}Fe{sub x}O{sub 2−y} ranging from diluted (x ≈ 0.05) up to large (x ≈ 0.25) Fe concentration. By atomic layer deposition, we grew thin films of high-κ zirconia in cubic phase with Fe uniformly distributed in the film, as proven by time of flight secondary ion mass spectrometry and transmission electron microscopy measurements. Iron is in Fe{sup 3+} oxidation state suggesting the formation of oxygen vacancies with y concentration close to x/2. By ab-initio simulations, we studied the phase diagram relating the stability of monoclinic vs. tetragonal phase as a function of Fe doping and filmmore » thickness: the critical thickness at which the pure zirconia is stabilized in the tetragonal phase is estimated ranging from 2 to 6 nm according to film morphology. Preliminary results by X-ray magnetic circular dichroism and alternating gradient force magnetometry are discussed in comparison to ab initio data enlightening the role of oxygen vacancies in the magnetic properties of the system.« less

  14. Effect of L1{sub 2} ordering in antiferromagnetic Ir-Mn epitaxial layer on exchange bias of FePd films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Y. C.; Duh, J. G., E-mail: pmami.hsiao@gmail.com, E-mail: lin.yg@nsrrc.org.tw, E-mail: jgd@mx.nthu.edu.tw; Hsiao, S. N., E-mail: pmami.hsiao@gmail.com, E-mail: lin.yg@nsrrc.org.tw, E-mail: jgd@mx.nthu.edu.tw

    2015-05-07

    Two series of samples of single-layer IrMn and IrMn/FePd bilayer films, deposited on a single-crystal MgO substrate at different IrMn deposition temperatures (T{sub s} = 300–700 °C), were investigated using magnetron sputtering. L1{sub 2} ordering was revealed for the 30 nm-thick IrMn epitaxial (001) films with T{sub s} ≥ 400 °C, determined by synchrotron radiation x-ray diffractometry (XRD). XRD results also provide evidence of the epitaxial growth of the IrMn films on MgO substrate. Increasing T{sub s} from 400 to 700 °C monotonically increases the ordering parameter of L1{sub 2} phases from 0.17 to 0.81. An in-plane exchange bias field (H{sub eb}) of 22 Oe is obtained in amore » 10 nm-thick FePd film that is deposited on the disordered IrMn films. As the L1{sub 2} ordering of the IrMn layers increases, the H{sub eb} gradually decreases to 0 Oe, meaning that the exchange bias behavior vanishes. The increased surface roughness, revealed by atomic force microscopy, of the epitaxial IrMn layers with increasing T{sub s} cannot be the main cause of the decrease in H{sub eb} due to the compensated surface spins regardless of the disordered and ordered (001) IrMn layers. The change of antiferromagnetic structure from the A1 to the L1{sub 2} phase was correlated with the evolution of H{sub eb}.« less

  15. Alternating stacking of ferromagnetic nanosheet and nanoparticle films: heteroassembly and magneto-optical Kerr effect

    NASA Astrophysics Data System (ADS)

    Jia, Baoping; Zhang, Wei; Liu, Hui; Lin, Bencai; Ding, Jianning

    2016-09-01

    Heterostructured multilayer films of two different nanocrystals have been successfully fabricated by layer-by-layer stacking of Ti0.8Co0.2O2 nanosheet and Fe3O4 nanoparticle films. UV-Vis spectroscopy and AFM observation confirmed the successful alternating deposition in the multilayer buildup process. The average thickness of both Ti0.8Co0.2O2 nanosheet and Fe3O4 nanoparticle layers was determined to be about 1.4-1.7 and 5 nm, which was in good agreement with TEM results. Magneto-optical Kerr effect measurements demonstrated that the heteroassemblies exhibit gigantic magnetic circular dichroism (MCD) (2 × 104 deg/cm) at 320-360 nm, deriving from strong interlayer [Co2+]t2g-[Fe3+]eg d-d charge transfer which was further confirmed by X-ray photoelectron spectroscopy. Their structure-dependent MCD showed high potential in rational design and construction of high-efficiency magneto-optical devices.

  16. Fabrication of bifunctional core-shell Fe3O4 particles coated with ultrathin phosphor layer

    PubMed Central

    2013-01-01

    Bifunctional monodispersed Fe3O4 particles coated with an ultrathin Y2O3:Tb3+ shell layer were fabricated using a facile urea-based homogeneous precipitation method. The obtained composite particles were characterized by powder X-ray diffraction, transmission electron microscopy (TEM), quantum design vibrating sample magnetometry, and photoluminescence (PL) spectroscopy. TEM revealed uniform spherical core-shell-structured composites ranging in size from 306 to 330 nm with a shell thickness of approximately 25 nm. PL spectroscopy confirmed that the synthesized composites displayed a strong eye-visible green light emission. Magnetic measurements indicated that the composite particles obtained also exhibited strong superparamagnetic behavior at room temperature. Therefore, the inner Fe3O4 core and outer Y2O3:Tb3+ shell layer endow the composites with both robust magnetic properties and strong eye-visible luminescent properties. These composite materials have potential use in magnetic targeting and bioseparation, simultaneously coupled with luminescent imaging. PMID:23962025

  17. Fabrication of bifunctional core-shell Fe3O4 particles coated with ultrathin phosphor layer

    NASA Astrophysics Data System (ADS)

    Atabaev, Timur Sh; Kim, Hyung-Kook; Hwang, Yoon-Hwae

    2013-08-01

    Bifunctional monodispersed Fe3O4 particles coated with an ultrathin Y2O3:Tb3+ shell layer were fabricated using a facile urea-based homogeneous precipitation method. The obtained composite particles were characterized by powder X-ray diffraction, transmission electron microscopy (TEM), quantum design vibrating sample magnetometry, and photoluminescence (PL) spectroscopy. TEM revealed uniform spherical core-shell-structured composites ranging in size from 306 to 330 nm with a shell thickness of approximately 25 nm. PL spectroscopy confirmed that the synthesized composites displayed a strong eye-visible green light emission. Magnetic measurements indicated that the composite particles obtained also exhibited strong superparamagnetic behavior at room temperature. Therefore, the inner Fe3O4 core and outer Y2O3:Tb3+ shell layer endow the composites with both robust magnetic properties and strong eye-visible luminescent properties. These composite materials have potential use in magnetic targeting and bioseparation, simultaneously coupled with luminescent imaging.

  18. Three-phase heterostructures f-NiFe2O4/PANI/PI EMI shielding fabric with high Microwave Absorption Performance

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Wang, Wei; Yu, Dan

    2017-12-01

    In this work, a three-phase heterostructures f-NiFe2O4/PANI/PI EMI shielding fabric with a layer by layer structure was designed and prepared to obtain excellent microwave attenuation performance. Firstly, PANI/PI fabric was prepared via in-situ deposition method. Then, the NiFe2O4 nanoparticles functionalized by oleic acid were uniformly dispersed in epoxy resin and coated on the top and bottom of PANI/PI fabric with 0.041 mm total thickness. The investigation of chemical structure and surface morphologies indicated the composite structure of f-NiFe2O4/PANI/PI fabric. Various parameters like magnetic property, reflection loss and attenuation constant were used to evaluate its microwave attenuation performance. The results demonstrated that the 30f-NiFe2O4/PANI/PI fabric had a highest attenuation effectiveness with the minimum reflection loss value of -42.5 dB (>90% attenuation) at 12.5 GHz and the effective absorption bandwidth was 3.4 GHz. The study of attenuation mechanism indicated that the dielectric loss from PANI, the magnetic loss caused by f-NiFe2O4 and the layer by layer structure effectively improved microwave attenuation performance of composite fabric. Furthermore, the favorable flexibility and dimensional stability of this resultant fabric would allow the composite fabric for a long time service under pressure or foldable conditions. In sum, the study clearly indicated that three-phase heterostructures f-NiFe2O4/PANI/PI fabric was a good candidate as electromagnetic shielding materials in many fields.

  19. Surface-State-Dominated Spin-Charge Current Conversion in Topological-Insulator-Ferromagnetic-Insulator Heterostructures.

    PubMed

    Wang, Hailong; Kally, James; Lee, Joon Sue; Liu, Tao; Chang, Houchen; Hickey, Danielle Reifsnyder; Mkhoyan, K Andre; Wu, Mingzhong; Richardella, Anthony; Samarth, Nitin

    2016-08-12

    We report the observation of ferromagnetic resonance-driven spin pumping signals at room temperature in three-dimensional topological insulator thin films-Bi_{2}Se_{3} and (Bi,Sb)_{2}Te_{3}-deposited by molecular beam epitaxy on Y_{3}Fe_{5}O_{12} thin films. By systematically varying the Bi_{2}Se_{3} film thickness, we show that the spin-charge conversion efficiency, characterized by the inverse Rashba-Edelstein effect length (λ_{IREE}), increases dramatically as the film thickness is increased from two quintuple layers, saturating above six quintuple layers. This suggests a dominant role of surface states in spin and charge interconversion in topological-insulator-ferromagnet heterostructures. Our conclusion is further corroborated by studying a series of Y_{3}Fe_{5}O_{12}/(Bi,Sb)_{2}Te_{3} heterostructures. Finally, we use the ferromagnetic resonance linewidth broadening and the inverse Rashba-Edelstein signals to determine the effective interfacial spin mixing conductance and λ_{IREE}.

  20. Etching Selectivity of Cr, Fe and Ni Masks on Si & SiO2 Wafers

    NASA Astrophysics Data System (ADS)

    Garcia, Jorge; Lowndes, Douglas H.

    2000-10-01

    During this Summer 2000 I joined the Semiconductors and Thin Films group led by Dr. Douglas H. Lowndes at Oak Ridge National Laboratory’s Solid State Division. Our objective was to evaluate the selectivity that Trifluoromethane (CHF3), and Sulfur Hexafluoride (SF6) plasmas have for Si, SiO2 wafers and the Ni, Cr, and Fe masks; being this etching selectivity the ratio of the etching rates of the plasmas for each of the materials. We made use of Silicon and Silicon Dioxide-coated wafers that have Fe, Cr or Ni masks. In the semiconductor field, metal layers are often used as masks to protect layers underneath during processing steps; when these wafers are taken to the dry etching process, both the wafer and the mask layers’ thickness are reduced.

  1. The influence of reaction time on hydrogen sulphide removal from air by means of Fe(III)-EDTA/Fiban catalysts

    NASA Astrophysics Data System (ADS)

    Wasag, H.; Cel, W.; Chomczynska, M.; Kujawska, J.

    2018-05-01

    The paper deals with a new method of hydrogen sulphide removal from air by its filtration and selective catalytic oxidation with the use of fibrous carriers of Fe(III)-EDTA complex. The basis of these filtering materials includes fibrous ion exchangers with the complex immobilized on their functional groups. It has been established that the degree of catalytic hydrogen sulphide decomposition depends on the reaction time. Thus, the required degree of hydrogen sulphide removal from air could be easily controlled by applying appropriate thickness of the filtering layer under a given filtering velocity. It allows applying very thin filtering layers of the Fe(III)-EDTA/Fiban AK-22 or Fiban A-6 catalysts. The obtained results of the research confirm the applicability of these materials for deep air purification from hydrogen sulphide.

  2. Simulation of thermally induced processes of diffusion and phase formation in layered binary metallic systems

    NASA Astrophysics Data System (ADS)

    Rusakov, V. S.; Sukhorukov, I. A.; Zhankadamova, A. M.; Kadyrzhanov, K. K.

    2010-05-01

    Results of the simulation of thermally induced processes of diffusion and phase formation in model and experimentally investigated layered binary metallic systems are presented. The physical model is based on the Darken phenomenological theory and on the mechanism of interdiffusion of components along the continuous diffusion channels of phases in the two-phase regions of the system. The simulation of processes in the model systems showed that the thermally stabilized concentration profiles in two-layer binary metallic systems are virtually independent of the partial diffusion coefficients; for the systems with the average concentration of components that is the same over the sample depth, the time of the thermal stabilization of the structural and phase state inhomogeneous over the depth grows according to a power law with increasing thickness of the system in such a manner that the thicknesses of the surface layers grow, while the thickness of the intermediate layer approaches a constant value. The results of the simulation of the processes of diffusion and phase formation in experimentally investigated layered binary systems Fe-Ti and Cu-Be upon sequential isothermal and isochronous annealings agree well with the experimental data.

  3. External electric field driven modification of the anomalous and spin Hall conductivities in Fe thin films on MgO(001)

    NASA Astrophysics Data System (ADS)

    Pradipto, Abdul-Muizz; Akiyama, Toru; Ito, Tomonori; Nakamura, Kohji

    2018-01-01

    The effects of applying external electric fields to the anomalous and spin Hall conductivities in Fe thin-film models with different layer thicknesses on MgO(001) are investigated by using first-principles calculations. We observe that, for the considered systems, the application of positive electric field associated with the accumulation of negative charges on the Fe side generally decreases (increases) the anomalous (spin) Hall conductivities. The mapping of the Hall conductivities within the two-dimensional Brillouin zone shows that the electric-field-induced modifications are related to the modification of the band structures of the atoms at the interface with the MgO substrate. In particular, the external electric field affects the Hall conductivities via the modifications of the dx z,dy z orbitals, in which the application of positive electric field pushes the minority-spin states of the dx z,dy z bands closer to the Fermi level. Better agreement with the anomalous Hall conductivity for bulk Fe and a more realistic scenario for the electric field modification of Hall conductivities are obtained by using the thicker layers of Fe on MgO (Fe3/MgO and Fe5/MgO).

  4. Nano-structured variable capacitor based on P(VDF-TrFE) copolymer and carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Lakbita, I.; El-Hami, K.

    2018-02-01

    A newly organic capacitor was conceived with a variable capacitance using the inverse piezoelectric effect. The device consists of two parallel plates of carbon nanotubes (CNTs), known for their large surface area, high sensitivity and high electric conductivity, separated by a thin film of a dielectric layer of Polyinylidene fluoride and trifluoroehtylene (P(VDF-TrFE)) promising material for piezoelectric and ferroelectric properties. The obtained architecture is the CNT/PVDF-TrFE/CNT capacitor device. In this study, an ultra-thin film of P(VDF-TrFE) (54/46) with thickness of 20 nm was elaborated on highly oriented pyrolytic graphite (HOPG) by spin-coating. The morphology of the ultra-thin film and the mechanical behavior of CNT/P(VDF-TrFE)/CNT system were studied using the atomic force microscopy (AFM) combined with a lock-in amplifier in contact mode. All changes in applied voltage induce a change in thin film thickness according to the inverse piezoelectric effect that affect, consequently the capacitance. The results showed that the ratio of capacitance change ΔC to initial capacitance C0 is ΔC/C0=5%. This value is sufficient to use P(VDF-TrFE) as variable organic capacitor.

  5. Field dependent magnetic anisotropy of Ga0.2Fe0.8 thin films

    NASA Astrophysics Data System (ADS)

    Resnick, Damon A.; McClure, A.; Kuster, C. M.; Rugheimer, P.; Idzerda, Y. U.

    2011-04-01

    Using longitudinal MOKE in combination with a variable strength rotating magnetic field, called the rotational MOKE (ROTMOKE) method, we show that the magnetic anisotropy for a Ga0.2Fe0.8 single crystal film with a thickness of 17 nm, grown on GaAs (001) with a thick ZnSe buffer layer, depends linearly on the strength of the applied magnetic field. The torque moment curves generated using ROTMOKE are well fit with a model that accounts for the uniaxial, cubic, or fourfold anisotropy, as well as additional terms with a linear dependence on the applied magnetic field. The uniaxial and cubic anisotropy fields, taken from both the hard and the easy axis scans, are seen to remain field independent. The field dependent terms are evidence of a large affect of the magnetostriction and its contribution to the effective magnetic anisotropy in GaxFe1-x thin films.

  6. Preparation and magnetic properties of cylindrical NiFe films and antidot arrays.

    PubMed

    Sanz, R; Navas, D; Vazquez, M; Hernández-Vélez, M; Ross, C A

    2010-10-01

    Continuous NiFe (Permalloy) cylindrical films and arrays of cylindrical NiFe antidots 7 nm thick have been prepared by sputtering onto cylindrical aluminum wires and onto wires anodized to form a porous anodic alumina layer. The antidots are arranged in a close-packed pattern determined by the hexagonal pore arrangement in the porous alumina, with period 103 nm and diameter 42 nm. Hysteresis loops were measured at different angles with respect to the cylinder axis and indicate an easy plane normal to the radius of the wire. The antidots enhance the coercivity compared to the continuous cylindrical film.

  7. Structure-dependent magnetoresistance and spin-transfer torque in antiferromagnetic Fe |MgO |FeMn |Cu tunnel junctions

    NASA Astrophysics Data System (ADS)

    Jia, Xingtao; Tang, Huimin; Wang, Shizhuo; Qin, Minghui

    2017-02-01

    We predict large magnetoresistance (MR) and spin transfer torque (STT) in antiferromagnetic Fe |MgO |FeMn |Cu tunnel junctions based on first-principles scattering theory. MR as large as ˜100 % is found in one junction. Magnetic dynamic simulations show that STT acting on the antiferromagnetic order parameter dominates the spin dynamics, and an electronic bias of order 10-1mV and current density of order 105Acm-2 can switches a junction of three-layer MgO, they are about one order smaller than that in Fe |MgO |Fe junction with the same barrier thickness, respectively. The multiple scattering in the antiferromagnetic region is considered to be responsible for the enhanced spin torque and smaller switching current density.

  8. The role of the non-magnetic material in spin pumping and magnetization dynamics in NiFe and CoFeB multilayer systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruiz-Calaforra, A., E-mail: ruiz@physik.uni-kl.de; Brächer, T.; Lauer, V.

    2015-04-28

    We present a study of the effective magnetization M{sub eff} and the effective damping parameter α{sub eff} by means of ferromagnetic resonance spectroscopy on the ferromagnetic (FM) materials Ni{sub 81}Fe{sub 19} (NiFe) and Co{sub 40}Fe{sub 40}B{sub 20} (CoFeB) in FM/Pt, FM/NM, and FM/NM/Pt systems with the non-magnetic (NM) materials Ru, Cr, Al, and MgO. Moreover, for NiFe layer systems, the influence of interface effects is studied by way of thickness dependent measurements of M{sub eff} and α{sub eff}. Additionally, spin pumping in NiFe/NM/Pt is investigated by means of inverse spin Hall effect (ISHE) measurements. We observe a large dependence ofmore » M{sub eff} and α{sub eff} of the NiFe films on the adjacent NM layer. While Cr and Al do not induce a large change in the magnetic properties, Ru, Pt, and MgO affect M{sub eff} and α{sub eff} in different degrees. In particular, NiFe/Ru and NiFe/Ru/Pt systems show a large perpendicular surface anisotropy and a significant enhancement of the damping. In contrast, the magnetic properties of CoFeB films do not have a large influence of the NM adjacent material and only CoFeB/Pt systems present an enhancement of α{sub eff}. However, this enhancement is much more pronounced in NiFe/Pt. By the introduction of the NM spacer material, this enhancement is reduced. Furthermore, a difference in symmetry between NiFe/NM/Pt and NiFe/NM systems in the output voltage signal from the ISHE measurements reveals the presence of spin pumping into the Pt layer in all-metallic NiFe/NM/Pt and NiFe/Pt systems.« less

  9. The formation and potential importance of cemented layers in inactive sulfide mine tailings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blowes, D.W.; Reardon, E.J.; Cherry, J.A.

    Investigations of inactive sulfide-rich tailings impoundments at the Heath Steele (New Brunswick) and Waite Amulet (Quebec) minesites have revealed two distinct types of cemented layers or hardpans. That at Heath Steele is 10-15 cm thick, occurs 20-30 cm below the depth of active oxidation, is continuous throughout the tailings impoundment, and is characterized by cementation of tailings by gypsum and Fe(II) solid phases, principally melanterite. Hardpan at the Waite Amulet site is only 1-5 cm thick, is laterally discontinuous (10-100 cm), occurs at the depth of active oxidation, and is characterized by cementation of tailings by Fe(III) minerals, principally goethite,more » lepidocrocite, ferrihydrite, and jarosite. At Heath Steele, an accumulation of gas-phase CO{sub 2}, of up to 60{percent} of the pore gas, occurs below the hardpan. The calculated diffusivity of the hardpan layer is only about 1/100 that of the overlying, uncemented tailings. The pore-water chemistry at Heath Steele has changed little over a 10-year period, suggesting that the cemented layer restricts the movement of dissolved metals through the tailings and also acts as a zone of metal accumulation. Generation of a cemented layer therefore has significant environmental and economic implications. It is likely that, in sulfide-rich tailings impoundments, the addition of carbonate-rich buffering material during the late stages of tailings deposition would enhance the formation of hardpan layers.« less

  10. Effect of IrMn inserted layer on anomalous-Hall resistance and spin-Hall magnetoresistance in Pt/IrMn/YIG heterostructures

    NASA Astrophysics Data System (ADS)

    Shang, T.; Yang, H. L.; Zhan, Q. F.; Zuo, Z. H.; Xie, Y. L.; Liu, L. P.; Zhang, S. L.; Zhang, Y.; Li, H. H.; Wang, B. M.; Wu, Y. H.; Zhang, S.; Li, Run-Wei

    2016-10-01

    We report an investigation of anomalous-Hall resistance (AHR) and spin-Hall magnetoresistance (SMR) in Pt/Ir20Mn80/Y3Fe5O12 (Pt/IrMn/YIG) heterostructures. The AHR of Pt/IrMn/YIG heterostructures with an antiferromagnetic inserted layer is dramatically enhanced as compared to that of the Pt/YIG bilayer. The temperature dependent AHR behavior is nontrivial, while the IrMn thickness dependent AHR displays a peak at an IrMn thickness of 3 nm. The observed SMR in the temperature range of 10-300 K indicates that the spin current generated in the Pt layer can penetrate the IrMn layer (≤3 nm) to interact with the ferromagnetic YIG layer. The lack of conventional anisotropic magnetoresistance (AMR) implies that the insertion of the IrMn layer between Pt and YIG could efficiently suppress the magnetic proximity effect (MPE) on induced Pt moments by YIG.

  11. Anomalous spin Hall magnetoresistance in Pt/Co bilayers

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Masashi; Towa, Daiki; Lau, Yong-Chang; Takahashi, Saburo; Hayashi, Masamitsu

    2018-05-01

    We have studied the spin Hall magnetoresistance (SMR), the magnetoresistance within the plane transverse to the current flow, of Pt/Co bilayers. We find that the SMR increases with increasing Co thickness: the effective spin Hall angle for bilayers with thick Co exceeds the reported values of Pt when a conventional drift-diffusion model is used. An extended model including spin transport within the Co layer cannot account for the large SMR. To identify its origin, contributions from other sources are studied. For most bilayers, the SMR increases with decreasing temperature and increasing magnetic field, indicating that magnon-related effects in the Co layer play little role. Without the Pt layer, we do not observe the large SMR found for the Pt/Co bilayers with thick Co. Implementing the effect of the so-called interface magnetoresistance and the textured induced anisotropic scattering cannot account for the Co thickness dependent SMR. Since the large SMR is present for W/Co but its magnitude reduces in W/CoFeB, we infer that its origin is associated with a particular property of Co.

  12. Magnetization and anomalous Hall effect in SiO2/Fe/SiO2 trilayers

    NASA Astrophysics Data System (ADS)

    Sekhar Das, Sudhansu; Senthil Kumar, M.

    2017-03-01

    SiO2/Fe/SiO2 sandwich structure films fabricated by sputtering were studied by varying the Fe layer thickness (t Fe). The structural and microstructural studies on the samples showed that the Fe layer has grown in nanocrystalline form with (1 1 0) texture and that the two SiO2 layers are amorphous. Magnetic measurements performed with the applied field in in-plane and perpendicular direction to the film plane confirmed that the samples are soft ferromagnetic having strong in-plane magnetic anisotropy. The temperature dependence of magnetization shows complex behavior with the coexistence of both ferromagnetic and superparamagnetic properties. The transport properties of the samples as studied through Hall effect measurements show anomalous Hall effect (AHE). An enhancement of about 14 times in the saturation anomalous Hall resistance (R\\text{hs}\\text{A} ) was observed upon reducing the t Fe from 300 to 50 Å. The maximum value of R\\text{hs}\\text{A}   =  2.3 Ω observed for t Fe  =  50 Å sample is about 4 orders of magnitude larger than that reported for bulk Fe. When compared with the single Fe film, a maximum increase of about 56% in the R\\text{hs}\\text{A} was observed in sandwiched Fe (50 Å) film. Scaling law suggests that the R s follows the longitudinal resistivity (ρ) as, {{R}\\text{s}}\\propto {ρ1.9} , suggesting side jump as the dominant mechanism of the AHE. A maximum enhancement of about 156% in the sensitivity S was observed.

  13. Vector magnetometry of Fe/Cr/Fe trilayers with biquadratic coupling

    NASA Astrophysics Data System (ADS)

    Mansell, R.; Petit, D.; Fernández-Pacheco, A.; Lee, J. H.; Chin, S.-L.; Lavrijsen, R.; Cowburn, R. P.

    2017-05-01

    The magnetic reversal of epitaxial Fe/Cr/Fe trilayer samples grown on GaAs is studied. In wedged samples both long and short period coupling oscillations associated with Ruderman-Kittel-Kasuya-Yosida (RKKY) coupling in Cr are seen in the easy axis saturation fields. By using vector vibrating sample magnetometry and both longitudinal and transverse magneto-optical Kerr effect magnetometry we are able to determine the exact reversal path of both the magnetic layers. Changes in the reversal behavior are seen with sub-monolayer changes of the thickness of the Cr interlayer. The two main reversal paths are described in terms of whether the reversal is dominated by bilinear RKKY coupling, which leads to an antiparallel state at remanence or by biquadratic coupling which leads to a 90 degree alignment of layers at remanence. The changing reversal behaviour is discussed with respect to the possibility of using such systems for multilayer memory applications and, in particular, the limits on the required accuracy of the sample growth.

  14. A comparative study on the morphology of P3HT:PCBM solar cells with the addition of Fe3O4 nanoparticles by spin and rod coating methods

    NASA Astrophysics Data System (ADS)

    Zhang, Wenluan; Nguyen, Ngoc A.; Murray, Roy; Xin, Jiyuan; Mackay, Michael E.

    2017-09-01

    Our previous study presented up to 20% power conversion efficiency (PCE) enhancement of poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester (P3HT:PCBM) solar cells under the Fe3O4 nanoparticles (NPs) self-assembly (SA) effect by spin coating. Fe3O4 NPs (about 11 nm hydrodynamic diameter) form a thin layer at the top interface of the light absorbing active layer, which results in the generation of PCBM rich region improving the charge transport (Zhang et al. Sol Energ Mat Sol C 160:126-133, 2017). In order to investigate the feasibility of this Fe3O4 NPs SA effect under large-scale production condition, a smooth rod was implemented to mimic roll-to-roll coating technique and yield active layers having about the same thickness as the spin-coated ones. Small angle neutron scattering and grazing incidence X-ray diffraction were employed finding out similar morphologies of the active layers by these two coating techniques. However, rod-coated solar cell's PCE decreases with the addition of Fe3O4 NPs compared with the one without them. This is because PCBM rich region is not created at the top interface of the active layer due to the absence of Fe3O4 NPs, which is attributed to the weak convective flow and low diffusion rate. Moreover, in the rod-coated solar cells, the presence of Fe3O4 NPs causes decrease in P3HT crystallinity, thus the charge transport and the device performance. Our study confirms the role of spin coating in the Fe3O4 NPs SA effect and enables researchers to explore this finding in other polymer nanocomposite systems.

  15. Influence of Gas Atmosphere Dew Point on the Selective Oxidation and the Reactive Wetting During Hot Dip Galvanizing of CMnSi TRIP Steel

    NASA Astrophysics Data System (ADS)

    Cho, Lawrence; Lee, Seok Jae; Kim, Myung Soo; Kim, Young Ha; De Cooman, Bruno C.

    2013-01-01

    The selective oxidation and reactive wetting of intercritically annealed Si-bearing CMnSi transformation-induced plasticity steels were investigated by high-resolution transmission electron microscopy. In a N2 + 10 pct H2 gas atmosphere with a dew point (DP) ranging from 213 K to 278 K (-60 °C to 5 °C), a continuous layer of selective oxides was formed on the surface. Annealing in a higher DP gas atmosphere resulted in a thinner layer of external oxidation and a greater depth of internal oxidation. The hot dipping was carried out in a Zn bath containing 0.22 mass pct Al, and the bath temperature was 733 K (460 °C). Coarse and discontinuous Fe2Al5- x Zn x grains and Fe-Zn intermetallics (ζ and δ) were observed at the steel/coating interface after the hot dip galvanizing (HDG) of panels were annealed in a low DP atmosphere 213 K (-60 °C). The Fe-Zn intermetallics were formed both in areas where the Fe2Al5- x Zn x inhibition layer had not been formed and on top of non-stoichiometric Fe-Al-Zn crystals. Poor wetting was observed on panels annealed in a low DP atmosphere because of the formation of thick film-type oxides on the surface. After annealing in higher DP gas atmospheres, i.e., 263 K and 278 K (-10 °C and 5 °C), a continuous and fine-grained Fe2Al5- x Zn x layer was formed. No Fe-Zn intermetallics were formed. The small grain size of the inhibition layer was attributed to the nucleation of the Fe2Al5- x Zn x grains on small ferrite sub-surface grains and the presence of granular surface oxides. A high DP atmosphere can therefore significantly contribute to the decrease of Zn-coating defects on CMnSi TRIP steels processed in HDG lines.

  16. Critical current enhancement driven by suppression of superconducting fluctuation in ion-gated ultrathin FeSe

    NASA Astrophysics Data System (ADS)

    Harada, T.; Shiogai, J.; Miyakawa, T.; Nojima, T.; Tsukazaki, A.

    2018-05-01

    The framework of phase transition, such as superconducting transition, occasionally depends on the dimensionality of materials. Superconductivity is often weakened in the experimental conditions of two-dimensional thin films due to the fragile superconducting state against defects and interfacial effects. In contrast to this general trend, superconductivity in the thin limit of FeSe exhibits an opposite trend, such as an increase in critical temperature (T c) and the superconducting gap exceeding the bulk values; however, the dominant mechanism is still under debate. Here, we measured thickness-dependent electrical transport properties of the ion-gated FeSe thin films to evaluate the superconducting critical current (I c) in the ultrathin FeSe. Upon systematically decreasing the FeSe thickness by the electrochemical etching technique in the Hall bar-shaped electric double-layer transistors, we observed a dramatic enhancement of I c reaching about 10 mA and corresponding to about 107 A cm‑2 in the thinnest condition. By analyzing the transition behavior, we clarify that the suppressed superconducting fluctuation is one of the origins of the large I c in the ion-gated ultrathin FeSe films. These results indicate the existence of a robust superconducting state possibly with dense Cooper pairs at the thin limit of FeSe.

  17. Silicanizing Process On Mild Steel Substrate by Using Tronoh Silica Sand: Microstructure, composition and coating growth

    NASA Astrophysics Data System (ADS)

    Y, Yusnenti F. M.; M, Othman; Mustapha, Mazli; I, MohdYusri

    2016-02-01

    A new Silicanizing process on formation of coating on mild steel using Tronoh Silica Sand (TSS) is presented. The process was performed in the temperature range 1000- 1100°C and with varying deposition time of 1-4 hours. Influence of the layer and the substrate constituents on the coating compatibility of the whole silicanized layer is described in detail. Morphology and structure of the silicanized layer were investigated by XRF, XRD and SEM. It is observed that diffusion coatings containing high concentrations of silica which profile distribution of SiO2 in the silicanized layer was encountered and the depth from the surface to the substrate was taken as the layer thickness. The results also depicted that a longer deposition time have tendency to produce a looser and larger grain a hence rougher layer. The silicanized layer composed of FeSi and Fe2SiO4 phases with preferred orientation within the experimental range. It is also found that longer deposition time and higher temperature resulted in an increase in SiO2 concentration on the substrate (mild steel).

  18. Design and Development of a Super Permeability Nanostructured Permalloy Composite

    DTIC Science & Technology

    2007-11-20

    Oh, J.Y. Lee, W.X. Chen, “Effect of the pH Value on the Magnetic Properties of Electroplated NiFe Layers”, Materials Science Forum 437-438 (2003) 57...60. 3 H.L. Seet, X.P. Li, N.Ning, W.C. Ng, J.B. Yi, “Effect of Magnetic Coating Layer Thickness on the Magnetic Properties of Electrodeposited NiFe ...15 5. Comparison between the magnetic properties of the stripe and wire structured composites 29 6. Design, development and

  19. Thickness-dependent enhancement of damping in C o2FeAl /β -Ta thin films

    NASA Astrophysics Data System (ADS)

    Akansel, Serkan; Kumar, Ankit; Behera, Nilamani; Husain, Sajid; Brucas, Rimantas; Chaudhary, Sujeet; Svedlindh, Peter

    2018-04-01

    In the present work C o2FeAl (CFA) thin films were deposited by ion beam sputtering on Si (100) substrates at the optimized deposition temperature of 300 °C. A series of CFA films with different thicknesses (tCFA), 8, 10, 12, 14, 16, 18, and 20 nm, were prepared and all samples were capped with a 5-nm-thick β-Ta layer. The thickness-dependent static and dynamic properties of the films were studied by SQUID magnetometry, in-plane as well as out-of-plane broadband vector network analyzer-ferromagnetic resonance (FMR) measurements, and angle-dependent cavity FMR measurements. The saturation magnetization and the coercive field were found to be weakly thickness dependent and lie in the range 900-950 kA/m and 0.53-0.87 kA/m, respectively. The effective damping parameter (αeff) extracted from in-plane and out-of-plane FMR results reveals a 1/tCFA dependence, the values for the in-plane αeff being larger due to two-magnon scattering (TMS). The origin of the αeff thickness dependence is spin pumping into the nonmagnetic β-Ta layer and in the case of the in-plane αeff, also a thickness-dependent TMS contribution. From the out-of-plane FMR results, it was possible to disentangle the different contributions to αeff and to the extract values for the intrinsic Gilbert damping (αG) and the effective spin-mixing conductance (geff↑↓) of the CFA/ β-Ta interface, yielding αG=(1.1 ±0.2 ) ×10-3 and geff↑↓=(2.90 ±0.10 ) ×1019m-2 .

  20. Iron-platinum multilayer thin film reactions to form L1(0) iron-platinum and exchange spring magnets

    NASA Astrophysics Data System (ADS)

    Yao, Bo

    FePt films with the L10 phase have potential applications for magnetic recording and permanent magnets due to its high magnetocrystalline anisotropy energy density. Heat treatment of [Fe/Pt] n multilayer films is one approach to form the L10 FePt phase through a solid state reaction. This thesis has studied the diffusion and reaction of [Fe/Pt]n multilayer films to form the L10 FePt phase and has used this understanding to construct exchange spring magnets. The process-structure-property relations of [Fe/Pt] n multilayer films were systematically examined. The transmission electron microscopy (TEM) study of the annealed multilayers indicates that the Pt layer grows at the expense of Fe during annealing, forming a disordered fcc FePt phase by the interdiffusion of Fe into Pt. This thickening of the fcc Pt layer can be attributed to the higher solubilities of Fe into fcc Pt, as compared to the converse. For the range of film thickness studied, a continuous L10 FePt product layer that then thickens with further annealing is not found. Instead, the initial L10 FePt grains are distributed mainly on the grain boundaries within the fcc FePt layer and at the Fe/Pt interfaces and further transformation of the sample to the ordered L10 FePt phase proceeds coupled with the growth of the initial L10 FePt grains. A comprehensive study of annealed [Fe/Pt]n films is provided concerning the phase fraction, grain size, nucleation/grain density, interdiffusivity, long-range order parameter, and texture, as well as magnetic properties. A method based on hollow cone dark field TEM is introduced to measure the volume fraction, grain size, and density of ordered L10 FePt phase grains in the annealed films, and low-angle X-ray diffraction is used to measure the effective Fe-Pt interdiffusivity. The process-structure-properties relations of two groups of samples with varying substrate temperature and periodicity are reported. The results demonstrate that the processing parameters (substrate temperature, periodicity) have a strong influence on the structure (effective interdiffusivity, L1 0 phase volume fraction, grain size, and density) and magnetic properties. The correlation of these parameters suggests that the annealed [Fe/Pt]n multilayer films have limited nuclei, and the subsequent growth of L10 phase is very important to the extent of ordered phase formed. A correlation between the grain size of fcc FePt phase, grain size of the L10 FePt phase, the L10 FePt phase fraction, and magnetic properties strongly suggests that the phase transformation of fcc →L10 is highly dependent on the grain size of the parent fcc FePt phase. A selective phase growth model is proposed to explain the phenomena observed. An investigation of the influence of total film thickness on the phase formation of the L10 FePt phase in [Fe/Pt] n multilayer films and a comparison of this to that of FePt co-deposited alloy films is also conducted. A general trend of greater L1 0 phase formation in thicker films was observed in both types of films. It was further found that the thickness dependence of the structure and of the magnetic properties in [Fe/Pt]n multilayer films is much stronger than that in FePt alloy films. This is related to the greater chemical energy contained in [Fe/Pt]n films than FePt alloy films, which is helpful for the L10 FePt phase growth. However, the initial nucleation temperature of [Fe/Pt]n multilayers and co-deposited alloy films was found to be similar. An investigation of L10 FePt-based exchange spring magnets is presented based on our understanding of the L10 formation in [Fe/Pt] n multilayer films. It is known that exchange coupling is an interfacial magnetic interaction and it was experimentally shown that this interaction is limited to within several nanometers of the interface. A higher degree of order of the hard phase is shown to increase the length scale slightly. Two approaches can be used to construct the magnets. For samples with composition close to stoichiometric L10 FePt, the achievement of higher energy product is limited by the average saturation magnetization, and therefore, a lower annealing temperature is beneficial to increase the energy product, allowing a larger fraction of disordered phase. For samples with higher Fe concentration, the (BH)max is limited by the low coercivity of annealed sample, and a higher annealing temperature is beneficial to increase the energy product.

  1. Slip effects on MHD flow and heat transfer of ferrofluids over a moving flat plate

    NASA Astrophysics Data System (ADS)

    Ramli, Norshafira; Ahmad, Syakila; Pop, Ioan

    2017-08-01

    In this study, the problem of MHD flow and heat transfer of ferrofluids over a moving flat plate with slip effect and uniform heat flux is considered. The governing ordinary differential equations are solved via shooting method. The effect of slip parameter on the dimensionless velocity, temperature, skin friction and Nusselt numbers are numerically studied for the three selected ferroparticles; magnetite (Fe3O4), cobalt ferrite (CoFe2O4) and Mn-Zn ferrite (Mn-ZnFe2O4) with water-based fluid. The results indicate that dual solutions exist for a plate moving towards the origin. It is found that the slip process delays the boundary layer separation. Moreover, the velocity and thermal boundary-layer thicknesses decrease in the first solution while increase with the increase of the value of slip parameters in second solution.

  2. Templating Growth of a Pseudomorphic Lepidocrocite Microshell at the Calcite–Water Interface

    DOE PAGES

    Yuan, Ke; Lee, Sang Soo; Wang, Jun; ...

    2018-01-05

    The growth of lepidocrocite (gamma-FeOOH) has been observed through oxidation of Fe(II) on calcite (CaCO 3). Here, we seek to understand the structural relation between lepidocrocite and the calcite substrate and its growth mechanism. The formation of iron oxyhydroxide layers having distinct morphologies was observed during the dissolution of calcite in acidic Fe(II)-rich solutions. A pseudomorphic lepidocrocite shell together with multiple iron oxyhydroxide layers encapsulated within the shell was imaged by optical and transmission X-ray microscopies. The presence of a several-nanometer-thick ordered lepidocrocite film was observed by X-ray reflectivity, with the lepidocrocite (100) plane oriented parallel to the calcite (104)more » surface. Lath-shaped lepidocrocite aggregates formed during the initial precipitation, which eventually grew into clusters of parallel platy crystals. The formation of a nanometer-thick well-ordered lepidocrocite film on a pristine calcite surface appears critical for the subsequent pseudomorphic overgrowth. Detachment of the lepidocrocite film from the dissolving calcite surface yielded a free-standing pseudomorphic iron oxyhydroxide shell, suggesting weak interactions between the shell and the calcite substrate. This growth mechanism yields the potential of using carbonate minerals as templates for pseudomorphic synthesis of iron oxyhydroxides having well-defined size and morphology.« less

  3. Fe Oxides on Ag Surfaces: Structure and Reactivity

    DOE PAGES

    Shipilin, M.; Lundgren, E.; Gustafson, J.; ...

    2016-09-09

    One layer thick iron oxide films are attractive from both applied and fundamental science perspectives. The structural and chemical properties of these systems can be tuned by changing the substrate, making them promising materials for heterogeneous catalysis. In the present work, we investigate the structure of FeO(111) monolayer films grown on Ag(100) and Ag(111) substrates by means of microscopy and diffraction techniques and compare it with the structure of FeO(111) grown on other substrates reported in literature. We also study the NO adsorption properties of FeO(111)/Ag(100) and FeO(111)/Ag(111) systems utilizing different spectroscopic techniques. Finally, we discuss similarities and differences inmore » the data obtained from adsorption experiments and compare it with previous results for FeO(111)/Pt(111).« less

  4. Fe Oxides on Ag Surfaces: Structure and Reactivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shipilin, M.; Lundgren, E.; Gustafson, J.

    One layer thick iron oxide films are attractive from both applied and fundamental science perspectives. The structural and chemical properties of these systems can be tuned by changing the substrate, making them promising materials for heterogeneous catalysis. In the present work, we investigate the structure of FeO(111) monolayer films grown on Ag(100) and Ag(111) substrates by means of microscopy and diffraction techniques and compare it with the structure of FeO(111) grown on other substrates reported in literature. We also study the NO adsorption properties of FeO(111)/Ag(100) and FeO(111)/Ag(111) systems utilizing different spectroscopic techniques. Finally, we discuss similarities and differences inmore » the data obtained from adsorption experiments and compare it with previous results for FeO(111)/Pt(111).« less

  5. Origins of giant biquadratic coupling in CoFe/Mn/CoFe sandwich structures (abstract)

    NASA Astrophysics Data System (ADS)

    Koon, Norman C.

    1996-04-01

    Recently Filipkowski et al. reported extremely strong, near 90 degree coupling of 2.5 erg/cm2 for epitaxial sandwiches of CoFe/Mn/CoFe, where the CoFe composition was chosen to be a good lattice match to Mn. Both CoFe and Mn have the bcc structure, but Mn is antiferromagnetic while CoFe is ferromagnetic. It was found that the data were very well described by a simple model due to Slonczewski, in which the interlayer coupling is given by Fc=C+(φ1-φ2)2+C-(φ1-φ2-π)2. While this model describes the data much better than the usual biquadratic form, it still does not connect directly to the microscopic origins of the effect. In the present work we seek to explain the results in terms of normal bilinear exchange and magnetocrystalline anisotropy, together with reasonable assumptions about the structure of the interfaces. We obtain excellent agreement with both the experimental results and the Slonczewski model under the assumptions that at least one of the two CoFe/Mn interfaces is smooth (i.e., atomically flat) on a length scale comparable to or greater than the thickness of the Mn layer and at least one interface is rough on a scale less than approximately a domain wall thickness.

  6. Different Effects of Al Substitution for Mn or Fe on the Structure and Electrochemical Properties of Na0.67Mn0.5Fe0.5O2 as a Sodium Ion Battery Cathode Material.

    PubMed

    Wang, Huibo; Gao, Rui; Li, Zhengyao; Sun, Limei; Hu, Zhongbo; Liu, Xiangfeng

    2018-05-07

    P2-type layered oxides based on the elements Fe and Mn have attracted great interest as sodium ion battery (SIB) cathode materials owing to their inexpensive metal constituents and high specific capacity. However, they suffer from rapid capacity fading and complicated phase transformations. In this study, we modulate the crystal structure and optimize the electrochemical performances of Na 0.67 Mn 0.5 Fe 0.5 O 2 by Al doping for Mn or Fe, respectively, and the roles of Al in the enhancement of the rate capability and cycling performance are unraveled. (1) The substitution of Al for Mn or Fe decreases the lattice parameters a and c but enlarges d spacing and lengthens Na-O bonds, which enhances Na + diffusion and rate capability especially for Na 0.67 Mn 0.5 Fe 0.47 Al 0.03 O 2 . (2) Al doping reduces the thickness of TMO 2 and strengthens TM-O/O-O bonding. This enhances the layered structure stability and the capacity retention. (3) Al doping mitigates Mn 3+ and Jahn-Teller distortion, mitigating the irreversible phase transition. (4) Al doping also alleviates the lattice volume variation and the structure strain. This further improves the stability of the layered structure and the cycling performances particularly in the case of Al doping for Fe. The in-depth insights into the roles of Al substitution might be also useful for designing high-performance cathode materials for SIBs through appropriate lattice doping.

  7. Role of the Heat Sink Layer Ta for Ultrafast Spin Dynamic Process in Amorphous TbFeCo Thin Films

    NASA Astrophysics Data System (ADS)

    Ren, Y.; Zhang, Z. Z.; Min, T.; Jin, Q. Y.

    The ultrafast demagnetization processes (UDP) in Ta (t nm)/TbFeCo (20 nm) films have been studied using the time-resolved magneto-optical Kerr effect (TRMOKE). With a fixed pump fluence of 2 mJ/cm2, for the sample without a Ta underlayer (t=0nm), we observed the UDP showing a two-step decay behavior, with a relatively longer decay time (τ2) around 3.0 ps in the second step due to the equilibrium of spin-lattice relaxation following the 4f occupation. As a 10nm Ta layer is deposited, the two-step demagnetization still exists while τ2 decreases to ˜1.9ps. Nevertheless, the second-step decay (τ2=0ps) disappears as the Ta layer thickness is increased up to 20 nm, only the first-step UDP occurs within 500 fs, followed by a fast recovery process. The rapid magnetization recovery rate strongly depends on the pump fluence. We infer that the Ta layer provides conduction electrons involving the thermal equilibrium of spin-lattice interaction and serves as heat bath taking away energy from spins of TbFeCo alloy film in UDP.

  8. The Effect of Interface Texture on Exchange Biasing in Ni(80)Fe(20)/Ir(20)Mn(80) System.

    PubMed

    Chen, Yuan-Tsung

    2009-01-01

    Exchange-biasing phenomenon can induce an evident unidirectional hysteresis loop shift by spin coupling effect in the ferromagnetic (FM)/antiferromagnetic (AFM) interface which can be applied in magnetoresistance random access memory (MRAM) and recording-head applications. However, magnetic properties are the most important to AFM texturing. In this work, top-configuration exchange-biasing NiFe/IrMn(x A) systems have been investigated with three different conditions. From the high-resolution cross-sectional transmission electron microscopy (HR X-TEM) and X-ray diffraction results, we conclude that the IrMn (111) texture plays an important role in exchange-biasing field (H(ex)) and interfacial exchange energy (J(k)). H(ex) and J(k) tend to saturate when the IrMn thickness increases. Moreover, the coercivity (H(c)) dependence on IrMn thickness is explained based on the coupling or decoupling effect between the spins of the NiFe and IrMn layers near the NiFe/IrMn interface. In this work, the optimal values for H(ex) and J(k) are 115 Oe and 0.062 erg/cm(2), respectively.

  9. Weakly bound water structure, bond valence saturation and water dynamics at the goethite (100) surface/aqueous interface: ab initio dynamical simulations.

    PubMed

    Chen, Ying; Bylaska, Eric J; Weare, John H

    2017-03-31

    Many important geochemical and biogeochemical reactions occur in the mineral/formation water interface of the highly abundant mineral, goethite [α-Fe(OOH)]. Ab initio molecular dynamics (AIMD) simulations of the goethite α-FeOOH (100) surface and the structure, water bond formation and dynamics of water molecules in the mineral/aqueous interface are presented. Several exchange correlation functionals were employed (PBE96, PBE96 + Grimme, and PBE0) in the simulations of a (3 × 2) goethite surface with 65 absorbed water molecules in a 3D-periodic supercell (a = 30 Å, FeOOH slab ~12 Å thick, solvation layer ~18 Å thick). The lowest energy goethite (100) surface termination model was determined to have an exposed surface Fe 3+ that was loosely capped by a water molecule and a shared hydroxide with a neighboring surface Fe 3+ . The water molecules capping surface Fe 3+ ions were found to be loosely bound at all DFT levels with and without Grimme corrections, indicative that each surface Fe 3+ was coordinated with only five neighbors. These long bonds were supported by bond valence theory calculations, which showed that the bond valence of the surface Fe 3+ was saturated and surface has a neutral charge. The polarization of the water layer adjacent to the surface was found to be small and affected only the nearest water. Analysis by density difference plots and localized Boys orbitals identified three types of water molecules: those loosely bound to the surface Fe 3+ , those hydrogen bonded to the surface hydroxyl, and bulk water with tetrahedral coordination. Boys orbital analysis showed that the spin down lone pair orbital of the weakly absorbed water interact more strongly with the spin up Fe 3+ ion. These weakly bound surface water molecules were found to rapidly exchange with the second water layer (~0.025 exchanges/ps) using a dissociative mechanism. Water molecules adjacent to the surface were found to only weakly interact with the surface and as a result were readily able to exchange with the bulk water. To account for the large surface Fe-OH 2 distances in the DFT calculations it was proposed that the surface Fe 3+ atoms, which already have their bond valence fully satisfied with only five neighbors, are under-coordinated with respect to the bulk coordination. Graphical abstract All first principle calculations, at all practically achievable levels, for the goethite 100 aqueous interface support a long bond and weak interaction between the exposed surface Fe 3+ and water molecules capping the surface. This result is supported by bond valence theory calculations and is indicative that each surface Fe 3+ is coordinated with only 5 neighbors.

  10. Junction characteristics of indium tin oxide/indium phosphide solar cells

    NASA Astrophysics Data System (ADS)

    Sheldon, P.; Ahrenkiel, R. K.; Hayes, R. E.; Russell, P. E.; Nottenburg, R. N.; Kazmerski, L. L.

    Efficient indium tin oxide (ITO)/p-InP solar cells have been fabricated. Typical uncorrected efficiencies range from 9-12 percent at AM1 intensities. It is shown that deposition of ITO causes a semi-insulating layer at the InP surface as determined by C-V measurements. The thickness of this layer is approximately 750 A. We believe that this high resistivity region is due to surface accumulation of Fe at the ITO/InP interface.

  11. Amorphous surface layers in Ti-implanted Fe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knapp, J.A.; Follstaedt, D.M.; Picraux, S.T.

    1979-01-01

    Implanting Ti into high-purity Fe results in an amorphous surface layer which is composed of not only Fe and Ti, but also C. Implantations were carried out at room temperature over the energy range 90 to 190 keV and fluence range 1 to 2 x 10/sup 16/ at/cm/sup 2/. The Ti-implanted Fe system has been characterized using transmission electron microscopy (TEM), ion backscattering and channeling analysis, and (d,p) nuclear reaction analysis. The amorphous layer was observed to form at the surface and grow inward with increasing Ti fluence. For an implant of 1 x 10/sup 17/ Ti/cm/sup 2/ at 180more » keV the layer thickness was 150 A, while the measured range of the implanted Ti was approx. 550 A. This difference is due to the incorporation of C into the amorphous alloy by C being deposited on the surface during implantation and subsequently diffusing into the solid. Our results indicate that C is an essential constituent of the amorphous phase for Ti concentrations less than or equal to 10 at. %. For the 1 x 10/sup 17/ Ti/cm/sup 2/ implant, the concentration of C in the amorphous phase was approx. 25 at. %, while that of Ti was only approx. 3 at. %. A higher fluence implant of 2 x 10/sup 17/ Ti/cm/sup 2/ produced an amorphous layer with a lower C concentration of approx. 10 at. % and a Ti concentration of approx. 20 at. %.« less

  12. Spin fluctuation induced linear magnetoresistance in ultrathin superconducting FeSe films

    DOE PAGES

    Wang, Qingyan; Zhang, Wenhao; Chen, Weiwei; ...

    2017-07-21

    The discovery of high-temperature superconductivity in FeSe/STO has trigged great research interest to reveal a range of exotic physical phenomena in this novel material. Here we present a temperature dependent magnetotransport measurement for ultrathin FeSe/STO films with different thickness and protection layers. Remarkably, a surprising linear magnetoresistance (LMR) is observed around the superconducting transition temperatures but absent otherwise. The experimental LMR can be reproduced by magnetotransport calculations based on a model of magnetic field dependent disorder induced by spin fluctuation. Thus, the observed LMR in coexistence with superconductivity provides the first magnetotransport signature for spin fluctuation around the superconducting transitionmore » region in ultrathin FeSe/STO films.« less

  13. Controllable synthesis and enhanced microwave absorbing properties of Fe3O4/NiFe2O4/Ni heterostructure porous rods

    NASA Astrophysics Data System (ADS)

    Li, Yana; Wu, Tong; Jin, Keying; Qian, Yao; Qian, Naxin; Jiang, Kedan; Wu, Wenhua; Tong, Guoxiu

    2016-11-01

    We developed a coordinated self-assembly/precipitate transfer/sintering method that allows the controllable synthesis of Fe3O4/NiFe2O4/Ni heterostructure porous rods (HPRs). A series of characterizations confirms that changing [Ni2+] can effectively control the crystal size, internal strain, composition, textural characteristics, and properties of HPRs. Molar percentages of Ni and NiFe2O4 in HPRs increase with [Ni2+] in various Boltzmann function modes. Saturation magnetization Ms and coercivity Hc show U-shaped change trends because of crystal size, composition, and interface magnetic coupling. High magnetic loss is maintained after decorating NiFe2O4 and Ni on the surface of Fe3O4 PRs. Controlling the NiFe2O4 interface layers and Ni content can improve impedance matching and dielectric losses, thereby leading to lighter weight, stronger absorption, and broader absorption band of Fe3O4/NiFe2O4/Ni HPRs than Fe3O4 PRs. An optimum EM wave absorbing property was exhibited by Fe3O4/NiFe2O4/Ni HPRs formed at [Ni2+] = 0.05 M. The maximum reflection loss (RL) reaches -58.4 dB at 13.68 GHz, which corresponds to a 2.1 mm matching thickness. The absorbing bandwidth (RL ≤ -20 dB) reaches 14.4 GHz with the sample thickness at 1.6-2.4 and 2.8-10.0 mm. These excellent properties verify that Fe3O4/NiFe2O4/Ni HPRs are promising candidates for new and effective absorptive materials.

  14. Interfacial Dzyaloshinskii-Moriya interaction sign in Ir/Co2FeAl systems investigated by Brillouin light scattering

    NASA Astrophysics Data System (ADS)

    Belmeguenai, M.; Gabor, M. S.; Roussigné, Y.; Petrisor, T.; Mos, R. B.; Stashkevich, A.; Chérif, S. M.; Tiusan, C.

    2018-02-01

    C o2FeAl (CFA) ultrathin films, of various thicknesses (0.9 nm ≤tCFA≤1.8 nm ), have been grown by sputtering on Si substrates, using Ir as a buffer layer. The magnetic properties of these structures have been studied by vibrating sample magnetometry (VSM), miscrostrip ferromagnetic resonance (MS-FMR), and Brillouin light scattering (BLS) in the Damon-Eshbach geometry. VSM characterizations show that films are mostly in-plane magnetized and the saturating field perpendicular to the film plane increases with decreasing CFA thickness suggesting the existence of a perpendicular interface anisotropy. The presence of a magnetic dead layer of 0.44 nm has been detected by VSM. The MS-FMR with the magnetic field applied perpendicularly to the film plane has been used to determine the gyromagnetic factor. The BLS measurements reveal a pronounced nonreciprocal spin wave propagation, due to the interfacial Dzyaloshinskii-Moriya interaction (DMI) induced by the Ir interface with CFA, which increases with decreasing CFA thickness. The DMI sign has been found to be the same (negative) as that of Pt/Co, in contrast to the ab initio calculation on Ir/Co, where it is found to be positive. The thickness dependence of the effective DMI constant shows the existence of two regimes similarly to that of the perpendicular anisotropy constant. The surface DMI constant Ds was estimated to be -0.37 pJ /m for the thickest samples, where a linear thickness dependence of the effective DMI constant has been observed.

  15. Thermoelectric properties of FeAs based superconductors, with thick perovskite- and Sm-O fluorite-type blocking layers

    NASA Astrophysics Data System (ADS)

    Singh, S. J.; Shimoyama, J.; Ogino, H.; Kishio, K.

    2015-11-01

    The transport properties (electrical resistivity, Hall and Seebeck coefficient, and thermal conductivity) of iron based superconductors with thick perovskite-type oxide blocking layers and fluorine-doped SmFeAsO were studied to explore their possible potential for thermoelectric applications. The thermal conductivity of former compounds depicts the dominated role of phonon and its value decreases rapidly below the Tc, suggesting the addition of scattering of phonons. Both the Seebeck coefficient (S) and Hall coefficient (RH) of all samples were negative in the whole temperature region below 300 K, indicating that the major contribution to the normal state conductivity is by electrons. In addition, the profile of S(T) and RH(T) of all samples have similar behaviours as would be expected for a multi-band superconductors. Although the estimated thermoelectric figure of merit (ZT) of these compounds was much lower than that of practically applicable thermoelectric materials, however its improvement can be expected by optimizing microstructure of the polycrystalline materials, such as densification and grain orientation.

  16. Polarized neutron reflectivity study of perpendicular magnetic anisotropy in MgO/CoFeB/W thin films

    NASA Astrophysics Data System (ADS)

    Ambaye, Haile; Zhan, Xiao; Li, Shufa; Lauter, Valeria; Zhu, Tao

    In this work we study the origin of PMA in MgO/CoFeB/W trilayer systems using polarized neutron reflectivity. Recently, the spin Hall effect in the heavy metals, such as Pt and Ta, has been of significant interest for highly efficient magnetization switching of the ultrathin ferromagnets sandwiched by such a heavy metal and an oxide, which can be used for spintronic based memory and logic devices. Most work has focused on heavy-metal/ferromagnet/oxide trilayer (HM/FM/MO) structures with perpendicular magnetic anisotropy (PMA), where the oxide layer plays the role of breaking inversion symmetry .No PMA was found in W/CoFeB/MgO films. An insertion of Hf layer in between the W and CoFeB layers, however, has been found to create a strong PMA. Roughness and formation of interface alloys by interdiffusion influences the extent of PMA. We intend to identify these influences using the depth sensitive technique of PNR. In our previous study, we have successfully performed polarized neutron reflectometry (PNR) measurements on the Ta/CoFeB/MgO/CoFeB/Ta thin film with MgO thickness of 1 nm. The PNR measurements were carried out using the BL-4A Magnetic Reflectometer at SNS. This work has been supported by National Basic Research Program of China (2012CB933102). Research at SNS was supported by the Office of BES, DOE.

  17. The synthesis and application of fine particles for coatings and composites

    NASA Astrophysics Data System (ADS)

    Stephenson, Richard Charles

    A variety of coating methods are presented for producing titanium and zirconium oxide coatings on spherical alpha-alumina substrates. Some methods did not completely coat the alumina substrate leaving surface areas exposed. Techniques such as surface modifications with PDVB and 4-VP did produce coatings of metal oxides of very high quality. The best metal oxide coatings are produced from pre-treatment of the alumina microspheres followed by the acid catalyzed hydrolysis of the metal tetra-alkoxides. Methods to investigate converting titanium oxide and zirconium oxide coated alumina microspheres to the corresponding metal carbide coated alumina microspheres have been done. The methods involving direct reduction of the metal oxides by methane and methane-hydrogen gas proved inefficient in producing high quality metal carbide coatings. It is evident higher processing temperatures are required to achieve good metal carbide yield by these methods. Metal oxide coated products carbided by ART (Buffalo, NY) proved the carbiding can be accomplished at higher temperatures and with a different carburizing gas. In addition to the ART carbiding method, the magnesium thermite reaction is a promising method in converting metal oxides to metal carbides at much lower temperatures and shorter processing times. The electrophoretic deposition of Bi2Sr2CaCu 2O8 powder was in ethanol. Of critical consequence were the design of the cathode geometry and the arrangement of the electrodes so that all faces and edges of the silver anode were coated simultaneously. This was achieved by shaping the platinum cathode into a configuration that allowed the silver tape to be completely surrounded by the platinum. The electrophoretic cell was set up to keep the electrodes stationary thereby maintaining a constant distance from the cathode and anode (3 mm). The relationship between deposition time and coating thickness was determined for various powder loadings for a given electric field strength (62 V). For low powder loadings (10 and 20 g/L), the thickness of the coating increases with increasing deposition time (6, 12, and 24 hours). At a powder loading of 30 g/L, the thickness of the BSCCO layer decreases from a deposition time of 6 to 12 hours. At 24 hours, the layer thickness increases. Very high powder loadings (40 g/L) showed a linear decrease in the BSCCO layer thickness with increasing deposition time. Analysis by XRD showed the EPD superconductor exhibited preferential orientation on the silver tape. The degree of orientation was related to the layer thickness and hence the deposition times. Thermal treatment at 800°C in 90% Ar-10% O2 improved the orientation effects. A marked improvement in the surface texture was also observed by SEM. Carbon nanotubes were synthesized via Fe catalysis in an aerosol column in the presence of Ar, CO, and H2 gas. Fe particles were generated by the thermal decarbonylation of Fe(CO)5. Multiwalled and single-walled carbon nanotubes were grown from the decomposition of CO gas on the forming Fe particles. Optimal conditions were determined for producing high yields of single-walled nanotubes. A growth theory is proposed based on the results. (Abstract shortened by UMI.)

  18. Thin and Flexible Fe-Si-B/Ni-Cu-P Metallic Glass Multilayer Composites for Efficient Electromagnetic Interference Shielding.

    PubMed

    Zhang, Jijun; Li, Jiawei; Tan, Guoguo; Hu, Renchao; Wang, Junqiang; Chang, Chuntao; Wang, Xinmin

    2017-12-06

    Thin and flexible materials that can provide efficient electromagnetic interference (EMI) shielding are urgently needed, especially if they can be easily processed and withstand harsh environments. Herein, layer-structured Fe-Si-B/Ni-Cu-P metallic glass composites have been developed by simple electroless plating Ni-Cu-P coating on commercial Fe-Si-B metallic glasses. The 0.1 mm-thick composite shows EMI shielding effectiveness of 40 dB over the X-band frequency range, which is higher than those of traditional metals, metal oxides, and their polymer composites of larger thickness. Most of the applied electromagnetic waves are proved to be absorbed rather than bounced back. This performance originates from the combination of a superior soft magnetic property, excellent electrical conductivity, and multiple internal reflections from multilayer composites. In addition, the flexible composites also exhibit good corrosion resistance, high thermal stability, and excellent tensile strength, making them suitable for EMI shielding in harsh chemical or thermal environments.

  19. Enhanced photoelectrocatalytic performance of α-Fe2O3 thin films by surface plasmon resonance of Au nanoparticles coupled with surface passivation by atom layer deposition of Al2O3.

    PubMed

    Liu, Yuting; Xu, Zhen; Yin, Min; Fan, Haowen; Cheng, Weijie; Lu, Linfeng; Song, Ye; Ma, Jing; Zhu, Xufei

    2015-12-01

    The short lifetime of photogenerated charge carriers of hematite (α-Fe2O3) thin films strongly hindered the PEC performances. Herein, α-Fe2O3 thin films with surface nanowire were synthesized by electrodeposition and post annealing method for photoelectrocatalytic (PEC) water splitting. The thickness of the α-Fe2O3 films can be precisely controlled by adjusting the duration of the electrodeposition. The Au nanoparticles (NPs) and Al2O3 shell by atom layer deposition were further introduced to modify the photoelectrodes. Different constructions were made with different deposition orders of Au and Al2O3 on Fe2O3 films. The Fe2O3-Au-Al2O3 construction shows the best PEC performance with 1.78 times enhancement by localized surface plasmon resonance (LSPR) of NPs in conjunction with surface passivation of Al2O3 shells. Numerical simulation was carried out to investigate the promotion mechanisms. The high PEC performance for Fe2O3-Au-Al2O3 construction electrode could be attributed to the Al2O3 intensified LSPR, effective surface passivation by Al2O3 coating, and the efficient charge transfer due to the Fe2O3-Au Schottky junctions.

  20. Enhanced microwave absorption property of epoxy nanocomposites based on PANI@Fe3O4@CNFs nanoparticles with three-phase heterostructure

    NASA Astrophysics Data System (ADS)

    Yang, Lingfeng; Cai, Haopeng; Zhang, Bin; Huo, Siqi; Chen, Xi

    2018-02-01

    Novel electromagnetic functionalized carbon nanofibers (CNFs) have been synthesized by coating with Fe3O4 magnetite nanoparticles and conducting polymers polyaniline (PANI) on CNFs through a layer by layer assembly. The Fe3O4@CNFs were first prepared by coating nano-Fe3O4 particles on CNFs via co-precipitation method; Then the PANI was coated on Fe3O4@CNFs using an in situ polymerization process to obtain PANI@Fe3O4@CNFs nanoparticles. The prepared PANI@Fe3O4@CNFs nanoparticles were dispersed in the epoxy matrix to fabricate microwave absorbing nanocomposites. Compared with the Fe3O4@CNFs/epoxy nanocomposites, the PANI@Fe3O4@CNFs/epoxy nanocomposites exhibit better microwave absorbing properties. The composite containing 15 wt% of PANI@Fe3O4@CNFs with the thickness of 2 mm showed a minimum reflection loss (RL) value of -23.7 dB with an effective absorption bandwidth which is about 3.7 GHz (11.9-15.6 GHz) in the frequency range of 1-18 GHz, indicating that it is an attractive candidate for efficient microwave absorber. A potential absorption mechanism was proposed for enhancement of the impedance-matching condition and electromagnetic wave-attenuation characteristic of materials. Specifically, the impedance-matching condition was improved by the combination of conductive polymers and magnetic nanoparticles with CNFs. The electromagnetic wave attenuation characteristic was enhanced by multiple reflections, due to the increased propagation paths.

  1. Synthesis and Characterization of BaFe12O19/Poly(aniline, pyrrole, ethylene terephthalate) Composites Coatings as Radar Absorbing Material (RAM)

    NASA Astrophysics Data System (ADS)

    Sasria, Nia; Ardhyananta, H.; Fajarin, R.; Widyastuti

    2017-07-01

    This research shows the processing and design of radar absorbing material (RAM) based on barium hexaferrite (BaM) and poly(aniline, pyrrole, ethylene terephthalate) (PAni,PPy,PET). BaM was prepared by sol gel method with Ni-Zn doping at mole fraction of 0. 4 to obtain soft magnetic material. BaM/(PAni,PPy) composites were synthesized by in-situ polymerization method at ˜0 °C. (BaM/PET) composite was prepared by melt compounding at 220°C. The composites were coated on A-grade AH36 steel using Dallenbach Layer, Salisbury Screen and Jaumann Layer methods with thickness of 2, 4, and 6 mm. The composites were evaluated using XRD, SEM, FTIR, VSM, LCM-meter and VNA. Results showed that doped BaM showed BaNixZnxFe12-2xO19 structure. BaM/(PAni,PPy,PET) composites possessed globular morphology with M-O and C-H bonds. BaNixZnxFe12-2xO19 exhibited the value of Ms and Hc, 56.6 emu/g and 60 Oe respectively. High electrical conductivity of 1.77744 × 10-5 S/cm was achieved of BaM/PAni composite. The maximum reflection loss (RL) was reached at - 48.720 dB and 8.1 GHz for BaM/PAni composite coating with 6 mm thickness at Jaumann Layer. These results indicated that BaM/PAni composite was a soft magnetic material with a high RL value that is suitable for RAM, which used in stealth technology on naval vessels.

  2. Novel nano materials for high performance logic and memory devices

    NASA Astrophysics Data System (ADS)

    Das, Saptarshi

    After decades of relentless progress, the silicon CMOS industry is approaching a stall in device performance for both logic and memory devices due to fundamental scaling limitations. In order to reinforce the accelerating pace, novel materials with unique properties are being proposed on an urgent basis. This list includes one dimensional nanotubes, quasi one dimensional nanowires, two dimensional atomistically thin layered materials like graphene, hexagonal boron nitride and the more recently the rich family of transition metal di-chalcogenides comprising of MoS2, WSe2, WS2 and many more for logic applications and organic and inorganic ferroelectrics, phase change materials and magnetic materials for memory applications. Only time will tell who will win, but exploring these novel materials allow us to revisit the fundamentals and strengthen our understanding which will ultimately be beneficial for high performance device design. While there has been growing interest in two-dimensional (2D) crystals other than graphene, evaluating their potential usefulness for electronic applications is still in its infancies due to the lack of a complete picture of their performance potential. The fact that the 2-D layered semiconducting di-chalcogenides need to be connected to the "outside" world in order to capitalize on their ultimate potential immediately emphasizes the importance of a thorough understanding of the contacts. This thesis demonstrate that through a proper understanding and design of source/drain contacts and the right choice of number of MoS2 layers the excellent intrinsic properties of this 2D material can be harvested. A comprehensive experimental study on the dependence of carrier mobility on the layer thickness of back gated multilayer MoS 2 field effect transistors is also provided. A resistor network model that comprises of Thomas-Fermi charge screening and interlayer coupling is used to explain the non-monotonic trend in the extracted field effect mobility with the layer thickness. The non-monotonic trend suggests that in order to harvest the maximum potential of MoS2 for high performance device applications, a layer thickness in the range of 6-12 nm would be ideal. Finally using scandium contacts on 10nm thick exfoliated MoS2 flakes that are covered by a 15nm ALD grown Al2O3 film, record high mobility of 700cm2/Vs is achieved at room-temperature which is extremely encouraging for the design of high performance logic devices. The destructive nature of the readout process in Ferroelectric Random Access Memories (FeRAMs) is one of the major limiting factors for their wide scale commercialization. Utilizing Ferroelectric Field-Effect Transistor RAM (FeTRAM) instead solves the destructive read out problem, but at the expense of introducing crystalline ferroelectrics that are hard to integrate into CMOS. In order to address these challenges a novel, fully functional, CMOS compatible, One-Transistor-One-Transistor (1T1T) memory cell architecture using an organic ferroelectric -- PVDF-TrFE -- as the memory storage unit (gate oxide) and a silicon nanowire as the memory read out unit (channel material) is proposed and experimentally demonstrated. While evaluating the scaling potential of the above mentioned organic FeTRAM, it is found that the switching time and switching voltage of this organic copolymer PVDF-TrFE exhibits an unexpected scaling behavior as a function of the lateral device dimensions. The phenomenological theory, that explains this abnormal scaling trend, involves in-plane interchain and intrachain interaction of the copolymer - resulting in a power-law dependence of the switching field on the device area (ESW alpha ACH0.1) that is ultimately responsible for the decrease in the switching time and switching voltage. These findings are encouraging since they indicate that scaling the switching voltage and switching time without aggressively scaling the copolymer thickness occurs naturally while scaling the device area -- in this way ultimately improving the packing density and leading towards high performance memory devices.

  3. Pseudogap and proximity effect in the Bi2Te3/Fe1+yTe interfacial superconductor.

    PubMed

    He, M Q; Shen, J Y; Petrović, A P; He, Q L; Liu, H C; Zheng, Y; Wong, C H; Chen, Q H; Wang, J N; Law, K T; Sou, I K; Lortz, R

    2016-09-02

    In the interfacial superconductor Bi2Te3/Fe1+yTe, two dimensional superconductivity occurs in direct vicinity to the surface state of a topological insulator. If this state were to become involved in superconductivity, under certain conditions a topological superconducting state could be formed, which is of high interest due to the possibility of creating Majorana fermionic states. We report directional point-contact spectroscopy data on the novel Bi2Te3/Fe1+yTe interfacial superconductor for a Bi2Te3 thickness of 9 quintuple layers, bonded by van der Waals epitaxy to a Fe1+yTe film at an atomically sharp interface. Our data show highly unconventional superconductivity, which appears as complex as in the cuprate high temperature superconductors. A very large superconducting twin-gap structure is replaced by a pseudogap above ~12 K which persists up to 40 K. While the larger gap shows unconventional order parameter symmetry and is attributed to a thin FeTe layer in proximity to the interface, the smaller gap is associated with superconductivity induced via the proximity effect in the topological insulator Bi2Te3.

  4. Pseudogap and proximity effect in the Bi2Te3/Fe1+yTe interfacial superconductor

    PubMed Central

    He, M. Q.; Shen, J. Y.; Petrović, A. P.; He, Q. L.; Liu, H. C.; Zheng, Y.; Wong, C. H.; Chen, Q. H.; Wang, J. N.; Law, K. T.; Sou, I. K.; Lortz, R.

    2016-01-01

    In the interfacial superconductor Bi2Te3/Fe1+yTe, two dimensional superconductivity occurs in direct vicinity to the surface state of a topological insulator. If this state were to become involved in superconductivity, under certain conditions a topological superconducting state could be formed, which is of high interest due to the possibility of creating Majorana fermionic states. We report directional point-contact spectroscopy data on the novel Bi2Te3/Fe1+yTe interfacial superconductor for a Bi2Te3 thickness of 9 quintuple layers, bonded by van der Waals epitaxy to a Fe1+yTe film at an atomically sharp interface. Our data show highly unconventional superconductivity, which appears as complex as in the cuprate high temperature superconductors. A very large superconducting twin-gap structure is replaced by a pseudogap above ~12 K which persists up to 40 K. While the larger gap shows unconventional order parameter symmetry and is attributed to a thin FeTe layer in proximity to the interface, the smaller gap is associated with superconductivity induced via the proximity effect in the topological insulator Bi2Te3. PMID:27587000

  5. Aluminium hydroxide stabilised MnFe2O4 and Fe3O4 nanoparticles as dual-modality contrasts agent for MRI and PET imaging

    PubMed Central

    Cui, Xianjin; Belo, Salome; Krüger, Dirk; Yan, Yong; de Rosales, Rafael T.M.; Jauregui-Osoro, Maite; Ye, Haitao; Su, Shi; Mathe, Domokos; Kovács, Noémi; Horváth, Ildikó; Semjeni, Mariann; Sunassee, Kavitha; Szigeti, Krisztian; Green, Mark A.; Blower, Philip J.

    2014-01-01

    Magnetic nanoparticles (NPs) MnFe2O4 and Fe3O4 were stabilised by depositing an Al(OH)3 layer via a hydrolysis process. The particles displayed excellent colloidal stability in water and a high affinity to [18F]-fluoride and bisphosphonate groups. A high radiolabeling efficiency, 97% for 18F-fluoride and 100% for 64Cu-bisphosphonate conjugate, was achieved by simply incubating NPs with radioactivity solution at room temperature for 5 min. The properties of particles were strongly dependant on the thickness and hardness of the Al(OH)3 layer which could in turn be controlled by the hydrolysis method. The application of these Al(OH)3 coated magnetic NPs in molecular imaging has been further explored. The results demonstrated that these NPs are potential candidates as dual modal probes for MR and PET. In vivo PET imaging showed a slow release of 18F from NPs, but no sign of efflux of 64Cu. PMID:24768194

  6. Controlled Phase and Tunable Magnetism in Ordered Iron Oxide Nanotube Arrays Prepared by Atomic Layer Deposition

    NASA Astrophysics Data System (ADS)

    Zhang, Yijun; Liu, Ming; Peng, Bin; Zhou, Ziyao; Chen, Xing; Yang, Shu-Ming; Jiang, Zhuang-De; Zhang, Jie; Ren, Wei; Ye, Zuo-Guang

    2016-01-01

    Highly-ordered and conformal iron oxide nanotube arrays on an atomic scale are successfully prepared by atomic layer deposition (ALD) with controlled oxidization states and tunable magnetic properties between superparamagnetism and ferrimagnetism. Non-magnetic α-Fe2O3 and superparamagnetic Fe3O4 with a blocking temperature of 120 K are in-situ obtained by finely controlling the oxidation reaction. Both of them exhibit a very small grain size of only several nanometers due to the nature of atom-by-atom growth of the ALD technique. Post-annealing α-Fe2O3 in a reducing atmosphere leads to the formation of the spinel Fe3O4 phase which displays a distinct ferrimagnetic anisotropy and the Verwey metal-insulator transition that usually takes place only in single crystal magnetite or thick epitaxial films at low temperatures. The ALD deposition of iron oxide with well-controlled phase and tunable magnetism demonstrated in this work provides a promising opportunity for the fabrication of 3D nano-devices to be used in catalysis, spintronics, microelectronics, data storages and bio-applications.

  7. Origin of thickness dependence of structural phase transition temperatures in BiFeO 3 thin films

    DOE PAGES

    Yang, Yongsoo; Beekman, Christianne; Siemons, Wolter; ...

    2016-03-28

    In this study, two structural phase transitions are investigated in highly strained BiFeO 3 thin films grown on LaAlO 3 substrates, as a function of film thickness and temperature via synchrotron x-ray diffraction. Both transition temperatures (upon heating: monoclinic MC to monoclinic MA, and MA to tetragonal) decrease as the film becomes thinner. The existence of an interface layer at the film-substrate interface, deduced from half-order peak intensities, contributes to this behavior only for the thinnest samples; at larger thicknesses (above a few nanometers) the temperature dependence can be understood in terms of electrostatic considerations akin to size effects inmore » ferroelectric phase transitions, but observed here for structural phase transitions within the ferroelectric phase and related to the rearrangement rather than the formation of domains. For ultra-thin films, the tetragonal structure is stable at all investigated temperatures (down to 30 K).« less

  8. Tradeoffs in Chemical and Thermal Variations in the Post-perovskite Phase Transition: Mixed Phase Regions in the Deep Lower Mantle?

    NASA Astrophysics Data System (ADS)

    Giles, G. F.; Spera, F. J.; Yuen, D. A.

    2005-12-01

    The recent discovery of a phase-transition in Mg-rich perovskite (Pv) to a post-perovskite (pPv) phase at lower mantle depths and its relationship to D", lower mantle heterogeneity and iron content prompted an investigation of the relative importance of lower mantle (LM) compositional and temperature fluctuations in creating topographic undulations on mixed phase regions. Above the transition, Mg-rich Pv makes up ~70 percent by mass of the LM. Using results from experimental phase equilibria, first-principles computations and thermodynamic relations for Fe2+-Mg mixing in silicates, a preliminary thermodynamic model for the perovskite to post-perovskite phase transition in the divariant system MgSiO3-FeSiO3 is developed. Complexities associated with components Fe2O3 and Al2O3 and other phases (Ca-Pv, magnesiowustite) are neglected. The model predicts phase transition pressures are sensitive to the FeSiO3 content of perovskite (~-1.5 GPa per one mole percent FeSiO3). This leads to considerable topography along the top boundary of the mixed phase region. The Clapeyron slope for the Pv to pPv transition at XFeSiO3=0.1 is +11 MPa/K about 20% higher than for pure Mg-Pv. Increasing bulk concentration of iron elevates the mixed (two-phase) layer above the core-mantle boundary (CMB); increasing temperature acts to push the mixed layer deeper into the LM into the D" thermal boundary layer resting upon the (CMB). For various LM geotherms and CMB temperatures, a single mixed layer of thickness ~300 km lies within the bottom 40% of the lower mantle. For low iron contents (XFeSiO3 ~5 mole percent or less), two perched layers are found. This is the divariant analog to the univariant double-crosser. The hotter the mantle, the deeper the mixed phase layer; the more iron-rich the LM, the higher the mixed phase layer. In a hotter Hadean Earth with interior temperatures everywhere 200-500 K warmer pPv is not stable unless the LM bulk composition is Fe-enriched compared to the present upper mantle.

  9. A comparative study of the influence of nickel oxide layer on the FTO surface of organic light emitting diode

    NASA Astrophysics Data System (ADS)

    Saikia, Dhrubajyoti; Sarma, Ranjit

    2018-03-01

    The influence of thin layer of nickel oxide (NiO) over the fluorine-doped tin oxide (FTO) surface on the performance of Organic light-emitting diode (OLED) is reported. With an optimal thickness of NiO (10 nm), the luminance efficiency is found to be increased as compared to the single FTO OLED. The performance of OLED is studied by depositing NiO films at different thicknesses on the FTO surface and analyzed their J-V and L-V characteristics. Further analysis is carried out by measuring sheet resistance and optical transmittance. The surface morphology is studied with the help of FE-SEM images. Our results indicate that NiO (10 nm) buffer layer is an excellent choice to increase the efficiency of FTO based OLED devices within the charge tunneling region. The maximum value of current efficiency is found to be 7.32 Cd/A.

  10. Transport properties of discontinuous Co{sub 80}Fe{sub 20}/Al{sub 2}O{sub 3} multilayers, prepared by ion beam sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kakazei, G.N.; Freitas, P.P.; Cardoso, S.

    1999-09-01

    Ion beam sputtered Co{sub 80}Fe{sub 20}(t)/Al{sub 2}O{sub 3}(30 {angstrom}) multilayers were obtained. The Co{sub 80}Fe{sub 20} layers become discontinuous for nominal thicknesses T {le} 18{angstrom}. Tunnel magnetoresistance was measured in CIP and CPP geometries, reaching up to 6.5% at room temperature and 11% at 15 K, for as-deposited films in CIP geometry. The temperature dependence of MR was found quite different for the two geometries: fairly strong in the CIP case and almost absent in the CPP geometry. A model is proposed to explain these large differences in behavior.

  11. Improved performance of organic light-emitting diode with vanadium pentoxide layer on the FTO surface

    NASA Astrophysics Data System (ADS)

    Saikia, D.; Sarma, R.

    2017-06-01

    Vanadium pentoxide layer deposited on the fluorine-doped tin oxide (FTO) anode by vacuum deposition has been investigated in organic light-emitting diode (OLED). With 12 nm optimal thickness of V2O5, the luminance efficiency is increased by 1.66 times compared to the single FTO-based OLED. The improvement of current efficiency implies that there is a better charge injection and better controlling of hole current. To investigate the performance of OLED by the buffer layer, V2O5 films of different thicknesses were deposited on the FTO anode and their J- V and L- V characteristics were studied. Further analysis was carried out by measuring sheet resistance, optical transmittance and surface morphology with the FE-SEM images. This result indicates that the V2O5 (12 nm) buffer layer is a good choice for increasing the efficiency of FTO-based OLED devices within the tunnelling region. Here the maximum value of current efficiency is found to be 2.83 cd / A.

  12. Sustainable Interfaces between Si Anodes and Garnet Electrolytes for Room-Temperature Solid-State Batteries.

    PubMed

    Chen, Cheng; Li, Quan; Li, Yiqiu; Cui, Zhonghui; Guo, Xiangxin; Li, Hong

    2018-01-17

    Solid-state batteries (SSBs) have seen a resurgence of research interests in recent years for their potential to offer high energy density and excellent safety far beyond current commercialized lithium-ion batteries. The compatibility of Si anodes and Ta-doped Li 7 La 3 Zr 2 O 12 (Li 6.4 La 3 Zr 1.4 Ta 0.6 O 12 , LLZTO) solid electrolytes and the stability of the Si anode have been investigated. It is found that Si layer anodes thinner than 180 nm can maintain good contact with the LLZTO plate electrolytes, leading the Li/LLZTO/Si cells to exhibit excellent cycling performance with a capacity retention over 85% after 100 cycles. As the Si layer thickness is increased to larger than 300 nm, the capacity retention of Li/LLZTO/Si cells becomes 77% after 100 cycles. When the thickness is close to 900 nm, the cells can cycle only for a limited number of times because of the destructive volume change at the interfaces. Because of the sustainable Si/LLZTO interfaces with the Si layer anodes with a thickness of 180 nm, full cells with the LiFePO 4 cathodes show discharge capacities of 120 mA h g -1 for LiFePO 4 and 2200 mA h g -1 for the Si anodes at room temperature. They cycle 100 times with a capacity retention of 72%. These results indicate that the combination between the Si anodes and the garnet electrolytes is a promising strategy for constructing high-performance SSBs.

  13. Study of Diffusion Bonding of 45 Steel through the Compacted Nickel Powder Layer

    NASA Astrophysics Data System (ADS)

    Zeer, G. M.; Zelenkova, E. G.; Temnykh, V. I.; Tokmin, A. M.; Shubin, A. A.; Koroleva, Yu. P.; Mikheev, A. A.

    2018-02-01

    The microstructure of the transition zone and powder spacer, the concentration distribution of chemical elements over the width of the diffusion-bonded joint, and microhardness of 45 steel-compacted Ni powder spacer-45 steel layered composites formed by diffusion bonding have been investigated. It has been shown that the relative spacer thickness χ < 0.06 is optimal for obtaining a high-quality joint has been formed under a compacting pressure of 500 MPa. The solid-state diffusion bonding is accompanied by sintering the nickel powder spacer and the formation of the transition zone between the spacer and steel. The transition zone consists of solid solution of nickel in the α-Fe phase and ordered solid solution of iron in nickel (FeNi3).

  14. Enhanced spin-ordering temperature in ultrathin FeTe films grown on a topological insulator

    NASA Astrophysics Data System (ADS)

    Singh, Udai Raj; Warmuth, Jonas; Kamlapure, Anand; Cornils, Lasse; Bremholm, Martin; Hofmann, Philip; Wiebe, Jens; Wiesendanger, Roland

    2018-04-01

    We studied the temperature dependence of the diagonal double-stripe spin order in 1 and 2 unit cell thick layers of FeTe grown on the topological insulator B i2T e3 via spin-polarized scanning tunneling microscopy. The spin order persists up to temperatures which are higher than the transition temperature reported for bulk F e1 +yTe with lowest possible excess Fe content y . The enhanced spin order stability is assigned to a strongly decreased y with respect to the lowest values achievable in bulk crystal growth, and effects due to the interface between the FeTe and the topological insulator. The result is relevant for understanding the recent observation of a coexistence of superconducting correlations and spin order in this system.

  15. Facile One-pot Transformation of Iron Oxides from Fe2O3 Nanoparticles to Nanostructured Fe3O4@C Core-Shell Composites via Combustion Waves

    PubMed Central

    Shin, Jungho; Lee, Kang Yeol; Yeo, Taehan; Choi, Wonjoon

    2016-01-01

    The development of a low-cost, fast, and large-scale process for the synthesis and manipulation of nanostructured metal oxides is essential for incorporating materials with diverse practical applications. Herein, we present a facile one-pot synthesis method using combustion waves that simultaneously achieves fast reduction and direct formation of carbon coating layers on metal oxide nanostructures. Hybrid composites of Fe2O3 nanoparticles and nitrocellulose on the cm scale were fabricated by a wet impregnation process. We demonstrated that self-propagating combustion waves along interfacial boundaries between the surface of the metal oxide and the chemical fuels enabled the release of oxygen from Fe2O3. This accelerated reaction directly transformed Fe2O3 into Fe3O4 nanostructures. The distinctive color change from reddish-brown Fe2O3 to dark-gray Fe3O4 confirmed the transition of oxidation states and the change in the fundamental properties of the material. Furthermore, it simultaneously formed carbon layers of 5–20 nm thickness coating the surfaces of the resulting Fe3O4 nanoparticles, which may aid in maintaining the nanostructures and improving the conductivity of the composites. This newly developed use of combustion waves in hybridized nanostructures may permit the precise manipulation of the chemical compositions of other metal oxide nanostructures, as well as the formation of organic/inorganic hybrid nanostructures. PMID:26902260

  16. Magnetic property zonation in a thick lava flow

    NASA Astrophysics Data System (ADS)

    Audunsson, Haraldur; Levi, Shaul; Hodges, Floyd

    1992-04-01

    Intraflow structures and magmatic evolution in an extensive and thick (30-60 m) basaltic lava flow are examined on the basis of grain size and composition-dependent magnetic properties of titanomagnetite materials. Microprobe data indicate that the intraflow oxidation state Fe(3+)/Fe(2+) of the initially precipitated primary titanomagnetites increases with falling equilibrium temperature from the flow margins to a maximum near the center, the position of lowest equilibrium temperature. In contrast, Curie temperature measurements indicate that titanomagnetite oxidation increases with height in the flow. Modification of the initially symmetric equilibrium titanomagnetite compositions was caused by subsolidus high-temperature oxidation possibly due to hydrogen loss produced by dissociation of magmatic water, as well as unknown contributions of circulating air and percolating water from above. The titanomagnetites of the basal layer of the flow remain essentially unaltered.

  17. Brillouin light scattering study of spin waves in NiFe/Co exchange spring bilayer films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haldar, Arabinda; Banerjee, Chandrima; Laha, Pinaki

    2014-04-07

    Spin waves are investigated in Permalloy(Ni{sub 80}Fe{sub 20})/Cobalt(Co) exchange spring bilayer thin films using Brillouin light scattering (BLS) experiment. The magnetic hysteresis loops measured by magneto-optical Kerr effect show a monotonic decrease in coercivity of the bilayer films with increasing Py thickness. BLS study shows two distinct modes, which are modelled as Damon-Eshbach and perpendicular standing wave modes. Linewidths of the frequency peaks are found to increase significantly with decreasing Py layer thickness. Interfacial roughness causes to fluctuate exchange coupling at the nanoscale regimes and the effect is stronger for thinner Py films. A quantitative analysis of the magnon linewidthsmore » shows the presence of strong local exchange coupling field which is much larger compared to macroscopic exchange field.« less

  18. Migration of trace elements from pyrite tailings in carbonate soils.

    PubMed

    Dorronsoro, C; Martin, F; Ortiz, I; García, I; Simón, M; Fernández, E; Aguilar, J; Fernández, J

    2002-01-01

    In the carbonate soils contaminated by a toxic spill from a pyrite mine (Aznalcóllar, southern Spain), a study was made of a thin layer (thickness = 4 mm) of polluted soil located between the pyrite tailings and the underlying soil. This layer, reddish-yellow in color due to a high Fe content, formed when sulfates (from the oxidation of sulfides) infiltrated the soil, causing acidification (to pH 5.6 as opposed to 8.0 of unaffected soil) and pollution (in Zn, Cu, As, Pb, Co, Cd, Sb, Bi, Tl, and In). The less mobile elements (As, Bi, In, Pb, Sb, and Tl) concentrated in the uppermost part of the reddish-yellow layer, with concentration decreasing downward. The more mobile elements (Co, Cd, Zn, and Cu) tended to precipitate where the pH was basic, toward the bottom of the layer or in the upper part of the underlying soil. The greatest accumulations occurred within the first 6 mm in overall soil depth, and were negligible below 15 mm. In addition, the acidity of the solution from the tailings degraded the minerals of the clay fraction of the soils, both the phyllosilicates as well as the carbonates. Also, within the reddish-yellow layer, gypsum formed autigenically, together with complex salts of sulfates of Fe, Al, Zn, Ca, and Mn, jarosite, and oxihydroxides of Fe.

  19. Ultra-diffuse hydrothermal venting supports Fe-oxidizing bacteria and massive umber deposition at 5000 m off Hawaii

    PubMed Central

    Edwards, Katrina J; Glazer, B T; Rouxel, O J; Bach, W; Emerson, D; Davis, R E; Toner, B M; Chan, C S; Tebo, B M; Staudigel, H; Moyer, C L

    2011-01-01

    A novel hydrothermal field has been discovered at the base of Lōihi Seamount, Hawaii, at 5000 mbsl. Geochemical analyses demonstrate that ‘FeMO Deep', while only 0.2 °C above ambient seawater temperature, derives from a distal, ultra-diffuse hydrothermal source. FeMO Deep is expressed as regional seafloor seepage of gelatinous iron- and silica-rich deposits, pooling between and over basalt pillows, in places over a meter thick. The system is capped by mm to cm thick hydrothermally derived iron-oxyhydroxide- and manganese-oxide-layered crusts. We use molecular analyses (16S rDNA-based) of extant communities combined with fluorescent in situ hybridizations to demonstrate that FeMO Deep deposits contain living iron-oxidizing Zetaproteobacteria related to the recently isolated strain Mariprofundus ferroxydans. Bioenergetic calculations, based on in-situ electrochemical measurements and cell counts, indicate that reactions between iron and oxygen are important in supporting chemosynthesis in the mats, which we infer forms a trophic base of the mat ecosystem. We suggest that the biogenic FeMO Deep hydrothermal deposit represents a modern analog for one class of geological iron deposits known as ‘umbers' (for example, Troodos ophilolites, Cyprus) because of striking similarities in size, setting and internal structures. PMID:21544100

  20. Molecular dynamic simulation study of plasma etching L10 FePt media in embedded mask patterning (EMP) process

    NASA Astrophysics Data System (ADS)

    Zhu, Jianxin; Quarterman, P.; Wang, Jian-Ping

    2017-05-01

    Plasma etching process of single-crystal L10-FePt media [H. Wang et al., Appl. Phys. Lett. 102(5) (2013)] is studied using molecular dynamic simulation. Embedded-Atom Method [M. S. Daw and M. I. Baskes, Phy. Rev. B 29, 6443 (1984); X. W. Zhou, R. A. Johnson and H. N. G. Wadley, Phy. Rev. B 69, 144113 (2004)] is used to calculate the interatomic potential within atoms in FePt alloy, and ZBL potential [J.F. Ziegler, J. P. Biersack and U. Littmark, "The Stopping and Range of Ions in Matter," Volume 1, Pergamon,1985] in comparison with conventional Lennard-Jones "12-6" potential is applied to interactions between etching gas ions and metal atoms. It is shown the post-etch structure defects can include amorphized surface layer and lattice interstitial point defects that caused by etchant ions passed through the surface layer. We show that the amorphized or damaged FePt lattice surface layer (or "magnetic dead-layer") thickness after etching increases with ion energy for Ar ion impacts, but significantly small for He ions at up to 250eV ion energy. However, we showed that He sputtering creates more interstitial defects at lower energy levels and defects are deeper below the surface compared to Ar sputtering. We also calculate the interstitial defect level and depth as dependence on ion energy for both Ar and He ions. Media magnetic property loss due to these defects is also discussed.

  1. Theoretical Investigation of Calculating Temperatures in the Combining Zone of Cu/Fe Composite Plate Jointed by Explosive Welding

    NASA Astrophysics Data System (ADS)

    Qu, Y. D.; Zhang, W. J.; Kong, X. Q.; Zhao, X.

    2016-03-01

    The heat-transfer behavior of the interface of Flyer plate (or Base Plate) has great influence on the microcosmic structures, stress distributions, and interface distortion of the welded interface of composite plates by explosive welding. In this paper, the temperature distributions in the combing zone are studied for the case of Cu/Fe composite plate jointed by explosive welding near the lower limit of explosive welding. The results show that Flyer plate (Cu plate) and Base Plate (Fe plate) firstly almost have the same melting rate in the explosive welding process. Then, the melting rate of Cu plate becomes higher than that of Fe plate. Finally, the melt thicknesses of Cu plate and Fe plate trend to be different constants, respectively. Meanwhile, the melting layer of Cu plate is thicker than that of Fe plate. The research could supply some theoretical foundations for calculating the temperature distribution and optimizing the explosive welding parameters of Cu/Fe composite plate to some extent.

  2. LiFePO4 mesocrystals for lithium-ion batteries.

    PubMed

    Popovic, Jelena; Demir-Cakan, Rezan; Tornow, Julian; Morcrette, Mathieu; Su, Dang Sheng; Schlögl, Robert; Antonietti, Markus; Titirici, Maria-Magdalena

    2011-04-18

    Olivine LiFePO(4) is considered one of the most promising cathode materials for Li-ion batteries. A simple one-step, template-free, low-temperature solvothermal method is developed for the synthesis of urchinlike hierarchical mesocrystals of pristine LiFePO(4) as well as carbon-coated LiFePO(4) composites. Each urchinlike mesocrystal consists of LiFePO(4) sheets self-assembled via a dipolar field in spheres during a solvothermal process under the influence of Cl(-) anions. The obtained primary sheets of LiFePO(4) are single crystalline in nature and can be coated in situ with an amorphous nitrogen-doped carbonaceous layer several nanometers in thickness. To increase the conductivity of the carbon coating, the materials are subjected to further temperature treatment (700 °C) under an inert atmosphere. The lithium storage performance of the pure LiFePO(4) is compared with that of its carbon-coated counterparts. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Polypeptide multilayer films on colloidal particles: an in situ electro-optical study.

    PubMed

    Radeva, Tsetska; Kamburova, Kamelia

    2007-04-15

    The buildup of poly(L-glutamic acid) (PGA) and poly(L-lysine) (PLL) multilayers on beta-FeOOH colloidal particles was investigated by means of electro-optics and electrophoresis. The films were built at different (acidic) pH in the absence of salt. We found that the thickness of the film grows linearly when the fully charged PLL (at pH 5.5) is combined with almost fully charged PGA (at pH 6.5), with a thickness of about 2 nm per single layer. When the fully charged PLL is combined with weakly charged PGA (at pH 4.5), the film thickness increases exponentially with the number of deposited layers. The thickness of the exponentially growing film increases to 300 nm after deposition of 16 layers. The exponential film growth is attributed to the ability of the PLL to diffuse "in" and "out" of the film bulk at each deposition step. The variation in the electrical polarizability of the film-coated particles was also monitored as a function of the number of adsorbed layers. The result reveals that the PLL chains, which can diffuse into the film bulk, have no measurable contribution to the electro-optical effect of the films terminated with PLL. It is only due to the polarization of counterions of the PLL adsorbed on the film surface.

  4. Influence of Gas Atmosphere Dew Point on the Galvannealing of CMnSi TRIP Steel

    NASA Astrophysics Data System (ADS)

    Cho, Lawrence; Kim, Myung Soo; Kim, Young Ha; De Cooman, Bruno C.

    2013-11-01

    The Fe-Zn reaction occurring during the galvannealing of a Si-bearing transformation-induced plasticity (TRIP) steel was investigated by field-emission electron probe microanalysis and field-emission transmission electron microscopy. The galvannealing was simulated after hot dipping in a Zn bath containing 0.13 mass pct Al at 733 K (460 °C). The galvannealing temperature was in the range of 813 K to 843 K (540 °C to 570 °C). The kinetics and mechanism of the galvannealing reaction were strongly influenced by the gas atmosphere dew point (DP). After the galvannealing of a panel annealed in a N2+10 pct H2 gas atmosphere with low DPs [213 K and 243 K (-60 °C and -30 °C)], the coating layer consisted of δ (FeZn10) and η (Zn) phase crystals. The Mn-Si compound oxides formed during intercritical annealing were present mostly at the steel/coating interface after the galvannealing. Galvannealing of a panel annealed in higher DP [263 K and 273 K, and 278 K (-10 °C, 0 °C, and +5 °C)] gas atmospheres resulted in a coating layer consisting of δ and Г (Fe3Zn10) phase crystals, and a thin layer of Г 1 (Fe11Zn40) phase crystals at the steel/coating interface. The Mn-Si oxides were distributed homogeneously throughout the galvannealed (GA) coating layer. When the surface oxide layer thickness on panels annealed in a high DP gas atmosphere was reduced, the Fe content at the GA coating surface increased. Annealing in a higher DP gas atmosphere improved the coating quality of the GA panels because a thinner layer of oxides was formed. A high DP atmosphere can therefore significantly contribute to the suppression of Zn-alloy coating defects on CMnSi TRIP steel processed in hot dip galvanizing lines.

  5. Chemical differentiation on one-plate planets: Predictions and geologic observations for Venus

    NASA Technical Reports Server (NTRS)

    Head, James W., III; Parmentier, E. M.; Hess, P. C.

    1992-01-01

    Recent studies have examined the partial melting of planetary interiors on one-plate planets and the implications for the formation and evolution of basaltic crust and the complementary residual mantle layer. In contrast to the Earth, where the crust and residual layer move laterally and are returned to the interior following subduction, one-plate planets such as Venus are characterized by vertical accretion of the crust and residual layer. The residual mantle layer is depleted and compositionally buoyant, being less dense than undepleted mantle due to its reduced Fe/Mg and dense Al-bearing minerals; its melting temperature is also increased. As the crust and depleted mantle layer grow vertically during the thermal evolution of the planet, several stages develop. As a step in the investigation and testing of these theoretical treatments of crustal development on Venus, we investigate the predictions deriving from two of these stages (a stable thick crust and depleted layer, and a thick unstable depleted layer) and compare these to geologic and geophysical observations, speculating on how these might be interpreted in the context of the vertical crustal accretion models. In each case, we conclude with an outline of further tests and observations of these models.

  6. Fabrication of nano-Fe3O4 3D structure on carbon fibers as a microwave absorber and EMI shielding composite by modified EPD method

    NASA Astrophysics Data System (ADS)

    Gholampoor, Mahdi; Movassagh-Alanagh, Farid; Salimkhani, Hamed

    2017-02-01

    Recently, electromagnetic interference (EMI) shielding materials have absorbed a lot of attention due to a growing need for application in the area of electronic and wireless devices. In this study, a carbon-based EMI shielding composite was fabricated by electrophoretic deposition of Fe3O4 nano-particles on carbon fibers (CFs) as a 3D structure incorporated with an epoxy resin. Co-precipitation method was employed to synthesize Fe3O4 nano-particles. This as-synthesized Fe3O4 nano-powder was then successfully deposited on CFs using a modified multi-step electrophoretic deposition (EPD) method. The results of structural studies showed that the Fe3O4 nano-particles (25 nm) were successfully and uniformly deposited on CFs. The measured magnetic properties of as-synthesized Fe3O4 nano-powder and nano-Fe3O4/CFs composite showed that the saturation magnetization of bare Fe3O4 was decreased from Ms = 72.3 emu/g to Ms = 33.1 emu/g for nano-Fe3O4/CFs composite and also corecivity of Fe3O4 was increased from Hc = 4.9 Oe to Hc = 168 Oe for composite. The results of microwave absorption tests revealed that the reflection loss (RL) of an epoxy-based nano-Fe3O4/CFs composite are significantly influenced by layer thickness. The maximum RL value of -10.21 dB at 10.12 GHz with an effective absorption bandwidth about 2 GHz was obtained for the sample with the thickness of 2 mm. It also exhibited an EMI shielding performance of -23 dB for whole the frequency range of 8.2-12.4 GHz.

  7. Measurement of volume resistivity/conductivity of metallic alloy in inhibited seawater by optical interferometry techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habib, K.

    2011-03-15

    Optical interferometry techniques were used for the first time to measure the volume resistivity/conductivity of carbon steel samples in seawater with different concentrations of a corrosion inhibitor. In this investigation, the real-time holographic interferometry was carried out to measure the thickness of anodic dissolved layer or the total thickness, U{sub total}, of formed oxide layer of carbon steel samples during the alternating current (ac) impedance of the samples in blank seawater and in 5-20 ppm TROS C-70 inhibited seawater, respectively. In addition, a mathematical model was derived in order to correlate between the ac impedance (resistance) and the surface (orthogonal)more » displacement of the surface of the samples in solutions. In other words, a proportionality constant [resistivity ({rho}) or conductivity ({sigma})= 1/{rho}] between the determined ac impedance [by electrochemical impedance spectroscopy (EIS) technique] and the orthogonal displacement (by the optical interferometry techniques) was obtained. The value of the resistivity of the carbon steel sample in the blank seawater was found similar to the value of the resistivity of the carbon steel sample air, around 1 x 10{sup -5}{Omega} cm. On the contrary, the measured values of the resistivity of the carbon steel samples were 1.85 x 10{sup 7}, 3.35 x 10{sup 7}, and 1.7 x 10{sup 7}{Omega} cm in 5, 10, and 20 ppm TROS C-70 inhibited seawater solutions, respectively. Furthermore, the determined value range of {rho} of the formed oxide layers, from 1.7 x 10{sup 7} to 3.35 x 10{sup 7}{Omega} cm, is found in a reasonable agreement with the one found in literature for the Fe oxide-hydroxides, i.e., goethite ({alpha}-FeOOH) and for the lepidocrocite ({gamma}-FeOOH), 1 x 10{sup 9}{Omega} cm. The {rho} value of the Fe oxide-hydroxides, 1 x 10{sup 9}{Omega} cm, was found slightly higher than the {rho} value range of the formed oxide layer of the present study. This is because the former value was determined by a dc method rather than by an electromagnetic method, i.e., holographic interferometry with applications of EIS, i.e., ac method. As a result, erroneous measurements were recorded due to the introduction of heat to Fe oxide-hydroxides.« less

  8. Dynamical current-induced ferromagnetic and antiferromagnetic resonances

    NASA Astrophysics Data System (ADS)

    Guimarães, F. S. M.; Lounis, S.; Costa, A. T.; Muniz, R. B.

    2015-12-01

    We demonstrate that ferromagnetic and antiferromagnetic excitations can be triggered by the dynamical spin accumulations induced by the bulk and surface contributions of the spin Hall effect. Due to the spin-orbit interaction, a time-dependent spin density is generated by an oscillatory electric field applied parallel to the atomic planes of Fe/W(110) multilayers. For symmetric trilayers of Fe/W/Fe in which the Fe layers are ferromagnetically coupled, we demonstrate that only the collective out-of-phase precession mode is excited, while the uniform (in-phase) mode remains silent. When they are antiferromagnetically coupled, the oscillatory electric field sets the Fe magnetizations into elliptical precession motions with opposite angular velocities. The manipulation of different collective spin-wave dynamical modes through the engineering of the multilayers and their thicknesses may be used to develop ultrafast spintronics devices. Our work provides a general framework that probes the realistic responses of materials in the time or frequency domain.

  9. Off-plane polarization ordering in metal chalcogen diphosphates from bulk to monolayer

    NASA Astrophysics Data System (ADS)

    Song, Wenshen; Fei, Ruixiang; Yang, Li

    2017-12-01

    Vertically (off-plane) ferroelectric ordering in ultrathin films has been pursued for decades. We predict the existence of intrinsic vertical polarization orderings in ultrathin metal chalcogen-diphosphates (MCDs). Taking CuInP2Se6 as an example, the first-principles calculation and electrostatic-energy model show that, under the open-circuit boundary condition, the ground state of bulk CuInP2Se6 is ferroelectric (FE) while that of monolayer is antiferroelectric (AFE), and the critical thickness for this FE/AFE transition is around six layers. Interestingly, under the closed-circuit boundary condition, the FE state can hold even for monolayer. Particularly, because of the small energy difference but the large barrier between FE and AFE orderings, the FE state can be stabilized in a free-standing monolayer, giving rise to intrinsic, off-plane two-dimensional ferroelectrics. Applying Monte Carlo simulations, we further calculate the ferroelectric Curie temperature (Tc) and electric hysteresis.

  10. Fe2 PO5 -Encapsulated Reverse Energetic ZnO/Fe2 O3 Heterojunction Nanowire for Enhanced Photoelectrochemical Oxidation of Water.

    PubMed

    Qin, Dong-Dong; He, Cai-Hua; Li, Yang; Trammel, Antonio C; Gu, Jing; Chen, Jing; Yan, Yong; Shan, Duo-Liang; Wang, Qiu-Hong; Quan, Jing-Jing; Tao, Chun-Lan; Lu, Xiao-Quan

    2017-07-10

    Zinc oxide is regarded as a promising candidate for application in photoelectrochemical water oxidation due to its higher electron mobility. However, its instability under alkaline conditions limits its application in a practical setting. Herein, we demonstrate an easily achieved wet-chemical route to chemically stabilize ZnO nanowires (NWs) by protecting them with a thin layer Fe 2 O 3 shell. This shell, in which the thickness can be tuned by varying reaction times, forms an intact interface with ZnO NWs, thus protecting ZnO from corrosion in a basic solution. The reverse energetic heterojunction nanowires are subsequently activated by introducing an amorphous iron phosphate, which substantially suppressed surface recombination as a passivation layer and improved photoelectrochemical performance as a potential catalyst. Compared with pure ZnO NWs (0.4 mA cm -2 ), a maximal photocurrent of 1.0 mA cm -2 is achieved with ZnO/Fe 2 O 3 core-shell NWs and 2.3 mA cm -2 was achieved for the PH 3 -treated NWs at 1.23 V versus RHE. The PH 3 low-temperature treatment creates a dual function, passivation and catalyst layer (Fe 2 PO 5 ), examined by X-ray photoelectron spectroscopy, TEM, photoelectrochemical characterization, and impedance measurements. Such a nano-composition design offers great promise to improve the overall performance of the photoanode material. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Structural and magnetic characterization of Mn/NiFe bilayers with ion-beam-assisted deposition

    NASA Astrophysics Data System (ADS)

    Wu, Chun-Hsien; Zheng, Chao; Chiu, Chun-Cheng; Manna, Palash Kumar; van Lierop, Johan; Lin, Ko-Wei; Pong, Philip W. T.

    2018-01-01

    The exchange bias effect in ferromagnetic (FM)/antiferromagnetic (AF) bilayer structures has been widely investigated because its underlying principle is critical for spintronic applications. In this work, the effect of Ar+ beam bombardment on the microstructural and magnetic properties of the Mn/NiFe thin films was investigated. The in-situ Ar+ bombardment nontrivially promoted the Mn/NiFe intermixing and facilitated the formation of the FeMn phase, accompanied by a remarkable reduction of Mn and NiFe layer thickness. The enhanced Mn/NiFe intermixing greatly disordered the interfacial spins, inhibiting the interfacial exchange coupling and giving rise to a significant decrease of the exchange bias field (H ex). The facilitated Mn/NiFe intermixing effect also dramatically degraded the magnetocrystalline anisotropy of the NiFe crystallites, leading to a notable suppression of the coercivity (H c). These results indicate that both the exchange bias and coercivity of the Mn/NiFe bilayers can be directly affected by the in-situ Ar+ bombardment, offering an effective way to modify the magnetism of the exchange-bias systems.

  12. Magnetic-plasmonic multilayered nanorods

    NASA Astrophysics Data System (ADS)

    Thumthan, Orathai

    Multilayered nanorods which consist of alternating magnetic layers separated by Au layers combine two distinctive properties, magnetic properties and surface plasmonic resonance (SPR) properties into one nano-entity. Their magnetic properties are tunable by changing the layer thickness, varying from single domain to superparamagnetic state. Superparamagnetic is a key requirement for magnetic nanoparticles for bioapplications. Superparamagnetic nanoparticles exhibit high magnetic moments at low applied magnetic field while retain no magnetic moments when magnetic field is removed preventing them from aggregation due to magnetic attraction. Au layers in the nanorods provide anchorage sites for functional group attachment. Also, Au nanodisks exhibit SPR properties. The SPR peak can be tuned from 540 nm to 820 nm by controlling the thickness of magnetic segments while keeping Au thickness constant. In this research, there are three types of multilayered nanorod have been fabricated: Au/NiFe nanorods, Au/Fe nanorods, and Au/Co nanorods. These magnetic nanorods were fabricated by templated electrodeposition into the channels in Anodic Aluminum Oxide (AAO) membrane. The setup for AAO fabrication was developed as a part of this research. Our fabricated AAO membrane has channels with a diameter ranging from 40nm to 80 nm and a thickness of 10um to 12um. Magnetic properties of nanorods such as saturation field, saturation moment, coercivity and remanence are able to manipulate through their shape anisotropy. The magnetization will be easier in long axis rather than short axis of particle. In addition, Au nanodisks in the nanorod structure are not only serving as anchorage sites for functional groups but also provide SPR properties. Under irradiation of light Au nanodisks strongly absorb light at SPR frequency which ranging from 540 nm to 820 nm by controlling the thickness of magnetic segments while keeping Au thickness constant. The SPR tunability of nanorods in near-infrared region can be used in in-vivo biomedical applications such as photo thermal therapy because tissue has an absorption maximum in the infrared range. The magnetic nanorods were explored for the following two applications: 1) as active component orientation-tunable ferrogel for cell culture matrix, 2) as MRI contrast agent. The results show that Au/NiFe magnetic nanorods can be aligned along applied magnetic field. Using MTT assay for 3T3 fibroblast cells, the biocompatibility of Au/Co nanorods was investigated. It shows that cell proliferation after 72 hours of incubation with nanorods decreases as the concentration of nanorods increases. However, cell viability quantified by counting dead cell/live cell reveals that only few cells died after three days of incubation. Au/Co multilayered nanorods were tested as T2 MRI-contrast agent, and a very large relaxivity was observed. In summary, we have successfully fabricated multilayered nanorods with tunability in both magnetic and SPR properties. These nanorods can potentially be used in biological and biomedical fields.

  13. A new approach to assess the skier additional stress within a multi-layered snowpack

    NASA Astrophysics Data System (ADS)

    Monti, Fabiano; Gaume, Johan; van Herwijnen, Alec; Schweizer, Jürg

    2014-05-01

    The physical and mechanical processes of dry-snow slab avalanche formation can be distinguished into two subsequent phases: failure initiation and crack propagation. Several approaches tried to quantify slab avalanche release probability in terms of failure initiation, based on a simple strength-of-material approach (strength vs. stress). Even if it is known that both weak layer and slab properties play a major role in avalanche release, apart from weak layer characteristics, often only the slab thickness and its average density were considered. For calculating the amount of additional stress (e.g. due to a skier) at the depth of the weak layer, the snow cover was often assumed to be a semi-infinite elastic half space in order to apply Boussinesq's theory. However, finite element (FE) calculations have shown that slab layering strongly influences the stress at depth. To avoid FE calculations, we suggest a new approach based on a simplification of multi-layered elasticity theory. It allows computing the additional stress due to a skier at the depth of the weak layer, taking into account the layering of the snow slab and the substratum. The proposed approach was first tested on simplified snow profiles and compared reasonably well with FE calculations. We then implemented the method to refine the classical skier stability index. Using manually observed snow profiles, classified in different stability classes using stability tests, we obtained a satisfactory discrimination power. Lastly, the refined skier stability index was implemented into the 1-D snow cover model SNOWPACK and presented on two case studies. In the future, it will be interesting to implement the proposed method for describing skier-induced stress within a multi-layered snowpack into more complex models which take into account not only failure initiation but also crack propagation.

  14. Advanced experimental study on giant magnetoresistance of Fe/Cr superlattices by rf-sputtering

    NASA Astrophysics Data System (ADS)

    Obi, Y.; Takanashi, K.; Mitani, Y.; Tsuda, N.; Fujimori, H.

    1992-02-01

    The study on MagnetoResistance (MR) has been performed for the Fe/Cr SuperLattice (SL) produced by the rf-sputtering method. Especially the effect of the preparation condition on MR has been investigated in detail. The MR oscillates with respect to the Cr layer thickness ( tCr) as was reported by Parkin et al. [1]. The characteristic experimental results is that the MR depends strongly on the Ar pressure. This indicates that the size of the MR is greatly affected by the interface roughness of the SL induced by the different Ar pressure during sputtering.

  15. Low-current-density spin-transfer switching in Gd{sub 22}Fe{sub 78}-MgO magnetic tunnel junction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinjo, Hidekazu, E-mail: kinjou.h-lk@nhk.or.jp; Machida, Kenji; Aoshima, Ken-ichi

    2014-05-28

    Magnetization switching of a relatively thick (9 nm) Gd-Fe free layer was achieved with a low spin injection current density of 1.0 × 10{sup 6} A/cm{sup 2} using MgO based magnetic tunnel junction devices, fabricated for light modulators. At about 560 × 560 nm{sup 2} in size, the devices exhibited a tunneling magnetoresistance ratio of 7%. This low-current switching is mainly attributed to thermally assisted spin-transfer switching in consequence of its thermal magnetic behavior arising from Joule heating.

  16. Atomically engineered ferroic layers yield a room-temperature magnetoelectric multiferroic

    NASA Astrophysics Data System (ADS)

    Mundy, Julia A.; Brooks, Charles M.; Holtz, Megan E.; Moyer, Jarrett A.; Das, Hena; Rébola, Alejandro F.; Heron, John T.; Clarkson, James D.; Disseler, Steven M.; Liu, Zhiqi; Farhan, Alan; Held, Rainer; Hovden, Robert; Padgett, Elliot; Mao, Qingyun; Paik, Hanjong; Misra, Rajiv; Kourkoutis, Lena F.; Arenholz, Elke; Scholl, Andreas; Borchers, Julie A.; Ratcliff, William D.; Ramesh, Ramamoorthy; Fennie, Craig J.; Schiffer, Peter; Muller, David A.; Schlom, Darrell G.

    2016-09-01

    Materials that exhibit simultaneous order in their electric and magnetic ground states hold promise for use in next-generation memory devices in which electric fields control magnetism. Such materials are exceedingly rare, however, owing to competing requirements for displacive ferroelectricity and magnetism. Despite the recent identification of several new multiferroic materials and magnetoelectric coupling mechanisms, known single-phase multiferroics remain limited by antiferromagnetic or weak ferromagnetic alignments, by a lack of coupling between the order parameters, or by having properties that emerge only well below room temperature, precluding device applications. Here we present a methodology for constructing single-phase multiferroic materials in which ferroelectricity and strong magnetic ordering are coupled near room temperature. Starting with hexagonal LuFeO3—the geometric ferroelectric with the greatest known planar rumpling—we introduce individual monolayers of FeO during growth to construct formula-unit-thick syntactic layers of ferrimagnetic LuFe2O4 (refs 17, 18) within the LuFeO3 matrix, that is, (LuFeO3)m/(LuFe2O4)1 superlattices. The severe rumpling imposed by the neighbouring LuFeO3 drives the ferrimagnetic LuFe2O4 into a simultaneously ferroelectric state, while also reducing the LuFe2O4 spin frustration. This increases the magnetic transition temperature substantially—from 240 kelvin for LuFe2O4 (ref. 18) to 281 kelvin for (LuFeO3)9/(LuFe2O4)1. Moreover, the ferroelectric order couples to the ferrimagnetism, enabling direct electric-field control of magnetism at 200 kelvin. Our results demonstrate a design methodology for creating higher-temperature magnetoelectric multiferroics by exploiting a combination of geometric frustration, lattice distortions and epitaxial engineering.

  17. Tunneling spin polarization in planar tunnel junctions: measurements using NbN superconducting electrodes and evidence for Kondo-assisted tunneling

    NASA Astrophysics Data System (ADS)

    Yang, Hyunsoo

    2006-03-01

    The fundamental origin of tunneling magnetoresistance in magnetic tunnel junctions (MTJs) is the spin-polarized tunneling current, which can be measured directly using superconducting tunneling spectroscopy (STS). The STS technique was first developed by Meservey and Tedrow using aluminum superconducting electrodes. Al has been widely used because of its low spin orbit scattering. However, measurements must be made at low temperatures (<0.4 K) because of the low superconducting transition temperature of Al. Here, we demonstrate that superconducting electrodes formed from NbN can be used to measure tunneling spin polarization (TSP) at higher temperatures up to ˜1.2K. The tunneling magnetoresistance and polarization of the tunneling current in MTJs is highly sensitive to the detailed structure of the tunneling barrier. Using MgO tunnel barriers we find TSP values as high as 90% at 0.25K. The TMR is, however, depressed by insertion of ultra thin layers of both non-magnetic and magnetic metals in the middle of the MgO barrier. For ultra-thin, discontinuous magnetic layers of CoFe, we find evidence of Kondo assisted tunneling, from increased conductance at low temperatures (<50K) and bias voltage (<20 mV). Over the same temperature and bias voltage regimes the tunneling magnetoresistance is strongly depressed. We present other evidence of Kondo resonance including the logarithmic temperature dependence of the zero bias conductance peak. We infer the Kondo temperature from both the spectra width of this conductance peak as well as the temperature dependence of the TMR depression. The Kondo temperature is sensitive to the thickness of the inserted CoFe layer and decreases with increased CoFe thickness. * performed in collaboration with S-H. Yang, C. Kaiser, and S. Parkin.

  18. Role of CoFeB thickness in electric field controlled sub-100 nm sized magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Lourembam, James; Huang, Jiancheng; Lim, Sze Ter; Gerard, Ernult Franck

    2018-05-01

    We report a comprehensive study on the role of the free layer thickness (tF) in electric-field controlled nanoscale perpendicular magnetic tunnel junctions (MTJs), comprising of free layer structure Ta/Co40Fe40B20/MgO, by using dc magnetoresistance and ultra-short magnetization switching measurements. Focusing on MTJs that exhibits positive effective device anisotropy (Keff), we observe that both the voltage-controlled magnetic anisotropy (ξ) and voltage modulation of coercivity show strong dependence on tF. We found that ξ varies dramatically and unexpectedly from ˜-3 fJ/V-m to ˜-41 fJ/V-m with increasing tF. We discuss the possibilities of electric-field tuning of the effective surface anisotropy term, KS as well as an additional interfacial magnetoelastic anisotropy term, K3 that scales with 1 /tF2. Voltage pulse induced 180° magnetization reversal is also demonstrated in our MTJs. Unipolar switching and oscillatory function of switching probability vs. pulse duration can be observed at higher tF, and agrees well with the two key device parameters — Keff and ξ.

  19. Toward Small-Diameter Carbon Nanotubes Synthesized from Captured Carbon Dioxide: Critical Role of Catalyst Coarsening.

    PubMed

    Douglas, Anna; Carter, Rachel; Li, Mengya; Pint, Cary L

    2018-06-06

    Small-diameter carbon nanotubes (CNTs) often require increased sophistication and control in synthesis processes, but exhibit improved physical properties and greater economic value over their larger-diameter counterparts. Here, we study mechanisms controlling the electrochemical synthesis of CNTs from the capture and conversion of ambient CO 2 in molten salts and leverage this understanding to achieve the smallest-diameter CNTs ever reported in the literature from sustainable electrochemical synthesis routes, including some few-walled CNTs. Here, Fe catalyst layers are deposited at different thicknesses onto stainless steel to produce cathodes, and atomic layer deposition of Al 2 O 3 is performed on Ni to produce a corrosion-resistant anode. Our findings indicate a correlation between the CNT diameter and Fe metal layer thickness following electrochemical catalyst reduction at the cathode-molten salt interface. Further, catalyst coarsening during long duration synthesis experiments leads to a 2× increase in average diameters from 3 to 60 min durations, with CNTs produced after 3 min exhibiting a tight diameter distribution centered near ∼10 nm. Energy consumption analysis for the conversion of CO 2 into CNTs demonstrates energy input costs much lower than the value of CNTs-a concept that strictly requires and motivates small-diameter CNTs-and is more favorable compared to other costly CO 2 conversion techniques that produce lower-value materials and products.

  20. Spin pumping in ion-beam sputtered C o2FeAl /Mo bilayers: Interfacial Gilbert damping

    NASA Astrophysics Data System (ADS)

    Husain, Sajid; Kumar, Ankit; Barwal, Vineet; Behera, Nilamani; Akansel, Serkan; Svedlindh, Peter; Chaudhary, Sujeet

    2018-02-01

    The spin-pumping mechanism and associated interfacial Gilbert damping are demonstrated in ion-beam sputtered C o2FeAl (CFA)/Mo bilayer thin films employing ferromagnetic resonance spectroscopy. The dependence of the net spin-current transportation on Mo layer thickness, 0 to 10 nm, and the enhancement of the net effective Gilbert damping are reported. The experimental data have been analyzed using spin-pumping theory in terms of spin current pumped through the ferromagnet/nonmagnetic metal interface to deduce the real spin-mixing conductance and the spin-diffusion length, which are estimated to be 1.56 (±0.30 ) ×1019m-2 and 2.61 (±0.15 )nm , respectively. The damping constant is found to be 8.8 (±0.2 ) ×10-3 in the Mo(3.5 nm)-capped CFA(8 nm) sample corresponding to an ˜69 % enhancement of the original Gilbert damping 5.2 (±0.6 ) ×10-3 in the Al-capped CFA thin film. This is further confirmed by inserting the Cu dusting layer which reduces the spin transport across the CFA/Mo interface. The Mo layer thickness-dependent net spin-current density is found to lie in the range of 1 -4 MA m-2 , which also provides additional quantitative evidence of spin pumping in this bilayer thin-film system.

  1. Effect of pectin charge density on formation of multilayer films with chitosan.

    PubMed

    Kamburova, Kamelia; Milkova, Viktoria; Petkanchin, Ivana; Radeva, Tsetska

    2008-04-01

    The effect of pectin charge density on the formation of multilayer films with chitosan (PEC/CHI) is studied by means of electro-optics. Pectins of low (21%) and high (71%) degrees of esterification, which are inversely proportional to the pectin charge density, are used to form films on colloidal beta-FeOOH particles at pH 4.0 when the CHI is fully ionized. We find that, after deposition of the first 3-4 layers, the film thickness increases linearly with the number of adsorbed layers. However, the increase in the film thickness is larger when the film is terminated with CHI. Irregular increase of the film thickness is more marked for the PEC with higher density of charge. Oscillation in the electrical polarizability of the film-coated particles with the number of deposited layers is also registered in the PEC/CHI films. The charge balance of the multilayers, calculated from electrical polarizability of the film-coated particles, is positive, with larger excess of positive charge within the film constructed from CHI and less charged PEC. This is attributed to the ability of CHI to diffuse into the film at each deposition step. Despite the CHI diffusion, the film thickness increases linearly due to the dissolution of unstable PEC/CHI complexes from the film surface.

  2. Enhanced Atom Mobility on the Surface of a Metastable Film

    NASA Astrophysics Data System (ADS)

    Picone, A.; Riva, M.; Fratesi, G.; Brambilla, A.; Bussetti, G.; Finazzi, M.; Duò, L.; Ciccacci, F.

    2014-07-01

    A remarkable enhancement of atomic diffusion is highlighted by scanning tunneling microscopy performed on ultrathin metastable body-centered tetragonal Co films grown on Fe(001). The films follow a nearly perfect layer-by-layer growth mode with a saturation island density strongly dependent on the layer on which the nucleation occurs, indicating a lowering of the diffusion barrier. Density functional theory calculations reveal that this phenomenon is driven by the increasing capability of the film to accommodate large deformations as the thickness approaches the limit at which a structural transition occurs. These results disclose the possibility of tuning surface diffusion dynamics and controlling cluster nucleation and self-organization.

  3. Enhanced atom mobility on the surface of a metastable film.

    PubMed

    Picone, A; Riva, M; Fratesi, G; Brambilla, A; Bussetti, G; Finazzi, M; Duò, L; Ciccacci, F

    2014-07-25

    A remarkable enhancement of atomic diffusion is highlighted by scanning tunneling microscopy performed on ultrathin metastable body-centered tetragonal Co films grown on Fe(001). The films follow a nearly perfect layer-by-layer growth mode with a saturation island density strongly dependent on the layer on which the nucleation occurs, indicating a lowering of the diffusion barrier. Density functional theory calculations reveal that this phenomenon is driven by the increasing capability of the film to accommodate large deformations as the thickness approaches the limit at which a structural transition occurs. These results disclose the possibility of tuning surface diffusion dynamics and controlling cluster nucleation and self-organization.

  4. Characterization of two-dimensional hexagonal boron nitride using scanning electron and scanning helium ion microscopy

    NASA Astrophysics Data System (ADS)

    Guo, Hongxuan; Gao, Jianhua; Ishida, Nobuyuki; Xu, Mingsheng; Fujita, Daisuke

    2014-01-01

    Characterization of the structural and physical properties of two-dimensional (2D) materials, such as layer number and inelastic mean free path measurements, is very important to optimize their synthesis and application. In this study, we characterize the layer number and morphology of hexagonal boron nitride (h-BN) nanosheets on a metallic substrate using field emission scanning electron microscopy (FE-SEM) and scanning helium ion microscopy (HIM). Using scanning beams of various energies, we could analyze the dependence of the intensities of secondary electrons on the thickness of the h-BN nanosheets. Based on the interaction between the scanning particles (electrons and helium ions) and h-BN nanosheets, we deduced an exponential relationship between the intensities of secondary electrons and number of layers of h-BN. With the attenuation factor of the exponential formula, we calculate the inelastic mean free path of electrons and helium ions in the h-BN nanosheets. Our results show that HIM is more sensitive and consistent than FE-SEM for characterizing the number of layers and morphology of 2D materials.

  5. Towards a Unified Picture of Spin Dependent Transport in and Perpendicular Giant Magnetoresistance and Bulk Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, S.; Holody, P.; Loloee, R.

    1997-03-01

    From data on (Fe{sub 1-x}V{sub x}/Cu/Co/Cu){sub N} multilayers, we show that Fe doped with V gains a negative spin asymmetry for bulk scattering ({beta}{lt}0), which, combined with the positive asymmetry of Co, accounts for the inverse current perpendicular to the plane (CPP) giant magnetoresistance (GMR) we observe. More precisely, the competition between positive and negative asymmetries for interface and bulk scatterings in FeV leads to inverse (normal) GMR for layers thicker (thinner) than a compensation thickness. The negative {beta} of FeV is consistent with theoretical predictions and bulk alloy data. The current in the plane (CIP) GMR is not reversed,more » which illustrates the role of channeling in CIP. {copyright} {ital 1997} {ital The American Physical Society}« less

  6. Atomic-Resolution X-ray Energy-Dispersive Spectroscopy Chemical Mapping of Substitutional Dy Atoms in a High-Coercivity Neodymium Magnet

    NASA Astrophysics Data System (ADS)

    Itakura, Masaru; Watanabe, Natsuki; Nishida, Minoru; Daio, Takeshi; Matsumura, Syo

    2013-05-01

    We have investigated local element distributions in a Dy-doped Nd2Fe14B hot-deformed magnet by atomic-column resolution chemical mapping using an X-ray energy-dispersive spectrometer (XEDS) attached to an aberration-corrected scanning transmission electron microscope (Cs-corrected STEM). The positions of the Nd and Dy atomic columns were visualized in the XEDS maps. The substitution of Dy was limited to a surface layer 2-3 unit cells thick in the Nd2Fe14B grains, and the Dy atoms preferentially occupied the 4f-Nd sites of Nd2Fe14B. These results provide further insights into the principal mechanism governing the coercivity enhancement due to Dy doping.

  7. Microstructure and Mechanical Properties of Fe-18Mn-18Cr-0.5N Austenitic Nonmagnetic Stainless Steel in Asymmetric Hot Rolling

    NASA Astrophysics Data System (ADS)

    Song, Y. L.; Li, C. S.; Ma, B.; Han, Y. H.

    2017-05-01

    Asymmetric hot rolling (ASHR) with a mismatch speed ratio of 1.15 in a single pass was applied to Fe-18Mn-18Cr-0.5N steel and was compared with symmetric hot rolling (SHR). The results indicated that a through-thickness microstructure gradient was formed in the plate due to the shear strain (0.36) introduced by ASHR. A fine-grained layer with the average size of 3 μm was achieved at the top surface of ASHR plate, while numerous elongated grains with a few recrystallized grains were presented at the center layer. The texture was distributed randomly at the top surface of ASHR plate, and a weaker intensity of typical hot-rolled texture in austenitic steel was obtained at the center layer of ASHR plate compared to SHR plate. An excellent combination of microhardness, strength and ductility was obtained in the ASHR plate, which was attributed to gradient microstructure induced by ASHR.

  8. Microstructural characterization of AA5183 aluminum clad AISI 1018 steel prepared by electro spark deposition

    NASA Astrophysics Data System (ADS)

    Rastkerdar, E.; Aghajani, H.; Kianvash, A.; Sorrell, C. C.

    2018-04-01

    The application of a simple and effective technique, electro spark deposition (ESD), to create aluminum clad steel plate has been studied. AA5183 aluminum rods were used as the rotating electrode for cladding of the AISI 1018 steel. The microstructure of the interfacial zone including the intermetallic compounds (IMC) layer and the clad metal have been investigated by scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS) and transmission electron microscopy (TEM and STEM). According to the results sound aluminum clad with thickness up to 25–30 μm can be achieved. Very thin (<4 μm) IMC layer was formed at the Al/Fe interface and the structural (electron diffraction pattern) and chemical analysis (STEM) conducted by TEM confirmed that the layer is constituted of Fe rich phases, both implying a much improved mechanical properties. Investigation of the orientations of phases at the interfacial zone confirmed absence of any preferred orientation.

  9. Study of non-stoichiometric BaSrTiFeO3 oxide dedicated to semiconductor gas sensors

    NASA Astrophysics Data System (ADS)

    Fasquelle, D.; Verbrugghe, N.; Deputier, S.

    2016-11-01

    Developing instrumentation systems compatible with the European RoHS directive (restriction of hazardous substances) to monitor our environment is of great interest for our society. Our research therefore aims at developing innovating integrated systems of detection dedicated to the characterization of various environmental exposures. These systems, which integrate new gas sensors containing lead-free oxides, are dedicated to the detection of flammable and toxic gases. We have firstly chosen to study semiconductor gas sensors implemented with lead-free oxides in view to develop RoHS devices. Therefore thick films deposited by spin-coating and screen-printing have been chosen for their robustness, ease to realize and ease to finally obtain cost-effective sensors. As crystalline defects and ionic vacancies are of great interest for gas detection, we have decided to study a non-stoichiometric composition of the BaSrTiFeO3 sensible oxide. Nonstoichiometric BaSrTiFeO3 lead-free oxide thick films were deposited by screen-printing on polycrystalline AFO3 substrates covered by a layer of Ag-Pd acting as bottom electrode. The physical characterizations have revealed a crystalline structure mainly composed of BaTiO3 pseudo-cubic phase and Ba4Ti12O27 monoclinic phase for the powder, and a porous microstructure for the thick films. When compared to a BSTF thick film with a stoichiometric composition, a notable increase in the BSTF dielectric constant value was observed when taking into account of a similar microstructure and grain size. The loss tangent mean value varies more softly for the non-stoichiometric BaSrTiFeO3 films than for the perovskite BSTF film as tanδ decreases from 0.45 to 0.04 when the frequency increases from 100 Hz to 1 MHz.

  10. Synthesis of core-shell iron nanoparticles via a new (novel) approach

    NASA Astrophysics Data System (ADS)

    Chaudhary, Rakesh P.; Koymen, Ali R.

    2014-03-01

    Carbon-encapsulated iron (Fe) nanoparticles were synthesized by a newly developed method in toluene. Transmission Electron Microscopy (TEM) and High Resolution Transmission Electron Microscopy (HRTEM) of the as prepared sample reveal that core-shell nanostructures have been formed with Fe as core and graphitic carbon as shell. Fe nanoparticles with diameter 11nm to 102 nm are encapsulated by 6-8 nm thick graphitic carbon layers. There was no iron carbide formation observed between the Fe core and the graphitic shell. The Fe nanoparticles have body centered cubic (bcc) crystal structure. The magnetic hysteresis loop of the as synthesized powder at room temperature showed a saturation magnetization of 9 Am2 kg-1. After thermal treatment crystalline order of the samples improved and hence saturation magnetization increased to 24 Am2kg-1. We foresee that the carbon-encapsulated Fe nanoparticles are biologically friendly and could have potential applications in Magnetic Resonance Imaging (MRI) and Photothermal cancer therapy.

  11. Sharp transition from ripple patterns to a flat surface for ion beam erosion of Si with simultaneous co-deposition of iron

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Brötzmann, M.; Hofsäss, H.

    2012-09-01

    We investigate pattern formation on Si by sputter erosion under simultaneous co-deposition of Fe atoms, both at off-normal incidence, as function of the Fe surface coverage. The patterns obtained for 5 keV Xe ion irradiation at 30° incidence angle are analyzed with atomic force microscopy. Rutherford backscattering spectroscopy of the local steady state Fe content of the Fe-Si surface layer allows a quantitative correlation between pattern type and Fe coverage. With increasing Fe coverage the patterns change, starting from a flat surface at low coverage (< 2×1015 Fe/cm2) over dot patterns (2-8×1015 Fe/cm2), ripples patterns (8-17×1015 Fe/cm2), pill bug structures (1.8×1016 Fe/cm2) and a rather flat surface with randomly distributed weak pits at high Fe coverage (>1.8×1016 Fe/cm2). Our results confirm the observations by Macko et al. for 2 keV Kr ion irradiation of Si with Fe co-deposition. In particular, we also find a sharp transition from pronounced ripple patterns with large amplitude (rms roughness ˜ 18 nm) to a rather flat surface (rms roughness ˜ 0.5 nm). Within this transition regime, we also observe the formation of pill bug structures, i.e. individual small hillocks with a rippled structure on an otherwise rather flat surface. The transition occurs within a very narrow regime of the steady state Fe surface coverage between 1.7 and 1.8×1016 Fe/cm2, where the composition of the mixed Fe-Si surface layer of about 10 nm thickness reaches the stoichiometry of FeSi2. Phase separation towards amorphous iron silicide is assumed as the major contribution for the pattern formation at lower Fe coverage and the sharp transition from ripple patterns to a flat surface.

  12. Spin-orbit torque in a bulk perpendicular magnetic anisotropy Pd/FePd/MgO system

    PubMed Central

    Lee, Hwang-Rae; Lee, Kyujoon; Cho, Jaehun; Choi, Young-Ha; You, Chun-Yeol; Jung, Myung-Hwa; Bonell, Frédéric; Shiota, Yoichi; Miwa, Shinji; Suzuki, Yoshishige

    2014-01-01

    Spin-orbit torques, including the Rashba and spin Hall effects, have been widely observed and investigated in various systems. Since interesting spin-orbit torque (SOT) arises at the interface between heavy nonmagnetic metals and ferromagnetic metals, most studies have focused on the ultra-thin ferromagnetic layer with interface perpendicular magnetic anisotropy. Here, we measured the effective longitudinal and transverse fields of bulk perpendicular magnetic anisotropy Pd/FePd (1.54 to 2.43 nm)/MgO systems using harmonic methods with careful correction procedures. We found that in our range of thicknesses, the effective longitudinal and transverse fields are five to ten times larger than those reported in interface perpendicular magnetic anisotropy systems. The observed magnitude and thickness dependence of the effective fields suggest that the SOT do not have a purely interfacial origin in our samples. PMID:25293693

  13. Controlled Phase and Tunable Magnetism in Ordered Iron Oxide Nanotube Arrays Prepared by Atomic Layer Deposition

    DOE PAGES

    Zhang, Yijun; Liu, Ming; Peng, Bin; ...

    2016-01-27

    Highly-ordered and conformal iron oxide nanotube arrays on an atomic scale are successfully prepared by atomic layer deposition (ALD) with controlled oxidization states and tunable magnetic properties between superparamagnetism and ferrimagnetism. Non-magnetic α-Fe 2O 3 and superparamagnetic Fe 2O 3with a blocking temperature of 120 K are in-situ obtained by finely controlling the oxidation reaction. Both of them exhibit a very small grain size of only several nanometers due to the nature of atom-by-atom growth of the ALD technique. Post-annealing α-Fe 2O 3 in a reducing atmosphere leads to the formation of the spinel Fe 3O 4 phase which displaysmore » a distinct ferrimagnetic anisotropy and the Verwey metal-insulator transition that usually takes place only in single crystal magnetite or thick epitaxial films at low temperatures. Finally, the ALD deposition of iron oxide with well-controlled phase and tunable magnetism demonstrated in this work provides a promising opportunity for the fabrication of 3D nano-devices to be used in catalysis, spintronics, microelectronics, data storages and bio-applications.« less

  14. Enhanced interlayer exchange coupling in antiferromagnetically coupled ultrathin (Co70Fe30/Pd) multilayers

    NASA Astrophysics Data System (ADS)

    Meng, Zhaoliang; Qiu, Jinjun; Han, Guchang; Teo, Kie Leong

    2015-12-01

    We report the studies of magnetization reversal and magnetic interlayer coupling in synthetic antiferromagnetic (SAF) [Pd/Co70Fe30]9/Ru(tRu)/Pd(tPd)/[Co70Fe30/Pd]9 structure as functions of inserted Pd layer (tPd) and Ru layer (tRu) thicknesses. We found the exchange coupling field (Hex) and perpendicular magnetic anisotropy (PMA) can be controlled by both the tPd and tRu, The Hex shows a Ruderman-Kittel-Kasuya-Yosida-type oscillatory decay dependence on tRu and a maximum interlayer coupling strength Jex = 0.522 erg/cm2 is achieved at tPd + tRu ≈ 0.8 nm in the as-deposited sample. As it is known that a high post-annealing stability of SAF structure is required for magnetic random access memory applications, the dependence of Hex and PMA on the post-annealing temperature (Ta) is also investigated. We found that both high PMA of the top Co70Fe30/Pd multilayer is maintained and Hex is enhanced with increasing Ta up to 350 °C for tRu > 0.7 nm in our SAF structure.

  15. Critical thickness investigation of magnetic properties in exchange-coupled bilayers

    NASA Astrophysics Data System (ADS)

    Rodríguez-Suárez, R. L.; Vilela-Leão, L. H.; Bueno, T.; Oliveira, A. B.; de Almeida, J. R. L.; Landeros, P.; Rezende, S. M.; Azevedo, A.

    2011-06-01

    We present a systematic investigation of the magnetic properties of two series of polycrystalline ferromagnetic-antiferromagnetic bilayers (FM-AF) of Ni81Fe19(10nm)/Ir20Mn80(tAF) grown by dc magnetron sputtering. One series was grown at an oblique angle of 50° and the other one was grown at 0°. Ferromagnetic resonance (FMR) was used to measure the exchange bias field HE, the rotatable anisotropy field HRA, and the FMR linewidth ΔH as a function of the antiferromagnetic layer thickness tAF. Three relaxation channels due to isotropic Gilbert damping, anisotropic two-magnon scattering, and mosaicity effects are simultaneously distinguished through the angular dependence of the FMR linewidth. In the regime of small IrMn layer thicknesses, not enough to establish the exchange bias anisotropy, the FMR linewidth shows a sharp peak due to the contribution of the two-magnon scattering mechanism. The results presented here are of general importance for understanding the dynamics of magnetization in the FM-AF structures.

  16. Longevity of granular iron in groundwater treatment processes: corrosion product development.

    PubMed

    Kohn, Tamar; Livi, Kenneth J T; Roberts, A Lynn; Vikesland, Peter J

    2005-04-15

    Permeable reactive barriers employing iron as a reactive surface have received extensive attention. A remaining issue, however, relates to their longevity. As an integral part of a long-term column study conducted to examine the influence of inorganic cosolutes on iron reactivity toward chlorinated solvents and nitroaromatic compounds, Master Builder iron grains were characterized via scanning and transmission electron microscopy, electron energy loss spectroscopy (EELS), micro-Raman spectroscopy, and X-ray diffraction. Prior to exposure to carbonate solutions, the iron grains were covered by a surface scale that consisted of fayalite (Fe2SiO4), wüstite (FeO), magnetite (Fe3O4), maghemite (gamma-Fe2O3), and graphite. After 1100 days of exposure to solutions containing carbonate, other inorganic solutes, and organic contaminants, the wüstite, fayalite, and graphite of the original scale partially dissolved, and magnetite and iron carbonate hydroxide (Fe3(OH)2.2CO3) precipitated on top of the scale. Raman results indicate the presence of green rust (e.g., [Fe4(2+)Fe2(3+)(OH)12]-[CO3 x 2H2O]) toward the column outlet after 308 days of operation, although this mineral phase disappears at longer operation times. Grains extracted from a column exposed to a high concentration (20 mM) of sodium bicarbonate were more extensively weathered than those from columns exposed to 2 mM sodium bicarbonate. An iron carbonate hydroxide layer up to 100 microm thick was observed. Even though EELS analysis of iron carbonate hydroxide indicates that this is a redox-active phase, the thickness of this layer is presumed responsible for the previously observed decline in the reactivity of this column relative to low-bicarbonate columns. A silica-containing feed resulted in reduced reactivity toward TCE. Grains from this column had a strong enrichment of silicon in the precipitates, although no distinct silica-containing mineral phases were identified. The substitution of 2 mM calcium carbonate for 2 mM sodium bicarbonate in the feed did not produce a measurable reactivity loss, asthe discrete calcium carbonate precipitates that formed in this system did not severely restrict access to the reactive surface.

  17. Analysis of the electrolyte convection inside the concentration boundary layer during structured electrodeposition of copper in high magnetic gradient fields.

    PubMed

    König, Jörg; Tschulik, Kristina; Büttner, Lars; Uhlemann, Margitta; Czarske, Jürgen

    2013-03-19

    To experimentally reveal the correlation between electrodeposited structure and electrolyte convection induced inside the concentration boundary layer, a highly inhomogeneous magnetic field, generated by a magnetized Fe-wire, has been applied to an electrochemical system. The influence of Lorentz and magnetic field gradient force to the local transport phenomena of copper ions has been studied using a novel two-component laser Doppler velocity profile sensor. With this sensor, the electrolyte convection within 500 μm of a horizontally aligned cathode is presented. The electrode-normal two-component velocity profiles below the electrodeposited structure show that electrolyte convection is induced and directed toward the rim of the Fe-wire. The measured deposited structure directly correlates to the observed boundary layer flow. As the local concentration of Cu(2+) ions is enhanced due to the induced convection, maximum deposit thicknesses can be found at the rim of the Fe-wire. Furthermore, a complex boundary layer flow structure was determined, indicating that electrolyte convection of second order is induced. Moreover, the Lorentz force-driven convection rapidly vanishes, while the electrolyte convection induced by the magnetic field gradient force is preserved much longer. The progress for research is the first direct experimental proof of the electrolyte convection inside the concentration boundary layer that correlates to the deposited structure and reveals that the magnetic field gradient force is responsible for the observed structuring effect.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levy, Miguel; Chakravarty, A.; Huang, H.-C.

    Significant departures from bulk-like magneto-optic behavior are found in ultra-thin bismuth-substituted iron-garnet films grown by liquid-phase-epitaxy. These changes are due, at least in part, to geometrical factors and not to departures from bulk-composition in the transient layer at the film-substrate interface. A monotonic increase in specific Faraday rotation with reduced thickness is the signature feature of the observed phenomena. These are traced to size-dependent modifications in the diamagnetic transition processes responsible for the Faraday rotation. These processes correspond to the electronic transitions from singlet {sup 6}S ground states to spin-orbit split excited states of the Fe{sup 3+} ions in themore » garnet. A measurable reduction in the corresponding ferrimagnetic resonance linewidths is found, thus pointing to an increase in electronic relaxation times and longer lived excitations at reduced thicknesses. These changes together with a shift in vibrational frequency of the Bi-O bonds in the garnet at reduced thicknesses result in greatly enhanced magneto-optical performance. These studies were conducted on epitaxial monocrystalline Bi{sub 0.8}Gd{sub 0.2}Lu{sub 2}Fe{sub 5}O{sub 12} films.« less

  19. Enhancement of magnetoresistance by inserting thin NiAl layers at the interfaces in Co{sub 2}FeGa{sub 0.5}Ge{sub 0.5}/Ag/Co{sub 2}FeGa{sub 0.5}Ge{sub 0.5} current-perpendicular-to-plane pseudo spin valves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, J. W.; Sakuraba, Y., E-mail: Sakuraba.Yuya@nims.go.jp; Sasaki, T. T.

    2016-03-07

    We have investigated the effects of insertion of a thin NiAl layer (≤0.63 nm) into a Co{sub 2}FeGa{sub 0.5}Ge{sub 0.5} (CFGG)/Ag interface on the magnetoresistive properties in CFGG/Ag/CFGG current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) pseudo spin valves (PSVs). First-principles calculations of ballistic transmittance clarified that the interfacial band matching at the (001)-oriented NiAl/CFGG interface is better than that at the (001)-Ag/CFGG interface. The insertion of 0.21-nm-thick NiAl layers at the Co{sub 2}FeGa{sub 0.5}Ge{sub 0.5}/Ag interfaces effectively improved the magnetoresistance (MR) output; the observed average and the highest MR ratio (ΔRA) are 62% (25 mΩ μm{sup 2}) and 77% (31 mΩ μm{sup 2}) atmore » room temperature, respectively, which are much higher than those without NiAl insertion. Microstructural analysis using scanning transmission electron microscopy confirmed the existence of thin NiAl layers at the Ag interfaces with only modest interdiffusion even after annealing at 550 °C. The improvement of the interfacial spin-dependent scattering by very thin NiAl insertion can be a predominant reason for the enhancement of the MR output.« less

  20. Large enhancement of Blocking temperature by control of interfacial structures in Pt/NiFe/IrMn/MgO/Pt multilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xi; Wang, Shouguo, E-mail: sgwang@ustb.edu.cn; Han, Gang

    2015-09-15

    The Blocking temperature (T{sub B}) of Pt/NiFe/IrMn/MgO/Pt multilayers was greatly enhanced from far below room temperature (RT) to above RT by inserting 1 nm thick Mg layer at IrMn/MgO interface. Furthermore, the exchange bias field (H{sub eb}) was increased as well by the control of interfacial structures. The evidence for a significant fraction of Mn-O bonding at IrMn/MgO interface without Mg insertion layer was provided by X-ray photoelectron spectroscopy. The bonding between Mn and O can decrease the antiferromagnetism of IrMn film, leading to lower value of T{sub B} in Pt/NiFe/IrMn/MgO/Pt multilayers. Ultrathin Mg film inserted at IrMn/MgO interface actingmore » as an oxygen sinking layer can suppress the oxidation reactions between Mn and O and reduce the formation of Mn-O bonding greatly. The oxidation suppression results in the recovery of the antiferromagnetism of IrMn film, which can enhance T{sub B} and H{sub eb}. Furthermore, the high resolution transmission electron microscopy demonstrates that the Mg insertion layer can efficiently promote a high-quality MgO (200) texture. This study will enhance the understanding of physics in antiferromagnet-based spintronic devices.« less

  1. Reduction of foveal bulges and other anatomical changes in fellow eyes of patients with unilateral idiopathic macular hole without vitreomacular pathologic changes.

    PubMed

    Delas, Barbara; Julio, Gemma; Fernández-Vega, Álvaro; Casaroli-Marano, Ricardo P; Nadal, Jeroni

    2017-11-01

    To compare the foveal characteristics in fellow eyes (FE) of patients with unilateral idiopathic macular hole without vitreomacular pathologic changes with eyes of healthy controls. Forty-seven FE and 52 eyes of 52 age- and sex-matched healthy controls were studied. Quantitative assessment of the dome-shaped appearance of the hyperreflective lines that represent external limiting membrane (ELM_bulge) and inner outer segment junctions (IS/OS_bulge) were made by optical coherence tomography (OCT) images. Inner retinal complex thickness (IRCT) was quantitatively assessed at 1000 and 2000 μm of the foveal center in nasal and temporal quadrants. Presence of alterations in the inner retinal outer layers and central foveal thickness (CFT) were also analyzed. Significantly lower ELM_bulge (p < 0.0001; Mann-Whitney test) and IS/OS_bulge (p < 0.001; student t test) and higher cases with COST alterations, expressed as a diffuse line (p < 0.006; Chi 2 test) were found in FE than control eyes. IRCT were significantly reduced in FE at all the studied locations when comparing to control eyes (p < 0.05; student t test), maintaining anatomical proportionality among locations. FE without pathologic vitreomacular interactions seems to present some central cone alterations that may be related to other causes than vitreomacular traction.

  2. Electrochemistry and dissolution kinetics of magnetite and ilmenite

    USGS Publications Warehouse

    White, A.F.; Peterson, M.L.; Hochella, M.F.

    1994-01-01

    Natural samples of magnetite and ilmenite were experimentally weathered in pH 1-7 anoxic solutions at temperatures of 2-65 ??C. Reaction of magnetite is described as [Fe2+Fe23+]O4(magnetite) + 2H+ ??? ??[Fe23+]O3(maghemite) + Fe2+ + H2O. Dynamic polarization experiments using magnetite electrodes confirmed that this reaction is controlled by two electrochemical half cells, 3[Fe2+Fe23+]O4(magnetite) ??? 4??[Fe23+]O3(maghemite) + Fe2+ + 2e- and [Fe2+Fe23+]O4(magnetite) + 8 H+ + 2e- ??? 3Fe2+ + 4H2O, which result in solid state Fe3+ reduction, formation of an oxidized layer and release of Fe(II) to solution. XPS data revealed that iron is present in the ferric state in the surfaces of reacted magnetite and ilmenite and that the Ti Fe ratio increased with reaction pH for ilmenite. Short-term (<36 h) release rates of Fe(II) were linear with time. Between pH 1 and 7, rates varied between 0.3 and 13 ?? 10-14 mol ?? cm-2 ?? s-1 for magnetite and 0.05 and 12.3 ?? 10-14 mol ?? cm-2 ?? s-1 for ilmenite. These rates are two orders of magnitude slower than electrochemical rates determined by Tafel and polarization resistance measurements. Discrepancies are due to both differences in geometric and BET surface area estimates and in the oxidation state of the mineral surface. In long-term closed-system experiments (<120 days), Fe(II) release slowed with time due to the passivation of the surfaces by increasing thicknesses of oxide surface layers. A shrinking core model, coupling surface reaction and diffusion transport, predicted that at neutral pH, the mean residence time for sand-size grains of magnetite and ilmenite will exceed 107 years. This agrees with long-term stability of these oxides in the geologic record. ?? 1994.

  3. Epitaxial Fe{sub 3}Pt/FePt nanocomposites on MgO and SrTiO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casoli, F., E-mail: casoli@imem.cnr.it; Nasi, L.; Cabassi, R.

    We have exploited the pseudomorphic growth of the magnetically soft Fe{sub 3}Pt phase on top of L1{sub 0}-FePt to obtain fully epitaxial soft/hard nanocomposites on both MgO(100) and SrTiO{sub 3}(100). The magnetic properties of this new nanocomposite system, driven by the soft/hard exchange-coupling, can be tailored by varying soft phase thickness, soft phase magnetic anisotropy and substrate. Coercivity is strongly reduced by the addition of the soft phase, a reduction which is definitely affected by the nominal composition of the soft phase and by the substrate choice; similarly is the magnetic phase diagram of the composite system. Coercive field decreasesmore » down to 21% of the hard layer value for Fe{sub 3}Pt(5 nm)/FePt(3.55 nm) nanocomposites on SrTiO{sub 3}; this maximum coercivity reduction was obtained with a nominal atomic content of Fe in the soft phase of 80%.« less

  4. The Influence of Grain Structure on Intermetallic Compound Layer Growth Rates in Fe-Al Dissimilar Welds

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Robson, Joseph D.; Wang, Li; Prangnell, Philip B.

    2018-02-01

    The thickness of the intermetallic compound (IMC) layer that forms when aluminum is welded to steel is critical in determining the properties of the dissimilar joints. The IMC reaction layer typically consists of two phases ( η and θ) and many attempts have been made to determine the apparent activation energy for its growth, an essential parameter in developing any predictive model for layer thickness. However, even with alloys of similar composition, there is no agreement of the correct value of this activation energy. In the present work, the IMC layer growth has been characterized in detail for AA6111 aluminum to DC04 steel couples under isothermal annealing conditions. The samples were initially lightly ultrasonically welded to produce a metallic bond, and the structure and thickness of the layer were then characterized in detail, including tracking the evolution of composition and grain size in the IMC phases. A model developed previously for Al-Mg dissimilar welds was adapted to predict the coupled growth of the two phases in the layer, whilst accounting explicitly for grain boundary and lattice diffusion, and considering the influence of grain growth. It has been shown that the intermetallic layer has a submicron grain size, and grain boundary diffusion as well as grain growth plays a critical role in determining the thickening rate for both phases. The model was used to demonstrate how this explains the wide scatter in the apparent activation energies previously reported. From this, process maps were developed that show the relative importance of each diffusion path to layer growth as a function of temperature and time.

  5. All-optical measurement of interlayer exchange coupling in Fe/Pt/FePt thin films

    NASA Astrophysics Data System (ADS)

    Berk, C.; Ganss, F.; Jaris, M.; Albrecht, M.; Schmidt, H.

    2018-01-01

    Time Resolved Magneto Optic Kerr Effect spectroscopy was used to all-optically study the dynamics in exchange coupled Fe(10 nm)/Pt(x = 0-5 nm)/FePt (10 nm) thin films. As the Pt spacer decreases, the effective magnetization of the layers is seen to evolve towards the strong coupling limit where the two films can be described by a single effective magnetization. The coupling begins at x = 1.5 nm and reaches a maximum exchange coupling constant of 2.89 erg/cm2 at x = 0 nm. The films are ferromagnetically coupled at all Pt thicknesses in the exchange coupled regime (x ≤ 1.5 nm). A procedure for extracting the interlayer exchange constant by measuring the magnetic precession frequencies at multiple applied fields and angles is outlined. The dynamics are well reproduced using micromagnetic simulations.

  6. Giant Spin Hall Effect and Switching Induced by Spin-Transfer Torque in a W /Co40Fe40B20/MgO Structure with Perpendicular Magnetic Anisotropy

    NASA Astrophysics Data System (ADS)

    Hao, Qiang; Xiao, Gang

    2015-03-01

    We obtain robust perpendicular magnetic anisotropy in a β -W /Co40Fe40B20/MgO structure without the need of any insertion layer between W and Co40Fe40B20 . This is achieved within a broad range of W thicknesses (3.0-9.0 nm), using a simple fabrication technique. We determine the spin Hall angle (0.40) and spin-diffusion length for the bulk β form of tungsten with a large spin-orbit coupling. As a result of the giant spin Hall effect in β -W and careful magnetic annealing, we significantly reduce the critical current density for the spin-transfer-torque-induced magnetic switching in Co40Fe40B20 . The elemental β -W is a superior candidate for magnetic memory and spin-logic applications.

  7. Channel flow and trichloroethylene treatment in a partly iron-filled fracture: experimental and model results.

    PubMed

    Cai, Zuansi; Merly, Corrine; Thomson, Neil R; Wilson, Ryan D; Lerner, David N

    2007-08-15

    Technical developments have now made it possible to emplace granular zero-valent iron (Fe(0)) in fractured media to create a Fe(0) fracture reactive barrier (Fe(0) FRB) for the treatment of contaminated groundwater. To evaluate this concept, we conducted a laboratory experiment in which trichloroethylene (TCE) contaminated water was flushed through a single uniform fracture created between two sandstone blocks. This fracture was partly filled with what was intended to be a uniform thickness of iron. Partial treatment of TCE by iron demonstrated that the concept of a Fe(0) FRB is practical, but was less than anticipated for an iron layer of uniform thickness. When the experiment was disassembled, evidence of discrete channelised flow was noted and attributed to imperfect placement of the iron. To evaluate the effect of the channel flow, an explicit Channel Model was developed that simplifies this complex flow regime into a conceptualised set of uniform and parallel channels. The mathematical representation of this conceptualisation directly accounts for (i) flow channels and immobile fluid arising from the non-uniform iron placement, (ii) mass transfer from the open fracture to iron and immobile fluid regions, and (iii) degradation in the iron regions. A favourable comparison between laboratory data and the results from the developed mathematical model suggests that the model is capable of representing TCE degradation in fractures with non-uniform iron placement. In order to apply this Channel Model concept to a Fe(0) FRB system, a simplified, or implicit, Lumped Channel Model was developed where the physical and chemical processes in the iron layer and immobile fluid regions are captured by a first-order lumped rate parameter. The performance of this Lumped Channel Model was compared to laboratory data, and benchmarked against the Channel Model. The advantages of the Lumped Channel Model are that the degradation of TCE in the system is represented by a first-order parameter that can be used directly in readily available numerical simulators.

  8. Channel flow and trichloroethylene treatment in a partly iron-filled fracture: Experimental and model results

    NASA Astrophysics Data System (ADS)

    Cai, Zuansi; Merly, Corrine; Thomson, Neil R.; Wilson, Ryan D.; Lerner, David N.

    2007-08-01

    Technical developments have now made it possible to emplace granular zero-valent iron (Fe 0) in fractured media to create a Fe 0 fracture reactive barrier (Fe 0 FRB) for the treatment of contaminated groundwater. To evaluate this concept, we conducted a laboratory experiment in which trichloroethylene (TCE) contaminated water was flushed through a single uniform fracture created between two sandstone blocks. This fracture was partly filled with what was intended to be a uniform thickness of iron. Partial treatment of TCE by iron demonstrated that the concept of a Fe 0 FRB is practical, but was less than anticipated for an iron layer of uniform thickness. When the experiment was disassembled, evidence of discrete channelised flow was noted and attributed to imperfect placement of the iron. To evaluate the effect of the channel flow, an explicit Channel Model was developed that simplifies this complex flow regime into a conceptualised set of uniform and parallel channels. The mathematical representation of this conceptualisation directly accounts for (i) flow channels and immobile fluid arising from the non-uniform iron placement, (ii) mass transfer from the open fracture to iron and immobile fluid regions, and (iii) degradation in the iron regions. A favourable comparison between laboratory data and the results from the developed mathematical model suggests that the model is capable of representing TCE degradation in fractures with non-uniform iron placement. In order to apply this Channel Model concept to a Fe 0 FRB system, a simplified, or implicit, Lumped Channel Model was developed where the physical and chemical processes in the iron layer and immobile fluid regions are captured by a first-order lumped rate parameter. The performance of this Lumped Channel Model was compared to laboratory data, and benchmarked against the Channel Model. The advantages of the Lumped Channel Model are that the degradation of TCE in the system is represented by a first-order parameter that can be used directly in readily available numerical simulators.

  9. Smart Pd Catalyst with Improved Thermal Stability Supported on High-Surface-Area LaFeO3 Prepared by Atomic Layer Deposition.

    PubMed

    Onn, Tzia Ming; Monai, Matteo; Dai, Sheng; Fonda, Emiliano; Montini, Tiziano; Pan, Xiaoqing; Graham, George W; Fornasiero, Paolo; Gorte, Raymond J

    2018-04-11

    The concept of self-regenerating or "smart" catalysts, developed to mitigate the problem of supported metal particle coarsening in high-temperature applications, involves redispersing large metal particles by incorporating them into a perovskite-structured support under oxidizing conditions and then exsolving them as small metal particles under reducing conditions. Unfortunately, the redispersion process does not appear to work in practice because the surface areas of the perovskite supports are too low and the diffusion lengths for the metal ions within the bulk perovskite too short. Here, we demonstrate reversible activation upon redox cycling for CH 4 oxidation and CO oxidation on Pd supported on high-surface-area LaFeO 3 , prepared as a thin conformal coating on a porous MgAl 2 O 4 support using atomic layer deposition. The LaFeO 3 film, less than 1.5 nm thick, was shown to be initially stable to at least 900 °C. The activated catalysts exhibit stable catalytic performance for methane oxidation after high-temperature treatment.

  10. Magnetic viscosity phenomena in exchange coupled CoFe /MnIr bilayers

    NASA Astrophysics Data System (ADS)

    Kim, Dong Young; Kim, C. O.; Tsunoda, M.; Yamaguchi, M.; Yabugami, S.; Takahashi, M.

    2007-05-01

    The complex permeability spectra were measured in the low (10Hz-1MHz) and microwave (100MHz-9GHz) frequency ranges in CoFe /MnIr bilayers. The low frequency permeability spectra showed the magnetic viscosity effect below the critical antiferromagnet thickness (tcAF), but not at tAFtcAF. The discrepancies between dynamic and quasistatic measurements of the Jc only begin to appear in the vicinity of the tcAF and dominate at tAF

  11. Insights into semiconductor nanowire conductivity using electrodeposition

    NASA Astrophysics Data System (ADS)

    Liu, C.; Salehzadeh, O.; Poole, P. J.; Watkins, S. P.; Kavanagh, K. L.

    2012-10-01

    Copper (Cu) and iron (Fe) electrical contacts to gallium arsenide (GaAs) and indium arsenide (InAs) nanowires (NWs) have been fabricated via electrodeposition. For undoped or low carbon-doped (1017/cm-3), p-type GaAs NWs, Cu or Fe nucleate and grow only on the gold catalyst at the NW tip, avoiding the sidewalls. Metal growth is limited by the Au contact resistance due to thick sidewall depletion layers. For InAs NWs and heavier-doped, core-shell (undoped core-C-doped shell) GaAs NWs, metal nucleation and growth occurs on the sidewalls as well as on the gold catalyst limited now by the ion electrolyte diffusivity.

  12. Observation of spin-polarized electron transport in Alq3 by using a low work function metal

    NASA Astrophysics Data System (ADS)

    Jang, Hyuk-Jae; Pernstich, Kurt P.; Gundlach, David J.; Jurchescu, Oana D.; Richter, Curt. A.

    2012-09-01

    We present the observation of magnetoresistance in Co/Ca/Alq3/Ca/NiFe spin-valve devices. Thin Ca layers contacting 150 nm thick Alq3 enable the injection of spin-polarized electrons into Alq3 due to the engineering of the band alignment. The devices exhibit symmetric current-voltage (I-V) characteristics indicating identical metal contacts on Alq3, and up to 4% of positive magnetoresistance was observed at 4.5 K. In contrast, simultaneously fabricated Co/Alq3/NiFe devices displayed asymmetric I-V curves due to the different metal electrodes, and spin-valve effects were not observed.

  13. Interface adjustment and exchange coupling in the IrMn/NiFe system

    NASA Astrophysics Data System (ADS)

    Spizzo, F.; Tamisari, M.; Chinni, F.; Bonfiglioli, E.; Del Bianco, L.

    2017-01-01

    The exchange bias effect was investigated, in the 5-300 K temperature range, in samples of IrMn [100 Å]/NiFe [50 Å] (set A) and in samples with inverted layer-stacking sequence (set B), produced at room temperature by DC magnetron sputtering in a static magnetic field of 400 Oe. The samples of each set differ for the nominal thickness (tCu) of a Cu spacer, grown at the interface between the antiferromagnetic and ferromagnetic layers, which was varied between 0 and 2 Å. It has been found out that the Cu insertion reduces the values of the exchange field and of the coercivity and can also affect their thermal evolution, depending on the stack configuration. Indeed, the latter also determines a peculiar variation of the exchange bias properties with time, shown and discussed with reference to the samples without Cu of the two sets. The results have been explained considering that, in this system, the exchange coupling mechanism is ruled by the glassy magnetic behavior of the IrMn spins located at the interface with the NiFe layer. Varying the stack configuration and tCu results in a modulation of the structural and magnetic features of the interface, which ultimately affects the spins dynamics of the glassy IrMn interfacial component.

  14. Co-rotational thermo-mechanically coupled multi-field framework and finite element for the large displacement analysis of multi-layered shape memory alloy beam-like structures

    NASA Astrophysics Data System (ADS)

    Solomou, Alexandros G.; Machairas, Theodoros T.; Karakalas, Anargyros A.; Saravanos, Dimitris A.

    2017-06-01

    A thermo-mechanically coupled finite element (FE) for the simulation of multi-layered shape memory alloy (SMA) beams admitting large displacements and rotations (LDRs) is developed to capture the geometrically nonlinear effects which are present in many SMA applications. A generalized multi-field beam theory implementing a SMA constitutive model based on small strain theory, thermo-mechanically coupled governing equations and multi-field kinematic hypotheses combining first order shear deformation assumptions with a sixth order polynomial temperature field through the thickness of the beam section are extended to admit LDRs. The co-rotational formulation is adopted, where the motion of the beam is decomposed to rigid body motion and relative small deformation in the local frame. A new generalized multi-layered SMA FE is formulated. The nonlinear transient spatial discretized equations of motion of the SMA structure are synthesized and solved using the Newton-Raphson method combined with an implicit time integration scheme. Correlations of models incorporating the present beam FE with respective results of models incorporating plane stress SMA FEs, demonstrate excellent agreement of the predicted LDRs response, temperature and phase transformation fields, as well as, significant gains in computational time.

  15. Modifying exchange-spring behavior of CoPt/NiFe bilayer by inserting a Pt or Ru spacer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, Jen-Hwa, E-mail: jhhsu@phys.ntu.edu.tw; Tsai, C. L.; Lee, C.-M.

    2015-05-07

    We herein explore the possibility of obtaining tunable tilted magnetic anisotropy in ordered-CoPt (5 nm)/NiFe(t{sub NiFe}) bilayers through modifying their exchange spring behavior by inserting Pt and Ru-spacers. The tuning process of tilt angle magnetization of NiFe-layer was systematically investigated by varying the Pt or Ru thickness (t{sub Pt} or t{sub Ru}) from 0 to 8 nm at different thicknesses of NiFe (t{sub NiFe} = 1.5, 4.0, and 6.0 nm). Polar magneto-optic Kerr effect (p-MOKE) studies reveal that the bilayers grown in absence of spacers exhibit almost a rectangular hysteresis loop. With the insertion of Pt-spacer, the loop becomes more and more tilted as t{submore » Pt} increases; whereas, in the case of Ru-spacer, the nature of the loops is not simply changing in one direction. The estimated SQR{sub ⊥} (= θ{sub r}/θ{sub s}) values from the p-MOKE loops are found to monotonically decrease with increasing t{sub Pt} when t{sub Pt} ≦ 4 nm. In contrast, in the case of Ru-spacer, an oscillatory behavior for the SQR{sub ⊥} values is apparent when t{sub Ru} ≦ 4 nm. As a result, an oscillatory tilted angle of NiFe spin configuration was obtained in the case of Ru-spacer; while a decoupling effect was prominent for the Pt-spacer. The results of present study reveal that the insertion of Pt and Ru-spacers as an appropriate means for realizing tunable tilted magnetic anisotropy in the CoPt/NiFe exchange springs.« less

  16. Spin valves with spin-engineered domain-biasing scheme

    NASA Astrophysics Data System (ADS)

    Lu, Z. Q.; Pan, G.

    2003-06-01

    Synthetic spin-filter spin valves with spin-engineered biasing scheme "sub/Ta/NiFe/IrMn/NiFe/NOL/Cu1/CoFe/Cu2/CoFe/Ru/CoFe/IrMn/Ta" were developed. In the structure, the orthogonal magnetic configuration for biasing and pinning field was obtained by one-step magnetic annealing process by means of spin flop, which eliminated the need for two antiferromagnetic materials with distinctively different blocking temperatures and two-step magnetic annealing as in conventional exchange biasing scheme. The longitudinal domain biasing of spin valves was achieved by using interlayer coupling field through Cu1 spacer. By adjusting the thickness of the Cu1 layer, the interlayer coupling biasing field can provide domain stabilization and was sufficiently strong to constrain the magnetization in coherent rotation. This can prevent Barkhausen noises associated with magnetization reversal. We report here a proof of concept study of such a domain-biasing scheme, which has its important technological applications in nanoscale spin valve and magnetic tunneling junction read heads and other spintronic devices.

  17. Innovative soft magnetic multilayers with enhanced in-plane anisotropy and ferromagnetic resonance frequency for integrated RF passive devices

    NASA Astrophysics Data System (ADS)

    Falub, Claudiu V.; Bless, Martin; Hida, Rachid; MeduÅa, Mojmír; Ammann, Arnold

    2018-04-01

    We present an innovative, economical method for manufacturing soft magnetic materials that may pave the way for integrated thin film magnetic cores with dramatically improved properties. Soft magnetic multilayered thin films based on the Fe-28%Co20%B (at.%) and Co-4.5%Ta4%Zr (at.%) amorphous alloys are deposited on 8" bare Si and Si/200nm-thermal-SiO2 wafers in an industrial, high-throughput Evatec LLS EVO II magnetron sputtering system. The multilayers consist of stacks of alternating 80-nm-thick ferromagnetic layers and 4-nm-thick Al2O3 dielectric interlayers. Since in our dynamic sputter system the substrate cage rotates continuously, such that the substrates face different targets alternatively, each ferromagnetic sublayer in the multilayer consists of a fine structure comprising alternating CoTaZr and FeCoB nanolayers with very sharp interfaces. We adjust the thickness of these individual nanolayers between 0.5 and 1.5 nm by changing the cage rotation speed and the power of each gun, which is an excellent mode to engineer new, composite ferromagnetic materials. Using X-ray reflectometry (XRR) we reveal that the interfaces between the FeCoB and CoTaZr nanolayers are perfectly smooth with roughness of 0.2-0.3 nm. Kerr magnetometry and B-H looper measurements for the as-deposited samples show that the coercivity of these thin films is very low, 0.2-0.3 Oe, and gradually scales up with the thickness of FeCoB nanolayers, i.e. with the increase of the overall Fe content from 0 % (e.g. CoTaZr-based multilayers) to 52 % (e.g. FeCoB-based multilayers). We explain this trend in the random anisotropy model, based on considerations of grain size growth, as revealed by glancing angle X-ray diffraction (GAXRD), but also because of the increase of magnetostriction with the increase of Fe content as shown by B-H looper measurements performed on strained wafers. The unexpected enhancement of the in-plane anisotropy field from 18.3 Oe and 25.8 Oe for the conventional CoTaZr- and FeCoB-based multilayers, respectively, up to ˜48 Oe for the nanostructured multilayers with FeCoB/CoTaZr nano-bilayers is explained based on interface anisotropy contribution. These novel soft magnetic multilayers, with enhanced in-plane anisotropy, allow operation at higher frequencies, as revealed by broadband (between 100 MHz and 10 GHz) RF measurements that exhibit a classical Landau-Lifschitz-Gilbert (LLG) behavior.

  18. Antiferromagnetic structure of exchange-coupled L a0.7S r0.3Fe O3 thin films studied using angle-dependent x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Jia, Yue; Chopdekar, Rajesh V.; Shafer, Padraic; Arenholz, Elke; Liu, Zhiqi; Biegalski, Michael D.; Takamura, Yayoi

    2017-12-01

    The magnetic structure of exchange-coupled antiferromagnetic (AF) layers in epitaxial L a0.7S r0.3Mn O3 (LSMO)/L a0.7S r0.3Fe O3 (LSFO) superlattices grown on (111)-oriented SrTi O3 substrates was studied using angle-dependent x-ray absorption spectroscopy utilizing linearly polarized x rays. We demonstrate the development of the measurement protocols needed to determine the orientation of the LSFO antiferromagnetic spin axis and how it responds to an applied magnetic field due to exchange interactions with an adjacent ferromagnetic layer. A small energy difference exists between two types of AF order: the majority of the AF moments cant out-of-the-plane of the film along the 110 or 100 directions depending on the LSFO layer thickness. In response to an applied magnetic field, these canted moments are aligned with a single 110 or 100 direction that maintains a nearly perpendicular orientation relative to the LSMO sublayer magnetization. The remaining AF moments lie within the (111 ) plane and these in-plane moments can be reoriented to an arbitrary in-plane direction to lie parallel to the LSMO sublayer magnetization. These results demonstrate that the magnetic order of AF thin films and heterostructures is far more complex than in bulk LSFO and can be tuned with orientation, thickness, and applied magnetic field.

  19. Evolution of the interfacial perpendicular magnetic anisotropy constant of the Co2FeAl/MgO interface upon annealing

    NASA Astrophysics Data System (ADS)

    Conca, A.; Niesen, A.; Reiss, G.; Hillebrands, B.

    2018-04-01

    We investigate a series of films with different thickness of the Heusler alloy Co2FeAl in order to study the effect of annealing on the interface with a MgO layer and on the bulk magnetic properties. Our results reveal that while the perpendicular interface anisotropy constant K\\perpS is zero for the as-deposited samples, its value increases with annealing up to a value of 1.14 +/- 0.07 mJ m‑2 for the series annealed at 320 °C and of 2.01 +/- 0.7 mJ m‑2 for the 450 °C annealed series owing to a strong modification of the interface during the thermal treatment. This large value ensures a stabilization of a perpendicular magnetization orientation for an extrapolated thickness below 1.7 nm. The data additionally shows that the in-plane biaxial anisotropy constant has a different evolution with thickness in as-deposited and annealed systems. The Gilbert damping parameter α shows minima for all series for a thickness of 40 nm and an absolute minimum value of 2.8+/-0.1×10-3 . The thickness dependence is explained in terms of an inhomogeneous magnetization state generated by the interplay between the different anisotropies of the system and by the crystalline disorder.

  20. Electrochemical and in-situ Surface-Enhanced Raman Spectroscopic (SERS) study of passive films formed on low-carbon steel in highly alkaline environments

    NASA Astrophysics Data System (ADS)

    Mancio, Mauricio

    In reinforced concrete, a passive layer forms because of the alkaline conditions in the pores of the cement paste, where large concentrations of hydroxides create a solution with pH typically between 12 and 14. The corrosion resistance of the material depends on the characteristics and integrity of the passive film; however, currently very limited information is available about the passive films formed on carbon steel under such conditions. This work presents an electrochemical and in-situ Surface-Enhanced Raman Spectroscopic (SERS) study of passive films formed on low-carbon steel in highly alkaline environments. More specifically, the study focuses on the characterization of the films formed on ASTM A36 steel reinforcing bar exposed to aqueous solutions that aim to reproduce the chemistry of the environment typically found within the cement paste. Electrochemical techniques such as cyclic potentiodynamic polarization curves, galvanostatic cathodic polarization and linear polarization resistance were employed, in addition to in-situ Surface Enhanced Raman Spectroscopy (SERS). The experimental setup was built in a way that SERS experiments could be performed simultaneously with potentiodynamic polarization curves, enabling a detailed analysis of the formation and reduction of the surface films as a function of applied potential. Three solutions with different pH levels were used for the polarization and SERS experiments, namely 0.55M KOH + 0.16M NaOH ([OH-]=0.71), 0.08M KOH + 0.02M NaOH ([OH-]=0.10) and 0.008M KOH + 0.002M NaOH ([OH-]=0.01). Additional NaOH solutions in which the pH was varied from 13 to 9 and the ionic strength from 10 -5 to 10-1 were prepared for a pilot study using linear polarization resistance. Results show that the features observed in the cyclic potentiodynamic polarization curves correlated well with the potential arrests observed in the GCP plots as well as with the changes observed in the SERS spectra, providing valuable information about the formation of passive films on carbon steel in each of the environments studied in this research. Although there are key differences among the films formed in the different solutions tested---particularly regarding their thickness and protectiveness---once the film-formation processes had been completed, generally the films were characterized by an inner layer of Fe(II) and an outer layer of Fe(III). A Fe(OH)2-like species appears consistently as dominating the inner Fe(II) layer, while the outer typically composed mostly by gamma-Fe2O3 and/or gamma-FeOOH. Film thickness varied from about 22 nm to 266 nm depending on the pH of the solution, and decreased as pH was reduced.

  1. Novel "203" type of heterostructured MoS2-Fe3O4-C ternary nanohybrid: Synthesis, and enhanced microwave absorption properties

    NASA Astrophysics Data System (ADS)

    Yang, Erqi; Qi, Xiaosi; Xie, Ren; Bai, Zhongchen; Jiang, Yang; Qin, Shuijie; Zhong, Wei; Du, Youwei

    2018-06-01

    It is widely recognized that constructing multiple interface structures to enhance interface polarization is very good for the attenuation of electromagnetic (EM) wave. Here, a novel "203" type of heterostructured nanohybrid consisting of two-dimensional (2D) MoS2 nanosheets, zero-dimensional (0D) Fe3O4 nanoparticles and three-dimensional (3D) carbon layers was elaborately designed and successfully synthesized by a two-step method: Fe3O4 nanoparticles were deposited onto the surface of few-layer MoS2 nanosheets by a hydrothermal method, followed by the carbonation process by a chemical vapor deposition method. Compared to that of "20" type MoS2-Fe3O4, the as-prepared heterostructured "203" type MoS2-Fe3O4-C ternary nanohybrid exhibited remarkably enhanced EM and microwave absorption properties. And the minimum reflection loss (RL) value of the obtained MoS2-Fe3O4-C ternary nanohybrid could reach -53.03 dB at 14.4 GHz with a matching thickness of 7.86 mm. Moreover, the excellent EM wave absorption property of the as-prepared ternary nanohybrid was proved to be attributed to the quarter-wavelength matching model. Therefore, a simple and effective route was proposed to produce MoS2-based mixed-dimensional van der Waals heterostructure, which provided a new platform for the designing and production of high performance microwave absorption materials.

  2. Interface Character of Aluminum-Graphite Metal Matrix Composites.

    DTIC Science & Technology

    1983-01-27

    studied included the commer- cial A/graphite composites; layered model systems on single crystal and poly- crystalline graphite substrates as well as...composition and thickness of the composite interface, and graphite crystal orientation. 3 For the model systems in this study , single crystal graphite...been reviewed by Kingcry. Segregation at surfaces in single- crystal MgO of Fe, Cr and Sc, which were Dresent in concentrations within the single- 3phase

  3. Effect of a CoFeB layer on the anisotropic magnetoresistance of Ta/CoFeB/MgO/NiFe/MgO/CoFeB/Ta films

    NASA Astrophysics Data System (ADS)

    Li, Minghua; Shi, Hui; Dong, Yuegang; Ding, Lei; Han, Gang; Zhang, Yao; Liu, Ye; Yu, Guanghua

    2017-10-01

    The anisotropic magnetoresistance (AMR) and magnetic properties of NiFe films can be remarkably enhanced via CoFeB layer. In the case of an ultrathin NiFe film having a Ta/CoFeB/MgO/NiFe/MgO/CoFeB/Ta structure, the CoFeB/MgO layers suppressed the formation of magnetic dead layers and the interdiffusions and interface reactions between the NiFe and Ta layers. The AMR reached a maximum value of 3.56% at 450 °C. More importantly, a single NiFe (1 1 1) peak can be formed resulting in higher AMR values for films having CoFeB layer. This enhanced AMR also originated from the significant specular reflection of electrons owing to the crystalline MgO layer, together with the sharp interfaces with the NiFe layer. These factors together resulted in higher AMR and improved magnetic properties.

  4. Spin-dependent heat transport and thermal boundary resistance

    NASA Astrophysics Data System (ADS)

    Jeong, Taehee

    In this thesis, thermal conductivity change depending on the magnetic configurations has been studied. In order to make different magnetic configurations, we developed a spin valve structure, which has high MR ratio and low saturation field. The high MR ratio was achieved using Co/Cu multilayer and 21A or 34A thick Cu layer. The low saturation field was obtained by implementing different coercivities of the successive ferromagnetic layers. For this purpose, Co/Cu/Cu tri-layered structure was used with the thicknesses of the Co layers; 15 A and 30 A. For the thermal conductivity measurement, a three-omega method was employed with a thermally isolated microscale rod. We fabricated the microscale rod using optical lithography and MEMS process. Then the rod was wire-bonded to a chip-carver for further electrical measurement. For the thermal conductivity measurement, we built the three-omega measurement system using two lock-in amplifiers and two differential amplifiers. A custom-made electromagnet was added to the system to investigate the impact of magnetic field. We observed titanic thermal conductivity change depending on the magnetic configurations of the Co/Cu/Co multilayer. The thermal conductivity change was closely correlated with that of the electric conductivity in terms of the spin orientation, but the thermal conductivity was much more sensitive than that of the electric conductivity. The relative thermal conductivity change was 50% meanwhile that of electric resistivity change was 8.0%. The difference between the two ratios suggests that the scattering mechanism for charge and heat transport in the Co/Cu/Co multilayer is different. The Lorentz number in Weidemann-Franz law is also spin-dependent. Thermal boundary resistance between metal and dielectrics was also studied in this thesis. The thermal boundary resistance becomes critical for heat transport in a nanoscale because the thermal boundary resistance can potentially determine overall heat transport in thin film structures. A transient theraroreflectance (TTR) technique can be used for measuring the thermal conductivity of thin films in cross-sectional direction. In this study, a pump-probe scheme was employed for the TTR technique. We built an optical pump-probe system by using a nanosecond pulse laser for pumping and a continuous-wave laser for probing. A short-time heating event occured at the surface of a sample by shining a laser pulse on the surface. Then the time-resolved thermoreflectance signals were detected using a photodetector and an oscilloscope. The increased temperature decreases slowly and its thermal decay depends on the thermal properties of a sample. Since the reflectivity is linearly proportional to the temperature, the time-resolved thermoreflectance signals have the information of the thermal properties of a sample. In order to extract the thermal properties of a sample, a thermal analysis was performed by fitting the experimental data with thermal models. We developed 2-layered and 3-layered thermal models using the analogies between thermal conduction and electric conduction and a transmission-line concept. We used two sets of sample structures: Au/SiNx/Si substrate and Au/CoFe/SiNx/Si substrate with various thickness of SiN x layer. Using the pump-probe system, we measured the time-resolved thermoreflectance signals for each sample. Then, the thermal conductivity and thermal boundary resistance were obtained by fitting the experimental data with the thermal models. The thermal conductivity of SiNx films was measured to be 2.0 W/mK for both structures. In the case of the thermal boundary resistance, it was 0.81x10-5 m 2K/W at the Au/SiNx interface and 0.54x10 -5 m2K/W at the CoFe/SiNx interface, respectively. The difference of the thermal boundary resistance between Au/SiNx and CoFe/SiNx might be came from the different phonon dispersion of Au and CoFe. The thermal conductivity did not depend on the thickness of SiNx films in the thickness range of 50-200nm. However, the thermal boundary resistance at metal/SiNx interfaces will impact overall thermal conduction when the thickness of SiNx thin films is in a nanometer order. For example, apparent thermal conductivity of SiN x film becomes half of the intrinsic thermal conductivity when the thickness decreases to 16nm. Therefore, it is advised that the thermal boundary resistance between metal and dielectrics should be counted in nano-scale electronic devices. (Abstract shortened by UMI.)

  5. Effect of Plasma Nitriding and Nitrocarburizing on HVOF-Sprayed Stainless Steel Coatings

    NASA Astrophysics Data System (ADS)

    Park, Gayoung; Bae, Gyuyeol; Moon, Kyungil; Lee, Changhee

    2013-12-01

    In this work, the effects of plasma nitriding (PN) and nitrocarburizing on HVOF-sprayed stainless steel nitride layers were investigated. 316 (austenitic), 17-4PH (precipitation hardening), and 410 (martensitic) stainless steels were plasma-nitrided and nitrocarburized using a N2 + H2 gas mixture and the gas mixture containing C2H2, respectively, at 550 °C. The results showed that the PN and nitrocarburizing produced a relatively thick nitrided layer consisting of a compound layer and an adjacent nitrogen diffusion layer depending on the crystal structures of the HVOF-sprayed stainless steel coatings. Also, the diffusion depth of nitrogen increased when a small amount of C2H2 (plasma nitrocarburizing process) was added. The PN and nitrocarburizing resulted in not only an increase of the surface hardness, but also improvement of the load bearing capacity of the HVOF-sprayed stainless steel coatings because of the formation of CrN, Fe3N, and Fe4N phases. Also, the plasma-nitrocarburized HVOF-sprayed 410 stainless steel had a superior surface microhardness and load bearing capacity due to the formation of Cr23C6 on the surface.

  6. Fabry-Perot magnonic ballistic coherent transport across ultrathin ferromagnetic lamellar bcc Ni nanostructures between Fe leads

    NASA Astrophysics Data System (ADS)

    Khater, A.; Saim, L.; Tigrine, R.; Ghader, D.

    2018-06-01

    We propose thermodynamically stable systems of ultrathin lamellar bcc Ni nanostructures between bcc Fe leads, sbnd Fe[Ni(n)]Fesbnd , based on the available literature for bcc Ni overlayers on Fe(001) surfaces, and establish the necessary criteria for their structural and ferromagnetic order, for thicknesses n ≤ 6 bcc Ni monatomic layers. The system is globally ferromagnetic. A theoretical model is presented to investigate and understand the ballistic coherent scattering of Fe spin-waves, incident from the leads, at the ferromagnetic bcc Ni nanostructure. The Nisbnd Ni and Nisbnd Fe exchange are computed using the Ising effective field theory (EFT), and the magnetic ground state of the system is constructed in the Heisenberg representation. We compute the spin-wave eigenmodes localized on the bcc Ni nanostructure, using the phase field matching theory (PFMT), illustrating the effects of symmetry breaking on the confinement of localized spin excitations. The reflection and transmission scattering properties of spin-waves incident from the Fe leads, across the embedded Ni nanostructures are investigated within the framework of the same PFMT methodology. A highly refined Fabry-Perot magnonic ballistic coherent transmission spectra is observed for these sbnd Fe[Ni(n)]Fesbnd systems.

  7. Growth and characterization of thin Cu-phthalocyanine films on MgO(001) layer for organic light-emitting diodes

    PubMed Central

    2012-01-01

    Surface morphology and thermal stability of Cu-phthalocyanine (CuPc) films grown on an epitaxially grown MgO(001) layer were investigated by using atomic force microscope and X-ray diffractometer. The (002) textured β phase of CuPc films were prepared at room temperature beyond the epitaxial MgO/Fe/MgO(001) buffer layer by the vacuum deposition technique. The CuPc structure remained stable even after post-annealing at 350°C for 1 h under vacuum, which is an important advantage of device fabrication. In order to improve the device performance, we investigated also current-voltage-luminescence characteristics for the new top-emitting organic light-emitting diodes with different thicknesses of CuPc layer. PMID:23181826

  8. Growth and characterization of thin Cu-phthalocyanine films on MgO(001) layer for organic light-emitting diodes.

    PubMed

    Bae, Yu Jeong; Lee, Nyun Jong; Kim, Tae Hee; Cho, Hyunduck; Lee, Changhee; Fleet, Luke; Hirohata, Atsufumi

    2012-11-26

    Surface morphology and thermal stability of Cu-phthalocyanine (CuPc) films grown on an epitaxially grown MgO(001) layer were investigated by using atomic force microscope and X-ray diffractometer. The (002) textured β phase of CuPc films were prepared at room temperature beyond the epitaxial MgO/Fe/MgO(001) buffer layer by the vacuum deposition technique. The CuPc structure remained stable even after post-annealing at 350°C for 1 h under vacuum, which is an important advantage of device fabrication. In order to improve the device performance, we investigated also current-voltage-luminescence characteristics for the new top-emitting organic light-emitting diodes with different thicknesses of CuPc layer.

  9. High Temperature Oxidation of Hot-Dip Aluminized T92 Steels

    NASA Astrophysics Data System (ADS)

    Abro, Muhammad Ali; Hahn, Junhee; Lee, Dong Bok

    2018-03-01

    The T92 steel plate was hot-dip aluminized, and oxidized in order to characterize the high-temperature oxidation behavior of hot-dip aluminized T92 steel. The coating consisted of Al-rich topcoat with scattered Al3Fe grains, Al3Fe-rich upper alloy layer with scattered (Al, Al5Fe2, AlFe)-grains, and Al5Fe2-rich lower alloy layer with scattered (Al5Fe2, AlFe)-grains. Oxidation at 800 °C for 20 h formed (α-Al2O3 scale)/(AlFe layer)/(AlFe3 layer)/(α-Fe(Al) layer), while oxidation at 900 °C for 20 h formed (α-Al2O3 scale plus some Fe2O3)/(AlFe layer)/(AlFe3 layer)/(α-Fe(Al) layer) from the surface. During oxidation, outward migration of all substrate elements, inward diffusion of oxygen, and back and forth diffusion of Al occurred according to concentration gradients. Also, diffusion transformed and broadened AlFe and AlFe3 layers dissolved with some oxygen and substrate alloying elements. Hot-dip aluminizing improved the high-temperature oxidation resistance of T92 steel through preferential oxidation of Al at the surface.

  10. High Temperature Oxidation of Hot-Dip Aluminized T92 Steels

    NASA Astrophysics Data System (ADS)

    Abro, Muhammad Ali; Hahn, Junhee; Lee, Dong Bok

    2018-05-01

    The T92 steel plate was hot-dip aluminized, and oxidized in order to characterize the high-temperature oxidation behavior of hot-dip aluminized T92 steel. The coating consisted of Al-rich topcoat with scattered Al3Fe grains, Al3Fe-rich upper alloy layer with scattered (Al, Al5Fe2, AlFe)-grains, and Al5Fe2-rich lower alloy layer with scattered (Al5Fe2, AlFe)-grains. Oxidation at 800 °C for 20 h formed (α-Al2O3 scale)/(AlFe layer)/(AlFe3 layer)/(α-Fe(Al) layer), while oxidation at 900 °C for 20 h formed (α-Al2O3 scale plus some Fe2O3)/(AlFe layer)/(AlFe3 layer)/(α-Fe(Al) layer) from the surface. During oxidation, outward migration of all substrate elements, inward diffusion of oxygen, and back and forth diffusion of Al occurred according to concentration gradients. Also, diffusion transformed and broadened AlFe and AlFe3 layers dissolved with some oxygen and substrate alloying elements. Hot-dip aluminizing improved the high-temperature oxidation resistance of T92 steel through preferential oxidation of Al at the surface.

  11. Micromagnetic modeling of the shielding properties of nanoscale ferromagnetic layers

    NASA Astrophysics Data System (ADS)

    Iskandarova, I. M.; Knizhnik, A. A.; Popkov, A. F.; Potapkin, B. V.; Stainer, Q.; Lombard, L.; Mackay, K.

    2016-09-01

    Ferromagnetic shields are widely used to concentrate magnetic fields in a target region of space. Such shields are also used in spintronic nanodevices such as magnetic random access memory and magnetic logic devices. However, the shielding properties of nanostructured shields can differ considerably from those of macroscopic samples. In this work, we investigate the shielding properties of nanostructured NiFe layers around a current line using a finite element micromagnetic model. We find that thin ferromagnetic layers demonstrate saturation of magnetization under an external magnetic field, which reduces the shielding efficiency. Moreover, we show that the shielding properties of nanoscale ferromagnetic layers strongly depend on the uniformity of the layer thickness. Magnetic anisotropy in ultrathin ferromagnetic layers can also influence their shielding efficiency. In addition, we show that domain walls in nanoscale ferromagnetic shields can induce large increases and decreases in the generated magnetic field. Therefore, ferromagnetic shields for spintronic nanodevices require careful design and precise fabrication.

  12. Effect of solvents on morphology, magnetic and dielectric properties of (α-Fe2O3@SiO2) core-shell nanoparticles.

    PubMed

    Joshi, Deepika P; Pant, Geeta; Arora, Neha; Nainwal, Seema

    2017-02-01

    Present work describes the formation of α-Fe 2 O 3 @SiO 2 core shell structure by systematic layer by layer deposition of silica shell on core iron oxide nanoparticles prepared via various solvents. Sol-gel method has been used to synthesize magnetic core and the dielectric shell. The average crystallite size of iron oxide nanoparticles was calculated ∼20 nm by X-ray diffraction pattern. Morphological study by scanning electron microscopy revealed that the core-shell nanoparticles were spherical in shape and the average size of nanoparticles increased by varying solvent from methanol to ethanol to isopropanol due to different chemical structure and nature of the solvents. It was also observed that the particles prepared by solvent ethanol were more regular and homogeneous as compared to other solvents. Magnetic measurements showed the weak ferromagnetic behaviour of both core α-Fe 2 O 3 and silica-coated iron oxide nanoparticles which remained same irrespective of the solvent chosen. However, magnetization showed dependency on the types of solvent chosen due to the variation in shell thickness. At room temperature, dielectric constant and dielectric loss of silica nanoparticles for all the solvents showed decrement with the increment in frequency. Decrement in the value of dielectric constant and increment in dielectric loss was observed for silica coated iron oxide nanoparticles in comparison of pure silica, due to the presence of metallic core. Homogeneous and regular silica layer prepared by using ethanol as a solvent could serve as protecting layer to shield the magnetic behaviour of iron oxide nanoparticles as well as to provide better thermal insulation over pure α-Fe 2 O 3 nanoparticles.

  13. Thin Co/Ni-based bottom pinned spin-transfer torque magnetic random access memory stacks with high annealing tolerance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomczak, Y., E-mail: Yoann.Tomczak@imec.be; Department of Chemistry, KU Leuven; Swerts, J.

    2016-01-25

    Spin-transfer torque magnetic random access memory (STT-MRAM) is considered as a replacement for next generation embedded and stand-alone memory applications. One of the main challenges in the STT-MRAM stack development is the compatibility of the stack with CMOS process flows in which thermal budgets up to 400 °C are applied. In this letter, we report on a perpendicularly magnetized MgO-based tunnel junction (p-MTJ) on a thin Co/Ni perpendicular synthetic antiferromagnetic layer with high annealing tolerance. Tunnel magneto resistance (TMR) loss after annealing occurs when the reference layer loses its perpendicular magnetic anisotropy due to reduction of the CoFeB/MgO interfacial anisotropy. Amore » stable Co/Ni based p-MTJ stack with TMR values of 130% at resistance-area products of 9 Ω μm{sup 2} after 400 °C anneal is achieved via moment control of the Co/Ta/CoFeB reference layer. Thinning of the CoFeB polarizing layer down to 0.8 nm is the key enabler to achieve 400 °C compatibility with limited TMR loss. Thinning the Co below 0.6 nm leads to a loss of the antiferromagnetic interlayer exchange coupling strength through Ru. Insight into the thickness and moment engineering of the reference layer is displayed to obtain the best magnetic properties and high thermal stability for thin Co/Ni SAF-based STT-MRAM stacks.« less

  14. Stability of Fe-Cr alloy interconnects under CH 4-H 2O atmosphere for SOFCs

    NASA Astrophysics Data System (ADS)

    Horita, Teruhisa; Xiong, Yueping; Yamaji, Katsuhiko; Sakai, Natsuko; Yokokawa, Harumi

    The chemical stability of Fe-Cr alloys (ZMG232 and SUS430) was examined under humidified CH 4 gases at 1073 K to simulate the real anode atmosphere in SOFC operation. Surface microstructure change and oxide scale layer formation were observed on the oxidized Fe-Cr alloy surfaces. The main reaction products were Mn-Cr-(Fe) spinels for both alloys. Secondary ion mass spectrometry (SIMS) was applied to measure the elemental distribution of minor and major elements around the oxide scale/alloy interface. A high concentration of Mn on the oxide scale surface suggested the fast diffusion of Mn in the oxide scale to form the spinels. Annealing in CH 4-H 2O made the oxide scale thicker with duration time on the alloy surface. The parabolic growth rates ( kp) of oxide scale layer were evaluated from the thickness of oxide scales by secondary ion mass spectrometry (SIMS) depth profiles, which were calculated to the following: kp=6.25×10 -6 μm 2/s for SUS430 and kp=4.42×10 -6 μm 2/s for ZMG232. The electrical conductivity of oxidized alloys showed the semi-conductor temperature dependence for both alloys. The electrical conductivity of oxidized ZMG232 alloy was higher than that of oxidized SUS430.

  15. Fast electrosynthesis of Fe-containing layered double hydroxide arrays toward highly efficient electrocatalytic oxidation reactions† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5sc02417j

    PubMed Central

    Li, Zhenhua; An, Hongli; Wang, Zixuan; Xu, Simin; Evans, David G.; Duan, Xue

    2015-01-01

    A new electrochemical synthesis route was developed for the fabrication of Fe-containing layered double hydroxide (MFe-LDHs, M = Ni, Co and Li) hierarchical nanoarrays, which exhibit highly-efficient electrocatalytic performances for the oxidation reactions of several small molecules (water, hydrazine, methanol and ethanol). Ultrathin MFe-LDH nanoplatelets (200–300 nm in lateral length; 8–12 nm in thickness) perpendicular to the substrate surface are directly prepared within hundreds of seconds (<300 s) under cathodic potential. The as-obtained NiFe-LDH nanoplatelet arrays display promising behavior in the oxygen evolution reaction (OER), giving rise to a rather low overpotential (0.224 V) at 10.0 mA cm–2 with largely enhanced stability, much superior to previously reported electro-oxidation catalysts as well as the state-of-the-art Ir/C catalyst. Furthermore, the MFe-LDH nanoplatelet arrays can also efficiently catalyze several other fuel molecules’ oxidation (e.g., hydrazine, methanol and ethanol), delivering a satisfactory electrocatalytic activity and a high operation stability. In particular, this preparation method of Fe-containing LDHs is amenable to fast, effective and large-scale production, and shows promising applications in water splitting, fuel cells and other clean energy devices. PMID:29435211

  16. Kinetics of electrochemical boriding of low carbon steel

    NASA Astrophysics Data System (ADS)

    Kartal, G.; Eryilmaz, O. L.; Krumdick, G.; Erdemir, A.; Timur, S.

    2011-05-01

    In this study, the growth kinetics of the boride layers forming on low carbon steel substrates was investigated during electrochemical boriding which was performed at a constant current density of 200 mA/cm 2 in a borax based electrolyte at temperatures ranging from 1123 K to 1273 K for periods of 5-120 min. After boriding, the presence of both FeB and Fe 2B phases were confirmed by the X-ray diffraction method. Cross-sectional microscopy revealed a very dense and thick morphology for both boride phases. Micro hardness testing of the borided steel samples showed a significant increase in the hardness of the borided surfaces (i.e., up to (1700 ± 200) HV), while the hardness of un-borided steel samples was approximately (200 ± 20) HV. Systematic studies over a wide range of boriding time and temperature confirmed that the rate of the boride layer formation is strongly dependent on boriding duration and has a parabolic character. The activation energy of boride layer growth for electrochemical boriding was determined as (172.75 ± 8.6) kJ/mol.

  17. Oriented Y-type hexagonal ferrite thin films prepared by chemical solution deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buršík, J., E-mail: bursik@iic.cas.cz; Kužel, R.; Knížek, K.

    2013-07-15

    Thin films of Ba{sub 2}Zn{sub 2}Fe{sub 12}O{sub 22} (Y) hexaferrite were prepared through the chemical solution deposition method on SrTiO{sub 3}(1 1 1) (ST) single crystal substrates using epitaxial SrFe{sub 12}O{sub 19} (M) hexaferrite thin layer as a seed template layer. The process of crystallization was mainly investigated by means of X-ray diffraction and atomic force microscopy. A detailed inspection revealed that growth of seed layer starts through the break-up of initially continuous film into isolated grains with expressive shape anisotropy and hexagonal habit. The vital parameters of the seed layer, i.e. thickness, substrate coverage, crystallization conditions and temperature rampmore » were optimized with the aim to obtain epitaxially crystallized Y phase. X-ray diffraction Pole figure measurements and Φ scans reveal perfect parallel in-plane alignment of SrTiO{sub 3} substrate and both hexaferrite phases. - Graphical abstract: XRD pole figure and AFM patterns of Ba{sub 2}Zn{sub 2}Fe{sub 12}O{sub 22} thin film epitaxially grown on SrTiO{sub 3}(1 1 1) single crystal using seeding layer templating. - Highlights: • Single phase Y-type hexagonal ferrite thin films were prepared by CSD method. • Seed M layer breaks into isolated single crystal islands and serves as a template. • Large seed grains grow by consuming the grains within the bulk of recoated film. • We explained the observed orientation relation of epitaxial domains. • Epitaxial growth on SrTiO{sub 3}(1 1 1) with relation (0 0 1){sub M,Y}//(1 1 1){sub ST}+[1 0 0]{sub M,Y}//[2 −1 −1]{sub ST}.« less

  18. Sharp transition from ripple patterns to a flat surface for ion beam erosion of Si with simultaneous co-deposition of iron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, K.; Broetzmann, M.; Hofsaess, H.

    We investigate pattern formation on Si by sputter erosion under simultaneous co-deposition of Fe atoms, both at off-normal incidence, as function of the Fe surface coverage. The patterns obtained for 5 keV Xe ion irradiation at 30 Degree-Sign incidence angle are analyzed with atomic force microscopy. Rutherford backscattering spectroscopy of the local steady state Fe content of the Fe-Si surface layer allows a quantitative correlation between pattern type and Fe coverage. With increasing Fe coverage the patterns change, starting from a flat surface at low coverage (< 2 Multiplication-Sign 10{sup 15} Fe/cm{sup 2}) over dot patterns (2-8 Multiplication-Sign 10{sup 15}more » Fe/cm{sup 2}), ripples patterns (8-17 Multiplication-Sign 10{sup 15} Fe/cm{sup 2}), pill bug structures (1.8 Multiplication-Sign 10{sup 16} Fe/cm{sup 2}) and a rather flat surface with randomly distributed weak pits at high Fe coverage (>1.8 Multiplication-Sign 10{sup 16} Fe/cm{sup 2}). Our results confirm the observations by Macko et al. for 2 keV Kr ion irradiation of Si with Fe co-deposition. In particular, we also find a sharp transition from pronounced ripple patterns with large amplitude (rms roughness {approx} 18 nm) to a rather flat surface (rms roughness {approx} 0.5 nm). Within this transition regime, we also observe the formation of pill bug structures, i.e. individual small hillocks with a rippled structure on an otherwise rather flat surface. The transition occurs within a very narrow regime of the steady state Fe surface coverage between 1.7 and 1.8 Multiplication-Sign 10{sup 16} Fe/cm{sup 2}, where the composition of the mixed Fe-Si surface layer of about 10 nm thickness reaches the stoichiometry of FeSi{sub 2}. Phase separation towards amorphous iron silicide is assumed as the major contribution for the pattern formation at lower Fe coverage and the sharp transition from ripple patterns to a flat surface.« less

  19. The Chemical Composition of the Galactic Bulge and Implications for its Evolution

    NASA Astrophysics Data System (ADS)

    McWilliam, Andrew

    2016-08-01

    At a bulge latitude of b = -4°, the average [Fe/H] and [Mg/H] values are +0.06 and +0.17 dex, roughly 0.2 and 0.7 dex higher than the local thin and thick disk values, respectively, suggesting a large bulge effective yield, perhaps due to efficient retention of supernova ejecta. The bulge vertical [Fe/H] gradient, at ∼0.5 dex/kpc, appears to be due to a changing mixture of sub-populations (near +0.3 dex and -0.3 dex and one possibly near -0.7 dex) with latitude. At solar [Fe/H], the bulge [Al/Fe] and [α/Fe] ratios are ∼ +0.15 dex. Below [Fe/H] ∼ -0.5 dex, the bulge and local thick disk compositions are very similar; but the measured [Mg/Fe], [/Fe], [La/Eu] and dramatic [Cu/Fe] ratios suggest higher SFR in the bulge. However, these composition differences with the thick disk could be due to measurement errors and non-LTE effects. Unusual zig-zag trends of [Cu/Fe] and [Na/Fe] suggest metallicity-dependent nucleosynthesis by core-collapse supernovae in the Type Ia supernova time-delay scenario. The bulge sub-population compositions resemble the local thin and thick disks, but at higher [Fe/H], suggesting a radial [Fe/H] gradient of -0.04 to -0.05 dex/kpc for both the thin and thick disks. If the bulge formed through accretion of inner thin and thick disk stars, it appears that these stars retained vertical scale heights characteristic of their kinematic origin, resulting in the vertical [Fe/H] gradient and [α/Fe] trends seen today.

  20. Spin transport and spin accumulation signals in Si studied in tunnel junctions with a Fe/Mg ferromagnetic multilayer and an amorphous SiOxNy tunnel barrier

    NASA Astrophysics Data System (ADS)

    Nakane, Ryosho; Hada, Takato; Sato, Shoichi; Tanaka, Masaaki

    2018-04-01

    We studied the spin accumulation signals in phosphorus-doped n+-Si (8 × 1019 cm-3) by measuring the spin transport in three-terminal vertical devices with Fe(3 nm)/Mg(0 and 1 nm)/SiOxNy(1 nm)/n+-Si(001) tunnel junctions, where the amorphous SiOxNy layer was formed by oxnitridation of the Si substrate with radio frequency plasma. Obvious spin accumulation signals were observed at 4-300 K in the spin extraction geometry when the thickness of the Mg insertion layer was 1 nm. We found that by inserting a thin (1 nm) Mg layer, intermixing of Fe and SiOxNy is suppressed, leading to the appearance of the spin accumulation signals, and this result is consistent with the dead layer model recently proposed by our group [S. Sato et al., Appl. Phys. Lett. 107, 032407 (2015)]. We obtained relatively high spin polarization (PS) of electrons tunneling through the junction and long spin lifetime (τS): PS = 16% and τS = 5.6 ns at 4 K and PS = 7.5% and τS = 2.7 ns at 300 K. Tunnel junctions with an amorphous SiOxNy tunnel barrier are very promising for Si-based spintronic devices, since they can be formed by the method compatible with the silicon complementary metal-oxide-semiconductor technology.

  1. Results of analyses performed on basalt adjacent to penetrators emplaced into volcanic rock at Amboy, California, April 1976

    NASA Technical Reports Server (NTRS)

    Blanchard, M.; Bunch, T.; Davis, A.; Shade, H.; Erlichman, J.; Polkowski, G.

    1977-01-01

    The physical and chemical modifications found in the basalt after impact of four penetrators were studied. Laboratory analyses show that mineralogical and elemental changes are produced in the powdered and crushed basalt immediately surrounding the penetrator. Optical microscopy studies of material next to the skin of the penetrator revealed a layer, 0-2 mm thick, of glass and abraded iron alloy mixed with fractured mineral grains of basalt. Elemental analysis of the 0-2 mm layer revealed increased concentrations of Fe, Cr, Ni, No, and Mn, and reduced concentrations of Mg, Al, Si, and Ca. The Fe, Cr, Ni, and Mo were in fragments abraded from the penetrator. Mineralogical changes occurring in the basalt sediment next to the penetrator include the introduction of micron-size grains of alpha-iron, magnetite, and hematite. The newly formed silicate minerals include metastable phases of silica (tridymite and cristobalite). An increased concentration of Fe, Cr, Ni, and Mo occurred in the 2-mm to 1-cm layer of penetrator no. 1, which impacted at the highest velocity. No elemental concentration increase was noted for penetrators nos. 2 and 3 in the 2-mm to 1-cm layer. Contaminants introduced by the penetrator occur up to 1 cm away from the penetrator's skin. Although volatile elements do migrate and new minerals are formed during the destruction of host minerals in the crushed rock, no changes were observed beyond the 1-cm distance.

  2. EFFECT OF Mg AND TEMPERATURE ON Fe-Al ALLOY LAYER IN Fe/(Zn-6%Al-x%Mg) SOLID-LIQUID DIFFUSION COUPLES

    NASA Astrophysics Data System (ADS)

    Liang, Liu; Liu, Ya-Ling; Liu, Ya; Peng, Hao-Ping; Wang, Jian-Hua; Su, Xu-Ping

    Fe/(Zn-6%Al-x%Mg) solid-liquid diffusion couples were kept at various temperatures for different periods of time to investigate the formation and growth of the Fe-Al alloy layer. Scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and X-ray diffraction (XRD) were used to study the constituents and morphology of the Fe-Al alloy layer. It was found that the Fe2Al5Znx phase layer forms close to the iron sheet and the FeAl3Znx phase layer forms near the side of the melted Zn-6%Al-3%Mg in diffusion couples. When the Fe/(Zn-6%Al-3%Mg) diffusion couple is kept at 510∘C for more than 15min, a continuous Fe-Al alloy layer is formed on the interface of the diffusion couple. Among all Fe/(Zn-6%Al-x%Mg) solid-liquid diffusion couples, the Fe-Al alloy layer on the interface of the Fe/(Zn-6% Al-3% Mg) diffusion couple is the thinnest. The Fe-Al alloy layer forms only when the diffusion temperature is above 475∘. These results show that the Fe-Al alloy layer in Fe/(Zn-6%Al-x%Mg) solid-liquid diffusion couples is composed of Fe2Al5Znx and FeAl3Znx phase layers. Increasing the diffusing temperature and time period would promote the formation and growth of the Fe-Al alloy layer. When the Mg content in the Fe/(Zn-6%Al-x%Mg) diffusion couples is 3%, the growth of the Fe-Al alloy layer is inhibited. These results may explain why there is no obvious Fe-Al alloy layer formed on the interface of steel with a Zn-6%Al-3%Mg coating.

  3. Revegetation of Acid Rock Drainage (ARD) Producing Slope Surface Using Phosphate Microencapsulation and Artificial Soil

    NASA Astrophysics Data System (ADS)

    Kim, Jae Gon

    2017-04-01

    Oxidation of sulfides produces acid rock drainage (ARD) upon their exposure to oxidation environment by construction and mining activities. The ARD causes the acidification and metal contamination of soil, surface water and groundwater, the damage of plant, the deterioration of landscape and the reduction of slope stability. The revegetation of slope surface is one of commonly adopted strategies to reduce erosion and to increase slope stability. However, the revegetation of the ARD producing slope surface is frequently failed due to its high acidity and toxic metal content. We developed a revegetation method consisting of microencapsualtion and artificial soil in the laboratory. The revegetation method was applied on the ARD producing slope on which the revegetation using soil coverage and seeding was failed and monitored the plant growth for one year. The phosphate solution was applied on sulfide containing rock to form stable Fe-phosphate mineral on the surface of sulfide, which worked as a physical barrier to prevent contacting oxidants such as oxygen and Fe3+ ion to the sulfide surface. After the microencapsulation, two artificial soil layers were constructed. The first layer containing organic matter, dolomite powder and soil was constructed at 2 cm thickness to neutralize the rising acidic capillary water from the subsurface and to remove the dissolved oxygen from the percolating rain water. Finally, the second layer containing seeds, organic matter, nutrients and soil was constructed at 3 cm thickness on the top. After application of the method, the pH of the soil below the artificial soil layer increased and the ARD production from the rock fragments reduced. The plant growth showed an ordinary state while the plant died two month after germination for the previous revegetation trial. No soil erosion occurred from the slope during the one year field test.

  4. Synthesis of Self-Assembled Multifunctional Nanocomposite Catalysts with Highly Stabilized Reactivity and Magnetic Recyclability

    NASA Astrophysics Data System (ADS)

    Yu, Xu; Cheng, Gong; Zheng, Si-Yang

    2016-05-01

    In this paper, a multifunctional Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite catalyst with highly stabilized reactivity and magnetic recyclability was synthesized by a self-assembled method. The magnetic Fe3O4 nanoparticles were coated with a thin layer of the SiO2 to obtain a negatively charged surface. Then positively charged poly(ethyleneimine) polymer (PEI) was self-assembled onto the Fe3O4@SiO2 by electrostatic interaction. Next, negatively charged glutathione capped gold nanoparticles (GSH-AuNPs) were electrostatically self-assembled onto the Fe3O4@SiO2@PEI. After that, silver was grown on the surface of the nanocomposite due to the reduction of the dopamine in the alkaline solution. An about 5 nm thick layer of polydopamine (PDA) was observed to form the Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite. The Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite was carefully characterized by the SEM, TEM, FT-IR, XRD and so on. The Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite shows a high saturation magnetization (Ms) of 48.9 emu/g, which allows it to be attracted rapidly to a magnet. The Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite was used to catalyze the reduction of p-nitrophenol (4-NP) to p-aminophenol (4-AP) as a model system. The reaction kinetic constant k was measured to be about 0.56 min-1 (R2 = 0.974). Furthermore, the as-prepared catalyst can be easily recovered and reused for 8 times, which didn’t show much decrease of the catalytic capability.

  5. Characterization of M-type barium hexagonal ferrite-based wide band microwave absorber

    NASA Astrophysics Data System (ADS)

    Meshram, M. R.; Agrawal, Nawal K.; Sinha, Bharoti; Misra, P. S.

    2004-05-01

    This paper present the design, development and characterization of the hexagonal ferrite powder [BaCo 0.5δTi 0.5δMn 0.1Fe (11.87-δ)O 19] and [Ba(MnTi) δFe (12-2δ)O 19] at δ=1.6 as a microwave absorber. The hexagonal ferrite powder has been developed by dry attrition and sintering procedure. The developed ferrite powder 60% by weight has been mixed in epoxy resin to form a microwave-absorbing paint. This paint was coated on a conducting aluminum sheet to study the absorption characteristics of a linearly polarized TE wave at X band. The results for single- and two-layer microwave absorbers for different coating thicknesses have been reported. It has been found that it shows the broadband characteristics with minimum absorption of 8 dB from 8 to 12 GHz for a coating thickness of 2 mm.These paints are very useful in military applications such as RCS reduction, camouflaging of the target and prevention of EMI, etc.

  6. First principles calculation for Gilbert damping constants in ferromagnetic/non-magnetic junctions

    NASA Astrophysics Data System (ADS)

    Hiramatsu, R.; Miura, D.; Sakuma, A.

    2018-05-01

    We evaluated an intrinsic α in ferromagnetic (FM)/non-magnetic (NM) junctions from first principles (FM = Co, Fe, and Ni and NM = Cu, Pd, and Pt) to investigate the effects of the inserted NM layer. α is calculated by liner muffin-tin orbital methods based on the torque-correlation model. We confirmed that Gilbert damping is enhanced and saturated as NM thickness increases, and that the enhancement is greater in NM materials having a stronger spin-orbital interaction. By contrast, the calculated FM thickness dependences of α show that Gilbert damping tends to decrease and be saturated as the FM thickness increases. Under the torque-correlation model, the dependences of α on FM and NM thickness can be explained by considering the electronic structure of the total system, including junction interfaces, which exhibit similar behaviors derived by spin pumping theory.

  7. Silicon induced stability and mobility of indium zinc oxide based bilayer thin film transistors

    NASA Astrophysics Data System (ADS)

    Chauhan, Ram Narayan; Tiwari, Nidhi; Liu, Po-Tsun; Shieh, Han-Ping D.; Kumar, Jitendra

    2016-11-01

    Indium zinc oxide (IZO), silicon containing IZO, and IZO/IZO:Si bilayer thin films have been prepared by dual radio frequency magnetron sputtering on glass and SiO2/Si substrates for studying their chemical compositions and electrical characteristics in order to ascertain reliability for thin film transistor (TFT) applications. An attempt is therefore made here to fabricate single IZO and IZO/IZO:Si bilayer TFTs to study the effect of film thickness, silicon incorporation, and bilayer active channel on device performance and negative bias illumination stress (NBIS) stability. TFTs with increasing single active IZO layer thickness exhibit decrease in carrier mobility but steady improvement in NBIS; the best values being μFE ˜ 27.0, 22.0 cm2/Vs and ΔVth ˜ -13.00, -6.75 V for a channel thickness of 7 and 27 nm, respectively. While silicon incorporation is shown to reduce the mobility somewhat, it raises the stability markedly (ΔVth ˜ -1.20 V). Further, IZO (7 nm)/IZO:Si (27 nm) bilayer based TFTs display useful characteristics (field effect mobility, μFE = 15.3 cm2/Vs and NBIS value, ΔVth =-0.75 V) for their application in transparent electronics.

  8. Tailoring the soft magnetic properties of sputtered multilayers by microstructure engineering for high frequency applications

    NASA Astrophysics Data System (ADS)

    Falub, Claudiu V.; Rohrmann, Hartmut; Bless, Martin; Meduňa, Mojmír; Marioni, Miguel; Schneider, Daniel; Richter, Jan H.; Padrun, Marco

    2017-05-01

    Soft magnetic Ni78.5Fe21.5, Co91.5Ta4.5Zr4 and Fe52Co28B20 thin films laminated with SiO2, Al2O3, AlN, and Ta2O5 dielectric interlayers were deposited on 8" Si wafers using DC, pulsed DC and RF cathodes in the industrial, high-throughput Evatec LLS-EVO-II magnetron sputtering system. A typical multilayer consists of a bilayer stack up to 50 periods, with alternating (50-100) nm thick magnetic layers and (2-20) nm thick dielectric interlayers. We introduced the in-plane magnetic anisotropy in these films during sputtering by a combination of a linear magnetic field, seed layer texturing by means of linear collimators, and the oblique incidence inherent to the geometry of the sputter system. Depending on the magnetic material, the anisotropy field for these films was tuned in the range of ˜(7-120) Oe by choosing the appropriate interlayer thickness, the aspect ratios of the linear collimators in front of the targets, and the sputter process parameters (e.g. pressure, power, DC pulse frequency), while the coercivity was kept low, ˜(0.05-0.9) Oe. The alignment of the easy axis (EA) on the 8" wafers was typically between ±1.5° and ±4°. We discuss the interdependence of structure and magnetic properties in these films, as revealed by atomic force microscopy (AFM), X-ray reflectivity (XRR) with reciprocal space mapping (RSM) and magneto-optical Kerr effect (MOKE) measurements.

  9. Structural and crystal orientation analysis of Al-Si coating on Ni-based superalloy by means of EBSD technique

    NASA Astrophysics Data System (ADS)

    Muslimin, A. N.; Sugiarti, E.; Aritonang, T.; Purawiardi, R. I.; Desiati, R. D.

    2018-03-01

    Ni-based superalloy is widely used for high performance components in power generation turbine due to its excellent mechanical properties. However, Ni-based superalloy has low oxidation resistantance. Therefore, surface coating is required to improve oxidation resistance at high temperatures. Al-Si as a coting material was successfully co-deposited on Ni-based substrate by pack cementation method at 900 °C for about 4 hours. The oxidation test was carried out at high temperature of 1000 °C for 100 hours. Micro structural characterization and analysis on crystal orientation were perfomed by using Field Emission Scanning Electron Microscope (FE-SEM) and Electron Back Scatter Diffraction (EBSD) technique, respectively. The results showed that the coating layer with a homogenous layer and had a thickness of 53 μm consisting of β-NiAl with cubic structure and Ni2Al3 with hexagonal structure. TGO layer was developed after oxidation and had a thickness of about 5 μm consisting of α-Al2O3 and spinel NiCr2O4. The phase composition map and crystal orientation acquired by EBSD technique was also discussed both in TGO and coating layers.

  10. Ferromagnetic resonance investigation in as-prepared NiFe/FeMn/NiFe trilayer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, S. J.; Xu, K.; Yu, L. M.

    2007-06-01

    NiFe/FeMn/NiFe trilayer prepared by dc magnetron sputtering was systematically investigated by ferromagnetic resonance technique (FMR) at room temperature. For NiFe/FeMn/NiFe trilayer, there are two distinct resonance peaks both in in-plane and out-of-plane FMR spectra, which are attributed to the two NiFe layers, respectively. The isotropic in-plane resonance field shift is negative for the bottom NiFe layer, while positive for the top NiFe layer. And, such phenomena result from the negative interfacial perpendicular anisotropy at the bottom NiFe/FeMn interface and positive interfacial perpendicular anisotropy at the top FeMn/NiFe interface. The linewidth of the bottom NiFe layer is larger than that ofmore » the top NiFe layer, which might be related to the greater exchange coupling at the bottom NiFe/FeMn interface.« less

  11. Exhibition of veiled features in diffusion bonding of titanium alloy and stainless steel via copper

    NASA Astrophysics Data System (ADS)

    Thirunavukarasu, Gopinath; Kundu, Sukumar; Laha, Tapas; Roy, Deb; Chatterjee, Subrata

    2017-11-01

    An investigation was carried out to know the extent of influence of bonding-time on the interface structure and mechanical properties of diffusion bonding (DB) of TiA|Cu|SS. DB of Ti6Al4V (TiA) and 304 stainless steel (SS) using pure copper (Cu) of 200-μm thickness were processed in vacuum using 4-MPa bonding-pressure at 1123 K from 15 to 120 min in steps of 15 min. Preparation of DB was not possible when bonding-time was less than 60 min as the bonding at Cu|SS interface was unsuccessful in spite of effective bonding at TiA|Cu interface; however, successful DB were produced when the bonding-time was 60 min and beyond. DB processed for 60 and 75 min (classified as shorter bonding-time interval) showed distinctive characteristics (structural, mechanical, and fractural) as compared to the DB processed for 90, 105, and 120 min (classified as longer bonding-time interval). DB processed for 60 and 75 min exhibited layer-wise Cu-Ti-based intermetallics at TiA|Cu interface, whereas Cu|SS interface was completely free from reaction products. The layer-wise structure of Cu-Ti-based intermetallics were not observed at TiA|Cu interface in the DB processed for longer bonding-time; however, the Cu|SS interface had layer-wise ternary intermetallic compounds (T1, T2, and T3) of Cu-Fe-Ti-based along with σ phase depending upon the bonding-time chosen. Diffusivity of Ti-atoms in Cu-layer (DTi in Cu-layer) was much greater than the diffusivity of Fe-atoms in Cu-layer (DFe in Cu-layer). Ti-atoms reached Cu|SS interface but Fe-atoms were unable to reach TiA|Cu interface. It was observed that DB fractured at Cu|SS interface when processed for shorter bonding-time interval, whereas the DB processed for longer bonding-time interval fractured apparently at the middle of Cu-foil region predominantly due to the existence of brittle Cu-Fe-Ti-based intermetallics.

  12. Ferric Iron Precipitation in the Nagahama Bay, Satsuma Iwo-Jima Island, Kagoshima

    NASA Astrophysics Data System (ADS)

    Nagata, T.; Kiyokawa, S.; Ikehara, M.; Oguri, K.; Goto, S.; Ito, T.; Yamaguchi, K. E.; Ueshiba, T.

    2010-12-01

    Satsuma-Iwojima island is active volcanic island and 6 x 3 km in size, located 38km south of Kyushu island, Japan. The reddish brown water along the coast of the Iwo-dake volcano at the center of the island formed by neutralization through mixing of shallow hydrothermal fluid and seawater. The reddish brown water contains reddish ferrihydrite (Fe3+) that is derived from oxidation of Fe2+ from acidic hot spring (Shikaura and Tazaki, 2001). In the Nagahama Bay with its opening to the south, red-colored Fe-rich water is affected by tidal current, but sedimentation of the ferric hydroxide is confirmed to occur in the ocean bottom (Ninomiya and Kiyokawa, 2009). Here we focus other lines of evidence from long term observations and meteorological records as important factor to form thick iron rich sediments. Meteorological and stationary observations: We used weather record in the Satsuma Iwo-jima and cross-checked with stationary observations, which enabled us to observe color changes of the surface of Nagahama Bay. It was made clear that north wind condition in the Nagahama Bay resulted in changes of the color of its surface, from red to green, by intrusion of ocean water coming from outside. Long term temperature monitoring: The temperature of seawater in the Nagahama Bay fluctuated synchronically with the air temperature. But that of hot spring water rather remained constant regardless of the seasonal change. We observed that seawater temperature in the Nagahama Bay is low at high tide and high at low tide, and the rage of temperature change is maximum at the spring tide and minimum at the neap tide. In other words, the amount of discharge of hot spring and that of seawater inflow vary inversely. Core sample: In the Nagahama Bay, iron rich sediments that is more than 1 m thick were identified. The core sample shows lithology as following; upper part, 10-20cm thick, formed loose Fe-rich deposit, lower portion formed alteration of weakly consolidated Fe-rich orange-colored mud, the organic-rich black mud and volcanic ash layers. The basal part has distinctive pink ash layer, which was identified as 1997 volcanic activity. Therefore, the core samples have records of the past 12 years and show average deposition rate of 8cm/year. Sediment trap: There accumulated 7.5cm-thick materials, dominated by ferrihydrite, during the 82 days experiment (2009/July/12~Oct./03). Sedimentation rate is 2.8cm/month (33.3cm/year). Estimated deposition rate of the core sample is 8cm/year. These differences suggest that about three-forth of Fe-hydroxide formed the Nagahama Bay would have been flashed to the open ocean by tidal and storm effects. These lines of evidence suggest that neap tide supports relatively quiet and has enough supply of hot spring into seawater and south wind works as a cap. The fine-grained iron Fe-hydroxide in the Nagahama Bay is provided and deposited at neap tide and south wind condition.

  13. CoxFe1-x oxide coatings on metallic interconnects for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Shen, Fengyu; Lu, Kathy

    2016-10-01

    In order to improve the performance of Cr-containing steel as an interconnect material for solid oxide fuel cells, CoFe alloy coatings with Co:Fe ratios of 9:1, 8:2, 7:3, 6:4, and 5:5 are deposited by electrodeposition and then oxidized to CoxFe1-x oxide coatings with a thickness of ∼6 μm as protective layers on the interconnect. The area specific resistance of the coated interconnect increases with the Fe content. Higher Co content oxide coatings are more effective in limiting the growth of the chromia scale while all coatings are effective in inhibiting Cr diffusion and evaporation. With the Co0.8Fe0.2 oxide coated interconnect, the electrochemical performance of the Sm0.5Sr0.5Co0.2Fe0.8O3 cathode is improved. Only 1.54 atomic percentage of Cr is detected on the surface of the Sm0.5Sr0.5Co0.2Fe0.8O3 cathode while no Cr is detected 0.66 μm or more into the cathode. CoxFe1-x oxide coatings are promising candidates for solid oxide fuel cell interconnects with the advantage of using existing cathode species for compatibility and performance enhancement.

  14. Evolution of structural distortion in BiFeO3 thin films probed by second-harmonic generation

    NASA Astrophysics Data System (ADS)

    Jin, Kuijuan; Wang, Jiesu; Gu, Junxing; L03 Group in Institute of Physics, Chinese Academy of Sciences Team

    BiFeO3 thin films have drawn much attention due to its potential applications for novel magnetoelectric devices and fundamental physics in magnetoelectric coupling. However, the structural evolution of BiFeO3 films with thickness remains controversial. Here we use an optical second-harmonic generation technique to explore the phase-related symmetry evolution of BiFeO3 thin films with the variation of thickness. The crystalline structures for 60 and 180-nm-thick BiFeO3 thin films were characterized by high-resolution X-ray diffractometry reciprocal space mapping and the local piezoelectric response for 60-nm-thick BiFeO3 thin films was characterized by piezoresponse force microscopy. The present results show that the symmetry of BiFeO3 thin films with a thickness below 60 nm belongs to the point group 4mm. We conclude that the disappearance of fourfold rotational symmetry in SHG s-out pattern implies for the appearance of R-phase. The fact that the thinner the film is, the closer to 1 the tensor element ratio χ31/ χ15 tends, indicates an increase of symmetry with the decrease of thickness for BiFeO3 thin films. email: kjjin@iphy.ac.cn

  15. Evolution of structural distortion in BiFeO3 thin films probed by second-harmonic generation.

    PubMed

    Wang, Jie-Su; Jin, Kui-Juan; Guo, Hai-Zhong; Gu, Jun-Xing; Wan, Qian; He, Xu; Li, Xiao-Long; Xu, Xiu-Lai; Yang, Guo-Zhen

    2016-12-01

    BiFeO 3 thin films have drawn much attention due to its potential applications for novel magnetoelectric devices and fundamental physics in magnetoelectric coupling. However, the structural evolution of BiFeO 3 films with thickness remains controversial. Here we use an optical second-harmonic generation technique to explore the phase-related symmetry evolution of BiFeO 3 thin films with the variation of thickness. The crystalline structures for 60 and 180-nm-thick BiFeO 3 thin films were characterized by high-resolution X-ray diffractometry reciprocal space mapping and the local piezoelectric response for 60-nm-thick BiFeO 3 thin films was characterized by piezoresponse force microscopy. The present results show that the symmetry of BiFeO 3 thin films with a thickness below 60 nm belongs to the point group 4 mm. We conclude that the disappearance of fourfold rotational symmetry in SHG s-out pattern implies for the appearance of R-phase. The fact that the thinner the film is, the closer to 1 the tensor element ratio χ 31 /χ 15 tends, indicates an increase of symmetry with the decrease of thickness for BiFeO 3 thin films.

  16. Evolution of structural distortion in BiFeO3 thin films probed by second-harmonic generation

    PubMed Central

    Wang, Jie-su; Jin, Kui-juan; Guo, Hai-zhong; Gu, Jun-xing; Wan, Qian; He, Xu; Li, Xiao-long; Xu, Xiu-lai; Yang, Guo-zhen

    2016-01-01

    BiFeO3 thin films have drawn much attention due to its potential applications for novel magnetoelectric devices and fundamental physics in magnetoelectric coupling. However, the structural evolution of BiFeO3 films with thickness remains controversial. Here we use an optical second-harmonic generation technique to explore the phase-related symmetry evolution of BiFeO3 thin films with the variation of thickness. The crystalline structures for 60 and 180-nm-thick BiFeO3 thin films were characterized by high-resolution X-ray diffractometry reciprocal space mapping and the local piezoelectric response for 60-nm-thick BiFeO3 thin films was characterized by piezoresponse force microscopy. The present results show that the symmetry of BiFeO3 thin films with a thickness below 60 nm belongs to the point group 4 mm. We conclude that the disappearance of fourfold rotational symmetry in SHG s-out pattern implies for the appearance of R-phase. The fact that the thinner the film is, the closer to 1 the tensor element ratio χ31/χ15 tends, indicates an increase of symmetry with the decrease of thickness for BiFeO3 thin films. PMID:27905565

  17. Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition.

    PubMed

    Wang, Guizhen; Gao, Zhe; Tang, Shiwei; Chen, Chaoqiu; Duan, Feifei; Zhao, Shichao; Lin, Shiwei; Feng, Yuhong; Zhou, Lei; Qin, Yong

    2012-12-21

    In this work, atomic layer deposition is applied to coat carbon nanocoils with magnetic Fe(3)O(4) or Ni. The coatings have a uniform and highly controlled thickness. The coated nanocoils with coaxial multilayer nanostructures exhibit remarkably improved microwave absorption properties compared to the pristine carbon nanocoils. The enhanced absorption ability arises from the efficient complementarity between complex permittivity and permeability, chiral morphology, and multilayer structure of the products. This method can be extended to exploit other composite materials benefiting from its convenient control of the impedance matching and combination of dielectric-magnetic multiple loss mechanisms for microwave absorption applications.

  18. Reductive precipitation of neptunium on iron surfaces under anaerobic conditions

    NASA Astrophysics Data System (ADS)

    Yang, H.; Cui, D.; Grolimund, D.; Rondinella, V. V.; Brütsch, R.; Amme, M.; Kutahyali, C.; Wiss, A. T.; Puranen, A.; Spahiu, K.

    2017-12-01

    Reductive precipitation of the radiotoxic nuclide 237Np from nuclear waste on the surface of iron canister material at simulated deep repository conditions was investigated. Pristine polished as well as pre-corroded iron specimens were interacted in a deoxygenated solution containing 10-100 μM Np(V), with 10 mM NaCl and 2 mM NaHCO3 as background electrolytes. The reactivity of each of the two different systems was investigated by analyzing the temporal evolution of the Np concentration in the reservoir. It was observed that pre-oxidized iron specimen with a 40 μm Fe3O4 corrosion layer are considerably more reactive regarding the reduction and immobilization of aqueous Np(V) as compared to pristine polished Fe(0) surfaces. 237Np immobilized by the reactive iron surfaces was characterized by scanning electron microscopy as well as synchrotron-based micro-X-ray fluorescence and X-ray absorption spectroscopy. At the end of experiments, a 5-8 μm thick Np-rich layer was observed to be formed ontop of the Fe3O4 corrosion layer on the iron specimen. The findings from this work are significant in the context of performance assessments of deep geologic repositories using iron as high level radioactive waste (HLW) canister material and are of relevance regarding removing pollutants from contaminated soil or groundwater aquifer systems.

  19. Fundamental limits in heat-assisted magnetic recording and methods to overcome it with exchange spring structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suess, D.; Abert, C.; Bruckner, F.

    2015-04-28

    The switching probability of magnetic elements for heat-assisted recording with pulsed laser heating was investigated. It was found that FePt elements with a diameter of 5 nm and a height of 10 nm show, at a field of 0.5 T, thermally written-in errors of 12%, which is significantly too large for bit-patterned magnetic recording. Thermally written-in errors can be decreased if larger-head fields are applied. However, larger fields lead to an increase in the fundamental thermal jitter. This leads to a dilemma between thermally written-in errors and fundamental thermal jitter. This dilemma can be partly relaxed by increasing the thickness of the FePtmore » film up to 30 nm. For realistic head fields, it is found that the fundamental thermal jitter is in the same order of magnitude of the fundamental thermal jitter in conventional recording, which is about 0.5–0.8 nm. Composite structures consisting of high Curie top layer and FePt as a hard magnetic storage layer can reduce the thermally written-in errors to be smaller than 10{sup −4} if the damping constant is increased in the soft layer. Large damping may be realized by doping with rare earth elements. Similar to single FePt grains in composite structure, an increase of switching probability is sacrificed by an increase of thermal jitter. Structures utilizing first-order phase transitions breaking the thermal jitter and writability dilemma are discussed.« less

  20. Optimization of the buffer surface of CoFeB/MgO/CoFeB-based magnetic tunnel junctions by ion beam milling

    NASA Astrophysics Data System (ADS)

    Martins, L.; Ventura, J.; Ferreira, R.; Freitas, P. P.

    2017-12-01

    Due to their high tunnel magnetoresistance (TMR) ratios at room temperature, magnetic tunnel junctions (MTJs) with a crystalline MgO insulating barrier and CoFeB ferromagnetic (FM) layers are the best candidates for novel magnetic memory applications. To overcome impedance matching problems in electronic circuits, the MgO barrier must have an ultra-low thickness (∼1 nm). Therefore, it is mandatory to optimize the MTJ fabrication process, in order to prevent relevant defects in the MgO barrier that could affect the magnetic and electrical MTJ properties. Here, a smoothing process aiming to decrease the roughness of the buffer surface before the deposition of the full MTJ stack is proposed. An ion beam milling process was used to etch the surface of an MTJ buffer structure with a Ru top layer. The morphologic results prove an effective decrease of the Ru surface roughness with the etching time. The electrical and magnetic results obtained for MTJs with smoothed buffer structures show a direct influence of the buffer roughness and coupling field on the improvement of the TMR ratio.

  1. Self-vibration cancellation of a novel bi-directional magnetized NdFeB/magnetostrictive/piezoelectric laminate

    NASA Astrophysics Data System (ADS)

    Leung, Chung Ming; Wang, Feifei; Wang, Ya

    2016-06-01

    A novel magnetoelectric (ME) laminated composite structure is proposed in this work, aiming to provide a good self-vibration cancellation performance under the magnetic field detection environment. The proposed structure consists of two Terfenol-D magnetostrictive alloy plates which are revised and length-magnetized by two NdFeB magnets bonded on the top surface of a thickness-polarized Pb(Zr, Ti)O3 (PZT) ceramic plate with separate electrodes. Experiments have shown that great vibration suppression up to 44 dB under harmonic disturbance was observed. The ME coefficient of the proposed structure also reaches up to ˜29 mV/Oe at non-resonance frequency and 758 mV/Oe at resonance frequency of 79 kHz which is ˜2 times larger than the traditional L-T Terfenol-D/PZT bilayer configuration of the same scale. Such performance improvement is achieved based on the bi-directional magnetic field bias (HBias) of two NdFeB magnets in magnetostrictive layer, internal in-series electrical wire connection in piezoelectric layer. The proposed design has great potential to be used for industrial applications associated with heavy environmental vibration noise.

  2. Study on the application of shear-wave elastography to thin-layered media and tubular structure: Finite-element analysis and experiment verification

    NASA Astrophysics Data System (ADS)

    Jang, Jun-keun; Kondo, Kengo; Namita, Takeshi; Yamakawa, Makoto; Shiina, Tsuyoshi

    2016-07-01

    Shear-wave elastography (SWE) enables the noninvasive and quantitative evaluation of the mechanical properties of human soft tissue. Generally, shear-wave velocity (C S) can be estimated using the time-of-flight (TOF) method. Young’s modulus is then calculated directly from the estimated C S. However, because shear waves in thin-layered media propagate as guided waves, C S cannot be accurately estimated using the conventional TOF method. Leaky Lamb dispersion analysis (LLDA) has recently been proposed to overcome this problem. In this study, we performed both experimental and finite-element (FE) analyses to evaluate the advantages of LLDA over TOF. In FE analysis, we investigated why the conventional TOF is ineffective for thin-layered media. In phantom experiments, C S results estimated using the two methods were compared for 1.5 and 2% agar plates and tube phantoms. Furthermore, it was shown that Lamb waves can be applied to tubular structures by extracting lateral waves traveling in the long axis direction of the tube using a two-dimensional window. Also, the effects of the inner radius and stiffness (or shear wavelength) of the tube on the estimation performance of LLDA were experimentally discussed. In phantom experiments, the results indicated good agreement between LLDA (plate phantoms of 2 mm thickness: 5.0 m/s for 1.5% agar and 7.2 m/s for 2% agar; tube phantoms with 2 mm thickness and 2 mm inner radius: 5.1 m/s for 1.5% agar and 7.0 m/s for 2% agar; tube phantoms with 2 mm thickness and 4 mm inner radius: 5.3 m/s for 1.5% agar and 7.3 m/s for 2% agar) and SWE measurements (bulk phantoms: 5.3 m/s ± 0.27 for 1.5% agar and 7.3 m/s ± 0.54 for 2% agar).

  3. Amine quinone polyurethane polymers for improved performance in advanced particulate media

    NASA Astrophysics Data System (ADS)

    Warren, G. W.; Sharma, Rahul; Nikles, D. E.; Hu, Y.; Street, S. C.

    1999-03-01

    The magnetic layer used in commercial, high density, metal particle recording media consists of sub-micron sized Fe particles suspended in a polyurethane polymer binder. New amine-quinone polymers, AQPU15 and AQPU100, have been developed for improving corrosion resistance of the particles. A fundamental study of the nature of the AQ polymer/metal oxide interface and its relationship to corrosion resistance is reported. Electrochemical impedance spectroscopy was used to evaluate corrosion behavior of Fe substrates coated with two different thicknesses of each polymer. The extent of corrosion of Fe particles coated with AQ polymers was also measured via the loss in MS with time of immersion in an acid solution. AQ coated particles showed significant improvement in corrosion resistance. FTIR-RA and XPS data show an interaction between AQM14A, a simple model for a portion of the polymer, and metal (Fe, Cu, Al) surfaces which occurs through the π system of the AQ functional group.

  4. High-Performance Epoxy-Resin-Bonded Magnets Produced from the Sm2Fe17Nx Powders Coated by Copper and Zinc Metals

    NASA Astrophysics Data System (ADS)

    Noguchi, Kenji; Machida, Ken-ichi; Adachi, Gin-ya

    2001-04-01

    Fine powders of Sm2Fe17Nx coated with copper metal reduced from CuCl2 and/or zinc metal subsequently derived by photo-decomposition of diethylzinc [Zn(C2H5)2] were prepared, and their magnetic properties were characterized in addition to those of epoxy-resin-bonded magnets produced from the coated powders (Cu/Sm2Fe17Nx, Zn/Sm2Fe17Nx and Zn/Cu/Sm2Fe17Nx). The remanence (Br) and maximum energy product [(\\mathit{BH})max] of double metal-coated Zn/Cu/Sm2Fe17Nx powders were maintained at higher levels than those of single Zn metal-coated Sm2Fe17Nx ones (Zn/Sm2Fe17Nx) even after heat treatment at 673 K since the oxidation resistance and thermal stability were effectively improved by formation of the thick and uniform protection layer on the surface of Sm2Fe17Nx particles. Moreover, the epoxy-resin-bonded magnets produced from the Zn/Cu/Sm2Fe17Nx powders possessed good corrosion resistance in air at 393 K which it resulted in the smaller thermal irreversible flux loss than that of uncoated and single Zn metal-coated Sm2Fe17Nx powders in the temperature range of above 393 K.

  5. Structural and magnetic properties of ultra-thin Fe films on metal-organic chemical vapour deposited GaN(0001)

    NASA Astrophysics Data System (ADS)

    Kim, Jun-Young; Ionescu, Adrian; Mansell, Rhodri; Farrer, Ian; Oehler, Fabrice; Kinane, Christy J.; Cooper, Joshaniel F. K.; Steinke, Nina-Juliane; Langridge, Sean; Stankiewicz, Romuald; Humphreys, Colin J.; Cowburn, Russell P.; Holmes, Stuart N.; Barnes, Crispin H. W.

    2017-01-01

    Structural and magnetic properties of 1-10 nm thick Fe films deposited on GaN(0001) were investigated. In-situ reflecting high energy electron diffraction images indicated a α-Fe(110)/GaN(0001) growth of the 3D Volmer-Weber type. The α-Fe(110) X-ray diffraction peak showed a 1° full-width at half-maximum, indicating ≈20 nm grain sizes. A significant reduction in Fe atomic moment from its bulk value was observed for films thinner than 4 nm. Both GaN/Fe interface roughness and Fe film coercivity increased with Fe thickness, indicating a possible deterioration of Fe crystalline quality. Magnetic anisotropy was mainly uniaxial for all films while hexagonal anisotropies appeared for thicknesses higher than 3.7 nm.

  6. Nanolaminated FeCoB/FeCo and FeCoB/NiFe soft magnetic thin films with tailored magnetic properties deposited by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Hida, Rachid; Falub, Claudiu V.; Perraudeau, Sandrine; Morin, Christine; Favier, Sylvie; Mazel, Yann; Saghi, Zineb; Michel, Jean-Philippe

    2018-05-01

    Thin films based on layers of Fe52Co28B20 (at%), Fe65Co35 (at%), and Ni80Fe20 (at%) were deposited by sputtering on 8″ bare Si and Si/200 nm-thermal-SiO2 wafers by simultaneous use of two or more cathodes. Due to the continuous rotation of the substrate cage, such that the substrates faced different targets alternately, the multilayers consisted of stacks of alternating, nanometer-thick regular layers. The composition of the films was determined by Rutherford Backscattering Spectrometry (RBS) and Nuclear Reactive Analysis (NRA), whereas Plasma Profiling Time of Flight Mass Spectrometry (PP-TOFMS) analysis gave depth profile information about the chemical elements. The structural and magnetic properties of the films were investigated by X-ray Diffraction and by TEM analysis, B-H loop tracer and high frequency single coil technique permeametry, respectively. The linear dependence of the coercivity of these thin films versus the grain size can be explained by the random anisotropy model. These novel, composite soft magnetic multilayers, with tunable in-plane anisotropy, allow operation at tunable frequencies, as shown by broadband (between 100 MHz and 10 GHz) RF measurements that exhibit a classical Landau-Lifschitz-Gilbert (LLG) behavior and, combine the magnetic properties of the individual materials in an advantageous way. This article presents a method to produce nanostructured soft magnetic multilayers, the properties of which can easily be tuned by choosing the ratio of the individual nanolayers. In this way it's possible to combine soft magnetic materials with complementary properties, e.g. high saturation magnetization, low coercivity, high specific resistivity and low magnetostriction

  7. Interfacial Microstructure and Mechanical Properties of Friction Stir Welded Joints of Commercially Pure Aluminum and 304 Stainless Steel

    NASA Astrophysics Data System (ADS)

    Murugan, Balamagendiravarman; Thirunavukarasu, Gopinath; Kundu, Sukumar; Kailas, Satish V.; Chatterjee, Subrata

    2018-05-01

    In the present investigation, friction stir welding of commercially pure aluminum and 304 stainless steel was carried out at varying tool rotational speeds from 200 to 1000 rpm in steps of 200 rpm using 60 mm/min traverse speed at 2 (degree) tool tilt angle. Microstructural characterization of the interfacial zone was carried out using optical microscope and scanning electron microscope. Energy-dispersive spectroscopy indicated the presence of FeAl3 intermetallic phase. Thickness of the intermetallic layer increased with the increase in tool rotational speed. X-ray diffraction studies indicated the formation of intermetallic phases like FeAl2, Fe4Al13, Fe2Al5, and FeAl3. A maximum tensile strength of 90% that of aluminum along with 4.5% elongation was achieved with the welded sample at tool rotational speed of 400 rpm. The stir zone showed higher hardness as compared to base metals, heat affected zone, and thermo-mechanically affected zone due to the presence of intermetallics. The maximum hardness value at the stir zone was achieved at 1000 rpm tool rotational speed.

  8. Fabrication and Electromagnetic Properties of Conjugated NH2-CuPc@Fe3O4

    NASA Astrophysics Data System (ADS)

    Yan, Liang; Pu, Zejun; Xu, Mingzhen; Wei, Renbo; Liu, Xiaobo

    2017-10-01

    Conjugated amino-phthalocyanine copper containing carboxyl groups/magnetite (NH2-CuPc@Fe3O4) has been fabricated from FeCl3·6H2O and NH2-CuPc via a simple solvothermal method and its electromagnetic properties investigated. Scanning electron microscopy and transmission electron microscopy revealed that the NH2-CuPc@Fe3O4 was a waxberry-like nanomaterial with NH2-CuPc molecules effectively embedded in the interior of Fe3O4 particles in the form of beads. Introduction of NH2-CuPc effectively improved the complementarity between the dielectric and magnetic losses of the system, resulting in excellent electromagnetic performance. The minimum reflection loss of the as-prepared composite reached -33.4 dB at 7.0 GHz for coating layer thickness of 4.0 mm and bandwidth below -10.0 dB (90% absorption) of up to 3.8 GHz. These results indicate that introduction of NH2-CuPc results in a composite with potential for use as an electromagnetic microwave absorption material.

  9. Preparation and characterization of core-shell structured LiFePO4/C composite using a novel carbon source for lithium-ion battery cathode

    NASA Astrophysics Data System (ADS)

    Huang, Zan; Luo, Peifang; Wang, Daxiang

    2017-03-01

    Core-shell structured LiFePO4/C1 cathode material is synthesized via a rapid microwave irradiation route using ethylene diamine tetraacetic acid (EDTA) as the novel carbon source. XRD results reveal that all the patterns can be indexed as the olivine-type structured LiFePO4 with the space group of Pnma. TEM images show that the obtained carbon is an amorphous layer with a thickness of about 3-4 nm. When the LiFePO4/C1 used as cathode material for lithium-ion battery, it delivers an initial discharge capacity of 163.1 mAh g-1 at 0.1 C which is about 96% of the theoretical capacity. Moreover, it also shows excellent rate performance and good cycle stability due to the enhanced electronic conductivity as proved by the electrochemical impedance spectroscopy (EIS). Thus, this carbon decorated LiFePO4 composite synthesized via the rapid microwave irradiation method is a promising cathode material for high-performance lithium-ion battery.

  10. Cobalt-based multilayers with ultrathin seedlayers for perpendicular magnetic recording media

    NASA Astrophysics Data System (ADS)

    Peng, Wenbin

    With the rapid increase in areal density in longitudinal magnetic recording, it is widely believed that the superparamagnetic limit will soon be reached. Perpendicular magnetic recording is now being seriously considered to be a candidate for the replacement. Co/Pd and Co/Pt multilayers are promising candidates because of their high anisotropy, high coercivity, high remanent squareness, and high negative nucleation field. However, Co/Pd and Co/Pt multilayers usually require thick seed layers to promote perpendicular anisotropies, which leads to large "spacing loss". In this work, different seed layers were studied and it showed that an amorphous indium tin oxide (ITO) seed layer as thin as 2nm could promote good perpendicular anisotropy. The processing parameters for Co-based multilayers such as deposition pressure, temperature, individual layer thickness, and number of bilayers were optimized to obtain better interfaces, higher coercivity, and higher anisotropies. Boron was added as dopants into Co layers to obtain better intergranular segregation and reduce the grain growth during the thin film deposition. The substrates were heated to promote the migration of boron atoms. It was proved that the addition of boron has successfully reduced the magnetic domain sizes as well as the media noise. Spin stand test showed that the CoB/Pd multilayers with 2nm ITO seed layer and 6mum thick NiFe soft underlayers deposited at 230°C gave a D50 of 340 kfci for differentiated output signals and an areal density of 11 Gb/in2 at a bit-error-rate of 10 -7. Given narrower heads, better soft underlayer, and lower flying height, the media can reach a much higher recording density.

  11. Magnetization reversal mechanism of magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Liu, Cun-Ye; Li, Jian; Wang, Yue; Chen, Jian-Yong; Xu, Qing-Yu; Ni, Gang; Sang, Hai; Du, You-Wei

    2002-01-01

    Using the ion-beam-sputtering technique, we have fabricated Fe/Al2O3/Fe magnetic tunnelling junctions (MTJs). We have observed double-peaked shapes of curves, which have a level summit and a symmetrical feature, showing the magnetoresistance of the junction as a function of applied field. We have measured the tunnel conductance of MTJs which have insulating layers of different thicknesses. We have studied the dependence of the magnetoresistance of MTJs on tunnel conductance. The microstructures of hard- and soft-magnetic layers and interfaces of ferromagnets and insulators were probed. Analysing the influence of MJT microstructures, including those having clusters or/and granules in magnetic and non-magnetic films, a magnetization reversal mechanism (MRM) is proposed, which suggests that the MRM of tunnelling junctions may be explained by using a group-by-group reversal model of magnetic moments of the mesoscopical particles. We discuss the influence of MTJ microstructures, including those with clusters or/and granules in the ferromagnetic and non-magnetic films, on the MRM.

  12. TEM in situ micropillar compression tests of ion irradiated oxide dispersion strengthened alloy

    NASA Astrophysics Data System (ADS)

    Yano, K. H.; Swenson, M. J.; Wu, Y.; Wharry, J. P.

    2017-01-01

    The growing role of charged particle irradiation in the evaluation of nuclear reactor candidate materials requires the development of novel methods to assess mechanical properties in near-surface irradiation damage layers just a few micrometers thick. In situ transmission electron microscopic (TEM) mechanical testing is one such promising method. In this work, microcompression pillars are fabricated from a Fe2+ ion irradiated bulk specimen of a model Fe-9%Cr oxide dispersion strengthened (ODS) alloy. Yield strengths measured directly from TEM in situ compression tests are within expected values, and are consistent with predictions based on the irradiated microstructure. Measured elastic modulus values, once adjusted for the amount of deformation and deflection in the base material, are also within the expected range. A pillar size effect is only observed in samples with minimum dimension ≤100 nm due to the low inter-obstacle spacing in the as received and irradiated material. TEM in situ micropillar compression tests hold great promise for quantitatively determining mechanical properties of shallow ion-irradiated layers.

  13. Spin wave filtering and guiding in Permalloy/iron nanowires

    NASA Astrophysics Data System (ADS)

    Silvani, R.; Kostylev, M.; Adeyeye, A. O.; Gubbiotti, G.

    2018-03-01

    We have investigated the spin wave filtering and guiding properties of periodic array of single (Permalloy and Fe) and bi-layer (Py/Fe) nanowires (NWs) by means of Brillouin light scattering measurements and micromagnetic simulations. For all the nanowire arrays, the thickness of the layers is 10 nm while all NWs have the same width of 340 nm and edge-to-edge separation of 100 nm. Spin wave dispersion has been measured in the Damon-Eshbach configuration for wave vector either parallel or perpendicular to the nanowire length. This study reveals the filtering property of the spin waves when the wave vector is perpendicular to the NW length, with frequency ranges where the spin wave propagation is permitted separated by frequency band gaps, and the guiding property of NW when the wave vector is oriented parallel to the NW, with spin wave modes propagating in parallel channels in the central and edge regions of the NW. The measured dispersions were well reproduced by micromagnetic simulations, which also deliver the spatial profiles for the modes at zero wave vector. To reproduce the dispersion of the modes localized close to the NW edges, uniaxial anisotropy has been introduced. In the case of Permalloy/iron NWs, the obtained results have been compared with those for a 20 nm thick effective NW having average magnetic properties of the two materials.

  14. Hydrogeological analysis of the upper Dupi Tila Aquifer, towards the implementation of a managed aquifer-recharge project in Dhaka City, Bangladesh

    NASA Astrophysics Data System (ADS)

    Rahman, Mohammad Azizur; Wiegand, Bettina A.; Badruzzaman, A. B. M.; Ptak, Thomas

    2013-08-01

    A preliminary feasibility assessment of managed aquifer-recharge (MAR) techniques was undertaken for Dhaka City, Bangladesh. Considering the top impermeable-layer (TIL) thickness and the land-use classification, four primary MAR techniques have been suggested: (1) soil-aquifer treatment (SAT) for TIL thickness 0-8 m, (2) cascade-type recharge trenches/pits for TIL thickness 9-30 m, (3) aquifer storage, transfer and recovery (ASR/ASTR) for TIL thickness 31-52 m, and (4) use of natural wetlands to recharge water collected from open spaces. The study suggests that recharge trenches and pits will be the most appropriate MAR techniques, which can be implemented in most parts of the recharge area (ca. 277 km2). In case of a recharge trench, the lower parts (15-20 m) that are in direct contact with the aquifer can be backfilled with biosand filters with a reactive layer containing metallic iron (Fe0) to offer pre-treatment of the infiltrated water. In addition to the suggested four techniques, the regional groundwater flow direction, from the northwest and northeast towards Dhaka City, may allow use of the aquifer as a natural treatment and transport medium for groundwater, if spreading basins are installed in the greater Dhaka area.

  15. A simple, one-step hydrothermal approach to durable and robust superparamagnetic, superhydrophobic and electromagnetic wave-absorbing wood

    NASA Astrophysics Data System (ADS)

    Wang, Hanwei; Yao, Qiufang; Wang, Chao; Fan, Bitao; Sun, Qingfeng; Jin, Chunde; Xiong, Ye; Chen, Yipeng

    2016-10-01

    In this work, lamellar MnFe2O4 was successfully planted on a wood surface through the association of hydrogen bonds via the one-pot hydrothermal method. Simultaneously, the fluoroalkylsilane (FAS-17) on the surface of the MnFe2O4 layer formed long-chain or network macromolecules through a poly-condensation process and provided a lower surface energy on the wood surface. The MnFe2O4/wood composite (FMW) presented superior superparamagnetism, superhydrophobicity and electromagnetic wave absorption performance. The results indicated a saturation magnetization of the FMW with excellent superparamagnetism of 28.24 emu·g-1. The minimum value of reflection loss of the FMW reached -8.29 dB at 16.39 GHz with a thickness of 3 mm. Even after mechanical impact and exposure to corrosive liquids, the FMW still maintained a superior superhydrophobicity performance.

  16. Dependence of Brillouin Light Scattering Spectra on the number of Bilayers in Fe/Ag Multilayer Specimens

    NASA Astrophysics Data System (ADS)

    From, Milton; Cheng, Li; Altounian, Zaven

    2001-03-01

    We have measured the Brillouin Light Scattering (BLS) spectra of [Fe/Ag] x N sputtered multilayers as a function of N, the number of bilayers in the multilayer. The thickness of the Fe and Ag layers was 1.5 nm and data was collected for samples with N = 5, 10, 25, and 40.The BLS instrument used was a 4-pass Fabry-Perot interferometer operated in the back-scattering geometry with 514.5 nm laser light. The number of peaks seen in the BLS spectra are seen to increase with N. Two peaks are seen for N=5, and four peaks are seen for N=10 and 25. For N = 40, we see two broad manifold peaks and a sharp surface mode peak. This N dependence and the detailed dependence of peak frequency on applied magnetic field are in good agreement with theoretical calculations.

  17. Isolation and characterization of nanosheets containing few layers of the Aurivillius family of oxides and metal-organic compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sreedhara, M.B.; Prasad, B.E.; Moirangthem, Monali

    2015-04-15

    Nanosheets containing few-layers of ferroelectric Aurivillius family of oxides, Bi{sub 2}A{sub n−1}B{sub n}O{sub 3n+3} (where A=Bi{sup 3+}, Ba{sup 2+} etc. and B=Ti{sup 4+}, Fe{sup 3+} etc.) with n=3, 4, 5, 6 and 7 have been prepared by reaction with n-butyllithium, followed by exfoliation in water. The few-layer samples have been characterized by Tyndall cones, atomic force microscopy, optical spectroscopy and other techniques. The few-layer species have a thickness corresponding to a fraction of the c-parameter along which axis the perovskite layers are stacked. Magnetization measurements have been carried out on the few-layer samples containing iron. Few-layer species of a fewmore » layered metal-organic compounds have been obtained by ultrasonication and characterized by Tyndall cones, atomic force microscopy, optical spectroscopy and magnetic measurements. Significant changes in the optical spectra and magnetic properties are found in the few-layer species compared to the bulk samples. Few-layer species of the Aurivillius family of oxides may find uses as thin layer dielectrics in photovoltaics and other applications. - Graphical abstract: Exfoliation of the layered Aurivillius oxides into few-layer nanosheets by chemical Li intercalation using n-BuLi followed by reaction in water. Exfoliation of the layered metal-organic compounds into few-layer nanosheets by ultrasonication. - Highlights: • Few-layer nanosheets of Aurivillius family of oxides with perovskite layers have been generated by lithium intercalation. • Few-layer nanosheets of few layered metal-organic compounds have been generated by ultrasonication. • Few-layer nanosheets of the Aurivillius oxides have been characterized by AFM, TEM and optical spectroscopy. • Aurivillius oxides containing Fe show layer dependent magnetic properties. • Exfoliated few-layer metal-organic compounds show changes in spectroscopic and magnetic properties compared with bulk materials.« less

  18. Influence of Surface Properties of Filtration-Layer Metal Oxide on Ceramic Membrane Fouling during Ultrafiltration of Oil/Water Emulsion.

    PubMed

    Lu, Dongwei; Zhang, Tao; Gutierrez, Leo; Ma, Jun; Croué, Jean-Philippe

    2016-05-03

    In this work, ceramic ultrafiltration membranes deposited with different metal oxides (i.e., TiO2, Fe2O3, MnO2, CuO, and CeO2) of around 10 nm in thickness and similar roughness were tested for O/W emulsion treatment. A distinct membrane fouling tendency was observed, which closely correlated to the properties of the filtration-layer metal oxides (i.e., surface hydroxyl groups, hydrophilicity, surface charge, and adhesion energy for oil droplets). Consistent with the distinct bond strength of the surface hydroxyl groups, hydrophilicity of these common metal oxides is quite different. The differences in hydrophilicity consequently lead to different adhesion of these metal oxides toward oil droplets, consistent with the irreversible membrane fouling tendency. In addition, the surface charge of the metal oxide opposite to that of emulsion can help to alleviate irreversible membrane fouling in ultrafiltration. Highly hydrophilic Fe2O3 with the lowest fouling tendency could be a potential filtration-layer material for the fabrication/modification of ceramic membranes for O/W emulsion treatment. To the best of our knowledge, this is the first study clearly showing the correlations between surface properties of filtration-layer metal oxides and ceramic membrane fouling tendency by O/W emulsion.

  19. Survey of Thermal-Fluids Evaluation and Confirmatory Experimental Validation Requirements of Accident Tolerant Cladding Concepts with Focus on Boiling Heat Transfer Characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Nicholas R.; Wysocki, Aaron J.; Terrani, Kurt A.

    The U.S. Department of Energy Office of Nuclear Energy (DOE-NE) Advanced Fuels Campaign (AFC) is working closely with the nuclear industry to develop fuel and cladding candidates with potentially enhanced accident tolerance, also known as accident tolerant fuel (ATF). Thermal-fluids characteristics are a vital element of a holistic engineering evaluation of ATF concepts. One vital characteristic related to boiling heat transfer is the critical heat flux (CHF). CHF plays a vital role in determining safety margins during normal operation and also in the progression of potential transient or accident scenarios. This deliverable is a scoping survey of thermal-fluids evaluation andmore » confirmatory experimental validation requirements of accident tolerant cladding concepts with a focus on boiling heat transfer characteristics. The key takeaway messages of this report are: 1. CHF prediction accuracy is important and the correlations may have significant uncertainty. 2. Surface conditions are important factors for CHF, primarily the wettability that is characterized by contact angle. Smaller contact angle indicates greater wettability, which increases the CHF. Surface roughness also impacts wettability. Results in the literature for pool boiling experiments indicate changes in CHF by up to 60% for several ATF cladding candidates. 3. The measured wettability of FeCrAl (i.e., contact angle and roughness) indicates that CHF should be investigated further through pool boiling and flow boiling experiments. 4. Initial measurements of static advancing contact angle and surface roughness indicate that FeCrAl is expected to have a higher CHF than Zircaloy. The measured contact angle of different FeCrAl alloy samples depends on oxide layer thickness and composition. The static advancing contact angle tends to decrease as the oxide layer thickness increases.« less

  20. Variable substrate temperature deposition of CoFeB film on Ta for manipulating the perpendicular coercive forces

    NASA Astrophysics Data System (ADS)

    Lakshmanan, Saravanan; Rao, Subha Krishna; Muthuvel, Manivel Raja; Chandrasekaran, Gopalakrishnan; Therese, Helen Annal

    2017-08-01

    Magnetization of Ta/CoFeB/Ta trilayer films with thick layer of CoFeB deposited under different substrate temperatures (Ts) via ultra-high vacuum DC sputtering technique has been measured with the applied magnetic field parallel and perpendicular to the plane of the film respectively to study the perpendicular coercive forces of the film. The samples were further analyzed for its structural, topological, morphological, and electrical transport properties. The core chemical states for the elements present in the CoFeB thin film were analyzed by XPS studies. Magnetization studies reveal the existence of perpendicular coercive forces in CoFeB films deposited only at certain temperatures such as RT, 450 °C, 475 °C and 500 °C. CoFeB film deposited at 475 °C exhibited a maximum coercivity of 315 Oe and a very low saturation magnetization (Ms) of 169 emu/cc in perpendicular direction. This pronounced effect in perpendicular coercive forces observed for CoFeB475 could be attributed to the effect of temperature in enhancing the crystallization of the film at the Ta/CoFeB interfaces. However at temperatures higher than 475 °C the destruction of the Ta/CoFeB interface due to intermixing of Ta and CoFeB results in the disappearance of magnetic anisotropy.

  1. Preparation of c-axis perpendicularly oriented ultra-thin L10-FePt films on MgO and VN underlayers

    NASA Astrophysics Data System (ADS)

    Futamoto, Masaaki; Shimizu, Tomoki; Ohtake, Mitsuru

    2018-05-01

    Ultra-thin L10-FePt films of 2 nm average thickness are prepared on (001) oriented MgO and VN underlayers epitaxially grown on base substrate of SrTiO3(001) single crystal. Detailed cross-sectional structures are observed by high-resolution transmission electron microscopy. Continuous L10-FePt(001) thin films with very flat surface are prepared on VN(001) underlayer whereas the films prepared on MgO(001) underlayer consist of isolated L10-FePt(001) crystal islands. Presence of misfit dislocation and lattice bending in L10-FePt material is reducing the effective lattice mismatch with respect to the underlayer to be less than 0.5 %. Formation of very flat and continuous FePt layer on VN underlayer is due to the large surface energy of VN material where de-wetting of FePt material at high temperature annealing process is suppressed under a force balance between the surface and interface energies of FePt and VN materials. An employment of underlayer or substrate material with the lattice constant and the surface energy larger than those of L10-FePt is important for the preparation of very thin FePt epitaxial thin continuous film with the c-axis controlled to be perpendicular to the substrate surface.

  2. Modeling interface exchange coupling: Effect on switching of granular FePt films

    NASA Astrophysics Data System (ADS)

    Abugri, Joseph B.; Visscher, P. B.; Su, Hao; Gupta, Subhadra

    2015-07-01

    To raise the areal density of magnetic recording to ˜1 Tbit/in2, there has been much recent work on the use of FePt granular films, because their high perpendicular anisotropy allows small grains to be stable. However, their coercivity may be higher than available write-head fields. One approach to reduce the coercivity is to heat the grain (heat assisted magnetic recording). Another strategy is to add a soft capping layer to help nucleate switching via exchange coupling with the hard FePt grains. We have simulated a model of such a capped medium and have studied the effect of the strength of the interface exchange and thickness of hard layer and soft layer on the overall coercivity. Although the magnetization variation within such boundary layers may be complex, the net effect of the boundary can often be modeled as an infinitely thin interface characterized by an interface exchange energy density—we show how to do this consistently in a micromagnetic simulation. Although the switching behavior in the presence of exchange, magnetostatic, and external fields is quite complex, we show that by adding these fields one at a time, the main features of the M-H loop can be understood. In particular, we find that even without hard-soft interface exchange, magnetostatic coupling eliminates the zero-field kink in the loop, so that the absence of the kink does not (as has sometimes been assumed) imply exchange coupling. The computations have been done with a public-domain micromagnetics simulator that has been adapted to easily simulate arrays of grains.

  3. Comparison of structural and electric properties of PbZr0.2Ti0.8O3 and CoFe2O4/PbZr0.2Ti0.8O3 films on (100)LaAlO3

    NASA Astrophysics Data System (ADS)

    Zhang, X. D.; Dho, Joonghoe; Park, Sungmin; Kwon, Hyosang; Hwang, Jihwan; Park, Gwangseo; Kwon, Daeyoung; Kim, Bongju; Jin, Yeryeong; Kim, Bog. G.; Karpinsky, D.; Kholkin, A. L.

    2011-09-01

    In this work, we investigated structural, electrical, and magnetic properties of ferroelectric PbZr0.2Ti0.8O3 (PZT) and ferrimagnetic/ferroelectric [CoFe2O4(CFO)/PZT] bilayers grown on (100)LaAlO3 (LAO) substrates supplied with bottom 50 nm thick LaNiO3 electrodes. Interestingly, structural and electrical properties of the PZT layer exhibited remarkable changes after the top-layer CFO deposition. X-ray diffraction data suggested that both the c- and a-domains exist in the PZT layer and the tetragonality of the PZT decreases upon the top-layer deposition. A variation in the electrical properties of the PZT layer upon the CFO deposition was investigated by polarization versus voltage (P-V), capacitance versus voltage (C-V), and capacitance versus frequency (C-f) measurements. The CFO deposition induced a slight decrease of the remnant polarization and more symmetric behavior of P-V loops as well as led to the improvement of fatigue behavior. The tentative origin of enhanced fatigue endurance is discussed based on the measurement results. These results were corroborated by local piezoelectric measurements. Ferrimagnetic property of the CFO/PZT bilayer was confirmed by magnetic measurement at room temperature.

  4. Enhancing the Hardness of Sintered SS 17-4PH Using Nitriding Process for Bracket Orthodontic Application

    NASA Astrophysics Data System (ADS)

    Suharno, B.; Supriadi, S.; Ayuningtyas, S. T.; Widjaya, T.; Baek, E. R.

    2018-01-01

    Brackets orthodontic create teeth movement by applying force from wire to bracket then transferred to teeth. However, emergence of friction between brackets and wires reduces load for teeth movement towards desired area. In order to overcome these problem, surface treatment like nitriding chosen as a process which could escalate efficiency of transferred force by improving material hardness since hard materials have low friction levels. This work investigated nitriding treatment to form nitride layer which affecting hardness of sintered SS 17-4PH. The nitride layers produced after nitriding process at various temperature i.e. 470°C, 500°C, 530°C with 8hr holding time under 50% NH3 atmosphere. Optical metallography was conducted to compare microstructure of base and surface metal while the increasing of surface hardness then observed using vickers microhardness tester. Hardened surface layer was obtained after gaseous nitriding process because of nitride layer that contains Fe4N, CrN and Fe-αN formed. Hardness layers can achieved value 1051 HV associated with varies thickness from 53 to 119 μm. The presence of a precipitation process occurring in conjunction with nitriding process can lead to a decrease in hardness due to nitrogen content diminishing in solid solution phase. This problem causes weakening of nitrogen expansion in martensite lattice.

  5. High performance top-gated ferroelectric field effect transistors based on two-dimensional ZnO nanosheets

    NASA Astrophysics Data System (ADS)

    Tian, Hongzheng; Wang, Xudong; Zhu, Yuankun; Liao, Lei; Wang, Xianying; Wang, Jianlu; Hu, Weida

    2017-01-01

    High quality ultrathin two-dimensional zinc oxide (ZnO) nanosheets (NSs) are synthesized, and the ZnO NS ferroelectric field effect transistors (FeFETs) are demonstrated based on the P(VDF-TrFE) polymer film used as the top gate insulating layer. The ZnO NSs exhibit a maximum field effect mobility of 588.9 cm2/Vs and a large transconductance of 2.5 μS due to their high crystalline quality and ultrathin two-dimensional structure. The polarization property of the P(VDF-TrFE) film is studied, and a remnant polarization of >100 μC/cm2 is achieved with a P(VDF-TrFE) thickness of 300 nm. Because of the ultrahigh remnant polarization field generated in the P(VDF-TrFE) film, the FeFETs show a large memory window of 16.9 V and a high source-drain on/off current ratio of more than 107 at zero gate voltage and a source-drain bias of 0.1 V. Furthermore, a retention time of >3000 s of the polarization state is obtained, inspiring a promising candidate for applications in data storage with non-volatile features.

  6. Structure and magnetism in Co/X, Fe/Si, and Fe/(FeSi) multilayers

    NASA Astrophysics Data System (ADS)

    Franklin, Michael Ray

    Previous studies have shown that magnetic behavior in multilayers formed by repeating a bilayer unit comprised of a ferromagnetic layer and a non-magnetic spacer layer can be affected by small structural differences. For example, a macroscopic property such as giant magnetoresistance (GMR) is believed to depend significantly upon interfacial roughness. In this study, several complimentary structural probes were used to carefully characterize the structure of several sputtered multilayer systems-Co/Ag, Co/Cu, Co/Mo, Fe/Si, and Fe//[FeSi/]. X-ray diffraction (XRD) studies were used to examine the long-range structural order of the multilayers perpendicular to the plane of the layers. Transmission electron diffraction (TED) studies were used to probe the long-range order parallel to the layer plane. X-ray Absorption Fine Structure (XAFS) studies were used to determine the average local structural environment of the ferromagnetic atoms. For the Co/X systems, a simple correlation between crystal structure and saturation magnetization is discovered for the Co/Mo system. For the Fe/X systems, direct evidence of an Fe-silicide is found for the /[FeSi/] spacer layer but not for the Si spacer layer. Additionally, differences were observed in the magnetic behavior between the Fe in the nominally pure Fe layer and the Fe contained in the /[FeSi/] spacer layers.

  7. Formation mechanisms of neutral Fe layers in the thermosphere at Antarctica studied with a thermosphere-ionosphere Fe/Fe+ (TIFe) model

    NASA Astrophysics Data System (ADS)

    Chu, Xinzhao; Yu, Zhibin

    2017-06-01

    With a thermosphere-ionosphere Fe/Fe+ (TIFe) model developed from first principles at the University of Colorado, we present the first quantitative investigation of formation mechanisms of thermospheric Fe layers observed by lidar in Antarctica. These recently discovered neutral metal layers in the thermosphere between 100 and 200 km provide unique tracers for studies of fundamental processes in the space-atmosphere interaction region. The TIFe model formulates and expands the TIFe theory originally proposed by Chu et al. that the thermospheric Fe layers are produced through the neutralization of converged Fe+ layers. Through testing mechanisms and reproducing the 28 May 2011 event at McMurdo, we conceive the lifecycle of meteoric metals via deposition, transport, chemistry, and wave dynamics for thermospheric Fe layers with gravity wave signatures. While the meteor injection of iron species is negligible above 120 km, the polar electric field transports metallic ions Fe+ upward from their main deposition region into the E-F regions, providing the major source of Fe+ (and accordingly Fe) in the thermosphere. Atmospheric wave-induced vertical shears of vertical and horizontal winds converge Fe+ to form dense Fe+ layers. Direct electron-Fe+ recombination is the major channel to neutralize Fe+ layers to form Fe above 120 km. Fe layer shapes are determined by multiple factors of neutral winds, electric field, and aurora activity. Gravity-wave-induced vertical wind plays a key role in forming gravity-wave-shaped Fe layers. Aurora particle precipitation enhances Fe+ neutralization by increasing electron density while accelerating Fe loss via charge transfer with enhanced NO+ and O2+ densities.Plain Language SummaryThe discoveries of neutral metal layers reaching near 200 km in the thermosphere have significant scientific merit because such discoveries challenge the current understandings of upper atmospheric composition, chemistry, dynamics, electrodynamics, and energetics. Furthermore, these neutral metal layers provide tracers for direct measurements of the neutral properties in the least understood but crucially important space-atmosphere interaction region in the altitude range of 100-200 km. With a thermosphere-ionosphere Fe/Fe+ (TIFe) model developed from first principles at the University of Colorado, we present the first quantitative investigation of formation mechanisms of thermospheric Fe layers observed by lidar in Antarctica. The TIFe model formulates the TIFe theory depicting the lifecycle of meteoric metals via deposition, transport, chemistry, and wave dynamics. Antarctic lidar observations were successfully reproduced with the TIFe model simulations. These TIFe layers provide a unique natural laboratory for understanding the fundamental processes critical to advancing the research of space-atmosphere interactions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70000097','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70000097"><span>Weathering of the Rio Blanco quartz diorite, Luquillo Mountains, Puerto Rico: Coupling oxidation, dissolution, and fracturing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Buss, H.L.; Sak, P.B.; Webb, S.M.; Brantley, S.L.</p> <p>2008-01-01</p> <p>In the mountainous Rio Icacos watershed in northeastern Puerto Rico, quartz diorite bedrock weathers spheroidally, producing a 0.2-2 m thick zone of partially weathered rock layers (???2.5 cm thickness each) called rindlets, which form concentric layers around corestones. Spheroidal fracturing has been modeled to occur when a weathering reaction with a positive ??V of reaction builds up elastic strain energy. The rates of spheroidal fracturing and saprolite formation are therefore controlled by the rate of the weathering reaction. Chemical, petrographic, and spectroscopic evidence demonstrates that biotite oxidation is the most likely fracture-inducing reaction. This reaction occurs with an expansion in d (0 0 1) from 10.0 to 10.5 A??, forming 'altered biotite'. Progressive biotite oxidation across the rindlet zone was inferred from thin sections and gradients in K and Fe(II). Using the gradient in Fe(II) and constraints based on cosmogenic age dates, we calculated a biotite oxidation reaction rate of 8.2 ?? 10-14 mol biotite m-2 s-1. Biotite oxidation was documented within the bedrock corestone by synchrotron X-ray microprobe fluorescence imaging and XANES. X-ray microprobe images of Fe(II) and Fe(III) at 2 ??m resolution revealed that oxidized zones within individual biotite crystals are the first evidence of alteration of the otherwise unaltered corestone. Fluids entering along fractures lead to the dissolution of plagioclase within the rindlet zone. Within 7 cm surrounding the rindlet-saprolite interface, hornblende dissolves to completion at a rate of 6.3 ?? 10-13 mol hornblende m-2 s-1: the fastest reported rate of hornblende weathering in the field. This rate is consistent with laboratory-derived hornblende dissolution rates. By revealing the coupling of these mineral weathering reactions to fracturing and porosity formation we are able to describe the process by which the quartz diorite bedrock disaggregates and forms saprolite. In the corestone, biotite oxidation induces spheroidal fracturing, facilitating the influx of fluids that react with other minerals, dissolving plagioclase and chlorite, creating additional porosity, and eventually dissolving hornblende and precipitating secondary minerals. The thickness of the resultant saprolite is maintained at steady state by a positive feedback between the denudation rate and the weathering advance rate driven by the concentration of pore water O2 at the bedrock-saprolite interface. ?? 2008 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMMR54A..08B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMMR54A..08B"><span>Composition of the low seismic velocity E' layer at the top of Earth's core</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Badro, J.; Brodholt, J. P.</p> <p>2017-12-01</p> <p>Evidence for a layer (E') at the top of the outer core has been available since the '90s and while different studies suggest slightly different velocity contrasts and thicknesses, the common observation is that the layer has lower velocities than the bulk outer core (PREM). Although there are no direct measurements on the density of this layer, dynamic stability requires it to be less dense than the bulk outer core under those same pressure and temperature conditions. Using ab initio simulations on Fe-Ni-S-C-O-Si liquids we constrain the origin and composition of the low-velocity layer E' at the top of Earth's outer core. We find that increasing the concentration of any light-element always increases velocity and so a low-velocity and low-density layer (for stability) cannot be made by simply increasing light element concentration. This rules out barodiffusion or upwards sedimentation of a light phase for its origin. However, exchanging elements can—depending on the elements exchanged—produce such a layer. We evaluate three possibilities. Firstly, crystallization of a light phase from a core containing more than one light element may make such a layer, but only if the crystalizing phase is very Fe-rich, which is at odds with available phase diagrams at CMB conditions. Secondly, the E' layer may result from incomplete mixing of an early Earth core with a late impactor, depending on the light element compositions of the impactor and Earth's core, but such a primordial stratification is neither supported by dynamical models of the core nor thermodynamic models of core merger after the giant impact. The last and most plausible scenario is core-mantle chemical interaction; using thermodynamic models for metal-silicate partitioning of silicon and oxygen at CMB conditions, we show that a reaction between the core and an FeO-rich basal magma ocean can enrich the core in oxygen while depleting it in silicon, in relative amounts that produce a light and slow layer consistent with seismological observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22409985-layered-structure-related-magnetic-properties-annealed-fe-ir-ultrathin-films','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22409985-layered-structure-related-magnetic-properties-annealed-fe-ir-ultrathin-films"><span>Layered structure and related magnetic properties for annealed Fe/Ir(111) ultrathin films</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Jiang, Pei-Cheng; Chen, Wei-Hsiang; Hsieh, Chen-Yuan</p> <p>2015-05-07</p> <p>After annealing treatments for fcc-Fe/Ir(111) below 600 K, the surface layers remain pseudomorphic. The Ir(111) substrate plays an important role on the expanded Fe lattice. At temperatures between 750 and 800 K, the surface composition shows a stable state and a c(2 × 4) structure is observed. We discover a layered structure composed of some Fe atoms on the top of a Fe{sub 0.5}Ir{sub 0.5} interfacial alloy supported on the Ir(111) substrate. The competition between the negative formation heat of Fe{sub 0.5}Ir{sub 0.5} and surface free energy of Fe causes the formation of layered structure. The existence of ferromagnetic dead layer coincides with themore » formation of fcc-Fe for ultrathin Fe on Fe{sub 0.5}Ir{sub 0.5}/Ir(111). For Fe films thicker than three monolayers, the linear increase of the Kerr intensity versus the Fe coverage is related to the growing of bcc-Fe on the surface where the Fe layer is incoherent to the underlying Fe{sub 0.5}Ir{sub 0.5}/Ir(111). These results emphasize the importance of the substrate induced strain and layered structure of Fe/Fe{sub 0.5}Ir{sub 0.5}/Ir(111) on the magnetic properties and provide valuable information for future applications.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010ApSS..256.2372C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010ApSS..256.2372C"><span>Characterization of AISI 4140 borided steels</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Campos-Silva, I.; Ortiz-Domínguez, M.; López-Perrusquia, N.; Meneses-Amador, A.; Escobar-Galindo, R.; Martínez-Trinidad, J.</p> <p>2010-02-01</p> <p>The present study characterizes the surface of AISI 4140 steels exposed to the paste-boriding process. The formation of Fe 2B hard coatings was obtained in the temperature range 1123-1273 K with different exposure times, using a 4 mm thick layer of boron carbide paste over the material surface. First, the growth kinetics of boride layers at the surface of AISI 4140 steels was evaluated. Second, the presence and distribution of alloying elements on the Fe 2B phase was measured using the Glow Discharge Optical Emission Spectrometry (GDOES) technique. Further, thermal residual stresses produced on the borided phase were evaluated by X-ray diffraction (XRD) analysis. The fracture toughness of the iron boride layer of the AISI 4140 borided steels was estimated using a Vickers microindentation induced-fracture testing at a constant distance of 25 μm from the surface. The force criterion of fracture toughness was determined from the extent of brittle cracks, both parallel and perpendicular to the surface, originating at the tips of an indenter impression. The fracture toughness values obtained by the Palmqvist crack model are expressed in the form KC( π/2) > KC > KC(0) for the different applied loads and experimental parameters of the boriding process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29041275','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29041275"><span>Laser-induced erasable patterns in a N* liquid crystal on an iron doped lithium niobate surface.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Habibpourmoghadam, Atefeh; Lucchetti, Liana; Evans, Dean R; Reshetnyak, Victor Y; Omairat, Faissal; Schafforz, Samuel L; Lorenz, Alexander</p> <p>2017-10-16</p> <p>A chiral nematic (N*) liquid crystal (LC) was hybridized with a z-cut iron doped lithium niobate (Fe:LN) substrate and exposed with a focused continuous wave diode laser beam. The N* LC layer was confined with a cover glass to provide a homogeneous LC layer thickness. Two distinct kinds of test cells were investigated, one with an uncoated glass covering slip and one with an indium tin oxide (ITO) coated cover glass. Photo generated electric fields (generated in the Fe:LN) resulted in a localized defect formation and textural transitions in the N* LC. Due to field confinement, the field induced responses were more localized in samples with ITO coated cover glasses. By scanning the laser beam on programmed trajectories, formation of persistent patterns could be achieved in the N* LC layer. Polarized optical microscopy of the exposed samples revealed that these patterns consisted of adjacent circular Frank-Pryce defects. Exposure with a slightly defocused laser beam could be applied selectively to erase these patterns. Thus, a promising method is reported to generate reconfigurable patterns, photonic motives, and touch sensitive devices in a hybridized N* LC with micron accuracy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.V24E..06K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.V24E..06K"><span>Peridotite carbonation at the leading edge of the mantle wedge: OmDP Site BT1</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kelemen, P. B.; Godard, M.; Johnson, K. T. M.; Okazaki, K.; Manning, C. E.; Urai, J. L.; Michibayashi, K.; Harris, M.; Coggon, J. A.; Teagle, D. A. H.; Phase I Science Party, T. O. D. P.</p> <p>2017-12-01</p> <p>Hole BT1B sampled 3 layers of carbonated peridotite (listvenite, 0-80, 100-180, 185-197 m) separated by 2 layers of carbonate-bearing serpentinite (80-100, 180-185 m), underlain by 100 m metasediment and metabasalt. Listvenites (magnesite and/or dolomite + quartz + Fe-oxyhydroxides + chromian spinel ± fuchsite rocks) replacing mantle peridotite at and near the base of the Samail ophiolite (Stanger 85, Wilde ea 02, Nasir ea 07, Falk & Kelemen 15: FK15) reveal processes of carbon transfer into the mantle wedge (Kelemen & Manning 15) and suggest methods for CO2 capture and storage (Kelemen ea 11). Near BT1, 10 to 200 m thick tabular listvenites interlayered with partly serpentinized harzburgite have contacts parallel to the basal thrust. Imprecise Rb/Sr and 40Ar/39Ar ages indicate listvenite formed during obduction (FK15). Listvenite-peridotite contacts are gradational over 1-2 m. The listvenite matrix is microcrystalline quartz + magnesite. Quartz recrystallized from opal as in listvenites worldwide (Akbulut ea 06, Boschi ea 09, Jurkovic ea 12, Aftabi & Zarrinkoub 13, Posukhova ea 13, Ulrich ea 14) consistent with 80-120°C from clumped isotopes and phase equilibria (FK15). Thus listvenite formed - and deformed ductilely - at low T. Ubiquitous carbonate-rich veins locally comprise >10% of core sections; many have antitaxial textures consistent with expansion due to crystallization pressure. Carbonate-rich veins cut serpentinite and listvenite; veins formed a mesh, followed by replacement of mesh cores. Despite variability in and around veins, average Mg/Si, Fe/Si, Al/Si, Fe/Mg, and Cr/Al in listvenite (75 whole rocks, 7712 XRF scanner points) are indistinguishable from average Samail peridotite. CaO (average 5 wt%, range 0-40) and strongly correlated Sr were added to peridotite, most likely from subducting sediment. Rare core with >10 vol% dolomite has higher Fe/Mg than peridotite, but the same Mg/Si. Thus Mg, Si, Al and Cr, plus Fe in most rocks, were largely immobile on a 1-10 m scale during introduction of C, O, lesser Ca, minor Fe, and fluid mobile trace elements (Godard ea AGU 17) during transformation of Mg-silicates to carbonate + quartz. With prior and coeval serpentinization, this implies 80% solid volume expansion compared to unaltered peridotite, in a zone >200 m thick at the leading edge of the mantle wedge.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JAP...123q3902T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JAP...123q3902T"><span>Effect of NiFeCr seed and capping layers on exchange bias and planar Hall voltage response of NiFe/Au/IrMn trilayer structures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Talantsev, Artem; Elzwawy, Amir; Kim, CheolGi</p> <p>2018-05-01</p> <p>Thin films and cross junctions, based on NiFe/Au/IrMn structures, were grown on Ta and NiFeCr seed layers by magnetron sputtering. The effects of substitution of Ta with NiFeCr in seed and capping layers on an exchange bias field are studied. A threefold improvement of the exchange bias value in the structures, grown with NiFeCr seed and capping layers, is demonstrated. The reasons for this effect are discussed. Formation of clusters in the NiFeCr capping layer is proved by atomic force microscopy technique. Ta replacement on NiFeCr in the capping layer results in the enhancement of magnetoresistive response and a reduction of noise.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JMMM..448...31M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JMMM..448...31M"><span>Spin reorientations in Tb-Fe films grown on polyimide substrates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Maneesh, K. Sai; Arout Chelvane, J.; Talapatra, A.; Basumatary, Himalay; Mohanty, J.; Kamat, S. V.</p> <p>2018-02-01</p> <p>This paper reports the effect of film thickness and rapid thermal annealing on the spin reorientations in Tb-Fe films grown on flexible polyimide substrates. Magnetization studies indicated that the spins reorient from in-plane to out-of-plane direction with increase in film thicknesses. This was confirmed by magnetic force microscopy studies which showed weak featureless contrast for films deposited with lower thickness and a strong out-of-plane contrast for films grown with higher thicknesses. On subsequent rapid thermal annealing all the Tb-Fe films exhibited in-plane magnetic anisotropy. The results were explained based on competition between uniaxial and shape anisotropies, nature of residual stresses as well as nucleation of crystalline Fe phase in an amorphous Tb-Fe matrix on rapid thermal annealing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JNuM..485...67C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JNuM..485...67C"><span>Characterized the pattern of the material deposition in the HL-2A tokamak</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cai, Laizhong; Wang, Jianbao; Wu, Ting; Zeng, Xiaoxiao; Hai, Ran; Ding, Hongbin</p> <p>2017-03-01</p> <p>Since the divertor geometry of a tokamak has a strong impact on the material erosion and deposition on the wall and HL-2A has a unique divertor configuration, it is necessary to investigate the material deposition pattern in HL-2A although a few results on other tokamaks have already been published. In this paper, tiles retrieved from the vessel are analyzed ex-situ by SIMS, SEM and laser-induced breakdown spectroscopy (LIBS). And deposition behind the lower divertor is in-situ measured by a quartz crystal microbalance (QMB). The deposition in HL-2A displays a complex pattern and clear localization characteristic. The thickness of the deposition layer varies in the range of 0-4μm. And in-situ diagnostic of QMB indicates that the average thickness of the deposition layer per pulse is over ten nanometers. In addition, the results imply that Si, Fe and D have different behaviors during the material deposition in HL-2A.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1411042-synchrotron-ray-studies-model-sofc-cathodes-part-ii-porous-powder-cathodes','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1411042-synchrotron-ray-studies-model-sofc-cathodes-part-ii-porous-powder-cathodes"><span>Synchrotron X-ray studies of model SOFC cathodes, part II: Porous powder cathodes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Chang, Kee-Chul; Ingram, Brian; Ilavsky, Jan; ...</p> <p>2017-10-28</p> <p>Infiltrated La 0.6Sr 0.4Co 0.2Fe 0.8O 3-δ (LSCF) sintered porous powder cathodes for solid oxide fuel cells have been investigated by synchrotron ultra-small angle x-ray scattering (USAXS). Here, we demonstrated that atomic layer deposition (ALD) is the method for a uniform coating and liquid-phase infiltration for growing nanoscale particles on the porous LSCF surfaces. The MnO infiltrate, grown by ALD, forms a conformal layer with a uniform thickness throughout the pores evidenced by USAXS thickness fringes. The La 0.6Sr 0.4CoO 3 (LSC) and La 2Zr 2O 7 (LZO) infiltrates, grown by liquid-phase infiltration, were found to form nanoscale particles onmore » the surfaces of LSCF particles resulting in increased surface areas. In conclusion, impedance measurements suggest that the catalytic property of LSC infiltrate, not the increased surface area of LZO, is important for increasing oxygen reduction activities.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1411042-synchrotron-ray-studies-model-sofc-cathodes-part-ii-porous-powder-cathodes','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1411042-synchrotron-ray-studies-model-sofc-cathodes-part-ii-porous-powder-cathodes"><span>Synchrotron X-ray studies of model SOFC cathodes, part II: Porous powder cathodes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Chang, Kee-Chul; Ingram, Brian; Ilavsky, Jan</p> <p></p> <p>Infiltrated La 0.6Sr 0.4Co 0.2Fe 0.8O 3-δ (LSCF) sintered porous powder cathodes for solid oxide fuel cells have been investigated by synchrotron ultra-small angle x-ray scattering (USAXS). Here, we demonstrated that atomic layer deposition (ALD) is the method for a uniform coating and liquid-phase infiltration for growing nanoscale particles on the porous LSCF surfaces. The MnO infiltrate, grown by ALD, forms a conformal layer with a uniform thickness throughout the pores evidenced by USAXS thickness fringes. The La 0.6Sr 0.4CoO 3 (LSC) and La 2Zr 2O 7 (LZO) infiltrates, grown by liquid-phase infiltration, were found to form nanoscale particles onmore » the surfaces of LSCF particles resulting in increased surface areas. In conclusion, impedance measurements suggest that the catalytic property of LSC infiltrate, not the increased surface area of LZO, is important for increasing oxygen reduction activities.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhD...50V3002T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhD...50V3002T"><span>Fabrication and characterization of L10-ordered FeNi thin films</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Takanashi, Koki; Mizuguchi, Masaki; Kojima, Takayuki; Tashiro, Takayuki</p> <p>2017-12-01</p> <p>L10-ordered FeNi, showing high uniaxial magnetic anisotropy (K u), is promising as a ‘rare metal-free’ high K u material. We have worked on L10-ordered FeNi thin films prepared by two methods: one is molecular beam epitaxy (MBE) with alternate deposition of Fe and Ni monatomic layers, and the other is sputtering with co-deposition or multilayer-deposition of Fe and Ni followed by rapid thermal annealing (RTA). For the MBE films prepared by alternate monatomic layer deposition (leading to the stoichiometric composition: Fe 50 at.%- Ni 50 at.%), a clear relationship between K u and the long-range order parameter S estimated by synchrotron x-ray diffraction (XRD) was found with maximum values of S  =  0.48 and K u  =  7.0  ×  106 erg cm-3. The composition dependence of K u was also investigated by deviating the thickness from monatomic layer, showing a maximum of 9.3  ×  106 erg cm-3 around 60 at.%Fe. In addition, the effect of Co addition to L10-ordered FeNi was investigated, suggesting that a small amount (<10 at.%) of Co substitution for Ni would enhance K u if S keeps the same. The experiments were in qualitatively good agreement with the first-principles calculations. The magnetic damping constant α was also measured to be approximately 0.01 irrespective of S, suggesting that L10-FeNi is a candidate material with high K u and low α. For the sputtered films with RTA, no major difference between co-deposition and multilayer-deposition was found: in both cases the formation of L10-ordered phase after RTA was definitely confirmed by XRD. Transmission electron microscopy observations indicated that nanometer-sized L10-ordered clusters were dispersed in a disordered phase, in contrast to that of MBE films showing the homogeneous formation of L10-ordered phase. The enhancement of coercivity (H c) and residual magnetization (M r/M s) was observed associated with the appearance of L10-ordered phase. The maxima of H c and M r/M s were obtained to be 1.35 kOe and 0.22, respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28124679','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28124679"><span>Organic bistable memory devices based on MoO3 nanoparticle embedded Alq3 structures.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Abhijith, T; Kumar, T V Arun; Reddy, V S</p> <p>2017-03-03</p> <p>Organic bistable memory devices were fabricated by embedding a thin layer of molybdenum trioxide (MoO 3 ) between two tris-(8-hydroxyquinoline)aluminum (Alq 3 ) layers. The device exhibited excellent switching characteristics with an ON/OFF current ratio of 1.15 × 10 3 at a read voltage of 1 V. The device showed repeatable write-erase capability and good stability in both the conductance states. These conductance states are non-volatile in nature and can be obtained by applying appropriate voltage pulses. The effect of MoO 3 layer thickness and its location in the Alq 3 matrix on characteristics of the memory device was investigated. The field emission scanning electron microscopy (FE-SEM) images of the MoO 3 layer revealed the presence of isolated nanoparticles. Based on the experimental results, a mechanism has been proposed for explaining the conductance switching of fabricated devices.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Nanot..28i5203A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Nanot..28i5203A"><span>Organic bistable memory devices based on MoO3 nanoparticle embedded Alq3 structures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abhijith, T.; Kumar, T. V. Arun; Reddy, V. S.</p> <p>2017-03-01</p> <p>Organic bistable memory devices were fabricated by embedding a thin layer of molybdenum trioxide (MoO3) between two tris-(8-hydroxyquinoline)aluminum (Alq3) layers. The device exhibited excellent switching characteristics with an ON/OFF current ratio of 1.15 × 103 at a read voltage of 1 V. The device showed repeatable write-erase capability and good stability in both the conductance states. These conductance states are non-volatile in nature and can be obtained by applying appropriate voltage pulses. The effect of MoO3 layer thickness and its location in the Alq3 matrix on characteristics of the memory device was investigated. The field emission scanning electron microscopy (FE-SEM) images of the MoO3 layer revealed the presence of isolated nanoparticles. Based on the experimental results, a mechanism has been proposed for explaining the conductance switching of fabricated devices.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..MAR.G1029P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..MAR.G1029P"><span>Electrochemical vs X-ray Spectroscopic Measurements of NiFe(CN)6 Crystals</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Peecher, Benjamin; Hampton, Jennifer</p> <p></p> <p>Pseudocapacitive materials like hexacyanoferrate have greater energy storage capabilities than standard capacitors while maintaining an ability to charge and discharge quickly. We modify the surface of an electrodeposited Ni thin film with a layer of hexacyanoferrate. Charging and discharging these modified films using cyclic voltammetry (CV) allows us to measure the electrochemically active Fe in the film. To determine how closely this resembles the full amount of Fe in the film, we measure the films' composition using particle-induced x-ray emission (PIXE). We also vary the amount of Ni deposited, both to compare the electrolysis value of charge deposited to the PIXE measurement of Ni in the film, and also to measure how varying the thickness of the Ni surface affects the presence of Fe in the film. Comparisons of the CV and PIXE measurements show agreement in Ni levels but disagreement in Fe levels. PIXE measurements of Fe in the film have positive correlation with Ni in the film. This correlation between PIXE measurements of Ni and Fe suggests that PIXE provides a reliable measure of Fe in the film. This implies that a variable proportion of total Fe in a given film is electrochemically active. This research was made possible by the Hope College Department of Physics Frissel Research Fund and the National Science Foundation under Grants RUI-DMR-1104725, MRI-CHE-0959282, and MRI/RUI-PHY-0319523.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ApSS..433...35G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ApSS..433...35G"><span>Lithium-ions diffusion kinetic in LiFePO4/carbon nanoparticles synthesized by microwave plasma chemical vapor deposition for lithium-ion batteries</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gao, Chao; Zhou, Jian; Liu, Guizhen; Wang, Lin</p> <p>2018-03-01</p> <p>Olivine structure LiFePO4/carbon nanoparticles are synthesized successfully using a microwave plasma chemical vapor deposition (MPCVD) method. Microwave is an effective method to synthesize nanomaterials, the LiFePO4/carbon nanoparticles with high crystallinity can shorten diffusion routes for ionic transfer and electron tunneling. Meanwhile, a high quality, complete and homogenous carbon layer with appropriate thickness coating on the surface of LiFePO4 particles during in situ chemical vapor deposition process, which can ensure that electrons are able to transfer fast enough from all sides. Electrochemical impedance spectroscopy (EIS) is carried out to collect information about the kinetic behavior of lithium diffusion in LiFePO4/carbon nanoparticles during the charging and discharging processes. The chemical diffusion coefficients of lithium ions, DLi, are calculated in the range of 10-15-10-9 cm2s-1. Nanoscale LiFePO4/carbon particles show the longer regions of the faster solid-solution diffusion, and corresponding to the narrower region of the slower two-phase diffusion during the insertion/exaction of lithium ions. The CV and galvanostatic charge-discharge measurements show that the LiFePO4/carbon nanoparticles perform an excellent electrochemical performance, especially the high rate capacity and cycle life.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA080733','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA080733"><span>Bibliography of Soviet Laser Developments, Number 41, May - June 1979.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1980-01-10</p> <p>Andreyeva, O.V., and V.I. Sukhanov (0). Method for calculating the diffraction efficiency of holograms, allowing for the granularity of the photolayer. Sb...thick-layer holograms. Sb 14, 128-133. 315. Sukhanov , V.I., G.I. Lashkov, A.Ye. Petnikov, Yu.V. Ashcheulov, I.I. Reznikova, and A.S. Cherkasov (0... Sukhanov , V.I., Yu.V. Ashcheulov, and A.Ye. Petnikov (0). Recording and readout of holograms in LiNbO :Fe crystals. Sb 14, 64-72. 317. Tanin, L.V. (0</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/834067','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/834067"><span>LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Harlan U. Anderson; Fatih Dogan; Vladimir Petrovsky</p> <p>2002-03-31</p> <p>This project has three main goals: Thin Films Studies, Preparation of Graded Porous Substrates and Basic Electrical Characterization and testing of Planar Single Cells. This period has continued to address the problem of making dense 1/2 to 5 {micro}m thick dense layers on porous substrates (the cathode LSM). Our current status is that we are making structures of 2-5 cm{sup 2} in area, which consist of either dense YSZ or CGO infiltrated into a 2-5 {micro}m thick 50% porous layer made of either nanoncrystalline CGO or YSZ powder. This composite structure coats a macroporous cathode or anode; which serves asmore » the structural element of the bi-layer structure. These structures are being tested as SOFC elements. A number of structures have been evaluated both as symmetrical and as button cell configuration. Results of this testing indicates that the cathodes contribute the most to cell losses for temperatures below 750 C. In this investigation different cathode materials were studied using impedance spectroscopy of symmetric cells and IV characteristics of anode supported fuel cells. Cathode materials studied included La{sub 0.8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3} (LSCF), La{sub 0.7}Sr{sub 0.2}MnO{sub 3} (LSM), Pr{sub 0.8}Sr{sub 0.2}Fe{sub 0.8}O{sub 3} (PSCF), Sm{sub 0.8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3} (SSCF), and Yb{sub .8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3} (SSCF). A new technique for filtering the Fourier transform of impedance data was used to increase the sensitivity of impedance analysis. By creating a filter specifically for impedance spectroscopy the resolution was increased. The filter was tailored to look for specific circuit elements like R//C, Warburg, or constant phase elements. As many as four peaks can be resolved using the filtering technique on symmetric cells. It may be possible to relate the different peaks to material parameters, like the oxygen exchange coefficient. The cathode grouped in order from lowest to highest ASR is LSCF < PSCF < SSCF < YSCF < LSM. The button cell results agree with this ordering indicating that this is an important tool for use in developing our understanding of electrode behavior in fuel cells.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JMEP...26.6182Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JMEP...26.6182Z"><span>Study on Composition, Microstructure and Wear Behavior of Fe-B-C Wear-Resistant Surfacing Alloys</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhuang, Minghui; Li, Muqin; Wang, Jun; Ma, Zhen; Yuan, Shidan</p> <p>2017-12-01</p> <p>Fe-B-C alloy layers with various microstructures were welded on Q235 steel plates using welding powders/H08Mn2Si and welding wires composite surfacing technology. The relationship existing between the chemical composition, microstructure and wear resistance of the surfacing alloy layers was investigated by scanning electron microscopy, x-ray diffraction, electron backscatter diffraction and wear tests. The results demonstrated that the volume fractions and morphologies of the microstructures in the surfacing alloy layers could be controlled by adjusting the boron and carbon contents in the welding powders, which could further regulate the wear resistance of the surfacing alloy layers. The typical microstructures of the Fe-B-C surfacing alloy layers included dendritic Fe, rod-like Fe2B, fishbone-like Fe2B and daisy-like Fe3(C, B). The wear resistance of the alloy layers with various morphologies differed. The wear resistance order of the different microstructures was: rod-like Fe2B > fishbone-like Fe2B > daisy-like Fe3(C, B) > dendritic Fe. A large number of rod-like Fe2B with high microhardness could be obtained at the boron content of 5.70 5.90 wt.% and the carbon content of 0.50 0.60wt.%. The highest wear resistance of the Fe-B-C alloy layers reached the value of 24.1 g-1, which demonstrates the main microscopic cutting wear mechanism of the Fe-B-C alloy layers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.B21C0459K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.B21C0459K"><span>Investigating redox processes under diffusive and advective flow conditions using a coupled omics and synchrotron approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kemner, K. M.; Boyanov, M.; Flynn, T. M.; O'Loughlin, E. J.; Antonopoulos, D. A.; Kelly, S.; Skinner, K.; Mishra, B.; Brooks, S. C.; Watson, D. B.; Wu, W. M.</p> <p>2015-12-01</p> <p>FeIII- and SO42--reducing microorganisms and the mineral phases they produce have profound implications for many processes in aquatic and terrestrial systems. In addition, many of these microbially-catalysed geochemical transformations are highly dependent upon introduction of reactants via advective and diffusive hydrological transport. We have characterized microbial communities from a set of static microcosms to test the effect of ethanol diffusion and sulfate concentration on UVI-contaminated sediment. The spatial distribution, valence states, and speciation of both U and Fe were monitored in situ throughout the experiment by synchrotron x-ray absorption spectroscopy, in parallel with solution measurements of pH and the concentrations of sulfate, ethanol, and organic acids. After reaction initiation, a ~1-cm thick layer of sediment near the sediment-water (S-W) interface became visibly dark. Fe XANES spectra of the layer were consistent with the formation of FeS. Over the 4 year duration of the experiment, U LIII-edge XANES indicated reduction of U, first in the dark layer and then throughout the sediment. Next, the microcosms were disassembled and samples were taken from the overlying water and different sediment regions. We extracted DNA and characterized the microbial community by sequencing 16S rRNA gene amplicons with the Illumina MiSeq platform and found that the community evolved from its originally homogeneous composition, becoming significantly spatially heterogeneous. We have also developed an x-ray accessible column to probe elemental transformations as they occur along the flow path in a porous medium with the purpose of refining reactive transport models (RTMs) that describe coupled physical and biogeochemical processes in environmental systems. The elemental distribution dynamics and the RTMs of the redox driven processes within them will be presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPA....7l5308D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPA....7l5308D"><span>Effect of interleaved Si layer on the magnetotransport and semiconducting properties of n-Si/Fe Schottky junctions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Das, Sudhansu Sekhar; Kumar, M. Senthil</p> <p>2017-12-01</p> <p>Heterostructure films of the form n-Si/Si(tSi)/Fe(800 Å) were prepared by DC magnetron sputtering. In these films, the Si and Fe (800 Å) films were deposited onto n-Si(100) substrates. Substrates with different doping concentration ND were used. The thickness tSi of the interleaved Si layer is varied. For tSi = 0, the heterostructures form n-Si/Fe Schottky junctions. Structural studies on the samples as performed through XRD indicate the polycrystalline nature of the films. The magnetization data showed that the samples have in-plane easy axis of magnetization. The coercivity of the samples is of the order of 90 Oe. The I-V measurements on the samples showed nonlinear behavior. The diode ideality factor η = 2.6 is observed for the junction with ND = 1018 cm-3. The leakage current I0 increases with the increase of ND. Magnetic field has less effect on the electrical properties of the junctions. A positive magnetoresistance in the range 1 - 10 % was observed for the Si/Fe Schottky junctions in the presence of magnetic field of strength 2 T. The origin of the MR is analyzed using a model where the ratio of the currents across the junctions with and without the applied magnetic field, IH=2T/IH=0 is studied as a function of the bias voltage Vbias. The ratio IH=2T/IH=0 shows a decreasing trend with the Vbias, suggesting that the contribution to the MR in our n-Si/Fe Schottky junctions due to the spin dependent scattering is very less as compared to that due to the suppression of the impact ionization process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhDT........43O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhDT........43O"><span>Study of structure and properties of oxide electrode materials (Fe3O4, AZO, SRO) and their device applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Olga, Chichvarina</p> <p></p> <p>Ferroelectric thin film capacitor heterostructures have attracted considerable attention in the last decade because of their potential applications in piezoelectric sensors, actuators, power generators and non-volatile memory devices. Strongly correlated all-perovskite oxide heterojunctions are of a particular interest, as their material properties (electronic, structural, magnetic and optical, etc.) can be tuned via doping, interface effect, applied electrical field, and formation of two-dimensional electron gas (2DEG), etc. The right selection of electrode material for this type of capacitor-like structures may modify and enhance the performance of a device, as the electrode/barrier layer interfaces can significantly influence its macroscopic properties. Although there is a number of reports on the effect of electrode interfaces on the properties of PZT capacitors deposited on SRO buffered STO substrate, very little is known about Fe3O4/PZT and AZO/PZT electrode interfaces. This thesis comprises two parts. In the first part we present a systematic study of the structural, transport, magnetic and optical properties of oxide thin films: AZO, Fe3O4 and SRO. These monolayers were fabricated via pulsed laser deposition technique on quartz, MgO and STO substrates respectively. The second part of this thesis elucidates the behaviour of these three oxides as electrode components in PZT/SRO/STO heteroepitaxial structures. The highlights of the work are summarized below: 1) Zinc-blende (ZB) phase of ZnO was predicted to possess higher values of conductivity and higher doping efficiency compared to its wurzite counterpart and thus has greater chances of facilitating the fabrication of ZnO-electrode-based devices. However, zinc-blende is a metastable phase, and it is challenging to obtain single-phase ZB. To tackle this challenge we tuned parameters such-as film thickness, substrate and annealing effect, and achieved a ZB phase of Ti-doped ZnO, ZB-(Zn1-xTix)O thin film. An in-depth systematic study on ZnO zinc-blende formation and the underlying mechanism is presented in Chapter 3 of this work. In addition, this study also looked into the effect of ZnO doping with hydrogen and aluminum. 2) Perpendicular magnetic anisotropy in electrodes is an essential property for the development of certain types of random access memories. In order to study magnetic anisotropy of ferroelectric Fe3O4, we fabricated Fe3O4 epitaxial films of various thicknesses on MgO substrates with different orientations. Fe3O4 thin films on MgO (111)-oriented substrates showed prominent out-of-plane magnetic anisotropy. With the purpose of exploring the mechanism behind this phenomenon, we investigated the role of substrate orientation and film thickness dependency. It was shown that by using the substrates of different orientations and thereby, altering the substrate lattice strain the anisotropy manipulation in Fe3O4, thin films is possible. 3) The last part of the thesis focuses on the performance of AZO/PZT/SRO/STO and Fe3O4/PZT/SRO/STO heterostructures. High quality crystalline films with sharp interfaces and rms surface roughness 1 nm were achieved. Pronounced bipolar switching was observed in both heterostructures. More importantly, it was found that physical properties of Fe3O 4/Pb(Zr0.52Ti0.48)O3/SrRuO3/SrTiO 3 heterostructure can be modulated by introducing Fe2+ and Fe3+ cations into Pb(Zr0.52Ti0.48)O 3 active layer. The sample showed MR signal of 3% after being set into low-resistance state, attributing to the formation of Fe-related semiconductor-like channel in the Pb(Zr0.52Ti0.48)O3 layer. After resetting to high-resistance state, MR signal disappeared due to the rupture of the channel. The results paves the way to the realization of a nonvolatile multiple states Pb(ZrTi)O 3-based hybrid memory.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AIPC.1942m0051A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AIPC.1942m0051A"><span>Effect of film thickness on soft magnetic behavior of Fe2CoSi Heusler alloy for spin transfer torque device applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Asvini, V.; Saravanan, G.; Kalaiezhily, R. K.; Raja, M. Manivel; Ravichandran, K.</p> <p>2018-04-01</p> <p>Fe2CoSi based Heusler alloy thin films were deposited on Si (111) wafer (substrate) of varying thickness using ultra high vacuum DC magnetron sputtering. The structural behavior was observed and found to be hold the L21 structure. The deposited thin films were characterized magnetic properties using vibrating sample magnetometer; the result shows a very high saturated magnetization (Ms), lowest coercivity (Hc), high curie transition temperature (Tc) and low hysteresis loss. Thin film thickness of 75 nm Fe2CoSi sample maintained at substrate temperature 450°C shows the lowest coercivity (Hc=7 Oe). In general, Fe2CoSi Heusler alloys curie transition temperature is very high, due to strong exchange interaction between the Fe and Co atoms. The substrate temperature was kept constant at 450°C for varying thickness (e.g. 5, 20, 50, 75 and 100 nm) of thin film sample. The 75 nm thickness thin film sample shows well crystallanity and good magnetic properties, further squareness ratio in B-H loop increases with the increase in film thickness.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3147363','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3147363"><span>Sorption and Distribution of Copper in Unsaturated Pseudomonas putida CZ1 Biofilms as Determined by X-Ray Fluorescence Microscopy ▿</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Chen, Guangcun; Chen, Xincai; Yang, Yuanqiang; Hay, Anthony G.; Yu, Xiaohan; Chen, Yingxu</p> <p>2011-01-01</p> <p>The spatial and temporal distribution of metals in unsaturated Pseudomonas putida CZ1 biofilms was determined using synchrotron-based X-ray fluorescence microscopy (XRF). It was found that Fe, Mn, and Ca were mainly distributed near the air-biofilm interface of a biofilm grown on 40 mM citrate, while there were two Fe-, Mn-, and Ca-rich layers within a biofilm grown on 10 mM citrate. The sorption of copper by biofilm grown in medium containing 10 mM citrate was rapid, with copper being found throughout the biofilm after only 1 h of exposure. Copper initially colocalized with Fe and Mn element layers in the biofilm and then precipitated in a 40-μm-thick layer near the air-biofilm interface when exposed for 12 h. Cu K-edge X-ray absorption near edge structure (XANES) analysis revealed that Cu was primarily bound with citrate within the biofilm, and the precipitate formed in the biofilm exposed to copper for 12 h was most similar to copper phosphate. LIVE/DEAD staining revealed that cells at the biofilm-membrane interface were mostly alive even when the copper concentration reached 80.5 mg copper g−1 biomass. This suggests that the biofilm matrix provided significant protection for cells in this area. These results significantly improve our understanding of metal acquisition, transportation, and immobilization in unsaturated biofilm systems. PMID:21642411</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013SSEle..88...65M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013SSEle..88...65M"><span>Downscaling ferroelectric field effect transistors by using ferroelectric Si-doped HfO2</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martin, Dominik; Yurchuk, Ekaterina; Müller, Stefan; Müller, Johannes; Paul, Jan; Sundquist, Jonas; Slesazeck, Stefan; Schlösser, Till; van Bentum, Ralf; Trentzsch, Martin; Schröder, Uwe; Mikolajick, Thomas</p> <p>2013-10-01</p> <p>Throughout the 22 nm technology node HfO2 is established as a reliable gate dielectric in contemporary complementary metal oxide semiconductor (CMOS) technology. The working principle of ferroelectric field effect transistors FeFET has also been demonstrated for some time for dielectric materials like Pb[ZrxTi1-x]O3 and SrBi2Ta2O9. However, integrating these into contemporary downscaled CMOS technology nodes is not trivial due to the necessity of an extremely thick gate stack. Recent developments have shown HfO2 to have ferroelectric properties, given the proper doping. Moreover, these doped HfO2 thin films only require layer thicknesses similar to the ones already in use in CMOS technology. This work will show how the incorporation of Si induces ferroelectricity in HfO2 based capacitor structures and finally demonstrate non-volatile storage in nFeFETs down to a gate length of 100 nm. A memory window of 0.41 V can be retained after 20,000 switching cycles. Retention can be extrapolated to 10 years.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26942451','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26942451"><span>Ba2F2Fe(1.5)Se3: An Intergrowth Compound Containing Iron Selenide Layers.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Driss, Dalel; Janod, Etienne; Corraze, Benoit; Guillot-Deudon, Catherine; Cario, Laurent</p> <p>2016-03-21</p> <p>The iron selenide compound Ba2F2Fe(1.5)Se3 was synthesized by a high-temperature ceramic method. The single-crystal X-ray structure determination revealed a layered-like structure built on [Ba2F2](2+) layers of the fluorite type and iron selenide layers [Fe(1.5)Se3](2-). These [Fe1.5Se3](2-) layers contain iron in two valence states, namely, Fe(II+) and Fe(III+) located in octahedral and tetrahedral sites, respectively. Magnetic measurements are consistent with a high-spin state for Fe(II+) and an intermediate-spin state for Fe(III+). Moreover, susceptibility and resistivity measurements demonstrate that Ba2F2Fe(1.5)Se3 is an antiferromagnetic insulator.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015NatSR...513027X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015NatSR...513027X"><span>Improve oxidation resistance at high temperature by nanocrystalline surface layer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xia, Z. X.; Zhang, C.; Huang, X. F.; Liu, W. B.; Yang, Z. G.</p> <p>2015-08-01</p> <p>An interesting change of scale sequence occurred during oxidation of nanocrystalline surface layer by means of a surface mechanical attrition treatment. The three-layer oxide structure from the surface towards the matrix is Fe3O4, spinel FeCr2O4 and corundum (Fe,Cr)2O3, which is different from the typical two-layer scale consisted of an Fe3O4 outer layer and an FeCr2O4 inner layer in conventional P91 steel. The diffusivity of Cr, Fe and O is enhanced concurrently in the nanocrystalline surface layer, which causes the fast oxidation in the initial oxidation stage. The formation of (Fe,Cr)2O3 inner layer would inhabit fast diffusion of alloy elements in the nanocrystalline surface layer of P91 steel in the later oxidation stage, and it causes a decrease in the parabolic oxidation rate compared with conventional specimens. This study provides a novel approach to improve the oxidation resistance of heat resistant steel without changing its Cr content.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/20015650-microwave-corrosion-detection-using-open-ended-rectangular-waveguide-sensors','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/20015650-microwave-corrosion-detection-using-open-ended-rectangular-waveguide-sensors"><span>Microwave corrosion detection using open ended rectangular waveguide sensors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Qaddoumi, N.; Handjojo, L.; Bigelow, T.</p> <p></p> <p>The use of microwave and millimeter wave nondestructive testing methods utilizing open ended rectangular waveguide sensors has shown great potential for detecting minute thickness variations in laminate structures, in particular those backed by a conducting plate. Slight variations in the dielectric properties of materials may also be detected using a set of optimal parameters which include the standoff distance and the frequency of operation. In a recent investigation, on detecting rust under paint, the dielectric properties of rust were assumed to be similar to those of Fe{sub 2}O{sub 3} powder. These values were used in an electromagnetic model that simulatesmore » the interaction of fields radiated by a rectangular waveguide aperture with layered structures to obtain optimal parameters. The dielectric properties of Fe{sub 2}O{sub 3} were measured to be very similar to the properties of paint. Nevertheless, the presence of a simulated Fe{sub 2}O{sub 3} layer under a paint layer was detected. In this paper the dielectric properties of several different rust samples from different environments are measured. The measurements indicate that the nature of real rust is quite diverse and is different from Fe{sub 2}O{sub 3} and paint, indicating that the presence of rust under paint can be easily detected. The same electromagnetic model is also used (with the newly measured dielectric properties of real rust) to obtain an optimal standoff distance at a frequency of 24 GHz. The results indicate that variations in the magnitude as well as the phase of the reflection coefficient can be used to obtain information about the presence of rust. An experimental investigation on detecting the presence of very thin rust layers (2.5--5 x 10{sup {minus}2} mm [09--2.0 x 10{sup {minus}3} in.]) using an open ended rectangular waveguide probe is also conducted. Microwave images of rusted specimens, obtained at 24 GHz, are also presented.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110016804','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110016804"><span>Patterned Growth of Carbon Nanotubes or Nanofibers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Delzeit, Lance D.</p> <p>2004-01-01</p> <p>A method and apparatus for the growth of carbon nanotubes or nanofibers in a desired pattern has been invented. The essence of the method is to grow the nanotubes or nanofibers by chemical vapor deposition (CVD) onto a patterned catalyst supported by a substrate. The figure schematically depicts salient aspects of the method and apparatus in a typical application. A substrate is placed in a chamber that contains both ion-beam sputtering and CVD equipment. The substrate can be made of any of a variety of materials that include several forms of silicon or carbon, and selected polymers, metals, ceramics, and even some natural minerals and similar materials. Optionally, the substrate is first coated with a noncatalytic metal layer (which could be a single layer or could comprise multiple different sublayers) by ion-beam sputtering. The choice of metal(s) and thickness(es) of the first layer (if any) and its sublayers (if any) depends on the chemical and electrical properties required for subsequent deposition of the catalyst and the subsequent CVD of the carbon nanotubes. A typical first-sublayer metal is Pt, Pd, Cr, Mo, Ti, W, or an alloy of two or more of these elements. A typical metal for the second sublayer or for an undivided first layer is Al at a thickness .1 nm or Ir at a thickness .5 nm. Proper choice of the metal for a second sublayer of a first layer makes it possible to use a catalyst that is chemically incompatible with the substrate. In the next step, a mask having holes in the desired pattern is placed over the coated substrate. The catalyst is then deposited on the coated substrate by ion-beam sputtering through the mask. Optionally, the catalyst could be deposited by a technique other than sputtering and/or patterned by use of photolithography, electron- beam lithography, or another suitable technique. The catalytic metal can be Fe, Co, Ni, or an alloy of two or more of these elements, deposited to a typical thickness in the range from 0.1 to 20 nm.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26955971','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26955971"><span>Tuning Superconductivity in FeSe Thin Films via Magnesium Doping.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Qiu, Wenbin; Ma, Zongqing; Liu, Yongchang; Shahriar Al Hossain, Mohammed; Wang, Xiaolin; Cai, Chuanbing; Dou, Shi Xue</p> <p>2016-03-01</p> <p>In contrast to its bulk crystal, the FeSe thin film or layer exhibits better superconductivity performance, which recently attracted much interest in its fundamental research as well as in potential applications around the world. In the present work, tuning superconductivity in FeSe thin films was achieved by magnesium-doping technique. Tc is significantly enhanced from 10.7 K in pure FeSe films to 13.4 K in optimized Mg-doped ones, which is approximately 1.5 times higher than that of bulk crystals. This is the first time achieving the enhancement of superconducting transition temperature in FeSe thin films with practical thickness (120 nm) via a simple Mg-doping process. Moreover, these Mg-doped FeSe films are quite stable in atmosphere with Hc2 up to 32.7 T and Tc(zero) up to 12 K, respectively, implying their outstanding potential for practical applications in high magnetic fields. It was found that Mg enters the matrix of FeSe lattice, and does not react with FeSe forming any other secondary phase. Actually, Mg first occupies Fe-vacancies, and then substitutes for some Fe in the FeSe crystal lattices when Fe-vacancies are fully filled. Simultaneously, external Mg-doping introduces sufficient electron doping and induces the variation of electron carrier concentration according to Hall coefficient measurements. This is responsible for the evolution of superconducting performance in FeSe thin films. Our results provide a new strategy to improve the superconductivity of 11 type Fe-based superconductors and will help us to understand the intrinsic mechanism of this unconventional superconducting system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ApPhL.112d2404B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ApPhL.112d2404B"><span>Spin Seebeck effect and thermal spin galvanic effect in Ni80Fe20/p-Si bilayers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bhardwaj, Ravindra G.; Lou, Paul C.; Kumar, Sandeep</p> <p>2018-01-01</p> <p>The development of spintronics and spin-caloritronics devices needs efficient generation, detection, and manipulation of spin current. The thermal spin current from the spin-Seebeck effect has been reported to be more energy efficient than the electrical spin injection methods. However, spin detection has been the one of the bottlenecks since metals with large spin-orbit coupling is an essential requirement. In this work, we report an efficient thermal generation and interfacial detection of spin current. We measured a spin-Seebeck effect in Ni80Fe20 (25 nm)/p-Si (50 nm) (polycrystalline) bilayers without a heavy metal spin detector. p-Si, having a centrosymmetric crystal structure, has insignificant intrinsic spin-orbit coupling, leading to negligible spin-charge conversion. We report a giant inverse spin-Hall effect, essential for the detection of spin-Seebeck effects, in the Ni80Fe20/p-Si bilayer structure, which originates from Rashba spin orbit coupling due to structure inversion asymmetry at the interface. In addition, the thermal spin pumping in p-Si leads to spin current from p-Si to the Ni80Fe20 layer due to the thermal spin galvanic effect and the spin-Hall effect, causing spin-orbit torques. The thermal spin-orbit torques lead to collapse of magnetic hysteresis of the 25 nm thick Ni80Fe20 layer. The thermal spin-orbit torques can be used for efficient magnetic switching for memory applications. These scientific breakthroughs may give impetus to the silicon spintronics and spin-caloritronics devices.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1352624-water-oxidation-size-selected-co27-clusters-supported-fe2o3','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1352624-water-oxidation-size-selected-co27-clusters-supported-fe2o3"><span>Water oxidation by size selected Co 27 clusters supported on Fe 2O 3</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Pellin, Michael J.; Riha, Shannon C.; Tyo, Eric C.; ...</p> <p>2016-09-22</p> <p>The complexity of the water oxidation reaction makes understanding the role of individual catalytic sites critical to improving the process. Here, size-selected 27-atom cobalt clusters (Co 27) deposited on hematite (Fe 2O 3) anodes were tested for water oxidation activity. The uniformity of these anodes allows measurement of the activity of catalytic sites of well-defined nuclearity and known density. Grazing incidence X-ray absorption near-edge spectroscopy (GIXANES) characterization of the anodes before and after electrochemical cycling demonstrates that these Co 27 clusters are stable to dissolution even in the harsh water oxidation electrochemical environment. They are also stable under illumination atmore » the equivalent of 0.4suns irradiation. The clusters show turnover rates for water oxidation that are comparable or higher than those reported for Pd- and Co-based materials or for hematite. The support for the Co 27 clusters is Fe 2O 3 grown by atomic layer deposition on a Si chip. We have chosen to deposit a Fe2O3 layer that is only a few unit cells thick (2nm), to remove complications related to exciton diffusion. We find that the electrocatalytic and the photoelectrocatalytic activity of the Co 27/Fe 2O 3 material is significantly improved when the samples are annealed (with the clusters already deposited). Lastly, given that the support is thin and that the cluster deposition density is equivalent to approximately 5% of an atomic monolayer, we suggest that annealing may significantly improve the exciton diffusion from the support to the catalytic moiety.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017A%26A...608L...1H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017A%26A...608L...1H"><span>The AMBRE project: The thick thin disk and thin thick disk of the Milky Way</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hayden, M. R.; Recio-Blanco, A.; de Laverny, P.; Mikolaitis, S.; Worley, C. C.</p> <p>2017-11-01</p> <p>We analyze 494 main sequence turnoff and subgiant stars from the AMBRE:HARPS survey. These stars have accurate astrometric information from Gaia DR1, providing reliable age estimates with relative uncertainties of ±1 or 2 Gyr and allowing precise orbital determinations. The sample is split based on chemistry into a low-[Mg/Fe] sequence, which are often identified as thin disk stellar populations, and high-[Mg/Fe] sequence, which are often associated with thick disk stellar populations. We find that the high-[Mg/Fe] chemical sequence has extended star formation for several Gyr and is coeval with the oldest stars of the low-[Mg/Fe] chemical sequence: both the low- and high-[Mg/Fe] sequences were forming stars at the same time. We find that the high-[Mg/Fe] stellar populations are only vertically extended for the oldest, most-metal poor and highest [Mg/Fe] stars. When comparing vertical velocity dispersion for the low- and high-[Mg/Fe] sequences, the high-[Mg/Fe] sequence has lower vertical velocity dispersion than the low-[Mg/Fe] sequence for stars of similar age. This means that identifying either group as thin or thick disk based on chemistry is misleading. The stars belonging to the high-[Mg/Fe] sequence have perigalacticons that originate in the inner disk, while the perigalacticons of stars on the low-[Mg/Fe] sequence are generally around the solar neighborhood. From the orbital properties of the stars, the high-[Mg/Fe] and low-[Mg/Fe] sequences are most likely a reflection of the chemical enrichment history of the inner and outer disk populations, respectively; radial mixing causes both populations to be observed in situ at the solar position. Based on these results, we emphasize that it is important to be clear in defining what populations are being referenced when using the terms thin and thick disk, and that ideally the term thick disk should be reserved for purely geometric definitions to avoid confusion and be consistent with definitions in external galaxies.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>