1D diffusion models may be used to estimate rates of production and consumption of dissolved metabolites in marine sediments, but are applied less often to the solid phase. Here we used a numerical inverse method to estimate solid phase Fe(III) and Fe(II) consumption and product...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Bo; School of Mechanical Engineering, Gui Zhou University, Guiyang 550000; Zhang, Weiwen, E-mail: mewzhang@scut.edu.cn
2015-06-15
The Al–5.0 wt.% Cu–0.6 wt.% Mn alloys with a variable Fe content were prepared by squeeze casting. Optical microscopy (OM), Deep etching technique, scanning electron microscopy(SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to examine the solid-state transformation of Fe-rich intermetallics during the solution heat treatment. The results showed that the Chinese script-like α-Fe, Al{sub 6}(FeMn) and needle-like Al{sub 3}(FeMn) phases transform to a new Cu-rich β-Fe (Al{sub 7}Cu{sub 2}(FeMn)) phase during solution heat treatment. The possible reaction and overall transformation kinetics of the solid-state phase transformation for the Fe-rich intermetallics were investigated. - Graphical abstract: Displaymore » Omitted - Highlights: • The α-Fe, Al{sub 6}(FeMn) and Al{sub 3}(FeMn) phases change to the β-Fe phases. • Possible reactions of Fe phases during solution heat treatment are discussed. • The overall fractional transformation rate follows an Avrami curve.« less
Ordered structure of FeGe2 formed during solid-phase epitaxy
NASA Astrophysics Data System (ADS)
Jenichen, B.; Hanke, M.; Gaucher, S.; Trampert, A.; Herfort, J.; Kirmse, H.; Haas, B.; Willinger, E.; Huang, X.; Erwin, S. C.
2018-05-01
Fe3Si /Ge (Fe ,Si ) /Fe3Si thin-film stacks were grown by a combination of molecular beam epitaxy and solid-phase epitaxy (Ge on Fe3Si ). The stacks were analyzed using electron microscopy, electron diffraction, and synchrotron x-ray diffraction. The Ge(Fe,Si) films crystallize in the well-oriented, layered tetragonal structure FeGe2 with space group P 4 m m . This kind of structure does not exist as a bulk material and is stabilized by the solid-phase epitaxy of Ge on Fe3Si . We interpret this as an ordering phenomenon induced by minimization of the elastic energy of the epitaxial film.
Liu, Qi; He, Hao; Li, Zhe-Fei; Liu, Yadong; Ren, Yang; Lu, Wenquan; Lu, Jun; Stach, Eric A; Xie, Jian
2014-03-12
We have performed operando synchrotron high-energy X-ray diffraction (XRD) to obtain nonintrusive, real-time monitoring of the dynamic chemical and structural changes in commercial 18650 LiFePO4/C cells under realistic cycling conditions. The results indicate a nonequilibrium lithium insertion and extraction in the LiFePO4 cathode, with neither the LiFePO4 phase nor the FePO4 phase maintaining a static composition during lithium insertion/extraction. On the basis of our observations, we propose that the LiFePO4 cathode simultaneously experiences both a two-phase reaction mechanism and a dual-phase solid-solution reaction mechanism over the entire range of the flat voltage plateau, with this dual-phase solid-solution behavior being strongly dependent on charge/discharge rates. The proposed dual-phase solid-solution mechanism may explain the remarkable rate capability of LiFePO4 in commercial cells.
NASA Astrophysics Data System (ADS)
Bera, Ganesh; Reddy, V. R.; Rambabu, P.; Mal, P.; Das, Pradip; Mohapatra, N.; Padmaja, G.; Turpu, G. R.
2017-09-01
Phase diagram of FeVO4-CrVO4 solid solutions pertinent with structural and magnetic phases is presented with unambiguous experimental evidences. Solid solutions Fe1-xCrxVO4 (0 ≤ x ≤ 1.0) were synthesized through the standard solid state route and studied by X-ray diffraction, scanning electron microscopy, energy dispersive spectra of X-rays, Raman spectroscopy, d.c. magnetization, and 57Fe Mössbauer spectroscopic studies. FeVO4 and CrVO4 were found to be in triclinic (P-1 space group) and orthorhombic structures (Cmcm space group), respectively. Cr incorporation into the FeVO4 lattice leads to the emergence of a new monoclinic phase dissimilar to the both end members of the solid solutions. In Fe1-xCrxVO4 up to x = 0.10, no discernible changes in the triclinic structure were found. A new structural monoclinic phase (C2/m space group) emerges within the triclinic phase at x = 0.125, and with the increase in Cr content, it gets stabilized with clear single phase signatures in the range of x = 0.175-0.25 as evidenced by the Rietveld analysis of the structures. Beyond x = 0.33, orthorhombic phase similar to CrVO4 (Cmcm space group) emerges and coexists with a monoclinic structure up to x = 0.85, which finally tends to stabilize in the range of x = 0.90-1.00. The Raman spectroscopic studies also confirm the structural transition. FeVO4 Raman spectra show the modes related to three nonequivalent V ions in the triclinic structure, where up to 42 Raman modes are observed in the present study. With the stabilization of structures having higher symmetry, the number of Raman modes decreases and the modes related to symmetry inequivalent sites collate into singular modes from the doublet structure. A systematic crossover from two magnetic transitions in FeVO4, at 21.5 K and 15.4 K to single magnetic transition in CrVO4, at 71 K (antiferromagnetic transition), is observed in magnetization studies. The intermediate solid solution with x = 0.15 shows two magnetic transitions, whereas in the compound with x = 0.33 one of the magnetic transitions disappears. 57Fe Mössbauer spectroscopic studies show a finger print evidence for disappearance of non-equivalent sites of Fe as the structure changes from Triclinic-Monoclinic-Orthorhombic phases with the increasing Cr content in Fe1-xCrxVO4. Comprehensive studies related to the structural changes in Fe1-xCrxVO4 solid solutions lead us to detailed phase diagrams which shall be characteristic for room temperature structural and temperature dependent magnetic transitions in these solid solutions, respectively.
Phase equilibria and crystal structure of the complex oxides in the Sr Fe Co O system
NASA Astrophysics Data System (ADS)
Aksenova, T. V.; Gavrilova, L. Ya.; Cherepanov, V. A.
2008-06-01
Phase relations in the Sr-Fe-Co-O system have been investigated at 1100 °C in air by X-ray powder diffraction on quenched samples. Solid solutions of the form SrFe 1-xCo xO 3-δ (0⩽ x⩽0.7), Sr 3Fe 2-yCo yO 7-δ (0⩽ y⩽0.4) and Sr 4Fe 6-zCo zO 13±δ (0⩽ z⩽1.6) were prepared by solid-state reaction and by the sol-gel method. The structural parameters of single-phase samples were refined by the Rietveld profile method. The variation of the lattice parameters with composition has been determined for each solid solution and a cross-section of the phase diagram at 1100 °C in air for the entire Sr-Fe-Co-O system has been constructed.
NASA Astrophysics Data System (ADS)
Uenver-Thiele, Laura; Woodland, Alan B.; Miyajima, Nobuyoshi; Ballaran, Tiziana Boffa; Frost, Daniel J.
2018-03-01
Experiments at high pressures and temperatures were carried out (1) to investigate the crystal-chemical behaviour of Fe4O5-Mg2Fe2O5 solid solutions and (2) to explore the phase relations involving (Mg,Fe)2Fe2O5 (denoted as O5-phase) and Mg-Fe silicates. Multi-anvil experiments were performed at 11-20 GPa and 1100-1600 °C using different starting compositions including two that were Si-bearing. In Si-free experiments the O5-phase coexists with Fe2O3, hp-(Mg,Fe)Fe2O4, (Mg,Fe)3Fe4O9 or an unquenchable phase of different stoichiometry. Si-bearing experiments yielded phase assemblages consisting of the O5-phase together with olivine, wadsleyite or ringwoodite, majoritic garnet or Fe3+-bearing phase B. However, (Mg,Fe)2Fe2O5 does not incorporate Si. Electron microprobe analyses revealed that phase B incorporates significant amounts of Fe2+ and Fe3+ (at least 1.0 cations Fe per formula unit). Fe-L2,3-edge energy-loss near-edge structure spectra confirm the presence of ferric iron [Fe3+/Fetot = 0.41(4)] and indicate substitution according to the following charge-balanced exchange: [4]Si4+ + [6]Mg2+ = 2Fe3+. The ability to accommodate Fe2+ and Fe3+ makes this potential "water-storing" mineral interesting since such substitutions should enlarge its stability field. The thermodynamic properties of Mg2Fe2O5 have been refined, yielding H°1bar,298 = - 1981.5 kJ mol- 1. Solid solution is complete across the Fe4O5-Mg2Fe2O5 binary. Molar volume decreases essentially linearly with increasing Mg content, consistent with ideal mixing behaviour. The partitioning of Mg and Fe2+ with silicates indicates that (Mg,Fe)2Fe2O5 has a strong preference for Fe2+. Modelling of partitioning with olivine is consistent with the O5-phase exhibiting ideal mixing behaviour. Mg-Fe2+ partitioning between (Mg,Fe)2Fe2O5 and ringwoodite or wadsleyite is influenced by the presence of Fe3+ and OH incorporation in the silicate phases.
Solid-solution CrCoCuFeNi high-entropy alloy thin films synthesized by sputter deposition
An, Zhinan; Jia, Haoling; Wu, Yueying; ...
2015-05-04
The concept of high configurational entropy requires that the high-entropy alloys (HEAs) yield single-phase solid solutions. However, phase separations are quite common in bulk HEAs. A five-element alloy, CrCoCuFeNi, was deposited via radio frequency magnetron sputtering and confirmed to be a single-phase solid solution through the high-energy synchrotron X-ray diffraction, energy-dispersive spectroscopy, wavelength-dispersive spectroscopy, and transmission electron microscopy. The formation of the solid-solution phase is presumed to be due to the high cooling rate of the sputter-deposition process.
Atom exchange between aqueous Fe(II) and structural Fe in clay minerals.
Neumann, Anke; Wu, Lingling; Li, Weiqiang; Beard, Brian L; Johnson, Clark M; Rosso, Kevin M; Frierdich, Andrew J; Scherer, Michelle M
2015-03-03
Due to their stability toward reductive dissolution, Fe-bearing clay minerals are viewed as a renewable source of Fe redox activity in diverse environments. Recent findings of interfacial electron transfer between aqueous Fe(II) and structural Fe in clay minerals and electron conduction in octahedral sheets of nontronite, however, raise the question whether Fe interaction with clay minerals is more dynamic than previously thought. Here, we use an enriched isotope tracer approach to simultaneously trace Fe atom movement from the aqueous phase to the solid ((57)Fe) and from the solid into the aqueous phase ((56)Fe). Over 6 months, we observed a significant decrease in aqueous (57)Fe isotope fraction, with a fast initial decrease which slowed after 3 days and stabilized after about 50 days. For the aqueous (56)Fe isotope fraction, we observed a similar but opposite trend, indicating that Fe atom movement had occurred in both directions: from the aqueous phase into the solid and from the solid into aqueous phase. We calculated that 5-20% of structural Fe in clay minerals NAu-1, NAu-2, and SWa-1 exchanged with aqueous Fe(II), which significantly exceeds the Fe atom layer exposed directly to solution. Calculations based on electron-hopping rates in nontronite suggest that the bulk conduction mechanism previously demonstrated for hematite1 and suggested as an explanation for the significant Fe atom exchange observed in goethite2 may be a plausible mechanism for Fe atom exchange in Fe-bearing clay minerals. Our finding of 5-20% Fe atom exchange in clay minerals indicates that we need to rethink how Fe mobility affects the macroscopic properties of Fe-bearing phyllosilicates and its role in Fe biogeochemical cycling, as well as its use in a variety of engineered applications, such as landfill liners and nuclear repositories.
NASA Astrophysics Data System (ADS)
Bera, Ganesh; Reddy, V. R.; Mal, Priyanath; Das, Pradip; Turpu, G. R.
2018-05-01
The novel hetero-structures Fe1-xBixVO4 solid solutions (0 ≤ x ≤ 1.0) with the two dissimilar end member of FeVO4 - BiVO4, were successfully synthesized by the standard solid state reaction method. The structural and chemical properties of as prepared photo-catalyst samples were characterized by X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared spectroscopy (FT-IR) and UV-visible absorption spectroscopy techniques. It is confirmed from the results of XRD, Raman and FT-IR that FeVO4 and BiVO4 are in triclinic (space group P-1 (2)) and monoclinic (space group I2/b (15)) phases respectively. The Bi incorporation into Fe site of FeVO4 emerges as hetero-structures of both the end members of the solid solutions. In addition, the photocatalytic activity in the degradation of methylene blue (MB) dye under visible light irradiation was carried out through UV-visible spectroscopy measurement of photo-catalysts FeVO4, BiVO4 and mixed phases of both photo-catalyst. The results indicate that under visible light irradiation the photocatalytic activity of mixed phases were very effective and higher than the both single phases of the solid solutions. The composition x= 0.25 exhibits an excellent photocatalytic property for the degradation of MB solution under visible light irradiation rather than other.
Nicholas, Sarah L.; Erickson, Melinda L.; Woodruff, Laurel G.; Knaeble, Alan R.; Marcus, Matthew A.; Lynch, Joshua K.; Toner, Brandy M.
2017-01-01
e of this research is to identify the solid-phase sources and geochemical mechanisms of release of As in aquifers of the Des Moines Lobe glacial advance. The overarching concept is that conditions present at the aquifer-aquitard interfaces promote a suite of geochemical reactions leading to mineral alteration and release of As to groundwater. A microprobe X-ray absorption spectroscopy (lXAS) approach is developed and applied to rotosonic drill core samples to identify the solid-phase speciation of As in aquifer, aquitard, and aquifer-aquitard interface sediments. This approach addresses the low solid-phase As concentrations, as well as the fine-scale physical and chemical heterogeneity of the sediments. The spectroscopy data are analyzed using novel cosine-distance and correlation-distance hierarchical clustering for Fe 1s and As 1s lXAS datasets. The solid-phase Fe and As speciation is then interpreted using sediment and well-water chemical data to propose solid-phase As reservoirs and release mechanisms. The results confirm that in two of the three locations studied, the glacial sediment forming the aquitard is the source of As to the aquifer sediments. The results are consistent with three different As release mechanisms: (1) desorption from Fe (oxyhydr)oxides, (2) reductive dissolution of Fe (oxyhydr)oxides, and (3) oxidative dissolution of Fe sulfides. The findings confirm that glacial sediments at the interface between aquifer and aquitard are geochemically active zones for As. The diversity of As release mechanisms is consistent with the geographic heterogeneity observed in the distribution of elevated-As wells.
NASA Astrophysics Data System (ADS)
Matsuura, Hiroyuki; Hamano, Tasuku; Zhong, Ming; Gao, Xu; Yang, Xiao; Tsukihashi, Fumitaka
2014-09-01
An increase in the utilization efficiency of CaO, one of the major fluxing agents used in various steelmaking processes, is required to reduce the amount of discharged slag and energy consumption of the process. The authors have intensively focused on the development of innovative dephosphorization process by using so called "multi-phase flux" composed of solid and liquid phases. This article summarizes the research on the above topic done by the authors, in which the formation mechanisms of P2O5-containing phase during CaO or 2CaO·SiO2 dissolution into molten slag, the phase relationship between solid and liquid phases at equilibrium, and thermodynamic properties of P2O5-containing phase have been clarified. The reactions between solid CaO or 2CaO·SiO2 and molten CaO-FeO x -SiO2-P2O5 slag were observed by dipping solid specimen in the synthesized slag at 1573 K or 1673 K. The formation of the CaO-FeO layer and dual-phase layer of solid 2CaO·SiO2 and FeO x -rich liquid phase was observed around the interface from the solid CaO side toward the bulk slag phase side. Condensation of P2O5 into 2CaO·SiO2 phase as 2CaO·SiO2-3CaO·P2O5 solid solution was observed in both cases of CaO and 2CaO·SiO2 as solid specimens. Measurement of the phase relationship for the CaO-FeO x -SiO2-P2O5 system confirmed the condensation of P2O5 in solid phase at low oxygen partial pressure. The thermodynamics of 2CaO·SiO2-3CaO·P2O5 solid solution are to be clarified to quantitatively simulate the dephosphorization process, and the current results are also introduced. Based on the above results, the reduction of CaO consumption, the discharged slag curtailment, and energy-saving effects have been discussed.
NASA Astrophysics Data System (ADS)
Wirunchit, S.; Vittayakorn, N.
2008-07-01
The solid solution between the antiferroelectric (AFE) PbZrO3 (PZ) and the relaxor ferroelectric (FE) Pb(Ni1/3Nb2/3)O3 (PNN) was synthesized by the columbite precursor method. The crystal structure, phase transformations, and dielectric and thermal properties of (1-x )PZ-xPNN where x =0.00-0.30 were investigated. With these data, the FE phase diagram between PZ and PNN has been established. The crystal structure data obtained from X-ray diffraction indicate that the solid solution PZ-PNN, where x =0.00-0.30, successively transforms from orthorhombic to rhombohedral symmetry with an increase in the PNN concentration. The AFE phase→FE phase transition occurs in compositions of 0.00⩽x⩽0.08. The AFE →FE phase transition shifts to lower temperatures with higher compositions of x. The FE phase temperature range width increases with increased PNN. Apparently the replacement of the Zr4+ ion by Ni2+/Nb5+ ions decreases the driving force for an antiparallel shift of Pb2+ ions because they interrupt the translational symmetry and facilitates the appearance of a rhombohedral FE phase when the amount of PNN is higher than 8mol%.
NASA Astrophysics Data System (ADS)
Swartz, Christopher H.; Blute, Nicole Keon; Badruzzman, Borhan; Ali, Ashraf; Brabander, Daniel; Jay, Jenny; Besancon, James; Islam, Shafiqul; Hemond, Harold F.; Harvey, Charles F.
2004-11-01
Aquifer geochemistry was characterized at a field site in the Munshiganj district of Bangladesh where the groundwater is severely contaminated by As. Vertical profiles of aqueous and solid phase parameters were measured in a sandy deep aquifer (depth >150 m) below a thick confining clay (119 to 150 m), a sandy upper aquifer (3.5 to 119 m) above this confining layer, and a surficial clay layer (<3.5 m). In the deep aquifer and near the top of the upper aquifer, aqueous As levels are low (<10 μg/L), but aqueous As approaches a maximum of 640 μg/L at a depth of 30 to 40 m and falls to 58 μg/L near the base (107 m) of the upper aquifer. In contrast, solid phase As concentrations are uniformly low, rarely exceeding 2 μg/g in the two sandy aquifers and never exceeding 10 μg/g in the clay layers. Solid phase As is also similarly distributed among a variety of reservoirs in the deep and upper aquifer, including adsorbed As, As coprecipitated in solids leachable by mild acids and reductants, and As incorporated in silicates and other more recalcitrant phases. One notable difference among depths is that sorbed As loads, considered with respect to solid phase Fe extractable with 1 N HCl, 0.2 M oxalic acid, and a 0.5 M Ti(III)-citrate-EDTA solution, appear to be at capacity at depths where aqueous As is highest; this suggests that sorption limitations may, in part, explain the aqueous As depth profile at this site. Competition for sorption sites by silicate, phosphate, and carbonate oxyanions appear to sustain elevated aqueous As levels in the upper aquifer. Furthermore, geochemical profiles are consistent with the hypothesis that past or ongoing reductive dissolution of Fe(III) oxyhydroxides acts synergistically with competitive sorption to maintain elevated dissolved As levels in the upper aquifer. Microprobe data indicate substantial spatial comapping between As and Fe in both the upper and deep aquifer sediments, and microscopic observations reveal ubiquitous Fe coatings on most solid phases, including quartz, feldspars, and aluminosilicates. Extraction results and XRD analysis of density/magnetic separates suggest that these coatings may comprise predominantly Fe(II) and mixed valence Fe solids, although the presence of Fe(III) oxyhydroxides can not be ruled out. These data suggest As release may continue to be linked to dissolution processes targeting Fe, or Fe-rich, phases in these aquifers.
NASA Astrophysics Data System (ADS)
Liang, Liu; Liu, Ya-Ling; Liu, Ya; Peng, Hao-Ping; Wang, Jian-Hua; Su, Xu-Ping
Fe/(Zn-6%Al-x%Mg) solid-liquid diffusion couples were kept at various temperatures for different periods of time to investigate the formation and growth of the Fe-Al alloy layer. Scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and X-ray diffraction (XRD) were used to study the constituents and morphology of the Fe-Al alloy layer. It was found that the Fe2Al5Znx phase layer forms close to the iron sheet and the FeAl3Znx phase layer forms near the side of the melted Zn-6%Al-3%Mg in diffusion couples. When the Fe/(Zn-6%Al-3%Mg) diffusion couple is kept at 510∘C for more than 15min, a continuous Fe-Al alloy layer is formed on the interface of the diffusion couple. Among all Fe/(Zn-6%Al-x%Mg) solid-liquid diffusion couples, the Fe-Al alloy layer on the interface of the Fe/(Zn-6% Al-3% Mg) diffusion couple is the thinnest. The Fe-Al alloy layer forms only when the diffusion temperature is above 475∘. These results show that the Fe-Al alloy layer in Fe/(Zn-6%Al-x%Mg) solid-liquid diffusion couples is composed of Fe2Al5Znx and FeAl3Znx phase layers. Increasing the diffusing temperature and time period would promote the formation and growth of the Fe-Al alloy layer. When the Mg content in the Fe/(Zn-6%Al-x%Mg) diffusion couples is 3%, the growth of the Fe-Al alloy layer is inhibited. These results may explain why there is no obvious Fe-Al alloy layer formed on the interface of steel with a Zn-6%Al-3%Mg coating.
Chemical Separation of Fe-Ni Particles after Impact
NASA Astrophysics Data System (ADS)
Miura, Y.; Fukuyama, S.; Kedves, M. A.; Yamori, A.; Okamoto, M.; Gucsik, A.
Tiny grains of Fe-Ni system originated from planetesimals or meteoroids can remain under solid (or melt)-solid impact reactions even after impact process, probably together with high pressure form of Fe phase. Impact fragment with major Fe-Si (-Ni) system can be formed under vapor condition of impact reaction from terrestrial and artificial impact craters and spherules, and those with Ni-Cl (-S) system in composi- tion are formed under vapor condition of artificial impact experiments on the Barringer iron meteorite. These impact grains of Fe-bearing composition or high pressure form of iron-rich phases will be found probably on the asteroids in future exploration
NASA Astrophysics Data System (ADS)
Tao, R.; Fei, Y.
2017-12-01
Planetary cooling leads to solidification of any initially molten metallic core. Some terrestrial cores (e.g. Mercury) are formed and differentiated under relatively reduced conditions, and they are thought to be composed of Fe-S-Si. However, there are limited understanding of the phase relations in the Fe-S-Si system at high pressure and temperature. In this study, we conducted high-pressure experiments to investigate the phase relations in the Fe-S-Si system up to 25 GPa. Experimental results show that the liquidus and solidus in this study are slightly lower than those in the Fe-S binary system for the same S concentration in liquid at same pressure. The Fe3S, which is supposed to be the stable sub-solidus S-bearing phase in the Fe-S binary system above 17 GPa, is not observed in the Fe-S-Si system at 21 GPa. Almost all S prefers to partition into liquid, while the distribution of Si between solid and liquid depends on experimental P and T conditions. We obtained the partition coefficient log(KDSi) by fitting the experimental data as a function of P, T and S concentration in liquid. At a constant pressure, the log(KDSi) linearly decreases with 1/T(K). With increase of pressure, the slopes of linear correlation between log(KDSi) and 1/T(K) decreases, indicating that more Si partitions into solid at higher pressure. In order to interpolate and extrapolate the phase relations over a wide pressure and temperature range, we established a comprehensive thermodynamic model in the Fe-S-Si system. The results will be used to constrain the distribution of S and Si between solid inner core and liquid outer core for a range of planet sizes. A Si-rich solid inner core and a S-rich liquid outer core are suggested for an iron-rich core.
Bae, Yeunook; Kim, Dooil; Cho, Hyun-Hee; Singhal, Naresh; Park, Jae-Woo
2012-12-01
In this research, we conducted trichloroethylene (TCE) reduction in a column filled with iron and iron-reducing bacteria (IRB) and developed a mathematical model to investigate the critical reactions between active species in iron/IRB/contaminant systems. The formation of ferrous iron (Fe(II)) in this system with IRB and zero-valent iron (ZVI, Fe(0)) coated with a ferric iron (Fe(III)) crust significantly affected TCE reduction and IRB respiration in various ways. This study presents a new framework for transformation property and reducing ability of both dissolved (Fe(II)(dissolved)) and solid form ferrous iron (Fe(II)(solid)). Results showed that TCE reduction was strongly depressed by Fe(II)(solid) rather than by other inhibitors (e.g., Fe(III) and lactate), suggesting that Fe(II)(solid) might reduce IRB activation due to attachment to IRB cells. Newly exposed Fe(0) from the released Fe(II)(dissolved) was a strong contributor to TCE reduction compared to Fe(II)(solid). In addition, our research confirmed that less Fe(II)(solid) production strongly supported long-term TCE reduction because it may create an easier TCE approach to Fe(0) or increase IRB growth. Our findings will aid the understanding of the contributions of iron media (e.g., Fe(II)(solid), Fe(II)(dissolved), Fe(III), and Fe(0)) to IRB for decontamination in natural groundwater systems. Copyright © 2012 Elsevier Ltd. All rights reserved.
Phase relationships of the system Fe-Ni-S and structure of the high-pressure phase of (Fe1-xNix)3S2
NASA Astrophysics Data System (ADS)
Urakawa, Satoru; Kamuro, Ryota; Suzuki, Akio; Kikegawa, Takumi
2018-04-01
The phase relationships of the Fe-Ni-S system at 15 GPa were studied by high pressure quench experiments. The stability fields of (Fe,Ni)3S and (Fe,Ni)3S2 and the melting relationships of the Fe-Ni-S system were determined as a function of Ni content. The (Fe,Ni)3S solid solution is stable in the composition of Ni/(Fe + Ni) > 0.7 and melts incongruently into an Fe-Ni alloy + liquid. The (Fe,Ni)3S2 makes a complete solid solution and melts incongruently into (Fe,Ni)S + liquid, whose structure was determined to show Cmcm-orthorhombic symmetry by in situ synchrotron X-ray diffraction experiments. The eutectic contains about 30 at.% of S, and its temperature decreases with increasing Ni content with a rate of ∼5 K/at.% from 1175 K. The density of the Fe-FeS eutectic composition (Fe70S30) liquid is evaluated to be 6.93 ± 0.08 g/cm3 at 15 GPa and 1200 K based on the Clausius-Clapeyron relations and densities of subsolidus phases. The Fe-Ni-S liquids are a primary sulfur-bearing phase in the deep mantle with a reducing condition (250-660 km depth), and they would play a significant role in the carbon cycle as a carbon host as well as in the generation of diamond.
Synthesis of AlFeCuCrMg{sub x} (x = 0, 0.5, 1, 1.7) alloy powders by mechanical alloying
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maulik, Ornov; Kumar, Vinod, E-mail: vkt.meta@mnit.ac.in; Adjunct Faculty, Materials Research Centre, Malaviya National Institute of Technology, Jaipur 302017
2015-12-15
Novel AlFeCuCrMg{sub x} (x = 0, 0.5, 1, 1.7 mol) high-entropy alloys (HEAs) were synthesized by mechanical alloying. The effect of Mg content on the phase evolution of HEAs was investigated using X-Ray diffractometry (XRD), transmission electron microscopy (TEM) and selected area electron diffraction (SAED) pattern analysis. The particle morphology and composition of HEAs were investigated by scanning electron microscopy (SEM). Thermodynamic parameters were calculated and analyzed to explain the formation of a solid solution. XRD analysis revealed BCC as major phase and FCC as a minor phase in as-milled AlFeCuCr and AlFeCuCrMg{sub 0.5} HEAs. Also, XRD analysis of as-milledmore » AlFeCuCrMg, AlFeCuCrMg{sub 1.7} confirmed the formation of two BCC phases (BCC 1 and BCC 2). TEM–SAED analysis of AlFeCuCrMg{sub x} HEAs concurred with XRD results. Microstructural features and mechanism for solid solution formation have been conferred in detail. Phase formation of the present HEAs has been correlated with calculated thermodynamic parameters. Differential thermal analysis (TGA-DTA) of these alloys confirmed that there is no substantial phase change up to 500 °C. - Highlights: • Novel AlFeCuCrMg{sub x} (x = 0, 0.5, 1, 1.7) HEAs were prepared by mechanical alloying. • Phase evolution and lattice parameter were studied by X-Ray Diffraction. • Crystallite size and lattice microstrain calculated failed to obey the Williamson–Hall method. • Criterions for formation of simple solid solution were compared to the thermodynamic parameters of the present HEAs. • Increase in the Mg concentration in AlMg{sub x}FeCuCr (x = 0, 0.5, 1, 1.7) HEAs supports the formation of BCC phase.« less
Fine structure of Fe-Co-Ga and Fe-Cr-Ga alloys with low Ga content
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kleinerman, Nadezhda M., E-mail: kleinerman@imp.uran.ru; Serikov, Vadim V., E-mail: kleinerman@imp.uran.ru; Vershinin, Aleksandr V., E-mail: kleinerman@imp.uran.ru
2014-10-27
Investigation of Ga influence on the structure of Fe-Cr and Fe-Co alloys was performed with the use of {sup 57}Fe Mössbauer spectroscopy and X-ray diffraction methods. In the alloys of the Fe-Cr system, doping with Ga handicaps the decomposition of solid solutions, observed in the binary alloys, and increases its stability. In the alloys with Co, Ga also favors the uniformity of solid solutions. The analysis of Mössbauer experiments gives some grounds to conclude that if, owing to liquation, clusterization, or initial stages of phase separation, there exist regions enriched in iron, some amount of Ga atoms prefer to entermore » the nearest surroundings of iron atoms, thus forming binary Fe-Ga regions (or phases)« less
Nicholas, Sarah L.; Erickson, Melinda L.; Woodruff, Laurel G.; ...
2017-05-19
Arsenic (As) is a geogenic contaminant affecting groundwater in geologically diverse systems globally. Arsenic release from aquifer sediments to groundwater is favored when biogeochemical conditions, especially oxidation-reduction (redox) potential, in aquifers fluctuate. The specific objective of this research is to identify the solid-phase sources and geochemical mechanisms of release of As in aquifers of the Des Moines Lobe glacial advance. The overarching concept is that conditions present at the aquifer-aquitard interfaces promote a suite of geochemical reactions leading to mineral alteration and release of As to groundwater. A microprobe X-ray absorption spectroscopy (μXAS) approach is developed and applied to rotosonicmore » drill core samples to identify the solid-phase speciation of As in aquifer, aquitard, and aquifer-aquitard interface sediments. This approach addresses the low solid-phase As concentrations, as well as the fine-scale physical and chemical heterogeneity of the sediments. The spectroscopy data are analyzed using novel cosine-distance and correlation-distance hierarchical clustering for Fe 1s and As 1s μXAS datasets. The solid-phase Fe and As speciation is then interpreted using sediment and well-water chemical data to propose solid-phase As reservoirs and release mechanisms. The results confirm that in two of the three locations studied, the glacial sediment forming the aquitard is the source of As to the aquifer sediments. The results are consistent with three different As release mechanisms: (1) desorption from Fe (oxyhydr)oxides, (2) reductive dissolution of Fe (oxyhydr)oxides, and (3) oxidative dissolution of Fe sulfides. The findings confirm that glacial sediments at the interface between aquifer and aquitard are geochemically active zones for As. The diversity of As release mechanisms is consistent with the geographic heterogeneity seen in the distribution of elevated-As wells.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nicholas, Sarah L.; Erickson, Melinda L.; Woodruff, Laurel G.
Arsenic (As) is a geogenic contaminant affecting groundwater in geologically diverse systems globally. Arsenic release from aquifer sediments to groundwater is favored when biogeochemical conditions, especially oxidation-reduction (redox) potential, in aquifers fluctuate. The specific objective of this research is to identify the solid-phase sources and geochemical mechanisms of release of As in aquifers of the Des Moines Lobe glacial advance. The overarching concept is that conditions present at the aquifer-aquitard interfaces promote a suite of geochemical reactions leading to mineral alteration and release of As to groundwater. A microprobe X-ray absorption spectroscopy (μXAS) approach is developed and applied to rotosonicmore » drill core samples to identify the solid-phase speciation of As in aquifer, aquitard, and aquifer-aquitard interface sediments. This approach addresses the low solid-phase As concentrations, as well as the fine-scale physical and chemical heterogeneity of the sediments. The spectroscopy data are analyzed using novel cosine-distance and correlation-distance hierarchical clustering for Fe 1s and As 1s μXAS datasets. The solid-phase Fe and As speciation is then interpreted using sediment and well-water chemical data to propose solid-phase As reservoirs and release mechanisms. The results confirm that in two of the three locations studied, the glacial sediment forming the aquitard is the source of As to the aquifer sediments. The results are consistent with three different As release mechanisms: (1) desorption from Fe (oxyhydr)oxides, (2) reductive dissolution of Fe (oxyhydr)oxides, and (3) oxidative dissolution of Fe sulfides. The findings confirm that glacial sediments at the interface between aquifer and aquitard are geochemically active zones for As. The diversity of As release mechanisms is consistent with the geographic heterogeneity seen in the distribution of elevated-As wells.« less
NASA Astrophysics Data System (ADS)
Harmand, M.; Krygier, A.; Appel, K.; Galtier, E.; Hartley, N.; Konopkova, Z.; Lee, H. J.; McBride, E. E.; Miyanishi, K.; Nagler, B.; Nemausat, R.; Vinci, T.; Zhu, D.; Ozaki, N.; Fiquet, G.
2017-12-01
An accurate knowledge of the properties of iron and iron alloys at high pressures and temperatures is crucial for understanding and modelling planetary interiors. While Earth-size and Super-Earth Exoplanets are being discovered in increasingly large numbers, access to detailed information on liquid properties, melting curves and even solid phases of iron and iron at the pressures and temperatures of their interiors is still strongly limited. In this context, XFEL sources coupled with high-energy lasers afford unique opportunities to measure microscopic structural properties at far extreme conditions. Also the achievable time resolution allows the shock history and phase transition mechanisms to be followed during laser compression, improving our understanding of the high pressure and high strain experiments. Here we present recent studies devoted to investigate the solid-solid and solid-liquid transition in laser-shocked iron and iron alloys (Fe-Si, Fe-C and Fe-O alloys) using X-ray diffraction and X-ray diffuse scattering. Experiment were performed at the MEC end-station of the LCLS facility at SLAC (USA). Detection of the diffuse scattering allowed the identification of the first liquid peak position along the Hugoniot, up to 4 Mbar. The time resolution shows ultrafast (between several tens and several hundreds of picoseconds) solid-solid and solid-liquid phase transitions. Future developments at XFEL facilities will enable detailed studies of the solid and liquid structures of iron and iron alloys as well as out-of-Hugoniot studies.
NASA Astrophysics Data System (ADS)
Pommier, Anne; Laurenz, Vera; Davies, Christopher J.; Frost, Daniel J.
2018-05-01
We report an experimental investigation of phase equilibria in the Fe-S and Fe-S-O systems. Experiments were performed at high temperatures (1400-1850 °C) and high pressures (14 and 20 GPa) using a multi-anvil apparatus. The results of this study are used to understand the effect of sulfur and oxygen on core dynamics in small terrestrial bodies. We observe that the formation of solid FeO grains occurs at the Fe-S liquid - Fe solid interface at high temperature ( > 1400 °C at 20 GPa). Oxygen fugacities calculated for each O-bearing sample show that redox conditions vary from ΔIW = -0.65 to 0. Considering the relative density of each phase and existing evolutionary models of terrestrial cores, we apply our experimental results to the cores of Mars and Ganymede. We suggest that the presence of FeO in small terrestrial bodies tends to contribute to outer-core compositional stratification. Depending on the redox and thermal history of the planet, FeO may also help form a transitional redox zone at the core-mantle boundary.
Arsenic repartitioning during biogenic sulfidization and transformation of ferrihydrite
NASA Astrophysics Data System (ADS)
Kocar, Benjamin D.; Borch, Thomas; Fendorf, Scott
2010-02-01
Iron (hydr)oxides are strong sorbents of arsenic (As) that undergo reductive dissolution and transformation upon reaction with dissolved sulfide. Here we examine the transformation and dissolution of As-bearing ferrihydrite and subsequent As repartitioning amongst secondary phases during biotic sulfate reduction. Columns initially containing As(V)-ferrihydrite coated sand, inoculated with the sulfate reducing bacteria Desulfovibrio vulgaris (Hildenborough), were eluted with artificial groundwater containing sulfate and lactate. Rapid and consistent sulfate reduction coupled with lactate oxidation is observed at low As(V) loading (10% of the adsorption maximum). The dominant Fe solid phase transformation products at low As loading include amorphous FeS within the zone of sulfate reduction (near the inlet of the column) and magnetite downstream where Fe(II) (aq) concentrations increase; As is displaced from the zone of sulfidogenesis and Fe(III) (s) depletion. At high As(V) loading (50% of the adsorption maximum), sulfate reduction and lactate oxidation are initially slow but gradually increase over time, and all As(V) is reduced to As(III) by the end of experimentation. With the higher As loading, green rust(s), as opposed to magnetite, is a dominant Fe solid phase product. Independent of loading, As is strongly associated with magnetite and residual ferrihydrite, while being excluded from green rust and iron sulfide. Our observations illustrate that sulfidogenesis occurring in proximity with Fe (hydr)oxides induce Fe solid phase transformation and changes in As partitioning; formation of As sulfide minerals, in particular, is inhibited by reactive Fe(III) or Fe(II) either through sulfide oxidation or complexation.
Arsenic Repartitioning during Biogenic Sulfidization and Transformation of Ferrihydrite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kocar, B.; Borch, T; Fendorf, S
Iron (hydr)oxides are strong sorbents of arsenic (As) that undergo reductive dissolution and transformation upon reaction with dissolved sulfide. Here we examine the transformation and dissolution of As-bearing ferrihydrite and subsequent As repartitioning amongst secondary phases during biotic sulfate reduction. Columns initially containing As(V)-ferrihydrite coated sand, inoculated with the sulfate reducing bacteria Desulfovibrio vulgaris (Hildenborough), were eluted with artificial groundwater containing sulfate and lactate. Rapid and consistent sulfate reduction coupled with lactate oxidation is observed at low As(V) loading (10% of the adsorption maximum). The dominant Fe solid phase transformation products at low As loading include amorphous FeS within themore » zone of sulfate reduction (near the inlet of the column) and magnetite downstream where Fe(II){sub (aq)} concentrations increase; As is displaced from the zone of sulfidogenesis and Fe(III){sub (s)} depletion. At high As(V) loading (50% of the adsorption maximum), sulfate reduction and lactate oxidation are initially slow but gradually increase over time, and all As(V) is reduced to As(III) by the end of experimentation. With the higher As loading, green rust(s), as opposed to magnetite, is a dominant Fe solid phase product. Independent of loading, As is strongly associated with magnetite and residual ferrihydrite, while being excluded from green rust and iron sulfide. Our observations illustrate that sulfidogenesis occurring in proximity with Fe (hydr)oxides induce Fe solid phase transformation and changes in As partitioning; formation of As sulfide minerals, in particular, is inhibited by reactive Fe(III) or Fe(II) either through sulfide oxidation or complexation.« less
Arsenic repartitioning during biogenic sulfidization and transformation of ferrihydrite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kocar, Benjamin D.; Borch, Thomas; Fendorf, Scott
Iron (hydr)oxides are strong sorbents of arsenic (As) that undergo reductive dissolution and transformation upon reaction with dissolved sulfide. Here we examine the transformation and dissolution of As-bearing ferrihydrite and subsequent As repartitioning amongst secondary phases during biotic sulfate reduction. Columns initially containing As(V)-ferrihydrite coated sand, inoculated with the sulfate reducing bacteria Desulfovibrio vulgaris (Hildenborough), were eluted with artificial groundwater containing sulfate and lactate. Rapid and consistent sulfate reduction coupled with lactate oxidation is observed at low As(V) loading (10% of the adsorption maximum). The dominant Fe solid phase transformation products at low As loading include amorphous FeS within themore » zone of sulfate reduction (near the inlet of the column) and magnetite downstream where Fe(II)(aq) concentrations increase; As is displaced from the zone of sulfidogenesis and Fe(III)(s) depletion. At high As(V) loading (50% of the adsorption maximum), sulfate reduction and lactate oxidation are initially slow but gradually increase over time, and all As(V) is reduced to As(III) by the end of experimentation. With the higher As loading, green rust(s), as opposed to magnetite, is a dominant Fe solid phase product. Independent of loading, As is strongly associated with magnetite and residual ferrihydrite, while being excluded from green rust and iron sulfide. Our observations illustrate that sulfidogenesis occurring in proximity with Fe (hydr)oxides induce Fe solid phase transformation and changes in As partitioning; formation of As sulfide minerals, in particular, is inhibited by reactive Fe(III) or Fe(II) either through sulfide oxidation or complexation.« less
Iron Cycling in Sediment of the North Atlantic: Preliminary Results from R/V Knorr Expedition 223
NASA Astrophysics Data System (ADS)
Anderson, C. H.; Estes, E. R.; Dyar, M. D.; Murray, R. W.; Spivack, A. J.; Sauvage, J.; McKinley, C. C.; Present, T. M.; Homola, K.; Pockalny, R. A.; D'Hondt, S.
2015-12-01
Iron (Fe) in marine sediments is a significant microbial electron acceptor [Fe(III)] in suboxic conditions and is an electron donor [Fe(II)] in oxic conditions. In the transition from oxic to suboxic sediment, a portion of solid Fe is reduced and mobilized as soluble Fe(II) into interstitial water during the oxidation of organic matter. The presence of Fe and its oxidation state in oxic sediment provides insight into an important metabolic and mineral reaction pathway in subseafloor sediment. We recovered bulk sediment and interstitial water at western North Atlantic sites during Expedition 223 on the R/V Knorr in November, 2014. The expedition targeted regions with predominantly oxic sediment and regions with predominantly anoxic sediment, ideal for investigating redox Fe cycling between solid and aqueous phases. At Site 10 (14.4008N, 50.6209W, 4455m water depth), interstitial dissolved oxygen is depleted within the upper few meters of sediment. At Site 12 (29.6767N, 58.3285W, 5637m water depth), interstitial dissolved oxygen is present throughout the cored sediment column (10s of meters). Here we present total solid Fe concentration for 45 bulk sediment samples and total aqueous Fe and Mn concentrations for 50 interstitial water samples analyzed via ICP-ES. We additionally present Fe(II) and Fe(III) speciation results from 10 solid sediment samples determined by Mossbauer spectroscopy. We trace downcore fluctuations in Fe in solid and aqueous phases to understand Fe cycling in oxic, suboxic, and transitional regimes. Our preliminary data indicate that solid Fe concentration ranges from 4-6 wt % at the oxic site; aqueous Fe ranges from below detection to 20μM and aqueous Mn ranges from 1 to 125 μM at the anoxic site. In the anoxic sediment (Site 10), 86-90% of the total Fe is oxidized [Fe(III)] and 10-14% as reduced [Fe(II)], compared to 3-6% as reduced [Fe(II)] at the oxic site (Site 12), even in sediment as old as 25 million years.
NASA Astrophysics Data System (ADS)
Dong, Shuwen; Yan, Shuang; Gao, Wenyuan; Liu, Guishan; Hao, Hongshun
2018-07-01
A facile and economic procedure was provided to synthesize α-Fe2O3 nanofibers. In this procedure, porous α-Fe2O3 nanofibers were obtained by a single-polymer/binary-solvent system, while solid α-Fe2O3 nanofibers were prepared by a single-polymer/single-solvent system. The crystal structure and morphology of both samples were characterized by x-ray diffraction, scanning electron microscopy, transmission electron microscopy and nitrogen adsorption/desorption isotherms. The formation mechanism of porous structure was based on solvent evaporation-induced phase separation by the use of mixed solvents with different volatility. Furthermore, ethanol-sensing performance of the porous α-Fe2O3 nanofibers was evaluated and compared with solid α-Fe2O3 nanofibers. Results from gas-sensing measurements reveal that porous α-Fe2O3 nanofibers exhibit higher sensitivity and slightly longer recovery time than solid α-Fe2O3 nanofibers. Over all, the gas sensor based on porous α-Fe2O3 nanofibers shows excellent ethanol-sensing capability with high sensitivity and ultrafast response/recovery behaviors, indicating its potential application as a real-time monitoring gas sensor.
NASA Astrophysics Data System (ADS)
Dong, Shuwen; Yan, Shuang; Gao, Wenyuan; Liu, Guishan; Hao, Hongshun
2018-04-01
A facile and economic procedure was provided to synthesize α-Fe2O3 nanofibers. In this procedure, porous α-Fe2O3 nanofibers were obtained by a single-polymer/binary-solvent system, while solid α-Fe2O3 nanofibers were prepared by a single-polymer/single-solvent system. The crystal structure and morphology of both samples were characterized by x-ray diffraction, scanning electron microscopy, transmission electron microscopy and nitrogen adsorption/desorption isotherms. The formation mechanism of porous structure was based on solvent evaporation-induced phase separation by the use of mixed solvents with different volatility. Furthermore, ethanol-sensing performance of the porous α-Fe2O3 nanofibers was evaluated and compared with solid α-Fe2O3 nanofibers. Results from gas-sensing measurements reveal that porous α-Fe2O3 nanofibers exhibit higher sensitivity and slightly longer recovery time than solid α-Fe2O3 nanofibers. Over all, the gas sensor based on porous α-Fe2O3 nanofibers shows excellent ethanol-sensing capability with high sensitivity and ultrafast response/recovery behaviors, indicating its potential application as a real-time monitoring gas sensor.
Park, Jeong; Comfort, Steve D; Shea, Patrick J; Kim, Jong Sung
2005-12-15
Mixtures of energetic compounds pose a remediation problem for munitions-contaminated soil. Although treatment with zerovalent iron (Fe0) can be effective, RDX and TNT are more readily destroyed than HMX. Adding didecyldimethylammonium bromide (didecyl) at 2% w/v with 3% (w/v) Fe0 to a 20% slurry of Los Alamos National Laboratory soil containing solid-phase HMX (45 000 mg/kg) resulted in >80% destruction within 6 days. Because the HMX concentration did not increase in solution and the didecyl equilibrium concentration was well below the critical micelle concentration, we conclude thatthe solution primarily contained didecyl monomers. The adsorption isotherm for didecyl on iron is consistent with electrostatic adsorption of monomers and some hydrophobic partitioning at low equilibrium concentrations. Fe0 pretreated with didecyl was superior to Fe0 alone or mixed with didecyl in removing HMX from solution, but it was less effective than Fe0 + didecyl when solid-phase HMX was present. Reseeding HMX to mimic dissolution indicated an initial high reactivity of didecyl-pretreated Fe0, but the reaction slowed with each HMX addition. In contrast, reaction rates were lower but reactivity was maintained when Fe0 and didecyl were added together and didecyl was included in fresh HMX solutions. Destruction of solid-phase HMX requires low didecyl concentrations in solution so that hydrophobic patches are maintained on the iron surface.
Hess, Michael; Sasaki, Tsuyoshi; Villevieille, Claire; Novák, Petr
2015-01-01
Lithium-ion batteries are widely used for portable applications today; however, often suffer from limited recharge rates. One reason for such limitation can be a reduced active surface area during phase separation. Here we report a technique combining high-resolution operando synchrotron X-ray diffraction coupled with electrochemical impedance spectroscopy to directly track non-equilibrium intermediate phases in lithium-ion battery materials. LiFePO4, for example, is known to undergo phase separation when cycled under low-current-density conditions. However, operando X-ray diffraction under ultra-high-rate alternating current and direct current excitation reveal a continuous but current-dependent, solid solution reaction between LiFePO4 and FePO4 which is consistent with previous experiments and calculations. In addition, the formation of a preferred phase with a composition similar to the eutectoid composition, Li0.625FePO4, is evident. Even at a low rate of 0.1C, ∼20% of the X-ray diffractogram can be attributed to non-equilibrium phases, which changes our understanding of the intercalation dynamics in LiFePO4. PMID:26345306
Hess, Michael; Sasaki, Tsuyoshi; Villevieille, Claire; Novák, Petr
2015-09-08
Lithium-ion batteries are widely used for portable applications today; however, often suffer from limited recharge rates. One reason for such limitation can be a reduced active surface area during phase separation. Here we report a technique combining high-resolution operando synchrotron X-ray diffraction coupled with electrochemical impedance spectroscopy to directly track non-equilibrium intermediate phases in lithium-ion battery materials. LiFePO4, for example, is known to undergo phase separation when cycled under low-current-density conditions. However, operando X-ray diffraction under ultra-high-rate alternating current and direct current excitation reveal a continuous but current-dependent, solid solution reaction between LiFePO4 and FePO4 which is consistent with previous experiments and calculations. In addition, the formation of a preferred phase with a composition similar to the eutectoid composition, Li0.625FePO4, is evident. Even at a low rate of 0.1C, ∼20% of the X-ray diffractogram can be attributed to non-equilibrium phases, which changes our understanding of the intercalation dynamics in LiFePO4.
Laser pyrolysis fabrication of ferromagnetic gamma'-Fe4N and FeC nanoparticles
NASA Technical Reports Server (NTRS)
Grimes, C. A.; Qian, D.; Dickey, E. C.; Allen, J. L.; Eklund, P. C.
2000-01-01
Using the laser pyrolysis method, single phase gamma'-Fe4N nanoparticles were prepared by a two step method involving preparation of nanoscale iron oxide and a subsequent gas-solid nitridation reaction. Single phase Fe3C and Fe7C3 could be prepared by laser pyrolysis from Fe(CO)5 and 3C2H4 directly. Characterization techniques such as XRD, TEM and vibrating sample magnetometer were used to measure phase structure, particle size and magnetic properties of these nanoscale nitride and carbide particles. c2000 American Journal of Physics.
Structural and Mössbauer characterization of the ball milled Fe x(Cr 2O 3) 1- x system
NASA Astrophysics Data System (ADS)
Biondo, Valdecir; de Medeiros, Suzana Nóbrega; Paesano, Andrea, Jr.; Ghivelder, Luis; Hallouche, Bachir; da Cunha, João Batista Marimon
2009-08-01
The Fe x(Cr 2O 3) 1- x system, with 0.10 ≤ X ≤ 0.80, was mechanically processed for 24 h in a high-energy ball-mill. In order to examine the possible formation of iron-chromium oxides and alloys, the milled samples were, later, thermally annealed in inert (argon) and reducing (hydrogen) atmospheres. The as-milled and annealed products were characterized by X-ray diffraction, Mössbauer spectroscopy, transmission electron microscopy and magnetization. The as-milled samples showed the formation of an Fe 1+ YCr 2- YO 4- δ nanostructured and disordered spinel phase, the α 1-Fe(Cr) and α 2-Cr(Fe) solid solutions and the presence of non-exhausted precursors. For the samples annealed in inert atmosphere, the chromite (FeCr 2O 4) formation and the recrystallization of the precursors were verified. The hydrogen treated samples revealed the reduction of the spinel phase, with the phase separation of the chromia phase and retention of the Fe-Cr solid solutions. All the samples, either as-milled or annealed, presented the magnetization versus applied field curves typical for superparamagnetic systems.
Jiang, Ling-Feng; Chen, Bo-Cheng; Chen, Ben; Li, Xue-Jian; Liao, Hai-Lin; Zhang, Wen-Yan; Wu, Lin
2017-07-01
The extraction adsorbent was fabricated by immobilizing the highly specific recognition and binding of aptamer onto the surface of Fe 3 O 4 magnetic nanoparticles, which not only acted as recognition elements to recognize and capture the target molecule berberine from the extract of Cortex phellodendri, but also could favor the rapid separation and purification of the bound berberine by using an external magnet. The developed solid-phase extraction method in this work was useful for the selective extraction and determination of berberine in Cortex phellodendri extracts. Various conditions such as the amount of aptamer-functionalized Fe 3 O 4 magnetic nanoparticles, extraction time, temperature, pH value, Mg 2+ concentration, elution time and solvent were optimized for the solid-phase extraction of berberine. Under optimal conditions, the purity of berberine extracted from Cortex phellodendri was as high as 98.7% compared with that of 4.85% in the extract, indicating that aptamer-functionalized Fe 3 O 4 magnetic nanoparticles-based solid-phase extraction method was very effective for berberine enrichment and separation from a complex herb extract. The applicability and reliability of the developed solid-phase extraction method were demonstrated by separating berberine from nine different concentrations of one Cortex phellodendri extract. The relative recoveries of the spiked solutions of all the samples were between 95.4 and 111.3%, with relative standard deviations ranging between 0.57 and 1.85%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Phase Equilibria and Magnetic Phases in the Ce-Fe-Co-B System
Wang, Tian; Kevorkov, Dmytro; Medraj, Mamoun
2016-01-01
Ce-Fe-Co-B is a promising system for permanent magnets. A high-throughput screening method combining diffusion couples, key alloys, Scanning Electron Microscope/Wavelength Dispersive X-ray Spectroscope (SEM/WDS), and Magnetic Force Microscope (MFM) is used in this research to understand the phase equilibria and to explore promising magnetic phases in this system. Three magnetic phases were detected and their homogeneity ranges were determined at 900 °C, which were presented by the formulae: Ce2Fe14−xCoxB (0 ≤ x ≤ 4.76), CeCo4−xFexB (0 ≤ x ≤ 3.18), and Ce3Co11−x FexB4 (0 ≤ x ≤ 6.66). The phase relations among the magnetic phases in this system have been studied. Ce2(Fe, Co)14B appears to have stronger magnetization than Ce(Co, Fe)4B and Ce3(Co, Fe)11B4 from MFM analysis when comparing the magnetic interactions of selected key alloys. Also, a non-magnetic CeCo12−xFexB6 (0 ≤ x ≤ 8.74) phase was detected in this system. A boron-rich solid solution with Ce13FexCoyB45 (32 ≤ x ≤ 39, 3 ≤ y ≤ 10) chemical composition was also observed. However, the crystal structure of this phase could not be found in the literature. Moreover, ternary solid solutions ε1 (Ce2Fe17−xCox (0 ≤ x ≤ 12.35)) and ε2 (Ce2Co17−xFex (0 ≤ x ≤ 3.57)) were found to form between Ce2Fe17 and Ce2Co17 in the Ce-Fe-Co ternary system at 900 °C. PMID:28772374
Influence of defect distribution on the thermoelectric properties of FeNbSb based materials.
Guo, Shuping; Yang, Kaishuai; Zeng, Zhi; Zhang, Yongsheng
2018-05-21
Doping and alloying are important methodologies to improve the thermoelectric performance of FeNbSb based materials. To fully understand the influence of point defects on the thermoelectric properties, we have used density functional calculations in combination with the cluster expansion and Monte Carlo methods to examine the defect distribution behaviors in the mesoscopic FeNb1-xVxSb and FeNb1-xTixSb systems. We find that V and Ti exhibit different distribution behaviors in FeNbSb at low temperature: forming the FeNbSb-FeVSb phase separations in the FeNb1-xVxSb system but two thermodynamically stable phases in FeNb1-xTixSb. Based on the calculated effective mass and band degeneracy, it seems the doping concentration of V or Ti in FeNbSb has little effect on the electrical properties, except for one of the theoretically predicted stable Ti phases (Fe6Nb5Ti1Sb6). Thus, an essential methodology to improve the thermoelectric performance of FeNbSb should rely on phonon scattering to decrease the thermal conductivity. According to the theoretically determined phase diagrams of Fe(Nb,V)Sb and Fe(Nb,Ti)Sb, we propose the (composition, temperature) conditions for the experimental synthesis to improve the thermoelectric performance of FeNbSb based materials: lowering the experimental preparation temperature to around the phase boundary to form a mixture of the solid solution and phase separation. The point defects in the solid solution effectively scatter the short-wavelength phonons and the (coherent or incoherent) interfaces introduced by the phase separation can additionally scatter the middle-wavelength phonons to further decrease the thermal conductivity. Moreover, the induced interfaces could enhance the Seebeck coefficient as well, through the energy filtering effect. Our results give insight into the understanding of the impact of the defect distribution on the thermoelectric performance of materials and strengthen the connection between theoretical predictions and experimental measurements.
Solid phase extraction of magnetic carbon doped Fe3O4 nanoparticles.
Yang, Jing; Li, Jia-yuan; Qiao, Jun-qin; Lian, Hong-zhen; Chen, Hong-yuan
2014-01-17
Carbon decorated Fe3O4 nanoparticles (Fe3O4/C) are promising magnetic solid-phase extraction (MSPE) sorbents in environmental and biological analysis. Fe3O4/C based MSPE method shows advantages of easy operation, rapidness, high sensitivity, and environmental friendliness. In this paper, the MSPE mechanism of Fe3O4/C nanoparticles has been comprehensively investigated, for the first time, through the following three efforts: (1) the comparison of extraction efficiency for polycyclic aromatic hydrocarbons (PAHs) between the Fe3O4/C sorbents and activated carbon; (2) the chromatographic retention behaviors of hydrophobic and hydrophilic compounds on Fe3O4/C nanoparticles as stationary phase; (3) related MSPE experiments for several typical compounds such as pyrene, naphthalene, benzene, phenol, resorcinol, anisole and thioanisole. It can be concluded that there are hybrid hydrophobic interaction and hydrogen bonding interaction or dipole-dipole attraction between Fe3O4/C sorbents and analytes. It is the existence of carbon and oxygen-containing functional groups coated on the surface of Fe3O4/C nanoparticles that is responsible for the effective extraction process. Copyright © 2013 Elsevier B.V. All rights reserved.
A microstructure-based model for shape distortion during liquid phase sintering
NASA Astrophysics Data System (ADS)
Upadhyaya, Anish
Tight dimensional control is a major concern in consolidation of alloys via liquid phase sintering. This research demonstrates the role of microstructure in controlling the bulk dimensional changes that occur during liquid phase sintering. The dimensional changes were measured using a coordinate measuring machine and also on a real-time basis using in situ video imaging. To quantify compact distortion, a distortion parameter is formulated which takes into consideration the compact distortion in radial as well as axial directions. The microstructural attributes considered in this study are as follows: solid content, dihedral angle, grain size, grain contiguity and connectivity, and solid-solubility. Sintering experiments were conducted with the W-Ni-Cu, W-Ni-Fe, Mo-Ni-Cu, and Fe-Cu systems. The alloy systems and the compositions were selected to give a range of microstructures during liquid phase sintering. The results show that distortion correlates with the measured microstructural attributes. Systems containing a high solid content, high grain coordination number and contiguity, and large dihedral angle have more structural rigidity. The results show that a minimum two-dimensional grain coordination number of 3.0 is necessary for shape preservation. Based on the experimental observations, a model is derived that relates the critical solid content required for maintaining structural rigidity to the dihedral angle. The critical solid content decreases with an increasing dihedral angle. Consequently, W-Cu alloys, which have a dihedral angle of about 95sp°, can be consolidated without gross distortion with as little as 20 vol.% solid. To comprehensively understand the gravitational effects in the evolution of both the microstructure and the macrostructure during liquid phase sintering, W-Ni-Fe alloys with W content varying from 78 to 93 wt.% were sintered in microgravity. Compositions that slump during ground-based sintering also distort when sintered under microgravity. In ground-based sintering, low solid content alloys distort with a typical elephant-foot profile, while in microgravity, the compacts tend to spheroidize. This study shows that microstructural segregation occurs in both ground-based as well as microgravity sintering. In ground-based experiments, because of the density difference between the solid and the liquid phase, the solid content increases from top to the bottom of the sample. In microgravity, the solid content increases from periphery to the center of the samples. A model is derived to show that grain agglomeration and segregation are energetically favored events and will therefore be inherent to the system, even in the absence of gravity. Real time distortion measurement in alloys having appreciable solid-solubility in the liquid phase, such as W-Ni-Fe and Fe-Cu, show that the bulk of distortion occur within the first 5 min of melt formation. Distortion in such systems can be minimized by presaturating the matrix with the solid phase.
Experimental Liquidus Studies of the Pb-Fe-Si-O System in Equilibrium with Metallic Pb
NASA Astrophysics Data System (ADS)
Shevchenko, M.; Jak, E.
2018-02-01
Phase equilibria of the Pb-Fe-Si-O system have been investigated at 943 K to 1773 K (670 °C to 1500 °C) for oxide liquid in equilibrium with liquid Pb metal and solid oxide phases: (a) quartz, tridymite, or cristobalite; (b) (fayalite + tridymite) or (fayalite + spinel); (c) spinel (Fe3O4); (d) complex lead-iron silicates (melanotekite PbO·FeO1.5·SiO2, barysilite 8PbO·FeO·6SiO2, 5PbO·FeO1.5·SiO2, and 6PbO·FeO1.5·SiO2); (e) lead silicates (Pb2SiO4, Pb11Si3O17); (f) lead ferrites (magnetoplumbite Pb1+ x Fe12- x O19- x solid solution range); and (g) lead oxide (PbO, massicot). High-temperature equilibration on primary phase or iridium substrates, followed by quenching and direct measurement of Pb, Fe, and Si concentrations in the phases with the electron probe X-ray microanalysis, has been used to accurately characterize the system in equilibrium with Pb metal. All results are projected onto the PbO-"FeO"-SiO2 plane for presentation purposes. The present study is the first systematic characterization of liquidus over a wide range of compositions in this system in equilibrium with metallic Pb.
Perovskite solid solutions with multiferroic morphotropic phase boundaries and property enhancement
NASA Astrophysics Data System (ADS)
Algueró, M.; Amorín, H.; Fernández-Posada, C. M.; Peña, O.; Ramos, P.; Vila, E.; Castro, A.
2016-05-01
Recently, large phase-change magnetoelectric response has been anticipated by a first-principles investigation of phases in the BiFeO3-BiCoO3 perovskite binary system, associated with the existence of a discontinuous morphotropic phase boundary (MPB) between multiferroic polymorphs of rhombohedral and tetragonal symmetries. This might be a general property of multiferroic phase instabilities, and a novel promising approach for room temperature magnetoelectricity. We review here our current investigations on the identification and study of additional material systems, alternative to BiFeO3-BiCoO3 that has only been obtained by high pressure synthesis. Three systems, whose phase diagrams were, in principle, liable to show multiferroic MPBs have been addressed: the BiMnO3-PbTiO3 and BiFeO3-PbTiO3 binary systems, and the BiFeO3-BiMnO3-PbTiO3 ternary one. A comprehensive study of multiferroism across different solid solutions was carried out based on electrical and magnetic characterizations, complemented with mechanical and electromechanical measurements. An in-depth structural analysis was also accomplished when necessary.
NASA Astrophysics Data System (ADS)
Deng, Liwei; Fei, Yingwei; Liu, Xi; Gong, Zizheng; Shahar, Anat
2013-08-01
High-pressure melting experiments in the Fe-S-C ternary and Fe-S-Si-C quaternary systems have been conducted in the range of 3.5-20 GPa and 920-1700 °C in the multi-anvil press. The mutual solubility, melting relations, and crystallization sequences were systematically investigated with changes of pressure, temperature and bulk composition. Five starting materials of Fe(84.69 wt%)-C(4.35 wt%)-S(7.85 wt%), Fe(84.87 wt%)-C(2.08 wt%)-S(11.41 wt%), Fe(86.36 wt%)-C(0.96 wt%)-S(10.31 wt%), Fe(85.71 wt%)-C(0.33 wt%)-S(11.86 wt%) and Fe(82.95 wt%)-C(0.66 wt%)-S(13.7 wt%)-Si(2.89 wt%) were employed. For Fe(84.69 wt%)-C(4.35 wt%)-S(7.85 wt%), the first crystallized phase is Fe3C at 5 GPa and Fe7C3 at 10-20 GPa. For Fe(84.87 wt%)-C(2.08 wt%)-S(11.41 wt%), Fe3C is the stable carbide at subsolidus temperature at 5-15 GPa. For Fe(86.36 wt%)-C(0.96 wt%)-S(10.31 wt%) and Fe(85.71 wt%)-C(0.33 wt%)-S(11.86 wt%), the first crystallized phase is metallic Fe instead of iron carbide at 5-10 GPa. The cotectic curves in Fe-S-C ternary system indicate only a small amount of C is needed to form an iron carbide solid inner core with the presence of S. Experiments on Fe(82.95 wt%)-C(0.66 wt%)-S(13.7 wt%)-Si(2.89 wt%) showed that a small amount of C does not significantly change the closure pressure of miscibility gap compared with that in Fe-S-Si system. It is observed that S preferentially partitions into molten iron while a significant amount of Si enters the solid phase with temperature decrease. Meanwhile, the C concentration in the liquid and solid iron metal changes little with temperature variations. If S, C and Si partitioning behavior between molten iron and solid iron metal with temperature remains the same under Earth's present core pressure conditions, the solid inner core should be iron dominated with dissolved Si. On the other hand, the liquid outer core will be S rich and Si poor. Moderate carbon will be evenly present in both solid and liquid cores. Based on our melting data in a multi-component system, no layered liquid core should exist in the Earth, Mars and Mercury.
Chou, I.-Ming; Phan, L.D.
1985-01-01
Solubility relations in the ternary system NaCl-FeCl2-H2O have been determined by the visual polythermal method at 1 atm from 20 to 85??C along six composition lines. These she composition lines are defined by mixing FeCl2??4H2O with six aqueous NaCl solutions containing 5, 10, 11, 15, 20, and 25 wt % of NaCl, respectively. The solid phases encountered in these experiments were NaCl and FeCl2??4H2O. The maximum uncertainties in these measurements are ??0.02 wt % NaCl and ??0.15??C. The data along each composition line were regressed to a smooth curve when only one solid phase was stable. When two solids were stable along a composition line, the data were regressed to two smooth curves, the intersection of which indicated the point where the two solids coexisted. The maximum deviation of the measured solubilities from the smoothed curves is 0.14 wt % FeCl2. Isothermal solubilities of halite and FeCl2??4H2O were calculated from these smoothed curves at 25, 50, and 70 ??C.
NASA Astrophysics Data System (ADS)
Na, Suok-Min; Yoo, Jin-Hyeong; Lambert, Paul K.; Jones, Nicholas J.
2018-05-01
High-entropy alloys (HEAs) containing multiple principle alloying elements exhibit unique properties so they are currently receiving great attention for developing innovative alloy designs. In FeCoNi-based HEAs, magnetic behaviors strongly depend on the addition of alloying elements, usually accompanied by structural changes. In this work, the effect of non-magnetic components on the ferromagnetic transition and magnetic behaviors in equiatomic FeCoNiCrX (X=Al, Ga, Mn and Sn) HEAs was investigated. Alloy ingots of nominal compositions of HEAs were prepared by arc melting and the button ingots were cut into discs for magnetic measurements as functions of magnetic field and temperature. The HEAs of FeCoNiCrMn and FeCoNiCrSn show typical paramagnetic behaviors, composed of solid solution FCC matrix, while the additions of Ga and Al in FeCoNiCr exhibit ferromagnetic behaviors, along with the coexistence of FCC and BCC phases due to spinodal decomposition. The partial phase transition in both HEAs with the additions of Ga and Al would enhance ferromagnetic properties due to the addition of the BCC phase. The saturation magnetization for the base alloy FeCoNiCr is 0.5 emu/g at the applied field of 20 kOe (TC = 104 K). For the HEAs of FeCoNiCrGa and FeCoNiCrAl, the saturation magnetization significantly increased to 38 emu/g (TC = 703 K) and 25 emu/g (TC = 277 K), respectively. To evaluate the possibility of solid solution FCC and BCC phases in FeCoNiCr-type HEAs, we introduced a parameter of valence electron concentration (VEC). The proposed rule for solid solution formation by the VEC was matched with FeCoNiCr-type HEAs.
NASA Astrophysics Data System (ADS)
Wei, Ran; Sun, Huan; Chen, Chen; Tao, Juan; Li, Fushan
2018-03-01
Fe-Co-Ni-Si-B high entropy amorphous alloys composites (HEAACs), which containing high entropy solid solution phase in amorphous matrix, show good soft magnetic properties and bending ductility even in optimal annealed state, were successfully developed by melt spinning method. The crystallization phase of the HEAACs is solid solution phase with body centered cubic (BCC) structure instead of brittle intermetallic phase. In addition, the BCC phase can transformed into face centered cubic (FCC) phase with temperature rise. Accordingly, Fe-Co-Ni-Si-B high entropy alloys (HEAs) with FCC structure and a small amount of BCC phase was prepared by copper mold casting method. The HEAs exhibit high yield strength (about 1200 MPa) and good plastic strain (about 18%). Meanwhile, soft magnetic characteristics of the HEAs are largely reserved from HEAACs. This work provides a new strategy to overcome the annealing induced brittleness of amorphous alloys and design new advanced materials with excellent comprehensive properties.
Phase constitution characteristics of the Fe-Al alloy layer in the HAZ of calorized steel pipe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Yajiang; Zou Zengda; Wei Xing
1997-09-01
Mechanical properties of the welding region and phase constitution characteristics in the iron-aluminum (Fe-Al) alloy layer of calorized steel pipes were researched by means of metallography, which included the use of scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron probe microanalysis (EPMA) and an X-ray diffractometer. Experimental results indicated that the Fe-Al alloy layer of calorized steel pipe was mainly composed of an FeAl phase, an Fe{sub 3}Al phase and an {alpha}-Fe(Al) solid solution, and the microhardness in the Fe-Al coating was 600--310 HM from the surface layer to the inside. There were no higher aluminum content phases, suchmore » as brittle FeAl{sub 2}, Fe{sub 2}Al{sub 5} and FeAl{sub 3}. By controlling the aluminizing process parameters, the ability to bear deformation and weld-ability of the calorized steel pipe were remarkably improved.« less
NASA Astrophysics Data System (ADS)
Sujiono, E. H.; Agus, J.; Samnur, S.; Triyana, K.
2018-05-01
The effects of molar ratios and sintering times on crystal structures and surface morphology on NdFeO3 oxide alloy have been studied. NdFeO3 oxide alloy formed by chemical preparation with solid reaction method using raw oxide Fe2O3 (99.9 %) and Nd2O3 (99.9 %) powders. In this article we reported the effects of molar ratios x = (–0.1, –0.2 and –0.3) and sintering times for 15 h and 20 h on crystal structures and surface morphology of Nd1+xFeO3 synthesized by solid-state reaction method. The results indicate that variation of molar ratio and sintering time has influenced the FWHM, crystalline size and grain size. The Nd1+xFeO3 have a major phase is NdFeO3, and other minor phases are Fe2O3, Nd2O3 and Nd(OH)3. The dominant intensity of hkl (121) with a value in FWHM, crystallite size, and grain size an indication the results will be applied as a gas sensor material as the focus of the further study.
Reduction and Simultaneous Removal of 99 Tc and Cr by Fe(OH) 2 (s) Mineral Transformation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saslow, Sarah A.; Um, Wooyong; Pearce, Carolyn I.
Technetium (Tc) remains a priority remediation concern due to persistent challenges, including rapid re-oxidation of immobilized Tc, and competing contaminants, e.g. Cr(VI), that inhibit targeted Tc reduction and incorporation into stable mineral phases. Here Fe(OH) 2(s) is investigated as a comprehensive solution for overcoming these challenges, by serving as both the reductant, (Fe(II)), and immobilization agent to form Tc-incorporated magnetite (Fe 3O 4). Trace metal analysis suggests removal of Tc(VII) and Cr(VI) from solution occurs simultaneously; however, complete removal and reduction of Cr(VI) is achieved earlier than the removal/reduction of co-mingled Tc(VII). Bulk oxidation state analysis of the magnetite solidmore » phase by XANES confirms that the majority of Tc is Tc(IV), which is corroborated by XPS. Furthermore, EXAFS results show successful Tc(IV) incorporation into magnetite octahedral sites without additional substitution of Cr or Tc into neighboring Fe octahedral sites. XPS analysis of Cr confirms reduction to Cr(III) and the formation of a Cr-incorporated spinel, Cr2O 3, and Cr(OH)3 phases. Spinel (modeled as Fe 3O 4), goethite, and feroxyhyte are detected in all reacted solid phase samples analyzed by XRD, where Tc(IV) incorporation has little effect on the spinel lattice structure. In the presence of Cr(III) a spinel phase along the magnetite-chromite (Fe 3O 4-FeCr 2O 4) solid-solution line is formed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Starcher, Autumn N.; Li, Wei; Kukkadapu, Ravi K.
Fe(II)-Al(III)-LDH (layered double hydroxide) phases have been shown to form from reactions of aqueous Fe(II) with Fe-free Al-bearing minerals (phyllosilicate/clays and Al-oxides). To our knowledge, the effect of small amounts of structural Fe(III) impurities in “neutral” clays on such reactions, however, were not studied. In this study to understand the role of structural Fe(III) impurity in clays, laboratory batch studies with pyrophyllite (10 g/L), an Al-bearing phyllosilicate, containing small amounts of structural Fe(III) impurities and 0.8 mM and 3 mM Fe(II) (both natural and enriched in 57Fe) were carried out at pH 7.5 under anaerobic conditions (4% H2 – 96%more » N2 atmosphere). Samples were taken up to 4 weeks for analysis by Fe-X-ray absorption spectroscopy and 57Fe Mössbauer spectroscopy. In addition to the precipitation of Fe(II)-Al(III)-LDH phases as observed in earlier studies with pure minerals (no Fe(III) impurities in the minerals), the analyses indicated formation of small amounts of Fe(III) containing solid(s), most probably hybrid a Fe(II)-Al(III)/Fe(III)-LDH phase. The mechanism of Fe(II) oxidation was not apparent but most likely was due to interfacial electron transfer from the sorbed Fe(II) to the structural Fe(III) and/or surface-sorption-induced electron-transfer from the sorbed Fe(II) to the clay lattice. Increase in the Fe(II)/Al ratio of the LDH with reaction time further indicated the complex nature of the samples. This research provides evidence for the formation of both Fe(II)-Al(III)-LDH and Fe(II)-Fe(III)/Al(III)-LDH-like phases during reactions of Fe(II) in systems that mimic the natural environments. Better understanding Fe phase formation in complex laboratory studies will improve models of natural redox systems.« less
Pressure-induced fcc to hcp phase transition in Ni-based high entropy solid solution alloys
Zhang, Fuxiang; Zhao, Shijun; Jin, Ke; ...
2017-01-04
In this research, pressure-induced phase transition from the fcc to a hexagonal close-packed (hcp) structure wasfound in NiCoCrFe solid solution alloy starting at 13.5 GPa. The phase transition is very sluggish and the transition did not complete at ~ 40 GPa. The hcp structure is quenchable to ambient pressure. Only a very small amount (<5%) of hcp phase was found in the isostructural NiCoCr ternary alloy up to the pressure of 45 GPa and no obvious hcp phase was found in NiCoCrFePd system till to 74 GPa. Ab initio Gibbs free energy calculations indicated the energy differences between the fccmore » and the hcp phases for the three alloys are very small, but they are sensitive to temperature. Finally, the critical transition pressure in NiCoCrFe varies from 1 GPa at room temperature to 6 GPa at 500 K.« less
Pressure-induced fcc to hcp phase transition in Ni-based high entropy solid solution alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, F. X.; Zhao, Shijun; Jin, Ke
2017-01-04
A pressure-induced phase transition from the fcc to a hexagonal close-packed (hcp) structure was found in NiCoCrFe solid solution alloy starting at 13.5 GPa. The phase transition is very sluggish and the transition did not complete at ~40 GPa. The hcp structure is quenchable to ambient pressure. Only a very small amount (<5%) of hcp phase was found in the isostructural NiCoCr ternary alloy up to the pressure of 45 GPa and no obvious hcp phase was found in NiCoCrFePd system till to 74 GPa. Ab initio Gibbs free energy calculations indicated the energy differences between the fcc and themore » hcp phases for the three alloys are very small, but they are sensitive to temperature. The critical transition pressure in NiCoCrFe varies from ~1 GPa at room temperature to ~6 GPa at 500 K.« less
The existence of a temperature-driven solid solution in LixFePO4 for 0 <= x <= 1
NASA Astrophysics Data System (ADS)
Delacourt, Charles; Poizot, Philippe; Tarascon, Jean-Marie; Masquelier, Christian
2005-03-01
Lithium-ion batteries have revolutionized the powering of portable electronics. Electrode reactions in these electrochemical systems are based on reversible insertion/deinsertion of Li+ ions into the host electrode material with a concomitant addition/removal of electrons into the host. If such batteries are to find a wider market such as the automotive industry, less expensive positive electrode materials will be required, among which LiFePO4 is a leading contender. An intriguing fundamental problem is to understand the fast electrochemical response from the poorly electronic conducting two-phase LiFePO4/FePO4 system. In contrast to the well-documented two-phase nature of this system at room temperature, we give the first experimental evidence of a solid solution LixFePO4 (0 <= x <= 1) at 450 °C, and two new metastable phases at room temperature with Li0.75FePO4 and Li0.5FePO4 composition. These experimental findings challenge theorists to improve predictive models commonly used in the field. Our results may also lead to improved performances of these electrodes at elevated temperatures.
Huang, Yanhua; Wang, Yuzhi; Pan, Qi; Wang, Ying; Ding, Xueqin; Xu, Kaijia; Li, Na; Wen, Qian
2015-06-02
Four kinds of green deep eutectic solvents (DESs) based on choline chloride (ChCl) have been synthesized and coated on the surface of magnetic graphene oxide (Fe3O4@GO) to form Fe3O4@GO-DES for the magnetic solid-phase extraction of protein. X-ray diffraction (XRD), vibrating sample magnetometer (VSM), Fourier transform infrared spectrometry (FTIR), field emission scanning electron microscopy (FESEM) and thermal gravimetric analysis (TGA) were employed to characterize Fe3O4@GO-DES, and the results indicated the successful preparation of Fe3O4@GO-DES. The UV-vis spectrophotometer was used to measure the concentration of protein after extraction. Single factor experiments proved that the extraction amount was influenced by the types of DESs, solution temperature, solution ionic strength, extraction time, protein concentration and the amount of Fe3O4@GO-DES. Comparison of Fe3O4@GO and Fe3O4@GO-DES was carried out by extracting bovine serum albumin, ovalbumin, bovine hemoglobin and lysozyme. The experimental results showed that the proposed Fe3O4@GO-DES performs better than Fe3O4@GO in the extraction of acidic protein. Desorption of protein was carried out by eluting the solid extractant with 0.005 mol L(-1) Na2HPO4 contained 1 mol L(-1) NaCl. The obtained elution efficiency was about 90.9%. Attributed to the convenient magnetic separation, the solid extractant could be easily recycled. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamanaka, Takamitsu; Kyono, Atsushi; Nakamoto, Yuki
2013-06-12
The structural phase transition of the titanomagnetite (Fe 3–xTi xO 4) solid solution under pressures up to 60 GPa has been clarified by single-crystal and powder diffraction studies using synchrotron radiation and a diamond-anvil cell. Present Rietveld structure refinements of the solid solution prove that the prefered cation distribution is based on the crystal field preference rather than the magnetic spin ordering in the solid solution. The Ti-rich phases in 0.734 ≤ x ≤1.0 undergo a phase transformation from the cubic spinel of Fd3m to the tetragonal spinel structure of I4 1/amd with c/a < 1.0. The transition is drivenmore » by a Jahn-Teller effect of IVFe 2+ (3d 6) on the tetrahedral site. The c/a < 1 ratio is induced by lifting of the degeneracy of the e orbitals by raising the d x2-y2 orbital below the energy of the d z2 orbital. The distortion characterized by c/a < 1 is more pronounced with increasing Ti content in the Fe 3–xTi xO 4 solid solutions and with increasing pressure. An X-ray emission experiment of Fe 2TiO 4 at high pressures confirms the spin transition of FeKβ from high spin to intermediate spin (IS) state. The high spin (HS)-to-low spin (LS) transition starts at 14 GPa and the IS state gradually increases with compression. The VIFe 2+ in the octahedral site is more prone for the HS-to-LS transition, compared with Fe 2+ in the fourfold- or eightfold-coordinated site. The transition to the orthorhombic post-spinel structure with space group Cmcm has been confirmed in the whole compositional range of Fe 3–xTi xO 4. The transition pressure decreases from 25 GPa (x = 0.0) to 15 GPa (x = 1.0) with increasing Ti content. There are two cation sites in the orthorhombic phase: M1 and M2 sites of eightfold and sixfold coordination, respectively. Fe 2+ and Ti 4+ are disordered on the M2 site. This structural change is accelerated at higher pressures due to the spin transition of Fe 2+ in the octahedral site. This is because the ionic radius of VIFe 2+ becomes 20% shortened by the spin transition. At 53 GPa, the structure transforms to another high-pressure polymorph with Pmma symmetry with the ordered structure of Ti and Fe atoms in the octahedral site. This structure change results from the order-disorder transition.« less
The high-pressure phase diagram of Fe(0.94)O - A possible constituent of the earth's core
NASA Technical Reports Server (NTRS)
Knittle, Elise; Jeanloz, Raymond
1991-01-01
Electrical resistivity measurements to pressures of 83 GPa and temperatures ranging from 300 K to 4300 K confirm the presence of both crystalline and liquid metallic phases of FeO at pressures above 60-70 GPa and temperatures above 1000 K. By experimentally determinig the melting temperature of FeO to 100 GPa and of a model-core composition at 83 GPa, it is found that the solid-melt equilibria can be described by complete solid solution across the Fe-FeO system at pressures above 70 GPa. The results indicate that oxygen is a viable and likely candidate for the major light alloying element of the earth's liquid outer core. The data suggest that the temperature at the core-mantle boundary is close to 4800 K and that heat lost out of the core accounts for more than 20 percent of the heat flux observed at the surface.
Shock Induced Phase Changes in Forsterite and Iron Silicide
NASA Astrophysics Data System (ADS)
Newman, M.; Asimow, P.; Kraus, R. G.; Smith, R.; Coppari, F.; Eggert, J. H.; Wicks, J.; Tracy, S.; Duffy, T.
2017-06-01
The equation of state of magnesium silicates and iron alloys at the pressures and temperatures near the melt curve is important for understanding the thermal evolution and interior structure of rocky planets. Here, we present a series of laser driven shock experiments on single crystal Mg2SiO4 and textured polycrystalline iron silicide (Fe-15Si), conducted at LLE. In situ x-ray diffraction measurements were used to probe the melting transition and investigate the potential decomposition of forsterite into solid MgO and silica rich liquid and Fe-15Si in to silicon rich B2 and iron rich hcp structures. This work examines kinetic effects of chemical decomposition due to the short time scale of laser-shock experiments. Preliminary results demonstrate solid-solid and solid-liquid phase transitions on both the forsterite and Fe-15Si Hugoniots. For Fe-15Si, we observe a texture preserving martensitic transformation of D03 Fe-15Si into an hcp structure and melting at 318 GPa. For forsterite, we observe diffraction consistent with B1 MgO and melting at 215 GPa. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Effect of Ni on Fe FeS phase relations at high pressure and high temperature
NASA Astrophysics Data System (ADS)
Zhang, Li; Fei, Yingwei
2008-04-01
A series of melting experiments in the Fe-rich portion of the Fe-Ni-S system have been conducted at 19-23 GPa and 800-1100 °C. The solubility of S in the Fe-Ni solid alloy and the eutectic melting in the Fe-Ni-S system were determined as a function of Ni content. The maximum S solubility in the Fe-Ni alloy is 2.7 wt.% at 20 GPa and the eutectic temperature. The eutectic melting temperature in the Fe-Ni(5wt.%)-S system is ~ 1000 °C lower than the melting point of pure Fe at 20 GPa. We also found that Ni can substitute Fe in the Fe 3S structure to form (Fe,Ni) 3S solid solutions up to at least a Fe/Ni atomic ratio of 0.5. Similar to melting behavior in the Fe-FeS system, the eutectic melting relations in the Fe-Ni-S system could produce inner and outer cores with the right light element balance to account for the density difference between the solid inner core and the liquid outer core.
NASA Astrophysics Data System (ADS)
Chabot, N. L.
2017-12-01
As planetesimals were heated up in the early Solar System, the formation of Fe-Ni metallic melts was a common occurrence. During planetesimal differentiation, the denser Fe-Ni metallic melts separated from the less dense silicate components, though some meteorites suggest that their parent bodies only experienced partial differentiation. If the Fe-Ni metallic melts did form a central metallic core, the core eventually crystallized to a solid, some of which we sample as iron meteorites. In all of these planetesimal evolution processes, the composition of the Fe-Ni metallic melt influenced the process and the resulting trace element chemical signatures. In particular, the metallic melt's "light element" composition, those elements present in the metallic melt in a significant concentration but with lower atomic masses than Fe, can strongly affect trace element partitioning. Experimental studies have provided critical data to determine the effects of light elements in Fe-Ni metallic melts on trace element partitioning behavior. Here I focus on combining numerous experimental results to identify trace elements that provide unique insight into constraining the light element composition of early Solar System Fe-Ni metallic melts. Experimental studies have been conducted at 1 atm in a variety of Fe-Ni systems to investigate the effects of light elements on trace element partitioning behavior. A frequent experimental examination of the effects of light elements in metallic systems involves producing run products with coexisting solid metal and liquid metal phases. Such solid-metal-liquid-metal experiments have been conducted in the Fe-Ni binary system as well as Fe-Ni systems with S, P, and C. Experiments with O-bearing or Si-bearing Fe-Ni metallic melts do not lend themselves to experiments with coexisting solid metal and liquid metal phases, due to the phase diagrams of these elements, but experiments with two immiscible Fe-Ni metallic melts have provided insight into the qualitative effects of O and Si relative to the well-determined effects of S. Together, these experimental studies provide a robust dataset to identify key elements that are predicted to produce distinct chemical signatures as a function of different Fe-Ni metallic melt compositions during planetesimal evolution processes.
NASA Astrophysics Data System (ADS)
Deng, J.; Lee, K. K. M.
2017-12-01
At nearly 2900 km depth, the core-mantle boundary (CMB) represents the largest density increase within the Earth going from a rocky mantle into an iron-alloy core. This compositional change sets up steep temperature gradients, which in turn influences mantle flow, structure and seismic velocities. Here we compute the melting phase relations of (Mg,Fe)O ferropericlase, the second most abundant mineral in the Earth's mantle, at CMB conditions and find that ultralow-velocity zones (ULVZs) could be explained by solid ferropericlase with 35 < Mg# = 100×(Mg/(Mg+Fe) by mol%) < 65. For compositions outside of this range, a solid ferropericlase cannot explain ULVZs. Additionally, solid ferropericlase can also provide a matrix for iron infiltration at the CMB by morphological instability, providing a mechanism for a high electrical conductivity layer of appropriate length scale inferred from core nutations.
Raman effect in multiferroic Bi5Fe1+xTi3-xO15 solid solutions: A temperature study
NASA Astrophysics Data System (ADS)
Rodríguez Aranda, Ma. Del Carmen; Rodríguez-Vázquez, Ángel G.; Salazar-Kuri, Ulises; Mendoza, María Eugenia; Navarro-Contreras, Hugo R.
2018-02-01
In this work, a Raman study of powder samples of multiferroic Bi5Fe1+xTi3-xO15 solid solutions and Bi6Fe2Ti3O18 as a function of temperature from 27 °C (room temperature) to 850 °C is presented. The values of x (i.e., the Fe composition) for the solid solutions were 1.0, 1.1, 1.3, and 1.4. The temperature coefficients of eight phonon frequencies were determined for all the samples. The large observed phonon broadenings with increasing temperature precluded the observation of several of the phonon bands above defined temperatures in the range of 200-700 °C depending on the sample. These phonon broadenings were explained on the basis of the Klemens model, which considers that the broadenings are due to the thermal expansion of the lattice with a major contribution in terms of magnitude from anharmonic phonon-phonon interactions. However, some evidence for the presence of several of the phonons persisted up to 800-850 °C. These solid solutions are expected to exhibit a ferroelectric-paraelectric phase transition at 742 to 750 °C and a ferromagnetic-antiferromagnetic transition at 426 °C. We also observed changes in the slopes of the temperature dependence of the phonon frequencies for the lines at 228 cm-1 for Bi5FeTi3O15 and 330 cm-1 for Bi6Fe2Ti3O18 at temperatures of 247 °C and 347 °C, respectively. No similar temperature-frequency slope changes indicative of possible phase transitions were observed for any of the phonon lines of the other three Bi5Fe1+xTi3-xO15 solid solutions examined.
Interactions between magnetite and humic substances: redox reactions and dissolution processes.
Sundman, Anneli; Byrne, James M; Bauer, Iris; Menguy, Nicolas; Kappler, Andreas
2017-10-19
Humic substances (HS) are redox-active compounds that are ubiquitous in the environment and can serve as electron shuttles during microbial Fe(III) reduction thus reducing a variety of Fe(III) minerals. However, not much is known about redox reactions between HS and the mixed-valent mineral magnetite (Fe 3 O 4 ) that can potentially lead to changes in Fe(II)/Fe(III) stoichiometry and even dissolve the magnetite. To address this knowledge gap, we incubated non-reduced (native) and reduced HS with four types of magnetite that varied in particle size and solid-phase Fe(II)/Fe(III) stoichiometry. We followed dissolved and solid-phase Fe(II) and Fe(III) concentrations over time to quantify redox reactions between HS and magnetite. Magnetite redox reactions and dissolution processes with HS varied depending on the initial magnetite and HS properties. The interaction between biogenic magnetite and reduced HS resulted in dissolution of the solid magnetite mineral, as well as an overall reduction of the magnetite. In contrast, a slight oxidation and no dissolution was observed when native and reduced HS interacted with 500 nm magnetite. This variability in the solubility and electron accepting and donating capacity of the different types of magnetite is likely an effect of differences in their reduction potential that is correlated to the magnetite Fe(II)/Fe(III) stoichiometry, particle size, and crystallinity. Our study suggests that redox-active HS play an important role for Fe redox speciation within minerals such as magnetite and thereby influence the reactivity of these Fe minerals and their role in biogeochemical Fe cycling. Furthermore, such processes are also likely to have an effect on the fate of other elements bound to the surface of Fe minerals.
Chen, Songqing; Qin, Xingxiu; Gu, Weixi; Zhu, Xiashi
2016-12-01
Ionic liquids-β-cyclodextrin polymer (ILs-β-CDCP) was attached on Fe 3 O 4 nanoparticles to prepare magnetic solid phase extraction agent (Fe 3 O 4 @ILs-β-CDCP). The properties and morphology of Fe 3 O 4 @ILs-β-CDCP were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction(XRD), size distribution and magnetic analysis. A new method of magnetic solid phase extraction (MSPE) coupled to ICP-OES for the speciation of Mn(II)/Mn(VII) in water samples was established. The results showed that Mn(VII) and total manganese [Mn(II)+Mn(VII)] were quantitatively extracted after adjusting aqueous sample solution to pH 6.0 and 10.0, respectively. Mn(II) was calculated by subtraction of Mn(VII) from total manganese. Fe 3 O 4 @ILs-β-CDCP showed a higher adsorption capacity toward Mn(II) and Mn(VII). Several factors, such as the pH value, extraction temperature and sample volume, were optimized to achieve the best extraction efficiency. Moreover, the adsorption ability of Fe 3 O 4 @ILs-β-CDCP would not be significantly lower after reusing of 10 times. The accuracy of the developed method was confirmed by analyzing certified reference materials (GSB 07-1189-2000), and by spiking spring water, city water and lake water samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Arsenic concentrations (Total Recoverable As by EPA Method 3051, soluble, Toxicity Characteristic Leaching Procedure extractable) and solid-phase speciation (by X-ray Absorption Near-Edge Spectroscopy-XANES) were assessed as a function of depth through Fe-media beds for two comme...
Arsenic concentrations (Total Recoverable As by EPA Method 3051) and solid-phase speciation (by X-ray Absorption Near-Edge Spectroscopy-XANES) were assessed as a function of depth through Fe-media beds for two commercially available products from pilot-scale field tests. These re...
Arsenic concentrations (Total Recoverable As by EPA Method 3051, soluble, Toxicity Characteristic Leaching Procedure extractable) and solid-phase speciation (by X-ray Absorption Near-Edge Spectroscopy-XANES) were assessed as a function of depth through Fe-media beds for two comme...
THE DISTRIBUTION AND SOLID-PHASE SPECIATION OF AS IN IRON-BASED TREATMENT MEDIA
Arsenic concentrations (Total Recoverable As by EPA Method 3051) and solid-phase speciation (by X-ray Absorption Near-Edge Spectroscopy-XANES) were assessed as a function of depth through Fe-media beds for two commercially available products from pilot-scale field tests. These r...
NASA Astrophysics Data System (ADS)
Matsukage, K. N.; Nishihara, Y.
2015-12-01
We experimentally discovered a new hydrous phase in the system FeOOH-TiO2 at pressures of 10-16 GPa and temperatures of 1000-1600°C which corresponds to conditions of the deep upper mantle and the Earth's mantle transition zone. Seven different compositions in the FeOOH-TiO2 system having molar ratios of x = Ti/(Fe + Ti) = 0, 0.125, 0.25, 0.375, 0.5, 0.75 that were prepared by mixing reagent grade a-FeOOH (goethite) and TiO2 (anatase) powders were used as starting materials. High-pressure and high-temperature experiments were carried out using Kawai-type multi-anvil apparatus (Orange-1000 at Ehime University and SPI-1000 at Tokyo Institute of Technology). In this system, we identified two stable iron-titanium oxyhydroxide phases whose estimated composition is expressed by (FeH)1 - xTixO2 . One is the Fe-rich solid solution (x < 0.23) with e-FeOOH type crystal structure (e-phase, orthorhombic, P21nm) that was described by the previous studies (e.g., Suzuki 2010), and the other is the more Ti-rich solid solution (x > 0.35) with a-PbO2 type structure (a-phase, orthorhombic, Pbcn). The a-phase is stable up to 1500ºC for a composition of x = 0.5 and at least to 1600ºC for x = 0.75. Our result means that this phase is stable at average mantle temperature in the Earth's mantle transition zone. The Iron-titanium-rich hydrous phases was possible to stable in basalt + H2O system (e.g., Hashimoto and Matsukage 2013). Therefore our findings suggest that water transport in the Earth's deep interior is probably much more efficient than had been previously thought.
Phase stability and magnetic behavior of FeCrCoNiGe high-entropy alloy
NASA Astrophysics Data System (ADS)
Huang, Shuo; Vida, Ádám; Molnár, Dávid; Kádas, Krisztina; Varga, Lajos Károly; Holmström, Erik; Vitos, Levente
2015-12-01
We report an alternative FeCrCoNiGe magnetic material based on FeCrCoNi high-entropy alloy with Curie point far below the room temperature. Investigations are done using first-principles calculations and key experimental measurements. Results show that the equimolar FeCrCoNiGe system is decomposed into a mixture of face-centered cubic and body-centered cubic solid solution phases. The increased stability of the ferromagnetic order in the as-cast FeCrCoNiGe composite, with measured Curie temperature of 640 K, is explained using the exchange interactions.
Laplanche, Guillaume; Gadaud, P.; Barsch, C.; ...
2018-02-23
Elastic moduli of a set of equiatomic alloys (CrFeCoNi, CrCoNi, CrFeNi, FeCoNi, MnCoNi, MnFeNi, and CoNi), which are medium-entropy subsystems of the CrMnFeCoNi high-entropy alloy were determined as a function of temperature over the range 293 K–1000 K. Thermal expansion coefficients were determined for these alloys over the temperature range 100 K–673 K. All alloys were single-phase and had the face-centered cubic (FCC) crystal structure, except CrFeNi which is a two-phase alloy containing a small amount of body-centered cubic (BCC) precipitates in a FCC matrix. The temperature dependences of thermal expansion coefficients and elastic moduli obtained here are useful formore » quantifying fundamental aspects such as solid solution strengthening, and for structural analysis/design. Furthermore, using the above results, the yield strengths reported in literature for these alloys were normalized by their shear moduli to reveal the influence of shear modulus on solid solution strengthening.« less
Xie, Yingying; Wang, Hong; Xu, Guiliang; ...
2016-09-02
In operando XRD and TXM-XANES approaches demonstrate that structure evolution in NaNi 1/3Fe 1/3Mn 1/3O 2 during cycling follows a continuous change, and the formation of a nonequilibrium solid solution phase in the existence of two phases. Here, an O3' and P3' monoclinic phase occur, and redox couples of Ni 3+/Ni 4+ and Fe 3+/Fe 4+ are mainly responsible in the charge voltage range from 4.0 to 4.3 V.
Complex impedance analyses and magnetoelectric effect in ferrite ferroelectric composite ceramics
NASA Astrophysics Data System (ADS)
Patankar, K. K.; Kanade, S. A.; Padalkar, D. S.; Chougule, B. K.
2007-02-01
Magnetoelectric (ME) composites yBa0.8Pb0.2TiO3 (1-y)CuFe2O4 are prepared by ceramic method. The component phases are prepared from two different routes, viz. CuFe2O4 (ferrite phase) is prepared by oxalate precursor route and Ba0.8Pb0.2TiO3 (ferroelectric phase) by solid-state reaction route. No intermediate phases are observed in the composites containing these ferrite and ferroelectric phases. ME conversion factor (measure of ME effect) is found to be enhanced compared to those reported in the composites, in which the component phases were prepared by only one route, i.e. solid-state reaction route. The results on ME conversion are well accounted by measuring the complex impedance and analyzing their Nyquist plots.
Selective Metal Exsolution in BaFe 2-yMy(PO 4) 2 (M = Co 2+, Ni 2+) Solid Solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alcover, Ignacio Blazquez; Daviero-Minaud, Sylvie; David, Rénald
2015-08-19
The 2D-Ising ferromagnetic phase BaFe 2+ 2(PO 4) 2 shows exsolution of up to one-third of its iron content (giving BaFe 3+ 1.33(PO 4) 2) under mild oxidation conditions, leading to nanosized Fe 2O 3 exsolved clusters. Here we have prepared BaFe 2–yMy(PO 4) 2 (M = Co 2+, Ni 2+; y = 0, 0.5, 1, 1.5) solid solutions to investigate the feasibility and selectivity of metal exsolution in these mixed metallic systems. For all the compounds, after 600 °C thermal treatment in air, a complete oxidation of Fe 2+ to Fe 3+ leaves stable M 2+ ions, as verifiedmore » by 57Fe Mössbauer spectroscopy, TGA, TEM, microprobe, and XANES. Furthermore, the size of the nanometric α-Fe 2O 3clusters coating the main phase strongly depends on the y M metal concentration. For M-rich phases the iron diffusion is hampered so that a significant fraction of superparamagnetic α-Fe2O3 particles (100% for BaFe 0.5–xCo 1.5(PO 4) 2) was detected even at 78 K. Although Ni 2+and Co 2+ ions tend to block Fe diffusion, the crystal structure of BaFe 0.67Co 1(PO 4) 2demonstrates a fully ordered rearrangement of Fe 3+ and Co 2+ ions after Fe exsolution. We found that the magnetic behaviors of the Fe-depleted materials are mostly dominated by antiferromagnetic exchange, while Co 2+-rich compounds show metamagnetic transitions reminiscent of the BaCo 2(PO 4) 2 soft helicoidal magnet.« less
The long-term effectiveness of a FeSO4 + Na2S2O4 reductant solution blend for in situ saturated zone treatment of dissolved and solid phase Cr(VI) in a high pH chromite ore processing solid waste (COPSW) fill material was investigated. Two field pilot injection studies were cond...
NASA Astrophysics Data System (ADS)
Sahu, Sulata Kumari; Ganesan, Rajesh; Gnanasekaran, T.
2012-07-01
Partial phase diagram of Pb-Fe-O system has been established by phase equilibration studies over a wide temperature range coupled with high temperature solid electrolyte based emf cells. Ternary oxides are found to coexist with liquid lead only at temperatures above 900 K. At temperatures below 900 K, iron oxides coexist with liquid lead. Standard molar Gibbs energy of formation of ternary oxides 'PbFe5O8.5' and Pb2Fe2O5 were determined by measuring equilibrium oxygen partial pressures over relevant phase fields using emf cells and are given by the following expressions: ΔfGmo 'PbFeO'±1.0(kJ mol)=-2208.1+0.6677(T/K) (917⩽T/K⩽1117) ΔfGmo PbFeO±0.8(kJ mol)=-1178.4+0.3724(T/K) (1050⩽T/K⩽1131) .
Chemical properties of ground water and their corrosion and encrustation effects on wells
Barnes, Ivan; Clarke, Frank Eldridge
1969-01-01
Well waters in Egypt, Nigeria, and West Pakistan were studied for their chemical properties and corrosive or encrusting behavior. From the chemical composition of the waters, reaction states with reference to equilibrium were tested for 29 possible coexisting oxides, carbonates, sulfides, and elements. Of the 29 solids considered, only calcite, CaCO3, and ferric hydroxide, Fe(OH)3, showed any correlation with the corrosiveness of the waters to mild steel (iron metal). All 39 of the waters tested were out of equilibrium with iron metal, but those waters in equilibrium or supersaturated with both calcite and ferric hydroxide were the least corrosive. Supersaturation with other solid phases apparently was unrelated to corrosion. A number of solids may form surface deposits in wells and lead to decreased yields by fouling well intakes (screens and gravel packs) or increasing friction losses in casings. Calcite, CaCO3; ferric hydroxide, Fe(OH)3; magnetite, Fe3O4; siderite, FeCO3; hausmannite, Mn304 (tetragonal); manganese spinel, Mn3O4 (isometric); three iron sulfides mackinawite, FeS (tetragonal); greigite, Fe3S4 (isometric); and smythite, Fe3S4 (rhombohedral)-copper hydroxide, Co(OH)2; and manganese hydroxide, Mn(OH)2, were all at least tentatively identified in the deposits sampled. Of geochemical interest is the demonstration that simple stable equilibrium models fail in nearly every case to predict compositions of water yielded by the wells studied. Only one stable phase (calcite) was found to exhibit behavior approximately predictable from stable equilibrium considerations. No other stable phase was found to behave as would be predicted from equilibrium considerations. All the solids found to precipitate (except calcite) are metastable in that they are not the least soluble phases possible in the systems studied. In terms of metastable equilibrium, siderite and ferric hydroxide behave approximately as would be predicted from equilibrium considerations, but both are metastable and the presence of neither would be anticipated if only the most stable phases were considered. The behaviors of none of the other solids would be predictable from either stable or metastable equilibrium considerations. An unanswered problem raised by the study reported here is how, or by what paths, truly stable phases form if first precipitates are generally metastable.The utility of the findings in well design and operation is in no way impaired by the general lack of equilibrium. Conditions leading to either corrosion (which is related to lack of supersaturation with protective phases), or encrustation (supersaturation with phases that were found to precipitate), or both, apparently can be identified. The application of the methods described can be of great importance in developing unexploited ground-water resources in that certain practical problems can be identified before extensive well construction and unnecessary well failure.
Wang, Man; Cui, Shihai; Yang, Xiaodi; Bi, Wentao
2015-01-01
An easy preparation of g-C3N4/Fe3O4 nanocomposites by chemical co-precipitation has been demonstrated. The as-prepared materials were characterized by X-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy and thermogravimetric analysis. The high affinity of g-C3N4 toward polycyclic aromatic hydrocarbons and the magnetic behavior of Fe3O4 were combined to provide an efficient and simple magnetic solid phase extraction (MSPE). The adsorption and desorption of polycyclic aromatic hydrocarbons on g-C3N4/Fe3O4 were examined. Different factors affecting the magnetic solid phase extraction of polycyclic aromatic hydrocarbons were assessed in terms of adsorption, desorption, and recovery. Under the optimized conditions, the proposed method showed good limits of detection (LOD, S/N=3) in the range of 0.05-0.1 ng mL(-1) and precision in the range of 1.8-5.3% (RSDs, n=3). This method was also successfully applied to the analysis of real water samples; good spiked recoveries over the range of 80.0-99.8% were obtained. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bateman, J. B.; Fendorf, S. E.; Vitousek, P.
2017-12-01
Iron (Fe) and Aluminum (Al) are major components of volcanic soils, and strongly influence the stability of soil carbon (C). The stability of Fe and Al phases is dictated by the redox conditions and pH of soils, respectively. The water balance of a soil, defined as annual precipitation minus evapotranspiration, ultimately controls pH and redox conditions. Consequently, we hypothesize that water balance influences Fe/Al solid phase dynamics in volcanic soils when the climatic regime has persisted on timescales of 20 ky. To test this hypothesis, we collected soils from a naturally occurring water balance gradient on the windward side of Mauna Kea Volcano in Hawaii, across which water balance ranges from -1270 mm/y to +2000 mm/y. Sampling included complete soil profiles, and 30 cm surface soil samples. We determined the solid phases of Fe/Al with selective extractions and total C via combustion. Extracted Fe/Al were then partitioned into operational pools: organically bound, amorphous, crystalline, primary mineral, primary glass, and residual. All soils in the study were acidic, with pH between 3.4 and 6.4. Soil C varied considerably across the gradient, from <1% C to >15% C by weight. Across sites, soil pH, Fe in primary minerals and glasses, and residual Al are negatively correlated with water balance, while soil C, organic Fe and Al, and crystalline Fe correlated positively with water balance. Organically bound Al increases linearly with water balance, while organically bound Fe is uncorrelated with water balance in soils where water balance is negative and is positively correlated with water balance in wetter sites. These results show that soils developing from the same parent material, though under different water balance regimes, range from lightly weathered ash deposits with little C accumulation in the driest regions, to heavily weathered soils composed of crystalline Fe, organic matter, and organically bound Fe/Al in the wettest regions. Al appears to be the primary stabilizer for organic matter in many of these soils, though Fe plays a role when both water availability and soil C are high. The pattern of organic Fe/Al indicate that pH is a stronger controller on C storage in these soils when water balance is low or negative, and that redox reactions become increasingly important as water balance becomes more positive.
NASA Astrophysics Data System (ADS)
Lerner, M. I.; Bakina, O. V.; Pervikov, A. V.; Glazkova, E. A.; Lozhkomoev, A. S.; Vorozhtsov, A. B.
2018-05-01
X-ray phase analysis, transmission electron microscopy, and X-ray microanalysis were used to examine the structural-phase states of Fe-Cu and Fe-Ag bimetallic nanoparticles. The nanoparticles were obtained by the electric explosion of two twisted metal wires in argon atmosphere. It was demonstrated that the nanoparticles have the structure of Janus particles. Presence of the Janus particle structure in the samples indicates formation of binary melt under conditions of combined electric explosion of two wires. Phases based on supersaturated solid solutions were not found in the examined samples. The data obtained allow arguing that it is possible to achieve uniform mixing of the two-wire explosion products under the described experiment conditions.
NASA Astrophysics Data System (ADS)
Sreenivasu, T.; Tirupathi, P.; Prabahar, K.; Suryanarayana, B.; Chandra Mouli, K.
The solid solutions of (1-x) LaFeO3-xBaTiO3 (0.0≤x≤0.25) have been synthesized successfully by the conventional solid-state reaction method. Room temperature (RT) X-ray diffraction studies reveal the stabilization of orthorhombic phase with Pbnm space group. Complete solubility in the perovskite series was demonstrated up to x=0.25. The dielectric permittivity shows colossal dielectric constant (CDC) at RT. The doping of BaTiO3 in LaFeO3 exhibit pronounced CDC up to a composition x=0.15, further it starts to decrease. The frequency-dependent dielectric loss exhibits polaronic conduction, which can attribute to presence of multiple valence of iron. The relaxation frequency and polaronic conduction mechanism was shifted towards RT as function of x. Moreover, large magnetic moment with weak ferromagnetic behavior is observed in doped LaFeO3 solid solution, which might be the destruction of spin cycloid structure due to insertion of Ti in Fe-O-Fe network of LaFeO3.
Sorption of Ferrioxime B to Synthetic and Biogenic layer type Mn Oxides
NASA Astrophysics Data System (ADS)
Duckworth, O. W.; Bargar, J. R.; Sposito, G.
2005-12-01
Siderophores are biogenic chelating agents produced in terrestrial and marine environments to increase the bioavailablity of ferric iron. Recent work has suggested that both aqueous and solid-phase Mn(III) may affect siderophore-mediated iron transport, but no information appears to be available about the effect of solid-phase Mn(IV). To probe the effect of solid-phase Mn(IV), we studied the sorption reaction of ferrioxamine B [principally the species, Fe(III)HDFOB+, an Fe(III) chelate of the trihydroxamate siderophore, desferrioxamine B (DFOB)] with two synthetic birnessites [layer type Mn(IV) oxides] and a biogenic birnessite produced by Pseudomonas putida MnB1. We found that all of these predominantly Mn(IV) oxides greatly reduced the aqueous concentration of Fe(III)HDFOB+ over the pH range between 5 and 9. After 72 h equilibration time at pH 8, the sorption behavior for the synthetic birnessites could be accurately described by a Langmuir isotherm; for the biogenic oxide, a Freundlich isotherm was best utilized to model the sorption data. To study the molecular nature of the interaction between the Fe(III)HDFOB+ complex and the oxide surface, Fe K-edge extended X-Ray absorption fine structure (EXAFS) spectroscopy was employed. Analysis of the X-ray absorption spectra indicated that Fe(III) associated with the Mn(IV) oxides is not complexed with DFOB, but instead is incorporated into the mineral structure, thus implying that the Mn(IV) oxides displaced Fe(III) from the siderophore complex. These results indicate that manganese oxides, including biominerals, may strongly sequester iron from soluble ferric complexes and thus may play a significant role in the biogeochemical cycling of iron.
Optical and Piezoelectric Study of KNN Solid Solutions Co-Doped with La-Mn and Eu-Fe.
Peña-Jiménez, Jesús-Alejandro; González, Federico; López-Juárez, Rigoberto; Hernández-Alcántara, José-Manuel; Camarillo, Enrique; Murrieta-Sánchez, Héctor; Pardo, Lorena; Villafuerte-Castrejón, María-Elena
2016-09-28
The solid-state method was used to synthesize single phase potassium-sodium niobate (KNN) co-doped with the La 3+ -Mn 4+ and Eu 3+ -Fe 3+ ion pairs. Structural determination of all studied solid solutions was accomplished by XRD and Rietveld refinement method. Electron paramagnetic resonance (EPR) studies were performed to determine the oxidation state of paramagnetic centers. Optical spectroscopy measurements, excitation, emission and decay lifetime were carried out for each solid solution. The present study reveals that doping KNN with La 3+ -Mn 4+ and Eu 3+ -Fe 3+ at concentrations of 0.5 mol % and 1 mol %, respectively, improves the ferroelectric and piezoelectric behavior and induce the generation of optical properties in the material for potential applications.
Optical and Piezoelectric Study of KNN Solid Solutions Co-Doped with La-Mn and Eu-Fe
Peña-Jiménez, Jesús-Alejandro; González, Federico; López-Juárez, Rigoberto; Hernández-Alcántara, José-Manuel; Camarillo, Enrique; Murrieta-Sánchez, Héctor; Pardo, Lorena; Villafuerte-Castrejón, María-Elena
2016-01-01
The solid-state method was used to synthesize single phase potassium-sodium niobate (KNN) co-doped with the La3+–Mn4+ and Eu3+–Fe3+ ion pairs. Structural determination of all studied solid solutions was accomplished by XRD and Rietveld refinement method. Electron paramagnetic resonance (EPR) studies were performed to determine the oxidation state of paramagnetic centers. Optical spectroscopy measurements, excitation, emission and decay lifetime were carried out for each solid solution. The present study reveals that doping KNN with La3+–Mn4+ and Eu3+–Fe3+ at concentrations of 0.5 mol % and 1 mol %, respectively, improves the ferroelectric and piezoelectric behavior and induce the generation of optical properties in the material for potential applications. PMID:28773925
Wan, Hongli; Mwizerwa, Jean Pierre; Qi, Xingguo; Liu, Xin; Xu, Xiaoxiong; Li, Hong; Hu, Yong-Sheng; Yao, Xiayin
2018-03-27
High ionic conductivity electrolyte and intimate interfacial contact are crucial factors to realize high-performance all-solid-state sodium batteries. Na 2.9 PS 3.95 Se 0.05 electrolyte with reduced particle size of 500 nm is first synthesized by a simple liquid-phase method and exhibits a high ionic conductivity of 1.21 × 10 -4 S cm -1 , which is comparable with that synthesized with a solid-state reaction. Meanwhile, a general interfacial architecture, that is, Na 2.9 PS 3.95 Se 0.05 electrolyte uniformly anchored on Fe 1- x S nanorods, is designed and successfully prepared by an in situ liquid-phase coating approach, forming core-shell structured Fe 1- x S@Na 2.9 PS 3.95 Se 0.05 nanorods and thus realizing an intimate contact interface. The Fe 1- x S@Na 2.9 PS 3.95 Se 0.05 /Na 2.9 PS 3.95 Se 0.05 /Na all-solid-state sodium battery demonstrates high specific capacity and excellent rate capability at room temperature, showing reversible discharge capacities of 899.2, 795.5, 655.1, 437.9, and 300.4 mAh g -1 at current densities of 20, 50, 100, 150, and 200 mA g -1 , respectively. The obtained all-solid-state sodium batteries show very high energy and power densities up to 910.6 Wh kg -1 and 201.6 W kg -1 based on the mass of Fe 1- x S at current densities of 20 and 200 mA g -1 , respectively. Moreover, the reaction mechanism of Fe 1- x S is confirmed by means of ex situ X-ray diffraction techniques, showing that partially reversible reaction occurs in the Fe 1- x S electrode after the second cycle, which gives the obtained all-solid-state sodium battery an exceptional cycling stability, exhibiting a high capacity of 494.3 mAh g -1 after cycling at 100 mA g -1 for 100 cycles. This contribution provides a strategy for designing high-performance room temperature all-solid-state sodium battery.
PCE DNAPL degradation using ferrous iron solid mixture (ISM).
Lee, Hong-Kyun; Do, Si-Hyun; Batchelor, Bill; Jo, Young-Hoon; Kong, Sung-Ho
2009-08-01
Ferrous iron solid mixture (ISM) containing Fe(II), Fe(III), and Cl was synthesized for degradation of tetrachloroethene (PCE) as a dense non-aqueous phase liquid (DNAPL), and an extraction procedure was developed to measure concentrations of PCE in both the aqueous and non-aqueous phases. This procedure included adding methanol along with hexane in order to achieve the high extraction efficiency, particularly when solids were present. When PCE was present as DNAPL, dechlorination of PCE was observed to decrease linearly with respect to the total PCE concentration (aqueous and non-aqueous phases) and the concentration of PCE in the aqueous phase was observed to be approximately constant. In the absence of DNAPL, the rate of PCE degradation was observed to be the first-order with respect to the concentration in the aqueous phase. A kinetic model was developed to describe these observations and it was able to fit experimental data well. Increasing the concentration of Fe(II) in ISM increased the values of rate constants, while increasing the concentration of PCE DNAPL did not affect the value of the rate constant. The reactivity of ISM for PCE dechlorination might be close to that of Friedel's salt, and the accumulation of trichloroethylene (TCE) might imply the lower reactivity of ISM for degradation of TCE or the necessity of large amount of Fe(II) in ISM. TCE (the major chlorinated intermediate), ethene (the major non-chlorinated compound), acetylene and ethane were detected, which implied that both hydrogenolysis and beta-elimination were pathways of PCE DNAPL degradation on ISM.
Wan, Hongli; Mwizerwa, Jean Pierre; Qi, Xingguo; Xu, Xiaoxiong; Li, Hong; Zhang, Qiang; Cai, Liangting; Hu, Yong-Sheng; Yao, Xiayin
2018-04-18
Nanosized Na 3 PS 4 solid electrolyte with an ionic conductivity of 8.44 × 10 -5 S cm -1 at room temperature is synthesized by a liquid-phase reaction. The resultant all-solid-state FeS 2 /Na 3 PS 4 /Na batteries show an extraordinary high initial Coulombic efficiency of 95% and demonstrate high energy density of 611 Wh kg -1 at current density of 20 mA g -1 at room temperature. The outstanding performances of the battery can be ascribed to good interface compatibility and intimate solid-solid contact at FeS 2 electrode/nanosized Na 3 PS 4 solid electrolytes interface. Meanwhile, excellent cycling stability is achieved for the battery after cycling at 60 mA g -1 for 100 cycles, showing a high capacity of 287 mAh g -1 with the capacity retention of 80%.
NASA Astrophysics Data System (ADS)
Sanibondi, Paolo
2015-09-01
Fume formation during arc welding has been modelled using a stochastic approach taking into account iron oxidation reactions. The model includes the nucleation and condensation of Fe and FeO vapours, the reaction of gaseous O2 and O on the nanoparticle surface, the coagulation of the nanoparticles including a sintering time as a function of temperature and composition, assuming chemical equilibrium for species in the gaseous phase. Results suggest that fumes generated in gas metal arc welding with oxidizing shielding mixtures are composed of aggregates of primary particles that are nucleated from gas-phase FeO and further oxidized to Fe3O4 and Fe2O3 in the liquid and solid phase, respectively. The composition of the fumes at the end of the formation process depends on the relative initial concentration of Fe and O2 species in the gas mixture and on the diameter of the primary particles that compose the aggregates: as the oxidation reactions are driven by deposition of oxygen on nanoparticle surface, the oxidation of larger particles is slower than that of smaller particles because of their lower surface to volume ratio. Solid-state diffusion is limiting the oxidation process at temperatures lower than 1500 K, inducing the formation of not fully oxidized particles composed of Fe3O4.
Shakeri Yekta, Sepehr; Lindmark, Amanda; Skyllberg, Ulf; Danielsson, Asa; Svensson, Bo H
2014-03-30
The objective of the present study was to assess major chemical reactions and chemical forms contributing to solubility and speciation of Fe(II), Co(II), and Ni(II) during anaerobic digestion of sulfur (S)-rich stillage in semi-continuous stirred tank biogas reactors (SCSTR). These metals are essential supplements for efficient and stable performance of stillage-fed SCSTR. In particular, the influence of reduced inorganic and organic S species on kinetics and thermodynamics of the metals and their partitioning between aqueous and solid phases were investigated. Solid phase S speciation was determined by use of S K-edge X-ray absorption near-edge spectroscopy. Results demonstrated that the solubility and speciation of supplemented Fe were controlled by precipitation of FeS(s) and formation of the aqueous complexes of Fe-sulfide and Fe-thiol. The relatively high solubility of Co (∼ 20% of total Co content) was attributed to the formation of compounds other than Co-sulfide and Co-thiol, presumably of microbial origin. Nickel had lower solubility than Co and its speciation was regulated by interactions with FeS(s) (e.g. co-precipitation, adsorption, and ion substitution) in addition to precipitation/dissolution of discrete NiS(s) phase and formation of aqueous Ni-sulfide complexes. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laplanche, Guillaume; Gadaud, P.; Barsch, C.
Elastic moduli of a set of equiatomic alloys (CrFeCoNi, CrCoNi, CrFeNi, FeCoNi, MnCoNi, MnFeNi, and CoNi), which are medium-entropy subsystems of the CrMnFeCoNi high-entropy alloy were determined as a function of temperature over the range 293 K–1000 K. Thermal expansion coefficients were determined for these alloys over the temperature range 100 K–673 K. All alloys were single-phase and had the face-centered cubic (FCC) crystal structure, except CrFeNi which is a two-phase alloy containing a small amount of body-centered cubic (BCC) precipitates in a FCC matrix. The temperature dependences of thermal expansion coefficients and elastic moduli obtained here are useful for quantifying fundamental aspects suchmore » as solid solution strengthening, and for structural analysis/design. Furthermore, using the above results, the yield strengths reported in literature for these alloys were normalized by their shear moduli to reveal the influence of shear modulus on solid solution strengthening.« less
Fabrication, characterization and applications of iron selenide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hussain, Raja Azadar, E-mail: hussainazadar@yahoo.com; Badshah, Amin; Lal, Bhajan
This review article presents fabrication of FeSe by solid state reactions, solution chemistry routes, chemical vapor deposition, spray pyrolysis and chemical vapor transport. Different properties and applications such as crystal structure and phase transition, band structure, spectroscopy, superconductivity, photocatalytic activity, electrochemical sensing, and fuel cell activity of FeSe have been discussed. - Graphical abstract: Iron selenide can be synthesized by solid state reactions, chemical vapor deposition, solution chemistry routes, chemical vapor transport and spray pyrolysis. - Highlights: • Different fabrication methods of iron selenide (FeSe) have been reviewed. • Crystal structure, band structure and spectroscopy of FeSe have been discussed.more » • Superconducting, catalytic and fuel cell application of FeSe have been presented.« less
NASA Astrophysics Data System (ADS)
Zheng, X. Y.; Satkoski, A.; Beard, B. L.; Reddy, T. R.; Beukes, N. J.; Johnson, C.
2017-12-01
Precambrian Banded iron formations (BIFs) and cherts provide a record of Fe and Si biogeochemical cycling in early Earth marine environments. Much of the focus on BIFs has been the origin and pathways for Fe, but Si is intimately tied to BIF genesis through its connection to Fe minerals, either through direct structural bonding or through sorption. In the Precambrian ocean, aqueous Si contents were high, and it is increasingly recognized that Fe(III)-Si gels were the most likely precursor to BIFs [1]. It is known that Fe-Si bonding affects stable Fe isotope fractionations [2], and our recent experimental work shows this to be true for stable Si isotope fractionations [3, 4]. Silicon isotope fractionations in the Fe-Si system vary from 0‰ to nearly 4‰ in 30Si/28Si ratios with the solid phase being isotopically light depending on Fe:Si ratio [3, 4, and this study], a range far larger than that of 56Fe/54Fe ratios, highlighting the fact that Si isotopes are a highly sensitive tracer of the Fe-Si cycle. This range in Si isotope fractionation factors for the Fe-Si system can explain the full range of δ30Si values measured in Precambrian BIFs, providing a new framework to interpret Precambrian δ30Si records. Our results provide strong support for a model where Fe(III)-Si gels are the precursor phase for BIFs, which in turn affects estimates for the aqueous Fe and Si contents of the Precambrian oceans through changes in Fe-Si gel solubility. Our experiments also showed that microbial dissimilatory iron reduction (DIR) of Fe(III)-Si gel can easily produce a solid with Fe(II)-Fe(III) stoichiometry equal to magnetite, in marked contrast to abiotic incorporation of Fe(II) into Fe(III)-Si gel that resulted in a solid with Fe(II)-Fe(III) stoichiometry much lower than magnetite. Moreover, this DIR process produces a unique, negative δ30Si signature that should be eventually preserved in quartz closely associated with magnetite upon phase transformation of Fe-Si gel, and serve as a bio-signature. This experimental finding well explains the tendency of magnetite-rich BIFs to have lower δ30Si values than hematite-rich BIFs. [1] Konhauser et al., Earth-Science Rev, 2017 [2] Wu et al., GCA, 2012 [3] Zheng et al., GCA, 2016 [4] Reddy et al., GCA, 2016
The solubility and site preference of Fe3+ in Li7−3xFexLa3Zr2O12 garnets
Rettenwander, D.; Geiger, C.A.; Tribus, M.; Tropper, P.; Wagner, R.; Tippelt, G.; Lottermoser, W.; Amthauer, G.
2015-01-01
A series of Fe3+-bearing Li7La3Zr2O12 (LLZO) garnets was synthesized using solid-state synthesis methods. The synthetic products were characterized compositionally using electron microprobe analysis and inductively coupled plasma optical emission spectroscopy (ICP-OES) and structurally using X-ray powder diffraction and 57Fe Mössbauer spectroscopy. A maximum of about 0.25 Fe3+ pfu could be incorporated in Li7−3xFexLa3Zr2O12 garnet solid solutions. At Fe3+ concentrations lower than about 0.16 pfu, both tetragonal and cubic garnets were obtained in the synthesis experiments. X-ray powder diffraction analysis showed only a garnet phase for syntheses with starting materials having intended Fe3+ contents lower than 0.52 Fe3+ pfu. Back-scattered electron images made with an electron microprobe also showed no phase other than garnet for these compositions. The lattice parameter, a0, for all solid-solution garnets is similar with a value of a0≈12.98 Å regardless of the amount of Fe3+. 57Fe Mössbauer spectroscopic measurements indicate the presence of poorly- or nano-crystalline FeLaO3 in syntheses with Fe3+ contents greater than 0.16 Fe3+ pfu. The composition of different phase pure Li7−3xFexLa3Zr2O12 garnets, as determined by electron microprobe (Fe, La, Zr) and ICP-OES (Li) measurements, give Li6.89Fe0.03La3.05Zr2.01O12, Li6.66Fe0.06La3.06Zr2.01O12, Li6.54Fe0.12La3.01Zr1.98O12, and Li6.19Fe0.19La3.02Zr2.04O12. The 57Fe Mössbauer spectrum of cubic Li6.54Fe0.12La3.01Zr1.98O12 garnet indicates that most Fe3+ occurs at the special crystallographic 24d position, which is the standard tetrahedrally coordinated site in garnet. Fe3+ in smaller amounts occurs at a general 96h site, which is only present for certain Li-oxide garnets, and in Li6.54Fe0.12La3.01Zr1.98O12 this Fe3+ has a distorted 4-fold coordination. PMID:26435549
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lone, A. G., E-mail: agl221986@gmail.com; Bhowmik, R. N.
2015-06-24
We investigate the structural phase transformation from orthorhombic to rhombohedral structure in FeGaO{sub 3} by adopting a combined effect of mechanical alloying/milling and solid state sintering techniques. The structural phase formation of the FeGaO{sub 3} compound has been characterized by X-ray diffraction pattern. Mechanical milling played a significant role on the stabilization of rhombohedral phase in FeGaO{sub 3}, where as high temperature sintering stabilized the system in orthorhombic phase. A considerable difference has been observed in magnetic and ferroelectric properties of the system in two phases. The system in rhombohedral (R-3c) phase exhibited better ferromagnetic and of ferroelectric properties atmore » room temperature in comparison to orthorhombic (Pc2{sub 1}n) phase. The rhombohedral phase appears to be good for developing metal doped hematite system for spintronics applications and in that process mechanical milling played an important role.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boparai, Hardiljeet K.; Comfort, Steve; Satapanajaru, Tunlawit
Zerovalent iron barriers have become a viable treatment for field-scale cleanup of various ground water contaminants. While contact with the iron surface is important for contaminant destruction, the interstitial pore water within and near the iron barrier will be laden with aqueous, adsorbed and precipitated FeII phases. These freshly precipitated iron minerals could play an important role in transforming high explosives (HE). Our objective was to determine the transformation of RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine), HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine), and TNT (2,4,6-trinitrotoluene) by freshly precipitated iron FeII/FeIII minerals. This was accomplished by quantifying the effects of initial FeII concentration, pH, and the presence of aquifermore » solids (FeIII phases) on HE transformation rates. Results showed that at pH 8.2, freshly precipitated iron minerals transformed RDX, HMX, and TNT with reaction rates increasing with increasing FeII concentrations. RDX and HMX transformations in these solutions also increased with increasing pH (5.8-8.55). By contrast, TNT transformation was not influenced by pH (6.85-8.55) except at pH values <6.35. Transformations observed via LC/MS included a variety of nitroso products (RDX, HMX) and amino degradation products (TNT). XRD analysis identified green rust and magnetite as the dominant iron solid phases that precipitated from the aqueous FeII during HE treatment under anaerobic conditions. Geochemical modeling also predicted FeII activity would likely be controlled by green rust and magnetite. These results illustrate the important role freshly precipitated FeII/FeIII minerals in aqueous FeII solutions play in the transformation of high explosives.« less
Phase relations in the Fe-Ni-Cr-S system and the sulfidation of an austenitic stainless steel
NASA Technical Reports Server (NTRS)
Jacob, K. T.; Rao, D. B.; Nelson, H. G.
1977-01-01
The stability fields of various sulfide phases that form on Fe-Cr, Fe-Ni, Ni-Cr and Fe-Cr-Ni alloys were developed as a function of temperature and the partial pressure of sulfur. The calculated stability fields in the ternary system were displayed on plots of log P sub S sub 2 versus the conjugate extensive variable which provides a better framework for following the sulfidation of Fe-Cr-Ni alloys at high temperatures. Experimental and estimated thermodynamic data were used in developing the sulfur potential diagrams. Current models and correlations were employed to estimate the unknown thermodynamic behavior of solid solutions of sulfides and to supplement the incomplete phase diagram data of geophysical literature. These constructed stability field diagrams were in excellent agreement with the sulfide phases and compositions determined during a sulfidation experiment.
Multiferroic properties in NdFeO3-PbTiO3 solid solutions
NASA Astrophysics Data System (ADS)
Kumar, Sunil; Pal, Jaswinder; Kaur, Shubhpreet; Agrawal, P.; Singh, Mandeep; Singh, Anupinder
2018-05-01
The x(NdFeO3) - 1-x(PbTiO3) where x = 0.2 solid solution was prepared using solid state reaction route. The X-ray diffraction (XRD) data reveals the single phase formation. The microstructure shows grain growth with lesser porosity. The energy dispersive analysis confirms the presence of elements in stochiometric proportion. The polarization vs. Electric field loop estabilished a ferroelectric type behavior but lossy in nature. This lossy nature may be due to the presence of large leakage current in solid solution. The Magnetization vs. Magnetic field plot exhibits a unsaturated hysteriss loop indicates that the sample is not purely ferromagnetic.
Phase composition and magnetic properties in hot deformed magnets based on Misch-metal
NASA Astrophysics Data System (ADS)
Ma, Q.; Zhang, Z. Y.; Zhang, X. F.; Hu, Z. F.; Liu, Y. L.; Liu, F.; Jv, X. M.; Wang, J.; Li, Y. F.; Zhang, J. X.
2018-04-01
In this paper, the Rare-earth Iron Boron (RE-Fe-B) magnets were fabricated successfully by using the double main phase method through mixing the Neodymium Iron Boron (Nd-Fe-B) powders and Misch-metal Iron Boron (MM-Fe-B) powders with different ratio. Aiming at the nanocrystalline RE2Fe14B magnets prepared by using spark plasma sintering technology, phase structure and magnetic properties were investigated. It is found that the Misch-metal (MM) alloys promote the domain nucleation during the the process of magnetization reversal and then damage the coercivity (Hcj) of isotropic RE2Fe14B magnets, while the Hcj could still remain more than 1114.08 kA/m when the mass proportion of MM (simplified as: "a") is 30%. Curie temperature and phase structure were also researched. Two kinds of mixed-solid-solution (MSS) main phases with different Lanthanum (La) and Cerium (Ce) content were believed to be responsible for the two curie temperature of the RE2Fe14B magnets with "a" ≥20%. This is resulted from the inhomogeneous elemental distribution of RE2Fe14B phase.
Coupling between magnetic and optical properties of stable Au-Fe solid solution nanoparticles
NASA Astrophysics Data System (ADS)
de Julián Fernández, C.; Mattei, G.; Paz, E.; Novak, R. L.; Cavigli, L.; Bogani, L.; Palomares, F. J.; Mazzoldi, P.; Caneschi, A.
2010-04-01
Au-Fe nanoparticles constitute one of the simplest prototypes of a multifunctional nanomaterial that can exhibit both magnetic and optical (plasmonic) properties. This solid solution, not feasible in the bulk phase diagram in thermal equilibrium, can be formed as a nanostructure by out-of-equilibrium processes. Here, the novel magnetic, optical and magneto-optical properties of ion-implanted Au-Fe solid solution nanoparticles dispersed in a SiO2 matrix are investigated and correlated. The surface plasmon resonance of the Au-Fe nanoparticles with almost equicomposition is strongly damped when compared to pure Au and to Au-rich Au-Fe nanoparticles. In all cases, the Au atoms are magnetically polarized, as measured by x-ray magnetic circular dichroism, and ferromagnetically coupled with Fe atoms. Although the chemical stability of Au-Fe nanoparticles is larger than that of Fe nanoparticles, both the magnetic moment per Fe atom and the order temperature are smaller. These results suggest that electronic and magnetic properties are more influenced by the hybridization of the electronic bands in the Au-Fe solid solution than by size effects. On the other hand, the magneto-optical transitions allowed in the vis-nIR spectral regions are very similar. In addition, we also observe, after studying the properties of thermally treated samples, that the Au-Fe alloy is stabilized, not by surface effects, but by the combination of the out-of-equilibrium nature of the ion implantation technique and by changes in the properties due to size effects.
Coupling between magnetic and optical properties of stable Au-Fe solid solution nanoparticles.
de Julián Fernández, C; Mattei, G; Paz, E; Novak, R L; Cavigli, L; Bogani, L; Palomares, F J; Mazzoldi, P; Caneschi, A
2010-04-23
Au-Fe nanoparticles constitute one of the simplest prototypes of a multifunctional nanomaterial that can exhibit both magnetic and optical (plasmonic) properties. This solid solution, not feasible in the bulk phase diagram in thermal equilibrium, can be formed as a nanostructure by out-of-equilibrium processes. Here, the novel magnetic, optical and magneto-optical properties of ion-implanted Au-Fe solid solution nanoparticles dispersed in a SiO(2) matrix are investigated and correlated. The surface plasmon resonance of the Au-Fe nanoparticles with almost equicomposition is strongly damped when compared to pure Au and to Au-rich Au-Fe nanoparticles. In all cases, the Au atoms are magnetically polarized, as measured by x-ray magnetic circular dichroism, and ferromagnetically coupled with Fe atoms. Although the chemical stability of Au-Fe nanoparticles is larger than that of Fe nanoparticles, both the magnetic moment per Fe atom and the order temperature are smaller. These results suggest that electronic and magnetic properties are more influenced by the hybridization of the electronic bands in the Au-Fe solid solution than by size effects. On the other hand, the magneto-optical transitions allowed in the vis-nIR spectral regions are very similar. In addition, we also observe, after studying the properties of thermally treated samples, that the Au-Fe alloy is stabilized, not by surface effects, but by the combination of the out-of-equilibrium nature of the ion implantation technique and by changes in the properties due to size effects.
Sun, Yuhan; Qi, Peipei; Cang, Tao; Wang, Zhiwei; Wang, Xiangyun; Yang, Xuewei; Wang, Lidong; Xu, Xiahong; Wang, Qiang; Wang, Xinquan; Zhao, Changshan
2018-06-01
As a key representative organism, earthworms can directly illustrate the influence of pesticides on environmental organisms in soil ecosystems. The present work aimed to develop a high-throughput multipesticides residue analytical method for earthworms using solid-liquid extraction with acetonitrile as the solvent and magnetic material-based dispersive solid-phase extraction for purification. Magnetic Fe 3 O 4 nanoparticles were modified with a thin silica layer to form Fe 3 O 4 -SiO 2 nanoparticles, which were fully characterized by field-emission scanning electron microscopy, transmission electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffractometry, and vibrating sample magnetometry. The Fe 3 O 4 -SiO 2 nanoparticles were used as the separation media in dispersive solid-phase extraction with primary secondary amine and ZrO 2 as the cleanup adsorbents to eliminate matrix interferences. The amounts of nanoparticles and adsorbents were optimized for the simultaneous determination of 44 pesticides and six metabolites in earthworms by liquid chromatography with tandem mass spectrometry. The method performance was systematically validated with satisfactory results. The limits of quantification were 20 μg/kg for all analytes studied, while the recoveries of the target analytes ranged from 65.1 to 127% with relative standard deviation values lower than 15.0%. The developed method was subsequently utilized to explore the bioaccumulation of bitertanol in earthworms exposed to contaminated soil, verifying its feasibility for real sample analysis. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Zurkowski, C. C.; Chidester, B.; Davis, A.; Brauser, N.; Greenberg, E.; Prakapenka, V. B.; Campbell, A.
2017-12-01
Earth's core is comprised of an iron-nickel alloy that contains 5-15% of a light element component. The abundance and alloying capability of sulfur, silicon and oxygen in the bulk Earth make them important core alloy candidates; therefore, the high-pressure phase equilibria of the Fe-S-O and Fe-S-Si systems are relevant for understanding the possible chemistry of Earth's core. Previously, a Fe3S2 phase was recognized as a low-pressure intermediate phase in the Fe-FeS system that is stable from 14-21 GPa, but the structure of this phase has not been resolved. We report in-situ XRD and chemical analysis of recovered samples to further examine the stability and structure of Fe3S2 as it coexists with other phases in the Fe-S-O and Fe-S-Si systems. In situ high P-T synchrotron XRD experiments were conducted in the laser-heated diamond anvil cell to determine the equilibrium phases in Fe75S7O18 and Fe80S5Si15 compositions between 30 and 174 GPa and up to 3000 K. In the S,O-rich samples, an orthorhombic Fe3S2 phase coexists with hcp-Fe, Fe3S and FeO and undergoes two monoclinic distortions between 60 and 174 GPa. In the S,Si-rich samples, the orthorhombic Fe3S2 phase was observed up to 115 GPa. With increasing pressure, the Fe3S2 phase becomes stable to higher temperatures in both compositions, suggesting possible Fe3(S,O)2 or Fe3(S,Si)2 solid solutions. SEM analysis of a laser heated Fe75S7O18 sample recovered from 40 GPa and 1450 K confirms a Fe3(S,O)2 phase with O dissolved into the structure. Based on the current melting data in the Fe-S-O and Fe-S-Si systems, the Fe3(S,O)2 stability field intersects the solidus in the outer core and could be a possible liquidus phase in Fe,S,O-rich planetary cores, whereas Fe3S is the stable sulfide at outer core pressures in Fe,S,Si-rich systems.
Doerr, Nora A; Ptacek, Carol J; Blowes, David W
2005-06-01
The Nickel Rim aquifer has been impacted for five decades by a metal-rich plume generated from the Nickel Rim mine tailings impoundment. Metals released by the oxidation of pyrrhotite in the unsaturated zone of the tailings migrate into the downgradient aquifer, affecting both the groundwater and the aquifer solids. A reactive barrier has been installed in the aquifer to remove sulfate and metals from the groundwater. The effect of the reactive barrier on metal concentrations in the aquifer solids has not previously been studied. In this study, a series of selective extraction procedures was applied to cores of aquifer sediment, to ascertain the distribution of metals among various solid phases present in the aquifer. Extraction results were combined with groundwater chemistry, geochemical modelling and solid-phase microanalyses, to assess the potential mobility of metals under changing geochemical conditions. Reactions within the reactive barrier caused an increase in the solid-phase carbonate content downgradient from the barrier. The concentrations of poorly crystalline, oxidized phases of Mn and Fe, as well as concentrations of Cr(III) associated with oxidized Fe, and poorly crystalline Zn, are lower downgradient from the barrier, whereas total solid-phase metal concentrations remain constant. Iron and Mn accumulate as oxidized, easily extractable forms in a peat layer overlying the aquifer. Although these oxides may buffer reducing plumes, they also have the potential to release metals to the groundwater, should a reduced condition be imposed on the aquifer by remedial actions.
Guidotti, Ronald A.
1988-01-01
In a method for preparing lithiated, particulate FeS.sub.2 useful as a catholyte material in a lithium thermal battery, whereby the latter's voltage regulation properties are improved, comprising admixing FeS.sub.2 and an amount of a lithium-containing compound whereby the resultant total composition falls in an invariant region of the metallurgical phase diagram of its constituent components, an improvement comprises admixing said lithium-containing compound and FeS.sub.2 together with a solid electrolyte compatible with said catholyte, and heating the mixture at a temperature above the melting point of said electrolyte and at which said mixture reaches its thermodynamic equilibrium number of phases.
Modelling Equilibrium and Fractional Crystallization in the System MgO-FeO-CaO-Al2O3-SiO2
NASA Technical Reports Server (NTRS)
Herbert, F.
1985-01-01
A mathematical modelling technique for use in petrogenesis calculations in the system MgO-FeO-CaO-Al2O3-SiO2 is reported. Semiempirical phase boundary and elemental distribution information was combined with mass balance to compute approximate equilibrium crystallization paths for arbitrary system compositions. The calculation is applicable to a range of system compositions and fractionation calculations are possible. The goal of the calculation is the computation of the composition and quantity of each phase present as a function of the degree of solidification. The degree of solidification is parameterized by the heat released by the solidifying phases. The mathematical requirement for the solution of this problem is: (1) An equation constraining the composition of the magma for each solid phase in equilibrium with the liquidus phase, and (2) an equation for each solid phase and each component giving the distribution of that element between that phase and the magma.
Carbon in iron phases under high pressure
NASA Astrophysics Data System (ADS)
Huang, L.; Skorodumova, N. V.; Belonoshko, A. B.; Johansson, B.; Ahuja, R.
2005-11-01
The influence of carbon impurities on the properties of iron phases (bcc, hcp, dhcp, fcc) has been studied using the first-principles projector augmented-wave (PAW) method for a wide pressure range. It is shown that the presence of ~6 at. % of interstitial carbon has a little effect on the calculated structural sequence of the iron phases under high pressure. The bcc -> hcp transition both for pure iron and iron containing carbon takes place around 9 GPa. According to the enthalpies comparison, the solubility of carbon into the iron solid is decreased by high pressure. The coexistence of iron carbide (Fe3C) + pure hcp Fe is most stable phase at high pressure compared with other phases. Based on the analysis of the pressure-density dependences for Fe3C and hcp Fe, we suggest that there might be some fraction of iron carbide present in the core.
The high-pressure phase transitions of hydroxides
NASA Astrophysics Data System (ADS)
Nishi, M.; Kuwayama, Y.; Tsuchiya, J.; Tsuchiya, T.; Irifune, T.
2017-12-01
The discovery of new high-pressure hydrous minerals has important implications for understanding the structure, dynamics, and evolution of the Earth, since hydrogen significantly affects the physical properties and stabilities of Earth's constituent minerals. Whereas hydrous minerals commonly dehydrate under pressures of around a few tens of gigapascals (GPa) and at temperature around 1,500 K, those with CaCl2-type crystal structure, MgSiO4H2 phase H, δ-AlOOH and ɛ-FeOOH, are known to be stable at pressures corresponding to the lower mantle. However, although the CaCl2-type hydroxides were suggested to form a solid solution owing to their similar crystal structure, there are few experimental studies on the stability of the hydroxide in such multicomponent. Moreover, ab initio calculations have predicted that some CaCl2-type hydroxides transform to pyrite-type structure at higher pressures. Here, we conducted high pressure-temperature experiments on pure AlOOH, FeOOH, and their solid solutions, with the aid of these first-principles predictions. We use in situ X-ray measurements in conjunction with a multi-anvil apparatus to study the high-pressure behaviour of hydroxides in the multicomponent system under middle lower mantle conditions. Solid solutions in wide compositional ranges between CaCl2-type δ-AlOOH and ɛ-FeOOH were recognized from X-ray diffraction patterns. Also, unit cell volume of FeOOH and (Al,Fe)OOH significantly decreased accompanied with the spin transition of iron at 50 GPa. Thus, the wide compositional ranges in CaCl2-type hydroxide are maintained beyond the depth of the middle lower mantle, where the spin transition of iron occurs. We used a laser-heated diamond anvil cell in order to study the stability of AlOOH and FeOOH at higher pressures above 70 GPa. We observed that ɛ-FeOOH transforms to the pyrite-type structure at above 80 GPa, which is consistent with the theoretical prediction. At conditions above 190 GPa and 2,500 K, we observed the phase transition of δ-AlOOH to its higher pressure phase at above 170 GPa although further experimental study should be required to determine the precise structure. Based on these experimental and theoretical results, the stability and phase transitions of hydrous phases in the lower mantle will be discussed.
Morphological and XPS study of ball milled Fe1-xAlx (0.3≤x≤0.6) alloys
NASA Astrophysics Data System (ADS)
Rajan, Sandeep; Kumar, Anil; Vyas, Anupam; Brajpuriya, Ranjeet
2018-05-01
The paper presents mechanical and XPS study of ball milled Fe1-xAlx (0.3≤x≤0.6) alloys. The author prepared the solid solution of Fe(Al) with different composition of Al by using mechanical alloying (MA) technique. The MA process induces a progressive dissolution of Al into Fe, resulted in the formation of an extended Fe(Al) solid solution with the bcc structure after 5 hr of milling. The SEM Images shows that the initial shape of particles disappeared completely, and their structure became a mixture of small and large angular-shaped crystallites with different sizes. The TEM micrograph also confirms the reduction in crystallite size and alloy formation. XPS study shows the shift in the binding energy position of both Fe and Al Peaks provide strong evidence of Fe(Al) phase formation after milling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murakami, Makoto; Mori, Shigeo; Yamada, Ikuya, E-mail: i-yamada@21c.osakafu-u.ac.jp
Magnetic properties of the quadruple perovskite solid solutions Ca{sub 1–x}Y{sub x}Cu{sub 3}Fe{sub 4}O{sub 12} and Y{sub 1–y}Ce{sub y}Cu{sub 3}Fe{sub 4}O{sub 12} are investigated. Ca{sub 1–x}Y{sub x}Cu{sub 3}Fe{sub 4}O{sub 12} shows continuous increase in the ferromagnetic transition temperature as x increases. Y{sub 1–y}Ce{sub y}Cu{sub 3}Fe{sub 4}O{sub 12} exhibits a ferromagnetic-antiferromagnetic transition in the vicinity of y = 0.5. These observations demonstrate the electron doping effect on magnetic properties of charge-disproportionated ACu{sub 3}Fe{sub 4}O{sub 12} phases.
Griffiths-like phase in high TC perovskite La2FeReO6 prepared in a controlled reducing atmosphere
NASA Astrophysics Data System (ADS)
Kaipamagalath, Aswathi; Palakkal, Jasnamol P.; Varma, Manoj R.
2018-05-01
The perovskite La2FeReO6 is prepared by solid-state reaction method. Calcination was done in a controlled reducing atmosphere. The structure of the compound is found to be orthorhombic with Pbnm space group. From the DC magnetic studies, the transition temperature (TC) of La2FeReO6 is found to be at 729 K. A Griffiths-like phase is present in the material with ferromagnetic short-range correlations above TC up to the Griffiths temperature TG = 863 K.
NASA Astrophysics Data System (ADS)
Decolvenaere, Elizabeth; Gordon, Michael; Seshadri, Ram; Van der Ven, Anton
2017-10-01
Many Heusler compounds possess magnetic properties well suited for applications as spintronic materials. The pseudobinary Mn0.5Fe0.5Ru2Sn , formed as a solid solution of two full Heuslers, has recently been shown to exhibit exchange hardening suggestive of two magnetic phases, despite existing as a single chemical phase. We have performed a first-principles study of the chemical and magnetic degrees of freedom in the Mn1 -xFexRu2Sn pseudobinary to determine the origin of the unique magnetic behavior responsible for exchange hardening within a single phase. We find a transition from antiferromagnetic (AFM) to ferromagnetic (FM) behavior upon replacement of Mn with Fe, consistent with experimental results. The lowest energy orderings in Mn1 -xFexRu2Sn consist of chemically and magnetically uniform (111) planes, with Fe-rich regions preferring FM ordering and Mn-rich regions preferring AFM ordering, independent of the overall composition. Analysis of the electronic structure suggests that the magnetic behavior of this alloy arises from a competition between AFM-favoring Sn-mediated superexchange and FM-favoring RKKY exchange mediated by spin-polarized conduction electrons. Changes in valency upon replacement of Mn with Fe shifts the balance from superexchange-dominated interactions to RKKY-dominated interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoeber, Stefan, E-mail: stefan.stoeber@geo.uni-halle.de; Redhammer, Guenther; Schorr, Susan
2013-01-15
Four different brownmillerite solid solutions Ca{sub 2}Al{sub x}(Fe{sub 0.5}Mn{sub 0.5}){sub 2-x}O{sub 5+{delta}} with 1/2{<=}x{<=}4/3 were synthesized by a solid oxide ceramic method. The phases crystallize either in a primitive centered orthorhombic cell with space group Pnma or in a body centered cell with space group I2mb dependent on the aluminum concentration present in the solid solution. Mn{sup 3+} ions occupy exclusively site 4a coordinated by six oxygen anions. Increasing Mn{sup 3+} concentrations cause a remarkable distortion of the octahedron and indirectly of the tetrahedron, resulting in twisted and tilted octahedral layers as well as buckled tetrahedral chains. The influences aremore » discussed on the site 4a of trivalent manganese due to its Jahn-Teller activity, with regard to the occupation of octahedron and tetrahedron with different sized iron and aluminum ions. - Graphical Abstract: The coupled substitution Fe{sup 3+}>Mn{sup 3+}+Fe{sup 3+} <=>2 Al{sup 3+} in brownmillerite phases (Ca{sub 2}(Fe{sub 0.5}Mn{sub 0.5}){sub 2-x}Al{sub x}O{sub 5+{delta}}) changes predominantly their structural properties, which is essential for the hydration performance of the calcium aluminate cement, where brownmillerites occur as clinker phases. Highlights: Black-Right-Pointing-Pointer We present structural data of four Ca-Al-Fe-Mn-brownmillerites. Black-Right-Pointing-Pointer Mn{sup 3+}-ions occupy exclusively the octahedrally coordinated site 0,0,0. Black-Right-Pointing-Pointer Bonds and angles of the octahedrally coordinated site are distorted strongly. Black-Right-Pointing-Pointer Mn{sup 3+}-ions influence indirectly the shape of the tetrahedron. Black-Right-Pointing-Pointer Mn{sup 3+}-ions stabilize Pnma instead of I2mb in Ca-Al-Fe-Mn-brownmillerites.« less
Atomic-scale dynamics of edge dislocations in Ni and concentrated solid solution NiFe alloys
Zhao, Shijun; Osetsky, Yuri N.; Zhang, Yanwen; ...
2017-01-19
Single-phase concentrated solid solution alloys (CSAs), including high entropy alloys, exhibit excellent mechanical properties compared to conventional dilute alloys. However, the origin of this observation is not clear yet because the dislocation properties in CSAs are poorly understood. In this work, the mobility of a <110>{111} edge dislocation in pure Ni and equiatomic solid solution Ni 0.5Fe 0.5 (NiFe) is studied using molecular dynamics simulations with different empirical potentials. The threshold stress to initiate dislocation movement in NiFe is found to be much higher compared to pure Ni. The drag coefficient of the dislocation motion calculated from the linear regimemore » of dislocation velocities versus applied stress suggests that the movement of dislocations in NiFe is strongly damped compared to that in Ni. The present results indicate that the mobility of edge dislocations in fcc CSAs are controlled by the fluctuations in local stacking fault energy caused by the local variation of alloy composition.« less
Verplanck, P.L.; Nordstrom, D. Kirk; Taylor, Howard E.; Kimball, B.A.
2004-01-01
Ferrous iron rapidly oxidizes to Fe (III) and precipitates as hydrous Fe (III) oxides in acid mine waters. This study examines the effect of Fe precipitation on the rare earth element (REE) geochemistry of acid mine waters to determine the pH range over which REEs behave conservatively and the range over which attenuation and fractionation occur. Two field studies were designed to investigate REE attenuation during Fe oxidation in acidic, alpine surface waters. To complement these field studies, a suite of six acid mine waters with a pH range from 1.6 to 6.1 were collected and allowed to oxidize in the laboratory at ambient conditions to determine the partitioning of REEs during Fe oxidation and precipitation. Results from field experiments document that even with substantial Fe oxidation, the REEs remain dissolved in acid, sulfate waters with pH below 5.1. Between pH 5.1 and 6.6 the REEs partitioned to the solid phases in the water column, and heavy REEs were preferentially removed compared to light REEs. Laboratory experiments corroborated field data with the most solid-phase partitioning occurring in the waters with the highest pH. ?? 2004 Elsevier Ltd. All rights reserved.
Phase transformations in the hematite-metal system during mechanical alloying
NASA Astrophysics Data System (ADS)
Kozlov, K. A.; Shabashov, V. A.; Litvinov, A. V.; Sagaradze, V. V.
2009-04-01
Mössbauer spectroscopy and X-ray diffraction are used to show that the phase transformations in hematite α-Fe2O3-metal ( M = Fe, Ni, Ti, Zr) powder mixtures induced by severe cold plastic deformation in ball mills occur via the formation of M-Fe-O solid solutions, redox reactions with the reduction of metallic iron, and the formation of secondary M x O y oxides and M x Fe y intermetallics. Mechanical activation in a ball mill is compared to that under high-pressure shear in Bridgman anvils. The transformations that take place in a ball mill are found to have several stages and to be accelerated.
NASA Astrophysics Data System (ADS)
Fock, Jeppe; Bogart, Lara K.; González-Alonso, David; Espeso, Jose I.; Hansen, Mikkel F.; Varón, Miriam; Frandsen, Cathrine; Pankhurst, Quentin A.
2017-07-01
We evaluate the application of 57Fe Mössbauer spectroscopy to the determination of the composition of magnetite (Fe3O4)/maghemite (γ-Fe2O3) mixtures and the stoichiometry of magnetite-maghemite solid solutions. In particular, we consider a recently proposed model-independent method which does not rely on a priori assumptions regarding the nature of the sample, other than that it is free of other Fe-containing phases. In it a single parameter, {{\\overlineδ}\\text{RT}} —the ‘centre of gravity’, or area weighted mean isomer shift at room temperature, T = 295 ± 5 K—is extracted by curve-fitting a sample’s Mössbauer spectrum, and is correlated to the sample’s composition or stoichiometry. We present data on high-purity magnetite and maghemite powders, and mixtures thereof, as well as comparison literature data from nanoparticulate mixtures and solid solutions, to show that a linear correlation exists between {{\\overlineδ}\\text{RT}} and the numerical proportion of Fe atoms in the magnetite environment: α = Femagnetite/Fetotal =≤ft({{\\overlineδ}\\text{RT}}-{δ\\text{o}}\\right)/m , where {δ\\text{o}} = 0.3206 ± 0.0022 mm s-1 and m = 0.2135 ± 0.0076 mm s-1. We also present equations to relate α to the weight percentage w of magnetite in mixed phases, and the magnetite stoichiometry x = Fe2+/Fe3+ in solid solutions. The analytical method is generally applicable, but is most accurate when the absorption profiles are sharp; in some samples this may require spectra to be recorded at reduced temperatures. We consider such cases and provide equations to relate \\overlineδ(T) to the corresponding α value.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, R.B.
Progress is reported of a research program on deterinining the U--Al-- Fe constitution diagram up to approximates 1000 ppm each of Al and Fe. Results are reported of metallographic examinations of U--Al, U--Fe, and U--Al--Fe alloys, and tentative phase diagrams are given for all three systems. Lattice parameters and electrical resistances were measured in an effort to determine the solid solubilities of Al and Fe in U. (D.L.C.)
NASA Astrophysics Data System (ADS)
Vinaykumar, R.; Mazumder, R.; Bera, J.
2017-05-01
Co-Ti co-substituted SrM hexagonal ferrite (SrCo1.5Ti1.5Fe9O19) was synthesized by sol-gel combustion and solid state route. The effects of sources of TiO2 raw materials; titanium tetra-isopropoxide (TTIP) and titanyl nitrate (TN) on the phase formation behavior and properties of the ferrite were studied. The thermal decomposition behavior of the gel was studied using TG-DSC. The phase formation behavior of the ferrite was studied by using X-ray powder diffraction and FTIR analysis. Phase formation was comparatively easier in the TN-based sol-gel process. The morphology of powder and sintered ferrite was investigated using scanning electron microscope. Magnetic properties like magnetization, coercivity, permeability, tan δμ and dielectric properties were investigated. The ferrite synthesized by sol-gel based chemical route showed higher saturation magnetization, permeability and permittivity compared to the ferrite synthesized by solid state route.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chezhina, N.V., E-mail: chezhina@nc2490.spb.edu; Korolev, D.A.; Zhuk, N.A.
On the basis of the results of magnetic susceptibility and ESR studies of the Bi{sub 3}Nb{sub 1−x}Fe{sub x}O{sub 7−δ} solid solutions iron atoms in the solid solutions of cubic modification of bismuth niobate were found to exist as Fe(III) monomers and exchange bound Fe(III)-O-Fe(III) dimers with antiferro- and ferromagnetic type of superexchange. The exchange parameters and the distribution of monomers and dimers in the solid solutions were calculated as a function of paramagnetic atom content. - Graphical abstract: The study of the Bi{sub 3}Nb{sub 1−x}Fe{sub x}O{sub 7−δ} solid solutions showed that the introduction of iron atoms into the structure ofmore » Bi{sub 3}NbO{sub 7} stabilizes the cubic structure of bismuth niobate making the phase transition tetragonal ↔ cubic structure irreversible. In the Bi{sub 3}Nb{sub 1−x}Fe{sub x}O{sub 7−δ} solid solutions we observe the formation of dimers with antiferro- and ferromagnetic exchange. Such clusters are partially retained even at the infinite dilution of the solid solution, which testifies for their rigidity. A sufficiently high parameter of ferromagnetic exchange in a dimer (+53 cm{sup −1}) seems to result from iron atoms being located in the vicinity of oxygen vacancy. - Highlights: • The reversible transition cubic – tetragonal modifications in Bi{sub 3}NbO{sub 7} becomes irreversible. • Only cubic modification of Bi{sub 3}Nb{sub 1-x}Fe{sub x}O{sub 7-δ} is stable due to clusters of Fe atoms. • These clusters are sufficiently strong and retained even at the infinite dilution. • The calculations of magnetic susceptibility give the distribution of the clusters and single atoms.« less
NASA Astrophysics Data System (ADS)
Akaogi, Masaki; Ito, Eiji; Navrotsky, Alexandra
1989-11-01
The olivine(α)-modified spinel(β)-spinel (γ) transitions in the system Mg2SiO4-Fe2SiO4 were studied by high-temperature solution calorimetry. Enthalpies of the β-γ and a α-γ transitions in Mg2SiO4 at 975 K and of the α-γ transition in Fe2SiO4 at 298 K were measured. The γ solid solution showed a positive enthalpy of mixing. Phase relations at high pressures and high temperatures were calculated from these thermochemical data including correction for the effect of nonideality of α, β, and γ solid solutions. The calculated phase diagrams agree well with those determined experimentally by Katsura and Ito very recently. The α - (Mg0.89, Fe0.11)2SiO4 transforms to β through a region of α+β without passing through the α+γ phase field at around 400 km depth in the mantle with an interval of about 18(±5) km. Temperatures at 390 and 650 km depths are estimated to be about 1673 and 1873 K, respectively, assuming an adiabatic geotherm.
Residual waste from Hanford tanks 241-C-203 and 241-C-204. 1. Solids characterization.
Krupka, Kenneth M; Schaef, Herbert T; Arey, Bruce W; Heald, Steve M; Deutsch, William I; Lindberg, Michael J; Cantrell, Kirk J
2006-06-15
Bulk X-ray diffraction (XRD), synchrotron X-ray microdiffraction (microXRD), and scanning electron microscopy/ energy-dispersive X-ray spectroscopy (SEM/EDS) were used to characterize solids in residual sludge from single-shell underground waste tanks C-203 and C-204 at the U.S. Department of Energy's Hanford Site in southeastern Washington state. Cejkaite [Na4(UO2)(CO3)3] was the dominant crystalline phase in the C-203 and C-204 sludges. This is one of the few occurrences of cejkaite reported in the literature and may be the first documented occurrence of this phase in radioactive wastes from DOE sites. Characterization of residual solids from water leach and selective extraction tests indicates that cejkaite has a high solubility and a rapid rate of dissolution in water at ambient temperature and that these sludges may also contain poorly crystalline Na2U207 [or clarkeite Na[(UO2)O(OH)](H2O)0-1] as well as nitratine (soda niter, NaNO3), goethite [alpha-FeO(OH)], and maghemite (gamma-Fe2O3). Results of the SEM/EDS analyses indicate that the C-204 sludge also contains a solid that lacks crystalline form and is composed of Na, Al, P, O, and possibly C. Other identified solids include Fe oxides that often also contain Cr and Ni and occur as individual particles, coatings on particles, and botryoidal aggregates; a porous-looking material (or an aggregate of submicrometer particles) that typically contain Al, Cr, Fe, Na, Ni, Si, U, P, O, and C; Si oxide (probably quartz); and Na-Al silicate(s). The latter two solids probably represent minerals from the Hanford sediment, which were introduced into the tank during prior sampling campaigns or other tank operation activities. The surfaces of some Fe-oxide particles in residual solids from the water leach and selective extraction tests appear to have preferential dissolution cavities. If these Fe oxides contain contaminants of concern, then the release of these contaminants into infiltrating water would be limited by the dissolution rates of these Fe oxides, which in general have lowto very low solubilities and slow dissolution rates at near neutral to basic pH values under oxic conditions.
NASA Astrophysics Data System (ADS)
Jha, Pardeep K.; Jha, Priyanka A.; Singh, Vikash; Kumar, Pawan; Asokan, K.; Dwivedi, R. K.
2015-01-01
Investigations on the solid solutions (1-x) BiFeO3 - (x) Ba Zr0.025Ti0.975O3 (0.1 ≤ x ≤ 0.3) in the temperature range 300-750 K show colossal permittivity behavior and the occurrence of diffuse phase ferroelectric transition along with frequency dependent anomaly which disappears at temperature ˜450 K. For x = 0.3, these anomalies have been verified through differential scanning calorimetry and dielectric/impedance/conductivity measurements. The occurrence of peak in pyrocurrent (dPs/dT) vs. T plots also supports phase transition. With the increasing x, transition temperature decreases and diffusivity increases. This anomaly is absent at high frequencies (>100 kHz) in conductivity plots, indicating Polomska like surface phase transition, which is supported by modulus study.
Organometallic Routes into the Nanorealms of Binary Fe-Si Phases
Kolel-Veetil, Manoj K.; Keller, Teddy M.
2010-01-01
The Fe-Si binary system provides several iron silicides that have varied and exceptional material properties with applications in the electronic industry. The well known Fe-Si binary silicides are Fe3Si, Fe5Si3, FeSi, α-FeSi2 and β-FeSi2. While the iron-rich silicides Fe3Si and Fe5Si3 are known to be room temperature ferromagnets, the stoichiometric FeSi is the only known transition metal Kondo insulator. Furthermore, Fe5Si3 has also been demonstrated to exhibit giant magnetoresistance (GMR). The silicon-rich β-FeSi2 is a direct band gap material usable in light emitting diode (LED) applications. Typically, these silicides are synthesized by traditional solid-state reactions or by ion beam-induced mixing (IBM) of alternating metal and silicon layers. Alternatively, the utilization of organometallic compounds with reactive transition metal (Fe)-carbon bonds has opened various routes for the preparation of these silicides and the silicon-stabilized bcc- and fcc-Fe phases contained in the Fe-Si binary phase diagram. The unique interfacial interactions of carbon with the Fe and Si components have resulted in the preferential formation of nanoscale versions of these materials. This review will discuss such reactions.
Su, Xiaomeng; Li, Xiaoyan; Li, Junjie; Liu, Min; Lei, Fuhou; Tan, Xuecai; Li, Pengfei; Luo, Weiqiang
2015-03-15
Core-shell magnetic molecularly imprinted polymers (MIPs) nanoparticles (NPs), in which a Rhodamine B-imprinted layer was coated on Fe3O4 NPs. were synthesized. First, Fe3O4 NPs were prepared by a coprecipitation method. Then, amino-modified Fe3O4 NPs (Fe3O4@SiO2-NH2) was prepared. Finally, the MIPs were coated on the Fe3O4@SiO2-NH2 surface by the copolymerization with functional monomer, acrylamide, using a cross-linking agent, ethylene glycol dimethacrylate; an initiator, azobisisobutyronitrile and a template molecule, Rhodamine B. The Fe3O4@MIPs were characterized using a scanning electron microscope, Fourier transform infrared spectrometer, vibrating sample magnetometer, and re-binding experiments. The Fe3O4@MIPs showed a fast adsorption equilibrium, a highly improved imprinting capacity, and significant selectivity; they could be used as a solid-phase extraction material and detect illegal addition Rhodamine B in food. A method was developed for the selective isolation and enrichment of Rhodamine B in food samples with recoveries in the range 78.47-101.6% and the relative standard deviation was <2%. Copyright © 2014 Elsevier Ltd. All rights reserved.
He, Mo-Rigen; Wang, Shuai; Shi, Shi; ...
2016-12-31
Single-phase concentrated solid solution alloys have attracted wide interest due to their superior mechanical properties and enhanced radiation tolerance, which make them promising candidates for the structural applications in next-generation nuclear reactors. However, little has been understood about the intrinsic stability of their as-synthesized, high-entropy configurations against radiation damage. In this paper, we report the element segregation in CrFeCoNi, CrFeCoNiMn, and CrFeCoNiPd equiatomic alloys when subjected to 1250 kV electron irradiations at 400 °C up to a damage level of 1 displacement per atom. Cr/Fe/Mn/Pd can deplete and Co/Ni can accumulate at radiation-induced dislocation loops, while the actively segregating elementsmore » are alloy-specific. Moreover, electron-irradiated matrix of CrFeCoNiMn and CrFeCoNiPd shows L1 0 (NiMn)-type ordering decomposition and <001>-oriented spinodal decomposition between Co/Ni and Pd, respectively. Finally, these findings are rationalized based on the atomic size difference and enthalpy of mixing between the alloying elements, and identify a new important requirement to the design of radiation-tolerant alloys through modification of the composition.« less
NASA Astrophysics Data System (ADS)
Liu, Chengsong; Yang, Shufeng; Li, Jingshe; Ni, Hongwei; Zhang, Xueliang
2017-04-01
The aim of this study was to control the physicochemical characteristics of inclusions in steel through appropriate heat treatment. Using a confocal scanning laser microscope (CSLM) and pipe furnace, the solid-state reactions between Fe-Al-Ca alloy and Al2O3-CaO-FeO oxide during heat treatment at 1473 K (1200 °C) and the influence of these reactions on the compositions of and phases in the alloy and oxide were investigated by the diffusion couple method. Suitable pretreatment of the oxide using a CSLM and production of the diffusion couple of Fe-Al-Ca alloy and Al2O3-CaO-FeO oxide gave good contact between the alloy and oxide. The diffusion couple was then sealed in a quartz tube with a piece of Ti foil to lower oxygen partial pressure and a block of Fe-Al-Ca alloy was introduced to conduct heat treatment experiments. Solid-state reactions between the alloy and oxide during heat treatment at 1473 K (1200 °C) were analyzed and discussed. A dynamic model to calculate the width of the particle precipitation zone based on the Wagner model of internal oxidation of metal was proposed. This model was helpful to understand the solid-state reaction mechanism between Fe-Al-Ca alloy and Al2O3-CaO-FeO oxide.
NASA Astrophysics Data System (ADS)
Zou, Jin; Zhai, Qi-Jie; Liu, Fang-Yu; Liu, Ke-Ming; Lu, De-Ping
2018-05-01
A rotating magnetic field (RMF) was applied in the solidification process of Cu-8Fe alloy. Focus on the mechanism of RMF on the solid solution Fe(Cu) atoms in Cu-8Fe alloy, the influences of RMF on solidification structure, solute distribution, and material properties were discussed. Results show that the solidification behavior of Cu-Fe alloy have influenced through the change of temperature and solute fields in the presence of an applied RMF. The Fe dendrites were refined and transformed to rosettes or spherical grains under forced convection. The solute distribution in Cu-rich phase and Fe-rich phase were changed because of the variation of the supercooling degree and the solidification rate. Further, the variation in solute distribution was impacted the strengthening mechanism and conductive mechanism of the material.
Guidotti, R.A.
1986-06-10
A method is disclosed for preparing lithiated, particulate FeS/sub 2/ useful as a catholyte material in a lithium thermal battery, whereby the latter's voltage regulation properties are improved. The method comprises admixing FeS/sub 2/ and an amount of a lithium-containing compound, whereby the resultant total composition falls in an invariant region of the metallurgical phase diagram of its constituent components. Said lithium-containing compound and FeS/sub 2/ are admixed together with a solid electrolyte compatible with said catholyte, and the mixture is heated at a temperature above the melting point of said electrolyte and at which said mixture reaches its thermodynamic equilibrium number of phases.
NASA Astrophysics Data System (ADS)
Shoemaker, Daniel P.; Chung, Duck Young; Claus, Helmut; Francisco, Melanie C.; Avci, Sevda; Llobet, Anna; Kanatzidis, Mercouri G.
2012-11-01
Superconductivity in iron selenides has experienced a rapid growth, but not without major inconsistencies in the reported properties. For alkali-intercalated iron selenides, even the structure of the superconducting phase is a subject of debate, in part because the onset of superconductivity is affected much more delicately by stoichiometry and preparation than in cuprate or pnictide superconductors. If high-quality, pure, superconducting intercalated iron selenides are ever to be made, the intertwined physics and chemistry must be explained by systematic studies of how these materials form and by and identifying the many coexisting phases. To that end, we prepared pure K2Fe4Se5 powder and superconductors in the KxFe2-ySe2 system, and examined differences in their structures by high-resolution synchrotron and single-crystal x-ray diffraction. We found four distinct phases: semiconducting K2Fe4Se5, a metallic superconducting phase KxFe2Se2 with x ranging from 0.38 to 0.58, the phase KFe1.6Se2 with full K occupancy and no Fe vacancy ordering, and a oxidized phase K0.51(5)Fe0.70(2)Se that forms the PbClF structure upon exposure to moisture. We find that the vacancy-ordered phase K2Fe4Se5 does not become superconducting by doping, but the distinct iron-rich minority phase KxFe2Se2 precipitates from single crystals upon cooling from above the vacancy ordering temperature. This coexistence of separate metallic and semiconducting phases explains a broad maximum in resistivity around 100 K. Further studies to understand the solubility of excess Fe in the KxFe2-ySe2 structure will shed light on the maximum fraction of superconducting KxFe2Se2 that can be obtained by solid state synthesis.
NASA Astrophysics Data System (ADS)
Gunnars, Anneli; Blomqvist, Sven; Johansson, Peter; Andersson, Christian
2002-03-01
The formation of Fe(III) oxyhydroxide colloids by oxidation of Fe(II) and their subsequent aggregation to larger particles were studied in laboratory experiments with natural water from a freshwater lake and a brackish coastal sea. Phosphate was incorporated in the solid phase during the course of hydrolysis of iron. The resulting precipitated amorphous Fe(III) oxyhydroxide phases were of varying composition, depending primarily on the initial dissolved Fe/P molar ratio, but with little influence by salinity or concentration of calcium ions. The lower limiting Fe/P ratio found for the solid phase suggests the formation of a basic Fe(III) phosphate compound with a stoichiometric Fe/P ratio of close to two. This implies that an Fe/P stoichiometry of ≈2 ultimately limits the capacity of precipitating Fe(III) to fix dissolved phosphate at oxic/anoxic boundaries in natural waters. In contrast to phosphorus, the uptake of calcium seemed to be controlled by sorption processes at the surface of the iron-rich particles formed. This uptake was more efficient in freshwater than in brackish water, suggesting that salinity restrains the uptake of calcium by newly formed Fe(III) oxyhydroxides in natural waters. Moreover, salinity enhanced the aggregation rate of the colloids formed. The suspensions were stabilised by the presence of organic matter, although this effect was less pronounced in seawater than in freshwater. Thus, in seawater of 6 to 33 ‰S, the removal of particles was fast (removal half time < 200 h), whereas the colloidal suspensions formed in freshwater were stable (removal half time > 900 h). Overall, oxidation of Fe(II) and removal of Fe(III) oxyhydroxide particles were much faster in seawater than in freshwater. This more rapid turnover results in lower iron availability in coastal seawater than in freshwater, making iron more likely to become a limiting element for chemical scavenging and biologic production.
High-Strength Nanotwinned Al Alloys with 9R Phase.
Li, Qiang; Xue, Sichuang; Wang, Jian; Shao, Shuai; Kwong, Anthony H; Giwa, Adenike; Fan, Zhe; Liu, Yue; Qi, Zhimin; Ding, Jie; Wang, Han; Greer, Julia R; Wang, Haiyan; Zhang, Xinghang
2018-03-01
Light-weight aluminum (Al) alloys have widespread applications. However, most Al alloys have inherently low mechanical strength. Nanotwins can induce high strength and ductility in metallic materials. Yet, introducing high-density growth twins into Al remains difficult due to its ultrahigh stacking-fault energy. In this study, it is shown that incorporating merely several atomic percent of Fe solutes into Al enables the formation of nanotwinned (nt) columnar grains with high-density 9R phase in Al(Fe) solid solutions. The nt Al-Fe alloy coatings reach a maximum hardness of ≈5.5 GPa, one of the strongest binary Al alloys ever created. In situ uniaxial compressions show that the nt Al-Fe alloys populated with 9R phase have flow stress exceeding 1.5 GPa, comparable to high-strength steels. Molecular dynamics simulations reveal that high strength and hardening ability of Al-Fe alloys arise mainly from the high-density 9R phase and nanoscale grain sizes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
High-temperature phase relations and thermodynamics in the iron-lead-sulfur system
NASA Astrophysics Data System (ADS)
Eric, R. Hurman; Ozok, Hakan
1994-01-01
The PbS activities in FeS-PbS liquid mattes were obtained at 1100 °C and 1200 °C by the dew-point method. Negative deviations were observed, and the liquid-matte solutions were modeled by the Krupkowski formalism. The liquid boundaries of the FeS-PbS phase diagram were derived from the model equations yielding a eutectic temperature of 842 °C at X Pbs = 0.46. A phase diagram of the pseudobinary FeS-PbS was also verified experimentally by quenching samples equilibrated in evacuated and sealed silica capsules. No terminal solid solution ranges could be found. Within the Fe-Pb-S ternary system, the boundaries of the immiscibility region together with the tie-line distributions were established at 1200 °C. Activities of Pb were measured by the dew-point technique along the metal-rich boundary of the miscibility gap. Activities of Fe, Pb, and S, along the miscibility gap were also calculated by utilizing the bounding binary thermodynamics, phase equilibria, and tie-lines.
Investigation of transport properties of FeTe compound
NASA Astrophysics Data System (ADS)
Lodhi, Pavitra Devi; Solanki, Neha; Choudhary, K. K.; Kaurav, Netram
2018-05-01
Transport properties of FeTe parent compound has been investigated by measurements of electrical resistivity, magnetic susceptibility and Seebeck coefficient. The sample was synthesized through a standard solid state reaction route via vacuum encapsulation and characterized by x-ray diffraction, which indicated a tetragonal phase with space group P4/nmm. The parent FeTe compound does not exhibit superconductivity but shows an anomaly in the resistivity measurement at around 67 K, which corresponds to a structural phase transition along with in the vicinity of a magnetic phase transition. In the low temperature regime, Seebeck coefficient, S(T), exhibited an anomalous dip feature and negative throughout the temperature range, indicating electron-like charge carrier conduction mechanism.
Room temperature luminescence and ferromagnetism of AlN:Fe
NASA Astrophysics Data System (ADS)
Li, H.; Cai, G. M.; Wang, W. J.
2016-06-01
AlN:Fe polycrystalline powders were synthesized by a modified solid state reaction (MSSR) method. Powder X-ray diffraction and transmission electron microscopy results reveal the single phase nature of the doped samples. In the doped AlN samples, Fe is in Fe2+ state. Room temperature ferromagnetic behavior is observed in AlN:Fe samples. Two photoluminescence peaks located at about 592 nm (2.09 eV) and 598 nm (2.07 eV) are observed in AlN:Fe samples. Our results suggest that AlN:Fe is a potential material for applications in spintronics and high power laser devices.
NASA Technical Reports Server (NTRS)
Luther, George W., III
1987-01-01
In this paper, molecular orbital theory is used to explain a heterogeneous reaction mechanism for both pyrite oxidation and reduction. The mechanism demonstrates that the oxidation of FeS2 by Fe(3+) may occur as a result of three important criteria: (1) the presence of a suitable oxidant having a vacant orbital (in case of liquid phase) or site (solid phase) to bind to the FeS2 via sulfur; (2) the initial formation of a persulfido (disulfide) bridge between FeS2 and the oxidant, and (3) an electron transfer from a pi(asterisk) orbital in S2(2-) to a pi or pi(asterisk) orbital of the oxidant.
Li, Zhenhua; Chang, Xijun; Zou, Xiaojun; Zhu, Xiangbing; Nie, Rong; Hu, Zheng; Li, Ruijun
2009-01-26
A new method that utilizes ethylenediamine-modified activated carbon (AC-EDA) as a solid-phase extractant has been developed for simultaneous preconcentration of trace Cr(III), Fe(III), Hg(II) and Pb(II) prior to the measurement by inductively coupled plasma optical emission spectrometry (ICP-OES). The new sorbent was prepared by oxidative surface modification. Experimental conditions for effective adsorption of trace levels of Cr(III), Fe(III), Hg(II) and Pb(II) were optimized with respect to different experimental parameters using batch and column procedures in detail. The optimum pH value for the separation of metal ions simultaneously on the new sorbent was 4.0. Complete elution of absorbed metal ions from the sorbent surface was carried out using 3.0 mL of 2% (%w/w) thiourea and 0.5 mol L(-1) HCl solution. Common coexisting ions did not interfere with the separation and determination of target metal ions. The maximum static adsorption capacity of the sorbent at optimum conditions was found to be 39.4, 28.9, 60.5 and 49.9 mg g(-1) for Cr(III), Fe(III), Hg(II) and Pb(II), respectively. The time for 94% adsorption of target metal ions was less than 2 min. The detection limits of the method was found to be 0.28, 0.22, 0.09 and 0.17 ng mL(-1) for Cr(III), Fe(III), Hg(II) and Pb(II), respectively. The precision (R.S.D.) of the method was lower 4.0% (n=8). The prepared sorbent as solid-phase extractant was successfully applied for the preconcentration of trace Cr(III), Fe(III), Hg(II) and Pb(II) in natural and certified samples with satisfactory results.
NASA Astrophysics Data System (ADS)
Zhao, Baojun; Hayes, Peter C.; Jak, Evgueni
2010-04-01
The phase equilibria and liquidus temperatures in the system ZnO-“FeO”-Al2O3-CaO-SiO2 in equilibrium with metallic iron have been determined experimentally in the temperature range of 1423 K to 1553 K. The experimental conditions were focused on the composition range relevant to Imperial Smelting Furnace slags. The results are presented in the form of a pseudo-ternary section ZnO-“FeO”-(CaO + SiO2 + Al2O3) in which CaO/SiO2 = 0.93 and (CaO + SiO2)/Al2O3 = 7.0. It was found that wustite and spinel are the major primary phases and that zincite and melilite are also present in the composition range investigated. Wustite (Fe2+,Zn)O and spinel (Fe2+,Zn)O (A1,Fe3+)2O3 solid solutions are formed in this system, and the ZnO concentration in the spinel phase is found to be much greater than in the liquid phase.
NASA Astrophysics Data System (ADS)
Li, Hongjuan; Ding, Zhimin; Zhao, Ruirong
2018-04-01
The interfacial microstructure and resistivity of cold-drawn and annealed thin layers copper cladding steel (CCS) wires have been systematically investigated by the methods of scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and resistivity testing. The results showed that the Cu and Fe atoms near interface diffused into each other matrixes. The Fe atoms diffused into Cu matrixes and formed a solid solution. The mechanism of solid solution is of substitution type. When the quantity of Fe atoms exceeds the maximum solubility, the supersaturated solid solution would form Fe clusters and decompose into base Cu and α-Fe precipitated phases under certain conditions. A few of α-Fe precipitates was observed in the copper near Cu/Fe interfaces of cold-drawn CCS wires, with 1-5 nm in size. A number of α-Fe precipitates of 1-20 nm in size can be detected in copper near Cu/Fe interfaces of CCS wires annealed at 850°C. When annealing temperature was less than 750°C, the resistivity of CCS wires annealed was lower than that of cold-drawn CCS wires. However, when annealing temperature was above 750°C, the resistivity of CCS wires was greater than that of cold-drawn CCS wires and increased with rising the annealing temperature. The relationship between nanoscale α-Fe precipitation and resistivity of CCS wires has been well discussed.
Melting Experiments in the Fe-FeSi System at High Pressure
NASA Astrophysics Data System (ADS)
Ozawa, H.; Hirose, K.
2013-12-01
The principal light element in the Earth's core must reproduce the density jump at the inner core boundary (ICB). Silicon is thought to be a plausible light element in the core, and the melting phase relations in Fe-FeSi binary system at the ICB pressure are of great importance. Theoretical calculations on the Fe-FeSi binary system suggested that the difference in Si content between the outer core and the inner core would be too small to satisfy the observed density jump at the ICB [Alfè et al., 2002 EPSL], which requires other light elements in addition to silicon. Here we experimentally examined partitioning of silicon between liquid and solid iron up to 97 GPa. High pressure and temperature conditions were generated in a laser-heated diamond-anvil cell. Chemical compositions of co-existing quenched liquid and solid Fe-Si alloys were determined with a field-emission-type electron probe micro-analyzer. We used Fe-Si alloy containing 9 wt% Si as a starting material. Chemical analyses on the recovered samples from 39 and 49 GPa demonstrated the coexistence of quenched Si-depleted liquid and Si-enriched solid. In contrast, silicon partitions preferentially into liquid metal at 97 GPa, suggesting the starting composition (Fe-9wt% Si) lies on the iron-rich part of the eutectic. These results indicate the eutectic composition shifts toward FeSi between 49 and 97 GPa.
Solubility relationships of aluminum and iron minerals associated with acid mine drainage
NASA Astrophysics Data System (ADS)
Sullivan, Patrick J.; Yelton, Jennifer L.; Reddy, K. J.
1988-06-01
The ability to properly manage the oxidation of pyritic minerals and associated acid mine drainage is dependent upon understanding the chemistry of the disposal environment. One accepted disposal method is placing pyritic-containing materials in the groundwater environment. The objective of this study was to examine solubility relationships of Al and Fe minerals associated with pyritic waste disposed in a low leaching aerobic saturated environment. Two eastern oil shales were used in this oxidizing equilibration study, a New Albany Shale (unweathered, 4.6 percent pyrite), and a Chattanooga Shale (weathered, 1.5 percent pyrite). Oil shale samples were equilibrated with distilled-deionized water from 1 to 180 d with a 1∶1 solid-to-solution ratio. The suspensions were filtered and the clear filtrates were analyzed for total cations and anions. Ion activities were calculated from total concentrations. Below pH 6.0, depending upon SO{4/2-} activity, Al3+ solubility was controlled by AlOHSO4 (solid phase) for both shales. Initially, Al3+ solubility for the New Albany Shale showed equilibrium with amorphous Al(OH)3. The pH decreased with time, and Al3+ solubility approached equilibrium with AlOHSO4(s). Below pH 6.0, Fe3+ solubility appeared to be regulated by a basic iron sulfate solid phase with the stoichiometric composition of FeOHSO4(s). The results of this study indicate that below pH 6.0, Al3+ solubilities, are limited by basic Al and Fe sulfate solid phases (AlOHSO4(s) and FeHSO4(s)). The results from this study further indicate that the acidity in oil shale waters is produced from the hydrolysis of Al3+ and Fe3+ activities in solution. These results indicate a fundamental change in the stoichiometric equations used to predict acidity from iron sulfide oxidation. The results of this study also indicate that water quality predictions associated with acid mine drainage can be based on fundamental thermodynamic relationships. As a result, waste management decisions can be based on waste-specific/site-specific test methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samal, S.L.; Green, W.; Lofland, S.E.
The solid solution of YMn{sub 1-x}Fe{sub x}O{sub 3} (x=0.0, 0.1, 0.2, 0.3, 0.5, 1.0) was synthesized from the citrate precursor route. The hexagonal crystal structure related to YMnO{sub 3} was stable for x{<=}0.3. Rietveld refinement was carried out on the composition for x=0.3 and was refined to a major hexagonal phase ({approx}97%) with 3% of orthorhombic Y(Fe/Mn)O{sub 3} phase. The a-axis lattice constant increases and the c-axis lattice constant decreases with x for x{<=}0.2. The increase in the c-axis lattice constant at x=0.3 could be due to the doping of significant amount of d{sup 5} ion (high spin Fe{sup 3+}more » ion) in a trigonal bipyramidal crystal field. The detailed structural, magnetic and dielectric properties are discussed. - Graphical abstract: Temperature dependence of {epsilon} of YMn{sub 1-x}Fe{sub x}O{sub 3} (0.0{<=}x{<=}0.3) at 100 kHz. Inset shows the temperature variation of inverse magnetic susceptibility.« less
NASA Astrophysics Data System (ADS)
Pillai, Shreeja; Reshi, Hilal Ahmad; Bagwaiya, Toshi; Banerjee, Alok; Shelke, Vilas
2017-09-01
Nanomaterials exhibit properties different from those of their bulk counterparts. The modified magnetic characteristics of manganite nanoparticles were exploited to improve magnetization in multiferroic BiFeO3 compound. We studied the composite of two morphologically and magnetically distinct compounds BiFeO3 (BFO) and La0.7Sr0.3MnO3 (LSMO). The microcrystalline BiFeO3 sample was prepared by solid state reaction method and the nanocrystalline La0.7Sr0.3MnO3 by sol-gel method. Composites with nominal compositions (1-x)BiFeO3-(x)La0.7Sr0.3MnO3 were prepared by modified solid state reaction method. The phase purity and crystal structures were checked by using X-ray diffraction. The formation of composites with phase separated BFO and LSMO was confirmed using Raman and Fourier Transform Infrared spectroscopy studies. The composite samples showed relatively high value of magnetization with finite coercivity. This improvement in magnetic behavior is ascribed to the coexistence of multiple magnetic orderings in composite samples. We scrutinized the possibility of oxygen vacancy or Fe mixed valency formation in the samples using X-ray photoelectron spectroscopy technique.
Liang, B; Zuo, G Q; Zheng, Y Y; He, S; Zuo, D Y
2016-12-20
Objective: To prepare the Fe 3 O 4 -loaded biodegradable liquid-solid phase inversion poly(lactic-co-glycolic acid) (PLGA) in situ implant for ultrasound-guided injection into nude mouse tumor model, and to investigate its clinical effect in thermomagnetic treatment of nude mice with human liver cancer SMMC-7721 cells in an alternating magnetic field. Methods: An in situ implant containing 10% Fe 3 O 4 was prepared, and 50 μl Fe 3 O 4 -PLGA-NMP gel was injected into the subcutaneous tissue of Kunming mice. The degradation of this material was observed for 2 consecutive months, and the changes in body weight were recorded. HE staining and Prussian blue staining were performed for the heart, liver, spleen, lung, and kidney of Kunming mice. Fresh ex vivo bovine liver was taken and cut into cubes with a dimension of 2 cm×2 cm×2 cm and then 50 μl Fe 3 O 4 -PLGA-NMP gel was injected; after phase inversion, the cubes of ex vivo bovine liver were heated for 1, 2, 3, 4, and 5 minutes, respectively, and then cut open for observing the range of ablation; HE staining was also performed. Micro-CT scan was performed after ultrasound-guided injection of 50 μl Fe 3 O 4 -PLGA gel into the tumors of the nude mice, and then the nude mice were divided into treatment group and control group. The mice in the treatment group were given thermomagnetic treatment for 3 minutes, and tumor growth was observed daily. Results: The biodegradation of Fe 3 O 4 -PLGA-NMP implant showed that the subcutaneously injected material was gradually metabolized at 2 weeks after injection and that the nude mice were in good condition. The bovine liver ablation experiment showed that the range of ablation of 50 μl Fe 3 O 4 -PLGA implant reached 1.46 ± 0.11 cm. HE staining showed that part of bovine liver had coagulative necrosis. The phase inversion experiment of Fe 3 O 4 -PLGA gel showed quick liquid-solid phase inversion of the material after injection into the tumor, and the process of liquid-solid phase inversion could be monitored by ultrasound and CT. The detachment and incrustation of the tumor started at 2 days after treatment, the wound started to heal 15 days later, and the tumor tissue disappeared completely. Conclusion: Ultrasound-guided injection of biodegradable Fe 3 O 4 -PLGA in situ implant combined with magnetic thermal ablation can effectively treat human liver cancer SMMC-7721 cells in nude mice.
Weber, Frank-Andreas; Hofacker, Anke F; Voegelin, Andreas; Kretzschmar, Ruben
2010-01-01
Arsenic (As) in soils and sediments is commonly mobilized when anoxic conditions promote microbial iron (Fe) and As reduction. Recent laboratory studies and field observations have suggested a decoupling between Fe and As reduction and release, but the links between these processes are still not well understood. In microcosm experiments, we monitored the formation of Fe(II) and As(III) in the porewater and in the soil solid-phase during flooding of a contaminated floodplain soil at temperatures of 23, 14, and 5 degrees C. At all temperatures, flooding induced the development of anoxic conditions and caused increasing concentrations of dissolved Fe(II) and As(III). Decreasing the temperature from 23 to 14 and 5 degrees C strongly slowed down soil reduction and Fe and As release. Speciation of As in the soil solid-phase by X-ray absorption spectroscopy (XAS) and extraction of the Fe(II) that has formed by reductive Fe(III) (hydr)oxide dissolution revealed that less than 3.9% of all As(III) and less than 3.2% of all Fe(II) formed during 52 days of flooding at 23 degrees C were released into the porewater, although 91% of the initially ascorbate-extractable Fe and 66% of the total As were reduced. The amount of total As(III) formed during soil reduction was linearly correlated to the amount of total Fe(II) formed, indicating that the rate of As(V) reduction was controlled by the rate of microbial Fe(III) (hydr)oxide reduction.
NASA Astrophysics Data System (ADS)
Parida, S. C.; Rakshit, S. K.; Dash, S.; Singh, Ziley; Prasad, R.; Venugopal, V.
2003-05-01
The standard molar Gibbs energies of formation of LnFeO 3(s) and Ln3Fe 5O 12(s) where Ln=Eu and Gd have been determined using solid-state electrochemical technique employing different solid electrolytes. The reversible e.m.f.s of the following solid-state electrochemical cells have been measured in the temperature range from 1050 to 1255 K. Cell (I): (-)Pt / { LnFeO 3(s)+ Ln2O 3(s)+Fe(s)} // YDT/CSZ // {Fe(s)+Fe 0.95O(s)} / Pt(+); Cell (II): (-)Pt/{Fe(s)+Fe 0.95O(s)}//CSZ//{ LnFeO 3(s)+ Ln3Fe 5O 12(s)+Fe 3O 4(s)}/Pt(+); Cell (III): (-)Pt/{ LnFeO 3(s)+ Ln3Fe 5O 12(s)+Fe 3O 4(s)}//YSZ//{Ni(s)+NiO(s)}/Pt(+); and Cell(IV):(-)Pt/{Fe(s)+Fe 0.95O(s)}//YDT/CSZ//{ LnFeO 3(s)+ Ln3Fe 5O 12(s)+Fe 3O 4(s)}/Pt(+). The oxygen chemical potentials corresponding to the three-phase equilibria involving the ternary oxides have been computed from the e.m.f. data. The standard Gibbs energies of formation of solid EuFeO 3, Eu 3Fe 5O 12, GdFeO 3 and Gd 3Fe 5O 12 calculated by the least-squares regression analysis of the data obtained in the present study are given by Δ fG°m(EuFeO 3, s) /kJ mol -1 (± 3.2)=-1265.5+0.2687( T/K) (1050 ⩽ T/K ⩽ 1570), Δ fG°m(Eu 3Fe 5O 12, s)/kJ mol -1 (± 3.5)=-4626.2+1.0474( T/K) (1050 ⩽ T/K ⩽ 1255), Δ fG°m(GdFeO 3, s) /kJ mol -1 (± 3.2)=-1342.5+0.2539( T/K) (1050 ⩽ T/K ⩽ 1570), and Δ fG°m(Gd 3Fe 5O 12, s)/kJ·mol -1 (± 3.5)=-4856.0+1.0021( T/K) (1050 ⩽ T/K ⩽ 1255). The uncertainty estimates for Δ fG°m include the standard deviation in the e.m.f. and uncertainty in the data taken from the literature. Based on the thermodynamic information, oxygen potential diagrams for the systems Eu-Fe-O and Gd-Fe-O and chemical potential diagrams for the system Gd-Fe-O were computed at 1250 K.
NASA Astrophysics Data System (ADS)
Zhao, Baojun; Hayes, Peter C.; Jak, Evgueni
2011-06-01
The phase equilibria in the ZnO-"FeO"-Al2O3-CaO-SiO2-MgO system have been determined experimentally in equilibrium with metallic iron. Synthetic slags were equilibrated at a high temperature, quenched, and then the compositions of the phases in equilibrium were measured using electron probe X-ray microanalysis. Pseudoternary sections of the form ZnO-"FeO"-(Al2O3 + CaO + SiO2) for CaO/SiO2 = 0.71, (CaO + SiO2)/Al2O3 = 5 and fixed MgO concentrations of 2, 4, and 6 wt pct have been constructed. Wustite (Fe2+,Mg,Zn)O and spinel (Fe2+,Mg,Zn)O·(Al,Fe3+)2O3 are the major primary phases in the temperature and composition ranges investigated. The liquidus temperatures are increased by 140 K in the wustite primary phase field and by 70 K in the spinel primary phase field with the addition of 6 wt pct MgO in the slag. The partitioning of MgO and ZnO between the solid and liquid phases has been discussed.
NASA Astrophysics Data System (ADS)
Zharvan, V.; Kamaruddin, Y. N. I.; Samnur, S.; Sujiono, E. H.
2017-05-01
Perovskite is an oxide alloy which has a structure of ABO3 (A = La, Nd, Sm, Gd; B = Fe, CO, Ni) and has an excellent catalytic activity and gas-sensitive properties. NdFeO3 and its derivatives are important candidates for gas sensors. In this study, the effect of molar ratio (x=0.1, 0.2 and 0.3) on crystal structure and morphology of Nd1+xFeO3 synthesized by solid state reaction method has been studied. Nd1+xFeO3 samples were prepared using Nd2O3 (99.99 %) and Fe2O3 (99.99 %) as precursors. All of the samples were characterized using XRD to identify the phase and using SEM to identify the morphology. The synthesized Nd1+xFeO3 samples showed that molar ratio strongly influences the intensity, FWHM, and crystalline size. The samples of Nd1+xFeO3 have homogenous morphology and have three major phases, i.e. NdFeO3, Nd(OH)3 and Nd2O3 with crystalline sizes of NdFeO3 of 137.0±0.1 nm, 152.2±0.1 nm and 137.0±0.1 nm for Nd1.1FeO3, Nd1.2FeO3, and Nd1.3FeO3, respectively. These results indicated that the sample of Nd1.2FeO3 was a good candidate for a gas sensor material.
The phase relations in the In 2O 3Fe 2ZnO 4ZnO system at 1350°C
NASA Astrophysics Data System (ADS)
Nakamura, Masaki; Kimizuka, Noboru; Mohri, Takahiko
1990-05-01
The phase relations in the In 2O 3Fe 2ZnO 4ZnO system at 1350°C are determined by means of a classical quenching method. There are a series of homologous solid solutions, In 1.28Fe 0.72O 3(ZnO)InFeO 3(ZnO), In 1.69Fe 0.31O 3(ZnO) 2InFeO 3(ZnO) 2In 0.85Fe 1.15O 3(ZnO) 2, In 2O 3(ZnO) 3InFeO 3(ZnO) 3In 0.78Fe 1.22O 3(ZnO) 3, In 2O 3(ZnO) 4InFeO 3(ZnO) 4In 0.62Fe 1.38O 3(ZnO) 4, In 2O 3(ZnO) 5InFeO 3(ZnO) 5In 0.67Fe 1.33O 3(ZnO) 5, In 2O 3(ZnO) 6InFeO 3(ZnO) 6In 0.60Fe 1.40O 3(ZnO) 6, In 2O 3(ZnO) 7InFeO 3(ZnO) 7In 0.51Fe 1.49O 3(ZnO) 7, In 2O 3(ZnO) 8InFeO 3(ZnO) 8In 1- xFe 1+ xO 3(ZnO) 8 (0.44 ≦ x ≦ 0.64), In 2O 3(ZnO) 9InFeO 3(ZnO) 9In 0.20Fe 1.80O 3(ZnO) 9, In 2O 3(ZnO) 10InFeO 3(ZnO) 10In 1- xFe 1+ xO 3(ZnO) 10 (0.74 ≦ x ≦ 0.89), In 2O 3(ZnO) 11InFeO 3(ZnO) 11In 1- xFe 1+ xO 3(ZnO) 11 (0.60 ≦ x < 1.00), and In 2O 3(ZnO) 13InFeO 3(ZnO) 13Fe 2O 3(ZnO) 13 having the layered structures with space group R overline3m (m = odd) or {P6 3}/{mmc} (m = even) for m in the InFeO 3(ZnO) m. We conclude that there are a series of homologous phases, (Fe 2O 3)(ZnO) m (m ≧ 12) , in the binary ZnOFe 2O 3 system. The lattice constants for these solid solutions are presented as a hexagonal crystal system. It is also concluded that the crystal structures for each solid solution consist of three kinds of layers which are stacked perpendicular to the c-axis in the hexagonal crystal system. In 1+ xFe 1- xO 3(ZnO) m (0 ≦ x ≦ 1) is composed of the InO 1.5, (In xFe 1- xZn)O 2.5, and ZnO layers, and In 1- xFe 1+ xO 3(ZnO) m (0 ≦ x ≦ 1) is composed of (In 1- xFe x)O 1.5, (FeZn)O 2.5, and ZnO layers, respectively. The solid solution range between Fe 2ZnO 4 and In xFe 2- xZnO 4 ( x = 0.40 ± 0.02) with a spinel structure is observed.
Bahrani, Sonia; Ghaedi, Mehrorang; Dashtian, Kheibar; Ostovan, Abbas; Mansoorkhani, Mohammad Javad Khoshnood; Salehi, Amin
2017-11-01
In present work, facile method is developed for determination of colchicine in human plasma sample, autumn and spring root of colchicium extracts by ultrasound assisted dispersive magnetic solid phase microextraction followed by HPLC-UV method (UAD-MSPME-HPLC-UV). Magnetic (Fe 2 O 4 -nanoparticles) metal organic framework-5, (MOF-5(Zn)-Fe 2 O 4 NPs) was synthesized by dispersing MOF-5 and Fe(NO 3 ) 3 .9H 2 O in ethylene glycol (as capping agent) and NaOH (pH adjustment agent) by hydrothermal method. The prepared sorbent was characterized via XRD and SEM analysis and applied as magnetic solid phase in UAD-MSPME-HPLC-UV method. In this method, colchicine molecules were sorbed on MOF-5(Zn)-Fe 2 O 4 NPs sorbent by various mechanisms like ion exchange, hydrogen bonding and electrostatic, ᴨ-ᴨ, hard-hard and dipole-ion interaction followed by exposing sonication waves as incremental mass transfer agent and then the sorbent was separated from the sample matrix by an external magnetic fields. Subsequently, accumulated colchicine were eluted by small volume of desorption organic solvent. Influence of operational variables such as MOF-5(Zn)-Fe 2 O 4 NPs mass, volume of extracting solvent and sonication time on response property (recovery) were studied and optimized by central composite design (CCD) combined with desirability function (DF) approach. Under optimum condition, the method has wide linear calibration rang (0.5-1700ngmL -1 ) with reasonable detection limit (0.13ngmL -1 ) and R 2 =0.9971. Finally, the UAD-MSPME-HPLC-UV method was successfully applied for determination of colchicine autumn and spring root of colchicium extracts and plasma samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Room temperature luminescence and ferromagnetism of AlN:Fe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, H., E-mail: lihui@mail.iee.ac.cn, E-mail: wjwang@aphy.iphy.ac.cn; Cai, G. M.; Wang, W. J., E-mail: lihui@mail.iee.ac.cn, E-mail: wjwang@aphy.iphy.ac.cn
2016-06-15
AlN:Fe polycrystalline powders were synthesized by a modified solid state reaction (MSSR) method. Powder X-ray diffraction and transmission electron microscopy results reveal the single phase nature of the doped samples. In the doped AlN samples, Fe is in Fe{sup 2+} state. Room temperature ferromagnetic behavior is observed in AlN:Fe samples. Two photoluminescence peaks located at about 592 nm (2.09 eV) and 598 nm (2.07 eV) are observed in AlN:Fe samples. Our results suggest that AlN:Fe is a potential material for applications in spintronics and high power laser devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rettenwander, D., E-mail: daniel.rettenwander@sbg.ac.at; Geiger, C.A.; Tribus, M.
2015-10-15
A series of Fe{sup 3+}-bearing Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} (LLZO) garnets was synthesized using solid-state synthesis methods. The synthetic products were characterized compositionally using electron microprobe analysis and inductively coupled plasma optical emission spectroscopy (ICP-OES) and structurally using X-ray powder diffraction and {sup 57}Fe Mössbauer spectroscopy. A maximum of about 0.25 Fe{sup 3+} pfu could be incorporated in Li{sub 7−3x}Fe{sub x}La{sub 3}Zr{sub 2}O{sub 12} garnet solid solutions. At Fe{sup 3+} concentrations lower than about 0.16 pfu, both tetragonal and cubic garnets were obtained in the synthesis experiments. X-ray powder diffraction analysis showed only a garnet phase for syntheses withmore » starting materials having intended Fe{sup 3+} contents lower than 0.52 Fe{sup 3+} pfu. Back-scattered electron images made with an electron microprobe also showed no phase other than garnet for these compositions. The lattice parameter, a{sub 0}, for all solid-solution garnets is similar with a value of a{sub 0}≈12.98 Å regardless of the amount of Fe{sup 3+}. {sup 57}Fe Mössbauer spectroscopic measurements indicate the presence of poorly- or nano-crystalline FeLaO{sub 3} in syntheses with Fe{sup 3+} contents greater than 0.16 Fe{sup 3+} pfu. The composition of different phase pure Li{sub 7−3x}Fe{sub x}La{sub 3}Zr{sub 2}O{sub 12} garnets, as determined by electron microprobe (Fe, La, Zr) and ICP-OES (Li) measurements, give Li{sub 6.89}Fe{sub 0.03}La{sub 3.05}Zr{sub 2.01}O{sub 12}, Li{sub 6.66}Fe{sub 0.06}La{sub 3.06}Zr{sub 2.01}O{sub 12}, Li{sub 6.54}Fe{sub 0.12}La{sub 3.01}Zr{sub 1.98}O{sub 12}, and Li{sub 6.19}Fe{sub 0.19}La{sub 3.02}Zr{sub 2.04}O{sub 12}. The {sup 57}Fe Mössbauer spectrum of cubic Li{sub 6.54}Fe{sub 0.12}La{sub 3.01}Zr{sub 1.98}O{sub 12} garnet indicates that most Fe{sup 3+} occurs at the special crystallographic 24d position, which is the standard tetrahedrally coordinated site in garnet. Fe{sup 3+} in smaller amounts occurs at a general 96h site, which is only present for certain Li-oxide garnets, and in Li{sub 6.54}Fe{sub 0.12}La{sub 3.01}Zr{sub 1.98}O{sub 12} this Fe{sup 3+} has a distorted 4-fold coordination. - Graphical abstract: Cubic nominally Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} (LLZO) garnet is a promising candidate to be used as a solid electrolyte in Li-ion batteries. A series of Fe{sup 3+}-bearing LLZO garnets was synthesized and characterized compositionally and structurally. {sup 57}Mössbauer measurements were made to determine where Fe is incorporated in the crystal structure. X-ray diffraction, electron microprobe, ICP-OES and {sup 57}Mössbauer measurements are needed to obtain a full description of the synthetic products, some of which contain small amounts of nano- or poorly crystalline FeLaO{sub 3}. - Highlights: • A series of Fe{sup 3+}-bearing Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} (LLZO) garnets was synthesized and characterized compositionally and structurally. • {sup 57}Mössbauer measurements were made to determine where Fe is incorporated in the crystal structure. • Most Fe{sup 3+} substitutes for Li{sup +} in LLZO at the 24d and 96h sites in the cubic phase (Ia-3d). • No more than about 0.25 Fe{sup 3+} pfu can be incorporated into the LLZO garnet structure. • X-ray powder diffractions measurements indicate the presence of both cubic and tetragonal garnets phases in some syntheses. • The probable presence of small amounts of poorly or nano-crystalline FeLaO3 can only be identified by Mössbauer spectroscopy.« less
Shirage, Parasharam M; Kihou, Kunihiro; Lee, Chul-Ho; Takeshita, Nao; Eisaki, Hiroshi; Iyo, Akira
2012-09-19
The effect of alloying the two perovskite-type iron-based superconductors (Ca(4)Al(2)O(6))(Fe(2)As(2)) and (Ca(4)Al(2)O(6))(Fe(2)P(2)) was examined. While the two stoichiometric compounds possess relatively high T(c)'s of 28 and 17 K, respectively, their solid solutions of the form (Ca(4)Al(2)O(6))(Fe(2)(As(1-x)P(x))(2)) do not show superconductivity over a wide range from x = 0.50 to 0.95. The resultant phase diagram is thus completely different from those of other typical iron-based superconductors such as BaFe(2)(As,P)(2) and LaFe(As,P)O, in which superconductivity shows up when P is substituted for As in the non-superconducting "parent" compounds. Notably, the solid solutions in the non-superconducting range exhibit resistivity anomalies at temperatures of 50-100 K. The behavior is reminiscent of the resistivity kink commonly observed in various non-superconducting parent compounds that signals the onset of antiferromagnetic/orthorhombic long-range order. The similarity suggests that the suppression of the superconductivity in the present case also has a magnetic and/or structural origin.
Esmaeili-Shahri, Effat; Es'haghi, Zarrin
2015-12-01
Magnetic Fe3 O4 /SiO2 composite core-shell nanoparticles were synthesized, characterized, and applied for the surfactant-assisted solid-phase extraction of five benzodiazepines diazepam, oxazepam, clonazepam, alprazolam, and midazolam, from human hair and wastewater samples before high-performance liquid chromatography with diode array detection. The nanocomposite was synthesized in two steps. First, Fe3 O4 nanoparticles were prepared by the chemical co-precipitation method of Fe(III) and Fe(II) as reaction substrates and NH3 /H2 O as precipitant. Second, the surface of Fe3 O4 nanoparticles was modified with shell silica by Stober method using tetraethylorthosilicate. The Fe3 O4 /SiO2 composite were characterized by X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and vibrating sample magnetometry. To enhance their adsorptive tendency toward benzodiazepines, cetyltrimethylammonium bromide was added, which was adsorbed on the surface of the Fe3 O4 /SiO2 nanoparticles and formed mixed hemimicelles. The main parameters affecting the efficiency of the method were thoroughly investigated. Under optimum conditions, the calibration curves were linear in the range of 0.10-15 μgmL(-1) . The relative standard deviations ranged from 2.73 to 7.07%. The correlation coefficients varied from 0.9930 to 0.9996. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Yang, Jing; Li, Jia-yuan; Qiao, Jun-qin; Cui, Shi-hai; Lian, Hong-zhen; Chen, Hong-yuan
2014-12-01
Carbon doped Fe3O4 nanoparticles (Fe3O4/C) prepared by a facile hydrothermal reaction of glucose with iron resource have been applied as magnetic solid-phase extraction (MSPE) sorbent, for the first time, to extract trace brominated flame retardants (BFRs) and pentachlorophenol (PCP) from environmental waters. Various MSPE parameters were optimized including amount of Fe3O4/C nanoparticles, pH of sample solution, enrichment factor of analytes and reusability of Fe3O4/C sorbent. The reliability of the MSPE method was evaluated by the recoveries of BFRs and PCP in spiked water samples. Good recoveries (80.0-110.0%) were achieved with the relative standard deviations range from 0.3% to 6.8%. In this paper, the extraction characteristics of Fe3O4/C sorbent were further elucidated. It is found that the adsorption process of Fe3O4/C to analytes predominates the MSPE efficiency. There is hybrid hydrophobic interaction and hydrogen bonding or dipole-dipole attraction between Fe3O4/C and analytes. Notably, the chemical components of carbon layer on the surface of Fe3O4 nanoparticles were identified by X-ray photoelectron spectroscopy and thermogravimetry-mass spectrometry, and in consequence the covalent bonds between Fe3O4 and the coated carbon have been observed. In addition, the straight influence of synthesis condition of Fe3O4/C nanoparticles including glucose concentration and hydrothermal reaction time on extraction performance for BFRs and PCP has been investigated. It is confirmed that the existence of organic carbon containing functional groups over Fe3O4/C sorbent is responsible for the MSPE extraction.
Thermodynamic stability of stoichiometric LaFeO3 and BiFeO3: a hybrid DFT study.
Heifets, Eugene; Kotomin, Eugene A; Bagaturyants, Alexander A; Maier, Joachim
2017-02-01
BiFeO 3 perovskite attracts great attention due to its multiferroic properties and potential use as a parent material for Bi 1-x Sr x FeO 3-δ and Bi 1-x Sr x Fe 1-y Co y O 3-δ solid solutions in intermediate temperature cathodes of oxide fuel cells. Another iron-based LaFeO 3 perovskite is the end member for well-known solid solutions (La 1-x Sr x Fe 1-y Co y O 3-δ ) used for oxide fuel cells and other electrochemical devices. In this study an ab initio hybrid functional approach was used for the study of the thermodynamic stability of both LaFeO 3 and BiFeO 3 with respect to decompositions to binary oxides and to elements, as a function of temperature and oxygen pressure. The localized (LCAO) basis sets describing the crystalline electron wave functions were carefully re-optimized within the CRYSTAL09 computer code. The results obtained by considering Fe as an all-electron atom and within the effective core potential technique are compared in detail. Based on our calculations, the phase diagrams were constructed allowing us to predict the stability region of stoichiometric materials in terms of atomic chemical potentials. This permits determining the environmental conditions for the existence of stable BiFeO 3 and LaFeO 3 . These conditions were presented as contour maps of oxygen atoms' chemical potential as a function of temperature and partial pressure of oxygen gas. A similar analysis was also performed using the experimental Gibbs energies of formation. The obtained phase diagrams and contour maps are compared with the calculated ones.
Shi, Xin-Ran; Chen, Xue-Lei; Hao, Yu-Lan; Li, Li; Xu, Hou-Jun; Wang, Man-Man
2018-06-01
Magnetic solid-phase extraction is an effective and useful technique to preconcentrate trace analytes from food samples. In this study, a magnetic trimeric chromium octahedral metal-organic framework (Fe 3 O 4 -NH 2 @MIL-101) was fabricated and characterized. Fe 3 O 4 -NH 2 @MIL-101 was applied as an adsorbent of magnetic solid-phase extraction combined with high performance liquid chromatography to effectively isolate and simultaneously determine six Sudan dyes (Para Red, Sudan I-IV, and Sudan Red 7B) from tomato sauce. Potential factors affecting the MSPE were investigated in detail, and adsorption efficiency of Fe 3 O 4 -NH 2 @MIL-101 was compared with those of conventional adsorbents, such as neutral alumina, HLB, and C 18 . The developed method facilitated the extraction with using only 3 mg of adsorbent in 2 min. In addition, enhancement factors of 50, linear range of 0.01-25 μg/mL, and detection limit (S/N = 3) of 0.5-2.5 μg/kg were obtained. The intra-day and inter-day recoveries for spiked Sudan dyes were in the range of 72.6%-92.9% and 69.6%-91.6%, respectively, with relative standard deviations of ≤9.2%. Copyright © 2018 Elsevier B.V. All rights reserved.
Microstructures responsible for the invar and permalloy effects in Fe-Ni alloys
NASA Astrophysics Data System (ADS)
Ustinovshchikov, Yu. I.; Shabanova, I. N.; Lomova, N. V.
2015-05-01
The experimental studies of Fe68Ni32 and Fe23Ni77 alloys by transmission electron microscopy and X-ray electron spectroscopy show that the ordering-separation phase transition in these alloys occurs in a temperature range near 600°C. At temperatures higher than the transition temperature, the ordering energy of the alloy is positive, and the structures contain clusters enriched in one of the components. After heat treatment at the temperatures where the invar effect in the Fe68Ni32 alloy is maximal, a modulated microstructure forms. Below the transition temperature, the ordering energy is negative, which provides a tendency to formation of chemical compounds. After aging at these temperatures (where the Fe23Ni77 alloy exhibits high permalloy properties), highly dispersed completely coherent particles of the FeNi3 phase with structure L12 precipitate in a solid solution.
NASA Astrophysics Data System (ADS)
Teplyakova, N. A.; Titov, S. V.; Verbenko, I. A.; Sidorov, N. V.; Reznichenko, L. A.
2015-09-01
Based on Raman spectra, we have studied structural ordering processes in ceramics of ferroelectromagnetics Bi1- x La x FeO3 ( x = 0.075-0.20). It has been found that the structure of Bi1- x La x FeO3 is close to the structure of the crystal BiFeO3. However, lines in Raman spectra of Bi1- x La x FeO3 are considerably broadened compared to lines in the Raman spectrum of the BiFeO3 single crystal, which indicates that the structure of solid solutions is much more disordered. In Raman spectra of Bi1- x La x FeO3, in the range of librational vibrations of octahedra as a whole (50-90 cm-1), several groups of lines are observed in frequency ranges 59-69, 72-77, and 86-92 cm-1 (depending on the composition of solid solution). This confirms X-ray data that examined solid solutions are not single-phase. At a La content x = 0.120, Raman lines in the low-frequency spectral range narrow, which indicates that the ordering of structural units in cationic sublattices somewhat increases. Upon an increase in the content of La in the Bi1- x La x FeO3 structure, no unambiguous dependence of parameters of spectral lines is observed. It is likely that this is explained by the fact that, as the value of x increases, the character of the incorporation of La into the structure of the solid solution changes.
Solid iron-hydrogen alloys under high pressure by first principles
NASA Astrophysics Data System (ADS)
Umemoto, K.; Hirose, K.
2016-12-01
Hydrogen and iron are two of major constituents of the Earth and planetary interiors. The crystal structure of solid FeHx is one of the most fundamental information in order to understand properties of planetary cores. It is well known that FeH takes closed-packed structures: dhcp, hcp, and fcc. Recently, hydrogen-rich phases, FeH2 and FeH3, were experimentally synthesized [1]. Although a tetragonal structure of FeH2 was proposed, it could not explain experimental observations, energetic stability and compression curve. Here we propose a new crystal structure of FeH2. The symmetry of the new structure is completely identical to that in originally proposed one, but the hydrogen sublattice which cannot be directly determined by XRD experiments is different. It will be demonstrated by first principles that the new structure can be fully consistent with experimental observations. [1] C. M. Pépin, A. Dewaele, G. Geneste, P. Loubeyre, and M. Mezouar, Phys. Rev. Lett. 113, 265504 (2014).
NASA Astrophysics Data System (ADS)
Parida, S. C.; Jacob, K. T.; Venugopal, V.
2002-10-01
The enthalpy increments and the standard molar Gibbs energies of formation of DyFeO 3(s) and Dy 3Fe 5O 12(s) have been measured using a Calvet micro-calorimeter and a solid oxide galvanic cell, respectively. A co-operative phase transition, related to anti-ferromagnetic to paramagnetic transformation, is apparent from the heat capacity data for DyFeO 3 at ˜648 K. A similar type of phase transition has been observed for Dy 3Fe 5O 12 at ˜560 K which is related to ferrimagnetic to paramagnetic transformation. Enthalpy increment data for DyFeO 3(s) and Dy 3Fe 5O 12(s), except in the vicinity of the second-order transition, can be represented by the following polynomial expressions: {H 0m(T)-H 0m(298.15 K)} ( J mol-1) (±1.1%)=-52754+142.9×(T ( K))+2.48×10 -3×(T ( K)) 2+2.951×10 6×(T ( K)) -1;(298.15⩽ T ( K)⩽1000) for DyFeO 3(s), and {H 0m(T)-H 0m(298.15 K)} ( J mol-1) (±1.2%)=-191048+545.0×(T ( K))+2.0×10 -5×(T ( K)) 2+8.513×10 6×(T ( K)) -1;(298.15⩽T ( K)⩽1000) for Dy 3Fe 5O 12(s). The reversible emfs of the solid-state electrochemical cells: (-)Pt/{DyFeO 3(s) + Dy 2O 3(s) + Fe(s)}//YDT/CSZ//{Fe(s) + Fe 0.95O(s)}/Pt(+) and (-)Pt/{Fe(s) + Fe 0.95O(s)}//CSZ//{DyFeO 3(s) + Dy 3Fe 5O 12(s) + Fe 3O 4(s)}/Pt(+), were measured in the temperature range from 1021 to 1250 K and 1035 to 1250 K, respectively. The standard Gibbs energies of formation of solid DyFeO 3 and Dy 3Fe 5O 12 calculated by the least squares regression analysis of the data obtained in the present study, and data for Fe 0.95O and Dy 2O 3 from the literature, are given by: Δ fG 0m( DyFeO3, s) ( kJ mol-1) (±3.2)=-1339.9+0.2473×(T ( K));(1021⩽T ( K)⩽1548) and Δ fG 0m( Dy3Fe5O12, s) ( kJ mol-1) (±3.5)=-4850.4+0.9846×(T ( K));(1035⩽T ( K)⩽1250). The uncertainty estimates for Δ fG 0m include the standard deviation in the emf and uncertainty in the data taken from the literature. Based on the thermodynamic information, oxygen potential diagram and chemical potential diagrams for the system DyFeO were developed at 1250 K.
Strain Coupling of Conversion-type Fe 3O 4 Thin Films for Lithium Ion Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, Sooyeon; Meng, Qingping; Chen, Ping-Fan
2017-05-29
Lithiation/delithiation induces significant stresses and strains into the electrodes for lithium ion batteries, which can severely degrade their cycling performance. Moreover, this electrochemically induced strain can interact with the local strain existing at solid–solid interfaces. It is not clear how this interaction affects the lithiation mechanism. The effect of this coupling on the lithiation kinetics in epitaxial Fe 3O 4 thin film on a Nb-doped SrTiO 3 substrate is investigated. In-situ and ex-situ transmission electron microscopy (TEM) results show that the lithiation is suppressed by the compressive interfacial strain. At the interface between the film and substrate, the existence ofmore » Li xFe 3O 4 rock-salt phase during lithiation consequently restrains the film from delamination. 2D phase-field simulation verifies the effect of strain. This work provides critical insights of understanding the solid–solid interfaces of conversion-type electrodes.« less
Damage accumulation in ion-irradiated Ni-based concentrated solid-solution alloys
Ullah, Mohammad W.; Aidhy, Dilpuneet S.; Zhang, Yanwen; ...
2016-03-05
We investigate Irradiation-induced damage accumulation in Ni 0.8Fe 0.2 and Ni 0.8Cr 0.2 alloys by using molecular dynamics simulations to assess possible enhanced radiation-resistance in these face-centered cubic (fcc), single-phase, concentrated solid-solution alloys, as compared with pure fcc Ni.
NASA Astrophysics Data System (ADS)
Shevchenko, M.; Jak, E.
2017-12-01
The phase equilibria information on the Pb-Fe-O system is of practical importance for the improvement of the existing thermodynamic database of lead-containing slag systems (Pb-Zn-Fe-Cu-Si-Ca-Al-Mg-O). Phase equilibria of the Pb-Fe-O system have been investigated: (a) in air at temperatures between 1053 K and 1373 K (780 °C and 1100 °C); (b) in equilibrium with metallic lead at temperatures between 1053 K and 1373 K (780 °C and 1100 °C); and (c) at intermediate oxidation conditions for the liquid slag in equilibrium with two solids (spinel + magnetoplumbite), at temperatures between 1093 K and 1373 K (820 °C and 1100 °C). The high-temperature equilibration/quenching/electron probe X-ray microanalysis technique has been used to accurately determine the compositions of the phases in equilibrium in the system. The Pb and Fe concentrations in the phases were determined directly; preliminary thermodynamic modeling with FactSage was used to estimate the ferrous-to-ferric ratios and to present the results in the ternary diagram.
NASA Astrophysics Data System (ADS)
Hadef, Fatma
2016-12-01
The last decade has witnessed an intensive research in the field of nanocrystalline materials due to their enhanced properties. A lot of processing techniques were developed in order to synthesis these novel materials, among them mechanical alloying or high-energy ball milling. In fact, mechanical alloying is one of the most common operations in the processing of solids. It can be used to quickly and easily synthesize a variety of technologically useful materials which are very difficult to manufacture by other techniques. One advantage of MA over many other techniques is that is a solid state technique and consequently problems associated with melting and solidification are bypassed. Special attention is being paid to the synthesis of alloys through reactions mainly occurring in solid state in many metallic ternary Fe-Al-X systems, in order to improve mainly Fe-Al structural and mechanical properties. The results show that nanocrystallization is the common result occurring in all systems during MA process. The aim of this work is to illustrate the uniqueness of MA process to induce phase transformation in metallic Fe-Al-X (X=Ni, Mn, Cu, Ti, Cr, B, Si) systems.
Reduced Uranium Phases Produced from Anaerobic Reaction with Nanoscale Zerovalent Iron.
Tsarev, Sergey; Collins, Richard N; Fahy, Adam; Waite, T David
2016-03-01
Nanoscale zerovalent iron (nZVI) has shown potential to be an effective remediation agent for uranium-contaminated subsurface environments, however, the nature of the reaction products and their formation kinetics have not been fully elucidated over a range of environmentally relevant conditions. In this study, the oxygen-free reaction of U(VI) with varying quantities of nZVI was examined at pH 7 in the presence of both calcium and carbonate using a combination of X-ray absorption spectroscopy, X-ray diffraction and transmission electron microscopy. It was observed that the structure of the reduced U solid phases was time dependent and largely influenced by the ratio of nZVI to U in the system. At the highest U:Fe molar ratio examined (1:4), nanoscale uraninite (UO2) was predominantly formed within 1 day of reaction. At lower U:Fe molar ratios (1:21), evidence was obtained for the formation of sorbed U(IV) and U(V) surface complexes which slowly transformed to UO2 nanoparticles that were stable for up to 1 year of anaerobic incubation. After 8 days of reaction at the lowest U:Fe molar ratio examined (1:110), sorbed U(IV) was still the major form of U associated with the solid phase. Regardless of the U:Fe molar ratio, the anaerobic corrosion of nZVI resulted in the slow formation of micron-sized fibrous chukanovite (Fe2(OH)2CO3) particles.
Matar, Samir F.; Guionneau, Philippe; Chastanet, Guillaume
2015-01-01
For spin crossover (SCO) complexes, computation results are reported and confirmed with experiments at multiscale levels of the isolated molecule and extended solid on the one hand and theory on the other hand. The SCO phenomenon which characterizes organometallics based on divalent iron in an octahedral FeN6-like environment with high spin (HS) and low spin (LS) states involves the LS/HS switching at the cost of small energies provided by temperature, pressure or light, the latter connected with Light-Induced Excited Spin-State Trapping (LIESST) process. Characteristic infra red (IR) and Raman vibration frequencies are computed within density functional theory (DFT) framework. In [Fe(phen)2(NCS)2] a connection of selected frequencies is established with an ultra-fast light-induced LS → HS photoswitching mechanism. In the extended solid, density of state DOS and electron localization function (ELF) are established for both LS and HS forms, leading to characterizion of the compound as an insulator in both spin states with larger gaps for LS configuration, while keeping molecular features in the solid. In [Fe(PM-BiA)2(NCS)2], by combining DFT and classical molecular dynamics, the properties and the domains of existence of the different phases are obtained by expressing the potential energy surfaces in a short range potential for Fe–N interactions. Applying such Fe–N potentials inserted in a classical force field and carrying out molecular dynamics (MD) in so-called “semi-classical MD” calculations, lead to the relative energies of HS/LS configurations of the crystal and to the assessment of the experimental (P, T) phase diagram. PMID:25686037
Xu, Kaijia; Wang, Yuzhi; Ding, Xueqin; Huang, Yanhua; Li, Na; Wen, Qian
2016-01-01
As a new type of green solvent, four kinds of choline chloride (ChCl)-based deep eutectic solvents (DESs) have been synthesized, and then a core-shell structure magnetic graphene oxide (Fe3O4-NH2@GO) nanoparticles have been prepared and coated with the ChCl-based DESs. Magnetic solid-phase extraction (MSPE) based Fe3O4-NH2@GO@DES was studied for the first time for the extraction of proteins. The characteristic results of vibrating sample magnetometer (VSM), X-ray diffraction (XRD), Fourier transform infrared spectrometry (FT-IR), thermal gravimetric analysis (TGA) and field emission scanning electron microscopy (FESEM) indicated the successful preparation of Fe3O4-NH2@GO@DES. The concentrations of proteins in studies were determined by a UV-vis spectrophotometer. The advantages of Fe3O4-NH2@GO@DES in protein extraction were compared with Fe3O4-NH2@GO and Fe3O4-NH2, and Fe3O4-NH2@GO@ChCl-glycerol was selected as the suitable extraction solvent. The influence factors of the extraction process such as the pH value, the temperature, the extraction time, the concentration of protein and the amount of Fe3O4-NH2@GO@ChCl-glycerol were evaluated. Desorption experimental result showed 98.73% of BSA could be eluted from the solid extractant with 0.1 mol/L Na2HPO4 solution contained 1 mol/L NaCl. Besides, the conformation of BSA was not changed during the elution by the investigation of circular dichromism (CD) spectra. Furthermore, the analysis of real sample demonstrated that the prepared magnetic nanoparticles did have extraction ability on proteins in bovine whole blood. Copyright © 2015 Elsevier B.V. All rights reserved.
Crystal Structure Analysis of Electromagnetic Wave Absorber Material BaFe12-xTix/2Znx/2O19Based
NASA Astrophysics Data System (ADS)
Delina, M.; Nenni, N.; Adi, W. A.
2018-04-01
The optimization of BaFe12-xTix/2Znx/2O19 (x=2.2; 2.4; 2.6; 2.8)single phase composition have been performed. The materials were synthesized by solid state reaction method through mechanical milling technique.The materials were made from the mixture of oxide materials, which are BaCO3, Fe2O3, TiO2 and ZnO. The mixture was milled for five hours using a High Energy Milling (HEM), was dried at 100°C in the Oven and then was sintered at 1000°C for five hours in the Furnace. The phase identification of BaFe12-xTix/2Znx/2O19 (x=2.2; 2.4; 2.6; 2.8) were carried out by using a Match Program while the crystal structure analysis were investigated by using a General Structure Analysis System (GSAS) program. The refinement results of x-ray diffraction pattern showed that the sample of x ≤ 2.4 have a BaFe12O19 single phase while the sample of x> 2.4 have two phases, which are BaFe12O19 and ZnFe2O4 phases. The surface morphology of sample and the element of sample were identified through an analysis of Scanning Electron Microscope (SEM) and Energy Dispersive Spectroscopy (EDS) data.
Electrostatic levitation studies of supercooled liquids and metastable solid phases
NASA Astrophysics Data System (ADS)
Rustan, Gustav Errol
A new laboratory has been developed at Iowa State University (ISU) to be used for the study of high temperature liquids and solids, with particular focus on the supercooling of liquids and their metastable solidification products. This new laboratory employs the electrostatic levitation (ESL) technique, in which a charged sample is suspended between a set of electrodes to achieve non-contact handling. Owing to the elimination of a crucible, high temperature processing of samples can be achieved with reduced levels of contamination and heterogeneous nucleation. Because of the reduction in heterogeneous nucleation, samples can be supercooled well below their equilibrium melting temperature, opening the door to a wide range of measurements on supercooled liquids. Measurements methods have been implemented for the characterization of thermophysical properties such as: volume/density, ratio of specific heat to total hemispherical emissivity, surface tension, viscosity, electrical resistivity, and magnetic susceptibility. For measurements of electrical resistivity and magnetic susceptibility, a new method has been developed at ISU based on the tunnel diode oscillator (TDO) technique. The TDO technique uses the negative differential resistance of a tunnel diode to drive an LC tank circuit into self-sustained oscillation at the resonant LC frequency. The LC tank is inductively coupled to the samples under study, and changes in the electrical resistivity or magnetic susceptibility of the sample are manifested as changes in the resonant frequency. By measuring the frequency shifts of the TDO, insights can be made into changes in the material's electrical and magnetic properties. This method has been validated by performing resistivity measurements on a sample of high purity Zr, and by performing measurements on the ferromagnetic transition in a low-carbon steel ball bearing. In addition to the development of the laboratory and its supporting instrumentation, an effort has been carried out to study the metastable phase formation in an Fe83B17 near eutectic alloy. Initial supercooling measurements using the ISU-ESL identified the formation of three metastable phases: a precipitate phase that shows stable coexistence with the deeply supercooled liquid, and two distinct bulk solidification phases. To identify the structure of the metastable phases, the Washington University Beamline ESL (WU-BESL) has been used to perform in-situ high energy x-ray diffraction measurements of the metastable phases. Based on the x-ray results, the precipitate phase has been identified as bcc-Fe, and the more commonly occurring bulk solidification product has been found to be a two-phase mixture of Fe23B6 plus fcc-Fe, which appears, upon cooling, to transform into a three phase mixture of Fe23B6, bcc-Fe, and an as-yet unidentified phase, with the transformation occurring at approximately the expected fcc-to-bcc transformation temperature of pure Fe. To further characterize the multi-phase metastable alloy, the ISU-ESL has been used to perform measurements of volume thermal expansion via the videographic technique, as well as RF susceptibility via the TDO technique. The results of the thermal expansion and susceptibility data have been found to be sensitive indicators of additional structural changes that may be occurring in the metastable solid at temperatures below 1000 K, and the susceptibility data has revealed that three distinct ferromagnetic phase transitions take place within the multi-phase mixture. Based on these results, it has been hypothesized that there may be an additional transformation taking place that leads to the formation of either bct- or o-Fe3B in addition to the Fe23B6 phase, although further work is required to test this hypothesis.
Zhang, Shuaihua; Yang, Qian; Li, Zhi; Wang, Wenjin; Zang, Xiaohuan; Wang, Chun; Wang, Zhi
2018-10-15
A hybrid composite featuring an iron-based metal-organic framework Material of Institute Lavoisier-88(Fe) and graphene oxide (MIL-88(Fe)/GO) was synthesized and used as the solid-phase microextraction (SPME) coating. The SPME fiber was prepared by covalent bonding of the MIL-88(Fe)/GO composite onto the stainless steel substrate. The fiber had a good durability and allowed >100 replicate extractions. The developed method, which combined the MIL-88(Fe)/GO coated fiber based SPME with gas chromatography-flame ionization detection (GC-FID), achieved low limits of detection (0.5-2.0 ng g -1 , S/N = 3) and good linearity (r 2 > 0.994) for the phthalic acid esters (PAEs) from various vegetable oil samples. The repeatability and fiber-to-fiber reproducibility were in the range of 4.0-9.1% and 5.7-11.4%, respectively. The method was successfully applied to the analysis of PAEs from vegetable oil samples with good recoveries (83.1-104.1%) and satisfactory precisions (RSDs < 10.5%), indicating that the MIL-88(Fe)/GO hybrid composite is a good coating material for the SPME of PAEs. Copyright © 2018 Elsevier Ltd. All rights reserved.
Rapid electron exchange between surface-exposed bacterial cytochromes and Fe(III) minerals
White, Gaye F.; Shi, Zhi; Shi, Liang; Wang, Zheming; Dohnalkova, Alice C.; Marshall, Matthew J.; Fredrickson, James K.; Zachara, John M.; Butt, Julea N.; Richardson, David J.; Clarke, Thomas A.
2013-01-01
The mineral-respiring bacterium Shewanella oneidensis uses a protein complex, MtrCAB, composed of two decaheme cytochromes, MtrC and MtrA, brought together inside a transmembrane porin, MtrB, to transport electrons across the outer membrane to a variety of mineral-based electron acceptors. A proteoliposome system containing a pool of internalized electron carriers was used to investigate how the topology of the MtrCAB complex relates to its ability to transport electrons across a lipid bilayer to externally located Fe(III) oxides. With MtrA facing the interior and MtrC exposed on the outer surface of the phospholipid bilayer, the established in vivo orientation, electron transfer from the interior electron carrier pool through MtrCAB to solid-phase Fe(III) oxides was demonstrated. The rates were 103 times higher than those reported for reduction of goethite, hematite, and lepidocrocite by S. oneidensis, and the order of the reaction rates was consistent with those observed in S. oneidensis cultures. In contrast, established rates for single turnover reactions between purified MtrC and Fe(III) oxides were 103 times lower. By providing a continuous flow of electrons, the proteoliposome experiments demonstrate that conduction through MtrCAB directly to Fe(III) oxides is sufficient to support in vivo, anaerobic, solid-phase iron respiration. PMID:23538304
Thermophysical properties of Ni-containing single-phase concentrated solid solution alloys
Jin, Ke; Mu, Sai; An, Ke; ...
2016-12-27
For this research temperature dependent thermophysical properties, including specific heat capacity, lattice thermal expansion, thermal diffusivity and conductivity, have been systematically studied in Ni and eight Ni-containing single-phase face-centered-cubic concentrated solid solution alloys, at elevated temperatures up to 1273 K. The alloys have similar specific heat values of 0.4–0.5 J·g -1·K -1 at room temperature, but their temperature dependence varies greatly due to Curie and K-state transitions. The lattice, electronic, and magnetic contributions to the specific heat have been separated based on first-principles methods in NiCo, NiFe, Ni-20Cr and NiCoFeCr. The alloys have similar thermal expansion behavior, with the exceptionmore » that NiFe and NiCoFe have much lower thermal expansion coefficient in their ferromagnetic state due to magnetostriction effects. Calculations based on the quasi-harmonic approximation accurately predict the temperature dependent lattice parameter of NiCo and NiFe with < 0.2% error, but underestimated that of Ni-20Cr by 1%, compared to the values determined from neutron diffraction. In addition, all the alloys containing Cr have very similar thermal conductivity, which is much lower than that of Ni and the alloys without Cr, due to the large magnetic disorder.« less
Zhou, Qingxiang; Lei, Man; Wu, Yalin; Yuan, Yongyong
2017-03-03
Metal-organic framework material has been paid more attention because of its good physical and chemical properties. Nanoscale zero valent iron is also in the center of concern recently. Combination of their merits will give impressive results. Present study firstly synthesized a new magnetic nanomaterial nano-scale zero valent iron-functionalized metal-organic framworks MIL-101 (Fe@MIL-101) by co-precipitation method. The morphology and structure of the as-prepared Fe@MIL-101 were characterized by transmission electron microscopy and X-ray diffraction, etc. The experimental results showed that Fe@MIL-101 earned good adsorption ability to polycyclic aromatic hydrocarbons. The limits of detection of developed magnetic solid phase extraction were all below 0.064μgL -1 and precision can be expressed as relative standard deviation (RSD, %) and which was better than 4.4% (n=6). The real water analysis indicated that the spiked recoveries were satisfied, and Fe@MIL-101 earned excellent reusability. All these demonstrated that Fe@MIL-101 exhibited excellent adsorption capability to polycyclic aromatic hydrocarbons and would be a good adsorbent for development of new monitoring methods for environmental pollutants. Copyright © 2017 Elsevier B.V. All rights reserved.
Liu, Xiaofei; Lu, Xin; Huang, Yong; Liu, Chengwei; Zhao, Shulin
2014-02-01
A novel nano-adsorbent, Fe3O4@ionic liquid@methyl orange nanoparticles (Fe3O4@IL@MO NPs), was prepared for magnetic solid-phase extraction (MSPE) of polycyclic aromatic hydrocarbons (PAHs) in environmental water samples. The Fe3O4@IL@MO NPs were synthesized by self-assembly of the ionic liquid 1-octadecyl-3-methylimidazolium bromide (C18mimBr) and methyl orange (MO) onto the surface of Fe3O4 silica magnetic nanoparticles, as confirmed by infrared spectroscopy, ultraviolet-visible spectroscopy and superconducting quantum interface device magnetometer. The extraction performance of Fe3O4@IL@MO NPs as a nano-adsorbent was evaluated by using five PAHs, fluorene (FLu), anthracene (AnT), pyrene (Pyr), benzo(a)anthracene (BaA) and benzo(a)pyrene (BaP) as model analytes. Under the optimum conditions, detection limits in the range of 0.1-2 ng/L were obtained by high performance liquid chromatography-fluorescence detection (HPLC-FLD). This method has been successfully applied for the determination of PAHs in environmental water samples by using the MSPE-HPLC-FLD. The recoveries for the five PAHs tested in spiked real water samples were in the range of 80.4-104.0% with relative standard deviations ranging from 2.3 to 4.9%. © 2013 Published by Elsevier B.V.
Lian, Lili; Lv, Jinyi; Wang, Xiyue; Lou, Dawei
2018-01-26
A novel magnetic solid-phase extraction approach was proposed for extraction of potential residues of tetracyclines (TCs) in tap and river water samples, based on Fe 3 O 4 @SiO 2 @FeO magnetic nanocomposite. Characterized results showed that the received Fe 3 O 4 @SiO 2 @FeO had distinguished magnetism and core-shell structure. Modified FeO nanoparticles with an ∼5 nm size distribution were homogeneously dispersed on the surface of the silica shell. Owing to the strong surface affinity of Fe (II) toward TCs, the magnetic nanocomposite could be applied to efficiently extract three TCs antibiotics, namely, oxytetracycline, tetracycline and chlortetracycline from water samples. Several factors, such as sorbent amount, pH condition, adsorption and desorption time, desorption solvent, selectivity and sample volume, influencing the extraction performance of TCs were investigated and optimized. The developed method showed excellent linearity (R > 0.9992) in the range of 0.133-333 μg L -1 , under optimized conditions. The limits of detection were between 0.027 and 0.107 μg L -1 for oxytetracycline, tetracycline and chlortetracycline, respectively. The feasibility of this method was evaluated by analysis of tap and river water samples. The recoveries at the spiked concentration levels ranged from 91.0% to 104.6% with favorable reproducibility (RSD < 4%). Copyright © 2017 Elsevier B.V. All rights reserved.
PSEUDO-BINARY SYSTEMS INVOLVING RARE EARTH LAVES PHASES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wernick, J.H.; Haszko, S.E.; Dorsi, D.
1962-06-01
The phase relations in a number of pseudo-binary systems involving rare earth Laves phases were determined. Complete series of cubic solid-solutions occur in the DyMn/sub 2/HoMn/sub 2/, HoMn/sub 2/-HoFe/sub 2/, DyMn/sub 2/-DyFe/ sub 2/, HoMn/sub 2/-HoAl/ sub 2/, TbMn/sub 2/TbAl/sub 2/, and DyMn/sub 2/-DyAl/ sub 2/ pseudobinary systems. Deviations from linearity in the lattice constants with composition occur in all these systems. Complete series of cubic solidsolutions also exist in the GdAl/sub 2/-ErAl/sub 2/, GdAl/sub 2/-PrAl/sub 2/ , GdAl/sub 2/-NdAl/sub 2/, GdAl/sub 2/-DyAl/sub 2/, TbAl/sub 2/-NdAl/sub 2/, and T bAl/sub 2/-DyAl/sub 2/ systems. For these systems, no deviation from linearitymore » occurs in the lattice constants. For the DyFe/sub 2/-DyAl/sub 2/ and DyCo/sub 2/- DyAl/sub 2/ systems, two new ternary phases, DyFeAl and DyCoAl, form and have the MgZn/sub 2/ structure. Their structures were determined from x-ray powder data only. The electronic state giving rise to the formation of these ternary phases is discussed qualitatively. For the DyMn/sub 2/TmMn/sub 2/ system, the range of composition in which the cubic MgCu/sub 2/ and hexagonal MgZn/sub 2/ structures exist are reported. No complete series of solid solutions or intermediate phases are formed in the DyNi/sub 2/-DyAl/sub 2/ system. (auth)« less
Gravitational Role in Liquid Phase Sintering
NASA Technical Reports Server (NTRS)
Upadhyaya, Anish; Iacocca, Ronald G.; German, Randall M.
1998-01-01
To comprehensively understand the gravitational effects on the evolution of both the microstructure and the macrostructure during liquid phase sintering, W-Ni-Fe alloys with W content varying from 35 to 98 wt.% were sintered in microgravity. Compositions that slump during ground-based sintering also distort when sintered under microgravity. In ground-based sintering, low solid content alloys distort with a typical elephant-foot profile, while in microgravity, the compacts tend to spheroidize. This study shows that microstructural segregation occurs in both ground-based as well as microgravity sintering. In ground-based experiments, because of the density difference between the solid and the liquid phase, the solid content increases from top to the bottom of the sample. In microgravity, the solid content increases from periphery to the center of the samples. This study also shows that the pores during microgravity sintering act as a stable phase and attain anomalous shapes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, K M; K Kukkadapu, R K; Qafoku, N P
2012-05-23
Localized zones or lenses of naturally reduced sediments have the potential to play a significant role in the fate and transport of redox-sensitive metals and metalloids in aquifers. To assess the mineralogy, microbiology and redox processes that occur in these zones, several cores from a region of naturally occurring reducing conditions in a U-contaminated aquifer (Rifle, CO) were examined. Sediment samples from a transect of cores ranging from oxic/suboxic Rifle aquifer sediment to naturally reduced sediment were analyzed for U and Fe content, oxidation state, and mineralogy; reduced S phases; and solid-phase organic C content using a suite of analyticalmore » and spectroscopic techniques on bulk sediment and size fractions. Solid-phase U concentrations were higher in the naturally reduced zone, with a high proportion of the U present as U(IV). The sediments were also elevated in reduced S phases and Fe(II), indicating it is very likely that U(VI), Fe(III), and SO4 reduction has occurred or is occurring in the sediment. The microbial community was assessed using lipid- and DNA-based techniques, and statistical redundancy analysis was performed to determine correlations between the microbial community and the geochemistry. Increased concentrations of solid-phase organic C and biomass in the naturally reduced sediment suggests that natural bioreduction is stimulated by a zone of increased organic C concentration associated with fine-grained material and lower permeability to groundwater flow. Characterization of the naturally bioreduced sediment provides an understanding of the natural processes that occur in the sediment under reducing conditions and how they may impact natural attenuation of radionuclides and other redox sensitive materials. Results also suggest the importance of recalcitrant organic C for maintaining reducing conditions and U immobilization.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, K. M.; Kukkadapu, R. K.; Qafoku, N. P.
2012-08-01
Localized zones or lenses of naturally reduced sediments have the potential to play a significant role in the fate and transport of redox-sensitive metals and metalloids in aquifers. To assess the mineralogy, microbiology and redox processes that occur in these zones, several cores from a region of naturally occurring reducing conditions in a U-contaminated aquifer (Rifle, CO) were examined. Sediment samples from a transect of cores ranging from oxic/suboxic Rifle aquifer sediment to naturally reduced sediment were analyzed for U and Fe content, oxidation state, and mineralogy; reduced S phases; and solid-phase organic C content using a suite of analyticalmore » and spectroscopic techniques on bulk sediment and size fractions. Solid-phase U concentrations were higher in the naturally reduced zone, with a high proportion of the U present as U(IV). The sediments were also elevated in reduced S phases and Fe(II), indicating it is very likely that U(VI), Fe(III), and SO 4 reduction has occurred or is occurring in the sediment. The microbial community was assessed using lipid- and DNA-based techniques, and statistical redundancy analysis was performed to determine correlations between the microbial community and the geochemistry. Increased concentrations of solid-phase organic C and biomass in the naturally reduced sediment suggests that natural bioreduction is stimulated by a zone of increased organic C concentration associated with fine-grained material and lower permeability to groundwater flow. Characterization of the naturally bioreduced sediment provides an understanding of the natural processes that occur in the sediment under reducing conditions and how they may impact natural attenuation of radionuclides and other redox sensitive materials. Results also suggest the importance of recalcitrant organic C for maintaining reducing conditions and U immobilization.« less
Solubility of K in Fe-S liquid, silicate-K/Fe-S/liq equilibria, and their planetary implications
NASA Technical Reports Server (NTRS)
Gangully, J.; Kennedy, G. C.
1977-01-01
Potassium has been found to have extremely limited absolute solubility in Fe-S liquid in the pressure-temperature range of 18 to 40 kbars, 1050 to 1150 C, and fO2 within the field of metallic iron. It also partitioned into a certain silicate phase highly in preference to Fe-S liquid at 30 kbar and 1100 C. The dependence of the partitioning of K between solid silicate and Fe-S liquid on fO2 and compositions of mineral solid solutions have been analyzed. These experimental data, along with those of others, limit the amount of K that could fractionate in Fe-S liquid layers or a core in the early history of the moon and, thus, act as localized heat sources in its thermal history models; the data also seem to argue against a chondritic abundance of potassium for earth. The question of fractionation of enough K-40 in an Fe-S liquid outer core of earth to provide the necesary thermal energy for the geomagnetic dynamo remains unresolved.
NASA Astrophysics Data System (ADS)
Pradhan, S. K.; Das, S. N.; Bhuyan, S.; Behera, C.; Padhee, R.; Choudhary, R. N. P.
2016-06-01
A lanthanum-modified BiFeO3-PbTiO3 binary electronic system has been fabricated by a high-temperature solid-state reaction technique. The structural, dielectric and electrical properties of a single phase of multicomponent system are investigated to understand its ferroelectrics as well as relaxation behavior. The X-ray diffraction structural analysis substantiates the formation of a new stable phase of tetragonal system (with a large c/a ratio 1.23) without any trace of impurity phase. The electrical behavior of the processed material is characterized through impedance spectroscopy in a wide frequency range (1 kHz-1 MHz) over a temperature range of 25-500 °C. It is observed that the substitution of lanthanum-modified PbTiO3 (PT) into BiFeO3 (BFO) reveals enviable multiferroic property which is evident from the ME coefficient measurement and ferroelectric loop. It also reduces the electrical leakage current or tangent loss. The ac conductivity of the solid solution increases with increase in frequency in the low-temperature region. The impedance spectroscopy of the synthesized material reflects the dielectric relaxation of non-Debye type.
Halo Formation During Solidification of Refractory Metal Aluminide Ternary Systems
NASA Astrophysics Data System (ADS)
D'Souza, N.; Feitosa, L. M.; West, G. D.; Dong, H. B.
2018-02-01
The evolution of eutectic morphologies following primary solidification has been studied in the refractory metal aluminide (Ta-Al-Fe, Nb-Al-Co, and Nb-Al-Fe) ternary systems. The undercooling accompanying solid growth, as related to the extended solute solubility in the primary and secondary phases can be used to account for the evolution of phase morphologies during ternary eutectic solidification. For small undercooling, the conditions of interfacial equilibrium remain valid, while in the case of significant undercooling when nucleation constraints occur, there is a departure from equilibrium leading to unexpected phases. In Ta-Al-Fe, an extended solubility of Fe in σ was observed, which was consistent with the formation of a halo of μ phase on primary σ. In Nb-Al-Co, a halo of C14 is formed on primary CoAl, but very limited vice versa. However, in the absence of a solidus projection it was not possible to definitively determine the extended solute solubility in the primary phase. In Nb-Al-Fe when nucleation constraints arise, the inability to initiate coupled growth of NbAl3 + C14 leads to the occurrence of a two-phase halo of C14 + Nb2Al, indicating a large undercooling and departure from equilibrium.
Tripathi, J K; Garbrecht, M; Kaplan, W D; Markovich, G; Goldfarb, I
2012-12-14
Self-assembled α-FeSi(2) nanoislands were formed using solid-phase epitaxy of low (~1.2 ML) and high (~21 ML) Fe coverages onto vicinal Si(111) surfaces followed by thermal annealing. At a resulting low Fe-covered Si(111) surface, we observed in situ, by real-time scanning tunneling microscopy and surface electron diffraction, the entire sequence of Fe-silicide formation and transformation from the initially two-dimensional (2 × 2)-reconstructed layer at 300 °C into (2 × 2)-reconstructed nanoislands decorating the vicinal step-bunch edges in a self-ordered fashion at higher temperatures. In contrast, the silicide nanoislands at a high Fe-covered surface were noticeably larger, more three-dimensional, and randomly distributed all over the surface. Ex situ x-ray photoelectron spectroscopy and high-resolution transmission electron microscopy indicated the formation of an α-FeSi(2) island phase, in an α-FeSi(2){112} // Si{111} orientation. Superconducting quantum interference device magnetometry showed considerable superparamagnetism, with ~1.9 μ(B)/Fe atom at 4 K for the low Fe-coverage, indicating stronger ferromagnetic coupling of individual magnetic moments, as compared to high Fe-coverage, where the calculated moments were only ~0.8 μ(B)/Fe atom. Such anomalous magnetic behavior, particularly for the low Fe-coverage case, is radically different from the non-magnetic bulk α-FeSi(2) phase, and may open new pathways to high-density magnetic memory storage devices.
Phase constitution in the interfacial region of laser penetration brazed magnesium–steel joints
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, Yugang; Han, Duanfeng, E-mail: handuanfeng@gmail.com; Xu, Xiangfang
2014-07-01
The phase constitution in the interfacial region of laser penetration brazed magnesium–steel joints was investigated using electron microscopy. From the distribution of elements, the transition zone was mainly composed of elements Mg and Fe along with some Al and O. Furthermore, the transition layer consisted mainly of intermetallic compounds and metal oxides. The compounds were identified as Al-rich phases, such as Mg{sub 17}Al{sub 12}, Mg{sub 2}Al{sub 3}, FeAl and Fe{sub 4}Al{sub 13}. More noteworthy was that the thickness of the transition layer was determined by Fe–Al compounds. The presence of FeAl and Fe{sub 4}Al{sub 13} was a result of themore » complex processes that were associated with the interfacial reaction of solid steel and liquid Mg–Al alloy. - Highlights: • A technology of laser penetration brazed Mg alloy and steel has been developed. • The interface of Mg/Fe dissimilar joints was investigated using electron microscopy. • The transition layer consisted of intermetallic compounds and metal oxides. • Moreover, the thickness of transition layer was determined by Fe/Al compounds. • The presence of FeAl and Fe{sub 4}Al{sub 13} was associated with the interfacial reaction.« less
Chen, Chunmei; Kukkadapu, Ravi K; Lazareva, Olesya; Sparks, Donald L
2017-07-18
Properties of Fe minerals are poorly understood in natural soils and sediments with variable redox conditions. In this study, we combined 57 Fe Mössbauer and Fe K-edge X-ray absorption spectroscopic (XAS) techniques to assess solid-phase Fe speciation along the vertical redox gradients of floodplains, which exhibited a succession of oxic, anoxic, and suboxic-oxic zones with increasing depth along the vertical profiles. The incised stream channel is bounded on the east by a narrow floodplain and a steep hillslope, and on the west by a broad floodplain. In the eastern floodplain, the anoxic conditions at the intermediate horizon (55-80 cm) coincided with lower Fe(III)-oxides (particularly ferrihydrite), in concurrence with a greater reduction of phyllosilicates(PS)-Fe(III) to PS-Fe(II), relative to the oxic near-surface and sandy gravel layers. In addition, the anoxic conditions in the eastern floodplain coincided with increased crystallinity of goethite, relative to the oxic layers. In the most reduced intermediate sediments at 80-120 cm of the western floodplain, no Fe(III)-oxides were detected, concurrent with the greatest PS-Fe(III) reduction (PS-Fe(II)/Fe(III) ratio ≈ 1.2 (Mössbauer) or 0.8 (XAS)). In both oxic near-surface horizon and oxic-suboxic gravel aquifers beneath the soil horizons, Fe(III)-oxides were mainly present as ferrihydrite with a much less amount of goethite, which preferentially occurred as nanogoethite or Al/Si-substituted goethite. Ferrihydrite with varying crystallinity or impurities such as organic matter, Al or Si, persisted under suboxic-oxic conditions in the floodplain. This study indicates that vertical redox gradients exert a major control on the quantity and speciation of Fe(III) oxides as well as the oxidation state of structural Fe in PS, which could significantly affect nutrient cycling and carbon (de)stabilization.
Magnetic properties of mixed spinel BaTiO{sub 3}-NiFe{sub 2}O{sub 4} composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarkar, Babusona; Dalal, Biswajit; Dev Ashok, Vishal
2014-03-28
Solid solution of nickel ferrite (NiFe{sub 2}O{sub 4}) and barium titanate (BaTiO{sub 3}), (100-x)BaTiO{sub 3}–(x) NiFe{sub 2}O{sub 4} has been prepared by solid state reaction. Compressive strain is developed in NiFe{sub 2}O{sub 4} due to mutual structural interaction across the interface of NiFe{sub 2}O{sub 4} and BaTiO{sub 3} phases. Quantitative analysis of X-ray diffraction and X-ray photo electron spectrum suggest mixed spinel structure of NiFe{sub 2}O{sub 4}. A systematic study of composition dependence of composite indicates BaTiO{sub 3} causes a random distribution of Fe and Ni cations among octahedral and tetrahedral sites during non-equilibrium growth of NiFe{sub 2}O{sub 4}. Themore » degree of inversion decreases monotonically from 0.97 to 0.75 with increase of BaTiO{sub 3} content. Temperature dependence of magnetization has been analyzed by four sublattice model to describe complex magnetic exchange interactions in mixed spinel phase. Curie temperature and saturation magnetization decrease with increase of BaTiO{sub 3} concentration. Enhancement of strain and larger occupancy of Ni{sup 2+} at tetrahedral site increase coercivity up to 200 Oe. Magnetostructual coupling induced by BaTiO{sub 3} improves coercivity in NiFe{sub 2}O{sub 4}. An increase in the demagnetization and homogeneity in magnetization process in NiFe{sub 2}O{sub 4} is observed due to the interaction with diamagnetic BaTiO{sub 3}.« less
NASA Astrophysics Data System (ADS)
Zhang, Li; Chang, Xijun; Li, Zhenhua; He, Qun
2010-02-01
A new selective solid-phase extractant using activated carbon as matrix which was purified, oxidized and modified by triethylenetetramine (AC-TETA) was prepared and characterized by FT-IR spectroscopy. At pH 4, quantitative extraction of trace Cr(III), Fe(III) and Pb(II) was obtained and determined by inductively coupled plasma optical emission spectrometry (ICP-OES). Complete elution of the adsorbed metal ions from the sorbent surface was carried out using 0.5 mol L -1 HCl. The maximum static adsorption capacity of sorbent for Cr(III), Fe(III) and Pb(II) was 34.6, 36.5 and 51.9 mg g -1, respectively. The time of quantitative adsorption was less than 2 min. The detection limits of the method was found to be 0.71, 0.35 and 0.45 ng mL -1 for Cr(III), Fe(III) and Pb(II), and the relative standard deviation (RSD) was 3.7%, 2.2% and 2.5%, respectively. Moreover, the method was free from interference with common coexiting ions. The method was also successfully applied to the preconcentration of trace Cr(III), Fe(III) and Pb(II) in synthetic samples and a real sample with satisfactory results.
NASA Astrophysics Data System (ADS)
Sarwanto, Y.; Adi, W. A.
2017-05-01
Modification of pseudobrookite Fe2-xMnxTiO5 with solid state reaction method using a mechanical milling has been synthesized. Raw materials used to prepare these samples were Fe2O3, MnCO3, and TiO2. Fe2O3 and TiO2 powders (ratio of 1:1) were mixed with MnCO3 powder at various composition of x = 0; 0.1; 0.2; 0.3; 0.4; 0.5; and 1, which each composition was added with 50 ml ethanol and then milled for 5 hours through high energy milling, after that sintered at 1000 °C for 5 hours by using box furnace. The phases of Fe2-xMnxTiO5 were measured by using X-ray diffraction (XRD) and then identified by using Match program. The crystal structure was analyzed by using the program of General Structure Analysis System (GSAS). Quality fitting of Rwp and χ2 (chi-squared) are relatively good because based on the curve of normalized error distribution looks just left background and its normal probability plot shows the value of comparable between observation and expectation. The refinement analyses of X-ray diffraction patterns showed that the samples formed single phase for x ≤ 0.3. However, the samples of x > 0.3 were multi-phases. The single phase of sample had composition of pseudobrookite Fe2TiO5 with orthorhombic structure, space group of C m c m (63), the lattice parameters of a = 3.7390 Å, b = 9.7790 Å, and c = 9.9780 Å, α = β = γ = 90°, V = 364.83 Å3, and ρ = 4.360 g.cm-3. Meanwhile, the other phase analysis for the composition of x > 0.3 is bixbyite (FeMnO3). The bixbyite has a cubic structure, under the space group of I a - 3 (206), the lattice parameters of a = b = c = 9.40 Å, α = β = γ = 90°, V = 830.58 Å3, and ρ = 5.078 g.cm-3.
NASA Astrophysics Data System (ADS)
Tsuno, Kyusei; Dasgupta, Rajdeep
2015-02-01
Constraining the stable form of carbon in the deep mantle is important because carbon has key influence on mantle processes such as partial melting and element mobility, thereby affecting the efficiency of carbon exchange between the endogenic and exogenic reservoirs. In the reduced, mid- to deep-upper mantle, the chief host of deep carbon is expected to be graphite/diamond but in the presence of Fe-Ni alloy melt in the reduced mantle and owing to high solubility of carbon in such alloy phase, diamond may become unstable. To investigate the nature of stable, C-bearing phases in the reduced, mid- to deep-upper mantle, here we have performed experiments to examine the effect of sulfur on the phase relations of the Ni-rich portion of Fe-Ni ± Cu-C-S system, and carbon solubility in the Fe-Ni solid and Fe-Ni-S liquid alloys at 6-8 GPa and 800-1400 °C using a multianvil press. Low-temperature experiments for six starting mixes (Ni/(Fe + Ni) ∼ 0.61, 8-16 wt.% S) contain C-bearing, solid Fe-Ni alloy + Fe-Ni-C-S alloy melt + metastable graphite, and the solid alloy-out boundary is constrained, at 1150-1200 °C at 6 GPa and 900-1000 °C at 8 GPa for S-poor starting mix, and at 1000-1050 °C at 6 GPa and 900-1000 °C at 8 GPa for the S-rich starting mix. The carbon solubility in the liquid alloy significantly diminishes from 2.1 to 0.8 wt.% with sulfur in the melt increasing from 8 to 24 wt.%, irrespective of temperature. We also observed a slight decrease of carbon solubility in the liquid alloy with increasing pressure when alloy liquid contains >∼18 wt.% S, and with decreasing Ni/(Fe + Ni) ratio from 0.65 to ∼0.53. Based on our results, diamond, coexisting with Ni-rich sulfide liquid alloy is expected to be stable in the reduced, alloy-bearing oceanic mantle with C content as low as 20 to 5 ppm for mantle S varying between 100 and 200 ppm. Deep, reduced root of cratonic mantle, on the other hand, is expected to have C distributed among solid alloy, liquid alloy, and diamond for low-S (≤100 ppm S) domains and between liquid alloy and diamond in high-S (≥150 ppm S) domains. Our findings can explain the observation of Ni-rich sulfide and/or Fe-Ni alloy inclusions in diamond and suggest that diamond stability in the alloy-bearing, reduced mantle does not necessarily require excess C supply from recycled, crustal lithologies. Our prediction of diamond stability in the background, depleted upper mantle, owing to the interaction with mantle sulfides, is also consistent with the carbon isotopic composition of peridotitic diamond (δ13C of - 5 ± 1 ‰), which suggests no significant input from recycled carbon.
Deep-Earth Equilibration between Molten Iron and Solid Silicates
NASA Astrophysics Data System (ADS)
Brennan, M.; Zurkowski, C. C.; Chidester, B.; Campbell, A.
2017-12-01
Elemental partitioning between iron-rich metals and silicate minerals influences the properties of Earth's deep interior, and is ultimately responsible for the nature of the core-mantle boundary. These interactions between molten iron and solid silicates were influential during planetary accretion, and persist today between the mantle and liquid outer core. Here we report the results of diamond anvil cell experiments at lower mantle conditions (40 GPa, >2500 K) aimed at examining systems containing a mixture of metals (iron or Fe-16Si alloy) and silicates (peridotite). The experiments were conducted at pressure-temperature conditions above the metallic liquidus but below the silicate solidus, and the recovered samples were analyzed by FIB/SEM with EDS to record the compositions of the coexisting phases. Each sample formed a three-phase equilibrium between bridgmanite, Fe-rich metallic melt, and an oxide. In one experiment, using pure Fe, the quenched metal contained 6 weight percent O, and the coexisting oxide was ferropericlase. The second experiment, using Fe-Si alloy, was highly reducing; its metal contained 10 wt% Si, and the coexisting mineral was stishovite. The distinct mineralogies of the two experiments derived from their different starting metals. These results imply that metallic composition is an important factor in determining the products of mixed phase iron-silicate reactions. The properties of deep-Earth interfaces such as the core-mantle boundary could be strongly affected by their metallic components.
High temperature coercive field behavior of Fe-Zr powder
NASA Astrophysics Data System (ADS)
Mishra, Debabrata; Perumal, A.; Srinivasan, A.
2009-04-01
We report the investigation of high temperature coercive field behavior of Fe80Zr20 nanocrystalline alloy powder having two-phase microstructure prepared by mechanical alloying process. Thermomagnetization measurement shows the presence of two different magnetic phase transitions corresponding to the amorphous matrix and nonequilibrium Fe(Zr) solid solution. Temperature dependent coercivity exhibits a sharp increase in its value close to the Curie temperature of the amorphous matrix. This feature is attributed to the loss of intergranular ferromagnetic exchange coupling between the nanocrystallites due to the paramagnetic nature of the amorphous matrix. The temperature dependent coercive field behavior is ascribed to the variations in both the effective anisotropy and the exchange stiffness constant with temperature.
NASA Technical Reports Server (NTRS)
Holzheid, Astrid; Grove, Timothy L.
2005-01-01
Metal-olivine Fe-Ni exchange distribution coefficients were determined at 1500 C over the pressure range of 1 to 9 GPa for solid and liquid alloy compositions. The metal alloy composition was varied with respect to the Fe/Ni ratio and the amount of dissolved carbon and sulfur. The Fe/Ni ratio of the metal phase exercises an important control on the abundance of Ni in the olivine. The Ni abundance in the olivine decreases as the Fe/Ni ratio of the coexisting metal increases. The presence of carbon (up to approx. 3.5 wt.%) and sulfur (up to approx. 7.5 wt.%) in solution in the liquid Fe-Ni-metal phase has a minor effect on the partitioning of Fe and Ni between metal and olivine phases. No pressure dependence of the Fe-Ni-metal-olivine exchange behavior in carbon- and sulfur-free and carbon- and sulfur-containing systems was found within the investigated pressure range. To match the Ni abundance in terrestrial mantle olivine, assuming an equilibrium metal-olivine distribution, a sub-chondritic Fe/Ni-metal ratio that is a factor of 17 to 27 lower than the Fe/Ni ratios in estimated Earth core compositions would be required, implying higher Fe concentrations in the core forming metal phase. A simple metal-olivine equilibrium distribution does not seem to be feasible to explain the Ni abundances in the Earth's mantle. An equilibrium between metal and olivine does not exercise a control on the problem of Ni overabundance in the Earth's mantle. The experimental results do not contradict the presence of a magma ocean at the time of terrestrial core formation, if olivine was present in only minor amounts at the time of metal segregation.
Feng, Shouai; Wei, Kang; Tian, Zhaofu; Li, Xiaolan; Meng, Dongling; Liao, Wenlong; Miao, Mingming; Yang, Yaling
2016-07-29
In this work, a simple and effective method based on magnetic solid-phase extraction combined with high-performance liquid chromatography was developed for the determination of benzo[α]pyrene (BaP) in cigarette smoke. Oleic acid coated Fe 3 O 4 (Fe 3 O 4 -OA) was synthesized and directly used as an efficient sorbent for the first time in magnetic solid-phase extraction (MSPE) procedure for the clean-up of BaP in cigarette smoke extracts. The synthesized Fe 3 O 4 -OA was characterized by transmission electron microscopy, X-ray diffraction and Fourier transformed infrared spectroscopy. The extraction via Fe 3 O 4 -OA was dispersed in the extracts of cigarette smoke followed by the magnetic isolation, acetonitrile-tetrahydrofuran (ACN-THF; v/v = 9:1) was used for desorption of the analyte. The effects of important parameters such as the amount of adsorbent, solution pH, the content of acetonitrile, temperature and sorption time were investigated. The method showed good linearity for the determination of BaP in the concentration range of 0.5-50 ng mL -1 with a regression coefficient (R 2 ) of 0.9987. The limit of detection and limit of quantification for BaP were obtained to be 0.12 and 0.41 ng mL -1 , respectively. The mean recoveries were in the range from 81.0% to 97.6% at low, medium, high spiked levels, and the relative standard deviations were in the range of 2.7-6.8%. Combined with high-performance liquid chromatography and fluorescence detection, a simple and effective method was developed for the analysis of BaP in cigarette smoke. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Inskeep, William P.; Macur, Richard E.; Harrison, Gregory; Bostick, Benjamin C.; Fendorf, Scott
2004-08-01
Acid-sulfate-chloride (pH˜3) geothermal springs in Yellowstone National Park (YNP) often contain Fe(II), As(III), and S(-II) at discharge, providing several electron donors for chemolithotrophic metabolism. The microbial populations inhabiting these environments are inextricably linked with geochemical processes controlling the behavior of As and Fe. Consequently, the objectives of the current study were to (i) characterize Fe-rich microbial mats of an ASC thermal spring, (ii) evaluate the composition and structure of As-rich hydrous ferric oxides (HFO) associated with these mats, and (iii) identify microorganisms that are potentially responsible for mat formation via the oxidation of Fe(II) and or As(III). Aqueous and solid phase mat samples obtained from a spring in Norris Basin, YNP (YNP Thermal Inventory NHSP35) were analyzed using a complement of chemical, microscopic and spectroscopic techniques. In addition, molecular analysis (16S rDNA) was used to identify potentially dominant microbial populations within different mat locations. The biomineralization of As-rich HFO occurs in the presence of nearly equimolar aqueous As(III) and As(V) (˜12 μM), and ˜ 48 μM Fe(II), forming sheaths external to microbial cell walls. These solid phases were found to be poorly ordered nanocrystalline HFO containing mole ratios of As(V):Fe(III) of 0.62 ± 0.02. The bonding environment of As(V) and Fe(III) is consistent with adsorption of arsenate on edge and corner positions of Fe(III)-OH octahedra. Numerous archaeal and bacterial sequences were identified (with no closely related cultured relatives), along with several 16S sequences that are closely related to Acidimicrobium, Thiomonas, Metallosphaera and Marinithermus isolates. Several of these cultured relatives have been implicated in Fe(II) and or As(III) oxidation in other low pH, high Fe, and high As environments (e.g. acid-mine drainage). The unique composition and morphologies of the biomineralized phases may be useful as modern-day analogs for identifying microbial life in past Fe-As rich environments.
Clusters and holes: Exchange networks in hematite-ilmenite solid solutions
NASA Astrophysics Data System (ADS)
Fabian, K.; McEnroe, S. A.; Robinson, P.
2009-04-01
Holes and clusters of exchange networks dominate the low-temperature, metastable phase diagram of the system (1 - x)Fe2O3 xF eTiO3 (Ilmx ). By our measurements we have probed and extended the phase diagram of Ishikawa et al. (1985) in the light of magnetic influences of the random exchange links, which originate either by replacing random pairs of Fe2+ and Ti4+ ions in the ordered ilmenite lattice by two Fe3+ions (ordered Ilmx phase), or by randomly replacing two Fe3+ ions in the hematite lattice by a pair of Fe2+ and Ti4+ ions (disordered Ilmx phase). Now a large dataset is available from these measurements, and we propose several new ideas to interpret the sometimes unexpected results. By refining a method of Ishikawa (1967), we analyze the PM' region of the phase diagram in terms of a mean field theory of interacting clusters. This allows to determine cluster sizes and interaction field distribution by inverting hysteresis measurements of Ilm92 and Ilm97. To understand the relation between ordered and disordered phases we design a mean field theory to determine Neel and Curie temperatures of both. An especially interesting finding is that the experimentally observed intersection of PM-PM' crossover with the AF phase boundary close to Ilm97 can be explained by analyzing average exchange interaction strengths.
Arsenic Mobilization Through Microbial Bioreduction of Ferrihydrite Nanoparticles
NASA Astrophysics Data System (ADS)
Tadanier, C. J.; Roller, J.; Schreiber, M. E.
2004-12-01
Under anaerobic conditions Fe(III)-reducing microorganisms can couple the reduction of solid phase Fe(III) (hydr)oxides with the oxidation of organic carbon. Nutrients and trace metals, such as arsenic, associated with Fe(III) hydroxides may be mobilized through microbially-mediated surface reduction. Although arsenic mobilization has been attributed to mineral surface reduction in a variety of pristine and contaminated environments, minimal information exists on the mechanisms causing this arsenic mobilization. Understanding of the fundamental biochemical and physicochemical processes involved in these mobilization mechanisms is still limited, and has been complicated by the often contradictory and interchangeable terminology used in the literature to describe them. We studied arsenic mobilization mechanisms using a series of controlled microcosm experiments containing aggregated arsenic-bearing ferrihydrite nanoparticles and an Fe(III)-reducing microorganism, Geobacter metallireducens. The phase distribution of iron and arsenic was determined through filtration and ultracentrifugation techniques. Experimental results showed that in the biotic trials, approximately 10 percent of the Fe(III) was reduced to Fe(II) by microbial activity, which remained associated with ferrihydrite surfaces. Biotic activity resulted in changes in nanoparticle surface potential and caused deflocculation of nanoparticle aggregates. Deflocculated nanoparticles were able to pass through a 0.2 micron filter and could only be removed from solution by ultracentrifugation. Arsenic mobilized over time in the biotic trials was found to be exclusively associated with the nanoparticles; 98 percent of arsenic that passed through a 0.2 micron filter was removed from solution by ultracentrifugation. None of these changes were observed in abiotic controls. Because arsenic contamination of natural waters due to mobilization from mineral surfaces is a significant route of human arsenic exposure worldwide, improved understanding of the biologically-mediated mechanisms that partition arsenic between solid and solution phases is required for development of effective treatment and remediation strategies.
Root, Robert A.; Fathordoobadi, Sahar; Alday, Fernando; Ela, Wendell; Chorover, Jon
2013-01-01
During treatment for potable use, water utilities generate arsenic-bearing ferric wastes that are subsequently dispatched to landfills. The biogeochemical weathering of these residuals in mature landfills affects the potential mobilization of sorbed arsenic species via desorption from solids subjected to phase transformations driven by abundant organic matter and bacterial activity. Such processes are not simulated with the Toxicity Characteristic Leaching Procedure (TCLP) currently used to characterize hazard. To examine the effect of sulfate on As retention in landfill leachate, columns of As(V) loaded amorphous ferric hydroxide were reacted biotically at two leachate sulfate concentrations (0.064 mM and 2.1 mM). After 300 d, ferric sorbents were reductively dissolved. Arsenic released to porewaters was partially co-precipitated in mixed-valent secondary iron phases whose speciation was dependent on sulfate concentration. As and Fe XAS showed that, in the low sulfate column, 75–81% of As(V) was reduced to As(III), and 53–68% of the Fe(III) sorbent was transformed, dominantly to siderite and green rust. In the high sulfate column, Fe(III) solids were reduced principally to FeS(am), whereas As(V) was reduced to a polymeric sulfide with local atomic structure of realgar. Multi-energy micro-X-ray fluorescence (ME-μXRF) imaging at Fe and As K-edges showed that As formed surface complexes with ferrihydrite > siderite > green rust in the low sulfate column; while discrete realgar-like phases formed in the high sulfate systems. Results indicate that landfill sulfur chemistry exerts strong control over the potential mobilization of As from ferric sorbent residuals by controlling secondary As and Fe sulfide co-precipitate formation. PMID:24102155
Phase transition of Fe oxides under reducing condition and its relation with the As behavior
NASA Astrophysics Data System (ADS)
Choi, S. H.; Kim, S. H.; Jeong, G. Y.; Kim, K.
2014-12-01
Fe oxides are very common in the earth's crust and easily transform into other minerals such as magnetite and siderite under reducing conditions by microbial reactions. It is well known that As concentrations in groundwater is strongly regulated by adsorption onto Fe oxides. Even though some studies have suggested that the formation of siderite can also control the As concentration, direct evidences are not sufficient. In this study, we performed microbial incubation experiments to see the phase transition of As-rich Fe oxides under anoxic condition and to see how the water As concentrations are controlled accordingly. Three experiments were performed by changing organic carbon concentrations. Natural groundwaters and yeast extracts were used for the sources of microorganisms and organic carbon. Seven reactors were prepared for each experiment and opened one by one to observe the changes of the water chemistry and solid phases for 60 days. The formation of magnetite was observed at the early stage of each experiment. Siderite was formed at the later stage only when the dissolved organic carbon concentrations were high (donor/accepter molar ratio = 1.5). Goethite and hematite, instead of siderite, were formed from the experiment using low organic carbon concentration (donor/accepter molar ratio = 0.75). It is likely that dissolved ferrous ion adsorbs onto the Fe oxides and recrystallizes into hematite and goethite when the DOC concentration was low. As concentrations were generally very low in the water (normally 10 ug/L) and we could not find any relations with the Fe minerals formed by anoxic microbial reactions, maybe due to high Fe oxide/water ratio of our experiments. The sequential extraction analysis indicated that most of the As in solids are mostly associated with Fe-oxides and organic matters. The As bound to carbonates were very low even in the precipitates containing siderite due to low As concentrations in the water where the siderite formed. Further experiments precipitating siderite in the water with high As concentrations are required.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blake, Johanna M.; Avasarala, Sumant; Artyushkova, Kateryna
The chemical interactions of U and co-occurring metals in abandoned mine wastes in a Native American community in northeastern Arizona were investigated using spectroscopy, microscopy and aqueous chemistry. The concentrations of U (67–169 μg L –1) in spring water samples exceed the EPA maximum contaminant limit of 30 μg L –1. Elevated U (6,614 mg kg –1), V (15,814 mg kg –1), and As (40 mg kg –1) concentrations were detected in mine waste solids. Spectroscopy (XPS and XANES) solid analyses identified U (VI), As (-I and III) and Fe (II, III). Linear correlations for the release of U vsmore » V and As vs Fe were observed for batch experiments when reacting mine waste solids with 10 mM ascorbic acid (~pH 3.8) after 264 h. The release of U, V, As, and Fe was at least 4-fold lower after reaction with 10 mM bicarbonate (~pH 8.3). These results suggest that U–V mineral phases similar to carnotite [K 2(UO 2) 2V 2O 8] and As–Fe-bearing phases control the availability of U and As in these abandoned mine wastes. Elevated concentrations of metals are of concern due to human exposure pathways and exposure of livestock currently ingesting water in the area. This study contributes to understanding the occurrence and mobility of metals in communities located close to abandoned mine waste sites.« less
Charge transfer kinetics at the solid-solid interface in porous electrodes
NASA Astrophysics Data System (ADS)
Bai, Peng; Bazant, Martin Z.
2014-04-01
Interfacial charge transfer is widely assumed to obey the Butler-Volmer kinetics. For certain liquid-solid interfaces, the Marcus-Hush-Chidsey theory is more accurate and predictive, but it has not been applied to porous electrodes. Here we report a simple method to extract the charge transfer rates in carbon-coated LiFePO4 porous electrodes from chronoamperometry experiments, obtaining curved Tafel plots that contradict the Butler-Volmer equation but fit the Marcus-Hush-Chidsey prediction over a range of temperatures. The fitted reorganization energy matches the Born solvation energy for electron transfer from carbon to the iron redox site. The kinetics are thus limited by electron transfer at the solid-solid (carbon-LixFePO4) interface rather than by ion transfer at the liquid-solid interface, as previously assumed. The proposed experimental method generalizes Chidsey’s method for phase-transforming particles and porous electrodes, and the results show the need to incorporate Marcus kinetics in modelling batteries and other electrochemical systems.
NASA Astrophysics Data System (ADS)
Jew, A. D.; Dustin, M. K.; Harrison, A. L.; Joe-Wong, C. M.; Thomas, D.; Maher, K.; Brown, G. E.; Bargar, J.
2016-12-01
Due to the rapid growth of hydraulic fracturing in the United States, understanding the cause for the rapid production drop off of new wells over the initial months of production is paramount. One possibility for the production decrease is pore occlusion caused by the oxidation of Fe(II)-bearing phases resulting in Fe(III) precipitates. To understand the release and fate of Fe in the shale systems, we reacted synthesized fracture fluid at 80oC with shale from four different geological localities (Marcellus Fm., Barnett Fm., Eagle Ford Fm., and Green River Fm.). A variety of wet chemical and synchrotron-based techniques (XRF mapping and x-ray absorption spectroscopy) were used to understand Fe release and solid phase Fe speciation. Solution pH was found to be the greatest factor for Fe release. Carbonate-poor Barnett and Marcellus shale showed rapid Fe release into solution followed by a plateau or significant drop in Fe concentrations indicating mineral precipitation. Conversely, in high carbonate shales, Eagle Ford and Green River, no Fe was detected in solution indicating fast Fe oxidation and precipitation. For all shale samples, bulk Fe EXAFS data show that a significant amount of Fe in the shales is bound directly to organic carbon. Throughout the course of the experiments inorganic Fe(II) phases (primarily pyrite) reacted while Fe(II) bound to C showed no indication of reaction. On the micron scale, XRF mapping coupled with μ-XANES spectroscopy showed that at pH < 4.0, Fe(III) bearing phases precipitated as diffuse surface precipitates of ferrihydrite, goethite, and magnetite away from Fe(II) point sources. In near circum-neutral pH systems, Fe(III)-bearing phases (goethite and hematite) form large particles 10's of μm's in diameter near Fe(II) point sources. Idealized systems containing synthesized fracturing fluid, dissolved ferrous chloride, and bitumen showed that bitumen released during reaction with fracturing fluids is capable of oxidizing Fe(II) to Fe(III) at pH's 2.0 and 7.0. This indicates that bitumen can play a large role in Fe oxidation and speciation in the subsurface. This work shows that shale mineralogy has a significant impact on the morphology and phases of Fe(III) precipitates in the subsurface which in turn can significantly impact subsurface solution flow.
Volatiles in the deep Earth: An experimental study using the laser-heated diamond cell
NASA Technical Reports Server (NTRS)
Li, Xiaoyuan; Jeanloz, Raymond; Nguyen, Jeffrey H.
1994-01-01
Experiments with the laser-heated diamond cell show that H2O and CO2 can be stabilized within crystalline mineral structures of the lower-mantle, and hence can be present at relatively non-volatile components of the Earth's deep interior. Samples quenched from high pressures and temperatures document that the MgCO3-FeCO3 magnesite-siderite solid-solution is stable and coexists with (Mg,Fe)SiO3 perovskite at 30-40 GPa and approximately 1500-2000 K. In contrast, H2O combines with the silicate to form (Mg,Fe)SiH2O4 phase D, coexisting with (Mg,Fe)SiO3 perovskite at these conditions. If enough water is present, phase D can become the predominant phase in the MgSiO3-H2O system at lower-mantle conditions. Our work extends previous studies to Fe-bearing compositions and to the pressures of the mid-lower mantle. Thus, the results of high-pressure experiments suggest that both H2O and CO2 can be abundant in the Earth's lower mantle, being present in stable hydroxisilicate and carbonate phases.
Cell dimensions and antiferromagnetism of lunar and terrestrial ilmenite single crystals
Thorpe, A.N.; Minkin, J.A.; Senftle, F.E.; Alexander, Corrine; Briggs, Charles; Evans, H.T.; Nord, G.L.
1977-01-01
X-Ray diffraction and anisotropic magnetic measurements have been made on single crystals of lunar ilmenite and on terrestrial ilmenite from Bancroft, Ontario, Canada and the Ilmen Mountains, U.S.S.R. The elongated c-axis of lunar ilmenite, previously reported, is confirmed by new measurements. The shorter c-axis found in terrestrial specimens is ascribed to Fe3+ substitution for Ti4+ in the titanium layer. Magnetic measurements on the same specimens show that, in agreement with the Ishikawa-Shirane et al. model, the initial shortening of the c-axis by the above substitution of small amounts of Fe3+ (<8%) causes an increase in Fe2+-Fe2+ exchange coupling through Fe3+ in the titanium layer that lowers the Ne??el transition temperature. The Weiss temperatures and other magnetic parameters confirm this model proposed by Ishikawa and Shirane et al. Additional transitions found in one of the terrestrial specimens (Bancroft) have been ascribed to a small amount of an exsolved spinel phase, possibly a solid solution phase of magnetite-u??lvospinel. The spinel phase is localized in hematite-rich blebs which exsolved from the host ilmenite-rich phase. ?? 1977.
The Systematics of Activity-Composition Relations in Mg-Fe2+ Oxide and Silicate Solid Solutions
NASA Astrophysics Data System (ADS)
O'Neill, H. S.
2006-12-01
The need to quantify activity-composition relations of mineral solid solutions for petrologic modelling has prompted many experimental studies, but different studies on the same system often appear to show a startling lack of consistency. A good example is Mg-Fe2+ mixing in garnet (the pyrope-almandine join). This is understandable because the energies of mixing in solid solutions are often obtained experimentally as small difference between large numbers. In particular, the fallacy of using a sequential approach to data fitting to a thermodynamic model leads to the accumulated errors being artificially concentrated onto the last step of the fitting process, which is usually that part of the model dealing with the excess energies of mixing. This gives rise to erroneous activity-composition relations, often apparently showing complex deviations from ideality. Systemizing the results of many studies can reveal underlying patterns of behaviour while also identifying outliers and anomalies that may be worth reinvestigating. Davies and Navrotsky [1] showed that the energies of mixing of many different pairs of ions with the same charge correlated well with the difference in molar volumes of the end-members, within a particular crystal structure. This empirical work is now supported by theoretical calculations. It underlies the modern approach to melt/crystal trace-element partitioning. Provided an internally consistent dataset is used, an analogous correlation may be demonstrated across different crystal structures for the mixing of one pair of ions, such as Mg and Fe2+. Activity-composition relations in MgO-"FeO" magnesiowuestite solutions in equilibrium with iron metal were used to obtain the properties of Mg-Fe olivine solutions from magnesiowuestite/olivine partitioning [2]. New results at 1400 K, 1 bar and 1473 K, 25 kb (O'Neill and Pownceby, in prep.) confirm previous work that mixing in Mg-Fe olivine is regular (symmetrical) with W Mg-Fe = 2.5 kJ/mol, with an accuracy including possible systematic errors of 0.5 kJ/mol (1 st. dev.). Any asymmetry is unambiguously constrained to be very small. These results were combined with experimental data (all at or above 900ºC), for partitioning of Mg and Fe between olivine and one of ilmenite (Pownceby and O'Neill, in prep.), Ti-, Al- or Cr-spinel (O'Neill, unpublished) and pyroxenes, garnet, and various high-pressure phases (literature). Internal consistency can be checked using other available partitioning data between pairs of these phases (i.e., without olivine). Except for some of the high-pressure phases, the ferromagnesian solutions are symmetrical with W Mg-Fe decreasing with the difference in the volumes of the end-members, which in turn depends on the atomic (Mg+Fe)/O ratio. This suggests that mixing in binary amphiboles, micas and other complex ferromagnesian silicates should be nearly ideal. The discrepancies shown by the high-pressure phases may be due to Fe3+ substitutions. As a working hypothesis, it is proposed that solid solutions between cations of the same charge and roughly similar size have simple thermodynamic mixing properties, with little asymmetry, modest excess entropies and excess enthalpies proportional to the volume difference of the end-members. Order-disorder phenomena have surprisingly little effect in the high temperature regime for which experimental data are available. Refs: [1] Davies and Navrotsky, J Sol State Chem 46, 1-22, 1983. [2] O'Neill et al., CMP 146, 308-325, 2003.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomaszewski, Elizabeth J.; Lee, Seungyeol; Rudolph, Jared
Chromium (Cr) is a toxic metal that causes a myriad of health problems and enters the environment as a result of anthropogenic activities and/or natural processes. The toxicity and solubility of chromium is linked to its oxidation state; Cr(III) is poorly soluble and relatively nontoxic, while Cr(VI) is soluble and a known carcinogen. Solid Fe(II) in iron-bearing minerals, such as pyrite, magnetite, and green rusts, reduce the oxidation state of chromium, reducing its toxicity and mobility. However, these minerals are not the only potential sources of solid-associated Fe(II) available for Cr(VI) reduction. For example, ferric (Fe(III)) (hydr)oxides, such as goethitemore » or hematite, can have Fe(II) in the solid without phase transformation; however, the reactivity of Fe(II) within Fe(III) (hydr)oxides with contaminants, has not been previously investigated. Here, we cyclically react goethite with dissolved Fe(II) followed by dissolved O2, leading to the formation of reactive Fe(II) associated with goethite. In separate reactors, the reactivity of this Fe(II) is probed under oxic conditions, by exposure to chromate (CrO42 -) after either one, two, three or four redox cycles. Cr is not present during redox cycling; rather, it is introduced to a subset of the solid after each oxidation half-cycle. Analysis of X-ray absorption near edge structure (XANES) spectra reveals that the extent of Cr(VI) reduction to Cr(III) depends not only on solid Fe(II) content but also surface area and mean size of ordered crystalline domains, determined by BET surface area analysis and X-ray diffraction (XRD), respectively. Shell-by-shell fitting of the extended X-ray absorption fine structure (EXAFS) spectra demonstrates chromium forms both single and double corner sharing complexes on the surface of goethite, in addition to sorbed Cr(III) species. Finally, transmission electron microscope (TEM) imaging and X-ray energy-dispersive spectroscopy (EDS) illustrate that Cr preferentially localizes on the (100) face of goethite, independent of the number of redox cycles goethite undergoes. This work demonstrates that under oxic conditions, solid Fe(II) associated with goethite resulting from rapid redox cycling is reactive and available for electron transfer to Cr(VI), suggesting Fe(III) (hydr)oxides may act as reservoirs of reactive electron density, even in oxygen saturated environments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malina, Ondrej, E-mail: ondrej.malina@upol.cz; Kaslik, Josef, E-mail: ondrej.malina@upol.cz; Tucek, Jiri, E-mail: ondrej.malina@upol.cz
2014-10-27
To date, iron oxides have become one of the most studied nanomaterials due to their interesting and aaplication appealing physical, chemical, and biological properties in comparison with their bulk counterparts. In general, four forms of iron(III) oxide can be distinguished depending on their crystallographic and magnetic properties. In this work, one of the rare phases of iron(III) oxide, β‐Fe{sub 2}O{sub 3}, prepared by the solid state reaction was explored for the thermal transformations in various ambient atmospheres, including O{sub 2}, N{sub 2}, and CO{sub 2} atmospheres. The thermally treated products were investigated employing X-ray powder diffraction and {sup 57}Fe Mössbauermore » spectroscopy.« less
Characterisation of iron inclusion during the formation of calcium sulfoaluminate phase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Idrissi, M., E-mail: mari_idrissi@yahoo.f; Diouri, A.; Damidot, D.
The iron distribution among the sulfoaluminate clinker phases and its ability to enter the calcium sulfoaluminate lattice in solid solution can have a significant influence on manufacturing process and reactivity of calcium sulfoaluminate (CSA) cements. X-ray diffraction (XRD) analysis, Moessbauer spectroscopy, scanning electron microscopy (SEM) equipped with an energy dispersive X-ray analysis system (EDAX) and infrared spectroscopy were used to identify the mineralogical conditions of iron inclusion during the formation of calcium sulfoaluminate (C{sub 4}A{sub 3}S) phase from different mixtures in the CaO-Al{sub 2}O{sub 3}-Fe{sub 2}O{sub 3}-SO{sub 3} system. The mixtures, heated in a laboratory electric oven, contained stoichiometric amountsmore » of reagent grade CaCO{sub 3}, Al{sub 2}O{sub 3}, Fe{sub 2}O{sub 3} and CaSO{sub 4.2}H{sub 2}O for the synthesis of Ca{sub 4}Al{sub (6-2x)}Fe{sub 2x}SO{sub 16}, where x, comprised between 0 and 3, is the mole number of Al{sub 2}O{sub 3} substituted by Fe{sub 2}O{sub 3}. With x increasing from 0 to 1.5, both the iron content of C{sub 4}A{sub 3}S phase and the amounts of side components such as C{sub 2}F and CS increased. For x values included in the range of 1.5-3.0, at temperatures higher than 1200 {sup o}C, melting phenomena were observed and, instead of the C{sub 4}A{sub 3}S solid solution, ferritic phases and anhydrite were formed.« less
Wang, Libin; Yang, Huiling; Liu, Xiaoxiao; Zeng, Rui; Li, Ming; Huang, Yunhui; Hu, Xianluo
2017-01-19
The design of complex heterostructured electrode materials that deliver superior electrochemical performances to their individual counterparts has stimulated intensive research on configuring supercapacitors with high energy and power densities. Herein we fabricate hierarchical tectorum-like α-Fe 2 O 3 /polypyrrole (PPy) nanoarrays (T-Fe 2 O 3 /PPy NAs). The 3D, and interconnected T-Fe 2 O 3 /PPy NAs are successfully grown on conductive carbon cloth through an easy self-sacrificing template and in situ vapor-phase polymerization route under mild conditions. The electrode made of the T-Fe 2 O 3 /PPy NAs exhibits a high areal capacitance of 382.4 mF cm -2 at a current density of 0.5 mA cm -2 and excellent reversibility. The solid-state asymmetric supercapacitor consisting of T-Fe 2 O 3 /PPy NAs and MnO 2 electrodes achieves a high energy density of 0.22 mWh cm -3 at a power density of 165.6 mW cm -3 . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effect of magnetic coupling on non-radiative relaxation time of Fe3+ sites on LaAl1-xFexO3 pigments
NASA Astrophysics Data System (ADS)
Novatski, A.; Somer, A.; Maranha, F. G.; de Souza, E. C. F.; Andrade, A. V. C.; Antunes, S. R. M.; Borges, C. P. F.; Dias, D. T.; Medina, A. N.; Astrath, N. G. C.
2018-02-01
Inorganic pigments of the system LaAl1-xFexO3 were prepared by the Pechini and the Solid State Reaction (SSR) methods. Magnetic interactions and non-radiative relaxation time were analyzed by means of phase-resolved photoacoustic spectroscopy and electron paramagnetic resonance (EPR) techniques. EPR results show a change in the magnetic behavior from paramagnetic (x = 0.2 and 0.4) to antiferromagnetic (x = 1.0), which is believed to be a result of the SSR preparation method. Trends in the optical absorption bands of the Fe3+ are attributed to their electronic transitions, and the increase in the band's intensity at 480 and 550 nm was assigned to the increase in the magnetic coupling between Fe-Fe. The phase-resolved method is capable of distinguishing between the two preparation methods, and it is possible to infer that SSR modifies the magnetic coupling of Fe-Fe with x.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sorour, A.A., E-mail: ahmad.sorour@mail.mcgill.ca; Chromik, R.R., E-mail: richard.chromik@mcgill.ca; Gauvin, R., E-mail: raynald.gauvin@mcgill.ca
2013-12-15
The present is a study of the solidification and microstructure of Fe–28.2%Cr–3.8%B–1.5%Si–1.5%Mn (wt.%) alloy deposited onto a 1020 plain carbon steel substrate using the controlled short-circuit metal inert gas welding process. The as-solidified alloy was a metal matrix composite with a hypereutectic microstructure. Thermodynamic calculation based on the Scheil–Gulliver model showed that a primary (Cr,Fe){sub 2}B phase formed first during solidification, followed by an eutectic formation of the (Cr,Fe){sub 2}B phase and a body-centered cubic Fe-based solid solution matrix, which contained Cr, Mn and Si. Microstructure analysis confirmed the formation of these phases and showed that the shape of themore » (Cr,Fe){sub 2}B phase was irregular plate. As the welding heat input increased, the weld dilution increased and thus the volume fraction of the (Cr,Fe){sub 2}B plates decreased while other microstructural characteristics were similar. - Highlights: • We deposit Fe–Cr–B-based alloy onto plain carbon steel using the CSC-MIG process. • We model the solidification behavior using thermodynamic calculation. • As deposited alloy consists of (Cr,Fe){sub 2}B plates embedded in Fe-based matrix. • We study the effect of the welding heat input on the microstructure.« less
2011-01-01
Background A realistic estimation of the health risk of human exposure to solid-phase arsenic (As) derived from historic mining operations is a major challenge to redevelopment of California's famed "Mother Lode" region. Arsenic, a known carcinogen, occurs in multiple solid forms that vary in bioaccessibility. X-ray absorption fine-structure spectroscopy (XAFS) was used to identify and quantify the forms of As in mine wastes and biogenic solids at the Lava Cap Mine Superfund (LCMS) site, a historic "Mother Lode" gold mine. Principal component analysis (PCA) was used to assess variance within water chemistry, solids chemistry, and XAFS spectral datasets. Linear combination, least-squares fits constrained in part by PCA results were then used to quantify arsenic speciation in XAFS spectra of tailings and biogenic solids. Results The highest dissolved arsenic concentrations were found in Lost Lake porewater and in a groundwater-fed pond in the tailings deposition area. Iron, dissolved oxygen, alkalinity, specific conductivity, and As were the major variables in the water chemistry PCA. Arsenic was, on average, 14 times more concentrated in biologically-produced iron (hydr)oxide than in mine tailings. Phosphorous, manganese, calcium, aluminum, and As were the major variables in the solids chemistry PCA. Linear combination fits to XAFS spectra indicate that arsenopyrite (FeAsS), the dominant form of As in ore material, remains abundant (average: 65%) in minimally-weathered ore samples and water-saturated tailings at the bottom of Lost Lake. However, tailings that underwent drying and wetting cycles contain an average of only 30% arsenopyrite. The predominant products of arsenopyrite weathering were identified by XAFS to be As-bearing Fe (hydr)oxide and arseniosiderite (Ca2Fe(AsO4)3O3•3H2O). Existence of the former species is not in question, but the presence of the latter species was not confirmed by additional measurements, so its identification is less certain. The linear combination, least-squares fits totals of several samples deviate by more than ± 20% from 100%, suggesting that additional phases may be present that were not identified or evaluated in this study. Conclusions Sub- to anoxic conditions minimize dissolution of arsenopyrite at the LCMS site, but may accelerate the dissolution of As-bearing secondary iron phases such as Fe3+-oxyhydroxides and arseniosiderite, if sufficient organic matter is present to spur anaerobic microbial activity. Oxidizing, dry conditions favor the stabilization of secondary phases, while promoting oxidative breakdown of the primary sulfides. The stability of both primary and secondary As phases is likely to be at a minimum under cyclic wet-dry conditions. Biogenic iron (hydr)oxide flocs can sequester significant amounts of arsenic; this property may be useful for treatment of perpetual sources of As such as mine adit water, but the fate of As associated with natural accumulations of floc material needs to be assessed. PMID:21261983
Foster, Andrea L; Ashley, Roger P; Rytuba, James J
2011-01-24
A realistic estimation of the health risk of human exposure to solid-phase arsenic (As) derived from historic mining operations is a major challenge to redevelopment of California's famed "Mother Lode" region. Arsenic, a known carcinogen, occurs in multiple solid forms that vary in bioaccessibility. X-ray absorption fine-structure spectroscopy (XAFS) was used to identify and quantify the forms of As in mine wastes and biogenic solids at the Lava Cap Mine Superfund (LCMS) site, a historic "Mother Lode" gold mine. Principal component analysis (PCA) was used to assess variance within water chemistry, solids chemistry, and XAFS spectral datasets. Linear combination, least-squares fits constrained in part by PCA results were then used to quantify arsenic speciation in XAFS spectra of tailings and biogenic solids. The highest dissolved arsenic concentrations were found in Lost Lake porewater and in a groundwater-fed pond in the tailings deposition area. Iron, dissolved oxygen, alkalinity, specific conductivity, and As were the major variables in the water chemistry PCA. Arsenic was, on average, 14 times more concentrated in biologically-produced iron (hydr)oxide than in mine tailings. Phosphorous, manganese, calcium, aluminum, and As were the major variables in the solids chemistry PCA. Linear combination fits to XAFS spectra indicate that arsenopyrite (FeAsS), the dominant form of As in ore material, remains abundant (average: 65%) in minimally-weathered ore samples and water-saturated tailings at the bottom of Lost Lake. However, tailings that underwent drying and wetting cycles contain an average of only 30% arsenopyrite. The predominant products of arsenopyrite weathering were identified by XAFS to be As-bearing Fe (hydr)oxide and arseniosiderite (Ca2Fe(AsO4)3O3•3H2O). Existence of the former species is not in question, but the presence of the latter species was not confirmed by additional measurements, so its identification is less certain. The linear combination, least-squares fits totals of several samples deviate by more than ± 20% from 100%, suggesting that additional phases may be present that were not identified or evaluated in this study. Sub- to anoxic conditions minimize dissolution of arsenopyrite at the LCMS site, but may accelerate the dissolution of As-bearing secondary iron phases such as Fe3+-oxyhydroxides and arseniosiderite, if sufficient organic matter is present to spur anaerobic microbial activity. Oxidizing, dry conditions favor the stabilization of secondary phases, while promoting oxidative breakdown of the primary sulfides. The stability of both primary and secondary As phases is likely to be at a minimum under cyclic wet-dry conditions. Biogenic iron (hydr)oxide flocs can sequester significant amounts of arsenic; this property may be useful for treatment of perpetual sources of As such as mine adit water, but the fate of As associated with natural accumulations of floc material needs to be assessed.
Akbarzade, Samaneh; Chamsaz, Mahmoud; Rounaghi, Gholam Hossein; Ghorbani, Mahdi
2018-01-01
A selective and sensitive magnetic dispersive solid-phase microextraction (MDSPME) coupled with gas chromatography-mass spectrometry was developed for extraction and determination of organophosphorus pesticides (Sevin, Fenitrothion, Malathion, Parathion, and Diazinon) in fruit juice and real water samples. Zero valent Fe-reduced graphene oxide quantum dots (rGOQDs@ Fe) as a new and effective sorbent were prepared and applied for extraction of organophosphorus pesticides using MDSPME method. In order to study the performance of this new sorbent, the ability of rGOQDs@ Fe was compared with graphene oxide and magnetic graphene oxide nanocomposite by recovery experiments of the organophosphorus pesticides. Several affecting parameters in the microextraction procedure, including pH of donor phase, donor phase volume, stirring rate, extraction time, and desorption conditions such as the type and volume of solvents and desorption time were thoroughly investigated and optimized. Under the optimal conditions, the method showed a wide linear dynamic range with R-square between 0.9959 and 0.9991. The limit of detections, the intraday and interday relative standard deviations (n = 5) were less than 0.07 ngmL -1 , 4.7, and 8.6%, respectively. The method was successfully applied for extraction and determination of organophosphorus pesticides in real water samples (well, river and tap water) and fruit juice samples (apple and grape juice). The obtained relative recoveries were in the range of 82.9%-113.2% with RSD percentages of less than 5.8% for all the real samples.
NASA Astrophysics Data System (ADS)
Lin, Jung-Fu; Fei, Yingwei; Sturhahn, Wolfgang; Zhao, Jiyong; Mao, Ho-kwang; Hemley, Russell J.
2004-09-01
Magnetic, elastic, thermodynamic, and vibrational properties of the most iron-rich sulfide, Fe3S, known to date have been studied with synchrotron Mössbauer spectroscopy (SMS) and nuclear resonant inelastic X-ray scattering (NRIXS) up to 57 GPa at room temperature. The magnetic hyperfine fields derived from the time spectra of the synchrotron Mössbauer spectroscopy show that the low-pressure magnetic phase displays two magnetic hyperfine field sites and that a magnetic collapse occurs at 21 GPa. The magnetic to non-magnetic transition significantly affects the elastic, thermodynamic, and vibrational properties of Fe3S. The magnetic collapse of Fe3S may also affect the phase relations in the iron-sulfur system, changing the solubility of sulfur in iron under higher pressures. Determination of the physical properties of the non-magnetic Fe3S phase is important for the interpretation of the amount and properties of sulfur present in the planetary cores. Sound velocities of Fe3S obtained from the measured partial phonon density of states (PDOS) for 57Fe incorporated in the alloy show that Fe3S has higher compressional and shear wave velocity than those of hcp-Fe and hcp-Fe0.92Ni0.08 alloy under high pressures, making sulfur a potential light element in the Earth's core based on geophysical arguments. The VP and VS of the non-magnetic Fe3S follow a Birch's law trend whereas the slopes decrease in the magnetic phase, indicating that the decrease of the magnetic moment significantly affects the sound velocities. If the Martian core is in the solid state containing 14.2 wt.% sulfur, it is likely that the non-magnetic Fe3S phase is a dominant component and that our measured sound velocities of Fe3S can be used to construct the corresponding velocity profile of the Martian core. It is also conceivable that Fe3P and Fe3C undergo similar magnetic phase transitions under high pressures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Starcher, Autumn N.; Elzinga, Evert J.; Sparks, Donald L.
Previous research demonstrated the formation of single divalent metal (Co, Ni, and ZnAl) and mixed divalent metal (NiZnAl) layered double hydroxide (LDH) phases from reactions of the divalent metal with Al-bearing substrates and soils in both laboratory experiments and in the natural environment. Recently Fe(II)-Al-LDH phases have been found in laboratory batch reaction studies, and although they have yet to be found in the natural environment. Potential locations of Fe(II)-Al-LDH phases in nature include areas with suboxic and anoxic conditions. Because these areas can be environments of significant contaminant accumulation, it is important to understand the possible interactions and impactsmore » of contaminant elements on LDH phase formation. One such contaminant, Zn, can also form as an LDH and has been found to form as a mixed divalent layered hydroxide phase. To understand how Zn impacts the formation of Fe(II)-Al-LDH phase formation and kinetics, 3 mM or 0.8 mM Fe(II) and 0.8 mM Zn were batch reacted with either 10 g/L pyrophyllite or 7.5 g/L γ-Al2O3 for up to three months under anoxic conditions. Aqueous samples were analyzed by inductively coupled plasma optical emission spectrometry (ICP-OES) and solid samples were analyzed with X-ray absorption spectroscopy (XAS). Shell-by-shell fits of Fe(II) and co-sorption samples with pyrophyllite show the formation of a mixed divalent metal (Fe(II)-Zn-Al) layered hydroxide phase, while Fe(II) and Zn co-sorption samples with γ-Al2O3 produce Fe(II)-Al-LDH phases and Zn in inner-sphere complexation with the γ-Al2O3. This study demonstrates the formation of a mixed divalent metal layered hydroxide and further iterates the importance of sorbent reactivity on LDH phase formation.« less
Mössbauer study of iron minerals transformations by Fuchsiella ferrireducens
NASA Astrophysics Data System (ADS)
Gracheva, M. A.; Chistyakova, N. I.; Antonova, A. V.; Rusakov, V. S.; Zhilina, T. N.; Zavarzina, D. G.
2017-11-01
Biogenic transformations of iron-containing minerals synthesized ferrihydrite, magnetite and hydrothermal siderite by anaerobic alkaliphilic bacterium Fuchsiella ferrireducens (strain Z-7101T) were studied by 57Fe Mössbauer spectroscopy. Mössbauer investigations of solid phase samples obtained after microbial transformation were carried out at room temperature and at 82 K. It was found that all tested minerals transformed during bacterial growth. In the presence of synthesized ferrihydrite, added as an electron acceptor, a mixture of large (more than 100 nm) and small (˜5 nm) particles of magnetically ordered phase and siderite was formed. Synthesized magnetite that contains both Fe3+ and Fe2+ forms could serve as electron acceptor as well as an electron donor for F.ferrireducens growth. As a result of its biotransformation, no siderite formation was observed while small particles of magnetite were formed. In the case of the addition of siderite as an electron donor formation of a small amount of a new phase containing Fe2+ caused by recrystallization of siderite during bacterial growth was detected.
Si-FeSi2/C nanocomposite anode materials produced by two-stage high-energy mechanical milling
NASA Astrophysics Data System (ADS)
Yang, Yun Mo; Loka, Chadrasekhar; Kim, Dong Phil; Joo, Sin Yong; Moon, Sung Whan; Choi, Yi Sik; Park, Jung Han; Lee, Kee-Sun
2017-05-01
High capacity retention Silicon-based nanocomposite anode materials have been extensively explored for use in lithium-ion rechargeable batteries. Here we report the preparation of Si-FeSi2/C nanocomposite through scalable a two-stage high-energy mechanical milling process, in which nano-scale Si-FeSi2 powders are besieged by the carbon (graphite/amorphous phase) layer; and investigation of their structure, morphology and electrochemical performance. Raman analysis revealed that the carbon layer structure comprised of graphitic and amorphous phase rather than a single amorphous phase. Anodes fabricated with the Si-FeSi2/C showed excellent electrochemical behavior such as a first discharge capacity of 1082 mAh g-1 and a high capacity retention until the 30th cycle. A remarkable coulombic efficiency of 99.5% was achieved within a few cycles. Differential capacity plots of the Si-FeSi2/C anodes revealed a stable lithium reaction with Si for lithiation/delithiation. The enhanced electrochemical properties of the Si-FeSi2/C nanocomposite are mainly attributed to the nano-size Si and stable solid electrolyte interface formation and highly conductive path driven by the carbon layer.
NASA Astrophysics Data System (ADS)
Lerner, M. I.; Bakina, O. V.; Pervikov, A. V.; Glazkova, E. A.; Lozhkomoev, A. S.; Vorozhtsov, A. B.
2018-05-01
X-ray phase analysis, transmission electron microscopy, and X-ray microanalysis were used to examine the structural-phase states of Fe-Cu and Fe-Ag bimetallic nanoparticles. The nanoparticles were obtained by the electric explosion of two twisted metal wires in argon atmosphere. It was demonstrated that the nanoparticles have the structure of Janus particles. Presence of the Janus particle structure in the samples indicates formation of binary melt under conditions of combined electric explosion of two wires. Phases based on supersaturated solid solutions were not found in the examined samples. The data obtained allow arguing that it is possible to achieve uniform mixing of the two-wire explosion products under the described experiment conditions.
Wang, Lingling; Zhang, Zhenzhen; Zhang, Jing; Zhang, Lei
2016-09-09
The synthesis of a magnetic nanoporous three dimensional graphene (3DG)/ZnFe2O4 composite has been achieved. Through formation of graphene hydrogel, ZnFe2O4 magnetic particles was successfully introduced into the nanoporous 3DG, resulting in a magnetic porous carbon material. The morphology, structure, and magnetic behavior of the as-prepared 3DG/ZnFe2O4 were characterized by using the techniques of SEM, XRD, BET, VSM, FTIR, Raman and TGA. The 3DG/ZnFe2O4 has a high specific surface area and super paramagnetism. Its performance was evaluated by the magnetic solid-phase extraction of nine bisphenol analogs (BPs) from water samples followed by HPLC analysis, and showed excellent adsorption capability for the nine target compounds. Under optimized condition, the lower method detection limits (0.05-0.18ngmL(-1)), the higher enrichment factors (800 fold) and good recoveries (95.1-103.8%) with relative standard deviation (RSD) values less than 6.2% were achieved. The results indicated that the developed method based on the use of 3DG/ZnFe2O4 as the magnetic adsorbent has the advantages of convenience and high efficiency, and can be successfully applied to detect the nine BPs in real water samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Ren, Keyu; Zhang, Wenlin; Cao, Shurui; Wang, Guomin; Zhou, Zhiqin
2018-01-01
Carbon-based Fe3O4 nanocomposites (C/Fe3O4 NCs) were synthesized by a simple one-step hydrothermal method using waste pomelo peels as the carbon precursors. The characterization results showed that they had good structures and physicochemical properties. The prepared C/Fe3O4 NCs could be applied as excellent and recyclable adsorbents for magnetic solid phase extraction (MSPE) of 11 triazole fungicides in fruit samples. In the MSPE procedure, several parameters including the amount of adsorbents, extraction time, the type and volume of desorption solvent, and desorption time were optimized in detail. Under the optimized conditions, the good linearity (R2 > 0.9916), the limits of detection (LOD), and quantification (LOQ) were obtained in the range of 1–100, 0.12–0.55, and 0.39–1.85 μg/kg for 11 pesticides, respectively. Lastly, the proposed MSPE method was successfully applied to analyze triazole fungicides in real apple, pear, orange, peach, and banana samples with recoveries in the range of 82.1% to 109.9% and relative standard deviations (RSDs) below 8.4%. Therefore, the C/Fe3O4 NCs based MSPE method has a great potential for isolating and pre-concentrating trace levels of triazole fungicides in fruits. PMID:29734765
Radiation-induced segregation on defect clusters in single-phase concentrated solid-solution alloys
Lu, Chenyang; Yang, Taini; Jin, Ke; ...
2017-01-12
A group of single-phase concentrated solid-solution alloys (SP-CSAs), including NiFe, NiCoFe, NiCoFeCr, as well as a high entropy alloy NiCoFeCrMn, was irradiated with 3 MeV Ni 2+ ions at 773 K to a fluence of 5 10 16 ions/cm 2 for the study of radiation response with increasing compositional complexity. Advanced transmission electron microscopy (TEM) with electron energy loss spectroscopy (EELS) was used to characterize the dislocation loop distribution and radiation-induced segregation (RIS) on defect clusters in the SP-CSAs. The results show that a higher fraction of faulted loops exists in the more compositionally complex alloys, which indicate that increasingmore » compositional complexity can extend the incubation period and delay loop growth. The RIS behaviors of each element in the SP-CSAs were observed as follows: Ni and Co tend to enrich, but Cr, Fe and Mn prefer to deplete near the defect clusters. RIS level can be significantly suppressed by increasing compositional complexity due to the sluggish atom diffusion. According to molecular static (MS) simulations, disk like segregations may form near the faulted dislocation loops in the SP-CSAs. Segregated elements tend to distribute around the whole faulted loop as a disk rather than only around the edge of the loop.« less
Structure, Chemistry and Property Correlations in FeSe and 122 Pnictides
NASA Astrophysics Data System (ADS)
Cava, Robert
2010-03-01
Determining how crystal structure and chemical bonding influence the properties of solids is at the heart of collaborative research programs between materials physicists and solid state chemists. In some materials, the high Tc copper oxides and colossal magnetoresistance manganates, for example, the subtleties of how structure, bonding and properties are coupled yields an almost baffling complexity, while in others, such as many classical intermetallic superconductors, the properties are more easily understood, with bonding and structure playing a less profound role. The new superconducting pnictides appear to fall somewhere between these two limits, and have so far been the subject of relatively little study by solid state chemists. Here I will describe some of our recent work on superconducting FeSe and superconductor-related ``122'' (ThCr2Si2-type) solid solution phases as examples of the kinds of insights that structural and chemical studies can contribute to understanding these important materials.
Synthesis and optical properties of Pr and Ti doped BiFeO{sub 3} ceramics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Vikash, E-mail: vikash.singh@abes.ac.in; Applied Science and Humanities, ABES EC, Ghaziabad; Sharma, Subhash
2016-05-23
Bi{sub 1-x}Pr{sub x}Fe{sub 1-x}Ti{sub x}O{sub 3} ceramics with x = 0.00, 0.10 and 0.20 were synthesized by solid state reaction method. Rietveld fitting of diffraction data reveals structural transition from rhombohedral phase (R{sub 3C}) for x ≤ 0.10 to orthorhombic phase (P{sub nma}) for x = 0.20. FTIR spectra exhibit broad absorption bands, which may be due to the overlapping of Fe-O and Bi-O vibrations in these ceramics. UV-visible spectroscopy results show strong absorption of light in the spectral range of 400-600 nm, indicating optical band gap in the visible region for these samples.
Jin, K.; Gao, Y. F.; Bei, H.
2017-04-07
Ternary single-phase concentrated solid solution alloys (SP-CSAs), so-called "medium entropy alloys", not only possess notable mechanical and physical properties but also form a model system linking the relatively simple binary alloys to the complex high entropy alloys. Our knowledge of their intrinsic properties is vital to understand the material behavior and to prompt future applications. To this end, three model alloys NiCoFe, NiCoCr, and NiFe-20Cr have been selected and grown as single crystals. We measured their elastic constants using an ultrasonic method, and several key materials properties, such as shear modulus, bulk modulus, elastic anisotropy, and Debye temperatures have beenmore » derived. Furthermore, nanoindentation tests have been performed on these three alloys together with Ni, NiCo and NiFe on their (100) surface, to investigate the strengthening mechanisms. NiCoCr has the highest hardness, NiFe, NiCoFe and NiFe-20Cr share a similar hardness that is apparently lower than NiCoCr; NiCo has the lowest hardness in the alloys, which is similar to elemental Ni. The Labusch-type solid solution model has been applied to interpret the nanoindentation data, with two approaches used to calculate the lattice mismatch. Finally, by adopting an interatomic spacing matrix method, the Labusch model can reasonably predict the hardening effects for the whole set of materials.« less
First principles investigation of high pressure behavior of FeOOH-AlOOH-phase H (MgSiO4H2) system.
NASA Astrophysics Data System (ADS)
Tsuchiya, J.; Thompson, E. C.; Tsuchiya, T.; Nishi, M.; Kuwayama, Y.
2017-12-01
It has been believed that water is carried into the deep Earth's interior by hydrous minerals such as the dense hydrous magnesium silicates (DHMSs) in the descending cold plate. A numbers of researches have been conducted so far about the high pressure behaviors of DHMSs. In recent years, we found new DHMS, phase H, at lower mantle pressure condition and the solid solution between phase H and d-AlOOH has been proposed as the most important carrier of water in the deepest part of Earth's mantle (Tsuchiya 2013 GRL, Nishi et al. 2014 Nature Geo., Ohira et al. 2014 EPSL). However, those hydrous minerals are actually not denser than surrounding (dry) mantle minerals (Tsuchiya and Mookherjee 2015 Scientific Reports) and the gravitational stability in deeper part of the Earth is questionable. Therefore, the effects of denser element such as Fe on the stability of DHMS are intimately connected to the ability of transportation of water into Earth's deep interiors. In order to assess the effect of Fe on the phase relation of phase H and d-AlOOH, we first investigated the high pressure behavior of the end-member composition of this system, the e-FeOOH. We have found the new high pressure transformation of FeOOH in the lower mantle conditions both theoretically and experimentally(Nishi et al. 2017 Nature). Here we show high pressure structures and the physical properties of FeOOH-AlOOH-phase H system using first principles calculation and discuss the possible geophysical implications of these phases.
Bio-solid-State processes for synthesis of Li-Fe-phosphate.
Kim, Hyoung-Bum; Park, Byungno; Lee, Insung; Roh, Yul
2008-10-01
Lithium-Fe-phosphates have become of great interest as storage cathodes for rechargeable Li-batteries because of their high density, environmental friendliness, and safety. The objective of this study was to examine bio-solid-state synthesis of LiFePO4 by microbial processes at room temperature. The microbial reduction of Fe(III)-citrate using an organic carbon, glucose, as an electron donor in the presence of NaHPO4 and lithium that resulted in the formation of Li-substituted iron phosphate. Our studies showed that bacteria enriched from inter-tidal flat sediments, designated as Haejae-1, synthesized Li-substituted iron phosphate. Characterization by X-ray diffraction showed the reduction of Fe(III)-citrate in the presence of NaHPO4 and LiCl2 resulted in the precipitation of Li-substituted vivianite [Li(x)Fe(3-x)(PO4)2 x 8H2O]. SEM-EDX, FTIR, and ESCA analyses showed the chemical composition of the synthesized phases was Li, Fe, P, C, and O. Based on the chemical and physical structure of the mineral, the novel bio-nano-material may be potentially useful to the development of energy storage materials.
Study of Diffusion Bonding of 45 Steel through the Compacted Nickel Powder Layer
NASA Astrophysics Data System (ADS)
Zeer, G. M.; Zelenkova, E. G.; Temnykh, V. I.; Tokmin, A. M.; Shubin, A. A.; Koroleva, Yu. P.; Mikheev, A. A.
2018-02-01
The microstructure of the transition zone and powder spacer, the concentration distribution of chemical elements over the width of the diffusion-bonded joint, and microhardness of 45 steel-compacted Ni powder spacer-45 steel layered composites formed by diffusion bonding have been investigated. It has been shown that the relative spacer thickness χ < 0.06 is optimal for obtaining a high-quality joint has been formed under a compacting pressure of 500 MPa. The solid-state diffusion bonding is accompanied by sintering the nickel powder spacer and the formation of the transition zone between the spacer and steel. The transition zone consists of solid solution of nickel in the α-Fe phase and ordered solid solution of iron in nickel (FeNi3).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, T.; Griffin, A. M.; Gorski, C. A.
Dissimilatory microbial reduction of solid-phase Fe(III)-oxides and Fe(III)-bearing phyllosilicates (Fe(III)-phyllosilicates) is an important process in anoxic soils, sediments, and subsurface materials. Although various studies have documented the relative extent of microbial reduction of single-phase Fe(III)-oxides and Fe(III)-phyllosilicates, detailed information is not available on interaction between these two processes in situations where both phases are available for microbial reduction. The goal of this research was to use the model dissimilatory iron-reducing bacterium (DIRB) Geobacter sulfurreducens to study Fe(III)-oxide vs. Fe(III)-phyllosilicate reduction in a range of subsurface materials and Fe(III)-oxide stripped versions of the materials. Low temperature (12K) Mossbauer spectroscopy was usedmore » to infer changes in the relative abundances of Fe(III)-oxide, Fe(III)-phyllosilicate, and phyllosilicate-associated Fe(II) (Fe(II)-phyllosilicate). A Fe partitioning model was employed to analyze the fate of Fe(II) and assess the potential for abiotic Fe(II)-catalyzed reduction of Fe(III)-phyllosilicates. The results showed that in most cases Fe(III)- oxide utilization dominated (70-100 %) bulk Fe(III) reduction activity, and that electron transfer from oxide-derived Fe(II) played only a minor role (ca. 10-20 %) in Fe partitioning. In addition, the extent of Fe(III)-oxide reduction was positively correlated to surface area-normalized cation exchange capacity and the phyllosilicate-Fe(III)/total Fe(III) ratio, which suggests that the phyllosilicates in the natural sediments promoted Fe(III)-oxide reduction by binding of oxide-derived Fe(II), thereby enhancing Fe(III)-oxide reduction by reducing or delaying the inhibitory effect that Fe(II) accumulation on oxide and DIRB cell surfaces has on Fe(III)-oxide reduction. In general our results suggest that although Fe(III)-oxide reduction is likely to dominate bulk Fe(III) reduction in most subsurface sediments, Fe(II) binding by phyllosilicates is likely to play a key role in controlling the long-term kinetics of Fe(III)-oxide reduction.« less
Crystal Phases Formed in a CaO-Fe2O3 System Under a High Cooling Rate in Air
NASA Astrophysics Data System (ADS)
Kashiwaya, Yoshiaki
2017-12-01
A CaO-Fe2O3 system is a fundamental binary system for the iron ore sintering process. Although the basic reactions have been investigated since the 1960s, melting and solidification caused by the combustion of coke results in an unstable state owing to extreme temperature variations. In this study, using a hot thermocouple method, samples of 10 pct CaO-90 pct Fe2O3 and 20 pct CaO-80 pct Fe2O3 were melted on a thermocouple and quenched with several techniques. The obtained samples were precisely examined by XRD. It was found that the sample containing 10 pct CaO-90 pct Fe2O3 changed to 10 pct CaO-13 pct FeO-77 pct Fe2O3 under an oxygen partial pressure ( P_{{{O}2 }} ) of 0.21 during melting. For the 10 pct CaO sample, the crystal phases found at a low cooling rate (509 K/s) were WFss, C4WF8 (C: CaO, W: FeO, F: Fe2O3), and C2W4F9. When the sample composition was 20 pct CaO, the precipitated crystal phases were C4WF4, C4F7, and C4WF8. On the other hand, the crystal phases for high cooling rates (1590 and 7900 K/s) with 10 pct CaO were WFss (solid solution of WF and F), F, and C2W4F9. The formation of the equilibrium phases WFss, F, C4WF4, and C4WF8 can be understood by examining the isothermal section of the phase diagrams, while the unstable phases C2W4F9 and C4F7 are discussed on the basis of the reactions under an equilibrium state.
NASA Astrophysics Data System (ADS)
Kumar, Anil; Chopkar, Manoj
2018-05-01
Effect of Si addition on phase formation of AlCoCrCuFeMnSix (x=0, 0.3, 0.6 and 0.9) high entropy alloy have been investigated in this work. The alloys are prepared by mechanical alloying and vacuum arc melting technique. The X-ray diffraction results reveals the formation of mixture of face centered and body centered cubic solid solution phases in milled powders. The addition of Si favours body centered cubic structure formation during milling process. Whereas, after melting the milled powders, body centered phases formed during milling is partial transformed into sigma phases. XRD results were also correlated with the SEM elemental mapping of as casted samples. Addition of Si favours σ phase formation in the as cast samples.
Sorption of Ferric Iron from Ferrioxamine B to Synthetic and Biogenic Layer Type Manganese Oxides
NASA Astrophysics Data System (ADS)
Duckworth, O.; John, B.; Sposito, G.
2006-12-01
Siderophores are biogenic chelating agents produced in terrestrial and marine environments to increase the bioavailablity of ferric iron. Recent work has suggested that both aqueous and solid-phase Mn(III) may affect siderophore-mediated iron transport, but no information appears to be available about the effect of solid-phase Mn(IV). To probe the effects of predominantly Mn(IV) oxides, we studied the sorption reaction of ferrioxamine B [Fe(III)HDFOB+, an Fe(III) chelate of the trihydroxamate siderophore desferrioxamine B (DFOB)] with two synthetic birnessites [layer type Mn(III, IV) oxides] and a biogenic birnessite produced by Pseudomonas putida MnB1. We found that all of these predominantly Mn(IV) oxides greatly reduced the aqueous concentration of Fe(III)HDFOB+ over at pH 8. After 72 hours equilibration time, the sorption behavior for the synthetic birnessites could be accurately described by a Langmuir isotherm; for the biogenic oxide, a Freundlich isotherm was best utilized to model the sorption data. To study the molecular nature of the interaction between the Fe(III)HDFOB+ complex and the oxide surface, Fe K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy was employed. Analysis of the EXAFS spectra indicated that Fe(III) associated with the Mn(IV) oxides is not complexed by DFOB as in solution, but instead Fe(III) is specifically adsorbed to into the mineral structure at multiple sites with no evidence of DFOB complexation, thus indicating that the Mn(IV) oxides displaced Fe(III) from the siderophore complex. These results indicate that manganese oxides, including biominerals, may strongly sequester iron from soluble ferric complexes and thus may play a significant role in the biogeochemical cycling of iron in marine and terrestrial environments.
NASA Astrophysics Data System (ADS)
Franzolin, E.; Schmidt, M. W.; Poli, S.
2009-12-01
At convergent margins volatile components, most notably CO2 and H2O, stored in oceanic sediments and MORB are recycled into the mantle. Mafic protoliths become enriched in CO2 and H2O, stored in carbonates and hydrous phases, by hydrothermal alteration. As carbonates are more refractory than hydrous phases, CO2 is more likely to survive in the oceanic lithosphere beyond sub-arc depths [1,2]. Despite the main role of carbonates on cycling crustal and atmospheric CO2 into the mantle, experimental data within the system CaCO3-MgCO3-FeCO3 are scarce. To bridge this gap, piston-cylinder experiments have been performed at 35 kbar, 900-1100 °C to determine subsolidus relations, and up to 1300 °C to constrain melting relations. Pure synthetic calcite, natural magnesite and synthetic siderite have been mixed in different proportions in double Pt-C capsules, to avoid major siderite oxidation. Subsolidus experiments reveal the presence of two miscibility gaps at 900 °C: the solvus dolomite-calcite, which closes at XMgCO3 ~ 0.7, and the solvus dolomite-magnesite, which ranges to the Fe-side of the ternary. Increasing the temperature, the two miscibility gaps became narrower until complete solid solutions between CaCO3-Ca0.5Mg0.5CO3 at 1100 °C, and between CaCO3-FeCO3 at 1000 °C, are observed. The system is characterized by strong compositional asymmetry, thermodynamically described with a van Laar macroscopic formalism [3], and by R-3<=>R-3c phase transitions due to cation disordering, treated by redefining the compositional space with an independent set of end-members that describe both composition and states of ordering. The result is a solid solution model able to reproduce both the phase relations experimentally observed at 35 kbar and those experimentally determined and naturally observed at lower pressure [4-5]. Our model can be reliable extended to pressures of the breakdown of dolomite, e.g. 5-6 GPa, 600-1000 °C. Melting experiments carried out at 1250 °C along the join CaCO3-MgCO3, yield an eutectic at a slightly lower temperature at XCa ~ 0.7; the eutectic temperature decreases with the Fe content in the bulk. The 2-phase field calcite (XCa~0.75) + liquid, broadens with the increase of XFe in the system. Along the join CaMg(CO3)2-CaFe(CO3)2, melting takes place at XFe ~ 0.2, producing Ca enriched melt + Mg enriched dolomite. The new subsolidus and melting data and the ternary thermodynamic solid solution model, have been combined to predict the fate of FeO and CO2 rich systems (i.e. BIF associated with Fe-shale, high-Fe altered basalts and Fe-enriched carbonated metapelites), recycled back into the mantle during the history of the Earth. [1] Kerrick&Connolly, EPSL, 2001, 189, 19-29. [2] Poli et al., EPSL, 2009, 278, 350-360. [3] Holland&Powell, Contr. Min. Pet., 2003, 145, 492-501. [4] Goldsmith et al., Journ. of Geol., 1962, 70, 659-688. [5] Rosenberg, Am. Min., 1967, 52, 787-796.
Kumar, Naresh; Couture, Raoul-Marie; Millot, Romain; Battaglia-Brunet, Fabienne; Rose, Jérôme
2016-07-19
We assessed the potential of zerovalent-iron- (Fe(0)) based permeable reactive barrier (PRB) systems for arsenic (As) remediation in the presence or absence of microbial sulfate reduction. We conducted long-term (200 day) flow-through column experiments to investigate the mechanisms of As transformation and mobility in aquifer sediment (in particular, the PRB downstream linkage). Changes in As speciation in the aqueous phase were monitored continuously. Speciation in the solid phase was determined at the end of the experiment using X-ray absorption near-edge structure (XANES) spectroscopy analysis. We identified thio-As species in solution and AsS in solid phase, which suggests that the As(V) was reduced to As(III) and precipitated as AsS under sulfate-reducing conditions and remained as As(V) under abiotic conditions, even with low redox potential and high Fe(II) content (4.5 mM). Our results suggest that the microbial sulfate reduction plays a key role in the mobilization of As from Fe-rich aquifer sediment under anoxic conditions. Furthermore, they illustrate that the upstream-downstream linkage of PRB affects the speciation and mobility of As in downstream aquifer sediment, where up to 47% of total As initially present in the sediment was leached out in the form of mobile thio-As species.
Properties of iron alloys under the Earth's core conditions
NASA Astrophysics Data System (ADS)
Morard, Guillaume; Andrault, Denis; Antonangeli, Daniele; Bouchet, Johann
2014-05-01
The Earth's core is constituted of iron and nickel alloyed with lighter elements. In view of their affinity with the metallic phase, their relative high abundance in the solar system and their moderate volatility, a list of potential light elements have been established, including sulfur, silicon and oxygen. We will review the effects of these elements on different aspects of Fe-X high pressure phase diagrams under Earth's core conditions, such as melting temperature depression, solid-liquid partitioning during crystallization, and crystalline structure of the solid phases. Once extrapolated to the inner-outer core boundary, these petrological properties can be used to constrain the Earth's core properties.
Soylak, Mustafa; Unsal, Yunus Emre
2011-10-01
A preconcentration-separation procedure has been established based on solid-phase extraction of Fe(III) and Pb(II) on bucky tubes (BTs) disc. Fe(III) and Pb(II) ions were quantitatively recovered at pH 6. The influences of the analytical parameters like sample volume, flow rates on the recoveries of analytes on BT disc were investigated. The effects of co-existing ions on the recoveries were also studied. The detection limits for iron and lead were found 1.6 and 4.9 μg L⁻¹, respectively. The validation of the presented method was checked by the analysis of TMDA-51.3 fortified water certified reference material. The presented procedure was successfully applied to the separation-preconcentration and determination of iron and lead content of some natural water and herbal plant samples from Kayseri, Turkey.
A novel method for the synthesis of zirconia powder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bohe, A.E.; Pasquevich, D.M.
A novel method for the synthesis of zirconia powder is presented in this paper. The formation of fine particles of zirconia takes place when metallic zirconium and hematite are heated in the presence of gaseous chlorine. The overall process, which can be described by the following reaction: 3 Zr(s) + 2 Fe{sub 2}O{sub 3}(s) {r_arrow} 3 ZrO{sub 2}(s) + 4 Fe(s), occurs by a mass-transport mechanism through the vapor phase between 723 and 1223 K. The vapor-mass transport among the solid species takes place by means of zirconium and iron chlorides. The fundamentals of synthesis are discussed on the basismore » of a detailed thermodynamic analysis of reactions involved in the process, as well as by a characterization of the solid phases formed at various temperatures at XRD and SEM examinations.« less
ThomasArrigo, Laurel K; Mikutta, Christian; Lohmayer, Regina; Planer-Friedrich, Britta; Kretzschmar, Ruben
2016-04-05
Iron-rich organic flocs are frequently observed in surface waters of wetlands and show a high affinity for trace metal(loid)s. Under low-flow stream conditions, flocs may settle, become buried, and eventually be subjected to reducing conditions facilitating trace metal(loid) release. In this study, we reacted freshwater flocs (704-1280 mg As/kg) from a minerotrophic peatland (Gola di Lago, Switzerland) with sulfide (5.2 mM, S(-II)spike/Fe = 0.75-1.62 mol/mol) at neutral pH and studied the speciation changes of Fe, S, and As at 25 ± 1 °C over 1 week through a combination of synchrotron X-ray techniques and wet-chemical analyses. Sulfidization of floc ferrihydrite and nanocrystalline lepidocrocite caused the rapid formation of mackinawite (52-81% of Fesolid at day 7) as well as solid-phase associated S(0) and polysulfides. Ferrihydrite was preferentially reduced over lepidocrocite, although neoformation of lepidocrocite from ferrihydrite could not be excluded. Sulfide-reacted flocs contained primarily arsenate (47-72%) which preferentially adsorbed to Fe(III)-(oxyhydr)oxides, despite abundant mackinawite precipitation. At higher S(-II)spike/Fe molar ratios (≥1.0), the formation of an orpiment-like phase accounted for up to 35% of solid-phase As. Despite Fe and As sulfide precipitation and the presence of residual Fe(III)-(oxyhydr)oxides, mobilization of As was recorded in all samples (Asaq = 0.45-7.0 μM at 7 days). Aqueous As speciation analyses documented the formation of thioarsenates contributing up to 33% of Asaq. Our findings show that freshwater flocs from the Gola di Lago peatland may become a source of As under sulfate-reducing conditions and emphasize the pivotal role Fe-rich organic freshwater flocs play in trace metal(loid) cycling in S-rich wetlands characterized by oscillating redox conditions.
Phase equilibria in the iron oxide-cobalt oxide-phosphorus oxide system
NASA Technical Reports Server (NTRS)
De Guire, Mark R.; Prasanna, T. R. S.; Kalonji, Gretchen; O'Handley, Robert C.
1987-01-01
Two novel ternary compounds are noted in the present study of 1000 C solid-state equilibria in the Fe-Co-P-O system's Fe2O3-FePO4-Co3(Po4)2-CoO region: CoFe(PO4)O, which undergoes incongruent melting at 1130 C, and Co3Fe4(PO4)6, whose incongruent melting occurs at 1080 C. The liquidus behavior-related consequences of rapidly solidified cobalt ferrite formation from cobalt ferrite-phosphate melts are discussed with a view to spinel formation. It is suggested that quenching from within the spinel-plus-liquid region may furnish an alternative to quenching a homogeneous melt.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaur, Maninder; Dai, Qilin; Bowden, Mark E.
Chromium (Cr) forms a solid solution with iron (Fe) lattice when doped in core-shell iron -iron oxide nanocluster (NC) and shows a mixed phase of sigma (σ) FeCr and bcc Fe. The Cr dopant affects heavily the magnetization and magnetic reversal process, and causes the hysteresis loop to shrink near the zero field axis. Dramatic transformation happens from dipolar interaction (0 at. % Cr) to strong exchange interaction (8 at. % of Cr) is confirmed from the Henkel plot and delta M plot, and is explained by a water-melon model of core-shell NC system.
Optical properties of Y and Ti co-substituted BiFeO{sub 3} multiferroics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Vikash, E-mail: rk.dwivedi@jiit.ac.in; Sharma, Subhash, E-mail: rk.dwivedi@jiit.ac.in; Kumar, Manoj, E-mail: rk.dwivedi@jiit.ac.in
2014-04-24
Pure and co substituted Bi{sub 1−x}Y{sub x}Fe{sub 1−x}Ti{sub x}O{sub 3} (x ≤ 0.24) ceramics were synthesized by solid state reaction method. X-ray diffraction patterns of Y and Ti codoped samples have shown single phase formation. Increasing Y and Ti concentration reveals structural transition from rhombohedral phase (R3c) for x ≤ 0.16 to orthorhombic phase (Pnma) for x = 0.24. FT-IR spectra exhibit broad absorption bands, which may be due to the overlapping of Fe-O and Bi-O vibrations. UV-visible spectroscopy results show strong absorption of light in the spectral range of 400-720 nm, indicating optical band gap in the visible regionmore » for these samples. These interesting optical properties of co-substituted BFO samples in visible region may find potential applications in optoelectronic devices.« less
Han, Haixiang; Wei, Zheng; Barry, Matthew C; Filatov, Alexander S; Dikarev, Evgeny V
2017-05-02
Three heterometallic single-source precursors with a Li : Fe = 1 : 1 ratio for a LiFeO 2 oxide material are reported. Heterometallic compounds LiFeL 3 (L = tbaoac (1), ptac (2), and acac(3)) have been obtained on a large scale, in nearly quantitative yields by one-step reactions that employ readily available reagents. The heterometallic precursor LiFe(acac) 3 (3) with small, symmetric substituents on the ligand (acac = pentane-2,4-dionate), maintains a 1D polymeric structure in the solid state that limits its volatility and prevents solubility in non-coordinating solvents. The application of the unsymmetrical ligands, tbaoac (tert-butyl acetoacetate) and ptac (1,1,1-trifluoro-5,5-dimethyl-2,4-hexanedionate), that exhibit different bridging properties at the two ends of the ligand, allowed us to change the connectivity pattern within the heterometallic assembly. The latter was demonstrated by structural characterization of heterometallic complexes LiFe(tbaoac) 3 (1) and LiFe(ptac) 3 (2) that consist of discrete heterocyclic tetranuclear molecules Li 2 Fe 2 L 6 . The compounds are highly volatile and exhibit a congruent sublimation character. DART mass spectrometric investigation revealed the presence of heterometallic molecules in the gas phase. The positive mode spectra are dominated by the presence of [M - L] + peaks (M = Li 2 Fe 2 L 6 ). In accord with their discrete molecular structure, complexes 1 and 2 are highly soluble in nearly all common solvents. In order to test the retention of the heterometallic structure in solution, the diamagnetic analog of 1, LiMg(tbaoac) 3 (4), has been isolated. Its tetranuclear molecular structure was found to be isomorphous to that of the iron counterpart. 1 H and 7 Li NMR spectroscopy unambiguously confirmed the presence of heterometallic molecules in solutions of non-coordinating solvents. The heterometallic precursor 1 was shown to exhibit clean thermal decomposition in air that results in phase-pure α-modification of layered oxide LiFeO 2 , the prospective cathode material for lithium ion batteries.
Galvanizing and Galvannealing Behavior of CMnSiCr Dual-Phase Steels
NASA Astrophysics Data System (ADS)
Lin, Ko-Chun; Chu, Peng-Wei; Lin, Chao-Sung; Chen, Hon-Bor
2013-06-01
Alloying elements, such as Mn, Mo, Si, and Cr, are commonly used to enhance the strength of advanced high-strength steels. Those elements also play an important role in the hot-dip galvanizing (GI) and galvannealing (GA) process. In this study, two kinds of CMnSiCr dual-phase steels were galvanized and galvannealed using a hot-dip simulator to investigate the effect of the alloying elements on the microstructure of the GI and GA coatings. The results showed that the dual-phase steels had good galvanizability because no bare spots were observed and the Fe-Zn phases were readily formed at the interface. However, the alloying reaction during the GA process was significantly hindered. XPS analysis showed that external oxidation occurred under an extremely low dew point [213 K to 203 K (-60 °C to -70 °C)] atmosphere during the annealing prior to hot dipping. However, most of the oxides were reduced during the GI process. After the GI process, the Al was present as solid solutes in the Fe-Zn phase, suggesting that the Fe-Zn phase was formed from the transformation of the Fe-Al inhibition alloy. Meanwhile, the solubility of Si in the ζ phase was extremely low. With continued GA reaction, the ζ phase transformed into the δ phase, which contained approximately 1.0 at.pct Si. The Si also diffused into the Zn layer during the GA reaction. Hence, the ζ phase did not homogeneously nucleate at the steel substrate/Zn coating interface, but was found at the area away from the interface. Therefore, the Fe-Zn phases on the CMnSiCr dual-phase steels were relatively non-uniform compared to those on interstitial-free steel.
NASA Astrophysics Data System (ADS)
Oh-ishi, Katsuyoshi; Nagumo, Kenta; Tateishi, Kazuya; Takafumi, Ohnishi; Yoshikane, Kenta; Sugiyama, Machiko; Oka, Kengo; Kobayashi, Ryota
2017-01-01
Mo-Re-C compounds containing Mo7Re13C with the β-Mn structure were synthesized with high-melting-temperature metals Mo, Re, and C powders using a conventional solid state method with a planetary ball milling machine instead of the arc melting method. Use of the ball milling machine was necessary to obtain Mo7Re13C with the β-Mn structure using the solid state method. Almost single-phase Mo7Re13C with a trace of impurity were obtained using the synthesis method. By XRF and lattice parameter measurements on the samples, Fe element existed in the compound synthesized using the planetary ball milling machine with a pot and balls made of steel, though Fe element was not detected in the compound synthesized using a pot and balls made of tungsten carbide. The former compound containg the Fe atom did not show superconductivity but the latter compound without the Fe atom showed superconductivity at 6.1 K.
NASA Astrophysics Data System (ADS)
Hung, Nguyen The; Bac, Luong Huu; Trung, Nguyen Ngoc; Hoang, Nguyen The; Van Vinh, Pham; Dung, Dang Duc
2018-04-01
The integration of ferromagnetism in lead-free ferroelectric materials is important to fabricate smart materials for electronic devices. In this work, (1 - x)Bi0.5Na0.5TiO3 + xMgFeO3-δ materials (x = 0-9 mol%) were prepared through sol-gel method. X-ray diffraction characterization indicated that MgFeO3-δ materials existed as a well solid solution in lead-free ferroelectric Bi0.5Na0.5TiO3 materials. The rhombohedral structure of Bi0.5Na0.5TiO3 materials was distorted due to the random distribution of Mg and Fe cations into the host lattice. The reduced optical band gap and the induced room-temperature ferromagnetism were due to the spin splitting of transition metal substitution at the B-site of perovskite Bi0.5Na0.5TiO3 and the modification by A-site co-substitution. This work elucidates the role of secondary phase as solid solution in Bi0.5Na0.5TiO3 material for development of lead-free multiferroelectric materials.
NASA Astrophysics Data System (ADS)
Guerdane, M.; Berghoff, M.
2018-04-01
By combining molecular dynamics (MD) simulations with phase-field (PF) and phase-field crystal (PFC) modeling we study collision-controlled growth kinetics from the melt for pure Fe. The MD/PF comparison shows, on the one hand, that the PF model can be properly designed to reproduce quantitatively different aspects of the growth kinetics and anisotropy of planar and curved solid-liquid interfaces. On the other hand, this comparison demonstrates the ability of classical MD simulations to predict morphology and dynamics of moving curved interfaces up to a length scale of about 0.15 μ m . After mapping the MD model to the PF one, the latter permits to analyze the separate contribution of different anisotropies to the interface morphology. The MD/PFC agreement regarding the growth anisotropy and morphology extends the trend already observed for the here used PFC model in describing structural and elastic properties of bcc Fe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prosini, Pier Paolo, E-mail: pierpaolo.prosini@enea.it; Gislon, Paola; Cento, Cinzia
Graphical abstract: - Highlights: • Four different samples of FAP were synthesized by precipitation techniques. • The samples were used as precursors to synthesize electrochemical active LiFePO{sub 4}. • Their morphology, composition, structure and electrochemical performance were studied. • The LiFePO{sub 4} electrochemical performance resulted affected by the preparation method - Abstract: In this paper the morphological, structural and electrochemical properties of crystalline lithium iron phosphate (LiFePO{sub 4}) obtained from ferrous ammonium phosphate (FAP) have been studied. The FAP was obtained following four different processes, namely: (1) homogeneous phase precipitation, (2) heterogeneous phase precipitation from stoichiometric sodium phosphate, (3) heterogeneousmore » phase precipitation from stoichiometric ammonium phosphate, and (4) heterogeneous phase precipitation from over stoichiometric ammonium phosphate. Lithium iron phosphate was prepared by solid state reaction of FAP with lithium hydroxide. In order to evaluate the effect of reaction time and synthesis temperature the LiFePO{sub 4} was prepared varying the heating temperatures (550, 600 and 700 °C) and the reaction times (1 or 2 h). The morphology of the materials was evaluated by scanning electron microscopy while the chemical composition was determined by electron energy loss spectroscopy. X-ray diffraction was used to evaluate phase composition, crystal structure and crystallite size. The so obtained LiFePO{sub 4}'s were fully electrochemical characterized and a correlation was found between the crystal size and the electrochemical performance.« less
1985-08-15
Hz. The high-speed performance is consis- tent with the low stage delay observed in the ring-oscillator measurements , and the low - frequency ...Phase-Locked Loop 41 5-10 Phase-Locked-Loop Output Spectrum . Note that a 10-kHz Measure - ment Bandwidth Is Used. 42 5-11 Phase Error Response to an...the niobium. Reflections of bulk acoustic waves from optically generated holograms in Fe-doped LiNb03 have been observed and measured . Holographic
Structural Transformation of LiFePO4 during Ultrafast Delithiation.
Kuss, Christian; Trinh, Ngoc Duc; Andjelic, Stefan; Saulnier, Mathieu; Dufresne, Eric M; Liang, Guoxian; Schougaard, Steen B
2017-12-21
The prolific lithium battery electrode material lithium iron phosphate (LiFePO 4 ) stores and releases lithium ions by undergoing a crystallographic phase change. Nevertheless, it performs unexpectedly well at high rate and exhibits good cycling stability. We investigate here the ultrafast charging reaction to resolve the underlying mechanism while avoiding the limitations of prevailing electrochemical methods by using a gaseous oxidant to deintercalate lithium from the LiFePO 4 structure. Oxidizing LiFePO 4 with nitrogen dioxide gas reveals structural changes through in situ synchrotron X-ray diffraction and electronic changes through in situ UV/vis reflectance spectroscopy. This study clearly shows that ultrahigh rates reaching 100% state of charge in 10 s does not lead to a particle-wide union of the olivine and heterosite structures. An extensive solid solution phase is therefore not a prerequisite for ultrafast charge/discharge.
Structural Transformation of LiFePO 4 during Ultrafast Delithiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuss, Christian; Trinh, Ngoc Duc; Andjelic, Stefan
The prolific lithium battery electrode material lithium iron phosphate (LiFePO 4) stores and releases lithium ions by undergoing a crystallographic phase change. Nevertheless, it performs unexpectedly well at high rate and exhibits good cycling stability. Here we investigate here the ultrafast charging reaction to resolve the underlying mechanism while avoiding the limitations of prevailing electrochemical methods by using a gaseous oxidant to deintercalate lithium from the LiFePO 4 structure. Oxidizing LiFePO 4 with nitrogen dioxide gas reveals structural changes through in situ synchrotron X-ray diffraction and electronic changes through in situ UV/vis reflectance spectroscopy. This study clearly shows that ultrahighmore » rates reaching 100% state of charge in 10 s does not lead to a particle-wide union of the olivine and heterosite structures. An extensive solid solution phase is therefore not a prerequisite for ultrafast charge/discharge.« less
Structural Transformation of LiFePO 4 during Ultrafast Delithiation
Kuss, Christian; Trinh, Ngoc Duc; Andjelic, Stefan; ...
2017-12-05
The prolific lithium battery electrode material lithium iron phosphate (LiFePO 4) stores and releases lithium ions by undergoing a crystallographic phase change. Nevertheless, it performs unexpectedly well at high rate and exhibits good cycling stability. Here we investigate here the ultrafast charging reaction to resolve the underlying mechanism while avoiding the limitations of prevailing electrochemical methods by using a gaseous oxidant to deintercalate lithium from the LiFePO 4 structure. Oxidizing LiFePO 4 with nitrogen dioxide gas reveals structural changes through in situ synchrotron X-ray diffraction and electronic changes through in situ UV/vis reflectance spectroscopy. This study clearly shows that ultrahighmore » rates reaching 100% state of charge in 10 s does not lead to a particle-wide union of the olivine and heterosite structures. An extensive solid solution phase is therefore not a prerequisite for ultrafast charge/discharge.« less
NASA Astrophysics Data System (ADS)
Ozawa, Haruka; Hirose, Kei; Yonemitsu, Kyoko; Ohishi, Yasuo
2016-12-01
We carried out melting experiments on Fe-Si alloys to 127 GPa in a laser-heated diamond-anvil cell (DAC). On the basis of textural and chemical characterizations of samples recovered from a DAC, a change in eutectic liquid composition in the Fe-FeSi binary system was examined with increasing pressure. The chemical compositions of coexisting liquid and solid phases were quantitatively determined with field-emission-type electron microprobes. The results demonstrate that silicon content in the eutectic liquid decreases with increasing pressure to less than 1.5 ± 0.1 wt.% Si at 127 GPa. If silicon is a single light element in the core, 4.5 to 12 wt.% Si is required in the outer core in order to account for its density deficit from pure iron. However, such a liquid core, whose composition is on the Si-rich side of the eutectic point, crystallizes less dense solid, CsCl (B2)-type phase at the inner core boundary (ICB). Our data also show that the difference in silicon concentration between coexisting solid and liquid is too small to account for the observed density contrast across the ICB. These indicate that silicon cannot be the sole light element in the core. Previous geochemical and cosmochemical arguments, however, strongly require ∼6 wt.% Si in the core. It is possible that the Earth's core originally included ∼6 wt.% Si but then became depleted in silicon by crystallizing SiO2 or MgSiO3.
Blake, Johanna M.; Avasarala, Sumant; Artyushkova, Kateryna; ...
2015-07-09
The chemical interactions of U and co-occurring metals in abandoned mine wastes in a Native American community in northeastern Arizona were investigated using spectroscopy, microscopy and aqueous chemistry. The concentrations of U (67–169 μg L –1) in spring water samples exceed the EPA maximum contaminant limit of 30 μg L –1. Elevated U (6,614 mg kg –1), V (15,814 mg kg –1), and As (40 mg kg –1) concentrations were detected in mine waste solids. Spectroscopy (XPS and XANES) solid analyses identified U (VI), As (-I and III) and Fe (II, III). Linear correlations for the release of U vsmore » V and As vs Fe were observed for batch experiments when reacting mine waste solids with 10 mM ascorbic acid (~pH 3.8) after 264 h. The release of U, V, As, and Fe was at least 4-fold lower after reaction with 10 mM bicarbonate (~pH 8.3). These results suggest that U–V mineral phases similar to carnotite [K 2(UO 2) 2V 2O 8] and As–Fe-bearing phases control the availability of U and As in these abandoned mine wastes. Elevated concentrations of metals are of concern due to human exposure pathways and exposure of livestock currently ingesting water in the area. This study contributes to understanding the occurrence and mobility of metals in communities located close to abandoned mine waste sites.« less
Structural chemistry and magnetic properties of the perovskite Sr{sub 3}Fe{sub 2}TeO{sub 9}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Yawei; Hunter, Emily C.; Battle, Peter D., E-mail: peter.battle@chem.ox.ac.uk
2016-10-15
A polycrystalline sample of perovskite-like Sr{sub 3}Fe{sub 2}TeO{sub 9} has been prepared in a solid-state reaction and studied by a combination of electron microscopy, Mössbauer spectroscopy, magnetometry, X-ray diffraction and neutron diffraction. The majority of the reaction product is shown to be a trigonal phase with a 2:1 ordered arrangement of Fe{sup 3+} and Te{sup 6+} cations. However, the sample is prone to nano-twinning and tetragonal domains with a different pattern of cation ordering exist within many crystallites. Antiferromagnetic ordering exists in the trigonal phase at 300 K and Sr{sub 3}Fe{sub 2}TeO{sub 9} is thus the first example of amore » perovskite with 2:1 trigonal cation ordering to show long-range magnetic order. At 300 K the antiferromagnetic phase coexists with two paramagnetic phases which show spin-glass behaviour below ~80 K. - Graphical abstract: Sr{sub 3}Fe{sub 2}TeO{sub 9} has a 2:1 ordered arrangement of Fe{sup 3+} and Te{sup 6+} cations over the octahedral sites of a perovskite structure and is antiferromagnetic at room temperature. - Highlights: • 2:1 Cation ordering in a trigonal perovskite. • Magnetically ordered trigonal perovskite. • Intergrowth of nanodomains in perovskite microstructure.« less
Spin crossover in solid and liquid (Mg,Fe)O at extreme conditions
NASA Astrophysics Data System (ADS)
Stixrude, Lars; Holmstrom, Eero
Ferropericlase, (Mg,Fe)O, is a major constituent of the Earth's lower mantle (24-136 GPa). Understanding the properties of this component is important not only in the solid state, but also in the molten state, as the planet almost certainly hosted an extensive magma ocean initially. With increasing pressure, the Fe ions in the material begin to collapse from a magnetic to a nonmagnetic spin state. This crossover affects thermodynamic, transport, and electrical properties. Using first-principles molecular dynamics simulations, thermodynamic integration, and adiabatic switching, we present a phase diagram of the spin crossover. In both solid and liquid, we find a broad pressure range of coexisting magnetic and non-magnetic ions due to the favorable enthalpy of mixing of the two. In the solid increasing temperature favors the high spin state, while in the liquid the opposite occurs, due to the higher electronic entropy of the low spin state. Because the physics of the crossover differ in solid and liquid, melting produces a large change in spin state that may affect the buoyancy of crystals freezing from the magma ocean in the earliest Earth. This research was supported by the European Research Council under Advanced Grant No. 291432 ``MoltenEarth'' (FP7/2007-2013).
Formation of Defected Cadmium Ferrite during Hydrothermal Storage of Cadmium-Iron Hydroxides
NASA Astrophysics Data System (ADS)
Wolski, W.; Wolska, E.; Kaczmarek, J.
1994-05-01
The storage of amorphous coprecipitated Cd(OH) 2 · 2Fe(OH) 3 gel in mother liquor at 150 ± 2°C for 20 hr leads to a crystalline species which, according to X-ray analysis, is composed of cadmium hydroxide nitrate, Cd 3(OH) 5NO 3, cadmium hydroxide, βCd(OH) 2, and a strongly ferrimagnetic spinel phase. The Curie point at 270-280°C was found by thermomagnetic analysis. At that temperature the decomposition of the spinel phase and of the accompanying nonmagnetic phases takes place. IR spectra indicate that during thermomagnetic recording the liberated cadmium oxide and iron oxide form antiferromagnetic cadmium ferrite, with frequencies somewhat displaced in comparison to CdFe 2O 4 annealed at 1000°C. The results indicate that the ferrimagnetic phase (having spinel structure, a unit-cell parameter a of about 8.37 ± 0.01 Å, and a Tc point differing by more than 300°C from that of pure maghemite, γFe 2O 3) is likely to be a defected solid solution of maghemite and cadmium ferrite, of the formula Cd 2+xFe 3+1- x [Fe 3+(5+ x)/3 □ (1- x)/3 ]O 4.
Degradable and porous Fe-Mn-C alloy for biomaterials candidate
NASA Astrophysics Data System (ADS)
Pratesa, Yudha; Harjanto, Sri; Larasati, Almira; Suharno, Bambang; Ariati, Myrna
2018-02-01
Nowadays, degradable implants attract attention to be developed because it can improve the quality of life of patients. The degradable implant is expected to degrade easily in the body until the bone healing process already achieved. However, there is limited material that could be used as a degradable implant, polymer, magnesium, and iron. In the previous study, Fe-Mn-C alloys had succesfully produced austenitic phase. However, the weakness of the alloy is degradation rate of materials was considered below the expectation. This study aimed to produce porous Fe-Mn-C materials to improve degradation rate and reduce the density of alloy without losing it non-magnetic properties. Potassium carbonate (K2CO3) were chosen as filler material to produce foam structure by sintering and dissolution process. Multisteps sintering process under argon gas environment was performed to generate austenite phase. The product showed an increment of the degradation rate of the foamed Fe-Mn-C alloy compared with the solid Fe-Mn-C alloy without losing the Austenitic Structure
Iron Spin Crossover in the New Hexagonal Aluminous (NAL) Phase
NASA Astrophysics Data System (ADS)
Hsu, H.
2017-12-01
The new hexagonal aluminous (NAL) phase, chemical formula AB2C6O12 (A = Na+, K+, Ca2+; B = Mg2+, Fe2+, Fe3+; C = Al3+, Si4+, Fe3+), is considered a major component ( 20 vol%) of mid-ocean ridge basalt (MORB) at lower-mantle conditions. Given that MORB can be transported back into the Earth's lower mantle via subduction, a thorough knowledge of the NAL phase is essential to fully understand the fate of subducted MORB and its role in mantle dynamics and heterogeneity. In this presentation, the complicated spin crossover of the Fe-bearing NAL phase will be discussed based on a series of first-principles calculations [1], in which the local density approximation + self-consistent Hubbard U (LDA+Usc) method was adopted. As revealed by these calculations, only the ferric iron (Fe3+) substituting Al/Si in the octahedral (C) site undergoes a crossover from the high-spin (HS) to the low-spin (LS) state at 40 GPa, while iron substituting Mg in the trigonal-prismatic (B) site remains in the HS state, regardless of its oxidation state (Fe2+ or Fe3+). The volume/elastic anomalies, iron nuclear quadrupole splittings, and crystal field spltting determined by calculations are in great agreement with experiments [2,3]. The calculations further predict that the HS-LS transition pressure of the NAL phase barely increases with temperature due to the three nearly degenerate LS states of Fe3+, suggesting that the elastic anomalies of this mineral can occur at the top lower mantle. [1] H. Hsu, Phys. Rev. B 95, 020406(R) (2017). [2] Y. Wu et al. Earth Planet. Sci. Lett. 434, 91-100 (2016). [3] S. S. Lobanov et al., J. Geophys. Res. Solid Earth 122, 3565 (2017).
NASA Astrophysics Data System (ADS)
Caracas, R.; Asimow, P. D.; Wolf, A. S.; Harvey, J. P.; Martin, A.; Torrent, M.
2015-12-01
We compute the solubility limits of Si in the hexagonal-close packed (hcp) phase of iron using standard thermodynamical treatment of solid solutions with data obtained from first-principles calculations. For this, we consider the system with end-members hcp Fe and the B2 phase of FeSi. Si and Fe enter both structures in substitution of one another. The system is characterized by an immiscibility gap, which according to our results widens with pressure. At core conditions about 5 wt.% Si can be dissolved into the hcp phase of Fe. Comparatively there is much more Fe that can enter the FeSi B2 phase. In a second step we start with the hcp Fe-Si alloys and add the most probable light elements found in the core: H, C, O, and S. The light elements can enter the hcp structure either as interstitial impurities, in case of H, C, O, or in substitution of Fe, in case of S. We consider several insertion patterns with the light elements both adjacent and far apart. For each of these new phases we compute the elastic constants tensors and the seismic properties. Based on our theoretical results and the comparisons with PREM we discuss in detail the possible composition of the Earth's inner core, we rule out certain light elements, like H, and we show that the distribution pattern is not important. This is also the first time the elastic constants tensor is computed from lattice dynamics using the response function in the Planar Augmented Wavefunction approach of the Density Functional Theory [1]. [1] A. Martin, M. Torrent, R. Caracas, submitted (2015); A. Martin, PhD thesis (2015).
Mineralogical and geochemical characterization of arsenic in an abandoned mine tailings of Korea.
Ahn, Joo Sung; Park, Young Seog; Kim, Ju-Yong; Kim, Kyoung-Woong
2005-04-01
The mineralogical and chemical characteristics of As solid phases in arsenic-rich mine tailings from the Nakdong As-Bi mine in Korea was investigated. The tailings generated from the ore roasting process contained 4.36% of As whereas the concentration was up to 20.2% in some tailings from the cyanidation process for the Au extraction. Thin indurated layers and other secondary precipitates had formed at the surfaces of the tailings piles and the As contents of the hardened layers varied from 2.87 to 16.0%. Scorodite and iron arsenate (Fe3AsO7) were the primary As-bearing crystalline minerals. Others such as arsenolamprite, bernardite and titanium oxide arsenate were also found. The amorphous As-Fe phases often showed framboidal aggregates and gel type textures with desiccation cracks. Sequential extraction results also showed that 55.7-91.1% of the As in tailings were NH(4)-oxalate extractable As, further confirmed the predominance of amorphous As-Fe solid phases. When the tailings were equilibrated with de-ionized water, the solution exhibited extremely acidic conditions (pH 2.01-3.10) and high concentrations of dissolved As (up to 29.5 mg L(-1)), indicating high potentials for As to be released during rainfall events. The downstream water was affected by drainage from tailings and contained 12.7-522 microg L(-1) of As. The amorphous As-Fe phases in tailings have not entirely been stabilized through the long term natural weathering processes. To remediate the environmental harms they had caused, anthropogenic interventions to stabilize or immobilize As in the tailings pile should be explored.
NASA Astrophysics Data System (ADS)
Kang, Youn-Bae; Jung, In-Ho
2017-06-01
A critical evaluation and thermodynamic modeling for thermodynamic properties of all oxide phases and phase diagrams in the Fe-Mn-Si-O system (MnO-Mn2O3-SiO2 and FeO-Fe2O3-MnO-Mn2O3-SiO2 systems) are presented. Optimized Gibbs energy parameters for the thermodynamic models of the oxide phases were obtained which reproduce all available and reliable experimental data within error limits from 298 K (25°C) to above the liquidus temperatures at all compositions covering from known oxide phases, and oxygen partial pressure from metal saturation to 0.21 bar. The optimized thermodynamic properties and phase diagrams are believed to be the best estimates presently available. Slag (molten oxide) was modeled using the modified quasichemical model in the pair approximation. Olivine (Fe2SiO4-Mn2SiO4) was modeled using two-sublattice model in the framework of the compound energy formalism (CEF), while rhodonite (MnSiO3-FeSiO3) and braunite (Mn7SiO_{12} with excess Mn2O3) were modeled as simple Henrian solutions. It is shown that the already developed models and databases of two spinel phases (cubic- and tetragonal-(Fe, Mn)3O4) using CEF [Kang and Jung, J. Phys. Chem. Solids (2016), vol. 98, pp. 237-246] can successfully be integrated into a larger thermodynamic database to be used in practically important higher order system such as silicate. The database of the model parameters can be used along with a software for Gibbs energy minimization in order to calculate any type of phase diagram section and thermodynamic properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Egorysheva, A.V., E-mail: anna_egorysheva@rambler.ru; Ellert, O.G.; Gajtko, O.M.
2015-05-15
The refinement of the Bi{sub 2}O{sub 3}–Fe{sub 2}O{sub 3}–Sb{sub 2}O{sub 5} system phase diagram has been performed and the existence of the two ternary compounds has been confirmed. The first one with a pyrochlore-type structure (sp. gr. Fd 3-barm) exists in the wide solid solution region, (Bi{sub 2−x}Fe{sub x})Fe{sub 1+y}Sb{sub 1−y}O{sub 7±δ}, where x=0.1–0.4 and y=−0.13–0.11. The second one, Bi{sub 3}FeSb{sub 2}O{sub 11}, corresponds to the cubic KSbO{sub 3}-type structure (sp. gr. Pn 3-bar) with unit cell parameter a=9.51521(2) Å. The Rietveld structure refinement showed that this compound is characterized by disordered structure. The Bi{sub 3}FeSb{sub 2}O{sub 11} factor groupmore » analysis has been carried out and a Raman spectrum has been investigated. According to magnetization measurements performed at the temperature range 2–300 K it may be concluded that the Bi{sub 3}FeSb{sub 2}O{sub 11} magnetic properties can be substantially described as a superposition of strong short-range antiferromagnetic exchange interactions realizing inside the [(FeSb{sub 2})O{sub 9}] 3D-framework via different pathways. - Graphical abstract: The refinement of the Bi{sub 2}O{sub 3}–Fe{sub 2}O{sub 3}–Sb{sub 2}O{sub 5} system phase diagram has been performed and the existence of the solid solution with a pyrochlore-type structure (sp. gr. Fd 3-barm) and Bi{sub 3}FeSb{sub 2}O{sub 11}, correspond of the cubic KSbO{sub 3}-type structure (sp. gr. Pn 3-bar has been confirmed. The structure refinement, Raman spectroscopy as well as magnetic measurements data of Bi{sub 3}FeSb{sub 2}O{sub 11} are presented. - Highlights: • The Bi{sub 2}O{sub 3}–Fe{sub 2}O{sub 3}–Sb{sub 2}O{sub 5} system phase diagram refinement has been performed. • The Bi{sub 3}FeSb{sub 2}O{sub 11} existence along with pyrochlore structure compound is shown. • It was determined that the Bi{sub 3}FeSb{sub 2}O{sub 11} is of disordered cubic KSbO{sub 3}-type structure. • Factor group analysis of Bi{sub 3}FeSb{sub 2}O{sub 11} vibrational spectrum has been performed. • Short-range antiferromagnetic interactions govern Bi{sub 3}FeSb{sub 2}O{sub 11} magnetic behavior.« less
Jong, Tony; Parry, David L
2004-04-01
Heavy metal mobility, bioavailability and toxicity depends largely on the chemical form of metals and ultimately determines potential for environmental pollution. For this reason, determining the chemical form of heavy metals and metalloids, immobilized in sludges by biological mediated sulfate reduction, is important to evaluate their mobility and bioavailability. A modified Tessier sequential extraction procedure (SEP), complemented with acid volatile sulfide (AVS) and simultaneous extracted metals (SEM) measurements, were applied to determine the partitioning of five heavy metals (defined as Fe, Ni, Zn and Cu, and the metalloid As) in anoxic solid-phase material (ASM) from an anaerobic, sulfate reducing bioreactor into six operationally defined fractions. These fractions were water soluble, exchangeable, bound to carbonates (acid soluble), bound to Fe-Mn oxides (reducible), bound to organic matter and sulfides (oxidizable) and residual. It was found that the distribution of Fe, Ni, Zn, Cu and As in ASM was strongly influenced by its association with the above solid fractions. The fraction corresponding to organic matter and sulfides appeared to be the most important scavenging phases of As, Fe, Ni, Zn and Cu in ASM (59.8-86.7%). This result was supported by AVS and SEM (Sigma Zn, Ni and Cu) measurements, which indicated that the heavy metals existed overwhelmingly as sulfides in the organic matter and sulfide fraction. A substantial amount of Fe and Ni at 16.4 and 20.1%, respectively, were also present in the carbonate fraction, while an appreciable portion of As (18.3%) and Zn (19.4%) was bound to Fe-Mn oxides. A significant amount of heavy metals was also associated with the residual fraction, ranging from 2.1% for Zn to 18.8% for As. Based on the average total extractable heavy metal (TEHM) values, the concentration of heavy metals in the ASM was in the order of Cu > Ni > Zn > Fe > As. If the mobility and bioavailability of heavy metals are assumed to be related to their solubility and chemical forms, and that they decrease with each successive extraction step, then the apparent mobility and bioavailability of these five heavy metals in ASM increase in the order of Cu < As < Ni < Fe < Zn. The SEM/AVS ratio was less than one in eight replicate ASM samples, indicating that the ASM was non-toxic with regards to having a low probability of bioavailable metals in the pore water.
Iron-platinum multilayer thin film reactions to form L1(0) iron-platinum and exchange spring magnets
NASA Astrophysics Data System (ADS)
Yao, Bo
FePt films with the L10 phase have potential applications for magnetic recording and permanent magnets due to its high magnetocrystalline anisotropy energy density. Heat treatment of [Fe/Pt] n multilayer films is one approach to form the L10 FePt phase through a solid state reaction. This thesis has studied the diffusion and reaction of [Fe/Pt]n multilayer films to form the L10 FePt phase and has used this understanding to construct exchange spring magnets. The process-structure-property relations of [Fe/Pt] n multilayer films were systematically examined. The transmission electron microscopy (TEM) study of the annealed multilayers indicates that the Pt layer grows at the expense of Fe during annealing, forming a disordered fcc FePt phase by the interdiffusion of Fe into Pt. This thickening of the fcc Pt layer can be attributed to the higher solubilities of Fe into fcc Pt, as compared to the converse. For the range of film thickness studied, a continuous L10 FePt product layer that then thickens with further annealing is not found. Instead, the initial L10 FePt grains are distributed mainly on the grain boundaries within the fcc FePt layer and at the Fe/Pt interfaces and further transformation of the sample to the ordered L10 FePt phase proceeds coupled with the growth of the initial L10 FePt grains. A comprehensive study of annealed [Fe/Pt]n films is provided concerning the phase fraction, grain size, nucleation/grain density, interdiffusivity, long-range order parameter, and texture, as well as magnetic properties. A method based on hollow cone dark field TEM is introduced to measure the volume fraction, grain size, and density of ordered L10 FePt phase grains in the annealed films, and low-angle X-ray diffraction is used to measure the effective Fe-Pt interdiffusivity. The process-structure-properties relations of two groups of samples with varying substrate temperature and periodicity are reported. The results demonstrate that the processing parameters (substrate temperature, periodicity) have a strong influence on the structure (effective interdiffusivity, L1 0 phase volume fraction, grain size, and density) and magnetic properties. The correlation of these parameters suggests that the annealed [Fe/Pt]n multilayer films have limited nuclei, and the subsequent growth of L10 phase is very important to the extent of ordered phase formed. A correlation between the grain size of fcc FePt phase, grain size of the L10 FePt phase, the L10 FePt phase fraction, and magnetic properties strongly suggests that the phase transformation of fcc →L10 is highly dependent on the grain size of the parent fcc FePt phase. A selective phase growth model is proposed to explain the phenomena observed. An investigation of the influence of total film thickness on the phase formation of the L10 FePt phase in [Fe/Pt] n multilayer films and a comparison of this to that of FePt co-deposited alloy films is also conducted. A general trend of greater L1 0 phase formation in thicker films was observed in both types of films. It was further found that the thickness dependence of the structure and of the magnetic properties in [Fe/Pt]n multilayer films is much stronger than that in FePt alloy films. This is related to the greater chemical energy contained in [Fe/Pt]n films than FePt alloy films, which is helpful for the L10 FePt phase growth. However, the initial nucleation temperature of [Fe/Pt]n multilayers and co-deposited alloy films was found to be similar. An investigation of L10 FePt-based exchange spring magnets is presented based on our understanding of the L10 formation in [Fe/Pt] n multilayer films. It is known that exchange coupling is an interfacial magnetic interaction and it was experimentally shown that this interaction is limited to within several nanometers of the interface. A higher degree of order of the hard phase is shown to increase the length scale slightly. Two approaches can be used to construct the magnets. For samples with composition close to stoichiometric L10 FePt, the achievement of higher energy product is limited by the average saturation magnetization, and therefore, a lower annealing temperature is beneficial to increase the energy product, allowing a larger fraction of disordered phase. For samples with higher Fe concentration, the (BH)max is limited by the low coercivity of annealed sample, and a higher annealing temperature is beneficial to increase the energy product.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kukkadapu, Ravi K.; Zachara, John M.; Fredrickson, Jim K.
The reductive biotransformation of two Si-ferrihydrite (0.01 and 0.05 mole% Si) coprecipiates by Shewanella putrefaciens, strain CN32, was investigated in 1,4-piperazinediethanesulfonic acid-buffered media (pH ~7) with lactate as the electron donor. Anthraquinone-2,6-disulfonate (electron shuttle) that stimulates respiration was present in the media. Experiments were performed without and with PO43- (ranging from 1 to 20 mmol/L in media containing 50 mmol/L Fe). Our objectives were to define the combined effects of SiO44- and PO43- on the bioreducibility and biomineralization of ferrihydrites under anoxic conditions. Iron reduction was measured as a function of time, solids were characterized by powder X-ray diffraction (XRD)more » and Mossbauer spectroscopy, and aqueous solutions were analyzed for Si, P, Cl- and inorganic carbon. Both of the ferrihydrites were rapidly reduced regardless of the Si content. Si concentration had no effect on the reduction rate or mineralization products. Magnetite was formed in the absence of PO43- whereas carbonate green rust GR(CO32-) ([FeII(6-x)FeIIIx(OH)12]x+(CO32-)0.5x.yH2O) and vivianite [Fe3(PO4)2.8H2O], were formed when PO43- was present. GR(CO32-) dominated as a mineral product in samples with < 4 mmol/L PO43-. The Fe(II)/Fe(III) ratio of GR(CO32-) varied with PO43- concentration; it was 2 in the 1 mmol/L PO43- and approached 1 in the 4- and 10-mmol/L PO43- samples. GR appeared to form by solid-state transformation of ferrihydrite. Medium PO43- concentration dictated the mechanism of transformation. In 1 mmol/L PO43- media, an intermediate Fe(II)/Fe(III) phase with structural Fe(II), which we tentatively assigned to a protomagnetite phase, slowly transformed to GR with time. In contrast, in medium with >4 mmol/L PO43-, a residual ferrihydrite with sorbed Fe2+ phase transformed to GR. Despite similar chemistries, PO43- was shown to have a profound effect on ferrihydrite biotransformations while that of SiO44- was minimal.« less
NASA Technical Reports Server (NTRS)
Keller, Lindsay P.; Loeffler, M. J.; Christoffersen, R.; Dukes, C.; Rahman, Z.; Baragiola, R.
2010-01-01
Fe(Ni) sulfides are ubiquitous in chondritic meteorites and cometary samples where they are the dominant host of sulfur. Despite their abundance in these early solar system materials, their presence in interstellar and circumstellar environments is poorly understood. Fe-sulfides have been reported from astronomical observations of pre- and post-main sequence stars [1, 2] and occur as inclusions in bonafide circumstellar silicate grains [3, 4]. In cold, dense molecular cloud (MC) environments, sulfur is highly depleted from the gas phase [e.g. 5], yet observations of sulfur-bearing molecules in dense cores find a total abundance that is only a small fraction of the sulfur seen in diffuse regions [6], therefore the bulk of the depletion must reside in an abundant unobserved phase. In stark contrast, sulfur is essentially undepleted from the gas phase in the diffuse interstellar medium (ISM) [7-9], indicating that little sulfur is incorporated into solid grains in this environment. This is a rather puzzling observation unless Fe-sulfides are not produced in significant quantities in stellar outflows, or their lifetime in the ISM is very short due to rapid destruction. The main destruction mechanism is sputtering due to supernova shocks in the warm, diffuse ISM [10]. This process involves the reduction of Fe-sulfide with the production of Fe metal as a by-product and returning S to the gas phase. In order to test this hypothesis, we irradiated FeS and analyzed the resulting material using X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM).
NASA Astrophysics Data System (ADS)
Kumar, Anil; Swarnakar, Akhilesh Kumar; Chopkar, Manoj
2018-05-01
In the current investigation, AlCoCrFeNiSi x (x = 0, 0.3, 0.6 and 0.9 in atomic ratio) high-entropy alloy systems are prepared by mechanical alloying and subsequently consolidated by spark plasma sintering. The microstructural and mechanical properties were analyzed to understand the effect of Si addition in AlCoCrFeNi alloy. The x-ray diffraction analysis reveals the supersaturated solid solution of the body-centered cubic structure after 20 h of ball milling. However, the consolidation promotes the transformation of body-centered phases partially into the face-centered cubic structure and sigma phases. A recently proposed geometric model based on the atomic stress theory has been extended for the first time to classify single phase and multi-phases on the high-entropy alloys prepared by mechanical alloying and spark plasma sintering process. Improved microhardness and better wear resistance were achieved as the Si content increased from 0 to 0.9 in the present high-entropy alloy.
NASA Astrophysics Data System (ADS)
El Massalami, M.; Deguchi, K.; Machida, T.; Takeya, H.; Takano, Y.
2014-12-01
Based on a systematic analysis of the thermal evolution of the resistivities of Fe-based chalcogenides Fe1+δTe1-xXx (X = Se, S), it is inferred that their often observed nonmetallic resistivities are related to a presence of two resistive channels: one is a high- temperature thermally-activated process while the other is a low-temperature log-in-T process. On lowering temperature, there are often two metal-to-nonmetall crossover events: one from the high-T thermally-activated nonmetallic regime into a metal-like phase and the other from the log-in-T regime into a second metal-like phase. Based on these events, together with the magnetic and superconducting transitions, a phase diagram is constructed for each series. We discuss the origin of both processes as well as the associated crossover events. We also discuss how these resistive processes are being influenced by pressure, intercalation, disorder, doping, or sample condition and, in turn, how these modifications are shaping the associated phase diagrams.
The Phase Transformation and Crystal Structure Studies of Strontium Substituted Barium Monoferrite
NASA Astrophysics Data System (ADS)
Mulyawan, A.; Adi, W. A.; Mustofa, S.; Fisli, A.
2017-03-01
Unlike other AFe2O4 ferrite materials, Barium Monoferrite (BaFe2O4) have an orthorhombic structure which is very interesting to further study the crystal structure and phase formation. In this study, Strontium substituted Barium Monoferrite in the form of Ba(1-x)Sr(x)Fe2O4 has successfully been synthesized through solid state reaction method which includes BaCO3, SrCO3, and Fe2O3 as starting materials. Ba(1-x)Sr(x)Fe2O4 was made by varying the dopant composition of Strontium (Sr2+) from x = 0, 0.1, 0.3, and 0.5. Each composition was assisted by ethanol and continued to the milling process for 5 hours then followed by sintering process at 900 °C for 5 hours. The phase transformation was studied by using X-ray diffractometer (XRD) and Rietveld refinement using General Structure Analysis System (GSAS) also 3D crystal visualization using VESTA. Referring to the refinement results, a single phase of BaFe2O4 was formed in x = 0 and 0.1. The composition has orthorhombic structure, space group B b21m, and lattice parameters of a = 19.0229, b = 5.3814 c = 8.4524 Å, α = β = γ = 90° and a = 18.9978, b = 5.3802 c = 8.4385 Å, α = β = γ = 90° respectively. In the composition of x = 0.3 it was found that the phase of BaSrFe4O8 begin to form due to the overload expansion of the Sr2+ occupancy which made the distortion of the initial lattice parameters and finally in the x = 0.5 composition the single phase of BaSrFe4O8 was clearly formed. Energy Dispersive Spectroscopy (EDS) was used to confirm the change of the material structure by measuring the elemental compound composition ratio. The result of EDS spectra clearly exhibited the dominant elements were Barium (Ba), Strontium (Sr), Iron (Fe), and Oxygen (O) with the compound ratio (Atomic percentage and mass percentage) correspond to the BaFe2O4 and BaSrFe4O8 phase.
Shih, Kaimin
2012-12-01
This study investigates potential solid-state reactions for the stabilization of hazardous metals when reusing the incineration ash from chemically enhanced primary treatment (CEPT) sludge to fabricate ceramic products. Nickel and copper were used as examples of hazardous metals, and the iron content in the reaction system was found to play a major role in incorporating these hazardous metals into their ferrite phases (NiFe2O4 and CuFe2O4). The results from three-hour sintering experiments on NiO + Fe2O3 and CuO + Fe2O3 systems clearly demonstrate the potential for initiating metal incorporation mechanisms using an iron-containing precursor at attainable ceramic sintering temperatures (above 750 degrees C). Both ferrite phases were examined using a prolonged leaching experiment modified from the widely used toxicity characteristic leaching procedure (TCLP) to evaluate their long-term metal leachability. The leaching results indicate that both the NiFe2O4 and the CuFe2O4 products were significantly superior to their oxide forms in immobilizing hazardous metals.
Field induced metastable ferroelectric phase in Pb 0.97La 0.03(Zr 0.90Ti 0.10) 0.9925O 3 ceramics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciuchi, I. V.; Chung, C. C.; Fancher, C. M.
2017-11-06
Pb 0.97La 0.03(Zr 0.9T i0.1)0.9925O3 (PLZT 3/90/10) ceramics prepared by solid-state reaction with the compositions near the antiferroelectric/ferroelectric (FE/AFE) phase boundary were studied. From the polarization–electric field P(E) dependence and ex situ X-ray study, an irreversible electric field induced AFE-to-FE phase transition is verified at room temperature. Dielectric and in situ temperature dependent X-ray analysis evidence that the phase transition sequence in PLZT 3/90/10-based ceramics can be readily altered by poling. A first order antiferroelectric-paraelectric (AFE-to-PE) transition occurred at ~190 °C in virgin sample and at ~180 °C in poled sample. In addition, a FE-to-AFE transition occurs in the poledmore » ceramic at much lower temperatures (~120 °C) with respect to the Curie range (~190 °C). The temperature-induced FE-to-AFE transition is diffuse and takes place in a broad temperature range of 72–135 °C. Lastly, the recovery of AFE is accompanied by an enhancement in the piezoelectric properties.« less
In situ spectroscopic and solution analyses of the reductive dissolution of Mn02 by Fe(II)
Villinski, John E.; O'Day, Peggy A.; Corley, Timothy L.; Conklin, Martha H.
2001-01-01
The reductive dissolution of MnO2 by Fe(II) under conditions simulating acid mine drainage (pH 3, 100 mM SO42-) was investigated by utilizing a flow-through reaction cell and synchrotron X-ray absorption spectroscopy. This configuration allows collection of in situ, real-time X-ray absorption near-edge structure (XANES) spectra and bulk solution samples. Analysis of the solution chemistry suggests that the reaction mechanism changed (decreased reaction rate) as MnO2 was reduced and Fe(III) precipitated, primarily as ferrihydrite. Simultaneously, we observed an additional phase, with the local structure of jacobsite (MnFe2O4), in the Mn XANES spectra of reactants and products. The X-ray absorbance of this intermediate phase increased during the experiment, implying an increase in concentration. The presence of this phase, which probably formed as a surface coating, helps to explain the reduced rate of dissolution of manganese(IV) oxide. In natural environments affected by acid mine drainage, the formation of complex intermediate solid phases on mineral surfaces undergoing reductive dissolution may likewise influence the rate of release of metals to solution.
High-Pressure Synthesis: A New Frontier in the Search for Next-Generation Intermetallic Compounds.
Walsh, James P S; Freedman, Danna E
2018-06-19
The application of high pressure adds an additional dimension to chemical phase space, opening up an unexplored expanse bearing tremendous potential for discovery. Our continuing mission is to explore this new frontier, to seek out new intermetallic compounds and new solid-state bonding. Simple binary elemental systems, in particular those composed of pairs of elements that do not form compounds under ambient pressures, can yield novel crystalline phases under compression. Thus, high-pressure synthesis can provide access to solid-state compounds that cannot be formed with traditional thermodynamic methods. An emerging approach for the rapid exploration of composition-pressure-temperature phase space is the use of hand-held high-pressure devices known as diamond anvil cells (DACs). These devices were originally developed by geologists as a way to study minerals under conditions relevant to the earth's interior, but they possess a host of capabilities that make them ideal for high-pressure solid-state synthesis. Of particular importance, they offer the capability for in situ spectroscopic and diffraction measurements, thereby enabling continuous reaction monitoring-a powerful capability for solid-state synthesis. In this Account, we provide an overview of this approach in the context of research we have performed in the pursuit of new intermetallic compounds. We start with a discussion of pressure as a fundamental experimental variable that enables the formation of intermetallic compounds that cannot be isolated under ambient conditions. We then introduce the DAC apparatus and explain how it can be repurposed for use as a synthetic vessel with which to explore this phase space, going to extremes of pressure where no chemist has gone before. The remainder of the Account is devoted to discussions of recent experiments we have performed with this approach that have led to the discovery of novel intermetallic compounds in the Fe-Bi, Cu-Bi, and Ni-Bi systems, with a focus on the cutting-edge methods that made these experiments possible. We review the use of in situ laser heating at high pressure, which led to the discovery of FeBi 2 , the first binary intermetallic compound in the Fe-Bi system. Our work in the Cu-Bi system is described in the context of in situ experiments carried out in the DAC to map its high-pressure phase space, which revealed two intermetallic phases (Cu 11 Bi 7 and CuBi). Finally, we review the discovery of β-NiBi, a novel high-pressure phase in the Ni-Bi system. We hope that this Account will inspire the next generation of solid-state chemists to boldly explore high-pressure phase space.
Microbial exudate promoted dissolution and transformation of chromium containing minerals
NASA Astrophysics Data System (ADS)
Saad, E. M.; Sun, J.; Tang, Y.
2015-12-01
Because of its utility in many industrial processes, chromium has become the second most common metal contaminant in the United States. The two most common oxidation states of chromium in nature are Cr(III), which is highly immobile, and Cr(VI), which is highly mobile and toxic. In both natural and engineered environments, the most common remediation of Cr(VI) is through reduction, which results in chromium sequestration in the low solubility mixed Cr(III)-Fe(III) (oxy)hydroxide phases. Consequently, the stability of these minerals must be examined to assess the fate of chromium in the subsurface. We examined the dissolution of mixed Cr(III)-Fe(III) (oxy)hydroxides in the presence of common microbial exudates, including the siderophore desferrioxamine B (DFOB; a common organic ligand secreted by most microbes with high affinity for ferric iron and other trivalent metal ions) and oxalate (a common organic acid produced by microbes). The solids exhibited incongruent dissolution with preferential leaching of Fe from the solid phase. Over time, this leads to a more Cr rich mineral, which is known to be more soluble than the corresponding mixed mineral phase. We are currently investigating the structure of the reacted mineral phases and soluble Cr(III) species, as well as the potential oxidation and remobilization of the soluble Cr species. Results from this study will provide insights regarding the long term transport and fate of chromium in the natural environment in the presence of microbial activities.
NASA Astrophysics Data System (ADS)
Rather, Mehraj ud Din; Samad, Rubiya; Want, Basharat
2018-03-01
The physical properties of BaY0.025Ti0.9625O3, SrFe12O19, and 0.90BaY0.025Ti0.9625O3-0.10 SrFe12O19 composite have been studied. The proposed composite was synthesized by solid-state reaction method from yttrium barium titanate processed by solid-state reaction and strontium hexaferrite obtained by a sol-gel process. Microstructural analysis revealed monophasic grains for yttrium barium titanate phase, while loosely packed biphasic structure was observed for the composite. Powder x-ray analysis showed that the individual phases retained their crystal structure in the composite, without formation of any new additional phase. Measurement of magnetic hysteresis loops at room temperature indicated that the magnetic parameters of the composite were diluted by the presence of the ferroelectric phase. The ferroelectric hysteresis of yttrium barium titanate confirmed the ferroelectric transition at 119°C. Meanwhile, the symmetrical ferroelectric loops observed at different fields established the ferroelectric nature of the composite. Improved dielectric properties and low dielectric losses were observed due to yttrium doping in the composite. The diffuseness of the ferroelectric transitions for the composite was confirmed by the Curie-Weiss law. Activation energy calculations revealed the charge-hopping conduction mechanism in the composite. Magnetodielectric studies confirmed that the overall magnetocapacitance in the composite exhibited combined effects of magnetoresistance and magnetoelectric coupling.
Cao, Xiaoji; Shen, Lingxiao; Ye, Xuemin; Zhang, Feifei; Chen, Jiaoyu; Mo, Weimin
2014-04-21
An ultrasound-assisted magnetic solid-phase extraction procedure with the [C7MIM][PF6] ionic liquid-coated Fe3O4-grafted graphene nanocomposite as the magnetic adsorbent has been developed for the determination of five nitrobenzene compounds (NBs) in environmental water samples, in combination with high performance liquid chromatography-photodiode array detector (HPLC-PDA). Several significant factors that affect the extraction efficiency, such as the types of magnetic nanoparticle and ionic liquid, the volume of ionic liquid and the amount of magnetic nanoparticles, extraction time, ionic strength, and solution pH, were investigated. With the assistance of ultrasound, adsorbing nitrobenzene compounds by ionic liquid and self-aggregating ionic liquid onto the surface of the Fe3O4-grafted graphene proceeded synchronously, which made the extraction achieved the maximum within 20 min using only 144 μL [C7MIM][PF6] and 3 mg Fe3O4-grafted graphene. Under the optimized conditions, satisfactory linearities were obtained for all NBs with correlation coefficients larger than 0.9990. The mean recoveries at two spiked levels ranged from 80.35 to 102.77%. Attributed to the convenient magnetic separation, the Fe3O4-grafted graphene could be recycled many times. The proposed method was demonstrated to be feasible, simple, solvent-saving and easy to operate for the trace analysis of NBs in environmental water samples.
Mackinawite (FeS) Reduces Mercury(II) under Sulfidic Conditions
2015-01-01
Mercury (Hg) is a toxicant of global concern that accumulates in organisms as methyl Hg. The production of methyl Hg by anaerobic bacteria may be limited in anoxic sediments by the sequestration of divalent Hg [Hg(II)] into a solid phase or by the formation of elemental Hg [Hg(0)]. We tested the hypothesis that nanocrystalline mackinawite (tetragonal FeS), which is abundant in sediments where Hg is methylated, both sorbs and reduces Hg(II). Mackinawite suspensions were equilibrated with dissolved Hg(II) in batch reactors. Examination of the solid phase using Hg LIII-edge extended X-ray absorption fine structure (EXAFS) spectroscopy showed that Hg(II) was indeed reduced in FeS suspensions. Measurement of purgeable Hg using cold vapor atomic fluorescence spectrometry (CVAFS) from FeS suspensions and control solutions corroborated the production of Hg(0) that was observed spectroscopically. However, a fraction of the Hg(II) initially added to the suspensions remained in the divalent state, likely in the form of β-HgS-like clusters associated with the FeS surface or as a mixture of β-HgS and surface-associated species. Complexation by dissolved S(-II) in anoxic sediments hinders Hg(0) formation, but, by contrast, Hg(II)–S(-II) species are reduced in the presence of mackinawite, producing Hg(0) after only 1 h of reaction time. The results of our work support the idea that Hg(0) accounts for a significant fraction of the total Hg in wetland and estuarine sediments. PMID:25180562
The fate of arsenic in sediments formed at a river confluence affected by acid mine drainage
NASA Astrophysics Data System (ADS)
Guerra, P. A.; Pasten, P. A.; Pizarro, G.; Simonson, K.; Escauriaza, C. R.; Gonzalez, C.; Bonilla, C.
2012-12-01
Fluvial confluences receiving acid mine drainage may play a critical role in a watershed as a suite of interactions between chemistry and hydrodynamics occur, determining the fate of toxic contaminants like arsenic. Solid reactive phases of iron and/or aluminum oxi-hydroxides may form or transform, ranging from iron oxide nanoparticles that aggregate and form floccules that are transported in the suspended load up to gravel and arsenic-rich rock coatings. In order to further understand the role of reactive fluvial confluences, we have studied the mixing between the Caracarani River (flow=170-640 L/s, pH 8, conductivity 1.5 mS/cm, total As<0.1 mg/L and total Fe< 5 mg/L) and the Azufre River (flow=45-245 L/s, pH<2, conductivity > 10 mS/cm, total As>2 mg/L, total Fe=35-125 mg/L), located in the Lluta watershed in northern Chile. This site is an excellent natural laboratory located in a water-scarce area, where the future construction of a dam has prompted the attention of decision makers and scientists interested in weighing the risks derived by the accumulation of arsenic-rich sediments. Suspended sediments (> 0.45 μm), riverbed sediments, and coated rocks were collected upstream and downstream from the confluence. Suspended sediments >0.45 μm and riverbed sediments were analyzed by total reflection x-ray fluorescence for metals, while coated river bed rocks were analyzed by chemical extractions and a semi-quantitative approach through portable x-ray fluorescence. Water from the Caracarani and Azufre rivers were mixed in the laboratory at different ratios and mixing velocities aiming to characterize the effect of the chemical-hydrodynamic environment where arsenic solids were formed at different locations in the confluence. Despite a wide range of iron and arsenic concentrations in the suspended sediments from the field (As=1037 ± 1372 mg/kg, Fe=21.0 ± 24.5 g/kg), we found a rather narrow As/Fe ratio, increasing from 36.5 to 55.2 mgAs/kgFe when the bulk water pH increased from 3 to 6. Sequential extraction analyses suggest that ~80% of As in the solid pahse is strongly sorbed to the sediments, whereas ~15% of As is forming co-precipitated phase. Riverbed sediments (sand and gravel) showed much lower concentrations of Fe and As (17.1 ± 3.0 g/kg and 67.5 ± 53.9 mg/kg, respectively), owing to a dilution from non-reactive phases like quartz from sand. Coated rocks showed concentrations of Fe and As of 34.8 ± 12.5 g/kg and 680 ± 401 mg/kg, respectively, suggesting the coatings are possibly constituted by As-rich particles sequestered from the flow. In the case of the laboratory mixing tests, suspended solids ranged from 10 to 60 mg/L, with higher values at lower mixing ratios or higher pHs. Our findings suggest that the spatial and temporal variability driven by the hydrodynamics of a confluence determine distinct geochemical characteristics of arsenic-rich solid phases, thus playing a role in the fate of reactive contaminants like arsenic in the watershed. Research funded by Fondecyt project 1100943.
Aggregate-scale heterogeneity in iron (hydr)oxide reductive transformations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tufano, K.J.; Benner, S.G.; Mayer, K.U.
There is growing awareness of the complexity of potential reaction pathways and the associated solid-phase transformations during the reduction of Fe (hydr)oxides, especially ferrihydrite. An important observation in static and advective-dominated systems is that microbially produced Fe(II) accelerates Ostwald ripening of ferrihydrite, thus promoting the formation of thermodynamically more stable ferric phases (lepidocrocite and goethite) and, at higher Fe(II) surface loadings, the precipitation of magnetite; high Fe(II) levels can also lead to green rust formation, and with high carbonate levels siderite may also be formed. This study expands this emerging conceptual model to a diffusion-dominated system that mimics an idealizedmore » micropore of a ferrihydrite-coated soil aggregate undergoing reduction. Using a novel diffusion cell, coupled with micro-x-ray fluorescence and absorption spectroscopies, we determined that diffusion-controlled gradients in Fe{sup 2+}{sub (aq)} result in a complex array of spatially distributed secondary mineral phases. At the diffusive pore entrance, where Fe{sup 2+} concentrations are highest, green rust and magnetite are the dominant secondary Fe (hydr)oxides (30 mol% Fe each). At intermediate distances from the inlet, green rust is not observed and the proportion of magnetite decreases from approximately 30 to <10%. Across this same transect, the proportion of goethite increases from undetectable up to >50%. At greater distances from the advective-diffusive boundary, goethite is the dominant phase, comprising between 40 and 95% of the Fe. In the presence of magnetite, lepidocrocite forms as a transient-intermediate phase during ferrihydrite-to-goethite conversion; in the absence of magnetite, conversion to goethite is more limited. These experimental observations, coupled with results of reactive transport modeling, confirm the conceptual model and illustrate the potential importance of diffusion-generated concentration gradients in dissolved Fe{sup 2+} on the fate of ferrihydrite during reduction in structured soils.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oh-ishi, Katsuyoshi, E-mail: oh-ishi@kc.chuo-u.ac.jp; Nagumo, Kenta; Tateishi, Kazuya
Mo-Re-C compounds containing Mo{sub 7}Re{sub 13}C with the β-Mn structure were synthesized with high-melting-temperature metals Mo, Re, and C powders using a conventional solid state method with a planetary ball milling machine instead of the arc melting method. Use of the ball milling machine was necessary to obtain Mo{sub 7}Re{sub 13}C with the β-Mn structure using the solid state method. Almost single-phase Mo{sub 7}Re{sub 13}C with a trace of impurity were obtained using the synthesis method. By XRF and lattice parameter measurements on the samples, Fe element existed in the compound synthesized using the planetary ball milling machine with amore » pot and balls made of steel, though Fe element was not detected in the compound synthesized using a pot and balls made of tungsten carbide. The former compound containg the Fe atom did not show superconductivity but the latter compound without the Fe atom showed superconductivity at 6.1 K. - Graphical abstract: Temperature dependence of the magnetic susceptibility measured under 10 Oe for the superconducting PBM-T samples without Fe element and non-superconducting PBM-S with Fe element. The inset is the enlarged view of the data for the PBM-S sample.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Dimin; Anitori, Roberto; Tebo, Bradley M.
2013-04-24
Under anoxic conditions, soluble 99TcO4– can be reduced to less soluble TcO2•nH2O, but the oxide is highly susceptible to reoxidation. Here we investigate an alternative strategy for remediation of Tc-contaminated groundwater whereby sequestration as Tc sulfide is favored by sulfidic conditions stimulated by nano zero-valent iron (nZVI). nZVI was pre-exposed to increasing concentrations of sulfide in simulated Hanford groundwater for 24 hrs to mimic the stages of aquifer sulfate reduction and onset of biotic sulfidogenesis. Solid-phase characterizations of the sulfidated nZVI confirmed the formation of nanocrystalline FeS phases, but higher S/Fe ratios (>0.112) did not result in the formation ofmore » significantly more FeS. The kinetics of Tc sequestration by these materials showed faster Tc removal rates with increasing S/Fe between S/Fe = 0–0.056, but decreasing Tc removal rates with S/Fe > 0.224. The more favorable Tc removal kinetics at low S/Fe could be due to a higher affinity of TcO4– for FeS (over iron oxides), and electron microscopy confirmed that the majority of the Tc was associated with FeS phases. The inhibition of Tc removal at high S/Fe appears to have been caused by excess HS–. X-ray absorption spectroscopy revealed that as S/Fe increased, Tc speciation shifted from TcO2•nH2O to TcS2. The most substantial change of Tc speciation occurred at low S/Fe, coinciding with the rapid increase of Tc removal rate. This agreement further confirms the importance of FeS in Tc sequestration.« less
Li, Xi; Lu, Zhenyuan; Fautrelle, Yves; Gagnoud, Annie; Moreau, Rene; Ren, Zhongming
2016-01-01
Effect of a weak transverse magnetic field on the microstructures in directionally solidified Fe-Ni and Pb-Bi peritectic alloys has been investigated experimentally. The results indicate that the magnetic field can induce the formation of banded and island-like structures and refine the primary phase in peritectic alloys. The above results are enhanced with increasing magnetic field. Furthermore, electron probe micro analyzer (EPMA) analysis reveals that the magnetic field increases the Ni solute content on one side and enhances the solid solubility in the primary phase in the Fe-Ni alloy. The thermoelectric (TE) power difference at the liquid/solid interface of the Pb-Bi peritectic alloy is measured in situ, and the results show that a TE power difference exists at the liquid/solid interface. 3 D numerical simulations for the TE magnetic convection in the liquid are performed, and the results show that a unidirectional TE magnetic convection forms in the liquid near the liquid/solid interface during directional solidification under a transverse magnetic field and that the amplitude of the TE magnetic convection at different scales is different. The TE magnetic convections on the macroscopic interface and the cell/dendrite scales are responsible for the modification of microstructures during directional solidification under a magnetic field. PMID:27886265
Han, Young-Soo; Demond, Avery H; Gallegos, Tanya J; Hayes, Kim F
2015-09-01
FeS has been recognized as a good scavenger for arsenic under anoxic conditions. To create a suitable adsorbent for flow-through reactors such as permeable reactive barriers, it has been suggested that this material may be coated onto sand. However, previous work on FeS-coated sand has focused on batch reactors, while flow-through reactors usually have higher solid-solution ratios. To ascertain whether differences in the solid-solution ratio (SSR) are important in this system, batch sorption experiments were conducted as a function of pH using As(III) and FeS-coated sands at various solid-solution ratios. The results showed little variation in the distribution coefficient with SSR at pH 7 and 9. However, at pH 5, the results showed lower values of the distribution coefficient at lower SSRs, the reverse of typically reported SSR effects. Measured pe values showed a dependence on SSR, which, when coupled with chemical modeling of the Fe-As-S-H2O system, suggested a change in the removal mechanism with SSR, from adsorption to a reduced Fe(II) oxyhydroxide phase (represented by Fe2(OH)5) to precipitation as As2S3 or AsS. On the other hand, at pH 7 and 9, arsenite adsorption is the most probable removal mechanism regardless of the pe. Thus, this study identified variations in pH and redox conditions, and the removal mechanisms that these parameters govern, as the reason for the apparent SSR effect. Copyright © 2014 Elsevier Ltd. All rights reserved.
Single-crystal structure determination of hydrous minerals and insights into a wet deep lower mantle
NASA Astrophysics Data System (ADS)
Zhang, L.; Yuan, H.; Meng, Y.; Popov, D.
2017-12-01
Water enters the Earth's interior through hydrated subducting slabs. How deep within the lower mantle (670-2900 km depth) can water be transported down and stored depends upon the availability of hydrous phases that is thermodynamically stable under the high P-T conditions and have a sufficiently high density to sink through the lower mantle. Phase H [MgSiH2O4] (1) and the δ-AlOOH (2) form solid solutions that are stable in the deep lower mantle (3), but the solid solution phase is 10% lighter than the corresponding lower mantle. Recent experimental discoveries of the pyrite (Py) structured FeO2 and FeOOH (4-6) suggest that these Fe-enriched phases can be transported to the deepest lower mantle owing to their high density. We have further discovered a very dense hydrous phase in (Fe,Al)OOH with a previously unknown hexagonal symmetry and this phase is stable relative to the Py-phase under extreme high P-T conditions in the deep lower mantle. Through in situ multigrain analysis (7) and single-crystal structure determination of the hydrous minerals at P-Tconditions of the deep lower mantle, we can obtain detailed structure information of the hydrous phases and therefore provide insights into the hydration mechanism in the deep lower mantle. These highly stable hydrous minerals extend the water cycle at least to the depth of 2900 km. 1. M. Nishi et al., Nature Geoscience 7, 224-227 (2014). 2. E. Ohtani, K. Litasov, A. Suzuki, T. Kondo, Geophysical Research Letters 28, 3991-3993 (2001). 3. I. Ohira et al., Earth and Planetary Science Letters 401, 12-17 (2014). 4. Q. Hu et al., Proceedings of the National Academy of Sciences of the United States of America 114, 1498-1501 (2017). 5. M. Nishi, Y. Kuwayama, J. Tsuchiya, T. Tsuchiya, Nature 547, 205-208 (2017). 6. Q. Hu et al., Nature 534, 241-244 (2016). 7. L. Zhang et al., American Mineralogist 101, 231-234 (2016).
NASA Astrophysics Data System (ADS)
Belov, Nikolay A.; Naumova, Evgeniya A.; Akopyan, Torgom K.; Doroshenko, Vitaliy V.
2018-05-01
The phase composition of aluminum alloys in the Al-Ca-Fe-Si system, including the distribution of phases in the solid state and solidification reactions, has been studied. It is shown that the addition of iron and silicon to Al-Ca alloys leads to the formation of ternary Al2CaSi2 and Al10CaFe2 compounds. The equilibrium between these compounds implies the occurrence of the quaternary L → Al + Al4Ca + Al2CaSi2 + Al10CaFe2 eutectic reaction. The alloys near this eutectic have the best structure, which is typical of aluminum matrix composites. It is shown that Al-Ca alloys can have high manufacturability during both shape casting and rolling. This is due to the combination of a narrow temperature range of solidification and a favorable morphology for the eutectic, which has a fine structure. The combination of the mechanical and physical properties of the Al-Ca eutectic-based alloys significantly exceed those of branded alloys based on aluminum-silicon eutectics.
The heat-capacity of ilmenite and phase equilibria in the system Fe-T-O
Anovitz, Lawrence M.; Treiman, A.H.; Essene, E.J.; Hemingway, B.S.; Westrum, E.F.; Wall, V.J.; Burriel, R.; Bohlen, S.R.
1985-01-01
Low temperature adiabatic calorimetry and high temperature differential scanning calorimetry have been used to measure the heat-capacity of ilmenite (FeTiO3) from 5 to 1000 K. These measurements yield S2980 = 108.9 J/(mol ?? K). Calculations from published experimental data on the reduction of ilmenite yield ??2980(I1) = -1153.9 kJ/(mol ?? K). These new data, combined with available experimental and thermodynamic data for other phases, have been used to calculate phase equilibria in the system Fe-Ti-O. Calculations for the subsystem Ti-O show that extremely low values of f{hook}O2 are necessary to stabilize TiO, the mineral hongquiite reported from the Tao district in China. This mineral may not be TiO, and it should be re-examined for substitution of other elements such as N or C. Consideration of solid-solution models for phases in the system Fe-Ti-O allows derivation of a new thermometer/oxybarometer for assemblages of ferropseudobrookite-pseudobrookitess and hematite-ilmenitess. Preliminary application of this new thermometer/oxybarometer to lunar and terrestrial lavas gives reasonable estimates of oxygen fugacities, but generally yields subsolidus temperatures, suggesting re-equilibration of one or more phases during cooling. ?? 1985.
The Electrochemical Properties of Sr(Ti,Fe)O 3-δ for Anodes in Solid Oxide Fuel Cells
Nenning, Andreas; Volgger, Lukas; Miller, Elizabeth; ...
2017-02-18
Reduction-stable mixed ionic and electronic conductors such as Sr(Ti,Fe)O 3-δ (STF) are promising materials for application in anodes of solid oxide fuel cells. The defect chemistry of STF and its properties as solid oxide fuel cell (SOFC) cathode have been studied thoroughly, while mechanistic investigations of its electrochemical properties as SOFC anode material are still scarce. In this study, thin film model electrodes of STF with 30% and 70% Fe content were investigated in H 2+H 2O atmosphere by electrochemical impedance spectroscopy. Lithographically patterned thin film Pt current collectors were applied on top or beneath the STF thin films tomore » compensate for the low electronic conductivity under reducing conditions. Oxygen exchange resistances, electronic and ionic conductivities and chemical capacitances were quantified and discussed in a defect chemical model. Increasing Fe content increases the electro-catalytic activity of the STF surface as well as the electronic and ionic conductivity. Current collectors on top also increase the electrochemical activity due to a highly active Pt-atmosphere-STF triple phase boundary. Furthermore, the electrochemical activity depends decisively on the H 2:H 2O mixing ratio and the polarization. Lastly, Fe 0 nanoparticles may evolve on the surface in hydrogen rich atmospheres and increase the hydrogen adsorption rate.« less
Probing magnetic order in CuFeO2 through nuclear forward scattering in high magnetic fields
NASA Astrophysics Data System (ADS)
Strohm, C.; Lummen, T. T. A.; Handayani, I. P.; Roth, T.; Detlefs, C.; van der Linden, P. J. E. M.; van Loosdrecht, P. H. M.
2013-08-01
Determining the magnetic order of solids in high magnetic fields is technologically challenging. Here we probe the cascade of magnetic phase transitions in frustrated multiferroic CuFeO2 using nuclear forward scattering (NFS) in pulsed magnetic fields up to 30 T. Our results are in excellent agreement with detailed neutron diffraction experiments, currently limited to 15 T, while providing experimental confirmation of the proposed higher field phases for both H∥c and H⊥c. We thus establish NFS as a valuable tool for spin structure studies in very high fields, both complementing and expanding on the applicability of existing techniques.
Phase relations in the system In{sub 2}O{sub 3}-TiO{sub 2}-Fe{sub 2}O{sub 3} at 1100 C in air
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, F.; Flores, M.J.R.; Kimizuka, N.
1999-04-01
Phase relations in the system In{sub 2}O{sub 3}-TiO{sub 2}-Fe{sub 2}O{sub 3} at 1100 C in air are determined by means of a classic quenching method. There exist In{sub 2}TiO{sub 5}, Fe{sub 2}TiO{sub 5} having a pseudo-Brookite-type phase and a new phase, In{sub 3}Ti{sub 2}FeO{sub 10} having a solid solution range from In{sub 2}O{sub 3}:TiO{sub 2}:Fe{sub 2}O{sub 3} = 4:6:1 to In{sub 2}O{sub 3}:TiO{sub 2}:Fe{sub 2}O{sub 3} = 0.384:0.464:0.152 (mole ratio) on the line InFeO{sub 3}-In{sub 2}Ti{sub 2}O{sub 7}. The crystal structures of In{sub 3}Ti{sub 2}FeO{sub 10} are pyrochlore related with a{sub m} = 5.9171 (5) {angstrom}, b{sub m} = 3.3696more » (3) {angstrom}, c{sub m} = 6.3885 (6) {angstrom}, and {beta} = 108.02 (1){degree} in a monoclinic crystal system at 1100 C, and a{sub 0} = 5.9089 (5) {angstrom}, b{sub 0} = 3.3679 (3) {angstrom}, and c{sub 0} = 12.130 (1) {angstrom} in an orthorhombic system at 1200 C. The relationship between the lattice constants of these phases and those of the cubic pyrochlore type are approximately as follows: a{sub m} = {minus}{1/4}a{sub p} + ({minus}{1/2})b{sub p} + ({minus}{1/4})c{sub p}, b{sub m} = {minus}{1/4}a{sub p} + (0)b{sub p} + ({1/4})c{sub p}, c{sub m} = {1/4}a{sub p} + ({minus}{1/2})b{sub p} + ({1/4})c{sub p} and {beta} = 109.47{degree} in the monoclinic system, and a{sub 0} = {minus}{1/4}a{sub p} + ({minus}{1/2})b{sub p} + ({minus}{1/4})c{sub p}, b{sub 0} = {minus}{1/4}a{sub p} + (0)b{sub p} + ({1/4})c{sub p}, and c{sub 0} = 2/3a{sub p} + ({minus}2/3)b{sub p} + (2/3)c{sub p} in the orthorhombic system, where a{sub p} = b{sub p} = c{sub p} = 9.90 ({angstrom}) are the lattice constants of In{sub 2}Ti{sub 2}O{sub 7} having the cubic pyrochlore type. All solid solutions of In{sub 3}Ti{sub 2}FeO{sub 10} have incommensurate structures with a periodicity of q {times} b{sup *} (q = 0.281--0.356) along the b{sup *} axis and the stoichiometric phase has q = 1/3. In FeO{sub 3} having a layered structure type is unstable between 750 and 1100 C.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruea-In, C.; Rujijanagul, G., E-mail: rujijanagul@yahoo.com
2015-09-15
Highlights: • Properties of of Ba(Zr{sub 0.05}Ti{sub 0.95}){sub 1−x}(Fe{sub 0.5}Ta{sub 0.5}){sub x}O{sub 3} ceramics were investigated. • Small amount of dopant produced a large change in dielectric and phase transition. • A phase diagram of Ba(Zr{sub 0.05}Ti{sub 0.95}){sub 1−x}(Fe{sub 0.5}Ta{sub 0.5}){sub x}O{sub 3} ceramics was proposed. • Dielectric tunability increased with increasing x concentration. - Abstract: In this work, properties of Ba(Zr{sub 0.05}Ti{sub 0.95}){sub 1−x}(Fe{sub 0.5}Ta{sub 0.5}){sub x}O{sub 3} ceramics with 0.00≤ x ≤0.07 were investigated. The ceramics were fabricated by a solid state reaction technique. X-ray diffraction analysis indicated that all samples exhibited single phase perovskite. Examination of themore » dielectric spectra revealed that the Fe and Ta additives promoted a diffuse phase transition, and the two phase transition temperatures, as observed in the dielectric curve of pure Ba(Zr{sub 0.05}Ti{sub 0.95})O{sub 3}, merged into a single phase transition temperature for higher x concentrations. The transformation was confirmed by ferroelectric measurements. In addition, the doped ceramics exhibited high relative dielectric tunability, especially for higher x concentration samples.« less
Vargeese, Anuj A; Joshi, Satyawati S; Krishnamurthy, V N
2010-08-15
Ammonium nitrate (AN) is an inorganic crystalline compound used as a solid propellant oxidizer and as a nitrogenous fertilizer. The practical use of AN as solid propellant oxidizer is restricted due to the near room temperature polymorphic phase transition and hygroscopicity. A good deal of effort has been expended for last many years to stabilize the polymorphic transitions of AN, so as to minimize the storage difficulties of AN based fertilizers and to achieve more environmentally benign propellant systems. Also, particles with aspect ratio nearer to one are a vital requirement in fertilizer and propellant industries. In the present study AN is crystallized in presence of trace amount of potassium ferrocyanide (K(4)Fe(CN)(6)) crystal habit modifier and kept for different time intervals. And the effect of K(4)Fe(CN)(6) on the habit and phase modification of AN was studied. Phase modified ammonium nitrate (PMAN) with a particle aspect ratio nearer to one was obtained by this method and the reasons for this modifications are discussed. The morphology changes were studied by SEM, the phase modifications were studied by DSC and the structural properties were studied by powder XRD. Copyright 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lee, Ji-Hoon; Zachara, John M.; Fredrickson, James K.; Heald, Steve M.; McKinley, James P.; Plymale, Andrew E.; Resch, Charles T.; Moore, Dean A.
2014-07-01
Redox-reactive, biogeochemical phases generated by reductive microbial activity in hyporheic zone sediments from a dynamic groundwater-river interaction zone were evaluated for their ability to reduce soluble pertechnetate [99Tc(VII)O4-] to less soluble Tc(IV). The sediments were bioreduced by indigenous microorganisms that were stimulated by organic substrate addition in synthetic groundwater with or without sulfate. In most treatments, 20 μmol L-1 initial aqueous Tc(VII) was reduced to near or below detection (3.82 × 10-9 mol L-1) over periods of days to months in suspensions of variable solids concentrations. Native sediments containing significant lithogenic Fe(II) in various phases were, in contrast, unreactive with Tc(VII). The reduction rates in the bioreduced sediments increased with increases in sediment mass, in proportion to weak acid-extractable Fe(II) and sediment-associated sulfide (AVS). The rate of Tc(VII) reduction was first order with respect to both aqueous Tc(VII) concentration and sediment mass, but correlations between specific reductant concentrations and reaction rate were not found. X-ray microprobe measurements revealed a strong correlation between Tc hot spots and Fe-containing mineral particles in the sediment. However, only a portion of Fe-containing particles were Tc-hosts. The Tc-hot spots displayed a chemical signature (by EDXRF) similar to pyroxene. The application of autoradiography and electron microprobe allowed further isolation of Tc-containing particles that were invariably found to be ca 100 μm aggregates of primary mineral material embedded within a fine-grained phyllosilicate matrix. EXAFS spectroscopy revealed that the Tc(IV) within these were a combination of a Tc(IV)O2-like phase and Tc(IV)-Fe surface clusters, with a significant fraction of a TcSx-like phase in sediments incubated with SO42-. AVS was implicated as a more selective reductant at low solids concentration even though its concentration was below that required for stoichiometric reduction of Tc(VII). These results demonstrate that composite mineral aggregates may be redox reaction centers in coarse-textured hyporheic zone sediments regardless of the dominant anoxic biogeochemical processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ji-Hoon; Zachara, John M.; Fredrickson, Jim K.
Redox-reactive, biogeochemical phases generated by reductive microbial activity in hyporheic zone sediments from a dynamic groundwater-river interaction zone were evaluated for their ability to reduce soluble pertechnetate [99Tc(VII)O4-] to less soluble Tc(IV). The sediments were bioreduced by indigenous microorganisms that were stimulated by organic substrate addition in synthetic groundwater with or without sulfate. In most treatments, 20 µmol L-1 initial aqueous Tc(VII) was reduced to near or below detection (3.82×10-9 mol L-1) over periods of days to months in suspensions of variable solids concentrations. Native sediments containing significant lithogenic Fe(II) in various phases were, in contrast, unreactive with Tc(VII). Themore » reduction rates in the bioreduced sediments increased with increases in sediment mass, in proportion to weak acid-extractable Fe(II) and sediment-associated sulfide (AVS). The rate of Tc(VII) reduction was first order with respect to both aqueous Tc(VII) concentration and sediment mass, but correlations between specific reductant concentrations and reaction rate were not found. X-ray microprobe measurements revealed a strong correlation between Tc hot spots and Fe-containing mineral particles in the sediment. However, only a portion of Fe-containing particles were Tc-hosts. The Tc-hot spots displayed a chemical signature (by EDXRF) similar to pyroxene. The application of autoradiography and electron microprobe allowed further isolation of Tc-containing particles that were invariably found to be ca 100 µm aggregates of primary mineral material embedded within a fine-grained phyllosilicate matrix. EXAFS spectroscopy revealed that the Tc(IV) within these were a combination of a Tc(IV)O2-like phase and Tc(IV)-Fe surface clusters, with a significant fraction of a TcSx-like phase in sediments incubated with SO42-. AVS was implicated as a more selective reductant at low solids concentration even though its concentration was below that required for stoichiometric reduction of Tc(VII). These results demonstrate that composite mineral aggregates may be redox reaction centers in coarse-textured hyporheic zone sediments regardless of the dominant anoxic biogeochemical processes.« less
Liu, Qingtao; Liu, Xiaofang; Zheng, Lirong; Shui, Jianglan
2018-01-26
The environmentally friendly synthesis of highly active Fe-N-C electrocatalysts for proton-exchange membrane fuel cells (PEMFCs) is desirable but remains challenging. A simple and scalable method is presented to fabricate Fe II -doped ZIF-8, which can be further pyrolyzed into Fe-N-C with 3 wt % of Fe exclusively in Fe-N 4 active moieties. Significantly, this Fe-N-C derived acidic PEMFC exhibits an unprecedented current density of 1.65 A cm -2 at 0.6 V and the highest power density of 1.14 W cm -2 compared with previously reported NPMCs. The excellent PEMFC performance can be attributed to the densely and atomically dispersed Fe-N 4 active moieties on the small and uniform catalyst nanoparticles. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Yin, Guili; Chen, Suiyuan; Liu, Yuanyuan; Liang, Jing; Liu, Changsheng; Kuang, Zheng
2018-03-01
In situ hard-particle-reinforced Fe-based composite coatings were prepared on Q235 steel substrates by direct laser deposition using Fe-based alloy powders containing 2 wt.% B, 3 wt.% Si and 1-3 wt.% nano-Y2O3. The microstructures, phase compositions, hardnesses and wear resistances of the deposited coatings with different nano-Y2O3 contents were studied using metallographic microscopy, scanning electron microscopy, x-ray diffraction, transmission electron microscopy, microhardness tests and pin-on-disk abrasion tests (MMW-1A), respectively. The results showed that the appropriate addition of Y2O3 played a role in grain refinement and in decreasing the number of brittle phases and impurity elements in the grain boundaries. Consequently, the number of cracks in the laser-deposited coating also decreased. The Fe-based composite coatings were mainly composed of α-Fe, γ-Fe and in situ-produced reinforced particle phases, such as Cr23C6, Cr7C3, (Cr, Fe)7C3, Fe2B, and CrFeB. When the content of nano-Y2O3 was 2 wt.%, a Fe-based composite coating with a thickness of 4 mm that was free of cracks was obtained, and its surface hardness reached 650HV. Moreover, the wear resistance of the coating with 2 wt.% nano-Y2O3 was the best among the samples studied. The presence of nano-Y2O3 increased the solubility of Cr and Si in the solid solution, which eliminated the residual austenite region, and as a result, the phase transformation from γ-Fe to α-Fe was restrained and the transformation stress was also limited, thereby decreasing the probability of cracks in the coatings.
Cr(VI) removal by FeS-coated alumina, silica, and natural sand
NASA Astrophysics Data System (ADS)
Park, M.; Lee, S.; Jeong, H. Y.
2014-12-01
Removal of Cr(VI) was investigated using mackinawite (FeS)-coated mineral sorbents under anoxic conditions. The sorbents included alumina (Al), silica (WS), and natural sand (NS). By analysis of both solution and solid phases, all FeS-coated sorbents were found to reduce Cr(VI) into Cr(III). The sorption extent and mechanism of Cr(VI) strongly depended on the pH conditions. Only at pH 4.5, significant amounts of the dissolved Cr remained in the solution. Titration of dissolved Cr(III) and Fe(III) by NaOH solutions indicated that no bulk-phase precipitation occurred at pH 4.5. Also, the removal of Cr(VI) at pH 4.5 was the greatest by FeS-coated NS. Consistent with these, Cr-K edge EXAFS revealed that Cr was removed by FeS-coated NS via surface precipitation, and that it was immobilized by FeS-coated WS and Al by forming surface clusters. Regardless of FeS-coated sorbents, at pH 7.0 and pH 9.5, the initially added Cr(VI) was quantitatively removed from the solution phase. By EXAFS analysis, the Cr sorption by FeS-coated Al was mainly due to the bulk-phase precipitation of Cr(OH)3(s) or [Cr, Fe](OH)3(s). In case of FeS-coated WS and NS, the short Cr-Cr distance (~2.6 Å) at pH 7.0 and pH 9.5 was not simply accounted for by the bulk precipitation as either hydroxide (rCr-Cr ~ 3.0 Å), and it would rather result from the surface precipitation. Such a difference in the coordination structure among FeS-coated sorbents was likely due to in the lower surface area of the former available for the surface precipitation.
Shock Melting of Iron Silicide as Determined by In Situ X-ray Diffraction.
NASA Astrophysics Data System (ADS)
Newman, M.; Kraus, R. G.; Wicks, J. K.; Smith, R.; Duffy, T. S.
2016-12-01
The equation of state of core alloys at pressures and temperatures near the solid-liquid coexistence curve is important for understanding the dynamics at the inner core boundary of the Earth and super-Earths. Here, we present a series of laser driven shock experiments on textured polycrystalline Fe-15Si. These experiments were conducted at the Omega and Omega EP laser facilities. Particle velocities in the Fe-15Si samples were measured using a line VISAR and were used to infer the thermodynamic state of the shocked samples. In situ x-ray diffraction measurements were used to probe the melting transition and investigate the potential decomposition of Fe-15Si in to hcp and B2 structures. This work examines the kinetic effects of decomposition due to the short time scale of dynamic compression experiments. In addition, the thermodynamic data collected in these experiments adds to a limited body of information regarding the equation of state of Fe-15Si, which is a candidate for the composition in Earth's outer core. Our experimental results show a highly textured solid phase upon shock compression to pressures ranging from 170 to 300 GPa. Below 320 GPa, we observe diffraction peaks consistent with decomposition of the D03 starting material in to an hcp and a cubic (potentially B2) structure. Upon shock compression above 320 GPa, the intense and textured solid diffraction peaks give way to diffuse scattering and loss of texture, consistent with melting along the Hugoniot. When comparing these results to that of pure iron, we can ascertain that addition of 15 wt% silicon increases the equilibrium melting temperature significantly, or that the addition of silicon significantly increases the metastability of the solid phase, relative to the liquid. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Microstructure characterization of hypereutectoid aluminium bronze composite coating
NASA Astrophysics Data System (ADS)
Kucita, P.; Wang, S. C.; Li, W. S.; Cook, R. B.; Starink, M. J.
2015-10-01
Hypereutectoid aluminium bronze coating was deposited onto an E.N. 10503 steel substrate using plasma transferred arc welding (PTA). Microstructure characterisation of the coating and a section near the steel substrate joint was carried out using SEM, EBSD, EDS in conjunction with XRD and depth-sensing nano-indentation. The constituent phases in the coating were identified as: martensitic Cu3Al β1' phase, solid solution of Al in Cu α phase and the intermetallic Fe3Al κ1 phase. The region near the steel substrate was characterised by high hardness, large grains and presence of Cu precipitates. No cracks were observed in this region. The coating has high hardness of 4.9GPa and Young's modulus of 121.7GPa. This is attributed to homogeneous distribution of sub microns size Fe3Al intermetallic phase. The implications of the coating to the engineering application of sheet metal forming are discussed.
Chen, Jieping; Zhu, Xiashi
2016-06-01
Three hydrophobic ionic liquids (ILs) (1-butyl-3-methylimidazole hexafluorophosphate ([BMIM]PF6), 1-hexyl-3-methyl-imidazole hexafluoro-phosphate ([HMIM]PF6), and 1-octyl-3-methylimidazole hexafluorophosphate ([OMIM]PF6)) were used to coat Fe3O4@SiO2 nanoparticles (NPs) with core-shell structures to prepare magnetic solid phase extraction (MSPE) agents (Fe3O4@SiO2@IL). A novel method of MSPE coupled with high-performance liquid chromatography for the separation/analysis of Rhodamine B was then established. The results showed that Rhodamine B was adsorbed rapidly on Fe3O4@SiO2@[OMIM]PF6 and was released using ethanol. Under optimal conditions, the pre-concentration factor for the proposed method was 25. The linear range, limit of detection (LOD), correlation coefficient (R), and relative standard deviation (RSD) were found to be 0.50-150.00 μgL(-1), 0.08 μgL(-1), 0.9999, and 0.51% (n=3, c=10.00 μgL(-1)), respectively. The Fe3O4@SiO2 NPs could be re-used up to 10 times. The method was successfully applied to the determination of Rhodamine B in food samples. Copyright © 2016. Published by Elsevier Ltd.
He, Xi; Yang, Wei; Li, Sijia; Liu, Yu; Hu, Baichun; Wang, Ting; Hou, Xiaohong
2018-01-24
An amino-functionalized magnetic framework composite of type Fe 3 O 4 -NH 2 @MIL-101(Cr) was synthesized using a solvothermal method. The material was characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, nitrogen adsorption, and magnetometry. The composite combines the advantages of amino-modified Fe 3 O 4 and MIL-101(Cr). The presence of amino groups facilitates the fairly specific adsorption of pyrethroids. The composite was employed as a sorbent for magnetic solid phase extraction of five pyrethroids from environmental water samples. Following desorption with acidified acetone, the pyrethroids were quantified by gas chromatography with electron capture detection. The detection limits for bifenthrin, fenpropathrin, λ-cyhalothrin, permethrin, and deltamethrin range from 5 to 9 pg·mL -1 . The method is rapid, accurate, and highly sensitive. The molecular interactions and free binding energies between MIL-101(Cr) and the five pyrethroids were calculated by means of molecular docking. Graphical abstract A novel functionalized magnetic framework composite of type Fe 3 O 4 -NH 2 @MIL-101(Cr) was synthesized. It was applied as a sorbent for magnetic solid phase extraction of pyrethroids prior to their quantitation by gas chromatography with electron capture detection. The molecular interactions of analytes and MIL-101(Cr) were studied.
Heterogeneous Two-Phase Pillars in Epitaxial NiFe 2 O 4 -LaFeO 3 Nanocomposites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Comes, Ryan B.; Perea, Daniel E.; Spurgeon, Steven R.
2017-07-10
Self-assembled epitaxial oxide nanocomposites have been explored for a wide range of applications, including multiferroic and magnetoelectric properties, plasmonics, and catalysis. These so-called “vertically aligned nanocomposites” form spontaneously during the deposition process when segregation into two phases is energetically favorable as compared to a solid solution. However, there has been surprisingly little work understanding the driving forces that govern the synthesis of these materials, which can include point defect energetics, surface diffusion, and interfacial energies. To explore these factors, La-Ni-Fe-O films have been synthesized by molecular beam epitaxy and it is shown that these phase segregate into spinel-perovskite nanocomposites. Usingmore » complementary scanning transmission electron microscopy and atom-probe tomography, the elemental composition of each phase is examined and found that Ni ions are exclusively found in the spinel phase. From correlative analysis, a model for the relative favorability of the Ni2+ and Ni3+ valences under the growth conditions is developed. It is shown that multidimensional characterization techniques provide previously unobserved insight into the growth process and complex driving forces for phase segregation.« less
Liquid Adsorption of Organic Compounds on Hematite α-Fe2O3 Using ReaxFF.
Chia, Chung-Lim; Avendaño, Carlos; Siperstein, Flor R; Filip, Sorin
2017-10-24
ReaxFF-based molecular dynamics simulations are used in this work to study the effect of the polarity of adsorbed molecules in the liquid phase on the structure and polarization of hematite (α-Fe 2 O 3 ). We compared the adsorption of organic molecules with different polarities on a rigid hematite surface and on a flexible and polarizable surface. We show that the displacements of surface atoms and surface polarization in a flexible hematite model are proportional to the adsorbed molecule's polarity. The increase in electrostatic interactions resulting from charge transfer in the outermost solid atoms in a flexible hematite model results in better-defined adsorbed layers that are less ordered than those obtained assuming a rigid solid. These results suggest that care must be taken when parametrizing empirical transferable force fields because the calculated charges on a solid slab in vacuum may not be representative of a real system, especially when the solid is in contact with a polar liquid.
Directionally solidified iron-base eutectic alloys
NASA Technical Reports Server (NTRS)
Tewari, S. N.
1976-01-01
Pseudobinary eutectic alloys with nominal compositions of Fe-25Ta-22Ni-10Cr and Fe-15.5Nb-14.5Ni-6.0Cr were directionally solidified at 0.5 centimeter per hour. Their microstructure consisted of the fcc, iron solid-solution, matrix phase reinforced by about 41-volume-percent, hcp, faceted Fe2Ta fibers and 41-volume-percent, hcp, Fe2Nb lamellae for the tantalum- and niobium-containing alloys, respectively. The microstructural stability under thermal cycling and the temperature dependence of tensile properties were investigated. These alloys showed low elevated-temperature strength and were not considered suitable for application in aircraft-gas-turbine blades although they may have applicability as vane materials.
Shamsayei, Maryam; Yamini, Yadollah; Asiabi, Hamid; Safari, Meysam
2018-02-22
The authors describe a 3-component nanoparticle system composed of a silica-coated magnetite (Fe 3 O 4 ) core and a layered double (Cu-Cr) hydroxide nanoplatelet shell. The sorbent has a high anion exchange capacity for extraction anionic species. A simple online system, referred to as "on-line packed magnetic-in-tube solid phase microextraction" was designed. The nanoparticles were placed in a stainless steel cartridge via dry packing. The cartridge was then applied to the preconcentration acidic drugs including naproxen and indomethacin from urine and plasma. Extraction and desorption times, pH values of the sample solution and flow rates of sample solution and eluent were optimized. Analytes were then quantified by HPLC with UV detection. Under optimal conditions, the limits of detection range from 70 to 800 ng L -1 , with linear responses from 0.1-500 μg L -1 (water samples), 0.6-500 μg L -1 (spiked urine), and 0.9-500 μg L -1 (spiked plasma). The inter- and intra-assay precisions (RSDs, for n = 5) are in the range of 2.2-5.4%, 2.8-4.9%, and 2.0-5.2% at concentration levels of 5, 25 and 50 μg L -1 , respectively. The method was applied to the analysis of the drugs in spiked human urine and plasma, and good results were achieved. Graphical abstract Fe 3 O 4 @SiO 2 @CuCr-LDH magnetic nanoparticles were synthesized and packed in to a stainless steel column. The column was applied to solid phase microextraction of acidic drugs from biological samples.
Wang, Qi; Huang, Lijie; Yu, Panfeng; Wang, Jianchang; Shen, Shun
2013-01-01
In the paper, we presented a magnetic solid-phase extraction (MSPE) method based on C(18)-functionalized magnetic silica nanoparticles for the analysis of puerarin in rat plasma. The approach involves two steps including synthesis of magnetic solid-phase sorbents and bioanalysis. The synthesized magnetic silica microspheres modified with chloro(dimethyl)octylsilane (namely Fe(3)O(4)@SiO(2)-C(18)) can provide an efficient way for the extraction of puerarin through C(18) hydrophobic interaction. The puerarin could be easily enriched using milligram-level Fe(3)O(4)@SiO(2)-C(18) sorbents with vibration for 10min. By means of a magnet, puerarin adsorbed with Fe(3)O(4)@SiO(2)-C(18) sorbents was easily isolated from the matrix, and desorbed with CAN. No carryover was observed, and the sorbents could be recycled in our study. The method recoveries were obtained from 85.2% to 92.3%. Limits of quantification and limits of detection of 0.1μgmL(-1) and 0.05μgmL(-1), respectively were achieved. The precision was from 8.1 to 13.7% for intra-day measurement, and from 9.4 to 15.2% for inter-day variation. The accuracy ranged from 94.7 to 106.3% for intra-day measurement, and from 93.3 to 107.8% for inter-day measurement. The MSPE method was applied for analysis of puerarin in rat plasma samples. The results indicated that it was convenient and efficient for the determination of puerarin in biosamples. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Echevarría, F.; Reguera, L.; González M, M.; Galicia, J.; Ávila, M.; Reguera, E.
2018-02-01
Hydrothermal recrystallization appears to be an appropriate treatment to explore the structural diversity of porous coordination polymers. In this contribution, such a post-synthesis treatment is applied to divalent transition metal nitroprussides, T[Fe(CN)5NO]•xH2O with T =Mn, Fe, Co, Ni, Cu, Zn, Cd. This family of compounds forms an interesting series of nanoporous coordination polymers with a wide structural diversity, related to the synthesis route used and the solid hydration degree (x). The effect of a hydrothermal recrystallization of previously prepared fine powders using the precipitation method, on their crystal structure and related properties is herein discussed. In this series of coordination polymers, for Fe, Co, Ni the precipitated powders are obtained as cubic phase, with a high porosity related to presence of systematic vacancies for building unit [Fe(CN)5NO]. For Fe and Co a structural transition, from cubic to orthorhombic, was observed, which is associated to formation of a most compact structure. The crystal structure for the new orthorhombic phases was refined from the collected powder HR-XRD patterns. For Ni, the cubic phase remains stable even for large heating time, which is ascribed to the high polarizing power of this metal. The high porosity for the cubic phase allows an easy accommodation for the local deformations around the Ni atom coordination sphere. The structural information from XRD was complemented with CO2 and H2 adsorption and TG data, IR and UV-vis spectra, and magnetic measurements. The magnetic data, through the presence of spin-orbit coupling for Fe and Co in the two phases, provide fine details on the coordination environment for the metal linked at the N ends of the CN group.
Polar-antipolar transition and weak ferromagnetism in Mn-doped Bi0.86La0.14FeO3
NASA Astrophysics Data System (ADS)
Khomchenko, V. A.; Karpinsky, D. V.; Troyanchuk, I. O.; Sikolenko, V. V.; Többens, D. M.; Ivanov, M. S.; Silibin, M. V.; Rai, R.; Paixão, J. A.
2018-04-01
Having been considered as a prime example of a room-temperature magnetoelectric multiferroic, BiFeO3 continues to attract much interest. Since functional properties of this material can be effectively influenced by chemical, electrical, magnetic, mechanical and thermal stimuli, it can serve as a model for the investigation of cross-coupling phenomena in solids. Special attention is currently paid to the study of chemical pressure-driven magneto-structural transformations. In this paper, we report on the effect of the Mn doping on the crystal structure and magnetic behavior of the Bi1‑x La x FeO3 multiferroics near their polar-antipolar (antiferromagnetic-weak ferromagnetic) phase boundary. Synchrotron x-ray and neutron powder diffraction measurements of the Bi0.86La0.14Fe1‑x Mn x O3 (x = 0.05, 0.1, 0.15) compounds have been performed. The diffraction data suggest that the Mn substitution results in the suppression of the ferroelectric polarization and gives rise to the appearance of the antiferroelectric (generally, PbZrO3-related) phase characteristic of the phase diagrams of the Bi1‑x RE x FeO3 (RE = rare-earth) systems. Depending on the Mn concentration (determining phase composition of the Bi0.86La0.14Fe1‑x Mn x O3 samples at room temperature), either complete or partial revival of the polar phase can be observed with increasing temperature. Magnetic measurements of the samples indicate that the Mn doping affects the stability of the cycloidal antiferromagnetic order specific to the polar phase, thus resulting in the formation of a ferroelectric and weak ferromagnetic state.
Liu, Qi; Liu, Yadong; Yang, Fan; He, Hao; Xiao, Xianghui; Ren, Yang; Lu, Wenquan; Stach, Eric; Xie, Jian
2018-02-07
In situ high-energy synchrotron XRD studies were carried out on commercial 18650 LiFePO 4 cells at different cycles to track and investigate the dynamic, chemical, and structural changes in the course of long-term cycling to elucidate the capacity fading mechanism. The results indicate that the crystalline structural deterioration of the LiFePO 4 cathode and the graphite anode is unlikely to happen before capacity fades below 80% of the initial capacity. Rather, the loss of the active lithium source is the primary cause for the capacity fade, which leads to the appearance of inactive FePO 4 that is proportional to the absence of the lithium source. Our in situ HESXRD studies further show that the lithium-ion insertion and deinsertion behavior of LiFePO 4 continuously changed with cycling. For a fresh cell, the LiFePO 4 experienced a dual-phase solid-solution behavior, whereas with increasing cycle numbers, the dynamic change, which is characteristic of the continuous decay of solid solution behavior, is obvious. The unpredicted dynamic change may result from the morphology evolution of LiFePO 4 particles and the loss of the lithium source, which may be the cause of the decreased rate capability of LiFePO 4 cells after long-term cycling.
Nanoparticulate mackinawite formation; a stopped and continuous flow XANES and EXAFS investigation
NASA Astrophysics Data System (ADS)
Butler, I. B.; Bell, A. M.; Charnock, J. M.; Rickard, D.; Vaughan, D. J.; Oldroyd, A.
2009-12-01
The sequestration of sulfur and iron within sedimentary iron sulfides, and ultimately as pyrite, is a major sink in global biogeochemical cycles of those elements and has impacts on global carbon and oxygen cycles. The formation of the metastable black iron (II) monosulfide mackinawite is a key process because mackinawite forms in aqueous solutions where the Fe(II) and S(-II) IAP exceeds mackinawite’s Ksp. Mackinawite is the first formed iron sulfide phase, a consequence of Ostwald’s step rule and is a reactant phase during the formation of thermodynamically stable sedimentary iron sulfide minerals such as pyrite. The reaction of dissolved Fe(II) and sulfide is extremely fast and reactions in the environmentally significant near-neutral pH range tend to completion in <1 second. We have combined stopped and continuous flow techniques with X-ray absorption spectroscopy to evaluate the products of the fast precipitation kinetics of mackinawite over millisecond timescales. EXAFS spectra and data collected during flow experiments were compared with those from a well characterised freeze-dried nanoparticulate mackinawite standard and with published data. Published work has used Rietveld crystal structure refinement to determine bond distances of 2.2558 and 2.5976Å for Fe-S and Fe-Fe respectively. In our experiments Fe K edge XANES is consistent with tetrahedrally coordinated Fe in the precipitated sulfide phase. EXAFS data show that local Fe-S and Fe-Fe coordination and interatomic distances (Fe-S = 2.24Å; Fe-Fe = 2.57Å) are consistent with those determined for the standard mackinawite and published data. The coordination and spacing are developed in the precipitated phase after <10ms reaction at pH5, and considerably faster in experiments at near neutral to alkaline pH. No evidence for phases structurally intermediate between hexaqua Fe(II) and precipitated mackinawite was observed. Aqueous FeS° cluster complexes previously identified as intermediates during mackinawite formation and iron sulfide mineral transformations did not contribute significantly to the EXAFS spectra collected. For environmental, geological and biogeochemical applications, the precipitation of the mineral mackinawite can be considered to proceed rapidly from aqueous Fe(II) and S(-II) ions to the nanoparticulate crystalline mineral. The materials labelled “disordered mackinawite”, or “amorphous FeS” phase which have been widely quoted in the iron sulfide literature do not form at any stage of the precipitation of mackinawite from aqueous solutions. Physical and chemical properties previously ascribed to an amorphous or disordered structure are a consequence of the nanoparticulate form of the first precipitated solid.
Tangalos, G.E.; Beard, B.L.; Johnson, C.M.; Alpers, Charles N.; Shelobolina, E.S.; Xu, H.; Konishi, H.; Roden, E.E.
2012-01-01
The inventories and Fe isotope composition of aqueous Fe(II) and solid-phase Fe compounds were quantified in neutral-pH, chemically precipitated sediments downstream of the Iron Mountain acid mine drainage site in northern California, USA. The sediments contain high concentrations of amorphous Fe(III) oxyhydroxides [Fe(III)am] that allow dissimilatory iron reduction (DIR) to predominate over Fe–S interactions in Fe redox transformation, as indicated by the very low abundance of Cr(II)-extractable reduced inorganic sulfur compared with dilute HCl-extractable Fe. δ56Fe values for bulk HCl- and HF-extractable Fe were ≈ 0. These near-zero bulk δ56Fe values, together with the very low abundance of dissolved Fe in the overlying water column, suggest that the pyrite Fe source had near-zero δ56Fe values, and that complete oxidation of Fe(II) took place prior to deposition of the Fe(III) oxide-rich sediment. Sediment core analyses and incubation experiments demonstrated the production of millimolar quantities of isotopically light (δ56Fe ≈ -1.5 to -0.5) aqueous Fe(II) coupled to partial reduction of Fe(III)am by DIR. Trends in the Fe isotope composition of solid-associated Fe(II) and residual Fe(III)am are consistent with experiments with synthetic Fe(III) oxides, and collectively suggest an equilibrium Fe isotope fractionation between aqueous Fe(II) and Fe(III)am of approximately -2. These Fe(III) oxide-rich sediments provide a model for early diagenetic processes that are likely to have taken place in Archean and Paleoproterozoic marine sediments that served as precursors for banded iron formations. Our results suggest pathways whereby DIR could have led to the formation of large quantities of low-δ56Fe minerals during BIF genesis.
NASA Astrophysics Data System (ADS)
Ghiorso, Mark S.; Sack, O.
1991-10-01
A new thermodynamic formulation of the Fe-Ti oxide geothermometer/oxygen barometer is developed. The method is based upon recently calibrated models for spinel solid solutions in the quinary system (Fe2+, Mg)(Al,Fe3+,Cr)2O4-(Fe2+, Mg)2TiO4 by Sack and Ghiorso, and rhombohedral oxides in the quaternary system (Fe2+,Mg,Mn)TiO3-Fe2O3 (this paper). The formulation is internally consistent with thermodynamic models for (Fe2+,Mg)-olivine and -orthopyroxene solid solutions and end-member thermodynamic properties tabulated by Berman. The constituent expressions account for compositional and temperature dependent cation ordering and reproduce miscibility gap features in all of the component binaries. The calibration does not account for the excess Gibbs energy resulting from compositional and temperature dependent magnetic ordering in either phase. This limits application of the method to assemblages that equilibrated at temperatures above 600° C. Practical implementation of the proposed geothermometer/oxygen barometer requires minimal use of projection algorthms in accommodating compositions of naturally occurring phases. The new formulation is applied to the estimation of temperature and oxygen fugacity in a wide variety of intermediate to silicic volcanic rocks. In combination with previous work on olivine and orthopyroxene thermodynamics, equilibration pressures are computed for a subset of these volcanics that contain the assemblage quartz, oxides and either ferromagnesian silicate. The calculated log10 f O 2- T relations are reflected in coexisting ferromagnesian mineral assemblages. Volcanics with the lowest relative oxygen fugacity (Δlog10 f O 2) are characterized by the assemblage olivine-quartz, those with slightly higher Δ log10 f O 2 s, by the assemblage orthopyroxene-quartz. The sequence proceeds with the necessary phases biotite-feldspar, then hornblende-quartz-clinopyroxene, and finally at the highest Δ log10 f O 2 s, sphene-quartz-clinopyroxene. Quantitative analysis of these trends, utilizing thermodynamic data for the constituent phases, establishes that, in most cases, the T-log10 f O 2value computed from the oxides is consistent with the compositions of coexisting silicate phases, indicating that phenocryst equilibrium was achieved prior to eruption. There is, however, considerable evidence of oxide-silicate disequilibrium in samples collected from more slowly cooled domes and obsidians. In addition, T-log10 f O 2trends from volcanic rocks that contain biotite and orthopyroxene are interpreted to imply a condition of Fe2+-Mg exchange disequilibrium between orthopyroxene and coexisting ferromagnesian silicates and melt. It is suspected that many biotite-feldspar-quartz-orthopyroxene bearing low temperature volcanic rocks inherit orthopyroxene xenocrysts which crystallized earlier in the cooling history of the magma body.
The partitioning of Fe, Ni, Cu, Pt, and Au between sulfide, metal, and fluid phases: A pilot study
NASA Astrophysics Data System (ADS)
Ballhaus, C.; Ryan, C. G.; Mernagh, T. P.; Green, D. H.
1994-01-01
This paper describes new experimental and analytical techniques to study element partitioning behavior between crystalline material and a late- to post-magmatic fluid phase. Samples of the fluid phase are isolated at experimental run conditions as synthetic fluid in quartz. Individual fluid inclusions are later analyzed for dissolved metals using Proton Induced X-ray Emission (PIXE). Back reactions between fluid and solid phases during quenching are prevented because the fluid is isolated at the experimental pressure, temperature ( P, T) conditions before quenching occurs. The technique is applied to study the partitioning of chalcophile elements (Fe, Ni, Cu, Pt and Au) between sulfide phases, metal alloys and supercritical SiO 2-NaCl-saturated H2O ± CH4- CO2- H2S fluids. Synthetic Ni-Cu-rich monosulfide solid solution (mss) doped with PtS or Au is packed in a quartz capsule and, together with a hydrogen buffer capsule and compounds to generate a fluid phase, welded shut in an outer Pt or Au metal capsule. The fluid phase is generated by combustion and reaction of various C-H-O fluid components during heating. Depending on capsule material and sample composition, the run products consist of platiniferous or auriferous mss, Pt-Fe, or ( Au, Cu) alloy phases, PtS, Fe 3O 4, sometimes a Cu-rich sulfide melt, and a fluid phase. Samples of the fluid are trapped in the walls of the quartz sample capsule as polyphase fluid inclusions. All phases are now available for analysis: fluid speciation is analyzed by piercing the outer metal capsule under vacuum and feeding the released fluid into a mass spectrometer. Phases and components within fluid inclusions are identified with Raman spectroscopy. Platinum and gold in solid solution in mss are determined with a CAMECA SX50 electron microanalyser. Metal contents trapped in selected fluid inclusions are determined quantitatively by in situ analysis with a proton microprobe using PIXE and a correction procedure specifically developed for quantitative fluid inclusion analysis. Initial results of metal solubilities in the fluid are as follows. Iron decreases from above 6,000 ppm under reduced conditions in the presence of H 2S in the fluid, to less than 1,000 ppm if hematite is stable in the crystalline run product. Copper and gold concentrations in the fluid range from about 600 to over 1200 and from 150 to about 270 ppm, respectively. The solubilities of these two metals in NaCl-saturated fluids are apparently independent of fluid speciations covered here. Nickel is mostly below detection limit (<10 ppm) and apparently poorly soluble in high-temperature fluid phases. Platinum concentrations in fluid inclusions are highly variable even among fluid inclusions of single runs, possibly because Pt tends to form multi-atom complexes in fluid phases.
Legrand, Ludovic; El Figuigui, Alaaeddine; Mercier, Florence; Chausse, Annie
2004-09-01
This work describes the heterogeneous reaction between FeII in carbonate green rust and aqueous chromate, in NaHCO3 solutions at 25 degrees C, and at pH values of 9.3-9.6. Evidence for reduction of CrVI to CrIII and concomitant solid-state oxidation of lattice FeII to FeIII was found from FeII titration and from structural analysis of the solids using FTIR, XRD, SEM, and XPS methods. Results indicate the formation of ferric oxyhydroxycarbonate and the concomitant precipitation of CrIII monolayers at the surface of the iron compound that induce passivation effects and progressive rate limitations. The number of CrIII monolayers formed at the completion of the reaction depends on [FeII]t=0, the molar concentration of FeII(solid) at t=0; on [n(o)]t=0, the molar concentration of reaction sites present at the surface of the solid phase at t=0; and on [CrVI]t=0, the molar concentration of CrVI at t=0. Kinetic data were modeled using a model based on the formation of successive CrIII monolayers, -(d[CrVI]/dt) = sigma(1)j k(i)[S] [CrVI]([n(i - 1)] - [n(i)]) with k(i)[S] (in s(-1) L mol(-1)), the rate coefficient of formation of CrIII monolayer i, and [n(i)] and [n(i - 1)], the molar concentration of CrIII precipitated in monolayer i and monolayer i - 1, respectively. Good matching curves were obtained with kinetic coefficients: k(1)[S] = 5-8 x 10(-4), k(2)[S] = 0.5-3 x 10(-5), and k(3)[S] about 1.7 x 10(-6) s(-1) m(-2) L. The CrVI removal efficiency progressively decreases along with the accumulation of CrIII monolayers at the surface of carbonate green rust particles. In the case of thick green rust particles resulting from the corrosion of iron in permeable reactive barriers, the quantity of FeII readily accessible for efficient CrVI removal should be rather low.
Gibbs Energy Modeling of Digenite and Adjacent Solid-State Phases
NASA Astrophysics Data System (ADS)
Waldner, Peter
2017-08-01
All sulfur potential and phase diagram data available in the literature for solid-state equilibria related to digenite have been assessed. Thorough thermodynamic analysis at 1 bar total pressure has been performed. A three-sublattice approach has been developed to model the Gibbs energy of digenite as a function of composition and temperature using the compound energy formalism. The Gibbs energies of the adjacent solid-state phases covelitte and high-temperature chalcocite are also modeled treating both sulfides as stoichiometric compounds. The novel model for digenite offers new interpretation of experimental data, may contribute from a thermodynamic point of view to the elucidation of the role of copper species within the crystal structure and allows extrapolation to composition regimes richer in copper than stoichiometric digenite Cu2S. Preliminary predictions into the ternary Cu-Fe-S system at 1273 K (1000 °C) using the Gibbs energy model of digenite for calculating its iron solubility are promising.
Coprecipitation of Arsenate and Arsenite with Green Rust Minerals
The objectives of this experiment were to evaluate the extent and nature of arsenic co-precipitation with green rusts and to examine the influence of arsenic incorporation on the mineralogy of formed solid phases. Stoichiometric green rusts were obtained by coprecipitation of fe...
Preferential diffusion in concentrated solid solution alloys: NiFe, NiCo and NiCoCr
Zhao, Shijun; Osetsky, Yuri; Zhang, Yanwen
2017-02-13
In single-phase concentrated solid-solution alloys (CSAs), including high entropy alloys (HEAs), remarkable mechanical properties are exhibited, as well as extraordinary corrosion and radiation resistance compared to pure metals and dilute alloys. But, the mechanisms responsible for these properties are unknown in many cases. In this work, we employ ab initio molecular dynamics based on density functional theory to study the diffusion of interstitial atoms in Ni and Ni-based face-centered cubic CSAs including NiFe, NiCo and NiCoCr. We model the defect trajectories over >100 ps and estimate tracer diffusion coefficients, correlation factors and activation energies. Furthermore, we found that the diffusionmore » mass transport in CSAs is not only slower than that in pure components, i.e. sluggish diffusion, but also chemically non-homogeneous. The results obtained here can be used in understanding and predicting the atomic segregation and phase separation in CSAs under irradiation conditions.« less
NASA Technical Reports Server (NTRS)
Canfield, Donald E.; Thamdrup, BO; Hansen, Jens W.
1993-01-01
A combination of porewater and solid phase analysis as well as a series of sediment incubations are used to quantify organic carbon oxidation by dissimilatory Fe reduction, Mn reduction, and sulfate reduction, in sediments from the Skagerrak (located off the northeast coast of Jutland, Denmark). Solid phase data are integrated with incubation results to define the zones of the various oxidation processes. At S(9), surface Mn enrichments of up to 3.5 wt pct were found, and with such a ready source of Mn, dissimilatory Mn reduction was the only significant anaerobic process of carbon oxidation in the surface 10 cm of the sediment. At S(4) and S(6), active Mn reduction occurred; however, most of the Mn reduction may have resulted from the oxidation of acid volatile sulfides and Fe(2+) rather than by a dissimilatory sulfate. Dissolved Mn(2+) was found to completely adsorb onto sediment containing fully oxidized Mn oxides.
NASA Astrophysics Data System (ADS)
Kaur, Randeep; Singh, Anupinder
2018-05-01
The influence of Nd3+ and Fe3+ substitution on Pb(Zr0.45Ti0.55)O3 composition prepared via solid state reaction route have been studied. The structural evolution was investigated using an X-ray diffraction (XRD). Non perovskite Pb2Ti2O7, ZrO2 and PbO phases were observed along with the rhombohedral phase. The SEM micrograph shows the surface morphology of the samples. The density of the sample was calculated by using Archimedes principle and found to be 8.45g/cm3. The magnetic data depicts the presence of both the ferromagnetic as well as antiferromagnetic character in the solid solution. In ferroelectric studies, the values of remnant polarization (Pr) and coercive field (Ec) enhanced from 2.60 μC/cm2 - 3.44 µC/cm2 and 15.82kV/cm - 22.91kV/cm respectively.
Oxidative Dissolution of Arsenopyrite by Mesophilic and Moderately Thermophilic Acidophiles †
Tuovinen, Olli H.; Bhatti, Tariq M.; Bigham, Jerry M.; Hallberg, Kevin B.; Garcia, Oswaldo; Lindström, E. Börje
1994-01-01
The purpose of this work was to determine solution- and solid-phase changes associated with the oxidative leaching of arsenopyrite (FeAsS) by Thiobacillus ferrooxidans and a moderately thermoacidophilic mixed culture. Jarosite [KFe3(SO4)2(OH)6], elemental sulfur (S0), and amorphous ferric arsenate were detected by X-ray diffraction as solid-phase products. The oxidation was not a strongly acid-producing reaction and was accompanied by a relatively low redox level. The X-ray diffraction lines of jarosite increased considerably when ferrous sulfate was used as an additional substrate for T. ferroxidans. A moderately thermoacidophilic mixed culture oxidized arsenopyrite faster at 45°C than did T. ferroxidans at 22°C, and the oxidation was accompanied by a nearly stoichiometric release of Fe and As. The redox potential was initially low but subsequently increased during arsenopyrite oxidation by the thermoacidophiles. Jarosite, S0, and amorphous ferric arsenate were also formed under these conditions. PMID:16349379
Interaction of multiferroic properties and interfaces in hexagonal LuMnO3 ceramics
NASA Astrophysics Data System (ADS)
Baghizadeh, A.; Vieira, J. M.; Stroppa, D. G.; Mirzadeh Vaghefi, P.; Graça, M. P.; Amaral, J. S.; Willinger, M.-G.; Amaral, V. S.
2017-02-01
A study on the underlying interaction mechanisms between lattice constants, magnetic and dielectric properties with inhomogeneities or internal interfaces in hexagonal, off-stoichiometric LuMnO3 oxide is presented. By increasing Mn content the a-axis constant and volume of the unit cell, the antiferromagnetic (AFM) Néel temperature, T N, and frustration factor of the frustrated Mn3+ trimmers in basal plane show decreasing trends. It was found that increasing the annealing time improves the properties of the lattices and progressively eliminates secondary phases for compositions within the solid solution stability limits. A magnetic contribution below T N is observed for all samples. Two regimes of magnetization below and above 45 K were observed in the AFM state. The magnetic contribution below T N is assigned to either the secondary phase or internal interfaces like ferroelectric (FE) domain walls. Magneto-dielectric coupling at T N is preserved in off-stoichiometric ceramics. The presence of a low temperature anomaly of the dielectric constant is correlated to the composition of the solid solution in off-stoichiometric ceramics. Large FE domains are observed in piezoresponse force microscopy (PFM) images of doped and un-doped ceramics, whereas atomic structure analysis indicates the parallel formation of nano-sized FE domains. A combination of measured properties and microscopy images of micron- and nano-sized domains ascertain the role of lattice distortion and stability of solid solution on multiferroic properties.
NASA Astrophysics Data System (ADS)
Shi, Yunzhu; Collins, Liam; Balke, Nina; Liaw, Peter K.; Yang, Bin
2018-05-01
In-situ electrochemical (EC)-AFM is employed to investigate the localized corrosion of the AlxCoCrFeNi high-entropy alloys (HEAs). Surface topography changes on the micro/sub-micro scale are monitored at different applied anodizing potentials in a 3.5 wt% NaCl solution. The microstructural evolutions with the increased Al content in the alloys are characterized by SEM, TEM, EDS and EBSD. The results show that by increasing the Al content, the microstructure changes from single solid-solution to multi-phases, leading to the segregations of elements. Due to the microstructural variations in the AlxCoCrFeNi HEAs, localized corrosion processes in different ways after the breakdown of the passive film, which changes from pitting to phase boundary corrosion. The XPS results indicate that an increased Al content in the alloys/phases corresponds to a decreased corrosion resistance of the surface passive film.
Iron and Manganese Pyrophosphates as Cathodes for Lithium-Ion Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Hui; Upreti, Shailesh; Chernova, Natasha A.
2015-10-15
The mixed-metal phases, (Li{sub 2}Mn{sub 1-y}Fe{sub y}P{sub 2}O{sub 7}, 0 {le} y {le} 1), were synthesized using a 'wet method', and found to form a solid solution in the P2{sub 1}/a space group. Both thermogravimetric analysis and magnetic susceptibility measurements confirm the 2+ oxidation state for both the Mn and Fe. The electrochemical capacity improves as the Fe concentration increases, as do the intensities of the redox peaks of the cyclic voltammogram, indicating higher lithium-ion diffusivity in the iron phase. The two Li{sup +} ions in the three-dimensional tunnel structure of the pyrophosphate phase allows for the cycling of moremore » than one lithium per redox center. Cyclic voltammograms show a second oxidation peak at 5 V and 5.3 V, indicative of the extraction of the second lithium ion, in agreement with ab initio computation predictions. Thus, electrochemical capacities exceeding 200 Ah/kg may be achieved if a stable electrolyte is found.« less
NASA Astrophysics Data System (ADS)
Nadutov, V. M.; Vashchuk, D. L.; Karbivskii, V. L.; Volosevich, P. Yu.; Davydenko, O. A.
2018-04-01
The effect of cold plastic deformation by upsetting (e = 1.13) on structure and hybridised bonds of carbon in the fcc Invar Fe-30.9%Ni-1.23% C alloy was studied by means of X-ray phase analysis and X-ray photoelectron spectroscopy. Carbon precipitates along grain boundaries and inside of grains in the alloy after annealing and plastic deformation were revealed. The presence of mainly sp2- and sp3-hybridised C-C bonds attributing to graphite and amorphous carbon as well as the carbon bonds with impurity atoms and metallic Fe and Ni atoms in austenitic phase were revealed in the annealed and deformed alloy. It was shown for the first time that plastic deformation of the alloy results in partial destruction of the graphite crystal structure, increasing the relative part of amorphous carbon, and redistribution of carbon between structural elements as well as in a solid solution of austenitic phase.
NASA Astrophysics Data System (ADS)
Hidayat, Taufiq; Fallah-Mehrjardi, Ata; Hayes, Peter C.; Jak, Evgueni
2018-04-01
New experimental data were obtained on the gas/slag/matte/spinel equilibria in the Cu-Fe-O-S-Si system at 1473 K (1200 °C) and P(SO2) = 0.25 atm covering Cu concentrations in matte between 42 and 78 wt pct Cu. Accurate measurements were obtained using high-temperature equilibration and the rapid quenching technique, followed by electron-probe X-ray microanalysis of equilibrium phase compositions. The use of spinel substrates made to support the samples ensures equilibrium with this primary phase solid, eliminates crucible contamination, and facilitates direct gas-condensed phase equilibrium and high quenching rates. Particular attention was given to the confirmation of the achievement of equilibrium. The results quantify the relationship between Cu in matte and oxygen partial pressure, sulfur in matte, oxygen in matte, Fe/SiO2 at slag liquidus, sulfur in slag, and dissolved copper in slag.
High pressure synthesis of a hexagonal close-packed phase of the high-entropy alloy CrMnFeCoNi
NASA Astrophysics Data System (ADS)
Tracy, Cameron L.; Park, Sulgiye; Rittman, Dylan R.; Zinkle, Steven J.; Bei, Hongbin; Lang, Maik; Ewing, Rodney C.; Mao, Wendy L.
2017-05-01
High-entropy alloys, near-equiatomic solid solutions of five or more elements, represent a new strategy for the design of materials with properties superior to those of conventional alloys. However, their phase space remains constrained, with transition metal high-entropy alloys exhibiting only face- or body-centered cubic structures. Here, we report the high-pressure synthesis of a hexagonal close-packed phase of the prototypical high-entropy alloy CrMnFeCoNi. This martensitic transformation begins at 14 GPa and is attributed to suppression of the local magnetic moments, destabilizing the initial fcc structure. Similar to fcc-to-hcp transformations in Al and the noble gases, the transformation is sluggish, occurring over a range of >40 GPa. However, the behaviour of CrMnFeCoNi is unique in that the hcp phase is retained following decompression to ambient pressure, yielding metastable fcc-hcp mixtures. This demonstrates a means of tuning the structures and properties of high-entropy alloys in a manner not achievable by conventional processing techniques.
NASA Astrophysics Data System (ADS)
Soni, Vinay Kumar; Sanyal, S.; Sinha, S. K.
2018-05-01
The present work reports the structural and phase stability analysis of equiatomic FeCoNiCuZn High entropy alloy (HEA) systems prepared by mechanical alloying (MA) method. In this research effort some 1287 alloy combinations were extensively studied to arrive at most favourable combination. FeCoNiCuZn based alloy system was selected on the basis of physiochemical parameters such as enthalpy of mixing (ΔHmix), entropy of mixing (ΔSmix), atomic size difference (ΔX) and valence electron concentration (VEC) such that it fulfils the formation criteria of stable multi component high entropy alloy system. In this context, we have investigated the effect of novel alloying addition in view of microstructure and phase formation aspect. XRD plots of the MA samples shows the formation of stable solid solution with FCC (Face Cantered Cubic) after 20 hr of milling time and no indication of any amorphous or intermetallic phase formation. Our results are in good agreement with calculation and analysis done on the basis of physiochemical parameters during selection of constituent elements of HEA.
Shi, Zhihong; Xu, Dan; Zhao, Xuan; Li, Xinghong; Shen, Huimin; Yang, Bing; Zhang, Hongyi
2017-12-01
A novel dispersive admicelle solid-phase extraction method based on sodium dodecyl sulfate-coated Fe 3 O 4 nanoparticles was developed for the selective adsorption of berberine, coptisine, and palmatine in Gegen-Qinlian oral liquid before high-performance liquid chromatography. Fe 3 O 4 nanoparticles were synthesized by a chemical coprecipitation method and characterized by using transmission electron microscopy. Under acidic conditions, the surface of Fe 3 O 4 nanoparticles was coated with sodium dodecyl sulfate to form a nano-sized admicelle magnetic sorbent. Owing to electrostatic interaction, the alkaloids were adsorbed onto the oppositely charged admicelle magnetic nanoparticles. The quick separation of the analyte-adsorbed nanoparticles from the sample solution was performed by using Nd-Fe-B magnet. Best extraction efficiency was achieved under the following conditions: 800 μL Fe 3 O 4 nanoparticles suspension (20 mg/mL), 150 μL sodium dodecyl sulfate solution (10 mg/mL), pH 2, and vortexing time 2 min for the extraction of alkaloids from 10 mL of diluted sample. Four hundred microliters of methanol was used to desorb the alkaloids by vortexing for 1 min. Satisfactory extraction recoveries were obtained in the range of 85.9-120.3%, relative standard deviations for intra- and interday precisions were less than 6.3 and 10.0%, respectively. Finally, the established method was successfully applied to analyze the alkaloids in two batches of Gegen-Qinlian oral liquids. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yang, Qin; Wang, Yuzhi; Zhang, Hongmei; Xu, Kaijia; Wei, Xiaoxiao; Xu, Panli; Zhou, Yigang
2017-11-01
A novel magnetic extractant, PEG 4000 modified Fe 3 O 4 nanomaterial that coated with dianionic amino acid ionic liquid (Fe 3 O 4 @PEG@DAAAIL), was successfully synthesized and characterized. X-ray diffraction (XRD), transmission electron microscope (TEM), vibrating sample magnetometer (VSM), fourier transform infrared spectrometry (FT-IR), thermal gravimetric analysis (TGA) and zeta potentials were used to confirm that the novel nanocomposite was successfully synthesized. Subsequently, the prepared Fe 3 O 4 @PEG@DAAAIL nanocomposite was used as the extractant for trypsin coupled with magnetic solid-phase extraction (MSPE). The concentrations of trypsin in the supernatant were detected by UV-vis spectrophotometer at 278nm. The extraction ability turned out to be better than the other four kinds of extractants prepared in this work. Furthermore, the influence of a series of factors, such as extraction time and temperature, initial trypsin concentration, the value of pH and ionic strength, was systematically investigated. Under the optimal extraction condition, the extraction capacity for trypsin could reach up to 718.73mg/g, absolutely higher than that of other adsorbents reported. This satisfactory extraction capacity could be maintained unchangeable after at least eight days, and kept over 90% of initial extraction capacity after eight recycles. What's more, the activity of trypsin after extraction retained 92.29% of initial activity, verifying the biocompatibility of the prepared extractant. Finally, the developed Fe 3 O 4 @PEG@DAAAIL-MSPE method was successfully applied to the real sample analysis with satisfactory results. All of above proves the potential value of Fe 3 O 4 @PEG@DAAAIL-MSPE in the analysis of biomass. Copyright © 2017 Elsevier B.V. All rights reserved.
Matthies, R; Aplin, A C; Horrocks, B R; Mudashiru, L K
2012-04-01
Cyclic-, Differential Pulse- and Steady-state Microdisc Voltammetry (CV, DPV, SMV) techniques have been used to quantify the occurrence and fate of dissolved Fe(ii)/Fe(iii), nano-particulate and micro-particulate iron over a 12 month period in a series of net-acidic and net-alkaline coal mine drainages and passive treatment systems. Total iron in the mine waters is typically 10-100 mg L(-1), with values up to 2100 mg L(-1). Between 30 and 80% of the total iron occurs as solid phase, of which 20 to 80% is nano-particulate. Nano-particulate iron comprises 20 to 70% of the nominally "dissolved" (i.e. <0.45 μm) iron. Since coagulation and sedimentation are the only processes required to remove solid phase iron, these data have important implications for the generation or consumption of acidity during water treatment. In most waters, the majority of truly dissolved iron occurs as Fe(ii) (average 64 ± 22%). Activities of Fe(ii) do not correlate with pH and geochemical modelling shows that no Fe(ii) mineral is supersaturated. Removal of Fe(ii) must proceed via oxidation and hydrolysis. Except in waters with pH < 4.4, activities of Fe(iii) are strongly and negatively correlated with pH. Geochemical modelling suggests that the activity of Fe(iii) is controlled by the solubility of hydrous ferric oxides and oxyhydroxysulfates, supported by scanning and transmission electron microscopic analysis of solids. Nevertheless, the waters are generally supersaturated with respect to ferrihydrite and schwertmannite, and are not at redox equilibrium, indicating the key role of oxidation and hydrolysis kinetics on water treatment. Typically 70-100% of iron is retained in the treatment systems. Oxidation, hydrolysis, precipitation, coagulation and sedimentation occur in all treatment systems and - independent of water chemistry and the type of treatment system - hydroxides and oxyhydroxysulfates are the main iron sinks. The electrochemical data thus reveal the rationale for incomplete iron retention in individual systems and can thus inform future design criteria. The successful application of this low cost and rapid electrochemical method demonstrates its significant potential for real-time, on-site monitoring of iron-enriched waters and may in future substitute traditional analytical methods.
NASA Astrophysics Data System (ADS)
He, Guili; Xu, Minghan; Shu, Mengjun; Li, Xiaolin; Yang, Zhi; Zhang, Liling; Su, Yanjie; Hu, Nantao; Zhang, Yafei
2016-09-01
Recently, carbon dots (CDs) have been playing an increasingly important role in industrial production and biomedical field because of their excellent properties. As such, finding an efficient method to quickly synthesize a large scale of relatively high purity CDs is of great interest. Herein, a facile and novel microwave method has been applied to prepare nitrogen doped CDs (N-doped CDs) within 8 min using L-glutamic acid as the sole reaction precursor in the solid phase condition. The as-prepared N-doped CDs with an average size of 1.64 nm are well dispersed in aqueous solution. The photoluminescence of N-doped CDs is pH-sensitive and excitation-dependent. The N-doped CDs show a strong blue fluorescence with relatively high fluorescent quantum yield of 41.2%, which remains stable even under high ionic strength. Since the surface is rich in oxygen-containing functional groups, N-doped CDs can be applied to selectively detect Fe3+ with the limit of detection of 10-5 M. In addition, they are also used for cellular bioimaging because of their high fluorescent intensity and nearly zero cytotoxicity. The solid-phase microwave method seems to be an effective strategy to rapidly obtain high quality N-doped CDs and expands their applications in ion detection and cellular bioimaging.
Chen, Jiuyan; Cao, Shurui; Zhu, Ming; Xi, Cunxian; Zhang, Lei; Li, Xianliang; Wang, Guomin; Zhou, Yuantao; Chen, Zhiqiong
2018-04-27
An adsorbent, consisting of silica-coated Fe 3 O 4 grafted graphene oxide and β-cyclodextrin (Fe 3 O 4 @SiO 2 /GO/β-CD), which possessed the merits of antioxidation, superparamagnetism, high surface area, high supramolecular recognition and environment friendly, was successfully fabricated. Considering the synergy between β-CD and graphene oxide in adsorption mechanism, the synthesized adsorbent could grasp compounds especially with aromatic structures through π-π interaction, hydrophobic interaction and host-guest inclusion complex forming. Based on the advantages, a magnetic solid phase extraction (MSPE) method for 9 PGRs using Fe 3 O 4 @SiO 2 /GO/β-CD as adsorbents was developed in this study. The characterizations of Fe 3 O 4 @SiO 2 /GO/β-CD were performed on Fourier transform infrared spectrometry (FT-IR), X-ray photoelectron spectroscopy (XPS), CHNS/O elemental analyzer, scanning electron microscopy (SEM) and vibrating sample magnetometry (VSM). Under the optimal MSPE condition, the Fe 3 O 4 @SiO 2 /GO/β-CD exhibited selectivity capability toward 9 PGRs when compared with Fe 3 O 4 @SiO 2 /GO. Meanwhile, the selectivity capability of Fe 3 O 4 @SiO 2 /GO/β-CD was higher than that of Fe 3 O 4 @SiO 2 /GO/α-CD except for 4-FPA. When the developed MSPE procedure was coupled with ultra-high performance liquid chromatography-triple quadrupole linear ion trap mass spectrometry (UHPLC-QTrap-MS/MS) to quantitative analysis of 9 PGRs, linearities ranging from 2 to 50 μg/kg were achieved for 9 PGRs with the correlation coefficients (r 2 ) in the range of 0.9975-0.9999. The limits of detection (LODs) for 9 analytes varied from 0.04 to 0.29 μg/kg. Finally, the proposed technique was applied to analyze PGRs residues in mutiple vegetable samples. Copyright © 2018 Elsevier B.V. All rights reserved.
Atomic layer deposition and properties of ZrO2/Fe2O3 thin films
Seemen, Helina; Ritslaid, Peeter; Rähn, Mihkel; Tamm, Aile; Kukli, Kaupo; Kasikov, Aarne; Link, Joosep; Stern, Raivo; Dueñas, Salvador; Castán, Helena; García, Héctor
2018-01-01
Thin solid films consisting of ZrO2 and Fe2O3 were grown by atomic layer deposition (ALD) at 400 °C. Metastable phases of ZrO2 were stabilized by Fe2O3 doping. The number of alternating ZrO2 and Fe2O3 deposition cycles were varied in order to achieve films with different cation ratios. The influence of annealing on the composition and structure of the thin films was investigated. Additionally, the influence of composition and structure on electrical and magnetic properties was studied. Several samples exhibited a measurable saturation magnetization and most of the samples exhibited a charge polarization. Both phenomena were observed in the sample with a Zr/Fe atomic ratio of 2.0. PMID:29441257
NASA Astrophysics Data System (ADS)
Grebenyuk, G. S.; Gomoyunova, M. V.; Pronin, I. I.; Vyalikh, D. V.; Molodtsov, S. L.
2016-03-01
Ultrathin (∼2 nm) films of Co2FeSi ferromagnetic alloy were formed on silicon by solid-phase epitaxy and studied in situ. Experiments were carried out in an ultrahigh vacuum (UHV) using substrates of Si(1 1 1) single crystals covered with a 5 nm thick CaF2 barrier layer. The elemental and phase composition as well as the magnetic properties of the synthesized films were analyzed by photoelectron spectroscopy using synchrotron radiation and by magnetic linear dichroism in photoemission of Fe 3p and Co 3p electrons. The study shows that the synthesis of the Co2FeSi ferromagnetic alloy occurs in the temperature range of 200-400 °C. At higher temperatures, the films become island-like and lose their ferromagnetic properties, as the CaF2 barrier layer is unable to prevent a mass transfer between the film and the Si substrate, which violates the stoichiometry of the alloy.
Structural, dielectric and magnetic studies of Mn doped Y-type barium hexaferrite (Ba2Mg2Fe12O22)
NASA Astrophysics Data System (ADS)
Abdullah, Md. F.; Pal, P.; Mohapatra, S. R.; Yadav, C. S.; Kaushik, S. D.; Singh, A. K.
2018-04-01
The polycrystalline single phase Ba2Mg2Fe12O22 (BMF) and Ba2Mg2Fe11.52Mn0.48O22 (BMFM) were prepared using conventional solid state reaction route. We report the modification in structural, dielectric and magnetic properties of BMF due to 4% Mn doping at Fe site. Phase purity of both sample are confirmed by the Reitveld refinement of XRD data. Temperature dependent dielectric study shows decrease in dielectric constant (ɛ') and dielectric loss (tan δ) due to 4% Mn doping in parent sample. The ferrimagnetic to paramagnetic transition temperature (Tc) in doped sample decreases from 277°C to 150°C. Room temperature magnetization measurement shows ferrimagnetic behavior for both the samples. We have fitted the saturation magnetization data at 300 K by using least square method which confirms the enhancement of saturation magnetization and magnetic anisotropy constant in doped sample.
Zhou, Qingxiang; Lei, Man; Liu, Yongli; Wu, Yalin; Yuan, Yongyong
2017-12-01
Pollution resulted from heavy metal ions have absorbed much attention, and it is of great importance to develop sensitive and simultaneous determination method for them with common technologies without highly sensitive instruments. We prepared a new and functional core-shell magnetic nano-material, Fe@Ag@dimercaptobenzene (Fe@Ag@DMB), by a one-step method with sodium borohydride as the reducing agent and transmission electron microscopy (TEM) and energy dispersive spectrometer (EDS) were used for characterisation. The mercapto functional groups on the newly synthesised magnetic nanoparticles could interact with Cd 2+ , Pb 2+ , and Hg 2+ ions in water samples and then efficient extraction for Cd 2+ , Pb 2+ , and Hg 2+ ions was achieved. DDTC-Na solution was a good elutent for elution of these ions from Fe@Ag@DMB nanoparticles. Based on these, a sensitive method was developed for simultaneous preconcentration and determination of the aforementioned ions using magnetic Fe@Ag@DMB nanoparticles as the magnetic solid phase extraction adsorbent prior to high performance liquid chromatography coupled with variable wavelength detection. Under the optimal conditions, the detection limits of the three metal ions were in the range of 0.011-0.031μgL -1 , and precisions were below 2.37% (n=6). The proposed method was evaluated with real water samples, and excellent spiked recoveries achieved indicated that the developed method would be a promising tool for monitoring these heavy metal ions in water samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Tu, Zhifeng; He, Qun; Chang, Xijun; Hu, Zheng; Gao, Ru; Zhang, Lina; Li, Zhenhua
2009-09-07
A novel method that utilizes 1-(2-formamidoethyl)-3-phenylurea-modified activated carbon (AC-1-(2-formamidoethyl)-3-phenylurea) as a solid-phase extractant has been developed for simultaneous preconcentration of trace Cr(III), Cu(II), Fe(III) and Pb(II) prior to the measurement by inductively coupled plasma atomic emission spectrometry (ICP-AES). Experimental conditions for effective adsorption of trace levels of Cr(III), Cu(II), Fe(III) and Pb(II) were optimized using batch and column procedures in detail. The optimum pH value for the separation of metal ions simultaneously on the new sorbent was 4. And the adsorbed metal ions could be completely eluted by using 2.0 mL 2.0 mol L(-1) HCl solution. Common coexisting ions did not interfere with the separation and determination of target metal ions. The maximum static adsorption capacity of the sorbent at optimum conditions was found to be 39.8, 39.9, 77.8 and 17.3 mg g(-1) for Cr(III), Cu(II), Fe(III) and Pb(II), respectively. The detection limits of the method were found to be 0.15, 0.41, 0.27 and 0.36 ng mL(-1) for Cr(III), Cu(II), Fe(III) and Pb(II), respectively. The relative standard deviation (RSD) of the method was lower than 4.0% (n=8). The method was successfully applied for the preconcentration of trace Cr(III), Cu(II), Fe(III) and Pb(II) in natural and certified samples with satisfactory results.
Wang, Xianying; Deng, Chunhui
2016-02-01
In this work, C18-functionalized magnetic polydopamine microspheres (Fe3O4@PDA@C18) were successfully synthesized and applied to the analysis of alkylphenols in water samples. The magnetic Fe3O4 particles coated with hydrophilic surface were synthesized via a solvothermal reaction and the self-polymerization of dopamine. And then the C18 groups were fabricated by a silylanization method. Benefit from the merits of Fe3O4 particles, polydopamine coating and C18 groups, the Fe3O4@PDA@C18 material possessed several properties of super magnetic responsiviness, good water dispersibility, π-electron system and hydrophobic C18 groups. Thus, the materials had great potential to be developed as the adsorbent for the magnetic solid-phase extraction (MSPE) technique. Here, we selected three kinds of alkylphenols (4-tert-octylphenol, 4-n-nonylphenol, 4-n-octylphenol) to be the target analyst for evaluating the performance of the prepared material. In this study, various extraction parameters were investigated and optimized, such as pH values of water sample solution, amount of adsorbents, adsorption and desorption time, the species of desorption solution. Meanwhile, the method validations were studied, including linearity, limit of detection and method precision. From the results, Fe3O4@PDA@C18 composites were successfully applied as the adsorbents for the extraction of alkylphenols in water samples. The proposed material provided an approach for a simple, rapid magnetic solid-phase extraction for hydrophobic compounds in environmental samples. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rakshit, S. K.; Parida, S. C.; Singh, Ziley; Prasad, R.; Venugopal, V.
2004-04-01
The standard molar Gibbs energy of formations of BaFe 12O 19(s), BaFe 2O 4(s), Ba 2Fe 2O 5(s), Ba 3Fe 2O 6(s) and Ba 5Fe 2O 8(s) have been determined using solid-state electrochemical technique employing CaF 2(s) as an electrolyte. The reversible e.m.f. values have been measured in the temperature range from 970 to 1151 K. The oxygen chemical potential corresponding to three phase equilibria involving technologically important compound BaFe 12O 19(s) has been determined using solid-state electrochemical technique employing CSZ as an electrolyte from 1048 to 1221 K. The values of Δ fGm0( T) for the above ternary oxides are given by ΔfG m0( BaFe12O19, s)/ kJ mol -1(±0.6)=-5431.3+1.5317 (T/ K) (970⩽T/ K⩽1151) ΔfG m0( BaFe2O4, s)/ kJ mol -1(±1.3)=-1461.4+0.3745 (T/ K) (970⩽T/ K⩽1151) ΔfG m0( Ba2Fe2O5, s)/ kJ mol -1(±1.4)=-2038.3+0.4433 (T/ K) (970⩽T/ K⩽1149) ΔfG m0( Ba3Fe2O6, s)/ kJ mol -1(±1.5)=-2700.1+0.6090 (T/ K) (969⩽T/ K⩽1150) and ΔfG m0( Ba5Fe2O8, s)/ kJ mol -1(±1.6)=-3984.1+0.9300 (T/ K) (973⩽T/ K⩽1150) The uncertainty estimates for Δ fGm0 includes the standard deviation in the e.m.f. and uncertainty in the data taken from the literature. An isothermal oxygen potential diagram for the system Ba-Fe-O was constructed at 1100 K based on the thermodynamic data obtained in this study.
Zhang, Y; Liu, B S; Zhang, F M; Zhang, Z F
2013-03-15
Several MCM-41 materials were synthesized at different conditions by hydrothermal procedure using cheap and easily available industrial water glass as silica source. Fe doped manganese-based oxide/MCM-41 sorbents were prepared by a sol-gel method. The effects of loadings of metal oxide, Fe/Mn molar ratios over MCM-41 and reaction temperature on the performance of sorbent for hot coal gas desulfurization were investigated. Various techniques such as BET, XRD, XPS, LRS and HRTEM were used to characterize the sorbents. The result indicated Fe(3+) ions could occupy a position of Mn(3+) in cubic lattice of Mn2O3 and the (FexMn2-x)O3 solid solution is mainly active phase of sorbent. Moreover, the result of nine successive sulfurization-regeneration cycles of sorbent showed high sulfur adsorption capacity and endurable stability of FeMn4Ox/MCM-41 for H2S removal. Copyright © 2013 Elsevier B.V. All rights reserved.
Dissolution kinetics of iron-, manganese-, and copper-containing synthetic hydroxyapatites
NASA Technical Reports Server (NTRS)
Sutter, B.; Hossner, L. R.; Ming, D. W.
2005-01-01
Micronutrient-substituted synthetic hydroxyapatite (SHA) is being evaluated by the National Aeronautics and Space Administration's (NASA) Advanced Life Support (ALS) Program for crop production on long-duration human missions to the International Space Station or for future Lunar or Martian outposts. The stirred-flow technique was utilized to characterize Ca, P, Fe, Mn, and Cu release characteristics from Fe-, Mn-, and Cu-containing SHA in deionized (DI) water, citric acid, and diethylene-triamine-pentaacetic acid (DTPA). Initially, Ca and P release rates decreased rapidly with time and were controlled by a non-SHA calcium phosphate phase(s) with low Ca/P solution molar ratios (0.91-1.51) relative to solid SHA ratios (1.56-1.64). At later times, Ca/P solution molar ratios (1.47-1.79) were near solid SHA ratios and release rates decreased slowly indicating that SHA controlled Ca and P release. Substituted SHA materials had faster dissolution rates relative to unsubstituted SHA. The initial metal release rate order was Mn >> Cu > Fe which followed metal-oxide/phosphate solubility suggesting that poorly crystalline metal-oxides/phosphates were dominating metal release. Similar metal release rates for all substituted SHA (approximately 0.01 cmol kg-1 min-1) at the end of the DTPA experiment indicated that SHA dissolution was supplying the metals into solution and that poorly crystalline metal-oxide/phosphates were not controlling metal release. Results indicate that non-SHA Ca-phosphate phases and poorly crystalline metal-oxide/phosphates will contribute Ca, P, and metals. After these phases have dissolved, substituted SHA will be the source of Ca, P, and metals for plants.
Fluorine-doped antiperovskite electrolyte for all-solid-state Lithium-ion batteries
Li, Yutao; Zhou, Weidong; Xin, Sen; ...
2016-06-30
A fluorine-doped antiperovskite Li-ion conducto Li 2(OH)X (X=Cl, Br) is shown to be a promising candidat for a solid electrolyte in an all-solid-state Li-ion rechargeabl battery. Substitution of F¯ for OH¯ transforms orthorhombi Li 2OHCl to a room-temperature cubic phase, which show electrochemical stability to 9 V versus Li +/Li and two orders o magnitude higher Li-ion conductivity than that of orthorhombi Li 2OHCl. As a result, an all-solid-state Li/LiFePO 4 with F-dope Li 2OHCl as the solid electrolyte showed good cyclability an a high coulombic efficiency over 40 charge/discharge cycles
NASA Astrophysics Data System (ADS)
Taniguchi, Tatsuhiko; Sakane, Shunya; Aoki, Shunsuke; Okuhata, Ryo; Ishibe, Takafumi; Watanabe, Kentaro; Suzuki, Takeyuki; Fujita, Takeshi; Sawano, Kentarou; Nakamura, Yoshiaki
2017-05-01
We have investigated the intrinsic thermoelectric properties of epitaxial β-FeSi2 thin films and the impact of phosphorus (P) doping. Epitaxial β-FeSi2 thin films with single phase were grown on Si(111) substrates by two different techniques in an ultrahigh-vacuum molecular beam epitaxy (MBE) system: solid-phase epitaxy (SPE), where iron silicide films formed by codeposition of Fe and Si at room temperature were recrystallized by annealing at 530°C to form epitaxial β-FeSi2 thin films on Si(111) substrates, and MBE of β-FeSi2 thin films on epitaxial β-FeSi2 templates formed on Si(111) by reactive deposition epitaxy (RDE) at 530°C (RDE + MBE). Epitaxial SPE thin films based on codeposition had a flatter surface and more abrupt β-FeSi2/Si(111) interface than epitaxial RDE + MBE thin films. We investigated the intrinsic thermoelectric properties of the epitaxial β-FeSi2 thin films on Si(111), revealing lower thermal conductivity and higher electrical conductivity compared with bulk β-FeSi2. We also investigated the impact of doping on the Seebeck coefficient of bulk and thin-film β-FeSi2. A route to enhance the thermoelectric performance of β-FeSi2 is proposed, based on (1) fabrication of thin-film structures for high electrical conductivity and low thermal conductivity, and (2) proper choice of doping for high Seebeck coefficient.
Failure Mechanism of a Stellite Coating on Heat-Resistant Steel
NASA Astrophysics Data System (ADS)
Wang, Dong; Zhao, Haixing; Wang, Huang; Li, Yuyan; Liu, Xia; He, Guo
2017-09-01
The Stellite 21 coating on the heat-resistant steel X12CrMoWVNbN10-1-1 (so-called COSTE) used in a steam turbine valve was found to be fatigue broken after service at around 873 K (600 °C) for about 8 years. In order to investigate the failure mechanism, a fresh Stellite 21 coating was also prepared on the same COSTE steel substrate by using the similar deposition parameters for comparison. It was found that the Stellite 21 coating was significantly diluted by the steel, resulting in a thin Fe-rich layer in the coating close to the fusion line. Such high Fe concentration together with the incessant Fe diffusion from the steel substrate to the coating during the service condition (about 873 K (600 °C) for long time) induced the eutectoid decomposition of the fcc α-Co(Fe,Cr,Mo) solid solution, forming an irregular eutectoid microstructure that was composed of the primitive cubic α'-FeCo(Cr,Mo) phase and the tetragonal σ-CrCo(Fe,Mo) phase. The brittle nature of such α'/ σ eutectoid microstructure contributed to the fatigue fracture of the Stellite 21 coating, resulting in an intergranular rupture mode.
NASA Astrophysics Data System (ADS)
Zhao, Baojun; Hayes, Peter C.; Jak, Evgueni
2011-02-01
The phase equilibria and liquidus temperatures in the ZnO-"FeO"-Al2O3-CaO-SiO2 system in equilibrium with metallic iron have been determined experimentally in the temperature range 1383 K to 1573 K (1150 °C to 1300 °C). The experimental conditions were selected to characterize lead blast furnace and imperial smelting furnace slags. The results are presented in a form of pseudoternary sections ZnO-"FeO"-(Al2O3 + CaO + SiO2) with fixed CaO/SiO2 and (CaO + SiO2)/Al2O3 ratios. It was found that wustite and spinel are the major primary phases in the composition range investigated. Effects of Al2O3 concentration as well as the CaO/SiO2 ratio on the primary phase field, the liquidus temperature, and the partitioning of ZnO between liquid and solid phases have been discussed for zinc-containing slags.
NASA Astrophysics Data System (ADS)
Phan, T. L.; Tho, P. T.; Tran, N.; Kim, D. H.; Lee, B. W.; Yang, D. S.; Thiet, D. V.; Cho, S. L.
2018-01-01
Brownmillerite Ca2Fe2O5 has been observed to exhibit many outstanding properties that are applicable to ecotechnology. However, very little work on doped Ca2Fe2O5 compounds has been carried out to widen their application scope. We present herein a detailed study of the crystalline/geometric and electronic structures and magnetic and electrical properties of Ca2- x La x Fe2O5 ( x = 0 to 1) prepared by conventional solid-state reaction. X-ray diffraction patterns indicated that the compounds with x = 0 to 0.05 exhibited brownmillerite-type single phase. La doping with higher content ( x ≥ 0.1) stimulated additive formation of Grenier- (LaCa2Fe3O8) and perovskite-type (LaFeO3) phases. Extended x-ray absorption fine structure spectroscopy at the Fe K-edge and electron spin resonance spectroscopy revealed presence of Fe3+ in the parent Ca2Fe2O5 ( x = 0) and both Fe3+ and Fe4+ in the doped compounds ( x ≥ 0.05). The Fe4+ content tended to increase with increasing x. This stimulates ferromagnetic exchange interactions between Fe3+ and Fe4+ ions and directly influences the magnetic properties of Ca2- x La x Fe2O5. Electrical resistivity ( ρ) measurements in the temperature range of T = 20 K to 400 K revealed that all the compounds exhibit insulator behavior; the ρ( T) data for x ≥ 0.1 could be described based on the adiabatic small polaron hopping model.
Synthesis and characterization of magnetically hard Fe-Pt alloy nanoparticles and nano-islands
NASA Astrophysics Data System (ADS)
Hu, Xiaocao
In this dissertation, we explored the fabrication of FePt nanoparticles and nano-islands with the face-centered tetragonal (fct, L10) phase prepared by both chemical synthesis routes and physical vapor deposition. Microstructure and magnetic properties characterizations were used to gain a fundamental understanding of the nano-structure formation and atomic ordering behavior and determine the possible applications in the next generation ultra-high density magnetic storage media. FePt nanoparticles prepared by thermal decomposition of iron pentacarbonyl [Fe(CO)5] have been widely investigated and by tuning the processing procedure monodispersed FePt nanoparticles with good assembly can be obtained. The as-made FePt nanoparticles are usually in the magnetically soft face-centered cubic (fcc) phase. To transformation to the fct phase, post-annealing at above 600°C is needed which, however, introduces undesirable agglomeration and sintering. To address this problem, we used three different fabrication processes which are discussed below. In the first fabrication experiment, the FePt nanoparticles were fabricated by a novel environmental friendly method involving crystalline saline complex hexaaquairon (II) hexachloroplatinate ([Fe(H2O)6]PtCl 6) with a special layered structure. Then the precursor was ball milled with NaCl and annealed at temperatures above 400°C under a reducing atmosphere of forming gas (95% Ar and 5% H2) FePt nanoparticles were obtained after washing away NaCl with deionized water. This method avoids the use of the very poisonous Fe(CO)5 and other organic solvents such as oleylamine and oleic acid. Instead, environmentally friendly NaCl and water were used. The size of FePt nanoparticles was controlled by varying the proportion of precursor and NaCl (from 10mg/20g to 50mg/20g). Particles with size in the range of 6.2--13.2 nm were obtained. All the nanoparticles annealed above 400°C are in the highly ordered fct phase with a coercivity range of 4.7 kOe to 10.7 kOe. Compared with reported high annealing temperatures above 600°C, this fabrication process led to a significantly decreased temperature to achieve the L10 phase FePt by 200°C. A qualitative model was set up to explain the surprising low L10 phase achievement temperature and the influence of annealing temperature on the microstructure and magnetic properties was investigated. Although FePt nanoparticles with high coercivity and small size were successfully obtained by the first fabrication method, agglomeration happened during the washing procedure due to the large inter-particle magnetostatic force caused by their high magnetization. To avoid this agglomeration, exfoliated graphene was introduced in the second preparation method to keep the nanoparticles separated. Different from the traditional solvent-phase reaction to disperse FePt nanoparticles onto the exfoliated graphene, a novel solid-phase reaction was used in this dissertation involving the layered precursor [Fe(H2 O)6]PtCl6 molecule. The [Fe(H2O) 6]PtCl6 water solution was mixed with exfoliated graphene oxide (GO) and then the top solution was removed. Fe2+ and Pt2+ ions were absorbed onto the surface of GO. The remaining product was annealed under a reducing atmosphere of forming gas at different temperatures (500°C to 950°C). During the reduction process, GO was reduced to "graphene" and FePt nanoparticles were formed on the surface of exfoliated graphene. The separation effect by the exfoliated graphene increased the phase transformation temperature to 600°C compared to the first method. However, even at an annealing temperature as high as 750°C, we could still obtained separated, small size FePt nanoparticles with coercivity of 8.3 kOe. The third preparation method used in this dissertation is the traditional magnetron sputtering with very short deposition time (10 s to 25 s) on heated MgO (001) substrate to form separate nano-islands instead of continuous thin films. The ordering of FePt nano-islands were studied by high resolution transmission electron microscopy. Because of the low degree of atomic ordering of the as-prepared nano-islands, post annealing at 700°C under an atmosphere of forming gas was introduced. Ordering of nano-islands of as small as 3 nm was revealed. We discovered that in the ordered FePt nano-islands, there are defects present. Particularly, we observed an onion like structure in a FePt nano-island composed of c-domains perpendicular to each other. These defects explained the low coercivity of the L10 ordered FePt nano-islands, which was envisioned theoretically. In summary, in this dissertation, novel solid-phase, environmentally friendly synthesis methods to fabricate FePt nanoparticles and FePt nanoparticles on "graphene" with high coercivity are first reported. Also, a special onion-like structure was first discovered by high-resolution microscopy and theoretical simulation was done with good agreement with the experimental results.
NASA Astrophysics Data System (ADS)
Kim, Jong Bae; Sohn, Il
2018-02-01
The effect of the initial FeO content and CaO:SiO2 ratio (CaO mass pct/SiO2 mass pct) on the reduction smelting of FeO with carbon flake addition is investigated in the CaO-MgOsatd.-SiO2-FeO slag system at 1823 K (1550 °C). Carbon rapidly reacted with FeO in the molten slag, causing both foaming and compositional changes in the slag. As FeO is reduced, the MgO saturation is modified, and solid precipitants, including MgO and other complex oxides, were observed, which significantly affected the slag properties, including the viscosity and foaming behavior. The solid-phase fraction and viscosity were estimated from changes in the measured FeO content over time using the thermochemical software FactSage. The iron recovery, which is distinguished from the amount of reduced Fe droplets, showed opposite behavior to the measured maximum foaming height and modified foaming index. According to the FeO mass transfer coefficient considering slag foaming at various initial FeO contents and CaO:SiO2 ratios, the reduction rate was optimal at higher initial FeO contents and a CaO:SiO2 ratio of 2.0, which did not correspond to the optimal iron recovery at an initial FeO content of 44 mass pct and above and a CaO:SiO2 ratio of 1.2. The results showed that slag foaming may increase the reduction kinetics, but the slag composition needs to be optimized for greater iron recovery.
Bauers, Sage R; Wood, Suzannah R; Jensen, Kirsten M Ø; Blichfeld, Anders B; Iversen, Bo B; Billinge, Simon J L; Johnson, David C
2015-08-05
Homogeneous reaction precursors may be used to form several solid-state compounds inaccessible by traditional synthetic routes, but there has been little development of techniques that allow for a priori prediction of what may crystallize in a given material system. Here, the local structures of FeSbx designed precursors are determined and compared with the structural motifs of their crystalline products. X-ray total scattering and atomic pair distribution function (PDF) analysis are used to show that precursors that first nucleate a metastable FeSb3 compound share similar local structure to the product. Interestingly, precursors that directly crystallize to thermodynamically stable FeSb2 products also contain local structural motifs of the metastable phase, despite their compositional disagreement. While both crystalline phases consist of distorted FeSb6 octahedra with Sb shared between either two or three octahedra as required for stoichiometry, a corner-sharing arrangement indicative of AX3-type structures is the only motif apparent in the PDF of either precursor. Prior speculation was that local composition controlled which compounds nucleate from amorphous intermediates, with different compositions favoring different local arrangements and hence different products. This data suggests that local environments in these amorphous intermediates may not be very sensitive to overall composition. This can provide insight into potential metastable phases which may form in a material system, even with a precursor that does not crystallize to the kinetically stabilized product. Determination of local structure in homogeneous amorphous reaction intermediates from techniques such as PDF can be a valuable asset in the development of systematic methods to prepare targeted solid-state compounds from designed precursors.
NASA Astrophysics Data System (ADS)
Kim, Chanho; Park, Hyunjung; Jang, Inyoung; Kim, Sungmin; Kim, Kijung; Yoon, Heesung; Paik, Ungyu
2018-02-01
Controlling triple phase boundary (TPB), an intersection of the ionic conductor, electronic conductor and gas phase as a major reaction site, is a key to improve cell performances for low-temperature solid oxide fuel cells. We report a synthesis of morphologically well-defined Gd0.1Ce0.9O1.95 (GDC) embedded Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) nanofibers and their electrochemical performances as a cathode. Electrospun fibers prepared with a polymeric solution that contains crystalline Ba0.5Sr0.5Co0.8Fe0.2O3-δ particles in ∼200 nm size and Gd(NO3)3/Ce(NO3)3 precursors in an optimized weight ratio of 3 to 2 result in one dimensional structure without severe agglomeration and morphological collapse even after a high calcination at 1000 °C. As-prepared nanofibers have fast electron pathways along the axial direction of fibers, a higher surface area of 7.5 m2 g-1, and more oxygen reaction sites at TPBs than those of GDC/BSCF composite particles and core-shell nanofibers. As a result, the Gd0.1Ce0.9O1.95 embedded Ba0.5Sr0.5Co0.8Fe0.2O3-δ nanofiber cell shows excellent performances of the maximum power density of 0.65 W cm-2 at 550 °C and 1.02 W cm-2 at 600 °C, respectively.
Evaluating structure selection in the hydrothermal growth of FeS 2 pyrite and marcasite
Kitchaev, Daniil A.; Ceder, Gerbrand
2016-12-14
While the ab initio prediction of the properties of solids and their optimization towards new proposed materials is becoming established, little predictive theory exists as to which metastable materials can be made and how, impeding their experimental realization. Here we propose a quasi-thermodynamic framework for predicting the hydrothermal synthetic accessibility of metastable materials and apply this model to understanding the phase selection between the pyrite and marcasite polymorphs of FeS 2. We demonstrate that phase selection in this system can be explained by the surface stability of the two phases as a function of ambient pH within nano-size regimes relevantmore » to nucleation. This result suggests that a first-principles understanding of nano-size phase stability in realistic synthesis environments can serve to explain or predict the synthetic accessibility of structural polymorphs, providing a guideline to experimental synthesis via efficient computational materials design.« less
Lattice stability and thermal properties of Fe2VAl and Fe2TiSn Heusler compounds
NASA Astrophysics Data System (ADS)
Shastri, Shivprasad S.; Pandey, Sudhir K.
2018-04-01
Fe2VAl and Fe2TiSn are two full-Heusler compounds with non-magnetic ground states. They have application as potential thermoelectric materials. Along with first-principles electronic structure calculations, phonon calculation is one of the important tools in condensed matter physics and material science. Phonon calculations are important in understanding mechanical properties, thermal properties and phase transitions of periodic solids. A combination of electronic structure code and phonon calculation code - phonopy is employed in this work. The vibrational spectra, phonon DOS and thermal properties are studied for these two Heusler compounds. Two compounds are found to be dynamically stable with absence of negative frequencies (energy) in the phonon band structure.
Kang, Jing; Han, Lu; Chen, Zhonglin; Shen, Jimin; Nan, Jun; Zhang, Yihua
2014-09-15
In this paper, a novel chemiluminescence (CL) method has been developed for the determination of propyl gallate (PG). The proposed method was based on the enhancing effect of PG on the CL signal of 2-phenyl-4,5-di(2-furyl)-1H-imidazole (PDFI) and K3Fe(CN)6 reaction in an alkaline solution. Under the optimum conditions, the enhanced CL intensity was linearly related to the concentration of PG. The linear range of the calibration curve was 0.05-8 μg/mL, and the corresponding detection limit (3σ) was 0.036 μg/mL. The relative standard deviation for determining 1.0 μg/mL PG was 2.8% (n=11). The proposed method has been successfully applied to the determination of PG in edible oil. The edible oil samples were prepared by the solid-phase extraction (SPE) with a C18 column served as the stationary phase. Furthermore, the possible CL mechanism was also discussed briefly based on the photoluminescence (PL) and CL spectra. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Yongliang; Cai, Jing; Yang, Lijun; Wu, Qiang; Wang, Xizhang; Hu, Zheng
2017-09-01
Nanomaterial synthesis is experiencing a profound evolution from empirical science ("cook-and-look") to prediction and design, which depends on the deep insight into the growth mechanism. Herein, we report a generalized prediction of the growth of S i3N4 nanowires by nitriding F e28S i72 alloy particles across different phase regions based on our finding of the phase-equilibrium-dominated vapor-liquid-solid (PED-VLS) mechanism. All the predictions about the growth of S i3N4 nanowires, and the associated evolutions of lattice parameters and geometries of the coexisting Fe -Si alloy phases, are experimentally confirmed quantitatively. This progress corroborates the general validity of the PED-VLS mechanism, which could be applied to the design and controllable synthesis of various one-dimensional nanomaterials.
Identifying and Quantifying Chemical Forms of Sediment-Bound Ferrous Iron.
NASA Astrophysics Data System (ADS)
Kohler, M.; Kent, D. B.; Bekins, B. A.; Cozzarelli, I.; Ng, G. H. C.
2015-12-01
Aqueous Fe(II) produced by dissimilatory iron reduction comprises only a small fraction of total biogenic Fe(II) within an aquifer. Most biogenic Fe(II) is bound to sediments on ion exchange sites; as surface complexes and, possibly, surface precipitates; or incorporated into solid phases (e.g., siderite, magnetite). Different chemical forms of sediment-bound Fe(II) have different reactivities (e.g., with dissolved oxygen) and their formation or destruction by sorption/desorption and precipitation/dissolution is coupled to different solutes (e.g., major cations, H+, carbonate). We are quantifying chemical forms of sediment-bound Fe(II) using previously published extractions, novel extractions, and experimental studies (e.g., Fe isotopic exchange). Sediments are from Bemidji, Minnesota, where biodegradation of hydrocarbons from a burst oil pipeline has driven extensive dissimilatory Fe(III) reduction, and sites potentially impacted by unconventional oil and gas development. Generally, minimal Fe(II) was mobilized from ion exchange sites (batch desorption with MgCl2 and repeated desorption with NH4Cl). A < 2mm sediment fraction from the iron-reducing zone at Bemidji had 1.8umol/g Fe(II) as surface complexes or carbonate phases (sodium acetate at pH 5) of which ca. 13% was present as surface complexes (FerroZine extractions). Total bioavailable Fe(III) and biogenic Fe(II) (HCl extractions) was 40-50 umole/g on both background and iron-reducing zone sediments . Approximately half of the HCl-extractable Fe from Fe-reducing zone sediments was Fe(II) whereas 12 - 15% of Fe extracted from background sediments was present as Fe(II). One-third to one-half of the total biogenic Fe(II) extracted from sediments collected from a Montana prairie pothole located downgradient from a produced-water disposal pit was present as surface-complexed Fe(II).
Arsenic mobilization from solid phase Fe (III) hydroxides is an issue of concern, as water-borne arsenic can migrate into pristine environments, endangering aquatic and human life. In general, metal oxide (hydroxides) exerts a dominating effect on the fate and transport of arseni...
Xu, Mei; Liu, Minhua; Sun, Meirong; Chen, Kun; Cao, Xiujun; Hu, Yaoming
2016-04-01
In this paper, novel core-shell structured magnetic Fe3O4/silica nanocomposites with triblock-copolymer grafted on their surface (Fe3O4@SiO2@MDN) were successfully fabricated by combining a sol-gel method with a seeded aqueous-phase radical copolymerization approach. Owing to the excellent characteristics of the strong magnetic responsivity, outstanding hydrophilicity and abundant π-electron system, the obtained core-shell structured microspheres showed great potential as a magnetic solid phase extraction (MSPE) adsorbent. Several kinds of phthalate esters (PAEs) were selected as model analytes to systematically evaluate the applicability of adsorbents for extraction followed by gas chromatography-mass spectrometry (GC-MS) analyses. Various parameters, including adsorbents amounts, adsorption time, species of eluent, and desorption time were optimized. Under the optimized conditions, Validation experiments such as recovery, reproducibility, and limit of detection were carried on and showed satisfactory results. The analysis method showed excellent linearity with a wide range of 0.2-10mg/kg (R(2)>0.9974) and low limits of detection (LOD) of 0.02-0.09 mg/kg (S/N=3). Ultimately, the novel magnetic adsorbents were successfully employed to detect the PAEs in apparel textile samples. And the results indicated that this novel approach brought forward in the present work offered an attractive alternative for rapid, efficient and sensitive MSPE for PAEs compounds. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Yun; Kukkadapu, Ravi K.; Livi, Kenneth J. T.
The redox state and speciation of metalloid arsenic (As) determine its toxicity and mobility. Knowledge of biogeochemical processes influencing the As redox state is therefore important to understand and predict its environmental behavior. Many previous studies examined As(III) oxidation by various Mn-oxides, but little is known the environmental influences (e.g. co-existing ions) on such process. In this study, we investigated the mechanisms of As(III) oxidation by a poorly crystalline hexagonal birnessite (δ-MnO2) in the presence of Fe(II) using X-ray absorption spectroscopy (XAS), Mössbauer spectroscopy and transmission electron microscopy (TEM) coupled with energy-dispersive X-ray spectroscopy (EDS). As K-edge X-ray absorption nearmore » edge spectroscopy (XANES) analysis revealed that, at low Fe(II) concentration (100 μM), As(V) was the predominant As species on the solid phase, while at higher Fe(II) concentration (200-1000 μM), both As(III) and As(V) were sorbed on the solid phase. As K-edge extended X-ray absorption fine structure spectroscopy (EXAFS) analysis showed an increasing As-Mn/Fe distance over time, indicating As prefers to bind with the newly formed Fe(III)-(hydr)oxides. As adsorbed on Fe(III)-(hydr)oxides as a bidentate binuclear corner-sharing complex. Both Mössbauer and TEM-EDS investigations demonstrated that the oxidized Fe(III) products formed during Fe(II) oxidation by δ-MnO2 were predominantly ferrihydrite, goethite, and ferric arsenate like compounds. However, Fe EXAFS analysis also suggested the formation of a small amount of lepidocrocite. The Mn K-edge XANES data indicated that As(III) and Fe(II) oxidation occurs as a two electron transfer with δ-MnO2 and the observed Mn(III) is due to conproportionation of surface sorbed Mn(II) with Mn(IV) in δ-MnO2 structure. This study reveals that the mechanisms of As(III) oxidation by δ-MnO2 in the presence of Fe(II) are very complex, involving many simultaneous reactions, and the formation of Fe(III)-(hydr)oxides plays a very important role in reducing As mobility.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, Kate M.; Kukkadapu, Ravi K.; Qafoku, Nikolla
2012-05-23
Localized zones or lenses of naturally reduced sediments have the potential to play a significant role in the fate and transport of redox-sensitive metals and metalloids in aquifers. To assess the mineralogy, microbiology, and redox processes that occur in these zones, we examined several cores from a region of naturally occurring reducing conditions in a uranium-contaminated aquifer (Rifle, CO). Sediment samples from a transect of cores ranging from oxic/suboxic Rifle aquifer sediment to naturally reduced sediment were analyzed for uranium and iron content, oxidation state, and mineralogy, reduced sulfur phases, and solid phase organic carbon content using a suite ofmore » analytical and spectroscopic techniques on bulk sediment and size fractions. Solid-phase uranium concentrations were higher in the naturally reduced zone, with a high proportion of the uranium present as reduced U(IV). The sediments were also elevated in reduced sulfur phases and Fe(II), indicating it is very likely that U(VI), Fe(III), and sulfate reduction occurred or is occurring in the sediment. The microbial community was assessed using lipid- and DNA-based techniques, and statistical redundancy analysis was performed to determine correlations between the microbial community and the geochemistry. Increased concentration of solid phase organic carbon and biomass in the naturally reduced sediment suggests that natural bioreduction is stimulated by a zone of increased organic carbon concentration associated with fine-grained material and lower permeability to groundwater flow. Characterization of the naturally bioreduced sediment provides an understanding of the natural processes that occur in the sediment under reducing conditions and how they may impact natural attenuation of radionuclides and other redox sensitive materials. Results also suggest the importance of recalcitrant organic carbon for maintaining reducing conditions and uranium immobilization.« less
NASA Astrophysics Data System (ADS)
Ayrault, S.; Jimenez, B.; Garnier, E.; Fedoroff, M.; Jones, D. J.; Loos-Neskovic, C.
1998-12-01
CuII2FeII(CN)6·xH2O and CuII3[FeIII(CN)6]2·xH2O can be prepared with reproducible chemical compositions and structures after careful washing. They have cubicFmoverline3mstructures with iron vacancies. In CuII2FeII(CN)6, copper occupies two different sites: Cu1 in position 4blinked to Fe through the CN groups, and Cu2 not linked to the CN groups and partially occupying the interstitial 24epositions. The second type of site is not present in CuII3[FeIII(CN)6]2. Sorption kinetics and isotherms were determined for cesium on both hexacyanoferrates by batch experiments. On CuII3[FeIII(CN)6]2, the maximum uptake is only 0.073 Cs/Fe (at./at.). On CuII2FeII(CN)6, the uptake reaches 1.5 Cs/Fe. The sorption kinetics include at least two steps: at1/2variation until approximately 72 h and then a slow evolution studied up to 6 months. The sorption mechanism is complex. The main process seems to be diffusion of ion pairs, followed by a reorganization of the solid, resulting in one or more new solid phases. The presence of the Cu2 site seems to play a favorable role in the sorption. Owing to its good midterm stability and the first rapid step of exchange, CuII2FeII(CN)6·xH2O seems to be one of the most promising compounds for the recovery of cesium from nuclear liquid wastes.
Stagno, Vincenzo; Bindi, Luca; Park, Changyong; ...
2015-11-20
Icosahedrite, the first natural quasicrystal with composition Al 63Cu 24Fe 13, was discovered in several grains of the Khatyrka meteorite, a unique CV3 carbonaceous chondrite. The presence in the meteorite fragments of icosahedrite strictly associated with high-pressure phases like ahrensite and stishovite indicates a formation conditions at high pressures and temperatures, likely during an impact-induced shock occurred in contact with the reducing solar nebula gas. In contrast, previous experimental studies on the stability of synthetic icosahedral AlCuFe, which were limited to ambient pressure, indicated incongruent melting at ~1123 K, while high-pressure experiments carried out at room temperature showed structural stabilitymore » up to about 35 GPa. These data are insufficient to experimentally constrain the formation and stability of icosahedrite under extreme conditions. Here we present the results of in situ high pressure experiments using diamond anvil cells of the compressional behavior of synthetic icosahedrite up to ~50 GPa at room temperature. Simultaneous high P-T experiments have been also carried out using both laser-heated diamond anvil cells combined with in situ synchrotron X-ray diffraction (at ~42 GPa) and multi-anvil apparatus (at 21 GPa) to investigate the structural evolution of icosahedral Al 63Cu 24Fe 13 and crystallization of possible coexisting phases. The results demonstrate that the quasiperiodic symmetry of icosahedrite is retained over the entire experimental pressure range explored. In addition, we show that pressure acts to stabilize the icosahedral symmetry at temperatures much higher than previously reported. Based on our experimental study, direct crystallization of Al-Cu-Fe quasicrystals from an unusual Al-Cu-rich melt would be possible but limited to a narrow temperature range beyond which crystalline phases would form, like those observed in the Khatyrka meteorite. Here, an alternative mechanism would consist in late formation of the quasicrystal after crystallization and solid-solid reaction of Al-rich phases. In both cases, linking our results with observations in nature, quasicrystals are expected to preserve their structure even after hypervelocity impacts that involve simultaneous high pressures and temperatures, thus proving their cosmic stability.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toczydlowska, Diana; Kedra-Krolik, Karolina; Nejbert, Krzysztof
The role of surface electrostatics on the reductive dissolution of iron (III) oxides is poorly understood, despite its importance in controlling the amount of mobilized iron. We report the potentiometric titration of the a; y -Fe2O3 oxides exposed to reductants and complexing ligands (Fe(II), ascorbate, oxalate, malonate). We monitored in situ surface and potentials, the ratio of mobilized ferric to ferrous ions, and periodically analyzed nanoparticle crystal structure using X-ray diffraction. We found that addition of Fe2+ ions produces a response consistent with the iron solubilityactivity curve, whereas the presence of ascorbate significantly decreases the amount of mobilized Fe(III) duemore » to reduction to Fe(II). In addition, XRD analysis proved that y-Fe2O3 particles remain structurally unchanged along the titration pathway despite iron cycling between aqueous and solid reservoirs. Our studies, suggest that the surface redoxactivity of iron oxides is primarily governed by the balance between Fe(III) and Fe(II) ions in aqueous phase, which may be easily altered by complexing and reducing agents.« less
Liu, Dong-Hai; Guo, Yue; Zhang, Lu-Hua; Li, Wen-Cui; Sun, Tao; Lu, An-Hui
2013-11-25
Magnetic hollow structures with microporous shell and highly dispersed active cores (Fe/Fe3 C nanoparticles) are rationally designed and fabricated by solution-phase switchable transport of active iron species combined with a solid-state thermolysis technique, thus allowing selective encapsulation of functional Fe/Fe3 C nanoparticles in the interior cavity. These engineered functional materials show high loading (≈54 wt%) of Fe, excellent chromium removal capability (100 mg g(-1)), fast adsorption rate (8766 mL mg(-1) h(-1)), and easy magnetic separation property (63.25 emu g(-1)). During the adsorption process, the internal highly dispersed Fe/Fe3 C nanoparticles supply a driving force for facilitating Cr(VI) diffusion inward, thus improving the adsorption rate and the adsorption capacity. At the same time, the external microporous carbon shell can also efficiently trap guest Cr(VI) ions and protect Fe/Fe3 C nanoparticles from corrosion and subsequent leaching problems. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Capriotti, Anna Laura; Cavaliere, Chiara; Foglia, Patrizia; La Barbera, Giorgia; Samperi, Roberto; Ventura, Salvatore; Laganà, Aldo
2016-12-01
Recently, magnetic solid-phase extraction has gained interest because it presents various operational advantages over classical solid-phase extraction. Furthermore, magnetic nanoparticles are easy to prepare, and various materials can be used in their synthesis. In the literature, there are only few studies on the determination of mycoestrogens in milk, although their carryover in milk has occurred. In this work, we wanted to develop the first (to the best of our knowledge) magnetic solid-phase extraction protocol for six mycoestrogens from milk, followed by liquid chromatography and tandem mass spectrometry analysis. Magnetic graphitized carbon black was chosen as the adsorbent, as this carbonaceous material, which is very different from the most diffuse graphene and carbon nanotubes, had already shown selectivity towards estrogenic compounds in milk. The graphitized carbon black was decorated with Fe 3 O 4 , which was confirmed by the characterization analyses. A milk deproteinization step was avoided, using only a suitable dilution in phosphate buffer as sample pretreatment. The overall process efficiency ranged between 52 and 102%, whereas the matrix effect considered as signal suppression was below 33% for all the analytes even at the lowest spiking level. The obtained method limits of quantification were below those of other published methods that employ classical solid-phase extraction protocols. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Peng, Ching-Yu; Korshin, Gregory V; Valentine, Richard L; Hill, Andrew S; Friedman, Melinda J; Reiber, Steve H
2010-08-01
Corrosion scales and deposits formed within drinking water distribution systems (DWDSs) have the potential to retain inorganic contaminants. The objective of this study was to characterize the elemental and structural composition of extracted pipe solids and hydraulically-mobile deposits originating from representative DWDSs. Goethite (alpha-FeOOH), magnetite (Fe(3)O(4)) and siderite (FeCO(3)) were the primary crystalline phases identified in most of the selected samples. Among the major constituent elements of the deposits, iron was most prevalent followed, in the order of decreasing prevalence, by sulfur, organic carbon, calcium, inorganic carbon, phosphorus, manganese, magnesium, aluminum and zinc. The cumulative occurrence profiles of iron, sulfur, calcium and phosphorus for pipe specimens and flushed solids were similar. Comparison of relative occurrences of these elements indicates that hydraulic disturbances may have relatively less impact on the release of manganese, aluminum and zinc, but more impact on the release of organic carbon, inorganic carbon, and magnesium. (c) 2010 Elsevier Ltd. All rights reserved.
Effects of chemical alternation on damage accumulation in concentrated solid-solution alloys
Ullah, Mohammad W.; Xue, Haizhou; Velisa, Gihan; ...
2017-06-23
Single-phase concentrated solid-solution alloys (SP-CSAs) have recently gained unprecedented attention due to their promising properties. To understand effects of alloying elements on irradiation-induced defect production, recombination and evolution, an integrated study of ion irradiation, ion beam analysis and atomistic simulations are carried out on a unique set of model crystals with increasing chemical complexity, from pure Ni to Ni 80Fe 20, Ni 50Fe 50, and Ni 80Cr 20 binaries, and to a more complex Ni 40Fe 40Cr 20 alloy. Both experimental and simulation results suggest that the binary and ternary alloys exhibit higher radiation resistance than elemental Ni. The modelingmore » work predicts that Ni 40Fe 40Cr 20 has the best radiation tolerance, with the number of surviving Frenkel pairs being factors of 2.0 and 1.4 lower than pure Ni and the 80:20 binary alloys, respectively. While the reduced defect mobility in SP-CSAs is identified as a general mechanism leading to slower growth of large defect clusters, the effect of specific alloying elements on suppression of damage accumulation is clearly demonstrated. This work suggests that concentrated solid-solution provides an effective way to enhance radiation tolerance by creating elemental alternation at the atomic level. The demonstrated chemical effects on defect dynamics may inspire new design principles of radiation-tolerant structural alloys for advanced energy systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berger, Cornelius M.; Mahmoud, Abdelfattah; Hermann, Raphaël P.
Rechargeable oxide batteries (ROB) comprise a regenerative solid oxide cell (rSOC) and a storage medium for oxygen ions. A sealed ROB avoids pumping loss, heat loss, and gas purity expenses in comparison with conventional rSOC. However, the iron oxide base storage medium degrades during charging–discharging cycles. In comparison, CaFe 3O 5 has improved cyclability and a high reversible oxygen storage capacity of 22.3 mol%. In this paper, we analyzed the redox mechanism of this compound. After a solid-state synthesis of CaFe 3O 5, we verified the phase composition and studied the redox reaction by means of X-ray diffraction, Mössbauer spectrometry,more » and scanning electron microscopy. Finally, results show a great potential to operate the battery with this storage material during multiple charging–discharging cycles.« less
Wang, H B; Wang, Q; Dong, C; Yuan, L; Xu, F; Sun, L X
2008-03-19
This paper analyzes the characteristics of alloy compositions with large hydrogen storage capacities in Laves phase-related body-centered cubic (bcc) solid solution alloy systems using the cluster line approach. Since a dense-packed icosahedral cluster A(6)B(7) characterizes the local structure of AB(2) Laves phases, in an A-B-C ternary system, such as Ti-Cr (Mn, Fe)-V, where A-B forms AB(2) Laves phases while A-C and B-C tend to form solid solutions, a cluster line A(6)B(7)-C is constructed by linking A(6)B(7) to C. The alloy compositions with large hydrogen storage capacities are generally located near this line and are approximately expressed with the cluster-plus-glue-atom model. The cluster line alloys (Ti(6)Cr(7))(100-x)V(x) (x = 2.5-70 at.%) exhibit different structures and hence different hydrogen storage capacities with increasing V content. The alloys (Ti(6)Cr(7))(95)V(5) and Ti(30)Cr(40)V(30) with bcc solid solution structure satisfy the cluster-plus-glue-atom model.
Melting relations in the system FeCO3-MgCO3 and thermodynamic modelling of Fe-Mg carbonate melts
NASA Astrophysics Data System (ADS)
Kang, Nathan; Schmidt, Max W.; Poli, Stefano; Connolly, James A. D.; Franzolin, Ettore
2016-09-01
To constrain the thermodynamics and melting relations of the siderite-magnesite (FeCO3-MgCO3) system, 27 piston cylinder experiments were conducted at 3.5 GPa and 1170-1575 °C. Fe-rich compositions were also investigated with 13 multi-anvil experiments at 10, 13.6 and 20 GPa, 1500-1890 °C. At 3.5 GPa, the solid solution siderite-magnesite coexists with melt over a compositional range of X Mg (=Mg/(Mg + Fetot)) = 0.38-1.0, while at ≥10 GPa solid solution appears to be complete. At 3.5 GPa, the system is pseudo-binary because of the limited stability of siderite or liquid FeCO3, Fe-rich carbonates decomposing at subsolidus conditions to magnetite-magnesioferrite solid solution, graphite and CO2. Similar reactions also occur with liquid FeCO3 resulting in melt species with ferric iron components, but the decomposition of the liquid decreases in importance with pressure. At 3.5 GPa, the metastable melting temperature of pure siderite is located at 1264 °C, whereas pure magnesite melts at 1629 °C. The melting loop is non-ideal on the Fe side where the dissociation reaction resulting in Fe3+ in the melt depresses melting temperatures and causes a minimum. Over the pressure range of 3.5-20 GPa, this minimum is 20-35 °C lower than the (metastable) siderite melting temperature. By merging all present and previous experimental data, standard state (298.15 K, 1 bar) thermodynamic properties of the magnesite melt (MgCO3L) end member are calculated and the properties of (Fe,Mg)CO3 melt fit by a regular solution model with an interaction parameter of -7600 J/mol. The solution model reproduces the asymmetric melting loop and predicts the thermal minimum at 1240 °C near the siderite side at X Mg = 0.2 (3.5 GPa). The solution model is applicable to pressures reaching to the bottom of the upper mantle and allows calculation of phase relations in the FeO-MgO-O2-C system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Xing; Xi, Beidou; Zhao, Ying
Treatment of arsenic by zerovalent iron (ZVI) has been studied extensively. However, the effect of arsenic on the formation of ferric hydroxide precipitates in the ZVI treatment has not been investigated. We discovered that the specific surface area (ca. 187 m2/g) and arsenic content (ca. 67 mg/g) of the suspended solids (As-containing solids) generated in the ZVI treatment of arsenic solutions were much higher than the specific surface area (ca. 37 m2/g) and adsorption capacity (ca.12 mg/g) of the suspended solids (As-free solids) generated in the arsenic-free solutions. Arsenic in the As-containing solids was much more stable than the adsorbedmore » arsenic in As-free solids. XRD, SEM, TEM, and selected area electron diffraction (SAED) analyses showed that the As-containing solids consisted of amorphous nanoparticles, while the As-free solids were composed of micron particles with weak crystallinity. Extended X-ray absorption fine structure (EXAFS) analysis determined that As(V) was adsorbed on the As-containing suspended solids and magnetic solid surfaces through bidentate binuclear complexation; and As(V) formed a mononuclear complex on the As-free suspended solids. The formation of the surface As(V) complexes retarded the bonding of free FeO6 octahedra to the oxygen sites on FeO6 octahedral clusters and prevented the growth of the clusters and their development into 3-dimensional crystalline phases.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuvaraj, Subramanian; Layek, Samar; Vidyavathy, S. Manisha
2015-12-15
Highlights: • SmFeO{sub 3} is synthesized by simple combustion method using aspartic acid as the fuel. • The particles are spherical in shape with the size ranges between 150 and 300 nm. • Cole–Cole plot infers the bulk conduction mechanism. • Room temperature VSM analysis reveal the weak ferromagnetic behaviour of SmFeO{sub 3}. • Mössbauer analysis elucidates the +3 oxidation state of Fe atoms. - Abstract: Samarium orthoferrite (SmFeO{sub 3}) is synthesized by a simple combustion method using aspartic acid as fuel. Phase purity and functional groups are analyzed via X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) analysis, whichmore » confirms the single phase formation of orthorhombic SmFeO{sub 3}. Approximately spherical particles with size range 150–300 nm is revealed by scanning electron microscope (SEM). The conductivity of the material is identified by the single semicircle obtained in the solid state impedance spectra at elevated temperatures. The calculated electrical conductivity increases with increasing temperature, inferring the semiconducting nature of SmFeO{sub 3}. A magnetic study at room temperature revealed weak ferromagnetic behaviour in SmFeO{sub 3} due to Dzyaloshinsky–Moriya antisymmetric exchange interaction mechanism. Mössbauer analysis confirmed the +3 oxidation state of iron and magnetic ordering of the sample at room temperature.« less
Fabrication of iron (III) oxide doped polystyrene shells
NASA Astrophysics Data System (ADS)
Cai, Pei-Jun; Tang, Yong-Jian; Zhang, Lin; Du, Kai; Feng, Chang-Gen
2004-03-01
A type of iron (III) oxide doped plastic shell used for inertial confinement fusion experiments has been fabricated by emulsion techniques. Three different phases of solution (W1, O, and W2) are used for the fabrication process. The W1 phase is a 1 wt % of sodium lauryl sulfate in water. This W1 phase solution is mixed with a 3 wt % Fe2O3-polystyrene (PS) solution in benzene-dichloroethane (O phase) while stirring. The resulting emulsion (W1/O) is poured into a 3 wt % aqueous polyvinyl alcohol solution (W2 phase) while stirring. The resulting emulsion (W1/O/W2) is then heated to evaporate benzene and dichloroethane, and thus a solid Fe2O3-PS shell is formed. The diameter and wall thickness of the shells range from 150 to 500 μm and 5 to 15 μm, respectively. The average surface roughness of the shells is 40 nm, similar to that of the usual PS shells. .
NASA Astrophysics Data System (ADS)
Dadami, Sunanda T.; Matteppanvar, Shidaling; Shivaraja, I.; Rayaprol, Sudhindra; Deshapande, S. K.; Angadi, Basavaraj
2018-05-01
In this paper the structural and low temperature dielectric properties of Pb0.8Bi0.2Fe0.6Nb0.4O3 (PBFNO) multiferroic solid solution were reported. PBFNO multiferroic was synthesized by single step solid state reaction method. Calcination was carried out at 700 °/2hr with different sintering temperature (800 °C, 850 °C, 900 °C, 950 °C, 1000 °C and 1050 °C for 1 hr) and time duration (800 °C for 1 to 5 hr). Single phase was confirmed through room temperature (RT) X-ray Diffraction (XRD). It was found that sintering carried out at 800°C/3 hr gives single phase. Rietveld refined lattice parameters using monoclinic structure are: a = 5.6663(1) Å, b = 5.6694(1) Å, c = 4.0112(1) Å and β = 90.038(1)° with the average grain size as 2.987 µm. The dielectric properties studied over a wide range of frequency (100 Hz - 5 MHz) and temperature (133 K - 293 K). Dielectric constant and loss tangent exhibits frequency dispersion nature at low frequency region. AC conductivity increases with increase in temperature corresponds to negative temperature coefficient of resistance (NTCR) behaviour.
Yavuz, Emre; Tokalıoğlu, Şerife; Patat, Şaban
2018-10-15
In the present study, core-shell Fe 3 O 4 polydopamine nanoparticles were synthesized and used for the first time as an adsorbent for the vortex assisted magnetic dispersive solid phase extraction of copper from food samples. After elution, copper in the solutions was determined by FAAS. The adsorbent was characterized using X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, Brunauer-Emmett-Teller surface area, and zeta potential measurements. Various parameters affecting the magnetic dispersive solid-phase extraction were evaluated. The optimum pH and magnetic adsorbent amount were found to be 5 and 40 mg, respectively. Elution was made by 3 mL of 2 mol L -1 HNO 3 .The major advantage of the method is the fast equilibration during adsorption without the need for vortexing or shaking. The preconcentration factor and detection limit of the method were found to be 150 and 0.22 mg L -1 , respectively. The precision (as RSD%) and adsorption capacity of the method were 3.7% and 28 mg g -1 , respectively. The method was successfully verified by analyzing four certified reference materials (SPS-WW1 Batch 114 Wastewater, TMDA-53.3 Lake water, BCR-482 Lichen and 1573a Tomato Leaves) and by addition/recovery tests of copper standard solution in organic baby food, muesli, macaroni, honey, and milk samples. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ren, Ji-Yun; Wang, Xiao-Li; Li, Xiao-Li; Wang, Ming-Lin; Zhao, Ru-Song; Lin, Jin-Ming
2018-02-01
Covalent organic frameworks (COFs), which are a new type of carbonaceous polymeric material, have attracted great interest because of their large surface area and high chemical and thermal stability. However, to the best of our knowledge, no work has reported the use of magnetic COFs as adsorbents for magnetic solid-phase extraction (MSPE) to enrich and determine environmental pollutants. This work aims to investigate the feasibility of using covalent triazine-based framework (CTF)/Fe 2 O 3 composites as MSPE adsorbents to enrich and analyze perfluorinated compounds (PFCs) at trace levels in water samples. Under the optimal conditions, the method developed exhibited low limits of detection (0.62-1.39 ng·L -1 ), a wide linear range (5-4000 ng L -1 ), good repeatability (1.12-9.71%), and good reproducibility (2.45-7.74%). The new method was successfully used to determine PFCs in actual environmental water samples. MSPE based on CTF/Fe 2 O 3 composites exhibits potential for analysis of PFCs at trace levels in environmental water samples. Graphical abstract Magnetic covalent triazine-based frameworks (CTFs) were used as magnetic solid-phase extraction adsorbents for the sensitive determination of perfluorinated compounds in environmental water samples. PFBA perfluorobutyric acid, PFBS perfluorobutane sulfonate, PFDA perfluorodecanoic acid, PFDoA perfluorododecanoic acid, PFHpA perfluoroheptanoic acid, PFHxA perfluorohexanoic acid, PFHxS perfluorohexane sulfonate, PFNA perfluorononanoic acid, PFOA perfluorooctanoic acid, PFPeA perfluoropentanoic acid, PFUdA Perfluoroundecanoic acid.
Chen, Chunmei; Thompson, Aaron
2018-01-16
Abiotic Fe(II) oxidation by O 2 commonly occurs in the presence of mineral sorbents and organic matter (OM) in soils and sediments; however, this tertiary system has rarely been studied. Therefore, we examined the impacts of mineral surfaces (goethite and γ-Al 2 O 3 ) and organic matter [Suwannee River fulvic acid (SRFA)] on Fe(II) oxidation rates and the resulting Fe(III) (oxyhydr)oxides under 21 and 1% pO 2 at pH 6. We tracked Fe dynamics by adding 57 Fe(II) to 56 Fe-labeled goethite and γ-Al 2 O 3 and characterized the resulting solids using 57 Fe Mössbauer spectroscopy. We found Fe(II) oxidation was slower at low pO 2 and resulted in higher-crystallinity Fe(III) phases. Relative to oxidation of Fe(II) (aq) alone, both goethite and γ-Al 2 O 3 surfaces increased Fe(II) oxidation rates regardless of pO 2 levels, with goethite being the stronger catalyst. Goethite surfaces promoted the formation of crystalline goethite, while γ-Al 2 O 3 favored nano/small particle or disordered goethite and some lepidocrocite; oxidation of Fe(II) aq alone favored lepidocrocite. SRFA reduced oxidation rates in all treatments except the mineral-free systems at 21% pO 2 , and SRFA decreased Fe(III) phase crystallinity, facilitating low-crystalline ferrihydrite in the absence of mineral sorbents, low-crystalline lepidocrocite in the presence of γ-Al 2 O 3 , but either crystalline goethite or ferrihydrite when goethite was present. This work highlights that the oxidation rate, the types of mineral surfaces, and OM control Fe(III) precipitate composition.
Sricharoen, Phitchan; Limchoowong, Nunticha; Areerob, Yonrapach; Nuengmatcha, Prawit; Techawongstien, Suchila; Chanthai, Saksit
2017-07-01
Fe 3 O 4 /hydroxyapatite/graphene quantum dots (Fe 3 O 4 /HAP/GQDs) nanocomposite was synthesized and used as a novel magnetic adsorbent. This nanocomposite was characterized using scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, and magnetization property. The Fe 3 O 4 /HAP/GQDs was applied to pre-concentrate copper residues in Thai food ingredients (so-called "Tom Yum Kung") prior to determination by inductively coupled plasma-atomic emission spectrometry. Based on ultrasound-assisted extraction optimization, various parameters affecting the magnetic solid-phase extraction, such as solution pH, amount of magnetic nanoparticles, adsorption and desorption time, and type of elution solvent and its concentration were evaluated. Under optimal conditions, the linear range was 0.05-1500ngmL -1 (R 2 >0.999), limit of detection was 0.58ngmL -1 , and limit of quantification was 1.94ngmL -1 . The precision, expressed as the relative standard deviation of the calibration curve slope (n=5), for intra-day and inter-day analyses was 0.87% and 4.47%, respectively. The recovery study of Cu for real samples was ranged between 83.5% and 104.8%. This approach gave the enrichment factor of 39.2, which guarantees trace analysis of Cu residues. Therefore, Fe 3 O 4 /HAP/GQDs can be a potential and suitable candidate for the pre-concentration and separation of Cu from food samples. It can easily be reused after treatment with deionized water. Copyright © 2017 Elsevier B.V. All rights reserved.
Li, Danping; Ma, Xiaoguo; Wang, Rui; Yu, Yumian
2017-02-01
Bisphenol A (BPA), an endocrine-disrupting chemical, has received much attention from researchers and the general public. In this paper, a novel method of determining BPA at trace levels was developed, using magnetic reduced graphene oxide (rGO-Fe 3 O 4 )-based solid-phase extraction coupled with dispersive liquid-liquid microextraction (DLLME), followed by high-performance liquid chromatographic determination. The rGO-Fe 3 O 4 was prepared and then characterized by Fourier transform infrared spectroscopy, transmission electron microscopy, and vibrating sample magnetometry. The greatest saturation magnetization of rGO-Fe 3 O 4 was up to 43.8 emu g -1 , which allowed rapid isolation of the rGO-Fe 3 O 4 from solutions upon applying an appropriate magnetic field. The effects of solution pH, adsorbent amount, type and volume of eluent and extraction solvent, extraction time, and salt concentration on the extraction efficiency of BPA were examined and optimized. Under the optimum conditions, an enrichment factor of 5217 and an LOD of 0.01 μg L -1 for BPA were obtained. The reusability of rGO-Fe 3 O 4 for at least 12 repeated cycles without any significant decrease in the extraction recovery of BPA was demonstrated. The proposed method was applied to the determination of BPA in different real water samples, with relative recoveries of 84.8-104.9 % and RSDs of 0.8-8.3 % in the spiked concentration range 1-10 μg L -1 .
He behavior in Ni and Ni-based equiatomic solid solution alloy
NASA Astrophysics Data System (ADS)
Yan, Zhanfeng; Liu, Shaoshuai; Xia, Songqin; Zhang, Yong; Wang, Yugang; Yang, Tengfei
2018-07-01
In the current work, pure nickel (99.99 wt.%) and Ni-containing single phase equiatomic solid solution alloy Fe-Co-Cr-Ni were irradiated with 190 keV He ions at room temperature with different fluences and He behavior in both materials are compared. At 1 × 1017 cm-2, TEM observation reveals that only isolated and small He bubbles (1-2 nm) are formed in Fe-Co-Cr-Ni alloy while many small suspected "string"-like He bubbles are observed in nickel at the concentration peak region (5.5 at.%). When the fluence is increased to 5 × 1017 cm-2, average bubble size in nickel increases to ∼8 nm which is almost equal to that in Fe-Co-Cr-Ni, but a higher bubble density is observed in nickel. At the highest dose of 1 × 1018 cm-2, numerous surface blisters and exfoliations occur in nickel which are consistent with TEM observation, while the Fe-Co-Cr-Ni alloy only shows a slight surface blister. Bubble coarsening upon annealing at 500 °C (2 h) is observed at 5 × 1017 cm-2 in both alloys, but a significant larger bubble growth is observed in nickel, suggesting a relatively better resistance to He bubble growth for Fe-Co-Cr-Ni alloy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clemens, Oliver, E-mail: oliver.clemens@kit.edu; Karlsruher Institut für Technologie, Institut für Nanotechnologie, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen; Berry, Frank J.
2015-03-15
In this article we comment on the results published by Thompson et al. (, J. Solid State Chem. 219 (2014) 173–178) on the crystal structure of SrFeO{sub 2}F, who claim the compound to crystallize in the cubic space group Pm-3m. We give a more detailed explanation of the determination of our previously reported structural model with Imma symmetry (Clemens et al., J. Solid State Chem. 206 (2013) 158–169), with addition of variable temperature XRD measurements with high counting time to provide unambiguous evidence for the Imma model being correct for our sample. - Graphical abstract: The crystal structure of SrFeO{submore » 2}F is discussed with regards to previous reports. - Highlights: • SrFeO{sub 2}F was synthesized by polymer based fluorination of SrFeO{sub 3}. • Evaluation of the diffraction data shows a pseudocubic cell metric. • Superstructure reflections at low d-spacings indicate deviation from cubic symmetry. • The phase transition temperature from orthorhombic to cubic was determined using variable temperature X-ray diffraction. • Results published by Thompson et al. are critically discussed with respect to those observations.« less
Vertical distribution of Fe and Fe(III)-reducing bacteria in the sediments of Lake Donghu, China.
Tian, Cuicui; Wang, Chunbo; Tian, Yingying; Wu, Xingqiang; Xiao, Bangding
2015-08-01
In lake sediments, iron (Fe) is the most versatile element, and the redox cycling of Fe has a wide influence on the biogeochemical cycling of organic and inorganic substances. The aim of the present study was to analyze the vertical distribution of Fe and Fe(III)-reducing bacteria (FeRB) in the surface sediment (30 cm) of Lake Donghu, China. At the 3 sites we surveyed, FeRB and Fe(II)-oxidizing bacteria (FeOB) coexisted in anoxic sediments. Geobacter-related FeRB accounted for 5%-31% of the total Bacteria, while Gallionella-related FeOB accounted for only 0.1%-1.3%. A significant correlation between the relative abundance of poorly crystalline Fe and Geobacter spp. suggested that poorly crystalline Fe favored microbial Fe(III) reduction. Poorly crystalline Fe and Geobacter spp. were significantly associated with solid-phase Fe(II) and total inorganic phosphorus levels. Pore water Fe(II) concentrations negatively correlated with NO3(-) at all sites. We concluded that Geobacter spp. were abundant in the sediments of Lake Donghu, and the redox of Fe might participate in the cycling of nitrogen and phosphorus in sediments. These observations provided insight into the roles of microbial Fe cycling in lake sediments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zakaria, Nurhamidah, E-mail: nurhamidahzakaria@yahoo.com; Idris, Mohd Sobri, E-mail: sobri@unimap.edu.my; Osman, Rozana A. M., E-mail: rozana@unimap.edu.my
2016-07-19
Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-δ} was successfully prepared using modified solid-state synthesis routes. The lowest temperature to obtained single phase of Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-δ} is about 900°C for 15 hours. Longer period of time are required compared to only 5 hours at 950°C as established in literatures. The X-ray Diffraction (XRD) data confirmed that Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-δ} is formed a cubic perovskite with the space group of Pm-3m. The lattice parameters of Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-δ} are a = 3.990 (1) Å and unit cell volume is V = 63.5 (1)more » Å{sup 3}. The Rietveld refinement of XRD data revealed that the crystal structure of Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-δ} slightly changes as a function of temperature.« less
NASA Astrophysics Data System (ADS)
Roy, Pinku; Maiti, Tanmoy
2018-02-01
Double perovskite materials have been studied in detail by many researchers, as their magnetic and electronic properties can be controlled by the substitution of alkaline earth metals or lanthanides in the A site and transition metals in the B site. Here we report the temperature-driven, p-n-type conduction switching assisted, large change in thermopower in La3+-doped Sr2TiFeO6-based double perovskites. Stoichiometric compositions of La x Sr2-x TiFeO6 (LSTF) with 0 ⩽ x ⩽ 0.25 were synthesized by the solid-state reaction method. Rietveld refinement of room-temperature XRD data confirmed a single-phase solid solution with cubic crystal structure and Pm\\bar{3}m space group. From temperature-dependent electrical conductivity and Seebeck coefficient (S) studies it is evident that all the compositions underwent an intermediate semiconductor-to-metal transition before the semiconductor phase reappeared at higher temperature. In the process of semiconductor-metal-semiconductor transition, LSTF compositions demonstrated temperature-driven p-n-type conduction switching behavior. The electronic restructuring which occurs due to the intermediate metallic phase between semiconductor phases leads to the colossal change in S for LSTF oxides. The maximum drop in thermopower (ΔS ~ 2516 µV K-1) was observed for LSTF with x = 0.1 composition. Owing to their enormous change in thermopower of the order of millivolts per kelvin, integrated with p-n-type resistance switching, these double perovskites can be used for various high-temperature multifunctional device applications such as diodes, sensors, switches, thermistors, thyristors, thermal runaway monitors etc. Furthermore, the conduction mechanisms of these oxides were explained by the small polaron hopping model.
NASA Astrophysics Data System (ADS)
Trukhanov, A. V.; Trukhanov, S. V.; Panina, L. V.; Kostishyn, V. G.; Kazakevich, I. S.; Trukhanov, An. V.; Trukhanova, E. L.; Natarov, V. O.; Turchenko, V. A.; Salem, M. M.; Balagurov, A. M.
2017-03-01
M-type BaFe11.9Al0.1O19 hexaferrite was successfully synthesized by solid state reactions. Precision investigations of crystal and magnetic structures of BaFe11.9Al0.1O19 powder by neutron diffraction in the temperature range 4.2-730 K have been performed. Magnetic and electrical properties investigations were carried out in the wide temperature range. Neutron powder diffraction data were successfully refined in approximation for both space groups (SG): centrosymmetric #194 (standard non-polar phase) and non-centrosymmetric #186 (polar phase). It has been shown that at low temperatures (below room temperature) better fitting results (value χ2) were for the polar phase (SG: #186) or for the two phases coexistence (SG: #186 and SG: #194). At high temperatures (400-730 K) better fitting results were for SG: #194. It was established coexistence of the dual ferroic properties (specific magnetization and spontaneous polarization) at room temperature. Strong correlation between magnetic and electrical subsystems was demonstrated (magnetoelectrical effect). Temperature dependences of the spontaneous polarization, specific magnetization and magnetoelectrical effect were investigated.
Structural, Kinetic And Magnetic Properties Of Mechanically Alloyed Fe-Zr Powders
NASA Astrophysics Data System (ADS)
Mishra, Debabrata; Perumal, A.; Srinivasan, A.
2008-04-01
We report the study of amorphous/non-equilibrium solid solution Fe100-xZrx (x = 20 to 35) alloys by mechanical alloying process. It is observed that with increasing Zr substitution, (a) the activation energy increases, (b) the saturation magnetization and coercivity show oscillating behavior. Low temperature magnetic measurements show the presence of spin-glass like phase transition even at H = 10 kOe. The oscillating behavior of magnetic parameters is explained on the basis of variations in the average internal stress calculated using magnetic data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, R.B.
The U--Al--Fe constitution diagram up to about 1000 ppm each of aluminum and iron is sthdied. The techniques used for this study include optical, electron, and x-ray metallography; microprobe analysis, electric conductivity, and hardness measurements. A combination of techniques are giving evidence of the amount of solid solubility of aluminum and iron in alpha, beta, and gamma uranium at selected higher temperatures. The U-Al and U-Fe phase diagrams are also being determined. (N.W.R.)
Magnetic and dielectric properties of Fe3BO6 nanoplates prepared through self-combustion method
NASA Astrophysics Data System (ADS)
Kumari, Kalpana
In the present investigation, a facile synthesis method is explored involving a self-combustion of a solid precursor mixture of iron oxide Fe2O3 and boric acid (H3BO3) using camphor (C10H16O) as fuel in ambient air in order to form a single phase Fe3BO6 crystallites. X-ray diffraction (XRD), Field emission electron microscopy (FESEM), magnetic, and dielectric properties of as prepared sample are studied. From XRD pattern, a single phase compound is observed with an orthorhombic crystal structure (Pnma space group), with average crystallite size of 42nm. A reasonably uniform size distribution of the plates and self-assemblies is retained in the sample. A magnetic transition is observed in dielectric permittivity (at ˜445K) and power loss (at ˜435K) when plotted against temperature. A weak peak occurs near 330K due to the charge reordering in the sample. For temperatures above the transition temperature, a sharp increase of the dielectric loss is observed which occurs due to the presence of thermally activated charge carriers. A canted antiferromagnetic Fe3+ ordering in a Fe3BO6 lattice with a localized charge surface layer is an apparent source of exhibiting a ferroelectric feature in this unique example of a centrosymmetric compound. An induced spin current over the Fe sites thus could give rise to a polarization hysteresis loop. Due to the presence of both ferromagnetic as well as polarization ordering, Fe3BO6 behaves like a single phase multiferroic ceramics.
Structural properties and electrochemistry of α-LiFeO2
NASA Astrophysics Data System (ADS)
Abdel-Ghany, A. E.; Mauger, A.; Groult, H.; Zaghib, K.; Julien, C. M.
2012-01-01
In this work, we study the physico-chemistry and electrochemistry of lithium ferrite synthesized by solid-state reaction. Characterization included X-ray diffraction (XRD), scanning electronic microscopy (SEM), Raman scattering (RS), Fourier transform infrared spectroscopy (FTIR), and SQUID magnetometry. XRD peaks gradually sharpen with increasing firing temperature; all the diffraction peaks can be indexed to the cubic α-LiFeO2 phase (Fm3m space group) with the refined cell parameter a = 4.155 Å. RS and FTIR spectra show the vibrational modes due to covalent Fe-O bonds and the Li-cage mode at low-frequency. The electrochemical properties of Li/LiFeO2 are revisited along with the post-mortem analysis of the positive electrode material using XRD and Raman experiments.
Chemical catalysis of nitrate reduction by iron (II)
NASA Astrophysics Data System (ADS)
Ottley, C. J.; Davison, W.; Edmunds, W. M.
1997-05-01
Experiments have been conducted to investigate the chemical reduction of nitrate under conditions relevant to the often low organic carbon environment of groundwaters. At pH 8 and 20 ± 2°C, in the presence of Cu(II), NO 3- was chemically reduced by Fe(II) to NH 4+ with an average stoichiometric liberation of 8 protons. The rate of the reaction systematically increased with pH in the range pH 7-8.5. The half-life for nitrate reduction, t 1/2, was inversely related to the total molar copper concentration, [Cu T], by the equation log t 1/2 = -1.35 log [Cu T] -2.616, for all measured values of t 1/2 from 23 min to 15 days. At the Cu(II) concentrations used of 7 × 10 -6 -10 -3 M, Cu was present mainly as a solid phase, either adsorbed to the surfaces of precipitated iron oxides or as a saturated solid. It is this solid phase copper rather than CU 2+ in solution which is catalytically active. Neither magnetite, which was formed as a product of the reaction, nor freshly prepared lepidocrocite catalysed the reaction, but goethite did. Although traces of oxygen accelerated the reaction, at higher partial pressures (>0.01 atm) the reduction of nitrate was inhibited, probably due to competition between NO 3- and O 2 for Fe(II). Appreciable catalytic effects were also observed for solid phase forms of Ag(I), Cd(H), Ni(H), Hg(II), and Pb(II). Mn(II) enhanced the rate slightly, and there was evidence for slow abiotic reduction in the absence of any added metal catalysts. These results suggest that the chemical reduction of nitrate at catalytic concentrations and temperatures appropriate to groundwater conditions is feasible on a timescale of months to years.
Sliding friction and wear behavior of high entropy alloys at room and elevated temperatures
NASA Astrophysics Data System (ADS)
Kadhim, Dheyaa
Structure-tribological property relations have been studied for five high entropy alloys (HEAs). Microhardness, room and elevated (100°C and 300°C) temperature sliding friction coefficients and wear rates were determined for five HEAs: Co0.5 Cr Cu0.5 Fe Ni1.5 Al Ti0.4; Co Cr Fe Ni Al0.25 Ti0.75; Ti V Nb Cr Al; Al0.3CoCrFeNi; and Al0.3CuCrFeNi2. Wear surfaces were characterized with scanning electron microscopy and micro-Raman spectroscopy to determine the wear mechanisms and tribochemical phases, respectively. It was determined that the two HEAs Co0.5 Cr Cu0.5 Fe Ni1.5 Al Ti0.4 and Ti V Nb Cr Al exhibit an excellent balance of high hardness, low friction coefficients and wear rates compared to 440C stainless steel, a currently used bearing steel. This was attributed to their more ductile body centered cubic (BCC) solid solution phase along with the formation of tribochemical Cr oxide and Nb oxide phases, respectively, in the wear surfaces. This study provides guidelines for fabricating novel, low-friction, and wear-resistant HEAs for potential use at room and elevated temperatures, which will help reduce energy and material losses in friction and wear applications.
NASA Astrophysics Data System (ADS)
Sahara, Ryoji; Matsunaga, Tetsuya; Hongo, Hiromichi; Tabuchi, Masaaki
2016-05-01
Small amounts of boron improve the mechanical properties in high-chromium ferritic heat-resistant steels. In this work, the stabilizing mechanism by boron in body-centered cubic iron (bcc Fe) through (Fe,Cr)23(C,B)6 precipitates was investigated by first-principles calculations. Formation energy analysis of (Fe,Cr)23(C,B)6 reveals that the compounds become more stable to elemental solids as the boron concentration increases. Furthermore, the interface energy of bcc Fe(110) || Fe23(C,B)6(111) also decreases with boron concentration in the compounds. The decreased interface energy caused by boron addition is explained by the balance between the change in the phase stability of the precipitates and the change in the misfit parameter for the bcc Fe matrix and the precipitates. These results show that boron stabilizes the microstructure of heat-resistant steels, which is important for understanding the origins of the creep strength in ferritic steels.
Performance evaluation of Mn and Fe doped SrCo0.9Nb0.1O3-δ cathode for IT-SOFC application
NASA Astrophysics Data System (ADS)
Bele, Lokesh; Lenka, R. K.; Patro, P. K.; Muhmood, L.; Mahata, T.; Sinha, P. K.
2018-02-01
Cathode materials of Mn and Fe doped SrCo0.9Nb0.1O3-δ, are synthesized by solid state route for intermediate temperature fuel cell applications. Phase pure material is obtained after calcining the precursors at 1100 °C. Phase compatibility is observed between this novel cathode material with gadolinia doped ceria (GDC) electrolyte material as reflected in the diffraction pattern. The state of art YSZ electrolyte is not compatible with this cathode material. Average thermal expansion coefficient of the material varies between 17 to 22 X 10-6 K-1 on doping, from room temperature to 800 °C. Increase in thermal expansion coefficient is observed with Mn and Fe doping associated with the loss of oxygen from the crystal. The electrical conductivity of the cathode material decreases with Fe and Mn doping. Mn doped samples show lowest conductivity. From the symmetric cell measurement lower area specific resistance (0.16 Ω-cm2) is obtained for un-doped samples, at 850 °C. From the initial results it can be inferred that Mn/Fe doping improves neither the thermal expansion co-efficient nor the electrochemical activity.
Structural study of Ti-doped CoFe{sub 2}O{sub 4} mixed spinel ferrite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhary, P., E-mail: pankaj.7007@rediffmail.com; Sharma, P.; Dar, M. A.
2016-05-06
We present the results on atomic and lattice structure of the polycrystalline spinel ferrites system Co{sub 1-x} Ti{sub x}Fe{sub 2}O{sub 4} (x = 0.0, 0.25, 0.50) synthesized by following the conventional solid-state reaction route. The observed X-ray diffraction (XRD) data confirms that all the prepared samples are indexed in cubic crystal structure (space group Fd3m). Diffraction pattern showed TiO{sub 2} phase due to presence of Ti{sup +4} ions. Four Raman active phonon modes are observed for CoFe{sub 2}O{sub 4} sample existing around 295, 462, 585, 689, cm{sup −1} as Eg, T{sub 2g}(2), T{sub 2g}(3), and A{sub 1g}, respectively. With 25more » % Ti ion doping, the peak T{sub 2g}(3) disappears, while to that T{sub 2g}(1) emerges. This is an indication of presence of TiO{sub 2} phase in Co{sub 0.75}Ti{sub 0.25}Fe{sub 2}O{sub 4} and Co{sub 0.5}Ti{sub 0.5}Fe{sub 2}O{sub 4} ceramics.« less
High pressure effects on the iron iron oxide and nickel nickel oxide oxygen fugacity buffers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, Andrew J; Danielson, Lisa; Righter, Kevin
The chemical potential of oxygen in natural and experimental samples is commonly reported relative to a specific oxygen fugacity (fO{sub 2}) buffer. These buffers are precisely known at 1 bar, but under high pressures corresponding to the conditions of the deep Earth, oxygen fugacity buffers are poorly calibrated. Reference (1 bar) fO{sub 2} buffers can be integrated to high pressure conditions by integrating the difference in volume between the solid phases, provided that their equations of state are known. In this work, the equations of state and volume difference between the metal-oxide pairs Fe-FeO and Ni-NiO were measured using synchrotronmore » X-ray diffraction in a multi-anvil press and laser heated diamond anvil cells. The results were used to construct high pressure fO{sub 2} buffer curves for these systems. The difference between the Fe-FeO and Ni-NiO buffers is observed to decrease significantly, by several log units, over 80 GPa. The results can be used to improve interpretation of high pressure experiments, specifically Fe-Ni exchange between metallic and oxide phases.« less
Predicting major element mineral/melt equilibria - A statistical approach
NASA Technical Reports Server (NTRS)
Hostetler, C. J.; Drake, M. J.
1980-01-01
Empirical equations have been developed for calculating the mole fractions of NaO0.5, MgO, AlO1.5, SiO2, KO0.5, CaO, TiO2, and FeO in a solid phase of initially unknown identity given only the composition of the coexisting silicate melt. The approach involves a linear multivariate regression analysis in which solid composition is expressed as a Taylor series expansion of the liquid compositions. An internally consistent precision of approximately 0.94 is obtained, that is, the nature of the liquidus phase in the input data set can be correctly predicted for approximately 94% of the entries. The composition of the liquidus phase may be calculated to better than 5 mol % absolute. An important feature of this 'generalized solid' model is its reversibility; that is, the dependent and independent variables in the linear multivariate regression may be inverted to permit prediction of the composition of a silicate liquid produced by equilibrium partial melting of a polymineralic source assemblage.
Core Formation: an Experimental Study of Metallic Melt-Silicate Segregation
NASA Astrophysics Data System (ADS)
Herpfer, M. A.; Larimer, J. W.
1993-07-01
To a large extent, the question of how metallic cores form reduces to the problem of understanding the surface tension between metallic melts and silicates [1]. This problem was addressed by performing experiments to determine the surface tensions between metallic melts with variable S contents and the silicate phases (olivine and orthopyroxene) expected in planetary mantles. The experiments were conducted in a piston-cylinder apparatus at P = 1GPa and T = 1250-1450 degrees C. Textural and chemical equilibration was confirmed in several ways: theoretical estimates were checked by conducting a series of experiments at progressively longer times (up to 72 hrs) until phase composition and dihedral angle ceased to change and the distribution of measured "apparent" angles matched the standard cumulative frequency curve. The dihedral "wetting" angles (theta) were measured from high resolution photomicrgraphs using a 10X optical protractor; 100-400 measurements were made for most experiments. The dihedral angle is related to the ratio of interfacial energies: gamma(sub)ss/gamma(sub)sl = 2 cos(theta/2), where gamma(sub)ss and gamma(sub)sl are the interfacial energies between solid-solid and liquid-solid. Since data exist for the pertinent solid-solid energies, the liquid-solid interfacial energies can be computed from measured theta values. However, the important relations are best expressed in terms of theta values. The extent to which a melt is interconnected along grain boundaries, and hence able to flow and segregate depends on the value of theta and the fraction of melt present. When theta < 60 degrees, the liquid can be interconnected at all melt fractions but when theta > 60 degrees, the melt fraction must be at least 1 vol% and increses as theta increases. Actually there is a predicted effect, analogous to a hysteresis effect, where for a given theta value the amount of melt that needs to be added for interconnection is greater than the amount left when the melt disconnects (pinches off). In our experiments, where dense metallic melt drained away, the disconnect theta values match the theoretical predictions. The composition of the metallic melt in the experiments was varied from stoichiometric FeS to Fe/S ratios near the the eutectic and on to more Fe rich compositons. The theta values vary in a systematic manner; for example, for melts in contact with olivine at 1300 degrees C the theta values range from 67 degrees for FeS to 55 degrees at the eutectic and back toward higher values at higher Fe contents. Theoretical considerations indicate that eutectic compositions are expected to have the lowest theta values, just as observed. The theta values indicate that melts with eutectic composition can interconnect and segregate at 1-2 vol% melt fraction at 1300 degrees C. Some previous estimates of the melt fraction required for interconnection are much higher [2,3], but the inferences were drawn from experiments that were not designed to test for textural equilibrium, fraction of melt present, etc. The present experiments clearly show that metallic melts can readily segregate from solid silicates. Simple extrapolations to other phases, compositions and PT conditions provide a rather complete picture of how the "plumbing" worked in the mantles of planetary objects during the initial stages of core segregation. References: [1] Stevenson D. J. (1990) In Origin of the Earth, 231-249. [2] Taylor G. J. (1989) LPSC XX, 1109. [3] Walker D. and Agee C. B. Meteor. 23, 81-91.
Williams, Paul N; Zhang, Hao; Davison, William; Meharg, Andrew A; Hossain, Mahmud; Norton, Gareth J; Brammer, Hugh; Islam, M Rafiqul
2011-07-15
Agroecological zones within Bangladesh with low levels of arsenic in groundwater and soils produce rice that is high in arsenic with respect to other producing regions of the globe. Little is known about arsenic cycling in these soils and the labile fractions relevant for plant uptake when flooded. Soil porewater dynamics of field soils (n = 39) were recreated under standardized laboratory conditions to investigate the mobility and interplay of arsenic, Fe, Si, C, and other elements, in relation to rice grain element composition, using the dynamic sampling technique diffusive gradients in thin films (DGT). Based on a simple model using only labile DGT measured arsenic and dissolved organic carbon (DOC), concentrations of arsenic in Aman (Monsoon season) rice grain were predicted reliably. DOC was the strongest determinant of arsenic solid-solution phase partitioning, while arsenic release to the soil porewater was shown to be decoupled from that of Fe. This study demonstrates the dual importance of organic matter (OM), in terms of enhancing arsenic release from soils, while reducing bioavailability by sequestering arsenic in solution.
Enhanced damage resistance and novel defect structure of CrFeCoNi under in situ electron irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Mo -Rigen; Wang, Shuai; Jin, Ke
Defect production and growth in CrFeCoNi, a single-phase concentrated solid solution alloy, is characterized using in situ electron irradiation inside a transmission electron microscope operated at 400–1250 kV and 400 °C. All observed defects are interstitial-type, either elliptical Frank loops or polygonal (mostly rhombus) perfect loops. Both forms of loops in CrFeCoNi exhibit a sublinear power law of growth that is > 40 times slower than the linear defect growth in pure Ni. Lastly, this result shows how compositional complexity impacts the production of Frenkel pairs and the agglomeration of interstitials into loops, and, thus, enhances the radiation tolerance.
Enhanced damage resistance and novel defect structure of CrFeCoNi under in situ electron irradiation
He, Mo -Rigen; Wang, Shuai; Jin, Ke; ...
2016-07-25
Defect production and growth in CrFeCoNi, a single-phase concentrated solid solution alloy, is characterized using in situ electron irradiation inside a transmission electron microscope operated at 400–1250 kV and 400 °C. All observed defects are interstitial-type, either elliptical Frank loops or polygonal (mostly rhombus) perfect loops. Both forms of loops in CrFeCoNi exhibit a sublinear power law of growth that is > 40 times slower than the linear defect growth in pure Ni. Lastly, this result shows how compositional complexity impacts the production of Frenkel pairs and the agglomeration of interstitials into loops, and, thus, enhances the radiation tolerance.
Solid state amorphization in the Al-Fe binary system during high energy milling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urban, P., E-mail: purban@us.es; Montes, J. M.; Cintas, J.
2013-12-16
In the present study, mechanical alloying (MA) of Al75Fe25 elemental powders mixture was carried out in argon atmosphere, using a high energy attritor ball mill. The microstructure of the milled products at different stages of milling was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). The results showed that the amorphous phase content increased by increasing the milling time, and after 50 hours the amorphization process became complete. Heating the samples resulted in the crystallization of the synthesized amorphous alloys and the appearance of the equilibrium intermetallic compounds Al{sub 5}Fe{submore » 2}.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reza-E-Rabby, Md.; Ross, Kenneth; Overman, Nicole R.
A new solid-phase technique called friction stir dovetailing (FSD) has been developed for joining thick section aluminum to steel. In FSD, mechanical interlocks are formed at the aluminum-steel interface and are reinforced by metallurgical bonds where intermetallic growth has been uniquely suppressed. Lap shear testing shows superior strength and extension at failure compared to popular friction stir approaches where metallurgical bonding is the only joining mechanism. High resolution microscopy revealed the presence of a 40-70 nm interlayer having a composition of 76.4 at% Al, 18.4 at% Fe, and 5.2 at% Si, suggestive of limited FeAl3 intermetallic formation.
Su, Rihui; Ruan, Guihua; Chen, Zhengyi; Du, Fuyou; Li, Jianping
2015-12-01
A new class of solid-phase extraction column prepared with grafted mercapto-silica polymerized high internal phase emulsion particles was used for the preconcentration of trace lead. First, mercapto-silica polymerized high internal phase emulsion particles were synthesized by using high internal phase emulsion polymerization and carefully assembled in a polyethylene syringe column. The influences of various parameters including adsorption pH value, adsorption and desorption solvents, flow rate of the adsorption and desorption procedure were optimized, respectively, and the suitable uploading sample volumes, adsorption capacity, and reusability of solid phase extraction column were also investigated. Under the optimum conditions, Pb(2+) could be preconcentrated quantitatively over a wide pH range (2.0-5.0). In the presence of foreign ions, such as Na(+) , K(+) , Ca(2+) , Zn(2+) , Mg(2+) , Cu(2+) , Fe(2+) , Cd(2+) , Cl(-) and NO3 (-) , Pb(2+) could be recovered successfully. The prepared solid-phase extraction column performed with high stability and desirable durability, which allowed more than 100 replicate extractions without measurable changes of performance. The feasibility of the developed method was further validated by the extraction of Pb(2+) in rice samples. At three spiked levels of 40.0, 200 and 800 μg/kg, the average recoveries for Pb(2+) in rice samples ranged from 87.3 to 105.2%. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Incorporation of oxidized uranium into Fe (hydr)oxides during Fe(II) catalyzed remineralization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nico, Peter S.; Stewart, Brandy D.; Fendorf, Scott
2009-07-01
The form of solid phase U after Fe(II) induced anaerobic remineralization of ferrihydrite in the presence of aqueous and absorbed U(VI) was investigated under both abiotic batch and biotic flow conditions. Experiments were conducted with synthetic ground waters containing 0.168 mM U(VI), 3.8 mM carbonate, and 3.0 mM Ca{sup 2+}. In spite of the high solubility of U(VI) under these conditions, appreciable removal of U(VI) from solution was observed in both the abiotic and biotic systems. The majority of the removed U was determined to be substituted as oxidized U (U(VI) or U(V)) into the octahedral position of the goethitemore » and magnetite formed during ferrihydrite remineralization. It is estimated that between 3% and 6% of octahedral Fe(III) centers in the new Fe minerals were occupied by U(VI). This site specific substitution is distinct from the non-specific U co-precipitation processes in which uranyl compounds, e.g. uranyl hydroxide or carbonate, are entrapped with newly formed Fe oxides. The prevalence of site specific U incorporation under both abiotic and biotic conditions and the fact that the produced solids were shown to be resistant to both extraction (30 mM KHCO{sub 3}) and oxidation (air for 5 days) suggest the potential importance of sequestration in Fe oxides as a stable and immobile form of U in the environment.« less
NASA Astrophysics Data System (ADS)
Yapp, Crayton J.
2015-12-01
The initial ∼60% of an isothermal vacuum dehydration of goethite can commonly be approximated by first order kinetics. Also, natural goethites contain small amounts of an Fe(CO3)OH component in apparent solid solution. The 18O/16O of CO2 evolved from the Fe(CO3)OH during isothermal vacuum dehydrations is related to the 18O/16O of the goethite by an apparent fractionation factor (αapp) that is, in turn, correlated with a first order rate constant, |m|. A kinetic exchange model predicts that αapp should decrease as |m| increases for a range of |m| that corresponds to relatively slow rates of dehydration. This pattern has been observed in published results. In contrast, for rapid rates of dehydration, αapp is predicted to increase with increasing |m|. Isothermal vacuum dehydrations of two natural goethites had unusually large values of |m| and provided serendipitous tests of this rapid-rate prediction. For these experiments, the measured values of αapp were consistent with patterns of variation predicted by the model. This allowed an estimate of the activation energy (E2) of a model parameter, K2, which is the rate constant for oxygen isotope exchange between CO2 and H2O during the solid-state goethite to hematite phase transition. The estimated value of E2 is only ∼9 kJ/mol. Heterogeneous catalysis tends to decrease the activation energies of gas reactions. Consequently, the inferred value of E2 suggests that goethite and/or hematite catalyze oxygen isotope exchange between CO2 and H2O during the solid-state phase change. Yield, δ13C, and δ18O values are routinely measured for increments of CO2 evolved from the Fe(CO3)OH component during isothermal vacuum dehydration of goethite. Model-predicted values of αapp can be combined with plateau δ18O values of the evolved CO2 to estimate the δ18O of the goethite with a less than optimal, but potentially useful, precision of about ±0.8‰. Therefore, a single analytical procedure (incremental dehydration) applied to one aliquot of a sample could provide not only δ13C and mole fractions (X) of the Fe(CO3)OH component, but also hydrogen yield, δD, and the approximate δ18O value of the goethite. Recovery of multiple types of geochemical data from a single aliquot would be particularly useful if the amount of sample available for analysis were limited. Also, the method could be used to estimate the δ18O value of goethite in mixtures of minerals not amenable to selective dissolution - e.g., goethite admixed with hematite.
Preparation and study of (1 - x)CuFe2O4-xBaTiO3 (x = 0, 0.1 and 1) composite multiferroics
NASA Astrophysics Data System (ADS)
Murtaza, Tahir; Ali, Javid; Khan, M. S.
2018-07-01
The parent and mixed spinel-perovskite composite of (1 - x)CuFe2O4-xBaTiO3 (x = 0, 0.1 and 1) has been prepared by solid-state reaction method and studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), Mössbauer spectroscopy, magnetometry and P-E lope tracer. The XRD results showed the formation of single phase tetragonal spinel CuFe2O4 and tetragonal perovskite BaTiO3 at room temperature, further XRD of composite 0.1CuFe2O4-0.9BaTiO3 reflects the two crystallographic phases with 1:9 ratio. The SEM micrographs show the homogeneous and uniform formation of the samples. Through EDAX analysis, the chemical composition of the sample is found to be same as the nominal composition. The high field Mossbauer data of CuFe2O4 sample shows the ferrimagnetic ordering in the sample. The observed M-H and P-E loops of the composite 0.1CuFe2O4-0.9BaTiO3 sample show the presence of spontaneous magnetization and spontaneous electric polarization indicating the multiferroic nature of the sample.
NASA Astrophysics Data System (ADS)
Slimani, Y.; Hannachi, E.; Ben Salem, M. K.; Hamrita, A.; Varilci, A.; Dachraoui, W.; Ben Salem, M.; Ben Azzouz, F.
2014-10-01
The effects of nano-sized CoFe2O4 particles (10 nm) addition on the structural and the normal state resistivity of YBa2Cu3O7 (noted Y-123) and Y3Ba5Cu8O18 (noted Y-358) polycrystalline were systematically studied. Samples were synthesized in oxygen atmosphere using a standard solid state reaction technique by adding CoFe2O4 up to 2 wt%. Phases, microstructure and superconductivity have been systematically investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrical measurements ρ(T). XRD results reveal that the lattice parameters change for both Y-123 and Y-358 phases. SEM observations reveal that the grain size is reduced with increasing the content of CoFe2O4. The measurements for the resistivity dependence of temperature show that the depression in superconducting temperature is more pronounced for CoFe2O4 addition in Y-358 compound than in Y-123 one. These results may be attributed to the existence of much more disorder due to a greater number of Cu sites to be substituted by Fe and Co in Y-358 compared to Y-123.
NASA Astrophysics Data System (ADS)
Stewart, A. J.; Schmidt, M. W.
2004-12-01
The presence of nickel in the Earths core is widely accepted based on cosmochemical and seismological arguments. However, experimental studies into core compositions rarely include nickel, thus adding a degree of simplicity to otherwise complex experiments. Diamond-anvil cell studies have discovered that Fe-Ni alloys appear to separate into two phases upon heating above 10 GPa: from a single hexagonally close-packed (hcp) phase to the presence of both hcp and face centered cubic (fcc) phases (Lin et al., 2002). Unfortunately, due to the small size of diamond-anvil cell samples, meaningful quantitative analysis is commonly impossible. We have conducted multi-anvil experiments at 23 GPa into the Fe-Ni system and have confirmed the presence of two phases in the sub-solidus system. The starting material for these experiments contains 6 wt% nickel, approximating the amount expected to be found in the Earths core (McDonough, 2003). In experiments to 1500° C (the highest temperature thus far examined), electron microprobe analyses show dramatic phase fractionation with charges separating into an iron-rich phase containing less than 1 wt% Ni and a nickel-rich phase containing as much as 98 wt% Ni. We have observed the effect over a range of more than 500° ºC; further experiments are underway to determine whether these phases both persist toward the melting point of the alloy. Multi-anvil experiments at 23 GPa have also been conducted to examine the effect of nickel on the Fe-S system. Sulphur is an element favoured by many researchers as the light element component in the core of the Earth as well as that of Mars. Previous research has suggested that the addition of nickel to the Fe-S system results in the lowering of eutectic temperatures by about 75° C (Pike et al., 1999). The starting material for these experiments is the same as that used for the pure Fe-Ni experiments discussed above, with the addition of sulphur. Our results indicate a pseudo-binary, (Fe, Ni)-S, eutectic point lying slightly below 1200° C, roughly consistent with the results of Pike et al. (1999). The measured eutectic liquid composition contains 4.4 wt% Ni and 15.8 wt% S. This liquid composition fits closely to the ideal composition of a (Fe, Ni)3S compound (16.0 wt% S with 4.4 wt% Ni in the alloy), suggesting the possible importance of this structure in Fe-Ni-S melts. At subsolidus temperatures in the Fe-Ni-S system, our results become very interesting with each charge showing at least 3 coexisting phases. Based on these results, solid cores of Mercury and Mars containing iron, nickel and sulphur will hold at least 3 phases. Extrapolating our results to the inner core of the Earth would suggest that multiple phases occur in our planet as well.
Friction-induced structural transformations of the carbide phase in Hadfield steel
NASA Astrophysics Data System (ADS)
Korshunov, L. G.; Sagaradze, V. V.; Chernenko, N. L.; Shabashov, V. A.
2015-08-01
Structural transformations of the carbide phase in Hadfield steel (110G13) that occur upon plastic deformation by dry sliding friction have been studied by methods of optical metallography, X-ray diffraction, and transmission electron microscopy. Deformation is shown to lead to the refinement of the particles of the carbide phase (Fe, Mn)3C to a nanosized level. The effect of the deformation-induced dissolution of (Fe, Mn)3C carbides in austenite of 110G13 (Hadfield) steel has been revealed, which manifests in the appearance of new lines belonging to austenite with an unusually large lattice parameter ( a = 0.3660-0.3680 nm) in the X-ray diffraction patterns of steel tempered to obtain a fine-lamellar carbide phase after deformation. This austenite is the result of the deformation-induced dissolution of disperse (Fe, Mn)3C particles, which leads to the local enrichment of austenite with carbon and manganese. The tempering that leads to the formation of carbide particles in 110G13 steel exerts a negative influence on the strain hardening of the steel, despite the increase in the hardness of steel upon tempering and the development of the processes of the deformation-induced dissolution of the carbide phase, which leads to the strengthening of the γ solid solution.
Mössbauer study of dissimilatory reduction of iron contained in glauconite by alkaliphilic bacteria
NASA Astrophysics Data System (ADS)
Chistyakova, Nataliya I.; Rusakov, Vyacheslav S.; Shapkin, Alexey A.; Zhilina, Tatyana N.; Zavarzina, Darya G.
2012-03-01
57Fe Mössbauer investigations of glauconite and new solid phases formed during the process of the bacterial growth in alkaline environment were carried out at room temperature, 78 K and 4.8 K. The magnetically ordered phase formed during bioleaching of glauconite by G. ferrihydriticus in pure culture or in combination with Cl. alkalicellulosi represented as a mixture of off-stoichiometric magnetite and maghemite. In case of combined binary bacterium culture growth the relative content of magnetically ordered phase was more than for the G. ferrihydriticus growth.
Iron cycling under oscillatory redox conditions: from observations to processes
NASA Astrophysics Data System (ADS)
Meile, C. D.; Chen, C.; Barcellos, D.; Wilmoth, J.; Thompson, A.
2017-12-01
Fe oxyhydroxides play a critical role in soils through their role as structural entities, their high sorption capacity, their role as terminal electron acceptors in the respiration of organic matter, as well as their potential to affect the reactivity of that organic matter. In soils that undergo repeated fluctuations in O2 concentrations, soil iron undergoes transformations between reduced and oxidized forms. The rate of Fe(II) oxidation can govern the nature of Fe(III) oxyhydroxides formed, and hence can affect rates of OC mineralization under suboxic conditions. But it remains unclear if this same behavior occurs in soils, where Fe(II) is mainly present as surface complexes. We documented the impact of such redox oscillations on iron cycling through targeted experiments, in which the magnitude and frequency of redox oscillations were varied systematically on soils from the Luquillo Critical Zone Observatory, Puerto Rico. Our observations demonstrated that higher O2 concentrations led to a faster Fe(II) oxidation and resulted in less crystalline Fe(III)-oxyhydroxides than lower O2 concentrations. We further studied the dynamics of iron phases by amending soil slurries with isotopically-labeled 57Fe(II) and developed a numerical model to quantify the individual processes. Our model showed a higher rate of Fe(III) reduction and increased sorption capacity following the oxidation of Fe(II) at high O2 levels than at low O2 levels, and revealed rapid Fe atom exchange between solution and solid phase. Concurrent measurements of CO2 in our oscillation experiments further illustrated the importance O2 fluctuations on coupled Fe-C dynamics.
NASA Astrophysics Data System (ADS)
Bailey, Daniel J.; Stennett, Martin C.; Mason, Amber R.; Hyatt, Neil C.
2018-05-01
The geological disposal of high level radioactive waste requires careful budgeting of the heat load produced by radiogenic decay. Removal of high-heat generating radionuclides, such as 137Cs, reduces the heat load in the repository allowing the remaining high level waste to be packed closer together therefore reducing demand for repository space and the cost of the disposal of the remaining wastes. Hollandites have been proposed as a possible host matrix for the long-term disposal of Cs separated from HLW raffinate. The incorporation of Cs into the hollandite phase is aided by substitution of cations on the B-site of the hollandite structure, including iron. A range of Cs containing iron hollandites were synthesised via an alkoxide-nitrate route and the structural environment of Fe in the resultant material characterised by Mössbauer and X-ray Absorption Near Edge Spectroscopy. The results of spectroscopic analysis found that Fe was present as octahedrally co-ordinated Fe (III) in all cases and acts as an effective charge compensator over a wide solid solution range.
NASA Astrophysics Data System (ADS)
Ju, Heng; Lin, Chengxin; Liu, Zhijie; Zhang, Jiaqi
2018-08-01
To reduce the residual stresses and improve the mechanical properties of laser weldments, produced with the restrained mixing uniform design method, a Fe-Mn-Si shape memory alloy (SMA) welding seam was formed inside the 304 stainless steel by laser welding with powder filling. The mass fraction, shape memory effect, and phase composition of the welding seam was measured by SEM-EDS (photometric analyser), bending recovery method, and XRD, respectively. An optical microscope was used to observe the microstructure of the Fe-Mn-Si SMA welding seam by solid solution and pre-deformation treatment. Meanwhile, the mechanical properties (residual stress distribution, tensile strength, microhardness and fatigue strength) of the laser welded specimen with an Fe-Mn-Si SMA welding seam (experimental material) and a 304 stainless steel welding seam (contrast material) were measured by a tensile testing machine hole drilling method and full cycle bending fatigue test. The results show that Fe15Mn5Si12Cr6Ni SMA welding seam was formed in situ with shape memory effect and stress-induced γ → ε martensite phase transformation characteristic. The residual stress of the experimental material is lower than that of the contrast material. The former has larger tensile strength, longer elongation and higher microhardness than the latter has. The experimental material and contrast material possess 249 and 136 bending fatigue cycles at the strain of 6%, respectively. The mechanisms by which mechanical properties of the experimental material are strengthened includes (1) release of the residual stress inside the Fe-Mn-Si SMA welding seam due to the stress-induced γ → ε martensite phase transformation and (2) energy absorption and plastic slip restraint due to the deformations in martensite and reverse phase transformation.
Lindemann, W. R.; Philiph, R. L.; Chan, D. W. W.; ...
2015-10-07
Langmuir–Blodgett films of polyvinylidene fluoride trifluoroethylene – P(VDF–TrFE)-copolymers possess substantially improved electrocaloric and pyroelectric properties, when compared with conventionally spin-cast films. In order to rationalize this, we prepared single-layered films of P(VDF–TrFE) (70:30) using both deposition techniques. Grazing incidence wide-angle X-ray scattering (GIWAXS), reveals that Langmuir–Blodgett deposited films have a higher concentration of the ferroelectric β-phase crystals, and that these films are highly oriented with respect to the substrate. Based on these observations, we suggest alternative means of deposition, which may substantially enhance the electrocaloric effect in P(VDF–TrFE) films. As a result, this development has significant implications for the potentialmore » use of P(VDF–TrFE) in solid-state refrigeration.« less
Degradation of high energetic and insensitive munitions compounds by Fe/Cu bimetal reduction.
Koutsospyros, Agamemnon; Pavlov, Julius; Fawcett, Jacqueline; Strickland, David; Smolinski, Benjamin; Braida, Washington
2012-06-15
A reductive technology based on a completely mixed two-phase reactor (bimetallic particles and aqueous stream) was developed for the treatment of aqueous effluents contaminated with nitramines and nitro-substituted energetic materials. Experimental degradation studies were performed using solutions of three high energetics (RDX, HMX, TNT) and three insensitive-munitions components (NTO, NQ, DNAN). The study shows that, on laboratory scale, these energetic compounds are easily degraded in solution by suspensions of bimetallic particles (Fe/Ni and Fe/Cu) prepared by electro-less deposition. The type of bimetal pair (Fe/Cu or Fe/Ni) does not appear to affect the degradation kinetics of RDX, HMX, and TNT. The degradation of all components followed apparent first-order kinetics. The half-lives of all compounds except NTO were under 10 min. Additional parameters affecting the degradation processes were solids loading and initial pH. Copyright © 2012 Elsevier B.V. All rights reserved.
Sklute, Elizabeth C; Rogers, A Deanne; Gregerson, Jason C; Jensen, Heidi B; Reeder, Richard J; Dyar, M Darby
2018-03-01
Salts with high hydration states have the potential to maintain high levels of relative humidity (RH) in the near subsurface of Mars, even at moderate temperatures. These conditions could promote deliquescence of lower hydrates of ferric sulfate, chlorides, and other salts. Previous work on deliquesced ferric sulfates has shown that when these materials undergo rapid dehydration, such as that which would occur upon exposure to present day Martian surface conditions, an amorphous phase forms. However, the fate of deliquesced halides or mixed ferric sulfate-bearing brines are presently unknown. Here we present results of rapid dehydration experiments on Ca-, Na-, Mg- and Fe-chloride brines and multi-component (Fe 2 (SO 4 ) 3 ± Ca, Na, Mg, Fe, Cl, HCO 3 ) brines at ∼21°C, and characterize the dehydration products using visible/near-infrared (VNIR) reflectance spectroscopy, mid-infrared attenuated total reflectance spectroscopy, and X-ray diffraction (XRD) analysis. We find that rapid dehydration of many multicomponent brines can form amorphous solids or solids with an amorphous component, and that the presence of other elements affects the persistence of the amorphous phase under RH fluctuations. Of the pure chloride brines, only Fe-chloride formed an amorphous solid. XRD patterns of the multicomponent amorphous salts show changes in position, shape, and magnitude of the characteristic diffuse scattering observed in all amorphous materials that could be used to help constrain the composition of the amorphous salt. Amorphous salts deliquesce at lower RH values compared to their crystalline counterparts, opening up the possibility of their role in potential deliquescence-related geologic phenomena such as recurring slope lineae (RSLs) or soil induration. This work suggests that a wide range of aqueous mixed salt solutions can lead to the formation of amorphous salts and are possible for Mars; detailed studies of the formation mechanisms, stability and transformation behaviors of amorphous salts are necessary to further constrain their contribution to Martian surface materials.
NASA Astrophysics Data System (ADS)
Sklute, Elizabeth C.; Rogers, A. Deanne; Gregerson, Jason C.; Jensen, Heidi B.; Reeder, Richard J.; Dyar, M. Darby
2018-03-01
Salts with high hydration states have the potential to maintain high levels of relative humidity (RH) in the near subsurface of Mars, even at moderate temperatures. These conditions could promote deliquescence of lower hydrates of ferric sulfate, chlorides, and other salts. Previous work on deliquesced ferric sulfates has shown that when these materials undergo rapid dehydration, such as that which would occur upon exposure to present day Martian surface conditions, an amorphous phase forms. However, the fate of deliquesced halides or mixed ferric sulfate-bearing brines are presently unknown. Here we present results of rapid dehydration experiments on Ca-, Na-, Mg- and Fe-chloride brines and multicomponent (Fe2(SO4)3 ± Ca, Na, Mg, Fe, Cl, HCO3) brines at ∼21 °C, and characterize the dehydration products using visible/near-infrared (VNIR) reflectance spectroscopy, mid-infrared attenuated total reflectance spectroscopy, and X-ray diffraction (XRD) analysis. We find that rapid dehydration of many multicomponent brines can form amorphous solids or solids with an amorphous component, and that the presence of other elements affects the persistence of the amorphous phase under RH fluctuations. Of the pure chloride brines, only Fe-chloride formed an amorphous solid. XRD patterns of the multicomponent amorphous salts show changes in position, shape, and magnitude of the characteristic diffuse scattering observed in all amorphous materials that could be used to help constrain the composition of the amorphous salt. Amorphous salts deliquesce at lower RH values compared to their crystalline counterparts, opening up the possibility of their role in potential deliquescence-related geologic phenomena such as recurring slope lineae (RSLs) or soil induration. This work suggests that a wide range of aqueous mixed salt solutions can lead to the formation of amorphous salts and are possible for Mars; detailed studies of the formation mechanisms, stability and transformation behaviors of amorphous salts are necessary to further constrain their contribution to Martian surface materials.
Piovesana, Susy; Capriotti, Anna Laura; Cavaliere, Chiara; La Barbera, Giorgia; Samperi, Roberto; Zenezini Chiozzi, Riccardo; Laganà, Aldo
2017-07-01
Magnetic solid-phase extraction is one of the most promising new extraction methods for liquid samples before ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) analysis. Several types of materials, including carbonaceous ones, have been prepared for this purpose. In this paper, for the first time, the preparation, characterization, and sorption capability of Fe 3 O 4 -graphitized carbon black (mGCB) composite toward some compounds of environmental interest were investigated. The synthesized mGCB consisted of micrometric GCB particles with 55 m 2 g -1 surface area bearing some carbonyl and hydroxyl functionalities and the surface partially decorated by Fe 3 O 4 microparticles. The prepared mGCB was firstly tested as an adsorbent for the extraction from surface water of 50 pollutants, including estrogens, perfluoroalkyl compounds, UV filters, and quinolones. The material showed good affinity to many of the tested compounds, except carboxylates and glucoronates; however, some compounds were difficult to desorb. Ten UV filters belonging to the chemical classes of benzophenones and p-aminobenzoates were selected, and parameters were optimized for the extraction of these compounds from surface water before UHPLC-MS/MS determination. Then, the method was validated in terms of linearity, trueness, intra-laboratory precision, and detection and quantification limits. In summary, the method performance (trueness, expressed as analytical recovery, 85-114%; RSD 5-15%) appears suitable for the determination of the selected compounds at the level of 10-100 ng L -1 , with detection limits in the range of 1-5 ng L -1 . Finally, the new method was compared with a published one, based on conventional solid-phase extraction with GCB, showing similar performance in real sample analysis. Graphical Abstract Workflow of the analytical method based on magnetic solid-phase extraction followed by LC-MS/MS determination.
Ma, Jie; Yang, Mingxuan; Yu, Fei; Chen, Junhong
2015-04-15
We report a facile solid method to synthesize efficient carbon-based Fenton-like catalyst (CNTs/FeS) using as-prepared carbon nanotubes (APCNTs), which makes full use of the iron nanoparticles in APCNTs without needless purification. Furthermore, the CNTs/FeS was characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric (TG) and other analysis techniques, and then the CNTs/FeS was used as a Fenton-like catalyst for removing ciprofloxacin from aqueous solution. Response Surface Methodology (RSM) was applied to find the effect of the reaction parameter and the optimum operating condition. Results shows the catalytic reaction had better suitability than previous studies in a wide range of pH values (pH 3-8) and the Fenton-like catalyst CNTs/FeS exhibits good catalytic activity for removing of antibiotic, which be attributed to the synergistic effect of adsorption-advanced oxidation and significantly improves efficiency of advanced oxidation. More importantly, the CNTs/FeS catalyst exhibit good regeneration performance and retains a high catalytic capacity (>75%) even after four reaction cycles. The catalytic mechanism were also studied further, the removal mechanism of ciprofloxacin by a CNTs/FeS heterogeneous Fenton-like process primarily involves three removal pathways occurring simultaneously: (a) adsorption removal by CNTs, (b) Fenton-like degradation catalyzed by FeS, (c) catalytic degradation by CNTs catalyst. And these actions also have synergistic effects for ciprofloxacin removal. Copyright © 2014 Elsevier Inc. All rights reserved.
Habila, Mohamed A; ALOthman, Zeid A; El-Toni, Ahmed Mohamed; Labis, Joselito Puzon; Soylak, Mustafa
2016-07-01
Interference of organic compounds in the matrix of heavy metal solution could suppress their pre-concentration and detection processes. Therefore, this work aimed to develop simple and facile methods for separation of heavy metals before ICP-MS analysis. Fe3O4@SiO2@TiO2 core-double shell magnetic adsorbent was prepared and characterized by TEM, SEM, FTIR, XRD and surface area, and tested for Magnetic Solid Phase Extraction (MSPE) of Cu(II), Zn(II), Cd(II) and Pb(II). TEM micrograph of Fe3O4@SiO2@TiO2 reveals the uniform coating of TiO2 layer of about 20nm onto the Fe3O4@SiO2 nanoparticles and indicates that all nanoparticles are monodispersed and uniform. The saturation magnetization from the room-temperature hysteresis loops of Fe3O4 and Fe3O4@SiO2@TiO2 was found to be 72 and 40emug(-1), respectively, suggesting good separability of the nanoparticles. The Fe3O4@SiO2@TiO2 showed maximum adsorption capacity of 125, 137, 148 and 160mgg(-1) for Cu(II), Zn(II), Cd(II) and Pb(II) respectively, and the process was found to fit with the second order kinetic model and Langmuir isotherm. Fe3O4@SiO2@TiO2 showed efficient photocatalytic decomposition for tartrazine and sunset yellow (consider as Interfering organic compounds) in aqueous solution under the irradiation of UV light. The maximum recovery% was achieved at pH 5, by elution with 10mL of 2M nitric acid solution. The LODs were found to be 0.066, 0.049, 0.041 and 0.082µgL(-1) for Cu(II), Zn(II), Cd(II) and Pb(II), respectively while the LOQs were found to be 0.20, 0.15, 0.12 and 0.25µgL(-1) for Cu(II), Zn(II), Cd(II) and Pb(II), respectively. Copyright © 2016 Elsevier B.V. All rights reserved.
Sharifi, Reza; Moore, Farid; Keshavarzi, Behnam
2016-04-01
Arsenic (As) and antimony (Sb) concentrations in water and sediments were determined along flow paths in the Sarouq River, Zarshuran and Agh Darreh streams. The results indicate high As and Sb concentrations in water and sediment samples. Raman spectroscopy shows hematite (α-Fe2O3), goethite [α-FeO(OH)] and lepidocrocite [γ-FeO(OH)] in sediment samples. Calculated saturation indices (SI) indicate oversaturation with respect to amorphous Fe(OH)3 for all samples, but undersaturation with respect to Al and Mn mineral and amorphous phases. Therefore, ferric oxides and hydroxides are assumed to be principal mineral phases for arsenic and antimony attenuation by adsorption/co-precipitation processes. The considerable difference between As and Sb concentration in sediment is due to strong adsorption of As(V) into the solid phase. Also, lower affinity of Sb(V) for mineral surfaces suggests a greater potential for aqueous transport. The adsorption of arsenic and antimony was examined using the Freundlich adsorption isotherm to determine their distribution model in water-sediment system and its compatibility with the existing theoretical model. The results showed that the adsorption behavior of both elements complies with the Freundlich adsorption isotherm. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dielectric Studies of Samarium Modified (Pb)(Zr, Ti, Fe, Nb)O3 Ceramic System
NASA Astrophysics Data System (ADS)
Singh, Pratibha; Singh, Sangeeta; Juneja, J. K.; Prakash, Chandra; Raina, K. K.
Here we report the investigations on Sm-substituted PZTFN (Pb1-xSmxZr0.588Ti0.392Fe0.01Nb0.01O3) (where x = 0, 0.02, 0.04, 0.06, 0.08, 0.10) polycrystalline solid solutions fabricated by solid-state reaction method. XRD analysis shows all the samples to be single phase with tetragonal structure. Dielectric measurements were carried out in the temperature range 30°C-400°C at different frequencies in the range 100 Hz to 100 kHz. From the temperature variation of dielectric constant (ɛ), Curie temperature (TC) was determined which was found to decrease with increasing x. The room temperature dielectric constant (ɛRT) initially increases with increasing x and then starts decreasing. Dielectric loss improves with Sm-doping.
Compression behavior of quaternary and higher order solid-solution L1(2) trialuminides
NASA Technical Reports Server (NTRS)
Kumar, K. S.; Brown, S. A.
1992-01-01
Results from preliminary studies undertaken to evaluate the existence of single-phase L1(2) solid solutions between pairs of ternary L1(2) trialuminides are presented. Two-kilogram ingots of selected quaternary compositions were cast, homogenized and forged into pancakes; compression specimens were machined from the forgings and tested as a function of temperature. The results are compared against existing data for the ternary alloys. The ternary L1(2) trialuminides Al66Ti25Mn9, Al67Ti25Cr8, and Al22Ti8Fe3 were found to exhibit continuous solubility in one another. The quaternary Cr-Mn composition does not indicate any strength advantage over its ternary counterparts. The continuous replacement of Mn with Fe enhances the strength of the quaternary compound over the ternary Al66Ti25 Mn9.
Calcium-Iron Oxide as Energy Storage Medium in Rechargeable Oxide Batteries
Berger, Cornelius M.; Mahmoud, Abdelfattah; Hermann, Raphaël P.; ...
2016-08-08
Rechargeable oxide batteries (ROB) comprise a regenerative solid oxide cell (rSOC) and a storage medium for oxygen ions. A sealed ROB avoids pumping loss, heat loss, and gas purity expenses in comparison with conventional rSOC. However, the iron oxide base storage medium degrades during charging–discharging cycles. In comparison, CaFe 3O 5 has improved cyclability and a high reversible oxygen storage capacity of 22.3 mol%. In this paper, we analyzed the redox mechanism of this compound. After a solid-state synthesis of CaFe 3O 5, we verified the phase composition and studied the redox reaction by means of X-ray diffraction, Mössbauer spectrometry,more » and scanning electron microscopy. Finally, results show a great potential to operate the battery with this storage material during multiple charging–discharging cycles.« less
NASA Astrophysics Data System (ADS)
Fernández-Posada, Carmen M.; Castro, Alicia; Kiat, Jean-Michel; Porcher, Florence; Peña, Octavio; Algueró, Miguel; Amorín, Harvey
2016-09-01
There is a growing activity in the search of novel single-phase multiferroics that could finally provide distinctive magnetoelectric responses at room temperature, for they would enable a range of potentially disruptive technologies, making use of the ability of controlling polarization with a magnetic field or magnetism with an electric one (for example, voltage-tunable spintronic devices, uncooled magnetic sensors and the long-searched magnetoelectric memory). A very promising novel material concept could be to make use of phase-change phenomena at structural instabilities of a multiferroic state. Indeed, large phase-change magnetoelectric response has been anticipated by a first-principles investigation of the perovskite BiFeO3-BiCoO3 solid solution, specifically at its morphotropic phase boundary between multiferroic polymorphs of rhombohedral and tetragonal symmetries. Here, we report a novel perovskite oxide that belongs to the BiFeO3-BiMnO3-PbTiO3 ternary system, chemically designed to present such multiferroic phase boundary with enhanced ferroelectricity and canted ferromagnetism, which shows distinctive room-temperature magnetoelectric responses.
Fernández-Posada, Carmen M; Castro, Alicia; Kiat, Jean-Michel; Porcher, Florence; Peña, Octavio; Algueró, Miguel; Amorín, Harvey
2016-09-28
There is a growing activity in the search of novel single-phase multiferroics that could finally provide distinctive magnetoelectric responses at room temperature, for they would enable a range of potentially disruptive technologies, making use of the ability of controlling polarization with a magnetic field or magnetism with an electric one (for example, voltage-tunable spintronic devices, uncooled magnetic sensors and the long-searched magnetoelectric memory). A very promising novel material concept could be to make use of phase-change phenomena at structural instabilities of a multiferroic state. Indeed, large phase-change magnetoelectric response has been anticipated by a first-principles investigation of the perovskite BiFeO 3 -BiCoO 3 solid solution, specifically at its morphotropic phase boundary between multiferroic polymorphs of rhombohedral and tetragonal symmetries. Here, we report a novel perovskite oxide that belongs to the BiFeO 3 -BiMnO 3 -PbTiO 3 ternary system, chemically designed to present such multiferroic phase boundary with enhanced ferroelectricity and canted ferromagnetism, which shows distinctive room-temperature magnetoelectric responses.
Zhang, Yuping; Nie, Mingkun; Shi, Shuyun; You, Qingping; Guo, Junfang; Liu, Liangliang
2014-03-01
Radix Astragali is one of the most popular traditional medicinal herb and healthy dietary supplement. Isoflavonoids and astragalosides are the main bioactive ingredients. However, the systematic bioactive component analysis is inadequate so far. Then a facile method based on Fe3O4@SiO2-human serum albumin (Fe3O4@SiO2-HSA) magnetic solid phase fishing integrated with two-dimensional high-performance liquid chromatography-diode array detector-mass spectrometry (2D HPLC-DAD-MS(n)) was developed to fish out and identify HSA binders from Radix Astragali. The immobilized HSA displayed a high stability with 96.2% retained after ten consecutive cycles. 2D HPLC system (size exclusion chromatography×reversed phase chromatography, SEC×RP) were developed and optimised. Forty-seven bioactive compounds including thirty-four isoflavonoids and thirteen astragalosides were screened and identified or tentatively deduced based on their retention time, ultraviolet (UV), accurate molecular weight and diagnostic fragment ions. The results indicated that the integrated method could be widely applied for systematical fishing and identification of bioactive compounds, especially for low-abundance and overlapped compounds, from complex mixtures. Copyright © 2013 Elsevier Ltd. All rights reserved.
He, Huan; Yuan, Danhua; Gao, Zhanqi; Xiao, Deli; He, Hua; Dai, Hao; Peng, Jun; Li, Nan
2014-01-10
A novel magnetic solid-phase extraction (MSPE) method based on mixed hemimicelles of room temperature ionic liquids (RTILs) coated Fe3O4/SiO2 nanoparticles (NPs) was developed for simultaneous extraction of trace amounts of flavonoids in bio-matrix samples. A comparative study on the use of RTILs (C16mimBr) and CTAB-coated Fe3O4/SiO2 NPs as sorbents was presented. Owing to bigger adsorption amounts for analytes, RTILs-coated Fe3O4/SiO2 NPs was selected as MSPE materials and three analytes luteolin, quercetin and kaempferol can be quantitatively extracted and simultaneously determined coupled with high performance liquid chromatography (HPLC) in urine samples. No interferences were caused by proteins or endogenous compounds. Good linearity (R(2)>0.9993) for all calibration curves was obtained, and the limits of detection (LOD) for luteolin, quercetin and kaempferol were 0.10 ng/mL, 0.50 ng/mL and 0.20 ng/mL in urine samples, respectively. Satisfactory recoveries (93.5-97.6%, 90.1-95.4% and 93.3-96.6% for luteolin, quercetin and kaempferol) in biological matrices were achieved. It was notable that while using a small amount of Fe3O4/SiO2 NPs (4.0 mg) and C16mimBr (1.0 mg), satisfactory preconcentration factors and extraction recoveries for the three flavonoids were obtained. To the best of our knowledge, this is the first time a mixed hemimicelles MSPE method based on RTILs and Fe3O4/SiO2 NPs magnetic separation has ever been used for pretreatment of complex biological samples. Copyright © 2013 Elsevier B.V. All rights reserved.
Xu, Kaijia; Wang, Yuzhi; Li, Yixue; Lin, Yunxuan; Zhang, Haibao; Zhou, Yigang
2016-11-23
Novel poly(deep eutectic solvent) grafted silica-coated magnetic microspheres (Fe 3 O 4 @SiO 2 -MPS@PDES) were prepared by polymerization of choline chloride-itaconic acid (ChCl-IA) and γ-MPS-modified magnetic silica composites, and were characterized by vibrating sample magnetometer (VSM), Fourier transform infrared spectrometry (FT-IR), X-ray photoelectron spectra (XPS), thermal gravimetric analysis (TGA) and transmission electron microscope (TEM). Then the synthetic Fe 3 O 4 @SiO 2 -MPS@PDES microspheres were applied for the magnetic solid-phase extraction (MSPE) of trypsin for the first time. After extraction, the concentration of trypsin in the supernatant was determined by a UV-vis spectrophotometer. Single factor experiments were carried out to investigate the effects of the extraction process, including the concentration of trypsin, the ionic strength, the pH value, the extraction time and the temperature. Experimental results showed the extraction capacity could reach up to 287.5 mg/g under optimized conditions. In comparison with Fe 3 O 4 @SiO 2 -MPS, Fe 3 O 4 @SiO 2 -MPS@PDES displayed higher extraction capacity and selectivity for trypsin. According to the regeneration studies, Fe 3 O 4 @SiO 2 -MPS@PDES microspheres can be recycled six times without significant loss of its extraction capacity, and retained a high extraction capacity of 233 mg/g after eight cycles. Besides, the activity studies also demonstrated that the activity of the extracted trypsin was well retained. Furthermore, the analysis of real sample revealed that the prepared magnetic microspheres can be used to purify trypsin in crude bovine pancreas extract. These results highlight the potential of the proposed Fe 3 O 4 @SiO 2 -MPS@PDES-MSPE method in separation of biomolecules. Copyright © 2016 Elsevier B.V. All rights reserved.
Pleasant, Saraya; O'Donnell, Amanda; Powell, Jon; Jain, Pradeep; Townsend, Timothy
2014-07-01
High concentrations of iron (Fe(II)) and manganese (Mn(II)) reductively dissolved from soil minerals have been detected in groundwater monitoring wells near many municipal solid waste landfills. Air sparging and vadose zone aeration (VZA) were evaluated as remedial approaches at a closed, unlined municipal solid waste landfill in Florida, USA. The goal of aeration was to oxidize Fe and Mn to their respective immobile forms. VZA and shallow air sparging using a partially submerged well screen were employed with limited success (Phase 1); decreases in dissolved iron were observed in three of nine monitoring wells during shallow air sparging and in two of 17 wells at VZA locations. During Phase 2, where deeper air sparging was employed, dissolved iron levels decreased in a significantly greater number of monitoring wells surrounding injection points, however no radial pattern was observed. Additionally, in wells affected positively by air sparging (mean total iron (FeTOT) <4.2mg/L, after commencement of air sparging), rising manganese concentrations were observed, indicating that the redox potential of the groundwater moved from an iron-reducing to a manganese-reducing environment. The mean FeTOT concentration observed in affected monitoring wells throughout the study was 1.40 mg/L compared to a background of 15.38 mg/L, while the mean Mn concentration was 0.60 mg/L compared to a background level of 0.27 mg/L. Reference wells located beyond the influence of air sparging areas showed little variation in FeTOT and Mn, indicating the observed effects were the result of air injection activities at study locations and not a natural phenomenon. Air sparging was found effective in intercepting plumes of dissolved Fe surrounding municipal landfills, but the effect on dissolved Mn was contrary to the desired outcome of decreased Mn groundwater concentrations. Copyright © 2014 Elsevier B.V. All rights reserved.
Composition-driven magnetic and structural phase transitions in Bi1-xPrxFe1-xMnxO3 multiferroics
NASA Astrophysics Data System (ADS)
Khomchenko, V. A.; Ivanov, M. S.; Karpinsky, D. V.; Paixão, J. A.
2017-09-01
Magnetic ferroelectrics continue to attract much attention as promising multifunctional materials. Among them, BiFeO3 is distinguished by exceptionally high transition temperatures and, thus, is considered as a prototype room-temperature multiferroic. Since its properties are known to be strongly affected by chemical substitution, recognition of the doping-related factors determining the multiferroic behavior of the material would pave the way towards designing the structures with enhanced magnetoelectric functionality. In this paper, we report on the crystal structure and magnetic and local ferroelectric properties of the Bi1-xPrxFe1-xMnxO3 (x ≤ 0.3) compounds prepared by a solid state reaction method. The polar R3c structure specific to the parent BiFeO3 has been found to be unstable with respect to doping for x ≳ 0.1. Depending on the Pr/Mn concentration, either the antipolar PbZrO3-like or nonpolar PrMnO3-type structure can be observed. It has been shown that the non-ferroelectric compounds are weak ferromagnetic with the remanent/spontaneous magnetization linearly decreasing with an increase in x. The samples containing the polar R3c phase exhibit a mixed antiferromagnetic/weak ferromagnetic behavior. The origin of the magnetic phase separation taking place in the ferroelectric phase is discussed as related to the local, doping-introduced structural heterogeneity contributing to the suppression of the cycloidal antiferromagnetic ordering characteristic of the pure BiFeO3.
Alinezhad, Heshmatollah; Amiri, Amirhassan; Tarahomi, Mehrasa; Maleki, Behrooz
2018-06-01
A novel polyamidoamine dendrimer functionalized with Fe 3 O 4 nanoparticles (Fe 3 O 4 @PAMAM) had been fabricated and used as magnetic solid-phase extraction (MSPE) adsorbent. The Fe 3 O 4 @PAMAM nanocomposites were characterized by X-ray powder diffraction, Fourier transform infrared spectroscopy, field-emission scanning electron spectroscopy, elemental analytical, and thermal gravimetric analysis. The MSPE method coupled with high-performance liquid chromatography with an ultraviolet detection system was applied for the separation/analysis of non-steroidal anti-inflammatory drugs (NSAIDs). Major parameters affecting the extraction efficiency of the selected drugs were optimized. Under optimal conditions, the enrichment factors for the proposed method were 701835. The linear range, limit of detection, correlation coefficient (r), and relative standard deviation (RSD) were found to be 0.15-500 ng mL -1 , 0.050.08 ng mL -1 , 0.99320.9967, and 4.5-7.0% (n = 5, 0.2, 10 and 300 ng mL -1 ), respectively. The method was successfully applied to the determination of NSAIDs in the real water samples. The recoveries of spiked water samples were in the range of 93.6-98.9% with RSDs varying from 6.1% to 9.0%, showing the good accuracy of the method. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
King, P. L.; De Deckker, P.
2012-12-01
On Mars, limited solutions (water/brine) were likely present episodically. Gradients in solution abundance may have caused salt precipitation and re-solution, brine reflux, pH gradients, and cycling of anions and cations; we provide an example of such processes in a playa lake. We propose that on Mars, the limited, episodic solutions, pH and abundant Fe-O(-H) phases are significant factors in salt precipitation and in promoting adsorption/desorption of anions and cations. FACTORS LEADING TO EPISODIC SOLUTIONS: Episodic movement of solutions may be driven by punctuated processes that 1) remove surface materials (e.g., impact and sedimentary mass wasting and deflation); 2) add surface materials (e.g., impact, volcanic and sedimentary processes); and 3) increase temperature and/or decrease atmospheric pressure (e.g., seasons, diurnal cycles, variation in obliquity). Removal and addition of surface materials results in topographic gradients that change pressure gradients of any potential groundwater, films, or buried ground ice. For example, episodic fluid flow and salt precipitation/re-solution may occur at topographic discontinuities like craters/basins, channel walls, mounds and dunes. Such areas provide the opportunity to sample multiple fluid sources (with different pH, Eh and total dissolved solids, TDS) and they may be the foci of subsurface solution flow and surface transport. EARTH ANALOG: Interplay of the three processes above is seen in Lake Tyrrell (playa), western Victoria, Australia (McCumber, P, 1991 http://vro.dpi.vic.gov.au). During wetter periods, springs from the regional groundwater (low pH, oxidized, mod-high TDS) mix with lake waters and saline 'reflux' brines (mod. pH, reduced, high TDS) at the lake edge at the base of higher ground. The Br/Cl of the reflux brines indicates mineral re-solution. Gypsum and Fe-O(-H) phases precipitate near the lake edge. During hot, dry climate episodes the lake precipitates gypsum and carbonate, efflorescent salts are common, and these salts may form eolian dunes with fine particles. We may expect similar processes and mineral and chemical gradients in craters/basins on Mars like Gale Crater, the site of the Mars Science Laboratory mission. ROLE OF Fe-O(-H) PHASES: Nanophase Fe-O(-H)-phases are abundant on Mars and their precipitation results in an Fe-poor solution and salts (like Lake Tyrrell). Fe-O(-H) phases precipitate most readily at near-neutral pH; however, the high Fe of Mars' surface allows for pH>1. Nanophase Fe-O(-H)-phases have surface species that promote adsorption; which may be important in dry conditions like Mars. If we take goethite (FeO(OH)), the surface species and aqueous ions in solution are Fe3+ (pH<~2); Fe(OH)2+ (pH~2-3.5); Fe(OH)2+ (pH~3.5-~8); and FeOH4- (pH>~8). Other Fe-O(-H) phases have slightly different pH limits. Thus, at pH<~8, Fe-O(-H) surfaces sequester anions in surface complexes or in Fe-bearing salts (e.g. Fe3+-phosphate and sulfates, especially at pH<4). PO43- species have high adsorption affinity, followed by SO42-, Cl-(O) and Br-(O) species. At pH>~8, adsorption and exchange of cations are likely. These chemical variations may provide us with clues of the past pH on Mars.
Novel solid-state synthesis of α-Fe and Fe3O4 nanoparticles embedded in a MgO matrix
NASA Astrophysics Data System (ADS)
Schneeweiss, O.; Zboril, R.; Pizurova, N.; Mashlan, M.; Petrovsky, E.; Tucek, J.
2006-01-01
Thermally induced reduction of amorphous Fe2O3 nanopowder (2-3 nm) with nanocrystalline Mg (~20 nm) under a hydrogen atmosphere is presented as a novel route to obtain α-Fe and Fe3O4 magnetic nanoparticles dispersed in a MgO matrix. The phase composition, structural and magnetic properties, size and morphology of the nanoparticles were monitored by x-ray diffraction, 57Fe Mössbauer spectroscopy at temperatures of 24-300 K, transmission electron microscopy and magnetic measurements. Spherical magnetite nanoparticles prepared at a reaction temperature of 300 °C revealed a well-defined structure, with a ratio of tetrahedral to octahedral Fe sites of 1/2 being common for the bulk material. A narrow particle size distribution (20-30 nm) and high saturation magnetization (95 ± 5 A m2 kg-1) predispose the magnetite nanoparticles to various applications, including magnetic separation processes. The Verwey transition of Fe3O4 nanocrystals was found to be decreased to about 80 K. The deeper reduction of amorphous ferric oxide at 600 °C allows α-Fe (40-50 nm) nanoparticles to be synthesized with a coercive force of about 30 mT. They have a saturation magnetization 2.2 times higher than that of synthesized magnetite nanoparticles, which corresponds well with the ratio usually found for the pure bulk phases. The magnetic properties of α-Fe nanocrystals combined with the high chemical and thermal stability of the MgO matrix makes the prepared nanocomposite useful for various magnetic applications.
Morrison, Stan J; Metzler, Donald R; Dwyer, Brian P
2002-05-01
Three treatment cells were operated at a site near Durango, CO. One treatment cell operated for more than 3 years. The treatment cells were used for passive removal of contamination from groundwater at a uranium mill tailings repository site. Zero-valent iron [Fe(0)] that had been powdered, bound with aluminosilicate and molded into plates was used as a reactive material in one treatment cell. The others used granular Fe(0) and steel wool. The treatment cells significantly reduced concentrations of As, Mn, Mo, Se, U, V and Zn in groundwater that flowed through it. Zero-valent iron [Fe(0)], magnetite (Fe3O4), calcite (CaCO3), goethite (FeOOH) and mixtures of contaminant-bearing phases were identified in the solid fraction of one treatment cell. A reaction progress approach was used to model chemical evolution of water chemistry as it reacted with the Fe(0). Precipitation of calcite, ferrous hydroxide [Fe(OH)2] and ferrous sulfide (FeS) were used to simulate observed changes in major-ion aqueous chemistry. The amount of reaction progress differed for each treatment cell. Changes in contaminant concentrations were consistent with precipitation of reduced oxides (UO2, V2O3), sulfides (As2S3, ZnS), iron minerals (FeSe2, FeMoO4) and carbonate (MnCO3). Formation of a free gas phase and precipitation of minerals contributed to loss of hydraulic conductivity in one treatment cell.
Liu, Yong; Xing, Qingfeng; Straszheim, Warren E.; ...
2016-02-11
Here, we report how the superconducting phase forms in pseudo-single-crystal K xFe 2-ySe 2. In situ scanning electron microscopy (SEM) observation reveals that, as an order-disorder transition occurs, on cooling, most of the high-temperature iron-vacancy-disordered phase gradually changes into the iron-vacancy-ordered phase whereas a small quantity of the high-temperature phase retains its structure and aggregates to the stripes with more iron concentration but less potassium concentration compared to the iron-vacancy-ordered phase. The stripes that are generally recognized as the superconducting phase are actually formed as a remnant of the high-temperature phase with a compositional change after an “imperfect” order-disorder transition.more » It should be emphasized that the phase separation in pseudo-single-crystal K xFe 2-ySe 2 is caused by the iron-vacancy order-disorder transition. The shrinkage of the high-temperature phase and the expansion of the newly created iron-vacancy-ordered phase during the phase separation rule out the mechanism of spinodal decomposition proposed in an early report [Wang et al, Phys. Rev. B 91, 064513 (2015)]. Since the formation of the superconducting phase relies on the occurrence of the iron-vacancy order-disorder transition, it is impossible to synthesize a pure superconducting phase by a conventional solid state reaction or melt growth. By focused ion beam-scanning electron microscopy, we further demonstrate that the superconducting phase forms a contiguous three-dimensional architecture composed of parallelepipeds that have a coherent orientation relationship with the iron-vacancy-ordered phase.« less
NASA Technical Reports Server (NTRS)
Schreifels, W. A.; Muan, A.
1975-01-01
Phase relations in the liquidus temperature region of the system 'FeO'-Al2O3-TiO2 in contact with metallic iron, at a total pressure below 1 atm, have been determined by the quenching technique. Four invariant points have been located, with phase assemblages and temperatures as follows; wuestite, ulvoespinel, nercynite and liquid, 1306 C; ulvoespinel, ilmenite, ferropseudobrookite and liquid, 1340 C; ulvoespinel, hercynite, ferropseudobrookite and liquid, 1367 C; hercynite, ferropseudobrookite, corundum and liquid, 1465 C. The data obtained confirm the presence of a miscibility gap between titanate and aluminate spinels, and provide quantitative data for the effect of Al2O3 on mutual stability relations among spinel, ilmenite, and ferropseudobrookite phases in the presence of liquid at high temperatures and strongly reducing conditions. It is shown that Al2O3 has a strong stabilizing effect on the phase assemblage ferropseudobrookite and spinel relative to ilmenite.
A study of the preparation and reactivity of potassium ferrate.
Li, C; Li, X Z; Graham, N
2005-10-01
In the context of water treatment, the ferrate ([FeO(4)](2-)) ion has long been known for its strong oxidizing power and for producing a coagulant from its reduced form (i.e. Fe(III)). However, it has not been studied extensively owing to difficulties with its preparation and its instability in water. This paper describes an improved procedure for preparing solid phase potassium ferrate of high purity (99%) and with a high yield (50-70%). The characteristics of solid potassium ferrate were investigated and from XRD spectra it was found that samples of the solid have a tetrahedral structure with a space group of D(2h) (Pnma) and a=7.705A, b=5.863A, and c=10.36A. The aqueous stability of potassium ferrate at various pH values and different concentrations was investigated. It was found that potassium ferrate solution had a maximum stability at pH 9-10 and that ferrate solution at low concentration (0.25 mM) was more stable than at high concentration (0.51 mM). The aqueous reaction of ferrate with bisphenol A (BPA), a known endocrine disrupter compound, was also investigated with a molar ratio of Fe(VI):BPA in the range of 1:1-5:1. The optimal pH for BPA degradation was 9.4, and at this pH and a Fe(VI):BPA molar ratio of 5:1, approximately 90% of the BPA was degraded after 60s.
NASA Astrophysics Data System (ADS)
Zuzek Rozman, K.; Pecko, D.; Trafela, S.; Samardzija, Z.; Spreitzer, M.; Jaglicic, Z.; Nadrah, P.; Zorko, M.; Bele, M.; Tisler, T.; Pintar, A.; Sturm, S.; Kostevsek, N.
2018-03-01
Fe69±3Pd31±3 nanowires (NWs) with lengths of a few microns and diameters of 200 nm were synthesized via template-assisted pulsed electrodeposition into alumina-based templates. The as-deposited Fe69±3Pd31±3 NWs exhibited α-Fe (bcc-solid solution of Fe, Pd) nanocrystalline structure as seen from the x-ray diffraction (XRD), that got confirmed by transmission electron microscopy (TEM) with some larger grains up 50 nm observed. Annealing of the as-deposited Fe69±3Pd31±3 NWs at 1173 K/45 min was followed by quenching in ice water and resulted in a transformation to the fcc crystal structure (XRD) with grain sizes up to 200 nm (TEM). To induce the austenite-to-martensite, i.e., fcc-to-fct phase transformation the fcc Fe69±3Pd31±3 NWs were cooled to 73 K. The XRD showed the disappearance of the (200) fcc reflection (at room temperature) and the appearance of the (200) fct reflection (at 73 K), confirming the fcc-to-fct transformation took place. The magnetic measurements revealed that the fcc Fe69±3Pd31±3 NWs measured at low temperatures (50 K) had a larger coercivity than at room temperature, which suggests the fct phase was present in the undercooled state, exhibiting a larger magnetocrystalline anisotropy than the fcc phase present at room temperature. As part of our interest in magnetic-shape-memory actuators, the as-deposited Fe69±3Pd31±3 NWs were tested for toxicity on zebrafish. In vivo tests showed no acute lethal or sub-lethal effects, which implies that the Fe69±3Pd31±3 NWs have the potential to be used as nano-actuators in biomedical applications.
Thermodynamic properties of hematite — ilmenite — geikielite solid solutions
NASA Astrophysics Data System (ADS)
Ghiorso, Mark S.
1990-11-01
A solution model is developed for rhombohedral oxide solid solutions having compositions within the ternary system ilmenite [(Fe{2+/ s }Ti{4+/1- s }) A (Fe{2+/1- s }Ti{4+/s}) B O3]-geikielite [(Mg{2+/ t }Ti{4+/1- t }) A (Mg{2+/1- t }Ti{4+/ t }) B O3]-hematite [(Fe3+) A (Fe3+) B O3]. The model incorporates an expression for the configurational entropy of solution, which accounts for varying degrees of structural long-range order (0≤s, t≤1) and utilizes simple regular solution theory to characterize the excess Gibbs free energy of mixing within the five-dimensional composition-ordering space. The 13 model parameters are calibrated from available data on: (1) the degree of long-range order and the composition-temperature dependence of theRbar 3c - Rbar 3 transition along the ilmenite-hematite binary join; (2) the compositions of coexisting olivine and rhombohedral oxide solid solutions close to the Mg-Fe2+ join; (3) the shape of the miscibility gap along the ilmenite-hematite join; (4) the compositions of coexisting spinel and rhombohedral oxide solid solutions along the Fe2+-Fe3+ join. In the course of calibration, estimates are obtained for the reference state enthalpy of formation of ulvöspinel and stoichiometric hematite (-1488.5 and -822.0 kJ/mol at 298 K and 1 bar, respectively). The model involves no excess entropies of mixing nor does it incorporate ternary interaction parameters. The formulation fits the available data and represents an internally consistent energetic model when used in conjuction with the standard state thermodynamic data set of Berman (1988) and the solution theory for orthopyroxenes, olivines and Fe-Mg titanomagnetite-aluminate-chromate spinels developed by Sack and Ghiorso (1989, 1990a, b). Calculated activity-composition relations for the end-members of the series, demonstrate the substantial degree of nonideality associated with interactions between the ordered and disordered structures and the dominant influence of the miscibility gap across much of the ternary system. The predicted shape of the miscibility gap, and the orientation of tie-lines relating the compositions of coexisting phases, display the effects of coupling between the excess enthalpy of solution and the degree of long-range order. One limb of the miscibility gap follows the composititiontemperature surface corresponding to the ternaryRbar 3 - Rbar 3c second-order transition.
The pyrite-type high-pressure form of FeOOH
NASA Astrophysics Data System (ADS)
Nishi, Masayuki; Kuwayama, Yasuhiro; Tsuchiya, Jun; Tsuchiya, Taku
2017-07-01
Water transported into Earth’s interior by subduction strongly influences dynamics such as volcanism and plate tectonics. Several recent studies have reported hydrous minerals to be stable at pressure and temperature conditions representative of Earth’s deep interior, implying that surface water may be transported as far as the core-mantle boundary. However, the hydrous mineral goethite, α-FeOOH, was recently reported to decompose under the conditions of the middle region of the lower mantle to form FeO2 and release H2, suggesting the upward migration of hydrogen and large fluctuations in the oxygen distribution within the Earth system. Here we report the stability of FeOOH phases at the pressure and temperature conditions of the deep lower mantle, based on first-principles calculations and in situ X-ray diffraction experiments. In contrast to previous work suggesting the dehydrogenation of FeOOH into FeO2 in the middle of the lower mantle, we report the formation of a new FeOOH phase with the pyrite-type framework of FeO6 octahedra, which is much denser than the surrounding mantle and is stable at the conditions of the base of the mantle. Pyrite-type FeOOH may stabilize as a solid solution with other hydrous minerals in deeply subducted slabs, and could form in subducted banded iron formations. Deep-seated pyrite-type FeOOH eventually dissociates into Fe2O3 and releases H2O when subducted slabs are heated at the base of the mantle. This process may cause the incorporation of hydrogen into the outer core by the formation of iron hydride, FeHx, in the reducing environment of the core-mantle boundary.
NASA Astrophysics Data System (ADS)
Hezaveh, Saba Mahdavi; Khanmohammadi, Hamid; Zendehdel, Mojgan
2018-06-01
The immobilized azo-azomethine receptors on amorphous SiO2, S-B, SiO2 nanoparticles, S-NPs, and NaY zeolite, S-ZY, have been prepared and applied as solid phase sensors for detection of HSO4-, over other interfering anions, in 100% aqueous media. Remarkably, S-B and S-ZY show unique and rapid sensitivity towards HSO4-, which could it easily visualized through naked eye detection even at 5 × 10-4 mol L-1 and 4 × 10-4 mol L-1, respectively. The fabricated solid phase sensors were characterized using powder XRD diffraction, TGA-DTA, FE-SEM and also FT-IR techniques. Moreover, the related molecular anion receptor, HL, has been prepared and used for naked eye detection of F- and AcO-, in dry DMSO. The anions recognition ability of HL was also evaluated using UV-Vis and 1H NMR spectroscopic methods.
Spin crossover in liquid (Mg,Fe)O at extreme conditions
NASA Astrophysics Data System (ADS)
Holmström, E.; Stixrude, L.
2016-05-01
We use first-principles free-energy calculations to predict a pressure-induced spin crossover in the liquid planetary material (Mg,Fe)O, whereby the magnetic moments of Fe ions vanish gradually over a range of hundreds of GPa. Because electronic entropy strongly favors the nonmagnetic low-spin state of Fe, the crossover has a negative effective Clapeyron slope, in stark contrast to the crystalline counterpart of this transition-metal oxide. Diffusivity of liquid (Mg,Fe)O is similar to that of MgO, displaying a weak dependence on element and spin state. Fe-O and Mg-O coordination increases from approximately 4 to 7 as pressure goes from 0 to 200 GPa. We find partitioning of Fe to induce a density inversion between the crystal and melt, implying separation of a basal magma ocean from a surficial one in the early Earth. The spin crossover induces an anomaly into the density contrast, and the oppositely signed Clapeyron slopes for the crossover in the liquid and crystalline phases imply that the solid-liquid transition induces a spin transition in (Mg,Fe)O.
Wefring, E T; Einarsrud, M-A; Grande, T
2015-04-14
Ferroelectric BiFeO3 has attractive properties such as high strain and polarization, but a wide range of applications of bulk BiFeO3 are hindered due to high leakage currents and a high coercive electric field. Here, we report on the thermal behaviour of the electrical conductivity and thermopower of BiFeO3 substituted with 10 and 20 mol% Bi0.5K0.5TiO3. A change from p-type to n-type conductivity in these semi-conducting materials was demonstrated by the change in the sign of the Seebeck coefficient and the change in the slope of the isothermal conductivity versus partial pressure of O. A minimum in the isothermal conductivity was observed at ∼10(-2) bar O2 partial pressure for both solid solutions. The strong dependence of the conductivity on the partial pressure of O2 was rationalized by a point defect model describing qualitatively the conductivity involving oxidation/reduction of Fe(3+), the dominating oxidation state of Fe in stoichiometric BiFeO3. The ferroelectric to paraelectric phase transition of 80 and 90 mol% BiFeO3 was observed at 648 ± 15 and 723 ± 15 °C respectively by differential thermal analysis and confirmed by dielectric spectroscopy and high temperature powder X-ray diffraction.
Yang, Feiyu; Zou, Yun; Ni, Chunfang; Wang, Rong; Wu, Min; Liang, Chen; Zhang, Jiabin; Yuan, Xiaoliang; Liu, Wenbin
2017-11-01
An easy-to-handle magnetic dispersive solid-phase extraction procedure was developed for preconcentration and extraction of cocaine and cocaine metabolites in human urine. Divinyl benzene and vinyl pyrrolidone functionalized silanized Fe 3 O 4 nanoparticles were synthesized and used as adsorbents in this procedure. Scanning electron microscopy, vibrating sample magnetometry, and infrared spectroscopy were employed to characterize the modified adsorbents. A high-performance liquid chromatography with mass spectrometry method for determination of cocaine and its metabolites in human urine sample has been developed with pretreatment of the samples by magnetic dispersive solid-phase extraction. The obtained results demonstrated the higher extraction capacity of the prepared nanoparticles with recoveries between 75.1 to 105.7% and correlation coefficients higher than 0.9971. The limits of detection for the cocaine and cocaine metabolites were 0.09-1.10 ng/mL. The proposed magnetic dispersive solid-phase extraction method provided a rapid, environmentally friendly and magnetic stuff recyclable approach and it was confirmed that the prepared adsorbents material was a kind of highly effective extraction materials for the trace cocaine and cocaine metabolites analyses in human urine. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Anomalous piezoelectric properties of poly(vinylidene fluoride-trifluoroethylene)/ionic liquid gels
NASA Astrophysics Data System (ADS)
Fukagawa, Miki; Koshiba, Yasuko; Fukushima, Tatsuya; Morimoto, Masahiro; Ishida, Kenji
2018-04-01
Piezoelectric gels were prepared from low-volatile ionic liquid (IL) 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([Emim][TFSI]) gels, and their structural, ferroelectric, and piezoelectric properties were investigated. Poly(vinylidene fluoride-trifluoroethylene) P(VDF-TrFE)/IL gels were formed using thermally reversible physical gels. The structural characterization indicated that the P(VDF-TrFE) molecules in the gels predominantly formed a ferroelectric phase (Form I) of P(VDF-TrFE). Polarization switching peaks were clearly observed using a three-layer stacked device structure. The coercive field of the P(VDF-TrFE)/IL gels substantially decreased to 4-9 MV/m, and their remnant polarizations were maintained at 63-71 mC/m2, which is similar to that for typical solid-state P(VDF-TrFE). Finally, the P(VDF-TrFE)/IL gel films exhibited a piezoelectric response, and the highest piezoelectric coefficient was ˜300 pm/V at an applied voltage frequency of 4 kHz.
Moessbauer spectra of ferrite catalysts used in oxidative dehydrogenation
NASA Technical Reports Server (NTRS)
Cares, W. R.; Hightower, J. W.
1971-01-01
Room temperature Mossbauer spectroscopy was used to examine bulk changes which occur in low surface area CoFe2O4 and CuFe2O4 catalysts as a result of contact with various mixtures of trans-2-butene and O2 during oxidative dehydrogenation reactions at about 420 C. So long as there was at least some O2 in the gas phase, the CoFe2O4 spectrum was essentially unchanged. However, the spectrum changed from a random spinel in the oxidized state to an inverse spinel as it was reduced by oxide ion removal. The steady state catalyst lies very near the fully oxidized state. More dramatic solid state changes occurred as the CuFe2O4 underwent reduction. Under severe reduction, the ferrite was transformed into Cu and Fe3O4, but it could be reversibly recovered by oxidation. An intense doublet located near zero velocity persisted in all spectra of CuFe2O4 regardless of the state of reduction.
Ferroelectric and piezoelectric properties of poly(vinylidene fluoride-trifluoroethylene) gels
NASA Astrophysics Data System (ADS)
Fukagawa, Miki; Koshiba, Yausko; Morimoto, Masahiro; Ishida, Kenji
2017-04-01
The structural, ferroelectric, and piezoelectric properties of poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] gels fabricated using poly(pyridinium-1,4-diyliminocarbonyl-1,4-phenylenemethylene thiocyanate) (PICPM-SCN) as a gelator are investigated in this study. The P(VDF-TrFE)/PICPM-SCN composites formed thermally reversible physical gels and their analysis by Fourier transform infrared spectroscopy revealed that the P(VDF-TrFE) molecules in these gels exhibit predominantly the ferroelectric phase I (Form β). Furthermore, the polarization switching peaks of the P(VDF-TrFE)/PICPM-SCN gel films were clearly observed. The coercive electric field for these gel films was estimated to be 2 MV/m, which is dramatically lower than the values typically observed for P(VDF-TrFE) solid films (50 MV/m). Finally, the P(VDF-TrFE)/PICPM-SCN gel films exhibited a piezoelectric response, and the highest piezoelectric coefficient was determined to be ˜53 pm/V at an applied voltage frequency of 4 kHz.
Magnetic moments induce strong phonon renormalization in FeSi.
Krannich, S; Sidis, Y; Lamago, D; Heid, R; Mignot, J-M; Löhneysen, H v; Ivanov, A; Steffens, P; Keller, T; Wang, L; Goering, E; Weber, F
2015-11-27
The interactions of electronic, spin and lattice degrees of freedom in solids result in complex phase diagrams, new emergent phenomena and technical applications. While electron-phonon coupling is well understood, and interactions between spin and electronic excitations are intensely investigated, only little is known about the dynamic interactions between spin and lattice excitations. Noncentrosymmetric FeSi is known to undergo with increasing temperature a crossover from insulating to metallic behaviour with concomitant magnetic fluctuations, and exhibits strongly temperature-dependent phonon energies. Here we show by detailed inelastic neutron-scattering measurements and ab initio calculations that the phonon renormalization in FeSi is linked to its unconventional magnetic properties. Electronic states mediating conventional electron-phonon coupling are only activated in the presence of strong magnetic fluctuations. Furthermore, phonons entailing strongly varying Fe-Fe distances are damped via dynamic coupling to the temperature-induced magnetic moments, highlighting FeSi as a material with direct spin-phonon coupling and multiple interaction paths.
Arsenic is commonly associated with mined ores and thus may be detrimental to naturally occurring wetlands that reside in mine waste-impacted regions. Understanding the relationship between Fe and As in both the aqueous and solid phase is critical for assessing the risk As impose...
Capone, S; Manera, M G; Taurino, A; Siciliano, P; Rella, R; Luby, S; Benkovicova, M; Siffalovic, P; Majkova, E
2014-02-04
Fe3O4/γ-Fe2O3 nanoparticles (NPs) based thin films were used as active layers in solid state resistive chemical sensors. NPs were synthesized by high temperature solution phase reaction. Sensing NP monolayers (ML) were deposited by Langmuir-Blodgett (LB) techniques onto chemoresistive transduction platforms. The sensing ML were UV treated to remove NP insulating capping. Sensors surface was characterized by scanning electron microscopy (SEM). Systematic gas sensing tests in controlled atmosphere were carried out toward NO2, CO, and acetone at different concentrations and working temperatures of the sensing layers. The best sensing performance results were obtained for sensors with higher NPs coverage (10 ML), mainly for NO2 gas showing interesting selectivity toward nitrogen oxides. Electrical properties and conduction mechanisms are discussed.
FeRh ground state and martensitic transformation
Zarkevich, Nikolai A.; Johnson, Duane D.
2018-01-09
Cubic B2 FeRh exhibits a metamagnetic transition [(111) antiferromagnet (AFM) to ferromagnet (FM)] around 353 K and remains structurally stable at higher temperatures. However, the calculated zero-Kelvin phonons of AFM FeRh exhibit imaginary modes at M points in the Brillouin zone, indicating a premartensitic instability, which is a precursor to a martensitic transformation at low temperatures. Combining electronic-structure calculations with ab initio molecular dynamics, conjugate gradient relaxation, and the solid-state nudged-elastic band methods, we predict that AFM B2 FeRh becomes unstable at ambient pressure and transforms without a barrier to an AFM(111) orthorhombic (martensitic) ground state below 90±10K. In conclusion,more » we also consider competing structures, in particular, a tetragonal AFM(100) phase that is not the global ground state, as proposed, but a constrained solution.« less
Chubar, Natalia; Gerda, Vasyl; Szlachta, Małgorzata
2014-11-18
Selenium cycling in the environment is greatly controlled by various minerals, including Mn and Fe hydrous oxides. At the same time, such hydrous oxides are the main inorganic ion exchangers suitable (on the basis of their chemical nature) to sorb (toxic) anions, separating them from water solutions. The mechanism of selenite adsorption by the new mixed adsorbent composed of a few (amorphous and crystalline) phases [maghemite, MnCO3, and X-ray amorphous Fe(III) and Mn(III) hydrous oxides] was studied by extended X-ray absorption fine structure (EXAFS) spectroscopy [supported by Fourier transform infrared (FTIR) and X-ray diffraction (XRD) data]. The complexity of the porous adsorbent, especially the presence of the amorphous phases of Fe(III) and Mn(III) hydrous oxides, is the main reason for its high selenite removal performance demonstrated by batch and column adsorption studies shown in the previous work. Selenite was bound to the material via inner-sphere complexation (via oxygen) to the adsorption sites of the amorphous Fe(III) and Mn(III) oxides. This anion was attracted via bidentate binuclear corner-sharing coordination between SeO3(2-) trigonal pyramids and both FeO6 and MnO6 octahedra; however, the adsorption sites of Fe(III) hydrous oxides played a leading role in selenite removal. The contribution of the adsorption sites of Mn(III) oxide increased as the pH decreased from 8 to 6. Because most minerals have a complex structure (they are seldom based on individual substances) of various crystallinity, this work is equally relevant to environmental science and environmental technology because it shows how various solid phases control cycling of chemical elements in the environment.
Section 2: Phase transformation studies in mechanically alloyed Fe-Nz and Fe-Zn-Si intermetallics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordan, A.; Uwakweh, O.N.C.; Maziasz, P.J.
1997-04-01
The initial stage of this study, which was completed in FY 1995, entailed an extensive analysis characterizing the structural evolution of the Fe-Zn intermetallic system. The primary interest in these Fe-Zn phases stems from the fact that they form an excellent coating for the corrosion protection of steel (i.e., automobile body panels). The Fe-Zn coating generally forms up to four intermetallic phases depending on the particular industrial application used, (i.e., galvanization, galvannealing, etc.). Since the different coating applications are non-equilibrium in nature, it becomes necessary to employ a non-equilibrium method for producing homogeneous alloys in the solid-state to reflect themore » structural changes occurring in a true coating. This was accomplished through the use of a high energy/non-equilibrium technique known as ball-milling which allowed the authors to monitor the evolution process of the alloys as they transformed from a metastable to stable equilibrium state. In FY 1996, this study was expanded to evaluate the presence of Si in the Fe-Zn system and its influence in the overall coating. The addition of silicon in steel gives rise to an increased coating. However, the mechanisms leading to the coating anomaly are still not fully understood. For this reason, mechanical alloying through ball-milling of pure elemental powders was used to study the structural changes occurring in the sandelin region (i.e., 0.12 wt % Si). Through the identification of invariant reactions (i.e., eutectic, etc.) the authors were able to explore the sandelin phenomenon and also determine the various fields or boundaries associated with the Fe-Zn-Si ternary system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liaw, Peter; Zhang, Fan; Zhang, Chuan
2016-07-30
To create and design novel structural materials with enhanced creep-resistance, fundamental studies have been conducted on high-entropy alloys (HEAs), using (1) thermodynamic calculations, (2) mechanical tests, (3) neutron diffraction, (4) characterization techniques, and (5) crystal-plasticity finite-element modeling (CPFEM), to explore future candidates for next-generation power plants. All the constituent binary and ternary systems of the Al-Cr-Cu-Fe-Mn-Ni and Al-Co-Cr-Fe-Ni systems were thermodynamically modeled within the whole composition range. Comparisons between the calculated phase diagrams and literature data are in good agreement. Seven types of HEAs were fabricated from Al-Cr-Cu-Fe-Mn-Ni and Al-Co-Cr-Fe-Ni systems. The Al xCrCuFeMnNi HEAs have disordered [face-centered cubic (FCC)more » + body-centered cubic (BCC)] crystal structures, not FCC or BCC single structure. Excessive alloying of the Al element results in the change of both microstructural and mechanical properties in Al xCoCrFeNi HEAs. There are mainly three structural features in Al xCoCrFeNi: (1) the morphology, (2) the volume fractions of the constitute phases, and (3) existing temperatures of all six phases. After homogenization, the Al 0.3CoCrFeNi material is a pure FCC solid solution. After aging at 700 °C for 500 hours, the optimal microstructure combinations, the FCC matrix, needle-like B2 phase within grains, and granular σ phase along grain boundary, is achieved for Al 0.3CoCrFeNi. The cold-rolling process is utilized to reduce the grain size of Al 0.1CoCrFeNi and Al 0.3CoCrFeNi. The chemical elemental partitioning of FCC, BCC, B2, and σphases at different temperatures, before and after mechanical tests, in Al-Cr-Cu-Fe-Mn-Ni and Al-Co-Cr-Fe-Ni systems are quantitatively characterized by both synchrotron X-ray diffraction, neutron diffraction with levitation, scanning electron microscopy (SEM), advanced atom probe tomography (APT), and transmission electron microscopy (TEM). In-situ neutron diffraction experiments were conducted to study the strengthening effect of B2 phase on tensile properties of Al 0.3CoCrFeNi HEAs directly. The results shows the creep behavior of Al 0.3CoCrFeNi is superior to conventional alloys, and the heat treatment introduces secondary B2 phase into the FCC matrix, which increase the yielding strength, decrease the ductility, diminish the serrated flow during compression tests at high temperatures. In summary, the outcomes of the development of the HEAs with creep resistance include: (1) Suitable candidates, for the application to boilers and steam and gas turbines at temperatures above 760 °C and a stress of 35 MPa. (2) Fundamental understanding on the precipitate stability and deformation mechanisms of both single-phase and precipitate-strengthened alloys at room and elevated temperatures, and (3) The demonstration of an integrated approach, coupling modeling [thermodynamic calculations and crystal-plasticity finite-element modeling (CPFEM)] and focused experiments, to identify HEAs that outperform conventional alloys for high-temperature applications, which will be applicable for the discovery and development of other high-temperature materials in the power-generating industry.« less
NASA Astrophysics Data System (ADS)
Hidayat, Taufiq; Shishin, Denis; Decterov, Sergei A.; Hayes, Peter C.; Jak, Evgueni
2017-01-01
Uncertainty in the metal price and competition between producers mean that the daily operation of a smelter needs to target high recovery of valuable elements at low operating cost. Options for the improvement of the plant operation can be examined and decision making can be informed based on accurate information from laboratory experimentation coupled with predictions using advanced thermodynamic models. Integrated high-temperature experimental and thermodynamic modelling research on phase equilibria and thermodynamics of copper-containing systems have been undertaken at the Pyrometallurgy Innovation Centre (PYROSEARCH). The experimental phase equilibria studies involve high-temperature equilibration, rapid quenching and direct measurement of phase compositions using electron probe X-ray microanalysis (EPMA). The thermodynamic modelling deals with the development of accurate thermodynamic database built through critical evaluation of experimental data, selection of solution models, and optimization of models parameters. The database covers the Al-Ca-Cu-Fe-Mg-O-S-Si chemical system. The gas, slag, matte, liquid and solid metal phases, spinel solid solution as well as numerous solid oxide and sulphide phases are included. The database works within the FactSage software environment. Examples of phase equilibria data and thermodynamic models of selected systems, as well as possible implementation of the research outcomes to selected copper making processes are presented.
NASA Astrophysics Data System (ADS)
Fang, Jin
Olivine-type lithium iron phosphate has been a very promising cathode material since it was proposed by Padhi in 1997, low-cost, environmental friendly and stable structure ensure the commercialization of LiFePO 4. In LiFePO4, during charge and discharge process, Li ions are transferred between two phases, Li-poor LialphaFePO 4 and Li-rich Li1-betaFePO4, which implies a significant energy barrier for the new phase nucleation and interface growth, contrary to the fast reaction kinetics experimentally observed. The understanding of the lithiation and delithiation mechanism of this material has spurred a lot of research interests. Many theory models have been proposed to explain the reaction mechanism of LiFePO4, among them, the single phase model claims that the reaction goes through a metastable single phase, and the over potential required to form this single phase is about 30mV, so we studied the driving force to transport lithium ions between Lialpha FePO4 and Li1-betaFePO4 phases and compared the particle sizes effect. Experiment results shows that, the nano-sized (30nm) LiFePO4 has wider solid solution range, lower solid solution formation temperature and faster kinetics than normal LiFePO4 (150nm). Also a 20mV over potential was observed in both samples, either after relaxing the FePO4/LiFePO4 system to equilibrium or transport lithium from one side to the other side, the experiment result is corresponding to theoretical calculation; indicates the reaction might go through single-phase reaction mechanism. The energy and power density of lithium ion battery largely depend on cathode materials. Mn substituted LiFePO4 has a higher voltage than LiFePO4, which results a higher theoretical energy density. Safety issue is one of the most important criterions for batteries, since cathode materials need to maintain stable structure during hundreds of charge and discharge cycles and ranges of application conditions. We have reported that iron-rich compound o-Fe1-yMnyPO4 (0≤y≤0.4) is stable up to 600 °C with particle size above 100 nm particle. And in this work Mn rich olivine phase Fe1-yMnyPO4 is found to be thermally stable up to at least 450 °C with particle size down to below 50 nm, different delithiation methods result in different decomposition routes, electrochemical delithiation results in decreased thermal stability. Moisture exposure appears the most detrimental to the thermal stability of Mn-rich samples. LiNi0.5Mn1.5O4 has attracted a lot of attentions because the potential is even higher (˜ 4.7 V vs Li +/Li0). However, electrolyte decomposition is quite often observed during electrochemistry cycles due to the high voltage operation window. Spinel LiNi0.5Mn1.5O4 is known as ordered and disordered according to the distribution of cations which relates to the synthesis conditions. Mn and Ni ions distribute either randomly in 16d sites of an Fd3m-space group or ordered in 4a and 12d sites of P4332 space group. During discharge and charge processes, Li ions insert and extract from the structure with the oxidation state of Ni changing between +2 and +4 while Mn remains as Mn4+. So far the correlation between cation distribution and electrochemical performance is still unclear, mostly the disordered samples are observed to have better rate capabilities. In order to study the reaction mechanism, combined XRD and XAS are used to investigate the oxidation state of transition metals and structure change of LiNi0.5Mn1.5O4 during electrochemical cycling, disordered and ordered samples were compared and studied, and both samples show three phases transformation during charge and discharge. However, the samples suffer from severe electrolyte decomposition which has influence on the results. Good spinel samples with nice electrochemistry performance is required, pure spinel samples are obtained by using co-precipitation method, the distribution of transition metal ions can be controlled by controlling the synthesis temperature, and electrolyte plays an important role in the electrochemistry performance of spinel LiNi0.5Mn1.5O 4.
NASA Astrophysics Data System (ADS)
Buono, A. S.; Dasgupta, R.; Walker, D.
2011-12-01
Secular cooling of terrestrial planets is known to cause crystallization of a solid inner core from metallic liquid core. Fractionation of light and siderophile elements is important during such crystallization for evolution of outer core and possible core-mantle interaction. Thus far studies focused on a pure Fe inner core in simple binary systems but the effects of possible formation of a carbide inner core component on siderophile element partitioning in a multi-component system has yet to be looked at in detail. We investigated the effects of pressure and S content on partition coefficients (D) between cohenite and liquid in the Fe-Ni-S-C system. Multi-anvil experiments were performed at 3 and 6 GPa at 1150 °C, in an Fe-rich mix containing a constant C and Ni to which S contents of 0, 5, and 14 wt.% were added. All the mixes were doped with W, Re, Os, Pt, and Co. Samples were imaged and analyzed for Fe, Ni, S, and C using an EPMA. Fe, Ni, and trace elements were analyzed using a LA-ICP-MS. All the experiments produced cohenite and Fe-Ni-C±S liquid. Compared to solid-Fe/melt Ds [1-2], cohenite/melt Ds are lower for all elements except W. The light element (S+C) content of the liquid is the dominant controlling factor in siderophile element partitioning between cohenite and liquid as it is between crystalline Fe and liquid. In the cohenite-metallic melt experiments, D Ni decreases as S+C increases. Ni is excluded from the crystallizing solid if the solid is cohenite. We also find that in the Fe-Ni-S-C system, cohenite is stabilized to higher P than in the Fe-S-C system [3-5]. Similar to the Fe-metallic liquid systems the non-metal avoidance model [6] is applicable to the Fe3C-metallic liquid system studied here. Our study has implications for both the cores of smaller planets and the mantles of larger planets. If inner core forms a cohenite layer we would predict that depletions in the outer core will be less than they might be for Fe metal crystallization. For the mantle of the earth, which is thought to become Fe-Ni metal-saturated as shallow as 250 km, the sub-system Fe-Ni + C + S becomes relevant and Fe-Ni carbide rather than metallic Fe-Ni alloy may become the crystalline phase of interest. Our study implies that because the partition coefficients between cohenite and Fe-C-S melts are significantly lower than those between Fe-metal and S-rich liquid, in the presence of cohenite and Fe-C-S melt in the mantle, the mantle budget of Ni, Co, and Pt may be dominated by Fe-C-S liquid. W, Re, and Os will also be slightly enriched in C-rich Fe-Ni liquid over cohenite if the metal sub-system of interest is S-free. [1] Chabot et al., GCA 70, 1322-1335, 2006 [2] Chabot et al., GCA 72, 4146-4158, 2008 [3] Chabot et al., Meteorit. Planet. Sci. 42, 1735-1750, 2007 [4] Stewart et al., EPSL 284, 302-309, 2009 [5] Van Orman et al., EPSL 274, 250-257, 2008 [6] Jones, J.H., Malvin, D.J., Metall Mater Trans B 21, 697-706, 1990
In situ XANES and EXAFS Analysis of Redox Active Fe Center Ionic Liquids
Apblett, Christopher A.; Stewart, David M.; Fryer, Robert T.; ...
2015-10-23
We apply in situ X-Ray Absorption Near Edge Spectroscopy (XANES) and Extended X-Ray Absorption Fine Structure (EXAFS) techniques to a metal center ionic liquid undergoing oxidation and reduction in a three electrode spectroscopic cell. Furthermore, the determination of the extent of reduction under negative bias on the working electrode and the extent of oxidation are determined after pulse voltammetry to quiescence. While the ionic liquid undergoes full oxidation, it undergoes only partial reduction, likely due to transport issues on the timescale of the experiment. Nearest neighbor Fe-O distances in the fully oxidized state match well to expected values for similarlymore » coordinated solids, but reduction does not result in an extension of the Fe-O bond length, as would be expected from comparisons to the solid phase. Instead, little change in bond length is observed. Finally, we suggest that this may be due to a more complex interaction between the monodentate ligands of the metal center anion and the surrounding charge cloud, rather than straightforward electrostatics between the metal center and the nearest neighbor grouping.« less
Structural, dielectric and magnetic properties of ZnFe2O4-Na0.5Bi0.5TiO3 multiferroic composites
NASA Astrophysics Data System (ADS)
Bhasin, Tanvi; Agarwal, Ashish; Sanghi, Sujata; Yadav, Manisha; Tuteja, Muskaan; Singh, Jogender; Rani, Sonia
2018-04-01
Multiferroic xNa0.5Bi0.5TiO3-(1-x)ZnFe2O4 (x=0.10, 0.20) composites were prepared by conventional solid state reaction method. Rietveld analysis of XRD data shows that samples exhibit both cubic (Fd-3m) and rhombohedral (R3c) crystal structure. Structural parameters and unit cell volume of samples vary with composition. The dielectric constant and dielectric loss (tanδ) display dispersion at low frequency due to space charge polarization and inhomogeneity in the composites. Magnetic analysis depicts the antiferromagnetic behavior of composites and magnetization is enhanced with the introduction of ferrite (ZnFe2O4) phase.
NASA Astrophysics Data System (ADS)
Suthar, Lokesh; Bhadala, Falguni; Roy, M.; Jha, V. K.
2018-05-01
The electrical transport behaviour of polycrystalline Calcium doped Yttrium orthoferrite (Y1-xCaxFeO3, where x = 0.03 and 0.05) have been synthesized by high temperature Solid state reaction route. The I-V characteristics have been measured which revels that Y1-xCaxFeO3 (where x = 0.03 and 0.05), behaves like semiconductor and its conductivity increases with increase in doping concentration. The thermal analysis experiment shows no phase change with the minor weight loss which reflects the high temperature thermal stability of the materials. The surface morphology was analyzed using the AFM. The results are discussed in detail.
Magnesium dititanate (MgTi2O5) with pseudobrookite structure: a review.
Suzuki, Yoshikazu; Shinoda, Yutaka
2011-06-01
Magnesium dititanate (MgTi 2 O 5 , MT 2 ) has been synthesized since the early 1930s. It has the pseudobrookite structure (general formula Me 3 O 5 ), corresponding to the Mg-enriched artificial endmember of the Fe 2 TiO 5 (pseudobrookite)-FeTi 2 O 5 (ferropseudobrookite)-Mg 0.5 Fe 0.5 Ti 2 O 5 (armalcolite) solid solution. Since MgTi 2 O 5 has relativity high thermal stability among pseudobrookite-type phases, it is expected to be a well-balanced low-thermal-expansion material. Here we review both the historical and recent studies on MgTi 2 O 5 , particularly on its crystal structure, cation order-disorder, physical properties and synthesis methods.
Rietveld refinement and electrical properties of Ni-Zn spinel ferrites
NASA Astrophysics Data System (ADS)
Hooda, Ashima; Sanghi, Sujata; Agarwal, Ashish; Khasa, Satish; Hooda, Bhawana
2017-05-01
NiFe2O4, ZnFe2O4, Ni0.5Zn0.5Fe2O4 spinel samples have been synthesized by conventional solid state reaction technique. Powder X-ray diffraction and Rietveld refinement revealed that the samples were single Spinel phase with space group fd3m. The average crystalline size (D), lattice constant (a), X-ray density (ρx), measured density (ρm) and Porosity (P) of prepared samples were determined from XRD data. The dc electrical resistivity (p) was measured as a function of temperature. The variations of ρ were explained on the basis of Verwey and de Bohr mechanism. The value of DC resistivity found to increase with increase Zn concentration.
Yang, Rui; Liu, Yuxin; Yan, Xiangyang; Liu, Shaomin
2016-12-01
A rapid, sensitive and accurate method for the simultaneous extraction and determination of five types of trace phthalate esters (PAEs) in environmental water and beverage samples using magnetic molecularly imprinted solid-phase extraction (MMIP-SPE) coupled with gas chromatography-mass spectrometry (GC-MS) was developed. A novel type of molecularly imprinted polymers on the surface of yolk-shell magnetic mesoporous carbon (Fe 3 O 4 @void@C-MIPs) was used as an efficient adsorbent for selective adsorption of phthalate esters based on magnetic solid-phase extraction (MSPE). The real samples were first preconcentrated by Fe 3 O 4 @void@C-MIPs, subsequently extracted by eluent and finally determined by GC-MS after magnetic separation. Several variables affecting the extraction efficiency of the analytes, including the type and volume of the elution solvent, amount of adsorbent, extraction time, desorption time and pH of the sample solution, were investigated and optimized. Validation experiments indicated that the developed method presented good linearity (R 2 >0.9961), satisfactory precision (RSD<6.7%), and high recovery (86.1-103.1%). The limits of detection ranged from 1.6ng/L to 5.2ng/L and the enrichment factor was in the range of 822-1423. The results indicated that the novel method had the advantages of convenience, good sensitivity, and high efficiency, and it could also be successfully applied to the analysis of PAEs in real samples. Copyright © 2016. Published by Elsevier B.V.
Siddique, Tariq; Kuznetsov, Petr; Kuznetsova, Alsu; Li, Carmen; Young, Rozlyn; Arocena, Joselito M; Foght, Julia M
2014-01-01
Consolidation of clay particles in aqueous tailings suspensions is a major obstacle to effective management of oil sands tailings ponds in northern Alberta, Canada. We have observed that microorganisms indigenous to the tailings ponds accelerate consolidation of mature fine tailings (MFT) during active metabolism by using two biogeochemical pathways. In Pathway I, microbes alter porewater chemistry to indirectly increase consolidation of MFT. Here, we describe Pathway II comprising significant, direct and complementary biogeochemical reactions with MFT mineral surfaces. An anaerobic microbial community comprising Bacteria (predominantly Clostridiales, Synergistaceae, and Desulfobulbaceae) and Archaea (Methanolinea/Methanoregula and Methanosaeta) transformed Fe(III) minerals in MFT to amorphous Fe(II) minerals during methanogenic metabolism of an added organic substrate. Synchrotron analyses suggested that ferrihydrite (5Fe2O3. 9H2O) and goethite (α-FeOOH) were the dominant Fe(III) minerals in MFT. The formation of amorphous iron sulfide (FeS) and possibly green rust entrapped and masked electronegative clay surfaces in amended MFT. Both Pathways I and II reduced the surface charge potential (repulsive forces) of the clay particles in MFT, which aided aggregation of clays and formation of networks of pores, as visualized using cryo-scanning electron microscopy (SEM). These reactions facilitated the egress of porewater from MFT and increased consolidation of tailings solids. These results have large-scale implications for management and reclamation of oil sands tailings ponds, a burgeoning environmental issue for the public and government regulators.
Microbially-accelerated consolidation of oil sands tailings. Pathway II: solid phase biogeochemistry
Siddique, Tariq; Kuznetsov, Petr; Kuznetsova, Alsu; Li, Carmen; Young, Rozlyn; Arocena, Joselito M.; Foght, Julia M.
2014-01-01
Consolidation of clay particles in aqueous tailings suspensions is a major obstacle to effective management of oil sands tailings ponds in northern Alberta, Canada. We have observed that microorganisms indigenous to the tailings ponds accelerate consolidation of mature fine tailings (MFT) during active metabolism by using two biogeochemical pathways. In Pathway I, microbes alter porewater chemistry to indirectly increase consolidation of MFT. Here, we describe Pathway II comprising significant, direct and complementary biogeochemical reactions with MFT mineral surfaces. An anaerobic microbial community comprising Bacteria (predominantly Clostridiales, Synergistaceae, and Desulfobulbaceae) and Archaea (Methanolinea/Methanoregula and Methanosaeta) transformed FeIII minerals in MFT to amorphous FeII minerals during methanogenic metabolism of an added organic substrate. Synchrotron analyses suggested that ferrihydrite (5Fe2O3. 9H2O) and goethite (α-FeOOH) were the dominant FeIII minerals in MFT. The formation of amorphous iron sulfide (FeS) and possibly green rust entrapped and masked electronegative clay surfaces in amended MFT. Both Pathways I and II reduced the surface charge potential (repulsive forces) of the clay particles in MFT, which aided aggregation of clays and formation of networks of pores, as visualized using cryo-scanning electron microscopy (SEM). These reactions facilitated the egress of porewater from MFT and increased consolidation of tailings solids. These results have large-scale implications for management and reclamation of oil sands tailings ponds, a burgeoning environmental issue for the public and government regulators. PMID:24711806
Synthesis and characterization of the LDH hydrotalcite-pyroaurite solid-solution series
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rozov, K., E-mail: urs.berner@psi.c; Rock-Water Interaction Group, Institute of Geological Sciences, University of Bern, Baltzerstrasse 3, CH-3012; Berner, U.
2010-08-15
A layered double hydroxide (LDH) hydrotalcite-pyroaurite solid-solution series Mg{sub 3}(Al{sub x}Fe{sub 1-x})(CO{sub 3}){sub 0.5}(OH){sub 8} with 1 - x = 0.0, 0.1...1.0 was prepared by co-precipitation at 23 {+-} 2 {sup o}C and pH = 11.40 {+-} 0.03. The compositions of the solids and the reaction solutions were determined using ICP-OES (Mg, Al, Fe, and Na) and TGA techniques (CO{sub 3}{sup 2-}, OH{sup -}, and H{sub 2}O). Powder X-ray diffraction was employed for phase identification and determination of the unit cell parameters a{sub o} and c{sub o} from peak profile analysis. The parameter a{sub o} = b{sub o} was foundmore » to be a linear function of the composition. This dependency confirms Vegard's law and indicates the presence of a continuous solid-solution series in the hydrotalcite-pyroaurite system. TGA data show that the temperatures at which interlayer H{sub 2}O molecules and CO{sub 3}{sup 2-} anions are lost, and at which dehydroxylation of the layers occurs, all decrease with increasing mole fraction of iron within the hydroxide layers. Features of the Raman spectra also depend on the iron content. The absence of Raman bands for Fe-rich members (x{sub Fe} > 0.5) is attributed to possible fluorescence phenomena. Based on chemical analysis of both the solids and the reaction solutions after synthesis, preliminary Gibbs free energies of formation have been estimated. Values of {Delta}G{sup o}{sub f}(hydrotalcite) = - 3773.3 {+-} 51.4 kJ/mol and {Delta}G{sup o}{sub f}(pyroaurite) = - 3294.5 {+-} 95.8 kJ/mol were found at 296.15 K. The formal uncertainties of these formations constants are very high. Derivation of more precise values would require carefully designed solubility experiments and improved analytical techniques.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Juan; Liu, Xiao Qiang, E-mail: xqliu@zju.edu.cn, E-mail: xmchen59@zju.edu.cn; Chen, Xiang Ming, E-mail: xqliu@zju.edu.cn, E-mail: xmchen59@zju.edu.cn
2015-05-07
BiFeO{sub 3} multiferroic ceramics were modified by introducing (Sr{sub 0.5}Ca{sub 0.5})TiO{sub 3} to form solid solutions. The single phase structure was easy to be obtained in Bi{sub 1−x}(Sr{sub 0.5}Ca{sub 0.5}){sub x}Fe{sub 1−x}Ti{sub x}O{sub 3} (x = 0.2, 0.25, 0.3, and 0.4) solid solutions. Rietveld refinement of X-ray diffraction data revealed a transition from rhombohedral R3c (x = 0.2, 0.25, and 0.3) to orthorhombic Pnma (x = 0.4). Current density-field (J-E) characteristics indicated that the leakage current density was reduced by three orders of magnitude in Bi{sub 1−x}(Sr{sub 0.5}Ca{sub 0.5}){sub x}Fe{sub 1−x}Ti{sub x}O{sub 3} ceramics. Both the ferroelectricity and magnetic properties were significantly enhanced in the presentmore » solid solutions. P-E hysteresis loop measurements with dynamic leakage current compensation methods showed the significantly enhanced ferroelectric properties for x = 0.25 and 0.3 and the paraelectric behavior for x = 0.4. The best ferromagnetic characteristics were achieved in the composition of x = 0.25, where the saturated M-H loop was determined with M{sub r} = 34.8 emu/mol. The improvement of ferroelectricity was mainly due to the suppressed leakage current, and the enhanced magnetism originated from the partial substitution of Fe{sup 3+} by Ti{sup 4+}, which destroyed its previous spiral structure to allow the appearance of a macroscopic magnetization.« less
NASA Astrophysics Data System (ADS)
Chistyakova, N. I.; Rusakov, V. S.; Shapkin, A. A.; Zhilina, T. N.; Zavarzina, D. G.; Lančok, A.; Kohout, J.
2010-07-01
Anaerobic alkaliphilic bacterium of Geoalkalibacter ferrihydriticus type (strain Z-0531), isolated from a bottom sediment sample from the weakly mineralized soda Lake Khadyn, have been analyzed. The strain uses the amorphous Fe(III)-hydroxide (AFH) as an electron acceptor and acetate CH3COO- as an electron donor. Mössbauer investigations of solid phase samples obtained during the process of the bacterium growth were carried out at room temperature, 77.8 K, 4.2 K without and with the presence of an external magnetic field (6 T) applied perpendicular to the γ-bebam.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Chunmei; Kukkadapu, Ravi K.; Sparks, Donald L.
2015-08-10
The poorly crystalline Fe(III) hydroxide ferrihydrite is an important sink for organic matter (OM), nutrients and contaminants in soils and sediments. Aqueous Fe(II) is known to catalyze the transformation of ferrihydrite to more crystalline and thus less reactive phases. While coprecipitation of OM with ferrihydrite could be a common process in many environments due to changes in pH, redox potential or ionic strength, little is known about the impacts of coprecipitated OM on Fe(II)-catalyzed ferrihydrite transformation and its consequences for C dynamics. Accordingly, we explored the extent and pathways of Fe(II)-induced transformation of OM-ferrihydrite coprecipitates and subsequent C mobility. Mössbauermore » spectroscopic results indicated that the coprecipitated OM within ferrihydrite weakened the inter-particle magnetic interactions and decreased average particle size. The coprecipitated OM resulted in diminished Fe(II)-induced ferrihydrite transformation and thus preservation of ferrihydrite. The secondary mineral profiles upon Fe(II) reaction with ferrihydrite were a function of OM content and Fe(II) concentration. At low Fe(II) levels, OM completely inhibited goethite formation and stimulated lepidocrocite formation. At high Fe(II) levels, whereas goethite was formed in the presence of OM, OM reduced the amount of goethite and magnetite formation and increased the formation of lepidocrcocite. The solid-phase C content remained unchanged after reaction, while OM desorpability by H2PO4- was enhanced following reaction of OM-ferrihydrites with aqueous Fe(II). These findings provide insights into the reactivity of natural ferrihydrite containing OM in soils and sediments and the subsequent impact on mineral evolution and C dynamics.« less
NASA Astrophysics Data System (ADS)
Lim, Edmund H. H.; Liew, Josephine Y. C.; Awang Kechik, M. M.; Halim, S. A.; Chen, S. K.; Tan, K. B.; Qi, X.
2017-06-01
Polycrystalline samples with nominal composition FeTe1- x S x ( x = 0.00-0.30) were synthesized via solid state reaction method with intermittent grinding in argon gas flow. X-ray diffraction (XRD) patterns revealed the tetragonal structure (space group P4/nmm) of the samples with the presence of impurities Fe3O4 and FeTe2. By substitution with S, the a and c lattice parameters shrink probably due to the smaller ionic radius of S2- compared to Te2-. Scanning electron microscopy images showed that the samples developed plate-like grains with increasing S substitution. Substitution of Te with S suppresses the structural transition of the parent compound FeTe as shown by both the temperature dependence of resistance and magnetic moment measurements. All of the S-substituted samples showed a rapid drop of resistance at around 9-10 K but zero resistance down to 4 K was not observed. In addition, negative magnetic moment corresponds to diamagnetism was detected in the samples for x = 0.25 and 0.30 suggesting the coexistence of magnetic and superconducting phase in these samples. The magnetization hysteresis loops measured at room temperature showed ferromagnetic behavior for the pure and S substituted samples. However, the magnetization, rentivity and coercivity decreased with S content.
Yu, Changxun; Peltola, Pasi; Nystrand, Miriam I; Virtasalo, Joonas J; Österholm, Peter; Ojala, Antti E K; Hogmalm, Johan K; Åström, Mats E
2016-01-15
This study examines the spatial and temporal distribution patterns of arsenic (As) in solid and aqueous materials along the mixing zone of an estuary, located in the south-eastern part of the Bothnian Bay and fed by a creek running through an acid sulfate (AS) soil landscape. The concentrations of As in solution form (<1 kDa) increase steadily from the creek mouth to the outer estuary, suggesting that inflowing seawater, rather than AS soil, is the major As source in the estuary. In sediments at the outer estuary, As was accumulated and diagenetically cycled in the surficial layers, as throughout much of the Bothnian Bay. In contrast, in sediments in the inner estuary, As concentrations and accumulation rates showed systematical peaks at greater depths. These peaks were overall consistent with the temporal trend of past As discharges from the Rönnskär smelter and the accompanied As concentrations in past sea-water of the Bothnian Bay, pointing to a connection between the historical smelter activities and the sediment-bound As in the inner estuary. However, the concentrations and accumulation rates of As peaked at depths where the smelter activities had already declined, but a large increase in the deposition of Al hydroxides and Fe phases occurred in response to intensified land-use in the mid 1960's and early 1970's. This correspondence suggests that, apart from the inflowing As-contaminated seawater, capture by Al hydroxides, Fe hydroxides and Fe-organic complexes is another important factor for As deposition in the inner estuary. After accumulating in the sediment, the solid-phase As was partly remobilized, as reflected by increased pore-water As concentrations, a process favored by As(V) reduction and high concentrations of dissolved organic matter. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Domashevskaya, E. P.; Guda, A. A.; Chernyshev, A. V.; Sitnikov, V. G.
2017-02-01
Multilayered nanostructures (MN) were prepared by ion-beam successive sputtering from two targets, one of which was a metallic Co45Fe45Zr10 alloy plate and another target was a quartz (SiO2) or silicon plate on the surface of a rotating glass-ceramic substrate in an argon atmosphere. The Co and Fe K edges X-ray absorption fine structure of XANES in the (CoFeZr/SiO2)32 sample with oxide interlayers was similar to XANES of metallic Fe foil. This indicated the existence in metallic layers of multilayered CoFeZr nanocrystals with a local environment similar to the atomic environment in solid solutions on the base of bcc Fe structure, which is also confirmed by XRD data. XANES near the Co and Fe K edges absorption in another multilayered nanostructure with silicon interlayers (CoFeZr/ a-Si)40 differs from XANES of MN with dielectric SiO2 interlayer, which demonstrates a dominant influence of the Fe-Si and Co-Si bonds in the local environment of 3 d Co and Fe metals when they form CoFeSi-type silicide phases in thinner bilayers of this MN.
NASA Astrophysics Data System (ADS)
Zhang, S.; Wu, C. L.; Zhang, C. H.; Guan, M.; Tan, J. Z.
2016-10-01
FeCoCrAlNi high-entropy alloy coating was synthesized with premixed high-purity Co, Cr, Al and Ni powders on 304 stainless steel by laser surface alloying, aiming at improving corrosion and cavitation erosion resistance. Phase constituents, microstructure and microhardness were investigated using XRD, SEM, and microhardness tester, respectively. The cavitation erosion and electrochemical corrosion behavior of FeCoCrAlNi coating in 3.5% NaCl solution were also evaluated using an ultrasonic vibrator and potentiodynamic polarization measurement. Experimental results showed that with appropriate laser processing parameters, FeCoCrAlNi coating with good metallurgical bonding to the substrate could be achieved. FeCoCrAlNi coating was composed of a single BCC solid solution. The formation of simple solid solutions in HEAs was the combined effect of mixing entropy (ΔSmix), mixing enthalpy (ΔHmix), atom-size difference (δ) and valence electron concentration (VEC), and the effect of ΔSmix was much larger than that of the other factors. The microhardness of the FeCoCrAlNi coating was ~3 times that of the 304 stainless steel. Both the corrosion and cavitation erosion resistance of the coating were improved. The cavitation erosion resistance for FeCoCrAlNi HEA coating was ~7.6 times that of 304 stainless steel. The corrosion resistance was also improved as reflected by a reduction in the current density of one order of magnitude as compared with 304 stainless steel.
Wei, Shoulian; Li, Jianwen; Liu, Yong; Ma, Jinkui
2016-11-18
A magnetic mesoporous dual-template molecularly imprinted polymer (Fe 3 O 4 @mSiO 2 @DMIP) with a specific recognition capability for chloramphenicol (CAP) and florfenicol (FF) was synthesised. CAP and FF were used as dual-template molecules, α-methacrylic acid and Fe 3 O 4 @mSiO 2 @-CHCH 2 as dual functional monomers, and ethylene glycol dimethyl methacrylate as a crosslinking agent. For comparison, a magnetic mesoporous non-molecularly imprinted polymer (Fe 3 O 4 @mSiO 2 @NIP) was also prepared using the same synthesis procedure, but without the dual templates. The prepared polymers were characterised using scanning electron microscopy, Fourier-transform infrared spectroscopy and adsorption experiments. Results indicated that both the Fe 3 O 4 @mSiO 2 @DMIP and the Fe 3 O 4 @mSiO 2 @NIP were microspherical nanoparticles, and the surface of the Fe 3 O 4 @mSiO 2 @DMIP was rougher than that of the Fe 3 O 4 @mSiO 2 @NIP. In addition, the prepared Fe 3 O 4 @mSiO 2 @DMIP possessed a higher adsorption capacity and better selectivity for CAP and FF than the Fe 3 O 4 @mSiO 2 @NIP. The maximum static adsorption capacities of the Fe 3 O 4 @mSiO 2 @ DMIP for CAP and FF were 146.5 and 190.1mgg -1 , respectively, whereas those of the Fe 3 O 4 @mSiO 2 @NIP were 50.0 and 44.0mgg -1 , respectively. The obtained Fe 3 O 4 @mSiO 2 @DMIP particles were applied as a magnetic solid-phase extraction sorbent for the rapid and selective extraction of CAP, FF, and thiamphenicol (TAP) in water, chicken blood and egg samples. The method of magnetic molecularly imprinted solid-phase extraction (M-MISPE) coupled to high-performance liquid chromatography with UV detection (HPLC-UV) was conducted to detect CAP, FF, and TAP. The limits of detection for CAP, FF, and TAP were 0.16, 0.08, and 0.08μgkg -1 , respectively. The average recovery and precision values for the spiked water, chicken blood, and egg samples ranged from 88.3% to 99.1% and 2.7% to 7.9%, respectively. Given its rapidity, selectivity, and sensitivity, the developed method of M-MISPE coupled to HPLC-UV detection has good application prospects in environmental, biological, and food samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhang, Fuxiang X.; Jin, Ke; Zhao, Shijun; ...
2017-04-27
Defect energetics in structural materials has long been recognized to be affected by specific alloy compositions. Significantly enhanced radiation resistance has recently been observed in concentrated solid-solution alloys. However, the link between local structural disorder and modified defect dynamics in solid solutions remains unclear. To reveal the atomic-level lattice distortion, the local structures of Ni and Fe in Ni 1-xFe x (x=0.1, 0.2, 0.35 and 0.5) solid solution alloys were measured with extended X-ray absorption fine structure (EXAFS) technique. The lattice constant and the first-neighbor distances increase with the increase of Fe content in the solid solutions. EXAFS measurements havemore » revealed that the bond length of Fe with surrounding atoms is 0.01-0.03 larger than that of Ni in the alloy systems. Debye-Waller factor of the Fe-Fe bonds in all the systems is also slightly larger than that of the Ni-Ni bond. EXAFS fitting suggests that the local structural disorder is enhanced with the addition of Fe elements in the solid solution. The local bonding environments from ab initio calculation are in good agreement with the experimental results, which suggest that the Fe has a larger first-neighbor bonding distance than that of Ni, and thus Ni atom inside the Ni-Fe solid solution alloys undergoes compressive strain.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Fuxiang X.; Jin, Ke; Zhao, Shijun
Defect energetics in structural materials has long been recognized to be affected by specific alloy compositions. Significantly enhanced radiation resistance has recently been observed in concentrated solid-solution alloys. However, the link between local structural disorder and modified defect dynamics in solid solutions remains unclear. To reveal the atomic-level lattice distortion, the local structures of Ni and Fe in Ni 1-xFe x (x=0.1, 0.2, 0.35 and 0.5) solid solution alloys were measured with extended X-ray absorption fine structure (EXAFS) technique. The lattice constant and the first-neighbor distances increase with the increase of Fe content in the solid solutions. EXAFS measurements havemore » revealed that the bond length of Fe with surrounding atoms is 0.01-0.03 larger than that of Ni in the alloy systems. Debye-Waller factor of the Fe-Fe bonds in all the systems is also slightly larger than that of the Ni-Ni bond. EXAFS fitting suggests that the local structural disorder is enhanced with the addition of Fe elements in the solid solution. The local bonding environments from ab initio calculation are in good agreement with the experimental results, which suggest that the Fe has a larger first-neighbor bonding distance than that of Ni, and thus Ni atom inside the Ni-Fe solid solution alloys undergoes compressive strain.« less
NASA Astrophysics Data System (ADS)
Balind, K.; Barber, A.; Gélinas, Y.
2017-12-01
The biogeochemical cycle of sulfur is intimately linked with that of carbon, as well as with that of iron through the formation of iron-sulfur complexes. Iron-sulfide minerals such as mackinawite (FeS) and greigite (Fe3S4) form below the oxic/anoxic redox boundary in marine and lacustrine sediments and soils. Reactive iron species, abundant in surface sediments, can undergo reductive dissolution leading to the formation of soluble Fe(II) which can then precipitate in the form of iron sulfur species. While sedimentary iron-oxides have been thoroughly explored in terms of their ability to sorb and sequester organic carbon (OC) (Lalonde et al.; 2012), the role of FeS in the long-term preservation of OC remains undefined. In this study, we present depth profiles for carbon, iron, and sulfur in the aqueous-phase, along with data from sequential extractions of sulfur speciation in the solid-phase collected from sediment cores from the St Lawrence River and estuarine system, demonstrating the transition from fresh to saltwater sediments. Additionally, we present synthetic iron sulfur sorption experiments using both model and natural organic molecules in order to assess the importance of FeS in sedimentary carbon storage.
Technetium incorporation into goethite (α-FeOOH): An atomic-scale investigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Frances N.; Taylor, Christopher D.; Um, Wooyong
2015-11-17
During the processing of low-activity radioactive waste to generate solid waste forms (e.g., glass), technetium-99 (Tc) is of concern because of its volatility. A variety of materials are under consideration to capture Tc from waste streams, including the iron oxyhydroxide, goethite (α-FeOOH), which was experimentally shown to sequester Tc(IV). This material could ultimately be incorporated into glass or other low-temperature waste form matrices. However, questions remain regarding the incorporation mechanism for Tc(IV) in goethite, which has implications for predicting the long-term stability of Tc in waste forms under changing conditions. Here, quantum-mechanical calculations were used to evaluate the energy ofmore » five different charge-compensated Tc(IV) incorporation scenarios in goethite. The two most stable incorporation mechanisms involve direct substitution of Tc(IV) onto Fe(III) lattice sites and charge balancing either by removing one nearby H+ (i.e., within 5 Å), or by creating an Fe(III) vacancy when substituting 3 Tc(IV) for 4 Fe(III), with the former being preferred over the latter relative to gas-phase ions. When corrections for hydrated references phases are applied, the Fe(III)-vacancy mechanism becomes more energetically competitive. Calculated incorporation energies and optimized bond-lengths are presented. Proton movement is observed to satisfy under-coordinated bonds surrounding vacancies in the goethite structure.« less
Kumar, Nitesh; Kulkarni, Kaustubh; Behera, Laxmidhar; Verma, Vivek
2017-08-01
Maghemite (γ-Fe 2 O 3 ) nanoparticles for therapeutic applications are prepared from mild steel but the existing synthesis technique is very cumbersome. The entire process takes around 100 days with multiple steps which lack proper understanding. In the current work, maghemite nanoparticles of cuboidal and spheroidal morphologies were prepared from mild steel chips by a novel cost effective oil reduction technique for magnetically guided intravascular drug delivery. The technique developed in this work yields isometric sized γ-Fe 2 O 3 nanoparticles in 6 h with higher saturation magnetization as compared to the existing similar solid state synthesis route. Mass and heat flow kinetics during the heating and quenching steps were studied with the help of Finite element simulations. Qualitative and quantitative analysis of the γ-Fe 2 O 3 phase is performed with the help of x-ray diffraction, transmission electron microscope and x-ray photoelectron spectroscopy. Mechanism for the α-Fe 2 O 3 (haematite) to γ-Fe 2 O 3 (maghemite) phase evolution during the synthesis process is also investigated. Maghemite (γ-Fe 2 O 3 ) nanoparticles were prepared bya novel cost effective oil reduction technique as mentioned below in the figure. The raw materials included mild steel chips which is one of the most abundant engineering materials. These particles can be used as ideal nanocarriers for targeted drug delivery through the vascular network.
Precipitation pathways for ferrihydrite formation in acidic solutions
Zhu, Mengqiang; Khalid, Syed; Frandsen, Cathrine; ...
2015-10-03
In this study, iron oxides and oxyhydroxides form via Fe 3+ hydrolysis and polymerization in many aqueous environments, but the pathway from Fe 3+ monomers to oligomers and then to solid phase nuclei is unknown. In this work, using combined X-ray, UV–vis, and Mössbauer spectroscopic approaches, we were able to identify and quantify the long-time sought ferric speciation over time during ferric oxyhydroxide formation in partially-neutralized ferric nitrate solutions ([Fe 3+] = 0.2 M, 1.8 < pH < 3). Results demonstrate that Fe exists mainly as Fe(H 2O) 6 3+, μ-oxo aquo dimers and ferrihydrite, and that with time, themore » μ-oxo dimer decreases while the other two species increase in their concentrations. No larger Fe oligomers were detected. Given that the structure of the μ-oxo dimer is incompatible with those of all Fe oxides and oxyhydroxides, our results suggest that reconfiguration of the μ-oxo dimer structure occurs prior to further condensation leading up to the nucleation of ferrihydrite. The structural reconfiguration is likely the rate-limiting step involved in the nucleation process.« less
NASA Astrophysics Data System (ADS)
Wang, Dong; Chen, Z. Q.; Wang, D. D.; Gong, J.; Cao, C. Y.; Tang, Z.; Huang, L. R.
2010-11-01
High purity Fe 2O 3/ZnO nanocomposites were annealed in air at different temperatures between 100 and 1200 °C to get Fe-doped ZnO nanocrystals. The structure and grain size of the Fe 2O 3/ZnO nanocomposites were investigated by X-ray diffraction 2θ scans. Annealing induces an increase of the grain size from 25 to 195 nm and appearance of franklinite phase of ZnFe 2O 4. Positron annihilation measurements reveal large number of vacancy defects in the interface region of the Fe 2O 3/ZnO nanocomposites, and they are gradually recovered with increasing annealing temperature. After annealing at temperatures higher than 1000 °C, the number of vacancies decreases to the lower detection limit of positrons. Room temperature ferromagnetism can be observed in Fe-doped ZnO nanocrystals using physical properties measurement system. The ferromagnetism remains after annealing up to 1000 °C, suggesting that it is not related with the interfacial defects.
NASA Astrophysics Data System (ADS)
Lebaili, A.; Taouinet, M.; Nibou, D.; Lebaili, S.; Hodaj, F.
2017-07-01
The transition from solid-state bonding of the stainless steel 304L/Zircaloy-4 diffusion couple to a partial liquid-phase bonding is important for the bonding process at temperatures ranging from 950 to 1050 °C. In this study, the temperature at which a melting process occurs at the interface after 45 min of isothermal holdings is determined experimentally. This melting process leads to a drastic change in the thickness of the reaction products zone (RPZ) as well as on its microstructure. Diffusion couples were characterized by SEM-EDS, and quantitative chemical analyses of different phases are performed by EPMA. The RPZ consists of three layers: the (α-Fe-Cr) phase layer and two layers consisting of Zr(Fe,Cr)2 (ɛ), Zr2(Fe,Ni) and (α-Zr) phases. The thickness of these layers strongly depends on the holding temperature. The analysis allowed the description of the physicochemical phenomena occurring during isothermal holding as well as during cooling. The solidification paths are determined at 1000, 1020 and 1050 °C. Hardness tests are performed on the bonded samples in order to qualify the mechanical properties of different phases of the RPZ. This study leads to a better understanding of the complex phenomena intervening in the joining process which is very useful for applications in industrial scale.
NASA Astrophysics Data System (ADS)
Kim, Hyojung; Trinkle, Dallas R.
2017-06-01
We compute the structural energies, elastic constants, and stacking fault energies, and investigate the phase stability of monoborides with different compositions (" close=")X1-x 1Xx2)">X1-x 1Xx2B (X =Ti/Fe/Mo/Nb/V ) using density functional theory in order to search for Ti monoborides with improved mechanical properties. Our computed Young's modulus and Pugh's modulus ratio, which correlate with stiffness and toughness, agree well with predictions from Vegard's law with the exceptions of mixed monoborides containing Mo and Fe. Among all the monoborides considered in this paper, TiB has the smallest Pugh's ratio, which suggests that the addition of solutes can improve the toughness of a Ti matrix. When X1B and X2B are respectively most stable in the B27 and Bf structures, the mixed monoborides (X0.51X0.52)B , mixed (Ti0.5Mo0.5 )B and mixed (Ti0.5V0.5 )B have a higher Young's modulus, a higher Pugh's ratio, and a smaller stacking fault energy than TiB. We also construct phase diagrams and find large solubility limits for solid solutions containing Ti compared to those containing Fe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Linlin; Yu, Jian, E-mail: jyu@tongji.edu.cn
Robust insulating rhombohedral Bi{sub 1−x}La{sub x}Fe{sub 1−y}Ti{sub y}O{sub 3} multiferroic ceramics with 0.02 ≤ x ≤ 0.12 and 0.01 ≤ y ≤ 0.08 are prepared by a refined solid-state reaction electroceramic processing. Residual internal tensile stresses existed in the ceramics according to unit cell volume enlargement observed by X-ray diffraction and frequency redshifts of Raman modes related to Bi motion and oxygen octahedral rotation detected by Raman scattering measurements. Residual internal tensile stresses in the ceramics are believed to originate from structural phase transitions through an intermediate paraelectric rhombohedral phase with a negative thermal expansion coefficient in the transformation from paraelectric cubic to ferroelectric rhombohedral phases. All ofmore » the rhombohedral Bi{sub 1−x}La{sub x}Fe{sub 1−y}Ti{sub y}O{sub 3} ceramics exhibited a pinched polarization versus electric field hysteresis loop indicative of ferroelectric subswitching. We argue that the residual internal tensile stresses are responsible for such ferroelectric polarization subswitching behavior in the Bi{sub 1−x}La{sub x}Fe{sub 1−y}Ti{sub y}O{sub 3} ceramics.« less
Synthesis and photochemical properties of ferrotitanate In4FeTi3O13.5 with layer structure
NASA Astrophysics Data System (ADS)
Liu, Xuanxuan; Huang, Yanlin; Qin, Chuanxiang; Seo, Hyo Jin
2018-01-01
In4FeTi3O13.5 (InTi0.75Fe0.25O3.375) semiconductor was prepared via sol-gel citrate-complexation synthesis. This ferrotitanate derives from a solid-solution with InFeO3:In2Ti2O7 = 2:3. Phase formation and crystal structure of the sample were confirmed via XRD Rietveld refinement. Structural analyses indicated that there were two dimensional layers in the structure. The mutual repulsion in the layers induces great displacements of oxygen ions. The optical properties of In4FeTi3O13.5 nanoparticles were investigated. The direct allowed band gap (2.56 eV) shows a characteristic charge-transfer (CT) transitions of (O2p + Fe3d) → (Ti/Fe)3d in visible-light region. The band structure and energy positions were discussed. In4FeTi3O13.5 nanoparticles are demonstrated to be efficient for the photodegradation of Rhodamine B (RhB) under visible light irradiation (λ > 420 nm). The photocatalytic activities were attributed to the special layer structure and the catalytic mediators of multivalent Ti4+/3+ and Fe3+/2+ confirmed by XPS measurements.
Role of root exudates in dissolution of Cd containing iron oxides
NASA Astrophysics Data System (ADS)
Rosenfeld, C.; Martinez, C. E.
2011-12-01
Dissolved organic matter (DOM) in the rhizosphere contains organic acids, amino acids and more complex organic molecules that can substantially impact the solubility of soil solid phases. Plant roots and soil microorganisms contribute a large fraction of these organic compounds to DOM, potentially accelerating the transfer of solid phase elements into solution. In highly contaminated soils, heavy metals such as Cd are commonly found coprecipitated with common minerals (e.g. iron oxides). Introducing or changing vegetation on these contaminated soils may increase DOM levels in the soil pore fluids and thus enhance the biological and chemical weathering of soil minerals. Here, we investigate the role of root exudates on mineral dissolution and Cd mobility in contaminated soils. We hypothesize that plant exudates containing nitrogen and sulfur functional groups will dissolve Cd-containing mineral phases to a greater extent than exudates containing only oxygen functional groups, resulting in higher Cd concentrations in solution. Two different iron oxide mineral phases were utilized in a laboratory-scale model study system investigating the effects of low molecular weight, oxygen-, nitrogen-, and sulfur-containing organic compounds on mineral dissolution. Goethite (α-FeOOH) was synthesized in the laboratory with 0, 2.4, 5, and 100 theoretical mol% Cd, and franklinite (ZnFe2O4) was prepared with 0, 10, and 25 theoretical mol% Cd. Phase identity of all minerals was verified with X-ray diffraction (XRD). All minerals were reacted with 0.01 mM solutions containing one of four different organic ligands (oxalic acid, citric acid, histidine or cysteine) and aliquots of these solutions were sampled periodically over 40 days. Results from solution samples suggest that oxalic acid, citric acid, and histidine consistently increase mineral dissolution relative to the control (no organic compound present) while cysteine consistently inhibits dissolution relative to the control in all minerals. Increasing Cd substitution in the franklinite resulted in increased release of Fe and Zn to solution in the presence of these organic compounds, while increasing Cd substitution in the goethite generally limited Fe release to solution. In the case of cysteine, sulfur concentrations in solution decrease over time in the presence of Cd-containing minerals, indicating strong binding of the cysteine compound to the mineral surface, inhibiting Cd dissolution from the minerals. Our work indicates that amino acids present in biological soil exudates, in addition to organic acids, may have substantial impacts on iron oxide dissolution in soils, altering the availability of both bioessential (e.g., Fe and Zn) and non-essential, or potentially toxic, (e.g., Cd) elements.
Electronic structure of ruthenium-doped iron chalcogenides
NASA Astrophysics Data System (ADS)
Winiarski, M. J.; Samsel-Czekała, M.; Ciechan, A.
2014-12-01
The structural and electronic properties of hypothetical RuxFe1-xSe and RuxFe1-xTe systems have been investigated from first principles within the density functional theory (DFT). Reasonable values of lattice parameters and chalcogen atomic positions in the tetragonal unit cell of iron chalcogenides have been obtained with the use of norm-conserving pseudopotentials. The well known discrepancies between experimental data and DFT-calculated results for structural parameters of iron chalcogenides are related to the semicore atomic states which were frozen in the used here approach. Such an approach yields valid results of the electronic structures of the investigated compounds. The Ru-based chalcogenides exhibit the same topology of the Fermi surface (FS) as that of FeSe, differing only in subtle FS nesting features. Our calculations predict that the ground states of RuSe and RuTe are nonmagnetic, whereas those of the solid solutions RuxFe1-xSe and RuxFe1-xTe become the single- and double-stripe antiferromagnetic, respectively. However, the calculated stabilization energy values are comparable for each system. The phase transitions between these magnetic arrangements may be induced by slight changes of the chalcogen atom positions and the lattice parameters a in the unit cell of iron selenides and tellurides. Since the superconductivity in iron chalcogenides is believed to be mediated by the spin fluctuations in single-stripe magnetic phase, the RuxFe1-xSe and RuxFe1-xTe systems are good candidates for new superconducting iron-based materials.
NASA Astrophysics Data System (ADS)
Kumar, Ajay; Jayakumar, O. D.; Bazzi, Khadije; Nazri, Gholam-Abbas; Naik, Vaman M.; Naik, Ratna
2015-03-01
Lithium iron silicate (Li2FeSiO4) has the potential as cathode for Li ion batteries due to its high theoretical capacity (~ 330 mAh/g) and improved safety. The application of Li2FeSiO4 as cathode material has been challenged by its poor electronic conductivity and slow lithium ion diffusion in the solid phase. In order to solve these problems, we have synthesized mesoporous Li2FeSiO4/C composites by sol-gel method using the tri-block copolymer (P123) as carbon source. The phase purity and morphology of the composite materials were characterized by x-ray diffraction, SEM and TEM. The XRD pattern confirmed the formation of ~ 12 nm size Li2FeSiO4 crystallites in composites annealed at 600 °C for 6 h under argon atmosphere. The electrochemical properties are measured using the composite material as positive electrode in a standard coin cell configuration with lithium as the active anode and the cells were tested using AC impedance spectroscopy, cyclic voltammetry, and galvanostatic charge/discharge cycling. The Li2FeSiO4/C composites showed a discharge capacity of ~ 240 mAh/g at a rate of C/30 at room temperature. The effect of different annealing temperature and synthesis time on the electrochemical performance of Li2FeSiO4/C will be presented.
Calculation of Electronic Structure and Field Induced Magnetic Collapse in Ferroic Materials
NASA Astrophysics Data System (ADS)
Entel, Peter; Arróyave, Raymundo; Singh, Navdeep; Sokolovskiy, Vladimir V.; Buchelnikov, Vasiliy D.
We have performed ab inito electronic structure calculations and Monte Carlo simulations of FeRh, Mn3GaC and Heusler intermetallics alloys such as Ni-Co-Cr-Mn-(Ga, In, Sn) which are of interest for solid refrigeration and energy systems, an emerging technology involving such solid-solid systems. The calculations reveal that the important magnetic phase diagrams of these alloys which show the magnetic collapse and allow predictions of the related magnetocaloric effect (MCE) which they exhibit at finite temperatures, can be obtained by ab inito and Monte Carlo computations in qualitatively good agreement with experimental data. This is a one-step procedure from theory to alloy design of ferroic functional devices.
NASA Astrophysics Data System (ADS)
Lin, J.; Fei, Y.; Sturhahn, W.; Zhao, J.; Mao, H.; Hemley, R.
2004-05-01
Iron-nickel is the most abundant constituent of the Earth's core. The amount of Ni in the core is about 5.5 wt%. Geophysical and cosmochemical studies suggest that the Earth's outer core also contains approximately 10% of light element(s) and a certain amount of light element(s) may be present in the inner core. Si and S are believed to be alloying light elements in the iron-rich planetary cores such as the Earth and Mars. Therefore, understanding the alloying effects of Ni, Si, and S on the phase diagram and physical properties of Fe under core conditions is crucial for geophysical and geochemical models of planetary interiors. The addition of Ni and Si does not appreciably change the compressibility of hcp-Fe under high pressures. Studies of the phase relations of Fe and Fe-Ni alloys indicate that Fe with up to 10 wt% Ni is likely to be in the hcp structure under inner core conditions. On the other hand, adding Si into Fe strongly stabilizes the bcc structure to much higher pressures and temperatures (Lin et al., 2002). We have also studied the sound velocities and magnetic properties of Fe0.92Ni0.08, Fe0.85Si0.15, and Fe3S alloys with nuclear resonant inelastic x-ray scattering and nuclear forward scattering up to 106 GPa, 70 GPa, and 57 GPa, respectively. The sound velocities of the alloys are obtained from the measured partial phonon density of states for 57Fe incorporated in the alloys. Addition of Ni slightly decreases the VP and VS of Fe under high pressures (Lin et al., 2003). Si or S alloyed with Fe increases the VP and VS under high pressures, which provides a better match to seismological data of the Earth's core. We note that the increase in the VP and VS of Fe0.85Si0.15 and Fe3S is mainly contributed from the density decrease of adding Si and S in iron. Time spectra of the nuclear forward scattering reveal that the most iron rich sulfide, Fe3S, undergoes a magnetic to non-magnetic transition at approximately 18 GPa from a low-pressure magnetically ordered state to a high-pressure non-magnetic ordered state. The magnetic transition significantly affects the elastic, thermodynamic, and vibrational properties of Fe3S. It is conceivable that the magnetic collapse of Fe3S may also affect the binary phase diagram of the iron-sulfur system, changing the solubility of sulfur in iron under higher pressures. Study of the non-magnetic phase is more relevant to understand the properties of the Fe3S under planetary core conditions where high pressures and high temperature ensure the non-magnetic ordering state, affecting the interpretation of the amount and properties of sulfur being in the planetary cores. If the Martian core is in the solid state containing 14.2 wt% sulfur, it is likely that the non-magnetic Fe3S phase is a dominant component and that our measured sound velocities of Fe3S can be used to understand the velocity profile in the Martian core.
Manipulation of σ{sub y}/κ ratio in single phase FCC solid-solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, J. I.; Oh, H. S.; Park, E. S., E-mail: espark@snu.ac.kr
2016-08-08
We investigate how to manipulate the ratio between thermal conductivity (κ) and yield strength (σ{sub y}) in face-centered cubic solid-solutions by varying the number of principal elements (NPEs) and temperature. The influence of NPEs on κ and its electronic (κ{sub e}) and lattice (κ{sub l}) contribution is evaluated using the Wiedemann–Franz law. Positive Δκ/ΔT and the highest κ{sub l}/κ{sub e} ratio in high-entropy alloys (HEAs) can be understood by considering severe lattice distortion and compositional complexity. Among the solid-solutions from Ni to quinary alloys, the NiCoFeCrMn HEA exhibits the lowest κ. However, σ{sub y} increases with increasing NPEs and decreasingmore » temperature. Thus, the NiCoFeCrMn HEA exhibits the highest σ{sub y}/κ ratio, higher than those of representative cryogenic alloys, which can be distinctively increased with a decrease in temperature. These results would give us a guideline on how to manipulate properties using HEA design concept in order to develop idealized cryogenic materials.« less
The Search for Interstellar Sulfide Grains
NASA Technical Reports Server (NTRS)
Keller, Lindsay P.; Messenger, Scott
2010-01-01
The lifecycle of sulfur in the galaxy is poorly understood. Fe-sulfide grains are abundant in early solar system materials (e.g. meteorites and comets) and S is highly depleted from the gas phase in cold, dense molecular cloud environments. In stark contrast, sulfur is essentially undepleted from the gas phase in the diffuse interstellar medium, indicating that little sulfur is incorporated into solid grains in this environment. It is widely believed that sulfur is not a component of interstellar dust grains. This is a rather puzzling observation unless Fe-sulfides are not produced in significant quantities in stellar outflows, or their lifetime in the ISM is very short due to rapid destruction. Fe sulfide grains are ubiquitous in cometary samples where they are the dominant host of sulfur. The Fe-sulfides (primarily pyrrhotite; Fe(1-x)S) are common, both as discrete 0.5-10 micron-sized grains and as fine (5-10 nm) nanophase inclusions within amorphous silicate grains. Cometary dust particles contain high abundances of well-preserved presolar silicates and organic matter and we have suggested that they should contain presolar sulfides as well. This hypothesis is supported by the observation of abundant Fe-sulfides grains in dust around pre- and post-main sequence stars inferred from astronomical spectra showing a broad 23 micron IR feature due to FeS. Fe-sulfide grains also occur as inclusions in bona fide circumstellar amorphous silicate grains and as inclusions within deuterium-rich organic matter in cometary dust samples. Our irradiation experiments show that FeS is far more resistant to radiation damage than silicates. Consequently, we expect that Fe sulfide stardust should be as abundant as silicate stardust in solar system materials.
Room temperature structural and dielectric studies of Pb(Fe0.585Nb0.25W0.165)O3 solid solution
NASA Astrophysics Data System (ADS)
Nagaraja, T.; Dadami, Sunanda T.; Angadi, Basavaraj
2018-05-01
The perovskite A(B'B''B''')O3 structure Pb(Fe0.585Nb0.25W0.165)O3 (PFNW) multiferroic material was synthesized by single step solid state reaction method. The single phase was achieved at low temperature with optimized synthesis parameters as calcination (700°C/2hr) and sintering (800 °C /3hr). Single phase was confirmed by room temperature (RT) X-ray diffraction (XRD). The scanning electron microscopy (SEM) shows the uniform distribution of grains throughout the surface of PFNW and the energy dispersive X-ray spectroscopy (EDX) confirms the exact elemental composition as that of the experimental. Fourier transform infrared spectroscopy (FTIR) exhibits two absorption bands at 602 cm-1 and 1385 cm-1 corresponds to the bending and stretching vibrations of metal oxides. RT dielectric studies (dielectric constant, tanδ, AC conductivity) exhibits maximum values at lower frequency region and decreases as the frequency increases. Thesingle semicircular arc in RT impedance spectra (Nyquist plot)indicatesthe contribution to the conductivity is from grains only. Hence PFNW is a potential candidate for near room temperature applications.
NASA Astrophysics Data System (ADS)
Dadami, Sunanda T.; Matteppanvar, Shidaling; Shivaraja, I.; Rayaprol, Sudhindra; Deshpande, S. K.; Angadi, Basavaraj
2018-04-01
The Pb0.7Bi0.3Fe0.65Nb0.35O3 (PBFNO) multiferroic solid solution was synthesized by using single step solid state reaction method. Single phase formation was confirmed through room temperature (RT) X Ray Diffraction (XRD) and Neutron Diffraction (ND). Rietveld refinement was used to perform the structural analysis using FullProf Suite program. RT XRD and ND patterns well fitted with monoclinic structure (Cm space group) and cell parameters from the ND data are found to be a = 5.6474(4) Å, b = 5.6415(3) Å, c = 3.9992(3) Å and β = 89.95(2)°. ND data at RT exhibits G-type antiferromagnetic structure. The electrical properties (impedance and modulus) of PBFNO were studied as a function of frequency (100 Hz - 5 MHz) and temperature (133 K - 293 K) by Impedance spectroscopy technique. Impedance and modulus spectroscopy studies confirm the contribution to the conductivity is from grains only and the relaxation is of non-Debye type. The PBFNO sample exhibits negative temperature coefficient of resistance (NTCR) behaviour. PBFNO is found be a potential candidate for RT applications.
Rahimi, Afshin; Zanjanchi, Mohammad Ali; Bakhtiari, Sadjad; Dehsaraei, Mohammad
2018-10-01
An efficient method was applied for extraction of caffeine in food samples. Three-dimensional graphene-Fe 3 O 4 (3D-G-Fe 3 O 4 ) nanoparticles was successfully synthesized and used as adsorbent in magnetic solid phase extraction (MSPE) step. The properties of synthesized adsorbent were characterized by fourier-transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), vibrating sample magnetometer (VSM), X-ray diffraction (XRD), Raman spectroscopy, Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) methods. The influence of main parameters of extraction procedure such as ultrasound parameter, amount of nanoparticles, pH, salt concentration and desorption condition were investigated and optimized. Under the optimized experimental conditions, the figure of merit results showed excellent linear dynamic range (LDR) of 0.5-500 µg mL -1 , with determination coefficient (R 2 ) higher than 0.996 and limit of detection (LOD) of 0.1 µg mL -1 . Intra- and inter-day relative standard deviations (RSDs) were less than 5.9 and 7.1%, respectively. The method was successfully applied for determination of caffeine in different food samples. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Costa, Gustavo; Jacobson, Nathan
2015-01-01
The thermodynamic properties of vapor and condensed phases of silicates are crucial in many fields of science. These quantities address fundamental questions on the formation, stability, transformation, and physical properties of silicate minerals and silicate coating compositions. Here the thermodynamic activities of silica and other species in solid solution have been measured by the analysis of the corresponding high temperature vapors using Knudsen Effusion Mass Spectrometry (KEMS). In first set of experiments KEMS has been used to examine the volatility sequence of species (Fe, SiO, Mg, O2 and O) present in the vapor phase during heating of fosterite-rich olivine (Fo93Fa7) up to 2400 C and to measure the Fe, SiO and Mg activities in its solid solution. The data of fosterite-rich olivine are essential for thermochemical equilibrium models to predict the atmospheric and surface composition of hot, rocky exoplanets (Lava Planets). In the second set of experiments the measured thermodynamic activities of the silica in Y2O3-SiO2 and Yb2O3-SiO2 systems are used to assess their reactivity and degradation recession as environmental barrier coatings (EBCs) in combustion environments (e.g. non-moveable parts of gas turbine engine).
Zheng, Zhenjia; Zhao, Xian-En; Zhu, Shuyun; Dang, Jun; Qiao, Xuguang; Qiu, Zhichang; Tao, Yanduo
2018-04-18
Simultaneous detection of oleanolic acid and ursolic acid in rat blood by in vivo microdialysis can provide important pharmacokinetics information. Microwave-assisted derivatization coupled with magnetic dispersive solid phase extraction was established for the determination of oleanolic acid and ursolic acid by liquid chromatography tandem mass spectrometry. 2'-Carbonyl-piperazine rhodamine B was first designed and synthesized as the derivatization reagent, which was easily adsorbed onto the surface of Fe 3 O 4 /graphene oxide. Simultaneous derivatization and extraction of oleanolic acid and ursolic acid were performed on Fe 3 O 4 /graphene oxide. The permanent positive charge of the derivatization reagent significantly improved the ionization efficiencies. The limits of detection were 0.025 and 0.020 ng/mL for oleanolic acid and ursolic acid, respectively. The validated method was shown to be promising for sensitive, accurate, and simultaneous determination of oleanolic acid and ursolic acid. It was used for their pharmacokinetics study in rat blood after oral administration of Arctiumlappa L. root extract.
Sun, Yunyun; Tian, Jing; Wang, Lu; Yan, Hongyuan; Qiao, Fengxia; Qiao, Xiaoqiang
2015-11-27
A simple and time-saving one pot synthesis of magnetic graphene/carbon nanotube composites (M-G/CNTs) was developed that could avoid the tedious drying process of graphite oxide, and G/CNTs were modified by Fe3O4 nanoparticles in the reduction procedure. It contributed to a shorten duration of the synthesis process of M-G/CNTs. The obtained M-G/CNTs were characterized and the results indicated that CNTs and Fe3O4 nanoparticles were served as spacer distributing to the layers of graphene, which was beneficial for enlarging surface area and improving extraction efficiency. Moreover, M-G/CNTs showed good magnetic property and outstanding thermal stability. Then M-G/CNTs were applied as adsorbent of magnetic dispersive solid-phase extraction for rapid extraction and determination of oxytetracycline in sewage water. Under the optimum conditions, good linearity was obtained in the range of 20-800ngmL(-1) and the recoveries were ranged from 95.5% to 112.5% with relative standard deviations less than 5.8%. Copyright © 2015 Elsevier B.V. All rights reserved.
Hoque, Raza Rafiqul; Goswami, K G; Kusre, B C; Sarma, K P
2011-06-01
Heavy metal (Fe, Mn, Zn, Cu, Ni, Pb, and Cd) concentrations and their chemical speciations were investigated for the first time in bed sediments of Bharali River, a major tributary of the Brahmaputra River of the Eastern Himalayas. Levels of Fe, Mn, Pb, and Cd in the bed sediments were much below the average Indian rivers; however, Cu and Zn exhibit levels on the higher side. Enrichment factors (EF) of all metals was greater than 1 and a higher trend of EF was seen in the abandoned channel for most metals. Pb showed maximum EF of 32 at site near an urban center. The geoaccumulation indices indicate that Bharali river is moderately polluted. The metals speciations, done by a sequential extraction regime, show that Cd, Cu, and Pb exhibit considerable presence in the exchangeable and carbonate fraction, thereby showing higher mobility and bioavailability. On the other hand, Ni, Mn, and Fe exhibit greater presence in the residual fraction and Zn was dominant in the Fe-Mn oxide phase. Inter-species correlations at three sites did not show similar trends for metal pairs indicating potential variations in the contributing sources.
NASA Astrophysics Data System (ADS)
Tang, Jin; Liu, Xiansong; Mehmood Ur Rehman, Khalid; Li, Dan; Li, Mingling; Yang, Yujie
2018-04-01
We report a successful preparation of Ba1-xLaxFe22+Fe163+O27 (x = 0.00-0.10) W-type hexagonal ferrites by standard ceramic method in a reduced oxygen atmosphere. In this work, the effect of the substitution La3+ rare-earth ions for Ba2+ ions on the structural and magnetic properties of the prepared samples have been studied. The phase identification of magnetic powders was performed by X-ray diffraction. The results of XRD show that the single phase was observed in the W-type ferrites with different La content. The SEM micrographs showed that the ferrites have formed the hexagonal structure. The magnetic properties of the samples were metric by a vibrating sample magnetometer. The coercivity (Hc) of the particles decreases with the increase of La content(x), while the saturation magnetization (Ms) of the particles first increases with x from 0 to 0.05, and then begins to decrease when x continues to increase. The monotonic dependence of the magnetic anisotropy field Ha and coercivity Hc on the La3+ doping amount is found to be mainly dominated by the competition between Ms and Keff.
NASA Astrophysics Data System (ADS)
Robinson, Peter; McEnroe, S. A.; Fabian, K.; Harrison, R. J.; Thomas, C. I.; Mukai, H.
2014-03-01
Magnetic experiments, a Monte Carlo simulation and transmission electron microscopy observations combine to confirm variable chemical phase separation during quench and annealing of metastable ferri-ilmenite compositions, caused by inhomogeneous Fe-Ti ordering and anti-ordering. Separation begins near interfaces between growing ordered and anti-ordered domains, the latter becoming progressively enriched in ilmenite component, moving the Ti-impoverished hematite component into Fe-enriched diffusion waves near the interfaces. Even when disordered regions are eliminated, Fe-enriched waves persist and enlarge on anti-phase boundaries between growing and shrinking ordered and anti-ordered domains. Magnetic results and conceptual models show that magnetic ordering with falling T initiates in the Fe-enriched wave crests. Although representing only a tiny fraction of material, identified at highest Ts on a field-cooling curve, they control the `pre-destiny' of progressive magnetization at lower T. They can provide a positive magnetic moment in a minority of ordered ferrimagnetic material, which, by exchange coupling, then creates a self-reversed negative moment in the remaining majority. Four Ts or T ranges are recognized on typical field-cooling curves: TPD is the T range of `pre-destination'; TC is the predominant Curie T where major positive magnetization increases sharply; TMAX is where magnetization reaches a positive maximum, beyond which it is outweighed by self-reversed magnetization and TZM is the T where total magnetization passes zero. Disposition of these Ts on cooling curves indicate the fine structure of self-reversed thermoremanent magnetization. These results confirm much earlier suspicions that the `x-phase' responsible for self-reversed magnetization resides in Fe-enriched phase boundaries.
Klitzke, Sondra; Schroeder, Jendrik; Selinka, Hans-Christoph; Szewzyk, Regine; Chorus, Ingrid
2015-06-15
Redox conditions are known to affect the fate of viruses in porous media. Several studies report the relevance of colloid-facilitated virus transport in the subsurface, but detailed studies on the effect of anoxic conditions on virus retention in natural sediments are still missing. Therefore, we investigated the fate of viruses in natural flood plain sediments with different sesquioxide contents under anoxic conditions by considering sorption to the solid phase, sorption to mobilized colloids, and inactivation in the aqueous phase. Batch experiments were conducted under oxic and anoxic conditions at pH values between 5.1 and 7.6, using bacteriophages MS2 and PhiX174 as model viruses. In addition to free and colloid-associated bacteriophages, dissolved and colloidal concentrations of Fe, Al and organic C as well as dissolved Ca were determined. Results showed that regardless of redox conditions, bacteriophages did not adsorb to mobilized colloids, even under favourable charge conditions. Under anoxic conditions, attenuation of bacteriophages was dominated by sorption over inactivation, with MS2 showing a higher degree of sorption than PhiX174. Inactivation in water was low under anoxic conditions for both bacteriophages with about one log10 decrease in concentration during 16 h. Increased Fe/Al concentrations and a low organic carbon content of the sediment led to enhanced bacteriophage removal under anoxic conditions. However, even in the presence of sufficient Fe/A-(hydr)oxides on the solid phase, bacteriophage sorption was low. We presume that organic matter may limit the potential retention of sesquioxides in anoxic sediments and should thus be considered for the risk assessment of virus breakthrough in the subsurface. Copyright © 2015 Elsevier B.V. All rights reserved.