Modeling of optical mirror and electromechanical behavior
NASA Astrophysics Data System (ADS)
Wang, Fang; Lu, Chao; Liu, Zishun; Liu, Ai Q.; Zhang, Xu M.
2001-10-01
This paper presents finite element (FE) simulation and theoretical analysis of novel MEMS fiber-optical switches actuated by electrostatic attraction. FE simulation for the switches under static and dynamic loading are first carried out to reveal the mechanical characteristics of the minimum or critical switching voltages, the natural frequencies, mode shapes and response under different levels of electrostatic attraction load. To validate the FE simulation results, a theoretical (or analytical) model is then developed for one specific switch, i.e., Plate_40_104. Good agreement is found between the FE simulation and the analytical results. From both FE simulation and theoretical analysis, the critical switching voltage for Plate_40_104 is derived to be 238 V for the switching angel of 12 degree(s). The critical switching on and off times are 431 microsecond(s) and 67 microsecond(s) , respectively. The present study not only develops good FE and analytical models, but also demonstrates step by step a method to simplify a real optical switch structure with reference to the FE simulation results for analytical purpose. With the FE and analytical models, it is easy to obtain any information about the mechanical behaviors of the optical switches, which are helpful in yielding optimized design.
NASA Astrophysics Data System (ADS)
Dörr, Dominik; Schirmaier, Fabian J.; Henning, Frank; Kärger, Luise
2017-10-01
Finite Element (FE) forming simulation offers the possibility of a detailed analysis of the deformation behavior of multilayered thermoplastic blanks during forming, considering material behavior and process conditions. Rate-dependent bending behavior is a material characteristic, which is so far not considered in FE forming simulation of pre-impregnated, continuously fiber reinforced polymers (CFRPs). Therefore, an approach for modeling viscoelastic bending behavior in FE composite forming simulation is presented in this work. The presented approach accounts for the distinct rate-dependent bending behavior of e.g. thermoplastic CFRPs at process conditions. The approach is based on a Voigt-Kelvin (VK) and a generalized Maxwell (GM) approach, implemented within a FE forming simulation framework implemented in several user-subroutines of the commercially available FE solver Abaqus. The VK, GM, as well as purely elastic bending modeling approaches are parameterized according to dynamic bending characterization results for a PA6-CF UD-tape. It is found that only the GM approach is capable to represent the bending deformation characteristic for all of the considered bending deformation rates. The parameterized bending modeling approaches are applied to a hemisphere test and to a generic geometry. A comparison of the forming simulation results of the generic geometry to experimental tests show a good agreement between simulation and experiments. Furthermore, the simulation results reveal that especially a correct modeling of the initial bending stiffness is relevant for the prediction of wrinkling behavior, as a similar onset of wrinkles is observed for the GM, the VK and an elastic approach, fitted to the stiffness observed in the dynamic rheometer test for low curvatures. Hence, characterization and modeling of rate-dependent bending behavior is crucial for FE forming simulation of thermoplastic CFRPs.
Lunar dust simulant containing nanophase iron and method for making the same
NASA Technical Reports Server (NTRS)
Hung, Chin-cheh (Inventor); McNatt, Jeremiah (Inventor)
2012-01-01
A lunar dust simulant containing nanophase iron and a method for making the same. Process (1) comprises a mixture of ferric chloride, fluorinated carbon powder, and glass beads, treating the mixture to produce nanophase iron, wherein the resulting lunar dust simulant contains .alpha.-iron nanoparticles, Fe.sub.2O.sub.3, and Fe.sub.3O.sub.4. Process (2) comprises a mixture of a material of mixed-metal oxides that contain iron and carbon black, treating the mixture to produce nanophase iron, wherein the resulting lunar dust simulant contains .alpha.-iron nanoparticles and Fe.sub.3O.sub.4.
Melting Penetration Simulation of Fe-U System at High Temperature Using MPS_LER
NASA Astrophysics Data System (ADS)
Mustari, A. P. A.; Yamaji, A.; Irwanto, Dwi
2016-08-01
Melting penetration information of Fe-U system is necessary for simulating the molten core behavior during severe accident in nuclear power plants. For Fe-U system, the information is mainly obtained from experiment, i.e. TREAT experiment. However, there is no reported data on SS304 at temperature above 1350°C. The MPS_LER has been developed and validated to simulate melting penetration on Fe-U system. The MPS_LER modelled the eutectic phenomenon by solving the diffusion process and by applying the binary phase diagram criteria. This study simulates the melting penetration of the system at higher temperature using MPS_LER. Simulations were conducted on SS304 at 1400, 1450 and 1500°C. The simulation results show rapid increase of melting penetration rate.
Simulations of Lithium-Magnetite Electrodes Incorporating Phase Change
Knehr, Kevin W.; Cama, Christina A.; Brady, Nicholas W.; ...
2017-04-09
In this work, the phase changes occurring in magnetite (Fe 3O 4) during lithiation and voltage recovery experiments are modeled using a model that simulates the electrochemical performance of a Fe 3O 4 electrode by coupling the lithium transport in the agglomerate and nano-crystal length-scales to thermodynamic and kinetic expressions. Phase changes are described using kinetic expressions based on the Avrami theory for nucleation and growth. Also, simulated results indicate that the slow, linear voltage change observed at long times during the voltage recovery experiments can be attributed to a slow phase change from α-Li xFe 3O 4 to β-Limore » 4Fe 3O 4. In addition, the long voltage plateau at ~1.2 V observed during lithiation of electrodes is attributed to conversion from α-Li xFe 3O 4 to γ-(4 Li 2O + 3 Fe). Simulations for the lithiation of 6 and 32 nm Fe 3O 4 suggest the rate of conversion to γ-(4 Li 2O + 3 Fe) decreases with decreasing crystal size.« less
NASA Astrophysics Data System (ADS)
Seo, Won-Gap; Matsuura, Hiroyuki; Tsukihashi, Fumitaka
2006-04-01
Recently, molecular dynamics (MD) simulation has been widely employed as a very useful method for the calculation of various physicochemical properties in the molten slags and fluxes. In this study, MD simulation has been applied to calculate the structural, transport, and thermodynamic properties for the FeCl2, PbCl2, and ZnCl2 systems using the Born—Mayer—Huggins type pairwise potential with partial ionic charges. The interatomic potential parameters were determined by fitting the physicochemical properties of iron chloride, lead chloride, and zinc chloride systems with experimentally measured results. The calculated structural, transport, and thermodynamic properties of pure FeCl2, PbCl2, and ZnCl2 showed the same tendency with observed results. Especially, the calculated structural properties of molten ZnCl2 and FeCl2 show the possibility of formation of polymeric network structures based on the ionic complexes of ZnCl{4/2-}, ZnCl{3/-}, FeCl{4/2-}, and FeCl{3/-}, and these calculations have successfully reproduced the measured results. The enthalpy, entropy, and Gibbs energy of mixing for the PbCl2-ZnCl2, FeCl2-PbCl2, and FeCl2-ZnCl2 systems were calculated based on the thermodynamic and structural parameters of each binary system obtained from MD simulation. The phase diagrams of the PbCl2-ZnCl2, FeCl2-PbCl2, and FeCl2-ZnCl2 systems estimated by using the calculated Gibbs energy of mixing reproduced the experimentally measured ones reasonably well.
Mechanisms of electron acceptor utilization: Implications for simulating anaerobic biodegradation
Schreiber, M.E.; Carey, G.R.; Feinstein, D.T.; Bahr, J.M.
2004-01-01
Simulation of biodegradation reactions within a reactive transport framework requires information on mechanisms of terminal electron acceptor processes (TEAPs). In initial modeling efforts, TEAPs were approximated as occurring sequentially, with the highest energy-yielding electron acceptors (e.g. oxygen) consumed before those that yield less energy (e.g., sulfate). Within this framework in a steady state plume, sequential electron acceptor utilization would theoretically produce methane at an organic-rich source and Fe(II) further downgradient, resulting in a limited zone of Fe(II) and methane overlap. However, contaminant plumes often display much more extensive zones of overlapping Fe(II) and methane. The extensive overlap could be caused by several abiotic and biotic processes including vertical mixing of byproducts in long-screened monitoring wells, adsorption of Fe(II) onto aquifer solids, or microscale heterogeneity in Fe(III) concentrations. Alternatively, the overlap could be due to simultaneous utilization of terminal electron acceptors. Because biodegradation rates are controlled by TEAPs, evaluating the mechanisms of electron acceptor utilization is critical for improving prediction of contaminant mass losses due to biodegradation. Using BioRedox-MT3DMS, a three-dimensional, multi-species reactive transport code, we simulated the current configurations of a BTEX plume and TEAP zones at a petroleum- contaminated field site in Wisconsin. Simulation results suggest that BTEX mass loss due to biodegradation is greatest under oxygen-reducing conditions, with smaller but similar contributions to mass loss from biodegradation under Fe(III)-reducing, sulfate-reducing, and methanogenic conditions. Results of sensitivity calculations document that BTEX losses due to biodegradation are most sensitive to the age of the plume, while the shape of the BTEX plume is most sensitive to effective porosity and rate constants for biodegradation under Fe(III)-reducing and methanogenic conditions. Using this transport model, we had limited success in simulating overlap of redox products using reasonable ranges of parameters within a strictly sequential electron acceptor utilization framework. Simulation results indicate that overlap of redox products cannot be accurately simulated using the constructed model, suggesting either that Fe(III) reduction and methanogenesis are occurring simultaneously in the source area, or that heterogeneities in Fe(III) concentration and/or mineral type cause the observed overlap. Additional field, experimental, and modeling studies will be needed to address these questions. ?? 2004 Elsevier B.V. All rights reserved.
Chen, Yen-Ju; Lee, Yen-I; Chang, Wen-Cheng; Hsiao, Po-Jen; You, Jr-Shian; Wang, Chun-Chieh; Wei, Chia-Min
2017-01-01
Abstract Hot deformation of Nd-Fe-B magnets has been studied for more than three decades. With a good combination of forming processing parameters, the remanence and (BH)max values of Nd-Fe-B magnets could be greatly increased due to the formation of anisotropic microstructures during hot deformation. In this work, a methodology is proposed for visualizing the material flow in hot-deformed Nd-Fe-B magnets via finite element simulation. Material flow in hot-deformed Nd-Fe-B magnets could be predicted by simulation, which fitted with experimental results. By utilizing this methodology, the correlation between strain distribution and magnetic properties enhancement could be better understood. PMID:28970869
magnum.fe: A micromagnetic finite-element simulation code based on FEniCS
NASA Astrophysics Data System (ADS)
Abert, Claas; Exl, Lukas; Bruckner, Florian; Drews, André; Suess, Dieter
2013-11-01
We have developed a finite-element micromagnetic simulation code based on the FEniCS package called magnum.fe. Here we describe the numerical methods that are applied as well as their implementation with FEniCS. We apply a transformation method for the solution of the demagnetization-field problem. A semi-implicit weak formulation is used for the integration of the Landau-Lifshitz-Gilbert equation. Numerical experiments show the validity of simulation results. magnum.fe is open source and well documented. The broad feature range of the FEniCS package makes magnum.fe a good choice for the implementation of novel micromagnetic finite-element algorithms.
NASA Astrophysics Data System (ADS)
Dörr, Dominik; Faisst, Markus; Joppich, Tobias; Poppe, Christian; Henning, Frank; Kärger, Luise
2018-05-01
Finite Element (FE) forming simulation offers the possibility of a detailed analysis of thermoforming processes by means of constitutive modelling of intra- and inter-ply deformation mechanisms, which makes manufacturing defects predictable. Inter-ply slippage is a deformation mechanism, which influences the forming behaviour and which is usually assumed to be isotropic in FE forming simulation so far. Thus, the relative (fibre) orientation between the slipping plies is neglected for modelling of frictional behaviour. Characterization results, however, reveal a dependency of frictional behaviour on the relative orientation of the slipping plies. In this work, an anisotropic model for inter-ply slippage is presented, which is based on an FE forming simulation approach implemented within several user subroutines of the commercially available FE solver Abaqus. This approach accounts for the relative orientation between the slipping plies for modelling frictional behaviour. For this purpose, relative orientation of the slipping plies is consecutively evaluated, since it changes during forming due to inter-ply slipping and intra-ply shearing. The presented approach is parametrized based on characterization results with and without relative orientation for a thermoplastic UD-tape (PA6-CF) and applied to forming simulation of a generic geometry. Forming simulation results reveal an influence of the consideration of relative fibre orientation on the simulation results. This influence, however, is small for the considered geometry.
NASA Astrophysics Data System (ADS)
Gonzalez, D.
2017-12-01
Inhalation of fine particulate matter (PM2.5) has long been associated with adverse health outcomes. However, the causative agents and underlying mechanisms for these health effects have yet to be identified. One hypothesis is that PM2.5 deposited in the alveoli produce an excess of highly reactive radicals, leading to oxidative stress. The OH radical may be the most physiologically damaging, capable of oxidizing of lipids, proteins and DNA. Due to the variability and uncertainty in PM2.5 composition, the components that contribute to OH formation are not well understood. Soluble Fe is a component of PM2.5that produces OH under physiological conditions. Humic-like substances are water soluble organics found in biomass burning and tobacco smoke. Humic-like substances are capable of binding to Fe and enhancing OH formation, but this chemistry is not well understood. In this work, we use soil derived fulvic acid as a surrogate for Humic-like substances and investigate its effect on OH formation from Fe(II) under conditions relevant to the lungs. We use a fluorescent OH trapping probe, chemical kinetics and thermodynamic modeling to investigate OH formation from fulvic acid and Fe(II) dissolved in simulated and human lung fluids. In simulated lung fluid, we find that fulvic acid binds to Fe(II) and enhances the rate of key reactions that form OH. When fulvic acid is added to human lung fluids containing Fe(II), an enhancement of OH formation is observed. In human lung fluid, fulvic acid and metal binding proteins compete for Fe binding. These metal binding proteins are typically not found in simulated lung fluids. Results show that fulvic acid strongly binds Fe(II) and catalyzes key reactions that form OH in both simulated and human lung fluids. These results may help explain the role of Humic-like substances and Fe in oxidative stress and adverse health outcomes. Furthermore, we suggest that future studies employ simulated lung fluids containing metal binding proteins to better reflect human lung fluids.
NASA Astrophysics Data System (ADS)
Park, Donghee; Mouche, Peter A.; Zhong, Weicheng; Mandapaka, Kiran K.; Was, Gary S.; Heuser, Brent J.
2018-04-01
FeAl(Cr) thin-film depositions on Zircaloy-2 were studied using transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) with respect to oxidation behavior under simulated boiling water reactor (BWR) conditions and high-temperature steam. Columnar grains of FeAl with Cr in solid solution were formed on Zircaloy-2 coupons using magnetron sputtering. NiFe2O4 precipitates on the surface of the FeAl(Cr) coatings were observed after the sample was exposed to the simulated BWR environment. High-temperature steam exposure resulted in grain growth and consumption of the FeAl(Cr) layer, but no delamination at the interface. Outward Al diffusion from the FeAl(Cr) layer occurred during high-temperature steam exposure (700 °C for 3.6 h) to form a 100-nm-thick alumina oxide layer, which was effective in mitigating oxidation of the Zircaloy-2 coupons. Zr intermetallic precipitates formed near the FeAl(Cr) layer due to the inward diffusion of Fe and Al. The counterflow of vacancies in response to the Al and Fe diffusion led to porosity within the FeAl(Cr) layer.
NASA Astrophysics Data System (ADS)
Zhang, Jie; Nixon, Andrew; Barber, Tom; Budyn, Nicolas; Bevan, Rhodri; Croxford, Anthony; Wilcox, Paul
2018-04-01
In this paper, a methodology of using finite element (FE) model to validate a ray-based model in the simulation of full matrix capture (FMC) ultrasonic array data set is proposed. The overall aim is to separate signal contributions from different interactions in FE results for easier comparing each individual component in the ray-based model results. This is achieved by combining the results from multiple FE models of the system of interest that include progressively more geometrical features while preserving the same mesh structure. It is shown that the proposed techniques allow the interactions from a large number of different ray-paths to be isolated in FE results and compared directly to the results from a ray-based forward model.
Hong, G; Cornish, A J; Hegg, E L; Pachter, R
2011-05-01
Proton transfer to the [Fe-Fe](H) sub-cluster in the Desulfovibrio desulfuricans (DdH) and Clostridium pasteurianum (CpI) [Fe-Fe] hydrogenases was investigated by a combination of first principles and empirical molecular dynamics simulations. Pathways that can be inferred from the X-ray crystal structures of DdH and CpI, i.e., (Glu159→Ser198→Glu156→water460→Cys178→DTMA([Fe-Fe](H)) and (Glu282→Ser319→Glu279→water612→Cys299), respectively, were considered. Proton transfer from Cys178 to DTMA in the [Fe-Fe](H) sub-cluster in DdH was readily observed in our results, specifically when [Fe-Fe](H) was in the reduced state ([Fe(I)-Fe(I)]) or in the mixed valence state for the protonated distal iron Fe(d) ([Fe(I)-Fe(II)-H(-)](H)). A concerted mechanism is proposed, where proton transfer in DdH from Glu159 to Glu156 via Ser198 and Glu156 to Cys178 via water460 readily occurred, as well as from Glu282 to Glu279 via Ser319 and Glu279 to Cys299 via water612 in CpI. The theoretical prediction of the proton transfer characteristics is consistent with the assumed biocatalytic mechanism of the [Fe-Fe] hydrogenases in which the proton binds at Fe(d), providing confirmation that has not been explored so far. The computational results were qualitatively validated by the agreement with experimental hydrogen production activity data for mutated CpI enzymes, relative to the wild-type protein. Finally, the insight provided by the simulations, combined, in part, with experimental validation, are important for establishing an approach in future exploration of proton transfer to the active site in this class of enzymes, and possibly also for biomimetic analogs. Published by Elsevier B.V.
Shi, Zongbo; Krom, Michael D; Bonneville, Steeve; Baker, Alex R; Jickells, Timothy D; Benning, Liane G
2009-09-01
The formation of iron (Fe) nanoperticles and increase in Fe reactivity in mineral dust during simulated cloud processing was investigated using high-resolution microscopy and chemical extraction methods. Cloud processing of dust was experimentally simulated via an alternation of acidic (pH 2) and circumneutral conditions (pH 5-6) over periods of 24 h each on presieved (<20 microm) Saharan soil and goethite suspensions. Microscopic analyses of the processed soil and goethite samples reveal the neo-formation of Fe-rich nanoparticle aggregates, which were not found initially. Similar Fe-rich nanoparticles were also observed in wet-deposited Saharen dusts from the western Mediterranean but not in dry-deposited dust from the eastern Mediterranean. Sequential Fe extraction of the soil samples indicated an increase in the proportion of chemically reactive Fe extractable by an ascorbate solution after simulated cloud processing. In addition, the sequential extractions on the Mediterranean dust samples revealed a higher content of reactive Fe in the wet-deposited dust compared to that of the dry-deposited dust These results suggestthat large variations of pH commonly reported in aerosol and cloud waters can trigger neo-formation of nanosize Fe particles and an increase in Fe reactivity in the dust
In situ experimental formation and growth of Fe nanoparticles and vesicles in lunar soil
NASA Astrophysics Data System (ADS)
Thompson, Michelle S.; Zega, Thomas J.; Howe, Jane Y.
2017-03-01
We report the results of the first dynamic, in situ heating of lunar soils to simulate micrometeorite impacts on the lunar surface. We performed slow- and rapid-heating experiments inside the transmission electron microscope to understand the chemical and microstructural changes in surface soils resulting from space-weathering processes. Our slow-heating experiments show that the formation of Fe nanoparticles begins at 575 °C. These nanoparticles also form as a result of rapid-heating experiments, and electron energy-loss spectroscopy measurements indicate the Fe nanoparticles are composed entirely of Fe0, suggesting this simulation accurately mimics micrometeorite space-weathering processes occurring on airless body surfaces. In addition to Fe nanoparticles, rapid-heating experiments also formed vesiculated textures in the samples. Several grains were subjected to repeated thermal shocks, and the measured size distribution and number of Fe nanoparticles evolved with each subsequent heating event. These results provide insight into the formation and growth mechanisms for Fe nanoparticles in space-weathered soils and could provide a new methodology for relative age dating of individual soil grains from within a sample population.
Liu, Heng-Liang; Lin, Chun-Li; Sun, Ming-Tsung; Chang, Yen-Hsiang
2010-06-01
This study investigates micro-crack propagation at the enamel/adhesive interface using finite element (FE) submodeling and element death techniques. A three-dimensional (3D) FE macro-model of the enamel/adhesive/ceramic subjected to shear bond testing was generated and analyzed. A 3D micro-model with interfacial bonding structure was constructed at the upper enamel/adhesive interface where the stress concentration was found from the macro-model results. The morphology of this interfacial bonding structure (i.e., resin tag) was assigned based on resin tag geometry and enamel rod arrangement from a scanning electron microscopy micrograph. The boundary conditions for the micro-model were determined from the macro-model results. A custom iterative code combined with the element death technique was used to calculate the micro-crack propagation. Parallel experiments were performed to validate this FE simulation. The stress concentration within the adhesive occurred mainly at the upper corner near the enamel/adhesive interface and the resin tag base. A simulated fracture path was found at the resin tag base along the enamel/adhesive interface. A morphological observation of the fracture patterns obtained from in vitro testing corresponded with the simulation results. This study shows that the FE submodeling and element death techniques could be used to simulate the 3D micro-stress pattern and the crack propagation noted at the enamel/adhesive interface.
NASA Astrophysics Data System (ADS)
Kaluna, H. M.; Ishii, H. A.; Bradley, J. P.; Gillis-Davis, J. J.; Lucey, P. G.
2017-08-01
Simulated space weathering experiments on volatile-rich carbonaceous chondrites (CCs) have resulted in contrasting spectral behaviors (e.g. reddening vs bluing). The aim of this work is to investigate the origin of these contrasting trends by simulating space weathering on a subset of minerals found in these meteorites. We use pulsed laser irradiation to simulate micrometeorite impacts on aqueously altered minerals and observe their spectral and physical evolution as a function of irradiation time. Irradiation of the mineral lizardite, a Mg-phyllosilicate, produces a small degree of reddening and darkening, but a pronounced reduction in band depths with increasing irradiation. In comparison, irradiation of an Fe-rich aqueously altered mineral assemblage composed of cronstedtite, pyrite and siderite, produces significant darkening and band depth suppression. The spectral slopes of the Fe-rich assemblage initially redden then become bluer with increasing irradiation time. Post-irradiation analyses of the Fe-rich assemblage using scanning and transmission electron microscopy reveal the presence of micron sized carbon-rich particles that contain notable fractions of nitrogen and oxygen. Radiative transfer modeling of the Fe-rich assemblage suggests that nanometer sized metallic iron (npFe0) particles result in the initial spectral reddening of the samples, but the increasing production of micron sized carbon particles (μpC) results in the subsequent spectral bluing. The presence of npFe0 and the possible catalytic nature of cronstedtite, an Fe-rich phyllosilicate, likely promotes the synthesis of these carbon-rich, organic-like compounds. These experiments indicate that space weathering processes may enable organic synthesis reactions on the surfaces of volatile-rich asteroids. Furthermore, Mg-rich and Fe-rich aqueously altered minerals are dominant at different phases of the aqueous alteration process. Thus, the contrasting spectral slope evolution between the Fe- and Mg-rich samples in these experiments may indicate that space weathering trends of volatile-rich asteroids have a compositional dependency that could be used to determine the aqueous histories of asteroid parent bodies.
Micromagnetic finite element simulation of nanocrystalline α-Fe/Nd2Fe14B/Fe3B magnets
NASA Astrophysics Data System (ADS)
Saiden, N. M.; Schrefl, T.; Davies, H. A.; Hrkac, G.
2014-09-01
Nanocomposite Nd2Fe14B permanent magnets with Fe3B and α-Fe as the soft phase have been simulated using micromagnetic modelling. This paper reviews extensively the results from the simulation point of view. The magnetization configuration along the hysteresis loop is discussed in details. It was clear that the grain size and phase distribution play important roles in determining the magnetic properties. By changing the size of the grain and the volume fraction of the hard and soft phase, the magnetic properties change and the relationship between microstructure and properties is investigated. The remanence, Jr increases with decreasing of grain size, but oppositely for coercivity, Hc. The highest Jr, 1.46 T was obtained with a grain size 10 nm, and volume fraction of α-Fe, 40%. Whereas, the highest Hc with combination Nd2Fe14B 80% and 20% Fe3B, 947 kA/m. On the other hand, if Nd2Fe14B alone, the Hc able to reach up to 1000 kA/m. From this study, micromagnetic modelling contributes to a better understanding how microstructure and phase distribution influences the magnetic properties.
Effects of two-temperature model on cascade evolution in Ni and NiFe
Samolyuk, German D.; Xue, Haizhou; Bei, Hongbin; ...
2016-07-05
We perform molecular dynamics simulations of Ni ion cascades in Ni and equiatomic NiFe under the following conditions: (a) classical molecular dynamics (MD) simulations without consideration of electronic energy loss, (b) classical MD simulations with the electronic stopping included, and (c) using the coupled two-temperature MD (2T-MD) model that incorporates both the electronic stopping and the electron-phonon interactions. Our results indicate that the electronic effects are more profound in the higher-energy cascades, and that the 2T-MD model results in a smaller amount of surviving damage and smaller defect clusters, while less damage is produced in NiFe than in Ni.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khromov, K. Yu.; Vaks, V. G., E-mail: vaks@mbslab.kiae.ru; Zhuravlev, I. A.
2013-02-15
The previously developed ab initio model and the kinetic Monte Carlo method (KMCM) are used to simulate precipitation in a number of iron-copper alloys with different copper concentrations x and temperatures T. The same simulations are also made using an improved version of the previously suggested stochastic statistical method (SSM). The results obtained enable us to make a number of general conclusions about the dependences of the decomposition kinetics in Fe-Cu alloys on x and T. We also show that the SSM usually describes the precipitation kinetics in good agreement with the KMCM, and using the SSM in conjunction withmore » the KMCM allows extending the KMC simulations to the longer evolution times. The results of simulations seem to agree with available experimental data for Fe-Cu alloys within statistical errors of simulations and the scatter of experimental results. Comparison of simulation results with experiments for some multicomponent Fe-Cu-based alloys allows making certain conclusions about the influence of alloying elements in these alloys on the precipitation kinetics at different stages of evolution.« less
Li, Zhengdong; Zou, Donghua; Liu, Ningguo; Zhong, Liangwei; Shao, Yu; Wan, Lei; Huang, Ping; Chen, Yijiu
2013-06-10
The elucidation and prediction of the biomechanics of lower limb fractures could serve as a useful tool in forensic practices. Finite element (FE) analysis could potentially help in the understanding of the fracture mechanisms of lower limb fractures frequently caused by car-pedestrian accidents. Our aim was (1) to develop and validate a FE model of the human lower limb, (2) to assess the biomechanics of specific injuries concerning run-over and impact loading conditions, and (3) to reconstruct one real car-pedestrian collision case using the model created in this study. We developed a novel lower limb FE model and simulated three different loading scenarios. The geometry of the model was reconstructed using Mimics 13.0 based on computed tomography (CT) scans from an actual traffic accident. The material properties were based upon a synthesis of data found in published literature. The FE model validation and injury reconstruction were conducted using the LS-DYNA code. The FE model was validated by a comparison of the simulation results of three-point bending, overall lateral impact tests and published postmortem human surrogate (PMHS) results. Simulated loading scenarios of running-over the thigh with a wheel, the impact on the upper leg, and impact on the lower thigh were conducted with velocities of 10 m/s, 20 m/s, and 40 m/s, respectively. We compared the injuries resulting from one actual case with the simulated results in order to explore the possible fracture bio-mechanism. The peak fracture forces, maximum bending moments, and energy lost ratio exhibited no significant differences between the FE simulations and the literature data. Under simulated run-over conditions, the segmental fracture pattern was formed and the femur fracture patterns and mechanisms were consistent with the actual injury features of the case. Our study demonstrated that this simulation method could potentially be effective in identifying forensic cases and exploring of the injury mechanisms of lower limb fractures encountered due to inflicted lesions. This model can also help to distinguish between possible and impossible scenarios. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Computer simulation of liquid metals
NASA Astrophysics Data System (ADS)
Belashchenko, D. K.
2013-12-01
Methods for and the results of the computer simulation of liquid metals are reviewed. Two basic methods, classical molecular dynamics with known interparticle potentials and the ab initio method, are considered. Most attention is given to the simulated results obtained using the embedded atom model (EAM). The thermodynamic, structural, and diffusion properties of liquid metal models under normal and extreme (shock) pressure conditions are considered. Liquid-metal simulated results for the Groups I - IV elements, a number of transition metals, and some binary systems (Fe - C, Fe - S) are examined. Possibilities for the simulation to account for the thermal contribution of delocalized electrons to energy and pressure are considered. Solidification features of supercooled metals are also discussed.
Model calibration for a soft elastomeric capacitor sensor considering slippage under fatigue cracks
NASA Astrophysics Data System (ADS)
Kong, Xiangxiong; Li, Jian; Bennett, Caroline; Collins, William; Laflamme, Simon
2016-04-01
A newly-developed soft elastomeric capacitor (SEC) strain sensor has shown promise in fatigue crack monitoring. The SECs exhibit high levels of ductility and hence do not break under excessive strain when the substrate cracks due to slippage or de-bonding between the sensor and epoxy. The actual strain experienced by a SEC depends on the amount of slippage, which is difficult to simulate numerically, making it challenging to accurately predict the response of a SEC near a crack. In this paper, a two-step approach is proposed to simulate the capacitance response of a SEC. First, a finite element (FE) model of a steel compact tension specimen was analyzed under cyclic loading while the cracking process was simulated based on an element removal technique. Second, a rectangular boundary was defined near the crack region. The SEC outside the boundary was assumed to have perfect bond with the specimen, while that inside the boundary was assumed to deform freely due to slippage. A second FE model was then established to simulate the response of the SEC within the boundary subject to displacements at the boundary from the first FE model. The total simulated capacitance was computed from the model results by combining the computed capacitance inside and outside the boundary. The performance of the simulation incorporating slippage was evaluated by comparing the model results with the experimental data from the test performed on a compact tension specimen. The FE model considering slippage showed results that matched the experimental findings more closely than the FE model that did not consider slippage.
THE DUAL ORIGIN OF STELLAR HALOS. II. CHEMICAL ABUNDANCES AS TRACERS OF FORMATION HISTORY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zolotov, Adi; Hogg, David W.; Willman, Beth
2010-09-20
Fully cosmological, high-resolution N-body+smooth particle hydrodynamic simulations are used to investigate the chemical abundance trends of stars in simulated stellar halos as a function of their origin. These simulations employ a physically motivated supernova feedback recipe, as well as metal enrichment, metal cooling, and metal diffusion. As presented in an earlier paper, the simulated galaxies in this study are surrounded by stellar halos whose inner regions contain both stars accreted from satellite galaxies and stars formed in situ in the central regions of the main galaxies and later displaced by mergers into their inner halos. The abundance patterns ([Fe/H] andmore » [O/Fe]) of halo stars located within 10 kpc of a solar-like observer are analyzed. We find that for galaxies which have not experienced a recent major merger, in situ stars at the high [Fe/H] end of the metallicity distribution function are more [{alpha}/Fe]-rich than accreted stars at similar [Fe/H]. This dichotomy in the [O/Fe] of halo stars at a given [Fe/H] results from the different potential wells within which in situ and accreted halo stars form. These results qualitatively match recent observations of local Milky Way halo stars. It may thus be possible for observers to uncover the relative contribution of different physical processes to the formation of stellar halos by observing such trends in the halo populations of the Milky Way and other local L{sup *} galaxies.« less
Development, Validation and Parametric study of a 3-Year-Old Child Head Finite Element Model
NASA Astrophysics Data System (ADS)
Cui, Shihai; Chen, Yue; Li, Haiyan; Ruan, ShiJie
2015-12-01
Traumatic brain injury caused by drop and traffic accidents is an important reason for children's death and disability. Recently, the computer finite element (FE) head model has been developed to investigate brain injury mechanism and biomechanical responses. Based on CT data of a healthy 3-year-old child head, the FE head model with detailed anatomical structure was developed. The deep brain structures such as white matter, gray matter, cerebral ventricle, hippocampus, were firstly created in this FE model. The FE model was validated by comparing the simulation results with that of cadaver experiments based on reconstructing the child and adult cadaver experiments. In addition, the effects of skull stiffness on the child head dynamic responses were further investigated. All the simulation results confirmed the good biofidelity of the FE model.
Brown, C.J.; Misut, P.E.
2010-01-01
The effects of injecting oxic water from the New York city (NYC) drinking-water supply and distribution system into a nearby anoxic coastal plain aquifer for later recovery during periods of water shortage (aquifer storage and recovery, or ASR) were simulated by a 3-dimensional, reactive-solute transport model. The Cretaceous aquifer system in the NYC area of New York and New Jersey, USA contains pyrite, goethite, locally occurring siderite, lignite, and locally varying amounts of dissolved Fe and salinity. Sediment from cores drilled on Staten Island and western Long Island had high extractable concentrations of Fe, Mn, and acid volatile sulfides (AVS) plus chromium-reducible sulfides (CRS) and low concentrations of As, Pb, Cd, Cr, Cu and U. Similarly, water samples from the Lloyd aquifer (Cretaceous) in western Long Island generally contained high concentrations of Fe and Mn and low concentrations of other trace elements such as As, Pb, Cd, Cr, Cu and U, all of which were below US Environmental Protection Agency (USEPA) and NY maximum contaminant levels (MCLs). In such aquifer settings, ASR operations can be complicated by the oxidative dissolution of pyrite, low pH, and high concentrations of dissolved Fe in extracted water.The simulated injection of buffered, oxic city water into a hypothetical ASR well increased the hydraulic head at the well, displaced the ambient groundwater, and formed a spheroid of injected water with lower concentrations of Fe, Mn and major ions in water surrounding the ASR well, than in ambient water. Both the dissolved O2 concentrations and the pH of water near the well generally increased in magnitude during the simulated 5-a injection phase. The resultant oxidation of Fe2+ and attendant precipitation of goethite during injection provided a substrate for sorption of dissolved Fe during the 8-a extraction phase. The baseline scenario with a low (0.001M) concentration of pyrite in aquifer sediments, indicated that nearly 190% more water with acceptably low concentrations of dissolved Fe could be extracted than was injected. Scenarios with larger amounts of pyrite in aquifer sediments generally resulted in less goethite precipitation, increased acidity, and increased concentrations of dissolved Fe in extracted water. In these pyritic scenarios, the lower amounts of goethite precipitated and the lower pH during the extraction phase resulted in decreased sorption of Fe2+ and a decreased amount of extractable water with acceptably low concentrations of dissolved Fe (5.4??10-6M). A linear decrease in recovery efficiency with respect to dissolved Fe concentrations is caused by pyrite dissolution and the associated depletion of dissolved O2 (DO) and increase in acidity. Simulations with more than 0.0037M of pyrite, which is the maximum amount dissolved in the baseline scenario, had just over a 50% recovery efficiency. The precipitation of ferric hydroxide minerals (goethite) at the well screen, and a possible associated decrease in specific capacity of the ASR well, was not apparent during the extraction phase of ASR simulations, but the model does not incorporate the microbial effects and biofouling associated with ferric hydroxide precipitation.The host groundwater chemistry in calcite-poor Cretaceous aquifers of the NYC area consists of low alkalinity and moderate to low pH. The dissolution of goethite in scenarios with unbuffered injectate indicates that corrosion of the well could occur if the injectate is not buffered. Simulations with buffered injectate resulted in greater precipitation of goethite, and lower concentrations of dissolved Fe, in the extracted water. Dissolved Fe concentrations in extracted water were highest in simulations of aquifers (1) in which pyrite and siderite in the aquifer were in equilibrium, and (2) in coastal areas affected by saltwater intrusion, where high dissolved-cation concentrations provide a greater exchange of Fe2+ (FeX2). Results indicate that ASR in pyrite-beari
Micromagnetic studies of Full Huesler alloy, Co2FeAl, nanostructures
NASA Astrophysics Data System (ADS)
Yoritomo, Patricia; Mecholsky, Nicholas; Gyawali, Parshu; Sapkota, Keshab; Pegg, I. L.; Philip, John
2013-03-01
Co2FeAl (CFA) is a full Huesler alloy with interesting magnetic behavior and very high Curie temperature. We have carried out micromagnetic simulations on CFA nanopillars using a program, NMAG, with various dimensions and spacing. The micromagnetic simulations are compared with the experimental results that we have obtained. Nanopillars are produced using the liftoff technique after electron beam lithography. The CFA nanopillars are grown using electron beam deposition of Co, Fe and Al in the stoichiometric ratio and by further annealing at 850 K for one hour. We have simulated the magnetic behavior of CFA nanopillars ranging from 30 to 90 nm in diameter and with a height of about 115 nm. Preliminary results show the simulated coercivities are 700 Oe and 2400 Oe for 60 and 30 nm pillars. These are comparable to the experimental results that we have obtained. Magnetic behavior of polycrystalline nanowires of varying diameters is also simulated using NMAG. We will present the simulation and experimental results of nanopillars and polycrystalline nanowires in detail. This work has been supported by funding from NSF under CAREER Grant No. ECCS-0845501 and NSF-MRI, DMR-0922997.
Primary radiation damage of an FeCr alloy under pressure: Atomistic simulation
NASA Astrophysics Data System (ADS)
Tikhonchev, M. Yu.; Svetukhin, V. V.
2017-05-01
The primary radiation damage of a binary FeCr alloy deformed by applied mechanical loading is studied by an atomistic molecular dynamics simulation. Loading is simulated by specifying an applied pressure of 0.25, 1.0, and 2.5 GPa of both signs. Hydrostatic and uniaxial loading is considered along the [001], [111], [112], and [210] directions. The influence of loading on the energy of point defect formation and the threshold atomic displacement energy in single-component bcc iron is investigated. The 10-keV atomic displacement cascades in a "random" binary Fe-9 at % Cr alloy are simulated at an initial temperature of 300 K. The number of the point defects generated in a cascade is estimated, and the clustering of point defects and the spatial orientation of interstitial configurations are analyzed. Our results agree with the results of other researchers and supplement them.
Chen, Yubin; Miao, Yingyun; Xu, Chuan; Zhang, Gang; Lei, Tao; Tan, Yinghui
2010-04-19
To study wound ballistics of the mandibular angle, a combined hexahedral-tetrahedral finite element (FE) model of the pig mandible was developed to simulate ballistic impact. An experimental study was carried out by measuring impact load parameters from 14 fresh pig mandibles that were shot at the mandibular angle by a standard 7.62 mm M43 bullet. FE analysis was executed through the LS-DYNA code under impact loads similar to those obtained from the experimental study. The resulting residual velocity, the transferred energy from the bullet to the mandible, and the surface area of the entrance wound had no statistical differences between the FE simulation and the experimental study. However, the mean surface area of the exit wounds in the experimental study was significantly larger than that in the simulation. According to the FE analysis, the stress concentrated zones were mainly located at the region of impact, condylar neck, coronoid process and mandibular body. The simulation results also indicated that trabecular bone had less stress concentration and a lower speed of stress propagation compared with cortical bone. The FE model is appropriate and conforms to the basic principles of wound ballistics. This modeling system will be helpful for further investigations of the biomechanical mechanisms of wound ballistics. Copyright 2009 Elsevier Ltd. All rights reserved.
A comprehensive computational model of sound transmission through the porcine lung
Dai, Zoujun; Peng, Ying; Henry, Brian M.; Mansy, Hansen A.; Sandler, Richard H.; Royston, Thomas J.
2014-01-01
A comprehensive computational simulation model of sound transmission through the porcine lung is introduced and experimentally evaluated. This “subject-specific” model utilizes parenchymal and major airway geometry derived from x-ray CT images. The lung parenchyma is modeled as a poroviscoelastic material using Biot theory. A finite element (FE) mesh of the lung that includes airway detail is created and used in comsol FE software to simulate the vibroacoustic response of the lung to sound input at the trachea. The FE simulation model is validated by comparing simulation results to experimental measurements using scanning laser Doppler vibrometry on the surface of an excised, preserved lung. The FE model can also be used to calculate and visualize vibroacoustic pressure and motion inside the lung and its airways caused by the acoustic input. The effect of diffuse lung fibrosis and of a local tumor on the lung acoustic response is simulated and visualized using the FE model. In the future, this type of visualization can be compared and matched with experimentally obtained elastographic images to better quantify regional lung material properties to noninvasively diagnose and stage disease and response to treatment. PMID:25190415
A comprehensive computational model of sound transmission through the porcine lung.
Dai, Zoujun; Peng, Ying; Henry, Brian M; Mansy, Hansen A; Sandler, Richard H; Royston, Thomas J
2014-09-01
A comprehensive computational simulation model of sound transmission through the porcine lung is introduced and experimentally evaluated. This "subject-specific" model utilizes parenchymal and major airway geometry derived from x-ray CT images. The lung parenchyma is modeled as a poroviscoelastic material using Biot theory. A finite element (FE) mesh of the lung that includes airway detail is created and used in comsol FE software to simulate the vibroacoustic response of the lung to sound input at the trachea. The FE simulation model is validated by comparing simulation results to experimental measurements using scanning laser Doppler vibrometry on the surface of an excised, preserved lung. The FE model can also be used to calculate and visualize vibroacoustic pressure and motion inside the lung and its airways caused by the acoustic input. The effect of diffuse lung fibrosis and of a local tumor on the lung acoustic response is simulated and visualized using the FE model. In the future, this type of visualization can be compared and matched with experimentally obtained elastographic images to better quantify regional lung material properties to noninvasively diagnose and stage disease and response to treatment.
Molecular dynamics simulation of metallic impurity diffusion in liquid lead-bismuth eutectic (LBE)
NASA Astrophysics Data System (ADS)
Gao, Yun; Takahashi, Minoru; Cavallotti, Carlo; Raos, Guido
2018-04-01
Corrosion of stainless steels by lead-bismuth eutectic (LBE) is an important problem which depends, amongst other things, on the diffusion of the steel components inside this liquid alloy. Here we present the results of classical molecular dynamics simulations of the diffusion of Fe and Ni within LBE. The simulations complement experimental studies of impurity diffusion by our group and provide an atomic-level understanding of the relevant diffusion phenomena. They are based on the embedded atom method (EAM) to represent many-body interactions among atoms. The EAM potentials employed in our simulations have been validated against ab initio density functional calculations. We show that the experimental and simulation results for the temperature-dependent viscosity of LBE and the impurity diffusion coefficients can be reconciled by assuming that the Ni and Fe diffuse mainly as nanoscopic clusters below 1300 K. The average Fe and Ni cluster sizes decrease with increasing the temperature and there is essentially single-atom diffusion at higher temperatures.
NASA Astrophysics Data System (ADS)
Frawley, Keara G.; Bakst, Ian; Sypek, John T.; Vijayan, Sriram; Weinberger, Christopher R.; Canfield, Paul C.; Aindow, Mark; Lee, Seok-Woo
2018-04-01
The plastic deformation and fracture mechanisms in single-crystalline CaFe2As2 has been studied using nanoindentation and density functional theory simulations. CaFe2As2 single crystals were grown in a Sn-flux, resulting in homogeneous and nearly defect-free crystals. Nanoindentation along the [001] direction produces strain bursts, radial cracking, and lateral cracking. Ideal cleavage simulations along the [001] and [100] directions using density functional theory calculations revealed that cleavage along the [001] direction requires a much lower stress than cleavage along the [100] direction. This strong anisotropy of cleavage strength implies that CaFe2As2 has an atomic-scale layered structure, which typically exhibits lateral cracking during nanoindentation. This special layered structure results from weak atomic bonding between the (001) Ca and Fe2As2 layers.
Frawley, Keara G.; Bakst, Ian; Sypek, John T.; ...
2018-04-10
In this paper, the plastic deformation and fracture mechanisms in single-crystalline CaFe 2As 2 has been studied using nanoindentation and density functional theory simulations. CaFe 2As 2 single crystals were grown in a Sn-flux, resulting in homogeneous and nearly defect-free crystals. Nanoindentation along the [001] direction produces strain bursts, radial cracking, and lateral cracking. Ideal cleavage simulations along the [001] and [100] directions using density functional theory calculations revealed that cleavage along the [001] direction requires a much lower stress than cleavage along the [100] direction. This strong anisotropy of cleavage strength implies that CaFe 2As 2 has an atomic-scalemore » layered structure, which typically exhibits lateral cracking during nanoindentation. This special layered structure results from weak atomic bonding between the (001) Ca and Fe 2As 2 layers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frawley, Keara G.; Bakst, Ian; Sypek, John T.
In this paper, the plastic deformation and fracture mechanisms in single-crystalline CaFe 2As 2 has been studied using nanoindentation and density functional theory simulations. CaFe 2As 2 single crystals were grown in a Sn-flux, resulting in homogeneous and nearly defect-free crystals. Nanoindentation along the [001] direction produces strain bursts, radial cracking, and lateral cracking. Ideal cleavage simulations along the [001] and [100] directions using density functional theory calculations revealed that cleavage along the [001] direction requires a much lower stress than cleavage along the [100] direction. This strong anisotropy of cleavage strength implies that CaFe 2As 2 has an atomic-scalemore » layered structure, which typically exhibits lateral cracking during nanoindentation. This special layered structure results from weak atomic bonding between the (001) Ca and Fe 2As 2 layers.« less
GeV ion irradiation of NiFe and NiCo: Insights from MD simulations and experiments
Leino, Aleksi A.; Samolyuk, German D.; Sachan, Ritesh; ...
2018-03-31
Concentrated solid solution alloys have attracted rapidly increasing attention due to their potential for designing materials with high tolerance to radiation damage. To tackle the effects of chemical complexity in defect dynamics and radiation response, we present in this paper a computational study on swift heavy ion induced effects in Ni and equiatomic Ni -based alloys (Ni 50Fe 50, Ni 50Co 50) using two-temperature molecular dynamics simulations (2T-MD). The electronic heat conductivity in the two-temperature equations is parameterized from the results of first principles electronic structure calculations. A bismuth ion (1.542 GeV) is selected and single impact simulations performed inmore » each target. We study the heat flow in the electronic subsystem and show that alloying Ni with Co or Fe reduces the heat dissipation from the impact by the electronic subsystem. Simulation results suggest no melting or residual damage in pure Ni while a cylindrical region melts along the ion propagation path in the alloys. In Ni 50Co 50 the damage consists of a dislocation loop structure (d = 2 nm) and isolated point defects, while in Ni 50Fe 50, a defect cluster (d = 4 nm) along the ion path is, in addition, formed. The simulation results are supported by atomic-level structural and defect characterizations in bismuth-irradiated Ni and Ni 50Fe 50. Finally, the significance of the 2T-MD model is demonstrated by comparing the results to those obtained with an instantaneous energy deposition model without consideration of e-ph interactions in pure Ni and by showing that it leads to a different qualitative behavior.« less
GeV ion irradiation of NiFe and NiCo: Insights from MD simulations and experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leino, Aleksi A.; Samolyuk, German D.; Sachan, Ritesh
Concentrated solid solution alloys have attracted rapidly increasing attention due to their potential for designing materials with high tolerance to radiation damage. To tackle the effects of chemical complexity in defect dynamics and radiation response, we present in this paper a computational study on swift heavy ion induced effects in Ni and equiatomic Ni -based alloys (Ni 50Fe 50, Ni 50Co 50) using two-temperature molecular dynamics simulations (2T-MD). The electronic heat conductivity in the two-temperature equations is parameterized from the results of first principles electronic structure calculations. A bismuth ion (1.542 GeV) is selected and single impact simulations performed inmore » each target. We study the heat flow in the electronic subsystem and show that alloying Ni with Co or Fe reduces the heat dissipation from the impact by the electronic subsystem. Simulation results suggest no melting or residual damage in pure Ni while a cylindrical region melts along the ion propagation path in the alloys. In Ni 50Co 50 the damage consists of a dislocation loop structure (d = 2 nm) and isolated point defects, while in Ni 50Fe 50, a defect cluster (d = 4 nm) along the ion path is, in addition, formed. The simulation results are supported by atomic-level structural and defect characterizations in bismuth-irradiated Ni and Ni 50Fe 50. Finally, the significance of the 2T-MD model is demonstrated by comparing the results to those obtained with an instantaneous energy deposition model without consideration of e-ph interactions in pure Ni and by showing that it leads to a different qualitative behavior.« less
Wei, Fanan; Yang, Haitao; Liu, Lianqing; Li, Guangyong
2017-03-01
Dynamic mechanical behaviour of living cells has been described by viscoelasticity. However, quantitation of the viscoelastic parameters for living cells is far from sophisticated. In this paper, combining inverse finite element (FE) simulation with Atomic Force Microscope characterization, we attempt to develop a new method to evaluate and acquire trustworthy viscoelastic index of living cells. First, influence of the experiment parameters on stress relaxation process is assessed using FE simulation. As suggested by the simulations, cell height has negligible impact on shape of the force-time curve, i.e. the characteristic relaxation time; and the effect originates from substrate can be totally eliminated when stiff substrate (Young's modulus larger than 3 GPa) is used. Then, so as to develop an effective optimization strategy for the inverse FE simulation, the parameters sensitivity evaluation is performed for Young's modulus, Poisson's ratio, and characteristic relaxation time. With the experiment data obtained through typical stress relaxation measurement, viscoelastic parameters are extracted through the inverse FE simulation by comparing the simulation results and experimental measurements. Finally, reliability of the acquired mechanical parameters is verified with different load experiments performed on the same cell.
NASA Astrophysics Data System (ADS)
Nath, S. K. Deb
2017-10-01
Using molecular dynamics simulation, tension and bending tests of a Fe nanopillar are carried out to obtain its Young's modulus and yield strength. Then the comparative study of Young's modulus and yield strength of a Fe nanopillar under bending and tension are carried out varying its diameter in the range of diameter 1-15nm. We find out the reasons why bending Young's modulus and yield strength of a Fe nanopillar are higher than those of tension Young's modulus and yield strength of a Fe nanopillar. Using the mobility parameters of bulk Fe from the experimental study [N. Urabe and J. Weertman, Materials Science and Engineering 18, 41 (1975)], its temperature dependent stress-strain relationship, yield strength and strain hardening modulus are obtained from the dislocation dynamics simulations. Strain rate dependent yield strength and strain hardening modulus of bulk Fe pillars under tension are studied. Temperature dependent creep behaviors of bulk Fe pillars under tension are also studied. To verify the soundness of the present dislocation dynamics studies of the mechanical properties of bulk Fe pillars under tension, the stress vs. strain relationship and dislocation density vs. strain of bulk Fe pillars obtained by us are compared with the published results obtained by S. Queyreau, G. Monnet, and B. Devincre, International Journal of Plasticity 25, 361 (2009).
Data-driven train set crash dynamics simulation
NASA Astrophysics Data System (ADS)
Tang, Zhao; Zhu, Yunrui; Nie, Yinyu; Guo, Shihui; Liu, Fengjia; Chang, Jian; Zhang, Jianjun
2017-02-01
Traditional finite element (FE) methods are arguably expensive in computation/simulation of the train crash. High computational cost limits their direct applications in investigating dynamic behaviours of an entire train set for crashworthiness design and structural optimisation. On the contrary, multi-body modelling is widely used because of its low computational cost with the trade-off in accuracy. In this study, a data-driven train crash modelling method is proposed to improve the performance of a multi-body dynamics simulation of train set crash without increasing the computational burden. This is achieved by the parallel random forest algorithm, which is a machine learning approach that extracts useful patterns of force-displacement curves and predicts a force-displacement relation in a given collision condition from a collection of offline FE simulation data on various collision conditions, namely different crash velocities in our analysis. Using the FE simulation results as a benchmark, we compared our method with traditional multi-body modelling methods and the result shows that our data-driven method improves the accuracy over traditional multi-body models in train crash simulation and runs at the same level of efficiency.
Fang, Yong; Tai, Yuan -Yen; Deng, Junkai; ...
2015-07-20
Fe vacancies in the 33 K superconductor K 1–xFe 2–ySe 2 show ordering schemes that may be correlated with its superconducting properties. First-principles calculations and kinetic Monte Carlo simulations lead to a very simple model for vacancy ordering. Repulsive dipolar interactions between Fe vacancies show three ground states: amore » $$\\sqrt{8}\\times \\sqrt{10}$$ rhombus-ordered structure for 12.5% vacancies, a $$\\sqrt{5}\\times \\sqrt{5}$$ squared lattice for 20% vacancies, and a $$\\sqrt{5}\\times \\sqrt{5}$$ rhombus-ordered structure for 25% vacancies. Other structural states are derived from these three ground states and may contain additional disordered spatial regions. As a result, the repulsive interaction between Fe vacancies arises from enhanced Fe–Se covalent bonds, which differs from the well-known attractive interaction of Fe vacancies in body-centered cubic Fe.« less
NASA Astrophysics Data System (ADS)
Li, Yuqing; Yue, Ming; Zhao, Guoping; Zhang, Hongguo
2018-01-01
The effects of soft phase with different particle sizes and distributions on the Nd2Fe14B/α-Fe nanocomposite magnets have been studied by the micro-magnetism simulation. The calculated results show that smaller and/or scattered distribution of soft phase can benefit to the coercivity (H ci) of the nanocomposite magnets. The magnetization moment evolution during magnetic reversal is systematically analyzed. On the other hand, magnetic properties of anisotropic Nd-Fe-B/α-Fe nanocomposite magnets prepared by hot pressing and hot deformation methods also provide evidences for the calculated results.
NASA Astrophysics Data System (ADS)
Behrens, Bernd-Arno; Chugreeva, Anna; Chugreev, Alexander
2018-05-01
Hot forming as a coupled thermo-mechanical process comprises numerous material phenomena with a corresponding impact on the material behavior during and after the forming process as well as on the final component performance. In this context, a realistic FE-simulation requires reliable mathematical models as well as detailed thermo-mechanical material data. This paper presents experimental and numerical results focused on the FE-based simulation of a hot forging process with a subsequent heat treatment step aiming at the prediction of the final mechanical properties and residual stress state in the forged component made of low alloy CrMo-steel DIN 42CrMo4. For this purpose, hot forging experiments of connecting rod geometry with a corresponding metallographic analysis and x-ray residual stress measurements have been carried out. For the coupled thermo-mechanical-metallurgical FE-simulations, a special user-defined material model based on the additive strain decomposition method and implemented in Simufact Forming via MSC.Marc solver features has been used.
Ruan, Jesse S; El-Jawahri, Raed; Rouhana, Stephen W; Barbat, Saeed; Prasad, Priya
2006-11-01
The biofidelity of the Ford Motor Company human body finite element (FE) model in side impact simulations was analyzed and evaluated following the procedures outlined in ISO technical report TR9790. This FE model, representing a 50th percentile adult male, was used to simulate the biomechanical impact tests described in ISO-TR9790. These laboratory tests were considered as suitable for assessing the lateral impact biofidelity of the head, neck, shoulder, thorax, abdomen, and pelvis of crash test dummies, subcomponent test devices, and math models that are used to represent a 50th percentile adult male. The simulated impact responses of the head, neck, shoulder, thorax, abdomen, and pelvis of the FE model were compared with the PMHS (Post Mortem Human Subject) data upon which the response requirements for side impact surrogates was based. An overall biofidelity rating of the human body FE model was determined using the ISO-TR9790 rating method. The resulting rating for the human body FE model was 8.5 on a 0 to 10 scale with 8.6-10 being excellent biofidelity. In addition, in order to explore whether there is a dependency of the impact responses of the FE model on different analysis codes, three commercially available analysis codes, namely, LS-DYNA, Pamcrash, and Radioss were used to run the human body FE model. Effects of these codes on biofidelity when compared with ISO-TR9790 data are discussed. Model robustness and numerical issues arising with three different code simulations are also discussed.
NASA Astrophysics Data System (ADS)
Bera, Anupam; Ghosh, Jayanta; Bhattacharya, Atanu
2017-07-01
Conical intersections are now firmly established to be the key features in the excited electronic state processes of polyatomic energetic molecules. In the present work, we have explored conical intersection-mediated nonadiabatic chemical dynamics of a simple analogue nitramine molecule, dimethylnitramine (DMNA, containing one N-NO2 energetic group), and its complex with an iron atom (DMNA-Fe). For this task, we have used the ab initio multiple spawning (AIMS) dynamics simulation at the state averaged-complete active space self-consistent field(8,5)/6-31G(d) level of theory. We have found that DMNA relaxes back to the ground (S0) state following electronic excitation to the S1 excited state [which is an (n,π*) excited state] with a time constant of approximately 40 fs. This AIMS result is in very good agreement with the previous surface hopping-result and femtosecond laser spectroscopy result. DMNA does not dissociate during this fast internal conversion from the S1 to the S0 state. DMNA-Fe also undergoes extremely fast relaxation from the upper S1 state to the S0 state; however, this relaxation pathway is dissociative in nature. DMNA-Fe undergoes initial Fe-O, N-O, and N-N bond dissociations during relaxation from the upper S1 state to the ground S0 state through the respective conical intersection. The AIMS simulation reveals the branching ratio of these three channels as N-N:Fe-O:N-O = 6:3:1 (based on 100 independent simulations). Furthermore, the AIMS simulation reveals that the Fe-O bond dissociation channel exhibits the fastest (time constant 24 fs) relaxation, while the N-N bond dissociation pathway features the slowest (time constant 128 fs) relaxation. An intermediate time constant (30 fs) is found for the N-O bond dissociation channel. This is the first nonadiabatic chemical dynamics study of metal-contained energetic molecules through conical intersections.
Reaction of amorphous/crystalline SiOC/Fe interfaces by thermal annealing
Su, Qing; Zhernenkov, Mikhail; Ding, Hepeng; ...
2017-06-12
The development of revolutionary new alloys and composites is crucial to meeting materials requirements for next generation nuclear reactors. The newly developed amorphous silicon oxycarbide (SiOC) and crystalline Fe composite system has shown radiation tolerance over a wide range of temperatures. To advance understanding of this new composite, we investigate the structure and thermal stability of the interface between amorphous SiOC and crystalline Fe by combining various experimental techniques and simulation methods. We show that the SiOC/Fe interface is thermally stable up to at least 400 °C. When the annealing temperature reaches 600 °C, an intermixed region forms at thismore » interface. This region appears to be a crystalline phase that forms an incoherent interface with the Fe layer. Density functional theory (DFT) Molecular dynamics (MD) is performed on the homogeneous SiFeOC phase to study the early stages of 2 formation of the intermixed layer. Both experimental and simulation results suggest this phase has the fayalite crystal structure. As a result, the physical processes involved in the formation of the intermixed region are discussed.« less
Literature review report on atomistic modeling tools for FeCrAl alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yongfeng; Schwen, Daniel; Martinez, Enrique
2015-12-01
This reports summarizes the literature review results on atomistic tools, particularly interatomic potentials used in molecular dynamics simulations, for FeCrAl ternary alloys. FeCrAl has recently been identified as a possible cladding concept for accident tolerant fuels for its superior corrosion resistance. Along with several other concepts, an initial evaluation and recommendation are desired for FeCrAl before it’s used in realistic fuels. For this purpose, sufficient understanding on the in-reactor behavior of FeCrAl needs to be grained in a relatively short timeframe, and multiscale modeling and simulations have been selected as an efficient measure to supplement experiments and in-reactor testing formore » better understanding on FeCrAl. For the limited knowledge on FeCrAl alloys, the multiscale modeling approach relies on atomistic simulations to obtain the missing material parameters and properties. As a first step, atomistic tools have to be identified and this is the purpose of the present report. It was noticed during the literature survey that no interatomic potentials currently available for FeCrAl. Here, we summarize the interatomic potentials available for FeCr alloys for possible molecular dynamics studies using FeCr as surrogate materials. Other atomistic methods such as lattice kinetic Monte Carlo are also included in this report. A couple of research topics at the atomic scale are suggested based on the literature survey.« less
NASA Astrophysics Data System (ADS)
Nakashima, Hiroshi; Takatsu, Yuzuru
The goal of this study is to develop a practical and fast simulation tool for soil-tire interaction analysis, where finite element method (FEM) and discrete element method (DEM) are coupled together, and which can be realized on a desktop PC. We have extended our formerly proposed dynamic FE-DE method (FE-DEM) to include practical soil-tire system interaction, where not only the vertical sinkage of a tire, but also the travel of a driven tire was considered. Numerical simulation by FE-DEM is stable, and the relationships between variables, such as load-sinkage and sinkage-travel distance, and the gross tractive effort and running resistance characteristics, are obtained. Moreover, the simulation result is accurate enough to predict the maximum drawbar pull for a given tire, once the appropriate parameter values are provided. Therefore, the developed FE-DEM program can be applied with sufficient accuracy to interaction problems in soil-tire systems.
Mao, Wenbin; Li, Kewei; Sun, Wei
2016-01-01
Computational modeling of heart valve dynamics incorporating both fluid dynamics and valve structural responses has been challenging. In this study, we developed a novel fully-coupled fluid-structure interaction (FSI) model using smoothed particle hydrodynamics (SPH). A previously developed nonlinear finite element (FE) model of transcatheter aortic valves (TAV) was utilized to couple with SPH to simulate valve leaflet dynamics throughout the entire cardiac cycle. Comparative simulations were performed to investigate the impact of using FE-only models versus FSI models, as well as an isotropic versus an anisotropic leaflet material model in TAV simulations. From the results, substantial differences in leaflet kinematics between FE-only and FSI models were observed, and the FSI model could capture the realistic leaflet dynamic deformation due to its more accurate spatial and temporal loading conditions imposed on the leaflets. The stress and the strain distributions were similar between the FE and FSI simulations. However, the peak stresses were different due to the water hammer effect induced by the flow inertia in the FSI model during the closing phase, which led to 13%–28% lower peak stresses in the FE-only model compared to that of the FSI model. The simulation results also indicated that tissue anisotropy had a minor impact on hemodynamics of the valve. However, a lower tissue stiffness in the radial direction of the leaflets could reduce the leaflet peak stress caused by the water hammer effect. It is hoped that the developed FSI models can serve as an effective tool to better assess valve dynamics and optimize next generation TAV designs. PMID:27844463
Mao, Wenbin; Li, Kewei; Sun, Wei
2016-12-01
Computational modeling of heart valve dynamics incorporating both fluid dynamics and valve structural responses has been challenging. In this study, we developed a novel fully-coupled fluid-structure interaction (FSI) model using smoothed particle hydrodynamics (SPH). A previously developed nonlinear finite element (FE) model of transcatheter aortic valves (TAV) was utilized to couple with SPH to simulate valve leaflet dynamics throughout the entire cardiac cycle. Comparative simulations were performed to investigate the impact of using FE-only models vs. FSI models, as well as an isotropic vs. an anisotropic leaflet material model in TAV simulations. From the results, substantial differences in leaflet kinematics between FE-only and FSI models were observed, and the FSI model could capture the realistic leaflet dynamic deformation due to its more accurate spatial and temporal loading conditions imposed on the leaflets. The stress and the strain distributions were similar between the FE and FSI simulations. However, the peak stresses were different due to the water hammer effect induced by the fluid inertia in the FSI model during the closing phase, which led to 13-28% lower peak stresses in the FE-only model compared to that of the FSI model. The simulation results also indicated that tissue anisotropy had a minor impact on hemodynamics of the valve. However, a lower tissue stiffness in the radial direction of the leaflets could reduce the leaflet peak stress caused by the water hammer effect. It is hoped that the developed FSI models can serve as an effective tool to better assess valve dynamics and optimize next generation TAV designs.
Song, Yong; Zhang, Kai; Hao, Qun; Hu, Lanxin; Wang, Jingwen; Shang, Fuzhou
2012-10-09
Simulation based on the finite-element (FE) method plays an important role in the investigation of intra-body communication (IBC). In this paper, a finite-element model of the whole body model used for the IBC simulation is proposed and verified, while the FE simulation of the galvanic coupling IBC with different signal transmission paths has been achieved. Firstly, a novel finite-element method for modeling the whole human body is proposed, and a FE model of the whole human body used for IBC simulation was developed. Secondly, the simulations of the galvanic coupling IBC with the different signal transmission paths were implemented. Finally, the feasibility of the proposed method was verified by using in vivo measurements within the frequency range of 10 kHz-5 MHz, whereby some important conclusions were deduced. Our results indicate that the proposed method will offer significant advantages in the investigation of the galvanic coupling intra-body communication.
Song, Yong; Zhang, Kai; Hao, Qun; Hu, Lanxin; Wang, Jingwen; Shang, Fuzhou
2012-01-01
Simulation based on the finite-element (FE) method plays an important role in the investigation of intra-body communication (IBC). In this paper, a finite-element model of the whole body model used for the IBC simulation is proposed and verified, while the FE simulation of the galvanic coupling IBC with different signal transmission paths has been achieved. Firstly, a novel finite-element method for modeling the whole human body is proposed, and a FE model of the whole human body used for IBC simulation was developed. Secondly, the simulations of the galvanic coupling IBC with the different signal transmission paths were implemented. Finally, the feasibility of the proposed method was verified by using in vivo measurements within the frequency range of 10 kHz–5 MHz, whereby some important conclusions were deduced. Our results indicate that the proposed method will offer significant advantages in the investigation of the galvanic coupling intra-body communication. PMID:23202010
NASA Astrophysics Data System (ADS)
Sangalli, Davide; Cianci, Elena; Lamperti, Alessio; Ciprian, Roberta; Albertini, Franca; Casoli, Francesca; Lupo, Pierpaolo; Nasi, Lucia; Campanini, Marco; Debernardi, Alberto
2013-05-01
In this study we explore, both from theoretical and experimental side, the effect of Fe doping in ZrO2 (ZrO2:Fe). By means of first principles simulation, we study the magnetization density and the magnetic interaction between Fe atoms. We also consider how this is affected by the presence of oxygen vacancies and compare our findings with models based on impurity band [J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Nat. Mater. 4, 173 (2005)] and carrier mediated magnetic interaction [T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287, 1019 (2000)]. Experimentally, thin films (≈20 nm) of ZrO2:Fe at high doping concentration are grown by atomic layer deposition. We provide experimental evidence that Fe is uniformly distributed in the ZrO2 by transmission electron microscopy and energy dispersive X-ray mapping, while X-ray diffraction evidences the presence of the fluorite crystal structure. Alternating gradient force magnetometer measurements show magnetic signal at room temperature, however, with low magnetic moment per atom. Results from experimental measures and theoretical simulations are compared.
Aeroelastic-Acoustics Simulation of Flight Systems
NASA Technical Reports Server (NTRS)
Gupta, kajal K.; Choi, S.; Ibrahim, A.
2009-01-01
This paper describes the details of a numerical finite element (FE) based analysis procedure and a resulting code for the simulation of the acoustics phenomenon arising from aeroelastic interactions. Both CFD and structural simulations are based on FE discretization employing unstructured grids. The sound pressure level (SPL) on structural surfaces is calculated from the root mean square (RMS) of the unsteady pressure and the acoustic wave frequencies are computed from a fast Fourier transform (FFT) of the unsteady pressure distribution as a function of time. The resulting tool proves to be unique as it is designed to analyze complex practical problems, involving large scale computations, in a routine fashion.
Taguchi, Y-h; Iwadate, Mitsuo; Umeyama, Hideaki
2015-04-30
Feature extraction (FE) is difficult, particularly if there are more features than samples, as small sample numbers often result in biased outcomes or overfitting. Furthermore, multiple sample classes often complicate FE because evaluating performance, which is usual in supervised FE, is generally harder than the two-class problem. Developing sample classification independent unsupervised methods would solve many of these problems. Two principal component analysis (PCA)-based FE, specifically, variational Bayes PCA (VBPCA) was extended to perform unsupervised FE, and together with conventional PCA (CPCA)-based unsupervised FE, were tested as sample classification independent unsupervised FE methods. VBPCA- and CPCA-based unsupervised FE both performed well when applied to simulated data, and a posttraumatic stress disorder (PTSD)-mediated heart disease data set that had multiple categorical class observations in mRNA/microRNA expression of stressed mouse heart. A critical set of PTSD miRNAs/mRNAs were identified that show aberrant expression between treatment and control samples, and significant, negative correlation with one another. Moreover, greater stability and biological feasibility than conventional supervised FE was also demonstrated. Based on the results obtained, in silico drug discovery was performed as translational validation of the methods. Our two proposed unsupervised FE methods (CPCA- and VBPCA-based) worked well on simulated data, and outperformed two conventional supervised FE methods on a real data set. Thus, these two methods have suggested equivalence for FE on categorical multiclass data sets, with potential translational utility for in silico drug discovery.
NASA Astrophysics Data System (ADS)
Alzate-Cardona, J. D.; Barco-Rios, H.; Restrepo-Parra, E.
2018-02-01
The magnetocaloric behavior of La{2/{3}} Ca{1/{3}} Mn1-x Fe x O3 for x = 0.00, 0.02, 0.03, 0.05, 0.07, 0.08 and 0.10 under the influence of an external magnetic field was simulated and analyzed. Simulations were carried out using the Monte Carlo method and the classical Heisenberg model under the Metropolis algorithm. These mixed valence manganites are characterized by having three types of magnetic ions corresponding to Mn4+≤ft(S=\\frac{3}{2}\\right) , which are bonded with Ca2+ , and Mneg3+ and Mneg\\prime3+ (S=2) , related to La3+ . The Fe ions were randomly included, replacing Mn ions. With this model, the magnetic entropy change, Δ S , in an isothermal process was determined. -Δ Sm showed maximum peaks around the paramagnetic-ferromagnetic transition temperature, which depends on Fe doping. Relative cooling power was computed for different Fe concentrations varying the magnetic applied field. Our model and results show that the Fe doping decreases the magnetocaloric effect in the La{2/{3}} Ca{1/{3}} Mn1-x Fe x O3, making this a bad candidate for magnetic refrigeration. The strong dependence of the magnetocaloric behavior on Fe doping and the external magnetic field in La{2/{3}} Ca{1/{3}} Mn1-x Fe x O3 can boost these materials for the future technological applications.
Gao, Hao; Wang, Huiming; Berry, Colin; Luo, Xiaoyu; Griffith, Boyce E
2014-01-01
Finite stress and strain analyses of the heart provide insight into the biomechanics of myocardial function and dysfunction. Herein, we describe progress toward dynamic patient-specific models of the left ventricle using an immersed boundary (IB) method with a finite element (FE) structural mechanics model. We use a structure-based hyperelastic strain-energy function to describe the passive mechanics of the ventricular myocardium, a realistic anatomical geometry reconstructed from clinical magnetic resonance images of a healthy human heart, and a rule-based fiber architecture. Numerical predictions of this IB/FE model are compared with results obtained by a commercial FE solver. We demonstrate that the IB/FE model yields results that are in good agreement with those of the conventional FE model under diastolic loading conditions, and the predictions of the LV model using either numerical method are shown to be consistent with previous computational and experimental data. These results are among the first to analyze the stress and strain predictions of IB models of ventricular mechanics, and they serve both to verify the IB/FE simulation framework and to validate the IB/FE model. Moreover, this work represents an important step toward using such models for fully dynamic fluid–structure interaction simulations of the heart. © 2014 The Authors. International Journal for Numerical Methods in Engineering published by John Wiley & Sons, Ltd. PMID:24799090
Simulation of crash tests for high impact levels of a new bridge safety barrier
NASA Astrophysics Data System (ADS)
Drozda, Jiří; Rotter, Tomáš
2017-09-01
The purpose is to show the opportunity of a non-linear dynamic impact simulation and to explain the possibility of using finite element method (FEM) for developing new designs of safety barriers. The main challenge is to determine the means to create and validate the finite element (FE) model. The results of accurate impact simulations can help to reduce necessary costs for developing of a new safety barrier. The introductory part deals with the creation of the FE model, which includes the newly-designed safety barrier and focuses on the application of an experimental modal analysis (EMA). The FE model has been created in ANSYS Workbench and is formed from shell and solid elements. The experimental modal analysis, which was performed on a real pattern, was employed for measuring the modal frequencies and shapes. After performing the EMA, the FE mesh was calibrated after comparing the measured modal frequencies with the calculated ones. The last part describes the process of the numerical non-linear dynamic impact simulation in LS-DYNA. This simulation was validated after comparing the measured ASI index with the calculated ones. The aim of the study is to improve professional public knowledge about dynamic non-linear impact simulations. This should ideally lead to safer, more accurate and profitable designs.
Baltazar, Carla S A; Teixeira, Vitor H; Soares, Cláudio M
2012-04-01
Hydrogenases are metalloenzymes that catalyze the reversible reaction H(2)<->2H(+) + 2e(-), being potentially useful in H(2) production or oxidation. [NiFeSe] hydrogenases are a particularly interesting subgroup of the [NiFe] class that exhibit tolerance to O(2) inhibition and produce more H(2) than standard [NiFe] hydrogenases. However, the molecular determinants responsible for these properties remain unknown. Hydrophobic pathways for H(2) diffusion have been identified in [NiFe] hydrogenases, as have proton transfer pathways, but they have never been studied in [NiFeSe] hydrogenases. Our aim was, for the first time, to characterize the H(2) and proton pathways in a [NiFeSe] hydrogenase and compare them with those in a standard [NiFe] hydrogenase. We performed molecular dynamics simulations of H(2) diffusion in the [NiFeSe] hydrogenase from Desulfomicrobium baculatum and extended previous simulations of the [NiFe] hydrogenase from Desulfovibrio gigas (Teixeira et al. in Biophys J 91:2035-2045, 2006). The comparison showed that H(2) density near the active site is much higher in [NiFeSe] hydrogenase, which appears to have an alternative route for the access of H(2) to the active site. We have also determined a possible proton transfer pathway in the [NiFeSe] hydrogenase from D. baculatum using continuum electrostatics and Monte Carlo simulation and compared it with the proton pathway we found in the [NiFe] hydrogenase from D. gigas (Teixeira et al. in Proteins 70:1010-1022, 2008). The residues constituting both proton transfer pathways are considerably different, although in the same region of the protein. These results support the hypothesis that some of the special properties of [NiFeSe] hydrogenases could be related to differences in the H(2) and proton pathways. © SBIC 2012
High energy irradiations simulating cosmic-ray-induced planetary gamma ray production. I - Fe target
NASA Technical Reports Server (NTRS)
Metzger, A. E.; Parker, R. H.; Yellin, J.
1986-01-01
Two thick Fe targets were bombarded by a series of 6 GeV proton irradiations for the purpose of simulating the cosmic ray bombardment of planetary objects in space. Gamma ray energy spectra were obtained with a germanium solid state detector during the bombardment, and 46 of the gamma ray lines were ascribed to the Fe targets. A comparison between observed and predicted values showed good agreement for Fe lines from neutron inelastic scattering and spallation reactions, and less satisfactory agreement for neutron capture reactions, the latter attributed to the difference in composition between the Fe target and the mean lunar abundance used in the modeling. Through an analysis of the irradiation results together with continuum data obtained in lunar orbit, it was found that 100 hours of measurement with a current instrument should generate a spectrum containing approximately 20 lines due to Fe alone, with a 2-sigma sensitivity for detection of about 0.2 percent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, Bradley J.; Cheng, Xiaolin; Frymier, Paul
2015-12-15
All-atom molecular dynamics (MD) simulation was used to study the solution dynamics and protein protein interactions of protein fusions of photosystem I (PSI) from Thermosynechococcus elongatus and an [FeFe]-hydrogenase (FeFe H 2ase) from Clostridium pasteurianum, a unique complex capable of photocatalytic hydrogen production. This study involved fusions of these two proteins via dithiol linkers of different length including decanedithiol, octanedithiol, and hexanedithiol, for which experimental data had previously been obtained. Evaluation of root-mean-squared deviations (RMSDs) relative to the respective crystal structures of PSI and the FeFe H 2ase shows that these fusion complexes approach stable equilibrium conformations during the MDmore » simulations. Investigating protein mobility via root-mean-squared fluctuations (RMSFs) reveals that tethering via the shortest hexanedithiol linker results in increased atomic fluctuations of both PSI and the hydrogenase in these fusion complexes. Furthermore, evaluation of the inter- and intraprotein electron transfer distances in these fusion complexes indicates that the structural changes in the FeFe H 2ase arising from ligation to PSI via the shortest hexanedithiol linker may hinder electron transport in the hydrogenase, thus providing a molecular level explanation for the observation that the medium-length octanedithiol linker gives the highest hydrogen production rate.« less
NASA Astrophysics Data System (ADS)
Wan, Xiang; Gao, Fei; Lian, Xiaojuan; Ji, Xincun; Hu, Ertao; He, Lin; Tong, Yi; Guo, Yufeng
2018-06-01
In this study, an iron oxide (FeO x )-based memristor was investigated for the realization of artificial synapses. An FeO x resistive switching layer was prepared by self-limiting atomic layer deposition (ALD). The movement of oxygen vacancies enabled the device to have history-dependent synaptic functions, which was further demonstrated by device modeling and simulation. Analog synaptic potentiation/depression in conductance was emulated by applying consecutive voltage pulses in the simulation. Our results suggest that the ALD FeO x -based memristor can be used as the basic building block for neural networks, neuromorphic systems, and brain-inspired computers.
Knowledge Based Cloud FE Simulation of Sheet Metal Forming Processes.
Zhou, Du; Yuan, Xi; Gao, Haoxiang; Wang, Ailing; Liu, Jun; El Fakir, Omer; Politis, Denis J; Wang, Liliang; Lin, Jianguo
2016-12-13
The use of Finite Element (FE) simulation software to adequately predict the outcome of sheet metal forming processes is crucial to enhancing the efficiency and lowering the development time of such processes, whilst reducing costs involved in trial-and-error prototyping. Recent focus on the substitution of steel components with aluminum alloy alternatives in the automotive and aerospace sectors has increased the need to simulate the forming behavior of such alloys for ever more complex component geometries. However these alloys, and in particular their high strength variants, exhibit limited formability at room temperature, and high temperature manufacturing technologies have been developed to form them. Consequently, advanced constitutive models are required to reflect the associated temperature and strain rate effects. Simulating such behavior is computationally very expensive using conventional FE simulation techniques. This paper presents a novel Knowledge Based Cloud FE (KBC-FE) simulation technique that combines advanced material and friction models with conventional FE simulations in an efficient manner thus enhancing the capability of commercial simulation software packages. The application of these methods is demonstrated through two example case studies, namely: the prediction of a material's forming limit under hot stamping conditions, and the tool life prediction under multi-cycle loading conditions.
Knowledge Based Cloud FE Simulation of Sheet Metal Forming Processes
Zhou, Du; Yuan, Xi; Gao, Haoxiang; Wang, Ailing; Liu, Jun; El Fakir, Omer; Politis, Denis J.; Wang, Liliang; Lin, Jianguo
2016-01-01
The use of Finite Element (FE) simulation software to adequately predict the outcome of sheet metal forming processes is crucial to enhancing the efficiency and lowering the development time of such processes, whilst reducing costs involved in trial-and-error prototyping. Recent focus on the substitution of steel components with aluminum alloy alternatives in the automotive and aerospace sectors has increased the need to simulate the forming behavior of such alloys for ever more complex component geometries. However these alloys, and in particular their high strength variants, exhibit limited formability at room temperature, and high temperature manufacturing technologies have been developed to form them. Consequently, advanced constitutive models are required to reflect the associated temperature and strain rate effects. Simulating such behavior is computationally very expensive using conventional FE simulation techniques. This paper presents a novel Knowledge Based Cloud FE (KBC-FE) simulation technique that combines advanced material and friction models with conventional FE simulations in an efficient manner thus enhancing the capability of commercial simulation software packages. The application of these methods is demonstrated through two example case studies, namely: the prediction of a material's forming limit under hot stamping conditions, and the tool life prediction under multi-cycle loading conditions. PMID:28060298
Virtual synthesis of crystals using ab initio MD: Case study on LiFePO4
NASA Astrophysics Data System (ADS)
Mishra, S. B.; Nanda, B. R. K.
2017-05-01
Molecular dynamics simulation technique is fairly successful in studying the structural aspects and dynamics of fluids. Here we study the ability of ab initio molecular dynamics (ab initio MD) to carry out virtual experiments to synthesize new crystalline materials and to predict their structures. For this purpose the olivine phosphate LiFePO4 (LFPO) is used as an example. As transition metal oxides in general are stabilized with layered geometry, we carried out ab initio MD simulations over a hypothetical layered configuration consisting of alternate LiPO2 and FeO2 layers. With intermittent steps of electron minimization, the resulted equilibrium lattice consist of PO4 tetrahedra and distorted Fe-O complexes similar to the one observed in the experimental lattice.
A time-domain finite element boundary integral approach for elastic wave scattering
NASA Astrophysics Data System (ADS)
Shi, F.; Lowe, M. J. S.; Skelton, E. A.; Craster, R. V.
2018-04-01
The response of complex scatterers, such as rough or branched cracks, to incident elastic waves is required in many areas of industrial importance such as those in non-destructive evaluation and related fields; we develop an approach to generate accurate and rapid simulations. To achieve this we develop, in the time domain, an implementation to efficiently couple the finite element (FE) method within a small local region, and the boundary integral (BI) globally. The FE explicit scheme is run in a local box to compute the surface displacement of the scatterer, by giving forcing signals to excitation nodes, which can lie on the scatterer itself. The required input forces on the excitation nodes are obtained with a reformulated FE equation, according to the incident displacement field. The surface displacements computed by the local FE are then projected, through time-domain BI formulae, to calculate the scattering signals with different modes. This new method yields huge improvements in the efficiency of FE simulations for scattering from complex scatterers. We present results using different shapes and boundary conditions, all simulated using this approach in both 2D and 3D, and then compare with full FE models and theoretical solutions to demonstrate the efficiency and accuracy of this numerical approach.
NASA Astrophysics Data System (ADS)
Xiao, Yi; Zhang, Fu Chun; Han, Jeong In
2016-11-01
LiFePO4 was doped by metallic cation in Fe sites via ball milling by a solid-state reaction method synthesis, and with very low-level doping of these samples, such as Li0.95T0.05FePO4 (where T = Mn2+, Co2+, La3+, Ce4+). The effects of doping were studied by X-ray diffraction pattern, Raman shift, scanning electronic microscopy and energy-dispersive X-ray spectroscopy as sample characterizations. The results indicate that these dopants have no significant effect on the structure of the material, but considerably improve its electrochemical behavior. First-principles calculations were used to obtain the migration pathway of Li ions along the one-dimensional (010) direction in LiFePO4, and molecular dynamics simulation was used to investigate the lithium-ion diffusion coefficients ( D Li) inside LiFePO4, which were derived from the slope of the mean square displacement versus time plots. The evolution of the structure during the simulation was analyzed by the radial distribution function to obtain the data, and radial distribution functions and mean square displacements were used to confirm the formation of crystalline units and the evolution of structure.
Mapping iron oxides and the color of Australian soil using visible-near-infrared reflectance spectra
NASA Astrophysics Data System (ADS)
Viscarra Rossel, R. A.; Bui, E. N.; de Caritat, P.; McKenzie, N. J.
2010-12-01
Iron (Fe) oxide mineralogy in most Australian soils is poorly characterized, even though Fe oxides play an important role in soil function. Fe oxides reflect the conditions of pH, redox potential, moisture, and temperature in the soil environment. The strong pigmenting effect of Fe oxides gives most soils their color, which is largely a reflection of the soil's Fe mineralogy. Visible-near-infrared (vis-NIR) spectroscopy can be used to identify and measure the abundance of certain Fe oxides in soil, and the visible range can be used to derive tristimuli soil color information. The aims of this paper are (1) to measure the abundance of hematite and goethite in Australian soils from their vis-NIR spectra, (2) to compare these results to measurements of soil color, and (3) to describe the spatial variability of hematite, goethite, and soil color and map their distribution across Australia. We measured the spectra of 4606 surface soil samples from across Australia using a vis-NIR spectrometer with a wavelength range of 350-2500 nm. We determined the Fe oxide abundance for each sample using the diagnostic absorption features of hematite (near 880 nm) and goethite (near 920 nm) and derived a normalized iron oxide difference index (NIODI) to better discriminate between them. The NIODI was generalized across Australia with its spatial uncertainty using sequential indicator simulation, which resulted in a map of the probability of the occurrence of hematite and goethite. We also derived soil RGB color from the spectra and mapped its distribution and uncertainty across the country using sequential Gaussian simulations. The simulated RGB color values were made into a composite true color image and were also converted to Munsell hue, value, and chroma. These color maps were compared to the map of the NIODI, and both were used to interpret our results. The work presented here was validated by randomly splitting the data into training and test data sets, as well as by comparing our results to existing studies on the distribution of Fe oxides in Australian soils.
Atomistic clustering-ordering and high-strain deformation of an Al0.1CrCoFeNi high-entropy alloy
Sharma, Aayush; Singh, Prashant; Johnson, Duane D.; Liaw, Peter K.; Balasubramanian, Ganesh
2016-01-01
Computational investigations of structural, chemical, and deformation behavior in high-entropy alloys (HEAs), which possess notable mechanical strength, have been limited due to the absence of applicable force fields. To extend investigations, we propose a set of intermolecular potential parameters for a quinary Al-Cr-Co-Fe-Ni alloy, using the available ternary Embedded Atom Method and Lennard-Jones potential in classical molecular-dynamics simulations. The simulation results are validated by a comparison to first-principles Korringa-Kohn-Rostoker (KKR) - Coherent Potential Approximation (CPA) [KKR-CPA] calculations for the HEA structural properties (lattice constants and bulk moduli), relative stability, pair probabilities, and high-temperature short-range ordering. The simulation (MD)-derived properties are in quantitative agreement with KKR-CPA calculations (first-principles) and experiments. We study AlxCrCoFeNi for Al ranging from 0 ≤ x ≤2 mole fractions, and find that the HEA shows large chemical clustering over a wide temperature range for x < 0.5. At various temperatures high-strain compression promotes atomistic rearrangements in Al0.1CrCoFeNi, resulting in a clustering-to-ordering transition that is absent for tensile loading. Large fluctuations under stress, and at higher temperatures, are attributed to the thermo-plastic instability in Al0.1CrCoFeNi. PMID:27498807
Atomistic clustering-ordering and high-strain deformation of an Al 0.1CrCoFeNi high-entropy alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Aayush; Singh, Prashant; Johnson, Duane D.
2016-08-08
Here, computational investigations of structural, chemical, and deformation behavior in high-entropy alloys (HEAs), which possess notable mechanical strength, have been limited due to the absence of applicable force fields. To extend investigations, we propose a set of intermolecular potential parameters for a quinary Al-Cr-Co-Fe-Ni alloy, using the available ternary Embedded Atom Method and Lennard-Jones potential in classical molecular-dynamics simulations. The simulation results are validated by a comparison to first-principles Korringa-Kohn-Rostoker (KKR) - Coherent Potential Approximation (CPA) [KKR-CPA] calculations for the HEA structural properties (lattice constants and bulk moduli), relative stability, pair probabilities, and high-temperature short-range ordering. The simulation (MD)-derived propertiesmore » are in quantitative agreement with KKR-CPA calculations (first-principles) and experiments. We study Al xCrCoFeNi for Al ranging from 0 ≤ x ≤2 mole fractions, and find that the HEA shows large chemical clustering over a wide temperature range for x < 0.5. At various temperatures high-strain compression promotes atomistic rearrangements in Al 0.1CrCoFeNi, resulting in a clustering-to-ordering transition that is absent for tensile loading. Large fluctuations under stress, and at higher temperatures, are attributed to the thermo-plastic instability in Al 0.1CrCoFeNi.« less
Controlling ferromagnetism of (In,Fe)As semiconductors by electron doping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dang Vu, Nguyen; Fukushima, Tetsuya; Katayama-Yoshida, Hiroshi
2014-02-21
Based on experimental results, using the Korringa-Kohn-Rostoker coherent potential approximation (KKR-CPA) method and Monte Carlo simulation, we study the mechanism of ferromagnetic behavior of (In,Fe)As. We show that with doped Be atoms occupying in interstitial sites, chemical pair interactions between atoms and magnetic exchange interactions between Fe atoms change due to electron concentration. Therefore, by controlling the doping process, magnetic behavior of (In,Fe)As is controlled and ferromagnetism is observed in this semiconductor.
Determination of ferrous and total iron in refractory spinels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amonette, James E.; Matyas, Josef
2015-12-30
Accurate and precise determination of the redox state of iron (Fe) in spinels presents a significant challenge due to their refractory nature. The resultant extreme conditions needed to obtain complete dissolution generally oxidize some of the Fe(II) initially present and thus prevent the use of colorimetric methods for Fe(II) measurements. To overcome this challenge we developed a hybrid oxidimetric/colorimetric approach, using Ag(I) as the oxidimetric reagent for determination of Fe(II) and 1,10-phenanthroline as the colorimetric reagent for determination of total Fe. This approach, which allows determination of Fe(II) and total Fe on the same sample, was tested on a seriesmore » of four geochemical reference materials and then applied to the analysis of Fe(Ni) spinel crystals isolated from simulated high-level-waste (HLW) glass and of several reagent magnetites. Results for the reference materials were in excellent agreement with published values, with the exception of USGS BIR-1, for which higher Fe(II) values and lower total Fe values were obtained. The Fe(Ni) spinels showed Fe(II) values at the detection limit (ca. 0.05 wt% Fe) and total Fe values slightly higher than obtained by total elemental analysis. For the magnetite samples, total Fe values were in agreement with reference results, but a wide range in Fe(II) values was obtained indicating various degrees of conversion to maghemite.« less
Thermal Coefficient of Linear Expansion Modified by Dendritic Segregation in Nickel-Iron Alloys
NASA Astrophysics Data System (ADS)
Ogorodnikova, O. M.; Maksimova, E. V.
2018-05-01
The paper presents investigations of thermal properties of Fe-Ni and Fe-Ni-Co casting alloys affected by the heterogeneous distribution of their chemical elements. It is shown that nickel dendritic segregation has a negative effect on properties of studied invars. A mathematical model is proposed to explore the influence of nickel dendritic segregation on the thermal coefficient of linear expansion (TCLE) of the alloy. A computer simulation of TCLE of Fe-Ni-Co superinvars is performed with regard to a heterogeneous distribution of their chemical elements over the whole volume. The ProLigSol computer software application is developed for processing the data array and results of computer simulation.
Moestedt, J; Nordell, E; Shakeri Yekta, S; Lundgren, J; Martí, M; Sundberg, C; Ejlertsson, J; Svensson, B H; Björn, A
2016-01-01
This study used semi-continuous laboratory scale biogas reactors to simulate the effects of trace-element addition in different combinations, while degrading the organic fraction of municipal solid waste and slaughterhouse waste. The results show that the combined addition of Fe, Co and Ni was superior to the addition of only Fe, Fe and Co or Fe and Ni. However, the addition of only Fe resulted in a more stable process than the combined addition of Fe and Co, perhaps indicating a too efficient acidogenesis and/or homoacetogenesis in relation to a Ni-deprived methanogenic population. The results were observed in terms of higher biogas production (+9%), biogas production rates (+35%) and reduced VFA concentration for combined addition compared to only Fe and Ni. The higher stability was supported by observations of differences in viscosity, intraday VFA- and biogas kinetics as well as by the 16S rRNA gene and 16S rRNA of the methanogens. Copyright © 2015 Elsevier Ltd. All rights reserved.
Fracture simulation of restored teeth using a continuum damage mechanics failure model.
Li, Haiyan; Li, Jianying; Zou, Zhenmin; Fok, Alex Siu-Lun
2011-07-01
The aim of this paper is to validate the use of a finite-element (FE) based continuum damage mechanics (CDM) failure model to simulate the debonding and fracture of restored teeth. Fracture testing of plastic model teeth, with or without a standard Class-II MOD (mesial-occusal-distal) restoration, was carried out to investigate their fracture behavior. In parallel, 2D FE models of the teeth are constructed and analyzed using the commercial FE software ABAQUS. A CDM failure model, implemented into ABAQUS via the user element subroutine (UEL), is used to simulate the debonding and/or final fracture of the model teeth under a compressive load. The material parameters needed for the CDM model to simulate fracture are obtained through separate mechanical tests. The predicted results are then compared with the experimental data of the fracture tests to validate the failure model. The failure processes of the intact and restored model teeth are successfully reproduced by the simulation. However, the fracture parameters obtained from testing small specimens need to be adjusted to account for the size effect. The results indicate that the CDM model is a viable model for the prediction of debonding and fracture in dental restorations. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Lantian; Li, Zhifang; Li, Hui
2018-01-01
The study of interaction of laser with tumor-embedded gastric tissue is of great theoretical and practical significance for the laser diagnosis and treatment of gastric cancer in medicine. A finite element (FE)-based simulation model has been developed incorporating light propagation and heat transfer in soft tissues using a commercial FE simulation package, COMSOL Multiphysics. In this study, FE model is composed of three parts of 1) homogeneous background soft tissues submerged in water, 2) tumor tissue inclusion, and 3) different wavelengths of short pulsed laser source (450nm, 550nm, 632nm and 800nm). The laser point source is placed right under the tissues submerged in water. This laser source light propagation through the multi-layer tissues using the diffusion equation and bioheat transfer in tissues is simulated using bioheat equation for temperature change. The simulation results show that the penetration depth and light energy distribution mainly depend on the optical parameters of the different wavelengths of the tissue. In the process of biological heat transfer, the temperature of the tissue decreases exponentially with the depth and the deep tissues are almost unaffected. The results are helpful to optimize the laser source in a photoacoustic imaging system and provide some significance for the further study of the early diagnosis of gastric cancer.
Telfer, Scott; Erdemir, Ahmet; Woodburn, James; Cavanagh, Peter R.
2014-01-01
Background Over the past two decades finite element (FE) analysis has become a popular tool for researchers seeking to simulate the biomechanics of the healthy and diabetic foot. The primary aims of these simulations have been to improve our understanding of the foot’s complicated mechanical loading in health and disease and to inform interventions designed to prevent plantar ulceration, a major complication of diabetes. This article provides a systematic review and summary of the findings from FE analysis-based computational simulations of the diabetic foot. Methods A systematic literature search was carried out and 31 relevant articles were identified covering three primary themes: methodological aspects relevant to modelling the diabetic foot; investigations of the pathomechanics of the diabetic foot; and simulation-based design of interventions to reduce ulceration risk. Results Methodological studies illustrated appropriate use of FE analysis for simulation of foot mechanics, incorporating nonlinear tissue mechanics, contact and rigid body movements. FE studies of pathomechanics have provided estimates of internal soft tissue stresses, and suggest that such stresses may often be considerably larger than those measured at the plantar surface and are proportionally greater in the diabetic foot compared to controls. FE analysis allowed evaluation of insole performance and development of new insole designs, footwear and corrective surgery to effectively provide intervention strategies. The technique also presents the opportunity to simulate the effect of changes associated with the diabetic foot on non-mechanical factors such as blood supply to local tissues. Discussion While significant advancement in diabetic foot research has been made possible by the use of FE analysis, translational utility of this powerful tool for routine clinical care at the patient level requires adoption of cost-effective (both in terms of labour and computation) and reliable approaches with clear clinical validity for decision making. PMID:25290098
Simulations of the Fe K α Energy Spectra from Gravitationally Microlensed Quasars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krawczynski, H.; Chartas, G., E-mail: krawcz@wustl.edu
The analysis of the Chandra X-ray observations of the gravitationally lensed quasar RX J1131−1231 revealed the detection of multiple and energy-variable spectral peaks. The spectral variability is thought to result from the microlensing of the Fe K α emission, selectively amplifying the emission from certain regions of the accretion disk with certain effective frequency shifts of the Fe K α line emission. In this paper, we combine detailed simulations of the emission of Fe K α photons from the accretion disk of a Kerr black hole with calculations of the effect of gravitational microlensing on the observed energy spectra. Themore » simulations show that microlensing can indeed produce multiply peaked energy spectra. We explore the dependence of the spectral characteristics on black hole spin, accretion disk inclination, corona height, and microlensing amplification factor and show that the measurements can be used to constrain these parameters. We find that the range of observed spectral peak energies of QSO RX J1131−1231 can only be reproduced for black hole inclinations exceeding 70° and for lamppost corona heights of less than 30 gravitational radii above the black hole. We conclude by emphasizing the scientific potential of studies of the microlensed Fe K α quasar emission and the need for more detailed modeling that explores how the results change for more realistic accretion disk and corona geometries and microlensing magnification patterns. A full analysis should furthermore model the signal-to-noise ratio of the observations and the resulting detection biases.« less
Geng, Xiaoqi; Liu, Xiaoyu; Wei, Wei; Wang, Yawei; Wang, Lizhen; Chen, Kinon; Huo, Hongqiang; Zhu, Yuanjie; Fan, Yubo
2018-05-01
To evaluate retinal damage as the result of craniomaxillofacial trauma and explain its pathogenic mechanism using finite element (FE) simulation. Computed tomography (CT) images of an adult man were obtained to construct a FE skull model. A FE skin model was built to cover the outer surface of the skull model. A previously validated FE right eye model was symmetrically copied to create a FE left eye model, and both eye models were assembled to the skull model. An orbital fat model was developed to fill the space between the eye models and the skull model. Simulations of a ball-shaped object striking the frontal bone, temporal bone, brow, and cheekbones were performed, and the resulting absorption of the impact energy, intraocular pressure (IOP), and strains on the macula and ora serrata were analyzed to evaluate retinal injuries. Strain was concentrated in the macular regions (0.18 in average) of both eyes when the frontal bone was struck. The peak strain on the macula of the struck-side eye was higher than that of the other eye (>100%) when the temporal bone was struck, whereas there was little difference (<10%) between the two eyes when the brow and cheekbones were struck. Correlation analysis showed that the retinal strain time histories were highly correlated with the IOP time histories ( r > 0.8 and P = 0.000 in all simulation cases). The risk of retinal damage is variable in craniomaxillofacial trauma depending on the struck region, and the damage is highly related to IOP variation caused by indirect blunt eye trauma. This finite element eye model allows us to evaluate and understand the indirect ocular injury mechanisms in craniomaxillofacial trauma for better clinical diagnosis and treatment.
Lehnert, Nicolai; Galinato, Mary Grace I; Paulat, Florian; Richter-Addo, George B; Sturhahn, Wolfgang; Xu, Nan; Zhao, Jiyong
2010-05-03
This study presents Nuclear Resonance Vibrational Spectroscopy (NRVS) data on the five-coordinate (5C) ferrous heme-nitrosyl complex [Fe(OEP)(NO)] (1, OEP(2-) = octaethylporphyrinato dianion) and the corresponding (15)N(18)O labeled complex. The obtained spectra identify two isotope sensitive features at 522 and 388 cm(-1), which shift to 508 and 381 cm(-1), respectively, upon isotope labeling. These features are assigned to the Fe-NO stretch nu(Fe-NO) and the in-plane Fe-N-O bending mode delta(ip)(Fe-N-O), the latter has been unambiguously assigned for the first time for 1. The obtained NRVS data were simulated using our quantum chemistry centered normal coordinate analysis (QCC-NCA). Since complex 1 can potentially exist in 12 different conformations involving the FeNO and peripheral ethyl orientations, extended density functional theory (DFT) calculations and QCC-NCA simulations were performed to determine how these conformations affect the NRVS properties of [Fe(OEP)NO]. These results show that the properties and force constants of the FeNO unit are hardly affected by the conformational changes involving the ethyl substituents. On the other hand, the NRVS-active porphyrin-based vibrations around 340-360, 300-320, and 250-270 cm(-1) are sensitive to the conformational changes. The spectroscopic changes observed in these regions are due to selective mechanical couplings of one component of E(u)-type (in ideal D(4h) symmetry) porphyrin-based vibrations with the in-plane Fe-N-O bending mode. This leads to the observed variations in Fe(OEP) core mode energies and NRVS intensities without affecting the properties of the FeNO unit. The QCC-NCA simulated NRVS spectra of 1 show excellent agreement with experiment, and indicate that conformer F is likely present in the samples of this complex investigated here. The observed porphyrin-based vibrations in the NRVS spectra of 1 are also assigned based on the QCC-NCA results. The obtained force constants of the Fe-NO and N-O bonds are 2.83-2.94 (based on the DFT functional applied) and about 12.15 mdyn/A, respectively. The electronic structures of 5C ferrous heme-nitrosyls in different model complexes are then analyzed, and variations in their properties based on different porphyrin substituents are explained. Finally, the shortcomings of different DFT functionals in describing the axial FeNO subunit in heme-nitrosyls are elucidated.
NASA Astrophysics Data System (ADS)
Hidayat, Mas Irfan P.; Fellicia, Dian Mughni; Rafandi, Ferdiansyah Iqbal
2018-04-01
Microwave assisted heating has been extensively used in materials processing particularly in extraction of TiO2 from Ilmenite (FeTiO3) minerals. Nevertheless, this method could generate non-uniform temperature distribution during the heating process. The observation of this phenomena in cylindrical ilmenite has been conducted by numerical simulation using finite element method according to the Poynthing's theorem. Four different cylinders with variation on its height were simulated in ANSYS 17 with input microwave power of 5.5 Kw. The results indicated that height of heated object could vigorously influence the uniformity of temperature inside the body.
Multi-stage FE simulation of hot ring rolling
NASA Astrophysics Data System (ADS)
Wang, C.; Geijselaers, H. J. M.; van den Boogaard, A. H.
2013-05-01
As a unique and important member of the metal forming family, ring rolling provides a cost effective process route to manufacture seamless rings. Applications of ring rolling cover a wide range of products in aerospace, automotive and civil engineering industries [1]. Above the recrystallization temperature of the material, hot ring rolling begins with the upsetting of the billet cut from raw stock. Next a punch pierces the hot upset billet to form a hole through the billet. This billet, referred to as preform, is then rolled by the ring rolling mill. For an accurate simulation of hot ring rolling, it is crucial to include the deformations, stresses and strains from the upsetting and piercing process as initial conditions for the rolling stage. In this work, multi-stage FE simulations of hot ring rolling process were performed by mapping the local deformation state of the workpiece from one step to the next one. The simulations of upsetting and piercing stages were carried out by 2D axisymmetric models using adaptive remeshing and element erosion. The workpiece for the ring rolling stage was subsequently obtained after performing a 2D to 3D mapping. The commercial FE package LS-DYNA was used for the study and user defined subroutines were implemented to complete the control algorithm. The simulation results were analyzed and also compared with those from the single-stage FE model of hot ring rolling.
Ab initio simulation of structure and surface energy of low-index surfaces of stoichiometric α-Fe2O3
NASA Astrophysics Data System (ADS)
Stirner, Thomas; Scholz, David; Sun, Jizhong
2018-05-01
The structure and surface energy of a series of low-index surfaces of stoichiometric α-Fe2O3 (hematite) are investigated using the periodic Hartree-Fock approach with an a posteriori correction of the correlation energy. The simulations show that, amongst the modeled facets, (01 1 bar2) and (0001) are the most stable surfaces of hematite, which is consistent with the fact that the latter are the dominant growth faces exposed on natural α-Fe2O3. The Fe-terminated (0001) surface is shown to exhibit a large relaxation of the surface atoms. It is argued that this arises mainly due to the fact that the surface cations are located opposite empty cation sites in the filled-filled-unfilled cation sequence along the c-axis. In contrast, the (01 1 bar2) plane cuts the crystal through a plane of empty cation sites, thus giving rise to relatively small relaxations and surface energies. The small relaxations and concomitant exposure of five-coordinate cation sites may be important for the catalytic activity of hematite. The simulations also show that the relative stability of the investigated surfaces changes after a full lattice relaxation with the (0001) and (11 2 bar6) facets relaxing disproportionately large. Wherever possible, the simulations are compared with previous simulation data and experimental results. A Wulff-Gibbs construction is also presented.
Atomistic simulation of the influence of Cr on the mobility of the edge dislocation in Fe(Cr) alloys
NASA Astrophysics Data System (ADS)
Hafez Haghighat, S. M.; Terentyev, D.; Schäublin, R.
2011-10-01
In this work Fe-Cr compounds, as model alloys for the ferritic base steels that are considered as main candidates for the structural materials of the future fusion reactors, are studied using molecular dynamics simulations. The Cr or so-called α' precipitates, which are obstacles to dislocations, affect mechanical properties, leading to hardening and loss of ductility. The flow stress to move an edge dislocation in a Cr solid solution in pure Fe is studied as a function of Cr content. The strength of a nanometric Cr precipitate as obstacle to an edge dislocation in pure Fe is investigated as a function of its Cr content. Results show that with increasing Cr content the precipitate obstacle strength increases, with a strong sensitivity to the local atomic order. Temperature induces a monotonic decrease of the flow stress of the Cr solid solution and of the Cr precipitate obstacle strength.
NASA Astrophysics Data System (ADS)
Bouachraoui, Rachid; El Hachimi, Abdel Ghafour; Ziat, Younes; Bahmad, Lahoucine; Tahiri, Najim
2018-06-01
Electronic and magnetic properties of hexagonal Iron (II) Sulfide (hexagonal FeS) have been investigated by combining the Density functional theory (DFT) and Monte Carlo simulations (MCS). This compound is constituted by magnetic hexagonal lattice occupied by Fe2+ with spin state (S = 2). Based on ab initio method, we calculated the exchange coupling JFe-Fe between two magnetic atoms Fe-Fe in different directions. Also phase transitions, magnetic stability and magnetizations have been investigated in the framework of Monte Carlo simulations. Within this method, a second phase transition is observed at the Néel temperature TN = 450 K. This finding in good agreement with the reported data in the literature. The effect of the applied different parameters showed how can these parameters affect the critical temperature of this system. Moreover, we studied the density of states and found that the hexagonal FeS will be a promoting material for spintronic applications.
NASA Astrophysics Data System (ADS)
Wang, Jinting; Lu, Liqiao; Zhu, Fei
2018-01-01
Finite element (FE) is a powerful tool and has been applied by investigators to real-time hybrid simulations (RTHSs). This study focuses on the computational efficiency, including the computational time and accuracy, of numerical integrations in solving FE numerical substructure in RTHSs. First, sparse matrix storage schemes are adopted to decrease the computational time of FE numerical substructure. In this way, the task execution time (TET) decreases such that the scale of the numerical substructure model increases. Subsequently, several commonly used explicit numerical integration algorithms, including the central difference method (CDM), the Newmark explicit method, the Chang method and the Gui-λ method, are comprehensively compared to evaluate their computational time in solving FE numerical substructure. CDM is better than the other explicit integration algorithms when the damping matrix is diagonal, while the Gui-λ (λ = 4) method is advantageous when the damping matrix is non-diagonal. Finally, the effect of time delay on the computational accuracy of RTHSs is investigated by simulating structure-foundation systems. Simulation results show that the influences of time delay on the displacement response become obvious with the mass ratio increasing, and delay compensation methods may reduce the relative error of the displacement peak value to less than 5% even under the large time-step and large time delay.
Yeo, Sang Chul; Lo, Yu Chieh; Li, Ju; Lee, Hyuck Mo
2014-10-07
Ammonia (NH3) nitridation on an Fe surface was studied by combining density functional theory (DFT) and kinetic Monte Carlo (kMC) calculations. A DFT calculation was performed to obtain the energy barriers (Eb) of the relevant elementary processes. The full mechanism of the exact reaction path was divided into five steps (adsorption, dissociation, surface migration, penetration, and diffusion) on an Fe (100) surface pre-covered with nitrogen. The energy barrier (Eb) depended on the N surface coverage. The DFT results were subsequently employed as a database for the kMC simulations. We then evaluated the NH3 nitridation rate on the N pre-covered Fe surface. To determine the conditions necessary for a rapid NH3 nitridation rate, the eight reaction events were considered in the kMC simulations: adsorption, desorption, dissociation, reverse dissociation, surface migration, penetration, reverse penetration, and diffusion. This study provides a real-time-scale simulation of NH3 nitridation influenced by nitrogen surface coverage that allowed us to theoretically determine a nitrogen coverage (0.56 ML) suitable for rapid NH3 nitridation. In this way, we were able to reveal the coverage dependence of the nitridation reaction using the combined DFT and kMC simulations.
THERMODYNAMICS OF FE-CU ALLOYS AS DESCRIBED BY A CLASSIC POTENTIALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caro, A; Caro, M; Lopasso, E M
2005-04-14
The Fe-Cu system is of relevance to the nuclear industry because of the deleterious consequences of Cu precipitates in the mechanical properties of Fe. Several sets of classical potentials are used in molecular dynamics simulations studies of this system, in particular that proposed by Ludwig et al. (Modelling Simul. Mater. Sci. Eng. 6, 19 (1998)). In this work we extract thermodynamic information from this interatomic potentials. We obtain equilibrium phase diagram and find a reasonable agreement with the experimental phases in the regions of relevance to radiation damage studies. We compare the results with the predicted phase diagram based onmore » other potential, as calculated in previous work. We discuss the disagreements found between the phase diagram calculated here and experimental results, focusing on the pure components and discuss the applicability of these potentials; finally we suggest an approach to improve existing potentials for this system.« less
FE Modelling of the Fluid-Structure-Acoustic Interaction for the Vocal Folds Self-Oscillation
NASA Astrophysics Data System (ADS)
Švancara, Pavel; Horáček, J.; Hrůza, V.
The flow induced self-oscillation of the human vocal folds in interaction with acoustic processes in the simplified vocal tract model was explored by three-dimensional (3D) finite element (FE) model. Developed FE model includes vocal folds pretension before phonation, large deformations of the vocal fold tissue, vocal folds contact, fluid-structure interaction, morphing the fluid mesh according the vocal folds motion (Arbitrary Lagrangian-Eulerian approach), unsteady viscous compressible airflow described by the Navier-Stokes equations and airflow separation during the glottis closure. Iterative partitioned approach is used for modelling the fluid-structure interaction. Computed results prove that the developed model can be used for simulation of the vocal folds self-oscillation and resulting acoustic waves. The developed model enables to numerically simulate an influence of some pathological changes in the vocal fold tissue on the voice production.
Chemical mixing at “Al on Fe” and “Fe on Al” interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Süle, P.; Horváth, Z. E.; Kaptás, D.
2015-10-07
The chemical mixing at the “Al on Fe” and “Fe on Al” interfaces was studied by molecular dynamics simulations of the layer growth and by {sup 57}Fe Mössbauer spectroscopy. The concentration distribution along the layer growth direction was calculated for different crystallographic orientations, and atomically sharp “Al on Fe” interfaces were found when Al grows over (001) and (110) oriented Fe layers. The Al/Fe(111) interface is also narrow as compared to the intermixing found at the “Fe on Al” interfaces for any orientation. Conversion electron Mössbauer measurements of trilayers—Al/{sup 57}Fe/Al and Al/{sup 57}Fe/Ag grown simultaneously over Si(111) substrate by vacuummore » evaporation—support the results of the molecular dynamics calculations.« less
The anthropogenic influence on Iron deposition over the oceans: a 3-D global modeling
NASA Astrophysics Data System (ADS)
Myriokefalitakis, Stelios; Mihalopoulos, Nikos; Baker, Alex; Kanakidou, Maria
2014-05-01
Iron (Fe) deposition over oceans is directly linked to the marine biological productivity and consequently to atmospheric CO2 concentrations. Experimental and modeling results support that both inorganic (sulphate, ammonium and nitrate) and organic (e.g. oxalate) ligands can increase the Fe mobilization. Mineral dust deposition is considered as the most important supply of bioavailable Fe in the oceans. Although, due to the low soil soluble iron fractions, atmospheric processes which are also related to anthropogenic emissions, can convert iron to more soluble forms in the atmosphere. Recent studies also support that anthropogenic emissions of Fe from combustion sources also significantly contribute to the dissolved Fe atmospheric pool. The evaluation of the impact of humans on atmospheric soluble or bioavailable Fe deposition remains challenging, since Fe mobilization due to changes in anthropogenic emissions is largely uncertain. In the present study, the global atmospheric Fe cycle is parameterized in the 3-D chemical transport global model TM4-ECPL and the model is used to calculate the Fe deposition over the oceans. The model considers explicitly organic, sulfur and nitrogen gas-phase chemistry, aqueous-phase organic chemistry, including oxalate and all major aerosol constituents. TM4-ECPL simulates the organic and inorganic ligand-promoted mineral Fe dissolution and also aqueous-phase photochemical reactions between different forms of Fe (III/II). Primary emissions of Fe associated with dust and soluble Fe from combustion processes as well as atmospheric processing of the emitted Fe is taken into account in the model Sensitivity simulations are performed to study the impact of anthropogenic emissions on Fe deposition. For this preindustrial, present and future emission scenarios are used in the model in order to examine the response of chemical composition of iron-containing aerosols to environmental changes. The release of soluble iron associated with mineral dust and with the emissions of combustion aerosols is investigated. Model results are compared with available observations to evaluate their robustness. This work is supported by the ESF-NSRF ARISTEIA grant PANOPLY (Pollution Alters Natural Aerosol Composition: implications for Ocean Productivity, cLimate and air qualitY).
NASA Astrophysics Data System (ADS)
Nguyen Van Do, Vuong
2018-04-01
In this study, a development of nonlinear continuum damage mechanics (CDM) model for multiaxial high cycle fatigue is proposed in which the cyclic plasticity constitutive model has been incorporated in the finite element (FE) framework. T-joint FE simulation of fillet welding is implemented to characterize sequentially coupled three-dimensional (3-D) of thermo-mechanical FE formulation and simulate the welding residual stresses. The high cycle fatigue damage model is then taken account into the fillet weld joints under the various cyclic fatigue load types to calculate the fatigue life considering the residual stresses. The fatigue crack initiation and the propagation in the present model estimated for the total fatigue is compared with the experimental results. The FE results illustrated that the proposed high cycle fatigue damage model in this study could become a powerful tool to effectively predict the fatigue life of the welds. Parametric studies in this work are also demonstrated that the welding residual stresses cannot be ignored in the computation of the fatigue life of welded structures.
Sturgeon, Gregory M; Kiarashi, Nooshin; Lo, Joseph Y; Samei, E; Segars, W P
2016-05-01
The authors are developing a series of computational breast phantoms based on breast CT data for imaging research. In this work, the authors develop a program that will allow a user to alter the phantoms to simulate the effect of gravity and compression of the breast (craniocaudal or mediolateral oblique) making the phantoms applicable to multimodality imaging. This application utilizes a template finite-element (FE) breast model that can be applied to their presegmented voxelized breast phantoms. The FE model is automatically fit to the geometry of a given breast phantom, and the material properties of each element are set based on the segmented voxels contained within the element. The loading and boundary conditions, which include gravity, are then assigned based on a user-defined position and compression. The effect of applying these loads to the breast is computed using a multistage contact analysis in FEBio, a freely available and well-validated FE software package specifically designed for biomedical applications. The resulting deformation of the breast is then applied to a boundary mesh representation of the phantom that can be used for simulating medical images. An efficient script performs the above actions seamlessly. The user only needs to specify which voxelized breast phantom to use, the compressed thickness, and orientation of the breast. The authors utilized their FE application to simulate compressed states of the breast indicative of mammography and tomosynthesis. Gravity and compression were simulated on example phantoms and used to generate mammograms in the craniocaudal or mediolateral oblique views. The simulated mammograms show a high degree of realism illustrating the utility of the FE method in simulating imaging data of repositioned and compressed breasts. The breast phantoms and the compression software can become a useful resource to the breast imaging research community. These phantoms can then be used to evaluate and compare imaging modalities that involve different positioning and compression of the breast.
Determination of elastomeric foam parameters for simulations of complex loading.
Petre, M T; Erdemir, A; Cavanagh, P R
2006-08-01
Finite element (FE) analysis has shown promise for the evaluation of elastomeric foam personal protection devices. Although appropriate representation of foam materials is necessary in order to obtain realistic simulation results, material definitions used in the literature vary widely and often fail to account for the multi-mode loading experienced by these devices. This study aims to provide a library of elastomeric foam material parameters that can be used in FE simulations of complex loading scenarios. Twelve foam materials used in footwear were tested in uni-axial compression, simple shear and volumetric compression. For each material, parameters for a common compressible hyperelastic material model used in FE analysis were determined using: (a) compression; (b) compression and shear data; and (c) data from all three tests. Material parameters and Drucker stability limits for the best fits are provided with their associated errors. The material model was able to reproduce deformation modes for which data was provided during parameter determination but was unable to predict behavior in other deformation modes. Simulation results were found to be highly dependent on the extent of the test data used to determine the parameters in the material definition. This finding calls into question the many published results of simulations of complex loading that use foam material parameters obtained from a single mode of testing. The library of foam parameters developed here presents associated errors in three deformation modes that should provide for a more informed selection of material parameters.
Gao, Baoyu; Jia, Yuyan; Zhang, Yongqiang; Li, Qian; Yue, Qinyan
2011-01-01
Produced water from polymer flooding is difficult to treat due to its high polymer concentration, high viscosity, and emulsified characteristics. The dithiocarbamate flocculant, DTC (T403), was prepared by the amine-terminated polyoxypropane-ether compound known as Jeffamine-T403. The product was characterized by IR spectra and elemental analysis. The DTC agent chelating with Fe2+ produced a network polymer matrix, which captured and removed oil droplets efficiently. Oil removal by the flocculent on simulated produced water with 0, 200, 500, 900 mg/L of partially hydrolyzed polyacrylamide (HPAM) was investigated for aspects of effectiveness of DTC (T403) dosage and concentrations of HPAM and Fe2+ ions in the wastewater. Results showed that HPAM had a negative influence on oil removal efficiency when DTC (T403) dosage was lower than 20 mg/L. However, residual oil concentrations in tested samples with different concentrations of HPAM all decreased below 10 mg/L when DTC (T403) dosage reached 30 mg/L. The concentration of Fe2+ in the initial wastewater had a slight effect on oil removal at the range of 2-12 mg/L. Results showed that Fe3+ could not be used in place of Fe2+ as Fe3+ could not react with DTC under flocculated conditions. The effects of mineral salts ions were also investigated.
NASA Astrophysics Data System (ADS)
Zhao, Bo; Huang, Jinfan; Bartell, Lawrence S.
2013-11-01
Molecular dynamics (MD) computer simulations have been carried out and a novel modified technique of Voronoi polyhedra has been performed to identify solid-like particles in a molten nanoparticle. This technique works quite well in analyzing the effects of particle size on nucleation rates of iron nanoparticles in the temperature range of 750-1160 K. Nanoparticles with 1436 and 2133 Fe atoms have been examined and the results are compared with those obtained earlier with Fe331 nanoparticles. Nucleation rates for freezing obtained from MD simulations for Fe2133 vary from 8.8×1034 m3/s to 4.1×1035 m3/s at over a temperature range from 1160 K to 900 K, Rates for. Fe1436 and Fe331 are somewhat higher. Nucleation rates increase as supercooling deepens until the viscosity of the liquid increases sharply enough to slow down the rate. Bt applying classical nucleation theory, the interfacial free energy between solid and liquid cab be estimated From this and other thermodynamic information can be derived a theoretical expression for the size-dependence of the heat of fusion of nanoparticles. Results agreed quite well with those observed in our MD observations. An earlier expression in the literature for this size-dependence was shown to be incorrect. The size dependence of melting point is discussed.
NASA Astrophysics Data System (ADS)
Moon, Joonoh; Lee, Tae-Ho; Hong, Hyun-Uk
2015-04-01
Hot ductility behaviors in the weld heat-affected zone (HAZ) of nitrogen-alloyed Fe-18Cr-10Mn austenitic stainless steels with different nitrogen contents were evaluated through hot tension tests using Gleeble simulator. The results of Gleeble simulations indicated that hot ductility in the HAZs deteriorated due to the formation of δ-ferrite and intergranular Cr2N particles. In addition, the amount of hot ductility degradation was strongly affected by the fraction of δ-ferrite.
Generalized Mechanism of Field Emission from Nanostructured Semiconductor Film Cathodes
Wang, Ru-Zhi; Zhao, Wei; Yan, Hui
2017-01-01
Considering the effect of both the buffer layer and substrate, a series of ultrathin multilayered structure cathodes (UTMC) is constructed to simulate the field emission (FE) process of nanostructured semiconductor film cathodes (NSFCs). We find a generalized FE mechanism of the NSFCs, in which there are three distinct FE modes with the change of the applied field. Our results clearly show significant differences of FE between conventional emitters and nanofilm emitters, which the non-Fowler-Nordheim characteristics and the resonant FE will be inevitable for NSFCs. Moreover, the controllable FE can be realized by fine-tuning the quantum structure of NSFCs. The generalized mechanism of NSFCs presented here may be particularly useful for design high-speed and high-frequency vacuum nano-electronic devices.
Generalized Mechanism of Field Emission from Nanostructured Semiconductor Film Cathodes
NASA Astrophysics Data System (ADS)
Wang, Ru-Zhi; Zhao, Wei; Yan, Hui
2017-03-01
Considering the effect of both the buffer layer and substrate, a series of ultrathin multilayered structure cathodes (UTMC) is constructed to simulate the field emission (FE) process of nanostructured semiconductor film cathodes (NSFCs). We find a generalized FE mechanism of the NSFCs, in which there are three distinct FE modes with the change of the applied field. Our results clearly show significant differences of FE between conventional emitters and nanofilm emitters, which the non-Fowler-Nordheim characteristics and the resonant FE will be inevitable for NSFCs. Moreover, the controllable FE can be realized by fine-tuning the quantum structure of NSFCs. The generalized mechanism of NSFCs presented here may be particularly useful for design high-speed and high-frequency vacuum nano-electronic devices.
NASA Technical Reports Server (NTRS)
Johnson, M. S.; Meskhidze, N.
2013-01-01
Mineral dust deposition is suggested to be a significant atmospheric supply pathway of bioavailable iron (Fe) to Fe-depleted surface oceans. In this study, mineral dust and dissolved Fe (Fed) deposition rates are predicted for March 2009 to February 2010 using the 3-D chemical transport model GEOS-Chem implemented with a comprehensive dust-Fe dissolution scheme. The model simulates Fed production during the atmospheric transport of mineral dust taking into account inorganic and organic (oxalate)-promoted Fe dissolution processes, photochemical redox cycling between ferric (Fe(III)) and ferrous (Fe(II)) forms of Fe, dissolution of three different Fe-containing minerals (hematite, goethite, and aluminosilicates), and detailed mineralogy of windblown dust from the major desert regions. Our calculations suggest that during the yearlong simulation is approximately 0.26 Tg (1 Tg = 1012 g) of Fed was deposited to global oceanic regions. Compared to simulations only taking into account proton-promoted Fe dissolution, the addition of oxalate to the dust-Fe mobilization scheme increased total annual model-predicted Fed deposition to global oceanic regions by approximately 75%. The implementation of Fe(II)/Fe(III) photochemical redox cycling in the model allows for the distinction between different oxidation states of deposited Fed. Our calculations suggest that during the daytime, large fractions of Fed deposited to the global oceans is likely to be in Fe(II) form, while nocturnal fluxes of Fed are largely in Fe(III) form. Model simulations also show that atmospheric fluxes of Fed can be strongly influenced by the mineralogy of Fe-containing compounds. This study shows that Fed deposition to the oceans is controlled by total dust-Fe mass concentrations, mineralogy, the surface area of dust particles, atmospheric chemical composition, cloud processing, and meteorological parameters and exhibits complex and spatiotemporally variable patterns. Our study suggests that the explicit model representation of individual processes leading to Fed production within mineral dust are needed to improve the understanding of the atmospheric Fe cycle, and quantify the effect of dust-Fe on ocean biological productivity, carbon cycle, and climate.
Fe/starch nanoparticle - Pseudomonas aeruginosa: Bio-physiochemical and MD studies.
Mofradnia, Soheil Rezazadeh; Tavakoli, Zahra; Yazdian, Fatemeh; Rashedi, Hamid; Rasekh, Behnam
2018-05-03
In this research, we attempt to study biosurfactant production by Pseudomonas aeruginosa using Fe/starch nanoparticles. Fe/starch showed no bacterial toxicity at 1 mg/ml and increased the growth rate and biosurfactant production up to 23.21 and 20.73%, respectively. Surface tension, dry weight cell, and emulsification indexes (E24) were measured. Biosurfactant production was considered via computational techniques and molecular dynamic (MD) simulation through flexible and periodic conditions (by material studio software) as well. The results of software predictions demonstrate by radial distribution function (RDF), density, energy and temperature graphs. According to the present experimental results, increased 30% growth of the bacterium has been observed and the subsequent production of biosurfactant. The difference between the experimental results and simulation data were achieved up to 0.17 g/cm 3 , which confirms the prediction of data by the software due to a difference of <14.5% (ideal error value is 20%). Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Lin, Y. C.; Chu, Y. H.
2015-12-01
There are many physical theories responsible for explanation the generation mechanism of sporadic E (Es) plasma irregularities. In middle latitude, it's generally believed that sporadic E layers occur in vertical ion convergent areas driven by horizontal neutral wind shear. The sporadic E layers appear characteristic of abundant metallic ion species (i.e., Fe+, Mg+, Na+), that lifetime are longer than molecular ions by a factor of several orders, have been demonstrated by rocket-borne mass spectrometric measurements. On the basic of the GPS Radio Occultation (RO), using the scintillations of the GPS signal-to-noise ratio and intense fluctuation of excess phase, the global and seasonal sporadic E layers occurrence rates could be retrieved. In our previous study we found there is averaged 10 kilometers shift in height between the COSMIC-retrieved sporadic E layer occurrence rate and the sporadic E occurrence rate modeled from considering the convergence/divergence of Fe+ vertical flux. There are many reasons that maybe result in the altitude differences, e.g., tidal wind with phase shift, electric field driven force, iron species distributions. In this research, the quantitative analyses for electric field drives Es layers translations in vertical direction are presented. The tidal wind driven sporadic E layers have been simulating by modeling several nonmetallic ions (O+(4S), O+(2D), O+(2p), N+, N2+, O2+, NO+) and metallic ions (Fe+, FeO2+, FeN2+, FeO+) with wind shear transportation. The simulation result shows the Fe+ particles accumulate at zonal wind shear convergent regions and form the thin sporadic E layers. With the electric field taking into account, the whole shape of sporadic E layers vertical shift 2~5 km that depending on what magnitude and direction of electric field is added.
Zhang, Tao; Jiang, Feng; Yan, Lan; Xu, Xipeng
2017-12-26
The high-temperature hardness test has a wide range of applications, but lacks test standards. The purpose of this study is to develop a finite element method (FEM) model of the relationship between the high-temperature hardness and high-temperature, quasi-static compression experiment, which is a mature test technology with test standards. A high-temperature, quasi-static compression test and a high-temperature hardness test were carried out. The relationship between the high-temperature, quasi-static compression test results and the high-temperature hardness test results was built by the development of a high-temperature indentation finite element (FE) simulation. The simulated and experimental results of high-temperature hardness have been compared, verifying the accuracy of the high-temperature indentation FE simulation.The simulated results show that the high temperature hardness basically does not change with the change of load when the pile-up of material during indentation is ignored. The simulated and experimental results show that the decrease in hardness and thermal softening are consistent. The strain and stress of indentation were analyzed from the simulated contour. It was found that the strain increases with the increase of the test temperature, and the stress decreases with the increase of the test temperature.
Zhang, Tao; Jiang, Feng; Yan, Lan; Xu, Xipeng
2017-01-01
The high-temperature hardness test has a wide range of applications, but lacks test standards. The purpose of this study is to develop a finite element method (FEM) model of the relationship between the high-temperature hardness and high-temperature, quasi-static compression experiment, which is a mature test technology with test standards. A high-temperature, quasi-static compression test and a high-temperature hardness test were carried out. The relationship between the high-temperature, quasi-static compression test results and the high-temperature hardness test results was built by the development of a high-temperature indentation finite element (FE) simulation. The simulated and experimental results of high-temperature hardness have been compared, verifying the accuracy of the high-temperature indentation FE simulation.The simulated results show that the high temperature hardness basically does not change with the change of load when the pile-up of material during indentation is ignored. The simulated and experimental results show that the decrease in hardness and thermal softening are consistent. The strain and stress of indentation were analyzed from the simulated contour. It was found that the strain increases with the increase of the test temperature, and the stress decreases with the increase of the test temperature. PMID:29278398
Lee, Ying Ping; Fujii, Manabu; Kikuchi, Tetsuro; Terao, Koumei; Yoshimura, Chihiro
2017-01-01
Oxidation and reduction kinetics of iron (Fe) and proportion of steady-state Fe(II) concentration relative to total dissolved Fe (steady-state Fe(II) fraction) were investigated in the presence of various types of standard humic substances (HS) with particular emphasis on the photochemical and thermal reduction of Fe(III) and oxidation of Fe(II) by dissolved oxygen (O2) and hydrogen peroxide (H2O2) at circumneutral pH (pH 7-8). Rates of Fe(III) reduction were spectrophotometrically determined by a ferrozine method under the simulated sunlight and dark conditions, whereas rates of Fe(II) oxidation were examined in air-saturated solution using luminol chemiluminescence technique. The reduction and oxidation rate constants were determined to substantially vary depending on the type of HS. For example, the first-order rate constants varied by up to 10-fold for photochemical reduction and 7-fold for thermal reduction. The degree of variation in Fe(II) oxidation was larger for the H2O2-mediated reaction compared to the O2-mediated reaction (e.g., 15- and 3-fold changes for the former and latter reactions, respectively, at pH 8). The steady-state Fe(II) fraction under the simulated sunlight indicated that the Fe(II) fraction varies by up to 12-fold. The correlation analysis indicated that variation of Fe(II) oxidation is significantly associated with aliphatic content of HS, suggesting that Fe(II) complexation by aliphatic components accelerates Fe(II) oxidation. The reduction rate constant and steady-state Fe(II) fractions in the presence of sunlight had relatively strong positive relations with free radical content of HS, possibly due to the reductive property of radical semiquinone in HS. Overall, the findings in this study indicated that the Fe reduction and oxidation kinetics and resultant Fe(II) formation are substantially influenced by chemical properties of HS.
Cortical bone drilling: An experimental and numerical study.
Alam, Khurshid; Bahadur, Issam M; Ahmed, Naseer
2014-12-16
Bone drilling is a common surgical procedure in orthopedics, dental and neurosurgeries. In conventional bone drilling process, the surgeon exerts a considerable amount of pressure to penetrate the drill into the bone tissue. Controlled penetration of drill in the bone is necessary for safe and efficient drilling. Development of a validated Finite Element (FE) model of cortical bone drilling. Drilling experiments were conducted on bovine cortical bone. The FE model of the bone drilling was based on mechanical properties obtained from literature data and additionally conducted microindentation tests on the cortical bone. The magnitude of stress in bone was found to decrease exponentially away from the lips of the drill in simulations. Feed rate was found to be the main influential factor affecting the force and torque in the numerical simulations and experiments. The drilling thrust force and torque were found to be unaffected by the drilling speed in numerical simulations. Simulated forces and torques were compared with experimental results for similar drilling conditions and were found in good agreement.CONCLUSIONS: FE schemes may be successfully applied to model complex kinematics of bone drilling process.
NASA Astrophysics Data System (ADS)
Limbu, Dil; Biswas, Parthapratim
We present a simple and efficient Monte-Carlo (MC) simulation of Iron (Fe) and Nickel (Ni) clusters with N =5-100 and amorphous Silicon (a-Si) starting from a random configuration. Using Sutton-Chen and Finnis-Sinclair potentials for Ni (in fcc lattice) and Fe (in bcc lattice), and Stillinger-Weber potential for a-Si, respectively, the total energy of the system is optimized by employing MC moves that include both the stochastic nature of MC simulations and the gradient of the potential function. For both iron and nickel clusters, the energy of the configurations is found to be very close to the values listed in the Cambridge Cluster Database, whereas the maximum force on each cluster is found to be much lower than the corresponding value obtained from the optimized structural configurations reported in the database. An extension of the method to model the amorphous state of Si is presented and the results are compared with experimental data and those obtained from other simulation methods. The work is partially supported by the NSF under Grant Number DMR 1507166.
Villa, Tomaso; La Barbera, Luigi; Galbusera, Fabio
2014-04-01
Preclinical evaluation of the long-term reliability of devices for lumbar fixation is a mandatory activity before they are put into market. The experimental setups are described in two different standards edited by the International Organization for Standardization (ISO) and the American Society for Testing Materials (ASTM), but the evaluation of the suitability of such tests to simulate the actual loading with in vivo situations has never been performed. To calculate through finite element (FE) simulations the stress in the rods of the fixator when subjected to ASTM and ISO standards. To compare the calculated stresses arising in the same fixator once it has been virtually mounted in a physiological environment and loaded with physiological forces and moments. FE simulations and validation experimental tests. FE models of the ISO and ASTM setups were created to conduct simulations of the tests prescribed by standards and calculate stresses in the rods. Validation of the simulations were performed through experimental tests; the same fixator was virtually mounted in an L2-L4 FE model of the lumbar spine and stresses in the rods were calculated when the spine was subjected to physiological forces and moments. The comparison between FE simulations and experimental tests showed good agreement between results obtained using the two methodologies, thus confirming the suitability of the FE method to evaluate stresses in the device in different loading situations. The usage of a physiological load with ASTM standard is impossible due to the extreme severity of the ASTM configuration; in this circumstance, the presence of an anterior support is suggested. Also, ISO prescriptions, although the choice of the setup correctly simulates the mechanical contribution of the discs, seem to overstress the device as compared with a physiological loading condition. Some daily activities, other than walking, can induce a further state of stress in the device that should be taken into account in setting up new experimental procedures. ISO standard loading prescriptions seems to be more severe than the expected physiological ones. The ASTM standard should be completed by including some anterior supporting device and declaring the value of the load to be imposed. Moreover, a further enhancement of standards would be simulating other movements representative of daily activities different from walking. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Hashimoto, Y.; Yamamoto, N.; Kato, T.; Oshima, D.; Iwata, S.
2018-03-01
Giant magneto-resistance (GMR) spin-valve films with an FeSiB/CoFeB free layer were fabricated to detect applied strain in a GMR device. The magnetostriction constant of FeSiB was experimentally determined to have 32 ppm, which was one order of magnitude larger than that of CoFeB. In order to detect the strain sensitively and robustly against magnetic field fluctuation, the magnetic field modulation technique was applied to the GMR device. It was confirmed that the output voltage of the GMR device depends on the strain, and the gauge factor K = 46 was obtained by adjusting the applied DC field intensity and direction. We carried out the simulation based on a macro-spin model assuming uniaxial anisotropy, interlayer coupling between the free and pin layers, strain-induced anisotropy, and Zeeman energy, and succeeded in reproducing the experimental results. The simulation predicts that improving the magnetic properties of GMR films, especially reducing interlayer coupling, will be effective for increasing the output, i.e., the gauge factor, of the GMR strain sensors.
COMPUTERIZED TRAINING OF CRYOSURGERY – A SYSTEM APPROACH
Keelan, Robert; Yamakawa, Soji; Shimada, Kenji; Rabin, Yoed
2014-01-01
The objective of the current study is to provide the foundation for a computerized training platform for cryosurgery. Consistent with clinical practice, the training process targets the correlation of the frozen region contour with the target region shape, using medical imaging and accepted criteria for clinical success. The current study focuses on system design considerations, including a bioheat transfer model, simulation techniques, optimal cryoprobe layout strategy, and a simulation core framework. Two fundamentally different approaches were considered for the development of a cryosurgery simulator, based on a finite-elements (FE) commercial code (ANSYS) and a proprietary finite-difference (FD) code. Results of this study demonstrate that the FE simulator is superior in terms of geometric modeling, while the FD simulator is superior in terms of runtime. Benchmarking results further indicate that the FD simulator is superior in terms of usage of memory resources, pre-processing, parallel processing, and post-processing. It is envisioned that future integration of a human-interface module and clinical data into the proposed computer framework will make computerized training of cryosurgery a practical reality. PMID:23995400
Molecular dynamics simulations of thermally activated edge dislocation unpinning from voids in α -Fe
NASA Astrophysics Data System (ADS)
Byggmästar, J.; Granberg, F.; Nordlund, K.
2017-10-01
In this study, thermal unpinning of edge dislocations from voids in α -Fe is investigated by means of molecular dynamics simulations. The activation energy as a function of shear stress and temperature is systematically determined. Simulations with a constant applied stress are compared with dynamic simulations with a constant strain rate. We found that a constant applied stress results in a temperature-dependent activation energy. The temperature dependence is attributed to the elastic softening of iron. If the stress is normalized with the softening of the specific shear modulus, the activation energy is shown to be temperature-independent. From the dynamic simulations, the activation energy as a function of critical shear stress was determined using previously developed methods. The results from the dynamic simulations are in good agreement with the constant stress simulations, after the normalization. This indicates that the computationally more efficient dynamic method can be used to obtain the activation energy as a function of stress and temperature. The obtained relation between stress, temperature, and activation energy can be used to introduce a stochastic unpinning event in larger-scale simulation methods, such as discrete dislocation dynamics.
NASA Astrophysics Data System (ADS)
Ambrozinski, Mateusz; Bzowski, Krzysztof; Mirek, Michal; Rauch, Lukasz; Pietrzyk, Maciej
2013-05-01
The paper presents simulations of the manufacturing of the automotive part, which has high influence on improvement of passengers safety. Two approaches to the Finite Element (FE) modelling of stamping of a part that provides extra stiffening of construction subassemblies in the back of a car were considered. The first is conventional simulation, which assumes that the material is a continuum with flow stress model and anisotropy coefficients determined from the tensile tests. In the second approach two-phase microstructure of the DP steel is accounted for in simulations. The FE2 method, which belongs to upscaling techniques, is used. Representative Volume Element (RVE), which is the basis of the upscaling approach and reflects the real microstructure, was obtained by the image analysis of the micrograph of the DP steel. However, since FE2 simulations with the real picture of the microstructure in the micro scale, are extremely time consuming, the idea of the Statistically Similar Representative Volume Element (SSRVE) was applied. SSRVE obtained for the DP steel, used for production of automotive part, is presented in the paper in the form of 3D inclusion. The macro scale model of the simulated part is described in details, as well as the results obtained for macro and micro-macro simulations.
Model of heterogeneous material dissolution in simulated biological fluid
NASA Astrophysics Data System (ADS)
Knyazeva, A. G.; Gutmanas, E. Y.
2015-11-01
In orthopedic research, increasing attention is being paid to bioresorbable/biodegradable implants as an alternative to permanent metallic bone healing devices. Biodegradable metal based implants possessing high strength and ductility potentially can be used in load bearing sites. Biodegradable Mg and Fe are ductile and Fe possess high strength, but Mg degrades too fast and Fe degrades too slow, Ag is a noble metal and should cause galvanic corrosion of the more active metallic iron - thus, corrosion of Fe can be increased. Nanostructuring should results in higher strength and can result in higher rate of dissolution/degradation from grain boundaries. In this work, a simple dissolution model of heterogeneous three phase nanocomposite material is considered - two phases being metal Fe and Ag and the third - nanopores. Analytical solution for the model is presented. Calculations demonstrate that the changes in the relative amount of each phase depend on mass exchange and diffusion coefficients. Theoretical results agree with preliminary experimental results.
Watanabe, Ryosuke; Katsuhara, Tadasuke; Miyazaki, Hiroshi; Kitagawa, Yuichi; Yasuki, Tsuyoshi
2012-10-01
Injuries in car to pedestrian collisions are affected by various factors such as the vehicle body type, pedestrian body size and impact location as well as the collision speed. This study aimed to investigate the influence of such factors taking a Finite Element (FE) approach. A total of 72 collision cases were simulated using three different vehicle FE models (Sedan, SUV, Mini-Van), three different pedestrian FE models (AM50, AF05, AM95), assuming two different impact locations (center and the corner of the bumper) and at four different collision speeds (20, 30, 40 and 50 km/h). The impact kinematics and the responses of the pedestrian model were validated against those in the literature prior to the simulations. The relationship between the collision speed and the predicted occurrence of head and chest injuries was examined for each case, analyzing the impact kinematics of the pedestrian against the vehicle body and resultant loading to the head and the chest. Strain based indicators were used in the simulation model to estimate skeletal injury (bony fracture) and soft tissue (brain and internal organs) injury. The study results primarily showed that the injury risk became higher with the collision speed, but was also affected by the combination of the factors such as the pedestrian size and the impact location. The study also discussed the injury patterns and trends with respect to the factors examined. In all of the simulated conditions, the model did not predict any severe injury at a collision speed of 20 km/h.
Reinholz, Emilee L.; Roberts, Scott A.; Apblett, Christopher A.; ...
2016-06-11
The electrical conductivity is key to the performance of thermal battery cathodes. In this work we present the effects of manufacturing and processing conditions on the electrical conductivity of Li/FeS2 thermal battery cathodes. Finite element simulations were used to compute the conductivity of three-dimensional microcomputed tomography cathode microstructures and compare results to experimental impedance spectroscopy measurements. A regression analysis reveals a predictive relationship between composition, processing conditions, and electrical conductivity; a trend which is largely erased after thermally-induced deformation. Moreover, the trend applies to both experimental and simulation results, although is not as apparent in simulations. This research is amore » step toward a more fundamental understanding of the effects of processing and composition on thermal battery component microstructure, properties, and performance.« less
Chen, Ying; Bylaska, Eric J; Weare, John H
2017-03-31
Many important geochemical and biogeochemical reactions occur in the mineral/formation water interface of the highly abundant mineral, goethite [α-Fe(OOH)]. Ab initio molecular dynamics (AIMD) simulations of the goethite α-FeOOH (100) surface and the structure, water bond formation and dynamics of water molecules in the mineral/aqueous interface are presented. Several exchange correlation functionals were employed (PBE96, PBE96 + Grimme, and PBE0) in the simulations of a (3 × 2) goethite surface with 65 absorbed water molecules in a 3D-periodic supercell (a = 30 Å, FeOOH slab ~12 Å thick, solvation layer ~18 Å thick). The lowest energy goethite (100) surface termination model was determined to have an exposed surface Fe 3+ that was loosely capped by a water molecule and a shared hydroxide with a neighboring surface Fe 3+ . The water molecules capping surface Fe 3+ ions were found to be loosely bound at all DFT levels with and without Grimme corrections, indicative that each surface Fe 3+ was coordinated with only five neighbors. These long bonds were supported by bond valence theory calculations, which showed that the bond valence of the surface Fe 3+ was saturated and surface has a neutral charge. The polarization of the water layer adjacent to the surface was found to be small and affected only the nearest water. Analysis by density difference plots and localized Boys orbitals identified three types of water molecules: those loosely bound to the surface Fe 3+ , those hydrogen bonded to the surface hydroxyl, and bulk water with tetrahedral coordination. Boys orbital analysis showed that the spin down lone pair orbital of the weakly absorbed water interact more strongly with the spin up Fe 3+ ion. These weakly bound surface water molecules were found to rapidly exchange with the second water layer (~0.025 exchanges/ps) using a dissociative mechanism. Water molecules adjacent to the surface were found to only weakly interact with the surface and as a result were readily able to exchange with the bulk water. To account for the large surface Fe-OH 2 distances in the DFT calculations it was proposed that the surface Fe 3+ atoms, which already have their bond valence fully satisfied with only five neighbors, are under-coordinated with respect to the bulk coordination. Graphical abstract All first principle calculations, at all practically achievable levels, for the goethite 100 aqueous interface support a long bond and weak interaction between the exposed surface Fe 3+ and water molecules capping the surface. This result is supported by bond valence theory calculations and is indicative that each surface Fe 3+ is coordinated with only 5 neighbors.
Tuning the magnetism of the top-layer FeAs on BaFe2As2 (001): First-principles study
NASA Astrophysics Data System (ADS)
Zhang, Bing-Jing; Liu, Kai; Lu, Zhong-Yi
2018-04-01
Magnetism may play an important role in inducing the superconductivity in iron-based superconductors. As a prototypical system, the surface of BaFe2As2 provides a good platform for studying related magnetic properties. We have designed systematic first-principles calculations to clarify the surface magnetism of BaFe2As2 (001), which previously has received little attention in comparison with surface structures and electronic states. We find that the surface environment has an important influence on the magnetic properties of the top-layer FeAs. For As-terminated surfaces, the magnetic ground state of the top-layer FeAs is in the staggered dimer antiferromagnetic (AFM) order, distinct from that of the bulk, while for Ba-terminated surfaces the collinear (single-stripe) AFM order is the most stable, the same as that in the bulk. When a certain coverage of Ba or K atoms is deposited onto the As-terminated surface, the calculated energy differences among different AFM orders for the top-layer FeAs on BaFe2As2 (001) can be much reduced, indicating enhanced spin fluctuations. To compare our results with available scanning tunneling microscopy (STM) measurements, we have simulated the STM images of several structural/magnetic terminations. Astonishingly, when the top-layer FeAs is in the staggered dimer AFM order, a stripe pattern appears in the simulated STM image even when the surface Ba atoms adopt a √{2 }×√{2 } structure, while a √{2 }×√{2 } square pattern comes out for the 1 ×1 full As termination. Our results suggest: (i) the magnetic state at the BaFe2As2 (001) surface can be quite different from that in the bulk; (ii) the magnetic properties of the top-layer FeAs can be tuned effectively by surface doping, which may likely induce superconductivity at the surface layer; (iii) both the surface termination and the AFM order in the top-layer FeAs can affect the STM image of BaFe2As2 (001), which needs to be taken into account when identifying the surface termination.
Atomistic simulations of stainless steels: a many-body potential for the Fe-Cr-C system.
Henriksson, K O E; Björkas, C; Nordlund, K
2013-11-06
Stainless steels found in real-world applications usually have some C content in the base Fe-Cr alloy, resulting in hard and dislocation-pinning carbides-Fe3C (cementite) and Cr23C6-being present in the finished steel product. The higher complexity of the steel microstructure has implications, for example, for the elastic properties and the evolution of defects such as Frenkel pairs and dislocations. This makes it necessary to re-evaluate the effects of basic radiation phenomena and not simply to rely on results obtained from purely metallic Fe-Cr alloys. In this report, an analytical interatomic potential parameterization in the Abell-Brenner-Tersoff form for the entire Fe-Cr-C system is presented to enable such calculations. The potential reproduces, for example, the lattice parameter(s), formation energies and elastic properties of the principal Fe and Cr carbides (Fe3C, Fe5C2, Fe7C3, Cr3C2, Cr7C3, Cr23C6), the Fe-Cr mixing energy curve, formation energies of simple C point defects in Fe and Cr, and the martensite lattice anisotropy, with fair to excellent agreement with empirical results. Tests of the predictive power of the potential show, for example, that Fe-Cr nanowires and bulk samples become elastically stiffer with increasing Cr and C concentrations. High-concentration nanowires also fracture at shorter relative elongations than wires made of pure Fe. Also, tests with Fe3C inclusions show that these act as obstacles for edge dislocations moving through otherwise pure Fe.
Atomistic simulations of stainless steels: a many-body potential for the Fe-Cr-C system
NASA Astrophysics Data System (ADS)
Henriksson, K. O. E.; Björkas, C.; Nordlund, K.
2013-11-01
Stainless steels found in real-world applications usually have some C content in the base Fe-Cr alloy, resulting in hard and dislocation-pinning carbides—Fe3C (cementite) and Cr23C6—being present in the finished steel product. The higher complexity of the steel microstructure has implications, for example, for the elastic properties and the evolution of defects such as Frenkel pairs and dislocations. This makes it necessary to re-evaluate the effects of basic radiation phenomena and not simply to rely on results obtained from purely metallic Fe-Cr alloys. In this report, an analytical interatomic potential parameterization in the Abell-Brenner-Tersoff form for the entire Fe-Cr-C system is presented to enable such calculations. The potential reproduces, for example, the lattice parameter(s), formation energies and elastic properties of the principal Fe and Cr carbides (Fe3C, Fe5C2, Fe7C3, Cr3C2, Cr7C3, Cr23C6), the Fe-Cr mixing energy curve, formation energies of simple C point defects in Fe and Cr, and the martensite lattice anisotropy, with fair to excellent agreement with empirical results. Tests of the predictive power of the potential show, for example, that Fe-Cr nanowires and bulk samples become elastically stiffer with increasing Cr and C concentrations. High-concentration nanowires also fracture at shorter relative elongations than wires made of pure Fe. Also, tests with Fe3C inclusions show that these act as obstacles for edge dislocations moving through otherwise pure Fe.
Stollenwerk, Kenneth G.
1994-01-01
Acidic water from a copper-mining area has contaminated an alluvial aquifer and stream near Globe, Arizona. The most contaminated groundwater has a pH of 3.3, and contains about 100 mmol/1 SO4, 50 mmol/1 Fe, 11 mmol/1 Al and 3 mmol/1 Cu. Reactions between alluvium and acidic groundwater were first evaluated in laboratory column experiments. A geochemical model was developed and used in the equilibrium speciation program, MINTEQA2, to simulate breakthrough curves for different constituents from the column. The geochemical model was then used to simulate the measured changes in concentration of aqueous constituents along a flow path in the aquifer.The pH was predominantly controlled by reaction with carbonate minerals. Where carbonates had been dissolved, adsorption of H+ by iron oxides was used to simulate pH. Acidic groundwater contained little or no dissolved oxygen, and most aqueous Fe was present as Fe(II). In the anoxic core of the plume, Fe(II) was oxidized by MnO2 to Fe(III), which then precipitated as Fe(OH)3. Attenuation of aqueous Cu, Co, Mn, Ni and Zn was a function of pH and could be quantitatively modeled with the diffuse-layer, surface complexation model in MINTEQA2. Aluminum precipitated as amorphous Al(OH)3 at pH < 4.7 and as AlOHSO4 at pH < 4.7. Aqueous Ca and SO4were close to equilibrium with gypsum.After the alluvium in the column had reached equilibrium with acidic groundwater, uncontaminated groundwater was eluted through the column to evaluate the effect of reactants on groundwater remediation. The concentration of Fe, Mn, Cu, Co, Ni and Zn rapidly decreased to the detection limits within a few pore volumes. All of the gypsum that had precipitated initially redissolved, resulting in elevated Ca and SO4concentrations for about 5 pore volumes. Aluminum and pH exhibited the most potential for continued adverse effects on groundwater quality. As H+ desorbed from Fe(OH)3, pH remained below 4.5 for more than 20 pore volumes, resulting in dissolution of AlOHSO4 and elevated aqueous Al.
Interface spins in polycrystalline FeMn/Fe bilayers with small exchange bias
NASA Astrophysics Data System (ADS)
Pires, M. J. M.
2018-04-01
The magnetic moments at the interface between ferromagnetic and antiferromagnetic layers play a central role in exchange biased systems, but their behavior is still not completely understood. In this work, the FeMn/Fe interface in polycrystalline thin films has been studied using conversion electron Mössbauer spectroscopy (CEMS), magneto-optic Kerr effect (MOKE) and micromagnetic simulations. Samples were prepared with 57Fe layers at two distinct depths in order to probe the interface and bulk behaviors. At the equilibrium, the interface moments are randomly oriented while the bulk of the Fe layer has an in-plane magnetic anisotropy. Several models for the interface and anisotropies of the layers were used in the simulations of spin configurations and hysteresis loops. From the whole set of simulations, one can conclude the direct analysis of hysteresis curves is not enough to infer whether the interface has a configuration with spins tilted out of the film plane at equilibrium since different choices of parameters provide similar curves. The simulations have also shown the occurrence of spin clusters at the interface is compatible with CEMS and MOKE measurements.
Chubar, Natalia; Gerda, Vasyl; Banerjee, Dipanjan
2017-04-01
In this work, we report atomic-scale reconstruction processes in Fe-Ce oxide-based composites (hydrothermally precipitated at Fe-to-Ce dosage ratios of 1:0, 2:1, 1:1, 1:2, and 0:1), upon treatment at 300°C. The structural changes are correlated with the adsorptive removal of arsenate, phosphate, fluoride, bromide, and bromate. The presence of the carbonate-based Ce-component and surface sulfate in precursor samples creates favorable conditions for phase transformation, resulting in the formation of novel (unknown) layered compounds of Fe and Ce. These compounds are of the layered double hydroxide type, with sulfate in the interlayer space. In spite of general awareness of the importance of surface area in adsorptive removal, the increase in surface area upon thermal treatment did not increase adsorption of the studied anions. However, EXAFS simulations and the adsorption tests provided evidence of regularities between local structures of Fe in composites obtained at 80 and 300°C and adsorption performance of most studied anions. The best adsorption of tetrahedral anions was demonstrated by samples whose simulated outer Fe shells resulted from oscillations from both O and Fe atoms. In contrast, the loss of extended x-ray absorption fine structure was correlated with the decrease of adsorptive removal. Both Fe K-edge and Ce L 3 -edge EXAFS suggested the formation of solid solutions. For the first time, the utilization of extended x-ray absorption fine structure is suggested as a methodological approach (first expressed in the companion paper) to estimate the surface reactivity of inorganic materials intended for use as anion exchange adsorbents. Copyright © 2016 Elsevier Inc. All rights reserved.
Passananti, Monica; Vinatier, Virginie; Delort, Anne-Marie; Mailhot, Gilles; Brigante, Marcello
2016-09-06
In the present work, the photoreactivity of a mixture of iron(III)–pyoverdin (Fe(III)–Pyo) complexes was investigated under simulated cloud conditions. Pyoverdins are expected to complex ferric ions naturally present in cloudwater, thus modifying their availability and photoreactivity. The spectroscopic properties and photoreactivity of Fe(III)-Pyo were investigated, with particular attention to their fate under solar irradiation, also studied through simulations. The photolysis of the Fe(III)–Pyo complex leads to the generation of Fe(II), with rates of formation (RFe(II)f) of 6.98 and 3.96 × 10–9 M s–1 at pH 4.0 and 6.0, respectively. Interestingly, acetate formation was observed during the iron-complex photolysis, suggesting that fragmentation can occur after the ligand-to-metal charge transfer (LMCT) via a complex reaction mechanism. Moreover, photogenerated Fe(II) represent an important source of hydroxyl radical via the Fenton reaction in cloudwater. This reactivity might be relevant for the estimation of the rates of formation and steady-state concentrations of the hydroxyl radical by cloud chemistry models and for organic matter speciation in the cloud aqueous phase. In fact, the conventional models, which describe the iron photoreactivity in terms of iron–aqua and oxalate complexes, are not in accordance with our results.
NASA Astrophysics Data System (ADS)
Zhong, Xin; Frehner, Marcel; Kunze, Karsten; Zappone, Alba
2014-10-01
A novel electron backscatter diffraction (EBSD) -based finite-element (FE) wave propagation simulation is presented and applied to investigate seismic anisotropy of peridotite samples. The FE model simulates the dynamic propagation of seismic waves along any chosen direction through representative 2D EBSD sections. The numerical model allows separation of the effects of crystallographic preferred orientation (CPO) and shape preferred orientation (SPO). The obtained seismic velocities with respect to specimen orientation are compared with Voigt-Reuss-Hill estimates and with laboratory measurements. The results of these three independent methods testify that CPO is the dominant factor controlling seismic anisotropy. Fracture fillings and minor minerals like hornblende only influence the seismic anisotropy if their volume proportion is sufficiently large (up to 23%). The SPO influence is minor compared to the other factors. The presented FE model is discussed with regard to its potential in simulating seismic wave propagation using EBSD data representing natural rock petrofabrics.
Lim, H.; Hale, L. M.; Zimmerman, J. A.; ...
2015-01-05
In this study, we develop an atomistically informed crystal plasticity finite element (CP-FE) model for body-centered-cubic (BCC) α-Fe that incorporates non-Schmid stress dependent slip with temperature and strain rate effects. Based on recent insights obtained from atomistic simulations, we propose a new constitutive model that combines a generalized non-Schmid yield law with aspects from a line tension (LT) model for describing activation enthalpy required for the motion of dislocation kinks. Atomistic calculations are conducted to quantify the non-Schmid effects while both experimental data and atomistic simulations are used to assess the temperature and strain rate effects. The parameterized constitutive equationmore » is implemented into a BCC CP-FE model to simulate plastic deformation of single and polycrystalline Fe which is compared with experimental data from the literature. This direct comparison demonstrates that the atomistically informed model accurately captures the effects of crystal orientation, temperature and strain rate on the flow behavior of siangle crystal Fe. Furthermore, our proposed CP-FE model exhibits temperature and strain rate dependent flow and yield surfaces in polycrystalline Fe that deviate from conventional CP-FE models based on Schmid's law.« less
NASA Astrophysics Data System (ADS)
Maters, E. C.; Flament, P.; de Jong, J.; Mattielli, N. D. C.; Deboudt, K.
2017-12-01
Iron (Fe) is a key element in ocean biogeochemistry and hence the carbon cycle. Its low concentration in seawater limits primary production in >30% of the surface ocean, and thus strong interest lies in constraining Fe inputs to the ocean on different spatial and temporal scales. During Earth's past, large fluctuations in atmospheric deposition fluxes of continental particles including mineral dust and volcanic ash to the ocean may have played a role in climate change events. At present, anthropogenic particles from metal working, biomass burning, and fossil fuel combustion are increasingly recognised to deliver Fe to the ocean as well. To assess the relative importance of these particulate Fe sources, knowledge of their deposition flux (overall dominated by natural dusts) and their Fe solubility (a proxy for Fe bioavailability, and typically higher in anthropogenic materials) is needed, although large uncertainties remain in these parameters. A potential tool for tracing atmospheric inputs to the ocean is the Fe isotope composition (δ56Fe), previously reported to be distinct for natural versus anthropogenic particles. However, it remains unknown if and how the δ56Fe is influenced by various physicochemical processes (e.g. acidification, photochemistry) shown to enhance Fe solubility in airborne particles. Iron isotopic fractionation has been observed during ligand-controlled and photo-reductive dissolution of goethite at low pH,[1] and similar effects may apply to more complex materials during atmospheric transport. Specifically, isotopic enrichment in partially dissolved particles may result from initial preferential release of 54Fe over 56Fe from the solid surface. To test these hypotheses, we subjected natural and anthropogenic specimens, including mineral dust from the Sahara desert and industrial ash from an Fe-Mn alloy factory, to simulated atmospheric processing in pH 2 solution in the presence/absence of oxalic acid and solar radiation. The Fe solubility and δ56Fe/IRMM-014 values of the solid samples were measured to determine the extents of fractionation relative to unprocessed particles. The results of these experiments and the implications for tracing atmospheric Fe inputs to the ocean will be presented. [1] Wiederhold, J. G. et. al. (2006) Environ. Sci. Technol., 40, 3787-3793.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeo, Sang Chul; Lee, Hyuck Mo, E-mail: hmlee@kaist.ac.kr; Lo, Yu Chieh
2014-10-07
Ammonia (NH{sub 3}) nitridation on an Fe surface was studied by combining density functional theory (DFT) and kinetic Monte Carlo (kMC) calculations. A DFT calculation was performed to obtain the energy barriers (E{sub b}) of the relevant elementary processes. The full mechanism of the exact reaction path was divided into five steps (adsorption, dissociation, surface migration, penetration, and diffusion) on an Fe (100) surface pre-covered with nitrogen. The energy barrier (E{sub b}) depended on the N surface coverage. The DFT results were subsequently employed as a database for the kMC simulations. We then evaluated the NH{sub 3} nitridation rate onmore » the N pre-covered Fe surface. To determine the conditions necessary for a rapid NH{sub 3} nitridation rate, the eight reaction events were considered in the kMC simulations: adsorption, desorption, dissociation, reverse dissociation, surface migration, penetration, reverse penetration, and diffusion. This study provides a real-time-scale simulation of NH{sub 3} nitridation influenced by nitrogen surface coverage that allowed us to theoretically determine a nitrogen coverage (0.56 ML) suitable for rapid NH{sub 3} nitridation. In this way, we were able to reveal the coverage dependence of the nitridation reaction using the combined DFT and kMC simulations.« less
NASA Astrophysics Data System (ADS)
Hunter, Allen H.; Farren, Jeffrey D.; DuPont, John N.; Seidman, David N.
2015-07-01
An experimental steel with the composition Fe-1.39Cu-2.70Ni-0.58Al-0.48Mn-0.48Si-0.065Nb-0.05C (wt pct) or alternatively Fe-1.43Cu-2.61Ni-1.21Al-0.48Mn-0.98Si-0.039Nb-0.23C (at. pct) has been developed at Northwestern University, which has both high toughness and high strength after quenching and aging treatments. Simulated heat-affected zone (HAZ) samples are utilized to analyze the microstructures typically obtained after gas metal arc welding (GMAW). Dissolution within the HAZ of cementite (Fe3C) and NbC (F.C.C.) is revealed using synchrotron X-ray diffraction, while dissolution of Cu precipitates is measured employing local electrode atom probe tomography. The results are compared to Thermo-Calc equilibrium calculations. Comparison of measured Cu precipitate radii, number density, and volume fraction with similar measurements from a GMAW sample suggests that the cooling rate in the simulations is faster than in the experimental GMAW sample, resulting in significantly less Cu precipitate nucleation and growth during the cooling part of the weld thermal cycle. The few Cu precipitates detected in the simulated samples are primarily located on grain boundaries resulting from heterogeneous nucleation. The dissolution of NbC precipitates and the resultant austenite coarsening in the highest-temperature sample, coupled with a rapid cooling rate, results in the growth of bainite, and an increase in the strength of the matrix in the absence of significant Cu precipitation.
NASA Astrophysics Data System (ADS)
Mishenina, T.; Pignatari, M.; Côté, B.; Thielemann, F.-K.; Soubiran, C.; Basak, N.; Gorbaneva, T.; Korotin, S. A.; Kovtyukh, V. V.; Wehmeyer, B.; Bisterzo, S.; Travaglio, C.; Gibson, B. K.; Jordan, C.; Paul, A.; Ritter, C.; Herwig, F.; NuGrid Collaboration
2017-08-01
Atmospheric parameters and chemical compositions for 10 stars with metallicities in the region of -2.2 < [Fe/H] < -0.6 were precisely determined using high-resolution, high signal-to-noise, spectra. For each star, the abundances, for 14-27 elements, were derived using both local thermodynamic equilibrium (LTE) and non-LTE (NLTE) approaches. In particular, differences by assuming LTE or NLTE are about 0.10 dex; depending on [Fe/H], Teff, gravity and element lines used in the analysis. We find that the O abundance has the largest error, ranging from 0.10 and 0.2 dex. The best measured elements are Cr, Fe, and Mn; with errors between 0.03 and 0.11 dex. The stars in our sample were included in previous different observational work. We provide a consistent data analysis. The data dispersion introduced in the literature by different techniques and assumptions used by the different authors is within the observational errors, excepting for HD103095. We compare these results with stellar observations from different data sets and a number of theoretical galactic chemical evolution (GCE) simulations. We find a large scatter in the GCE results, used to study the origin of the elements. Within this scatter as found in previous GCE simulations, we cannot reproduce the evolution of the elemental ratios [Sc/Fe], [Ti/Fe], and [V/Fe] at different metallicities. The stellar yields from core-collapse supernovae are likely primarily responsible for this discrepancy. Possible solutions and open problems are discussed.
Microwave permeability of stripe patterned FeCoN thin film
NASA Astrophysics Data System (ADS)
Wu, Yuping; Yang, Yong; Ma, Fusheng; Zong, Baoyu; Yang, Zhihong; Ding, Jun
2017-03-01
Magnetic stripe patterns are of great importance for microwave applications owing to their highly tunable microwave permeability by adjusting the geometrical dimensions. In this work, stripe patterned FeCoN films with 160 nm thickness are fabricated by using standard UV photolithography. Their microwave permeability are investigated systematically via both experiment and micromagnetic simulation. The good agreement between experimental and simulation results suggests that stripe width is crucial for the microwave magnetic properties of the stripe pattern. It is demonstrated by simulation that with increasing stripe width from 1 to 80 μm the initial permeability shows a continuous growth from about 8-322, whiles the resonance frequency drops dramatically from 18.7 to 3.1 GHz at 4 μm gap size. Smaller gap size would result in slightly increased initial permeability due to larger magnetic volume ratio, accompanied by decreased resonance frequency because of stronger magnetostatic interaction. Moreover, the experimental investigation on stripe length effect indicates that the stripe length should be kept as long as possible to achieve uniform bulk resonance mode and high permeability value. Insufficient stripe length would result in low frequency edge mode and decayed bulk mode. This study could provide valuable guidelines on the selection of proper geometry dimensions of FeCoN stripe patterns for high frequency applications.
Simulating Initial and Progressive Failure of Open-Hole Composite Laminates under Tension
NASA Astrophysics Data System (ADS)
Guo, Zhangxin; Zhu, Hao; Li, Yongcun; Han, Xiaoping; Wang, Zhihua
2016-12-01
A finite element (FE) model is developed for the progressive failure analysis of fiber reinforced polymer laminates. The failure criterion for fiber and matrix failure is implemented in the FE code Abaqus using user-defined material subroutine UMAT. The gradual degradation of the material properties is controlled by the individual fracture energies of fiber and matrix. The failure and damage in composite laminates containing a central hole subjected to uniaxial tension are simulated. The numerical results show that the damage model can be used to accurately predicte the progressive failure behaviour both qualitatively and quantitatively.
NASA Astrophysics Data System (ADS)
Ranjan, Prabhat; Balasubramaniam, R.; Jain, V. K.
2018-06-01
A molecular dynamics simulation (MDS) has been carried out to investigate the material removal phenomenon of chemo-mechanical magnetorheological finishing (CMMRF) process. To understand the role of chemical assisted mechanical abrasion in CMMRF process, material removal phenomenon is subdivided into three different stages. In the first stage, new atomic bonds viz. Fe-O-Si is created on the surface of the workpiece (stainless steel). The second stage deals with the rupture of parent bonds like Fe-Fe on the workpiece. In the final stage, removal of material from the surface in the form of dislodged debris (cluster of atoms) takes place. Effects of process parameters like abrasive particles, depth of penetration and initial surface condition on finishing force, potential energy (towards secondary phenomenon such as chemical instability of the finished surface) and material removal at atomic scale have been investigated. It was observed that the type of abrasive particle is one of the important parameters to produce atomically smooth surface. Experiments were also conducted as per the MDS to generate defect-free and sub-nanometre-level finished surface (Ra value better than 0.2 nm). The experimental results reasonably agree well with the simulation results.
In situ Fe-sulfide coating for arsenic removal under reducing conditions
NASA Astrophysics Data System (ADS)
Xie, Xianjun; Liu, Yaqing; Pi, Kunfu; Liu, Chongxuan; Li, Junxia; Duan, Mengyu; Wang, Yanxin
2016-03-01
An in situ Fe-sulfide coating approach has been developed for As-contaminated groundwater remediation. Alternate injection of Fe(II), O2-free water and S2- can realize Fe-sulfide coating onto quartz sands with minor changes in porosity. As(III) uptake experiment indicated that the retardation factor for As(III) was 37 and dynamic retention capacity was 44.94 mg As(III)/g Fe, which was much higher than the maximum adsorption capacity for As(III) by FeS and FeS2. This result indicated that adsorption cannot be the only mechanism for As(III) uptake by Fe-sulfide coating layer. The SEM image and FTIR spectra results suggested that interaction between As(III) and Fe-sulfides and formation of As-sulfide precipitates could significantly contribute to As(III) uptake by Fe-sulfide coating layer. Alternate injection of Fe(II) + As(III) and S2- was conducted to simulate in situ As immobilization from real groundwater. The SEM image showed that the quartz sands were mainly covered by crystalline framboidal pyrite after such amendment. The breakthrough of As(III) was not observed during this experiment and the removal capacity for As(III) was 109.7 mg As/g Fe. The As(III) immobilization mechanism during alternate injection of Fe(II) + As(III) and S2- was significantly different from that of As(III) uptake by Fe-sulfide coating. The direct interaction between As(III) and S2- produced As-sulfides contributed to the high As(III) removal capacity during alternate injection of Fe(II) + As(III) and S2-. This result indicated that alternate injection of Fe(II) and S2- approach has an attractive application for As-contaminated groundwater remediation under strongly reducing environment.
In situ Fe-sulfide coating for arsenic removal under reducing conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Xianjun; Liu, Yaqing; Pi, Kunfu
2016-03-01
An in situ Fe-sulfide coating approach has been developed for As-contaminated groundwater remediation. Alternate injection of Fe(II), O 2-free water and S 2$-$ can realize Fe-sulfide coating onto quartz sands with minor changes in porosity. As(III) uptake experiment indicated that the retardation factor for As(III) was 37 and dynamic retention capacity was 44.94 mg As(III)/g Fe, which was much higher than the maximum adsorption capacity for As(III) by FeS and FeS 2. This result indicated that adsorption cannot be the only mechanism for As(III) uptake by Fe-sulfide coating layer. The SEM image and FTIR spectra results suggested that interaction betweenmore » As(III) and Fe-sulfides and formation of As-sulfide precipitates could significantly contribute to As(III) uptake by Fe-sulfide coating layer. Alternate injection of Fe(II) + As(III) and S 2$-$ was conducted to simulate in situ As immobilization from real groundwater. The SEM image showed that the quartz sands were mainly covered by crystalline framboidal pyrite after such amendment. The breakthrough of As(III) was not observed during this experiment and the removal capacity for As(III) was 109.7 mg As/g Fe. The As(III) immobilization mechanism during alternate injection of Fe(II) + As(III) and S 2$-$ was significantly different from that of As(III) uptake by Fe-sulfide coating. The direct interaction between As(III) and S 2$-$ produced As-sulfides contributed to the high As(III) removal capacity during alternate injection of Fe(II) + As(III) and S 2$-$. This result indicated that alternate injection of Fe(II) and S 2$-$ approach has an attractive application for As-contaminated groundwater remediation under strongly reducing environment.« less
NASA Astrophysics Data System (ADS)
Wu, Wei; Zeng, Zhongping; Cheng, Xuequn; Li, Xiaogang; Liu, Bo
2017-12-01
Corrosion behavior of Ni-advanced weathering steel, as well as carbon steel and conventional weathering steel, in a simulated tropical marine atmosphere was studied by field exposure and indoor simulation tests. Meanwhile, morphology and composition of corrosion products formed on the exposed steels were surveyed through scanning electron microscopy, energy-dispersive x-ray spectroscopy and x-ray diffraction. Results indicated that the additive Ni in weathering steel played an important role during the corrosion process, which took part in the formation of corrosion products, enriched in the inner rust layer and promoted the transformation from loose γ-FeOOH to dense α-FeOOH. As a result, the main aggressive ion, i.e., Cl-, was effectively separated in the outer rust layer which leads to the lowest corrosion rate among these tested steels. Thus, the resistance of Ni-advanced weathering steel to atmospheric corrosion was significantly improved in a simulated tropical marine environment.
NASA Astrophysics Data System (ADS)
Karki, Bijaya B.; Ghosh, Dipta B.; Maharjan, Charitra; Karato, Shun-ichiro; Park, Jeffrey
2018-05-01
Density is a key property controlling the chemical state of Earth's interior. Our knowledge about the density of relevant melt compositions is currently poor at deep-mantle conditions. Here we report results from first-principles molecular-dynamics simulations of Fe-bearing MgSiO3 liquids considering different valence and spin states of iron over the whole mantle pressure conditions. Our simulations predict the high-spin to low-spin transition in both ferrous and ferric iron in the silicate liquid to occur gradually at pressures around 100 GPa. The calculated iron-induced changes in the melt density (about 8% increase for 25% iron content) are primarily due to the difference in atomic mass between Mg and Fe, with smaller contributions (<2%) from the valence and spin states. A comparison of the predicted density of mixtures of (Mg,Fe)(Si,Fe)O3 and (Mg,Fe)O liquids with the mantle density indicates that the density contrast between the melt and residual-solid depends strongly on pressure (depth): in the shallow lower mantle (depths < 1,000 km), the melt is lighter than the solids, whereas in the deep lower mantle (e.g., the D″ layer), the melt density exceeds the mantle density when iron content is relatively high and/or melt is enriched with Fe-rich ferropericlase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xing-Wu; Cao, Zhi; Zhao, Shu
As active phases in low-temperature Fischer–Tropsch synthesis for liquid fuel production, epsilon iron carbides are critically important industrial materials. However, the precise atomic structure of epsilon iron carbides remains unclear, leading to a half-century of debate on the phase assignment of the ε-Fe 2C and ε’-Fe 2.2C. Here, we resolve this decades-long question by a combining theoretical and experimental investigation to assign the phases unambiguously. First, we have investigated the equilibrium structures and thermal stabilities of ε-Fe xC, (x = 1, 2, 2.2, 3, 4, 6, 8) by first-principles calculations. We have also acquired X-ray diffraction patterns and Mössbauer spectramore » for these epsilon iron carbides, and compared them with the simulated results. These analyses indicate that the unit cell of ε-Fe 2C contains only one type of chemical environment for Fe atoms, while ε’-Fe 2.2C has six sets of chemically distinct Fe atoms.« less
Fe/Mg smectite formation under acidic conditions on early Mars
NASA Astrophysics Data System (ADS)
Peretyazhko, T. S.; Sutter, B.; Morris, R. V.; Agresti, D. G.; Le, L.; Ming, D. W.
2016-01-01
Phyllosilicates of the smectite group detected in Noachian and early Hesperian terrains on Mars have been hypothesized to form under neutral to alkaline conditions. These pH conditions would also be favorable for formation of widespread carbonate deposits which have not been detected on Mars. We propose that smectite deposits on Mars formed under moderately acidic conditions inhibiting carbonate formation. We report here the first synthesis of Fe/Mg smectite in an acidic hydrothermal system [200 °C, pHRT ∼ 4 (pH measured at room temperature) buffered with acetic acid] from Mars-analogue, glass-rich, basalt simulant with and without aqueous Mg or Fe(II) addition under N2-purged anoxic and ambient oxic redox conditions. Synthesized Fe/Mg smectite was examined by X-ray-diffraction, Mössbauer spectroscopy, visible and near-infrared reflectance spectroscopy, scanning electron microscopy and electron microprobe to characterize mineralogy, morphology and chemical composition. Alteration of the glass phase of basalt simulant resulted in formation of the Fe/Mg smectite mineral saponite with some mineralogical and chemical properties similar to the properties reported for Fe/Mg smectite on Mars. Our experiments are evidence that neutral to alkaline conditions on early Mars are not necessary for Fe/Mg smectite formation as previously inferred. Phyllosilicate minerals could instead have formed under mildly acidic pH conditions. Volcanic SO2 emanation and sulfuric acid formation is proposed as the major source of acidity for the alteration of basaltic materials and subsequent formation of Fe/Mg smectite.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Haihan; Grassian, Vicki H.; Saraf, Laxmikant V.
2012-11-08
Airborne fly ash from coal combustion may represent a source of bioavailable iron (Fe) in the open ocean. However, few studies have been made focusing on Fe speciation and distribution in coal fly ash. In this study, chemical imaging of fly ash has been performed using a dual-beam FIB/SEM (focused ion beam/scanning electron microscope) system for a better understanding of how simulated atmospheric processing modify the morphology, chemical compositions and element distributions of individual particles. A novel approach has been applied for cross-sectioning of fly ash specimen with a FIB in order to explore element distribution within the interior ofmore » individual particles. Our results indicate that simulated atmospheric processing causes disintegration of aluminosilicate glass, a dominant material in fly ash particles. Aluminosilicate-phase Fe in the inner core of fly ash particles is more easily mobilized compared with oxide-phase Fe present as surface aggregates on fly ash spheres. Fe release behavior depends strongly on Fe speciation in aerosol particles. The approach for preparation of cross-sectioned specimen described here opens new opportunities for particle microanalysis, particular with respect to inorganic refractive materials like fly ash and mineral dust.« less
Corrosion Performance of Fe-Based Alloys in Simulated Oxy-Fuel Environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, Zuotao; Natesan, Ken; Cai, Zhonghou
The long-term corrosion of Fe-based alloys in simulated oxy-fuel environment at 1023 K (750 A degrees C) was studied. Detailed results are presented on weight change, scale thickness, internal penetration, microstructural characteristics of the corrosion products, and the cracking of scales for the alloys after exposure at 1023 K (750 A degrees C) for up to 3600 hours. An incubation period during which the corrosion rate was low was observed for the alloys. After the incubation period, the corrosion accelerated, and the corrosion process followed linear kinetics. Effects of alloy, CaO-containing ash, and gas composition on the corrosion rate weremore » also studied. In addition, synchrotron nanobeam X-ray analysis was employed to determine the phase and chemical composition of the oxide layers on the alloy surface. Results from these studies are being used to address the long-term corrosion performance of Fe-based alloys in various coal-ash combustion environments and to develop methods to mitigate high-temperature ash corrosion.« less
Atomistic Simulations of Grain Boundary Pinning in CuFe Alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zepeda-Ruiz, L A; Gilmer, G H; Sadigh, B
2005-05-22
The authors apply a hybrid Monte Carlo-molecular dynamics code to the study of grain boundary motion upon annealing of pure Cu and Cu with low concentrations of Fe. The hybrid simulations account for segregation and precipitation of the low solubility Fe, together with curvature driven grain boundary motion. Grain boundaries in two different systems, a {Sigma}7+U-shaped half-loop grain and a nanocrystalline sample, were found to be pinned in the presence of Fe concentrations exceeding 3%.
NASA Astrophysics Data System (ADS)
Rakitin, M. S.; Mirzoev, A. A.; Mirzaev, D. A.
2018-04-01
Mobile hydrogen, when dissolving in metals, redistributes due to the density gradients and elastic stresses, and enables destruction processes or phase transformations in local volumes of a solvent metal. It is rather important in solid state physics to investigate these interactions. The first-principle calculations performed in terms of the density functional theory, are used for thermodynamic simulation of the elastic stress effect on the energy of hydrogen dissolution in α-Fe crystal lattice. The paper presents investigations of the total energy of Fe-H system depending on the lattice parameter. As a result, the relation is obtained between the hydrogen dissolution energy and stress. A good agreement is shown between the existing data and simulation results. The extended equation is suggested for the chemical potential of hydrogen atom in iron within the local stress field. Two parameters affecting the hydrogen distribution are compared, namely local stress and phase transformations.
Percutaneous Mitral Valve Dilatation: Single Balloon versus Double Balloon - A Finite Element Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schievano, Silvia; Kunzelman, Karyn; Nicosia, Mark
2009-01-01
Background: Percutaneous mitral valve (MV) dilatation is performed with either a single balloon (SB) or double balloon (DB) technique. The aim of this study was to compare the two balloon system results using the finite element (FE) method. Methods and Results: An established FE model of the MV was modified by fusing the MV leaflet edges at commissure level to simulate a stenotic valve (orifice area=180mm2). A FE model of a 30mm SB (low-pressure, elastomeric balloon) and an 18mm DB system (high-pressure, non-elastic balloon) was created. Both SB and DB simulations resulted in splitting of the commissures and subsequent stenosismore » dilatation (final MV area=610mm2 and 560mm2 respectively). Stresses induced by the two balloon systems varied across the valve. At the end of inflation, SB showed higher stresses in the central part of the leaflets and at the commissures compared to DB simulation, which demonstrated a more uniform stress distribution. The higher stresses in the SB analysis were due to the mismatch of the round balloon shape with the oval mitral orifice. The commissural split was not easily accomplished with the SB due to its high compliance. The high pressure applied to the DB guaranteed the commissural split even when high forces were required to break the commissure welds. Conclusions: The FE model demonstrated that MV dilatation can be accomplished by both SB and DB techniques. However, the DB method resulted in higher probability of splitting of the fused commissures and less damage caused to the MV leaflets by overstretching.« less
Aidhy, Dilpuneet S.; Lu, Chenyang; Jin, Ke; ...
2015-08-08
Using molecular dynamics simulations, we elucidate irradiation-induced point defect evolution in fcc pure Ni, Ni 0.5Fe 0.5, and Ni 0.8Cr 0.2 solid solution alloys. We find that irradiation-induced interstitials form dislocation loops that are of 1/3 <111>{111}-type, consistent with our experimental results. While the loops are formed in all the three materials, the kinetics of formation is considerably slower in NiFe and NiCr than in pure Ni, indicating that defect migration barriers and extended defect formation energies could be higher in the alloys than pure Ni. As a result, while larger size clusters are formed in pure Ni, smaller andmore » more clusters are observed in the alloys. The vacancy diffusion occurs at relatively higher temperatures than interstitials, and their clustering leads to formation of stacking fault tetrahedra, also consistent with our experiments. The results also show that the surviving Frenkel pairs are composition-dependent and are largely Ni dominated.« less
An innovative seismic bracing system based on a superelastic shape memory alloy ring
NASA Astrophysics Data System (ADS)
Gao, Nan; Jeon, Jong-Su; Hodgson, Darel E.; DesRoches, Reginald
2016-05-01
Shape memory alloys (SMAs) have great potential in seismic applications because of their remarkable superelasticity. Seismic bracing systems based on SMAs can mitigate the damage caused by earthquakes. The current study investigates a bracing system based on an SMA ring which is capable of both re-centering and energy dissipation. This lateral force resisting system is a cross-braced system consisting of an SMA ring and four tension-only cable assemblies, which can be applied to both new construction and seismic retrofit. The performance of this bracing system is examined through a quasi-static cyclic loading test and finite element (FE) analysis. This paper describes the experimental design in detail, discusses the experimental results, compares the performance with other bracing systems based on SMAs, and presents an Abaqus FE model calibrated on the basis of experimental results to simulate the superelastic behavior of the SMA ring. The experimental results indicate that the seismic performance of this system is promising in terms of damping and re-centering. The FE model can be used in the simulation of building structures using the proposed bracing system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilmanov, Anvar, E-mail: agilmano@umn.edu; Le, Trung Bao, E-mail: lebao002@umn.edu; Sotiropoulos, Fotis, E-mail: fotis@umn.edu
We present a new numerical methodology for simulating fluid–structure interaction (FSI) problems involving thin flexible bodies in an incompressible fluid. The FSI algorithm uses the Dirichlet–Neumann partitioning technique. The curvilinear immersed boundary method (CURVIB) is coupled with a rotation-free finite element (FE) model for thin shells enabling the efficient simulation of FSI problems with arbitrarily large deformation. Turbulent flow problems are handled using large-eddy simulation with the dynamic Smagorinsky model in conjunction with a wall model to reconstruct boundary conditions near immersed boundaries. The CURVIB and FE solvers are coupled together on the flexible solid–fluid interfaces where the structural nodalmore » positions, displacements, velocities and loads are calculated and exchanged between the two solvers. Loose and strong coupling FSI schemes are employed enhanced by the Aitken acceleration technique to ensure robust coupling and fast convergence especially for low mass ratio problems. The coupled CURVIB-FE-FSI method is validated by applying it to simulate two FSI problems involving thin flexible structures: 1) vortex-induced vibrations of a cantilever mounted in the wake of a square cylinder at different mass ratios and at low Reynolds number; and 2) the more challenging high Reynolds number problem involving the oscillation of an inverted elastic flag. For both cases the computed results are in excellent agreement with previous numerical simulations and/or experiential measurements. Grid convergence tests/studies are carried out for both the cantilever and inverted flag problems, which show that the CURVIB-FE-FSI method provides their convergence. Finally, the capability of the new methodology in simulations of complex cardiovascular flows is demonstrated by applying it to simulate the FSI of a tri-leaflet, prosthetic heart valve in an anatomic aorta and under physiologic pulsatile conditions.« less
Accurate classical short-range forces for the study of collision cascades in Fe–Ni–Cr
Béland, Laurent Karim; Tamm, Artur; Mu, Sai; ...
2017-05-10
The predictive power of a classical molecular dynamics simulation is largely determined by the physical validity of its underlying empirical potential. In the case of high-energy collision cascades, it was recently shown that correctly modeling interactions at short distances is necessary to accurately predict primary damage production. An ab initio based framework is introduced for modifying an existing embedded-atom method FeNiCr potential to handle these short-range interactions. Density functional theory is used to calculate the energetics of two atoms approaching each other, embedded in the alloy, and to calculate the equation of state of the alloy as it is compressed.more » The pairwise terms and the embedding terms of the potential are modi ed in accordance with the ab initio results. Using this reparametrized potential, collision cascades are performed in Ni 50Fe 50, Ni 80Cr 20 and Ni 33Fe 33Cr 33. The simulations reveal that alloying Ni and NiCr to Fe reduces primary damage production, in agreement with some previous calculations. Alloying Ni and NiFe to Cr does not reduce primary damage production, in contradiction with previous calculations.« less
NASA Technical Reports Server (NTRS)
Cheung, T.; Mackeown, P. K.
1985-01-01
Estimation of the relative intensities of protons and heavy nuclei in primary cosmic rays in the energy region 10 to the 15th power approx. 10 to the 17th power eV, was done by a systematic comparison between all available observed data on various parameters of extensive air showers (EAS) and the results of simulation. The interaction model used is an extrapolation of scaling violation indicated by recent pp collider results. A composition consisting of various percentages of Fe in an otherwise pure proton beam was assumed. Greatest overall consistency between the data and the simulation is found when the Fe fraction is in the region of 25%.
Ab Initio calculation on magnetism of monatomic Fe nanowire on Au (111) surface
NASA Astrophysics Data System (ADS)
Yasui, Takashi; Nawate, Masahiko
2010-01-01
The magnetic anisotropy of the one-dimensional monatomic Fe wire on the Au (111) texture has been theoretically analyzed using Wien2k flamework. The model simulates experimentally observed ferromagnetic Fe monatomic wire self-organized along the terrace edge of the Au (788) plane, which exhibits the magnetizaiton perpendicular both the wire and Au plane. In the case of the model consisting the one-dimensional Fe wire placed on the Au (111) plane with the Au lattice cite, no significant anisotropy is resulted by the calculation. On the other hand, the model where the Fe wire is formed along the Au terrace like step indicates the anisotropy of which easy direction is along the wire, resulting in differenct direction from the experiment. When we introduce the disorder in the Fe wire array, the easy direction changes. As for the model that the every other Fe atoms are slightly closer to the Au step (approx 0.0091 nm) the easy direction turns to be perpendicular to the wire and parallel to the Au plane, that is, the dislocation direction. The disorder in the Fe wire seems to play significant roll in the anisotropy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stanley, Eugene; Liu, Li
In this project, we target at three primary objectives: (1) Molecular Dynamics (MD) code development for Fe-Cr alloys, which can be utilized to provide thermodynamic and kinetic properties as inputs in mesoscale Phase Field (PF) simulations; (2) validation and implementation of the MD code to explain thermal ageing and radiation damage; and (3) an integrated modeling platform for MD and PF simulations. These two simulation tools, MD and PF, will ultimately be merged to understand and quantify the kinetics and mechanisms of microstructure and property evolution of Fe-Cr alloys under various thermal and irradiation environments
Prediction of Burst Pressure in Multistage Tube Hydroforming of Aerospace Alloys.
Saboori, M; Gholipour, J; Champliaud, H; Wanjara, P; Gakwaya, A; Savoie, J
2016-08-01
Bursting, an irreversible failure in tube hydroforming (THF), results mainly from the local plastic instabilities that occur when the biaxial stresses imparted during the process exceed the forming limit strains of the material. To predict the burst pressure, Oyan's and Brozzo's decoupled ductile fracture criteria (DFC) were implemented as user material models in a dynamic nonlinear commercial 3D finite-element (FE) software, ls-dyna. THF of a round to V-shape was selected as a generic representative of an aerospace component for the FE simulations and experimental trials. To validate the simulation results, THF experiments up to bursting were carried out using Inconel 718 (IN 718) tubes with a thickness of 0.9 mm to measure the internal pressures during the process. When comparing the experimental and simulation results, the burst pressure predicated based on Oyane's decoupled damage criterion was found to agree better with the measured data for IN 718 than Brozzo's fracture criterion.
NASA Technical Reports Server (NTRS)
Cowen, Jonathan E.; Hepp, Aloysius F.; Duffy, Norman V.; Jose, Melanie J.; Choi, D. B.; Brothers, Scott M.; Baird, Michael F.; Tomsik, Thomas M.; Duraj, Stan A.; Williams, Jennifer N.;
2009-01-01
We describe several related studies where simple iron, nickel, and cobalt complexes were prepared, decomposed, and characterized for aeronautics (Fischer-Tropsch catalysts) and space (high-fidelity lunar regolith simulant additives) applications. We describe the synthesis and decomposition of several new nickel dithiocarbamate complexes. Decomposition resulted in a somewhat complicated product mix with NiS predominating. The thermogravimetric analysis of fifteen tris(diorganodithiocarbamato)iron(III) has been investigated. Each undergoes substantial mass loss upon pyrolysis in a nitrogen atmosphere between 195 and 370 C, with major mass losses occurring between 279 and 324 C. Steric repulsion between organic substituents generally decreased the decomposition temperature. The product of the pyrolysis was not well defined, but usually consistent with being either FeS or Fe2S3 or a combination of these. Iron nanoparticles were grown in a silica matrix with a long-term goal of introducing native iron into a commercial lunar dust simulant in order to more closely simulate actual lunar regolith. This was also one goal of the iron and nickel sulfide studies. Finally, cobalt nanoparticle synthesis is being studied in order to develop alternatives to crude processing of cobalt salts with ceramic supports for Fischer-Tropsch synthesis.
NASA Astrophysics Data System (ADS)
Singh, Sarabjeet; Howard, Carl Q.; Hansen, Colin H.; Köpke, Uwe G.
2018-03-01
In this paper, numerically modelled vibration response of a rolling element bearing with a localised outer raceway line spall is presented. The results were obtained from a finite element (FE) model of the defective bearing solved using an explicit dynamics FE software package, LS-DYNA. Time domain vibration signals of the bearing obtained directly from the FE modelling were processed further to estimate time-frequency and frequency domain results, such as spectrogram and power spectrum, using standard signal processing techniques pertinent to the vibration-based monitoring of rolling element bearings. A logical approach to analyses of the numerically modelled results was developed with an aim to presenting the analytical validation of the modelled results. While the time and frequency domain analyses of the results show that the FE model generates accurate bearing kinematics and defect frequencies, the time-frequency analysis highlights the simulation of distinct low- and high-frequency characteristic vibration signals associated with the unloading and reloading of the rolling elements as they move in and out of the defect, respectively. Favourable agreement of the numerical and analytical results demonstrates the validation of the results from the explicit FE modelling of the bearing.
Synthesis and Study of Fe-Doped Bi₂S₃ Semimagnetic Nanocrystals Embedded in a Glass Matrix.
Silva, Ricardo S; Mikhail, Hanna D; Guimarães, Eder V; Gonçalves, Elis R; Cano, Nilo F; Dantas, Noelio O
2017-07-11
Iron-doped bismuth sulphide (Bi 2- x Fe x S₃) nanocrystals have been successfully synthesized in a glass matrix using the fusion method. Transmission electron microscopy images and energy dispersive spectroscopy data clearly show that nanocrystals are formed with an average diameter of 7-9 nm, depending on the thermic treatment time, and contain Fe in their chemical composition. Magnetic force microscopy measurements show magnetic phase contrast patterns, providing further evidence of Fe incorporation in the nanocrystal structure. The electron paramagnetic resonance spectra displayed Fe 3+ typical characteristics, with spin of 5/2 in the 3d⁵ electronic state, thereby confirming the expected trivalent state of Fe ions in the Bi₂S₃ host structure. Results from the spin polarized density functional theory simulations, for the bulk Fe-doped Bi₂S₃ counterpart, corroborate the experimental fact that the volume of the unit cell decreases with Fe substitutionally doping at Bi1 and Bi2 sites. The Bader charge analysis indicated a pseudo valency charge of 1.322| e | on Fe Bi ₁ and 1.306| e | on Fe Bi ₂ ions, and a spin contribution for the magnetic moment of 5.0 µ B per unit cell containing one Fe atom. Electronic band structures showed that the (indirect) band gap changes from 1.17 eV for Bi₂S₃ bulk to 0.71 eV (0.74 eV) for Bi₂S₃:Fe Bi1 (Bi₂S₃:Fe Bi2 ). These results are compatible with the 3d⁵ high-spin state of Fe 3+ , and are in agreement with the experimental results, within the density functional theory accuracy.
Kalantzi, Lida; Persson, Eva; Polentarutti, Britta; Abrahamsson, Bertil; Goumas, Konstantinos; Dressman, Jennifer B; Reppas, Christos
2006-06-01
This study was conducted to assess the relative usefulness of canine intestinal contents and simulated media in the prediction of solubility of two weak bases (dipyridamole and ketoconazole) in fasted and fed human intestinal aspirates that were collected under conditions simulating those in bioavailability/bioequivalence studies. After administration of 250 mL of water or 500 mL of Ensure plus [both containing 10 mg/mL polyethylene glycol (PEG) 4000 as nonabsorbable marker], intestinal aspirates were collected from the fourth part of the duodenum of 12 healthy adults and from the mid-jejunum of four Labradors. Pooled samples were analyzed for PEG, pH, buffer capacity, osmolality, surface tension, pepsin, total carbohydrates, total protein content, bile salts, phospholipids, and neutral lipids. The shake-flask method was used to measure the solubility of dipyridamole and ketoconazole in pooled human and canine intestinal contents and in fasted-state-simulating intestinal fluid (FaSSIF) and fed-state-simulating intestinal fluid (FeSSIF) containing various bile salts and pH-buffering agents. For both compounds, solubility in canine contents may be predictive of human intralumenal solubility in the fasting state but not in the fed state. The poor agreement of results in canine and human aspirates can be attributed to the higher bile salt content in canine bile. Solubility in FaSSIF containing a mixture of bile salts from crude bile predicted satisfactorily the intralumenal solubility of both drugs in the fasted state in humans. Solubility in FeSSIF, regardless of the identity of bile salts or of the buffering species, deviated from intralumenal values in the fed human aspirates by up to 40%. This was attributed to the lack of lipolytic products in FeSSIF, the higher bile salt content of FeSSIF, and the lower pH of FeSSIF. FaSSIF containing a mixture of bile salts from crude bile, and FeSSIF containing lipolytic products and, perhaps, having lower bile salt content but slightly higher pH, should be more useful than canine intestinal aspirates for predicting intralumenal solubilities in humans.
NASA Astrophysics Data System (ADS)
Azzawi, Wessam Al; Epaarachchi, J. A.; Islam, Mainul; Leng, Jinsong
2017-12-01
Shape memory polymers (SMPs) offer a unique ability to undergo a substantial shape deformation and subsequently recover the original shape when exposed to a particular external stimulus. Comparatively low mechanical properties being the major drawback for extended use of SMPs in engineering applications. However the inclusion of reinforcing fibres in to SMPs improves mechanical properties significantly while retaining intrinsic shape memory effects. The implementation of shape memory polymer composites (SMPCs) in any engineering application is a unique task which requires profound materials and design optimization. However currently available analytical tools have critical limitations to undertake accurate analysis/simulations of SMPC structures and slower derestrict transformation of breakthrough research outcomes to real-life applications. Many finite element (FE) models have been presented. But majority of them require a complicated user-subroutines to integrate with standard FE software packages. Furthermore, those subroutines are problem specific and difficult to use for a wider range of SMPC materials and related structures. This paper presents a FE simulation technique to model the thermomechanical behaviour of the SMPCs using commercial FE software ABAQUS. Proposed technique incorporates material time-dependent viscoelastic behaviour. The ability of the proposed technique to predict the shape fixity and shape recovery was evaluated by experimental data acquired by a bending of a SMPC cantilever beam. The excellent correlation between the experimental and FE simulation results has confirmed the robustness of the proposed technique.
Quasi-static earthquake cycle simulation based on nonlinear viscoelastic finite element analyses
NASA Astrophysics Data System (ADS)
Agata, R.; Ichimura, T.; Hyodo, M.; Barbot, S.; Hori, T.
2017-12-01
To explain earthquake generation processes, simulation methods of earthquake cycles have been studied. For such simulations, the combination of the rate- and state-dependent friction law at the fault plane and the boundary integral method based on Green's function in an elastic half space is widely used (e.g. Hori 2009; Barbot et al. 2012). In this approach, stress change around the fault plane due to crustal deformation can be computed analytically, while the effects of complex physics such as mantle rheology and gravity are generally not taken into account. To consider such effects, we seek to develop an earthquake cycle simulation combining crustal deformation computation based on the finite element (FE) method with the rate- and state-dependent friction law. Since the drawback of this approach is the computational cost associated with obtaining numerical solutions, we adopt a recently developed fast and scalable FE solver (Ichimura et al. 2016), which assumes use of supercomputers, to solve the problem in a realistic time. As in the previous approach, we solve the governing equations consisting of the rate- and state-dependent friction law. In solving the equations, we compute stress changes along the fault plane due to crustal deformation using FE simulation, instead of computing them by superimposing slip response function as in the previous approach. In stress change computation, we take into account nonlinear viscoelastic deformation in the asthenosphere. In the presentation, we will show simulation results in a normative three-dimensional problem, where a circular-shaped velocity-weakening area is set in a square-shaped fault plane. The results with and without nonlinear viscosity in the asthenosphere will be compared. We also plan to apply the developed code to simulate the post-earthquake deformation of a megathrust earthquake, such as the 2011 Tohoku earthquake. Acknowledgment: The results were obtained using the K computer at the RIKEN (Proposal number hp160221).
The role of copper and oxalate in the redox cycling of iron in atmospheric waters
NASA Astrophysics Data System (ADS)
Sedlak, David L.; Hoigné, Jürg
During daytime, the redox cycling of dissolved iron compounds in atmospheric waters, and the related in-cloud transformations of photooxidants, are affected by reactions of Fe and Cu with hydroperoxy (HO 2) and superoxide (O 2-) radicals and the photoreduction of Fe(III)-oxalato complexes. We have investigated several of the important chemical reactions in this redox cycle, through laboratory simulation of the system, using γ-radiation to produce HO 2/O 2-. At concentrations comparable to those measured in atmospheric waters, the redox cycling of Fe was dramatically affected by the presence of oxalate and trace concentrations of Cu. At concentrations more than a hundred times lower than Fe, Cu consumed most of the HO 2/O 2-, and cycled between the Cu(II) and Cu(I) forms. Cu + reacted with FeOH 2+ to produce Fe(II) and Cu(II), with a second order rate constant of approximately 3 × 10 7 M -1s -1. The presence of oxalate resulted in the formation of Fe(III)-oxalato complexes that were essentially unreactive with HO 2/O 2-. Only at high oxalate concentrations was the Fe(II)C 2O 4 complex also formed, and it reacted relatively rapidly with hydrogen peroxide ( k = (3.1 ± 0.6) × 10 4 M -1s -1). Simulations incorporating measurements for other redox mechanisms, including oxidation by ozone, indicate that, during daytime, Fe should be found mostly in the ferrous oxidation state, and that reactions of FeOH 2+ with Cu(I) and HO 2/O 2-, and to a lesser degree, the photolysis of Fe(III)-oxalato complexes, are important mechanisms of Fe reduction in atmospheric waters. The catalytic effect of Cu(II)/Cu(I) and Fe(III)/Fe(II) should also significantly increase the sink function of the atmospheric liquid phase for HO 2 present in a cloud. A simple kinetic model for the reactions of Fe, Cu and HO 2/O 2-, accurately predicted the changes in Fe oxidation states that occurred when authentic fogwater samples were exposed to HO 2/O 2-.
Finite Element Analysis of Patient-Specific Mitral Valve with Mitral Regurgitation.
Pham, Thuy; Kong, Fanwei; Martin, Caitlin; Wang, Qian; Primiano, Charles; McKay, Raymond; Elefteriades, John; Sun, Wei
2017-03-01
Functional mitral regurgitation (FMR) is a significant complication of left ventricular dysfunction and strongly associated with a poor prognosis. In this study, we developed a patient-specific finite element (FE) model of the mitral apparatus in a FMR patient which included: both leaflets with thickness, annulus, chordae tendineae, and chordae insertions on the leaflets and origins on the papillary muscles. The FE model incorporated human age- and gender-matched anisotropic hyperelastic material properties, and MV closure at systole was simulated. The model was validated by comparing the FE results from valve closure simulation with the in vivo geometry of the MV at systole. It was found that the FE model could not replicate the in vivo MV geometry without the application of tethering pre-tension force in the chordae at diastole. Upon applying the pre-tension force and performing model optimization by adjusting the chordal length, position, and leaflet length, a good agreement between the FE model and the in vivo model was established. Not only were the chordal forces high at both diastole and systole, but the tethering force on the anterior papillary muscle was higher than that of the posterior papillary muscle, which resulted in an asymmetrical gap with a larger orifice area at the anterolateral commissure resulting in MR. The analyses further show that high peak stress and strain were found at the chordal insertions where large chordal tethering forces were found. This study shows that the pre-tension tethering force plays an important role in accurately simulating the MV dynamics in this FMR patient, particularly in quantifying the degree of leaflet coaptation and stress distribution. Due to the complexity of the disease, the patient-specific computational modeling procedure of FMR patients presented should be further evaluated using a large patient cohort. However, this study provides useful insights into the MV biomechanics of a FMR patient, and could serve as a tool to assist in pre-operative planning for MV repair or replacement surgical or interventional procedures.
NASA Astrophysics Data System (ADS)
Priyantha, W.; Smith, R. J.; Chen, H.; Kopczyk, M.; Lerch, M.; Key, C.; Nachimuthu, P.; Jiang, W.
2009-03-01
Fe-Al bilayer interfaces with and without interface stabilizing layers (Ti, V, Zr) were fabricated using dc magnetron sputtering. Intermixing layer thickness and the effectiveness of the stabilizing layer (Ti, V, Zr) at the interface were studied using Rutherford backscattering spectrometry (RBS) and x-ray reflectometry (XRR). The result for the intermixing thickness of the AlFe layer is always higher when Fe is deposited on Al as compared to when Al is deposited on Fe. By comparing measurements with computer simulations, the thicknesses of the AlFe layers were determined to be 20.6 Å and 41.1 Å for Al/Fe and Fe/Al bilayer systems, respectively. The introduction of Ti and V stabilizing layers at the Fe-Al interface reduced the amount of intermixing between Al and Fe, consistent with the predictions of model calculations. The Zr interlayer, however, was ineffective in stabilizing the Fe-Al interface in spite of the chemical similarities between Ti and Zr. In addition, analysis suggests that the Ti interlayer is not effective in stabilizing the Fe-Al interface when the Ti interlayer is extremely thin (˜3 Å) for these sputtered metallic films.
Chen, Haihan; Grassian, Vicki H
2013-09-17
Atmospheric organic acids potentially display different capacities in iron (Fe) mobilization from atmospheric dust compared with inorganic acids, but few measurements have been made on this comparison. We report here a laboratory investigation of Fe mobilization of coal fly ash, a representative Fe-containing anthropogenic aerosol, and Arizona test dust, a reference source material for mineral dust, in pH 2 sulfuric acid, acetic acid, and oxalic acid, respectively. The effects of pH and solar radiation on Fe dissolution have also been explored. The relative capacities of these three acids in Fe dissolution are in the order of oxalic acid > sulfuric acid > acetic acid. Oxalate forms mononuclear bidentate ligand with surface Fe and promotes Fe dissolution to the greatest extent. Photolysis of Fe-oxalate complexes further enhances Fe dissolution with the concomitant degradation of oxalate. These results suggest that ligand-promoted dissolution of Fe may play a more significant role in mobilizing Fe from atmospheric dust compared with proton-assisted processing. The role of atmospheric organic acids should be taken into account in global-biogeochemical modeling to better access dissolved atmospheric Fe deposition flux at the ocean surface.
NASA Astrophysics Data System (ADS)
Phillion, A. B.; Cockcroft, S. L.; Lee, P. D.
2009-07-01
The methodology of direct finite element (FE) simulation was used to predict the semi-solid constitutive behavior of an industrially important aluminum-magnesium alloy, AA5182. Model microstructures were generated that detail key features of the as-cast semi-solid: equiaxed-globular grains of random size and shape, interconnected liquid films, and pores at the triple-junctions. Based on the results of over fifty different simulations, a model-based constitutive relationship which includes the effects of the key microstructure features—fraction solid, grain size and fraction porosity—was derived using regression analysis. This novel constitutive equation was then validated via comparison with both the FE simulations and experimental stress/strain data. Such an equation can now be used to incorporate the effects of microstructure on the bulk semi-solid flow stress within a macro- scale process model.
Influence of Dissipated Forming Energy on Flow Curves of Austenitic Stainless Steel
NASA Astrophysics Data System (ADS)
Steinheimer, Rainer; Engel, Bernd
2011-08-01
Finite element (FE) simulations are widely used to design sheet metal forming processes. Flow curves and forming limit curves of the semi-finished goods are required for these computations. Mostly flow curves are obtained by conversions of stress-strain caracteristics from uniaxial tensile tests. In these calculations, uniform strain and stress within the gauge length is postulated until reaching elongation without necking. This precondition is true only if specimens remain homogenous during the test procedure. Effects from dissipated mechanical energy and heat flow on the results of uniaxial tensile tests were examined with specimen made of austenitic stainless steels with practical experiments and FE simulations.
Effect of orientation on deformation behavior of Fe nanowires: A molecular dynamics study
NASA Astrophysics Data System (ADS)
Sainath, G.; Srinivasan, V. S.; Choudhary, B. K.; Mathew, M. D.; Jayakumar, T.
2014-04-01
Molecular dynamics simulations have been carried out to study the effect of crystal orientation on tensile deformation behaviour of single crystal BCC Fe nanowires at 10 K. Two nanowires with an initial orientation of <100>/{100} and <110>/{111} have been chosen for this study. The simulation results show that the deformation mechanisms varied with crystal orientation. The nanowire with an initial orientation of <100>/{100} deforms predominantly by twinning mechanism, whereas the nanowire oriented in <110>/{111}, deforms by dislocation plasticity. In addition, the single crystal oriented in <110>/{111} shows higher strength and elastic modulus than <100>/{100} oriented nanowire.
Lowe, D J; Thorneley, R N
1984-01-01
A comprehensive model for the mechanism of nitrogenase action is used to simulate pre-steady-state kinetic data for H2 evolution in the presence and in the absence of N2, obtained by using a rapid-quench technique with nitrogenase from Klebsiella pneumoniae. These simulations use independently determined rate constants that define the model in terms of the following partial reactions: component protein association and dissociation, electron transfer from Fe protein to MoFe protein coupled to the hydrolysis of MgATP, reduction of oxidized Fe protein by Na2S2O4, reversible N2 binding by H2 displacement and H2 evolution. Two rate-limiting dissociations of oxidized Fe protein from reduced MoFe protein precede H2 evolution, which occurs from the free MoFe protein. Thus Fe protein suppresses H2 evolution by binding to the MoFe protein. This is a necessary condition for efficient N2 binding to reduced MoFe protein. PMID:6395861
DOE Office of Scientific and Technical Information (OSTI.GOV)
Higgins, M. P.; Wang, L. M.; Gao, F., E-mail: gaofeium@umich.edu
Molecular dynamic simulations of Y{sub 2}O{sub 3} in bcc Fe and transmission electron microscopy (TEM) observations were used to understand the structure of Y{sub 2}O{sub 3} nano-clusters in an oxide dispersion strengthened steel matrix. The study showed that Y{sub 2}O{sub 3} nano-clusters below 2 nm were completely disordered. Y{sub 2}O{sub 3} nano-clusters above 2 nm, however, form a core-shell structure, with a shell thickness of 0.5–0.7 nm that is independent of nano-cluster size. Y{sub 2}O{sub 3} nano-clusters were surrounded by off-lattice Fe atoms, further increasing the stability of these nano-clusters. TEM was used to corroborate our simulation results and showed a crossover frommore » a disordered nano-cluster to a core-shell structure.« less
NASA Astrophysics Data System (ADS)
Zhu, Hua-Yue; Jiang, Ru; Fu, Yong-Qian; Li, Rong-Rong; Yao, Jun; Jiang, Sheng-Tao
2016-04-01
Novel multifunctional NiFe2O4/ZnO hybrids were prepared by a hydrothermal method and their physicochemical properties were characterized by XRD, SEM, TEM, TGA, VSM, BET and UV-vis DRS. The adsorption and photocatalytic performance of NiFe2O4/ZnO hybrids were systematically investigated using congo red as a model contaminant. With the introduction of NiFe2O4, NiFe2O4/ZnO hybrids can absorb the whole light from 300 nm to 700 nm. The adsorption capacity (221.73 mg g-1) of NiFe2O4/ZnO hybrids is higher than those of NiFe2O4, ZnO and mechanically mixed NiFe2O4/ZnO hybrids. The removal of congo red solution (20 mg L-1) by NiFe2O4/ZnO hybrids was about 94.55% under simulated solar light irradiation for 10 min. rad OH and h+ play important roles in the decolorization of congo red solution by NiFe2O4/ZnO hybrids under simulated solar light irradiation. The decolorization efficiency of congo red solution is 97.23% for the fifth time by NiFe2O4/ZnO hybrids under simulate solar light irradiation, indicating the high photostability and durability. NO3- and Cl- anions which are ubiquitous components in dye-containing wastewater have negligible influence on the effectiveness of NiFe2O4/ZnO hybrids. Moreover, the magnetic NiFe2O4/ZnO hybrids can be easily separated from the reacted solution by an external magnet.
Corrosion Behavior and Durability of Low-Alloy Steel Rebars in Marine Environment
NASA Astrophysics Data System (ADS)
Liu, Ming; Cheng, Xuequn; Li, Xiaogang; Yue, Pan; Li, Jun
2016-11-01
The corrosion resistance of Cr-modified low-alloy steels and HRB400 carbon steel was estimated using the open-circuit potential, potentiodynamic polarization, electrochemical impedance spectroscopic, and weight loss methods in simulated concrete pore solution. Results show that Cr-modified steels exhibit a higher corrosion resistance with a higher critical chloride level (CTL), lower corrosion current density, and higher impedance than carbon steel. The CTL of the steels significantly reduces with increasing temperature. Weight loss measurement shows that the Cr-modified steels exhibit low corrosion rates and small corrosion pitting. The primary constituents of the corrosion scales are Fe2O3, Fe3O4, β-FeOOH, γ-FeOOH, and α-FeOOH. A large amount of α-FeOOH could be detected in the Cr-modified steel corrosion products. Moreover, the Cr-modified steels demonstrate a higher durability than HRB400 carbon steel.
NASA Astrophysics Data System (ADS)
Wu, Yanxue; Li, Xiongyao; Yao, Wenqing; Wang, Shijie
2017-10-01
Without the protection of the atmosphere, the soils on lunar surfaces undergo a series of optical, physical, and chemical changes during micrometeorite bombardment. To simulate the micrometeorite bombardment process and analyze the impact characteristics, four types of rocks, including terrestrial basalt and anorthosite supposed to represent lunar rock, an H-type chondrite (the Huaxi ordinary chondrite), and an iron meteorite (the Gebel Kamil iron meteorite) supposed to represent micrometeorite impactors, are irradiated by a nanosecond pulse laser in a high vacuum chamber. Based on laser irradiation experiments, the laser pits are found to be of different shapes and sizes which vary with the rock type. Many melt and vapor deposits are found on the mineral surfaces of all the samples, and nanophase iron (npFe) or Fe-Ni alloy particles are typically distributed on the surfaces of ilmenite, kamacite, or other minerals near kamacite. By analyzing the focused ion beam ultrathin slices of laser pits with a transmission electron microscope, the results show that the subsurface structures can be divided into three classes and that npFe can be easily found in Fe-bearing minerals. These differences in impact characteristics will help determine the source material of npFe and infer the type of micrometeorite impactors. During micrometeorite bombardment, in the mare regions, the npFe are probably produced simultaneously from lunar basalt and micrometeorites with iron-rich minerals, while the npFe in the highlands regions mainly come from micrometeorites.
Ju, Yongming; Liu, Xiaowen; Liu, Runlong; Li, Guohua; Wang, Xiaoyan; Yang, Yanyan; Wei, Dongyang; Fang, Jiande; Dionysiou, Dionysios D
2015-04-28
To enhance the catalytic reactivity of millimeter-scale particles of sponge iron (s-Fe(0)), Cu(2+) ions were deposited on the surface of s-Fe(0) using a simple direct reduction reaction, and the catalytic properties of the bimetallic system was tested for removal of rhodamine B (RhB) from an aqueous solution. The influence of Cu(0) loading, catalyst dosage, particle size, initial RhB concentration, and initial pH were investigated, and the recyclability of the catalyst was also assessed. The results demonstrate that the 3∼5 millimeter s-Fe(0) particles (s-Fe(0)(3∼5mm)) with 5wt% Cu loading gave the best results. The removal of RhB followed two-step, pseudo-first-order reaction kinetics. Cu(0)-s-Fe(0) showed excellent stability after five reuse cycles. Cu(0)-s-Fe(0) possesses great advantages compared to nanoscale zero-valent iron, iron power, and iron flakes as well as its bimetals. The surface Cu(0) apparently catalyzes the production of reactive hydrogen atoms for indirect reaction and generates Fe-Cu galvanic cells that enhance electron transfer for direct reaction. This bimetallic catalyst shows great potential for the pre-treatment of recalcitrant wastewaters. Additionally, some oxides containing iron element are selected to simulate the adsorption process. The results prove that the adsorption process of FeOOH, Fe2O3 and Fe3O4 played minor role for the removal of RhB. Copyright © 2015 Elsevier B.V. All rights reserved.
Li(x)FeF6 (x = 2, 3, 4) battery materials: structural, electronic and lithium diffusion properties.
Schroeder, Melanie; Eames, Christopher; Tompsett, David A; Lieser, Georg; Islam, M Saiful
2013-12-21
Lithium iron fluoride materials have attracted recent interest as cathode materials for lithium ion batteries. The electrochemical properties of the high energy density Li(x)FeF6 (x = 2, 3, 4) materials have been evaluated using a combination of potential-based and DFT computational methods. Voltages of 6.1 V and 3.0 V are found for lithium intercalation from Li2FeF6 to α-Li3FeF6 and α-Li3FeF6 to Li4FeF6 respectively. The calculated density of states indicate that Li2FeF6 possesses metallic states that become strongly insulating after lithium intercalation to form α-Li3FeF6. The large energy gain associated with this metal-insulator transition is likely to contribute to the associated large voltage of 6.1 V. Molecular dynamics simulations of lithium diffusion in α-Li3FeF6 at typical battery operating temperatures indicate high lithium-ion mobility with low activation barriers. These results suggest the potential for good rate performance of lithium iron fluoride cathode materials.
NASA Astrophysics Data System (ADS)
Yang, Song-tao; Zhou, Mi; Jiang, Tao; Xue, Xiang-xin
2018-02-01
Reduction of chromium-bearing vanadium-titanium sinter (CVTS) was studied under simulated conditions of a blast furnace, and thermodynamics and kinetics were theoretically analyzed. Reduction kinetics of CVTS at different temperatures was evaluated using a shrinking unreacted core model. The microstructure, mineral phase, and variation of the sinter during reduction were observed by X-ray diffraction, scanning electron microscopy, and metallographic microscopy. Results indicate that porosity of CVTS increased with temperature. Meanwhile, the reduction degree of the sinter improved with the reduction rate. Reduction of the sinter was controlled by a chemical reaction at the initial stage and inner diffusion at the final stage. Activation energies measured 29.22-99.69 kJ/mol. Phase transformations in CVTS reduction are as follows: Fe2O3→Fe3O4→FeO→Fe; Fe2TiO5→Fe2TiO4→FeTiO3; FeO·V2O3→V2O3; FeO·Cr2O3→Cr2O3.
The effect of Mn/Ni on thermodynamic properties of critical nucleus in Fe-Cu-Mn (Ni) ternary alloys
Li, Boyan; Zhang, Lei; Li, Chengliang; ...
2018-04-18
The aging- or radiation-induced hardening of Cu/Mn/Ni precipitates in Fe alloys is one of property degradation mechanisms in structural materials in nuclear reactors. Experiments show that aging or radiation leads the formation of Cu-rich precipitates, and the addition of Mn or Ni elements enhances the precipitation kinetics. In this study, the phase-field model coupled with the constrained string method have been applied to investigate the thermodynamic properties of critical nuclei such as the minimum energy path of Cu/Mn/Ni precipitation in Fe-Cu-Mn and Fe-Cu-Ni ternary alloys. The chemical free energies used in the model are taken from CALPHAD. The simulation resultsmore » show that the formation of Cu/Mn/Ni clusters needs to overcome an energy barrier, and the precipitate has a Core-Shell structure. The thermodynamic properties of the critical nucleus are influenced by temperature and Cu/Mn/Ni overall concentrations, which are in accordance with the simulation results as well as the experimental observations.« less
The effect of Mn/Ni on thermodynamic properties of critical nucleus in Fe-Cu-Mn (Ni) ternary alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Boyan; Zhang, Lei; Li, Chengliang
The aging- or radiation-induced hardening of Cu/Mn/Ni precipitates in Fe alloys is one of property degradation mechanisms in structural materials in nuclear reactors. Experiments show that aging or radiation leads the formation of Cu-rich precipitates, and the addition of Mn or Ni elements enhances the precipitation kinetics. In this study, the phase-field model coupled with the constrained string method have been applied to investigate the thermodynamic properties of critical nuclei such as the minimum energy path of Cu/Mn/Ni precipitation in Fe-Cu-Mn and Fe-Cu-Ni ternary alloys. The chemical free energies used in the model are taken from CALPHAD. The simulation resultsmore » show that the formation of Cu/Mn/Ni clusters needs to overcome an energy barrier, and the precipitate has a Core-Shell structure. The thermodynamic properties of the critical nucleus are influenced by temperature and Cu/Mn/Ni overall concentrations, which are in accordance with the simulation results as well as the experimental observations.« less
Modeling of hysteretic Schottky diode-like conduction in Pt/BiFeO3/SrRuO3 switches
NASA Astrophysics Data System (ADS)
Miranda, E.; Jiménez, D.; Tsurumaki-Fukuchi, A.; Blasco, J.; Yamada, H.; Suñé, J.; Sawa, A.
2014-08-01
The hysteresis current-voltage (I-V) loops in Pt/BiFeO3/SrRuO3 structures are simulated using a Schottky diode-like conduction model with sigmoidally varying parameters, including series resistance correction and barrier lowering. The evolution of the system is represented by a vector in a 3D parameter space describing a closed trajectory with stationary states. It is shown that the hysteretic behavior is not only the result of a Schottky barrier height (SBH) variation arising from the BiFeO3 polarization reversal but also a consequence of the potential drop distribution across the device. The SBH modulation is found to be remarkably lower (<0.07 eV) than previously reported (>0.5 eV). It is also shown that the p-type semiconducting nature of BiFeO3 can explain the large ideality factors (>6) required to simulate the I-V curves as well as the highly asymmetric set and reset voltages (4.7 V and -1.9 V) exhibited by our devices.
NASA Astrophysics Data System (ADS)
Zidane, A.; Firoozabadi, A.
2017-12-01
We present an efficient and accurate numerical model for multicomponent compressible single-phase flow in 2D and 3D fractured media based on higher-order discretization. The numerical model accounts for heterogeneity and anisotropy in unstructured gridding with low mesh dependency. The efficiency of our model is demonstrated by having comparable CPU time between fractured and unfractured media. The fracture cross-flow equilibrium approach (FCFE) is applied on triangular finite elements (FE) in 2D. This allows simulating fractured reservoirs with all possible orientations of fractures as opposed to rectangular FE. In 3D we apply the FCFE approach on the prism FE. The prism FE with FCFE allows simulating realistic fractured domains compared to hexahedron FE. In addition, when using FCFE on triangular and prism FE there is no limitation on the number of intersecting fractures, whereas in rectangular and hexahedron FE the number is limited to 2 in 2D and 3 in 3D. To generate domains with complicated boundaries, we have developed a computer-aided design (CAD) interface in our model. The advances introduced in this work are demonstrated through various examples.
Emergent high-spin state above 7 GPa in superconducting FeSe
NASA Astrophysics Data System (ADS)
Lebert, B. W.; Balédent, V.; Toulemonde, P.; Ablett, J. M.; Rueff, J.-P.
2018-05-01
The local electronic and magnetic properties of superconducting FeSe have been investigated by K β x-ray emission and simultaneous x-ray absorption spectroscopy (XAS) at the Fe K edge at high pressure and low temperature. Our results indicate a sluggish decrease of the local Fe spin moment under pressure up to 7 GPa, in line with previous reports, followed by a sudden increase at higher pressure. The magnetic surge is preceded by an abrupt change of the Fe local structure as observed by the decrease of the XAS preedge region intensity and corroborated by ab initio simulations. This pressure corresponds to a structural transition from the C m m a form to the denser P b n m form with octahedral coordination of iron. Finally, the near-edge region of the XAS spectra shows a change before this transition at 5 GPa, corresponding well with the onset pressure of the sudden enhancement of Tc. Our results emphasize the delicate interplay between structural, magnetic, and superconducting properties in FeSe under pressure.
Heavy-impurity resonance, hybridization, and phonon spectral functions in Fe 1-xM xSi, M=Ir,Os
Delaire, O.; Al-Qasir, Iyad I.; May, Andrew F.; ...
2015-03-31
The vibrational behavior of heavy substitutional impurities (M=Ir,Os) in Fe 1-xM xSi (x = 0, 0.02, 0.04, 0.1) was investigated with a combination of inelastic neutron scattering (INS), transport measurements, and first-principles simulations. In this paper, our INS measurements on single-crystals mapped the four-dimensional dynamical structure factor, S(Q;E), for several compositions and temperatures. Our results show that both Ir and Os impurities lead to the formation of a weakly dispersive resonance vibrational mode, in the energy range of the acoustic phonon dispersions of the FeSi host. We also show that Ir doping, which introduces free carriers and increases electron-phonon coupling,more » leads to softened interatomic force-constants compared to doping with Os, which is isoelectronic to Fe. We analyze the phonon S(Q,E) from INS through a Green's function model incorporating the phonon self-energy based on first-principles density functional theory (DFT) simulations. Calculations of the quasiparticle spectral functions in the doped system reveal the hybridization between the resonance and the acoustic phonon modes. Finally, our results demonstrate a strong interaction of the host acoustic dispersions with the resonance mode, likely leading to the large observed suppression in lattice thermal conductivity.« less
FeO and H-2O and the homogeneous accretion of the earth
NASA Technical Reports Server (NTRS)
Lange, M. A.; Ahrens, T. J.
1983-01-01
Shock devolatilization recovery data for brunite (Mg(OH)2) shocked to 13 and 23 GPa are presented. These data combined with previous data for serpentine (Mg3Si2O5(OH)4) are used to constrain the minimum size terrestrial planet for which planetesimal infall will result in an impact generated water atmosphere. Assuming, in hydrous phyllosilicates, model calculations simulating the interaction of metallic iron with impact released free water on the surface of the accreting Earth were carried out. It is assumed that the reaction of water with iron in the presence of enstatite is the prime source of the terrestrial FeO component of silicates and oxides. Lower and upper bounds on the terrestrial FeO budget are based on mantle FeO content and possible incorporation of FeO in the outer core. We demonstrate that the iron water reaction would result in the absence of atmospheric/hydrospheric water, if homogeneous accretion is assumed.
NASA Astrophysics Data System (ADS)
Zhang, Jingyi
Ferroelectric (FE) and closely related antiferroelectric (AFE) materials have unique electromechanical properties that promote various applications in the area of capacitors, sensors, generators (FE) and high density energy storage (AFE). These smart materials with extensive applications have drawn wide interest in the industrial and scientific world because of their reliability and tunable property. However, reliability issues changes its paradigms and requires guidance from detailed mechanism theory as the materials applications are pushed for better performance. A host of modeling work were dedicated to study the macro-structural behavior and microstructural evolution in FE and AFE material under various conditions. This thesis is focused on direct observation of domain evolution under multiphysics loading for both FE and AFE material. Landau-Devonshire time-dependent phase field models were built for both materials, and were simulated in finite element software Comsol. In FE model, dagger-shape 90 degree switched domain was observed at preexisting crack tip under pure mechanical loading. Polycrystal structure was tested under same condition, and blocking effect of the growth of dagger-shape switched domain from grain orientation difference and/or grain boundary was directly observed. AFE ceramic model was developed using two sublattice theory, this model was used to investigate the mechanism of energy efficiency increase with self-confined loading in experimental tests. Consistent results was found in simulation and careful investigation of calculation results gave confirmation that origin of energy density increase is from three aspects: self-confinement induced inner compression field as the cause of increase of critical field, fringe leak as the source of elevated saturation polarization and uneven defects distribution as the reason for critical field shifting and phase transition speed. Another important affecting aspect in polycrystalline materials is the texture of material, textured materials have better alignment and the alignment reorganization is associated with inelastic strain. We developed a vector field of alignment to describe texture degree and introduced the alignment vector into our FE and AFE model. The model with alignment field gave quantatively results for the well-recognized irreversible strain in AFE virgin ceramics during the first poling process. The texture field also shows a shielding zone under mechanical loading around existing crack tip. In conclusion, this thesis developed working models of FE and AFE material and systematically studied their behavior under multiphysics loading in a finite element analysis approach. Materials structure of polycrystal materials including grain orientation, grain boundary, defects and materials texture were tested for their effect on hysteresis and switched domain growth. Detailed microstructure development in domain switching and alignment was directly observed in this simulation.
Experimental simulations of sulfide formation in the solar nebula.
Lauretta, D S; Lodders, K; Fegley, B
1997-07-18
Sulfurization of meteoritic metal in H2S-H2 gas produced three different sulfides: monosulfide solid solution [(Fe,Ni)1-xS], pentlandite [(Fe,Ni)9-xS8], and a phosphorus-rich sulfide. The composition of the remnant metal was unchanged. These results are contrary to theoretical predictions that sulfide formation in the solar nebula produced troilite (FeS) and enriched the remaining metal in nickel. The experimental sulfides are chemically and morphologically similar to sulfide grains in the matrix of the Alais (class CI) carbonaceous chondrite, suggesting that these meteoritic sulfides may be condensates from the solar nebula.
Size-induced chemical and magnetic ordering in individual Fe-Au nanoparticles.
Mukherjee, Pinaki; Manchanda, Priyanka; Kumar, Pankaj; Zhou, Lin; Kramer, Matthew J; Kashyap, Arti; Skomski, Ralph; Sellmyer, David; Shield, Jeffrey E
2014-08-26
Formation of chemically ordered compounds of Fe and Au is inhibited in bulk materials due to their limited mutual solubility. However, here we report the formation of chemically ordered L12-type Fe3Au and FeAu3 compounds in Fe-Au sub-10 nm nanoparticles, suggesting that they are equilibrium structures in size-constrained systems. The stability of these L12-ordered Fe3Au and FeAu3 compounds along with a previously discovered L10-ordered FeAu has been explained by a size-dependent equilibrium thermodynamic model. Furthermore, the spin ordering of these three compounds has been computed using ab initio first-principle calculations. All ordered compounds exhibit a substantial magnetization at room temperature. The Fe3Au had a high saturation magnetization of about 143.6 emu/g with a ferromagnetic spin structure. The FeAu3 nanoparticles displayed a low saturation magnetization of about 11 emu/g. This suggests a antiferromagnetic spin structure, with the net magnetization arising from uncompensated surface spins. First-principle calculations using the Vienna ab initio simulation package (VASP) indicate that ferromagnetic ordering is energetically most stable in Fe3Au, while antiferromagnetic order is predicted in FeAu and FeAu3, consistent with the experimental results.
Role of PO4 tetrahedron in LiFePO4 and FePO4 system.
Zeng, Yuewu
2015-06-01
Using high resolution transmission electron microscopy with image simulation and Fourier analysis, the Li1- x FePO4 (x < 0.01), Li1- x FePO4 (x ∼ 0.5), and FePO4 particles, prepared by charging or discharging the 053048 electrochemical cells (thickness: 5 mm, width: 30 mm, height: 48 mm) and dismantled inside an Ar-filled dry box, were investigated. The high resolution images reveal: (1) the solid solution of Li1- x FePO4 (x < 0.01) contains some missing Li ions leading PO4 group distorted around M1 tunnel of the unit cell; (2) the texture of the particles of Li1- x FePO4 (x ∼0.5) has homogeneously distributed compositional domains of LiFePO4 and FePO4 resulting from spinodal decomposition which promote Li ion easily getting into the particle due to uphill diffusion, (3) the particles of FePO4 formed in charging have heavily distorted lattice and contain some isolated LiFePO4 , (4) interface between LiFePO4 and FePO4 and between amorphous and crystal region provides the lattice distortion of small polarons. © 2015 Wiley Periodicals, Inc.
Liu, Xing-Wu; Cao, Zhi; Zhao, Shu; ...
2017-09-11
As active phases in low-temperature Fischer–Tropsch synthesis for liquid fuel production, epsilon iron carbides are critically important industrial materials. However, the precise atomic structure of epsilon iron carbides remains unclear, leading to a half-century of debate on the phase assignment of the ε-Fe 2C and ε’-Fe 2.2C. Here, we resolve this decades-long question by a combining theoretical and experimental investigation to assign the phases unambiguously. First, we have investigated the equilibrium structures and thermal stabilities of ε-Fe xC, (x = 1, 2, 2.2, 3, 4, 6, 8) by first-principles calculations. We have also acquired X-ray diffraction patterns and Mössbauer spectramore » for these epsilon iron carbides, and compared them with the simulated results. These analyses indicate that the unit cell of ε-Fe 2C contains only one type of chemical environment for Fe atoms, while ε’-Fe 2.2C has six sets of chemically distinct Fe atoms.« less
Development of Predictive Energy Management Strategies for Hybrid Electric Vehicles
NASA Astrophysics Data System (ADS)
Baker, David
Studies have shown that obtaining and utilizing information about the future state of vehicles can improve vehicle fuel economy (FE). However, there has been a lack of research into the impact of real-world prediction error on FE improvements, and whether near-term technologies can be utilized to improve FE. This study seeks to research the effect of prediction error on FE. First, a speed prediction method is developed, and trained with real-world driving data gathered only from the subject vehicle (a local data collection method). This speed prediction method informs a predictive powertrain controller to determine the optimal engine operation for various prediction durations. The optimal engine operation is input into a high-fidelity model of the FE of a Toyota Prius. A tradeoff analysis between prediction duration and prediction fidelity was completed to determine what duration of prediction resulted in the largest FE improvement. Results demonstrate that 60-90 second predictions resulted in the highest FE improvement over the baseline, achieving up to a 4.8% FE increase. A second speed prediction method utilizing simulated vehicle-to-vehicle (V2V) communication was developed to understand if incorporating near-term technologies could be utilized to further improve prediction fidelity. This prediction method produced lower variation in speed prediction error, and was able to realize a larger FE improvement over the local prediction method for longer prediction durations, achieving up to 6% FE improvement. This study concludes that speed prediction and prediction-informed optimal vehicle energy management can produce FE improvements with real-world prediction error and drive cycle variability, as up to 85% of the FE benefit of perfect speed prediction was achieved with the proposed prediction methods.
Abbasi, Mostafa; Barakat, Mohammed S; Vahidkhah, Koohyar; Azadani, Ali N
2016-09-01
Computational modeling has an important role in design and assessment of medical devices. In computational simulations, considering accurate constitutive models is of the utmost importance to capture mechanical response of soft tissue and biomedical materials under physiological loading conditions. Lack of comprehensive three-dimensional constitutive models for soft tissue limits the effectiveness of computational modeling in research and development of medical devices. The aim of this study was to use inverse finite element (FE) analysis to determine three-dimensional mechanical properties of bovine pericardial leaflets of a surgical bioprosthesis under dynamic loading condition. Using inverse parameter estimation, 3D anisotropic Fung model parameters were estimated for the leaflets. The FE simulations were validated using experimental in-vitro measurements, and the impact of different constitutive material models was investigated on leaflet stress distribution. The results of this study showed that the anisotropic Fung model accurately simulated the leaflet deformation and coaptation during valve opening and closing. During systole, the peak stress reached to 3.17MPa at the leaflet boundary while during diastole high stress regions were primarily observed in the commissures with the peak stress of 1.17MPa. In addition, the Rayleigh damping coefficient that was introduced to FE simulations to simulate viscous damping effects of surrounding fluid was determined. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Nemkovski, K.; Ioffe, A.; Su, Y.; Babcock, E.; Schweika, W.; Brückel, Th
2017-06-01
We present the concept and the results of the simulations of a new polarizer for the diffuse neutron scattering spectrometer DNS at MLZ. The concept of the polarizer is based on the idea of a bender made from the stack of the silicon wafers with a double-side supermirror polarizing coating and absorbing spacers in between. Owing to its compact design, such a system provides more free space for the arrangement of other instrument components. To reduce activation of the polarizer in the high intensity neutron beam of the DNS spectrometer we plan to use the Fe/Si supermirrors instead of currently used FeCoV/Ti:N ones. Using the VITESS simulation package we have performed simulations for horizontally focusing polarizing benders with different geometries in the combination with the double-focusing crystal monochromator of DNS. Neutron transmission and polarization efficiency as well as the effects of the focusing for convergent conventional C-benders and S-benders have been analyzed both for wedge-like and plane-parallel convergent geometries of the channels. The results of these simulations and the advantages/disadvantages of the various configurations are discussed.
NASA Astrophysics Data System (ADS)
Gao, Chan; Tian, Dongfeng; Li, Maosheng; Qian, Dazhi
2017-04-01
Different interatomic potentials produce displacement cascades with different features, and hence they significantly influence the results obtained from the displacement cascade simulations. The displacement cascade simulations in α-Fe have been carried out by molecular dynamics with three 'magnetic' potentials (MP) and Mendelev-type potential in this paper. Prior to the cascade simulations, the 'magnetic' potentials are hardened to suit for cascade simulations. We find that the peak time, maximum of defects, cascade volume and cascade density with 'magnetic' potentials are smaller than those with Mendelev-type potential. There is no significant difference within statistical uncertainty in the defect production efficiency with Mendelev-type potential and the second 'magnetic' potential at the same cascade energy, but remarkably smaller than those with the first and third 'magnetic' potential. Self interstitial atom (SIA) clustered fractions with 'magnetic' potentials are smaller than that with Mendelev-type potential, especially at the higher energy, due to the larger interstitial formation energies which result from the 'magnetic' potentials. The defect clustered fractions, which are input data for radiation damage accumulation models, may influence the prediction of microstructural evolution under radiation.
Cluster expansion modeling and Monte Carlo simulation of alnico 5–7 permanent magnets
Nguyen, Manh Cuong; Zhao, Xin; Wang, Cai -Zhuang; ...
2015-03-05
The concerns about the supply and resource of rare earth (RE) metals have generated a lot of interests in searching for high performance RE-free permanent magnets. Alnico alloys are traditional non-RE permanent magnets and have received much attention recently due their good performance at high temperature. In this paper, we develop an accurate and efficient cluster expansion energy model for alnico 5–7. Monte Carlo simulations using the cluster expansion method are performed to investigate the structure of alnico 5–7 at atomistic and nano scales. The alnico 5–7 master alloy is found to decompose into FeCo-rich and NiAl-rich phases at lowmore » temperature. The boundary between these two phases is quite sharp (~2 nm) for a wide range of temperature. The compositions of the main constituents in these two phases become higher when the temperature gets lower. Both FeCo-rich and NiAl-rich phases are in B2 ordering with Fe and Al on α-site and Ni and Co on β-site. The degree of order of the NiAl-rich phase is much higher than that of the FeCo-rich phase. In addition, a small magnetic moment is also observed in NiAl-rich phase but the moment reduces as the temperature is lowered, implying that the magnetic properties of alnico 5–7 could be improved by lowering annealing temperature to diminish the magnetism in NiAl-rich phase. Furthermore, the results from our Monte Carlo simulations are consistent with available experimental results.« less
Cluster expansion modeling and Monte Carlo simulation of alnico 5-7 permanent magnets
NASA Astrophysics Data System (ADS)
Nguyen, Manh Cuong; Zhao, Xin; Wang, Cai-Zhuang; Ho, Kai-Ming
2015-03-01
The concerns about the supply and resource of rare earth (RE) metals have generated a lot of interests in searching for high performance RE-free permanent magnets. Alnico alloys are traditional non-RE permanent magnets and have received much attention recently due their good performance at high temperature. In this paper, we develop an accurate and efficient cluster expansion energy model for alnico 5-7. Monte Carlo simulations using the cluster expansion method are performed to investigate the structure of alnico 5-7 at atomistic and nano scales. The alnico 5-7 master alloy is found to decompose into FeCo-rich and NiAl-rich phases at low temperature. The boundary between these two phases is quite sharp (˜2 nm) for a wide range of temperature. The compositions of the main constituents in these two phases become higher when the temperature gets lower. Both FeCo-rich and NiAl-rich phases are in B2 ordering with Fe and Al on α-site and Ni and Co on β-site. The degree of order of the NiAl-rich phase is much higher than that of the FeCo-rich phase. A small magnetic moment is also observed in NiAl-rich phase but the moment reduces as the temperature is lowered, implying that the magnetic properties of alnico 5-7 could be improved by lowering annealing temperature to diminish the magnetism in NiAl-rich phase. The results from our Monte Carlo simulations are consistent with available experimental results.
Blast and the Consequences on Traumatic Brain Injury-Multiscale Mechanical Modeling of Brain
2011-02-17
blast simulation. LS-DYNA as an explicit FE code has been employed to simulate this multi- material fluid –structure interaction problem. The 3-D head...formulation is implemented to model the air-blast simulation. LS-DYNA as an explicit FE code has been employed to simulate this multi-material fluid ...Biomechanics Study of Influencing Parameters for brain under Impact ............................... 12 5.1 The Impact of Cerebrospinal Fluid
NASA Astrophysics Data System (ADS)
Tang, Liang; Cong, Shengyi; Ling, Xianzhang; Ju, Nengpan
2017-01-01
Boundary conditions can significantly affect a slope's behavior under strong earthquakes. To evaluate the importance of boundary conditions for finite element (FE) simulations of a shake-table experiment on the slope response, a validated three-dimensional (3D) nonlinear FE model is presented, and the numerical and experimental results are compared. For that purpose, the robust graphical user-interface "SlopeSAR", based on the open-source computational platform OpenSees, is employed, which simplifies the effort-intensive pre- and post-processing phases. The mesh resolution effect is also addressed. A parametric study is performed to evaluate the influence of boundary conditions on the FE model involving the boundary extent and three types of boundary conditions at the end faces. Generally, variations in the boundary extent produce inconsistent slope deformations. For the two end faces, fixing the y-direction displacement is not appropriate to simulate the shake-table experiment, in which the end walls are rigid and rough. In addition, the influence of the length of the 3D slope's top face and the width of the slope play an important role in the difference between two types of boundary conditions at the end faces (fixing the y-direction displacement and fixing the ( y, z) direction displacement). Overall, this study highlights that the assessment of a comparison between a simulation and an experimental result should be performed with due consideration to the effect of the boundary conditions.
Finite element simulation of lower limb injuries to the driver in minibus frontal collisions.
Shi, Liang-Liang; Lei, Chen; Li, Kui; Fu, Shuo-Zhen; Wu, Zheng-Wei; Yin, Zhi-Yong
2016-06-01
This study aims to explore the biomechanical mechanism of lower limb injuries to the driver by establishing a finite element (FE) simulation model of collisions. First a minibus FE model was integrated with a seat belt system. Then it was used to rebuild two collisions together with the total human model for safety (THUMS) provided by Toyota Motor Corporation: a rear-end collision between a minibus and a truck and a head-on collision of a minibus to a rigid wall. The impact velocities of both collisions were set at 56 km/h. The vehicle dynamic response, vehicle deceleration, and dashboard intrusion in the two collisions were compared. In the minibus rear-end truck collision, the peak values of the von Mises equivalent stress at the tibia and the femur were 133 MPa and 126 MPa respectively; while in the minibus head-on rigid wall collision, the data were 139 MPa and 99 MPa. Compared with the minibus head-on rigid wall collision, the vehicle deceleration was smaller and the dashboard intrusion was larger in the minibus rear-end truck collision. The results illustrate that a longer dashboard incursion distance corresponds to a higher von Mises equivalent stress at the femur. The simulation results are consistent with the driver's autopsy report on lower limbs injuries. These findings verify that FE simulation method is reliable and useful to analyze the mechanisms of lower limb injuries to the driver in minibus frontal collisions.
FE-Analysis of Stretch-Blow Moulded Bottles Using an Integrative Process Simulation
NASA Astrophysics Data System (ADS)
Hopmann, C.; Michaeli, W.; Rasche, S.
2011-05-01
The two-stage stretch-blow moulding process has been established for the large scale production of high quality PET containers with excellent mechanical and optical properties. The total production costs of a bottle are significantly caused by the material costs. Due to this dominant share of the bottle material, the PET industry is interested in reducing the total production costs by an optimised material efficiency. However, a reduced material inventory means decreasing wall thicknesses and therewith a reduction of the bottle properties (e.g. mechanical properties, barrier properties). Therefore, there is often a trade-off between a minimal bottle weight and adequate properties of the bottle. In order to achieve the objectives Computer Aided Engineering (CAE) techniques can assist the designer of new stretch-blow moulded containers. Hence, tools such as the process simulation and the structural analysis have become important in the blow moulding sector. The Institute of Plastics Processing (IKV) at RWTH Aachen University, Germany, has developed an integrative three-dimensional process simulation which models the complete path of a preform through a stretch-blow moulding machine. At first, the reheating of the preform is calculated by a thermal simulation. Afterwards, the inflation of the preform to a bottle is calculated by finite element analysis (FEA). The results of this step are e.g. the local wall thickness distribution and the local biaxial stretch ratios. Not only the material distribution but also the material properties that result from the deformation history of the polymer have significant influence on the bottle properties. Therefore, a correlation between the material properties and stretch ratios is considered in an integrative simulation approach developed at IKV. The results of the process simulation (wall thickness, stretch ratios) are transferred to a further simulation program and mapped on the bottles FE mesh. This approach allows a local determination of the material properties and thus a more accurate prediction of the bottle properties. The approach was applied both for a mechanical structural analysis and for a barrier analysis. First results point out that the approach can improve the FE analysis and might be a helpful tool for designing new stretch-blow moulded bottles.
Continuum Damage Modeling for Dynamic Fracture Toughness of Metal Matrix Composites
NASA Astrophysics Data System (ADS)
Lee, Intaek; Ochi, Yasuo; Bae, Sungin; Song, Jungil
Short fiber reinforced metal-matrix composites (MMCs) have widely adopted as structural materials and many experimental researches have been performed to study fracture toughness of it. Fracture toughness is often referred as the plane strain(maximum constraint) fracture toughness KIc determined by the well-established standard test method, such as ASTM E399. But the application for dynamic fracture toughness KId has not been popular yet, because of reliance in capturing the crack propagating time. This paper deals with dynamic fracture toughness testing and simulation using finite element method to evaluate fracture behaviors of MMCs manufactured by squeeze casting process when material combination is varied with the type of reinforcement (appearance, size), volume fraction and combination of reinforcements, and the matrix alloy. The instrumented Charphy impact test was used for KId determination and continuum damage model embedded in commercial FE program is used to investigate the dynamic fracture toughness with the influence of elasto-visco-plastic constitutive relation of quasi-brittle fracture that is typical examples of ceramics and some fibre reinforced composites. With Compared results between experimental method and FE simulation, the determination process for KId is presented. FE simulation coupled with continuum damage model is emphasized single shot simulation can predict the dynamic fracture toughness, KId and real time evolution of that directly.
Kerckhoffs, Roy C. P.; Neal, Maxwell L.; Gu, Quan; Bassingthwaighte, James B.; Omens, Jeff H.; McCulloch, Andrew D.
2010-01-01
In this study we present a novel, robust method to couple finite element (FE) models of cardiac mechanics to systems models of the circulation (CIRC), independent of cardiac phase. For each time step through a cardiac cycle, left and right ventricular pressures were calculated using ventricular compliances from the FE and CIRC models. These pressures served as boundary conditions in the FE and CIRC models. In succeeding steps, pressures were updated to minimize cavity volume error (FE minus CIRC volume) using Newton iterations. Coupling was achieved when a predefined criterion for the volume error was satisfied. Initial conditions for the multi-scale model were obtained by replacing the FE model with a varying elastance model, which takes into account direct ventricular interactions. Applying the coupling, a novel multi-scale model of the canine cardiovascular system was developed. Global hemodynamics and regional mechanics were calculated for multiple beats in two separate simulations with a left ventricular ischemic region and pulmonary artery constriction, respectively. After the interventions, global hemodynamics changed due to direct and indirect ventricular interactions, in agreement with previously published experimental results. The coupling method allows for simulations of multiple cardiac cycles for normal and pathophysiology, encompassing levels from cell to system. PMID:17111210
Wang, Henan; Zheng, Yang; Liu, Jinghua; Jiang, Chengbao; Li, Yan
2017-02-01
The in vitro biodegradable properties and cytocompatibility of Fe-Ga alloys including Fe 81 Ga 19 , (Fe 81 Ga 19 ) 98 B 2 and (Fe 81 Ga 19 ) 99.5 (TaC) 0.5 , and pure Fe were investigated for biomedical applications. The microstructure of the alloys was characterized using X-ray diffraction spectroscopy and optical microscopy. The results showed that A2 and D0 3 phases were detected for the three types of Fe-Ga alloys, and additional Fe 2 B and TaC phases were found in the (Fe 81 Ga 19 ) 98 B 2 and (Fe 81 Ga 19 ) 99.5 (TaC) 0.5 alloys, respectively. The corrosion rates of the Fe-Ga alloys were higher than that of pure Fe, as demonstrated by both potentiodynamic polarization measurements and immersion tests in simulated body fluid. The alloying element Ga lowered the corrosion potential of the Fe matrix and made it more susceptible to corrosion. Severe pitting corrosion developed on the surface of the Fe 81 Ga 19 alloy after the addition of ternary B or TaC due to the multi-phase microstructures. The MC3T3-E1 cells exhibited good adhesion and proliferation behavior on the surfaces of the Fe-Ga alloys after culture for 4h and 24h. Copyright © 2016 Elsevier B.V. All rights reserved.
Telfer, Scott; Erdemir, Ahmet; Woodburn, James; Cavanagh, Peter R
2014-01-01
Over the past two decades finite element (FE) analysis has become a popular tool for researchers seeking to simulate the biomechanics of the healthy and diabetic foot. The primary aims of these simulations have been to improve our understanding of the foot's complicated mechanical loading in health and disease and to inform interventions designed to prevent plantar ulceration, a major complication of diabetes. This article provides a systematic review and summary of the findings from FE analysis-based computational simulations of the diabetic foot. A systematic literature search was carried out and 31 relevant articles were identified covering three primary themes: methodological aspects relevant to modelling the diabetic foot; investigations of the pathomechanics of the diabetic foot; and simulation-based design of interventions to reduce ulceration risk. Methodological studies illustrated appropriate use of FE analysis for simulation of foot mechanics, incorporating nonlinear tissue mechanics, contact and rigid body movements. FE studies of pathomechanics have provided estimates of internal soft tissue stresses, and suggest that such stresses may often be considerably larger than those measured at the plantar surface and are proportionally greater in the diabetic foot compared to controls. FE analysis allowed evaluation of insole performance and development of new insole designs, footwear and corrective surgery to effectively provide intervention strategies. The technique also presents the opportunity to simulate the effect of changes associated with the diabetic foot on non-mechanical factors such as blood supply to local tissues. While significant advancement in diabetic foot research has been made possible by the use of FE analysis, translational utility of this powerful tool for routine clinical care at the patient level requires adoption of cost-effective (both in terms of labour and computation) and reliable approaches with clear clinical validity for decision making.
Investigation on the forced response of a radial turbine under aerodynamic excitations
NASA Astrophysics Data System (ADS)
Ma, Chaochen; Huang, Zhi; Qi, Mingxu
2016-04-01
Rotor blades in a radial turbine with nozzle guide vanes typically experience harmonic aerodynamic excitations due to the rotor stator interaction. Dynamic stresses induced by the harmonic excitations can result in high cycle fatigue (HCF) of the blades. A reliable prediction method for forced response issue is essential to avoid the HCF problem. In this work, the forced response mechanisms were investigated based on a fluid structure interaction (FSI) method. Aerodynamic excitations were obtained by three-dimensional unsteady computational fluid dynamics (CFD) simulation with phase shifted periodic boundary conditions. The first two harmonic pressures were determined as the primary components of the excitation and applied to finite element (FE) model to conduct the computational structural dynamics (CSD) simulation. The computed results from the harmonic forced response analysis show good agreement with the predictions of Singh's advanced frequency evaluation (SAFE) diagram. Moreover, the mode superposition method used in FE simulation offers an efficient way to provide quantitative assessments of mode response levels and resonant strength.
Origin of Ferrimagnetism and Ferroelectricity in Room-Temperature Multiferroic ɛ -Fe2O3
NASA Astrophysics Data System (ADS)
Xu, K.; Feng, J. S.; Liu, Z. P.; Xiang, H. J.
2018-04-01
Exploring and identifying room-temperature multiferroics is critical for developing better nonvolatile random-access memory devices. Recently, ɛ -Fe2O3 was found to be a promising room-temperature multiferroic with a large polarization and magnetization. However, the origin of the multiferroicity in ɛ -Fe2O3 is still puzzling. In this work, we perform density-functional-theory calculations to reveal that the spin frustration between tetrahedral-site Fe3 + spins gives rise to the unexpected ferrimagnetism. For the ferroelectricity, we identify a low-energy polarization switching path with an energy barrier of 85 meV /f .u . by performing a stochastic surface walking simulation. The switching of the ferroelectric polarization is achieved by swapping the tetrahedral Fe ion with the octahedral Fe ion, different from the usual case (e.g., in BaTiO3 and BiFeO3 ) where the coordination number remains unchanged after the switching. Our results not only confirm that ɛ -Fe2O3 is a promising room-temperature multiferroic but also provide guiding principles to design high-performance multiferroics.
Li, Zi-Xiang; Wang, Fa; Yao, Hong; ...
2016-04-30
Monolayer FeSe films grown on SrTiO 3 (STO) substrate show superconducting gap-opening temperatures (T c) which are almost an order of magnitude higher than those of the bulk FeSe and are highest among all known Fe-based superconductors. Angle-resolved photoemission spectroscopy observed “replica bands” suggesting the importance of the interaction between FeSe electrons and STO phonons. These facts rejuvenated the quest for T c enhancement mechanisms in iron-based, especially iron-chalcogenide, superconductors. Here, we perform the first numerically-exact sign-problem-free quantum Monte Carlo simulations to iron-based superconductors. We (1) study the electronic pairing mechanism intrinsic to heavily electron doped FeSe films, and (2)more » examine the effects of electron–phonon interaction between FeSe and STO as well as nematic fluctuations on T c. Armed with these results, we return to the question “what makes the T c of monolayer FeSe on SrTiO 3 so high?” in the conclusion and discussions.« less
Removal of Cr(VI) from groundwater by Fe(0)
NASA Astrophysics Data System (ADS)
Gao, Yanjiao; Liu, Rui
2017-11-01
This research was conducted to investigate the treatment of hexavalent chromium (Cr(VI)) by iron powder (Fe(0)) columns of simulated permeable reactive barriers with and without calcium carbonate (CaCO3). Two columns filled with Fe(0) were used as Cr(VI) removal equipment running at a flow velocity of 10 ml/min at room temperature. After 200 days running of the two columns, the results showed that Fe(0) was an effective material for Cr(VI) reduction with an average removal rate of above 84.6%. The performance of Column 2 with CaCO3 was better than Column 1 without CaCO3 in terms of average Cr(VI) removal rate. The presence of CaCO3 buffered the increasing pH caused by Fe(0) corrosion in Column 2 and enhanced the removal rate of Column 2. Scanning Electron Microscopy (SEM) images of Fe(0) in the three stages of running of the two columns illustrated that the coat layer of Column 1 was a little thicker than that of Column 2. Energy-dispersive spectrometry (EDS) results showed that the surface of Fe(0) of Column 2 contained more chromium elements. Raman spectroscopy found that all iron oxide was generated on the Fe(0) surface of Column 1 and Column 2 and chromium class objects were only detected on Fe(0) surface in Column 2.
NASA Technical Reports Server (NTRS)
Padovan, J.; Adams, M.; Lam, P.; Fertis, D.; Zeid, I.
1982-01-01
Second-year efforts within a three-year study to develop and extend finite element (FE) methodology to efficiently handle the transient/steady state response of rotor-bearing-stator structure associated with gas turbine engines are outlined. The two main areas aim at (1) implanting the squeeze film damper element into a general purpose FE code for testing and evaluation; and (2) determining the numerical characteristics of the FE-generated rotor-bearing-stator simulation scheme. The governing FE field equations are set out and the solution methodology is presented. The choice of ADINA as the general-purpose FE code is explained, and the numerical operational characteristics of the direct integration approach of FE-generated rotor-bearing-stator simulations is determined, including benchmarking, comparison of explicit vs. implicit methodologies of direct integration, and demonstration problems.
Dumas, Thomas; Guillaumont, Dominique; Fillaux, Clara; Scheinost, Andreas; Moisy, Philippe; Petit, Sébastien; Shuh, David K; Tyliszczak, Tolek; Den Auwer, Christophe
2016-01-28
The electronic properties of actinide cations are of fundamental interest to describe intramolecular interactions and chemical bonding in the context of nuclear waste reprocessing or direct storage. The 5f and 6d orbitals are the first partially or totally vacant states in these elements, and the nature of the actinide ligand bonds is related to their ability to overlap with ligand orbitals. Because of its chemical and orbital selectivities, X-ray absorption spectroscopy (XAS) is an effective probe of actinide species frontier orbitals and for understanding actinide cation reactivity toward chelating ligands. The soft X-ray probes of the light elements provide better resolution than actinide L3-edges to obtain electronic information from the ligand. Thus coupling simulations to experimental soft X-ray spectral measurements and complementary quantum chemical calculations yields quantitative information on chemical bonding. In this study, soft X-ray XAS at the K-edges of C and N, and the L2,3-edges of Fe was used to investigate the electronic structures of the well-known ferrocyanide complexes K4Fe(II)(CN)6, thorium hexacyanoferrate Th(IV)Fe(II)(CN)6, and neodymium hexacyanoferrate KNd(III)Fe(II)(CN)6. The soft X-ray spectra were simulated based on quantum chemical calculations. Our results highlight the orbital overlapping effects and atomic effective charges in the Fe(II)(CN)6 building block. In addition to providing a detailed description of the electronic structure of the ferrocyanide complex (K4Fe(II)(CN)6), the results strongly contribute to confirming the actinide 5f and 6d orbital oddity in comparison to lanthanide 4f and 5d.
Dumas, Thomas; Guillaumont, Dominique; Fillaux, Clara; ...
2016-01-01
The electronic properties of actinide cations are of fundamental interest to describe intramolecular interactions and chemical bonding in the context of nuclear waste reprocessing or direct storage. The 5f and 6d orbitals are the first partially or totally vacant states in these elements, and the nature of the actinide ligand bonds is related to their ability to overlap with ligand orbitals. Because of its chemical and orbital selectivities, X-ray absorption spectroscopy (XAS) is an effective probe of actinide species frontier orbitals and for understanding actinide cation reactivity toward chelating ligands. The soft X-ray probes of the light elements provide bettermore » resolution than actinide L 3 -edges to obtain electronic information from the ligand. Thus coupling simulations to experimental soft X-ray spectral measurements and complementary quantum chemical calculations yields quantitative information on chemical bonding. In this study, soft X-ray XAS at the K-edges of C and N, and the L 2,3 -edges of Fe was used to investigate the electronic structures of the well-known ferrocyanide complexes K 4 Fe II (CN) 6 , thorium hexacyanoferrate Th IV Fe II (CN) 6 , and neodymium hexacyanoferrate KNd III Fe II (CN) 6 . The soft X-ray spectra were simulated based on quantum chemical calculations. Our results highlight the orbital overlapping effects and atomic effective charges in the Fe II (CN) 6 building block. In addition to providing a detailed description of the electronic structure of the ferrocyanide complex (K 4 Fe II (CN) 6 ), the results strongly contribute to confirming the actinide 5f and 6d orbital oddity in comparison to lanthanide 4f and 5d.« less
Exchange Interactions on the Highest-Spin Reported Molecule: the Mixed-Valence Fe42 Complex
NASA Astrophysics Data System (ADS)
Aravena, Daniel; Venegas-Yazigi, Diego; Ruiz, Eliseo
2016-04-01
The finding of high-spin molecules that could behave as conventional magnets has been one of the main challenges in Molecular Magnetism. Here, the exchange interactions, present in the highest-spin molecule published in the literature, Fe42, have been analysed using theoretical methods based on Density Functional Theory. The system with a total spin value S = 45 is formed by 42 iron centres containing 18 high-spin FeIII ferromagnetically coupled and 24 diamagnetic low-spin FeII ions. The bridging ligands between the two paramagnetic centres are two cyanide ligands coordinated to the diamagnetic FeII cations. Calculations were performed using either small Fe4 or Fe3 models or the whole Fe42 complex, showing the presence of two different ferromagnetic couplings between the paramagnetic FeIII centres. Finally, Quantum Monte Carlo simulations for the whole system were carried out in order to compare the experimental and simulated magnetic susceptibility curves from the calculated exchange coupling constants with the experimental one. This comparison allows for the evaluation of the accuracy of different exchange-correlation functionals to reproduce such magnetic properties.
A voxel-based finite element model for the prediction of bladder deformation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chai Xiangfei; Herk, Marcel van; Hulshof, Maarten C. C. M.
2012-01-15
Purpose: A finite element (FE) bladder model was previously developed to predict bladder deformation caused by bladder filling change. However, two factors prevent a wide application of FE models: (1) the labor required to construct a FE model with high quality mesh and (2) long computation time needed to construct the FE model and solve the FE equations. In this work, we address these issues by constructing a low-resolution voxel-based FE bladder model directly from the binary segmentation images and compare the accuracy and computational efficiency of the voxel-based model used to simulate bladder deformation with those of a classicalmore » FE model with a tetrahedral mesh. Methods: For ten healthy volunteers, a series of MRI scans of the pelvic region was recorded at regular intervals of 10 min over 1 h. For this series of scans, the bladder volume gradually increased while rectal volume remained constant. All pelvic structures were defined from a reference image for each volunteer, including bladder wall, small bowel, prostate (male), uterus (female), rectum, pelvic bone, spine, and the rest of the body. Four separate FE models were constructed from these structures: one with a tetrahedral mesh (used in previous study), one with a uniform hexahedral mesh, one with a nonuniform hexahedral mesh, and one with a low-resolution nonuniform hexahedral mesh. Appropriate material properties were assigned to all structures and uniform pressure was applied to the inner bladder wall to simulate bladder deformation from urine inflow. Performance of the hexahedral meshes was evaluated against the performance of the standard tetrahedral mesh by comparing the accuracy of bladder shape prediction and computational efficiency. Results: FE model with a hexahedral mesh can be quickly and automatically constructed. No substantial differences were observed between the simulation results of the tetrahedral mesh and hexahedral meshes (<1% difference in mean dice similarity coefficient to manual contours and <0.02 cm difference in mean standard deviation of residual errors). The average equation solving time (without manual intervention) for the first two types of hexahedral meshes increased to 2.3 h and 2.6 h compared to the 1.1 h needed for the tetrahedral mesh, however, the low-resolution nonuniform hexahedral mesh dramatically decreased the equation solving time to 3 min without reducing accuracy. Conclusions: Voxel-based mesh generation allows fast, automatic, and robust creation of finite element bladder models directly from binary segmentation images without user intervention. Even the low-resolution voxel-based hexahedral mesh yields comparable accuracy in bladder shape prediction and more than 20 times faster in computational speed compared to the tetrahedral mesh. This approach makes it more feasible and accessible to apply FE method to model bladder deformation in adaptive radiotherapy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shadid, John Nicolas; Lin, Paul Tinphone
2009-01-01
This preliminary study considers the scaling and performance of a finite element (FE) semiconductor device simulator on a capacity cluster with 272 compute nodes based on a homogeneous multicore node architecture utilizing 16 cores. The inter-node communication backbone for this Tri-Lab Linux Capacity Cluster (TLCC) machine is comprised of an InfiniBand interconnect. The nonuniform memory access (NUMA) nodes consist of 2.2 GHz quad socket/quad core AMD Opteron processors. The performance results for this study are obtained with a FE semiconductor device simulation code (Charon) that is based on a fully-coupled Newton-Krylov solver with domain decomposition and multilevel preconditioners. Scaling andmore » multicore performance results are presented for large-scale problems of 100+ million unknowns on up to 4096 cores. A parallel scaling comparison is also presented with the Cray XT3/4 Red Storm capability platform. The results indicate that an MPI-only programming model for utilizing the multicore nodes is reasonably efficient on all 16 cores per compute node. However, the results also indicated that the multilevel preconditioner, which is critical for large-scale capability type simulations, scales better on the Red Storm machine than the TLCC machine.« less
A data-driven dynamics simulation framework for railway vehicles
NASA Astrophysics Data System (ADS)
Nie, Yinyu; Tang, Zhao; Liu, Fengjia; Chang, Jian; Zhang, Jianjun
2018-03-01
The finite element (FE) method is essential for simulating vehicle dynamics with fine details, especially for train crash simulations. However, factors such as the complexity of meshes and the distortion involved in a large deformation would undermine its calculation efficiency. An alternative method, the multi-body (MB) dynamics simulation provides satisfying time efficiency but limited accuracy when highly nonlinear dynamic process is involved. To maintain the advantages of both methods, this paper proposes a data-driven simulation framework for dynamics simulation of railway vehicles. This framework uses machine learning techniques to extract nonlinear features from training data generated by FE simulations so that specific mesh structures can be formulated by a surrogate element (or surrogate elements) to replace the original mechanical elements, and the dynamics simulation can be implemented by co-simulation with the surrogate element(s) embedded into a MB model. This framework consists of a series of techniques including data collection, feature extraction, training data sampling, surrogate element building, and model evaluation and selection. To verify the feasibility of this framework, we present two case studies, a vertical dynamics simulation and a longitudinal dynamics simulation, based on co-simulation with MATLAB/Simulink and Simpack, and a further comparison with a popular data-driven model (the Kriging model) is provided. The simulation result shows that using the legendre polynomial regression model in building surrogate elements can largely cut down the simulation time without sacrifice in accuracy.
Wang, Shaofeng; Ma, Xu; Zhang, Guoqing; Jia, Yongfeng; Hatada, Keisuke
2016-11-15
Hydrous ferric arsenate (HFA) is an important arsenic-bearing precipitate in the mining-impacted environment and hydrometallurgical tailings. However, there is no agreement on its local atomic structure. The local structure of HFA was reprobed by employing a full-potential multiple scattering (FPMS) analysis, density functional theory (DFT) calculations, and vibrational spectroscopy. The FPMS simulations indicated that the coordination number of the As-Fe, Fe-As, or both in HFA was approximately two. The DFT calculations constructed a structure of HFA with the formula of Fe(HAsO 4 ) x (H 2 AsO 4 ) 1-x (OH) y ·zH 2 O. The presence of protonated arsenate in HFA was also evidenced by vibrational spectroscopy. The As and Fe K-edge X-ray absorption near-edge structure spectra of HFA were accurately reproduced by FPMS simulations using the chain structure, which was also a reasonable model for extended X-Ray absorption fine structure fitting. The FPMS refinements indicated that the interatomic Fe-Fe distance was approximately 5.2 Å, consistent with that obtained by Mikutta et al. (Environ. Sci. Technol. 2013, 47 (7), 3122-3131) using wavelet analysis. All of the results suggested that HFA was more likely to occur as a chain with AsO 4 tetrahedra and FeO 6 octahedra connecting alternately in an isolated bidentate-type fashion. This finding is of significance for understanding the fate of arsenic and the formation of ferric arsenate minerals in an acidic environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patra, Anirban; Tome, Carlos
This Milestone report shows good progress in interfacing VPSC with the FE codes ABAQUS and MOOSE, to perform component-level simulations of irradiation-induced deformation in Zirconium alloys. In this preliminary application, we have performed an irradiation growth simulation in the quarter geometry of a cladding tube. We have benchmarked VPSC-ABAQUS and VPSC-MOOSE predictions with VPSC-SA predictions to verify the accuracy of the VPSCFE interface. Predictions from the FE simulations are in general agreement with VPSC-SA simulations and also with experimental trends.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng Yifan, E-mail: zhengyifan@zjut.edu.c; Catalysis Institute, Zhejiang University of Technology, Hangzhou 310014; Liu Huazhang
2009-09-15
The temperature-programmed reduction process of two types of industrial ammonia-synthesis catalysts, A110 and ZA-5, which are, respectively, based on Fe{sub 3}O{sub 4} and Fe{sub 1-x}O precursors, were studied by in situ X-ray power diffraction (XRD). It has been found that the ZA-5 has lower reduction temperature and faster reduction rate, and its active phase alpha-Fe possesses a higher value of lattice microstrain than A110. The simulation based on Rietveld refinement has also shown that the shape of alpha-Fe grain of ZA-5 has a mixed shape of cube and sphere with more exposing (111) and (211) planes, while that of A110more » looks like a concave cube with more exposing (110) planes. Based on the results obtained, a growth model of alpha-Fe during the reduction of Fe{sub 3}O{sub 4}- and Fe{sub 1-x}O-based ammonia-synthesis catalysts is proposed, and the origins for the activity difference has been also discussed. - Graphical Abstract: A proposed growth model of active phase alpha-Fe during reduction. Due to H{sub 2} diffusing easily into the pores, reduction starts on outside and inside surface simultaneously to form 'microcrystalline film', and the particles shrink during reduction which results in breaking of the aggregated oxide particle.« less
Mechanism-Based FE Simulation of Tool Wear in Diamond Drilling of SiCp/Al Composites.
Xiang, Junfeng; Pang, Siqin; Xie, Lijing; Gao, Feinong; Hu, Xin; Yi, Jie; Hu, Fang
2018-02-07
The aim of this work is to analyze the micro mechanisms underlying the wear of macroscale tools during diamond machining of SiC p /Al6063 composites and to develop the mechanism-based diamond wear model in relation to the dominant wear behaviors. During drilling, high volume fraction SiC p /Al6063 composites containing Cu, the dominant wear mechanisms of diamond tool involve thermodynamically activated physicochemical wear due to diamond-graphite transformation catalyzed by Cu in air atmosphere and mechanically driven abrasive wear due to high-frequency scrape of hard SiC reinforcement on tool surface. An analytical diamond wear model, coupling Usui abrasive wear model and Arrhenius extended graphitization wear model was proposed and implemented through a user-defined subroutine for tool wear estimates. Tool wear estimate in diamond drilling of SiC p /Al6063 composites was achieved by incorporating the combined abrasive-chemical tool wear subroutine into the coupled thermomechanical FE model of 3D drilling. The developed drilling FE model for reproducing diamond tool wear was validated for feasibility and reliability by comparing numerically simulated tool wear morphology and experimentally observed results after drilling a hole using brazed polycrystalline diamond (PCD) and chemical vapor deposition (CVD) diamond coated tools. A fairly good agreement of experimental and simulated results in cutting forces, chip and tool wear morphologies demonstrates that the developed 3D drilling FE model, combined with a subroutine for diamond tool wear estimate can provide a more accurate analysis not only in cutting forces and chip shape but also in tool wear behavior during drilling SiC p /Al6063 composites. Once validated and calibrated, the developed diamond tool wear model in conjunction with other machining FE models can be easily extended to the investigation of tool wear evolution with various diamond tool geometries and other machining processes in cutting different workpiece materials.
Mechanism-Based FE Simulation of Tool Wear in Diamond Drilling of SiCp/Al Composites
Xiang, Junfeng; Pang, Siqin; Xie, Lijing; Gao, Feinong; Hu, Xin; Yi, Jie; Hu, Fang
2018-01-01
The aim of this work is to analyze the micro mechanisms underlying the wear of macroscale tools during diamond machining of SiCp/Al6063 composites and to develop the mechanism-based diamond wear model in relation to the dominant wear behaviors. During drilling, high volume fraction SiCp/Al6063 composites containing Cu, the dominant wear mechanisms of diamond tool involve thermodynamically activated physicochemical wear due to diamond-graphite transformation catalyzed by Cu in air atmosphere and mechanically driven abrasive wear due to high-frequency scrape of hard SiC reinforcement on tool surface. An analytical diamond wear model, coupling Usui abrasive wear model and Arrhenius extended graphitization wear model was proposed and implemented through a user-defined subroutine for tool wear estimates. Tool wear estimate in diamond drilling of SiCp/Al6063 composites was achieved by incorporating the combined abrasive-chemical tool wear subroutine into the coupled thermomechanical FE model of 3D drilling. The developed drilling FE model for reproducing diamond tool wear was validated for feasibility and reliability by comparing numerically simulated tool wear morphology and experimentally observed results after drilling a hole using brazed polycrystalline diamond (PCD) and chemical vapor deposition (CVD) diamond coated tools. A fairly good agreement of experimental and simulated results in cutting forces, chip and tool wear morphologies demonstrates that the developed 3D drilling FE model, combined with a subroutine for diamond tool wear estimate can provide a more accurate analysis not only in cutting forces and chip shape but also in tool wear behavior during drilling SiCp/Al6063 composites. Once validated and calibrated, the developed diamond tool wear model in conjunction with other machining FE models can be easily extended to the investigation of tool wear evolution with various diamond tool geometries and other machining processes in cutting different workpiece materials. PMID:29414839
NASA Astrophysics Data System (ADS)
Ravindran, P.; Vidya, R.; Fjellvåg, H.; Kjekshus, A.
2008-04-01
Recently, using density-functional theoretical calculations, we have reported [Phys. Rev. B 74, 054422 (2006)] that formal Fe3+ ions reside at the square-pyramidal site and Fe4+ ions in the octahedral site in Sr4Fe4O11 . Based on the interpretation of experimental structural and Mössbauer data from the literature, Adler concludes that our previous first-principles results disagree with experiments on the assignment of oxidation states to Fe in the square-pyramidal and octahedral environments in Sr4Fe4O11 . From a critical examination of the structure data for Sr4Fe4O11 and related oxides with Fe in different oxidation states and theoretically simulated Mössbauer parameters (hyperfine field, isomer shift, and quadrupole splitting), here we show that information on charges residing on the different constituents cannot be directly derived either from experimental structure or Mössbauer data. From additional analyses of the chemical bonding on the basis of charge density, charge transfer, electron localization function, crystal orbital Hamilton population, Born effective charge, and partial density of states, we substantiate our previous assignment of formal Fe3+ and Fe4+ to the square-pyramidal and octahedral sites, respectively, in Sr4Fe4O11 .
NASA Astrophysics Data System (ADS)
Zhong, Xin; Frehner, Marcel; Zappone, Alba; Kunze, Karsten
2014-05-01
We present a combined experimental and numerical study on Finero Peridotite to investigate the major factors creating its seismic anisotropy. We extrapolate the ultrasonic seismic wave velocity measured in a hydrostatic pressure vessel to 0 MPa and 250 MPa confining pressure to compare with numerical simulations at atmospheric pressure and to restore the velocity at in-situ lower crustal conditions, respectively. A linear relation between confining pressure and seismic velocity above 80 MPa reveals the intrinsic mechanical property of the bulk rock without the interference of cracks. To visualize the crystallographic preferred orientation (CPO) we use the electron backscatter diffraction (EBSD) method and create crystallographic orientation maps and pole figures. The first also reveals the shape preferred orientation (SPO). We found that very weak CPO but significant SPO exist in most of the peridotite. The Voigt and Reuss bounds as well as the Hill average (VRH) are calculated from EBSD data to visualize seismic velocity and to calculate anisotropy in the form of velocity pole figures. We perform finite element (FE) simulations of wave propagation on the EBSD crystallographic orientation maps to calculate the effective wave velocity at different propagation angles, hence estimate the anisotropy numerically. In fracture-free models the FE simulation results agree well with the Hill average. In one case of a sample containing fractures the FE simulation yields similar minimal velocity as the laboratory measurement, which lies outside the VR bounds. This is a warning that care has to be taken when using VRH averages in fractured rocks. All three velocity estimates (hydrostatic pressure vessel, VRH average, and FE simulation) result in equally weak seismic anisotropy. This is mainly the consequence of weak CPO. Although SPO is significantly stronger it has minor influence on anisotropy. Hydrous minerals influence the seismic anisotropy only when their modal composition is large enough to allow waves to propagate preferentially through them. Unlike hornblende, phlogopite is not proven to be a major source for the seismic anisotropy due to its small modal composition. Seismic velocity is also influenced by the source frequency distribution. A lower-frequency source in the FE simulations results in lower effective velocity regardless of sample orientation. The frequency spectrum of the propagating wave is modified from source to receiver due to scattering at the mineral grains, thus leading to effective negative attenuation factors peaked at around 1-3 MHz depending on the source spectrum. However, compared with other factors, such as CPO, SPO, fractures, or hydrous mineral phases, the effect of the source frequency distribution is minor, but may be influential when extrapolated to seismic frequencies (Hz-kHz). This study provides a comprehensive method combining laboratory measurements, EBSD data, and numerical simulations to estimate seismic anisotropy. Future work may focus on modeling the influence of different pore fluids or more complex fracture geometries on seismic velocity and anisotropy. Acknowledgements This work was supported by the Swiss National Science Foundation (project UPseis, 200021_143319).
Thermal stability comparison of nanocrystalline Fe-based binary alloy pairs
Clark, Blythe G.; Hattar, Khalid Mikhiel; Marshall, Michael Thomas; ...
2016-03-24
Here, the widely recognized property improvements of nanocrystalline (NC) materials have generated significant interest, yet have been difficult to realize in engineering applications due to the propensity for grain growth in these interface-dense systems. While traditional pathways to thermal stabilization can slow the mobility of grain boundaries, recent theories suggest that solute segregation in NC alloy can reduce the grain boundary energy such that thermodynamic stabilization is achieved. Following the predictions of Murdock et al., here we compare for the first time the thermal stability of a predicted NC stable alloy (Fe-10at.% Mg) with a predicted non-NC stable alloy (Fe-10at.%more » Cu) using the same processing and characterization methodologies. Results indicate improved thermal stability of the Fe-Mg alloy in comparison to the Fe-Cu, and observed microstructures are consistent with those predicted by Monte Carlo simulations.« less
NASA Astrophysics Data System (ADS)
Sun, R. X.; Deng, Z. G.; Gou, Y. F.; Li, Y. J.; Zheng, J.; Wang, S. Y.; Wang, J. S.
2015-09-01
Permanent magnet guideway (PMG) is an indispensable part of high temperature superconducting (HTS) Maglev systems. Present PMGs are made of NdFeB magnets with excellent performance and cost much. As another permanent magnet material, the ferrite magnet is weak at magnetic energy product and coercive force, but inexpensive. So, it is a possible way to integrate the ferrite and NdFeB magnets for cutting down the cost of present PMGs. In the paper, the equivalent on magnetic field intensity between ferrite magnets and NdFeB magnets was evaluated by finite element simulation. According to the calculation results, the magnetic field of the PMG integrating ferrite magnets and NdFeB magnets can be increased remarkably comparing with the pure ferrite PMG. It indicates that low-cost PMG designs by integrating the two permanent magnet materials are feasible for the practical HTS Maglev system.
Investigation on demagnetization of Nd2Fe14B permanent magnets induced by irradiation
NASA Astrophysics Data System (ADS)
Li, Zhefu; Jia, Yanyan; Liu, Renduo; Xu, Yuhai; Wang, Guanghong; Xia, Xiaobin
2017-12-01
Nd2Fe14B is an important component of insertion devices, which are used in synchrotron radiation sources, and could be demagnetized by irradiation. In the present study, the Monte Carlo code FLUKA was used to analyze the irradiation field of Nd2Fe14B, and it was confirmed that the main demagnetization particle was neutron. Nd2Fe14B permanent magnet samples were irradiated by Ar ions at different doses to simulate neutron irradiation damage. The hysteresis loops were measured using a vibrating sample magnetometer, and the microstructure evolutions were characterized by transmission electron microscopy. Moreover, the relationship between them was discussed. The results indicate that the decrease in saturated magnetization is caused by the changes in microstructure. The evolution of single crystals into an amorphous structure is the reason for the demagnetization phenomenon of Nd2Fe14B permanent magnets when considering its microscopic structure.
Investigation of iron spin crossover pressure in Fe-bearing MgO using hybrid functional
NASA Astrophysics Data System (ADS)
Cheng, Ya; Wang, Xianlong; Zhang, Jie; Yang, Kaishuai; Zhang, Chuanguo; Zeng, Zhi; Lin, Haiqin
2018-04-01
Pressure-induced spin crossover behaviors of Fe-bearing MgO were widely investigated by using an LDA + U functional for describing the strongly correlated Fe–O bonding. Moreover, the simulated spin crossover pressures depend on the applied U values, which are sensitive to environments and parameters. In this work, the spin crossover pressures of (Mg1‑x ,Fe x )O are investigated by using the hybrid functional with a uniform parameter. Our results indicate that the spin crossover pressures increase with increasing iron concentration. For example, the spin crossover pressure of (Mg0.03125,Fe0.96875)O and FeO was 56 GPa and 127 GPa, respectively. The calculated crossover pressures agreed well with the experimental observations. Therefore, the hybrid functional should be an effective method for describing the pressure-induced spin crossover behaviors in transition metal oxides.
Mustafa, Yasmen A; Jaid, Ghydaa M; Alwared, Abeer I; Ebrahim, Mothana
2014-06-01
The application of advanced oxidation process (AOP) in the treatment of wastewater contaminated with oil was investigated in this study. The AOP investigated is the homogeneous photo-Fenton (UV/H2O2/Fe(+2)) process. The reaction is influenced by the input concentration of hydrogen peroxide H2O2, amount of the iron catalyst Fe(+2), pH, temperature, irradiation time, and concentration of oil in the wastewater. The removal efficiency for the used system at the optimal operational parameters (H2O2 = 400 mg/L, Fe(+2) = 40 mg/L, pH = 3, irradiation time = 150 min, and temperature = 30 °C) for 1,000 mg/L oil load was found to be 72%. The study examined the implementation of artificial neural network (ANN) for the prediction and simulation of oil degradation in aqueous solution by photo-Fenton process. The multilayered feed-forward networks were trained by using a backpropagation algorithm; a three-layer network with 22 neurons in the hidden layer gave optimal results. The results show that the ANN model can predict the experimental results with high correlation coefficient (R (2) = 0.9949). The sensitivity analysis showed that all studied variables (H2O2, Fe(+2), pH, irradiation time, temperature, and oil concentration) have strong effect on the oil degradation. The pH was found to be the most influential parameter with relative importance of 20.6%.
NASA Astrophysics Data System (ADS)
Švancara, P.; Horáček, J.; Švec, J. G.
The study presents a three-dimensional (3D) finite element (FE) model of the flow-induced self-oscillation of the human vocal folds in interaction with acoustics of simplified vocal tract models. The 3D vocal tract models of the acoustic spaces shaped for simulation of phonation of Czech vowels [a:], [i:] and [u:] were created by converting the data from the magnetic resonance images (MRI). For modelling of the fluid-structure interaction, explicit coupling scheme with separated solvers for fluid and structure domain was utilized. The FE model comprises vocal folds pretension before starting phonation, large deformations of the vocal fold tissue, vocal-fold collisions, fluid-structure interaction, morphing the fluid mesh according to the vocal-fold motion (Arbitrary Lagrangian-Eulerian approach), unsteady viscous compressible airflow described by the Navier-Stokes equations and airflow separation. The developed FE model enables to study the relationship between flow-induced vibrations of the vocal folds and acoustic wave propagation in the vocal tract and can also be used to simulate for example pathological changes in the vocal fold tissue and their influence on the voice production.
Effect of applied strain on phase separation of Fe-28 at.% Cr alloy: 3D phase-field simulation
NASA Astrophysics Data System (ADS)
Zhu, Lihui; Li, Yongsheng; Liu, Chengwei; Chen, Shi; Shi, Shujing; Jin, Shengshun
2018-04-01
A quantitative simulation of the separation of the α‧ phase in Fe-28 at.% Cr alloy under the effects of applied strain is performed by utilizing a three-dimensional phase-field model. The elongation of the Cr-enriched α‧ phase becomes obvious with the influence of applied uniaxial strain for the phase separation transforms from spinodal decomposition of 700 K to nucleation and growth of 773 K. The applied strain shows a significant influence on the early stage phase separation, and the influence is enlarged with the elevated temperature. The steady-state coarsening with the mechanism of spinodal decomposition is substantially affected by the applied strain for low-temperature aging, while the influence is reduced as the temperature increases and as the phase separation mechanism changes to nucleation and growth. The peak value of particle size distribution decreases, and the PSD for 773 K becomes more widely influenced by the applied strain. The simulation results of separation of the Cr-enriched α‧ phase with the applied strain provide a further understanding of the strain effect on the phase separation of Fe-Cr alloys from the metastable region to spinodal regions.
Metal organic frameworks (MOFs) for degradation of nerve agent simulant parathion
USDA-ARS?s Scientific Manuscript database
Parathion, a simulant of nerve agent VX, has been studied for degradation on Fe3+, Fe2+ and zerovalent iron supported on chitosan. Chitosan, a naturally occurring biopolymer derivative of chitin, is a very good adsorbent for many chemicals including metals. Chitosan is used as supporting biopolymer ...
Metal organic frameworks (MOFs) for degrdation of nerve agent simulant parathion
USDA-ARS?s Scientific Manuscript database
Parathion, a simulant of nerve agent VX, has been studied for degradation on Fe3+, Fe2+ and zerovalent iron supported on chitosan. Chitosan, a naturally occurring biopolymer derivative of chitin, is a very good adsorbent for many chemicals including metals. Chitosan is used as supporting biopolymer ...
Fabrication and photocatalytic property of magnetic NiFe2O4/Cu2O composites
NASA Astrophysics Data System (ADS)
He, Zuming; Xia, Yongmei; Tang, Bin; Su, Jiangbin
2017-09-01
Magnetically separable NiFe2O4/Cu2O composites were successfully synthesized by a two-step method. The samples were characterized by XRD, XPS, SEM and VSM as well as their PL spectra and UV-vis adsorption spectra. The results showed that the NiFe2O4/Cu2O composites were composed of cubic-structured Cu2O and spinel-structured NiFe2O4, were able to absorb a large amount of visible light, exhibited excellent photocatalytic activity under simulated solar light irradiation and could be easily separated by an external magnetic field. The NiFe2O4/Cu2O composites exhibited higher photocatalytic performance than that of a single semiconductor. It was found that the prominently enhanced photocatalytic performance of NiFe2O4/Cu2O composites was ascribed to the effective separation of photo-generated electron-hole pairs and the effective generation of the hydroxyl radical •OH.
Bitter, T; Khan, I; Marriott, T; Schreurs, B W; Verdonschot, N; Janssen, D
2016-03-01
The modular taper junction in total hip replacements has been implicated as a possible source of wear. The finite-element (FE) method can be used to study the wear potential at the taper junction. For such simulations it is important to implement representative contact parameters, in order to achieve accurate results. One of the main parameters in FE simulations is the coefficient of friction. However, in current literature, there is quite a wide spread in coefficient of friction values (0.15 - 0.8), which has a significant effect on the outcome of the FE simulations. Therefore, to obtain more accurate results, one should use a coefficient of friction that is determined for the specific material couple being analyzed. In this study, the static coefficient of friction was determined for two types of titanium-on-titanium stem-adaptor couples, using actual cut-outs of the final implants, to ensure that the coefficient of friction was determined consistently for the actual implant material and surface finish characteristics. Two types of tapers were examined, Biomet type-1 and 12/14, where type-1 has a polished surface finish and the 12/14 is a microgrooved system. We found static coefficients of friction of 0.19 and 0.29 for the 12/14 and type-1 stem-adaptor couples, respectively.
Strbac, V; Pierce, D M; Vander Sloten, J; Famaey, N
2017-12-01
Finite element (FE) simulations are increasingly valuable in assessing and improving the performance of biomedical devices and procedures. Due to high computational demands such simulations may become difficult or even infeasible, especially when considering nearly incompressible and anisotropic material models prevalent in analyses of soft tissues. Implementations of GPGPU-based explicit FEs predominantly cover isotropic materials, e.g. the neo-Hookean model. To elucidate the computational expense of anisotropic materials, we implement the Gasser-Ogden-Holzapfel dispersed, fiber-reinforced model and compare solution times against the neo-Hookean model. Implementations of GPGPU-based explicit FEs conventionally rely on single-point (under) integration. To elucidate the expense of full and selective-reduced integration (more reliable) we implement both and compare corresponding solution times against those generated using underintegration. To better understand the advancement of hardware, we compare results generated using representative Nvidia GPGPUs from three recent generations: Fermi (C2075), Kepler (K20c), and Maxwell (GTX980). We explore scaling by solving the same boundary value problem (an extension-inflation test on a segment of human aorta) with progressively larger FE meshes. Our results demonstrate substantial improvements in simulation speeds relative to two benchmark FE codes (up to 300[Formula: see text] while maintaining accuracy), and thus open many avenues to novel applications in biomechanics and medicine.
Luo, Ying; Zhou, Zhengkun; Yue, Tianli
2017-04-15
Chitosan-coated Fe 3 O 4 particles were prepared as a magnetic adsorbent by reverse oil-in-water micro-emulsion system using Triton X-100 as the emulsifier. Coating chitosan onto the magnetic particles was confirmed by transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectra and magnetic measurements. Chitosan-coated Fe 3 O 4 adsorbent was shown to be effective for patulin adsorption with a maximum adsorption capacity of 6.67mg/g within 5h by adding 300μg adsorbents into 10mL 200μg/L patulin aqueous. In addition, the recovery rate of chitosan-coated Fe 3 O 4 adsorbent reached to 99.95% within 60min, showed its excellent recoverable performance. Moreover, in vitro cytotoxicity and acute toxicity evaluation were also conducted, the results suggested that the chitosan-coated Fe 3 O 4 adsorbent was non-cytotoxic, and had no toxic response or histopathological changes on mice. The results of this study demonstrated that chitosan-coated Fe 3 O 4 particles are promising adsorbents for patulin removal in fruit juice industry. Copyright © 2016 Elsevier Ltd. All rights reserved.
Koltsakidou, Α; Antonopoulou, M; Sykiotou, M; Εvgenidou, Ε; Konstantinou, I; Lambropoulou, D A
2017-02-01
In the present study, photo-Fenton and Fenton-like processes were investigated for the degradation and mineralization of the antineoplastic drug 5-fluorouracil (5-FU). For the optimization of photo-Fenton treatment under simulated solar light (SSL) radiation, the effects of several operating parameters (i.e., 5-FU concentration, Fe 3+ , and oxidant concentration) on the treatment efficiency were studied. According to the results, SSL/[Fe(C 2 Ο 4 ) 3 ] 3- /Η 2 Ο 2 process was the most efficient, since faster degradation of 5-FU and higher mineralization percentages were achieved. All the applied processes followed quite similar transformation routes which include defluorination-hydroxylation as well as pyrimidine ring opening, as demonstrated by the transformation products identified by high resolution mass spectrometry analysis. The toxicity of the treated solutions was evaluated using the Microtox assay. In general, low toxicity was recorded for the initial solution and the solution at the end of the photocatalytic treatment, while an increase in the overall toxicity was observed only at the first stages of SSL/Fe 3+ /Η 2 Ο 2 and SSL/Fe 3+ /S 2 O 8 2- processes.
Arsenopyrite weathering under conditions of simulated calcareous soil.
Lara, René H; Velázquez, Leticia J; Vazquez-Arenas, Jorge; Mallet, Martine; Dossot, Manuel; Labastida, Israel; Sosa-Rodríguez, Fabiola S; Espinosa-Cristóbal, León F; Escobedo-Bretado, Miguel A; Cruz, Roel
2016-02-01
Mining activities release arsenopyrite into calcareous soils where it undergoes weathering generating toxic compounds. The research evaluates the environmental impacts of these processes under semi-alkaline carbonated conditions. Electrochemical (cyclic voltammetry, chronoamperometry, EIS), spectroscopic (Raman, XPS), and microscopic (SEM, AFM, TEM) techniques are combined along with chemical analyses of leachates collected from simulated arsenopyrite weathering to comprehensively examine the interfacial mechanisms. Early oxidation stages enhance mineral reactivity through the formation of surface sulfur phases (e.g., S n (2-)/S(0)) with semiconductor properties, leading to oscillatory mineral reactivity. Subsequent steps entail the generation of intermediate siderite (FeCO3)-like, followed by the formation of low-compact mass sub-micro ferric oxyhydroxides (α, γ-FeOOH) with adsorbed arsenic (mainly As(III), and lower amounts of As(V)). In addition, weathering reactions can be influenced by accessible arsenic resulting in the formation of a symplesite (Fe3(AsO4)3)-like compound which is dependent on the amount of accessible arsenic in the system. It is proposed that arsenic release occurs via diffusion across secondary α, γ-FeOOH structures during arsenopyrite weathering. We suggest weathering mechanisms of arsenopyrite in calcareous soil and environmental implications based on experimental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imada, Shinsuke, E-mail: shinimada@stelab.nagoya-u.ac.jp; Murakami, Izumi, E-mail: murakami.izumi@nifs.ac.jp; Department of Fusion Science, SOKENDAI
2015-10-15
We have studied the chromospheric evaporation flow during the impulsive phase of the flare by using the Hinode/EUV Imaging Spectrometer observation and 1D hydrodynamic numerical simulation coupled to the time-dependent ionization. The observation clearly shows that the strong redshift can be observed at the base of the flaring loop only during the impulsive phase. We performed two different numerical simulations to reproduce the strong downflows in FeXII and FeXV during the impulsive phase. By changing the thermal conduction coefficient, we carried out the numerical calculation of chromospheric evaporation in the thermal conduction dominant regime (conductivity coefficient κ{sub 0} = classical value) andmore » the enthalpy flux dominant regime (κ{sub 0} = 0.1 × classical value). The chromospheric evaporation calculation in the enthalpy flux dominant regime could reproduce the strong redshift at the base of the flare during the impulsive phase. This result might indicate that the thermal conduction can be strongly suppressed in some cases of flare. We also find that time-dependent ionization effect is important to reproduce the strong downflows in Fe XII and Fe XV.« less
Dong, Bizhang; Hu, Jiye
2016-10-01
The aqueous photodegradation of fluopyram was investigated under UV light (λ ≥ 200 nm) and simulated sunlight irradiation (λ ≥ 290 nm). The effect of solution pH, fulvic acids (FA), nitrate (NO3 (-)), Fe (III) ions, and titanium dioxide (TiO2) on direct photolysis of fluopyram was explored. The results showed that fluopyram photodegradation was faster in neutral solution than that in acidic and alkaline solutions. The presence of FA, NO3 (-), Fe (III), and TiO2 slightly affected the photodegradation of fluopyram under UV irradiation, whereas the photodegradation rates of fluopyram with 5 mg L(-1) Fe (III) and 500 mg L(-1) TiO2 were about 7-fold and 13-fold faster than that without Fe (III) and TiO2 under simulated sunlight irradiation, respectively. Three typical products for direct photolysis of fluopyram have been isolated and characterized by liquid chromatography tandem mass spectrometry. These products resulted from the intramolecular elimination of HCl, hydroxyl-substitution, and hydrogen extraction. Based on the identified transformation products and evolution profile, a plausible degradation pathway for the direct photolysis of fluopyram in aqueous solution was proposed. In addition, acute toxicity assays using the Vibrio fischeri bacteria test indicated that the transformation products were more toxic than the parent compound.
Corrosion Behaviour in Human Stimulation Media of a High Entropy Titan-Based Alloy
NASA Astrophysics Data System (ADS)
Ghiban, B.; Popescu, G.; Lazar, C.; Rosu, L.; Constantin, I.; Olaru, M.; Carlan, B.
2018-06-01
The paper presents results on the corrosion behavior of high entropy alloys, commonly called BIOHEA in human physiological simulating media, respectively in the NaCl infusion solution and Ringer’s lactate infusion solution. Corrosion tests were performed by potendiodinamic test using AUTOLAB type potentiostat equipped with specialized corrosion software including the PGSTAT302N, BA and SCAN250 modules. Three entropy alloy systems were investigated: FeTa0.5Nb0.5Ti1.5Zr0.5 (BIOHEA 1), FeMnNb0.5TiZr0.5 (BIOHEA 3), FeTa0.5Nb0.5TiZr0.5 (BIOHEA 4), and BIOHEA alloy 2 was obtained by remelting BIOHEA 1. A comparison of the results obtained in the present tests and the data from the literature shows, on the one hand, that the global results can be compared with the different results from the literature, and, on the other hand, the results are new, in the sense that in any work there are no combinations of alloys studied here or human simulating medians used for testing. The conclusion of the experimental investigations in the present paper is the fact that regardless of the simulation test environment, all the alloys experimental alloys have similar behaviors, there is a difference between the chemical composition of the experimental alloy and the displacement of the corrosion potential values at electropositive values, decreasing of corrosion current, and corrosion rates. The experimental results allow the corrosion resistance of the investigated alloys, alloy BIOHEA 2 having the best corrosion behavior in both test media, with very low corrosion rates (respectivelly 0.067 μm/year in NaCl infusion solution, and 0.021 μm / year in Ringer’s lactate infusion solution).
The formation of magnetic silicide Fe3Si clusters during ion implantation
NASA Astrophysics Data System (ADS)
Balakirev, N.; Zhikharev, V.; Gumarov, G.
2014-05-01
A simple two-dimensional model of the formation of magnetic silicide Fe3Si clusters during high-dose Fe ion implantation into silicon has been proposed and the cluster growth process has been computer simulated. The model takes into account the interaction between the cluster magnetization and magnetic moments of Fe atoms random walking in the implanted layer. If the clusters are formed in the presence of the external magnetic field parallel to the implanted layer, the model predicts the elongation of the growing cluster in the field direction. It has been proposed that the cluster elongation results in the uniaxial magnetic anisotropy in the plane of the implanted layer, which is observed in iron silicide films ion-beam synthesized in the external magnetic field.
NASA Astrophysics Data System (ADS)
Deng, Qingming; Heine, Thomas; Irle, Stephan; Popov, Alexey A.
2016-02-01
The endohedral metallofullerene (EMF) self-assembly process in Sc/carbon vapor in the presence and absence of an inert cooling gas (helium) is systematically investigated using quantum chemical molecular dynamics simulations. It is revealed that the presence of He atoms accelerates the formation of pentagons and hexagons and reduces the size of the self-assembled carbon cages in comparison with analogous He-free simulations. As a result, the Sc/C/He system simulations produce a larger number of successful trajectories (i.e. leading to Sc-EMFs) with more realistic cage-size distribution than simulations of the Sc/C system. The main Sc encapsulation mechanism involves nucleation of several hexagons and pentagons with Sc atoms already at the early stages of carbon vapor condensation. In such proto-cages, both Sc-C σ-bonds and coordination bonds between Sc atoms and the π-system of the carbon network are present. Sc atoms are thus rather labile and can move along the carbon network, but the overall bonding is sufficiently strong to prevent dissociation even at temperatures around 2000 kelvin. Further growth of the fullerene cage results in the encapsulation of one or two Sc atoms within the fullerene. In agreement with experimental studies, an extension of the simulations to Fe and Ti as the metal component showed that Fe-EMFs are not formed at all, whereas Ti is prone to form Ti-EMFs with small cage sizes, including Ti@C28-Td and Ti@C30-C2v(3).The endohedral metallofullerene (EMF) self-assembly process in Sc/carbon vapor in the presence and absence of an inert cooling gas (helium) is systematically investigated using quantum chemical molecular dynamics simulations. It is revealed that the presence of He atoms accelerates the formation of pentagons and hexagons and reduces the size of the self-assembled carbon cages in comparison with analogous He-free simulations. As a result, the Sc/C/He system simulations produce a larger number of successful trajectories (i.e. leading to Sc-EMFs) with more realistic cage-size distribution than simulations of the Sc/C system. The main Sc encapsulation mechanism involves nucleation of several hexagons and pentagons with Sc atoms already at the early stages of carbon vapor condensation. In such proto-cages, both Sc-C σ-bonds and coordination bonds between Sc atoms and the π-system of the carbon network are present. Sc atoms are thus rather labile and can move along the carbon network, but the overall bonding is sufficiently strong to prevent dissociation even at temperatures around 2000 kelvin. Further growth of the fullerene cage results in the encapsulation of one or two Sc atoms within the fullerene. In agreement with experimental studies, an extension of the simulations to Fe and Ti as the metal component showed that Fe-EMFs are not formed at all, whereas Ti is prone to form Ti-EMFs with small cage sizes, including Ti@C28-Td and Ti@C30-C2v(3). Electronic supplementary information (ESI) available: Additional information on metal-carbon bonding and MD simulations. See DOI: 10.1039/c5nr08645k
Development and validation of age-dependent FE human models of a mid-sized male thorax.
El-Jawahri, Raed E; Laituri, Tony R; Ruan, Jesse S; Rouhana, Stephen W; Barbat, Saeed D
2010-11-01
The increasing number of people over 65 years old (YO) is an important research topic in the area of impact biomechanics, and finite element (FE) modeling can provide valuable support for related research. There were three objectives of this study: (1) Estimation of the representative age of the previously-documented Ford Human Body Model (FHBM) -- an FE model which approximates the geometry and mass of a mid-sized male, (2) Development of FE models representing two additional ages, and (3) Validation of the resulting three models to the extent possible with respect to available physical tests. Specifically, the geometry of the model was compared to published data relating rib angles to age, and the mechanical properties of different simulated tissues were compared to a number of published aging functions. The FHBM was determined to represent a 53-59 YO mid-sized male. The aforementioned aging functions were used to develop FE models representing two additional ages: 35 and 75 YO. The rib model was validated against human rib specimens and whole rib tests, under different loading conditions, with and without modeled fracture. In addition, the resulting three age-dependent models were validated by simulating cadaveric tests of blunt and sled impacts. The responses of the models, in general, were within the cadaveric response corridors. When compared to peak responses from individual cadavers similar in size and age to the age-dependent models, some responses were within one standard deviation of the test data. All the other responses, but one, were within two standard deviations.
Experiments, constitutive modeling and FE simulations of the impact behavior of Molybdenum
NASA Astrophysics Data System (ADS)
Kleiser, Geremy; Revil-Baudard, Benoit
For polycrystalline high-purity molybdenum the feasibility of a Taylor test is questionable because the very large tensile stresses generated at impact would result in disintegration of the specimen. We report an experimental investigation and new model to account simultaneously for the experimentally observed anisotropy, tension-compression asymmetry and strain-rate sensitivity of this material. To ensure high-fidelity predictions, a fully-implicit algorithm was used for implementing the new model in the FE code ABAQUS. Based on model predictions, the impact velocity range was established for which specimens may be recovered. Taylor impact tests in this range (140-165 m/s) were successfully conducted for different specimen taken along the rolling direction (RD), the transverse direction and 45o to the RD. Comparison between the measured profiles of impact specimens and FE model predictions show excellent agreement. Furthermore, simulations were performed to gain understanding of the dynamic event: time evolution of the pressure, the extent of plastic deformation, distribution of plastic strain rates, and transition to quasi-stable deformation occurs.
Long, Hai; Chang, Christopher H.; King, Paul W.; Ghirardi, Maria L.; Kim, Kwiseon
2008-01-01
The [FeFe] hydrogenase from the green alga Chlamydomonas reinhardtii can catalyze the reduction of protons to hydrogen gas using electrons supplied from photosystem I and transferred via ferredoxin. To better understand the association of the hydrogenase and the ferredoxin, we have simulated the process over multiple timescales. A Brownian dynamics simulation method gave an initial thorough sampling of the rigid-body translational and rotational phase spaces, and the resulting trajectories were used to compute the occupancy and free-energy landscapes. Several important hydrogenase-ferredoxin encounter complexes were identified from this analysis, which were then individually simulated using atomistic molecular dynamics to provide more details of the hydrogenase and ferredoxin interaction. The ferredoxin appeared to form reasonable complexes with the hydrogenase in multiple orientations, some of which were good candidates for inclusion in a transition state ensemble of configurations for electron transfer. PMID:18621810
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Li; Ungár, Tamás; Toth, Laszlo S.
The evolution of texture, grain size, grain shape, dislocation and twin density has been determined by synchrotron X-ray diffraction and line profile analysis in a nanocrystalline Ni- Fe alloy after cold rolling along different directions related to the initial fiber and the long axis of grains. The texture evolution has been simulated by the Taylor-type relaxed constraints viscoplastic polycrystal model. The simulations were based on the activity of partial dislocations in correlation with the experimental results of dislocation density determination. The concept of stress-induced shear-coupling is supported and strengthened by both the texture simulations and the experimentally determined evolution ofmore » the microstructure parameters. Grain-growth and texture evolution are shown to proceed by the shear-coupling mechanism supported by dislocation activity as long as the grain size is not smaller than about 20 nm.« less
Symmetry and charge order in Fe2OBO3 studied through polarized resonant x-ray diffraction
NASA Astrophysics Data System (ADS)
Bland, S. R.; Angst, M.; Adiga, S.; Scagnoli, V.; Johnson, R. D.; Herrero-Martín, J.; Hatton, P. D.
2010-09-01
Bond valence sum calculations have previously suggested that iron oxyborate exhibits charge order of the Fe ions with integer 2+/3+ valence states. Meanwhile transition metal oxides typically show much smaller, fractional charge disproportionations. Using resonant x-ray diffraction at the iron K edge, we find resonant features which are much larger than those ordinarily observed in charge ordered oxides. Simulations were subsequently performed using a cluster-based, monoelectronic code. The nanoscale domain structure prevents precise fitting; nevertheless the simulations confirm the diagonal charge order symmetry, as well as the unusually large charge disproportionation. We have demonstrated the conversion of linearly to nonlinearly polarized light and vice versa through full polarization analysis. Simulations show that this effect principally results from interference between the isotropic and anisotropic scattering terms. This mechanism is likely to account for similar observations in alternative systems.
Cui, Shihai; Shan, Leilei; Li, Haiyan; Lu, Wenle; He, Lijuan; Ruan, Shijie
2017-02-01
Finite element(FE) model of thorax with high biofidelity is one of the most important methods to investigate thoracic injury mechanism because of the absence of pediatric cadaver experiments. Based on the validated thorax finite element model, the FE models with equivalent muscles and real geometric muscles were developed respectively, and the effect of muscle biofidelity on thoracic injury was analyzed with reconstructing pediatric cadaver thorax impact experiments. The simulation results showed that the thoracic impact force, the maximum displacement and the maximum von-Mises stress of FE models with equivalent muscles were slightly greater than those from FE models with real geometric muscles, and the maximum principal strains of heart and lung were a little lower. And the correlation coefficient between cadaver corridor and FE model with real muscles was also greater than that between cadaver corridor and FE model with equivalent muscles. As a conclusion, the FE models with real geometric muscles can accurately reflect the biomechanical response of thorax during the impact.
Shape-dependent surface magnetism of Co-Pt and Fe-Pt nanoparticles from first principles
NASA Astrophysics Data System (ADS)
Liu, Zhenyu; Wang, Guofeng
2017-12-01
In this paper, we have performed the first-principles density functional theory calculations to predict the magnetic properties of the CoPt and FePt nanoparticles in cuboctahedral, decahedral, and icosahedral shapes. The modeled alloy nanoparticles have a diameter of 1.1 nm and consist of 31 5 d Pt atoms and 24 3 d Co (or Fe) atoms. For both CoPt and FePt, we found that the decahedral nanoparticles had appreciably lower surface magnetic moments than the cuboctahedral and icosahedral nanoparticles. Our analysis indicated that this reduction in the surface magnetism was related to a large contraction of atomic spacing and high local Co (or Fe) concentration in the surface of the decahedral nanoparticles. More interestingly, we predicted that the CoPt and FePt cuboctahedral nanoparticles exhibited dramatically different surface spin structures when noncollinear magnetism was taken into account. Our calculation results revealed that surface anisotropy energy decided the fashion of surface spin canting in the CoPt and FePt nanoparticles, confirming previous predictions from atomistic Monte Carlo simulations.
Oxidation of diclofenac by potassium ferrate (VI): reaction kinetics and toxicity evaluation.
Wang, Yingling; Liu, Haijin; Liu, Guoguang; Xie, Youhai; Gao, Shuyan
2015-02-15
The reaction kinetics and toxicity of diclofenac (DCF) oxidation by ferrate (VI) under simulated water disinfection conditions were investigated. Experimental results indicated that the reaction between DCF and Fe(VI) followed first-order kinetics with respect to each reactant. Furthermore, the effects of pH and temperature on DCF oxidation by Fe(VI) were elucidated using a systematic examination. The apparent second-order rate constants (kapp) increased significantly from 2.54 to 11.6M(-1)s(-1), as the pH of the solution decreased from 11.0 to 7.0, and the acid-base equilibriums of Fe(VI) and DCF were proposed to explain the pH dependence of kapp. The acute toxicity of DCF solution during Fe(VI) oxidation was evaluated using a Microtox bioassay. Overall, the DCF degradation process resulted in a rapid increase of the inhibition rate of luminescent bacteria. These toxicity tests suggest that the formation of enhanced toxic intermediates during the Fe(VI) disinfection process may pose potential health risk to consumers. Copyright © 2014 Elsevier B.V. All rights reserved.
Hybrid Seminumerical Simulation Scheme to Predict Transducer Outputs of Acoustic Microscopes.
Nierla, Michael; Rupitsch, Stefan J
2016-02-01
We present a seminumerical simulation method called SIRFEM, which enables the efficient prediction of high-frequency transducer outputs. In particular, this is important for acoustic microscopy where the specimen under investigation is immersed in a coupling fluid. Conventional finite-element (FE) simulations for such applications would consume too much computational power due to the required spatial and temporal discretization, especially for the coupling fluid between ultrasonic transducer and specimen. However, FE simulations are in most cases essential to consider the mode conversion at and inside the solid specimen as well as the wave propagation in its interior. SIRFEM reduces the computational effort of pure FE simulations by treating only the solid specimen and a small part of the fluid layer with FE. The propagation in the coupling fluid from transducer to specimen and back is processed by the so-called spatial impulse response (SIR). Through this hybrid approach, the number of elements as well as the number of time steps for the FE simulation can be reduced significantly, as it is presented for an axis-symmetric setup. Three B-mode images of a plane 2-D setup-computed at a transducer center frequency of 20 MHz-show that SIRFEM is, furthermore, able to predict reflections at inner structures as well as multiple reflections between those structures and the specimen's surface. For the purpose of a pure 2-D setup, the SIR of a curved-line transducer is derived and compared to the response function of a cylindrically focused aperture of negligible extend in the third spatial dimension.
NASA Astrophysics Data System (ADS)
Liu, Yumin; Ren, Hao; Lv, Hua; Guang, Jing; Cao, Yafei
2018-03-01
Magnetic Bi2O2CO3/ZnFe2O4 heterojunction photocatalysts with varying content of ZnFe2O4 were constructed by modifying Bi2O2CO3 nanosheets with mesoporous ZnFe2O4 nanoparticles. The photoactivity of the products was investigated by decomposing RhodamineB (RhB) and it was found that the photoactivity of Bi2O2CO3/ZnFe2O4 composite was closely related to the loading amount of ZnFe2O4. Under simulant sunlight irradiation, the optimum photoactivity of Bi2O2CO3/ZnFe2O4 composite was almost 2.3 and 2.1 times higher than that by bare ZnFe2O4 and Bi2O2CO3, respectively. The improved photoactivity resulted from the synergistic effect of Bi2O2CO3 and ZnFe2O4, which not only extended the photoabsorption region but also significantly facilitated the interfacial charge transfer. Besides the high photocatalytic performance, Bi2O2CO3/ZnFe2O4 composite also exhibited excellent stable and recycling properties, which enabled it have great potential in a long-term practical use.
Demonstration and Analysis of Materials Processing by Ablation Plasma Ion Implantation (APII)
NASA Astrophysics Data System (ADS)
Qi, B.; Gilgenbach, R. M.; Lau, Y. Y.; Jones, M. C.; Lian, J.; Wang, L. M.; Doll, G. L.; Lazarides, A.
2001-10-01
Experiments have demonstrated laser-ablated Fe ion implantation into Si substrates. Baseline laser deposited films (0 kV) showed an amorphous Fe-Si film overlying the Si substrate with a top layer of nanocrystalline Fe. APII films exhibited an additional Fe ion-induced damage layer, extending 7.6 nm below the Si surface. The overlying Fe-Si layer and Fe top layer were amorphized by fast ions. Results were confirmed by XPS vs Ar ion etching time for depth profile of the deposited films. XPS showed primarily Fe (top layer), transitioning to roughly equal Fe/Si , then mostly Si with lower Fe (implanted region). These data clearly prove Fe ion implantation into Si, verifying the feasibility of APII as an ion acceleration and implantation process [1]. SRIM simulations predict about 20 percent deeper Fe ion penetration than data, due to:(a) Subsequent ions must pass through the Fe film deposited by earlier ions, and (b) the bias voltage has a slow rise and fall time. Theoretical research has developed the scaling laws for APII [2]. Recently, a model has successfully explained the shortening of the decay time in the high voltage pulse with the laser ablation plasma. This reduces the theoretical RC time constant, which agrees with the experimental data. * Research supported by National Science Foundation Grant CTS-9907106 [1] Appl. Phys. Lett. 78, 3785 (2001) [2] Appl. Phys. Lett. 78, 706 (2001)),
NASA Astrophysics Data System (ADS)
Stanke, J.; Trauth, D.; Feuerhack, A.; Klocke, F.
2017-09-01
Die roll is a morphological feature of fine blanked sheared edges. The die roll reduces the functional part of the sheared edge. To compensate for the die roll thicker sheet metal strips and secondary machining must be used. However, in order to avoid this, the influence of various fine blanking process parameters on the die roll has been experimentally and numerically studied, but there is still a lack of knowledge on the effects of some factors and especially factor interactions on the die roll. Recent changes in the field of artificial intelligence motivate the hybrid use of the finite element method and artificial neural networks to account for these non-considered parameters. Therefore, a set of simulations using a validated finite element model of fine blanking is firstly used to train an artificial neural network. Then the artificial neural network is trained with thousands of experimental trials. Thus, the objective of this contribution is to develop an artificial neural network that reliably predicts the die roll. Therefore, in this contribution, the setup of a fully parameterized 2D FE model is presented that will be used for batch training of an artificial neural network. The FE model enables an automatic variation of the edge radii of blank punch and die plate, the counter and blank holder force, the sheet metal thickness and part diameter, V-ring height and position, cutting velocity as well as material parameters covered by the Hensel-Spittel model for 16MnCr5 (1.7131, AISI/SAE 5115). The FE model is validated using experimental trails. The results of this contribution is a FE model suitable to perform 9.623 simulations and to pass the simulated die roll width and height automatically to an artificial neural network.
NASA Astrophysics Data System (ADS)
Terentyev, D.; Hafez Haghighat, S. M.; Schäublin, R.
2010-03-01
Molecular dynamics (MD) simulations were carried out to study the interaction between nanometric Cr precipitates and a 1/2 ⟨111⟩{110} edge dislocation (ED) in pure Fe and Fe-9 at. % Cr (Fe-9Cr) random alloy. The aim of this work is to estimate the variation in the pinning strength of the Cr precipitate as a function of temperature, its chemical composition and the matrix composition in which the precipitate is embedded. The dislocation was observed to shear Cr precipitates rather than by-pass via the formation of the Orowan loop, even though a pronounced screw dipole was emerged in the reactions with the precipitates of size larger than 4.5 nm. The screw arms of the formed dipole were not observed to climb thus no point defects were left inside the sheared precipitates, irrespective of simulation temperature. Both Cr solution and Cr precipitates, embedded in the Fe-9Cr matrix, were seen to contribute to the flow stress. The decrease in the flow stress with temperature in the alloy containing Cr precipitates is, therefore, related to the simultaneous change in the matrix friction stress, precipitate resistance, and dislocation flexibility. Critical stress estimated from MD simulations was seen to have a strong dependence on the precipitate composition. If the latter decreases from 95% down to 80%, the corresponding critical stress decreases almost as twice. The results presented here suggest a significant contribution to the flow stress due to the α -α' separation, at least for EDs. The obtained data can be used to validate and to parameterize dislocation dynamics models, where the temperature dependence of the obstacle strength is an essential input data.
Chen, Ying; Bylaska, Eric J.; Weare, John H.
2017-03-31
Many important geochemical and biogeochemical reactions occur in the mineral/formation water interface of the highly abundant mineral, goethite (α-Fe(OOH). Ab-initio molecular dynamics (AIMD) simulations of the goethite α-FeOOH (100) surface and the structure, water bond formation and dynamics of water molecules in the mineral/aqueous interface are presented. Here, several exchange correlation functionals were employed (PBE96, PBE96+Grimme, and PBE0) in the simulations of a (3 x 2) goethite surface with 65 absorbed water molecules in a 3D-periodic supercell (a=30 Å, FeOOH slab ~12 Å thick, solvation layer ~18 Å thick).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Ying; Bylaska, Eric J.; Weare, John H.
Many important geochemical and biogeochemical reactions occur in the mineral/formation water interface of the highly abundant mineral, goethite (α-Fe(OOH). Ab-initio molecular dynamics (AIMD) simulations of the goethite α-FeOOH (100) surface and the structure, water bond formation and dynamics of water molecules in the mineral/aqueous interface are presented. Here, several exchange correlation functionals were employed (PBE96, PBE96+Grimme, and PBE0) in the simulations of a (3 x 2) goethite surface with 65 absorbed water molecules in a 3D-periodic supercell (a=30 Å, FeOOH slab ~12 Å thick, solvation layer ~18 Å thick).
Exchange Interactions on the Highest-Spin Reported Molecule: the Mixed-Valence Fe42 Complex
Aravena, Daniel; Venegas-Yazigi, Diego; Ruiz, Eliseo
2016-01-01
The finding of high-spin molecules that could behave as conventional magnets has been one of the main challenges in Molecular Magnetism. Here, the exchange interactions, present in the highest-spin molecule published in the literature, Fe42, have been analysed using theoretical methods based on Density Functional Theory. The system with a total spin value S = 45 is formed by 42 iron centres containing 18 high-spin FeIII ferromagnetically coupled and 24 diamagnetic low-spin FeII ions. The bridging ligands between the two paramagnetic centres are two cyanide ligands coordinated to the diamagnetic FeII cations. Calculations were performed using either small Fe4 or Fe3 models or the whole Fe42 complex, showing the presence of two different ferromagnetic couplings between the paramagnetic FeIII centres. Finally, Quantum Monte Carlo simulations for the whole system were carried out in order to compare the experimental and simulated magnetic susceptibility curves from the calculated exchange coupling constants with the experimental one. This comparison allows for the evaluation of the accuracy of different exchange-correlation functionals to reproduce such magnetic properties. PMID:27033418
Cravotta, Charles A.
2015-01-01
Watershed-scale monitoring, field aeration experiments, and geochemical equilibrium and kinetic modeling were conducted to evaluate interdependent changes in pH, dissolved CO2, O2, and Fe(II) concentrations that typically take place downstream of net-alkaline, circumneutral coal-mine drainage (CMD) outfalls and during aerobic treatment of such CMD. The kinetic modeling approach, using PHREEQC, accurately simulates observed variations in pH, Fe(II) oxidation, alkalinity consumption, and associated dissolved gas concentrations during transport downstream of the CMD outfalls (natural attenuation) and during 6-h batch aeration tests on the CMD using bubble diffusers (enhanced attenuation). The batch aeration experiments demonstrated that aeration promoted CO2 outgassing, thereby increasing pH and the rate of Fe(II) oxidation. The rate of Fe(II) oxidation was accurately estimated by the abiotic homogeneous oxidation rate law −d[Fe(II)]/dt = k1·[O2]·[H+]−2·[Fe(II)] that indicates an increase in pH by 1 unit at pH 5–8 and at constant dissolved O2 (DO) concentration results in a 100-fold increase in the rate of Fe(II) oxidation. Adjusting for sample temperature, a narrow range of values for the apparent homogeneous Fe(II) oxidation rate constant (k1′) of 0.5–1.7 times the reference value of k1 = 3 × 10−12 mol/L/min (for pH 5–8 and 20 °C), reported by Stumm and Morgan (1996), was indicated by the calibrated models for the 5-km stream reach below the CMD outfalls and the aerated CMD. The rates of CO2 outgassing and O2ingassing in the model were estimated with first-order asymptotic functions, whereby the driving force is the gradient of the dissolved gas concentration relative to equilibrium with the ambient atmosphere. Although the progressive increase in DO concentration to saturation could be accurately modeled as a kinetic function for the conditions evaluated, the simulation of DO as an instantaneous equilibrium process did not affect the model results for Fe(II) or pH. In contrast, the model results for pH and Fe(II) were sensitive to the CO2 mass transfer rate constant (kL,CO2a). The value of kL,CO2a estimated for the stream (0.010 min−1) was within the range for the batch aeration experiments (0–0.033 min−1). These results indicate that the abiotic homogeneous Fe(II) oxidation rate law, with adjustments for variations in temperature and CO2 outgassing rate, may be applied to predict changes in aqueous iron and pH for net-alkaline, ferruginous waters within a stream (natural conditions) or a CMD treatment system (engineered conditions).
Heavy Metals Induce Iron Deficiency Responses at Different Hierarchic and Regulatory Levels1[OPEN
2017-01-01
In plants, the excess of several heavy metals mimics iron (Fe) deficiency-induced chlorosis, indicating a disturbance in Fe homeostasis. To examine the level at which heavy metals interfere with Fe deficiency responses, we carried out an in-depth characterization of Fe-related physiological, regulatory, and morphological responses in Arabidopsis (Arabidopsis thaliana) exposed to heavy metals. Enhanced zinc (Zn) uptake closely mimicked Fe deficiency by leading to low chlorophyll but high ferric-chelate reductase activity and coumarin release. These responses were not caused by Zn-inhibited Fe uptake via IRON-REGULATED TRANSPORTER (IRT1). Instead, Zn simulated the transcriptional response of typical Fe-regulated genes, indicating that Zn affects Fe homeostasis at the level of Fe sensing. Excess supplies of cobalt and nickel altered root traits in a different way from Fe deficiency, inducing only transient Fe deficiency responses, which were characterized by a lack of induction of the ethylene pathway. Cadmium showed a rather inconsistent influence on Fe deficiency responses at multiple levels. By contrast, manganese evoked weak Fe deficiency responses in wild-type plants but strongly exacerbated chlorosis in irt1 plants, indicating that manganese antagonized Fe mainly at the level of transport. These results show that the investigated heavy metals modulate Fe deficiency responses at different hierarchic and regulatory levels and that the interaction of metals with physiological and morphological Fe deficiency responses is uncoupled. Thus, this study not only emphasizes the importance of assessing heavy metal toxicities at multiple levels but also provides a new perspective on how Fe deficiency contributes to the toxic action of individual heavy metals. PMID:28500270
Finite Element Modeling of Multilayer Orthogonal Auxetic Composites under Low-Velocity Impact
Jiang, Lili; Hu, Hong
2017-01-01
The multilayer orthogonal auxetic composites have been previously developed and tested to prove that they own excellent energy absorption and impact protection characteristics in a specific strain range under low-velocity impact. In this study, a three dimensional finite element (FE) model in ANSYS LS-DYNA was established to simulate the mechanical behavior of auxetic composites under low-velocity drop-weight impact. The simulation results including the Poisson’s ratio versus compressive strain curves and the contact stress versus compressive strain curves were compared with those in the experiments. The clear deformation pictures of the FE models have provided a simple and effective way for investigating the damage mechanism and optimizing the material, as well as structure design. PMID:28783054
Simulation of alnico coercivity
Ke, Liqin; Skomski, Ralph; Hoffmann, Todd D.; ...
2017-07-10
Micromagnetic simulations of alnico show substantial deviations from Stoner-Wohlfarth behavior due to the unique size and spatial distribution of the rod-like Fe-Co phase formed during spinodal decomposition in an external magnetic field. Furthemore, the maximum coercivity is limited by single-rod effects, especially deviations from ellipsoidal shape, and by interactions between the rods. In both the exchange interaction between connected rods and magnetostatic we consider the interaction between rods, and the results of our calculations show good agreement with recent experiments. Unlike systems dominated by magnetocrystalline anisotropy, coercivity in alnico is highly dependent on size, shape, and geometric distribution of themore » Fe-Co phase, all factors that can be tuned with appropriate chemistry and thermal-magnetic annealing.« less
NASA Astrophysics Data System (ADS)
Chang, You; Kim, Namkeun; Stenfelt, Stefan
2015-12-01
Bone conduction (BC) is the transmission of sound to the inner ear through the bones of the skull. This type of transmission is used in humans fitted with BC hearing aids as well as to classify between conductive and sensorineural hearing losses. The objective of the present study is to develop a finite-element (FE) model of the human skull based on cryosectional images of a female cadaver head in order to gain better understanding of the sound transmission. Further, the BC behavior was validated in terms of sound transmission against experimental data published in the literature. Results showed the responses of the simulated skull FE model were consistent with the experimentally reported data.
A new photocatalyst of LuFeO3 for the dye degradation
NASA Astrophysics Data System (ADS)
Zhou, M.; Yang, H.; Xian, T.; Zhang, C. R.
2015-08-01
A polyacrylamide gel route was introduced to synthesize LuFeO3 particles, where the effects of calcination temperature, calcination time and chelating agent on the products were investigated. By varying the experimental conditions, several LuFeO3 samples with sphere-, ellipsoid- and worm-like morphologies and average particle sizes of 200-270 nm were prepared. The photocatalytic activity of LuFeO3 samples was evaluated by degrading rhodamine B (RhB) under simulated-sunlight irradiation, revealing that they exhibit a pronounced photocatalytic activity. The effects of p-benzoquinone (BQ), ethanol and oxalic acid (OA) on the photocatalytic efficiency were investigated. It is observed that BQ has almost no effect on the photocatalytic degradation of RhB, ethanol exhibits a substantial suppression of RhB degradation, while OA significantly enhances the photocatalytic efficiency. Hydroxyl (•OH) radicals were examined by fluorimetry using terephthalic acid as a probe molecule, and are found to be produced over the simulated-sunlight irradiated LuFeO3 particles. The addition of ethanol leads to a quenching of •OH radicals, whereas the yield of •OH radicals is highly increased on addition of OA. Based on the experimental results, •OH radicals are suggested to be the dominant active species responsible for the dye degradation, while superoxide (•O2-) radicals play a negligible role in the photocatalysis.
Effect of Atmospheric Organics on Bioavailable Fe Lifetime in the Oceans
NASA Technical Reports Server (NTRS)
Meskhidze, Nicholas; Hurley, David; Royalty, Taylor Michael; Johnson, Matthew S.
2016-01-01
The deposition of atmospheric aerosols is an important supply pathway of soluble iron (sol-Fe) to the global oceans influencing marine ecosystem processes and climate. Previous studies have shown that natural and anthropogenic acidic trace gases, when mixed with mineral dust, can lead to production of sol-Fe, leading to considerable increase in dust-Fe solubility. Recent studies have further highlighted the importance of atmospheric organic compounds/ligands in the production of sol-Fe during atmospheric transport and transformation of mineral aerosols. However, the actual scope of this aerosol sol-Fe for stimulating the primary productivity in the oceans is determined by both: the total atmospheric fluxes of sol-Fe and the lifetime of sol-Fe after its deposition to the ocean. In this study several atmospheric organic ligands were investigated for their effect on the lifetime of sol-Fe after mixing with seawater. Organic ligands were selected based on their abundance in the marine boundary layer and rainwater and their ability to form bidentate complexes with Fe. The results reveal that the tested organics had minor influence on Fe(II) lifetime in seawater. However, results also show that some organic acid considerably extended the lifetime of colloidal and aqueous Fe(III). Using these results we simulate aerosol sol-Fe lifetime in the ocean for different mineral dust deposition events in the presence and the absence of atmospheric organic ligands. The calculations suggest that when a large dust plume is assumed to contain Fe(II) alone, less than 15% of aerosol sol-Fe gets complexed with marine organic ligands. However, this fraction increases to over 90% when atmospheric Fe is allowed to bond with atmospheric organic acids prior to deposition to the oceans. Calculations also show that for the conditions when seawater organic ligands get titrated by Fe released from dust aerosol particles, retention of sol-Fe in the ocean depends on surface ocean mixing, i.e., replenishing rates for Fe-bonding ligands from below. This study suggests that in future ocean biogeochemistry models more attention should be devoted to better quantification of the role of atmospheric organic acids in the lifetime of aerosol sol-Fe after its deposition to the ocean and the improvements of upper ocean turbulence parameterizations.
NASA Astrophysics Data System (ADS)
Naiman, Jill P.; Pillepich, Annalisa; Springel, Volker; Ramirez-Ruiz, Enrico; Torrey, Paul; Vogelsberger, Mark; Pakmor, Rüdiger; Nelson, Dylan; Marinacci, Federico; Hernquist, Lars; Weinberger, Rainer; Genel, Shy
2018-06-01
The distribution of elements in galaxies provides a wealth of information about their production sites and their subsequent mixing into the interstellar medium. Here we investigate the elemental distributions of stars in the IllustrisTNG simulations. We analyse the abundance ratios of magnesium and europium in Milky Way-like galaxies from the TNG100 simulation (stellar masses log (M⋆/M⊙) ˜ 9.7-11.2). Comparison of observed magnesium and europium for individual stars in the Milky Way with the stellar abundances in our more than 850 Milky Way-like galaxies provides stringent constraints on our chemical evolutionary methods. Here, we use the magnesium-to-iron ratio as a proxy for the effects of our SNII (core-collapse supernovae) and SNIa (Type Ia supernovae) metal return prescription and as a comparison to a variety of galactic observations. The europium-to-iron ratio tracks the rare ejecta from neutron star-neutron star mergers, the assumed primary site of europium production in our models, and is a sensitive probe of the effects of metal diffusion within the gas in our simulations. We find that europium abundances in Milky Way-like galaxies show no correlation with assembly history, present-day galactic properties, and average galactic stellar population age. We reproduce the europium-to-iron spread at low metallicities observed in the Milky Way, and find it is sensitive to gas properties during redshifts z ≈ 2-4. We show that while the overall normalization of [Eu/Fe] is susceptible to resolution and post-processing assumptions, the relatively large spread of [Eu/Fe] at low [Fe/H] when compared to that at high [Fe/H] is quite robust.
Pillewan, Pradnya; Mukherjee, Shrabanti; Bansiwal, Amit; Rayalu, Sadhana
2014-07-01
Adsorption of arsenic on bimetallic Mn and Fe mixed oxide was carried out using both field as well as simulated water. The material was synthesized using hydrothermal method and characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). Langmuir and Freundlich adsorption isotherms were computed using batch adsorption studies to determine the adsorption capacity of Mn-Fe binary mixed oxide for arsenic. Adsorption capacity for MFBMO obtained from Freundlich model was found to be 2.048 mg/g for simulated water and 1.084 mg/g for field water. Mn-Fe binary mixed oxide was found to be effective adsorbent for removal of arsenic from water.
Speciation of iron in ambient aerosol and cloudwater
NASA Astrophysics Data System (ADS)
Siefert, Ronald Lyn
1997-03-01
Atmospheric iron (Fe) is thought to play an important role in cloudwater chemistry (e.g., S(IV) oxidation, oxidant production, etc.), and is also an important source of Fe to certain regions of the world's oceans where Fe is believed to be a rate-limiting nutrient for primary productivity. This thesis focuses on understanding the chemistry, speciation and abundance of Fe in cloudwater and aerosol in the troposphere, through observations of Fe speciation in the cloudwater and aerosol samples collected over the continental United States and the Arabian Sea. Different chemical species of atmospheric Fe were measured in aerosol and cloudwater samples to help assess the role of Fe in cloudwater chemistry. Chapter 2 presents a set of experiments which used ambient aerosol samples suspended in aqueous solution and then irradiated with uv-light to simulate cloudwater conditions. These experiments found Fe to be a critical component for the production of H2O2. Chapter 3 discusses the development and application of a novel photochemical extraction method for the determination of photochemically-available Fe in ambient aerosol samples. Photochemically-available Fe ranged from <4 ng m-3 to 308 ng m-3, and accounted for 2.8% to 100% of the total Fe in aerosol samples collected in California and New York. Calculations based on the results of these experiments predicted that redox reactions of Fe in cloudwater could be an important in situ source of oxidants (ċOH, HO2ċ/O2/cdot/sb- ). Chapter 4 presents results of several field studies which measured the redox states of Fe and other transition metals (Mn, Cu and Cr) in cloudwater. These measurements were then used in thermodynamic models which predicted Fe(III) to be either as Fe(III)-hydroxy species or Fe(III)-oxalate species. However, an unidentified strong chelating ligand with Fe(III) was also suggested by the thermodynamic model results. Chapter 5 presents results of a field study conducted on the Arabian Sea. Total atmospheric labile-Fe(II) ranged between <0.09 ng m-3 to 7.5 ng m-3 during the inter-monsoon period, and was consistently below the detection limit during the southwest-monsoon period. The labile-Fe(II) measured during the inter-monsoon period was predominantly found in the fine fraction of the aerosol. Principal component analysis revealed a significant source of Fe and Mn which was not associated with the main aeolian dust component.
Micromagnetic simulation of anisotropic grain boundary diffusion for sintered Nd-Fe-B magnets
NASA Astrophysics Data System (ADS)
Li, W.; Zhou, Q.; Zhao, L. Z.; Wang, Q. X.; Zhong, X. C.; Liu, Z. W.
2018-04-01
A systematic investigation on the anisotropic grain boundary diffusion in sintered Nd-Fe-B magnets is carried out by micromagnetic simulation. The results indicate that the critical reason for the anisotropic diffusion effect is not the difference in the amount of Dy diffused along different directions but the macroscopic demagnetizing field. The diffusion parallel to the easy axis from both pole surfaces of the magnet can increase the nucleation fields in the two major regions with large macroscopic demagnetizing fields, where the reverse domains can nucleate easily. As a consequence, the grain boundary diffusion along the directions parallel to the easy axis from two pole surfaces is more effective to improve the coercivity of the magnets than that along other directions. It is also found that, to enhance the coercivity, only a limited diffusion depth is required. The present result is in good agreement with the recent experimental findings.
2015-01-01
Strains lacking and overexpressing the vacuolar iron (Fe) importer CCC1 were characterized using Mössbauer and EPR spectroscopies. Vacuolar Fe import is impeded in Δccc1 cells and enhanced in CCC1-up cells, causing vacuolar Fe in these strains to decline and accumulate, respectively, relative to WT cells. Cytosolic Fe levels should behave oppositely. The Fe content of Δccc1 cells grown under low-Fe conditions was similar to that in WT cells. Most Fe was mitochondrial with some nonheme high spin (NHHS) FeII present. Δccc1 cells grown with increasing Fe concentration in the medium contained less total Fe, less vacuolar HS FeIII, and more NHHS FeII than in comparable WT cells. As the Fe concentration in the growth medium increased, the concentration of HS FeIII in Δccc1 cells increased to just 60% of WT levels, while NHHS FeII increased to twice WT levels, suggesting that the NHHS FeII was cytosolic. Δccc1 cells suffered more oxidative damage than WT cells, suggesting that the accumulated NHHS FeII promoted Fenton chemistry. The Fe concentration in CCC1-up cells was higher than in WT cells; the extra Fe was present as NHHS FeII and FeIII and as FeIII oxyhydroxide nanoparticles. These cells contained less mitochondrial Fe and exhibited less ROS damage than Δccc1 cells. CCC1-up cells were adenine-deficient on minimal medium; supplementing with adenine caused a decline of NHHS FeII suggesting that some of the NHHS FeII that accumulated in these cells was associated with adenine deficiency rather than the overexpression of CCC1. A mathematical model was developed that simulated changes in Fe distributions. Simulations suggested that only a modest proportion of the observed NHHS FeII in both strains was the cytosolic form of Fe that is sensed by the Fe import regulatory system. The remainder is probably generated by the reduction of the vacuolar NHHS FeIII species. PMID:24785783
Cockrell, Allison; McCormick, Sean P; Moore, Michael J; Chakrabarti, Mrinmoy; Lindahl, Paul A
2014-05-13
Strains lacking and overexpressing the vacuolar iron (Fe) importer CCC1 were characterized using Mössbauer and EPR spectroscopies. Vacuolar Fe import is impeded in Δccc1 cells and enhanced in CCC1-up cells, causing vacuolar Fe in these strains to decline and accumulate, respectively, relative to WT cells. Cytosolic Fe levels should behave oppositely. The Fe content of Δccc1 cells grown under low-Fe conditions was similar to that in WT cells. Most Fe was mitochondrial with some nonheme high spin (NHHS) Fe(II) present. Δccc1 cells grown with increasing Fe concentration in the medium contained less total Fe, less vacuolar HS Fe(III), and more NHHS Fe(II) than in comparable WT cells. As the Fe concentration in the growth medium increased, the concentration of HS Fe(III) in Δccc1 cells increased to just 60% of WT levels, while NHHS Fe(II) increased to twice WT levels, suggesting that the NHHS Fe(II) was cytosolic. Δccc1 cells suffered more oxidative damage than WT cells, suggesting that the accumulated NHHS Fe(II) promoted Fenton chemistry. The Fe concentration in CCC1-up cells was higher than in WT cells; the extra Fe was present as NHHS Fe(II) and Fe(III) and as Fe(III) oxyhydroxide nanoparticles. These cells contained less mitochondrial Fe and exhibited less ROS damage than Δccc1 cells. CCC1-up cells were adenine-deficient on minimal medium; supplementing with adenine caused a decline of NHHS Fe(II) suggesting that some of the NHHS Fe(II) that accumulated in these cells was associated with adenine deficiency rather than the overexpression of CCC1. A mathematical model was developed that simulated changes in Fe distributions. Simulations suggested that only a modest proportion of the observed NHHS Fe(II) in both strains was the cytosolic form of Fe that is sensed by the Fe import regulatory system. The remainder is probably generated by the reduction of the vacuolar NHHS Fe(III) species.
Concept and development of an orthotropic FE model of the proximal femur.
Wirtz, Dieter Christian; Pandorf, Thomas; Portheine, Frank; Radermacher, Klaus; Schiffers, Norbert; Prescher, Andreas; Weichert, Dieter; Niethard, Fritz Uwe
2003-02-01
In contrast to many isotropic finite-element (FE) models of the femur in literature, it was the object of our study to develop an orthotropic FE "model femur" to realistically simulate three-dimensional bone remodelling. The three-dimensional geometry of the proximal femur was reconstructed by CT scans of a pair of cadaveric femurs at equal distances of 2mm. These three-dimensional CT models were implemented into an FE simulation tool. Well-known "density-determined" bony material properties (Young's modulus; Poisson's ratio; ultimate strength in pressure, tension and torsion; shear modulus) were assigned to each FE of the same "CT-density-characterized" volumetric group. In order to fix the principal directions of stiffness in FE areas with the same "density characterization", the cadaveric femurs were cut in 2mm slices in frontal (left femur) and sagittal plane (right femur). Each femoral slice was scanned into a computer-based image processing system. On these images, the principal directions of stiffness of cancellous and cortical bone were determined manually using the orientation of the trabecular structures and the Haversian system. Finally, these geometric data were matched with the "CT-density characterized" three-dimensional femur model. In addition, the time and density-dependent adaptive behaviour of bone remodelling was taken into account by implementation of Carter's criterion. In the constructed "model femur", each FE is characterized by the principal directions of the stiffness and the "CT-density-determined" material properties of cortical and cancellous bone. Thus, on the basis of anatomic data a three-dimensional FE simulation reference model of the proximal femur was realized considering orthotropic conditions of bone behaviour. With the orthotropic "model femur", the fundamental basis has been formed to realize realistic simulations of the dynamical processes of bone remodelling under different loading conditions or operative procedures (osteotomies, total hip replacements, etc).
Wang, Chong; Sun, Qun; Wahab, Magd Abdel; Zhang, Xingyu; Xu, Limin
2015-09-01
Rotary cup brushes mounted on each side of a road sweeper undertake heavy debris removal tasks but the characteristics have not been well known until recently. A Finite Element (FE) model that can analyze brush deformation and predict brush characteristics have been developed to investigate the sweeping efficiency and to assist the controller design. However, the FE model requires large amount of CPU time to simulate each brush design and operating scenario, which may affect its applications in a real-time system. This study develops a mathematical regression model to summarize the FE modeled results. The complex brush load characteristic curves were statistically analyzed to quantify the effects of cross-section, length, mounting angle, displacement and rotational speed etc. The data were then fitted by a multiple variable regression model using the maximum likelihood method. The fitted results showed good agreement with the FE analysis results and experimental results, suggesting that the mathematical regression model may be directly used in a real-time system to predict characteristics of different brushes under varying operating conditions. The methodology may also be used in the design and optimization of rotary brush tools. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saravanan, P.; Defence Metallurgical Research Laboratory, Hyderabad 500058; Hsu, Jen-Hwa, E-mail: jhhsu@phys.ntu.edu.tw
2014-06-28
Films of L1{sub 1}-type CoPt/NiFe exchange springs were grown with different NiFe (Permalloy) layer thickness (t{sub NiFe} = 0–10 nm). X-ray diffraction analysis reveals that the characteristic peak position of NiFe(111) is not affected by the CoPt-layer—confirming the absence of any inter-diffusion between the CoPt and NiFe layers. Magnetic studies indicate that the magnetization orientation of NiFe layer can be tuned through varying t{sub NiFe} and the perpendicular magnetic anisotropy of L1{sub 1}-type CoPt/NiFe films cannot sustain for t{sub NiFe} larger than 3.0 nm due to the existence of exchange interaction at the interface of L1{sub 1}-CoPt and NiFe layers. Magnetic force microscopy analysismore » on the as-grown samples shows the changes in morphology from maze-like domains with good contrast to hazy domains when t{sub NiFe} ≥ 3.0 nm. The three-dimensional micro-magnetic simulation results demonstrate that the magnetization orientation in NiFe layer is not uniform, which continuously increases from the interface to the top of NiFe layer. Furthermore, the tilt angle of the topmost NiFe layers can be changed over a very wide range from a small number to about 75° by varying t{sub NiFe} from 1 to 10 nm. It is worth noting that there is an abrupt change in the magnetization direction at the interface, for all the t{sub NiFe} investigated. The results of present study demonstrate that the tunable tilted exchange springs can be realized with L1{sub 1}-type CoPt/NiFe bilayers for future applications in three-axis magnetic sensors or advanced spintronic devices demanding inclined magnetic anisotropy.« less
Zheng, Manxu; Zou, Zhenmin; Bartolo, Paulo Jorge Da Silva; Peach, Chris; Ren, Lei
2017-02-01
The human shoulder is a complicated musculoskeletal structure and is a perfect compromise between mobility and stability. The objective of this paper is to provide a thorough review of previous finite element (FE) studies in biomechanics of the human shoulder complex. Those FE studies to investigate shoulder biomechanics have been reviewed according to the physiological and clinical problems addressed: glenohumeral joint stability, rotator cuff tears, joint capsular and labral defects and shoulder arthroplasty. The major findings, limitations, potential clinical applications and modelling techniques of those FE studies are critically discussed. The main challenges faced in order to accurately represent the realistic physiological functions of the shoulder mechanism in FE simulations involve (1) subject-specific representation of the anisotropic nonhomogeneous material properties of the shoulder tissues in both healthy and pathological conditions; (2) definition of boundary and loading conditions based on individualised physiological data; (3) more comprehensive modelling describing the whole shoulder complex including appropriate three-dimensional (3D) representation of all major shoulder hard tissues and soft tissues and their delicate interactions; (4) rigorous in vivo experimental validation of FE simulation results. Fully validated shoulder FE models would greatly enhance our understanding of the aetiology of shoulder disorders, and hence facilitate the development of more efficient clinical diagnoses, non-surgical and surgical treatments, as well as shoulder orthotics and prosthetics. © 2016 The Authors. International Journal for Numerical Methods in Biomedical Engineering published by John Wiley & Sons Ltd. © 2016 The Authors. International Journal for Numerical Methods in Biomedical Engineering published by John Wiley & Sons Ltd.
Microstructure, soft magnetic properties and applications of amorphous Fe-Co-Si-B-Mo-P alloy
NASA Astrophysics Data System (ADS)
Hasiak, Mariusz; Miglierini, Marcel; Łukiewski, Mirosław; Łaszcz, Amadeusz; Bujdoš, Marek
2018-05-01
DC thermomagnetic properties of Fe51Co12Si16B8Mo5P8 amorphous alloy in the as-quenched and after annealing below crystallization temperature are investigated. They are related to deviations in the microstructure as revealed by Mössbauer spectrometry. Study of AC magnetic properties, i.e. hysteresis loops, relative permeability and core losses versus maximum induction was aimed at obtaining optimal initial parameters for simulation process of a resonant transformer for a rail power supply converter. The results obtained from numerical analyses including core losses, winding losses, core mass, and dimensions were compared with the same parameters calculated for Fe-Si alloy and ferrite. Moreover, Steinmetz coefficients were also calculated for the as-quenched Fe51Co12Si16B8Mo5P8 amorphous alloy.
Structure prediction and molecular simulation of gases diffusion pathways in hydrogenase.
Sundaram, Shanthy; Tripathi, Ashutosh; Gupta, Vipul
2010-10-06
Although hydrogen is considered to be one of the most promising future energy sources and the technical aspects involved in using it have advanced considerably, the future supply of hydrogen from renewable sources is still unsolved. The [Fe]- hydrogenase enzymes are highly efficient H(2) catalysts found in ecologically and phylogenetically diverse microorganisms, including the photosynthetic green alga, Chlamydomonas reinhardtii. While these enzymes can occur in several forms, H(2) catalysis takes place at a unique [FeS] prosthetic group or H-cluster, located at the active site. 3D structure of the protein hydA1 hydrogenase from Chlamydomonas reinhardtti was predicted using the MODELER 8v2 software. Conserved region was depicted from the NCBI CDD Search. Template selection was done on the basis NCBI BLAST results. For single template 1FEH was used and for multiple templates 1FEH and 1HFE were used. The result of the Homology modeling was verified by uploading the file to SAVS server. On the basis of the SAVS result 3D structure predicted using single template was chosen for performing molecular simulation. For performing molecular simulation three strategies were used. First the molecular simulation of the protein was performed in solvated box containing bulk water. Then 100 H(2) molecules were randomly inserted in the solvated box and two simulations of 50 and 100 ps were performed. Similarly 100 O(2) molecules were randomly placed in the solvated box and again 50 and 100 ps simulation were performed. Energy minimization was performed before each simulation was performed. Conformations were saved after each simulation. Analysis of the gas diffusion was done on the basis of RMSD, Radius of Gyration and no. of gas molecule/ps plot.
Appearance of superconductivity at the vacancy order-disorder boundary in KxFe2 -ySe2
NASA Astrophysics Data System (ADS)
Duan, Chunruo; Yang, Junjie; Ren, Yang; Thomas, Sean M.; Louca, Despina
2018-05-01
The role of phase separation and the effect of Fe-vacancy ordering in the emergence of superconductivity in alkali metal doped iron selenides AxFe2 -ySe2 (A = K, Rb, Cs) is explored. High energy x-ray diffraction and Monte Carlo simulation were used to investigate the crystal structure of quenched superconducting (SC) and as-grown nonsuperconducting (NSC) KxFe2 -ySe2 single crystals. The coexistence of superlattice structures with the in-plane √{2 }×√{2 } K-vacancy ordering and the √{5 }×√{5 } Fe-vacancy ordering were observed in both the SC and NSC crystals alongside the I4/mmm Fe-vacancy-free phase. Moreover, in the SC crystals, an Fe-vacancy-disordered phase is additionally proposed to be present. Monte Carlo simulations suggest that it appears at the boundary between the I4/mmm vacancy-free phase and the I4/m vacancy-ordered phases (√{5 }×√{5 } ). The vacancy-disordered phase is nonmagnetic and is most likely the host of superconductivity.
NASA Astrophysics Data System (ADS)
Tang, Yundong; Flesch, Rodolfo C. C.; Jin, Tao
2017-06-01
Magnetic hyperthermia ablates tumor cells by absorbing the thermal energy from magnetic nanoparticles (MNPs) under an external alternating magnetic field. The blood vessels (BVs) within tumor region can generally reduce treatment effectiveness due to the cooling effect of blood flow. This paper aims to investigate the cooling effect of BVs on the temperature field of malignant tumor regions using a complex geometric model and numerical simulation. For deriving the model, the Navier-Stokes equation for blood flow is combined with Pennes bio-heat transfer equation for human tissue. The effects on treatment temperature caused by two different BV distributions inside a mammary tumor are analyzed through numerical simulation under different conditions of flow rate considering a Fe-Cr-Nb-B alloy, which has low Curie temperature ranging from 42 °C to 45 °C. Numerical results show that the multi-vessel system has more obvious cooling effects than the single vessel one on the temperature field distribution for hyperthermia. Besides, simulation results show that the temperature field within tumor area can also be influenced by the velocity and diameter of BVs. To minimize the cooling effect, this article proposes a treatment method based on the increase of the thermal energy provided to MNPs associated with the adoption of low Curie temperature particles recently reported in literature. Results demonstrate that this approach noticeably improves the uniformity of the temperature field, and shortens the treatment time in a Fe-Cr-Nb-B system, thus reducing the side effects to the patient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veress, Alexander I.; Segars, W. Paul; Weiss, Jeffrey A.
2006-08-02
The 4D NURBS-based Cardiac-Torso (NCAT) phantom, whichprovides a realistic model of the normal human anatomy and cardiac andrespiratory motions, is used in medical imaging research to evaluate andimprove imaging devices and techniques, especially dynamic cardiacapplications. One limitation of the phantom is that it lacks the abilityto accurately simulate altered functions of the heart that result fromcardiac pathologies such as coronary artery disease (CAD). The goal ofthis work was to enhance the 4D NCAT phantom by incorporating aphysiologically based, finite-element (FE) mechanical model of the leftventricle (LV) to simulate both normal and abnormal cardiac motions. Thegeometry of the FE mechanical modelmore » was based on gated high-resolutionx-ray multi-slice computed tomography (MSCT) data of a healthy malesubject. The myocardial wall was represented as transversely isotropichyperelastic material, with the fiber angle varying from -90 degrees atthe epicardial surface, through 0 degreesat the mid-wall, to 90 degreesat the endocardial surface. A time varying elastance model was used tosimulate fiber contraction, and physiological intraventricular systolicpressure-time curves were applied to simulate the cardiac motion over theentire cardiac cycle. To demonstrate the ability of the FE mechanicalmodel to accurately simulate the normal cardiac motion as well abnormalmotions indicative of CAD, a normal case and two pathologic cases weresimulated and analyzed. In the first pathologic model, a subendocardialanterior ischemic region was defined. A second model was created with atransmural ischemic region defined in the same location. The FE baseddeformations were incorporated into the 4D NCAT cardiac model through thecontrol points that define the cardiac structures in the phantom whichwere set to move according to the predictions of the mechanical model. Asimulation study was performed using the FE-NCAT combination toinvestigate how the differences in contractile function between thesubendocardial and transmural infarcts manifest themselves in myocardialSPECT images. The normal FE model produced strain distributions that wereconsistent with those reported in the literature and a motion consistentwith that defined in the normal 4D NCAT beating heart model based ontagged MRI data. The addition of a subendocardial ischemic region changedthe average transmural circumferential strain from a contractile value of0.19 to a tensile value of 0.03. The addition of a transmural ischemicregion changed average circumferential strain to a value of 0.16, whichis consistent with data reported in the literature. Model resultsdemonstrated differences in contractile function between subendocardialand transmural infarcts and how these differences in function aredocumented in simulated myocardial SPECT images produced using the 4DNCAT phantom. In comparison to the original NCAT beating heart model, theFE mechanical model produced a more accurate simulation for the cardiacmotion abnormalities. Such a model, when incorporated into the 4D NCATphantom, has great potential for use in cardiac imaging research. Withits enhanced physiologically-based cardiac model, the 4D NCAT phantom canbe used to simulate realistic, predictive imaging data of a patientpopulation with varying whole-body anatomy and with varying healthy anddiseased states of the heart that will provide a known truth from whichto evaluate and improve existing and emerging 4D imaging techniques usedin the diagnosis of cardiac disease.« less
Kwak, Dong Ryul; Yoshida, Sanichiro; Sasaki, Tomohiro; Todd, Judith A; Park, Ik Keun
2016-04-01
This paper presents the results from a set of experiments designed to ultrasonically measure the near surface stresses distributed within a dissimilar metal welded plate. A scanning acoustic microscope (SAM), with a tone-burst ultrasonic wave frequency of 200 MHz, was used for the measurement of near surface stresses in the dissimilar welded plate between 304 stainless steel and low carbon steel. For quantitative data acquisition such as leaky surface acoustic wave (leaky SAW) velocity measurement, a point focus acoustic lens of frequency 200 MHz was used and the leaky SAW velocities within the specimen were precisely measured. The distributions of the surface acoustic wave velocities change according to the near-surface stresses within the joint. A three dimensional (3D) finite element simulation was carried out to predict numerically the stress distributions and compare with the experimental results. The experiment and FE simulation results for the dissimilar welded plate showed good agreement. This research demonstrates that a combination of FE simulation and ultrasonic stress measurements using SAW velocity distributions appear promising for determining welding residual stresses in dissimilar material joints. Copyright © 2016 Elsevier B.V. All rights reserved.
Realistic finite temperature simulations of magnetic systems using quantum statistics
NASA Astrophysics Data System (ADS)
Bergqvist, Lars; Bergman, Anders
2018-01-01
We have performed realistic atomistic simulations at finite temperatures using Monte Carlo and atomistic spin dynamics simulations incorporating quantum (Bose-Einstein) statistics. The description is much improved at low temperatures compared to classical (Boltzmann) statistics normally used in these kind of simulations, while at higher temperatures the classical statistics are recovered. This corrected low-temperature description is reflected in both magnetization and the magnetic specific heat, the latter allowing for improved modeling of the magnetic contribution to free energies. A central property in the method is the magnon density of states at finite temperatures, and we have compared several different implementations for obtaining it. The method has no restrictions regarding chemical and magnetic order of the considered materials. This is demonstrated by applying the method to elemental ferromagnetic systems, including Fe and Ni, as well as Fe-Co random alloys and the ferrimagnetic system GdFe3.
Prediction of muscle activation for an eye movement with finite element modeling.
Karami, Abbas; Eghtesad, Mohammad; Haghpanah, Seyyed Arash
2017-10-01
In this paper, a 3D finite element (FE) modeling is employed in order to predict extraocular muscles' activation and investigate force coordination in various motions of the eye orbit. A continuum constitutive hyperelastic model is employed for material description in dynamic modeling of the extraocular muscles (EOMs). Two significant features of this model are accurate mass modeling with FE method and stimulating EOMs for motion through muscle activation parameter. In order to validate the eye model, a forward dynamics simulation of the eye motion is carried out by variation of the muscle activation. Furthermore, to realize muscle activation prediction in various eye motions, two different tracking-based inverse controllers are proposed. The performance of these two inverse controllers is investigated according to their resulted muscle force magnitude and muscle force coordination. The simulation results are compared with the available experimental data and the well-known existing neurological laws. The comparison authenticates both the validation and the prediction results. Copyright © 2017 Elsevier Ltd. All rights reserved.
Heavy Metals Induce Iron Deficiency Responses at Different Hierarchic and Regulatory Levels.
Lešková, Alexandra; Giehl, Ricardo F H; Hartmann, Anja; Fargašová, Agáta; von Wirén, Nicolaus
2017-07-01
In plants, the excess of several heavy metals mimics iron (Fe) deficiency-induced chlorosis, indicating a disturbance in Fe homeostasis. To examine the level at which heavy metals interfere with Fe deficiency responses, we carried out an in-depth characterization of Fe-related physiological, regulatory, and morphological responses in Arabidopsis ( Arabidopsis thaliana ) exposed to heavy metals. Enhanced zinc (Zn) uptake closely mimicked Fe deficiency by leading to low chlorophyll but high ferric-chelate reductase activity and coumarin release. These responses were not caused by Zn-inhibited Fe uptake via IRON-REGULATED TRANSPORTER (IRT1). Instead, Zn simulated the transcriptional response of typical Fe-regulated genes, indicating that Zn affects Fe homeostasis at the level of Fe sensing. Excess supplies of cobalt and nickel altered root traits in a different way from Fe deficiency, inducing only transient Fe deficiency responses, which were characterized by a lack of induction of the ethylene pathway. Cadmium showed a rather inconsistent influence on Fe deficiency responses at multiple levels. By contrast, manganese evoked weak Fe deficiency responses in wild-type plants but strongly exacerbated chlorosis in irt1 plants, indicating that manganese antagonized Fe mainly at the level of transport. These results show that the investigated heavy metals modulate Fe deficiency responses at different hierarchic and regulatory levels and that the interaction of metals with physiological and morphological Fe deficiency responses is uncoupled. Thus, this study not only emphasizes the importance of assessing heavy metal toxicities at multiple levels but also provides a new perspective on how Fe deficiency contributes to the toxic action of individual heavy metals. © 2017 American Society of Plant Biologists. All Rights Reserved.
Modeling and FE Simulation of Quenchable High Strength Steels Sheet Metal Hot Forming Process
NASA Astrophysics Data System (ADS)
Liu, Hongsheng; Bao, Jun; Xing, Zhongwen; Zhang, Dejin; Song, Baoyu; Lei, Chengxi
2011-08-01
High strength steel (HSS) sheet metal hot forming process is investigated by means of numerical simulations. With regard to a reliable numerical process design, the knowledge of the thermal and thermo-mechanical properties is essential. In this article, tensile tests are performed to examine the flow stress of the material HSS 22MnB5 at different strains, strain rates, and temperatures. Constitutive model based on phenomenological approach is developed to describe the thermo-mechanical properties of the material 22MnB5 by fitting the experimental data. A 2D coupled thermo-mechanical finite element (FE) model is developed to simulate the HSS sheet metal hot forming process for U-channel part. The ABAQUS/explicit model is used conduct the hot forming stage simulations, and ABAQUS/implicit model is used for accurately predicting the springback which happens at the end of hot forming stage. Material modeling and FE numerical simulations are carried out to investigate the effect of the processing parameters on the hot forming process. The processing parameters have significant influence on the microstructure of U-channel part. The springback after hot forming stage is the main factor impairing the shape precision of hot-formed part. The mechanism of springback is advanced and verified through numerical simulations and tensile loading-unloading tests. Creep strain is found in the tensile loading-unloading test under isothermal condition and has a distinct effect on springback. According to the numerical and experimental results, it can be concluded that springback is mainly caused by different cooling rats and the nonhomogengeous shrink of material during hot forming process, the creep strain is the main factor influencing the amount of the springback.
Trovó, Alam G; Pupo Nogueira, Raquel F; Agüera, Ana; Fernandez-Alba, Amadeo R; Malato, Sixto
2012-10-15
The photo-Fenton degradation of paracetamol (PCT) was evaluated using FeSO(4) and the iron complex potassium ferrioxalate (FeOx) as iron source under simulated solar light. The efficiency of the degradation process was evaluated considering the decay of PCT and total organic carbon concentration and the generation of carboxylic acids, ammonium and nitrate, expressed as total nitrogen. The results showed that the degradation was favored in the presence of FeSO(4) in relation to FeOx. The higher concentration of hydroxylated intermediates generated in the presence of FeSO(4) in relation to FeOx probably enhanced the reduction of Fe(III) to Fe(II) improving the degradation efficiency. The degradation products were determined using liquid chromatography electrospray time-of-flight mass spectrometry. Although at different concentrations, the same intermediates were generated using either FeSO(4) or FeOx, which were mainly products of hydroxylation reactions and acetamide. The toxicity of the sample for Vibrio fischeri and Daphnia magna decreased from 100% to less than 40% during photo-Fenton treatment in the presence of both iron species, except for D. magna in the presence of FeOx due to the toxicity of oxalate to this organism. The considerable decrease of the sample toxicity during photo-Fenton treatment using FeSO(4) indicates a safe application of the process for the removal of this pharmaceutical. Copyright © 2012 Elsevier Ltd. All rights reserved.
White, Nicholas A; Danelson, Kerry A; Gayzik, F Scott; Stitzel, Joel D
2014-11-01
A finite element (FE) simulation environment has been developed to investigate aviator head and neck response during a simulated rotary-wing aircraft impact using both an FE anthropomorphic test device (ATD) and an FE human body model. The head and neck response of the ATD simulation was successfully validated against an experimental sled test. The majority of the head and neck transducer time histories received a CORrelation and analysis (CORA) rating of 0.7 or higher, indicating good overall correlation. The human body model simulation produced a more biofidelic head and neck response than the ATD experimental test and simulation, including change in neck curvature. While only the upper and lower neck loading can be measured in the ATD, the shear force, axial force, and bending moment were reported for each level of the cervical spine in the human body model using a novel technique involving cross sections. This loading distribution provides further insight into the biomechanical response of the neck during a rotary-wing aircraft impact.
Constraining physical parameters of ultra-fast outflows in PDS 456 with Monte Carlo simulations
NASA Astrophysics Data System (ADS)
Hagino, K.; Odaka, H.; Done, C.; Gandhi, P.; Takahashi, T.
2014-07-01
Deep absorption lines with extremely high velocity of ˜0.3c observed in PDS 456 spectra strongly indicate the existence of ultra-fast outflows (UFOs). However, the launching and acceleration mechanisms of UFOs are still uncertain. One possible way to solve this is to constrain physical parameters as a function of distance from the source. In order to study the spatial dependence of parameters, it is essential to adopt 3-dimensional Monte Carlo simulations that treat radiation transfer in arbitrary geometry. We have developed a new simulation code of X-ray radiation reprocessed in AGN outflow. Our code implements radiative transfer in 3-dimensional biconical disk wind geometry, based on Monte Carlo simulation framework called MONACO (Watanabe et al. 2006, Odaka et al. 2011). Our simulations reproduce FeXXV and FeXXVI absorption features seen in the spectra. Also, broad Fe emission lines, which reflects the geometry and viewing angle, is successfully reproduced. By comparing the simulated spectra with Suzaku data, we obtained constraints on physical parameters. We discuss launching and acceleration mechanisms of UFOs in PDS 456 based on our analysis.
NASA Astrophysics Data System (ADS)
Wang, Zining; Li, Jia; Fang, QiHong; Liu, Bin; Zhang, Liangchi
2017-09-01
The mechanical behaviors and deformation mechanisms of scratched AlCrCuFeNi high entropy alloys (HEAs) have been studied by molecular dynamics (MD) simulations, in terms of the scratching forces, atomic strain, atomic displacement, microstructural evolution and dislocation density. The results show that the larger tangential and normal forces and higher friction coefficient take place in AlCrCuFeNi HEA due to its outstanding strength and hardness, and high adhesion and fracture toughness over the pure metal materials. Moreover, the stacking fault energy (SFE) in HEA increases the probability to initiate dislocation and twinning, which is conducive to the formation of complex deformation modes. Compared to the single element metal workpieces, the segregation potency of solutes into twinning boundary (TB) is raised due to the decreasing segregation energy of TB, resulting in the stronger solute effects on improving twinning properties for HEA workpiece. The higher dislocation density and the more activated slipping planes lead to the outstanding plasticity of AlCrCuFeNi HEA. The solute atoms as barriers to hinder the motion of dislocation and the severe lattice distortion to suppress the free slipping of dislocation are significantly stronger obstacles to strengthen HEA. The excellent comprehensive scratching properties of the bulk AlCrCuFeNi HEAs are associated with the combined effects of multiple strengthening mechanisms, such as dislocation strengthening, deformation twinning strengthening as well as solute strengthening. This work provides a basis for further understanding and tailoring SFE in mechanical properties and deformation mechanism of HEAs, which maybe facilitate the design and preparation of new HEAs with high performance.
Damage percolation during stretch flange forming of aluminum alloy sheet
NASA Astrophysics Data System (ADS)
Chen, Zengtao; Worswick, Michael J.; Keith Pilkey, A.; Lloyd, David J.
2005-12-01
A multi-scale finite element (FE)-damage percolation model was employed to simulate stretch flange forming of aluminum alloys AA5182 and AA5754. Material softening and strain gradients were captured using a Gurson-based FE model. FE results were then fed into the so-called damage percolation code, from which the damage development was modelled within measured microstructures. The formability of the stretch flange samples was predicted based upon the onset of catastrophic failure triggered by profuse void coalescence within the measured second-phase particle field. Damage development is quantified in terms of crack and void areal fractions, and compared to metallographic results obtained from interrupted stretch flange specimens. Parametric study is conducted on the effect of void nucleation strain in the prediction of formability of stretch flanges to "calibrate" proper nucleation strains for both alloys.
NASA Astrophysics Data System (ADS)
Sheng, Tian; Sun, Shi-Gang
2017-11-01
Experiments have found that the porphyrin-like FeN4 site in Fe-N-C materials is highly efficient for the electrochemical reduction of CO2 into CO. In this work, we investigated the reduction mechanisms on FeN4 embedded graphene layer catalyst with some explicit water molecules by combining the constrained ab initio molecular dynamics simulations and thermodynamic integrations. The reaction free energy and electron transfer in each elementary step were identified. The initial CO2 activation was identified to go through the first electron transfer to form adsorbed CO2- anion and the CO desorption was the rate limiting step in the overall catalytic cycle.
A Finite Element Model of a Midsize Male for Simulating Pedestrian Accidents.
Untaroiu, Costin D; Pak, Wansoo; Meng, Yunzhu; Schap, Jeremy; Koya, Bharath; Gayzik, Scott
2018-01-01
Pedestrians represent one of the most vulnerable road users and comprise nearly 22% the road crash-related fatalities in the world. Therefore, protection of pedestrians in car-to-pedestrian collisions (CPC) has recently generated increased attention with regulations involving three subsystem tests. The development of a finite element (FE) pedestrian model could provide a complementary component that characterizes the whole-body response of vehicle-pedestrian interactions and assesses the pedestrian injuries. The main goal of this study was to develop and to validate a simplified full body FE model corresponding to a 50th male pedestrian in standing posture (M50-PS). The FE model mesh and defined material properties are based on a 50th percentile male occupant model. The lower limb-pelvis and lumbar spine regions of the human model were validated against the postmortem human surrogate (PMHS) test data recorded in four-point lateral knee bending tests, pelvic\\abdomen\\shoulder\\thoracic impact tests, and lumbar spine bending tests. Then, a pedestrian-to-vehicle impact simulation was performed using the whole pedestrian model, and the results were compared to corresponding PMHS tests. Overall, the simulation results showed that lower leg response is mostly within the boundaries of PMHS corridors. In addition, the model shows the capability to predict the most common lower extremity injuries observed in pedestrian accidents. Generally, the validated pedestrian model may be used by safety researchers in the design of front ends of new vehicles in order to increase pedestrian protection.
NASA Astrophysics Data System (ADS)
Chen, Suqing; Liang, Huading; Shen, Mao; Jin, Yanxian
2018-04-01
In this paper, we present the design and implementation of a type of yolk-like Fe3O4@C-Au@void@TiO2-Pd hierarchical microspheres with visible light-assisted enhanced photocatalytic degradation of dye and rapid magnetic separation. The resulting composite microspheres exhibited yolk-like hierarchical structures with a 236.3 m2 g-1 surface area and a high-saturation magnetization of 31.5 emu g-1. As an example of applications, the photodegradation of Rhodamine B (RhB) in the presence of NaBH4 was investigated under simulated sunlight irradiation. The results show that the photocatalytic activity of the yolk-like Fe3O4@C-Au@void@TiO2-Pd microcomposites in the RhB photodegradation is higher than the Fe3O4@C-Au@void@TiO2 and Fe3O4@C@TiO2 microcomposites, as they can degrade RhB with 40 min of irradiation time. In addition, by magnetic separation, the as-prepared yolk-like Fe3O4@C-Au@void@TiO2-Pd hierarchical microcomposites can be completely separated and reused for four times.
Performance Evaluation and Improvement of Ferroelectric Field-Effect Transistor Memory
NASA Astrophysics Data System (ADS)
Yu, Hyung Suk
Flash memory is reaching scaling limitations rapidly due to reduction of charge in floating gates, charge leakage and capacitive coupling between cells which cause threshold voltage fluctuations, short retention times, and interference. Many new memory technologies are being considered as alternatives to flash memory in an effort to overcome these limitations. Ferroelectric Field-Effect Transistor (FeFET) is one of the main emerging candidates because of its structural similarity to conventional FETs and fast switching speed. Nevertheless, the performance of FeFETs have not been systematically compared and analyzed against other competing technologies. In this work, we first benchmark the intrinsic performance of FeFETs and other memories by simulations in order to identify the strengths and weaknesses of FeFETs. To simulate realistic memory applications, we compare memories on an array structure. For the comparisons, we construct an accurate delay model and verify it by benchmarking against exact HSPICE simulations. Second, we propose an accurate model for FeFET memory window since the existing model has limitations. The existing model assumes symmetric operation voltages but it is not valid for the practical asymmetric operation voltages. In this modeling, we consider practical operation voltages and device dimensions. Also, we investigate realistic changes of memory window over time and retention time of FeFETs. Last, to improve memory window and subthreshold swing, we suggest nonplanar junctionless structures for FeFETs. Using the suggested structures, we study the dimensional dependences of crucial parameters like memory window and subthreshold swing and also analyze key interference mechanisms.
NASA Astrophysics Data System (ADS)
Zheng, Xu; Hao, Zhiyong; Wang, Xu; Mao, Jie
2016-06-01
High-speed-railway-train interior noise at low, medium, and high frequencies could be simulated by finite element analysis (FEA) or boundary element analysis (BEA), hybrid finite element analysis-statistical energy analysis (FEA-SEA) and statistical energy analysis (SEA), respectively. First, a new method named statistical acoustic energy flow (SAEF) is proposed, which can be applied to the full-spectrum HST interior noise simulation (including low, medium, and high frequencies) with only one model. In an SAEF model, the corresponding multi-physical-field coupling excitations are firstly fully considered and coupled to excite the interior noise. The interior noise attenuated by sound insulation panels of carriage is simulated through modeling the inflow acoustic energy from the exterior excitations into the interior acoustic cavities. Rigid multi-body dynamics, fast multi-pole BEA, and large-eddy simulation with indirect boundary element analysis are first employed to extract the multi-physical-field excitations, which include the wheel-rail interaction forces/secondary suspension forces, the wheel-rail rolling noise, and aerodynamic noise, respectively. All the peak values and their frequency bands of the simulated acoustic excitations are validated with those from the noise source identification test. Besides, the measured equipment noise inside equipment compartment is used as one of the excitation sources which contribute to the interior noise. Second, a full-trimmed FE carriage model is firstly constructed, and the simulated modal shapes and frequencies agree well with the measured ones, which has validated the global FE carriage model as well as the local FE models of the aluminum alloy-trim composite panel. Thus, the sound transmission loss model of any composite panel has indirectly been validated. Finally, the SAEF model of the carriage is constructed based on the accurate FE model and stimulated by the multi-physical-field excitations. The results show that the trend of the simulated 1/3 octave band sound pressure spectrum agrees well with that of the on-site-measured one. The deviation between the simulated and measured overall sound pressure level (SPL) is 2.6 dB(A) and well controlled below the engineering tolerance limit, which has validated the SAEF model in the full-spectrum analysis of the high speed train interior noise.
Electronic origin of structural transition in 122 Fe based superconductors
NASA Astrophysics Data System (ADS)
Ghosh, Haranath; Sen, Smritijit; Ghosh, Abyay
2017-03-01
Direct quantitative correlations between the orbital order and orthorhombicity is achieved in a number of Fe-based superconductors of 122 family. The former (orbital order) is calculated from first principles simulations using experimentally determined doping and temperature dependent structural parameters while the latter (the orthorhombicity) is taken from already established experimental studies; when normalized, both the above quantities quantitatively corresponds to each other in terms of their doping as well as temperature variations. This proves that the structural transition in Fe-based materials is electronic in nature due to orbital ordering. An universal correlations among various structural parameters and electronic structure are also obtained. Most remarkable among them is the mapping of two Fe-Fe distances in the low temperature orthorhombic phase, with the band energies Edxz, Edyz of Fe at the high symmetry points of the Brillouin zone. The fractional co-ordinate zAs of As which essentially determines anion height is inversely (directly) proportional to Fe-As bond distances (with exceptions of K doped BaFe2As2) for hole (electron) doped materials as a function of doping. On the other hand, Fe-As bond-distance is found to be inversely (directly) proportional to the density of states at the Fermi level for hole (electron) doped systems. Implications of these results to current issues of Fe based superconductivity are discussed.
A model for late Archean chemical weathering and world average river water
NASA Astrophysics Data System (ADS)
Hao, Jihua; Sverjensky, Dimitri A.; Hazen, Robert M.
2017-01-01
Interpretations of the geologic record of late Archean near-surface environments depend very strongly on an understanding of weathering and resultant riverine transport to the oceans. The late Archean atmosphere is widely recognized to be anoxic (pO2,g =10-5 to 10-13 bars; pH2,g =10-3 to 10-5 bars). Detrital siderite (FeCO3), pyrite (FeS2), and uraninite (UO2) in late Archean sedimentary rocks also suggest anoxic conditions. However, whether the observed detrital minerals could have been thermodynamically stable during weathering and riverine transport under such an atmosphere remains untested. Similarly, interpretations of fluctuations recorded by trace metals and isotopes are hampered by a lack of knowledge of the chemical linkages between the atmosphere, weathering, riverine transport, and the mineralogical record. In this study, we used theoretical reaction path models to simulate the chemistry involved in rainwater and weathering processes under present-day and hypothetical Archean atmospheric boundary conditions. We included new estimates of the thermodynamic properties of Fe(II)-smectites as well as smectite and calcite solid solutions. Simulation of present-day weathering of basalt + calcite by world-average rainwater produced hematite, kaolinite, Na-Mg-saponite, and chalcedony after 10-4 moles of reactant minerals kg-1 H2O were destroyed. Combination of the resultant water chemistry with results for granitic weathering produced a water composition comparable to present-day world average river water (WARW). In contrast, under late Archean atmospheric conditions (pCO2,g =10-1.5 and pH2,g =10-5.0 bars), weathering of olivine basalt + calcite to the same degree of reaction produced kaolinite, chalcedony, and Na-Fe(II)-rich-saponite. Late Archean weathering of tonalite-trondhjemite-granodiorite (TTG) formed Fe(II)-rich beidellite and chalcedony. Combining the waters from olivine basalt and TTG weathering resulted in a model for late Archean WARW with the composition Na+-Ca2+-Fe2+-Mg2+-Cl--HCO-3-SiO2,aq. The pH of the water was 6.3 and it is much richer in HCO-3, and in Mg + Fe relative to Ca + Na, compared to present-day WARW. At higher pH2,g (e.g. 10-4.0 bars) organic acid anions could be metastable. Our results are consistent with the thermodynamic stability of Fe(II)-clays, pyrite, uraninite, and, under some conditions, siderite during weathering and riverine transport. Overall, our results provide a basis for assessing the formation of organic hazes and the mobility of trace elements and nutrients due to fluctuations of the late Archean atmosphere.
Substrate channel in nitrogenase revealed by a molecular dynamics approach.
Smith, Dayle; Danyal, Karamatullah; Raugei, Simone; Seefeldt, Lance C
2014-04-15
Mo-dependent nitrogenase catalyzes the biological reduction of N2 to two NH3 molecules at FeMo-cofactor buried deep inside the MoFe protein. Access of substrates, such as N2, to the active site is likely restricted by the surrounding protein, requiring substrate channels that lead from the surface to the active site. Earlier studies on crystallographic structures of the MoFe protein have suggested three putative substrate channels. Here, we have utilized submicrosecond atomistic molecular dynamics simulations to allow the nitrogenase MoFe protein to explore its conformational space in an aqueous solution at physiological ionic strength, revealing a putative substrate channel. The viability of this observed channel was tested by examining the free energy of passage of N2 from the surface through the channel to FeMo-cofactor, resulting in the discovery of a very low energy barrier. These studies point to a viable substrate channel in nitrogenase that appears during thermal motions of the protein in an aqueous environment and that approaches a face of FeMo-cofactor earlier implicated in substrate binding.
NASA Astrophysics Data System (ADS)
Li, Ling; Shen, Yi; Wang, Zhaomei
2017-07-01
We prepared a 3D monolith by integrating graphite nanosheet encapsulated iron nanoparticles (Fe@GNS) into graphite felt (GF) supports. The structural properties of the resulting Fe@GNS/GF monolith are characterized by x-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, x-ray photoelectron spectroscopy and N2 adsorption-desorption isotherms. The Fe@GNS/GF monoliths are utilized as a bifunctional sorbent and catalyst for water remediation. Using Congo red and methyl violet 2B as model pollutants, the sorption and catalytic performance of the Fe@GNS/GF composite are examined. The Fe@GNS/GF monolith possesses maximum sorption capacities of 177 and 142 mg g-1 for the sorption of CR and MV-2B, respectively. It also exhibits rate constants of 0.0563 and 0.0464 min-1 for the catalytic degradation of CR and MV-2B, respectively. As a proof of concept, the Fe@GNS/GF is successfully utilized to decontaminate simulated organic waste water via a combination of sorption and catalytic degradation processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lijuan; Kelly, Kenneth; Walkowicz, Kevin
The National Renewable Energy Laboratory's (NREL's) Fleet Test and Evaluations team recently conducted chassis dynamometer tests of a class 8 conventional regional delivery truck over the Heavy Heavy-Duty Diesel Truck (HHDDT), West Virginia University City (WVU City), and Composite International Truck Local and Commuter Cycle (CILCC) drive cycles. A quantitative study was conducted by analyzing the impacts of various factors on fuel consumption (FC) and fuel economy (FE) by modeling and simulating the truck using NREL's Future Automotive Systems Technology Simulator (FASTSim). Factors used in this study included vehicle weight, and the coefficients of rolling resistance and aerodynamic drag. Themore » simulation results from a single parametric study revealed that FC was approximately a linear function of the weight, coefficient of aerodynamic drag, and rolling resistance over various drive cycles. Among these parameters, the truck weight had the largest effect on FC. The study of the impact of two technologies on FE suggested that, depending on the circumstances, it may be more cost effective to reduce one parameter (such as coefficient of aerodynamic drag) to increase fuel economy, or it may be more beneficial to reduce another (such as the coefficient of rolling resistance). It also provided a convenient way to estimate FE by interpolating within the parameter values and extrapolating outside of them. The simulation results indicated that the FC could be reduced from 38.70 L/100 km, 50.72 L/100 km, and 38.42 L/100 km in the baseline truck to 26.78 L/100 km, 43.14 L/100 km and 29.84 L/100 km over the HHDDT, WVU City and CILCC drive cycles, respectively, when the U.S. Department of Energy's three targeted new technologies were applied simultaneously.« less
NASA Astrophysics Data System (ADS)
Babu, K.; Prasanna Kumar, T. S.
2014-08-01
An indigenous, non-linear, and coupled finite element (FE) program has been developed to predict the temperature field and phase evolution during heat treatment of steels. The diffusional transformations during continuous cooling of steels were modeled using Johnson-Mehl-Avrami-Komogorov equation, and the non-diffusion transformation was modeled using Koistinen-Marburger equation. Cylindrical quench probes made of AISI 4140 steel of 20-mm diameter and 50-mm long were heated to 1123 K (850 °C), quenched in water, and cooled in air. The temperature history during continuous cooling was recorded at the selected interior locations of the quench probes. The probes were then sectioned at the mid plane and resultant microstructures were observed. The process of water quenching and air cooling of AISI 4140 steel probes was simulated with the heat flux boundary condition in the FE program. The heat flux for air cooling process was calculated through the inverse heat conduction method using the cooling curve measured during air cooling of a stainless steel 304L probe as an input. The heat flux for the water quenching process was calculated from a surface heat flux model proposed for quenching simulations. The isothermal transformation start and finish times of different phases were taken from the published TTT data and were also calculated using Kirkaldy model and Li model and used in the FE program. The simulated cooling curves and phases using the published TTT data had a good agreement with the experimentally measured values. The computation results revealed that the use of published TTT data was more reliable in predicting the phase transformation during heat treatment of low alloy steels than the use of the Kirkaldy or Li model.
Wang, Jianping; Tao, Kun; Li, Huanyi; Wang, Chengtao
2014-01-01
The model of three-dimensional (3D) geometric knee was built, which included femoral-tibial, patellofemoral articulations and the bone and soft tissues. Dynamic finite element (FE) model of knee was developed to simulate both the kinematics and the internal stresses during knee flexion. The biomechanical experimental system of knee was built to simulate knee squatting using cadaver knees. The flexion motion and dynamic contact characteristics of knee were analyzed, and verified by comparing with the data from in vitro experiment. The results showed that the established dynamic FE models of knee are capable of predicting kinematics and the contact stresses during flexion, and could be an efficient tool for the analysis of total knee replacement (TKR) and knee prosthesis design. PMID:25013852
Atomic-scale dynamics of edge dislocations in Ni and concentrated solid solution NiFe alloys
Zhao, Shijun; Osetsky, Yuri N.; Zhang, Yanwen; ...
2017-01-19
Single-phase concentrated solid solution alloys (CSAs), including high entropy alloys, exhibit excellent mechanical properties compared to conventional dilute alloys. However, the origin of this observation is not clear yet because the dislocation properties in CSAs are poorly understood. In this work, the mobility of a <110>{111} edge dislocation in pure Ni and equiatomic solid solution Ni 0.5Fe 0.5 (NiFe) is studied using molecular dynamics simulations with different empirical potentials. The threshold stress to initiate dislocation movement in NiFe is found to be much higher compared to pure Ni. The drag coefficient of the dislocation motion calculated from the linear regimemore » of dislocation velocities versus applied stress suggests that the movement of dislocations in NiFe is strongly damped compared to that in Ni. The present results indicate that the mobility of edge dislocations in fcc CSAs are controlled by the fluctuations in local stacking fault energy caused by the local variation of alloy composition.« less
FeO and H2O and the homogeneous accretion of the earth
NASA Technical Reports Server (NTRS)
Lange, M. A.; Ahrens, T. J.
1984-01-01
Shock devolatilization recovery data for brunite (Mg(OH)2) shocked to 13 and 23 GPa are presented. These data combined with previous data for serpentine (Mg3Si2O5(OH)4) are used to constrain the minimum size terrestrial planet for which planetesimal infall will result in an impact generated water atmosphere. Assuming, in hydrous phyllosilicates, model calculations simulating the interaction of metallic iron with impact released free water on the surface of the accreting earth were carried out. It is assumed that the reaction of water with iron in the presence of enstatite is the prime source of the terrestrial FeO component of silicates and oxides. Lower and upper bounds on the terrestrial FeO budget are based on mantle FeO content and possible incorporation of FeO in the outer core. We demonstrate that the iron water reaction would resuit in the absence of atmospheric/hydrospheric water, if homogeneous accretion is assumed.
Melting behavior of (Mg,Fe)O solid solutions at high pressure
NASA Astrophysics Data System (ADS)
Zhang, Li; Fei, Yingwei
2008-07-01
High pressure melting of (Mg,Fe)O ferropericlase, the second most abundant mineral in the Earth's lower mantle, is of fundamental importance for understanding the chemical differentiation, geodynamics and thermal evolution of the Earth's interior. We report the first systematic experimental study of melting behavior in the MgO-FeO system up to 3600 K and 7 GPa, indicating the ideal solution between solid and liquid (Mg,Fe)O in the MgO-rich portion. The zero pressure melting slope of MgO is ~221 K/GPa derived from our resistance heating measurements, which is several times higher than the value from the previous measurements in a CO2-laser heated diamond anvil cell, but consistent with the theoretically predicted melting curves. Our results combined with the previous first-principles simulations suggest that the melting temperature of MgO-rich (Mg,Fe)O is significantly higher than the geotherm through the lower mantle and this would place an upper bound on the solidus of the lower mantle.
High P-T experiments and first principles calculations of the diffusion of Si and Cr in liquid iron
NASA Astrophysics Data System (ADS)
Posner, Esther S.; Rubie, David C.; Frost, Daniel J.; Vlček, Vojtěch; Steinle-Neumann, Gerd
2017-04-01
Chemical diffusion rates of Si and Cr in liquid iron have been measured over the P-T range of 1-18 GPa and 1873-2428 K. The experiments were performed using a multi-anvil apparatus with diffusion couples comprised of pure iron and iron alloy placed end to end in a vertical orientation. In order to extend our dataset to the Earth's core-mantle boundary and to compare experimental data with theoretical diffusion rates calculated under laboratory-accessible conditions, we have also performed first principles molecular dynamic simulations (FP-MD) and calculated self-diffusion coefficients and activation parameters for Si, Cr, and Fe diffusion in liquid Fe, Fe0.92Si0.08 and Fe0.92Cr0.08 compositions over the P-T range of 1 bar-135 GPa and 2200-5500 K. Over the entire range of pressures and temperatures studied using both methods, diffusion coefficients are described well using an exponential function of the homologous temperature relation, D = Dhexp(-gTh), where Th = Tm/T, Tm is the melting temperature at the pressure of interest and g and Dh are constants. Our findings indicate constant diffusivities of approximately 4 × 10-9 m2 s-1 for Si and Cr and 5 × 10-9 m2 s-1 for Fe along the melting curve from ambient to core pressures in all liquid compositions studied, with an increase of ∼0.8 log units at T = 2Tm. Differences between experimental data and computational results are less than 0.1 log units. Structural properties of liquid iron alloys analyzed using partial radial distribution functions (RDFs) show the average distance between two Fe atoms, rFe-Fe, is identical to that of rFe-Si and rFe-Cr over the entire P-T range of study, which supports that the diffusion of Si and Cr (and thus likely other species of similar atomic radii) occurs via direct substitution with Fe. Diffusion coefficients and interatomic distances used to calculate liquid viscosities via the Stokes-Einstein relation yield constant viscosity along the melting curve of ∼6 mPa s for liquid Fe, ∼7 mPa s for liquid Fe0.92Cr0.08, and ∼8 mPa s for liquid Fe0.92Si0.08, with a decrease of ∼0.8 log units at T = 2Tm. The data can also be reproduced within <10% using the Arrhenian model with derivatives of the activation parameters determined over a very wide range of P-T conditions. Verification of a homologous temperature dependence of diffusion in liquid metals, as well as the excellent agreement between experimental results and FP-MD simulations, provides a new and simple framework for interpreting and modeling mass transport processes of liquid iron alloys in all planetary bodies regardless of size. Our results are used to evaluate the kinetics of metal-silicate chemical equilibration during core formation and diffusivity contrasts across a solid-liquid metal interface, i.e. at the inner core boundary.
Oteri, Francesco; Baaden, Marc; Lojou, Elisabeth; Sacquin-Mora, Sophie
2014-12-04
[NiFe]-hydrogenases catalyze the cleavage of molecular hydrogen into protons and electrons and represent promising tools for H2-based technologies such as biofuel cells. However, many aspects of these enzymes remain to be understood, in particular how the catalytic center can be protected from irreversible inactivation by O2. In this work, we combined homology modeling, all-atom molecular dynamics, and coarse-grain Brownian dynamics simulations to investigate and compare the dynamic and mechanical properties of two [NiFe]-hydrogenases: the soluble O2-sensitive enzyme from Desulfovibrio fructosovorans, and the O2-tolerant membrane-bound hydrogenase from Aquifex aeolicus. We investigated the diffusion pathways of H2 from the enzyme surface to the central [NiFe] active site, and the possible proton pathways that are used to evacuate hydrogen after the oxidation reaction. Our results highlight common features of the two enzymes, such as a Val/Leu/Arg triad of key residues that controls ligand migration and substrate access in the vicinity of the active site, or the key role played by a Glu residue for proton transfer after hydrogen oxidation. We show specificities of each hydrogenase regarding the enzymes internal tunnel network or the proton transport pathways.
NASA Astrophysics Data System (ADS)
Liu, Peitao; Xing, Weiwei; Cheng, Xiyue; Li, Dianzhong; Li, Yiyi; Chen, Xing-Qiu
2014-07-01
By means of first-principles calculations coupled with the kinetic Monte Carlo simulations, we have systematically investigated the effects of dilute substitutional solutes on the behaviors of carbon in α-Fe. Our results uncover the following. (i) Without the Fe vacancy the interactions between most solutes and carbon are repulsive due to the strain relief, whereas Mn has a weak attractive interaction with its nearest-neighbor carbon due to the local ferromagnetic coupling effect. (ii) The presence of the Fe vacancy results in attractive interactions of all the solutes with carbon. In particular, the Mn-vacancy pair shows an exceptionally large binding energy of -0.81 eV with carbon. (iii) The alloying addition significantly impacts the atomic-scale concentration distributions and chemical potential of carbon in the Fe matrix. Among them, Mn and Cr increase the carbon chemical potential, whereas Al and Si reduce it. (iv) Within the dilute scale of the alloying solution, the solute concentration- and temperature-dependent carbon diffusivities demonstrate that Mn has a little impact on the carbon diffusion, whereas Cr (Al or Si) remarkably retards the carbon diffusion. Our results provide a certain implication for better understanding the experimental observations related with the carbon solubility limit, carbon microsegregation, and carbide precipitations in the ferritic steels.
Recovery of Platinum Group Metals from Spent Catalysts Using Iron Chloride Vapor Treatment
NASA Astrophysics Data System (ADS)
Taninouchi, Yu-ki; Okabe, Toru H.
2018-05-01
The recovery of platinum group metals (PGMs) from spent automobile catalysts is a difficult process because of their relatively low contents in the scrap. In this study, to improve the efficiency of the existing recycling techniques, a novel physical concentration method involving treatment with FeCl2 vapor has been examined. The reactions occurring between typical catalyst components and FeCl2 vapor are discussed from the thermodynamic point of view, and the validity of the proposed technique was experimentally verified. The obtained results indicate that the vapor treatment at around 1200 K (927 °C) can effectively alloy PGMs (Pt, Pd, and Rh) with Fe, resulting in the formation of a ferromagnetic alloy. It was also confirmed that cordierite and alumina (the major catalyst components) remained unreacted after the vapor treatment, while ceria species were converted into oxychlorides. The samples simulating the automobile catalyst were also subjected to magnetic separation after the treatment with FeCl2 vapor; as a result, PGMs were successfully extracted and concentrated in the form of a magnetic powder. Thus, the FeCl2 vapor treatment followed by magnetic separation can be utilized for recovering PGMs directly from spent catalysts as an effective pretreatment for the currently used recycling methods.
NASA Astrophysics Data System (ADS)
Chen, Xianfeng; Lin, Zhongqin; Yu, Zhongqi; Chen, Xinping; Li, Shuhui
2011-08-01
This study establishes the forming limit diagram (FLD) for QSTE340 seamed tube hydroforming by finite element method (FEM) simulation. FLD is commonly obtained from experiment, theoretical calculation and FEM simulation. But for tube hydroforming, both of the experimental and theoretical means are restricted in the application due to the equipment costs and the lack of authoritative theoretical knowledge. In this paper, a novel approach of predicting forming limit using thickness gradient criterion (TGC) is presented for seamed tube hydroforming. Firstly, tube bulge tests and uniaxial tensile tests are performed to obtain the stress-strain curve for tube three parts. Then one FE model for a classical tube free hydroforming and another FE model for a novel experimental apparatus by applying the lateral compression force and the internal pressure are constructed. After that, the forming limit strain is calculated based on TGC in the FEM simulation. Good agreement between the simulation and experimental results is indicated. By combining the TGC and FEM, an alternative way of predicting forming limit with enough accuracy and convenience is provided.
Quinn, R; Orenberg, J
1993-10-01
Simulations of the Gas Exchange Experiment (GEX), one of the Viking Lander Biology Experiments, were run using palagonite and Fe-rich montmorillonite as terrestrial analogs of the Martian soil. These terrestrial analogs were exposed to a nutrient solution of the same composition as that of the Viking Landers under humid (no contact with nutrient) and wet (intimate contact) conditions. The headspace gases in the GEX sample cell were sampled and then analyzed by gas chromatography under both humid and wet conditions. Five gases were monitored: CO2, N2, O2, Ar, and Kr. It was determined that in order to simulate the CO2 gas changes of the Viking GEX experiment, the mixture of soil analog mineral plus nutrient medium must be slightly (pH = 7.4) to moderately basic (pH = 8.7). This conclusion suggests constraints upon the composition of terrestrial analogs to the Mars soil; acidic components may be present, but the overall mixture must be basic in order to simulate the Viking GEX results.
NASA Astrophysics Data System (ADS)
Quinn, Richard; Orenberg, James
1993-10-01
Simulations of the Gas Exchange Experiment (GEX), one of the Viking Lander Biology Experiments, were run using palagonite and Fe-rich montmorillonite as terrestrial analogs of the Martian soil. These terrestrial analogs were exposed to a nutrient solution of the same composition as that of the Viking Landers under humid (no contact with nutrient) and wet (intimate contact) conditions. The headspace gases in the GEX sample cell were sampled and then analyzed by gas chromatography under both humid and wet conditions. Five gases were monitored: CO2, N2, O2, Ar, and Kr. It was determined that in order to simulate the CO2 gas changes of the Viking GEX experiment, the mixture of soil analog mineral plus nutrient medium must be slightly (pH = 7.4) to moderately basic (pH = 8.7). This conclusion suggests constraints upon the composition of terrestrial analogs of the Mars soil; acidic components may be present, but the overall mixture must be basic in order to simulate the Viking GEX results.
The metal enrichment of passive galaxies in cosmological simulations of galaxy formation
NASA Astrophysics Data System (ADS)
Okamoto, Takashi; Nagashima, Masahiro; Lacey, Cedric G.; Frenk, Carlos S.
2017-02-01
Massive early-type galaxies have higher metallicities and higher ratios of α elements to iron than their less massive counterparts. Reproducing these correlations has long been a problem for hierarchical galaxy formation theory, both in semi-analytic models and cosmological hydrodynamic simulations. We show that a simulation in which gas cooling in massive dark haloes is quenched by radio-mode active galactic nuclei (AGNs) feedback naturally reproduces the observed trend between α/Fe and the velocity dispersion of galaxies, σ. The quenching occurs earlier for more massive galaxies. Consequently, these galaxies complete their star formation before α/Fe is diluted by the contribution from Type Ia supernovae. For galaxies more massive than ˜1011 M⊙, whose α/Fe correlates positively with stellar mass, we find an inversely correlated mass-metallicity relation. This is a common problem in simulations in which star formation in massive galaxies is quenched either by quasar- or radio-mode AGN feedback. The early suppression of gas cooling in progenitors of massive galaxies prevents them from recapturing enriched gas ejected as winds. Simultaneously reproducing the [α/Fe]-σ relation and the mass-metallicity relation is, thus, difficult in the current framework of galaxy formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Miao; Du, Yonghui; Gao, Lili
A recent experimental study reported the successful synthesis of an orthorhombic FeB{sub 4} with a high hardness of 62(5) GPa [H. Gou et al., Phys. Rev. Lett. 111, 157002 (2013)], which has reignited extensive interests on whether transition-metal borides compounds will become superhard materials. However, it is contradicted with some theoretical studies suggesting transition-metal boron compounds are unlikely to become superhard materials. Here, we examined structural and electronic properties of FeB{sub 4} using density functional theory. The electronic calculations show the good metallicity and covalent Fe–B bonding. Meanwhile, we extensively investigated stress-strain relations of FeB{sub 4} under various tensile andmore » shear loading directions. The calculated weakest tensile and shear stresses are 40 GPa and 25 GPa, respectively. Further simulations (e.g., electron localization function and bond length along the weakest loading direction) on FeB{sub 4} show the weak Fe–B bonding is responsible for this low hardness. Moreover, these results are consistent with the value of Vickers hardness (11.7–32.3 GPa) by employing different empirical hardness models and below the superhardness threshold of 40 GPa. Our current results suggest FeB{sub 4} is a hard material and unlikely to become superhard (>40 GPa)« less
Interfacial exchange interactions and magnetism of Ni2MnAl /Fe bilayers
NASA Astrophysics Data System (ADS)
Yanes, R.; Simon, E.; Keller, S.; Nagyfalusi, B.; Khmelevsky, S.; Szunyogh, L.; Nowak, U.
2017-08-01
Based on multiscale calculations combining ab initio methods with spin dynamics simulations, we perform a detailed study of the magnetic behavior of Ni2MnAl /Fe bilayers. Our simulations show that such a bilayer exhibits a small exchange bias effect when the Ni2MnAl Heusler alloy is in a disordered B2 phase. Additionally, we present an effective way to control the magnetic structure of the Ni2MnAl antiferromagnet, in the pseudo-ordered B2-I as well as the disordered B2 phases, via a spin-flop coupling to the Fe layer.
Zarzycki, Piotr; Rosso, Kevin M
2017-07-05
Understanding Fe(II)-catalyzed transformations of Fe(III)-(oxyhydr)oxides is critical for correctly interpreting stable isotopic distributions and for predicting the fate of metal ions in the environment. Recent Fe isotopic tracer experiments have shown that goethite undergoes rapid recrystallization without phase change when exposed to aqueous Fe(II). The proposed explanation is oxidation of sorbed Fe(II) and reductive Fe(II) release coupled 1:1 by electron conduction through crystallites. Given the availability of two tracer exchange data sets that explore pH and particle size effects (e.g., Handler et al. Environ. Sci. Technol. 2014 , 48 , 11302 - 11311 ; Joshi and Gorski Environ. Sci. Technol. 2016 , 50 , 7315 - 7324 ), we developed a stochastic simulation that exactly mimics these experiments, while imposing the 1:1 constraint. We find that all data can be represented by this model, and unifying mechanistic information emerges. At pH 7.5 a rapid initial exchange is followed by slower exchange, consistent with mixed surface- and diffusion-limited kinetics arising from prominent particle aggregation. At pH 5.0 where aggregation and net Fe(II) sorption are minimal, that exchange is quantitatively proportional to available particle surface area and the density of sorbed Fe(II) is more readily evident. Our analysis reveals a fundamental atom exchange rate of ∼10 -5 Fe nm -2 s -1 , commensurate with some of the reported reductive dissolution rates of goethite, suggesting Fe(II) release is the rate-limiting step in the conduction mechanism during recrystallization.
Traumatic eye injuries as a result of blunt impact: computational issues
NASA Astrophysics Data System (ADS)
Clemente, C.; Esposito, L.; Bonora, N.; Limido, J.; Lacome, J. L.; Rossi, T.
2014-05-01
The detachment or tearing of the retina in the human eye as a result of a collision is a phenomenon that occurs very often. Reliable numerical simulations of eye impact can be very useful tools to understand the physical mechanisms responsible for traumatic eye injuries accompanying blunt impact. The complexity and variability of the physical and mechanical properties of the biological materials, the lack of agreement on their related experimental data as well as the unsuitability of specific numerical codes and models are only some of the difficulties when dealing with this matter. All these challenging issues must be solved to obtain accurate numerical analyses involving dynamic behavior of biological soft tissues. To this purpose, a numerical and experimental investigation of the dynamic response of the eye during an impact event was performed. Numerical simulations were performed with IMPETUS-AFEA, a new general non-linear finite element (FE) software which offers non uniform rational B-splines (NURBS) FE technology for the simulation of large deformation and fracture in materials. IMPETUS code was selected in order to solve hourglass and locking problems typical of nearly incompressible materials like eye tissues. Computational results were compared with the experimental results on fresh enucleated porcine eyes impacted with airsoft pellets.
Cook, Amanda M; Mattioda, Andrew L; Ricco, Antonio J; Quinn, Richard C; Elsaesser, Andreas; Ehrenfreund, Pascale; Ricca, Alessandra; Jones, Nykola C; Hoffmann, Søren V
2014-02-01
We report results from the exposure of the metalloporphyrin iron tetraphenylporphyrin chloride (FeTPPCl) to the outer space environment, measured in situ aboard the Organism/Organic Exposure to Orbital Stresses nanosatellite. FeTPPCl was exposed for a period of 17 months (3700 h of direct solar exposure), which included broad-spectrum solar radiation (∼122 nm to the near infrared). Motivated by the potential role of metalloporphyrins as molecular biomarkers, the exposure of thin-film samples of FeTPPCl to the space environment in low-Earth orbit was monitored in situ via ultraviolet/visible spectroscopy and reported telemetrically. The space data were complemented by laboratory exposure experiments that used a high-fidelity solar simulator covering the spectral range of the spaceflight measurements. We found that thin-film samples of FeTPPCl that were in contact with a humid headspace gas (0.8-2.3% relative humidity) were particularly susceptible to destruction upon irradiation, degrading up to 10 times faster than identical thin films in contact with dry headspace gases; this degradation may also be related to the presence of oxides of nitrogen in those cells. In the companion terrestrial experiments, simulated solar exposure of FeTPPCl films in contact with either Ar or CO2:O2:Ar (10:0.01:1000) headspace gas resulted in growth of a band in the films' infrared spectra at 1961 cm(-1). We concluded that the most likely carriers of this band are allene (C3H4) and chloropropadiene (C3H3Cl), putative molecular fragments of the destruction of the porphyrin ring. The thin films studied in space and in solar simulator-based experiments show qualitatively similar spectral evolution as a function of contacting gaseous species but display significant differences in the time dependence of those changes. The relevance of our findings to planetary science, biomarker research, and the photostability of organic materials in astrobiologically relevant environments is discussed.
Tao, Min; Pelletier, David L
2009-10-01
To quantify the role of dietary Fe in total body Fe (TBI) accumulation among homozygotes for the HFE gene associated with haemochromatosis. A Monte Carlo model was built to simulate Fe accumulation based on findings from human feeding experiments and national dietary surveys. A hypothetical cohort of 1000 homozygotes with starting age 25 years was used in 39-year simulations. The impact of reducing dietary Fe intake on Fe accumulation was tested. In the baseline model without any dietary intervention, by age 64, the percentage of males with TBI > 10 g, >15 g and >20 g was 93.2%, 49.6% and 14.7%, respectively. When the Fe intake of individuals in the cohort was reduced to < or =200% of the recommended dietary allowance (RDA), the corresponding percentages were 92.0%, 40.5% and 10.2%, respectively. The corresponding figures were 91.0%, 40.0% and 9.3% for Fe defortification and 70.3%, 21.3% and 4.1% when Fe intake was capped at 100% RDA. Similar trends were seen with sexes combined, although the impact of interventions was less. Sensitivity analysis revealed that the rate of Fe accumulation and the impact of dietary interventions are highly dependent on assumptions concerning Fe absorption rates. Variation in Fe intake as currently observed in the USA contributes to variation in Fe accumulation among homozygotes, when continued over an extended period. Lifelong dietary habits and national fortification policy can affect the rate of Fe accumulation, although the magnitude of the effect varies by gender, the TBI level of interest and factors affecting the Fe absorption rate.
Pearce, Carolyn I; Wilkins, Michael J; Zhang, Changyong; Heald, Steve M; Fredrickson, Jim K; Zachara, John M
2012-08-07
Etched silicon microfluidic pore network models (micromodels) with controlled chemical and redox gradients, mineralogy, and microbiology under continuous flow conditions are used for the incremental development of complex microenvironments that simulate subsurface conditions. We demonstrate the colonization of micromodel pore spaces by an anaerobic Fe(III)-reducing bacterial species (Geobacter sulfurreducens) and the enzymatic reduction of a bioavailable Fe(III) phase within this environment. Using both X-ray microprobe and X-ray absorption spectroscopy, we investigate the combined effects of the precipitated Fe(III) phases and the microbial population on uranium biogeochemistry under flow conditions. Precipitated Fe(III) phases within the micromodel were most effectively reduced in the presence of an electron shuttle (AQDS), and Fe(II) ions adsorbed onto the precipitated mineral surface without inducing any structural change. In the absence of Fe(III), U(VI) was effectively reduced by the microbial population to insoluble U(IV), which was precipitated in discrete regions associated with biomass. In the presence of Fe(III) phases, however, both U(IV) and U(VI) could be detected associated with biomass, suggesting reoxidation of U(IV) by localized Fe(III) phases. These results demonstrate the importance of the spatial localization of biomass and redox active metals, and illustrate the key effects of pore-scale processes on contaminant fate and reactive transport.
Unique Properties of Lunar Impact Glass: Nanophase Metallic Fe Synthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yang; Taylor, Lawrence A.; Thompson, James R
2007-01-01
Lunar regolith contains important materials that can be used for in-situ resource utilization (ISRU) on the Moon, thereby providing for substantial economic savings for development of a manned base. However, virtually all activities on the Moon will be affected by the deleterious effects of the adhering, abrasive, and pervasive nature of lunar dust (<20 {micro}m portion of regolith, which constitutes {approx}20 wt% of the soil). In addition, the major impact-produced glass in the lunar soil, especially agglutinitic glass (60-80 vol% of the dust), contains unique nanometer-sized metallic Fe (np-Fe{sup 0}), which may pose severe pulmonary problems for humans. The presencemore » of the np-Fe0 imparts considerable magnetic susceptibility to the fine portion of the lunar soil, and dust mitigation techniques can be designed using these magnetic properties. The limited availability of Apollo lunar soils for ISRU research has made it necessary to produce materials that simulate this unique np-Fe{sup 0} property, for testing different dust mitigation methods using electromagnetic fields, and for toxicity studies of human respiratory and pulmonary systems, and for microwave treatment of lunar soil to produce paved roads, etc. A method for synthesizing np-Fe{sup 0} in an amorphous silica matrix is presented here. This type of specific simulant can be used as an additive to other existing lunar soil simulants.« less
The elastic properties and stability of fcc-Fe and fcc-FeNi alloys at inner-core conditions
NASA Astrophysics Data System (ADS)
Martorell, Benjamí; Brodholt, John; Wood, Ian G.; Vočadlo, Lidunka
2015-07-01
The agreement between shear wave velocities for the Earth's inner core observed from seismology with those derived from mineral physics is considerably worse than for any other region of the Earth. Furthermore, there is still debate as to the phase of iron present in the inner core, particularly when alloying with nickel and light elements is taken into account. To investigate the extent to which the mismatch between seismology and mineral physics is a function of either crystal structure and/or the amount of nickel present, we have used ab initio molecular dynamics simulations to calculate the elastic constants and seismic velocities (Vp and Vs) of face centred cubic (fcc) iron at Earth's inner core pressures (360 GPa) and at temperatures up to ˜7000 K. We find that Vp for fcc iron (fcc-Fe) is very similar to that for hexagonal close packed (hcp) iron at all temperatures. In contrast, Vs for fcc-Fe is significantly higher than in hcp-Fe, with the difference increasing with increasing temperature; the difference between Vs for the core (from seismology) and Vs for fcc-Fe exceeds 40 per cent. These results are consistent with previous work at lower temperatures. We have also investigated the effect of 6.5 and 13 atm% Ni in fcc-Fe. We find that Ni only slightly reduces Vp and Vs (e.g. by 2 per cent in Vs for 13 atm% Ni at 5500 K), and cannot account for the difference between the velocities observed in the core and those of pure fcc-Fe. We also tried to examine pre-melting behaviour in fcc-Fe, as reported in hcp-Fe by extending the study to very high temperatures (at which superheating may occur). However, we find that fcc-Fe spontaneously transforms to other hcp-like structures before melting; two hcp-like structures were found, both of hexagonal symmetry, which may most easily be regarded as being derived from an hcp crystal with stacking faults. That the structure did not transform to a true hcp phase is likely as a consequence of the limited size of the simulation box (108 atoms). At 360 GPa, in pure fcc-Fe, we find that the transition from fcc to the hcp-like structure occurs at 7000 K, whereas in the Ni bearing system, the transition occurs at higher temperature (7250 K). This reinforces previous work showing that fcc-Fe might transform to hcp-Fe just before melting, and that Ni tends to stabilize the fcc structure with respect to hcp.
Numerical reconstruction and injury biomechanism in a car-pedestrian crash accident.
Zou, Dong-Hua; Li, Zheng-Dong; Shao, Yu; Feng, Hao; Chen, Jian-Guo; Liu, Ning-Guo; Huang, Ping; Chen, Yi-Jiu
2012-12-01
To reconstruct a car-pedestrian crash accident using numerical simulation technology and explore the injury biomechanism as forensic evidence for injury identification. An integration of multi-body dynamic, finite element (FE), and classical method was applied to a car-pedestrian crash accident. The location of the collision and the details of the traffic accident were determined by vehicle trace verification and autopsy. The accident reconstruction was performed by coupling the three-dimensional car behavior from PC-CRASH with a MADYMO dummy model. The collision FE models of head and leg, developed from CT scans of human remains, were loaded with calculated dummy collision parameters. The data of the impact biomechanical responses were extracted in terms of von Mises stress, relative displacement, strain and stress fringes. The accident reconstruction results were identical with the examined ones and the biomechanism of head and leg injuries, illustrated through the FE methods, were consistent with the classical injury theories. The numerical simulation technology is proved to be effective in identifying traffic accidents and exploring of injury biomechanism.
Corrosion of pre-oxidized nickel alloy X-750 in simulated BWR environment
NASA Astrophysics Data System (ADS)
Tuzi, Silvia; Lai, Haiping; Göransson, Kenneth; Thuvander, Mattias; Stiller, Krystyna
2017-04-01
Samples of pre-oxidized Alloy X-750 were exposed to a simulated boiling water reactor environment in an autoclave at a temperature of 286 °C and a pressure of 80 bar for four weeks. The effect of alloy iron content on corrosion was investigated by comparing samples with 5 and 8 wt% Fe, respectively. In addition, the effect of two different surface pre-treatments was investigated. The microstructure of the formed oxide scales was studied using mainly electron microscopy. The results showed positive effects of an increased Fe content and of removing the deformed surface layer by pickling. After four weeks of exposure the oxide scale consists of oxides formed in three different ways. The oxide formed during pre-oxidization at 700 °C, mainly consisting of chromia, is partly still present. There is also an outer oxide consisting of NiFe2O4 crystals, reaching a maximum size of 3 μm, which has formed by precipitation of dissolved metal ions. Finally, there is an inner nanocrystalline and porous oxide, with a metallic content reflecting the alloy composition, which has formed by corrosion.
Design and Properties Prediction of AMCO3F by First-Principles Calculations.
Tian, Meng; Gao, Yurui; Ouyang, Chuying; Wang, Zhaoxiang; Chen, Liquan
2017-04-19
Computer simulation accelerates the rate of identification and application of new materials. To search for new materials to meet the increasing demands of secondary batteries with higher energy density, the properties of some transition-metal fluorocarbonates ([CO 3 F] 3- ) were simulated in this work as cathode materials for Li- and Na-ion batteries based on first-principles calculations. These materials were designed by substituting the K + ions in KCuCO 3 F with Li + or Na + ions and the Cu 2+ ions with transition-metal ions such as Fe 2+ , Co 2+ , Ni 2+ , and Mn 2+ ions, respectively. The phase stability, electronic conductivity, ionic diffusion, and electrochemical potential of these materials were calculated by first-principles calculations. After taking comprehensive consideration of the kinetic and thermodynamic properties, LiCoCO 3 F and LiFeCO 3 F are believed to be promising novel cathode materials in all of the calculated AMCO 3 F (A = Li and Na; M = Fe, Mn, Co, and Ni). These results will help the design and discovery of new materials for secondary batteries.
Formation of the Galactic Stellar Halo: Origin of the Metallicity-Eccentricity Relation.
Bekki; Chiba
2000-05-01
Motivated by the recently improved knowledge on the kinematic and chemical properties of the Galactic metal-poor stars, we present the numerical simulation for the formation of the Galactic stellar halo to interpret the observational results. As a model for the Galaxy contraction, we adopt the currently standard theory of galaxy formation based on the hierarchical assembly of the cold dark matter fluctuations. We find, for the simulated stars with &sqbl0;Fe&solm0;H&sqbr0;=-1.0, that there is no strong correlation between metal abundances and orbital eccentricities, in good agreement with the observations. Moreover, the observed fraction of the low-eccentricity stars is reproduced correctly for &sqbl0;Fe&solm0;H&sqbr0;=-1.6 and approximately for the intermediate abundance range of -1.6<&sqbl0;Fe&solm0;H&sqbr0;=-1.0. We show that this successful reproduction of the kinematics of the Galactic halo is a natural consequence of the hierarchical evolution of the subgalactic clumps seeded from the cold dark matter density fluctuations.
Waychunas, G.A.; Fuller, C.C.; Rea, B.A.; Davis, J.A.
1996-01-01
Wide angle X-ray scattering (WAXS) measurements have been made on a suite of "two-line" ferrihydrite (FHY2) samples containing varying amounts of coprecipitated arsenate. Samples prepared at pH 8 with counter ions chloride, nitrate, and a mixture of both also were examined. The raw WAXS scattering functions show that "two-line" ferrihydrite actually has a large number of non-Bragg (i.e., diffuse scattering) maxima up to our observation limit of 16 A??-1. The type of counter ion used during synthesis produces no significant change in this function. In unarsenated samples, Radial Distribution Functions (RDFs) produced from the scattering functions show a well-defined Fe-O peak at 2.02 A?? in excellent agreement with the mean distance of 2.01 A?? from extended X-ray absorption fine structure (EXAFS) analysis. The area under the Fe-O peak is consistent with only octahedral oxygen coordination about iron, and an iron coordination about oxygen of 2.2, in agreement with the EXAFS results, the sample composition, and XANES measurements. The second peak observed in the RDFs is clearly divided into two populations of correlations, at 3.07 and 3.52 A??, respectively. These distances are close to the EXAFS-derived Fe-Fe subshell distances of 3.02-3.05 and 3.43-3.46 A??, respectively, though this is misleading as the RDF peaks also include contributions from O-Fe and O-O correlations. Simulated RDFs of the FeOOH polymorphs indicate how the observed RDF structure relates to the EXAFS pair-correlation function, and allow comparisons with an ordered ferrihydrite structure. The effect of increasing arsenate content is dramatic, as the RDF peaks are progressively smeared out, indicating a wider range of interatomic distances even at moderate surface coverages, and a loss of longer range correlations. At an As/Fe ratio of 0.68, the surface saturation level of arsenate, the RDF shows little order beyond what would be expected from small pieces of dioctahedral Fe oxyhydroxyl chains or small "sheet" units. Analysis of the first RDF peak yields components due to As-O and Fe-O correlations. As the As-O component at 1.67 A?? increases in size, the Fe-O component decreases, reflecting a decrease in Fe coordination about the average oxygen. This reduction is consistent with a decrease in mean crystallite size as suggested by EXAFS studies. Analysis of the second RDF peak components shows the progressive decrease in Fe-Fe correlations, and the enhancement of As-Fe correlations, as arsenate level increases. Comparison of the experimental RDF from coprecipitated arsenate-saturated FHY2 with simulated RDFs of model iron oxyhydroxyl structures further constrains possible sizes and geometry for the precipitates, and is consistent with sorbed complexes of the bidentate binuclear (apical oxygen sharing) type.
Surface-enhanced Raman scattering from metal and transition metal nano-caped arrays
NASA Astrophysics Data System (ADS)
Sun, Huanhuan; Gao, Renxian; Zhu, Aonan; Hua, Zhong; Chen, Lei; Wang, Yaxin; Zhang, Yongjun
2018-03-01
The metal and transition metal cap-shaped arrays on polystyrene colloidal particle (PSCP) templates were fabricated to study the surface-enhanced Raman scattering (SERS) effect. We obtained the Ag and Fe complex film by a co-sputtering deposition method. The size of the deposited Fe particle was changed by the sputtering power. We also study the SERS enhancement mechanism by decorating the PATP probe molecule on the different films. The SERS signals increased firstly, and then decreased as the size of Fe particles grows gradually. The finite-difference time domain (FDTD) simulation and experimental Raman results manifest that SERS enhancement was mainly attributed to surface plasma resonance (SPR) between Ag and Ag nanoparticles. The SERS signals of PATP molecule were enhanced to reach a lowest detectable concentration of 10-8 mol/L. The research demonstrates that the SERS substrates with Ag-Fe cap-shaped arrays have a high sensitivity.
Tafen, De Nyago
2015-02-14
The diffusion of dilute hydrogen in fcc Ni–Al and Ni–Fe binary alloys was examined using kinetic Monte Carlo method with input kinetic parameters obtained from first-principles density functional theory. The simulation involves the implementation of computationally efficient energy barrier model that describes the configuration dependence of the hydrogen hopping. The predicted hydrogen diffusion coefficients in Ni and Ni 89.4Fe 10.6 are compared well with the available experimental data. In Ni–Al, the model predicts lower hydrogen diffusivity compared to that in Ni. Overall, diffusion prefactors and the effective activation energies of H in Ni–Fe and Ni–Al are concentration dependent of themore » alloying element. Furthermore, the changes in their values are the results of the short-range order (nearest-neighbor) effect on the interstitial diffusion of hydrogen in fcc Ni-based alloys.« less
Micromagnetics of rare-earth efficient permanent magnets
NASA Astrophysics Data System (ADS)
Fischbacher, Johann; Kovacs, Alexander; Gusenbauer, Markus; Oezelt, Harald; Exl, Lukas; Bance, Simon; Schrefl, Thomas
2018-05-01
The development of permanent magnets containing less or no rare-earth elements is linked to profound knowledge of the coercivity mechanism. Prerequisites for a promising permanent magnet material are a high spontaneous magnetization and a sufficiently high magnetic anisotropy. In addition to the intrinsic magnetic properties the microstructure of the magnet plays a significant role in establishing coercivity. The influence of the microstructure on coercivity, remanence, and energy density product can be understood by using micromagnetic simulations. With advances in computer hardware and numerical methods, hysteresis curves of magnets can be computed quickly so that the simulations can readily provide guidance for the development of permanent magnets. The potential of rare-earth reduced and rare-earth free permanent magnets is investigated using micromagnetic simulations. The results show excellent hard magnetic properties can be achieved in grain boundary engineered NdFeB, rare-earth magnets with a ThMn12 structure, Co-based nano-wires, and L10-FeNi provided that the magnet’s microstructure is optimized.
Large rotating field entropy change in ErFeO3 single crystal with angular distribution contribution
NASA Astrophysics Data System (ADS)
Huang, Ruoxiang; Cao, Shixun; Ren, Wei; Zhan, Sheng; Kang, Baojuan; Zhang, Jincang
2013-10-01
We report the rotating field entropy of ErFeO3 single-crystal in a temperature range of 3-40 K. The giant magnetic entropy change, ΔSM = -20.7 J/(kg K), and the refrigerant capacity, RC = 273.5 J/kg, are observed near T =6 K. The anisotropic constants at 6 K, K1 = 1.24× 103 J/kg, K2 = 0.74 × 103 J/kg, in the bc plane are obtained. By considering the magnetocrystalline anisotropy and Fermi-Dirac angular distribution along the orientation of spontaneous magnetization, the experimental results can be well simulated. Our present work demonstrates that ErFeO3 crystal may find practical use for low temperature anisotropic magnetic refrigeration.
Development and analysis of a finite element model to simulate pulmonary emphysema in CT imaging.
Diciotti, Stefano; Nobis, Alessandro; Ciulli, Stefano; Landini, Nicholas; Mascalchi, Mario; Sverzellati, Nicola; Innocenti, Bernardo
2015-01-01
In CT imaging, pulmonary emphysema appears as lung regions with Low-Attenuation Areas (LAA). In this study we propose a finite element (FE) model of lung parenchyma, based on a 2-D grid of beam elements, which simulates pulmonary emphysema related to smoking in CT imaging. Simulated LAA images were generated through space sampling of the model output. We employed two measurements of emphysema extent: Relative Area (RA) and the exponent D of the cumulative distribution function of LAA clusters size. The model has been used to compare RA and D computed on the simulated LAA images with those computed on the models output. Different mesh element sizes and various model parameters, simulating different physiological/pathological conditions, have been considered and analyzed. A proper mesh element size has been determined as the best trade-off between reliable results and reasonable computational cost. Both RA and D computed on simulated LAA images were underestimated with respect to those calculated on the models output. Such underestimations were larger for RA (≈ -44 ÷ -26%) as compared to those for D (≈ -16 ÷ -2%). Our FE model could be useful to generate standard test images and to design realistic physical phantoms of LAA images for the assessment of the accuracy of descriptors for quantifying emphysema in CT imaging.
NASA Technical Reports Server (NTRS)
Leonard, J. I.; Leach, C. S.; Rummel, J. A.
1982-01-01
Mathematical modeling techniques were used to simulate the fluid electrolyte (F-E) responses during gravity unloading. It is shown that the response to weightlessness can best be understood by separately examining the acute (hours to days) and chronic (days to weeks) phases, and assuming the presence of normal, although complex, feedback regulatory processes. Headward shifts of fluid are shown to be primarily responsible for acute body losses of extracellular F-E. Losses of body water are closely related to the volume of fluid shifts from the legs. A diuresis is predicted within the first several hours of hypogravity, and this may be obscured by a reduced F-E intake; on Skylab, early F-E losses occurred primarily by deficit intake.
Temperature dependent magnon-phonon coupling in bcc Fe from theory and experiment.
Körmann, F; Grabowski, B; Dutta, B; Hickel, T; Mauger, L; Fultz, B; Neugebauer, J
2014-10-17
An ab initio based framework for quantitatively assessing the phonon contribution due to magnon-phonon interactions and lattice expansion is developed. The theoretical results for bcc Fe are in very good agreement with high-quality phonon frequency measurements. For some phonon branches, the magnon-phonon interaction is an order of magnitude larger than the phonon shift due to lattice expansion, demonstrating the strong impact of magnetic short-range order even significantly above the Curie temperature. The framework closes the previous simulation gap between the ferro- and paramagnetic limits.
Research on simplified parametric finite element model of automobile frontal crash
NASA Astrophysics Data System (ADS)
Wu, Linan; Zhang, Xin; Yang, Changhai
2018-05-01
The modeling method and key technologies of the automobile frontal crash simplified parametric finite element model is studied in this paper. By establishing the auto body topological structure, extracting and parameterizing the stiffness properties of substructures, choosing appropriate material models for substructures, the simplified parametric FE model of M6 car is built. The comparison of the results indicates that the simplified parametric FE model can accurately calculate the automobile crash responses and the deformation of the key substructures, and the simulation time is reduced from 6 hours to 2 minutes.
Root, Robert A.; Fathordoobadi, Sahar; Alday, Fernando; Ela, Wendell; Chorover, Jon
2013-01-01
During treatment for potable use, water utilities generate arsenic-bearing ferric wastes that are subsequently dispatched to landfills. The biogeochemical weathering of these residuals in mature landfills affects the potential mobilization of sorbed arsenic species via desorption from solids subjected to phase transformations driven by abundant organic matter and bacterial activity. Such processes are not simulated with the Toxicity Characteristic Leaching Procedure (TCLP) currently used to characterize hazard. To examine the effect of sulfate on As retention in landfill leachate, columns of As(V) loaded amorphous ferric hydroxide were reacted biotically at two leachate sulfate concentrations (0.064 mM and 2.1 mM). After 300 d, ferric sorbents were reductively dissolved. Arsenic released to porewaters was partially co-precipitated in mixed-valent secondary iron phases whose speciation was dependent on sulfate concentration. As and Fe XAS showed that, in the low sulfate column, 75–81% of As(V) was reduced to As(III), and 53–68% of the Fe(III) sorbent was transformed, dominantly to siderite and green rust. In the high sulfate column, Fe(III) solids were reduced principally to FeS(am), whereas As(V) was reduced to a polymeric sulfide with local atomic structure of realgar. Multi-energy micro-X-ray fluorescence (ME-μXRF) imaging at Fe and As K-edges showed that As formed surface complexes with ferrihydrite > siderite > green rust in the low sulfate column; while discrete realgar-like phases formed in the high sulfate systems. Results indicate that landfill sulfur chemistry exerts strong control over the potential mobilization of As from ferric sorbent residuals by controlling secondary As and Fe sulfide co-precipitate formation. PMID:24102155
He, Hai-Bo; Li, Bin; Dong, Jun-Ping; Lei, Yun-Yi; Wang, Tian-Lin; Yu, Qiong-Wei; Feng, Yu-Qi; Sun, You-Bao
2013-08-28
A functionalizable organosiliceous hybrid magnetic material was facilely constructed by surface polymerization of octavinyl polyhedral oligomeric silsesquioxane (POSS) on the Fe3O4 nanoparticles. The resultant Fe3O4@POSS was identified as a mesoporous architecture with an average particle diameter of 20 nm and high specific surface area up to 653.59 m(2) g(-1). After it was tethered with an organic chain containing dithiol via thiol-ene addition reaction, the ultimate material (Fe3O4@POSS-SH) still have moderate specific area (224.20 m(2) g(-1)) with almost identical porous morphology. It turns out to be a convenient, efficient single adsorbent for simultaneous elimination of inorganic heavy metal ions and organic dyes in simulate multicomponent wastewater at ambient temperature. The Fe3O4@POSS-SH nanoparticles can be readily withdrawn from aqueous solutions within a few seconds under moderate magnetic field and exhibit good stability in strong acid and alkaline aqueous matrices. Contaminants-loaded Fe3O4@POSS-SH can be easily regenerated with either methanol-acetic acid (for organic dyes) or hydrochloric acid (for heavy metal ions) under ultrasonication. The renewed one keeps appreciable adsorption capability toward both heavy metal ions and organic dyes, the removal rate for any of the pollutants exceeds 92% to simulate wastewater with multiple pollutants after repeated use for 5 cycles. Beyond the environmental remediation function, thanks to the pendant vinyl groups, the Fe3O4@POSS derived materials rationally integrating distinct or versatile functions could be envisaged and consequently a wide variety of applications may emerge.
NASA Astrophysics Data System (ADS)
Shchetinin, N. A.; Duganova, E. V.; Golubenko, N. V.; Novikov, I. A.; Korneev, A. S.
2018-03-01
The paper provides modeling results in the CAD/CAE SolidWorks system with embedded FE-analysis package SolidWorks Simulation to study the hardness of floating tyres during their reconstruction into welded-in tyres.
Miniaturization of Micro-Solder Bumps and Effect of IMC on Stress Distribution
NASA Astrophysics Data System (ADS)
Choudhury, Soud Farhan; Ladani, Leila
2016-07-01
As the joints become smaller in more advanced packages and devices, intermetallic (IMCs) volume ratio increases, which significantly impacts the overall mechanical behavior of joints. The existence of only a few grains of Sn (Tin) and IMC materials results in anisotropic elastic and plastic behavior which is not detectable using conventional finite element (FE) simulation with average properties for polycrystalline material. In this study, crystal plasticity finite element (CPFE) simulation is used to model the whole joint including copper, Sn solder and Cu6Sn5 IMC material. Experimental lap-shear test results for solder joints from the literature were used to validate the models. A comparative analysis between traditional FE, CPFE and experiments was conducted. The CPFE model was able to correlate the experiments more closely compared to traditional FE analysis because of its ability to capture micro-mechanical anisotropic behavior. Further analysis was conducted to evaluate the effect of IMC thickness on stress distribution in micro-bumps using a systematic numerical experiment with IMC thickness ranging from 0% to 80%. The analysis was conducted on micro-bumps with single crystal Sn and bicrystal Sn. The overall stress distribution and shear deformation changes as the IMC thickness increases. The model with higher IMC thickness shows a stiffer shear response, and provides a higher shear yield strength.
Enrichment of Zinc in Galactic Chemodynamical Evolution Models
NASA Astrophysics Data System (ADS)
Hirai, Yutaka; Saitoh, Takayuki R.; Ishimaru, Yuhri; Wanajo, Shinya
2018-03-01
The heaviest iron-peak element Zinc (Zn) has been used as an important tracer of cosmic chemical evolution. Spectroscopic observations of the metal-poor stars in Local Group galaxies show an increasing trend of [Zn/Fe] ratios toward lower metallicity. However, the enrichment of Zn in galaxies is not well understood due to poor knowledge of astrophysical sites of Zn, as well as metal mixing in galaxies. Here we show possible explanations for the observed trend by taking into account electron-capture supernovae (ECSNe) as one of the sources of Zn in our chemodynamical simulations of dwarf galaxies. We find that the ejecta from ECSNe contribute to stars with [Zn/Fe] ≳ 0.5. We also find that scatters of [Zn/Fe] in higher metallicities originate from the ejecta of type Ia supernovae. On the other hand, it appears difficult to explain the observed trends if we do not consider ECSNe as a source of Zn. These results come from an inhomogeneous spatial metallicity distribution due to the inefficiency of the metal mixing. We find that the optimal value of the scaling factor for the metal diffusion coefficient is ∼0.01 in the shear-based metal mixing model in smoothed particle hydrodynamics simulations. These results suggest that ECSNe could be one of the contributors of the enrichment of Zn in galaxies.
Experimental and simulation studies of iron oxides for geochemical fixation of CO2-SO2 gas mixtures
Garcia, Susana; Rosenbauer, Robert J.; Palandri, James; Maroto-Valer, M. Mercedes
2011-01-01
Iron-bearing minerals are reactive phases of the subsurface environment and could potentially trap CO2–SO2gas mixtures derived from fossil fuel combustion processes by their conversion to siderite (FeCO3) and dissolved sulfate. Changes in fluid and mineral compositions resulting from reactions, involving the co-injection of SO2 with CO2 were observed both theoretically and experimentally. Experiments were conducted with a natural hematite (α-Fe2O3) sample. A high pressure-high temperature apparatus was used to simulate conditions in geologic formations deeper than 800 m, where CO2 is in the supercritical state. Solid samples were allowed to react with a NaCl–NaOH brine and SO2-bearing CO2-dominated gas mixtures. The predicted equilibrium mineral assemblage at 100 °C and 250 bar became hematite, dawsonite (NaAl(OH)2CO3), siderite (FeCO3) and quartz (SiO2). Experimentally, siderite and dawsonite, derived from the presence of kaolinite (Al2Si2O5(OH)4) in the parent material, were present in residual solids at longer reaction time intervals, which agreed well with results from the modelling work.
Cvetkovic, Aleksandar M; Milasinovic, Danko Z; Peulic, Aleksandar S; Mijailovic, Nikola V; Filipovic, Nenad D; Zdravkovic, Nebojsa D
2014-11-01
The main goal of this study was to numerically quantify risk of duodenal stump blowout after Billroth II (BII) gastric resection. Our hypothesis was that the geometry of the reconstructed tract after BII resection is one of the key factors that can lead to duodenal dehiscence. We used computational fluid dynamics (CFD) with finite element (FE) simulations of various models of BII reconstructed gastrointestinal (GI) tract, as well as non-perfused, ex vivo, porcine experimental models. As main geometrical parameters for FE postoperative models we have used duodenal stump length and inclination between gastric remnant and duodenal stump. Virtual gastric resection was performed on each of 3D FE models based on multislice Computer Tomography (CT) DICOM. According to our computer simulation the difference between maximal duodenal stump pressures for models with most and least preferable geometry of reconstructed GI tract is about 30%. We compared the resulting postoperative duodenal pressure from computer simulations with duodenal stump dehiscence pressure from the experiment. Pressure at duodenal stump after BII resection obtained by computer simulation is 4-5 times lower than the dehiscence pressure according to our experiment on isolated bowel segment. Our conclusion is that if the surgery is performed technically correct, geometry variations of the reconstructed GI tract by themselves are not sufficient to cause duodenal stump blowout. Pressure that develops in the duodenal stump after BII resection using omega loop, only in the conjunction with other risk factors can cause duodenal dehiscence. Increased duodenal pressure after BII resection is risk factor. Hence we recommend the routine use of Roux en Y anastomosis as a safer solution in terms of resulting intraluminal pressure. However, if the surgeon decides to perform BII reconstruction, results obtained with this methodology can be valuable. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Cladding burst behavior of Fe-based alloys under LOCA
Terrani, Kurt A.; Dryepondt, Sebastien N.; Pint, Bruce A.; ...
2015-12-17
Burst behavior of austenitic and ferritic Fe-based alloy tubes has been examined under a simulated large break loss of coolant accident. Specifically, type 304 stainless steel (304SS) and oxidation resistant FeCrAl tubes were studied alongside Zircaloy-2 and Zircaloy-4 that are considered reference fuel cladding materials. Following the burst test, characterization of the cladding materials was carried out to gain insights regarding the integral burst behavior. Given the widespread availability of a comprehensive set of thermo-mechanical data at elevated temperatures for 304SS, a modeling framework was implemented to simulate the various processes that affect burst behavior in this Fe-based alloy. Themore » most important conclusion is that cladding ballooning due to creep is negligible for Fe-based alloys. Thus, unlike Zr-based alloys, cladding cross-sectional area remains largely unchanged up to the point of burst. Furthermore, for a given rod internal pressure, the temperature onset of burst in Fe-based alloys appears to be simply a function of the alloy's ultimate tensile strength, particularly at high rod internal pressures.« less
Magnetostriction and corrosion studies in single crystals of iron-gallium alloys
NASA Astrophysics Data System (ADS)
Jayaraman, Tanjore V.
Iron-gallium alloys have an excellent combination of large low-field magnetostriction, good mechanical properties, low hysteresis, and relatively low cost. This dissertation focuses on the magneto striction and corrosion behaviors of single crystals of Fe-Ga alloys. In the first part, the variation of magnetostrictive coefficient: (3/2) lambda100, with composition and heat treatment conditions of Fe-Ga alloys, is examined. Single crystals with compositions Fe-15 at.% Ga, Fe-20 at.% Ga, and Fe-27.5 at.% Ga were obtained by (a) vertical Bridgman technique (DG) and (b) vertical Bridgman technique followed by long-term annealing (LTA) and quenching. Rapid quenching from a phase region improves the (3/2) lambda 100 value in these alloys. X-ray diffraction characterization showed for the first time the direct evidence of short-range ordering in these alloys. The second part reports the first study of alpha" ordering heat treatment on the elastic properties and magnetostriction of Fe-27.5 at.% Ga alloy single crystals. The elastic constants were measured using resonant ultrasound spectroscopy (RUS), and the elastic properties and magneto-elastic coupling constant were calculated. The (3/2) lambda100 and B1 values obtained for a phase were higher than alpha" phase. The third part examines the first study of corrosion behavior of as-cast FeGa and Fe-Ga-Al alloys in acidic, basic, and simulated seawater environments. Corrosion measurements were performed by Tafel scan and polarization resistance method and in general exhibited good corrosion resistance. The fourth part examines the first study of corrosion behavior of Fe-15 at.% Ga, Fe-20 at.% Ga, and Fe-27.5 at.% Ga DG and LTA alloy single crystals and the dependence of corrosion rates on the crystal orientations. The corrosion resistance was better in basic environments followed by simulated seawater and acidic environments. The fifth part examines the effect of magnetostriction on the corrosion behavior of [100]-oriented single crystal of Fe-20 at.% Ga alloy in acidic and simulated seawater solution, first study ever of this kind. Magnetostrictive strain introduced on the application of saturation magnetic field increased the corrosion rate of [100]-oriented Fe-20 at.% Ga alloy single crystal by 40% in 0.1M HCl and decreased the corrosion rate by 15% in 3.5 wt.% NaCl solution.
Molecular dynamics simulations of proton-ordered water confined in low-diameter carbon nanotubes.
Li, Shujuan; Schmidt, Burkhard
2015-03-21
The present work deals with molecular dynamics simulations of water confined in single-walled carbon nanotubes (CNTs), with emphasis on the proton-ordering of water and its polarization. First, the water occupancy of open-ended armchair and zigzag CNTs immersed in water under ambient NPT conditions is calculated for various water models, and for varying Lennard-Jones parameters of the water-carbon interaction. As a function of the CNT diameter, the water density displays several oscillations before converging to the bulk value. Based on these results, the water structures encapsulated in 10 nm long armchair CNTs (n,n) with 5 ≤ n ≤ 10, are investigated under NVT conditions. Inside the smallest nanotubes (n = 5, 6) highly ferroelectric (FE), quasi-one-dimensional water chains are found while inside the other CNTs water molecules assemble into single-walled ice nanotubes (INTs). There are several, near-degenerate minimum energy INT structures: single helical structures were found for 7 ≤ n ≤ 10, in all cases in FE arrangement. In addition, a double helical INT structure was found for n = 8 with an even higher polarization. Prism-like structures were found only for 8 ≤ n ≤ 10 with various FE, ferrielectric (FI), and antiferroelectric (AF, n = 9, 10) proton ordering. The coexistence of the nearly iso-energetic FE, FI, and AF INT structures separated by high barriers renders the molecular dynamics highly metastable, typically with nanosecond timescales at room temperature. Hence, the replica exchange simulation method is used to obtain populations of different INT states at finite temperatures. Many of the FE INT structures confined in low-diameter CNTs are still prevalent at room temperature. Both helix-helix and helix-prism structural transitions are detected which can be either continuous (around 470 K for n = 8) or discontinuous (at 218 K for n = 9). Also melting-like transitions are found in which the INT structures are disrupted leading to a loss of FE or FI ordering of the water orientations. Also these transitions can be either smooth (for n = 7, 8) or abrupt, first-order transitions, at T = 362 K for n = 9 and at T = 285 K for n = 10.
NASA Astrophysics Data System (ADS)
Madkour, Loutfy H.; Kaya, Savaş; Guo, Lei; Kaya, Cemal
2018-07-01
The adsorption behavior and inhibition mechanism of five synthesized bis-azo dye (BAD) derivatives on the corrosion of iron in aerated HNO3 and NaOH were investigated by performing potentiostatic polarization, weight loss (WL), thermometric and UV-visible spectra measurements. DFT calculations is applied to study the correlation between corrosion inhibition and global reactivity descriptors such as: EHOMO, ELUMO, molecular gap (ΔE), the dipole moment (μ), the global hardness (η), softness(S), electronegativity (χ), proton affinity (PA), electrophilicity (ω), nucleophilicity (ɛ), electrons transferred from inhibitors to metal surface (ΔN), initial molecule-metal interaction energy (Δψ), total electronic energy (E) and the energy change during electronic back-donation process (ΔEb-d). To mimic the real environment of corrosion inhibition, molecular dynamic (MD) simulations in aqueous phase have also been modelled consisting of all concerned species (inhibitor molecule, H2O, H3O+ ion, NO3- ion, OH- and Fe surface). The results confirmed that BAD molecules inhibit iron by adsorption behavior through donating and accepting electrons together with the formation of [Fe (II) and Fe (III)-BAD] chelate complex compounds. BAD's behavior is mainly chemisorption with some physisorption obeyed Frumkin and that of El-Awady adsorption isotherm. Kinetic parameters such as: (Kb, 1/y, Kads, f, ΔG°ads) have been determined and discussed. Binding energies of BAD molecules on Fe (110) surface followed the order: BAD_ 2 > BAD_ 1 > BAD_ 3 > BAD_ 4 > BAD_ 5. Theoretical results were found to be consistent with the experimental data reported. Our results provide important atomic/molecular insights into the anticorrosive mechanism of inhibitor molecules, which could help in understanding the organic-metal interface and designing more appropriate organic corrosion inhibitors.
Sun, Wenjie; Sierra-Alvarez, Reyes; Milner, Lily; Oremland, Ron; Field, Jim A.
2014-01-01
The objective of this study was to explore a bioremediation strategy based on injecting NO3− to support the anoxic oxidation of ferrous iron (Fe(II)) and arsenite (As(III)) in the subsurface as a means to immobilize As in the form of arsenate (As(V)) adsorbed onto biogenic ferric (Fe(III)) (hydr)oxides. Continuous flow sand filled columns were used to simulate a natural anaerobic groundwater and sediment system with co-occurring As(III) and Fe(II) in the presence (SF1) or absence (SF2) of nitrate, respectively. During operation for 250 days, the average influent arsenic concentration of 567 µg l−1 was reduced to 10.6 (±9.6) µg l−1 in the effluent of column SF1. The cumulative removal of Fe(II) and As(III) in SF1 was 6.5–10-fold higher than that in SF2. Extraction and measurement of the mass of iron and arsenic immobilized on the sand packing of the columns was close to the iron and arsenic removed from the aqueous phase during column operation. The dominant speciation of the immobilized iron and arsenic was Fe(III) and As(V) in SF1, compared with Fe(II) and As(III) in SF2. The speciation was confirmed by XRD and XPS. The results indicate that microbial oxidation of As(III) and Fe(II) linked to denitrification resulted in the enhanced immobilization of aqueous arsenic in anaerobic environments by forming Fe(III) (hydr)oxides coated sands with adsorbed As(V). PMID:19764221
Capelli, Claudio; Biglino, Giovanni; Petrini, Lorenza; Migliavacca, Francesco; Cosentino, Daria; Bonhoeffer, Philipp; Taylor, Andrew M; Schievano, Silvia
2012-12-01
Finite element (FE) modelling can be a very resourceful tool in the field of cardiovascular devices. To ensure result reliability, FE models must be validated experimentally against physical data. Their clinical application (e.g., patients' suitability, morphological evaluation) also requires fast simulation process and access to results, while engineering applications need highly accurate results. This study shows how FE models with different mesh discretisations can suit clinical and engineering requirements for studying a novel device designed for percutaneous valve implantation. Following sensitivity analysis and experimental characterisation of the materials, the stent-graft was first studied in a simplified geometry (i.e., compliant cylinder) and validated against in vitro data, and then in a patient-specific implantation site (i.e., distensible right ventricular outflow tract). Different meshing strategies using solid, beam and shell elements were tested. Results showed excellent agreement between computational and experimental data in the simplified implantation site. Beam elements were found to be convenient for clinical applications, providing reliable results in less than one hour in a patient-specific anatomical model. Solid elements remain the FE choice for engineering applications, albeit more computationally expensive (>100 times). This work also showed how information on device mechanical behaviour differs when acquired in a simplified model as opposed to a patient-specific model.
NASA Astrophysics Data System (ADS)
Liu, Yue-Lin; Yu, Yang; Dai, Zhen-Hong
2015-01-01
Using first-principles calculations, we investigate the stabilities of He and Hen-vacancy (HenV) clusters in α-Fe and W. Vacancy formation energies are 2.08 eV in α-Fe and 3.11 eV in W, respectively. Single He in both α-Fe and W prefers to occupy the tetrahedral interstitial site. We recalculated the He solution energy considering the effect of zero-point energy (ZPE). The ZPEs of He in α-Fe and W at the tetrahedral (octahedral) interstitial site are 0.072 eV (0.031 eV) and 0.078 eV (0.034 eV), respectively. The trapping energies of single He at vacancy in α-Fe and W are -2.39 eV and -4.55 eV, respectively. By sequentially adding He into vacancy, a monovacancy trap up to 10 He atoms distributing in the vacancy vicinity. Based on the above results combined with statistical model, we evaluate the concentrations of all relevant HenV clusters as a function of He chemical potential. The critical HenV concentration is found to be ∼10-40 (atomic) at the critical temperature T = 600 K in α-Fe and T = 1600 K in W, respectively. Beyond the critical HenV concentrations, considerable HenV aggregate to form HenVm clusters. By further growing of HenVm, the HenVm clusters grow bigger resulting in the larger He bubble formation.
Computer simulation in mechanical spectroscopy
NASA Astrophysics Data System (ADS)
Blanter, M. S.
2012-09-01
Several examples are given for use of computer simulation in mechanical spectroscopy. On one hand simulation makes it possible to study relaxation mechanisms, and on the other hand to use the colossal accumulation of experimental material to study metals and alloys. The following examples are considered: the effect of Al atom ordering on the Snoek carbon peak in alloys of the system Fe - Al - C; the effect of plastic strain on Finkel'shtein - Rozin relaxation in Fe - Ni - C austenitic steel; checking the adequacy of energy interactions of interstitial atoms, calculated on the basis of a first-principle model by simulation of the concentration dependence of Snoek relaxation parameters in Nb - O.
Chubar, Natalia; Gerda, Vasyl; Banerjee, Dipanjan; Yablokova, Ganna
2017-02-01
In this work, we present material chemistry in the hydrothermal synthesis of new complex structure materials based on various dosage ratios of Fe and Ce (1:0, 2:1, 1:1, 1:2, 0:1), characterize them by the relevant methods that allow characterization of both crystalline and amorphous phases and correlate their structure/surface properties with the adsorptive performance of the five toxic anions. The applied synthesis conditions resulted in the formation of different compounds of Fe and Ce components. The Fe-component was dominated by various phases of Fe hydrous oxides, whereas the Ce-component was composed of various phases of Ce carbonates. The presence of two metal salts in raw materials resulted in the formation of a mesoporous structure and averaged the surface area compared to one metal-based material. The surface of all Fe-Ce composites was abundant in Fe component phases. Two-metal systems showed stronger anion removal performance than one-metal materials. The best adsorption was demonstrated by Fe-Ce based materials that had low crystallinity, that were rich in phases and that exhibited surfaces were abundant in greater number of surface functional groups. Notably, Fe extended fine structures simulated by EXAFS in these better adsorbents were rich from oscillations from both heavy and light atoms. This work provides new insights on the structure of composite inorganic materials useful to develop their applications in adsorption and catalysis. It also presents new inorganic anion exchangers with very high removal potential to fluoride and arsenate. Copyright © 2016 Elsevier Inc. All rights reserved.
Modeling the biomechanical and injury response of human liver parenchyma under tensile loading.
Untaroiu, Costin D; Lu, Yuan-Chiao; Siripurapu, Sundeep K; Kemper, Andrew R
2015-01-01
The rapid advancement in computational power has made human finite element (FE) models one of the most efficient tools for assessing the risk of abdominal injuries in a crash event. In this study, specimen-specific FE models were employed to quantify material and failure properties of human liver parenchyma using a FE optimization approach. Uniaxial tensile tests were performed on 34 parenchyma coupon specimens prepared from two fresh human livers. Each specimen was tested to failure at one of four loading rates (0.01s(-1), 0.1s(-1), 1s(-1), and 10s(-1)) to investigate the effects of rate dependency on the biomechanical and failure response of liver parenchyma. Each test was simulated by prescribing the end displacements of specimen-specific FE models based on the corresponding test data. The parameters of a first-order Ogden material model were identified for each specimen by a FE optimization approach while simulating the pre-tear loading region. The mean material model parameters were then determined for each loading rate from the characteristic averages of the stress-strain curves, and a stochastic optimization approach was utilized to determine the standard deviations of the material model parameters. A hyperelastic material model using a tabulated formulation for rate effects showed good predictions in terms of tensile material properties of human liver parenchyma. Furthermore, the tissue tearing was numerically simulated using a cohesive zone modeling (CZM) approach. A layer of cohesive elements was added at the failure location, and the CZM parameters were identified by fitting the post-tear force-time history recorded in each test. The results show that the proposed approach is able to capture both the biomechanical and failure response, and accurately model the overall force-deflection response of liver parenchyma over a large range of tensile loadings rates. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Strutz, Tessa J.; Hornbruch, Götz; Dahmke, Andreas; Köber, Ralf
2016-08-01
Successful groundwater remediation by injecting nanoscale zero-valent iron (NZVI) particles requires efficient particle transportation and distribution in the subsurface. This study focused on the influence of injection velocity and particle concentration on the spatial NZVI particle distribution, the deposition processes and on quantifying the induced decrease in hydraulic conductivity (K) as a result of particle retention by lab tests and numerical simulations. Horizontal column tests of 2 m length were performed with initial Darcy injection velocities (q0) of 0.5, 1.5, and 4.1 m/h and elemental iron input concentrations (Fe0in) of 0.6, 10, and 17 g/L. Concentrations of Fe0 in the sand were determined by magnetic susceptibility scans, which provide detailed Fe0 distribution profiles along the column. NZVI particles were transported farther at higher injection velocity and higher input concentrations. K decreased by one order of magnitude during injection in all experiments, with a stronger decrease after reaching Fe0 concentrations of about 14-18 g/kg(sand). To simulate the observed nanoparticle transport behavior the existing finite-element code OGS has been successfully extended and parameterized for the investigated experiments using blocking, ripening, and straining as governing deposition processes. Considering parameter relationships deduced from single simulations for each experiment (e.g. deposition rate constants as a function of flow velocity) one mean parameter set has been generated reproducing the observations in an adequate way for most cases of the investigated realistic injection conditions. An assessment of the deposition processes related to clogging effects showed that the percentage of retention due to straining and ripening increased during experimental run time resulting in an ongoing reduction of K. Clogging is mainly evoked by straining which dominates particle deposition at higher flow velocities, while blocking and ripening play a significant role for attachment, mainly at lower injection velocities. Since the injection of fluids at real sites leads to descending flow velocities with increasing radial distance from the injection point, the simulation of particle transport requires accounting for all deposition processes mentioned above. Thus, the derived mean parameter set can be used as a basis for quantitative and predictive simulations of particle distributions and clogging effects at both lab and field scale. Since decreases in K can change the flow system, which may have positive as well as negative implications for the in situ remediation technology at a contaminated site, a reliable simulation is thus of great importance for NZVI injection and prediction.
The origin of diverse α-element abundances in galaxy discs
NASA Astrophysics Data System (ADS)
Mackereth, J. Ted; Crain, Robert A.; Schiavon, Ricardo P.; Schaye, Joop; Theuns, Tom; Schaller, Matthieu
2018-07-01
Spectroscopic surveys of the Galaxy reveal that its disc stars exhibit a spread in [α/Fe] at fixed [Fe/H], manifest at some locations as a bimodality. The origin of these diverse, and possibly distinct, stellar populations in the Galactic disc is not well understood. We examine the Fe and α-element evolution of 133 Milky Way-like galaxies from the EAGLE simulation, to investigate the origin and diversity of their [α/Fe]-[Fe/H] distributions. We find that bimodal [α/Fe] distributions arise in galaxies whose gas accretion histories exhibit episodes of significant infall at both early and late times, with the former fostering more intense star formation than the latter. The shorter characteristic consumption time-scale of gas accreted in the earlier episode suppresses its enrichment with iron synthesized by Type Ia SNe, resulting in the formation of a high-[α/Fe] sequence. We find that bimodality in [α/Fe] similar to that seen in the Galaxy is rare, appearing in approximately 5 per cent of galaxies in our sample. We posit that this is a consequence of an early gas accretion episode requiring the mass accretion history of a galaxy's dark matter halo to exhibit a phase of atypically rapid growth at early epochs. The scarcity of EAGLE galaxies exhibiting distinct sequences in the [α/Fe]-[Fe/H] plane may therefore indicate that the Milky Way's elemental abundance patterns, and its accretion history, are not representative of the broader population of ˜L⋆ disc galaxies.
The origin of diverse α-element abundances in galaxy discs
NASA Astrophysics Data System (ADS)
Mackereth, J. Ted; Crain, Robert A.; Schiavon, Ricardo P.; Schaye, Joop; Theuns, Tom; Schaller, Matthieu
2018-04-01
Spectroscopic surveys of the Galaxy reveal that its disc stars exhibit a spread in [α/Fe] at fixed [Fe/H], manifest at some locations as a bimodality. The origin of these diverse, and possibly distinct, stellar populations in the Galactic disc is not well understood. We examine the Fe and α-element evolution of 133 Milky Way-like galaxies from the EAGLE simulation, to investigate the origin and diversity of their [α/Fe]-[Fe/H] distributions. We find that bimodal [α/Fe] distributions arise in galaxies whose gas accretion histories exhibit episodes of significant infall at both early and late times, with the former fostering more intense star formation than the latter. The shorter characteristic consumption timescale of gas accreted in the earlier episode suppresses its enrichment with iron synthesised by Type Ia SNe, resulting in the formation of a high-[α/Fe] sequence. We find that bimodality in [α/Fe] similar to that seen in the Galaxy is rare, appearing in approximately 5 percent of galaxies in our sample. We posit that this is a consequence of an early gas accretion episode requiring the mass accretion history of a galaxy's dark matter halo to exhibit a phase of atypically-rapid growth at early epochs. The scarcity of EAGLE galaxies exhibiting distinct sequences in the [α/Fe]-[Fe/H] plane may therefore indicate that the Milky Way's elemental abundance patterns, and its accretion history, are not representative of the broader population of ˜L⋆ disc galaxies.
Orion Crew Member Injury Predictions during Land and Water Landings
NASA Technical Reports Server (NTRS)
Lawrence, Charles; Littell, Justin D.; Fasanella, Edwin L.; Tabiei, Ala
2008-01-01
A review of astronaut whole body impact tolerance is discussed for land or water landings of the next generation manned space capsule named Orion. LS-DYNA simulations of Orion capsule landings are performed to produce a low, moderate, and high probability of injury. The paper evaluates finite element (FE) seat and occupant simulations for assessing injury risk for the Orion crew and compares these simulations to whole body injury models commonly referred to as the Brinkley criteria. The FE seat and crash dummy models allow for varying the occupant restraint systems, cushion materials, side constraints, flailing of limbs, and detailed seat/occupant interactions to minimize landing injuries to the crew. The FE crash test dummies used in conjunction with the Brinkley criteria provides a useful set of tools for predicting potential crew injuries during vehicle landings.
Modeling of Tool-Tissue Interactions for Computer-Based Surgical Simulation: A Literature Review
Misra, Sarthak; Ramesh, K. T.; Okamura, Allison M.
2009-01-01
Surgical simulators present a safe and potentially effective method for surgical training, and can also be used in robot-assisted surgery for pre- and intra-operative planning. Accurate modeling of the interaction between surgical instruments and organs has been recognized as a key requirement in the development of high-fidelity surgical simulators. Researchers have attempted to model tool-tissue interactions in a wide variety of ways, which can be broadly classified as (1) linear elasticity-based, (2) nonlinear (hyperelastic) elasticity-based finite element (FE) methods, and (3) other techniques that not based on FE methods or continuum mechanics. Realistic modeling of organ deformation requires populating the model with real tissue data (which are difficult to acquire in vivo) and simulating organ response in real time (which is computationally expensive). Further, it is challenging to account for connective tissue supporting the organ, friction, and topological changes resulting from tool-tissue interactions during invasive surgical procedures. Overcoming such obstacles will not only help us to model tool-tissue interactions in real time, but also enable realistic force feedback to the user during surgical simulation. This review paper classifies the existing research on tool-tissue interactions for surgical simulators specifically based on the modeling techniques employed and the kind of surgical operation being simulated, in order to inform and motivate future research on improved tool-tissue interaction models. PMID:20119508
Chemical looping combustion: A new low-dioxin energy conversion technology.
Hua, Xiuning; Wang, Wei
2015-06-01
Dioxin production is a worldwide concern because of its persistence and carcinogenic, teratogenic, and mutagenic effects. The pyrolysis-chemical looping combustion process of disposing solid waste is an alternative to traditional solid waste incineration developed to reduce the dioxin production. Based on the equilibrium composition of the Deacon reaction, pyrolysis gas oxidized by seven common oxygen carriers, namely, CuO, NiO, CaSO4, CoO, Fe2O3, Mn3O4, and FeTiO3, is studied and compared with the pyrolysis gas directly combusted by air. The result shows that the activity of the Deacon reaction for oxygen carriers is lower than that for air. For four typical oxygen carriers (CuO, NiO, Fe2O3, and FeTiO3), the influences of temperature, pressure, gas composition, and tar on the Deacon reaction are discussed in detail. According to these simulation results, the dioxin production in China, Europe, the United States, and Japan is predicted for solid waste disposal by the pyrolysis-chemical looping combustion process. Thermodynamic analysis results in this paper show that chemical looping combustion can reduce dioxin production in the disposal of solid waste. Copyright © 2015. Published by Elsevier B.V.
Laurent, Cédric P; Latil, Pierre; Durville, Damien; Rahouadj, Rachid; Geindreau, Christian; Orgéas, Laurent; Ganghoffer, Jean-François
2014-12-01
The use of biodegradable scaffolds seeded with cells in order to regenerate functional tissue-engineered substitutes offers interesting alternative to common medical approaches for ligament repair. Particularly, finite element (FE) method enables the ability to predict and optimise both the macroscopic behaviour of these scaffolds and the local mechanic signals that control the cell activity. In this study, we investigate the ability of a dedicated FE code to predict the geometrical evolution of a new braided and biodegradable polymer scaffold for ligament tissue engineering by comparing scaffold geometries issued from FE simulations and from X-ray tomographic imaging during a tensile test. Moreover, we compare two types of FE simulations the initial geometries of which are issued either from X-ray imaging or from a computed idealised configuration. We report that the dedicated FE simulations from an idealised reference configuration can be reasonably used in the future to predict the global and local mechanical behaviour of the braided scaffold. A valuable and original dialog between the fields of experimental and numerical characterisation of such fibrous media is thus achieved. In the future, this approach should enable to improve accurate characterisation of local and global behaviour of tissue-engineering scaffolds. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Fuadah, A. N.; Maulanisa, N. F.; Ismardi, A.; Sugandi, G.
2017-05-01
This paper presents comparison study of simulation and fabrication characterized two type planar springs at micro-fabricated electromagnetic power generator for an ambient vibration energy harvesting system. The power generator utilized a LASER-machined FR4-PCB planar spring, a copper coil, and NdFeB magnet. In order to change resonant frequency, we developed a gimbal suspension structure for the fabrication of spring. The NdFeB permanent magnet was applied as inertial mass. The system was specially designed to harvest low ambient vibrations from 20 to several hundred hertz and low acceleration. The dimension of fabricated energy harvester had 2.5 x 2.5 cm2 in size. In this study we present two different design of cantilever, which is has two and four cantilever, respectively. The different designed given different resonance frequency to the system. The result of simulation giving resonance frequency of two cantilever membrane 22.6 Hz and four cantilever membrane 110.3 Hz. The measurements result has generated 0.135 V with resonance frequency 39 Hz of two cantilever membrane appropriate for human motions, four cantilever membrane has generated 0.174 V with resonance frequency106 Hz appropriate for machine industries.
Laboratory simulations of atmospheric entry of micrometeoroids: ablation of magnesium
NASA Astrophysics Data System (ADS)
Bones, David; Gomez Martin, Juan Carlos; Diego Carrillo Sanchez, Juan; Dobson, Alexander; Plane, John
2017-04-01
We address the uncertainty in the cosmic dust input into the Earth's atmosphere by simulating the atmospheric entry of micrometeoroids in a custom built chamber, capable of heating particles to 3000 K in 2 s and able to precisely reproduce representative heating profiles. In lieu of interplanetary cosmic dust, we use a range of ground-up recovered meteorites and mineral analogues. We measure the ablation of two metals simultaneously with laser induced fluorescence (LIF). The resulting ablation profiles can be compared with the composition of the remaining, unablated particle, as determined from scanning electron microscopy-energy dispersive x-ray (SEM-EDX) analysis. Building on earlier studies of Na, Fe and Ca, here we present Mg profiles and compare them with results from our chemical ablation model (CABMOD). In general, Mg behaves as predicted, beginning to ablate steadily as one broad ablation peak once temperatures reach 2000 K. In contrast Fe, which should behave similarly to Mg, typically has two ablation peaks due to being present in two distinct phases.
A Static Burst Test for Composite Flywheel Rotors
NASA Astrophysics Data System (ADS)
Hartl, Stefan; Schulz, Alexander; Sima, Harald; Koch, Thomas; Kaltenbacher, Manfred
2016-06-01
High efficient and safe flywheels are an interesting technology for decentralized energy storage. To ensure all safety aspects, a static test method for a controlled initiation of a burst event for composite flywheel rotors is presented with nearly the same stress distribution as in the dynamic case, rotating with maximum speed. In addition to failure prediction using different maximum stress criteria and a safety factor, a set of tensile and compressive tests is carried out to identify the parameters of the used carbon fiber reinforced plastics (CFRP) material. The static finite element (FE) simulation results of the flywheel static burst test (FSBT) compare well to the quasistatic FE-simulation results of the flywheel rotor using inertia loads. Furthermore, it is demonstrated that the presented method is a very good controllable and observable possibility to test a high speed flywheel energy storage system (FESS) rotor in a static way. Thereby, a much more expensive and dangerous dynamic spin up test with possible uncertainties can be substituted.
Simulations of magnetic hysteresis loops at high temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plumer, M. L.; Whitehead, J. P.; Fal, T. J.
2014-09-28
The kinetic Monte-Carlo algorithm as well as standard micromagnetics are used to simulate MH loops of high anisotropy magnetic recording media at both short and long time scales over a wide range of temperatures relevant to heat-assisted magnetic recording. Microscopic parameters, common to both methods, were determined by fitting to experimental data on single-layer FePt-based media that uses the Magneto-Optic Kerr effect with a slow sweep rate of 700 Oe/s. Saturation moment, uniaxial anisotropy, and exchange constants are given an intrinsic temperature dependence based on published atomistic simulations of FePt grains with an effective Curie temperature of 680 K. Ourmore » results show good agreement between micromagnetics and kinetic Monte Carlo results over a wide range of sweep rates. Loops at the slow experimental sweep rates are found to become more square-shaped, with an increasing slope, as temperature increases from 300 K. These effects also occur at higher sweep rates, typical of recording speeds, but are much less pronounced. These results demonstrate the need for accurate determination of intrinsic thermal properties of future recording media as input to micromagnetic models as well as the sensitivity of the switching behavior of thin magnetic films to applied field sweep rates at higher temperatures.« less
Magnetocaloric effect and magnetic properties in SmFe1-xMnxO3 perovskite: Monte Carlo simulations
NASA Astrophysics Data System (ADS)
Erchidi Elyacoubi, A. S.; Masrour, R.; Jabar, A.
2018-03-01
We have used Monte Carlo simulation to study the magnetocaloric effect on SmFe1-xMnxO3 perovskite. The temperature-dependent magnetization shows that the Néel temperature of the weak-ferromagnetic SmFeO3 decreases as Fe ions are substituted by Mn ions. A paramagnetic-to-weak-antiferromagnetic transition with decreasing the temperature is observed and the corresponding Néel temperature essentially decreases as the Mn content increases. The magnetocaloric effect shows two peaks related to magnetic behavior changes, at paramagnetic-like behavior TK(K) and at Néel temperature TN(K) of SmFe1-xMnxO3. The second phase transition is established. The magnetic entropy change is given for a several magnetic fields. We have also determined the relative cooling power for dilution x = 0.5 and for a several external magnetic fields. Finally, the magnetic hysteresis cycles have been obtained with different dilutions x and temperatures values.
Iraeus, Johan; Lindquist, Mats
2016-10-01
Frontal crashes still account for approximately half of all fatalities in passenger cars, despite several decades of crash-related research. For serious injuries in this crash mode, several authors have listed the thorax as the most important. Computer simulation provides an effective tool to study crashes and evaluate injury mechanisms, and using stochastic input data, whole populations of crashes can be studied. The aim of this study was to develop a generic buck model and to validate this model on a population of real-life frontal crashes in terms of the risk of rib fracture. The study was conducted in four phases. In the first phase, real-life validation data were derived by analyzing NASS/CDS data to find the relationship between injury risk and crash parameters. In addition, available statistical distributions for the parameters were collected. In the second phase, a generic parameterized finite element (FE) model of a vehicle interior was developed based on laser scans from the A2MAC1 database. In the third phase, model parameters that could not be found in the literature were estimated using reverse engineering based on NCAP tests. Finally, in the fourth phase, the stochastic FE model was used to simulate a population of real-life crashes, and the result was compared to the validation data from phase one. The stochastic FE simulation model overestimates the risk of rib fracture, more for young occupants and less for senior occupants. However, if the effect of underestimation of rib fractures in the NASS/CDS material is accounted for using statistical simulations, the risk of rib fracture based on the stochastic FE model matches the risk based on the NASS/CDS data for senior occupants. The current version of the stochastic model can be used to evaluate new safety measures using a population of frontal crashes for senior occupants. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bioleaching of ilmenite and basalt in the presence of iron-oxidizing and iron-scavenging bacteria
NASA Astrophysics Data System (ADS)
Navarrete, Jesica U.; Cappelle, Ian J.; Schnittker, Kimberlin; Borrok, David M.
2013-04-01
Bioleaching has been suggested as an alternative to traditional mining techniques in extraterrestrial environments because it does not require extensive infrastructure and bulky hardware. In situ bioleaching of silicate minerals, such as those found on the moon or Mars, has been proposed as a feasible alternative to traditional extraction techniques that require either extreme heat and/or substantial chemical treatment. In this study, we investigated the biotic and abiotic leaching of basaltic rocks (analogues to those found on the moon and Mars) and the mineral ilmenite (FeTiO3) in aqueous environments under acidic (pH ˜ 2.5) and circumneutral pH conditions. The biological leaching experiments were conducted using Acidithiobacillus ferrooxidans, an iron (Fe)-oxidizing bacteria, and Pseudomonas mendocina, an Fe-scavenging bacteria. We found that both strains were able to grow using the Fe(II) derived from the tested basaltic rocks and ilmenite. Although silica leaching rates were the same or slightly less in the bacterial systems with A. ferrooxidans than in the abiotic control systems, the extent of Fe, Al and Ti released (and re-precipitated in new solid phases) was actually greater in the biotic systems. This is likely because the Fe(II) leached from the basalt was immediately oxidized by A. ferrooxidans, and precipitated into Fe(III) phases which causes a change in the equilibrium of the system, i.e. Le Chatelier's principle. Iron(II) in the abiotic experiment was allowed to build up in solution which led to a decrease in its overall release rate. For example, the percentage of Fe, Al and Ti leached (dissolved + reactive mineral precipitates) from the Mars simulant in the A. ferrooxidans experimental system was 34, 41 and 13% of the total Fe, Al and Ti in the basalt, respectively, while the abiotic experimental system released totals of only 11, 25 and 2%. There was, however, no measurable difference in the amounts of Fe and Ti released from ilmenite in the experiments with A. ferrooxidans versus the abiotic controls. P. mendocina scavenged some Fe from the rock/mineral substrates, but the overall amount of leaching was small (<2% of total Fe in rocks) when compared with the acidophilic systems. Although the mineralogy of the tested basaltic rocks was roughly similar, the surface areas of the lunar and Mars simulants varied greatly and thus were possible factors in the overall amount of metals released. Overall, our results indicate that the presence of bacteria does not increase the overall silica leaching rates of basaltic rocks; however, the presence of A. ferrooxidans does lead to enhanced release of Fe, Al and Ti and subsequent sequestration of Fe (and other metals) in Fe(III)-precipitates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Dimin; Anitori, Roberto; Tebo, Bradley M.
2013-04-24
Under anoxic conditions, soluble 99TcO4– can be reduced to less soluble TcO2•nH2O, but the oxide is highly susceptible to reoxidation. Here we investigate an alternative strategy for remediation of Tc-contaminated groundwater whereby sequestration as Tc sulfide is favored by sulfidic conditions stimulated by nano zero-valent iron (nZVI). nZVI was pre-exposed to increasing concentrations of sulfide in simulated Hanford groundwater for 24 hrs to mimic the stages of aquifer sulfate reduction and onset of biotic sulfidogenesis. Solid-phase characterizations of the sulfidated nZVI confirmed the formation of nanocrystalline FeS phases, but higher S/Fe ratios (>0.112) did not result in the formation ofmore » significantly more FeS. The kinetics of Tc sequestration by these materials showed faster Tc removal rates with increasing S/Fe between S/Fe = 0–0.056, but decreasing Tc removal rates with S/Fe > 0.224. The more favorable Tc removal kinetics at low S/Fe could be due to a higher affinity of TcO4– for FeS (over iron oxides), and electron microscopy confirmed that the majority of the Tc was associated with FeS phases. The inhibition of Tc removal at high S/Fe appears to have been caused by excess HS–. X-ray absorption spectroscopy revealed that as S/Fe increased, Tc speciation shifted from TcO2•nH2O to TcS2. The most substantial change of Tc speciation occurred at low S/Fe, coinciding with the rapid increase of Tc removal rate. This agreement further confirms the importance of FeS in Tc sequestration.« less
Self-learning kinetic Monte Carlo simulations of diffusion in ferromagnetic α-Fe-Si alloys
NASA Astrophysics Data System (ADS)
Nandipati, Giridhar; Jiang, Xiujuan; Vemuri, Rama S.; Mathaudhu, Suveen; Rohatgi, Aashish
2018-01-01
Diffusion of Si atom and vacancy in the A2-phase of α-Fe-Si alloys in the ferromagnetic state, with and without magnetic order and in various temperature ranges, are studied using AKSOME, an on-lattice self-learning KMC code. Diffusion of the Si atom and the vacancy are studied in the dilute limit and up to 12 at.% Si, respectively, in the temperature range 350-700 K. Local Si neighborhood dependent activation energies for vacancy hops were calculated on-the-fly using a broken-bond model based on pairwise interaction. The migration barrier and prefactor for the Si diffusion in the dilute limit were obtained and found to agree with published data within the limits of uncertainty. Simulations results show that the prefactor and the migration barrier for the Si diffusion are approximately an order of magnitude higher, and a tenth of an electron-volt higher, respectively, in the magnetic disordered state than in the fully ordered state. However, the net result is that magnetic disorder does not have a significant effect on Si diffusivity within the range of parameters studied in this work. Nevertheless, with increasing temperature, the magnetic disorder increases and its effect on the Si diffusivity also increases. In the case of vacancy diffusion, with increasing Si concentration, its diffusion prefactor decreases while the migration barrier more or less remained constant and the effect of magnetic disorder increases with Si concentration. Important vacancy-Si/Fe atom exchange processes and their activation barriers were identified, and the effect of energetics on ordered phase formation in Fe-Si alloys are discussed.
New structure of high-pressure body-centered orthorhombic Fe 2 SiO 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamanaka, Takamitsu; Kyono, Atsushi; Nakamoto, Yuki
2015-08-01
A structural change in Fe2SiO4 spinel (ringwoodite) has been found by synchrotron powder diffraction study and the structure of a new high-pressure phase was determined by Monte-Carlo simulation method and Rietveld profile fitting of X-ray diffraction data up to 64 GPa at ambient temperature. A transition from the cubic spinel structure to a body centered orthorhombic phase (I-Fe2SiO4) with space group Imma and Z = 4 was observed at approximately 34 GPa. The structure of I-Fe2SiO4 has two crystallographically independent FeO6 octahedra. Iron resides in two different sites of sixfold coordination: Fe1 and Fe2, which are arranged in layers parallelmore » to (101) and (011) and are very similar to the layers of FeO6 octahedra in the spinel structure. Silicon is located in the sixfold coordination in I-Fe2SiO4. The transformation to the new high-pressure phase is reversible under decompression at ambient temperature. A martensitic transformation of each slab of the spinel structure with translation vector Embedded Image generates the I-Fe2SiO4 structure. Laser heating of I-Fe2SiO4 at 1500 K results in a decomposition of the material to rhombohedral FeO and SiO2 stishovite. FeKβ X-ray emission measurements at high pressure up to 65 GPa show that the transition from a high spin (HS) to an intermediate spin (IS) state begins at 17 GPa in the spinel phase. The IS electron spin state is gradually enhanced with pressure. The Fe2+ ion at the octahedral site changes the ion radius under compression at the low spin, which results in the changes of the lattice parameter and the deformation of the octahedra of the spinel structure. The compression curve of the lattice parameter of the spinel is discontinuous at ~20 GPa. The spin transition induces an isostructural change.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bock, David C.; Pelliccione, Christopher J.; Zhang, Wei
Here, the iron oxide magnetite, Fe 3O 4, is a promising conversion type lithium ion battery anode material due to its high natural abundance, low cost and high theoretical capacity. While the close packing of ions in the inverse spinel structure of Fe 3O 4 enables high energy density, it also limits the kinetics of lithium ion diffusion in the material. Nanosizing of Fe 3O 4 to reduce the diffusion path length is an effective strategy for overcoming this issue and results in improved rate capability. However, the impact of nanosizing on the multiple structural transformations that occur during themore » electrochemical (de)lithiation reaction in Fe 3O 4 is poorly understood. In this study, the influence of crystallite size on the lithiation-conversion mechanisms in Fe 3O 4 is investigated using complementary X-ray techniques along with transmission electron microscopy (TEM) and continuum level simulations on electrodes of two different Fe 3O 4 crystallite sizes. In situ X-ray diffraction (XRD) measurements were utilized to track the changes to the crystalline phases during (de)lithiation. X-ray absorption spectroscopy (XAS) measurements at multiple points during the (de)lithiation processes provided local electronic and atomic structural information. Tracking the crystalline and nanocrystalline phases during the first (de)lithiation provides experimental evidence that (1) the lithiation mechanism is non-uniform and dependent on crystallite size, where increased Li + diffusion length in larger crystals results in conversion to Fe 0 metal while insertion of Li + into spinel-Fe 3O 4 is still occurring, and (2) the disorder and size of the Fe metal domains formed when either material is fully lithiated impacts the homogeneity of the FeO phase formed during the subsequent delithiation.« less
Bock, David C.; Pelliccione, Christopher J.; Zhang, Wei; ...
2017-07-17
Here, the iron oxide magnetite, Fe 3O 4, is a promising conversion type lithium ion battery anode material due to its high natural abundance, low cost and high theoretical capacity. While the close packing of ions in the inverse spinel structure of Fe 3O 4 enables high energy density, it also limits the kinetics of lithium ion diffusion in the material. Nanosizing of Fe 3O 4 to reduce the diffusion path length is an effective strategy for overcoming this issue and results in improved rate capability. However, the impact of nanosizing on the multiple structural transformations that occur during themore » electrochemical (de)lithiation reaction in Fe 3O 4 is poorly understood. In this study, the influence of crystallite size on the lithiation-conversion mechanisms in Fe 3O 4 is investigated using complementary X-ray techniques along with transmission electron microscopy (TEM) and continuum level simulations on electrodes of two different Fe 3O 4 crystallite sizes. In situ X-ray diffraction (XRD) measurements were utilized to track the changes to the crystalline phases during (de)lithiation. X-ray absorption spectroscopy (XAS) measurements at multiple points during the (de)lithiation processes provided local electronic and atomic structural information. Tracking the crystalline and nanocrystalline phases during the first (de)lithiation provides experimental evidence that (1) the lithiation mechanism is non-uniform and dependent on crystallite size, where increased Li + diffusion length in larger crystals results in conversion to Fe 0 metal while insertion of Li + into spinel-Fe 3O 4 is still occurring, and (2) the disorder and size of the Fe metal domains formed when either material is fully lithiated impacts the homogeneity of the FeO phase formed during the subsequent delithiation.« less
Zhang, Liying; Gurao, Manish; Yang, King H.; King, Albert I.
2011-01-01
Computer models of the head can be used to simulate the events associated with traumatic brain injury (TBI) and quantify biomechanical response within the brain. Marmarou’s impact acceleration rodent model is a widely used experimental model of TBI mirroring axonal pathology in humans. The mechanical properties of the low density polyurethane (PU) foam, an essential piece of energy management used in Marmarou’s impact device, has not been fully characterized. The foam used in Marmarou’s device was tested at seven strain rates ranging from quasi-static to dynamic (0.014 ~ 42.86 s−1) to quantify the stress-strain relationships in compression. Recovery rate of the foam after cyclic compression was also determined through the periods of recovery up to three weeks. The experimentally determined stress-strain curves were incorporated into a material model in an explicit Finite Element (FE) solver to validate the strain rate dependency of the FE foam model. Compression test results have shown that the foam used in the rodent impact acceleration model is strain rate dependent. The foam has been found to be reusable for multiple impacts. However the stress resistance of used foam is reduced to 70% of the new foam. The FU_CHANG_FOAM material model in an FE solver has been found to be adequate to simulate this rate sensitive foam. PMID:21459114
Zhang, Liying; Gurao, Manish; Yang, King H; King, Albert I
2011-05-15
Computer models of the head can be used to simulate the events associated with traumatic brain injury (TBI) and quantify biomechanical response within the brain. Marmarou's impact acceleration rodent model is a widely used experimental model of TBI mirroring axonal pathology in humans. The mechanical properties of the low density polyurethane (PU) foam, an essential piece of energy management used in Marmarou's impact device, has not been fully characterized. The foam used in Marmarou's device was tested at seven strain rates ranging from quasi-static to dynamic (0.014-42.86 s⁻¹) to quantify the stress-strain relationships in compression. Recovery rate of the foam after cyclic compression was also determined through the periods of recovery up to three weeks. The experimentally determined stress-strain curves were incorporated into a material model in an explicit Finite Element (FE) solver to validate the strain rate dependency of the FE foam model. Compression test results have shown that the foam used in the rodent impact acceleration model is strain rate dependent. The foam has been found to be reusable for multiple impacts. However the stress resistance of used foam is reduced to 70% of the new foam. The FU_CHANG_FOAM material model in an FE solver has been found to be adequate to simulate this rate sensitive foam. Copyright © 2011 Elsevier B.V. All rights reserved.
Huang, H.; Nightingale, R. W.
2018-01-01
Objectives Loss of motion following spine segment fusion results in increased strain in the adjacent motion segments. However, to date, studies on the biomechanics of the cervical spine have not assessed the role of coupled motions in the lumbar spine. Accordingly, we investigated the biomechanics of the cervical spine following cervical fusion and lumbar fusion during simulated whiplash using a whole-human finite element (FE) model to simulate coupled motions of the spine. Methods A previously validated FE model of the human body in the driver-occupant position was used to investigate cervical hyperextension injury. The cervical spine was subjected to simulated whiplash exposure in accordance with Euro NCAP (the European New Car Assessment Programme) testing using the whole human FE model. The coupled motions between the cervical spine and lumbar spine were assessed by evaluating the biomechanical effects of simulated cervical fusion and lumbar fusion. Results Peak anterior longitudinal ligament (ALL) strain ranged from 0.106 to 0.382 in a normal spine, and from 0.116 to 0.399 in a fused cervical spine. Strain increased from cranial to caudal levels. The mean strain increase in the motion segment immediately adjacent to the site of fusion from C2-C3 through C5-C6 was 26.1% and 50.8% following single- and two-level cervical fusion, respectively (p = 0.03, unpaired two-way t-test). Peak cervical strains following various lumbar-fusion procedures were 1.0% less than those seen in a healthy spine (p = 0.61, two-way ANOVA). Conclusion Cervical arthrodesis increases peak ALL strain in the adjacent motion segments. C3-4 experiences greater changes in strain than C6-7. Lumbar fusion did not have a significant effect on cervical spine strain. Cite this article: H. Huang, R. W. Nightingale, A. B. C. Dang. Biomechanics of coupled motion in the cervical spine during simulated whiplash in patients with pre-existing cervical or lumbar spinal fusion: A Finite Element Study. Bone Joint Res 2018;7:28–35. DOI: 10.1302/2046-3758.71.BJR-2017-0100.R1. PMID:29330341
Mechanochemical destruction of DDTs with Fe-Zn bimetal in a high-energy planetary ball mill.
Sui, Hong; Rong, Yuzhou; Song, Jing; Zhang, Dongge; Li, Haibo; Wu, Peng; Shen, Yangyang; Huang, Yujuan
2018-01-15
Mechanochemical destruction has been proposed as a promising, non-combustion technology for the disposal of toxic, halogenated, organic pollutants. In the study presented, additives including Fe, Zn, Fe-Zn bimetal, CaO and Fe 2 O 3 were tested for their effectiveness to remove DDTs by MC. The results showed that Fe-Zn bimetal was the most efficient additive, with 98% of DDTs removed after 4h. The Fe-Zn mass ratio was optimized to avoid possible spontaneous combustion of the ground sample during subsample collection. Inorganic water-soluble chloride in the ground sample increased by 91% after 4h of grinding, which indicated dechlorination during destruction of DDTs. In addition, relationships were established between the rate constant and the rotation speed or the charge ratio. Discrete Element Method (DEM) modeling was used to simulate the motion of the grinding ball and calculate both total impact energy and normal impact energy. The latter expressed a stronger, linear correlation with the rate constant. Therefore, normal impact energy is proposed to be the main driving force in the MC destruction of DDTs. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ta, D. T.; Tieu, A. K.; Zhu, H. T., E-mail: hongtao@uow.edu.au
2015-10-28
A comparative analysis of thin film lubrication of hexadecane between different iron and its oxide surfaces has been carried out using classical molecular dynamic simulation. An ab initio force-field, COMPASS, was applied for n-hexadecane using explicit atom model. An effective potential derived from density functional theory calculation was utilized for the interfacial interaction between hexadecane and the tribo-surfaces. A quantitative surface parameterization was introduced to investigate the influence of surface properties on the structure, rheological properties, and tribological performance of the lubricant. The results show that although the wall-fluid attraction of hexadecane on pure iron surfaces is significantly stronger thanmore » its oxides, there is a considerable reduction of shear stress of confined n-hexadecane film between Fe(100) and Fe(110) surfaces compared with FeO(110), FeO(111), Fe{sub 2}O{sub 3}(001), and Fe{sub 2}O{sub 3}(012). It was found that, in thin film lubrication of hexadecane between smooth iron and iron oxide surfaces, the surface corrugation plays a role more important than the wall-fluid adhesion strength.« less
NASA Astrophysics Data System (ADS)
Nakanowatari, Takuya; Nakamura, Tomohiro; Uchimoto, Keisuke; Nishioka, Jun; Mitsudera, Humio; Wakatsuchi, Masaaki
2017-05-01
Iron (Fe) is an essential nutrient for marine phytoplankton and it constitutes an important element in the marine carbon cycle in the ocean. This study examined the mechanisms controlling seasonal variation of dissolved Fe (dFe) in the western subarctic North Pacific (WSNP), using an ocean general circulation model coupled with a simple biogeochemical model incorporating a dFe cycle fed by two major sources (atmospheric dust and continental shelf sediment). The model reproduced the seasonal cycle of observed concentrations of dFe and macronutrients at the surface in the Oyashio region with maxima in winter (February-March) and minima in summer (July-September), although the simulated seasonal amplitudes are a half of the observed values. Analysis of the mixed-layer dFe budget indicated that both local vertical entrainment and lateral advection are primary contributors to the wintertime increase in dFe concentration. In early winter, strengthened northwesterly winds excite southward Ekman transport and Ekman upwelling over the western subarctic gyre, transporting dFe-rich water southward. In mid to late winter, the southward western boundary current of the subarctic gyre and the outflow from the Sea of Okhotsk also bring dFe-rich water to the Oyashio region. The contribution of atmospheric dust to the dFe budget is several times smaller than these ocean transport processes in winter. These results suggest that the westerly wind-induced Ekman transport and gyre circulation systematically influence the seasonal cycle of WSNP surface dFe concentration.
Fracture characteristics, microstructure, and tissue reaction of Ti-5Al-2.5Fe for orthopedic surgery
NASA Astrophysics Data System (ADS)
Niinomi, Mitsuo; Kobayashi, Toshiro; Toriyama, Osamu; Kawakami, Noriaki; Ishida, Yoshihito; Matsuyama, Yukihiro
1996-12-01
The microstructure of Ti-5Al-2.5Fe, which is expected to be used widely as an implant material not only for artificial hip joints but also for instrumentations of scoliosis surgery, was variously changed by heat treatments. The effect of the microstructure on mechanical properties, fracture toughness, and rotating-bending fatigue strength in the air and simulated body environment, that is, Ringer’s solution, was then investigated. Furthermore, the effect of the living body environment on mechanical properties and fracture toughness in Ti-5Al-2.5Fe were investigated on the specimens implanted into rabbit for about 11 months. The data of Ti-5Al-2.5Fe were compared with those of Ti-6Al-4V ELI, which has been used as an implant material mainly for artificial hip joints, and SUS 316L, which has been used as an implant material for many parts, including the instrumentation of scoliosis surgery. The equiaxed α structure, which is formed by annealing at a temperature below β transus, gives the best balance of strength and ductility in Ti-5Al-2.5Fe. The coarse Widmanstätten α structure, which is formed by solutionizing over β transus followed by air cooling and aging, gives the greatest fracture toughness in Ti-5Al-2.5Fe. This trend is similar to that reported in Ti-6Al-4V ELI. The rotating-bending fatigue strength is the greatest in the equiaxed α structure, which is formed by solutionizing below β transus followed by air cooling and aging in Ti-5Al-2.5Fe. Ti-5Al-2.5Fe exhibits much greater rotating-bending fatigue strength compared with SUS 316L, and equivalent rotating-bending fatigue strength to that of Ti-6Al-4V ELI in both the air and simulated body environments. The rotating-bending fatigue strength of SUS 316L is degraded in the simulated body environment. The corrosion fatigue, therefore, occurs in SUS 316L in the simulated body environment. Fatigue strength of Ti-5Al-2.5Fe in the simulated body environment is degraded by lowering oxygen content in the simulated body environment because the formability of oxide on the specimen surface is considered to be lowered comparing with that in air. The mechanical property and fracture toughness of Ti-5Al-2.5Fe and Ti-6Al-4V ELI are not changed in the living body environment. The hard-surface corrosion layer is, however, formed on the surface of SUS 316L in the living body environment. The C1 peak is detected from the hard-surface corrosion layer by energy-dispersive X-ray (EDX) analysis. These facts suggests a possibility for corrosion fatigue to occur in the living body environment when SUS 316L is used. The fibrous connective tissue and new bone formation are formed beside all metals. There is, however, no big difference between tissue morphology around each implant material.
An investigation of FeCrAl cladding behavior under normal operating and loss of coolant conditions
Gamble, Kyle A.; Barani, Tommaso; Pizzocri, David; ...
2017-04-30
Iron-chromium-aluminum (FeCrAl) alloys are candidates to be used as nuclear fuel cladding for increased accident tolerance. An analysis of the response of FeCrAl under normal operating and loss of coolant conditions has been performed using fuel performance modeling. In particular, recent information on FeCrAl material properties and phenomena from separate effects tests has been implemented in the BISON fuel performance code and analyses of integral fuel rod behavior with FeCrAl cladding have been performed. BISON simulations included both light water reactor normal operation and loss-of-coolant accidental transients. In order to model fuel rod behavior during accidents, a cladding failure criterionmore » is desirable. For FeCrAl alloys, a failure criterion is developed using recent burst experiments under loss of coolant like conditions. The added material models are utilized to perform comparative studies with Zircaloy-4 under normal operating conditions and oxidizing and non-oxidizing out-of-pile loss of coolant conditions. The results indicate that for all conditions studied, FeCrAl behaves similarly to Zircaloy-4 with the exception of improved oxidation performance. Here, further experiments are required to confirm these observations.« less
NASA Astrophysics Data System (ADS)
Chen, Chunhua; Xu, Jia; Yang, Zhihua; Zhang, Li; Cao, Chunhua; Xu, Zhihua; Liu, Jiyan
2017-12-01
Ternary zero-valent iron/phos photungstic acid/g-C3N4 composite (Fe0@PTA/g-C3N4) was synthesized via photoreduction of iron (II) ions assisted by phosphotungstic acid (PTA) over g-C3N4 flakes. The as-prepared Fe0@PTA/g-C3N4 was investigated for removal of As(III) and As(V) species from water. The result showed that Fe0@PTA/g-C3N4 exhibited a better performance for As(V) removal than As(III) species from water, and the maximum adsorption capacity for As(V) was 70.3 mg/g, much higher than most of the reported adsorbents. As(V) removal by the Fe0@PTA/g-C3N4 adsorbent is mainly via a chemical process, synergistically occurring of reduction of As(V) and oxidation of Fe0. Moreover, the Fe0@PTA/g-C3N4 adsorbent showed effective As(V) removal from the simulated industrial wastewater and underground water. This study demonstrates that Fe0@PTA/g-C3N4 can be a potential adsorbent for As(V) removal due to its high performance, and simple one-pot synthesis process.
An investigation of FeCrAl cladding behavior under normal operating and loss of coolant conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamble, Kyle A.; Barani, Tommaso; Pizzocri, David
Iron-chromium-aluminum (FeCrAl) alloys are candidates to be used as nuclear fuel cladding for increased accident tolerance. An analysis of the response of FeCrAl under normal operating and loss of coolant conditions has been performed using fuel performance modeling. In particular, recent information on FeCrAl material properties and phenomena from separate effects tests has been implemented in the BISON fuel performance code and analyses of integral fuel rod behavior with FeCrAl cladding have been performed. BISON simulations included both light water reactor normal operation and loss-of-coolant accidental transients. In order to model fuel rod behavior during accidents, a cladding failure criterionmore » is desirable. For FeCrAl alloys, a failure criterion is developed using recent burst experiments under loss of coolant like conditions. The added material models are utilized to perform comparative studies with Zircaloy-4 under normal operating conditions and oxidizing and non-oxidizing out-of-pile loss of coolant conditions. The results indicate that for all conditions studied, FeCrAl behaves similarly to Zircaloy-4 with the exception of improved oxidation performance. Here, further experiments are required to confirm these observations.« less
Walmsley, Christopher W; McCurry, Matthew R; Clausen, Phillip D; McHenry, Colin R
2013-01-01
Finite element analysis (FEA) is a computational technique of growing popularity in the field of comparative biomechanics, and is an easily accessible platform for form-function analyses of biological structures. However, its rapid evolution in recent years from a novel approach to common practice demands some scrutiny in regards to the validity of results and the appropriateness of assumptions inherent in setting up simulations. Both validation and sensitivity analyses remain unexplored in many comparative analyses, and assumptions considered to be 'reasonable' are often assumed to have little influence on the results and their interpretation. HERE WE REPORT AN EXTENSIVE SENSITIVITY ANALYSIS WHERE HIGH RESOLUTION FINITE ELEMENT (FE) MODELS OF MANDIBLES FROM SEVEN SPECIES OF CROCODILE WERE ANALYSED UNDER LOADS TYPICAL FOR COMPARATIVE ANALYSIS: biting, shaking, and twisting. Simulations explored the effect on both the absolute response and the interspecies pattern of results to variations in commonly used input parameters. Our sensitivity analysis focuses on assumptions relating to the selection of material properties (heterogeneous or homogeneous), scaling (standardising volume, surface area, or length), tooth position (front, mid, or back tooth engagement), and linear load case (type of loading for each feeding type). Our findings show that in a comparative context, FE models are far less sensitive to the selection of material property values and scaling to either volume or surface area than they are to those assumptions relating to the functional aspects of the simulation, such as tooth position and linear load case. Results show a complex interaction between simulation assumptions, depending on the combination of assumptions and the overall shape of each specimen. Keeping assumptions consistent between models in an analysis does not ensure that results can be generalised beyond the specific set of assumptions used. Logically, different comparative datasets would also be sensitive to identical simulation assumptions; hence, modelling assumptions should undergo rigorous selection. The accuracy of input data is paramount, and simulations should focus on taking biological context into account. Ideally, validation of simulations should be addressed; however, where validation is impossible or unfeasible, sensitivity analyses should be performed to identify which assumptions have the greatest influence upon the results.
McCurry, Matthew R.; Clausen, Phillip D.; McHenry, Colin R.
2013-01-01
Finite element analysis (FEA) is a computational technique of growing popularity in the field of comparative biomechanics, and is an easily accessible platform for form-function analyses of biological structures. However, its rapid evolution in recent years from a novel approach to common practice demands some scrutiny in regards to the validity of results and the appropriateness of assumptions inherent in setting up simulations. Both validation and sensitivity analyses remain unexplored in many comparative analyses, and assumptions considered to be ‘reasonable’ are often assumed to have little influence on the results and their interpretation. Here we report an extensive sensitivity analysis where high resolution finite element (FE) models of mandibles from seven species of crocodile were analysed under loads typical for comparative analysis: biting, shaking, and twisting. Simulations explored the effect on both the absolute response and the interspecies pattern of results to variations in commonly used input parameters. Our sensitivity analysis focuses on assumptions relating to the selection of material properties (heterogeneous or homogeneous), scaling (standardising volume, surface area, or length), tooth position (front, mid, or back tooth engagement), and linear load case (type of loading for each feeding type). Our findings show that in a comparative context, FE models are far less sensitive to the selection of material property values and scaling to either volume or surface area than they are to those assumptions relating to the functional aspects of the simulation, such as tooth position and linear load case. Results show a complex interaction between simulation assumptions, depending on the combination of assumptions and the overall shape of each specimen. Keeping assumptions consistent between models in an analysis does not ensure that results can be generalised beyond the specific set of assumptions used. Logically, different comparative datasets would also be sensitive to identical simulation assumptions; hence, modelling assumptions should undergo rigorous selection. The accuracy of input data is paramount, and simulations should focus on taking biological context into account. Ideally, validation of simulations should be addressed; however, where validation is impossible or unfeasible, sensitivity analyses should be performed to identify which assumptions have the greatest influence upon the results. PMID:24255817
Effects of chemical alternation on damage accumulation in concentrated solid-solution alloys
Ullah, Mohammad W.; Xue, Haizhou; Velisa, Gihan; ...
2017-06-23
Single-phase concentrated solid-solution alloys (SP-CSAs) have recently gained unprecedented attention due to their promising properties. To understand effects of alloying elements on irradiation-induced defect production, recombination and evolution, an integrated study of ion irradiation, ion beam analysis and atomistic simulations are carried out on a unique set of model crystals with increasing chemical complexity, from pure Ni to Ni 80Fe 20, Ni 50Fe 50, and Ni 80Cr 20 binaries, and to a more complex Ni 40Fe 40Cr 20 alloy. Both experimental and simulation results suggest that the binary and ternary alloys exhibit higher radiation resistance than elemental Ni. The modelingmore » work predicts that Ni 40Fe 40Cr 20 has the best radiation tolerance, with the number of surviving Frenkel pairs being factors of 2.0 and 1.4 lower than pure Ni and the 80:20 binary alloys, respectively. While the reduced defect mobility in SP-CSAs is identified as a general mechanism leading to slower growth of large defect clusters, the effect of specific alloying elements on suppression of damage accumulation is clearly demonstrated. This work suggests that concentrated solid-solution provides an effective way to enhance radiation tolerance by creating elemental alternation at the atomic level. The demonstrated chemical effects on defect dynamics may inspire new design principles of radiation-tolerant structural alloys for advanced energy systems.« less
Sulfur Effect on the Space Weathering of Airless Bodies: Laboratory Simulation
NASA Astrophysics Data System (ADS)
Sasaki, S.; Okazaki, M.; Tanaka, H.; Hiroi, T.
2017-12-01
Space weathering is the main process that should control the change of brightness and color of the surface of airless silicate bodies such and the Moon, Mercury and asteroids. S-type asteroids show more overall depletion and reddening of the spectra, and more weakening of absorption bands than ordinary chondrites. Vapor-deposition through at high-velocity dust impacts as well as implantation of intensive solar wind ions may produce the space weathering rims bearing nano-iron particles (npFe0), responsible for spectral change. Simulation experiments using nanosecond pulse laser successfully produced vapor-deposition type npFe0 to change the optical properties [1]. A small (500m) asteroid Itokawa has a weathered surface, although its surface is rocky (rough terrain) or pebble-rich (smooth terrain). In 2011, HAYABUSA returned the particulate samples from the smooth terrain. The most notable discoveries in Itokawa particles are amorphous space-weathering rims containing npFe0. Sulfur and magnesium abundances suggest the presence of nanophase FeS (and MgS) in addition to npFe0 [2]. The presence of npFeS in asteroidal regolith is compatible with the observation of regolith breccia meteorites. On Mercury, MESSENGER revealed a high sulfur abundance (2wt% on average up to 4wt%), which can account for all of Fe by FeS. Both npFeS and npMgS may play an important role also on the surface of Mercury by lowering albedo. In our laboratory simulation using pulsed laser, spectral changes of olivine samples are facilitated when FeS is mixed (5-10wt%) (Fig.1). Nanophase Fe is confirmed by TEM. The darkening feature is reduced by additional heading at 150C, which would suggest the presence of volatile residue. Mixing of pure sulfur particles showed some, but not significant changes after laser irradiation. We acknowledge A. Miyake and A. Tsuchiyama at Kyoto U. for TEM observation. Ref: [1] S. Sasaki et al.: Nature 410 (2001) 555; [2] T. Noguchi et al.: Science 333 (2011) 1121 Fig. 1. Spectral change after pulse laser irradiation. The vertical axis shows normalized reflectance at 2500 nm-infrared darkening, whereas the horizontal axis shows the spectral slope of reflectance ratio of 1600 nm to 560 nm that would show reddening. Size range of fine FeS is smaller than 45 micron.
NASA Astrophysics Data System (ADS)
Xu, T.; Kharaka, Y.; Benson, S.
2006-12-01
A total of 1600 tons of CO2 were injected into the Frio ~{!0~}C~{!1~} sandstone layer at a depth of 1500 m over a period of 10 days. The pilot, located near Dayton, Texas, employed one injection well and one observation well, separated laterally by about 30 m. Each well was perforated over 6 m in the upper portion of the 23-m thick sandstone. Fluid samples were taken from both wells before, during, and after the injection. Following CO2 breakthrough, observations indicate drops in pH (6.5 to 5.7), pronounced increases in concentrations of HCO3- (100 to 3000 mg/L), in Fe (30 to 1100), and dissolved organic carbon. Numerical modeling was used in this study to understand changes of aqueous HCO3- and Fe caused by CO2 injection. The general multiphase reactive geochemical transport simulator TOUGHREACT was used, which includes new fluid property module ECO2N with an accurate description of the thermophysical properties of mixtures of water, brine, and CO2 at conditions of interest for CO2 storage. A calibrated 1-D radial well flow model was employed for the present reactive geochemical transport simulations. Mineral composition used was taken from literatures relevant to Frio sandstone. Increases in HCO3- concentration were well reproduced by an initial simulation. Several scenarios were used to capture increases in Fe concentration including (1) dissolution of carbonate minerals, (2) dissolution of iron oxyhydroxides, (3) de-sorption of previously coated Fe. Future modeling, laboratory and field investigations are proposed to better understand the CO2-brine-mineral interactions at the Frio site. Results from this study could have broad implication for subsurface storage of CO2 and potential water quality impacts.
Differences in 3D vs. 2D analysis in lumbar spinal fusion simulations.
Hsu, Hung-Wei; Bashkuev, Maxim; Pumberger, Matthias; Schmidt, Hendrik
2018-04-27
Lumbar interbody fusion is currently the gold standard in treating patients with disc degeneration or segmental instability. Despite it having been used for several decades, the non-union rate remains high. A failed fusion is frequently attributed to an inadequate mechanical environment after instrumentation. Finite element (FE) models can provide insights into the mechanics of the fusion process. Previous fusion simulations using FE models showed that the geometries and material of the cage can greatly influence the fusion outcome. However, these studies used axisymmetric models which lacked realistic spinal geometries. Therefore, different modeling approaches were evaluated to understand the bone-formation process. Three FE models of the lumbar motion segment (L4-L5) were developed: 2D, Sym-3D and Nonsym-3D. The fusion process based on existing mechano-regulation algorithms using the FE simulations to evaluate the mechanical environment was then integrated into these models. In addition, the influence of different lordotic angles (5, 10 and 15°) was investigated. The volume of newly formed bone, the axial stiffness of the whole segment and bone distribution inside and surrounding the cage were evaluated. In contrast to the Nonsym-3D, the 2D and Sym-3D models predicted excessive bone formation prior to bridging (peak values with 36 and 9% higher than in equilibrium, respectively). The 3D models predicted a more uniform bone distribution compared to the 2D model. The current results demonstrate the crucial role of the realistic 3D geometry of the lumbar motion segment in predicting bone formation after lumbar spinal fusion. Copyright © 2018 Elsevier Ltd. All rights reserved.
Zhang, Y.; Mahowald, N.; Scanza, R. A.; ...
2015-10-12
Trace element deposition from desert dust has important impacts on ocean primary productivity, the quantification of which could be useful in determining the magnitude and sign of the biogeochemical feedback on radiative forcing. However, the impact of elemental deposition to remote ocean regions is not well understood and is not currently included in global climate models. In this study, emission inventories for eight elements primarily of soil origin, Mg, P, Ca, Mn, Fe, K, Al, and Si are determined based on a global mineral data set and a soil data set. The resulting elemental fractions are used to drive themore » desert dust model in the Community Earth System Model (CESM) in order to simulate the elemental concentrations of atmospheric dust. Spatial variability of mineral dust elemental fractions is evident on a global scale, particularly for Ca. Simulations of global variations in the Ca / Al ratio, which typically range from around 0.1 to 5.0 in soils, are consistent with observations, suggesting that this ratio is a good signature for dust source regions. The simulated variable fractions of chemical elements are sufficiently different; estimates of deposition should include elemental variations, especially for Ca, Al and Fe. The model results have been evaluated with observations of elemental aerosol concentrations from desert regions and dust events in non-dust regions, providing insights into uncertainties in the modeling approach. The ratios between modeled and observed elemental fractions range from 0.7 to 1.6, except for Mg and Mn (3.4 and 3.5, respectively). Using the soil database improves the correspondence of the spatial heterogeneity in the modeling of several elements (Ca, Al and Fe) compared to observations. Total and soluble dust element fluxes to different ocean basins and ice sheet regions have been estimated, based on the model results. The annual inputs of soluble Mg, P, Ca, Mn, Fe and K associated with dust using the mineral data set are 0.30 Tg, 16.89 Gg, 1.32 Tg, 22.84 Gg, 0.068 Tg, and 0.15 Tg to global oceans and ice sheets.« less
Pathways and supply of dissolved iron in the Amundsen Sea (Antarctica)
NASA Astrophysics Data System (ADS)
St-Laurent, P.; Yager, P. L.; Sherrell, R. M.; Stammerjohn, S. E.; Dinniman, M. S.
2017-09-01
Numerous coastal polynyas fringe the Antarctic continent and strongly influence the productivity of Antarctic shelf systems. Of the 46 Antarctic coastal polynyas documented in a recent study, the Amundsen Sea Polynya (ASP) stands out as having the highest net primary production per unit area. Incubation experiments suggest that this productivity is partly controlled by the availability of dissolved iron (dFe). As a first step toward understanding the iron supply of the ASP, we introduce four plausible sources of dFe and simulate their steady spatial distribution using conservative numerical tracers. The modeled distributions replicate important features from observations including dFe maxima at the bottom of deep troughs and enhanced concentrations near the ice shelf fronts. A perturbation experiment with an idealized drawdown mimicking summertime biological uptake and subsequent resupply suggests that glacial meltwater and sediment-derived dFe are the main contributors to the prebloom dFe inventory in the top 100 m of the ASP. The sediment-derived dFe depends strongly on the buoyancy-driven overturning circulation associated with the melting ice shelves (the "meltwater pump") to add dFe to the upper 300 m of the water column. The results support the view that ice shelf melting plays an important direct and indirect role in the dFe supply and delivery to polynyas such as the ASP.
Jin, Ke; Guo, Wei; Lu, Chenyang; ...
2016-12-01
Understanding alloying effects on the irradiation response of structural materials is pivotal in nuclear engineering. In order to systematically explore the effects of Fe concentration on the irradiation-induced defect evolution and hardening in face-centered cubic Ni-Fe binary solid solution alloys, single crystalline Ni-xFe (x = 0–60 at%) alloys have been grown and irradiated with 1.5 MeV Ni ions. The irradiations have been performed over a wide range of fluences from 3 × 10 13 to 3 × 10 16 cm -2 at room temperature. Ion channeling technique has shown reduced damage accumulation with increasing Fe concentration in the low fluencemore » regime, which is consistent to the results from molecular dynamic simulations. We did not observe any irradiation-induced compositional segregation in atom probe tomography within the detection limit, even in the samples irradiated with high fluence Ni ions. Transmission electron microscopy analyses have further demonstrated that the defect size significantly decreases with increasing Fe concentration, indicating a delay in defect evolution. Furthermore, irradiation induced hardening has been measured by nanoindentation tests. Ni and the Ni-Fe alloys have largely different initial hardness, but they all follow a similar trend for the increase of hardness as a function of irradiation fluence.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pearce, Carolyn I.; Wilkins, Michael J.; Zhang, Changyong
2012-09-17
Etched silicon microfluidic pore network models (micromodels) with controlled chemical and redox gradients, mineralogy, and microbiology under continuous flow conditions are used for the incremental development of complex microenvironments that simulate subsurface conditions. We demonstrate the colonization of micromodel pore spaces by an anaerobic Fe(III)-reducing bacterial species (Geobacter sulfurreducens) and the enzymatic reduction of a bioavailable Fe(III) phase within this environment. Using both X-ray Microprobe and X-ray Absorption Spectroscopy, we investigate the combined effects of the precipitated Fe(III) phases and the microbial population on uranium biogeochemistry under flow conditions. Precipitated Fe(III) phases within the micromodel were most effectively reduced inmore » the presence of an electron shuttle (AQDS), and Fe(II) ions adsorbed onto the precipitated mineral surface without inducing any structural change. In the absence of Fe(III), U(VI) was effectively reduced by the microbial population to insoluble U(IV), which was precipitated in discrete regions associated with biomass. In the presence of Fe(III) phases, however, both U(IV) and U(VI) could be detected associated with biomass, suggesting re-oxidation of U(IV) by localized Fe(III) phases. These results demonstrate the importance of the spatial localization of biomass and redox active metals, and illustrate the key effects of pore-scale processes on contaminant fate and reactive transport.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Ke; Guo, Wei; Lu, Chenyang
Understanding alloying effects on the irradiation response of structural materials is pivotal in nuclear engineering. In order to systematically explore the effects of Fe concentration on the irradiation-induced defect evolution and hardening in face-centered cubic Ni-Fe binary solid solution alloys, single crystalline Ni-xFe (x = 0–60 at%) alloys have been grown and irradiated with 1.5 MeV Ni ions. The irradiations have been performed over a wide range of fluences from 3 × 10 13 to 3 × 10 16 cm -2 at room temperature. Ion channeling technique has shown reduced damage accumulation with increasing Fe concentration in the low fluencemore » regime, which is consistent to the results from molecular dynamic simulations. We did not observe any irradiation-induced compositional segregation in atom probe tomography within the detection limit, even in the samples irradiated with high fluence Ni ions. Transmission electron microscopy analyses have further demonstrated that the defect size significantly decreases with increasing Fe concentration, indicating a delay in defect evolution. Furthermore, irradiation induced hardening has been measured by nanoindentation tests. Ni and the Ni-Fe alloys have largely different initial hardness, but they all follow a similar trend for the increase of hardness as a function of irradiation fluence.« less
The Effect of Changes in the ASCA Calibration on the Fe-K Lines in Active Galaxies
NASA Technical Reports Server (NTRS)
Yaqoob, T.; Padmanabhan, U.; Dotani, T.; Nandra, K.; White, Nicholas E. (Technical Monitor)
2001-01-01
The ASCA calibration has evolved considerably since launch and indeed, is still evolving. There have been concerns in the literature that changes in the ASCA calibration have resulted in the Fe-K lines in active galaxies (AGN) now being systematically narrower than was originally thought. If this were true, a large body of ASCA results would be impacted. In particular, it has been claimed that the broad red wing (when present) of the Fe-K line has been considerably weakened by changes in the ASCA calibration. We demonstrate explicitly that changes in the, ASCA calibration over a period of about eight years have a negligible effect on the width, strength, or shape of the Fe-K lines. The reduction in both width and equivalent width is only approximately 8% or less. We confirm this with simulations and individual sources, as well as sample average profiles. The average profile for type 1 AGN is still very broad, with the red wing extending down to approximately 4 keV. The reason for the claimed, apparently large, discrepancies is that in some sources the Fe-K line is complex, and a single-Gaussian model, being an inadequate description of the line profile, picks up different portions of the profile with different calibration. However, one cannot make inferences about calibration or astrophysics of the sources using models which do not describe the data. Better modeling of the Fe-K in such cases gives completely consistent results with both old and current calibration. Thus, inadequate modeling of the Fe-K line in these sources can seriously underestimate the line width and equivalent width, and therefore lead to incorrect deductions about the astrophysical implications.
Exchange interactions and magnetocaloric effects of the Heusler alloys Ni-Mn-In-R (R = Fe, Co)
NASA Astrophysics Data System (ADS)
Li, Yan-Ru; Su, Hui-Ling; Sun, Ji-Bing; Li, Ying
2018-05-01
The magnetic interactions and magnetocaloric effects in Ni2Mn1.4In0.6‑xRx (x = 0-0.2) (R = Fe, Co) Heusler alloys are investigated by the first-principles and Monte Carlo method. The ab initio calculations provide a basic understanding of the competition of ferromagnetic and antiferromagnetic interactions due to the chemical disorder of the alloy compositions. The thermodynamic properties including magnetization, specific heat and magnetic entropy change are calculated by the finite-temperature Monte Carlo simulations using the exchange couplings and magnetic moments from ab initio calculation as input parameters. The results show that the Fe or Co doping in Ni2Mn1.4In0.6 leads to an increase of magnetic moment and magnetic entropy change but a decrease of magnetic transition temperature with the increase in the Fe or Co contents. This indicates that the transition temperature and magnetocaloric properties of Ni2Mn1.4In0.6 alloy can be tuned by substituting In atom by Fe or Co with different contents.
Electronic and magnetic properties of iron doped zirconia: Theory and experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Debernardi, A., E-mail: alberto.debernardi@mdm.imm.cnr.it; Sangalli, D.; Lamperti, A.
We systematically investigated, both theoretically and experimentally, Zr{sub 1−x}Fe{sub x}O{sub 2−y} ranging from diluted (x ≈ 0.05) up to large (x ≈ 0.25) Fe concentration. By atomic layer deposition, we grew thin films of high-κ zirconia in cubic phase with Fe uniformly distributed in the film, as proven by time of flight secondary ion mass spectrometry and transmission electron microscopy measurements. Iron is in Fe{sup 3+} oxidation state suggesting the formation of oxygen vacancies with y concentration close to x/2. By ab-initio simulations, we studied the phase diagram relating the stability of monoclinic vs. tetragonal phase as a function of Fe doping and filmmore » thickness: the critical thickness at which the pure zirconia is stabilized in the tetragonal phase is estimated ranging from 2 to 6 nm according to film morphology. Preliminary results by X-ray magnetic circular dichroism and alternating gradient force magnetometry are discussed in comparison to ab initio data enlightening the role of oxygen vacancies in the magnetic properties of the system.« less
Finite element modeling of sound transmission with perforations of tympanic membrane
Gan, Rong Z.; Cheng, Tao; Dai, Chenkai; Yang, Fan; Wood, Mark W.
2009-01-01
A three-dimensional finite element (FE) model of human ear with structures of the external ear canal, middle ear, and cochlea has been developed recently. In this paper, the FE model was used to predict the effect of tympanic membrane (TM) perforations on sound transmission through the middle ear. Two perforations were made in the posterior-inferior quadrant and inferior site of the TM in the model with areas of 1.33 and 0.82 mm2, respectively. These perforations were also created in human temporal bones with the same size and location. The vibrations of the TM (umbo) and stapes footplate were calculated from the model and measured from the temporal bones using laser Doppler vibrometers. The sound pressure in the middle ear cavity was derived from the model and measured from the bones. The results demonstrate that the TM perforations can be simulated in the FE model with geometrical visualization. The FE model provides reasonable predictions on effects of perforation size and location on middle ear transfer function. The middle ear structure-function relationship can be revealed with multi-field coupled FE analysis. PMID:19603881
Song, Yujia; Song, Shoufa
2018-06-04
Artificial bioretention system consisting of Ophiopogon japonicus infiltration medium was used to simulate an infiltration experiment of rainfall runoff. Continuous extraction method was used to detect contents of inorganic phosphorus (P) under exchangeable state (Ex-P) and aluminium phosphate (Al-P) and iron phosphate (Fe-P) at different depths (0, 5, 15 and 35 cm) of soil infiltration medium in bioretention system. Effluent total P (TP) concentration of the system was also monitored. Results indicated that the adsorption of inorganic P, Al-P and Fe-P by soil infiltration medium was implemented layer by layer from top to bottom and gradually weakened. Moreover, Ex-P was gradually transformed into Al-P and Fe-P, whereas Al-P was gradually transformed into Fe-P; thus, Ex-P content reduced layer by layer, whereas Al-P and Fe-P gradually accumulated. The TP removal rate in runoff rainwater by the system was more than 90%, where the TP that was not used by plants was under dynamic equilibrium in water-soil-root system/biological system.
Interaction-induced partitioning and magnetization jumps in the mixed-spin oxide FeTiO3-Fe2O3.
Charilaou, M; Sahu, K K; Zhao, S; Löffler, J F; Gehring, A U
2011-07-29
In this study we report on jumps in the magnetic moment of the hemo-ilmenite solid solution (x)FeTiO(3)-(1-x)Fe(2)O(3) above Fe(III) percolation at low temperature (T<3 K). The first jumps appear at 2.5 K, one at each side of the magnetization loop, and their number increases with decreasing temperature and reaches 5 at T=0.5 K. The jumps occur after field reversal from a saturated state and are symmetrical in the trigger field and intensity with respect to the field axis. Moreover, an increase of the sample temperature by 2.8% at T=2.0 K indicates the energy released after the ignition of the magnetization jump, as the spin-currents generated by the event are dissipated in the lattice. The magnetization jumps are further investigated by Monte Carlo simulations, which show that these effects are a result of magnetic interaction-induced partitioning on a sublattice level. © 2011 American Physical Society
Fuel Performance Calculations for FeCrAl Cladding in BWRs
DOE Office of Scientific and Technical Information (OSTI.GOV)
George, Nathan; Sweet, Ryan; Maldonado, G. Ivan
2015-01-01
This study expands upon previous neutronics analyses of the reactivity impact of alternate cladding concepts in boiling water reactor (BWR) cores and directs focus toward contrasting fuel performance characteristics of FeCrAl cladding against those of traditional Zircaloy. Using neutronics results from a modern version of the 3D nodal simulator NESTLE, linear power histories were generated and supplied to the BISON-CASL code for fuel performance evaluations. BISON-CASL (formerly Peregrine) expands on material libraries implemented in the BISON fuel performance code and the MOOSE framework by providing proprietary material data. By creating material libraries for Zircaloy and FeCrAl cladding, the thermomechanical behaviormore » of the fuel rod (e.g., strains, centerline fuel temperature, and time to gap closure) were investigated and contrasted.« less
Chemical doping in pnictides superconductors: The case of Ca(Fe1-xXx) 2As2 , X = Co, Ni, Pt
NASA Astrophysics Data System (ADS)
Continenza, Alessandra; Profeta, Gianni
2018-04-01
We present a comparative and detailed study of transition metal doping in CaFe2As2. Comparing with several experimental results and carefully analyzing how the states at the Fermi level are affected by doping we show that: i) simulation of real doping and considering induces structural relaxations are crucial to correctly address the physical mechanisms induced by transition metal substitutions; ii) different dopant concentration induces changes on the band structure that can not be described within a simple rigid-band picture; iii) careful comparison with the available ARPES results shows that the main effects on band filling and symmetry can be caught within DFT.
Atomic structures of B20 FeGe thin films grown on the Si(111) surface
NASA Astrophysics Data System (ADS)
Kim, Wondong; Noh, Seungkyun; Yoon, Jisoo; Kim, Young Heon; Lee, Inho; Kim, Jae-Sung; Hwang, Chanyong
We investigated the growth and atomic structures of FeGe thin films on the Si (111) surface by using scanning tunneling microscopy (STM) and transmission electron microscopy (TEM). The 2 5nm- thick FeGe thin films were prepared on the clean Si(111) 7x7 surface by co-deposition of Fe and Ge from separated electron-beam evaporators. With direct deposition on the substrate at the temperature above 550 K, the surface of FeGe films was not smooth and consisted of coarse grains. By the combination of room-temperature annealing and post-annealing process around 800 K, the structure of FeGe thin films evolved into the well crystalized structures. Atom-resolved STM images revealed that there are at least four different surface terminations. We constructed atomic models for each surface terminations based on the bulk atomic arrangement of a B20 chiral structure and confirmed that the observed STM images are successfully reproduced by using computational simulations employing Vienna Ab Initio Simulation package (VASP) with a B20 chiral structure model. TEM cross-sectional images also support our atomic models by revealing clearly the characteristic zigzag features of B20 structures of FeGe(111) thin films.
Wang, Yu; Helminen, Emily; Jiang, Jingfeng
2015-09-01
Quasistatic ultrasound elastography (QUE) is being used to augment in vivo characterization of breast lesions. Results from early clinical trials indicated that there was a lack of confidence in image interpretation. Such confidence can only be gained through rigorous imaging tests using complex, heterogeneous but known media. The objective of this study is to build a virtual breast QUE simulation platform in the public domain that can be used not only for innovative QUE research but also for rigorous imaging tests. The main thrust of this work is to streamline biomedical ultrasound simulations by leveraging existing open source software packages including Field II (ultrasound simulator), VTK (geometrical visualization and processing), FEBio [finite element (FE) analysis], and Tetgen (mesh generator). However, integration of these open source packages is nontrivial and requires interdisciplinary knowledge. In the first step, a virtual breast model containing complex anatomical geometries was created through a novel combination of image-based landmark structures and randomly distributed (small) structures. Image-based landmark structures were based on data from the NIH Visible Human Project. Subsequently, an unstructured FE-mesh was created by Tetgen. In the second step, randomly positioned point scatterers were placed within the meshed breast model through an octree-based algorithm to make a virtual breast ultrasound phantom. In the third step, an ultrasound simulator (Field II) was used to interrogate the virtual breast phantom to obtain simulated ultrasound echo data. Of note, tissue deformation generated using a FE-simulator (FEBio) was the basis of deforming the original virtual breast phantom in order to obtain the postdeformation breast phantom for subsequent ultrasound simulations. Using the procedures described above, a full cycle of QUE simulations involving complex and highly heterogeneous virtual breast phantoms can be accomplished for the first time. Representative examples were used to demonstrate capabilities of this virtual simulation platform. In the first set of three ultrasound simulation examples, three heterogeneous volumes of interest were selected from a virtual breast ultrasound phantom to perform sophisticated ultrasound simulations. These resultant B-mode images realistically represented the underlying complex but known media. In the second set of three QUE examples, advanced applications in QUE were simulated. The first QUE example was to show breast tumors with complex shapes and/or compositions. The resultant strain images showed complex patterns that were normally seen in freehand clinical ultrasound data. The second and third QUE examples demonstrated (deformation-dependent) nonlinear strain imaging and time-dependent strain imaging, respectively. The proposed virtual QUE platform was implemented and successfully tested in this study. Through show-case examples, the proposed work has demonstrated its capabilities of creating sophisticated QUE data in a way that cannot be done through the manufacture of physical tissue-mimicking phantoms and other software. This open software architecture will soon be made available in the public domain and can be readily adapted to meet specific needs of different research groups to drive innovations in QUE.
Finite Element Model and Validation of Nasal Tip Deformation
Manuel, Cyrus T; Harb, Rani; Badran, Alan; Ho, David; Wong, Brian JF
2016-01-01
Nasal tip mechanical stability is important for functional and cosmetic nasal airway surgery. Palpation of the nasal tip provides information on tip strength to the surgeon, though it is a purely subjective assessment. Providing a means to simulate nasal tip deformation with a validated model can offer a more objective approach in understanding the mechanics and nuances of the nasal tip support and eventual nasal mechanics as a whole. Herein we present validation of a finite element (FE) model of the nose using physical measurements recorded using an ABS plastic-silicone nasal phantom. Three-dimensional photogrammetry was used to capture the geometry of the phantom at rest and while under steady state load. The silicone used to make the phantom was mechanically tested and characterized using a linear elastic constitutive model. Surface point clouds of the silicone and FE model were compared for both the loaded and unloaded state. The average Hausdorff distance between actual measurements and FE simulations across the nose were 0.39mm ± 1.04 mm and deviated up to 2mm at the outermost boundaries of the model. FE simulation and measurements were in near complete agreement in the immediate vicinity of the nasal tip with millimeter accuracy. We have demonstrated validation of a two-component nasal FE model, which could be used to model more complex modes of deformation where direct measurement may be challenging. This is the first step in developing a nasal model to simulate nasal mechanics and ultimately the interaction between geometry and airflow. PMID:27633018
Finite Element Model and Validation of Nasal Tip Deformation.
Manuel, Cyrus T; Harb, Rani; Badran, Alan; Ho, David; Wong, Brian J F
2017-03-01
Nasal tip mechanical stability is important for functional and cosmetic nasal airway surgery. Palpation of the nasal tip provides information on tip strength to the surgeon, though it is a purely subjective assessment. Providing a means to simulate nasal tip deformation with a validated model can offer a more objective approach in understanding the mechanics and nuances of the nasal tip support and eventual nasal mechanics as a whole. Herein we present validation of a finite element (FE) model of the nose using physical measurements recorded using an ABS plastic-silicone nasal phantom. Three-dimensional photogrammetry was used to capture the geometry of the phantom at rest and while under steady state load. The silicone used to make the phantom was mechanically tested and characterized using a linear elastic constitutive model. Surface point clouds of the silicone and FE model were compared for both the loaded and unloaded state. The average Hausdorff distance between actual measurements and FE simulations across the nose were 0.39 ± 1.04 mm and deviated up to 2 mm at the outermost boundaries of the model. FE simulation and measurements were in near complete agreement in the immediate vicinity of the nasal tip with millimeter accuracy. We have demonstrated validation of a two-component nasal FE model, which could be used to model more complex modes of deformation where direct measurement may be challenging. This is the first step in developing a nasal model to simulate nasal mechanics and ultimately the interaction between geometry and airflow.
A finite element model of rigid body structures actuated by dielectric elastomer actuators
NASA Astrophysics Data System (ADS)
Simone, F.; Linnebach, P.; Rizzello, G.; Seelecke, S.
2018-06-01
This paper presents on finite element (FE) modeling and simulation of dielectric elastomer actuators (DEAs) coupled with articulated structures. DEAs have proven to represent an effective transduction technology for the realization of large deformation, low-power consuming, and fast mechatronic actuators. However, the complex dynamic behavior of the material, characterized by nonlinearities and rate-dependent phenomena, makes it difficult to accurately model and design DEA systems. The problem is further complicated in case the DEA is used to activate articulated structures, which increase both system complexity and implementation effort of numerical simulation models. In this paper, we present a model based tool which allows to effectively implement and simulate complex articulated systems actuated by DEAs. A first prototype of a compact switch actuated by DEA membranes is chosen as reference study to introduce the methodology. The commercially available FE software COMSOL is used for implementing and coupling a physics-based dynamic model of the DEA with the external structure, i.e., the switch. The model is then experimentally calibrated and validated in both quasi-static and dynamic loading conditions. Finally, preliminary results on how to use the simulation tool to optimize the design are presented.
Assessing the stretch-blow moulding FE simulation of PET over a large process window
NASA Astrophysics Data System (ADS)
Nixon, J.; Menary, G. H.; Yan, S.
2017-10-01
Injection stretch blow moulding has been extensively researched for numerous years and is a well-established method of forming thin-walled containers. This paper is concerned with validating the finite element analysis of the stretch-blow-moulding (SBM) process in an effort to progress the development of injection stretch blow moulding of poly(ethylene terephthalate). Extensive data was obtained experimentally over a wide process window accounting for material temperature, air flow rate and stretch-rod speed while capturing cavity pressure, stretch-rod reaction force, in-mould contact timing and material thickness distribution. This data was then used to assess the accuracy of the correlating FE simulation constructed using ABAQUS/Explicit solver and an appropriate user-defined viscoelastic material subroutine. Results reveal that the simulation was able to pick up the general trends of how the pressure, reaction force and in-mould contact timings vary with the variation in preform temperature and air flow rate. Trends in material thickness were also accurately predicted over the length of the bottle relative to the process conditions. The knowledge gained from these analyses provides insight into the mechanisms of bottle formation, subsequently improving the blow moulding simulation and potentially providing a reduction in production costs.
NASA Technical Reports Server (NTRS)
Lawrence, Charles; Fasanella, Edwin L.; Tabiei, Ala; Brinkley, James W.; Shemwell, David M.
2008-01-01
A review of astronaut whole body impact tolerance is discussed for land or water landings of the next generation manned space capsule named Orion. LS-DYNA simulations of Orion capsule landings are performed to produce a low, moderate, and high probability of injury. The paper evaluates finite element (FE) seat and occupant simulations for assessing injury risk for the Orion crew and compares these simulations to whole body injury models commonly referred to as the Brinkley criteria. The FE seat and crash dummy models allow for varying the occupant restraint systems, cushion materials, side constraints, flailing of limbs, and detailed seat/occupant interactions to minimize landing injuries to the crew. The FE crash test dummies used in conjunction with the Brinkley criteria provides a useful set of tools for predicting potential crew injuries during vehicle landings.
Danny, Riethorst; Amitava, Mitra; Filippos, Kesisoglou; Wei, Xu; Jan, Tack; Joachim, Brouwers; Patrick, Augustijns
2018-05-23
In addition to individual intestinal fluid components, colloidal structures are responsible for enhancing the solubility of lipophilic compounds. The present study investigated the link between as well as the variability in the ultrastructure of fed state human intestinal fluids (FeHIF) and their solubilizing capacity for lipophilic compounds. For this purpose, FeHIF samples from 10 healthy volunteers with known composition and ultrastructure were used to determine the solubility of four lipophilic compounds. In light of the focus on solubility and ultrastructure, the study carefully considered the methodology of solubility determination in relation to colloid composition and solubilizing capacity of FeHIF. To determine the solubilizing capacity of human and simulated intestinal fluids, the samples were saturated with the compound of interest, shaken for 24 h, and centrifuged. When using FeHIF, solubilities were determined in the micellar layer of FeHIF, i.e. after removing the upper (lipid) layer (standard procedure), as well as in 'full' FeHIF (without removal of the upper layer). Compound concentrations were determined using HPLC-UV/fluorescence. To link the solubilizing capacity with the ultrastructure, all human and simulated fluids were imaged using transmission electron microscopy (TEM) before and after centrifugation and top layer (lipid) removal. Comparing the ultrastructure and solubilizing capacity of individual FeHIF samples demonstrated a high intersubject variability in postprandial intestinal conditions. Imaging of FeHIF after removal of the upper layer clearly showed that only micellar structures remain in the lower layer. This observation suggests that larger colloids such as vesicles and lipid droplets are contained in the upper, lipid layer. The solubilizing capacity of most FeHIF samples substantially increased with inclusion of this lipid layer. The relative increase in solubilizing capacity upon inclusion of the lipid layer was most pronounced in samples that contained mainly vesicles alongside the micelles. Current fed state simulated intestinal fluids do not contain the larger colloids observed in the lipid layer of FeHIF and can only simulate the solubilizing capacity of the micellar layer of FeHIF. While the importance of drug molecules solubilized in the micellar layer of postprandial intestinal fluids for absorption has been extensively demonstrated previously, the in-vivo relevance of drug solubilization in the lipid layer is currently unclear. In the dynamic environment of the human gastrointestinal tract, drug initially entrapped in larger postprandial colloids may become available for absorption upon lipid digestion and uptake. The current study, demonstrating the substantial solubilization of lipophilic compounds in the larger colloids of postprandial intestinal fluids, warrants further research in this field. Copyright © 2018. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pal, Semanti; Barman, Saswati, E-mail: saswati@bose.res.in; Barman, Anjan, E-mail: abarman@bose.res.in
2014-05-07
We have investigated optically induced ultrafast magnetization dynamics of a series of Fe{sub 55}Pt{sub 45}/Ni{sub 80}Fe{sub 20} exchange spring bi-layers with varying Ni{sub 80}Fe{sub 20} thickness. Rich spin-wave spectra are observed; whose frequency shows a strong dependence on the Ni{sub 80}Fe{sub 20} layer thickness. Micromagnetic simulations based on a simplified magnetic microstructure were able to reproduce the experimental data qualitatively. The spin twist structure introduced in the Ni{sub 80}Fe{sub 20} layer gives rise to new modes in the composite system as opposed to the bare Ni{sub 80}Fe{sub 20} films.
Twinning to slip transition in ultrathin BCC Fe nanowires
NASA Astrophysics Data System (ADS)
Sainath, G.; Choudhary, B. K.
2018-04-01
We report twinning to slip transition with decreasing size and increasing temperature in ultrathin <100> BCC Fe nanowires. Molecular dynamics simulations have been performed on different nanowire size in the range 0.404-3.634 nm at temperatures ranging from 10 to 900 K. The results indicate that slip mode dominates at low sizes and high temperatures, while deformation twinning is promoted at high sizes and low temperatures. The temperature, at which the nanowires show twinning to slip transition, increases with increasing size. The different modes of deformation are also reflected appropriately in the respective stress-strain behaviour of the nanowires.
Tamper asymmetry and its effect on transmission for x-ray driven opacity simulations
Morris, H. E.; Tregillis, I. L.; Hoffman, N. M.; ...
2017-08-01
This paper reports on synthetic transmission results from Lasnex [1] radiation-hydrodynamics simulations of opacity experiments carried out at Sandia National Laboratories' recently upgraded ZR facility. The focus is on experiments utilizing disk targets composed of a half-moon Fe/Mg mixture tamped on either end with 10- m CH and an additional 35- m beryllium tamper accessory on the end facing the spectrometer. Five x-ray sources with peak power ranging from 10 to 24 TW were used in the simulations to heat and backlight the opacity target. The dominant effect is that the beryllium behind the Fe/Mg mixture is denser and moremore » opaque than the beryllium unshielded by metal during the times of greatest importance for the transmission measurement for all drives. This causes the simulated transmission to be lower than expected, and this is most pronounced for the case using the lowest drive power. While beryllium has a low opacity, its areal density is sufficiently high such that the expected reduction of the measured transmission is significant. This situation leads to an overestimate of iron opacity by 10-215% for a photon energy range of 975- 1775 eV for the 10-TW case. It is shown that if the tamper conditions are known, the transmission through each component of the target can be calculated and the resulting opacity can be corrected.« less
NASA Astrophysics Data System (ADS)
Xiong, Kun; Wang, Kunzhou; Chen, Lin; Wang, Xinqing; Fan, Qingbo; Courtois, Jérémie; Liu, Yuliang; Tuo, Xianguo; Yan, Minhao
2018-03-01
To improve the visible light absorption and photocatalytic activity of titanium dioxide nanotube arrays (TONTAs), ZnFe2O4 (ZFO) nanocrystals were perfused into pristine TONTA pipelines using a novel bias voltage-assisted perfusion method. ZFO nanocrystals were well anchored on the inner walls of the pristine TONTAs when the ZFO suspensions (0.025 mg mL-1) were kept under a 60 V bias voltage for 1 h. After annealing at 750 °C for 2 h, the heterostructured ZFO/Fe2TiO5 (FTO)/TiO2 composite nanotube arrays were successfully obtained. Furthermore, Fe3+ was reduced to Fe2+ when solid solution reactions occurred at the interface of ZFO and the pristine TONTAs. Introducing ZFO significantly enhanced the visible light absorption of the ZFO/FTO/TONTAs relative to that of the annealed TONTAs. The coexistence of type I and staggered type II band alignment in the ZFO/FTO/TONTAs facilitated the separation of photogenerated electrons and holes, thereby improving the efficiency of the ZFO/FTO/TONTAs for photocatalytic degradation of methylene blue when irradiated with simulated sunlight. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Ming, Hongliang; Zhang, Zhiming; Wang, Jiazhen; Zhu, Ruolin; Ding, Jie; Wang, Jianqiu; Han, En-Hou; Ke, Wei
2015-05-01
The oxidation behavior of 308L weld metal (WM) with different surface state in the simulated nominal primary water of pressurized water reactor (PWR) was studied by scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) analyzer and X-ray photoelectron spectroscopy (XPS). After 480 h immersion, a duplex oxide film composed of a Fe-rich outer layer (Fe3O4, Fe2O3 and a small amount of NiFe2O4, Ni(OH)2, Cr(OH)3 and (Ni, Fe)Cr2O4) and a Cr-rich inner layer (FeCr2O4 and NiCr2O4) can be formed on the 308L WM samples with different surface state. The surface state has no influence on the phase composition of the oxide films but obviously affects the thickness of the oxide films and the morphology of the oxides (number & size). With increasing the density of dislocations and subgrain boundaries in the cold-worked superficial layer, the thickness of the oxide film, the number and size of the oxides decrease.
Spin-filter specular spin valves
NASA Astrophysics Data System (ADS)
Lu, Z. Q.; Pan, G.; Jibouri, A. A.; Zheng, Yaunkai
2002-01-01
Both a thin free layer and high magnetoresistance (MR) ratio are required in spin valves for high magnetic density recording heads. In traditional spin valve structures, reducing the free layer normally results in a reduction in MR. We report here on a spin-filter specular spin valve with structure Ta 3.5 nm/NiFe 2 nm/IrMn 6 nm/CoFe 1.5 nm/Nol/CoFe 2 nm/Cu 2.2 nm/CoFe tF/Cu tSF/Nol2/Ta 3 nm, which is demonstrated to maintain MR ratio higher than 12% even when the CoFe free layer is reduced to 1 nm. The semiclassical Boltzmann transport equation was used to simulate MR ratio. An optimized MR ratio of ˜14.5% was obtained when tF was about 1.5 nm and tSF about 1.0 nm as a result of the balance between the increase in electron mean free path difference and current shunting through conducting layer. It is found that the Cu enhancing layer not only enhances the MR ratio but also improves soft magnetic properties of CoFe free layer due to the low atomic intermixing observed between Co and Cu. The CoFe free layer of 1-4 nm exhibits a low coercivity of ˜3 Oe even after annealing at 270 °C for 7 h in a field of 1 kOe. Furthermore, the interlayer coupling field Hint between free layer and pinned layer can be controlled by balancing the Rudermann-Kittel-(Kasuya)-Yosida and magnetostatic coupling. Such a thin soft CoFe free layer is particularly attractive for high density read sensor application.
NASA Astrophysics Data System (ADS)
Jamett, Nathalie E.; Hernández, Pía C.; Casas, Jesús M.; Taboada, María E.
2018-02-01
This article presents the results on speciation of ferric iron generated by the dissolution of chemical reagent hydromolysite (ferric chloride hexahydrate, FeCl3:6H2O) in water at 298.15 K, 313.15 K, and 333.15 K (25 °C, 40 °C, and 60 °C). Experiments were performed with a thermoregulated system up to the equilibrium point, as manifested by solution pH. Solution samples were analyzed in terms of concentration, pH, and electrical conductivity. Measurements of density and refractive index were obtained at different temperatures and iron concentrations. A decrease of pH was observed with the increase in the amount of dissolved iron, indicating that ferric chloride is a strong electrolyte that reacts readily with water. Experimental results were modeled using the hydrogeochemical code PHREEQC in order to obtain solution speciation. Cations and neutral and anion complexes were simultaneously present in the system at the studied conditions according to model simulations, where dominant species included Cl-, FeCl2+, FeCl2 +, FeOHCl 2 0 , and H+. A decrease in the concentration of Cl- and Fe3+ ions took place with increasing temperature due to the association of Fe-Cl species. Standard equilibrium constants for the formation of FeOHCl 2 0 obtained in this study were log Kf0 = -0.8 ± 0.01 at 298.15 K (25 °C), -0.94 ± 0.02 at 313.15 K (40 °C), and -1.03 ± 0.01 at 333.15 K (60 °C).
Sun, W.; Sierra-Alvarez, R.; Milner, L.; Oremland, R.; Field, J.A.
2009-01-01
The objective of this study was to explore a bioremediation strategy based on injecting NO3- to support the anoxic oxidation of ferrous iron (Fe(II)) and arsenite (As(III)) in the subsurface as a means to immobilize As in the form of arsenate (As(V)) adsorbed onto biogenic ferric (Fe(III)) (hydr)oxides. Continuous flows and filled columns were used to simulate a natural anaerobic groundwater and sediment system with co-occurring As(III) and Fe(II) in the presence (column SF1) or absence (column SF2) of nitrate, respectively. During operation for 250 days, the average influent arsenic concentration of 567 ??g L-1 was reduced to 10.6 (??9.6) ??g L-1 in the effluent of column SF1. The cumulative removal of Fe(II) and As(III) in SF1 was 6.5 to 10-fold higher than that in SF2. Extraction and measurement of the mass of iron and arsenic immobilized on the sand packing of the columns were close to the iron and arsenic removed from the aqueous phase during column operation. The dominant speciation of the immobilized iron and arsenic was Fe(III) and As(V) in SF1, compared with Fe(II) and As(III) in SF2. The speciation was confirmed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results indicate that microbial oxidation of As(III) and Fe(II) linked to denitrification resulted in the enhanced immobilization of aqueous arsenic in anaerobic environments by forming Fe(III) (hydr)oxide coated sands with adsorbed As(V). ?? 2009 American Chemical Society.
Wang, Yu; Helminen, Emily; Jiang, Jingfeng
2015-01-01
Purpose: Quasistatic ultrasound elastography (QUE) is being used to augment in vivo characterization of breast lesions. Results from early clinical trials indicated that there was a lack of confidence in image interpretation. Such confidence can only be gained through rigorous imaging tests using complex, heterogeneous but known media. The objective of this study is to build a virtual breast QUE simulation platform in the public domain that can be used not only for innovative QUE research but also for rigorous imaging tests. Methods: The main thrust of this work is to streamline biomedical ultrasound simulations by leveraging existing open source software packages including Field II (ultrasound simulator), VTK (geometrical visualization and processing), FEBio [finite element (FE) analysis], and Tetgen (mesh generator). However, integration of these open source packages is nontrivial and requires interdisciplinary knowledge. In the first step, a virtual breast model containing complex anatomical geometries was created through a novel combination of image-based landmark structures and randomly distributed (small) structures. Image-based landmark structures were based on data from the NIH Visible Human Project. Subsequently, an unstructured FE-mesh was created by Tetgen. In the second step, randomly positioned point scatterers were placed within the meshed breast model through an octree-based algorithm to make a virtual breast ultrasound phantom. In the third step, an ultrasound simulator (Field II) was used to interrogate the virtual breast phantom to obtain simulated ultrasound echo data. Of note, tissue deformation generated using a FE-simulator (FEBio) was the basis of deforming the original virtual breast phantom in order to obtain the postdeformation breast phantom for subsequent ultrasound simulations. Using the procedures described above, a full cycle of QUE simulations involving complex and highly heterogeneous virtual breast phantoms can be accomplished for the first time. Results: Representative examples were used to demonstrate capabilities of this virtual simulation platform. In the first set of three ultrasound simulation examples, three heterogeneous volumes of interest were selected from a virtual breast ultrasound phantom to perform sophisticated ultrasound simulations. These resultant B-mode images realistically represented the underlying complex but known media. In the second set of three QUE examples, advanced applications in QUE were simulated. The first QUE example was to show breast tumors with complex shapes and/or compositions. The resultant strain images showed complex patterns that were normally seen in freehand clinical ultrasound data. The second and third QUE examples demonstrated (deformation-dependent) nonlinear strain imaging and time-dependent strain imaging, respectively. Conclusions: The proposed virtual QUE platform was implemented and successfully tested in this study. Through show-case examples, the proposed work has demonstrated its capabilities of creating sophisticated QUE data in a way that cannot be done through the manufacture of physical tissue-mimicking phantoms and other software. This open software architecture will soon be made available in the public domain and can be readily adapted to meet specific needs of different research groups to drive innovations in QUE. PMID:26328994
Nanovoid growth in BCC α-Fe: influences of initial void geometry
NASA Astrophysics Data System (ADS)
Xu, Shuozhi; Su, Yanqing
2016-12-01
The growth of voids has a great impact on the mechanical properties of ductile materials by altering their microstructures. Exploring the process of void growth at the nanoscale helps in understanding the dynamic fracture of metals. While some very recent studies looked into the effects of the initial geometry of an elliptic void on the plastic deformation of face-centered cubic metals, a systematic study of the initial void ellipticity and orientation angle in body-centered cubic (BCC) metals is still lacking. In this paper, large scale molecular dynamics simulations with millions of atoms are conducted, investigating the void growth process during tensile loading of metallic thin films in BCC α-Fe. Our simulations elucidate the intertwined influences on void growth of the initial ellipticity and initial orientation angle of the void. It is shown that these two geometric parameters play an important role in the stress-strain response, the nucleation and evolution of defects, as well as the void size/outline evolution in α-Fe thin films. Results suggest that, together with void size, different initial void geometries should be taken into account if a continuum model is to be applied to nanoscale damage progression.
Cai, Xiaolin; Chen, Xiaochen; Yin, Naiyi; Du, Huili; Sun, Guoxin; Wang, Lihong; Xu, Yudong; Chen, Yuqing; Cui, Yanshan
2017-12-13
The influence of the human gut microbiota on the bioaccessibility and bioavailability of trace elements in vegetables has barely been studied. An in vitro digestion model combining the physiologically based extraction test (PBET) and the Simulator of Human Intestinal Microbial Ecosystem (SHIME) was applied. Results showed that the gut microbiota increased the bioaccessibility of iron (Fe) in ten test vegetables by 1.3-1.8 times, but reduced the bioaccessibility of manganese (Mn), copper (Cu), and zinc (Zn) in vegetables in the colon phase by 3.7% to 89.6%, 24.8% to 100.0%, and 59.9% to 100.0%, respectively. Using the Caco-2 cell model to simulate the human absorption process, the bioavailable contents and the bioavailability of the trace elements were further determined. Swamp cabbage was the best source of Fe and Cu; spinach and lettuce provided the highest amounts of bioavailable Mn and Zn, respectively. Referring to the daily reference intakes of trace elements, the obtained data provide a scientific basis for both reasonable ingestion of vegetables in diets and diversification of diets.
Cao, Hongrui; Niu, Linkai; He, Zhengjia
2012-01-01
Bearing defects are one of the most important mechanical sources for vibration and noise generation in machine tool spindles. In this study, an integrated finite element (FE) model is proposed to predict the vibration responses of a spindle bearing system with localized bearing defects and then the sensor placement for better detection of bearing faults is optimized. A nonlinear bearing model is developed based on Jones' bearing theory, while the drawbar, shaft and housing are modeled as Timoshenko's beam. The bearing model is then integrated into the FE model of drawbar/shaft/housing by assembling equations of motion. The Newmark time integration method is used to solve the vibration responses numerically. The FE model of the spindle-bearing system was verified by conducting dynamic tests. Then, the localized bearing defects were modeled and vibration responses generated by the outer ring defect were simulated as an illustration. The optimization scheme of the sensor placement was carried out on the test spindle. The results proved that, the optimal sensor placement depends on the vibration modes under different boundary conditions and the transfer path between the excitation and the response. PMID:23012514
Aral, Gurcan; Islam, Md Mahbubul; Wang, Yun-Jiang; Ogata, Shigenobu; Duin, Adri C T van
2018-06-14
To avoid unexpected environmental mechanical failure, there is a strong need to fully understand the details of the oxidation process and intrinsic mechanical properties of reactive metallic iron (Fe) nanowires (NWs) under various aqueous reactive environmental conditions. Herein, we employed ReaxFF reactive molecular dynamics (MD) simulations to elucidate the oxidation of Fe NWs exposed to molecular water (H2O) and hydrogen peroxide (H2O2) environment, and the influence of the oxide shell layer on the tensile mechanical deformation properties of Fe NWs. Our structural analysis shows that oxidation of Fe NWs occurs with the formation of different iron oxide and hydroxide phases in the aqueous molecular H2O and H2O2 oxidizing environments. We observe that the resulting microstructure due to pre-oxide shell layer formation reduces the mechanical stress via increasing the initial defect sites in the vicinity of the oxide region to facilitate the onset of plastic deformation during tensile loading. Specifically, the oxide layer of Fe NWs formed in the H2O2 environment has a relatively significant effect on the deterioration of the mechanical properties of Fe NWs. The weakening of the yield stress and Young modulus of H2O2 oxidized Fe NWs indicates the important role of local oxide microstructures on mechanical deformation properties of individual Fe NWs. Notably, deformation twinning is found as the primary mechanical plastic deformation mechanism of all Fe NWs, but it is initially observed at low strain and stress level for the oxidized Fe NWs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burn, D. M., E-mail: d.burn@imperial.ac.uk; Atkinson, D.
2014-10-28
Understanding domain wall pinning and propagation in nanowires are important for future spintronics and nanoparticle manipulation technologies. Here, the effects of microscopic local modification of the magnetic properties, induced by focused-ion-beam intermixing, in NiFe/Au bilayer nanowires on the pinning behavior of domain walls was investigated. The effects of irradiation dose and the length of the irradiated features were investigated experimentally. The results are considered in the context of detailed quasi-static micromagnetic simulations, where the ion-induced modification was represented as a local reduction of the saturation magnetization. Simulations show that domain wall pinning behavior depends on the magnitude of the magnetizationmore » change, the length of the modified region, and the domain wall structure. Comparative analysis indicates that reduced saturation magnetisation is not solely responsible for the experimentally observed pinning behavior.« less
Biomedical Simulation Models of Human Auditory Processes
NASA Technical Reports Server (NTRS)
Bicak, Mehmet M. A.
2012-01-01
Detailed acoustic engineering models that explore noise propagation mechanisms associated with noise attenuation and transmission paths created when using hearing protectors such as earplugs and headsets in high noise environments. Biomedical finite element (FE) models are developed based on volume Computed Tomography scan data which provides explicit external ear, ear canal, middle ear ossicular bones and cochlea geometry. Results from these studies have enabled a greater understanding of hearing protector to flesh dynamics as well as prioritizing noise propagation mechanisms. Prioritization of noise mechanisms can form an essential framework for exploration of new design principles and methods in both earplug and earcup applications. These models are currently being used in development of a novel hearing protection evaluation system that can provide experimentally correlated psychoacoustic noise attenuation. Moreover, these FE models can be used to simulate the effects of blast related impulse noise on human auditory mechanisms and brain tissue.
Fabrication of Ti-0.48Al Alloy by Centrifugal Casting.
Park, Jong Bum; Lee, Jung-Il; Ryu, Jeong Ho
2018-09-01
Many of the unique properties of TiAl alloys that make are attractive for use in high-temperature structural applications also make it challenging to process them into useful products. Cast TiAl is rapidly nearing commercialization, particularly in the vehicle industry, owing to its low production cost. In this study, the centrifugal casting of a TiAl (Ti-48%Al, mole fraction) turbocharger was simulated and an experimental casting was created in vacuum using an induction melting furnace coupled to a ceramic composite mold. Numerical simulation results agreed with the experiment. The crystal structure, microstructure, and chemical composition of the TiAl prepared by centrifugal casting were studied by X-ray diffractometry, optical microscopy, field emission scanning electron microscopy (FE-SEM) and energy dispersive spectroscopy (EDS). FE-SEM and EDS examinations of the TiAl casting revealed that the thickness of the oxide layer (α-case) was typically less than 35 μm.
NASA Astrophysics Data System (ADS)
Saha, Atanu K.; Datta, Suman; Gupta, Sumeet K.
2018-03-01
In this paper, we describe and analytically substantiate an alternate explanation for the negative capacitance (NC) effect in ferroelectrics (FE). We claim that the NC effect previously demonstrated in resistance-ferroelectric (R-FE) networks does not necessarily validate the existence of "S" shaped relation between polarization and voltage (according to Landau theory). In fact, the NC effect can be explained without invoking the "S"-shaped behavior of FE. We employ an analytical model for FE (Miller model) in which the steady state polarization strictly increases with the voltage across the FE and show that despite the inherent positive FE capacitance, reduction in FE voltage with the increase in its charge is possible in a R-FE network as well as in a ferroelectric-dielectric (FE-DE) stack. This can be attributed to a large increase in FE capacitance near the coercive voltage coupled with the polarization lag with respect to the electric field. Under certain conditions, these two factors yield transient NC effect. We analytically derive conditions for NC effect in R-FE and FE-DE networks. We couple our analysis with extensive simulations to explain the evolution of NC effect. We also compare the trends predicted by the aforementioned Miller model with Landau-Khalatnikov (L-K) model (static negative capacitance due to "S"-shape behaviour) and highlight the differences between the two approaches. First, with an increase in external resistance in the R-FE network, NC effect shows a non-monotonic behavior according to Miller model but increases according to L-K model. Second, with the increase in ramp-rate of applied voltage in the FE-DE stack, NC effect increases according to Miller model but decreases according to L-K model. These results unveil a possible way to experimentally validate the actual reason of NC effect in FE.
Fe-C and Fe-H systems at pressures of the Earth's inner core
NASA Astrophysics Data System (ADS)
Bazhanova, Zulfiya G.; Oganov, Artem R.; Gianola, Omar
2012-05-01
The solid inner core of Earth is predominantly composed of iron alloyed with several percent Ni and some lighter elements, Si, S, O, H, and C being the prime candidates. To establish the chemical composition of the inner core, it is necessary to find the range of compositions that can explain its observed characteristics. Recently, there have been a growing number of papers investigating C and H as possible light elements in the core, but the results were contradictory. Here, using ab initio simulations, we study the Fe-C and Fe-H systems at inner core pressures (330-364 GPa). Based on the evolutionary structure prediction algorithm USPEX, we have determined the lowest-enthalpy structures of all possible carbides (FeC, Fe2C, Fe3C, Fe4C, FeC2, FeC3, FeC4, Fe7C3) and hydrides (Fe4H, Fe3H, Fe2H, FeH, FeH2, FeH3, FeH4) and have found that Fe2C (space group Pnma) is the most stable iron carbide at pressures of the inner core, while FeH, FeH3, and FeH4 are the most stable iron hydrides at these conditions. For Fe3C, the cementite structure (space group Pnma) and the Cmcm structure recently found by random sampling are less stable than the I-4 and C2/m structures predicted here. We have found that FeH3 and FeH4 adopt chemically interesting thermodynamically stable crystal structures, containing trivalent iron in both compounds. We find that the density of the inner core can be matched with a reasonable concentration of carbon, 11-15 mol.% (2.6-3.7 wt.%) at relevant pressures and temperatures, yielding the upper bound to the C content in the inner core. This concentration matches that in CI carbonaceous chondrites and corresponds to the average atomic mass in the range 49.3-51.0, in close agreement with inferences from Birch's law for the inner core. Similarly made estimates for the maximum hydrogen content are unrealistically high: 17-22 mol.% (0.4-0.5 wt.%), which corresponds to the average atomic mass of the core in the range 43.8-46.5. We conclude that carbon is a better candidate light alloying element than hydrogen.
NASA Astrophysics Data System (ADS)
Fabiano, F.; Puliafito, V.; Calabrese, L.; Borsellino, C.; Bonaccorsi, L. M.; Giordano, A.; Fabiano, V.; Cordasco, G.
2016-04-01
Neodymium-iron-boron magnets are able to ensure a magnetic flux with high maximum energy product also at miniaturized size. In the past, due to their marked corrosion in saliva they were unsuccessfully implemented in orthodontic systems. Thereby, we propose a multi-layered organic-inorganic coating able to supply anticorrosion resistance, wear resistance and durability to the whole assembly. We evaluated the influence on the magnetic force of commercial nickel plated and silanized Nd-Fe-B during aging time in synthetic Fusayama saliva. Two magnets based-micromagnetic simulations were performed in order to analyze the magnetic field generated which is linked to the magnetic force. Our key results underline that the proposed hybrid coating does not affect the magnetic force of Nd-Fe-B magnets, moreover, preventing corrosion degradation in aggressive solution. Thus the limiting aspects avoiding the use of Nd-Fe-B magnets for orthodontic and prosthodontic applications can be overcome by using silane agents as surface coating.
Research on residual stress inside Fe-Mn-Si shape memory alloy coating by laser cladding processing
NASA Astrophysics Data System (ADS)
Ju, Heng; Lin, Cheng-xin; Zhang, Jia-qi; Liu, Zhi-jie
2016-09-01
The stainless Fe-Mn-Si shape memory alloy (SMA) coating was prepared on the surface of AISI 304 stainless steel. The principal residual stress measured by the mechanical hole-drilling method indicates that the Fe-Mn-Si SMA cladding specimen possesses a lower residual stress compared with the 304 stainless steel cladding specimen. The mean stress values of the former and the latter on 10-mm-thick substrate are 4.751 MPa and 7.399 MPa, respectively. What's more, their deformation values on 2-mm-thick substrate are about 0° and 15°, respectively. Meanwhile, the variation trend and the value of the residual stress simulated by the ANSYS finite element software consist with experimental results. The X-ray diffraction (XRD) pattern shows ɛ-martensite exists in Fe-Mn-Si SMA coating, which verifies the mechanism of low residual stress. That's the γ→ɛ martensite phase transformation, which relaxes the residual stress of the specimen and reduces its deformation in the laser cladding processing.
A finite element model of a six-year-old child for simulating pedestrian accidents.
Meng, Yunzhu; Pak, Wansoo; Guleyupoglu, Berkan; Koya, Bharath; Gayzik, F Scott; Untaroiu, Costin D
2017-01-01
Child pedestrian protection deserves more attention in vehicle safety design since they are the most vulnerable road users who face the highest mortality rate. Pediatric Finite Element (FE) models could be used to simulate and understand the pedestrian injury mechanisms during crashes in order to mitigate them. Thus, the objective of the study was to develop a computationally efficient (simplified) six-year-old (6YO-PS) pedestrian FE model and validate it based on the latest published pediatric data. The 6YO-PS FE model was developed by morphing the existing GHBMC adult pedestrian model. Retrospective scan data were used to locally adjust the geometry as needed for accuracy. Component test simulations focused only the lower extremities and pelvis, which are the first body regions impacted during pedestrian accidents. Three-point bending test simulations were performed on the femur and tibia with adult material properties and then updated using child material properties. Pelvis impact and knee bending tests were also simulated. Finally, a series of pediatric Car-to-Pedestrian Collision (CPC) were simulated with pre-impact velocities ranging from 20km/h up to 60km/h. The bone models assigned pediatric material properties showed lower stiffness and a good match in terms of fracture force to the test data (less than 6% error). The pelvis impact force predicted by the child model showed a similar trend with test data. The whole pedestrian model was stable during CPC simulations and predicted common pedestrian injuries. Overall, the 6YO-PS FE model developed in this study showed good biofidelity at component level (lower extremity and pelvis) and stability in CPC simulations. While more validations would improve it, the current model could be used to investigate the lower limb injury mechanisms and in the prediction of the impact parameters as specified in regulatory testing protocols. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Blomme, Katreine; Fowler, Sarah Jane; Bachaud, Pierre
2017-04-01
The Middle Triassic Latemar carbonate platform, northern Italy, has featured prominently in the longstanding debate regarding dolomite petrogenesis [1-4]. Recent studies agree that ferroan and non-ferroan dolomite replaced calcite in limestone during reactive fluid flow at <0.1 GPa and 40-80°C. Regional igneous activity drove heating that provided kinetically favorable conditions for the replacement reaction. However, the origin of the dolomitizing fluid is unclear. Seawater may have been an important component, but its Fe concentrations are insufficient to account for ferroan dolomite. New field, petrographic, XRD, and geochemical data document a spatial, temporal, and geochemical link between ferroan replacement dolomite and altered mafic igneous dikes that densely intrude the platform. A critical observation is that ferroan dolomite abundances increase towards the dikes. We hypothesize that seawater interacted with mafic minerals in the dikes, leading to Fe enrichment in the fluid that subsequently participated in dolomitization. This requires that dolomite formation was preceded by dike alteration reactions that liberated Fe and did not consume Mg. Another requirement is that ferroan and non-ferroan dolomite (instead of other Fe- and Mg-bearing minerals) formed during fluid circulation within limestone host rock. We present reactive transport numerical simulations (Coores-Arxim, [5]) that predict equilibrium mineral assemblages and the evolution of fluid dolomitizing potential from dike crystallization, through dike alteration by seawater, to replacement dolomitization in carbonate host rock. The simulations are constrained by observations. A major advantage of the simulations is that stable mineral assemblages are identified based on a forward modeling approach. In addition, the dominant igneous minerals (plagioclase, clinopyroxene olivine and their alteration products) are solid solutions. Most reactive transport simulations of carbonate petrogenesis do not share these benefits (e.g. [6]). Predicted alteration mineral assemblages are consistent with observations on dikes and with ferroan and non-ferroan dolomite genesis. The simulation results also show that fluid dolomitizing potential (Mg/Ca and Fe/Mg) increases during dissolution of igneous solid solution minerals. Enrichment in fluid Fe concentration is sufficient to stabilize ferroan replacement dolomite. Consistent with field observations, ferroan dolomite forms closest to dikes due to the abundance of Fe associated with the dikes. This leads to depletion of Fe in fluid flowing away from dikes and formation of non-ferroan replacement dolomite further afield. References S.K. Carmichael, J.M. Ferry, W.F. McDonough, Formation of replacement dolomite in the Latemar carbonate buildup, Dolomites, Northern Italy: Part 1. Field relations, mineralogy and geochemistry, Am. J. Sci. 308 (2008) 851-884. J.M. Ferry, B.H. Passey, C. Vasconcelos, J.M. Eiler, Formation of dolomite at 40 - 80 °C in the Latemar carbonate buildup, Dolomites, Italy, from clumped isotope thermometry, Geology. 39 (2011) 571-574. C. Jacquemyn, M. Huysmans, D. Hunt, G. Casini, R. Swennen, Multi-scale three-dimensional distribution of fracture- and igneous intrusion- controlled hydrothermal dolomite from digital outcrop model, Latemar platform, Dolomites, northern Italy, Am. Assoc. Pet. Geol. Bull. 99 (2015) 957-984. C. Jacquemyn, H. El Desouky, D. Hunt, G. Casini, R. Swennen, Dolomitization of the Latemar platform: Fluid flow and dolomite evolution, Mar. Pet. Geol. 55 (2014) 43-67. L. Trenty, A. Michel, E. Tillier, Y. Le Gallo, A Sequential Splitting Strategy for CO2 Storage Modelling, in: ECMOR X - 10th Eur. Conf. Math. Oil Recover., 2006. T. Gabellone, F. Whitaker, Secular variations in seawater chemistry controlling dolomitisation in shallow reflux systems: Insights from reactive transport modelling, Sedimentology. 63 (2016) 1233-1259.
NASA Astrophysics Data System (ADS)
Zhang, Yanqiu; Jiang, Shuyong; Hu, Li; Zhao, Yanan; Sun, Dong
2017-10-01
The behavior of primary static recrystallization (SRX) in a NiTiFe shape memory alloy (SMA) subjected to cold canning compression was investigated using the coupling crystal plasticity finite element method (CPFEM) with the cellular automaton (CA) method, where the distribution of the dislocation density and the deformed grain topology quantified by CPFEM were used as the input for the subsequent SRX simulation performed using the CA method. The simulation results were confirmed by the experimental ones in terms of microstructures, average grain size and recrystallization fraction, which indicates that the proposed coupling method is well able to describe the SRX behavior of the NiTiFe SMA. The results show that the dislocation density exhibits an inhomogeneous distribution in the deformed sample and the recrystallization nuclei mainly concentrate on zones where the dislocation density is relatively higher. An increase in the compressive deformation degree leads to an increase in nucleation rate and a decrease in grain boundary spaces in the compression direction, which reduces the growth spaces for the SRX nuclei and impedes their further growth. In addition, both the mechanisms of local grain refinement in the incomplete SRX and the influence of compressive deformation degree on the grain size of SRX were vividly illustrated by the corresponding physical models.
Origin of chemically distinct discs in the Auriga cosmological simulations
NASA Astrophysics Data System (ADS)
Grand, Robert J. J.; Bustamante, Sebastián; Gómez, Facundo A.; Kawata, Daisuke; Marinacci, Federico; Pakmor, Rüdiger; Rix, Hans-Walter; Simpson, Christine M.; Sparre, Martin; Springel, Volker
2018-03-01
The stellar disc of the Milky Way shows complex spatial and abundance structure that is central to understanding the key physical mechanisms responsible for shaping our Galaxy. In this study, we use six very high resolution cosmological zoom-in simulations of Milky Way-sized haloes to study the prevalence and formation of chemically distinct disc components. We find that our simulations develop a clearly bimodal distribution in the [α/Fe]-[Fe/H] plane. We find two main pathways to creating this dichotomy, which operate in different regions of the galaxies: (a) an early (z > 1) and intense high-[α/Fe] star formation phase in the inner region (R ≲ 5 kpc) induced by gas-rich mergers, followed by more quiescent low-[α/Fe] star formation; and (b) an early phase of high-[α/Fe] star formation in the outer disc followed by a shrinking of the gas disc owing to a temporarily lowered gas accretion rate, after which disc growth resumes. In process (b), a double-peaked star formation history around the time and radius of disc shrinking accentuates the dichotomy. If the early star formation phase is prolonged (rather than short and intense), chemical evolution proceeds as per process (a) in the inner region, but the dichotomy is less clear. In the outer region, the dichotomy is only evident if the first intense phase of star formation covers a large enough radial range before disc shrinking occurs; otherwise, the outer disc consists of only low-[α/Fe] sequence stars. We discuss the implication that both processes occurred in the Milky Way.
A downloadable meshed human canine tooth model with PDL and bone for finite element simulations.
Boryor, Andrew; Hohmann, Ansgar; Geiger, Martin; Wolfram, Uwe; Sander, Christian; Sander, Franz Günter
2009-09-01
The aim of this study is to relieve scientists from the complex and time-consuming task of model generation by providing a model of a canine tooth and its periradicular tissues for Finite Element Method (FEM) simulations. This was achieved with diverse commercial software, based on a micro-computed tomography of the specimen. The Finite Element (FE) Model consists of enamel, dentin, nerve (innervation), periodontal ligament (PDL), and the surrounding cortical bone with trabecular structure. The area and volume meshes are of a very high quality in order to represent the model in a detailed form. Material properties are to be set individually by every user. The tooth model is provided for Abaqus, Ansys, HyperMesh, Nastran and as STL files, in an ASCII format for free download. This can help reduce the cost and effort of generating a tooth model for some research institutions, and may encourage other research groups to provide their high quality models for other researchers. By providing FE models, research results, especially FEM simulations, could be easily verified by others.
Iron silicides at pressures of the Earth's inner core
NASA Astrophysics Data System (ADS)
Zhang, Feiwu; Oganov, Artem R.
2010-01-01
The Earth's core is expected to contain around 10 wt % light elements (S, Si, O, possibly C, H, etc.) alloyed with Fe and Ni. Very little is known about these alloys at pressures and temperatures of the core. Here, using the evolutionary crystal structure prediction methodology, we investigate Fe-Si compounds at pressures of up to 400 GPa, i.e. covering the pressure range of the Earth's core. Evolutionary simulations correctly find that at atmospheric pressure the known non-trivial structure with P213 symmetry is stable, while at pressures above 20 GPa the CsCl-type structure is stable. We show that among the possible Fe silicides (Fe3Si, Fe2Si, Fe5Si3, FeSi, FeSi2 and FeSi3) only FeSi with CsCl-type structure is thermodynamically stable at core pressures, while the other silicides are unstable to decomposition into Fe + FeSi or FeSi + Si. This is consistent with previous works and suggests that Si impurities contribute to stabilization of the body-centered cubic phase of Fe in the inner core.
Wang, Meifang; Deng, Kerong; Lü, Wei; Deng, Xiaoran; Li, Kai; Shi, Yanshu; Ding, Binbin; Cheng, Ziyong; Xing, Bengang; Han, Gang; Hou, Zhiyao; Lin, Jun
2018-03-01
Titanium dioxide (TiO 2 ) has been widely investigated and used in many areas due to its high refractive index and ultraviolet light absorption, but the lack of absorption in the visible-near infrared (Vis-NIR) region limits its application. Herein, multifunctional Fe@γ-Fe 2 O 3 @H-TiO 2 nanocomposites (NCs) with multilayer-structure are synthesized by one-step hydrogen reduction, which show remarkably improved magnetic and photoconversion effects as a promising generalists for photocatalysis, bioimaging, and photothermal therapy (PTT). Hydrogenation is used to turn white TiO 2 in to hydrogenated TiO 2 (H-TiO 2 ), thus improving the absorption in the Vis-NIR region. Based on the excellent solar-driven photocatalytic activities of the H-TiO 2 shell, the Fe@γ-Fe 2 O 3 magnetic core is introduced to make it convenient for separating and recovering the catalytic agents. More importantly, Fe@γ-Fe 2 O 3 @H-TiO 2 NCs show enhanced photothermal conversion efficiency due to more circuit loops for electron transitions between H-TiO 2 and γ-Fe 2 O 3 , and the electronic structures of Fe@γ-Fe 2 O 3 @H-TiO 2 NCs are calculated using the Vienna ab initio simulation package based on the density functional theory to account for the results. The reported core-shell NCs can serve as an NIR-responsive photothermal agent for magnetic-targeted photothermal therapy and as a multimodal imaging probe for cancer including infrared photothermal imaging, magnetic resonance imaging, and photoacoustic imaging. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tribological Properties of AlCrCuFeNi2 High-Entropy Alloy in Different Conditions
NASA Astrophysics Data System (ADS)
Liu, Yong; Ma, Shengguo; Gao, Michael C.; Zhang, Chuan; Zhang, Teng; Yang, Huijun; Wang, Zhihua; Qiao, Junwei
2016-07-01
In order to understand the environmental effect on the mechanical behavior of high-entropy alloys, the tribological properties of AlCrCuFeNi2 are studied systematically in dry, simulated rainwater, and deionized water conditions against the Si3N4 ceramic ball at a series of different normal loads. The present study shows that both the friction and wear rate in simulated rainwater are the lowest. The simulated rainwater plays a significant role in the tribological behavior with the effect of forming passive film, lubricating, cooling, cleaning, and corrosion. The wear mechanism in simulated rainwater is mainly adhesive wear accompanied by abrasive wear as well as corrosive wear. In contrast, those in dry condition and deionized water are abrasive wear, adhesive wear, and surface plastic deformation. Oxidation contributes to the wear behavior in dry condition but is prevented in liquid condition. In addition, the phase diagram of Al x CrCuFeNi2 is predicted using CALPHAD modeling, which is in good agreement with the literature report and the present study.
Ferric iron in sediments as a novel CO2 mineral trap: CO 2-SO2 reaction with hematite
Palandri, J.L.; Rosenbauer, R.J.; Kharaka, Y.K.
2005-01-01
Thermodynamic simulations of reactions among SO2-bearing CO 2-dominated gas, water and mineral phases predict that Fe III in sediments should be converted almost entirely to dissolved FeII and siderite (FeCO3), and that SO2 should simultaneously be oxidized to dissolved sulfate. The reactions are however, subject to kinetic constraints which may result in deviation from equilibrium and the precipitation of other metastable mineral phases. To test the prediction, a laboratory experiment was carried out in a well stirred hydrothermal reactor at 150??C and 300 bar with hematite, 1.0 m NaCl, 0.5 m NaOH, SO2 in quantity sufficient to reduce much of the iron, and excess CO2. The experiment produced stable siderite and metastable pyrite and elemental S. Changes in total dissolved Fe are consistent with nucleation of pyrite at ???17 h, and nucleation of siderite at ???600 h. Dissolution features present on elemental S at the conclusion of the experiment suggest nucleation early in the experiment. The experiment did not reach equilibrium after ???1400 h, as indicated by coexistence of hematite with metastable pyrite and elemental sulfur. However, the results confirm that FeIII can be used to trap CO2 in siderite if partly oxidized S, as SO2, is present to reduce the Fe with CO2 in the gas phase. ?? 2005 Elsevier Ltd. All rights reserved.
The ab initio simulation of the Earth's core.
Alfè, D; Gillan, M J; Vocadlo, L; Brodholt, J; Price, G D
2002-06-15
The Earth has a liquid outer and solid inner core. It is predominantly composed of Fe, alloyed with small amounts of light elements, such as S, O and Si. The detailed chemical and thermal structure of the core is poorly constrained, and it is difficult to perform experiments to establish the properties of core-forming phases at the pressures (ca. 300 GPa) and temperatures (ca. 5000-6000 K) to be found in the core. Here we present some major advances that have been made in using quantum mechanical methods to simulate the high-P/T properties of Fe alloys, which have been made possible by recent developments in high-performance computing. Specifically, we outline how we have calculated the Gibbs free energies of the crystalline and liquid forms of Fe alloys, and so conclude that the inner core of the Earth is composed of hexagonal close packed Fe containing ca. 8.5% S (or Si) and 0.2% O in equilibrium at 5600 K at the boundary between the inner and outer cores with a liquid Fe containing ca. 10% S (or Si) and 8% O.
Nikkhoo, Mohammad; Khalaf, Kinda; Kuo, Ya-Wen; Hsu, Yu-Chun; Haghpanahi, Mohammad; Parnianpour, Mohamad; Wang, Jaw-Lin
2015-01-01
The risk of low back pain resulted from cyclic loadings is greater than that resulted from prolonged static postures. Disk degeneration results in degradation of disk solid structures and decrease of water contents, which is caused by activation of matrix digestive enzymes. The mechanical responses resulted from internal solid-fluid interactions of degenerative disks to cyclic loadings are not well studied yet. The fluid-solid interactions in disks can be evaluated by mathematical models, especially the poroelastic finite element (FE) models. We developed a robust disk poroelastic FE model to analyze the effect of degeneration on solid-fluid interactions within disk subjected to cyclic loadings at different loading frequencies. A backward analysis combined with in vitro experiments was used to find the elastic modulus and hydraulic permeability of intact and enzyme-induced degenerated porcine disks. The results showed that the averaged peak-to-peak disk deformations during the in vitro cyclic tests were well fitted with limited FE simulations and a quadratic response surface regression for both disk groups. The results showed that higher loading frequency increased the intradiscal pressure, decreased the total fluid loss, and slightly increased the maximum axial stress within solid matrix. Enzyme-induced degeneration decreased the intradiscal pressure and total fluid loss, and barely changed the maximum axial stress within solid matrix. The increase of intradiscal pressure and total fluid loss with loading frequency was less sensitive after the frequency elevated to 0.1 Hz for the enzyme-induced degenerated disk. Based on this study, it is found that enzyme-induced degeneration decreases energy attenuation capability of disk, but less change the strength of disk.
Nikkhoo, Mohammad; Khalaf, Kinda; Kuo, Ya-Wen; Hsu, Yu-Chun; Haghpanahi, Mohammad; Parnianpour, Mohamad; Wang, Jaw-Lin
2015-01-01
The risk of low back pain resulted from cyclic loadings is greater than that resulted from prolonged static postures. Disk degeneration results in degradation of disk solid structures and decrease of water contents, which is caused by activation of matrix digestive enzymes. The mechanical responses resulted from internal solid–fluid interactions of degenerative disks to cyclic loadings are not well studied yet. The fluid–solid interactions in disks can be evaluated by mathematical models, especially the poroelastic finite element (FE) models. We developed a robust disk poroelastic FE model to analyze the effect of degeneration on solid–fluid interactions within disk subjected to cyclic loadings at different loading frequencies. A backward analysis combined with in vitro experiments was used to find the elastic modulus and hydraulic permeability of intact and enzyme-induced degenerated porcine disks. The results showed that the averaged peak-to-peak disk deformations during the in vitro cyclic tests were well fitted with limited FE simulations and a quadratic response surface regression for both disk groups. The results showed that higher loading frequency increased the intradiscal pressure, decreased the total fluid loss, and slightly increased the maximum axial stress within solid matrix. Enzyme-induced degeneration decreased the intradiscal pressure and total fluid loss, and barely changed the maximum axial stress within solid matrix. The increase of intradiscal pressure and total fluid loss with loading frequency was less sensitive after the frequency elevated to 0.1 Hz for the enzyme-induced degenerated disk. Based on this study, it is found that enzyme-induced degeneration decreases energy attenuation capability of disk, but less change the strength of disk. PMID:25674562
NASA Astrophysics Data System (ADS)
Viennet, Jean-Christophe; Bultel, Benjamin; Riu, Lucie; Werner, Stephanie C.
2017-11-01
Widespread occurrence of Fe,Mg-phyllosilicates has been observed on Noachian Martian terrains. Therefore, the study of Fe,Mg-phyllosilicate formation, in order to characterize early Martian environmental conditions, is of particular interest to the Martian community. Previous studies have shown that the investigation of Fe,Mg-smectite formation alone helps to describe early Mars environmental conditions, but there are still large uncertainties in terms of pH range, oxic/anoxic conditions, etc. Interestingly, carbonates and/or zeolites have also been observed on Noachian surfaces in association with the Fe,Mg-phyllosilicates. Consequently, the present study focuses on the dioctahedral/trioctahedral phyllosilicate/carbonate/zeolite formation as a function of various CO2 contents (100% N2, 10% CO2/90% N2, and 100% CO2), from a combined approach including closed system laboratory experiments for 3 weeks at 120°C and geochemical simulations. The experimental results show that as the CO2 content decreases, the amount of dioctahedral clay minerals decreases in favor of trioctahedral minerals. Carbonates and dioctahedral clay minerals are formed during the experiments with CO2. When Ca-zeolites are formed, no carbonates and dioctahedral minerals are observed. Geochemical simulation aided in establishing pH as a key parameter in determining mineral formation patterns. Indeed, under acidic conditions dioctahedral clay minerals and carbonate minerals are formed, while trioctahedral clay minerals are formed in basic conditions with a neutral pH value of 5.98 at 120°C. Zeolites are favored from pH ≳ 7.2. The results obtained shed new light on the importance of dioctahedral clay minerals versus zeolites and carbonates versus zeolites competitions to better define the aqueous alteration processes throughout early Mars history.
Analysis of collapse in flattening a micro-grooved heat pipe by lateral compression
NASA Astrophysics Data System (ADS)
Li, Yong; He, Ting; Zeng, Zhixin
2012-11-01
The collapse of thin-walled micro-grooved heat pipes is a common phenomenon in the tube flattening process, which seriously influences the heat transfer performance and appearance of heat pipe. At present, there is no other better method to solve this problem. A new method by heating the heat pipe is proposed to eliminate the collapse during the flattening process. The effectiveness of the proposed method is investigated through a theoretical model, a finite element(FE) analysis, and experimental method. Firstly, A theoretical model based on a deformation model of six plastic hinges and the Antoine equation of the working fluid is established to analyze the collapse of thin walls at different temperatures. Then, the FE simulation and experiments of flattening process at different temperatures are carried out and compared with theoretical model. Finally, the FE model is followed to study the loads of the plates at different temperatures and heights of flattened heat pipes. The results of the theoretical model conform to those of the FE simulation and experiments in the flattened zone. The collapse occurs at room temperature. As the temperature increases, the collapse decreases and finally disappears at approximately 130 °C for various heights of flattened heat pipes. The loads of the moving plate increase as the temperature increases. Thus, the reasonable temperature for eliminating the collapse and reducing the load is approximately 130 °C. The advantage of the proposed method is that the collapse is reduced or eliminated by means of the thermal deformation characteristic of heat pipe itself instead of by external support. As a result, the heat transfer efficiency of heat pipe is raised.
Roberts, Linda C; Hug, Stephan J; Ruettimann, Thomas; Billah, Morsaline; Khan, Abdul Wahab; Rahman, Mohammad Tariqur
2004-01-01
Arsenic removal by passive treatment, in which naturally present Fe(II) is oxidized by aeration and the forming iron(III) (hydr)oxides precipitate with adsorbed arsenic, is the simplest conceivable water treatment option. However, competing anions and low iron concentrations often require additional iron. Application of Fe(II) instead of the usually applied Fe(III) is shown to be advantageous, as oxidation of Fe(II) by dissolved oxygen causes partial oxidation of As(III) and iron(III) (hydr)oxides formed from Fe(II) have higher sorption capacities. In simulated groundwater (8.2 mM HCO3(-), 2.5 mM Ca2+, 1.6 mM Mg2+, 30 mg/L Si, 3 mg/L P, 500 ppb As(III), or As(V), pH 7.0 +/- 0.1), addition of Fe(II) clearly leads to better As removal than Fe(III). Multiple additions of Fe(II) further improved the removal of As(II). A competitive coprecipitation model that considers As(III) oxidation explains the observed results and allows the estimation of arsenic removal under different conditions. Lowering 500 microg/L As(III) to below 50 microg/L As(tot) in filtered water required > 80 mg/L Fe(III), 50-55 mg/L Fe(II) in one single addition, and 20-25 mg/L in multiple additions. With As(V), 10-12 mg/L Fe(II) and 15-18 mg/L Fe(III) was required. In the absence of Si and P, removal efficiencies for Fe(II) and Fe(III) were similar: 30-40 mg/L was required for As(II), and 2.0-2.5 mg/L was required for As(V). In a field study with 22 tubewells in Bangladesh, passive treatment efficiently removed phosphate, but iron contents were generally too low for efficient arsenic removal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farges, F.; Rossano, S.; Wilke, M.
A large number (67) of silicate glasses containing variable amounts of iron oxide were studied by high-resolution XANES spectroscopy at the Fe K-edge to determine an accurate method to derive redox information from pre-edge features. The glass compositions studied mimic geological magmas, ranging from basaltic to rhyolitic, dry and hydrous, with variable quench rates. The studied glasses also include more chemically simple calco-sodic silicate glass compositions. The Fe contents range from 30 wt.% to less than 2000 ppm. For most of the series of composition studied, the pre-edge information varies linearly with redox, even under high-resolution conditions. The average coordinationmore » of Fe(II) is often similar to its Fe(III) counterpart except in highly polymerized glasses because of the strong influence exerted by the tetrahedral framework on iron's sites. Natural volcanic glasses (from various volcanoes around the world) show similar variations. The average coordination of Fe(II) is often comprised between 4.5 and 5. Fe(III) shows larger variations in coordination (4 to 6, depending on composition). Bond valence models are proposed to predict the average coordination of Fe based on composition. Molecular dynamics simulations (Born-Mayer-Huggins) potentials were carried out on some compositions to estimate the magnitude of disorder effects (both static and thermal) in the XAFS analysis. XANES calculations based on the MD simulations and FEFF 8.2 show large variations in the local structures around Fe. Also, 5-coordinated Fe(III) is found to be an important moiety in ferrisilicate glasses. For Fe(II), discrepancies between glass and melt are larger and are related to its greater structural relaxation at T{sub g}. Also, a strong destructive interference between network formers and modifiers explain the relatively weak intensity of the next-nearest neighbors contributions in the experimental spectra.« less
Force Field Development and Molecular Dynamics of [NiFe] Hydrogenase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Dayle MA; Xiong, Yijia; Straatsma, TP
2012-05-09
Classical molecular force-field parameters describing the structure and motion of metal clusters in [NiFe] hydrogenase enzymes can be used to compare the dynamics and thermodynamics of [NiFe] under different oxidation, protonation, and ligation circumstances. Using density functional theory (DFT) calculations of small model clusters representative of the active site and the proximal, medial, and distal Fe/S metal centers and their attached protein side chains, we have calculated classical force-field parameters for [NiFe] in reduced and oxidized states, including internal coordinates, force constants, and atom-centered charges. Derived force constants revealed that cysteinate ligands bound to the metal ions are more flexiblemore » in the Ni-B active site, which has a bridging hydroxide ligand, than in the Ni-C active site, which has a bridging hydride. Ten nanosecond all-atom, explicit-solvent MD simulations of [NiFe] hydrogenase in oxidized and reduced catalytic states established the stability of the derived force-field parameters in terms of C{alpha} and metal cluster fluctuations. Average active site structures from the protein MD simulations are consistent with [NiFe] structures from the Protein Data Bank, suggesting that the derived force-field parameters are transferrable to other hydrogenases beyond the structure used for testing. A comparison of experimental H{sub 2}-production rates demonstrated a relationship between cysteinate side chain rotation and activity, justifying the use of a fully dynamic model of [NiFe] metal cluster motion.« less
Triggering of spin-flipping-modulated exchange bias in FeCo nanoparticles by electronic excitation
Sarker, Debalaya; Bhattacharya, Saswata; Srivastava, Pankaj; Ghosh, Santanu
2016-01-01
The exchange coupling between ferromagnetic (FM)-antiferromagnetic (AF) interfaces is a key element of modern spintronic devices. We here introduce a new way of triggering exchange bias (EB) in swift heavy ion (SHI) irradiated FeCo-SiO2 films, which is a manifestation of spin-flipping at high irradiation fluence. The elongation of FeCo nanoparticles (NPs) in SiO2 matrix gives rise to perpendicular magnetic anisotropy at intermediate fluence. However, a clear shift in hysteresis loop is evident at the highest fluence. This reveals the existence of an AF exchange pinning domain in the NPs, which is identified not to be oxide shell from XANES analysis. Thermal spike calculations along with first-principles based simulations under the framework of density functional theory (DFT) demonstrate that spin flipping of 3d valence electrons is responsible for formation of these AF domains inside the FM NPs. EXAFS experiments at Fe and Co K-edges further unravel that spin-flipping in highest fluence irradiated film results in reduced bond lengths. The results highlight the possibility of miniaturization of magnetic storage devices by using irradiated NPs instead of conventionally used FM-AF multilayers. PMID:27991552
Formation of Nanophase Iron in Lunar Soil Simulant for Use in ISRU Studies
NASA Technical Reports Server (NTRS)
Liu, Yang; Taylor, Lawrence A.; Hill, Eddy; Day, James D. M.
2005-01-01
For the prospective return of humans to the Moon and the extensive amount of premonitory studies necessary, large quantities of lunar soil simulants are required, for a myriad of purposes from construction/engineering purposes all the way to medical testing of its effects from ingestion by humans. And there is only a limited and precious quantity of lunar soil available on Earth (i.e., Apollo soils) - therefore, the immediate need for lunar soil simulants. Since the Apollo era, there have been several simulants; of these JSC-1 (Johnson Space Center) and MLS-1 (Minnesota Lunar Simulant) have been the most widely used. JSC-1 was produced from glassy volcanic tuff in order to approximate lunar soil geotechnical properties; whereas, MLS-1 approximates the chemistry of Apollo 11 high-Ti soil, 10084. Stocks of both simulants are depleted, but JSC-1 has recently gone back into production. The lunar soil simulant workshop, held at Marshall Space Flight Center in January 2005, identified the need to make new simulants for the special properties of lunar soil, such as nanophase iron (np-Fe(sup 0). Hill et al. (2005, this volume) showed the important role of microscale Fe(sup 0) in microwave processing of the lunar soil simulants JSC-1 and MLS-1. Lunar soil is formed by space weathering of lunar rocks (e.g., micrometeorite impact, cosmic particle bombardment). Glass generated during micrometeorite impact cements rock and mineral fragments together to form aggregates called agglutinates, and also produces vapor that is deposited and coats soil grains. Taylor et al. (2001) showed that the relative amount of impact glass in lunar soil increases with decreasing grain size and is the most abundant component in lunar dust (less than 20 micrometer fraction). Notably, the magnetic susceptibility of lunar soil also increases with the decreasing grain size, as a function of the amount of nanophase-sized Fe(sup 0) in impact-melt generated glass. Keller et al. (1997, 1999) also discovered the presence of abundant np-Fe(sup 0) particles in the glass patinas coating most soil particles. Therefore, the correlation of glass content and magnetic susceptibility can be explained by the presence of the np-Feo particles in glass: small particles contain relatively more np-Fe(sup 0) as glass coatings because the surface area versus mass ratio of the grain size is so increased. The magnetic properties of lunar soil are important in dust mitigation on the Moon (Taylor et al. 2005). Thus material simulating this property is important for testing mitigation methods using electromagnetic field. This np- Fe(sup 0) also produces a unique energy coupling to normal microwaves, such as present in kitchen microwave ovens. Effectively, a portion of lunar soil placed in a normal 2.45 GHz oven will melt at greater than 1200 C before your tea will boil at 100 C, a startling and new discovery reported by Taylor and Meek (2004, 2005). Several methods have been investigated in attempts to make nanophase-sized Feo dispersed within silicate glass; like in the lunar glass. We have been successful in synthesizing such a product and continue to improve on our recipe. We have performed extensive experimentation on this subject to date. Ultimately it will probably be necessary to add this np-Fe(sup 0) bearing silicate glass to lunar soil stimulant, like JSC-1, to actually produce the desired magnetic and microwave coupling properties for use in appropriate ISRU experimentation.
Precipitation Modeling in Nitriding in Fe-M Binary System
NASA Astrophysics Data System (ADS)
Tomio, Yusaku; Miyamoto, Goro; Furuhara, Tadashi
2016-10-01
Precipitation of fine alloy nitrides near the specimen surface results in significant surface hardening in nitriding of alloyed steels. In this study, a simulation model of alloy nitride precipitation during nitriding is developed for Fe-M binary system based upon the Kampmann-Wagner numerical model in order to predict variations in the distribution of precipitates with depth. The model can predict the number density, average radius, and volume fraction of alloy nitrides as a function of depth from the surface and nitriding time. By a comparison with the experimental observation in a nitrided Fe-Cr alloy, it was found that the model can predict successfully the observed particle distribution from the surface into depth when appropriate solubility of CrN, interfacial energy between CrN and α, and nitrogen flux at the surface are selected.
Simulating Bioremediation of Chloroethenes in a Fractured Rock Aquifer.
NASA Astrophysics Data System (ADS)
Curtis, G. P.
2016-12-01
Reactive transport simulations are being conducted to synthesize the results of a field experiment on the enhanced bioremediation of chloroethenes in a heterogeneous fractured-rock aquifer near West Trenton, NJ. The aquifer consists of a sequence of dipping mudstone beds, with water-conducting bedding-plane fractures separated by low-permeability rock where transport is diffusion-limited. The enhanced bioremediation experiment was conducted by injecting emulsified vegetable oil as an electron donor (EOS™) and a microbial consortium (KB1™) that contained dehalococcoides ethenogenes into a fracture zone that had maximum trichloroethene (TCE) concentrations of 84µM. TCE was significantly biodegraded to dichloroethene, chloroethene and ethene or CO2 at the injection well and at a downgradient well. The results also show the concomitant reduction of Fe(III) and S(6) and the production of methane . The results were used to calibrate transport models for quantifying the dominant mass-removal mechanisms. A nonreactive transport model was developed to simulate advection, dispersion and matrix diffusion of bromide and deuterium tracers present in the injection solution. This calibrated model matched tracer concentrations at the injection well and a downgradient observation well and demonstrated that matrix diffusion was a dominant control on tracer transport. A reactive transport model was developed to extend the nonreactive transport model to simulate the microbially mediated sequential dechlorination reactions, reduction of Fe(III) and S(6), and methanogenesis. The reactive transport model was calibrated to concentrations of chloride, chloroethenes, pH, alkalinity, redox-sensitive species and major ions, to estimate key biogeochemical kinetic parameters. The simulation results generally match the diverse set of observations at the injection and observation wells throughout the three year experiment. In addition, the observations and model simulations indicate that a significant pool of TCE that was initially sorbed to either the fracture surfaces or in the matrix was degraded during the field experiment. The calibrated reactive transport model will be used to quantify the extent of chloroethene mass removal from a range of hypothetical aquifers.
NASA Technical Reports Server (NTRS)
Putnam, Jacob P.; Untaroiu, Costin; Somers. Jeffrey
2014-01-01
In an effort to develop occupant protection standards for future multipurpose crew vehicles, the National Aeronautics and Space Administration (NASA) has looked to evaluate the test device for human occupant restraint with the modification kit (THOR-K) anthropomorphic test device (ATD) in relevant impact test scenarios. With the allowance and support of the National Highway Traffic Safety Administration, NASA has performed a series of sled impact tests on the latest developed THOR-K ATD. These tests were performed to match test conditions from human volunteer data previously collected by the U.S. Air Force. The objective of this study was to evaluate the THOR-K finite element (FE) model and the Total HUman Model for Safety (THUMS) FE model with respect to the tests performed. These models were evaluated in spinal and frontal impacts against kinematic and kinetic data recorded in ATD and human testing. Methods: The FE simulations were developed based on recorded pretest ATD/human position and sled acceleration pulses measured during testing. Predicted responses by both human and ATD models were compared to test data recorded under the same impact conditions. The kinematic responses of the models were quantitatively evaluated using the ISO-metric curve rating system. In addition, ATD injury criteria and human stress/strain data were calculated to evaluate the risk of injury predicted by the ATD and human model, respectively. Results: Preliminary results show well-correlated response between both FE models and their physical counterparts. In addition, predicted ATD injury criteria and human model stress/strain values are shown to positively relate. Kinematic comparison between human and ATD models indicates promising biofidelic response, although a slightly stiffer response is observed within the ATD. Conclusion: As a compliment to ATD testing, numerical simulation provides efficient means to assess vehicle safety throughout the design process and further improve the design of physical ATDs. The assessment of the THOR-K and THUMS FE models in a spaceflight testing condition is an essential first step to implementing these models in the computational evaluation of spacecraft occupant safety. Promising results suggest future use of these models in the aerospace field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matyas, Josef; Amonette, James E.; Kukkadapu, Ravi K.
2014-10-31
Precipitation of large crystals/agglomerates of spinel and their accumulation in the pour spout riser of a Joule-heated ceramic melter during idling can plug the melter and prevent pouring of molten glass into canisters. Thus, there is a need to understand the effects of spinel-forming components, temperature, and time on the growth of crystals in connection with an accumulation rate. In our study, crystals of spinel [Fe, Ni, Mn, Zn, Sn][Fe, Cr]₂O₄ were precipitated from simulated high-level waste borosilicate glasses containing different concentrations of Ni, Fe, and Cr by heat treating at 850 and 900°C for different times. These crystals weremore » extracted from the glasses and analyzed with scanning electron microscopy and image analysis for size and shape, with inductively coupled plasma-atomic emission spectroscopy and atom probe tomography for concentration of spinel-forming components, and with wet colorimetry and Mössbauer spectroscopy for Fe²⁺/Fe total ratio. High concentrations of Ni, Fe, and Cr in glasses resulted in the precipitation of crystals larger than 100 µm in just two days. Crystals were a solid solution of NiFe₂O₄, NiCr₂O₄, and -Fe₂O₃ (identified only in the high-Ni-Fe glass) and also contained small concentrations of less than 1 at% of Li, Mg, Mn, and Al.« less
Creep Behavior of ABS Polymer in Temperature-Humidity Conditions
NASA Astrophysics Data System (ADS)
An, Teagen; Selvaraj, Ramya; Hong, Seokmoo; Kim, Naksoo
2017-04-01
Acrylonitrile-Butadiene-Styrene (ABS), also known as a thermoplastic polymer, is extensively utilized for manufacturing home appliances products as it possess impressive mechanical properties, such as, resistance and toughness. However, the aforementioned properties are affected by operating temperature and atmosphere humidity due to the viscoelasticity property of an ABS polymer material. Moreover, the prediction of optimum working conditions are the little challenging task as it influences the final properties of product. This present study aims to develop the finite element (FE) models for predicting the creep behavior of an ABS polymeric material. In addition, the material constants, which represent the creep properties of an ABS polymer material, were predicted with the help of an interpolation function. Furthermore, a comparative study has been made with experiment and simulation results to verify the accuracy of developed FE model. The results showed that the predicted value from FE model could agree well with experimental data as well it can replicate the actual creep behavior flawlessly.
Corrosion behavior of low alloy steels in a wet-dry acid humid environment
NASA Astrophysics Data System (ADS)
Zhao, Qing-he; Liu, Wei; Yang, Jian-wei; Zhu, Yi-chun; Zhang, Bin-li; Lu, Min-xu
2016-09-01
The corrosion behavior of corrosion resistant steel (CRS) in a simulated wet-dry acid humid environment was investigated and compared with carbon steel (CS) using corrosion loss, polarization curves, X-ray diffraction (XRD), scanning electron microscopy (SEM), electron probe micro-analysis (EPMA), N2 adsorption, and X-ray photoelectron spectroscopy (XPS). The results show that the corrosion kinetics of both steels were closely related to the composition and compactness of the rust, and the electrochemical properties of rusted steel. Small amounts of Cu, Cr, and Ni in CRS increased the amount of amorphous phases and decreased the content of γ-FeOOH in the rust, resulting in higher compactness and electrochemical stability of the CRS rust. The elements Cu, Cr, and Ni were uniformly distributed in the CRS rust and formed CuFeO2, Cu2O, CrOOH, NiFe2O4, and Ni2O3, which enhanced the corrosion resistance of CRS in the wet-dry acid humid environment.
The Use of Finite Element Analysis to Enhance Research and Clinical Practice in Orthopedics.
Pfeiffer, Ferris M
2016-02-01
Finite element analysis (FEA) is a very powerful tool for the evaluation of biomechanics in orthopedics. Finite element (FE) simulations can effectively and efficiently evaluate thousands of variables (such as implant variation, surgical techniques, and various pathologies) to optimize design, screening, prediction, and treatment in orthopedics. Additionally, FEA can be used to retrospectively evaluate and troubleshoot complications or failures to prevent similar future occurrences. Finally, FE simulations are used to evaluate implants, procedures, and techniques in a time- and cost-effective manner. In this work, an overview of the development of FE models is provided and an example application is presented to simulate knee biomechanics for a specimen with medial meniscus insufficiency. FE models require the development of the geometry of interest, determination of the material properties of the tissues simulated, and an accurate application of a numerical solver to produce an accurate solution and representation of the field variables. The objectives of this work are to introduce the reader to the application of FEA in orthopedic analysis of the knee joint. A brief description of the model development process as well as a specific application to the investigation of knee joint stability in geometries with normal or compromised medial meniscal attachment is included. Significant increases in stretch of the anterior cruciate ligament were predicted in specimens with medial meniscus insufficiency (such behavior was confirmed in corresponding biomechanical testing). It can be concluded from this work that FE analysis of the knee can provide significant new information with which more effective clinical decisions can be made. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Biorelevant media resistant co-culture model mimicking permeability of human intestine.
Antoine, Delphine; Pellequer, Yann; Tempesta, Camille; Lorscheidt, Stefan; Kettel, Bernadette; Tamaddon, Lana; Jannin, Vincent; Demarne, Frédéric; Lamprecht, Alf; Béduneau, Arnaud
2015-03-15
Cell culture models are currently used to predict absorption pattern of new compounds and formulations in the human gastro-intestinal tract (GIT). One major drawback is the lack of relevant apical incubation fluids allowing mimicking luminal conditions in the GIT. Here, we suggest a culture model compatible with biorelevant media, namely Fasted State Simulated Intestinal Fluid (FaSSIF) and Fed State Simulated Intestinal Fluid (FeSSIF). Co-culture was set up from Caco-2 and mucus-secreting HT29-MTX cells using an original seeding procedure. Viability and cytotoxicity assays were performed following incubation of FeSSIF and FaSSIF with co-culture. Influence of biorelevant fluids on paracellular permeability or transporter proteins were also evaluated. Results were compared with Caco-2 and HT29-MTX monocultures. While Caco-2 viability was strongly affected with FeSSIF, no toxic effect was detected for the co-cultures in terms of viability and lactate dehydrogenase release. The addition of FeSSIF to the basolateral compartment of the co-culture induced cytotoxic effects which suggested the apical mucus barrier being cell protective. In contrast to FeSSIF, FaSSIF induced a slight increase of the paracellular transport and both tested media inhibited partially the P-gp-mediated efflux in the co-culture. Additionally, the absorptive transport of propranolol hydrochloride, a lipophilic β-blocker, was strongly affected by biorelevant fluids. This study demonstrated the compatibility of the Caco-2/HT29-MTX model with some of the current biorelevant media. Combining biorelevant intestinal fluids with features such as mucus secretion, adjustable paracellular and P-gp mediated transports, is a step forward to more realistic in-vitro models of the human intestine. Copyright © 2015. Published by Elsevier B.V.
Ng, Gene-Hua Crystal.; Bekins, Barbara A.; Cozzarelli, Isabelle M.; Baedecker, Mary Jo; Bennett, Philip C.; Amos, Richard T.; Herkelrath, William N.
2015-01-01
Anaerobic biodegradation of organic amendments and contaminants in aquifers can trigger secondary water quality impacts that impair groundwater resources. Reactive transport models help elucidate how diverse geochemical reactions control the spatiotemporal evolution of these impacts. Using extensive monitoring data from a crude oil spill site near Bemidji, Minnesota (USA), we implemented a comprehensive model that simulates secondary plumes of depleted dissolved O2 and elevated concentrations of Mn2+, Fe2+, CH4, and Ca2+ over a two-dimensional cross section for 30 years following the spill. The model produces observed changes by representing multiple oil constituents and coupled carbonate and hydroxide chemistry. The model includes reactions with carbonates and Fe and Mn mineral phases, outgassing of CH4 and CO2 gas phases, and sorption of Fe, Mn, and H+. Model results demonstrate that most of the carbon loss from the oil (70%) occurs through direct outgassing from the oil source zone, greatly limiting the amount of CH4 cycled down-gradient. The vast majority of reduced Fe is strongly attenuated on sediments, with most (91%) in the sorbed form in the model. Ferrous carbonates constitute a small fraction of the reduced Fe in simulations, but may be important for furthering the reduction of ferric oxides. The combined effect of concomitant redox reactions, sorption, and dissolved CO2 inputs from source-zone degradation successfully reproduced observed pH. The model demonstrates that secondary water quality impacts may depend strongly on organic carbon properties, and impacts may decrease due to sorption and direct outgassing from the source zone.
NASA Astrophysics Data System (ADS)
Indahlastari, Aprinda; Chauhan, Munish; Schwartz, Benjamin; Sadleir, Rosalind J.
2016-12-01
Objective. In this study, we determined efficient head model sizes relative to predicted current densities in transcranial direct current stimulation (tDCS). Approach. Efficiency measures were defined based on a finite element (FE) simulations performed using nine human head models derived from a single MRI data set, having extents varying from 60%-100% of the original axial range. Eleven tissue types, including anisotropic white matter, and three electrode montages (T7-T8, F3-right supraorbital, Cz-Oz) were used in the models. Main results. Reducing head volume extent from 100% to 60%, that is, varying the model’s axial range from between the apex and C3 vertebra to one encompassing only apex to the superior cerebellum, was found to decrease the total modeling time by up to half. Differences between current density predictions in each model were quantified by using a relative difference measure (RDM). Our simulation results showed that {RDM} was the least affected (a maximum of 10% error) for head volumes modeled from the apex to the base of the skull (60%-75% volume). Significance. This finding suggested that the bone could act as a bioelectricity boundary and thus performing FE simulations of tDCS on the human head with models extending beyond the inferior skull may not be necessary in most cases to obtain reasonable precision in current density results.
NASA Astrophysics Data System (ADS)
Pishtshev, A.; Rubin, P.
2018-04-01
By means of periodic density functional theory (DFT) electronic structure calculations, we investigate iron-site doping effects in a structural model of bulk FeAs2. Simulations performed within the projector augmented-wave method-Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA) functional scheme reveal that the impacts of the two stoichiometric substitutions Fe → Mg and Fe → Ni are radically different with respect to the structural and electronic behavior of the dopants. In particular, unlike the Ni dopant, the Mg dopant incorporated in FeAs2 occupies a noncentral equilibrium position characterized by an off-center displacement from the reference higher-symmetry position. Analysis of the respective electron and vibrational factors allows us to explain this result in terms of the local pseudo Jahn-Teller effect (pJTE). On the basis of DFT calculations, we deduce which electron orbitals and lattice vibrational modes are appropriate for promoting the local instability at the origin of the pJTE. Quantitative evaluations of the pJTE parameters performed within the polyatomic formalism of an effective tight-binding model show that it is just the enhanced vibronic interaction in the Mg-[FeAs6] cluster that is responsible for the local lattice symmetry breaking.
Immobilization of 99-Technetium (VII) by Fe(II)-Goethite and Limited Reoxidation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Um, Wooyong; Chang, Hyun-Shik; Icenhower, Jonathan P.
2011-05-04
Synthesized goethite was successfully used with addition of Fe(II) to sequester Tc present in both deionized water and simulated off-gas scrubber waste solutions. Pertechnetate concentration in solution decreased immediately when the pH was raised above 7 by addition of sodium hydroxide. Removal of Tc(VII) from solution occurred most likely as a result of heterogeneous surface-catalyzed reduction to Tc(IV) and subsequent co-precipitation onto the goethite. The final Tc-bearing solid was identified as goethite-dominated Fe(III)-(oxy)hydroxide based on XRD analysis, confirming the widespread observation of its characteristic acicular habit by TEM/SEM images. Analysis of the solid precipitate by XAFS showed that the dominantmore » oxidation state of Tc was Tc(IV) and was in octahedral coordination with Tc-O, Fe-O, and Tc-Fe bond distances that are consistent with direct substitution of Tc for Fe in the goethite structure. In some experiments the final Tc-goethite product was subsequently armored with additional layers of freshly precipitated goethite. Successful incorporation of Tc(IV) within the goethite mineral lattice and subsequent goethite armoring can limit re-oxidation of Tc(IV) and its subsequent release from Tc-goethite waste forms, even when the final product is placed in oxidizing environments that typify shallow waste burial facilities.« less
Rodriguez, Alvaro A.; Tylczak, Joseph H.; Gao, Michael C.; ...
2018-01-01
The corrosion behavior of high-entropy alloys (HEAs) CoCrFeNi 2 and CoCrFeNi 2 Mo 0.25 was investigated in 3.5 wt. percent sodium chloride (NaCl) at 25°C by electrochemical methods. Their corrosion parameters were compared to those of HASTELLOY® C-276 (UNS N10276) and stainless steel 316L (UNS 31600) to assess the suitability of HEAs for potential industrial applications in NaCl simulating seawater type environments. The corrosion rates were calculated using corrosion current determined from electrochemical experiments for each of the alloys. In addition, potentiodynamic polarization measurements can indicate active, passive, and transpassive behavior of the metal as well as potential susceptibility to pittingmore » corrosion. Cyclic voltammetry (CV) can confirm the alloy susceptibility to pitting corrosion. Electrochemical impedance spectroscopy (EIS) elucidates the corrosion mechanism under studied conditions. The results of the electrochemical experiments and scanning electron microscopy (SEM) analyses of the corroded surfaces revealed general corrosion on alloy CoCrFeNi 2 Mo 0.25 and HASTELLOY C-276 and pitting corrosion on alloy CoCrFeNi 2 and stainless steel 316L.« less
Rapid and efficient uranium(VI) capture by phytic acid/polyaniline/FeOOH composites.
Wei, Xintao; Liu, Qi; Zhang, Hongsen; Liu, Jingyuan; Chen, Rongrong; Li, Rumin; Li, Zhangshuang; Liu, Peili; Wang, Jun
2018-02-01
Uranium plays an indispensable role in nuclear energy, but there are limited land resources to meet the ever growing demand; therefore, a need exists to develop efficient materials for capturing uranium from water. Herein, we synthesize a promising adsorbent of phytic acid/polyaniline/FeOOH composites (PA/PANI/FeOOH) by oxidative polymerization. Phytic acid, acting asa gelator and dopant, plays an important role in the formation of polyaniline (PANI). The PA/PANI/FeOOH exhibites high adsorption capacity (q m =555.8mgg -1 , T=298K), rapid adsorption rate (within 5min), excellent selectivity and cyclic stability. In addition, the results show that the adsorption isotherm is well fitted to the Langmuir isotherm model, and the adsorption kinetics agree with a pseudo-second order model. XPS analysis indicates that the removal of uranium is mainly attributed to abundant amine and imine groups on the surface of PA/PANI/FeOOH. Importantly, the removal of uranium from low concentrations of simulated seawater is highly efficient with a removal rate exceeding 92%. From our study, superior adsorption capacities, along with a low-cost, environmentally friendly and facile synthesis, reveal PA/PANI/FeOOH asa promising material for uranium capture. Copyright © 2017. Published by Elsevier Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez, Alvaro A.; Tylczak, Joseph H.; Gao, Michael C.
The corrosion behavior of high-entropy alloys (HEAs) CoCrFeNi 2 and CoCrFeNi 2 Mo 0.25 was investigated in 3.5 wt. percent sodium chloride (NaCl) at 25°C by electrochemical methods. Their corrosion parameters were compared to those of HASTELLOY® C-276 (UNS N10276) and stainless steel 316L (UNS 31600) to assess the suitability of HEAs for potential industrial applications in NaCl simulating seawater type environments. The corrosion rates were calculated using corrosion current determined from electrochemical experiments for each of the alloys. In addition, potentiodynamic polarization measurements can indicate active, passive, and transpassive behavior of the metal as well as potential susceptibility to pittingmore » corrosion. Cyclic voltammetry (CV) can confirm the alloy susceptibility to pitting corrosion. Electrochemical impedance spectroscopy (EIS) elucidates the corrosion mechanism under studied conditions. The results of the electrochemical experiments and scanning electron microscopy (SEM) analyses of the corroded surfaces revealed general corrosion on alloy CoCrFeNi 2 Mo 0.25 and HASTELLOY C-276 and pitting corrosion on alloy CoCrFeNi 2 and stainless steel 316L.« less
Signatures of quiet Sun reconnection events in Ca II, Hα and Fe I
NASA Astrophysics Data System (ADS)
Shetye, J.; Shelyag, S.; Reid, A. L.; Scullion, E.; Doyle, J. G.; Arber, T. D.
2018-06-01
We use observations of quiet Sun (QS) regions in the Hα 6563 Å, Ca II 8542 Å and Fe I 6302 Å lines. We observe brightenings in the wings of the Hα and Ca II combined with observations of the interacting magnetic concentrations observed in the Stokes signals of Fe I. These brightenings are similar to Ellerman bombs (EBs), i.e. impulsive bursts in the wings of the Balmer lines which leave the line cores unaffected. Such enhancements suggest that these events have similar formation mechanisms to the classical EBs found in active regions, with the reduced intensity enhancements found in the QS regions due to a weaker feeding magnetic flux. The observations also show that the quiet Sun Ellerman bombs (QSEBs) are formed at a higher height in the upper photosphere than the photospheric continuum level. Using simulations, we investigate the formation mechanism associated with the events and suggest that these events are driven by the interaction of magnetic field-lines in the upper photospheric regions. The results of the simulation are in agreement with observations when comparing the light-curves, and in most cases we found that the peak in the Ca II 8542 Å wing occurred before the peak in Hα wing. Moreover, in some cases, the line profiles observed in Ca II are asymmetrical with a raised core profile. The source of heating in these events is shown by the MURaM simulations and is suggested to occur 430 km above the photosphere.
NASA Astrophysics Data System (ADS)
Yang, Yi; Ng, Ching-Tai; Kotousov, Andrei; Sohn, Hoon; Lim, Hyung Jin
2018-01-01
This paper presents experimental and theoretical analyses of the second harmonic generation due to non-linear interaction of Lamb waves with a fatigue crack. Three-dimensional (3D) finite element (FE) simulations and experimental studies are carried out to provide physical insight into the mechanism of second harmonic generation. The results demonstrate that the 3D FE simulations can provide a reasonable prediction on the second harmonic generated due to the contact nonlinearity at the fatigue crack. The effect of the wave modes on the second harmonic generation is also investigated in detail. It is found that the magnitude of the second harmonic induced by the interaction of the fundamental symmetric mode (S0) of Lamb wave with the fatigue crack is much higher than that by the fundamental anti-symmetric mode (A0) of Lamb wave. In addition, a series of parametric studies using 3D FE simulations are conducted to investigate the effect of the fatigue crack length to incident wave wavelength ratio, and the influence of the excitation frequency on the second harmonic generation. The outcomes show that the magnitude and directivity pattern of the generated second harmonic depend on the fatigue crack length to incident wave wavelength ratio as well as the ratio of S0 to A0 incident Lamb wave amplitude. In summary, the findings of this study can further advance the use of second harmonic generation in damage detection.
Survival of microorganisms in smectite clays: Implications for Martian exobiology
NASA Astrophysics Data System (ADS)
Moll, Deborah M.; Vestal, J. Robie
1992-08-01
Manned exploration of Mars may result in the contamination of that planet with terrestrial microbes, a situation requiring assessment of the survival potential of possible contaminating organisms. In this study, the survival of Bacillus subtilis, Azotobacter chroococcum, and the enteric bacteriophage MS2 was examined in clays representing terrestrial (Wyoming type montmorillonite) or Martian (Fe 3+-montmorillonite) soils exposed to terrestrial and Martian environmental conditions of temperature and atmospheric pressure and composition, but not to UV flux or oxidizing conditions. Survival of bacteria was determined by standard plate counts and biochemical and physiological measurements over 112 days. Extractable lipid phosphate was used to measure microbial biomass, and the rate of 14C-acetate incorporation into microbial lipids was used to determine physiological activity. MS2 survival was assayed by plaque counts. Both bacterial types survived terrestrial or Martian conditions in Wyoming montmorillonite better than Martian conditions in Fe 3+-montmorillonite. Decreased survival may have been caused by the lower pH of the Fe 3+-montmorillonite compared to Wyoming montmorillonite. MS2 survived simulated Mars conditions better than the terrestrial environment, likely due to stabilization of the virus caused by the cold and dry conditions of the simulated Martian environment. The survival of MS2 in the simulated Martian environment is the first published indication that viruses may be able to survive in Martian type soils. This work may have implications for planetary protection for future Mars missions.
NASA Astrophysics Data System (ADS)
Lee, Jae-Hyeok; Choe, Jinhyeok; Hwang, Shinwon; Kim, Sang-Koog
2017-08-01
We studied the mechanism of magnetization reversals and coercivity enhancements in three-dimensional (3D) granular Nd-Fe-B permanent magnets using finite-element micromagnetic simulations. The magnetization reversals in the hard magnets consisting of hard-phase grains separated by relatively soft-phase grain boundaries were analyzed with reference to the simulation results for the magnetic field-dependent distributions of the local magnetizations. The saturation magnetization of the grain-boundary phase plays a crucial role in the transition between nucleation- and domain-wall-propagation-controlled reversal processes. The smaller the saturation magnetization of the grain-boundary phase is, the more preferable is the nucleation-controlled process, which results in a larger coercivity. The exchange stiffness of the grain-boundary phase determines the preferred paths of domain-wall propagations, whether inward into grains or along the grain boundaries for relatively small and large exchange stiffness, respectively. However, the exchange stiffness of the grain-boundary phase alone does not significantly contribute to coercivity enhancement in cases where the size of hard-phase grains is much greater than the exchange length. This work paves the way for the design of high-performance hard magnets of large coercivity and maximum-energy-product values.
Simulation of a long-term aquifer test conducted near the Rio Grande, Albuquerque, New Mexico
McAda, Douglas P.
2001-01-01
A long-term aquifer test was conducted near the Rio Grande in Albuquerque during January and February 1995 using 22 wells and piezometers at nine sites, with the City of Albuquerque Griegos 1 production well as the pumped well. Griegos 1 discharge averaged about 2,330 gallons per minute for 54.4 days. A three-dimensional finite-difference ground-water-flow model was used to estimate aquifer properties in the vicinity of the Griegos well field and the amount of infiltration induced into the aquifer system from the Rio Grande and riverside drains as a result of pumping during the test. The model was initially calibrated by trial-and-error adjustments of the aquifer properties. The model was recalibrated using a nonlinear least-squares regression technique. The aquifer system in the area includes the middle Tertiary to Quaternary Santa Fe Group and post-Santa Fe Group valley- and basin-fill deposits of the Albuquerque Basin. The Rio Grande and adjacent riverside drains are in hydraulic connection with the aquifer system. The hydraulic-conductivity values of the upper part of the Santa Fe Group resulting from the model calibrated by trial and error varied by zone in the model and ranged from 12 to 33 feet per day. The hydraulic conductivity of the inner-valley alluvium was 45 feet per day. The vertical to horizontal anisotropy ratio was 1:140. Specific storage was 4 x 10-6 per foot of aquifer thickness, and specific yield was 0.15 (dimensionless). The sum of squared errors between the observed and simulated drawdowns was 130 feet squared. Not all aquifer properties could be estimated using nonlinear regression because of model insensitivity to some aquifer properties at observation locations. Hydraulic conductivity of the inner-valley alluvium, middle part of the Santa Fe Group, and riverbed and riverside-drain bed and specific yield had low sensitivity values and therefore could not be estimated. Of the properties estimated, hydraulic conductivity of the upper part of the Santa Fe Group was estimated to be 12 feet per day, the vertical to horizontal anisotropy ratio was estimated to be 1:82, and specific storage was estimated to be 1.2 x 10-6 per foot of aquifer thickness. The overall sum of squared errors between the observed and simulated drawdowns was 87 feet squared, a significant improvement over the model calibrated by trial and error. At the end of aquifer-test pumping, induced infiltration from the Rio Grande and riverside drains was simulated to be 13 percent of the total amount of water pumped. The remainder was water removed from aquifer storage. After pumping stopped, induced infiltration continued to replenish aquifer storage. Simulations estimated that 5 years after pumping began (about 4.85 years after pumping stopped), 58 to 72 percent of the total amount of water pumped was replenished by induced infiltration from the Rio Grande surface-water system.
Excess oxygen limited diffusion and precipitation of iron in amorphous silicon dioxide
NASA Astrophysics Data System (ADS)
Leveneur, J.; Langlois, M.; Kennedy, J.; Metson, James B.
2017-10-01
In micro- and nano- electronic device fabrication, and particularly 3D designs, the diffusion of a metal into sublayers during annealing needs to be minimized as it is usually detrimental to device performance. Diffusion also causes the formation and growth of nanoprecipitates in solid matrices. In this paper, the diffusion behavior of low energy, low fluence, ion implanted iron into a thermally grown silicon oxide layer on silicon is investigated. Different ion beam analysis and imaging techniques were used. Magnetization measurements were also undertaken to provide evidence of nanocrystalline ordering. While standard vacuum furnace annealing and electron beam annealing lead to fast diffusion of the implanted species towards the Si/SiO2 interface, we show that furnace annealing in an oxygen rich atmosphere prevents the diffusion of iron that, in turn, limits the growth of the nanoparticles. The diffusion and particle growth is also greatly reduced when oxygen atoms are implanted in the SiO2 prior to Fe implantation, effectively acting as a diffusion barrier. The excess oxygen is hypothesized to trap Fe atoms and reduce their mean free path during the diffusion. Monte-Carlo simulations of the diffusion process which consider the random walk of Fe, Fick's diffusion of O atoms, Fe precipitation, and desorption of the SiO2 layer under the electron beam annealing were performed. Simulation results for the three preparation conditions are found in good agreement with the experimental data.
Photo-thermal characteristics of water-based Fe3O4@SiO2 nanofluid for solar-thermal applications
NASA Astrophysics Data System (ADS)
Khashan, Saud; Dagher, Sawsan; Omari, Salahaddin Al; Tit, Nacir; Elnajjar, Emad; Mathew, Bobby; Hilal-Alnaqbi, Ali
2017-05-01
This work proposes and demonstrates the novel idea of using Fe3O4@SiO2 core/shell structure nanoparticles (NPs) to improve the solar thermal conversion efficiency. Magnetite (Fe3O4) NPs are synthesized by controlled co-precipitation method. Fe3O4@SiO2 NPs are prepared based on sol-gel approach, then characterized. Water-based Fe3O4@SiO2 nanofluid is prepared and usedto illustrate the photo-thermal conversion characteristics of a solar collector under solar simulator. The temperature rise characteristics of the nanofluids are investigated at different heights of the solar collector, for duration of 300 min, under a solar intensity of 1000 W m-2. The experimental results show that Fe3O4@SiO2 NPs have a core/shell structure with spherical morphology and size of about 400 nm. Fe3O4@SiO2/H2O nanofluid enhances the photo-thermal conversion efficiency compared with base fluid and Fe3O4/H2O nanofluid, since the silica coating improves both the thermodynamic stability of the nanofluid and the light absorption effectiveness of the NPs. At a concentration of 1 mg/1 ml of Fe3O4@SiO2/H2O, and with the utilization of kerosene into the solar collector, and exposure for radiation for 5 min, the photo-thermal conversion efficiency has shown an enhancement at the bottom of the collector of about 32.9% compared to the base fluid.
Deng, Qingming; Heine, Thomas
2016-01-01
The endohedral metallofullerene (EMF) self-assembly process in Sc/carbon vapor in the presence and absence of an inert cooling gas (helium) is systematically investigated using quantum chemical molecular dynamics simulations. It is revealed that the presence of He atoms accelerates the formation of pentagons and hexagons and reduces the size of the self-assembled carbon cages in comparison with analogous He-free simulations. As a result, the Sc/C/He system simulations produce a larger number of successful trajectories (i.e. leading to Sc-EMFs) with more realistic cage-size distribution than simulations of the Sc/C system. The main Sc encapsulation mechanism involves nucleation of several hexagons and pentagons with Sc atoms already at the early stages of carbon vapor condensation. In such proto-cages, both Sc–C σ-bonds and coordination bonds between Sc atoms and the π-system of the carbon network are present. Sc atoms are thus rather labile and can move along the carbon network, but the overall bonding is sufficiently strong to prevent dissociation even at temperatures around 2000 kelvin. Further growth of the fullerene cage results in the encapsulation of one or two Sc atoms within the fullerene. In agreement with experimental studies, an extension of the simulations to Fe and Ti as the metal component showed that Fe-EMFs are not formed at all, whereas Ti is prone to form Ti-EMFs with small cage sizes, including Ti@C28-T d and Ti@C30-C 2v(3). PMID:26815243
To generate a finite element model of human thorax using the VCH dataset
NASA Astrophysics Data System (ADS)
Shi, Hui; Liu, Qian
2009-10-01
Purpose: To generate a three-dimensional (3D) finite element (FE) model of human thorax which may provide the basis of biomechanics simulation for the study of design effect and mechanism of safety belt when vehicle collision. Methods: Using manually or semi-manually segmented method, the interested area can be segmented from the VCH (Visible Chinese Human) dataset. The 3D surface model of thorax is visualized by using VTK (Visualization Toolkit) and further translated into (Stereo Lithography) STL format, which approximates the geometry of solid model by representing the boundaries with triangular facets. The data in STL format need to be normalized into NURBS surfaces and IGES format using software such as Geomagic Studio to provide archetype for reverse engineering. The 3D FE model was established using Ansys software. Results: The generated 3D FE model was an integrated thorax model which could reproduce human's complicated structure morphology including clavicle, ribs, spine and sternum. It was consisted of 1 044 179 elements in total. Conclusions: Compared with the previous thorax model, this FE model enhanced the authenticity and precision of results analysis obviously, which can provide a sound basis for analysis of human thorax biomechanical research. Furthermore, using the method above, we can also establish 3D FE models of some other organizes and tissues utilizing the VCH dataset.
Molecular dynamics studies of displacement cascades in Fe-Y{sub 2}TiO{sub 5} system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dholakia, Manan, E-mail: manan@igcar.gov.in; Chandra, Sharat; Jaya, S. Mathi
The effect of displacement cascade on Fe-Y{sub 2}TiO{sub 5} bilayer is studied using classical molecular dynamics simulations. Different PKA species – Fe, Y, Ti and O – with the same PKA energy of 8 keV are used to produce displacement cascades that encompass the interface. It is shown that Ti atom has the highest movement in the ballistic regime of cascades which can lead to Ti atoms moving out of the oxide clusters into the Fe matrix in ODS alloys.
DOT National Transportation Integrated Search
2016-04-01
The objectives of this research study are to develop a three-dimensional FE : model for simulating the behavior of a battered pile group foundation subjected : to lateral loading, and to verify the model using results from a unique static : lateral l...
Ab initio study of the structure and dynamics of bulk liquid Fe
NASA Astrophysics Data System (ADS)
Marqués, M.; González, L. E.; González, D. J.
2015-10-01
Several static and dynamic properties of bulk liquid Fe at a thermodynamic state near its triple point have been evaluated by ab initio molecular dynamics simulations. The calculated static structure shows very good agreement with the available experimental data, including an asymmetric second peak in the structure factor which underlines a substantial local icosahedral short-range order in the liquid. The dynamical structure reveals propagating density fluctuations, with an associated dispersion relation which closely follows the experimental data. The dynamic structure factors S (q ,ω ) show a good agreement with their experimental counterparts which have been recently measured by an inelastic x-ray scattering experiment. The dynamical processes behind the S (q ,ω ) have been analyzed by using a model with two decay channels (a fast and a slow) associated with the relaxations of the collective excitations. The recent finding of transverselike excitation modes in the IXS data is analyzed by using the present ab initio simulation results. Several transport coefficients have been evaluated and the results are compared with the available experimental data.
NASA Astrophysics Data System (ADS)
Lee, Jaeeun; Park, Siwook; Kim, Hwangsun; Park, Seong-Jun; Lee, Keunho; Kim, Mi-Young; Madakashira, Phaniraj P.; Han, Heung Nam
2018-03-01
Fe-Al-Mn-C alloy systems are low-density austenite-based steels that show excellent mechanical properties. After aging such steels at adequate temperatures for adequate time, nano-scale precipitates such as κ-carbide form, which have profound effects on the mechanical properties. Therefore, it is important to predict the amount and size of the generated κ-carbide precipitates in order to control the mechanical properties of low-density steels. In this study, the microstructure and mechanical properties of aged low-density austenitic steel were characterized. Thermo-kinetic simulations of the aging process were used to predict the size and phase fraction of κ-carbide after different aging periods, and these results were validated by comparison with experimental data derived from dark-field transmission electron microscopy images. Based on these results, models for precipitation strengthening based on different mechanisms were assessed. The measured increase in the strength of aged specimens was compared with that calculated from the models to determine the exact precipitation strengthening mechanism.
McAda, Douglas P.; Barroll, Peggy
2002-01-01
This report describes a three-dimensional, finite difference, ground-water-flow model of the Santa Fe Group aquifer system within the Middle Rio Grande Basin between Cochiti and San Acacia, New Mexico. The aquifer system is composed of the Santa Fe Group of middle Tertiary to Quaternary age and post-Santa Fe Group valley and basin-fill deposits of Quaternary age. Population increases in the basin since the 1940's have caused dramatic increases in ground-water withdrawals from the aquifer system, resulting in large ground-water-level declines. Because the Rio Grande is hydraulically connected to the aquifer system, these ground-water withdrawals have also decreased flow in the Rio Grande. Concern about water resources in the basin led to the development of a research plan for the basin focused on the hydrologic interaction of ground water and surface water (McAda, D.P., 1996, Plan of study to quantify the hydrologic relation between the Rio Grande and the Santa Fe Group aquifer system near Albuquerque, central New Mexico: U.S. Geological Survey Water-Resources Investigations Report 96-4006, 58 p.). A multiyear research effort followed, funded and conducted by the U.S. Geological Survey and other agencies (Bartolino, J.R., and Cole, J.C., 2002, Ground-water resources of the Middle Rio Grande Basin, New Mexico: U.S. Geological Survey Circular 1222, 132 p.). The modeling work described in this report incorporates the results of much of this work and is the culmination of this multiyear study. The purpose of the model is (1) to integrate the components of the ground-water-flow system, including the hydrologic interaction between the surface-water systems in the basin, to better understand the geohydrology of the basin and (2) to provide a tool to help water managers plan for and administer the use of basin water resources. The aquifer system is represented by nine model layers extending from the water table to the pre-Santa Fe Group basement rocks, as much as 9,000 feet below the NGVD 29. The horizontal grid contains 156 rows and 80 columns, each spaced 3,281 feet (1 kilometer) apart. The model simulates predevelopment steady-state conditions and historical transient conditions from 1900 to March 2000 in 1 steady-state and 52 historical stress periods. Average annual conditions are simulated prior to 1990, and seasonal (winter and irrigation season) conditions are simulated from 1990 to March 2000. The model simulates mountain-front, tributary, and subsurface recharge; canal, irrigation, and septic-field seepage; and ground-water withdrawal as specified-flow boundaries. The model simulates the Rio Grande, riverside drains, Jemez River, Jemez Canyon Reservoir, Cochiti Lake, riparian evapotranspiration, and interior drains as head-dependent flow boundaries. Hydrologic properties representing the Santa Fe Group aquifer system in the ground-water-flow model are horizontal hydraulic conductivity, vertical hydraulic conductivity, specific storage, and specific yield. Variable horizontal anisotropy is applied to the model so that hydraulic conductivity in the north-south direction (along model columns) is greater than hydraulic conductivity in the east-west direction (along model rows) over much of the model. This pattern of horizontal anisotropy was simulated to reflect the generally north-south orientation of faulting over much of the modeled area. With variable horizontal anisotropy, horizontal hydraulic conductivities in the model range from 0.05 to 60 feet per day. Vertical hydraulic conductivity is specified in the model as a horizontal to vertical anisotropy ratio (calculated to be 150:1 in the model) multiplied by the horizontal hydraulic conductivity along rows. Specific storage was estimated to be 2 x 10-6 per foot in the model. Specific yield was estimated to be 0.2 (dimensionless). A ground-water-flow model is a tool that can integrate the complex interactions of hydrologic boundary conditions, aquifer materials
Hierarchical FeTiO3-TiO2 hollow spheres for efficient simulated sunlight-driven water oxidation.
Han, Taoran; Chen, Yajie; Tian, Guohui; Wang, Jian-Qiang; Ren, Zhiyu; Zhou, Wei; Fu, Honggang
2015-10-14
Oxygen generation is the key step for the photocatalytic overall water splitting and considered to be kinetically more challenging than hydrogen generation. Here, an effective water oxidation catalyst of hierarchical FeTiO3-TiO2 hollow spheres are prepared via a two-step sequential solvothermal processes and followed by thermal treatment. The existence of an effective heterointerface and built-in electric field in the surface space charge region in FeTiO3-TiO2 hollow spheres plays a positive role in promoting the separation of photoinduced electron-hole pairs. Surface photovoltage, transient-state photovoltage, fluorescence and electrochemical characterization are used to investigate the transfer process of photoinduced charge carriers. The photogenerated charge carriers in the hierarchical FeTiO3-TiO2 hollow spheres with a proper molar ratio display much higher separation efficiency and longer lifetime than those in the FeTiO3 alone. Moreover, it is suggested that the hierarchical porous hollow structure can contribute to the enhancement of light utilization, surface active sites and material transportation through the framework walls. This specific synergy significantly contributes to the remarkable improvement of the photocatalytic water oxidation activity of the hierarchical FeTiO3-TiO2 hollow spheres under simulated sunlight (AM1.5).
Growth and Surface Modification of LaFeO3 Thin Films Induced By Reductive Annealing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flynn, Brendan T.; Zhang, Hongliang; Shutthanandan, V.
2015-03-01
The electronic and ionic conductivity of perovskite oxides has enabled their use in diverse applications such as automotive exhaust catalysts, solid oxide fuel cell cathodes, and visible light photocatalysts. The redox chemistry at the surface of perovskite oxides is largely dependent on the oxidation state of the metal cations as well as the oxide surface stoichiometry. In this study, LaFeO3 (LFO) thin films grown on yttria-stabilized zirconia (YSZ) was characterized using both bulk and surface sensitive techniques. A combination of in situ reflection high energy electron diffraction (RHEED), x-ray diffraction (XRD), transmission electron microscopy (TEM) and Rutherford backscattering spectrometry (RBS)more » demonstrated that the film is highly oriented and stoichiometric. The film was annealed in an ultra-high vacuum chamber to simulate reducing conditions and studied by angle-resolved x-ray photoelectron spectroscopy (XPS). Iron was found to exist as Fe(0), Fe(II), and Fe(III) depending on the annealing conditions and the depth within the film. A decrease in the concentration of surface oxygen species was correlated with iron reduction. These results should help guide and enhance the design of perovskite materials for catalysts.« less
Cap-Induced Magnetic Anisotropy in Ultra-thin Fe/MgO(001) Films
NASA Astrophysics Data System (ADS)
Brown-Heft, Tobias; Pendharkar, Mihir; Lee, Elizabeth; Palmstrom, Chris
Magnetic anisotropy plays an important role in the design of spintronic devices. Perpendicular magnetic anisotropy (PMA) is preferred for magnetic tunnel junctions because the resulting energy barrier between magnetization states can be very high and this allows enhanced device scalability suitable for magnetic random access memory applications. Interface induced anisotropy is often used to control magnetic easy axes. For example, the Fe/MgO(001) system has been predicted to exhibit PMA in the ultrathin Fe limit. We have used in-situ magneto optic Kerr effect and ex-situ SQUID to study the changes in anisotropy constants between bare Fe/MgO(001) films and those capped with MgO, Pt, and Ta. In some cases in-plane anisotropy terms reverse sign after capping. We also observe transitions from superparamagnetic to ferromagnetic behavior induced by capping layers. Perpendicular anisotropy is observed for Pt/Fe/MgO(001) films after annealing to 300°C. These effects are characterized and incorporated into a magnetic simulation that accurately reproduces the behavior of the films. This work was supported in part by the Semiconductor Research Corporation programs (1) MSR-Intel, and (2) C-SPIN.
NASA Astrophysics Data System (ADS)
Domínguez-Tenreiro, R.; Obreja, A.; Brook, C. B.; Martínez-Serrano, F. J.; Serna, A.
2017-09-01
Recent determinations of the radial distributions of mono-metallicity populations (MMPs, I.e., stars in narrow bins in [Fe/H] within wider [α/Fe] ranges) by the SDSS-III/APOGEE DR12 survey cast doubts on the classical thin- and thick-disk dichotomy. The analysis of these observations led to the non-[α /Fe] enhanced populations splitting into MMPs with different surface densities according to their [Fe/H]. By contrast, [α /Fe] enhanced (I.e., old) populations show a homogeneous behavior. We analyze these results in the wider context of disk formation within non-isolated halos embedded in the Cosmic Web, resulting in a two-phase mass assembly. By performing hydrodynamical simulations in the context of the ΛCDM model, we have found that the two phases of halo mass assembly (an early fast phase, followed by a slow phase with low mass-assembly rates) are very relevant to determine the radial structure of MMP distributions, while radial mixing only plays a secondary role, depending on the coeval dynamical and/or destabilizing events. Indeed, while the frequent dynamical violent events occuring at high redshift remove metallicity gradients and imply efficient stellar mixing, the relatively quiescent dynamics after the transition keeps [Fe/H] gaseous gradients and prevents newly formed stars from suffering strong radial mixing. By linking the two-component disk concept with the two-phase halo mass-assembly scenario, our results set halo virialization (the event marking the transition from the fast to the slow phases) as the separating event that marks periods that are characterized by different physical conditions under which thick- and thin-disk stars were born.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ott, Larry J.; Howell, Michael; Robb, Kevin R.
Iron-chromium-aluminum (FeCrAl) alloys are being considered as advanced fuel cladding concepts with enhanced accident tolerance. At high temperatures, FeCrAl alloys have slower oxidation kinetics and higher strength compared with zirconium-based alloys. FeCrAl could be used for fuel cladding and spacer or mixing vane grids in light water reactors and/or as channel box material in boiling water reactors (BWRs). There is a need to assess the potential gains afforded by the FeCrAl accident-tolerant-fuel (ATF) concept over the existing zirconium-based materials employed today. To accurately assess the response of FeCrAl alloys under severe accident conditions, a number of FeCrAl properties and characteristicsmore » are required. These include thermophysical properties as well as burst characteristics, oxidation kinetics, possible eutectic interactions, and failure temperatures. These properties can vary among different FeCrAl alloys. Oak Ridge National Laboratory has pursued refined values for the oxidation kinetics of the B136Y FeCrAl alloy (Fe-13Cr-6Al wt %). This investigation included oxidation tests with varying heating rates and end-point temperatures in a steam environment. The rate constant for the low-temperature oxidation kinetics was found to be higher than that for the commercial APMT FeCrAl alloy (Fe-21Cr-5Al-3Mo wt %). Compared with APMT, a 5 times higher rate constant best predicted the entire dataset (root mean square deviation). Based on tests following heating rates comparable with those the cladding would experience during a station blackout, the transition to higher oxidation kinetics occurs at approximately 1,500°C. A parametric study varying the low-temperature FeCrAl oxidation kinetics was conducted for a BWR plant using FeCrAl fuel cladding and channel boxes using the MELCOR code. A range of station blackout severe accident scenarios were simulated for a BWR/4 reactor with Mark I containment. Increasing the FeCrAl low-temperature oxidation rate constant (3 times and 10 times that of the rate constant for APMT) had a negligible impact on the early stages of the accident and minor impacts on the accident progression after the first relocation of the fuel. At temperatures below 1,500°C, increasing the rate constant for APMT by a factor of 10 still resulted in only minor FeCrAl oxidation. In general, the gains afforded by the FeCrAl enhanced ATF concept with respect to accident sequence timing and combustible gas generation are consistent with previous efforts. Compared with the traditional Zircaloy-based cladding and channel box system, the FeCrAl concept could provide a few extra hours of time for operators to take mitigating actions and/or for evacuations to take place. A coolable core geometry is retained longer, enhancing the ability to stabilize an accident. For example, a station blackout was simulated in which cooling water injection was lost 36 hours after shutdown. The timing to first fuel relocation was delayed by approximately 5 h for the FeCrAl ATF concept compared with that of the traditional Zircaloy-based cladding and channel box system.« less
NASA Astrophysics Data System (ADS)
Shen, Yanqing
2018-04-01
LiFePO4 battery is developed rapidly in electric vehicle, whose safety and functional capabilities are influenced greatly by the evaluation of available cell capacity. Added with adaptive switch mechanism, this paper advances a supervised chaos genetic algorithm based state of charge determination method, where a combined state space model is employed to simulate battery dynamics. The method is validated by the experiment data collected from battery test system. Results indicate that the supervised chaos genetic algorithm based state of charge determination method shows great performance with less computation complexity and is little influenced by the unknown initial cell state.
Morphological changes in polycrystalline Fe after compression and release
NASA Astrophysics Data System (ADS)
Gunkelmann, Nina; Tramontina, Diego R.; Bringa, Eduardo M.; Urbassek, Herbert M.
2015-02-01
Despite a number of large-scale molecular dynamics simulations of shock compressed iron, the morphological properties of simulated recovered samples are still unexplored. Key questions remain open in this area, including the role of dislocation motion and deformation twinning in shear stress release. In this study, we present simulations of homogeneous uniaxial compression and recovery of large polycrystalline iron samples. Our results reveal significant recovery of the body-centered cubic grains with some deformation twinning driven by shear stress, in agreement with experimental results by Wang et al. [Sci. Rep. 3, 1086 (2013)]. The twin fraction agrees reasonably well with a semi-analytical model which assumes a critical shear stress for twinning. On reloading, twins disappear and the material reaches a very low strength value.
White, Nicholas A; Moreno, Daniel P; Gayzik, F Scott; Stitzel, Joel D
2015-01-01
Human body finite element (FE) models are beginning to play a more prevalent role in the advancement of automotive safety. A methodology has been developed to evaluate neck response at multiple levels in a human body FE model during simulated automotive impacts. Three different impact scenarios were simulated: a frontal impact of a belted driver with airbag deployment, a frontal impact of a belted passenger without airbag deployment and an unbelted side impact sled test. Cross sections were created at each vertebral level of the cervical spine to calculate the force and moment contributions of different anatomical components of the neck. Adjacent level axial force ratios varied between 0.74 and 1.11 and adjacent level bending moment ratios between 0.55 and 1.15. The present technique is ideal for comparing neck forces and moments to existing injury threshold values, calculating injury criteria and for better understanding the biomechanical mechanisms of neck injury and load sharing during sub-injurious and injurious loading.
Diffusive Transport and Structural Properties of Liquid Iron Alloys at High Pressure
NASA Astrophysics Data System (ADS)
Posner, E.; Rubie, D. C.; Steinle-Neumann, G.; Frost, D. J.
2017-12-01
Diffusive transport properties of liquid iron alloys at high pressures (P) and temperatures (T) place important kinetic constraints on processes related to the origin and evolution of planetary cores. Earth's core composition is largely controlled by the extent of chemical equilibration achieved between liquid metal bodies and a silicate magma ocean during core formation, which can be estimated using chemical diffusion data. In order to estimate the time and length scales of metal-silicate chemical equilibration, we have measured chemical diffusion rates of Si, O and Cr in liquid iron over the P-T range of 1-18 GPa and 1873-2643 K using a multi-anvil apparatus. We have also performed first-principles molecular dynamic simulations of comparable binary liquid compositions, in addition to pure liquid Fe, over a much wider P-T range (1 bar-330 GPa, 2200-5500 K) in order to both validate the simulation results with experimental data at conditions accessible in the laboratory and to extend our dataset to conditions of the Earth's core. Over the entire P-T range studied using both methods, diffusion coefficients are described consistently and well using an exponential function of the homologous temperature relation. Si, Cr and Fe diffusivities of approximately 5 × 10-9 m2 s-1 are constant along the melting curve from ambient to core pressures, while oxygen diffusion is 2-3 times faster. Our results indicate that in order for the composition of the Earth's core to represent chemical equilibrium, impactor cores must have broken up into liquid droplet sizes no larger than a few tens of cm. Structural properties, analyzed using partial radial distribution functions from the molecular dynamics simulations, reveal a pressure-induced structural change in liquid Fe0.96O0.04 at densities of 8 g cm-3, in agreement with previous experimental studies. For densities above 8 g cm-3, the liquid is essentially close packed with a local CsCl-like (B2) packing of Fe around O under conditions of the Earth's core.
Design, analysis, and fabrication of a piezoelectric force plate
NASA Astrophysics Data System (ADS)
Hoummadi, Elias; Safaei, Mohsen; Anton, Steven R.
2017-04-01
Force plates are used to detect static and dynamic reaction forces due to presence of stationary or moving objects as well as the location of applied forces. The application of force plates in various biomechanical fields, such as gait analysis, has been widely suggested and investigated in the past. Several sensor technologies like piezoelectrics, capacitance gauges, and piezoresistive sensors are utilized to develop force plates with special characteristics. Among the technologies employed in force plate designs, piezoelectrics present the ability of providing a self-powered sensory system. Recently, it has been suggested to implement piezoelectric transducers as sensors in the tibial bearing of total knee replacement (TKR) implants in order to transform the knee bearing into a force plate with the ability to detect force and contact point location for in vivo knee load analysis. Considering this application, a simplified design of a force plate instrumented with six piezoelectric transducers is presented in this study. The force plate is modeled using a finite element (FE) model to investigate the sensing performance of the system. In order to validate the simulation, a prototype force plate is fabricated and tested under the same loading condition applied on the FE model. The results are presented in terms of measured location and amplitude of applied force measured by the piezoelectric transducers. For the FE simulation, the deviation of the measured location of the applied force from the actual location is obtained as 0.62 mm in the x-direction and 0.13 mm in the y-direction, and the error in the amplitude of the measured force is 0.03% of the applied force. On the other hand, the deviation in the measured location of the force from the experimental test is 0.53 mm in the x-direction and 0.1 mm in the y-direction, while the error in force is 3.6% of the applied force. The small quantities of error in both sensed location and amplitude of applied force obtained from the FE simulation and experimental test results demonstrates the potential of the proposed design to be utilized as the sensor in the knee bearing of TKR implants.
Estimation of Local Bone Loads for the Volume of Interest.
Kim, Jung Jin; Kim, Youkyung; Jang, In Gwun
2016-07-01
Computational bone remodeling simulations have recently received significant attention with the aid of state-of-the-art high-resolution imaging modalities. They have been performed using localized finite element (FE) models rather than full FE models due to the excessive computational costs of full FE models. However, these localized bone remodeling simulations remain to be investigated in more depth. In particular, applying simplified loading conditions (e.g., uniform and unidirectional loads) to localized FE models have a severe limitation in a reliable subject-specific assessment. In order to effectively determine the physiological local bone loads for the volume of interest (VOI), this paper proposes a novel method of estimating the local loads when the global musculoskeletal loads are given. The proposed method is verified for the three VOI in a proximal femur in terms of force equilibrium, displacement field, and strain energy density (SED) distribution. The effect of the global load deviation on the local load estimation is also investigated by perturbing a hip joint contact force (HCF) in the femoral head. Deviation in force magnitude exhibits the greatest absolute changes in a SED distribution due to its own greatest deviation, whereas angular deviation perpendicular to a HCF provides the greatest relative change. With further in vivo force measurements and high-resolution clinical imaging modalities, the proposed method will contribute to the development of reliable patient-specific localized FE models, which can provide enhanced computational efficiency for iterative computing processes such as bone remodeling simulations.
Dunn, Aaron; Dingreville, Remi; Capolungo, Laurent
2015-11-27
A hierarchical methodology is introduced to predict the effects of radiation damage and irradiation conditions on the yield stress and internal stress heterogeneity developments in polycrystalline α-Fe. Simulations of defect accumulation under displacement cascade damage conditions are performed using spatially resolved stochastic cluster dynamics. The resulting void and dislocation loop concentrations and average sizes are then input into a crystal plasticity formulation that accounts for the change in critical resolved shear stress due to the presence of radiation induced defects. The simulated polycrystalline tensile tests show a good match to experimental hardening data over a wide range of irradiation doses.more » With this capability, stress heterogeneity development and the effect of dose rate on hardening is investigated. The model predicts increased hardening at higher dose rates for low total doses. By contrast, at doses above 10 –2 dpa when cascade overlap becomes significant, the model does not predict significantly different hardening for different dose rates. In conclusion, the development of such a model enables simulation of radiation damage accumulation and associated hardening without relying on experimental data as an input under a wide range of irradiation conditions such as dose, dose rate, and temperature.« less
Runkel, R.L.; Kimball, B.A.
2002-01-01
A reactive transport model based on one-dimensional transport and equilibrium chemistry is applied to synoptic data from an acid mine drainage stream. Model inputs include streamflow estimates based on tracer dilution, inflow chemistry based on synoptic sampling, and equilibrium constants describing acid/base, complexation, precipitation/dissolution, and sorption reactions. The dominant features of observed spatial profiles in pH and metal concentration are reproduced along the 3.5-km study reach by simulating the precipitation of Fe(III) and Al solid phases and the sorption of Cu, As, and Pb onto freshly precipitated iron-(III) oxides. Given this quantitative description of existing conditions, additional simulations are conducted to estimate the streamwater quality that could result from two hypothetical remediation plans. Both remediation plans involve the addition of CaCO3 to raise the pH of a small, acidic inflow from ???2.4 to ???7.0. This pH increase results in a reduced metal load that is routed downstream by the reactive transport model, thereby providing an estimate of post-remediation water quality. The first remediation plan assumes a closed system wherein inflow Fe(II) is not oxidized by the treatment system; under the second remediation plan, an open system is assumed, and Fe(II) is oxidized within the treatment system. Both plans increase instream pH and substantially reduce total and dissolved concentrations of Al, As, Cu, and Fe(II+III) at the terminus of the study reach. Dissolved Pb concentrations are reduced by ???18% under the first remediation plan due to sorption onto iron-(III) oxides within the treatment system and stream channel. In contrast, iron(III) oxides are limiting under the second remediation plan, and removal of dissolved Pb occurs primarily within the treatment system. This limitation results in an increase in dissolved Pb concentrations over existing conditions as additional downstream sources of Pb are not attenuated by sorption.
NASA Astrophysics Data System (ADS)
Tang, Bingtao; Wang, Qiaoling; Wei, Zhaohui; Meng, Xianju; Yuan, Zhengjun
2016-05-01
Ultra-high-strength in sheet metal parts can be achieved with hot stamping process. To improve the crash performance and save vehicle weight, it is necessary to produce components with tailored properties. The use of tailor-welded high-strength steel is a relatively new hot stamping process for saving weight and obtaining desired local stiffness and crash performance. The simulation of hot stamping boron steel, especially tailor-welded blanks (TWBs) stamping, is more complex and challenging. Information about thermal/mechanical properties of tools and sheet materials, heat transfer, and friction between the deforming material and the tools is required in detail. In this study, the boron-manganese steel B1500HS and high-strength low-alloy steel B340LA are tailor welded and hot stamped. In order to precisely simulate the hot stamping process, modeling and simulation of hot stamping tailor-welded high-strength steels, including phase transformation modeling, thermal modeling, and thermal-mechanical modeling, is investigated. Meanwhile, the welding zone of tailor-welded blanks should be sufficiently accurate to describe thermal, mechanical, and metallurgical parameters. FE simulation model using TWBs with the thickness combination of 1.6 mm boron steel and 1.2 mm low-alloy steel is established. In order to evaluate the mechanical properties of the hot stamped automotive component (mini b-pillar), hardness and microstructure at each region are investigated. The comparisons between simulated results and experimental observations show the reliability of thermo-mechanical and metallurgical modeling strategies of TWBs hot stamping process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peyton, Brent M.; Timothy, Ginn R.; Sani, Rajesh K.
2013-08-14
Subsurface bacteria including sulfate reducing bacteria (SRB) reduce soluble U(VI) to insoluble U(IV) with subsequent precipitation of UO 2. We have shown that SRB reduce U(VI) to nanometer-sized UO 2 particles (1-5 nm) which are both intra- and extracellular, with UO 2 inside the cell likely physically shielded from subsequent oxidation processes. We evaluated the UO 2 nanoparticles produced by Desulfovibrio desulfuricans G20 under growth and non-growth conditions in the presence of lactate or pyruvate and sulfate, thiosulfate, or fumarate, using ultrafiltration and HR-TEM. Results showed that a significant mass fraction of bioreduced U (35-60%) existed as a mobile phasemore » when the initial concentration of U(VI) was 160 µM. Further experiments with different initial U(VI) concentrations (25 - 900 M) in MTM with PIPES or bicarbonate buffers indicated that aggregation of uraninite depended on the initial concentrations of U(VI) and type of buffer. It is known that under some conditions SRB-mediated UO 2 nanocrystals can be reoxidized (and thus remobilized) by Fe(III)-(hydr)oxides, common constituents of soils and sediments. To elucidate the mechanism of UO 2 reoxidation by Fe(III) (hydr)oxides, we studied the impact of Fe and U chelating compounds (citrate, NTA, and EDTA) on reoxidation rates. Experiments were conducted in anaerobic batch systems in PIPES buffer. Results showed EDTA significantly accelerated UO 2 reoxidation with an initial rate of 9.5 M day-1 for ferrihydrite. In all cases, bicarbonate increased the rate and extent of UO 2 reoxidation with ferrihydrite. The highest rate of UO 2 reoxidation occurred when the chelator promoted UO 2 and Fe(III) (hydr)oxide dissolution as demonstrated with EDTA. When UO 2 dissolution did not occur, UO 2 reoxidation likely proceeded through an aqueous Fe(III) intermediate as observed for both NTA and citrate. To complement to these laboratory studies, we collected U-bearing samples from a surface seep at the Rifle field site and have measured elevated U concentrations in oxic iron-rich sediments. To translate experimental results into numerical analysis of U fate and transport, a reaction network was developed based on Sani et al. (2004) to simulate U(VI) bioreduction with concomitant UO 2 reoxidation in the presence of hematite or ferrihydrite. The reduction phase considers SRB reduction (using lactate) with the reductive dissolution of Fe(III) solids, which is set to be microbially mediated as well as abiotically driven by sulfide. Model results show the oxidation of HS– by Fe(III) directly competes with UO 2 reoxidation as Fe(III) oxidizes HS– preferentially over UO 2. The majority of Fe reduction is predicted to be abiotic, with ferrihydrite becoming fully consumed by reaction with sulfide. Predicted total dissolved carbonate concentrations from the degradation of lactate are elevated (log(pCO 2) ~ –1) and, in the hematite system, yield close to two orders-of-magnitude higher U(VI) concentrations than under initial carbonate concentrations of 3 mM. Modeling of U(VI) bioreduction with concomitant reoxidation of UO 2 in the presence of ferrihydrite was also extended to a two-dimensional field-scale groundwater flow and biogeochemically reactive transport model for the South Oyster site in eastern Virginia. This model was developed to simulate the field-scale immobilization and subsequent reoxidation of U by a biologically mediated reaction network.« less
Numerical simulation of metallic wire arc additive manufacturing (WAAM)
NASA Astrophysics Data System (ADS)
Graf, M.; Pradjadhiana, K. P.; Hälsig, A.; Manurung, Y. H. P.; Awiszus, B.
2018-05-01
Additive-manufacturing technologies have been gaining tremendously in popularity for some years in the production of single-part series with complex, close-to-final-contour geometries and the processing of special or hybrid materials. In principle, the processes can be subdivided into wire-based and powder-based processes in accordance with the Association of German Engineers (VDI) Guideline 3405. A further subdivision is made with respect to the smelting technology. In all of the processes, the base material is applied in layers at the points where it is needed in accordance with the final contour. The process that was investigated was wire-based, multi-pass welding by means of gas-metal arc welding. This was accomplished in the present study by determining the material parameters (thermo-mechanical and thermo-physical characteristics) of the welding filler G3Si1 (material number: 1.5125) that were necessary for the numerical simulation and implementing them in a commercial FE program (MSC Marc Mentat). The focus of this paper was on simulation and validation with respect to geometry and microstructural development in the welding passes. The resulting minimal deviation between reality and simulation was a result of the measurement inertia of the thermocouples. In general, however, the FE model can be used to make a very good predetermination of the cooling behaviour, which affects the microstructural development and thus the mechanical properties of the joining zone, as well as the geometric design of the component (distortion, etc.).
Investigation of pulmonary acoustic simulation: comparing airway model generation techniques
NASA Astrophysics Data System (ADS)
Henry, Brian; Dai, Zoujun; Peng, Ying; Mansy, Hansen A.; Sandler, Richard H.; Royston, Thomas
2014-03-01
Alterations in the structure and function of the pulmonary system that occur in disease or injury often give rise to measurable spectral, spatial and/or temporal changes in lung sound production and transmission. These changes, if properly quantified, might provide additional information about the etiology, severity and location of trauma, injury, or pathology. With this in mind, the authors are developing a comprehensive computer simulation model of pulmonary acoustics, known as The Audible Human Project™. Its purpose is to improve our understanding of pulmonary acoustics and to aid in interpreting measurements of sound and vibration in the lungs generated by airway insonification, natural breath sounds, and external stimuli on the chest surface, such as that used in elastography. As a part of this development process, finite element (FE) models were constructed of an excised pig lung that also underwent experimental studies. Within these models, the complex airway structure was created via two methods: x-ray CT image segmentation and through an algorithmic means called Constrained Constructive Optimization (CCO). CCO was implemented to expedite the segmentation process, as airway segments can be grown digitally. These two approaches were used in FE simulations of the surface motion on the lung as a result of sound input into the trachea. Simulation results were compared to experimental measurements. By testing how close these models are to experimental measurements, we are evaluating whether CCO can be used as a means to efficiently construct physiologically relevant airway trees.
Tamper asymmetry and its effect on transmission for x-ray driven opacity simulations
NASA Astrophysics Data System (ADS)
Morris, H. E.; Tregillis, I. L.; Hoffman, N. M.; Sherrill, M. E.; Fontes, C. J.; Marshall, A. J.; Urbatsch, T. J.; Bradley, P. A.
2017-09-01
This paper reports on synthetic transmission results from Lasnex [Zimmerman and Kruer, Comments Plasma Phys. 2, 51 (1975)] radiation-hydrodynamics simulations of opacity experiments carried out at Sandia National Laboratories' recently upgraded ZR facility. The focus is on experiments utilizing disk targets composed of a half-moon Fe/Mg mixture tamped on either end with 10-μm CH and an additional 35-μm beryllium tamper accessory on the end facing the spectrometer. Five x-ray sources with peak power ranging from 10 to 24 TW were used in the simulations to heat and backlight the opacity target. The dominant effect is that the beryllium behind the Fe/Mg mixture is denser and more opaque than the beryllium unshielded by metal during the times of greatest importance for the transmission measurement for all drives. This causes the simulated transmission to be lower than expected, and this is most pronounced for the case using the lowest drive power. While beryllium has a low opacity, its areal density is sufficiently high such that the expected reduction of the measured transmission is significant. This situation leads to an overestimate of iron opacity by 10%-215% for a photon energy range of 975-1775 eV for the 10-TW case. It is shown that if the tamper conditions are known, the transmission through each component of the target can be calculated and the resulting opacity can be corrected.
Zhang, Xiaoyan; Kim, Daeseung; Shen, Shunyao; Yuan, Peng; Liu, Siting; Tang, Zhen; Zhang, Guangming; Zhou, Xiaobo; Gateno, Jaime
2017-01-01
Accurate surgical planning and prediction of craniomaxillofacial surgery outcome requires simulation of soft tissue changes following osteotomy. This can only be achieved by using an anatomically detailed facial soft tissue model. The current state-of-the-art of model generation is not appropriate to clinical applications due to the time-intensive nature of manual segmentation and volumetric mesh generation. The conventional patient-specific finite element (FE) mesh generation methods are to deform a template FE mesh to match the shape of a patient based on registration. However, these methods commonly produce element distortion. Additionally, the mesh density for patients depends on that of the template model. It could not be adjusted to conduct mesh density sensitivity analysis. In this study, we propose a new framework of patient-specific facial soft tissue FE mesh generation. The goal of the developed method is to efficiently generate a high-quality patient-specific hexahedral FE mesh with adjustable mesh density while preserving the accuracy in anatomical structure correspondence. Our FE mesh is generated by eFace template deformation followed by volumetric parametrization. First, the patient-specific anatomically detailed facial soft tissue model (including skin, mucosa, and muscles) is generated by deforming an eFace template model. The adaptation of the eFace template model is achieved by using a hybrid landmark-based morphing and dense surface fitting approach followed by a thin-plate spline interpolation. Then, high-quality hexahedral mesh is constructed by using volumetric parameterization. The user can control the resolution of hexahedron mesh to best reflect clinicians’ need. Our approach was validated using 30 patient models and 4 visible human datasets. The generated patient-specific FE mesh showed high surface matching accuracy, element quality, and internal structure matching accuracy. They can be directly and effectively used for clinical simulation of facial soft tissue change. PMID:29027022
Zhang, Xiaoyan; Kim, Daeseung; Shen, Shunyao; Yuan, Peng; Liu, Siting; Tang, Zhen; Zhang, Guangming; Zhou, Xiaobo; Gateno, Jaime; Liebschner, Michael A K; Xia, James J
2018-04-01
Accurate surgical planning and prediction of craniomaxillofacial surgery outcome requires simulation of soft tissue changes following osteotomy. This can only be achieved by using an anatomically detailed facial soft tissue model. The current state-of-the-art of model generation is not appropriate to clinical applications due to the time-intensive nature of manual segmentation and volumetric mesh generation. The conventional patient-specific finite element (FE) mesh generation methods are to deform a template FE mesh to match the shape of a patient based on registration. However, these methods commonly produce element distortion. Additionally, the mesh density for patients depends on that of the template model. It could not be adjusted to conduct mesh density sensitivity analysis. In this study, we propose a new framework of patient-specific facial soft tissue FE mesh generation. The goal of the developed method is to efficiently generate a high-quality patient-specific hexahedral FE mesh with adjustable mesh density while preserving the accuracy in anatomical structure correspondence. Our FE mesh is generated by eFace template deformation followed by volumetric parametrization. First, the patient-specific anatomically detailed facial soft tissue model (including skin, mucosa, and muscles) is generated by deforming an eFace template model. The adaptation of the eFace template model is achieved by using a hybrid landmark-based morphing and dense surface fitting approach followed by a thin-plate spline interpolation. Then, high-quality hexahedral mesh is constructed by using volumetric parameterization. The user can control the resolution of hexahedron mesh to best reflect clinicians' need. Our approach was validated using 30 patient models and 4 visible human datasets. The generated patient-specific FE mesh showed high surface matching accuracy, element quality, and internal structure matching accuracy. They can be directly and effectively used for clinical simulation of facial soft tissue change.
Kinetic Monte Carlo Study of Li Intercalation in LiFePO4.
Xiao, Penghao; Henkelman, Graeme
2018-01-23
Even as a commercial cathode material, LiFePO 4 remains of tremendous research interest for understanding Li intercalation dynamics. The partially lithiated material spontaneously separates into Li-poor and Li-rich phases at equilibrium. Phase segregation is a surprising property of LiFePO 4 given its high measured rate capability. Previous theoretical studies, aiming to describe Li intercalation in LiFePO 4 , include both atomic-scale density functional theory (DFT) calculations of static Li distributions and entire-particle-scale phase field models, based upon empirical parameters, studying the dynamics of the phase separation. Little effort has been made to bridge the gap between these two scales. In this work, DFT calculations are used to fit a cluster expansion for the basis of kinetic Monte Carlo calculations, which enables long time scale simulations with accurate atomic interactions. This atomistic model shows how the phases evolve in Li x FePO 4 without parameters from experiments. Our simulations reveal that an ordered Li 0.5 FePO4 phase with alternating Li-rich and Li-poor planes along the ac direction forms between the LiFePO 4 and FePO 4 phases, which is consistent with recent X-ray diffraction experiments showing peaks associated with an intermediate-Li phase. The calculations also help to explain a recent puzzling experiment showing that LiFePO 4 particles with high aspect ratios that are narrower along the [100] direction, perpendicular to the [010] Li diffusion channels, actually have better rate capabilities. Our calculations show that lateral surfaces parallel to the Li diffusion channels, as well as other preexisting sites that bind Li weakly, are important for phase nucleation and rapid cycling performance.
A Finite Element Model of the THOR-K Dummy for Aerospace and Aircraft Impact Simulations
NASA Technical Reports Server (NTRS)
Putnam, Jacob; Untaroiu, Costin D.; Somers, Jeffrey T.; Pellettiere, Joseph
2013-01-01
1) Update and Improve the THOR Finite Element (FE) model to specifications of the latest mod kit (THOR-K). 2) Evaluate the kinematic and kinetic response of the FE model in frontal, spinal, and lateral impact loading conditions.
The Reduced Basis Method in Geosciences: Practical examples for numerical forward simulations
NASA Astrophysics Data System (ADS)
Degen, D.; Veroy, K.; Wellmann, F.
2017-12-01
Due to the highly heterogeneous character of the earth's subsurface, the complex coupling of thermal, hydrological, mechanical, and chemical processes, and the limited accessibility we have to face high-dimensional problems associated with high uncertainties in geosciences. Performing the obviously necessary uncertainty quantifications with a reasonable number of parameters is often not possible due to the high-dimensional character of the problem. Therefore, we are presenting the reduced basis (RB) method, being a model order reduction (MOR) technique, that constructs low-order approximations to, for instance, the finite element (FE) space. We use the RB method to address this computationally challenging simulations because this method significantly reduces the degrees of freedom. The RB method is decomposed into an offline and online stage, allowing to make the expensive pre-computations beforehand to get real-time results during field campaigns. Generally, the RB approach is most beneficial in the many-query and real-time context.We will illustrate the advantages of the RB method for the field of geosciences through two examples of numerical forward simulations.The first example is a geothermal conduction problem demonstrating the implementation of the RB method for a steady-state case. The second examples, a Darcy flow problem, shows the benefits for transient scenarios. In both cases, a quality evaluation of the approximations is given. Additionally, the runtimes for both the FE and the RB simulations are compared. We will emphasize the advantages of this method for repetitive simulations by showing the speed-up for the RB solution in contrast to the FE solution. Finally, we will demonstrate how the used implementation is usable in high-performance computing (HPC) infrastructures and evaluate its performance for such infrastructures. Hence, we will especially point out its scalability, yielding in an optimal usage on HPC infrastructures and normal working stations.
NASA Astrophysics Data System (ADS)
Kurisu, M.; Iizuka, T.; Sakata, K.; Uematsu, M.; Takahashi, Y.
2015-12-01
It has been reported that phytoplankton growth in the High Nutrient-Low Chlorophyll (HNLC) regions is limited by dissolved iron (DFe) concentration (e.g., Martin and Fitzwater, 1988). Aerosol is known as one of the dominant sources of DFe to the ocean and classified into two origins such as anthropogenic and natural. A series of recent studies showed that Fe in anthropogenic aerosols is more soluble than that in natural aerosols (Takahashi et al., 2013) and has lower isotopic ratio (Mead et al., 2013). However, the difference between Fe isotopic ratio (δ56Fe: [(56Fe/54Fe)sample/(56Fe/54Fe)IRMM-14]-1) of two origins reported in Mead et al. (2013) is not so large compared with the standard deviation. Therefore, the aim of this study is to determine Fe species and δ56Fe in anthropogenic aerosols more accurately and to evaluate its contribution to the ocean surface. Iron species were determined by X-ray absorption fine structure (XAFS) analysis, while δ56Fe in size-fractionated aerosols were measured by MC-ICP-MS (NEPTUNE Plus) after chemical separation using anion exchange resin. Dominant Fe species in the samples were, ferrihydrite, hematite, and biotite. It was also revealed that coarse particles contained a larger amount of biotite and that fine particles contained a larger amount of hematite, which suggested that anthropogenic aerosols were emitted during combustion processes. In addition, results of Fe isotopic ratio analysis suggested that δ56Fe of coarse particles were around +0.25‰, whereas that of fine particles were -0.5 ˜ -2‰, which was lower than the δ56Fe in anthropogenic aerosol by Mead et al. (2013). The size-fractionated sampling made it possible to determine the δ56Fe in anthropogenic aerosol. Soluble component in fine particles extracted by simulated rain water also showed much lower δ56Fe (δ56Fe = -3.9±0.12‰), suggesting that anthropogenic Fe has much lower isotopic ratio. The remarkably low δ56Fe may be caused by the anthropogenic combustion process. The δ56Fe in anthropogenic aerosols measured here is important to model the budget of iron in the surface ocean.
Shi, Yahong; Chen, Hongche; Wu, Yanlin; Dong, Wenbo
2018-01-01
Efficient oxidative degradation of pharmaceutical pollutants in aquatic environments is of great importance. This study used magnetic BiOCl@Fe 3 O 4 catalyst to activate persulfate (PS) under simulated solar light irradiation. This degradation system was evaluated using atenolol (ATL) as target pollutant. Four reactive species were identified in the sunlight/BiOCl@Fe 3 O 4 /PS system. The decreasing order of the contribution of each reactive species on ATL degradation was as follows: h + ≈ HO · > O 2 ·- > SO 4 ·- . pH significantly influenced ATL degradation, and an acidic condition favored the reaction. High degradation efficiencies were obtained at pH 2.3-5.5. ATL degradation rate increased with increased catalyst and PS contents. Moreover, ATL mineralization was higher in the sunlight/BiOCl@Fe 3 O 4 /PS system than in the sunlight/BiOCl@Fe 3 O 4 or sunlight/PS system. Nine possible intermediate products were identified through LC-MS analysis, and a degradation pathway for ATL was proposed. The BiOCl@Fe 3 O 4 nanomagnetic composite catalyst was synthesized in this work. This catalyst was easily separated and recovered from a treated solution by using a magnet, and it demonstrated a high catalytic activity. Increased amount of the BiOCl@Fe 3 O 4 catalyst obviously accelerated the efficiency of ATL degradation, and the reusability of the catalyst allowed the addition of a large dosage of BiOCl@Fe 3 O 4 to improve the degradation efficiency.
Lung tumor motion prediction during lung brachytherapy using finite element model
NASA Astrophysics Data System (ADS)
Shirzadi, Zahra; Sadeghi Naini, Ali; Samani, Abbas
2012-02-01
A biomechanical model is proposed to predict deflated lung tumor motion caused by diaphragm respiratory motion. This model can be very useful for targeting the tumor in tumor ablative procedures such as lung brachytherapy. To minimize motion within the target lung, these procedures are performed while the lung is deflated. However, significant amount of tissue deformation still occurs during respiration due to the diaphragm contact forces. In the absence of effective realtime image guidance, biomechanical models can be used to estimate tumor motion as a function of diaphragm's position. To develop this model, Finite Element Method (FEM) was employed. To demonstrate the concept, we conducted an animal study of an ex-vivo porcine deflated lung with a tumor phantom. The lung was deformed by compressing a diaphragm mimicking cylinder against it. Before compression, 3D-CT image of this lung was acquired, which was segmented and turned into FE mesh. The lung tissue was modeled as hyperelastic material with a contact loading to calculate the lung deformation and tumor motion during respiration. To validate the results from FE model, the motion of a small area on the surface close to the tumor was tracked while the lung was being loaded by the cylinder. Good agreement was demonstrated between the experiment results and simulation results. Furthermore, the impact of tissue hyperelastic parameters uncertainties in the FE model was investigated. For this purpose, we performed in-silico simulations with different hyperelastic parameters. This study demonstrated that the FEM was accurate and robust for tumor motion prediction.
Paulson, Anthony J.; Balistrieri, Laurie S.
1999-01-01
Removal of Pb, Cu, Zn, and Cd during neutralization of acid rock drainage is examined using model simulations of field conditions and laboratory experiments involving mixing of natural drainage and surface waters or groundwaters. The simulations consider sorption onto hydrous Fe and Al oxides and particulate organic carbon, mineral precipitation, and organic and inorganic solution complexation of metals for two physical systems where newly formed oxides and particulate organic matter are either transported or retained along the chemical pathway. The calculations indicate that metal removal is a strong function of the physical system. Relative to direct discharge of ARD into streams, lower metal removals are observed where ARD enters streamwaters during the latter stages of neutralization by ambient groundwater after most of the Fe has precipitated and been retained in the soils. The mixing experiments, which represent the field simulations, also demonstrated the importance of dissolved metal to particle Fe ratios in controlling dissolved metal removal along the chemical pathway. Finally, model calculations indicate that hydrous Fe oxides and particulate organic carbon are more important than hydrous Al oxides in removing metals and that both inorganic and organic complexation must be considered when modeling metal removal from aquatic systems that are impacted by sulfide oxidation.
Radiation damage buildup by athermal defect reactions in nickel and concentrated nickel alloys
Zhang, S.; Nordlund, K.; Djurabekova, F.; ...
2017-04-12
We develop a new method using binary collision approximation simulating the Rutherford backscattering spectrometry in channeling conditions (RBS/C) from molecular dynamics atom coordinates of irradiated cells. The approach allows comparing experimental and simulated RBS/C signals as a function of depth without fitting parameters. The simulated RBS/C spectra of irradiated Ni and concentrated solid solution alloys (CSAs, NiFe and NiCoCr) show a good agreement with the experimental results. The good agreement indicates the damage evolution under damage overlap conditions in Ni and CSAs at room temperature is dominated by defect recombination and migration induced by irradiation rather than activated thermally.
FDTD method for laser absorption in metals for large scale problems.
Deng, Chun; Ki, Hyungson
2013-10-21
The FDTD method has been successfully used for many electromagnetic problems, but its application to laser material processing has been limited because even a several-millimeter domain requires a prohibitively large number of grids. In this article, we present a novel FDTD method for simulating large-scale laser beam absorption problems, especially for metals, by enlarging laser wavelength while maintaining the material's reflection characteristics. For validation purposes, the proposed method has been tested with in-house FDTD codes to simulate p-, s-, and circularly polarized 1.06 μm irradiation on Fe and Sn targets, and the simulation results are in good agreement with theoretical predictions.