Sample records for fe zn ni

  1. Novel multifunctional NiFe2O4/ZnO hybrids for dye removal by adsorption, photocatalysis and magnetic separation

    NASA Astrophysics Data System (ADS)

    Zhu, Hua-Yue; Jiang, Ru; Fu, Yong-Qian; Li, Rong-Rong; Yao, Jun; Jiang, Sheng-Tao

    2016-04-01

    Novel multifunctional NiFe2O4/ZnO hybrids were prepared by a hydrothermal method and their physicochemical properties were characterized by XRD, SEM, TEM, TGA, VSM, BET and UV-vis DRS. The adsorption and photocatalytic performance of NiFe2O4/ZnO hybrids were systematically investigated using congo red as a model contaminant. With the introduction of NiFe2O4, NiFe2O4/ZnO hybrids can absorb the whole light from 300 nm to 700 nm. The adsorption capacity (221.73 mg g-1) of NiFe2O4/ZnO hybrids is higher than those of NiFe2O4, ZnO and mechanically mixed NiFe2O4/ZnO hybrids. The removal of congo red solution (20 mg L-1) by NiFe2O4/ZnO hybrids was about 94.55% under simulated solar light irradiation for 10 min. rad OH and h+ play important roles in the decolorization of congo red solution by NiFe2O4/ZnO hybrids under simulated solar light irradiation. The decolorization efficiency of congo red solution is 97.23% for the fifth time by NiFe2O4/ZnO hybrids under simulate solar light irradiation, indicating the high photostability and durability. NO3- and Cl- anions which are ubiquitous components in dye-containing wastewater have negligible influence on the effectiveness of NiFe2O4/ZnO hybrids. Moreover, the magnetic NiFe2O4/ZnO hybrids can be easily separated from the reacted solution by an external magnet.

  2. Structural and magnetic properties of Ni-Zn and Ni-Zn-Co ferrites

    NASA Astrophysics Data System (ADS)

    Knyazev, A. V.; Zakharchuk, I.; Lähderanta, E.; Baidakov, K. V.; Knyazeva, S. S.; Ladenkov, I. V.

    2017-08-01

    Ni-Zn and Ni-Zn-Co ferrite powders with nominal compositions Ni0.5Zn0.5Fe2O4 and Ni0.5Zn0.3Co0.2Fe2O4 were prepared by the solid-state reaction synthesis with periodic regrinding during the calcination at 1073 K. The structure of Ni0.5Zn0.5Fe2O4 and Ni0.5Zn0.3Co0.2Fe2O4 was refined assuming space group F d-3m. Scanning electron microscopy revealed the average sizes of the crystalline ferrite particles are 130-630 nm for Ni0.5Zn0.5Fe2O4 and 140-350 nm for Ni0.5Zn0.3Co0.2Fe2O4. The room temperature saturation magnetizations are 59.7 emu/g for Ni0.5Zn0.5Fe2O4 and 57.1 emu/g for Ni0.5Zn0.3Co0.2Fe2O4. The coercivity of the samples is found to be much larger than that of bulk ferrites and increases with Co introduction. The Curie temperature tends to increase upon Zn substitution by Co, as well. The temperature dependences of magnetization measured using zero-field cooled and field cooled protocols exhibit large spin frustration and spin-glass-like behavior.

  3. The effect of Fe2NiO4 and Fe4NiO4Zn magnetic nanoparticles on anaerobic digestion activity.

    PubMed

    Chen, Jian Lin; Steele, Terry W J; Stuckey, David C

    2018-06-11

    Two types of magnetic nanoparticles (MNPs), i.e. Ni ferrite nanoparticles (Fe 2 NiO 4 ) and Ni Zn ferrite nanoparticles (Fe 4 NiO 4 Zn) containing the trace metals Ni and Fe, were added to the anaerobic digestion of synthetic municipal wastewater at concentrations between 1 and 100 mg Ni L -1 in order to compare their effects on biogas (methane) production and sludge activity. Using the production of methane over time as a measure, the assays revealed that anaerobic digestion was stimulated by the addition of 100 mg Ni L -1 in Fe 2 NiO 4 NPs, while it was inhibited by the addition of 1-100 mg Ni L -1 in Fe 4 NiO 4 Zn NPs. Especially at 100 mg Ni L -1 , Fe 4 NiO 4 Zn NPs resulted in a total inhibition of anaerobic digestion. The metabolic activity of the anaerobic sludge was tested using the resazurin reduction assay, and the assay clearly revealed the negative effect of Fe 4 NiO 4 Zn NPs and the positive effect of Fe 2 NiO 4 NPs. Re-feeding fresh synthetic medium reactivated the NPs added to the anaerobic sludge, except for the experiment with 100 mg Ni L -1 addition of Fe 4 NiO 4 Zn NPs. The findings in this present study indicate a possible new strategy for NPs design to enhance anaerobic digestion. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  4. Effect of 120 MeV 28Si9+ ion irradiation on structural and magnetic properties of NiFe2O4 and Ni0.5Zn0.5Fe2O4

    NASA Astrophysics Data System (ADS)

    Sharma, R.; Raghuvanshi, S.; Satalkar, M.; Kane, S. N.; Tatarchuk, T. R.; Mazaleyrat, F.

    2018-05-01

    NiFe2O4, Ni0.5Zn0.5Fe2O4 samples were synthesized using sol-gel auto combustion method, and irradiated by using 120 MeV 28Si9+ ion with ion fluence of 1×1012 ions/cm2. Characterization of pristine, irradiated samples were done using X-Ray Diffraction (XRD), Field Emission Scanning Microscopy (FE-SEM), Energy Dispersive X-ray Analysis (EDAX) and Vibrating Sample Magnetometer (VSM). XRD validates the single phase nature of pristine, irradiated Ni- Zn nano ferrite except for Ni ferrite (pristine, irradiated) where secondary phases of α-Fe2O3 and Ni is observed. FE- SEM images of pristine Ni, Ni-Zn ferrite show inhomogeneous nano-range particle size distribution. Presence of diamagnetic ion (Zn2+) in NiFe2O4 increases oxygen positional parameter (u 4¯3m ), experimental, theoretical saturation magnetization (Msexp., Msth.), while decreases the grain size (Ds) and coercivity (Hc). With irradiation Msexp., Msth. increases but not much change are observed in Hc. New antistructure modeling for the pristine, irradiated Ni and Ni-Zn ferrite samples was used for describing the surface active centers.

  5. Improvement of the magnetic moment of NiZn ferrites induced by substitution of Nd3+ ions for Fe3+ ions

    NASA Astrophysics Data System (ADS)

    Wu, Xuehang; Chen, Wen; Wu, Wenwei; Wu, Juan; Wang, Qing

    2018-05-01

    Four types of Ni-Zn based ferrites materials having the general formula Ni0.5Zn0.5NdxFe2-xO4 (0.0 ≤ x ≤ 0.12) have been successfully synthesized by calcining oxalates in air and the influence of Nd content on the structure and magnetic properties of Ni0.5Zn0.5NdxFe2-xO4 is studied. X-ray diffraction examination confirms that a high-crystallized Ni0.5Zn0.5NdxFe2-xO4 with cubic spinel structure is obtained when the precursor is calcined at 1000 °C in air for 2 h. The substitutions of Nd3+ ions for partial Fe3+ ions do not change the spinel crystalline structure of MFe2O4. The incorporation of Nd3+ ions in place of Fe3+ ions in Ni-Zn ferrites increases the average crystallite size. Specific saturation magnetization decreases with increase in Nd content. This is because Nd3+ ions with smaller magnetic moment preferentially fill the octahedral sites. In addition, antiferromagnetic FeNdO3 increases with increase in Nd content. In this study, Ni0.5Zn0.5Nd0.08Fe1.92O4, calcined at 1000 °C, exhibits the highest magnetic moment (4.2954 μB) and the lowest coercivity (28.82 Oe).

  6. Effect of temperature on the electrical properties of Zn0.95M0.05O (M = Zn, Fe, Ni)

    NASA Astrophysics Data System (ADS)

    Sedky, A.; Mohamed, S. B.

    2014-01-01

    We report here the structural and electrical properties of Zn0.95M0.05O ceramic varistors, M = Zn, Ni and Fe. The samples were tested for phase purity and structural morphology by using X-Ray diffraction XRD and scanning electron microscope SEM techniques. The current-voltage characteristics J-E were obtained by dc electrical measurements in the temperature range of 300-500 K. Addition of doping did not influence the hexagonal wurtzite structure of ZnO ceramics. Furthermore, the lattice parameters ratio c/a for hexagonal distortion and the length of the bond parallel to the c axis, u were nearly unaffected. The average grain size was decreased from 1.57 μm for ZnO to 1.19 μm for Ni sample and to 1.22 μm for Fe sample. The breakdown field EB was decreased as the temperature increased, in the following order: Fe > Zn > Ni. The nonlinear region was clearly observed for all samples as the temperature increased up to 400 K and completely disappeared with further increase of temperature up to 500 K. The values of nonlinear coefficient, a were between 1.16 and 42 for all samples, in the following order: Fe > Zn > Ni. Moreover, the electrical conductivity s was gradually increased as the temperature increased up to 500 K, in the following order: Ni > Zn > Fe. On the other hand, the activation energies were 0.194 eV, 0.136 and 0.223 eV for all samples, in the following order: Fe, Zn and Ni. These results have been discussed in terms of valence states, magnetic moment and thermo-ionic emission, which were produced by the doping, and controlling the potential barrier of ZnO.

  7. Periodic table of 3d-metal dimers and their ions.

    PubMed

    Gutsev, G L; Mochena, M D; Jena, P; Bauschlicher, C W; Partridge, H

    2004-10-08

    The ground states of the mixed 3d-metal dimers TiV, TiCr, TiMn, TiFe, TiCo, TiNi, TiCu, TiZn, VCr, VMn, VFe, VCo, VNi, VCu, VZn, CrMn, CrFe, CrCo, CrNi, CrCu, CrZn, MnFe, MnCo, MnNi, MnCu, MnZn, FeCo, FeNi, FeCu, FeZn, CoNi, CoCu, CoZn, NiCu, NiZn, and CuZn along with their singly negatively and positively charged ions are assigned based on the results of computations using density functional theory with generalized gradient approximation for the exchange-correlation functional. Except for TiCo and CrMn, our assignment agrees with experiment. Computed spectroscopic constants (r(e),omega(e),D(o)) are in fair agreement with experiment. The ground-state spin multiplicities of all the ions are found to differ from the spin multiplicities of the corresponding neutral parents by +/-1. Except for TiV, MnFe, and MnCu, the number of unpaired electrons, N, in a neutral ground-state dimer is either N(1)+N(2) or mid R:N(1)-N(2)mid R:, where N(1) and N(2) are the numbers of unpaired 3d electrons in the 3d(n)4s(1) occupation of the constituent atoms. Combining the present and previous results obtained at the same level of theory for homonuclear 3d-metal and ScX (X=Ti-Zn) dimers allows one to construct "periodic" tables of all 3d-metal dimers along with their singly charged ions.

  8. Induction of Nickel Accumulation in Response to Zinc Deficiency in Arabidopsis thaliana

    PubMed Central

    Nishida, Sho; Kato, Aki; Tsuzuki, Chisato; Yoshida, Junko; Mizuno, Takafumi

    2015-01-01

    Excessive accumulation of nickel (Ni) can be toxic to plants. In Arabidopsis thaliana, the Fe2+ transporter, iron (Fe)-regulated transporter1 (IRT1), mediates Fe uptake and also implicates in Ni2+ uptake at roots; however, the underlying mechanism of Ni2+ uptake and accumulation remains unelucidated. In the present study, we found that zinc (Zn) deficient conditions resulted in increased accumulation of Ni in plants, particularly in roots, in A. thaliana. In order to elucidate the underlying mechanisms of Ni uptake correlating zinc condition, we traced 63Ni isotope in response to Zn and found that (i) Zn deficiency induces short-term Ni2+ absorption and (ii) Zn2+ inhibits Ni2+ uptake, suggesting competitive uptake between Ni and Zn. Furthermore, the Zrt/Irt-like protein 3 (ZIP3)-defective mutant with an elevated Zn-deficient response exhibited higher Ni accumulation than the wild type, further supporting that the response to Zn deficiency induces Ni accumulation. Previously, expression profile study demonstrated that IRT1 expression is not inducible by Zn deficiency. In the present study, we found increased Ni accumulation in IRT1-null mutant under Zn deficiency in agar culture. These suggest that Zn deficiency induces Ni accumulation in an IRT1-independen manner. The present study revealed that Ni accumulation is inducible in response to Zn deficiency, which may be attributable to a Zn uptake transporter induced by Zn deficiency. PMID:25923075

  9. Cation distribution in NiZn-ferrite films determined using x-ray absorption fine structure

    NASA Astrophysics Data System (ADS)

    Harris, V. G.; Koon, N. C.; Williams, C. M.; Zhang, Q.; Abe, M.

    1996-04-01

    We have applied extended x-ray absorption fine structure (EXAFS) spectroscopy to study the cation distribution in a series of spin-sprayed NiZn-ferrite films, Ni0.15ZnyFe2.85-yO4 (y=0.16, 0.23, 0.40, 0.60). The Ni, Zn, and Fe EXAFS were collected from each sample and analyzed to Fourier transforms. Samples of Ni-ferrite, Zn-ferrite, and magnetite were similarly studied as empirical standards. These standards, together with EXAFS data generated from the theoretical EXAFS FEFF codes, allowed the correlation of features in the Fourier transforms with specific lattice sites in the spinel unit cell. We find that the Ni ions reside mostly on the octahedral (B) sites whereas the Zn ions are predominantly on the tetrahedral (A) sites. The Fe ions reside on both A and B sites in a ratio determined by the ratio of Zn/Fe. The addition of Zn displaces a larger fraction of Fe cations onto the B sites serving to increase the net magnetization. The fraction of A site Ni ions is measured to increase peaking at ≊25% for y=0.6. At higher Zn concentrations (y≥0.5) the lattice experiences local distortions around the Zn sites causing a decrease in the superexchange resulting in a decrease in the net magnetization.

  10. Magnetically recyclable Ni0.5Zn0.5Fe2O4/Zn0.95Ni0.05O nano-photocatalyst: structural, optical, magnetic and photocatalytic properties.

    PubMed

    Qasim, Mohd; Asghar, Khushnuma; Singh, Braj Raj; Prathapani, Sateesh; Khan, Wasi; Naqvi, A H; Das, Dibakar

    2015-02-25

    A novel visible light active and magnetically separable nanophotocatalyst, Ni0.5Zn0.5Fe2O4/Zn0.95Ni0.05O (denoted as NZF@Z), with varying amount of Ni0.5Zn0.5Fe2O4, has been synthesized by egg albumen assisted sol gel technique. The structural, optical, magnetic, and photocatalytic properties have been studied by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), fourier transform infrared spectroscopy (FTIR), UV-visible (UV-Vis) spectroscopy, and vibrating sample magnetometry (VSM) techniques. Powder XRD, TEM, FTIR and energy dispersive spectroscopic (EDS) analyses confirm coexistence of Ni0.5Zn0.5Fe2O4 and Zn0.95Ni0.05O phases in the catalyst. Crystallite sizes of Ni0.5Zn0.5Fe2O4 and Zn0.95Ni0.05O in pure phases and nanocomposites, estimated from Debye-Scherrer equation, are found to be around 15-25 nm. The estimated particle sizes from TEM and FESEM data are ∼(22±6) nm. The calculated energy band gaps, obtained by Tauc relation from UV-Vis absorption spectra, of Zn0.95Ni0.05O, 15%NZF@Z, 40%NZF@Z and 60%NZF@Z are 2.95, 2.72, 2.64, and 2.54 eV respectively. Magnetic measurements (field (H) dependent magnetization (M)) show all samples to be super-paramagnetic in nature and saturation magnetizations (Ms) decrease with decreasing ferrite content in the nanocomposites. These novel nanocomposites show excellent photocatalytic activities on Rhodamin Dye. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Heavy metals in water, sediments, plants and fish of Kali Nadi U. P. (India)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ajmal, M.; Uddin, R.; Khan, A.U.

    1988-01-01

    The distribution of heavy metals viz., Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn in the water, sediments, plants and fish samples collected from the Kali Nadi (India) have been determined. The studies have shown that there was considerable variation in the concentration of heavy metals from one sampling station to the other which may be due to the variation in the quality of industrial and sewage wastes being added to the river at different places. The orders of the concentration of heavy metals in water, sediments, plants (Eicchornia crassipes) and fish (Heteropnuestes fossilis) were Fe > Znmore » > Cu > Mn > Cr > Ni > Pb > Co > Cd; Fe > Zn > Mn > Ni > Cr > Co > Cu > Pb > Cd; Fe > Mn > Zn > Cu > Ni > Co > Pb > Cr > Cd and Fe > Zn > Mn > Ni > Pb >Co > Cr > Cu > Cd, respectively.« less

  12. The geochemical cycling of trace elements in a biogenic meromictic lake

    NASA Astrophysics Data System (ADS)

    Balistrieri, Laurie S.; Murray, James W.; Paul, Barbara

    1994-10-01

    The geochemical processes affecting the behavior and speciation of As, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, V, and Zn in Hall Lake, Washington, USA, are assessed by examining dissolved and acid soluble particulate profiles of the elements and utilizing results from thermodynamic calculations. The water column of this meromictic lake is highly stratified and contains distinctive oxic, suboxic, and anoxic layers. Changes in the redox state of the water column with depth affect the distribution of all the elements studied. Most noticeable are increases in dissolved Co, Cr, Fe, Mn, Ni, Pb, and Zn concentrations across the oxic-suboxic boundary, increases in dissolved As, Co, Cr, Fe, Mn, and V concentrations with depth in the anoxic layer, significant decreases in dissolved Cu, Ni, Pb, and Zn concentrations in the anoxic region below the sulfide maximum, and large increases in acid soluble particulate concentrations of As, Cr, Cu, Fe, Mo, Ni, Pb, V, and Zn in the anoxic zone below the sulfide maximum. Thermodynamic calculations for the anoxic region indicate that all redox sensitive elements exist in their reduced forms, the primary dissolved forms of Cu, Ni, Pb, and Zn are metal sulfide solution complexes, and solid sulfide phases of Cu, Fe, Mo, and Pb are supersaturated. Calculations using a vertical diffusion and reaction model indicate that the oxidation rate constant for Mn(II) in Hall Lake is estimated to be 0.006 d -1 and is at the lower end of the range of microbial oxidation rates observed in other natural systems. The main geochemical processes influencing the distribution and speciation of trace elements in Hall Lake appear to be transformations of dissolved elements between their oxidation states (As, Cr, Cu, Fe, Mn, V), cocycling of trace elements with Mn and Fe (As, Co, Cr, Cu, Mo, Ni, Pb, V, Zn), formation of soluble metal sulfide complexes (Co, Cu, Ni, Pb, Zn), sorption (As, Co, Cr, Ni, V), and precipitation (Cu, Fe, Mn, Mo, Pb, Zn).

  13. The geochemical cycling of trace elements in a biogenic meromictic lake

    USGS Publications Warehouse

    Balistrieri, L.S.; Murray, J.W.; Paul, B.

    1994-01-01

    The geochemical processes affecting the behavior and speciation of As, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, V, and Zn in Hall Lake, Washington, USA, are assessed by examining dissolved and acid soluble particulate profiles of the elements and utilizing results from thermodynamic calculations. The water column of this meromictic lake is highly stratified and contains distinctive oxic, suboxic, and anoxic layers. Changes in the redox state of the water column with depth affect the distribution of all the elements studied. Most noticeable are increases in dissolved Co, Cr, Fe, Mn, Ni, Pb, and Zn concentrations across the oxic-suboxic boundary, increases in dissolved As, Co, Cr, Fe, Mn, and V concentrations with depth in the anoxic layer, significant decreases in dissolved Cu, Ni, Pb, and Zn concentrations in the anoxic region below the sulfide maximum, and large increases in acid soluble particulate concentrations of As, Cr, Cu, Fe, Mo, Ni, Pb, V, and Zn in the anoxic zone below the sulfide maximum. Thermodynamic calculations for the anoxic region indicate that all redox sensitive elements exist in their reduced forms, the primary dissolved forms of Cu, Ni, Pb, and Zn are metal sulfide solution complexes, and solid sulfide phases of Cu, Fe, Mo, and Pb are supersaturated. Calculations using a vertical diffusion and reaction model indicate that the oxidation rate constant for Mn(II) in Hall Lake is estimated to be 0.006 d-1 and is at the lower end of the range of microbial oxidation rates observed in other natural systems. The main geochemical processes influencing the distribution and speciation of trace elements in Hall Lake appear to be transformations of dissolved elements between their oxidation states (As, Cr, Cu, Fe, Mn, V), cocycling of trace elements with Mn and Fe (As, Co, Cr, Cu, Mo, Ni, Pb, V, Zn), formation of soluble metal sulfide complexes (Co, Cu, Ni, Pb, Zn), sorption (As, Co, Cr, Ni, V), and precipitation (Cu, Fe, Mn, Mo, Pb, Zn). ?? 1994.

  14. Controlled synthesis and microwave absorption properties of Ni0.6Zn0.4Fe2O4/PANI composite via an in-situ polymerization process

    NASA Astrophysics Data System (ADS)

    Wang, Min; Ji, Guangbin; Zhang, Baoshan; Tang, Dongming; Yang, Yi; Du, Youwei

    2015-03-01

    The binary composites of conducting polyaniline (PANI) and nickle zinc ferrite were synthesized by an in-situ polymerization process, and the electromagnetic absorption properties of the composites were also investigated. The FT-IR spectra present the peaks of PANI (1562, 1481, 1301, 1109, and 799 cm-1) and the bonds of NiZn ferrite (579 and 390 cm-1), indicating the existence of both NiZn ferrite particles and PANI in the composites. With the increasing ratio of nickle zinc ferrite, the composites distributes in irregular compared with pure PANI and Ni0.6Zn0.4Fe2O4. The TG curves of the pure PANI and PANI/Ni0.6Zn0.4Fe2O4 composites with different molar ratios clearly show the increase percentage of the ferrite in the composites. Furthermore, we found that the excellent electromagnetic absorption properties and wide absorption bandwidth can be achieved by adjusting proper molar ratios Ni0.6Zn0.4Fe2O4 to PANI. The maximum reflection loss of Ni0.6Zn0.4Fe2O4/PANI can reach to -41 dB at 12.8 GHz and the bandwidth exceeding -10 dB can reach to 5 GHz with the absorber thickness of 2.6 mm at the molar ratio of 1:2. This can be attributed to the enhancing magnetic loss and the better impedance matching. Therefore, Ni0.6Zn0.4Fe2O4/PANI ferrite composites can become a new kind of candidate in the field of the microwave absorbing.

  15. Controls on Fe(II)-Activated Trace Element Release from Goethite and Hematite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frierdich, Andrew J.; Catalano, Jeffrey G.

    2012-03-26

    Electron transfer and atom exchange (ETAE) between aqueous Fe(II) and Fe(III) oxides induces surface growth and dissolution that affects trace element fate and transport. We have recently demonstrated Ni(II) cycling through goethite and hematite (adsorbed Ni incorporates into the mineral structure and preincorporated Ni releases to solution) during Fe(II)-Fe(III) ETAE. However, the chemical parameters affecting net trace element release remain unknown. Here, we examine the chemical controls on Ni(II) and Zn(II) release from Ni- and Zn-substituted goethite and hematite during reaction with Fe(II). Release follows a rate law consistent with surface reaction limited mineral dissolution and suggests that release occursmore » near sites of Fe(III) reductive dissolution during Fe(II)-Fe(III) ETAE. Metal substituent type affects reactivity; Zn release is more pronounced from hematite than goethite, whereas the opposite trend occurs for Ni. Buildup of Ni or Zn in solution inhibits further release but this resumes upon fluid exchange, suggesting that sustained release is possible under flow conditions. Mineral and aqueous Fe(II) concentrations as well as pH strongly affect sorbed Fe(II) concentrations, which directly control the reaction rates and final metal concentrations. Our results demonstrate that structurally incorporated trace elements are mobilized from iron oxides into fluids without abiotic or microbial net iron reduction. Such release may affect micronutrient availability, contaminant transport, and the distribution of redox-inactive trace elements in natural and engineered systems.« less

  16. Enhanced magnetic properties in Mn0.6Zn0.4-xNixFe2O4 (x=0-0.4) nanoparticles

    NASA Astrophysics Data System (ADS)

    Mallesh, S.; Mandal, P.; Srinivas, V.

    2018-04-01

    Ni substituted MnZn ferrite fine particles were synthesized through sol-gel method. The structure, stability and magnetic properties have been investigated. Thermal stability of as-prepared (AP) particles is improved compared to that of Mn0.6Zn0.4Fe2O4 (MZF) ferrite particles. The as-prepared and samples annealed at 1200 °C exhibit pure spinel ferrite phase, while samples at intermediate temperatures (600 - 1000 °C) exhibit secondary phase of α-Fe2O3 along with ferrite phase. The Mn0.6Zn0.1Ni0.3Fe2O4 (Ni-MZF) sample shows significantly lower volume fraction of secondary phase compared to that of MZF. The observed magnetization of Ni-MZF is twice of that MZF samples. Present results suggest that a small amount (x=0.3) of Ni in place of nonmagnetic Zn in MZF significantly decreases the secondary phase fraction and improves the magnetic properties.

  17. The structural, magnetic and optical properties of TMn@(ZnO)42 (TM = Fe, Co and Ni) hetero-nanostructure.

    PubMed

    Hu, Yaowen; Ji, Chuting; Wang, Xiaoxu; Huo, Jinrong; Liu, Qing; Song, Yipu

    2017-11-28

    The magnetic transition-metal (TM) @ oxide nanoparticles have been of great interest due to their wide range of applications, from medical sensors in magnetic resonance imaging to photo-catalysis. Although several studies on small clusters of TM@oxide have been reported, the understanding of the physical electronic properties of TM n @(ZnO) 42 is far from sufficient. In this work, the electronic, magnetic and optical properties of TM n @(ZnO) 42 (TM = Fe, Co and Ni) hetero-nanostructure are investigated using the density functional theory (DFT). It has been found that the core-shell nanostructure Fe 13 @(ZnO) 42 , Co 15 @(ZnO) 42 and Ni 15 @(ZnO) 42 are the most stable structures. Moreover, it is also predicted that the variation of the magnetic moment and magnetism of Fe, Co and Ni in TM n @ZnO 42 hetero-nanostructure mainly stems from effective hybridization between core TM-3d orbitals and shell O-2p orbitals, and a magnetic moment inversion for Fe 15 @(ZnO) 42 is investigated. Finally, optical properties studied by calculations show a red shift phenomenon in the absorption spectrum compared with the case of (ZnO) 48 .

  18. Deriving Freshwater Quality Criteria for Iron, Lead, Nickel, and Zinc for Protection of Aquatic Life in Malaysia

    PubMed Central

    Shuhaimi-Othman, M.; Nadzifah, Y.; Nur-Amalina, R.; Umirah, N. S.

    2012-01-01

    Freshwater quality criteria for iron (Fe), lead (Pb), nickel (Ni), and zinc (Zn) were developed with particular reference to aquatic biota in Malaysia, and based on USEPA's guidelines. Acute toxicity tests were performed on eight different freshwater domestic species in Malaysia which were Macrobrachium lanchesteri (prawn), two fish: Poecilia reticulata and Rasbora sumatrana, Melanoides tuberculata (snail), Stenocypris major (ostracod), Chironomus javanus (midge larvae), Nais elinguis (annelid), and Duttaphrynus melanostictus (tadpole) to determine 96 h LC50 values for Fe, Pb, Ni, and Zn. The final acute value (FAV) for Fe, Pb, Ni, and Zn were 74.5, 17.0, 165, and 304.9 μg L−1, respectively. Using an estimated acute-to-chronic ratio (ACR) of 8.3, the value for final chronic value (FCV) was derived. Based on FAV and FCV, a criterion maximum concentration (CMC) and a criterion continuous concentration (CCC) for Fe, Pb, Ni, and Zn that are 37.2, 8.5, 82.5, and 152.4 μg L−1 and 9.0, 2.0, 19.9, and 36.7 μg L−1, respectively, were derived. The results of this study provide useful data for deriving national or local water quality criteria for Fe, Pb, Ni, and Zn based on aquatic biota in Malaysia. Based on LC50 values, this study indicated that N. elinguis, M. lanchesteri, N. elinguis, and R. sumatrana were the most sensitive to Fe, Pb, Ni, and Zn, respectively. PMID:22919358

  19. Synthesis, characterization, and antibacterial activities of ZnLaFe2O4/NiTiO3 nanocomposite

    NASA Astrophysics Data System (ADS)

    Sobhani-Nasab, Ali; Zahraei, Zohreh; Akbari, Maryam; Maddahfar, Mahnaz; Hosseinpour-Mashkani, S. Mostafa

    2017-07-01

    In this research, for the first time, ZnLaFe2O4/NiTiO3 nanocomposites have been synthesized through a polyol assistant sol-gel method. To investigate the effect of different surfactants on the morphology and particle size of ZnLaFe2O4 nanostructure, cetrimonium bromide, sodium dodecyl sulfate, polyvinylpyrrolidone, polyvinyl alcohol, and oleic acid were used as surfactant agents. Based on the SEM results, it was found that morphology and particle size of the products could be affected by these surfactants. Furthermore, study on antibacterial effect of ZnLaFe2O4/NiTiO3 nanocomposites by colony forming unit (CFU) reduction assay showed that ZnLaFe2O4/NiTiO3 nanocomposites have antibacterial activity against Gram-negative Escherchia coli (ATCC 10536) and Gram-positive Staphylococcus aureus (ATCC 29737). Antibacterial results demonstrate that nanocomposite significantly reduced the growth rate of E. coli bacteria and S. aureus after 120 min. The structure and morphology of the resulting particles were characterized by XRD, FT-IR, EDX, and SEM analysis.

  20. [Heavy metal concentration in Nanjing urban soils and their affecting factors].

    PubMed

    Lu, Ying; Gong, Zitong; Zhang, Ganlin; Zhang, Bo

    2004-01-01

    The concentration and source of heavy metals in Nanjing urban soils and their relationships with soil properties were studied. The results indicated that the soils in Nanjing urban were not obviously polluted by Fe, Ni, Co and V, but polluted by Mn, Cr, Cu, Zn, and Pb to a certain extent. The heavy metals were irregularly distributed in soil profiles. Fe, Ni, Co, and V were originated from soil materials, but Cu, Zn, Pb, and Cr were anthropogenic input. Probably, Mn had different origins in different soils. There were positive correlations among Fe, Cr, Ni, Co, and V concentration, and among Cu, Zn, Pb, and Cr concentration. The Fe, Co, V, and Ni concentration were positively correlated with soil clay content and CEC, and the Cu, Zn and Pb concentration were negatively correlated with clay content. There were positive correlations between Cu, Zn, Pb and Cr concentration and organic C content, and between Pb concentration and soil pH.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pawar, C. S., E-mail: charudutta-p@yahoo.com; Gujar, M. P.; Mathe, V. L.

    Nano crystalline Nickel Zinc ferrite (Ni{sub 0.25}Zn{sub 0.75}Fe{sub 2}O{sub 4}) thin films were synthesized by Sol Gel method for gas response. The phase and microstructure of the obtained Ni{sub 0.25}Zn{sub 0.75}Fe{sub 2}O{sub 4} thin films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM). The nanostructured Ni{sub 0.25}Zn{sub 0.75}Fe{sub 2}O{sub 4} thin film shows single spinel phase. Magnetic study was obtained with the help of VSM. The effects of working temperature on the gas response were studied. The results reveal that the Ni{sub 0.25}Zn{sub 0.75}Fe{sub 2}O{sub 4} thin film gas sensor shows good selectivity to chlorine gas at roommore » temperature. The sensor shows highest sensitivity (∼50%) at room temperature, indicating its application in detecting chlorine gas at room temperature in the future.« less

  2. Self-assembled organic-inorganic magnetic hybrid adsorbent ferrite based on cyclodextrin nanoparticles.

    PubMed

    Denadai, Angelo M L; De Sousa, Frederico B; Passos, Joel J; Guatimosim, Fernando C; Barbosa, Kirla D; Burgos, Ana E; de Oliveira, Fernando Castro; da Silva, Jeann C; Neves, Bernardo R A; Mohallem, Nelcy D S; Sinisterra, Rubén D

    2012-01-01

    Organic-inorganic magnetic hybrid materials (MHMs) combine a nonmagnetic and a magnetic component by means of electrostatic interactions or covalent bonds, and notable features can be achieved. Herein, we describe an application of a self-assembled material based on ferrite associated with β-cyclodextrin (Fe-Ni/Zn/βCD) at the nanoscale level. This MHM and pure ferrite (Fe-Ni/Zn) were used as an adsorbent system for Cr(3+) and Cr(2)O(7) (2-) ions in aqueous solutions. Prior to the adsorption studies, both ferrites were characterized in order to determine the particle size distribution, morphology and available binding sites on the surface of the materials. Microscopy analysis demonstrated that both ferrites present two different size domains, at the micro- and nanoscale level, with the latter being able to self-assemble into larger particles. Fe-Ni/Zn/βCD presented smaller particles and a more homogeneous particle size distribution. Higher porosity for this MHM compared to Fe-Ni/Zn was observed by Brunauer-Emmett-Teller isotherms and positron-annihilation-lifetime spectroscopy. Based on the pKa values, potentiometric titrations demonstrated the presence of βCD in the inorganic matrix, indicating that the lamellar structures verified by transmission electronic microscopy can be associated with βCD assembled structures. Colloidal stability was inferred as a function of time at different pH values, indicating the sedimentation rate as a function of pH. Zeta potential measurements identified an amphoteric behavior for the Fe-Ni/Zn/βCD, suggesting its better capability to remove ions (cations and anions) from aqueous solutions compared to that of Fe-Ni/Zn.

  3. Effects of microstructure and CaO addition on the magnetic and mechanical properties of NiCuZn ferrites

    NASA Astrophysics Data System (ADS)

    Wang, Sea-Fue; Hsu, Yung-Fu; Liu, Yi-Xin; Hsieh, Chung-Kai

    2015-11-01

    In this study, the effects of grain size and the addition of CaCO3 on the magnetic and mechanical properties of Ni0.5Cu0.3Zn0.2Fe2O4 ceramics were investigated. The bending strength of the ferrites increased from 66 to 84 MPa as the grain size of the sintered ceramics decreased from 10.25 μm to 7.53 μm, while the change in hardness was insignificant. The addition of various amounts of CaCO3 densified the Ni0.5Cu0.3Zn0.2Fe2O4 ceramics at 1075 °C. In the pure Ni0.5Cu0.3Zn0.2Fe2O4 ceramic, second phase CuO was segregated at the grain boundaries. With the CaCO3 content ≥1.5 wt%, a small amount of discrete plate-like second phase Fe2CaO4 was observed, together with the disappearance of the second phase CuO. The grain size of the Ni0.5Cu0.3Zn0.2Fe2O4 ceramic dropped from 7.80 μm to 4.68 μm, and the grain size distribution widened as the CaCO3 content increased from 0 to 5 wt%. Initially rising to 807 after CaCO3 addition up to 2.0 wt%, due to a reduced grain size, the Vickers hardness began to drop as the CaCO3 content increased. The bending strength grew linearly with the CaCO3 content and reached twice the value for the Ni0.5Cu0.3Zn0.2Fe2O4 ceramic with an addition of 5.0 wt% CaCO3. The initial permeability of the Ni0.5Cu0.3Zn0.2Fe2O4 ceramic decreased substantially from 402 to 103 as the addition of CaCO3 in ferrite increased from 0 to 5 wt%, and the quality factor of the Ni0.5Cu0.3Zn0.2Fe2O4 ceramic was maximized at 95 for 1.0 wt% CaCO3 addition.

  4. Effect of Solution Concentration on Magnetic Ni0.5Zn0.5Fe₂O₄ Nanoparticles and Their Adsorption Behavior of Neutral Red.

    PubMed

    Li, Shasha; Liu, Qifeng; Lu, Rongzhu; Wu, Xiaoyang; Chen, Jian

    2018-07-01

    Magnetic Ni0.5Zn0.5Fe2O4 nanoparticles were prepared via the methanol combustion process, the morphology, chemical composition, microstructure and magnetic properties of them were investigated by SEM, EDX, TEM, XRD, VSM, and BET. The experimental data revealed that the solution concentration was a key factor to the Ni0.5Zn0.5Fe2O4 nanoparticles, with the solution concentration of ferric nitrate decreasing from 3.37 to 1.12 mol/L, the saturation magnetization decreased from 69.3 Am2/kg to 37.2 Am2/kg, and the average crystalline size of Ni0.5Zn0.5Fe2O4 nanoparticles decreased from 32 to 25 nm. While, with the solution concentration of ferric nitrate decreasing from 1.12 to 0.56 mol/L, the saturation magnetization increased from 37.2 Am2/kg to 104.6 Am2/kg, and the average crystalline size increased from 25 to 44 nm. The adsorption behavior of neutral red (NR) onto magnetic Ni0.5Zn0.5Fe2O4 nanoparticles was investigated by UV spectroscopy at room temperature; the adsorption kinetics data related to the adsorption of NR from aqueous solutions were in good agreement with the pseudo-second-order kinetic model in a range of initial concentration of 50-300 mg/L. By comparison of the Langmuir and Freundlich models for adsorption isotherm of NR, the Langmuir model (correlation coefficient R2 = 0.9918) could be used to evaluate the adsorption isotherm of NR onto magnetic Ni0.5Zn0.5Fe2O4 nanoparticles at room temperature, which suggested that the adsorption of NR onto magnetic Ni0.5Zn0.5Fe2O4 nanoparticles was monolayer, and the adsorption energy was constant.

  5. Chemical fractionation of heavy metals in urban soils of Guangzhou, China.

    PubMed

    Lu, Ying; Zhu, Feng; Chen, Jie; Gan, Haihua; Guo, Yanbiao

    2007-11-01

    Knowledge of the total concentration of heavy metals is not enough to fully assess the environmental impact of urban soils. For this reason, the determination of metal speciation is important to evaluate their environment and the mobilization capacity. Sequential extraction technique proposed by the former European Community Bureau of Reference (BCR) was used to speciate Cd, Cu, Fe, Mn, Ni, Pb, and Zn in urban soils from Guangzhou into four operationally defined fractions: HOAc extractable, reducible, oxidizable, and residual. The Cu, Fe, Ni, and Zn were predominantly located in the residual fraction, Pb in the reducible fraction, and Cd and Mn within the HOAc extractable fraction. The order of Cd in each fraction was generally HOAc extractable > reducible > residual > oxidizable; Cu and Fe were residual > reducible > oxidizable > HOAc extractable; Mn was HOAc extractable > residual > reducible > oxidizable; Ni and Zn were residual > reducible > HOAc extractable > oxidizable; and Pb was reducible > residual > oxidizable > HOAc extractable. Cadmium was identified as being the most mobile of the elements, followed by Mn, Zn, Ni, Cu, Pb and Fe. Iron-Mn oxides can play an important role in binding Cd, Cu, Ni, Pb, and Zn and in decreasing their proportion associated with the residual fraction in the soils. With total concentrations of Cd, Cu, Ni, Pb, Zn, and Mn increase, these metals more easily release and may produce more negative effects on the urban environment.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phumying, Santi; Labuayai, Sarawuth; Swatsitang, Ekaphan

    Graphical abstract: This figure shows the specific magnetization curves of the as-prepared MFe{sub 2}O{sub 4} (M = Ni, Co, Mn, Mg, Zn) powders obtained from room temperature VSM measurement. These curves are typical for a soft magnetic material and indicate hysteresis ferromagnetism in the field ranges of ±500 Oe, ±1000 Oe, and ±2000 Oe for the CoFe{sub 2}O{sub 4}, MgFe{sub 2}O{sub 4} and MnFe{sub 2}O{sub 4} respectively, whereas the samples of NiFe{sub 2}O{sub 4} and ZnFe{sub 2}O{sub 4} show a superparamagnetic behavior. Highlights: ► Nanocrystalline MFe{sub 2}O{sub 4} powders were synthesized by a novel hydrothermal method. ► Metal acetylacetonates andmore » aloe vera plant-extracted solution are used. ► This biosynthetic route is very simple and provides high-yield oxide nanomaterials. ► XRD and TEM results indicate that the prepared samples have only spinel structure. ► The maximum M{sub s} of 68.9 emu/g at 10 kOe were observed for the samples of MnFe{sub 2}O{sub 4}. - Abstract: Nanocrystalline spinel ferrite MFe{sub 2}O{sub 4} (M = Ni, Co, Mn, Mg, Zn) powders were synthesized by a novel hydrothermal method using Fe(acac){sub 3}, M(acac){sub 3} (M = Ni, Co, Mn, Mg, Zn) and aloe vera plant extracted solution. The X-ray diffraction and selected-area electron diffraction results indicate that the synthesized nanocrystalline have only spinel structure without the presence of other phase impurities. The crystal structure and morphology of the spinel ferrite powders, as revealed by TEM, show that the NiFe{sub 2}O{sub 4} and CoFe{sub 2}O{sub 4} samples contain nanoparticles, whereas the MnFe{sub 2}O{sub 4} and MgFe{sub 2}O{sub 4} samples consist of many nanoplatelets and nanoparticles. Interestingly, the ZnFe{sub 2}O{sub 4} sample contains plate-like structure of networked nanocrystalline particles. Room temperature magnetization results show a ferromagnetic behavior of the CoFe{sub 2}O{sub 4}, MnFe{sub 2}O{sub 4} and MgFe{sub 2}O{sub 4} samples, whereas the samples of NiFe{sub 2}O{sub 4} and ZnFe{sub 2}O{sub 4} exhibit a superparamagnetic behavior.« less

  7. Effect of Zn doping on structural and dielectric properties of tetragonal Ni{sub 1-x}Zn{sub x}Fe{sub 2}O{sub 4} (0.0 ≤ x ≤ 0.5)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lone, S. A.; Dar, M. A.; Kumar, A.

    2015-06-24

    A series of Ni-Zn ferrite with compositional formula Ni{sub 1-x}Zn{sub x}Fe{sub 2}O{sub 4} (0.0 ≤ x ≤ 0.5) were prepared by solid-state reaction route. The influence of the Zn content on the structural and dielectric properties of NiFe{sub 2}O{sub 4} was investigated using X-ray powder diffraction (XRD), Raman spectroscopy and dielectric measurements. XRD analysis reveals that the samples are polycrystalline single-phase cubic spinel in structure excluding the presence of any secondary phase corresponding to any structure. Slight variation in the lattice parameter of Zn doped NiFe{sub 2}O{sub 4} has been observed due to difference in ionic radii of cations. Ramanmore » analysis reveals the doublet like nature of A{sub 1g} mode for all synthesized samples. Small shift in Raman modes and increment in the line width has been observed with the doping ions. Furthermore, room temperature dielectric properties of all the prepared samples have been reported. It is observed that for each sample the dielectric constant decreases with an increase of frequency and becomes constant at higher frequencies.« less

  8. Self-assembled organic–inorganic magnetic hybrid adsorbent ferrite based on cyclodextrin nanoparticles

    PubMed Central

    Denadai, Ângelo M L; De Sousa, Frederico B; Passos, Joel J; Guatimosim, Fernando C; Barbosa, Kirla D; Burgos, Ana E; de Oliveira, Fernando Castro; da Silva, Jeann C; Neves, Bernardo R A; Mohallem, Nelcy D S

    2012-01-01

    Summary Organic–inorganic magnetic hybrid materials (MHMs) combine a nonmagnetic and a magnetic component by means of electrostatic interactions or covalent bonds, and notable features can be achieved. Herein, we describe an application of a self-assembled material based on ferrite associated with β-cyclodextrin (Fe-Ni/Zn/βCD) at the nanoscale level. This MHM and pure ferrite (Fe-Ni/Zn) were used as an adsorbent system for Cr3+ and Cr2O7 2− ions in aqueous solutions. Prior to the adsorption studies, both ferrites were characterized in order to determine the particle size distribution, morphology and available binding sites on the surface of the materials. Microscopy analysis demonstrated that both ferrites present two different size domains, at the micro- and nanoscale level, with the latter being able to self-assemble into larger particles. Fe-Ni/Zn/βCD presented smaller particles and a more homogeneous particle size distribution. Higher porosity for this MHM compared to Fe-Ni/Zn was observed by Brunauer–Emmett–Teller isotherms and positron-annihilation-lifetime spectroscopy. Based on the pKa values, potentiometric titrations demonstrated the presence of βCD in the inorganic matrix, indicating that the lamellar structures verified by transmission electronic microscopy can be associated with βCD assembled structures. Colloidal stability was inferred as a function of time at different pH values, indicating the sedimentation rate as a function of pH. Zeta potential measurements identified an amphoteric behavior for the Fe-Ni/Zn/βCD, suggesting its better capability to remove ions (cations and anions) from aqueous solutions compared to that of Fe-Ni/Zn. PMID:23209524

  9. Electrodeposition of quaternary alloys in the presence of magnetic field

    PubMed Central

    2010-01-01

    Electrodeposition of Ni-Co-Fe-Zn alloys was done in a chloride ion solution with the presence and absence of a Permanent Parallel Magnetic Field (PPMF). The PPMF was applied parallel to the cathode surface. The deposition profile was monitored chronoamperometrically. It was found that the electrodeposition current was enhanced in the presence of PPMF (9 T) compared to without PPMF. The percentage of current enhancement (Γ%) was increased in the presence of PPMF, with results of Γ% = 11.9%, 16.7% and 18.5% at -1.1, -1.2 and -1.3 V respectively for a 2400 sec duration. In chronoamperometry, the Composition Reference Line (CRL) for Ni was around 57%, although the nobler metals (i.e. Ni, Co) showed anomalous behaviour in the presence of Zn and Fe. The anomalous behaviour of the Ni-Co-Fe-Zn electrodeposition was shown by the Energy Dispersive X-Ray (EDX) results. From Atomic Force Microscopy (AFM) measurements, it was found that the surface roughness of the Ni-Co-Fe-Zn alloy films decreased in the presence of a PPMF. PMID:20604934

  10. Inert anode containing oxides of nickel, iron and zinc useful for the electrolytic production of metals

    DOEpatents

    Ray, Siba P.; Weirauch, Jr., Douglas A.; Liu, Xinghua

    2002-01-01

    An inert anode for the electrolytic production of metals such as aluminum is disclosed. The inert anode includes a ceramic oxide material preferably made from NiO, Fe.sub.2 O.sub.3 and ZnO. The inert anode composition may comprise the following mole fractions of NiO, Fe.sub.2 O.sub.3 and ZnO: 0.2 to 0.99 NiO; 0.0001 to 0.8 Fe.sub.2 O.sub.3 ; and 0.0001 to 0.3 ZnO. The inert anode may optionally include other oxides and/or at least one metal phase, such as Cu, Ag, Pd, Pt, Au, Rh, Ru, Ir and/or Os. The Ni--Fe--Co--O ceramic material exhibits very low solubility in Hall cell baths used to produce aluminum.

  11. Rietveld refinement and electrical properties of Ni-Zn spinel ferrites

    NASA Astrophysics Data System (ADS)

    Hooda, Ashima; Sanghi, Sujata; Agarwal, Ashish; Khasa, Satish; Hooda, Bhawana

    2017-05-01

    NiFe2O4, ZnFe2O4, Ni0.5Zn0.5Fe2O4 spinel samples have been synthesized by conventional solid state reaction technique. Powder X-ray diffraction and Rietveld refinement revealed that the samples were single Spinel phase with space group fd3m. The average crystalline size (D), lattice constant (a), X-ray density (ρx), measured density (ρm) and Porosity (P) of prepared samples were determined from XRD data. The dc electrical resistivity (p) was measured as a function of temperature. The variations of ρ were explained on the basis of Verwey and de Bohr mechanism. The value of DC resistivity found to increase with increase Zn concentration.

  12. The role of reduced graphene oxide on the electrochemical activity of MFe2O4 (M = Fe, Co, Ni and Zn) nanohybrids

    NASA Astrophysics Data System (ADS)

    Suresh, Shravan; Prakash, Anand; Bahadur, D.

    2018-02-01

    In this work, a comparative study of electrochemical performance of reduced graphene oxide-ferrites (RGO-MFe2O4, M = Fe, Co, Ni, and Zn) nanohybrids synthesized by hydrothermal method was done. The structural morphology and investigation of other physical properties of nanohybrids confirm the cubic spinel phase of the MFe2O4, reduction of graphene oxide and the distribution of ferrite nanoparticles (NPs) on RGO nanosheets. The role of RGO on the electrochemical behavior of nanohybrids was understood by quantifying the charge storage capacitance and charging-discharging behavior in a 0.1 M Na2SO4 electrolyte. The specific capacitance values of pristine Fe3O4, CoFe2O4, NiFe2O4, and ZnFe2O4 are 128, 117, 15.2 and 9.1 F g-1 respectively whereas specific capacitance of RGO-Fe3O4, RGO-CoFe2O4, RGO-NiFe2O4 and RGO-ZnFe2O4 are 233, 200, 25 and 66.8 F g-1 respectively. Our investigation suggests that apart from specific surface area of nanohybrids other factors such as structural morphology determine interaction between nanohybrids and electrolyte ions which play critical role in elevating the performance of electrodes.

  13. Effect of Cu2+ substitution on the magnetic properties of co-precipitated Ni-Cu-Zn ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Ramakrishna, K. S.; Srinivas, Ch.; Tirupanyam, B. V.; Ramesh, P. N.; Meena, S. S.; Potukuchi, D. M.; Sastry, D. L.

    2017-05-01

    Spinel ferrite nanoparticles with chemical equation NixCu0.1Zn0.9-xFe2O4 (x = 0.5, 0.6, 0.7) have been synthsized using co-precipitation method followed by heat treatment at a temperature of 200 °C for 2h. The results of XRD, FE-SEM and VSM studies are reported. XRD patterns confirm the formation of cubic spinel phase of ferrite samples along with small amount of a secondary phase of α-Fe2O3 whose concentration decreases as Ni2+ concentration increases. The crystallite sizes (in the range of 7.5-13.9 nm) increase and the lattice parameter decreases with increase in Ni2+ ion concentration. These values are comparable to those of NiZn ferrite without Cu substitution. It has been observed that there is a considerable reduction in saturation magnetisation (Ms). This and differences in other magnetic parameters are attributed to considerable changes in cation distribution or core shell interactions of NiZn ferrite with 10 mole% Cu substitution in the place of Zn.

  14. A general approach for MFe2O4 (M = Zn, Co, Ni) nanorods and their high performance as anode materials for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Nana; Xu, Huayun; Chen, Liang; Gu, Xin; Yang, Jian; Qian, Yitai

    2014-02-01

    MFe2O4 (M = Zn, Co, Ni) nanorods are synthesized by a template-engaged reaction, with β-FeOOH nanorods as precursors which are prepared by a hydrothermal method. The final products are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM). The electrochemical properties of the MFe2O4 (M = Zn, Co, Ni) nanorods are tested as the anode materials for lithium ion batteries. The reversible capacities of 800, 625 and 520 mAh g-1 are obtained for CoFe2O4, ZnFe2O4 and NiFe2O4, respectively, at the high current density of 1000 mA g-1 even after 300 cycles. The superior lithium-storage performances of MFe2O4 (M = Zn, Co, Ni) nanorods can be attributed to the one-dimensional (1D) nanostructure, which can shorten the diffusion paths of lithium ions and relax the strain generated during electrochemical cycling. These results indicate that this method is an effective, simple and general way to prepare good electrochemical properties of 1D spinel Fe-based binary transition metal oxides. In addition, the impact of different reaction temperatures on the electrochemical properties of MFe2O4 nanorods is also investigated.

  15. Structural classification of RAO3( MO) n compounds ( R =Sc, In, Y, or lanthanides; A =Fe(III), Ga, Cr, or Al; M =divalent cation; n = 1-11)

    NASA Astrophysics Data System (ADS)

    Kimizuka, Noboru; Mohri, Takahiko

    1989-01-01

    A series of new compounds RAO3( MO) n ( n = 1-11) having spinel, YbFe 2O 4, or InFeO 3(ZnO) n types of structures were newly synthesized ( R =Sc, In, Y, Lu, Yb, Tm, or Er; A =Fe(III), Ga, Cr, or Al; M =Mg, Mn, Fe(II), Co, Ni, Zn, or Cd) at elevated temperatures. The conditions of synthesis and the lattice constants for these compounds are reported. The stacking sequences of the InO 1.5, (FeZn)O 2.5, and ZnO layers for InFeO 3(ZnO) 10 and the TmO 1.5, (AlZn)O 2.5, and ZnO layers for TmAlO 3(ZnO) 11 are presented, respectively. The crystal structures of the( RAO3) m( MO) n phases ( R =Sc, In, Y, or lanthanide elements; A =Fe(III), Ga, Cr, or Al; M =divalent cation elements; m and n =integer) are classified into four crystal structure types (K 2NiF 4, CaFe 2O 4, YbFe 2O 4, and spinel), based upon the constituent cations R, A, and M

  16. Stable room temperature magnetocurrent in electrodeposited permeable n-type metal base transistor

    NASA Astrophysics Data System (ADS)

    Silva, G. V. O.; Teixeira, H. A.; Mello, S. L. A.; de Araujo, C. I. L.

    2018-02-01

    We investigated a permeable metal base transistor consisting of a ZnO/NiFe/Si heterostructure. Both ZnO and NiFe layers were grown by electrodeposition techniques, using only adhesive tape masks to define deposition regions. The base permeability can thus be controlled by varying the NiFe deposition time. We report here our best results obtained for the permeable NiFe base close to the electrical percolation threshold, which gives reasonable sensitivity to the device. Magnetocurrent measurements carried out at room temperature show that this permeable metal base transistor is stable and sensitive under applied magnetic fields of low intensities, ˜100 Oe, required for electronics integration.

  17. Effect of milling atmosphere on structural and magnetic properties of Ni-Zn ferrite nanocrystalline

    NASA Astrophysics Data System (ADS)

    Hajalilou, Abdollah; Hashim, Mansor; Ebrahimi-Kahrizsangi, Reza; Masoudi Mohamad, Taghi

    2015-04-01

    Powder mixtures of Zn, NiO, and Fe2O3 are mechanically alloyed by high energy ball milling to produce Ni-Zn ferrite with a nominal composition of Ni0.36Zn0.64Fe2O4. The effects of milling atmospheres (argon, air, and oxygen), milling time (from 0 to 30 h) and heat treatment are studied. The products are characterized using x-ray diffractometry, field emission scanning electron microscopy equipped with energy-dispersive x-ray spectroscopy, and transmitted electron microscopy. The results indicate that the desired ferrite is not produced during the milling in the samples milled under either air or oxygen atmospheres. In those samples milled under argon, however, Zn/NiO/Fe2O3 reacts with a solid-state diffusion mode to produce Ni-Zn ferrite nanocrystalline in a size of 8 nm after 30-h-milling. The average crystallite sizes decrease to 9 nm and 10 nm in 30-h-milling samples under air and oxygen atmospheres, respectively. Annealing the 30-h-milling samples at 600 °C for 2 h leads to the formation of a single phase of Ni-Zn ferrite, an increase of crystallite size, and a reduction of internal lattice strain. Finally, the effects of the milling atmosphere and heating temperature on the magnetic properties of the 30-h-milling samples are investigated. Project supported by the University Putra Malaysia Graduate Research Fellowship Section.

  18. Dye-Sensitized Cu2 XSnS4 (X=Zn, Ni, Fe, Co, and Mn) Nanofibers for Efficient Photocatalytic Hydrogen Evolution.

    PubMed

    Gonce, Mehmet Kerem; Aslan, Emre; Ozel, Faruk; Hatay Patir, Imren

    2016-03-21

    The photocatalytic hydrogen evolution activities of low-cost and noble-metal-free Cu2 XSnS4 (X=Zn, Ni, Fe, Co, and Mn) nanofiber catalysts have been investigated using triethanolamine as an electron donor and eosin Y as a photosensitizer under visible-light irradiation. The rates of hydrogen evolution by Cu2 XSnS4 (X=Zn, Ni, Fe, Co, and Mn) nanofibers have been compared with each other and with that of the noble metal Pt. The hydrogen evolution rates for the nanofibers change in the order Cu2 NiSnS4 >Cu2 FeSnS4 >Cu2 CoSnS4 >Cu2 ZnSnS4 >Cu2 MnSnS4 (2028, 1870, 1926, 1420, and 389 μmol g(-1) h(-1) , respectively). The differences between the hydrogen evolution rates of the nanofibers could be attributed to their energy levels. Moreover, Cu2 NiSnS4, Cu2 FeSnS4 , and Cu2 CoSnS4 nanofibers show higher and more stable photocatalytic hydrogen production rates than that of the noble metal Pt under long-term irradiation with visible light. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Investigation of magnetic order in SmTr2Zn20 (Tr=Fe ,Co,Ru) and SmTr2Cd20 (Tr=Ni ,Pd)

    NASA Astrophysics Data System (ADS)

    Yazici, D.; White, B. D.; Ho, P.-C.; Kanchanavatee, N.; Huang, K.; Friedman, A. J.; Wong, A. S.; Burnett, V. W.; Dilley, N. R.; Maple, M. B.

    2014-10-01

    Single crystals of the "cage compounds" SmTr2Zn20 (Tr=Fe, Co, Ru) and SmTr2Cd20 (Tr=Ni, Pd) have been investigated by means of electrical resistivity, magnetization, and specific-heat measurements. The compounds SmFe2Zn20,SmRu2Zn20, and SmNi2Cd20 exhibit ferromagnetic order with Curie temperatures of TC=47.4, 7.6, and 7.5 K, respectively, whereas SmPd2Cd20 is an antiferromagnet with a Néel temperature of TN=3.4 K. No evidence for magnetic order is observed in SmCo2Zn20 down to 110 mK. The Sommerfeld coefficients γ are found to be 57 mJ /molK2 for SmFe2Zn20,79.5 mJ /molK2 for SmCo2Zn20,258 mJ /molK2 for SmRu2Zn20,165 mJ /molK2 for SmNi2Cd20, and 208 mJ /molK2 for SmPd2Cd20. Enhanced values of γ and a quadratic temperature dependence of the electrical resistivity at low temperature for SmRu2Zn20 and SmPd2Cd20 suggest an enhancement of the quasiparticle masses due to hybridization between localized 4f and conduction electron states.

  20. Spinel, YbFe2O4, and Yb2Fe3O7 types of structure for compounds in the In2O3 and Sc2O3-A2O3-BO systems (A: Fe, Ga, or Al; B: Mg, Mn, Fe, Ni, Cu, or Zn) at temperatures over 1000C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimizuka, N.; Mohri, T.

    In the Sc2O3-Ga2O3-CuO, Sc2O3-Ga2O3-ZnO, and Sc2O3-Al2O3-CuO systems, ScGaCuO4, ScGaZnO4, and ScAlCuO4 with the YbFe2O4-type structure and Sc2Ga2CuO7 with the Yb2Fe3O7-type structure were obtained. In the In2O3-A2O3-BO systems (A: Fe, Ga, or Al; B: Mg, Mn, Fe, Ni, or Zn), InGaFeO4, InGaNiO4, and InFeT MgO4 with the spinel structure, InGaZnO4, InGaMgO4, and InAl-CuO4 with the YbFe2O4-type structure, and In2Ga2MnO7 and In2Ga2ZnO7 with the Yb2Fe3O7-type structure were obtained. InGaMnO4 and InFe2O4 had both the YbFe2O4-type and spinel-type structures. The revised classification for the crystal structures of AB2O4 compounds is presented, based upon the coordination numbers of constituent A and B cations. 5more » references, 2 tables.« less

  1. Heavy metal speciation in solid-phase materials from a bacterial sulfate reducing bioreactor using sequential extraction procedure combined with acid volatile sulfide analysis.

    PubMed

    Jong, Tony; Parry, David L

    2004-04-01

    Heavy metal mobility, bioavailability and toxicity depends largely on the chemical form of metals and ultimately determines potential for environmental pollution. For this reason, determining the chemical form of heavy metals and metalloids, immobilized in sludges by biological mediated sulfate reduction, is important to evaluate their mobility and bioavailability. A modified Tessier sequential extraction procedure (SEP), complemented with acid volatile sulfide (AVS) and simultaneous extracted metals (SEM) measurements, were applied to determine the partitioning of five heavy metals (defined as Fe, Ni, Zn and Cu, and the metalloid As) in anoxic solid-phase material (ASM) from an anaerobic, sulfate reducing bioreactor into six operationally defined fractions. These fractions were water soluble, exchangeable, bound to carbonates (acid soluble), bound to Fe-Mn oxides (reducible), bound to organic matter and sulfides (oxidizable) and residual. It was found that the distribution of Fe, Ni, Zn, Cu and As in ASM was strongly influenced by its association with the above solid fractions. The fraction corresponding to organic matter and sulfides appeared to be the most important scavenging phases of As, Fe, Ni, Zn and Cu in ASM (59.8-86.7%). This result was supported by AVS and SEM (Sigma Zn, Ni and Cu) measurements, which indicated that the heavy metals existed overwhelmingly as sulfides in the organic matter and sulfide fraction. A substantial amount of Fe and Ni at 16.4 and 20.1%, respectively, were also present in the carbonate fraction, while an appreciable portion of As (18.3%) and Zn (19.4%) was bound to Fe-Mn oxides. A significant amount of heavy metals was also associated with the residual fraction, ranging from 2.1% for Zn to 18.8% for As. Based on the average total extractable heavy metal (TEHM) values, the concentration of heavy metals in the ASM was in the order of Cu > Ni > Zn > Fe > As. If the mobility and bioavailability of heavy metals are assumed to be related to their solubility and chemical forms, and that they decrease with each successive extraction step, then the apparent mobility and bioavailability of these five heavy metals in ASM increase in the order of Cu < As < Ni < Fe < Zn. The SEM/AVS ratio was less than one in eight replicate ASM samples, indicating that the ASM was non-toxic with regards to having a low probability of bioavailable metals in the pore water.

  2. Toxicity of Metals to a Freshwater Ostracod: Stenocypris major

    PubMed Central

    Shuhaimi-Othman, Mohammad; Yakub, Nadzifah; Ramle, Nur-Amalina; Abas, Ahmad

    2011-01-01

    Adults of freshwater ostracod Stenocypris major (Crustacea, Candonidae) were exposed for a four-day period in laboratory conditions to a range of copper (Cu), cadmium (Cd), zinc (Zn), lead (Pb), nickel (Ni), iron (Fe), aluminium (Al), and manganese (Mn) concentrations. Mortality was assessed, and median lethal times (LT50) and concentrations (LC50) were calculated. LT50 and LC50 increased with the decrease in mean exposure concentrations and times, respectively, for all metals. LC50s for 96 hours for Cu, Cd, Zn, Pb, Ni, Fe, Al, and Mn were 25.2, 13.1, 1189.8, 526.2, 19743.7, 278.9, 3101.9, and 510.2 μg/L, respectively. Metals bioconcentration in S. major increases with exposure to increasing concentrations, and Cd was the most toxic to S. major, followed by Cu, Fe, Mn, Pb, Zn, Al, and Ni (Cd>Cu>Fe>Mn>Pb>Zn>Al>Ni). Comparison of LC50 values for metals for this species with those for other freshwater crustacean reveals that S. major is equally or more sensitive to metals than most other tested crustacean. PMID:21559091

  3. Multiple heavy metals extraction and recovery from hazardous electroplating sludge waste via ultrasonically enhanced two-stage acid leaching.

    PubMed

    Li, Chuncheng; Xie, Fengchun; Ma, Yang; Cai, Tingting; Li, Haiying; Huang, Zhiyuan; Yuan, Gaoqing

    2010-06-15

    An ultrasonically enhanced two-stage acid leaching process on extracting and recovering multiple heavy metals from actual electroplating sludge was studied in lab tests. It provided an effective technique for separation of valuable metals (Cu, Ni and Zn) from less valuable metals (Fe and Cr) in electroplating sludge. The efficiency of the process had been measured with the leaching efficiencies and recovery rates of the metals. Enhanced by ultrasonic power, the first-stage acid leaching demonstrated leaching rates of 96.72%, 97.77%, 98.00%, 53.03%, and 0.44% for Cu, Ni, Zn, Cr, and Fe respectively, effectively separated half of Cr and almost all of Fe from mixed metals. The subsequent second-stage leaching achieved leaching rates of 75.03%, 81.05%, 81.39%, 1.02%, and 0% for Cu, Ni, Zn, Cr, and Fe that further separated Cu, Ni, and Zn from mixed metals. With the stabilized two-stage ultrasonically enhanced leaching, the resulting over all recovery rates of Cu, Ni, Zn, Cr and Fe from electroplating sludge could be achieved at 97.42%, 98.46%, 98.63%, 98.32% and 100% respectively, with Cr and Fe in solids and the rest of the metals in an aqueous solution discharged from the leaching system. The process performance parameters studied were pH, ultrasonic power, and contact time. The results were also confirmed in an industrial pilot-scale test, and same high metal recoveries were performed. Copyright 2010 Elsevier B.V. All rights reserved.

  4. Effects of SnO2, WO3, and ZrO2 addition on the magnetic and mechanical properties of NiCuZn ferrites

    NASA Astrophysics Data System (ADS)

    Wang, Sea-Fue; Yang, Hsiao-Ching; Hsu, Yung-Fu; Hsieh, Chung-Kai

    2015-01-01

    In this study, the effects of SnO2, WO3 and ZrO2 addition at levels up to 5 wt% on the magnetic and mechanical properties of Ni0.5Cu0.3Zn0.2Fe2O4 ceramics were investigated. Only Ni0.5Cu0.3Zn0.2Fe2O4 ceramic with a SnO2 addition of ≥3.5 wt% required a densification temperature of 1150 °C, while the others reached maximum densification at 1075 °C. All samples revealed a pure spinel phase and a uniform microstructure, except for the Ni0.5Cu0.3Zn0.2Fe2O4 ceramic with the WO3 addition, which showed an exaggerated grain growth accompanied with a small amount of needle-shaped Cu0.85Zn0.15WO4 second phase. The fracture mode in the pure Ni0.5Cu0.3Zn0.2Fe2O4 ceramic revealed a transgranular phase, as the CuO second phase increased the grain boundary strength; the Ni0.5Cu0.3Zn0.2Fe2O4 ceramics sintered with 5 wt% additives showed an intergranular phase. The Vickers hardness and the bending strength of the Ni0.5Cu0.3Zn0.2Fe2O4 ceramic were 733.6 and 62.0 MPa, respectively. The Vickers hardness of the ferrite with added SnO2 or ZrO2 showed only a slight improvement, while an apparent change (832.7) was observed with the addition of 5.0 wt% WO3. The bending strength of the ferrite was optimized at 75.7 MPa with 2.0 wt% SnO2 and at 90.5 MPa with 3.5 wt% ZrO2, while that of the ferrite sintered with WO3 added dropped gradually from 62.0 to 47.7 MPa as the amount of WO3 was increased from 0 to 5.0 wt% due to the non-uniform microstructure. The pure Ni0.5Cu0.3Zn0.2Fe2O4 ceramic sintered at 1075 °C had an initial permeability of 356.9 and a quality factor of 71.2. The addition of ZrO2 led to a significant increase in the initial permeability (588.4 at 5.0 wt% ZrO2), but a slight decline in the quality factor (56.6 at 5.0 wt% ZrO2).

  5. Effect of sintering temperature on micro structural and impedance spectroscopic properties of Ni0.5Zn0.5Fe2O4 nano ferrite

    NASA Astrophysics Data System (ADS)

    Venkatesh, Davuluri; Ramesh, K. V.; Sastry, C. V. S. S.

    2017-07-01

    Ni-Zn nanoferrite Ni0.5Zn0.5Fe2O4 is prepared by citrate gel auto combustion method and sintered at various temperatures 800, 900, 1000, 1100 and 1200°C. The room temperature x-ray diffraction conforms that the single phase spinel structure is formed. Crystallite size and density were increased with increasing of sintering temperature. From Raman spectroscopy all sintered samples are single phase with cubic spinel structure belong to Fd3m space group. From surface morphology studies it is clearly observed that the particle size increased with increasing of sintering temperature. Impedance spectroscopy revel that increasing of conductivity is due to grain resistance is decreased with increasing of sintering temperature. Cole-Cole plots are studied from impedance data. The electrical modulus analysis shows that non-Debye nature of Ni0.5Zn0.5Fe2O4 ferrite.

  6. Synthesis of ferrites obtained from heavy metal solutions using wet method.

    PubMed

    Yang, Ji; Peng, Juan; Liu, Kaicheng; Guo, Rui; Xu, Dianliang; Jia, Jinping

    2007-05-08

    Wet method was employed to the treatment of heavy metal-contaminated wastewater, and Zn(x)Fe(3-x)O(4), Ni(x)Fe(3-x)O(4) and Cr(x)Fe(3-x)O(4) (0Cr(3+) and the influence of the three ions on sample thermostability is Zn(2+)>Ni(2+)>Cr(3+).

  7. Influence of variable chemical conditions on EDTA-enhanced transport of metal ions in mildly acidic groundwater

    USGS Publications Warehouse

    Kent, D.B.; Davis, J.A.; Joye, J.L.; Curtis, G.P.

    2008-01-01

    Adsorption of Ni and Pb on aquifer sediments from Cape Cod, Massachusetts, USA increased with increasing pH and metal-ion concentration. Adsorption could be described quantitatively using a semi-mechanistic surface complexation model (SCM), in which adsorption is described using chemical reactions between metal ions and adsorption sites. Equilibrium reactive transport simulations incorporating the SCMs, formation of metal-ion-EDTA complexes, and either Fe(III)-oxyhydroxide solubility or Zn desorption from sediments identified important factors responsible for trends observed during transport experiments conducted with EDTA complexes of Ni, Zn, and Pb in the Cape Cod aquifer. Dissociation of Pb-EDTA by Fe(III) is more favorable than Ni-EDTA because of differences in Ni- and Pb-adsorption to the sediments. Dissociation of Ni-EDTA becomes more favorable with decreasing Ni-EDTA concentration and decreasing pH. In contrast to Ni, Pb-EDTA can be dissociated by Zn desorbed from the aquifer sediments. Variability in adsorbed Zn concentrations has a large impact on Pb-EDTA dissociation.

  8. Photoelectron spectroscopy of the bis(dithiolene) anions [M(mnt)2]n- (M = Fe - Zn; n = 1, 2): changes in electronic structure with variation of metal center and with oxidation.

    PubMed

    Waters, Tom; Wang, Xue-Bin; Woo, Hin-Koon; Wang, Lai-Sheng

    2006-07-24

    A detailed understanding of the electronic structures of transition metal bis(dithiolene) centers is important in the context of their interesting redox, magnetic, and optical properties. The electronic structures of the series [M(mnt)2]n- (M = Fe - Zn; mnt = 1,2-S2C2(CN)2; n = 1, 2) were examined by a combination of photodetachment photoelectron spectroscopy and density functional theory calculations, providing insights into changes in electronic structure with variation of the metal center and with oxidation. Significant changes were observed for the dianions [M(mnt)2]2- due to stabilization of the metal 3d levels from Fe to Zn and the transition from square-planar to tetrahedral coordination about the metal center (Fe-Ni, D(2h) --> Cu D2 --> Zn, D(2d). Changes with oxidation from [M(mnt)2]2- to [M(mnt)2]1- were largely dependent on the nature of the redox-active orbital in the couple [M(mnt)2](2-/1-). In particular, the first detachment feature for [Fe(mnt)2]2- originated from a metal-based orbital (Fe(II) --> Fe(III)) while that for [Fe(mnt)2]1- originated from a ligand-based orbital, a consequence of stabilization of Fe 3d levels in the latter. In contrast, the first detachment feature for both of [Ni(mnt)2]2- and [Ni(mnt)2]1- originated from the same ligand-based orbital in both cases, a result of occupied Ni 3d levels being stabilized relative those of Fe 3d and occurring below the highest energy occupied ligand-based orbital for both of [Ni(mnt)2]2- and [Ni(mnt)2]1- . The combined data illustrate the subtle interplay between metal- and ligand-based redox chemistry in these species and demonstrate changes in their electronic structures with variation of metal center, oxidation, and coordination geometry.

  9. Assessing bioavailability levels of metals in effluent-affected rivers: effect of Fe(III) and chelating agents on the distribution of metal speciation.

    PubMed

    Han, Shuping; Naito, Wataru; Masunaga, Shigeki

    To assess the effects of Fe(III) and anthropogenic ligands on the bioavailability of Ni, Cu, Zn, and Pb, concentrations of bioavailable metals were measured by the DGT (diffusive gradients in thin films) method in some urban rivers, and were compared with concentrations calculated by a chemical equilibrium model (WHAM 7.0). Assuming that dissolved Fe(III) (<0.45 μm membrane filtered) was in equilibrium with colloidal iron oxide, the WHAM 7.0 model estimated that bioavailable concentrations of Ni, Cu, and Zn were slightly higher than the corresponding values estimated assuming that dissolved Fe(III) was absent. In contrast, lower levels of free Pb were predicted by the WHAM 7.0 model when dissolved Fe(III) was included. Estimates showed that most of the dissolved Pb was present as colloidal iron-Pb complex. Ethylene-diamine-tetra-acetic acid (EDTA) concentrations at sampling sites were predicted from the relationship between EDTA and the calculated bioavailable concentration of Zn. When both colloidal iron and predicted EDTA concentrations were included in the WHAM 7.0 calculations, dissolved metals showed a strong tendency to form EDTA complexes, in the order Ni > Cu > Zn > Pb. With the inclusion of EDTA, bioavailable concentrations of Ni, Cu, and Zn predicted by WHAM 7.0 were different from those predicted considering only humic substances and colloidal iron.

  10. Bioaccessibility and size distribution of metals in road dust and roadside soils along a peri-urban transect.

    PubMed

    Padoan, Elio; Romè, Chiara; Ajmone-Marsan, Franco

    2017-12-01

    Road dust (RD), together with surface soils, is recognized as one of the main sinks of pollutants in urban environments. Over the last years, many studies have focused on total and bioaccessible concentrations while few have assessed the bioaccessibility of size-fractionated elements in RD. Therefore, the distribution and bioaccessibility of Fe, Mn, Cd, Cr, Cu, Ni, Pb, Sb and Zn in size fractions of RD and roadside soils (<2.5μm, 2.5-10μm and 10-200μm) have been studied using aqua regia extraction and the Simple Bioaccessibility Extraction Test. Concentrations of metals in soils are higher than legislative limits for Cu, Cr, Ni, Pb and Zn. Fine fractions appear enriched in Fe, Mn, Cu, Pb, Sb and Zn, and 2.5-10μm particles are the most enriched. In RD, Cu, Pb, Sb and Zn derive primarily from non-exhaust sources, while Zn is found in greater concentrations in the <2.5μm fraction, where it most likely has an industrial origin. Elemental distribution across soils is dependent on land use, with Zn, Ni, Cu and Pb being present in higher concentrations at traffic sites. In addition, Fe, Ni and Cr feature greater bioaccessibility in the two finer fractions, while anthropic metals (Cu, Pb, Sb and Zn) do not. In RD, only Zn has significantly higher bioaccessibility at traffic sites compared to background, and the finest particles are always the most bioaccessible; >90% of Pb, Zn and Cu is bioaccessible in the <2.5μm fraction, while for Mn, Ni, Sb, Fe and Cr, values vary from 76% to 5%. In the 2.5-10μm fraction, the values were 89% for Pb, 67% for Zn and 60% for Cu. These results make the evaluation of the bioaccessibility of size-fractionated particles appear to be a necessity for correct estimation of risk in urban areas. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Distribution of trace metals in surface seawater and zooplankton of the Bay of Bengal, off Rushikulya estuary, East Coast of India.

    PubMed

    Srichandan, Suchismita; Panigrahy, R C; Baliarsingh, S K; Rao B, Srinivasa; Pati, Premalata; Sahu, Biraja K; Sahu, K C

    2016-10-15

    Concentrations of trace metals such as iron (Fe), copper (Cu), zinc (Zn), cobalt (Co), nickel (Ni), manganese (Mn), lead (Pb), cadmium (Cd), chromium (Cr), arsenic (As), vanadium (V), and selenium (Se) were determined in seawater and zooplankton from the surface waters off Rushikulya estuary, north-western Bay of Bengal. During the study period, the concentration of trace metals in seawater and zooplankton showed significant spatio-temporal variation. Cu and Co levels in seawater mostly remained non-detectable. Other elements were found at higher concentrations and exhibited marked variations. The rank order distribution of trace metals in terms of their average concentration in seawater was observed as Fe>Ni>Mn>Pb>As>Zn>Cr>V>Se>Cd while in zooplankton it was Fe>Mn>Cd>As>Pb>Ni>Cr>Zn>V>Se. The bioaccumulation factor (BAF) of Fe was highest followed by Zn and the lowest value was observed with Ni. Results of correlation analysis discerned positive affinity and good relationship among the majority of the trace metals, both in seawater and zooplankton suggesting their strong affinity and coexistence. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Toxicity of Metals to a Freshwater Snail, Melanoides tuberculata

    PubMed Central

    Shuhaimi-Othman, M.; Nur-Amalina, R.; Nadzifah, Y.

    2012-01-01

    Adult freshwater snails Melanoides tuberculata (Gastropod, Thiaridae) were exposed for a four-day period in laboratory conditions to a range of copper (Cu), cadmium (Cd), zinc (Zn), lead (Pb), nickel (Ni), iron (Fe), aluminium (Al), and manganese (Mn) concentrations. Mortality was assessed and median lethal times (LT50) and concentrations (LC50) were calculated. LT50 and LC50 increased with the decrease in mean exposure concentrations and times, respectively, for all metals. The LC50 values for the 96-hour exposures to Cu, Cd, Zn, Pb, Ni, Fe, Al, and Mn were 0.14, 1.49, 3.90, 6.82, 8.46, 8.49, 68.23, and 45.59 mg L−1, respectively. Cu was the most toxic metal to M. tuberculata, followed by Cd, Zn, Pb, Ni, Fe, Mn, and Al (Cu > Cd > Zn > Pb > Ni > Fe > Mn > Al). Metals bioconcentration in M. tuberculata increases with exposure to increasing concentrations and Cu has the highest accumulation (concentration factor) in the soft tissues. A comparison of LC50 values for metals for this species with those for other freshwater gastropods reveals that M. tuberculata is equally sensitive to metals. PMID:22666089

  13. Structural classification of RAO/sub 3/(MO)/sub n/ compounds (R = Sc, In, Y, or lanthanides; A = Fe(III), Ga, Cr, or Al; M = divalent cation; n = 1-11)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimizuka, N.; Mohri, T.

    A series of new compounds (RAO/sub 3/MO)/sub n/ (n = 1-11) having spinel, YbFe/sub 2/O/sub 4/, or InFeO/sub 3/(ZnO)/sub n/ types of structures were newly synthesized (R = Sc, In, Y, Lu, Yb, Tm, or Er; A = Fe(III), Ga, Cr, or Al; M = Mg, Mn, Fe(II), Co, Ni, Zn, or Cd) at elevated temperatures. The conditions of synthesis and the lattice constants for these compounds are reported. The stacking sequences of the InO/sub 1.5/, (FeZn)O/sub 2.5/, and ZnO layers for InFeO/sub 3/(ZnO)/sub 10/ and the TmO/sub 1.5/, (AlZn)O/sub 2.5/, and ZnO layers for TmAlO/sub 3/(ZnO)/sub 11/ are presented,more » respectively. The crystal structures of the (RAO/sub 3/)/sub m/(MO)/sub n/ phases R = Sc, In, Y, or lanthanide elements; A = Fe(III), Ga, Cr, or Al; M = divalent cation elements; m and n = integer are classified into four crystal structure types (K/sub 2/NiF/sub 4/, CaFe/sub 2/O/sub 4/, YbFe/sub 2/O/sub 4/, and spinel), based upon the constituent cations R, A, and M.« less

  14. Preparation of high-permeability NiCuZn ferrite.

    PubMed

    Hu, Jun; Yan, Mi

    2005-06-01

    Appropriate addition of CuO/V2O5 and the reduction of the granularity of the raw materials particle decrease the sintering temperature of NiZn ferrite from 1200 degrees C to 930 degrees C. Furthermore, the magnetic properties of the NiZn ferrite prepared at low temperature of 930 degrees C is superior to that of the NiZn ferrite prepared by sintering at high temperature of 1200 degrees C because the microstructure of the NiZn ferrite sintered at 930 degrees C is more uniform and compact than that of the NiZn ferrite sintered at 1200 degrees C. The high permeability of 1700 and relative loss coefficient tandelta/mu(i) of 9.0x10(-6) at 100 kHz was achieved in the (Ni0.17Zn0.63Cu0.20)Fe1.915O4 ferrite.

  15. Distribution of dissolved and labile particulate trace metals in the overlying bottom water in the Vistula River plume (southern Baltic Sea).

    PubMed

    Sokolowski, A; Wolowicz, M; Hummel, H

    2001-10-01

    Overlying bottom water samples were collected in the Vistula River plume, southern Baltic Sea, (Poland) and analysed for dissolved and labile particulate (1 M HCl extractable) Cu, Pb, Zn, Mn, Fe and Ni, hydrological parameters being measured simultaneously. Particulate organic matter (POM), chlorophyll a and dissolved oxygen are key factors governing the chemical behaviour of the measured metal fractions. For the dissolved Cu, Pb, Zn, Fe and Ni two maxima, in the shallow and in the deeper part of the river plume, were found. In the shallow zone desorption from seaward fluxing metal-rich riverine particles account for markedly increased metal concentrations, as confirmed also by high particulate metal contents. For Pb, atmospheric inputs were also considered to have contributed to the elevated concentrations of dissolved Pb adjacent to the river mouth. In the deep zone desorption from detrital and/or resuspended particles by aerobic decomposition of organic material may be the main mechanism responsible for enrichment of particle-reactive metals (Cu, Pb, Zn) in the overyling bottom waters. The increased concentrations of dissolved Fe may have been due to reductive dissolution of Fe oxyhydroxides within the deep sediments by which dissolved Ni was released to the water. The distribution of Mn was related to dissolved oxygen concentrations, indicating that Mn is released to the water column under oxygen reduced conditions. However, Mn transfer to the dissolved phase from anoxic sediments in deeper part of the Vistula plume was hardly evidenced suggesting that benthic flux of Mn occurs under more severe reductive regime than is consistent with mobilization of Fe. Behaviour of Mn in a shallower part has been presumably affected by release from porewaters and by oxidization into less soluble species resulting in seasonal removal of this metal (e.g. in April) from the dissolved phase. The particulate fractions represented from about 6% (Ni) and 33% (Mn, Zn, Cu) to 80% (Fe) and 89% (Pb) of the total (labile particulate plus dissolved) concentrations. The affinity of the metals for particulate matter decreased in the following order: Pb > Fe > Zn > or = > Cu > Mn > Ni. Significant relationships between particulate Pb-Zn-Cu reflected the affinity of these metals for organic matter, and the significant relationship between Ni-Fe reflected the adsorption of Ni onto Fe-Mn oxyhydroxides. A comparison of metal concentrations with data from other similar areas revealed that the river plume is somewhat contaminated with Cu, Pb and Zn which is in agreement with previous findings on anthropogenic origin of these metals in the Polish zone of southern Baltic Sea.

  16. Surfactant-assisted synthesis of polythiophene/Ni0.5Zn0.5Fe2-xCexO4 ferrite composites: study of structural, dielectric and magnetic properties for EMI-shielding applications.

    PubMed

    Dar, M Abdullah; Majid, Kowsar; Hanief Najar, Mohd; Kotnala, R K; Shah, Jyoti; Dhawan, S K; Farukh, M

    2017-04-19

    This work reports the exploitation of nanocrystalline Ni 0.5 Zn 0.5 Fe 2-x Ce x O 4 ferrite for potential application by designing quasi-spherical shaped polythiophene (PTH) composites via in situ emulsion polymerization. The structural, electronic, dielectric, magnetic, and electromagnetic interference (EMI) shielding properties of PTH/Ni 0.5 Zn 0.5 Fe 2-x Ce x O 4 composites were investigated. Our results suggest that these properties could be optimized by modulating the concentration of x (composition) in the polymer matrix. Higher values of ε' and ε'' were obtained on composite formation, and could be due to the heterogeneity developed in the material. An enhancement in the value of saturation magnetization (123 emu g -1 for x = 0.04) and Curie temperature was obtained with Ce concentration, which is useful for high density recording purposes. A low value of saturation magnetization was obtained for the PTH/Ni 0.5 Zn 0.5 Fe 2-x Ce x O 4 composite (36 emu g -1 for x = 0.04). This could be attributed to the non-magnetic nature of the polymer. A total shielding effectiveness (SE T = SE A + SE R ) up to 34 dB (≈99.9% attenuation) was recorded for PTH/Ni 0.5 Zn 0.5 Fe 2-x Ce x O 4 composites (x = 0.04) in a frequency range of 8.2-12.4 GHz (X-band), which surpasses the shielding criteria of SE T > 30 dB for commercial purposes. Such a material with high SE identifies its potential for making electromagnetic shields. The effect of Ce substitution on the microstructure, dielectric, impedance and magnetic properties of PTH/Ni 0.5 Zn 0.5 Fe 2-x Ce x O 4 ferrite composites was also investigated. X-ray diffraction analysis confirmed cubic spinel phase formation, and the broad reflection peaks indicated the formation of smaller sized particles. The smaller energy band gap (2.53 eV) of the composite indicated that this material could be used for photocatalysis in the visible region. Dielectric and impedance measurements were carried out in a frequency range of 8.2-12.4 GHz. Dielectric properties were improved considerably by the substitution of Ce 3+ ions in PTH/Ni 0.5 Zn 0.5 Fe 2-x Ce x O 4 composites. Impedance spectroscopy was used to study the effect of grain and grain boundaries on the electrical properties of PTH/Ni 0.5 Zn 0.5 Fe 2-x Ce x O 4 composites. Cole-Cole plots showed the formation of single semi-circles for all samples in the measured frequency range. This showed that the composite material was composed of good conducting grains and poorly conducting grain boundaries.

  17. Investigation of magnetic order in SmTr2Zn20 (Tr = Fe, Co, Ru) and SmTr2Cd20 (Tr = Ni, Pd)

    NASA Astrophysics Data System (ADS)

    Yazici, Duygu; White, B. D.; Ho, P.-C.; Kanchanavatee, N.; Huang, K.; Dilley, N. R.; Maple, M. B.

    2015-03-01

    Single crystals of the cage compounds Sm Tr 2Zn20 (Tr = Fe, Co, Ru) and Sm Tr 2Cd20 (Tr = Ni, Pd) have been investigated by means of electrical resistivity, magnetization, and specific heat measurements. The compounds SmFe2Zn20, SmRu2Zn20,andSmNi2Cd20 exhibit ferromagnetic order with Curie temperatures of TC = 47.4 K, 7.6 K, and 7.5 K, respectively, whereas SmPd2Cd20 is an antiferromagnet with a Néel temperature of TN = 3.4 K. No evidence for magnetic order is observed in SmCo2Zn20 down to 110 mK. The Sommerfeld coefficients γ are found to be 57 mJ/mol-K2 for SmFe2Zn20, 79.5 mJ/mol-K2 for SmCo2Zn20, 258 mJ/mol-K2 for SmRu2Zn20, 165 mJ/mol-K2 for SmNi2Cd20, and 208 mJ/mol-K2 for SmPd2Cd20. Enhanced values of Sommerfeld coefficients γ and a quadratic temperature dependence of the electrical resistivity at low temperature for SmRu2Zn20andSmPd2Cd20 suggest an enhancement of the quasiparticle masses due to hybridization between localized 4 f and conduction electron states. Research at UCSD was supported by the U.S. DOE under Grant No. DE-FG02-04-ER46105 and the U.S. NSF under Award Grant No. DMR 1206553. Research at California State University, Fresno was supported by the U.S. NSF under Grant No. DMR 1104544.

  18. Benthic macroalgae as biological indicators of heavy metal pollution in the marine environments: a biomonitoring approach for pollution assessment.

    PubMed

    Chakraborty, Sukalyan; Bhattacharya, Tanushree; Singh, Gurmeet; Maity, Jyoti Prakash

    2014-02-01

    Metal pollution in the marine coastline environment is an important topical issue in the context of ecological disturbance and climate change. Heavy metal contaminations (Cd, Cr, Cu, Mn, Ni, Pb and Zn) in seawater and surficial sediments, as well as macroalgal diversity, were determined in six different locations along the coast of the Gulf of Kutch in India. The marine coastline environment was found to be enriched with Cd and Zn in comparison to other metals. Significant (p ≤ 0.05) inter-elemental positive-correlations were observed between Fe-Mn, Fe-Cu, Fe-Cr, Fe-Zn, Cr-Cu, Cu-Mn, and Cd-Zn, as well as negative-correlations between Cd-Pb, Ni-Pb, and Zn-Pb. Though genus specific macroalgal responses to heavy metal accumulation were significant, species specific response was insignificant (p ≤ 0.05). The relative abundance of metals in macroalgae followed the order of Fe>Zn>Mn>Cu>Cd>Cr>Ni>Pb. The high uptake of metals in green algae (Ulva lactuca and Enteromorpha intestinalis) and brown algae (Padina gymnospora and Dictyota bartayresiana) suggested that these algae may be used as potential biomonitors for heavy metal pollution. Three pollution indicators, Contamination Factor (CF), Enrichment Factor (EF) and Geochemical Index (Igeo) were calculated to determine the degree of metal pollution in the marine coastline and the contribution of anthropogenic influence. © 2013 Published by Elsevier Inc.

  19. Magnetic and dielectric properties in the UHF frequency band of half-dense Ni-Zn-Co ferrites ceramics with Fe-excess and Fe-deficiency

    NASA Astrophysics Data System (ADS)

    Mattei, Jean-Luc; Souriou, David; Chevalier, Alexis

    2018-02-01

    This work investigates electromagnetic properties of half-dense ceramics with compositions Ni0.5Zn0.3Co0.2FeyO4-δ where y = 1.98 (Iron deficient, noted ID) or y = 2.3 (Iron in excess, noted IE). IE and ID materials are obtained by chemical coprecipitation route. The obtained nano-sized powders are pressed and annealed at two temperatures (800 °C, 900 °C), so has to obtain half-massive ceramics. Ferrous and ferric ions coexist in the crystalline structures, but the former in a less extend for ID ferrite. The concomitant influences of Fe2+ and Fe3+ on the dielectric and magnetic losses (ε″/ε‧ and μ″/μ‧, respectively) are considered at frequency up to 6 GHz. The permeability dispersion changes from relaxation-like to resonance-like with the decrease in ferrous ions. In reason of the relaxing-like behavior of Fe2+, and because of a relatively high amount in Fe2+, IE sample shows lower total losses (magnetic and dielectric) than ID sample. These conclusions applied for TA = 900 °C. At frequencies above 700 MHz, the total loss values (IE and ID samples) are prohibitive for antenna downsizing whatever is the firing temperature value (800 °C and 900 °C). Whereas at frequencies below 700 MHz Ni0.5Zn0.3Co0.2Fe2.3O4+δ may leads to better antenna performances than Ni0.5Zn0.3Co0.2Fe1.98O4-δ.

  20. Fabrication of a novel NiFe2O4/Zn-Al layered double hydroxide intercalated with EDTA composite and its adsorption behavior for Cr(VI) from aqueous solution

    NASA Astrophysics Data System (ADS)

    Deng, Lin; Shi, Zhou; Wang, Li; Zhou, Shiqing

    2017-05-01

    A novel magnetic NiFe2O4/Zn-Al layered double hydroxide intercalated with EDTA composite (NiFe2O4/ZnAl-EDTA LDH) was prepared through modified coprecipitation method and employed for adsorptive removal of Cr(VI) from aqueous solution. The adsorbents were characterized using Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), vibrating sample magnetometer (VSM), and X-ray photoelectron spectroscopy (XPS). Factors affecting the Cr(VI) adsorption, such as initial solution pH, adsorbent dosage, contact time, initial Cr(VI) concentration, temperature and coexisting ions, were studied systematically. Experiments results show that the magnetic NiFe2O4/ZnAl-EDTA LDH exhibits high adsorption efficiency within a wide pH range of 3.0-7.0 (R>80% at Cr(VI) concentration 50 mg L-1, contact time 360 min, and adsorbent dosage 2 g/L) and quick separation property. The adsorption process is fitted well with the Langmuir isotherm and pseudo-second-order kinetic model. The maximum theoretical adsorption capacity is found to be 77.22 mg g-1 at pH 6.0 and 318 K. The positive ΔH value (2.907 kJ mol-1) and negative ΔG value (-4.722 kJ mol-1) at 298-318 K reveals that the adsorption process is feasible, spontaneous and endothermic. Coexisting anions (PO43-, SO42-, CO32-, HCO3-, Cl-, and NO3-) have no significant effect on Cr(VI) removal. The mechanism study indicates that the adsorption of Cr(VI) onto NiFe2O4/ZnAl-EDTA LDH mainly involves electrostatic attraction and ion exchange interaction. It is interesting to note that a proportion of Cr(VI) adsorbed on the adsorbent surface are reduced to Cr(III) during the adsorption process. Results from this study demonstrate the potential utility of the magnetic NiFe2O4/ZnAl-EDTA LDH that could be developed into a viable technology for efficient removal of Cr(VI) from aqueous solution.

  1. Doping effect on the structural properties of Cu1-x(Ni, Zn, Al and Fe)xO samples (0

    NASA Astrophysics Data System (ADS)

    Amaral, J. B.; Araujo, R. M.; Pedra, P. P.; Meneses, C. T.; Duque, J. G. S.; dos S. Rezende, M. V.

    2016-09-01

    In this work, the effect of insertion of transition metal, TM (=Ni, Zn, Al and Fe), ions in Cu1-xTMxO samples (0

  2. The effect of solution pH on the electrochemical performance of nanocrystalline metal ferrites MFe2O4 (M=Cu, Zn, and Ni) thin films

    NASA Astrophysics Data System (ADS)

    Elsayed, E. M.; Rashad, M. M.; Khalil, H. F. Y.; Ibrahim, I. A.; Hussein, M. R.; El-Sabbah, M. M. B.

    2016-04-01

    Nanocrystalline metal ferrite MFe2O4 (M=Cu, Zn, and Ni) thin films have been synthesized via electrodeposition-anodization process. Electrodeposited (M)Fe2 alloys were obtained from aqueous sulfate bath. The formed alloys were electrochemically oxidized (anodized) in aqueous (1 M KOH) solution, at room temperature, to the corresponding hydroxides. The parameters controlling the current efficiency of the electrodeposition of (M)Fe2 alloys such as the bath composition and the current density were studied and optimized. The anodized (M)Fe2 alloy films were annealed in air at 400 °C for 2 h. The results revealed the formation of three ferrite thin films were formed. The crystallite sizes of the produced films were in the range between 45 and 60 nm. The microstructure of the formed film was ferrite type dependent. The corrosion behavior of ferrite thin films in different pH solutions was investigated using open circuit potential (OCP) and potentiodynamic polarization measurements. The open circuit potential indicates that the initial potential E im of ZnFe2O4 thin films remained constant for a short time, then sharply increased in the less negative direction in acidic and alkaline medium compared with Ni and Cu ferrite films. The values of the corrosion current density I corr were higher for the ZnFe2O4 films at pH values of 1 and 12 compared with that of NiFe2O4 and CuFe2O4 which were higher only at pH value 1. The corrosion rate was very low for the three ferrite films when immersion in the neutral medium. The surface morphology recommended that Ni and Cu ferrite films were safely used in neutral and alkaline medium, whereas Zn ferrite film was only used in neutral atmospheres.

  3. Preparation of high-permeability NiCuZn ferrite*

    PubMed Central

    Hu, Jun; Yan, Mi

    2005-01-01

    Appropriate addition of CuO/V2O5 and the reduction of the granularity of the raw materials particle decrease the sintering temperature of NiZn ferrite from 1200 °C to 930 °C. Furthermore, the magnetic properties of the NiZn ferrite prepared at low temperature of 930 °C is superior to that of the NiZn ferrite prepared by sintering at high temperature of 1200 °C because the microstructure of the NiZn ferrite sintered at 930 °C is more uniform and compact than that of the NiZn ferrite sintered at 1200 °C. The high permeability of 1700 and relative loss coefficient tanδ/μi of 9.0×10−6 at 100 kHz was achieved in the (Ni0.17Zn0.63Cu0.20)Fe1.915O4 ferrite. PMID:15909348

  4. On the ortho-positronium quenching reactions promoted by Fe(II), Fe(III), Co(III), Ni(II), Zn(II) and Cd(II) cyanocomplexes

    NASA Astrophysics Data System (ADS)

    Fantola Lazzarini, Anna L.; Lazzarini, Ennio

    The o-Ps quenching reactions promoted in aqueous solutions by the following six cyanocomplexes: [Fe(CN) 6] 4-; [Co(CN) 6] 3-; [Zn(CN) 4] 2-; [Cd(CN) 6] 2-; [Fe(CN) 6] 3-; [Ni(CN) 4] 2- were investigated. The first four reactions probably consist in o-Ps addition across the CN bond, their rate constants at room temperature, Tr, being ⩽(0.04±0.02) × 10 9 M -1 s -1, i.e. almost at the limit of experimental errors. The rate constant of the fifth reaction, in o-Ps oxydation, at Tr is (20.3±0.4) × 10 9 M -1 s -1. The [Ni(CN) 4] 2-k value at Tr, is (0.27±0.01) × 10 9 M -1 s -1, i.e. 100 times less than the rate constants of o-Ps oxydation, but 10 times larger than those of the o-Ps addition across the CN bond. The [Ni(CN) 4] 2- reaction probably results in formation of the following positronido complex: [Ni(CN) 4Ps] 2-. However, it is worth noting that the existence of such a complex is only indirectly deduced. In fact it arises from comparison of the [Ni(CN) 4] 2- rate constant with those of the Fe(II), Zn(II), Cd(II), and Co(III) cyanocomplexes, which, like the Ni(II) cyanocomplex, do not promote o-Ps oxydation or spin exchange reactions.

  5. Spectroscopy investigation of nanostructured nickel–zinc ferrite obtained by mechanochemical synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lazarević, Zorica Ž., E-mail: lzorica@yahoo.com; Milutinović, Aleksandra N.; Jovalekić, Čedomir D.

    2015-03-15

    Highlights: • Nano powder of Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} prepared by a soft mechanochemicaly after 10 h milling. • Phase formation controlled by XRD, Raman and IR spectroscopy. • Spectroscopy measurements indicate that the prepared samples have spinel structure. • The average particles size are found to be around 20 nm. • The degree of inversion is δ = 0.36 for NZF obtained from hydroxides for 10 h. - Abstract: Nano crystalline samples of nickel–zinc ferrite, Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} were prepared by mechanochemical route in a planetary ball mill starting from two mixtures of the appropriate quantitiesmore » of the powders: case (1) oxide powders: NiO, ZnO and α-Fe{sub 2}O{sub 3} in one case, and in the second case (2) hydroxide powders: Ni(OH){sub 2}, Zn(OH){sub 2} and Fe(OH){sub 3}. In order to monitor the progress of chemical reaction and confirm phase formation, powder samples obtained after 5 h and 10 h of milling were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman, IR and Mössbauer spectroscopy. It is shown that the soft mechanochemical method, i.e. mechanochemical activation of hydroxides, produces high quality single phase Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} samples in much more efficient way. From the IR spectroscopy of single phase samples it is obvious that energy of modes depends on the ratio of cations. The deconvolution of Raman spectra allows to separate contributions of different cations to a particular type of vibration and to estimate the degree of inversion.« less

  6. Wire-in-tube structure fabricated by single capillary electrospinning via nanoscale Kirkendall effect: the case of nickel-zinc ferrite.

    PubMed

    Fu, Jiecai; Zhang, Junli; Peng, Yong; Zhao, Changhui; He, Yongmin; Zhang, Zhenxing; Pan, Xiaojun; Mellors, Nigel J; Xie, Erqing

    2013-12-21

    Wire-in-tube structures have previously been prepared using an electrospinning method by means of tuning hydrolysis/alcoholysis of a precursor solution. Nickel-zinc ferrite (Ni0.5Zn0.5Fe2O4) nanowire-in-nanotubes have been prepared as a demonstration. The detailed nanoscale characterization, formation process and magnetic properties of Ni0.5Zn0.5Fe2O4 nanowire-in-nanotubes has been studied comprehensively. The average diameters of the outer tubes and inner wires of Ni0.5Zn0.5Fe2O4 nanowire-in-nanotubes are around 120 nm and 42 nm, respectively. Each fully calcined individual nanowire-in-nanotube, either the outer-tube or the inner-wire, is composed of Ni0.5Zn0.5Fe2O4 monocrystallites stacked along the longitudinal direction with random orientation. The process of calcining electrospun polymer composite nanofibres can be viewed as a morphologically template nucleation and precursor diffusion process. This allows the nitrates precursor to diffuse toward the surface of the nanofibres while the oxides (decomposed from hydroxides and nitrates) products diffuse to the core region of the nanofibres; the amorphous nanofibres transforming thereby into crystalline nanowire-in-nanotubes. In addition, the magnetic properties of the Ni0.5Zn0.5Fe2O4 nanowire-in-nanotubes were also examined. It is believed that this nanowire-in-nanotube (sometimes called core-shell) structure, with its uniform size and well-controlled orientation of the long nanowire-in-nanotubes, is particularly attractive for use in the field of nano-fluidic devices and nano-energy harvesting devices.

  7. [In Process Citation].

    PubMed

    Wang, Bingsong; Li, Yijun; Wu, Xiaolu; Liu, Qingqing; Tang, Xue; Wang, Zuo

    2016-03-25

    Objetivos: oligoelementos como zinc (Zn), hierro (Fe) y cobre (Cu) tienen una influencia significativa en el mantenimiento de la función inmune y del metabolismo normales; modulan la función immune e influyen en la susceptibilidad del organismo ante infecciones. Pero la relación entre trazas de estos elementos y la bronconeumonía resultó incierta. Métodos: en este estudio fueron incluidos 28 niños con bronconeumonía y 46 niños sanos agrupados por edad. Se determinaron los niveles de Zn, Cu, Fe, calcio (Ca) y/o magnesio (Mg) en el suero de los niños con bronconeumonía y sin ella mediante espectrofotometría de absorción atómica. Resultados: los resultados muestran que varios niveles de microelementos como Zn, Ca, Mg y Fe en el grupo con bronconeumonía son menores que en el grupo control. En el grupo de niños con bronconeumonía el nivel de Ca en el suero está asociado positivamente con el zinc (Zn) (p < 0,05) y el hierro (Fe) (p < 0,05), mientras que hay una correlación positiva entre el cobre (Cu) y el calcio (Ca) (p < 0,05), magnesio (mg) (p < 0,05). Conclusión: el nivel de oligoelemento en el suero puede estar asociado con el riesgo de bronconeumonía entre los niños.

  8. Trace elements in muscle of three fish species from Todos os Santos Bay, Bahia State, Brazil.

    PubMed

    de Santana, Carolina Oliveira; de Jesus, Taíse Bomfim; de Aguiar, William Moura; de Jesus Sant'anna Franca-Rocha, Washington; Soares, Carlos Alberto Caroso

    2017-03-01

    In this study, an analysis was performed on the concentrations of the trace elements Al, As, Ba, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, V, and Zn in muscle of two carnivorous and one planktivorous fish species collected at Todos os Santos Bay (BTS). The accumulation order of the trace elements in Lutjanus analis was Al >Zn >Fe >Cr >Ba >Ni. In Cetengraulis edentulus, the order was Al >Fe >Zn >Cr >Ni >Mn >As. In the species Diapterus rhombeus, the order was Al >Fe >Zn >Cr >Ni >Mn >Cd. To determine the risk related to the consumption of fish, toxicity guidelines were used as standard references. It was observed that the species C. edentulus contained concentrations of As exceeding WHO limits, but these concentrations were acceptable according to the Agência Nacional de Vigilância Sanitária (ANVISA) guidelines. Cd levels were found only in D. rhombeus and in low concentrations according to the determinations of WHO and ANVISA. Pb levels were not detected in any of the three fish species. The analyzed elements did not differ statistically according to the species and feeding habits. The results point to possible risks of human contamination by As related to the consumption of the fish species C. edentulus from the BTS.

  9. ICP-AES Determination of Mineral Content in Boletus tomentipes Collected from Different Sites of China.

    PubMed

    Wang, Xue-mei; Zhang, Ji; Li, Tao; Li, Jie-qing; Wang, Yuan-zhong; Liu, Hong-gao

    2015-05-01

    P, Na, Ca, Cu, Fe, Mg, Zn, As, Cd, Co, Cr and Ni, contents have been examined in caps and stipes of Boletus tomentipes collected from different sites of Yunnan province, southwest China. The elements were determined using inductively coupled plasma atomic emission spectroscopy (ICP-AES) with microwave digestion. P, Ca, Mg, Fe, Zn and Cu were the most abundant amongst elements determined in Boletus tomentipes. The caps were richer in P, Mg, Zn and Cd, and the stipes in Ca, Co and Ni. Cluster analysis showed a difference between Puer (BT7 and BT8) and other places. The PCA explained about 77% of the total variance, and the minerals differentiating these places were P (PC1) together with Ca, Cu, Fe, Mg, As and Ni, Na (PC2) together with Cd, and Zn (PC3). The results of this study imply that element concentrations of a mushroom are mutative when collected from the different bedrock soil geochemistry.

  10. Recovery of zinc and cadmium from spent batteries using Cyphos IL 102 via solvent extraction route and synthesis of Zn and Cd oxide nanoparticles.

    PubMed

    Singh, Rashmi; Mahandra, Harshit; Gupta, Bina

    2017-09-01

    The overall aim of this study is to separate and recover zinc and cadmium from spent batteries. For this purpose Cyphos IL 102 diluted in toluene was employed for the extraction and recovery of Zn and Cd from Zn-C and Ni-Cd batteries leach liquor. The influence of extractant concentration for the leach liquors of Zn-C (0.01-0.05mol/L) and Ni-Cd (0.04-0.20mol/L) batteries has been investigated. Composition of the leach liquor obtained from Zn-C/Ni-Cd spent batteries is Zn - 2.18g/L, Mn - 4.59g/L, Fe - 4.0×10 -3 g/L, Ni - 0.2×10 -3 g/L/Cd - 4.28g/L, Ni - 0.896×10 -1 g/L, Fe - 0.148g/L, Co - 3.77×10 -3 g/L, respectively. Two stage counter current extraction at A/O 1:1 and 3:2 with 0.04mol/L and 0.2mol/L Cyphos IL 102 for Zn and Cd, respectively provide more than 99.0% extraction of both the metal ions with almost negligible extraction of associated metal ions. A stripping efficiency of around 99.0% for Zn and Cd was obtained at O/A 1:1 using 1.0mol/L HNO 3 in two and three counter current stages, respectively. ZnO and CdO were also synthesized using the loaded organic phase and characterized using XRD, FE-SEM and EDX techniques. XRD peaks of ZnO and CdO correspond to zincite and monteponite, respectively. The average particle size was ∼27.0nm and ∼37.0nm for ZnO and CdO, respectively. The EDX analysis of ZnO and CdO shows almost 1:1 atomic percentage. Copyright © 2017. Published by Elsevier Ltd.

  11. Effect of copper and nickel doping on the optical and structural properties of ZnO

    NASA Astrophysics Data System (ADS)

    Muǧlu, G. Merhan; Sarıtaş, S.; ćakıcı, T.; Şakar, B.; Yıldırım, M.

    2017-02-01

    The present study is focused on the Cu doped ZnO and Ni doped ZnO dilute magnetic semiconductor thin films. ZnO:Cu and ZnO:Ni thin films were grown by Chemically Spray Pyrolysis (CSP) method on glass substrates. Optical analysis of the films was done spectral absorption and transmittance measurements by UV-Vis double beam spectrophotometer technique. The structure, morphology, topology and elemental analysis of ZnO:Cu and ZnO:Ni dilute magnetic thin films were investigated by X-ray diffraction (XRD), Raman Analysis, field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM) techniques, respectively. Also The magnetic properties of the ZnO:Ni thin film was investigated by vibrating sample magnetometer (VSM) method. VSM measurements of ZnO:Ni thin film showed that the ferromagnetic behavior.

  12. Structural investigations of transition metal (II) tetracyanonickelate complexes of 3-chloropyridine using Fourier transform-infrared and laser Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Akyüz, Sevim; Akyüz, Tanil; Eric, J.; Davies, D.

    1992-01-01

    The FT-IR and laser-Raman spectra of five new complexes of the formula ML 2Ni(CN) 4 (where MMn, Fe, Ni, Zn or Cd; L3-chloropyridine) are reported. The complexes are shown to have a structure consisting of two dimensional polymeric layers formed with Ni(CN) 4 ions bridged by ML 2 cations. For a given series of isomorphous complexes, the effects of metal ligand bond formation on the ligand vibrational modes are examined and the metal-sensitivity sequence of the ligand frequencies is found to be Mn≈Cd

  13. Distribution of metal concentrations in sediments of the coastal zone of the Gulf of Riga and open part of the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Seisuma, Z.; Kulikova, I.

    2012-11-01

    The comparison of spatial and temporal distribution of Hg, Cd, Pb, Cu, Ni, Zn, Mn and Fe concentrations in sediments from the Gulf of Riga and open Baltic Sea along the coastal zone is presented for the first time. There were considerable differences in Pb, Zn, Mn and Fe levels in sediment at various stations of the Gulf of Riga. A significant difference of Cd, Pb, Cu, Ni, Zn levels was found in sediments of various stations in the open Baltic coast. The amount of Cd, Pb, Cu, Ni, Zn and Fe levels also differed significantly in the sediments of the Gulf of Riga in different years. A considerable yearly difference in amount of Hg, Cd, Pb, Cu, Ni and Mn levels was found in sediments in the open Baltic coast. The essential highest values of Pb and Zn in coastal sediments of the open Baltic Sea are stated in comparison with the Gulf of Riga. The concentrations of other metals have only a tendency to be higher in coastal sediments of the open Baltic Sea in comparison with the Gulf of Riga. Natural and anthropogenic factors were proved to play an important role in determining resultant metals concentrations in the regions.

  14. Biomonitoring of heavy metals in feathers of eleven common bird species in urban and rural environments of Tiruchirappalli, India.

    PubMed

    Manjula, Menon; Mohanraj, R; Devi, M Prashanthi

    2015-05-01

    Heavy metals continue to remain as a major environmental concern in spite of emission control measures. In this study, we analyzed the concentrations of heavy metals (Fe, Cr, Mn, Ni, Cu, Zn, and Cd) in the feathers of 11 species of birds collected from urban and rural areas of Tiruchirappalli, Southern India. Metal concentrations followed the order: Fe > Cu > Zn > Cr > Mn > Ni > Cd. Irrespective of sample locations, heavy metals such as Fe, Cr, Ni, Zn, and Cu were detected in high concentrations, while Cd and Mn were observed in lower concentrations. In contrary to our assumption, there were no statistically significant intraspecific and urban-rural differences in the metal concentrations except for Zn. Pairwise comparisons among species irrespective of metal type showed significant interspecific differences between Acridotheres tristis and Centropus phasianinus, A. tristis and Milvus migrans, C. phasianinus and M. migrans, M. migrans and Eudynamys scolopaceus, and Psittacula krameri and E. scolopaceus. Principal component analysis carried out for urban data extracted Ni, Mn, Zn, Fe, and Cu accounting for 48% variance implying dietary intake and external contamination as important sources for metals. In the rural, association of Zn, Cd, Ni, and Cr suggests the impact of metal fabrication industries and leather tanning operations.

  15. Investigation of collision-induced dissociation products and structures of gas-phase [ M·GlyGlyHis-H]+ ( M = Fe, Ni, Cu, and Zn) complexes.

    PubMed

    Gannamani, Bharathi; Shin, Joong-Won

    2017-02-01

    Collision-induced dissociation is carried out for electrosprayed [Fe·GlyGlyHis-H] + , [Ni·GlyGlyHis-H] + , [Cu·GlyGlyHis-H] + , and [Zn·GlyGlyHis-H] + complexes. [Fe·GlyGlyHis-H] + , [Ni·GlyGlyHis-H] + , and [Zn·GlyGlyHis-H] + yield metal-bound peptide sequence ions and dehydrated ions as primary products, whereas [Cu·GlyGlyHis-H] + generates a more extensive series of metal-bound sequence ions and a product arising from the unusual loss of a formaldehyde moiety; dehydration is significantly suppressed for this complex. Density functional theory calculations show that the copper ion-deprotonated peptide binding energy is substantially higher than those in other complexes, suggesting that there is a correlation between ion-ligand binding energy and their fragmentation behavior.

  16. Whole-genome sequence of Cupriavidus sp. strain BIS7, a heavy-metal-resistant bacterium.

    PubMed

    Hong, Kar Wai; Thinagaran, Dinaiz al; Gan, Han Ming; Yin, Wai-Fong; Chan, Kok-Gan

    2012-11-01

    Cupriavidus sp. strain BIS7 is a Malaysian tropical soil bacterium that exhibits broad heavy-metal resistance [Co(II), Zn(II), Ni(II), Se(IV), Cu(II), chromate, Co(III), Fe(II), and Fe(III)]. It is particularly resistant to Fe(II), Fe(III), and Zn(II). Here we present the assembly and annotation of its genome.

  17. Removal of metals from landfill leachate by sorption to activated carbon, bone meal and iron fines.

    PubMed

    Modin, Hanna; Persson, Kenneth M; Andersson, Anna; van Praagh, Martijn

    2011-05-30

    Sorption filters based on granular activated carbon, bone meal and iron fines were tested for their efficiency of removing metals from landfill leachate. Removal of Al, As, Ca, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Mo, Ni, Pb, Sr and Zn were studied in a laboratory scale setup. Activated carbon removed more than 90% of Co, Cr, Cu, Fe, Mn and Ni. Ca, Pb, Sr and Zn were removed but less efficiently. Bone meal removed over 80% of Cr, Fe, Hg, Mn and Sr and 20-80% of Al, Ca, Cu, Mo, Ni, Pb and Zn. Iron fines removed most metals (As, Ca, Co, Cr, Cu, Fe, Mg, Mn, Pb, Sr and Zn) to some extent but less efficiently. All materials released unwanted substances (metals, TOC or nutrients), highlighting the need to study the uptake and release of a large number of compounds, not only the target metals. To remove a wide range of metals using these materials two or more filter materials may need to be combined. Sorption mechanisms for all materials include ion exchange, sorption and precipitation. For iron fines oxidation of Fe(0) seems to be important for metal immobilisation. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Physico-Chemical and Heavy Metal Profiles of Top Soils Sourced from Abandoned Lead-Zinc Mines at Enyigba, Ameri and Ameka Villages, Abakaliki District, Ebonyi State, South Eastern Nigeria

    NASA Astrophysics Data System (ADS)

    Osayande, D. A.; Azi, E. D.; Obayagbona, N.; Ovwasa, O. M.; Anegbe, B.

    2016-12-01

    Twenty (20) soil samples were collected from several abandoned old Pb - Zn mines located in Enyigba, Ameri, Ameka villages in the Abakaliki district of Ebonyi State, South-Eastern Nigeria. The soils were analyzed for Fe, Mn, Cu, Zn, Pb, Cd, Ni, Cr, V, pH, organic carbon and Electrical Conductivity using routine procedures. The physic-chemical analyses showed that pH values were generally low. The Electrical conductivity of the soils were high while organic carbon content in the soil was generally low. The heavy metal mean trend indicated that Pb (86) > Zn (64) > Cu (20) > Cd (15) > Ni (7) > Cr (6) > V (1). Fe and Mn values were also high. The variations observed for the heavy metal suggested both geogenic and anthropogenic activities were responsible for their distribution. Soil contamination was assessed on the basis of contamination factor (CF) and enrichment factor (EF). The CF values for the soil revealed moderate contamination for Ni, Cr, V, Zn and Mn, while Pb and Cd showed high contamination. The results of enrichment factor (EF) showed that using Fe concentration in the background value, Ni, Cr, V and Mn had moderate enrichment, Pb and Zn showed significant enrichment while Cd indicated high enrichment. The results of the principal component and cluster analyses showed that Zn, Cu, Cd, Pb metal originated from similar source but may have been significantly influenced by anthropogenic activities, while Ni, Cr, V were attributable to geogenic sources.

  19. The formation of unsaturated zones within cemented paste backfill mixtures-effects on the release of copper, nickel, and zinc.

    PubMed

    Hamberg, Roger; Maurice, Christian; Alakangas, Lena

    2018-05-13

    Flooding of cemented paste backfill (CPB) filled mine workings is, commonly, a slow process and could lead to the formation of unsaturated zones within the CPB fillings. This facilitates the oxidation of sulfide minerals and thereby increases the risk of trace metal leaching. Pyrrhotitic tailings from a gold mine (cyanidation tailing (CT)), containing elevated concentrations of nickel (Ni), copper (Cu), and zinc (Zn), were mixed with cement and/or fly ash (1-3 wt%) to form CT-CPB mixtures. Pyrrhotite oxidation progressed more extensively during unsaturated conditions, where acidity resulted in dissolution of the Ni, Cu, and Zn associated with amorphous Fe precipitates and/or cementitious phases. The establishment of acidic, unsaturated conditions in CT-CBP:s with low fractions (1 wt%) of binders increased the Cu release (to be higher than that from CT), owing to the dissolution of Cu-associated amorphous Fe precipitates. In CT-CPB:s with relatively high proportions of binder, acidity from pyrrhotite oxidation was buffered to a greater extent. At this stage, Zn leaching increased due the occurrence of fly ash-specific Zn species soluble in alkaline conditions. Irrespective of binder proportion and water saturation level, the Ni and Zn release were lower, compared to that in CT. Fractions of Ni, Zn, and Cu associated with acid-soluble phases or amorphous Fe precipitates, susceptible to remobilization under acidic conditions, increased in tandem with binder fractions. Pyrrhotite oxidation occurred irrespective of the water saturation level in the CPB mixtures. That, in turn, poses an environmental risk, whereas a substantial proportion of Ni, Cu, and Zn was associated with acid-soluble phases.

  20. Structural, spectroscopic and thermal characterization of 2-tert-butylaminomethylpyridine-6-carboxylic acid methylester and its Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and UO(2)(II) complexes.

    PubMed

    Mohamed, Gehad G; El-Gamel, Nadia E A

    2005-04-01

    Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and UO(2)(II) complexes with the ligand 2-tert-butylaminomethylpyridine-6-carboxylic acid methylester (HL(2)) have been prepared and characterized by elemental analyses, molar conductance, magnetic moment, thermal analysis and spectral data. 1:1 M:HL(2) complexes, with the general formula [M(HL(2))X(2)].nH(2)O (where M = Co(II) (X = Cl, n = 0), Ni(II) (X = Cl, n = 3), Cu(II) (grey colour, X = AcO, n = 1), Cu(II) (yellow colour, X = Cl, n = 0) and Zn(II) (X = Br, n = 0). In addition, the Fe(III) and UO(2)(II) complexes of the type 1:2 M:HL(2) and with the formulae [Fe(L(2))(2)]Cl and [UO(2)(HL(2))(2)](NO(3))(2) are prepared. From the IR data, it is seen that HL(2) ligand behaves as a terdentate ligand coordinated to the metal ions via the pyridyl N, carboxylate O and protonated NH group; except the Fe(III) complex, it coordinates via the deprotonated NH group. This is supported by the molar conductance data, which show that all the complexes are non-electrolytes, while the Fe(III) and UO(2)(II) complexes are 1:1 electrolytes. IR and H1-NMR spectral studies suggest a similar behaviour of the Zn(II) complex in solid and solution states. From the solid reflectance spectral data and magnetic moment measurements, the complexes have a trigonal bipyramidal (Co(II), Ni(II), Cu(II) and Zn(II) complexes) and octahedral (Fe(III), UO(2)(II) complexes) geometrical structures. The thermal behaviour of the complexes is studied and the different dynamic parameters are calculated applying Coats-Redfern equation.

  1. Probing the Structure, Stability and Hydrogen Adsorption of Lithium Functionalized Isoreticular MOF-5 (Fe, Cu, Co, Ni and Zn) by Density Functional Theory

    PubMed Central

    Venkataramanan, Natarajan Sathiyamoorthy; Sahara, Ryoji; Mizuseki, Hiroshi; Kawazoe, Yoshiyuki

    2009-01-01

    Li adsorption on isoreticular MOFs with metal Fe, Cu, Co, Ni and Zn was studied using density function theory. Li functionalization shows a considerable structural change associated with a volume change in isoreticular MOF-5 except for the Zn metal center. Hydrogen binding energies on Li functionalized MOFs are seen to be in the range of 0.2 eV, which is the desired value for an ideal reversible storage system. This study has clearly shown that Li doping is possible only in Zn-based MOF-5, which would be better candidate to reversibly store hydrogen. PMID:19468328

  2. Evaluation of structural, morphological and magnetic properties of CuZnNi (CuxZn0.5-xNi0.5Fe2O4) nanocrystalline ferrites for core, switching and MLCI's applications

    NASA Astrophysics Data System (ADS)

    Akhtar, Majid Niaz; Khan, Muhammad Azhar; Ahmad, Mukhtar; Nazir, M. S.; Imran, M.; Ali, A.; Sattar, A.; Murtaza, G.

    2017-01-01

    The influence of Cu substitution on the structural and morphological characteristics of Ni-Zn nanocrystalline ferrites have been discussed in this work. The detailed and systematic magnetic characterizations were also done for Cu substituted Ni-Zn nanoferrites. The nanocrystalline ferrites of Cu substituted CuxZn0.5-xNi0.5Fe2O4 ferrites (x=0, 0.1, 0.2, 0.3, 0.4 and 0.5) were synthesized using sol gel self-combustion hybrid method. X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Transmission electron microscope (TEM) and Vibrating sample magnetometer (VSM) were used to investigate the properties of Cu substituted nanocrystalline ferrites. Single phase structure of Cu substituted in Ni-Zn nanocrystalline ferrites were investigated for all the samples. Crystallite size, lattice constant and volume of the cell were found to increase by increasing Cu contents in spinel structure. The better morphology with well-organized nanocrystals of Cu-Zn-Ni ferrites at x=0 and 0.5 were observed from both FESEM and TEM analysis. The average grain size was 35-46 nm for all prepared nanocrystalline samples. Magnetic properties such as coercivity, saturation, remanence, magnetic squareness, magneto crystalline anisotropy constant (K) and Bohr magneton were measured from the recorded M-H loops. The magnetic saturation and remanence were increased by the incorporation of Cu contents. However, coercivity follow the Stoner-Wolforth model except for x=0.3 which may be due to the site occupancy and replacement of Cu contents from octahedral site. The squareness ratio confirmed the super paramgnetic behaviour of the Cu substituted in Ni-Zn nanocrystalline ferrites. Furthermore, Cu substituted Ni-Zn nanocrystalline ferrites may be suitable for many industrial and domestic applications such as components of transformers, core, switching, and MLCI's due to variety of the soft magnetic characteristics.

  3. Whole-Genome Sequence of Cupriavidus sp. Strain BIS7, a Heavy-Metal-Resistant Bacterium

    PubMed Central

    Hong, Kar Wai; Thinagaran, Dinaiz a/l; Gan, Han Ming; Yin, Wai-Fong

    2012-01-01

    Cupriavidus sp. strain BIS7 is a Malaysian tropical soil bacterium that exhibits broad heavy-metal resistance [Co(II), Zn(II), Ni(II), Se(IV), Cu(II), chromate, Co(III), Fe(II), and Fe(III)]. It is particularly resistant to Fe(II), Fe(III), and Zn(II). Here we present the assembly and annotation of its genome. PMID:23115161

  4. Tunable Twin Matching Frequency (fm1/fm2) Behavior of Ni1-xZnxFe2O4/NBR Composites over 2-12.4 GHz: A Strategic Material System for Stealth Applications.

    PubMed

    Saini, Lokesh; Patra, Manoj Kumar; Jani, Raj Kumar; Gupta, Goutam Kumar; Dixit, Ambesh; Vadera, Sampat Raj

    2017-03-15

    The gel to carbonate precipitate route has been used for the synthesis of Ni 1-x Zn x Fe 2 O 4 (x = 0, 0.25, 0.5 and 0.75) bulk inverse spinel ferrite powder samples. The optimal zinc (50%) substitution has shown the maximum saturation magnetic moment and resulted into the maximum magnetic loss tangent (tanδ m ) > -1.2 over the entire 2-10 GHz frequency range with an optimum value ~-1.75 at 6 GHz. Ni 0.5 Zn 0.5 Fe 2 O 4 - Acrylo-Nitrile Butadiene Rubber (NBR) composite samples are prepared at different weight percentage (wt%) of ferrite loading fractions in rubber for microwave absorption evaluation. The 80 wt% loaded Ni 0.5 Zn 0.5 Fe 2 O 4 /NBR composite (FMAR80) sample has shown two reflection loss (RL) peaks at 5 and 10 GHz. Interestingly, a single peak at 10 GHz for 3.25 mm thickness, can be scaled down to 5 GHz by increasing the thickness up to 4.6 mm. The onset of such twin matching frequencies in FMAR80 composite sample is attributed to the spin resonance relaxation at ~5 GHz (f m1 ) and destructive interference at λ m /4 matched thickness near ~10 GHz (f m2 ) in these composite systems. These studies suggest the potential of tuning the twin frequencies in Ni 0.5 Zn 0.5 Fe 2 O 4 /NBR composite samples for possible microwave absorption applications.

  5. Influence of solution acidity and CaCl2 concentration on the removal of heavy metals from metal-contaminated rice soils.

    PubMed

    Kuo, S; Lai, M S; Lin, C W

    2006-12-01

    Soil washing is considered a useful technique for remediating metal-contaminated soils. This study examined the release edges of Cd, Zn, Ni, Cr, Cu or Pb in two contaminated rice soils from central Taiwan. The concentrations exceeding the trigger levels established by the regulatory agency of Taiwan were Cu, Zn, Ni and Cr for the Ho-Mei soil and Pb for the Nan-Tou soil. Successive extractions with HCl ranging from 0 to 0.2 M showed increased release of the heavy metals with declining pH, and the threshold pH value below which a sharp increase in the releases of the heavy metals was highest for Cd, Zn, and Ni (pH 4.6 to 4.9), intermediate for Pb and Cu (3.1 to 3.8) and lowest for Fe (2.1), Al (2.2) and Cr (1.7) for the soils. The low response slope of Ni and Cr particularly for the rice soils make soil washing with the acid up to the highest concentration used ineffective to reduce their concentrations to below trigger levels. Although soil washing with 0.1 M HCl was moderately effective in reducing Cu, Pb, Zn and Cd, which brought pH of the soils to 1.1+/-0.1 (S.D.), the concurrent release of large quantities of Fe and Al make this remediation technique undesirable for the rice soils containing high clay. Successive washings with 0.01 M HCl could be considered an alternative as the dissolution of Fe and Al was minimal, and between 46 to 64% of Cd, Zn, and Cu for the Ho-Mei soil and 45% of Pb in the Na-Tou soil were extracted after four successive extractions with this dilute acid solution. The efficacy of Cd extraction improved if CaCl2 was added to the acid solution. The correlation analysis revealed that Cr extracted was highly correlated (P < 0.001) with Fe extracted, whereas the Cu, Ni, Zn, Cd or Pb extracted was better correlated (P < 0.001) with Al than with Fe extracted. It is possible that the past seasonal soil flooding and drainage in the soils for rice production was conducive to incorporating Cr within the structure of Fe oxide, thereby making them extremely insoluble even in 0.2 M HCl solution. The formation of solid solution of Ni with Al oxide was also possible, making it far less extractable than Cd, Zn, Cu, or Pb with the acid concentrations used.

  6. Heavy metals and polycyclic aromatic hydrocarbons: pollution and ecological risk assessment in street dust of Tehran.

    PubMed

    Saeedi, Mohsen; Li, Loretta Y; Salmanzadeh, Mahdiyeh

    2012-08-15

    50 street dust samples from four major streets in eastern and southern Tehran, the capital of Iran, were analyzed for metal pollution (Cu, Cr, Pb, Ni, Cd, Zn, Fe, Mn and Li). Hakanson's method was used to determine the Risk Index (RI) and ecological risks. Amongst these samples, 21 were also analyzed for polycyclic aromatic hydrocarbons (PAHs). Correlation, cluster and principal component analyses identified probable natural and anthropogenic sources of contaminants. The dust had elevated concentrations of Pb, Cd, Cu, Cr, Ni, Zn, Fe and PAHs. Enrichment factors of Cu, Pb, Cd and Zn showed that the dust is extremely enriched in these metals. Multivariate statistical analyses revealed that Cu, Pb, Zn, Fe and PAHs and, to a lesser extent, Cr and Ni have common anthropogenic sources. While Mn and Li were identified to have natural sources, Cd may have different anthropogenic origins. All samples demonstrated high ecological risk. Traffic and related activities, petrogenic and pyrogenic sources are likely to be the main anthropogenic sources of heavy metals and PAHs in Tehran dust. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Metal selectivity of the E. coli nickel metallochaperone, SlyD

    PubMed Central

    Kaluarachchi, Harini; Siebel, Judith F.; Kaluarachchi-Duffy, Supipi; Krecisz, Sandra; Sutherland, Duncan E. K.; Stillman, Martin J.; Zamble, Deborah B.

    2012-01-01

    SlyD is a Ni(II)-binding protein that contributes to nickel homeostasis in Escherichia coli. The C-terminal domain of SlyD contains a rich variety of metal-binding amino acids, suggesting broader metal-binding capabilities, and previous work demonstrated that the protein can coordinate several types of first row transition metals. However, the binding of SlyD to metals other than Ni(II) has not been previously characterized. To further our understanding of the in vitro metal-binding activity of SlyD and how it correlates with the in vivo function of this protein, the interactions between SlyD and the series of biologically relevant transition metals Mn(II), Fe(II), Co(II), Cu(I) and Zn(II) were examined by using a combination of optical spectroscopy and mass spectrometry. SlyD binding to Mn(II) or to Fe(II) ions was not detected but the protein coordinates multiple ions of Co(II), Zn(II) and Cu(I) with appreciable affinities (KD ≤ nM), highlighting the promiscuous nature of this protein. The order of affinities of SlyD for the metals examined is Mn(II), Fe(II) < Co(II) < Ni(II) ~ Zn(II) ≪ Cu(I). Although the purified protein is unable to overcome the large thermodynamic preference for Cu(I) and exclude Zn(II) chelation in the presence of Ni(II), in vivo studies reveal a Ni(II)-specific function for the protein. Furthermore, these latter experiments support a specific role for SlyD as a [NiFe]-hydrogenase enzyme maturation factor. The implications of the divergence between the metal selectivity of SlyD in vitro and the specific activity in vivo are discussed. PMID:22047179

  8. Assessment of heavy metal tolerance in native plant species from soils contaminated with electroplating effluent.

    PubMed

    Sainger, Poonam Ahlawat; Dhankhar, Rajesh; Sainger, Manish; Kaushik, Anubha; Singh, Rana Pratap

    2011-11-01

    Heavy metals concentrations of (Cr, Zn, Fe, Cu and Ni) were determined in plants and soils contaminated with electroplating industrial effluent. The ranges of total soil Cr, Zn, Fe, Cu and Ni concentrations were found to be 1443-3240, 1376-3112, 683-2228, 263-374 and 234-335 mg kg⁻¹, respectively. Metal accumulation, along with hyperaccumulative characteristics of the screened plants was investigated. Present study highlighted that metal accumulation in different plants varied with species, tissues and metals. Only one plant (Amaranthus viridis) accumulated Fe concentrations over 1000 mg kg⁻¹. On the basis of TF, eight plant species for Zn and Fe, three plant species for Cu and two plant species for Ni, could be used in phytoextraction technology. Although BAF of all plant species was lesser than one, these species exhibited high metal adaptability and could be considered as potential hyperaccumulators. Phytoremediation potential of these plants can be used to remediate metal contaminated soils, though further investigation is still needed. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Heavy metal pollution assessment, source identification, and health risk evaluation in Aibi Lake of northwest China.

    PubMed

    Zhaoyong, Zhang; Xiaodong, Yang; Shengtian, Yang

    2018-01-08

    This study sought to analyze heavy metal (Pb, Zn, Cu, Ni, Mn, and Fe) pollution status in the waters of Aibi Lake in northwest China through the use of an applied comprehensive pollution index, health risk model, and multivariate statistical analyses in combination with the lake's land use types. Results showed that (1) the maximum (average) values of the heavy metals Pb, Zn, Cu, Ni, Mn, and Fe were 0.0644 (0.0123), 0.0006 (0.0002), 0.0009 (0.0032), 0.1235 (0.0242), 0.0061 (0.0025), and 0.0222 (0.0080) μg/L, respectively. Among these, in all the samples, Pb and Ni exceeded the standard and acceptable values put forth by the World Health Organization by 21.13 and 25.67%, respectively. Ni also exceeded (30.16%) the third grade of the Environmental Quality Standards for Surface Water of China. The levels of the six heavy metals were all within the fishery and irrigation water quality standard ranges in China. (2) The average values for single pollution index of heavy metals Pb, Zn, Cu, Ni, Mn, and Fe were 1.000, 0.0006, 0.0009, 3.000, 0.060, and 0.070, respectively, among which Ni levels indicated moderate to significant pollution, while others indicated healthy levels. (3) Health risk evaluation showed that the R n values for Pb, Zn, Cu, Mn, and Fe were 1.8 × 10 -4 , 5.33 × 10 -9 , 4.80 × 10 -7 , 1.08 × 10 -6 , and 2.51 × 10 -7  a -1 , respectively, of which, in all samples, Pb and Ni contents all exceeded the maximum acceptable risk levels according to the International Commission on Radiological Protection (ICRP) as well as the U.S. Environment Protection Agency. (4) Combining with multivariate statistical analyses along with the land use distribution within the lake basin, Pb, Zn, Cu, Ni, and Mn were mainly influenced by the agriculture production and emission from urban lives and traffics, and Fe mainly originated from the natural environment. The results of this research can provide reference values for heavy metal pollution prevention in Aibi Lake as well as for environmental protection of rump lakes in the arid regions of northwest China and Central Asia.

  10. Effect of adsorbed metals ions on the transport of Zn- and Ni-EDTA complexes in a sand and gravel aquifer

    USGS Publications Warehouse

    Kent, D.B.; Davis, J.A.; Anderson, L.C.D.; Rea, B.A.; Coston, J.A.

    2002-01-01

    Adsorption, complexation, and dissolution reactions strongly influenced the transport of metal ions complexed with ethylenediaminetetraacetic acid (EDTA) in a predominantly quartz-sand aquifer during two tracer tests conducted under mildly reducing conditions at pH 5.8 to 6.1. In tracer test M89, EDTA complexes of zinc (Zn) and nickel (Ni), along with excess free EDTA, were injected such that the lower portion of the tracer cloud traveled through a region with adsorbed manganese (Mn) and the upper portion of the tracer cloud traveled through a region with adsorbed Zn. In tracer test S89, Ni- and Zn-EDTA complexes, along with excess EDTA complexed with calcium (Ca), were injected into a region with adsorbed Mn. The only discernable chemical reaction between Ni-EDTA and the sediments was a small degree of reversible adsorption leading to minor retardation. In the absence of adsorbed Zn, the injected Zn was displaced from EDTA complexes by iron(III) [Fe(III)] dissolved from the sediments. Displacement of Zn by Fe(III) on EDTA became increasingly thermodynamically favorable with decreasing total EDTA concentration. The reaction was slow compared to the time-scale of transport. Free EDTA rapidly dissolved aluminum (Al) from the sediments, which was subsequently displaced slowly by Fe. In the portion of tracer cloud M89 that traveled through the region contaminated with adsorbed Zn, little displacement of Zn complexed with EDTA was observed, and Al was rapidly displaced from EDTA by Zn desorbed from the sediments, in agreement with equilibrium calculations. In tracer test S89, desorption of Mn dominated over the more thermodynamically favorable dissolution of Al oxyhydroxides. Comparison with results from M89 suggests that dissolution of Al oxyhydroxides in coatings on these sediment grains by Ca-EDTA was rate-limited whereas that by free EDTA reached equilibrium on the time-scale of transport. Rates of desorption are much faster than rates of dissolution of Fe oxyhydroxides from sediment-grain surfaces and, therefore, adsorbed metal ions can strongly influence the speciation of ligands like EDTA in soils and sediments, especially over small temporal and spatial scales. Copyright ?? 2002 Elsevier Science Ltd.

  11. The AMBRE project: Iron-peak elements in the solar neighbourhood

    NASA Astrophysics Data System (ADS)

    Mikolaitis, Š.; de Laverny, P.; Recio-Blanco, A.; Hill, V.; Worley, C. C.; de Pascale, M.

    2017-04-01

    Context. The pattern of chemical abundance ratios in stellar populations of the Milky Way is a fingerprint of the Galactic chemical history. In order to interpret such chemical fossils of Galactic archaeology, chemical evolution models have to be developed. However, despite the complex physics included in the most recent models, significant discrepancies between models and observations are widely encountered. Aims: The aim of this paper is to characterise the abundance patterns of five iron-peak elements (Mn, Fe, Ni, Cu, and Zn) for which the stellar origin and chemical evolution are still debated. Methods: We automatically derived iron peak (Mn, Fe, Ni, Cu, and Zn) and α element (Mg) chemical abundances for 4666 stars, adopting classical LTE spectral synthesis and 1D atmospheric models. Our observational data collection is composed of high-resolution, high signal-to-noise ratios HARPS and FEROS spectra, which were previously parametrised by the AMBRE project. Results: We used the bimodal distribution of the magnesium-to-iron abundance ratios to chemically classify our sample stars into different Galactic substructures: thin disc, metal-poor and high-α metal rich, high-α, and low-α metal-poor populations. Both high-α and low-α metal-poor populations are fully distinct in Mg, Cu, and Zn, but these substructures are statistically indistinguishable in Mn and Ni. Thin disc trends of [Ni/Fe] and [Cu/Fe] are very similar and show a small increase at supersolar metallicities. Also, both thin and thick disc trends of Ni and Cu are very similar and indistinguishable. Yet, Mn looks very different from Ni and Cu. [Mn/Fe] trends of thin and thick discs actually have noticeable differences: the thin disc is slightly Mn richer than the thick disc. The [Zn/Fe] trends look very similar to those of [α/Fe] trends. The typical dispersion of results in both discs is low (≈0.05 dex for [Mg, Mn, and Cu/Fe]) and is even much lower for [Ni/Fe] (≈0.035 dex). Conclusions: It is clearly demonstrated that Zn is an α-like element and could be used to separate thin and thick disc stars. Moreover, we show that the [Mn/Mg] ratio could also be a very good tool for tagging Galactic substructures. From the comparison with Galactic chemical evolutionary models, we conclude that some recent models can partially reproduce the observed Mg, Zn, and, Cu behaviours in thin and thick discs and metal-poor sequences. Models mostly fail to reproduce Mn and Ni in all metallicity domains, however, models adopting yields normalised from solar chemical properties reproduce Mn and Ni better, suggesting that there is still a lack of realistic theoretical yields of some iron-peak elements. The very low scatter (≈0.05 dex) in thin and thick disc sequences could provide an observational constrain for Galactic evolutionary models that study the efficiency of stellar radial migration. Based on observations collected at ESO telescopes under the AMBRE programme. Full Table 5 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/600/A22

  12. High-strain-rate superplasticity of the Al-Zn-Mg-Cu alloys with Fe and Ni additions

    NASA Astrophysics Data System (ADS)

    Kotov, A. D.; Mikhaylovskaya, A. V.; Borisov, A. A.; Yakovtseva, O. A.; Portnoy, V. K.

    2017-09-01

    During high-strain-rate superplastic deformation, superplasticity indices, and the microstructure of two Al-Zn-Mg-Cu-Zr alloys with additions of nickel and iron, which contain equal volume fractions of eutectic particles of Al3Ni or Al9FeNi, have been compared. It has been shown that the alloys exhibit superplasticity with 300-800% elongations at the strain rates of 1 × 10-2-1 × 10-1 s-1. The differences in the kinetics of alloy recrystallization in the course of heating and deformation at different temperatures and rates of the superplastic deformation, which are related to the various parameters of the particles of the eutectic phases, have been found. At strain rates higher than 4 × 10-2, in the alloy with Fe and Ni, a partially nonrecrystallized structure is retained up to material failure and, in the alloy with Ni, a completely recrystallized structure is formed at rates of up to 1 × 10-1 s-1.

  13. Fabrication of Mg-X-O (X = Fe, Co, Ni, Cr, Mn, Ti, V, and Zn) barriers for magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Yakushiji, K.; Kitagawa, E.; Ochiai, T.; Kubota, H.; Shimomura, N.; Ito, J.; Yoda, H.; Yuasa, S.

    2018-05-01

    We fabricated magnetic tunnel junctions with a 3d-transition material(X)-doped MgO (Mg-X-O) barrier, and evaluated the effect of the doping on magnetoresistance (MR) and microstructure. Among the variations of X (X = Fe, Co, Ni, Cr, Mn, Ti, V, and Zn), X = Fe and Mn showed a high MR ratio of more than 100%, even at a low resistance-area product of 3 Ωμm2. The microstructure analysis revealed that (001) textured orientation formed for X = Fe and Mn despite substantial doping (about 10 at%). The elemental mappings indicated that Fe atoms in the Mg-Fe-O barrier were segregated at the interfaces, while Mn atoms were evenly involved in the Mg-Mn-O barrier. This suggests that MgO has high adaptability for Fe and Mn dopants in terms of high MR ratio.

  14. Impacts of geology and land use on magnetic susceptibility and selected heavy metals in surface soils of Mashhad plain, northeastern Iran

    NASA Astrophysics Data System (ADS)

    Karimi, Alireza; Haghnia, Gholam Hosain; Ayoubi, Shamsollah; Safari, Tayebeh

    2017-03-01

    Magnetic susceptibility is a fast, inexpensive and reliable technique for estimating and monitoring the anthropogenic contamination of soil with heavy metals. However, it is essential to determine the factors affecting magnetic susceptibility before applying this technique to environmental studies. The objectives of this study were to investigate i) the effect of parent materials and land use on the magnetic susceptibility and concentrations of Fe, Ni, Pb and Zn, and ii) capability of magnetic susceptibility as an indicator of anthropogenic heavy metals contamination of soil in Mashhad plain, northeastern Iran. One hundred seventy-eight composite surface soil samples (0-10 cm) were taken. The aqua-regia extractable concentrations of Fe, Ni, Zn and Pb were determined by atomic absorption spectroscopy. Magnetic susceptibility at low and high frequency (χlf and χhf) were measured and frequency dependent susceptibility (χfd) was calculated. The average concentrations of Fe, Ni, Pb and Zn were 22,812, 61.4, 74.1 and 31.6 mg kg- 1, respectively. The highest contents of Pb (69.1 mg kg- 1) and Zn (149 mg kg- 1) were observed in urban area. The highest concentration of Ni was 41,538 mg kg- 1 observed in the soils developed from ultramafic rocks. Magnetic susceptibility varied from 20.3 on marly sediments to 311.8 × 10- 8 m3 kg- 1 on ultramafic rocks. A positive strong correlation (Pvalue < 0.01, r = 0.88) was obtained between Ni and χlf. There were no significant relationships between Zn and Pb with χlf, therefore it seems that magnetic susceptibility has not been affected significantly by anthropogenic activities which enhanced Pb and Zn concentrations in urban soils. The results indicated that magnetic susceptibility was mainly controlled by Ni containing minerals with lithogenic origin. Therefore, in the soils studied, magnetic susceptibility could not be employed as indicator of anthropogenic contamination of soil with heavy metals.

  15. Surface chemistry, friction, and wear of Ni-Zn and Mn-Zn ferrites in contact with metals

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1983-01-01

    X-ray photoelectron and Auger electron spectroscopy analysis were used in sliding friction experiments. These experiments were conducted with hot-pressed polycrystalline Ni-Zn and Mn-Zn ferrites, and single-crystal Mn-Zn ferrite in contact with various transition metals at room temperature in both vacuum and argon. The results indicate that Ni2O3 and Fe3O4 were present on the Ni-Zn ferrite surface in addition to the nominal bulk constituents, while MnO2 and Fe3O4 were present on the Mn-Zn ferrite surface in addition to the nominal bulk constituents. The coefficients of friction for the ferrites in contact with metals were related to the relative chemical activity of these metals. The more active the metal, the higher is the coefficient of friction. The coefficients of friction for the ferrites were correlated with the free energy of formation of the lowest metal oxide. The interfacial bond can be regarded as a chemical bond between the metal atoms and the oxygen anions in the ferrite surfaces. The adsorption of oxygen on clean metal and ferrite does strengthen the metal-ferrite contact and increase the friction. The ferrites exhibit local cracking and fracture with sliding under adhesive conditions. All the metals transferred to the surfaces of the ferrites in sliding. Previously announced in STAR as N83-19901

  16. Surface chemistry, friction and wear of Ni-Zn and Mn-Zn ferrites in contact with metals

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1982-01-01

    X-ray photoelectron and Auger electron spectroscopy analysis were used in sliding friction experiments. These experiments were conducted with hot-pressed polycrystalline Ni-Zn and Mn-Zn ferrites, and single-crystal Mn-Zn ferrite in contact with various transition metals at room temperature in both vacuum and argon. The results indicate that Ni2O3 and Fe3O4 were present on the Ni-Zn ferrite surface in addition to the nominal bulk constituents, while MnO2 and Fe3O4 were present on the Mn-Zn ferrite surface in addition to the nominal bulk constituents. The coefficients of friction for the ferrites in contact with metals were related to the relative chemical activity of these metals. The more active the metal, the higher is the coefficient of friction. The coefficients of friction for the ferrites were correlated with the free energy of formation of the lowest metal oxide. The interfacial bond can be regarded as a chemical bond between the metal atoms and the oxygen anions in the ferrite surfaces. The adsorption of oxygen on clean metal and ferrite does strengthen the metal-ferrite contact and increase the friction. The ferrites exhibit local cracking and fracture with sliding under adhesive conditions. All the metals transferred to he surfaces of the ferrites in sliding.

  17. Structural and magnetic properties of yttrium and lanthanum-doped Ni-Co and Ni-Co-Zn spinel ferrites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stergiou, Charalampos, E-mail: stergiou@cperi.certh.gr; Litsardakis, George, E-mail: lits@eng.auth.gr

    2014-11-05

    Rare earth doping of Co-rich spinel ferrites is investigated through the preparation of two groups of polycrystalline Ni-Co and Ni-Co-Zn ferrites, where Fe is partly substituted by Y and La. The characterization of the sintered ferrites by means of X-ray powder diffraction and Rietveld profile analysis, indicates the subtle expansion of the spinel unit cell and the cation redistribution in the doped ferrites in order to accommodate the incorporation of Y and La in the lattice. The impurity traces, detected only in the Ni-Co-Zn group, is ascribed to the Zn population in the tetrahedral A-sites impeding the cation transfer. Moreover,more » the examined microstructure of the doped Ni-Co samples comprises enlarged and more homogeneous grains, whereas grain growth is moderated in the doped Ni-Co-Zn ferrites. The discussed characteristics of the crystal and magnetic structure along with the morphological aspects define the impact of Y and La doping on the static magnetic properties of Ni-Co and Ni-Co-Zn ferrites, saturation magnetization MS and coercivity HC, which were extracted from the respective hysteresis loops.« less

  18. Structural and magnetic study of Al{sup 3+} doped Ni{sub 0.75}Zn{sub 0.25}Fe{sub 2−x}Al{sub x}O{sub 4} nanoferrites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, L.; Rai, B.K.; Mishra, S.R.

    2015-05-15

    Graphical abstract: Hyperfine field of individual sites (inset) and weighted average hyperfine field as a function of Al{sup 3+} content for Ni{sub 0.75}Zn{sub 0.25}Fe{sub 2−x}Al{sub x}O{sub 4}. - Highlights: • Grain size reduction with Al{sup 3+} substitution. • Preferred occupancy of Al{sup 3+} at B site for higher Al{sup 3+} content. • Reduction in Ms, Tc, and hyperfine field with increasing Al{sup 3+} content. • Size dependent variation in coercivity. • Changes in isomer shift due to competing effect of volume and substitution. - Abstract: Nanostructured Al{sup 3+} doped Ni{sub 0.75}Zn{sub 0.25}Fe{sub 2−x}Al{sub x}O{sub 4} (x = 0.0, 0.2, 0.4,more » 0.6, 0.8, and 1.0) ferrites were synthesized via the wet chemical method. X-ray diffraction, transmission electron microscopy, and magnetization measurements have been used to investigate the structural and magnetic properties of spinel ferrites calcined at 950 °C. With the doping of Al{sup 3+}, the particle size of Ni{sub 0.75}Zn{sub 0.25}Fe{sub 2−x}Al{sub x}O{sub 4} first increased to 47 nm at x = 0.4 and then decreased down to 37 nm at x = 1. The main two absorption bands in IR spectra were observed around 600 cm{sup −1} and 400 cm{sup −1} corresponding to stretching vibration of tetrahedral and octahedral group Fe{sup 3+}–O{sup 2−}. Saturation magnetization and hyperfine field values decreased linearly with Al{sup 3+} due to magnetic dilution and the relative strengths of Fe–O–Me (Me = Fe, Ni, Zn, and Al) superexchanges. The coercive field showed an inverse dependence on ferrite particle size with minimum value of 82 Oe for x = 0.4. A continuous drop in Curie temperature was observed with the Al{sup 3+} substitution. From the Moessbauer spectral analysis and X-ray diffraction analysis, it is deduced that Al{sup 3+} for x < 0.4 has no obvious preference for either tetrahedral or octahedral site but has a greater preference for the B site for x > 0.4. In nutshell the study presents detailed structural and magnetic, and Moessbauer analysis of Ni{sub 0.75}Zn{sub 0.25}Fe{sub 2−x}Al{sub x}O{sub 4} ferrites.« less

  19. Tracing Sources and Contamination Assessments of Heavy Metals in Road and Foliar Dusts in a Typical Mining City, China

    PubMed Central

    Yang, Jie; Teng, Yanguo; Song, Liuting; Zuo, Rui

    2016-01-01

    Road and foliar dust samples from four land-use districts of Panzhihua City, a famous V-Ti magnetite production area of China, were collected to investigate the sources and distribution characteristics of 9 heavy metals (V, Pb, Cd, Cu, Zn, Ni, Cr, Fe, and Mn). The results suggest that foliar samples had smaller particle size and higher heavy metal contents than road dusts. The contamination assessments of heavy metals were as follows: Pb and V (significant enrichment) > Zn, Ni, Cr, Fe, and Mn (moderate enrichment) > Cd and Ni (minimal enrichment). Statistical analyses showed Pb, as the primary pollution element, originated from waste incineration and lead-fuel combustion. The sources of Zn, Ni, Cr, Fe, V, and Mn were fugitive dust and traffic activities. Potential origins of Cu were corrosion of alloys used in vehicle components, vehicle covers, or other metallic surfaces and materials. The sources of Cd were different from any other heavy metals. Traffic and industrial activities were the main anthropogenic origins of heavy metals in dusts of Panzhihua, and more attention should be paid to heavy metal pollution in agricultural area. PMID:27992518

  20. Tracing Sources and Contamination Assessments of Heavy Metals in Road and Foliar Dusts in a Typical Mining City, China.

    PubMed

    Yang, Jie; Teng, Yanguo; Song, Liuting; Zuo, Rui

    2016-01-01

    Road and foliar dust samples from four land-use districts of Panzhihua City, a famous V-Ti magnetite production area of China, were collected to investigate the sources and distribution characteristics of 9 heavy metals (V, Pb, Cd, Cu, Zn, Ni, Cr, Fe, and Mn). The results suggest that foliar samples had smaller particle size and higher heavy metal contents than road dusts. The contamination assessments of heavy metals were as follows: Pb and V (significant enrichment) > Zn, Ni, Cr, Fe, and Mn (moderate enrichment) > Cd and Ni (minimal enrichment). Statistical analyses showed Pb, as the primary pollution element, originated from waste incineration and lead-fuel combustion. The sources of Zn, Ni, Cr, Fe, V, and Mn were fugitive dust and traffic activities. Potential origins of Cu were corrosion of alloys used in vehicle components, vehicle covers, or other metallic surfaces and materials. The sources of Cd were different from any other heavy metals. Traffic and industrial activities were the main anthropogenic origins of heavy metals in dusts of Panzhihua, and more attention should be paid to heavy metal pollution in agricultural area.

  1. Watershed-scale assessment of background concentrations and guidance values for heavy metals in soils from a semiarid and coastal zone of Brazil.

    PubMed

    da Silva, Yuri Jacques Agra Bezerra; do Nascimento, Clístenes Williams Araújo; Cantalice, José Ramon Barros; da Silva, Ygor Jacques Agra Bezerra; Cruz, Cinthia Maria Cordeiro Atanázio

    2015-09-01

    Determining heavy metal background concentrations in soils is fundamental in order to support the monitoring of potentially contaminated areas. This is particularly important to areas submitted to high environmental impact where an intensive and local monitoring is required. To this end, the aim of this study was to establish background concentrations and quality reference values (QRVs) for the heavy metals Cd, Cr, Cu, Fe, Mn, Ni, Pb, Zn, As, and Hg in an environmentally impacted watershed from Brazil. Geochemical associations among Fe, Mn, and trace elements were also assessed to provide an alternative tool for establishing background concentrations. A total of one hundred and four samples comprised twenty-six composite soil samples from areas of native forest or minimal anthropic influence. Samples were digested (USEPA method 3051A), and the metals were determined by ICP-OES, except for As and Hg measured by atomic absorption spectrophotometer. Background concentrations of heavy metals in soils had the following decreasing order: Fe > Mn > Zn > Cr > Pb > Ni > Cu > As > Cd > Hg. These values were usually lower than those observed in the international and national literature. The QRVs for Ipojuca watershed followed the order (mg kg(-1)) Fe (13,020.40) > Mn (91.80) > Zn (30.12) > Cr (15.00) > Pb (13.12) > Cu (3.53) > Ni (3.30) > As (0.51) > Cd (0.08) > Hg (0.04). Significant correlation among Fe, Mn, and heavy metals shows that solubilization by the method 3051A provides a reasonable estimate for predicting background concentrations for Cd, Cr, and Cu as well as Zn, Cr, Cu, and Ni.

  2. Source discrimination of heavy metals in sediment and water of To Lich River in Hanoi City using multivariate statistical approaches.

    PubMed

    Thuong, Nguyen Thi; Yoneda, Minoru; Ikegami, Maiko; Takakura, Masato

    2013-10-01

    The concentrations of Mn, Fe, Ni, Cr, Cu, Pb, Zn, As, and Cd were determined to evaluate the level of contamination of To Lich River in Hanoi City. All metal concentrations in 0-10-cm water samples, except Mn, were lower than the maximum permitted concentration for irrigation water standard. Meanwhile, concentrations of As, Cd, and Zn in 0-30-cm sediments were likely to have adverse effects on agriculture and aquatic life. Sediment pollution assessment was undertaken using enrichment factor and geoaccumulation index (I geo). The I geo results indicated that the sediment was not polluted with Cr, Mn, Fe, and Ni, and the pollution level increased in the order of Cu < Pb < Zn < As < Cd. Meanwhile, significant enrichment was shown for Cd, As, Zn, and Pb. Cluster and principal component analyses suggest that As and Mn in sediment were derived from both lithogenic and anthropogenic sources, while Cu, Pb, Zn, Cr, Cd, and Ni originated from anthropogenic sources such as vehicular fumes for Pb and metallic discharge from industrial sources and fertilizer application for other metals.

  3. NiFe (Oxy) Hydroxides Derived from NiFe Disulfides as an Efficient Oxygen Evolution Catalyst for Rechargeable Zn-Air Batteries: The Effect of Surface S Residues.

    PubMed

    Wang, Tanyuan; Nam, Gyutae; Jin, Yue; Wang, Xingyu; Ren, Pengju; Kim, Min Gyu; Liang, Jiashun; Wen, Xiaodong; Jang, Haeseong; Han, Jiantao; Huang, Yunhui; Li, Qing; Cho, Jaephil

    2018-05-21

    A facile H 2 O 2 oxidation treatment to tune the properties of metal disulfides for oxygen evolution reaction (OER) activity enhancement is introduced. With this method, the degree of oxidation can be readily controlled and the effect of surface S residues in the resulted metal (oxy)hydroxides for the OER is revealed for the first time. The developed NiFe (oxy)hydroxide catalyst with residual S demonstrates an extraordinarily low OER overpotential of 190 mV at the current density of 10 mA cm -2 after coupling with carbon nanotubes, and outstanding performance in Zn-air battery tests. Theoretical calculation suggests that the surface S residues can significantly reduce the adsorption free energy difference between O* and OH* intermediates on the Fe sites, which should account for the high OER activity of NiFe (oxy)hydroxide catalysts. This work provides significant insight regarding the effect of surface heteroatom residues in OER electrocatalysis and offers a new strategy to design high-performance and cost-efficient OER catalysts. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Trace metal dynamics in zooplankton from the Bay of Bengal during summer monsoon.

    PubMed

    Rejomon, G; Kumar, P K Dinesh; Nair, M; Muraleedharan, K R

    2010-12-01

    Trace metal (Fe, Co, Ni, Cu, Zn, Cd, and Pb) concentrations in zooplankton from the mixed layer were investigated at 8 coastal and 20 offshore stations in the western Bay of Bengal during the summer monsoon of 2003. The ecotoxicological importance of trace metal uptake was apparent within the Bay of Bengal zooplankton. There was a distinct spatial heterogeneity of metals, with highest concentrations in the upwelling zones of the southeast coast, moderate concentrations in the cyclonic eddy of the northeast coast, and lowest concentrations in the open ocean warm gyre regions. The average trace metal concentrations (μg g⁻¹) in coastal zooplankton (Fe, 44894.1 ± 12198.2; Co, 46.2 ± 4.6; Ni, 62.8 ± 6.5; Cu, 84.9 ± 6.7; Zn, 7546.8 ± 1051.7; Cd, 46.2 ± 5.6; Pb, 19.2 ± 2.6) were higher than in offshore zooplankton (Fe, 3423.4 ± 681.6; Co, 19.5 ± 3.81; Ni, 25.3 ± 7.3; Cu, 29.4 ± 4.2; Zn, 502.3 ± 124.3; Cd, 14.3 ± 2.9; Pb, 3.2 ± 2.0). A comparison of average trace metal concentrations in zooplankton from the Bay of Bengal showed enrichment of Fe, Co, Ni, Cu, Zn, Cd, and Pb in coastal zooplankton may be related to metal absorption from primary producers, and differences in metal concentrations in phytoplankton from coastal waters (upwelling zone and cyclonic eddy) compared with offshore waters (warm gyre). Zooplankton showed a great capacity for accumulations of trace metals, with average concentration factors of 4 867 929 ± 569 971, 246 757 ± 51 321, 337 180 ± 125 725, 43 480 ± 11 212, 1 046 371 ± 110 286, 601 679 ± 213 949, and 15 420 ± 9201 for Fe, Co, Ni, Cu, Zn, Cd, and Pb with respect to dissolved concentrations in coastal and offshore waters of the Bay of Bengal. © 2009 Wiley Periodicals, Inc. Environ Toxicol, 2009. Copyright © 2009 Wiley Periodicals, Inc.

  5. Application of mucilage from Dicerocaryum eriocarpum plant as biosorption medium in the removal of selected heavy metal ions.

    PubMed

    Jones, Bassey O; John, Odiyo O; Luke, Chimuka; Ochieng, Aoyi; Bassey, Bridget J

    2016-07-15

    The ability of mucilage from Dicerocaryum eriocarpum (DE) plant to act as biosorption medium in the removal of metals ions from aqueous solution was investigated. Functional groups present in the mucilage were identified using Fourier transform infrared spectroscopy (FTIR). Mucilage was modified with sodium and potassium chlorides. This was aimed at assessing the biosorption efficiency of modified mucilage: potassium mucilage (PCE) and sodium mucilage (SCE) and comparing it with non-modified deionised water mucilage (DCE) in the uptake of metal ions. FTIR results showed that the functional groups providing the active sites in PCE and SCE and DCE include: carboxyl, hydroxyl and carbonyl groups. The chloride used in the modification of the mucilage did not introduce new functional groups but increased the intensity of the already existing functional groups in the mucilage. Results from biosorption experiment showed that DE mucilage displays good binding affinity with metals ions [Zn(II), Cd(II) Ni(II), Cr(III) and Fe(II)] in the aqueous solution. Increase in the aqueous solution pH, metal ions initial concentration and mucilage concentration increased the biosorption efficiency of DE mucilage. The maximum contact time varied with each species of metal ions. Optimum pH for [Zn(II), Cd(II) Ni(II) and Fe(II)] occurred at pH 4 and pH 6 for Cr(III). Kinetic models result fitted well to pseudo-second-order with a coefficient values of R(2) = 1 for Cd(II), Ni(II), Cr(III), Fe(II) and R(2) = 0.9974 for Zn(II). Biosorption isotherms conforms best with Freundlich model for all the metal ions with correlation factors of 0.9994, 0.9987, 0.9554, 0.9621 and 0.937 for Zn(II), Ni(II), Fe(II), Cr(III) and Cd(II), respectively. Biosorption capacity of DE mucilage was 0.010, 2.387, 4.902, 0688 and 0.125 for Zn(II), Cr(III), Fe(II), Cd(II) and Ni(II) respectively. The modified mucilage was found to be highly efficient in the removal of metal ions than the unmodified mucilage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. In Situ, High-Resolution Profiles of Labile Metals in Sediments of Lake Taihu

    PubMed Central

    Wang, Dan; Gong, Mengdan; Li, Yangyang; Xu, Lv; Wang, Yan; Jing, Rui; Ding, Shiming; Zhang, Chaosheng

    2016-01-01

    Characterizing labile metal distribution and biogeochemical behavior in sediments is crucial for understanding their contamination characteristics in lakes, for which in situ, high-resolution data is scare. The diffusive gradient in thin films (DGT) technique was used in-situ at five sites across Lake Taihu in the Yangtze River delta in China to characterize the distribution and mobility of eight labile metals (Fe, Mn, Zn, Ni, Cu, Pb, Co and Cd) in sediments at a 3 mm spatial resolution. The results showed a great spatial heterogeneity in the distributions of redox-sensitive labile Fe, Mn and Co in sediments, while other metals had much less marked structure, except for downward decreases of labile Pb, Ni, Zn and Cu in the surface sediment layers. Similar distributions were found between labile Mn and Co and among labile Ni, Cu and Zn, reflecting a close link between their geochemical behaviors. The relative mobility, defined as the ratio of metals accumulated by DGT to the total contents in a volume of sediments with a thickness of 10 mm close to the surface of DGT probe, was the greatest for Mn and Cd, followed by Zn, Ni, Cu and Co, while Pb and Fe had the lowest mobility; this order generally agreed with that defined by the modified BCR approach. Further analyses showed that the downward increases of pH values in surface sediment layer may decrease the lability of Pb, Ni, Zn and Cu as detected by DGT, while the remobilization of redox-insensitive metals in deep sediment layer may relate to Mn cycling through sulphide coprecipitation, reflected by several corresponding minima between these metals and Mn. These in situ data provided the possibility for a deep insight into the mechanisms involved in the remobilization of metals in freshwater sediments. PMID:27608033

  7. [Pollution Characteristics and Potential Ecological Risk of Heavy Metals in Urban Surface Water Sediments from Yongkang].

    PubMed

    Qi, Peng; Yu, Shu-quan; Zhang, Chao; Liang, Li-cheng; Che, Ji-lu

    2015-12-01

    In order to understand the pollution characteristics of heavy metals in surface water sediments of Yongkang, we analyzed the concentrations of 10 heavy metals including Ti, Cr, Mn, Co, Ni, Cu, Zn, As, Pb and Fe in 122 sediment samples, explored the underlying source of heavy metals and then assessed the potential ecological risks of those metals by methods of the index of geo-accumulation and the potential ecological risk. The study results showed that: 10 heavy metal contents followed the order: Fe > Ti > Mn > Zn > Cr > Cu > Ph > Ni > As > Co, all heavy metals except for Ti were 1. 17 to 3.78 times higher than those of Zhejiang Jinhua- Quzhou basin natural soils background values; The concentrations of all heavy metals had a significantly correlation between each other, indicating that those heavy metals had similar sources of pollution, and it mainly came from industrial and vehicle pollutions; The pollution extent of heavy metals in sediments by geo-accumulation index (Igeo) followed the order: Cr > Zn > Ni > Cu > Fe > As > Pb >Mn > Ti, thereinto, Cr, Zn, Cu and Ni were moderately polluted or heavily polluted at some sampling sites; The potential ecological risk of 9 heavy metals in sediments were in the following order: Cu > As > Ni > Cr > Pb > Co > Zn > Mn > Ti, Cu and As contributed the most to the total potential ecological risk, accounting for 22.84% and 21. 62% , others had a total of 55.54% , through the ecological risk assessment, 89. 34% of the potential ecological risk indexes ( RI) were low and 10. 66% were higher. The contamination level of heavy metals in Yongkang was slight in total, but was heavy in local areas.

  8. Magnetic and crystallographic properties of ZrM 2-δZn 20+δ (M=Cr–Cu)

    DOE PAGES

    Svanidze, E.; II, M. Kindy; Georgen, C.; ...

    2016-04-29

    Single crystals of the cubic Laves ternaries ZrM 2-δZn 20+δ (M=Mn, Fe, Co, Ni and Cu, 0 ≤ δ ≤ 1) have been synthesized in this paper using a self-flux method. The magnetic properties of these compounds were compared with structurally similar cubic binaries ZrM 2 (M=Mn, Fe, Co, Ni and Cu). A transition from local to itinerant moment magnetism was observed for M=Fe and M=Mn, while all other ternaries exhibit weakly para- or diamagnetic behavior. The local-to-itinerant crossover can be explained by a nearly two-fold increase of the M–M bond length d M–M in ZrM 2-δZn 20+δ compounds, asmore » compared with the ZrM 2 binaries. Additionally, we report two new compounds in this series ZrCrZn 21 and ZrCu 2Zn 20. Finally, analysis of crystallographic and magnetic trends in these materials will aid in understanding of magnetism in general and 3d intermetallics in particular.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Starcher, Autumn N.; Elzinga, Evert J.; Sparks, Donald L.

    Previous research demonstrated the formation of single divalent metal (Co, Ni, and ZnAl) and mixed divalent metal (NiZnAl) layered double hydroxide (LDH) phases from reactions of the divalent metal with Al-bearing substrates and soils in both laboratory experiments and in the natural environment. Recently Fe(II)-Al-LDH phases have been found in laboratory batch reaction studies, and although they have yet to be found in the natural environment. Potential locations of Fe(II)-Al-LDH phases in nature include areas with suboxic and anoxic conditions. Because these areas can be environments of significant contaminant accumulation, it is important to understand the possible interactions and impactsmore » of contaminant elements on LDH phase formation. One such contaminant, Zn, can also form as an LDH and has been found to form as a mixed divalent layered hydroxide phase. To understand how Zn impacts the formation of Fe(II)-Al-LDH phase formation and kinetics, 3 mM or 0.8 mM Fe(II) and 0.8 mM Zn were batch reacted with either 10 g/L pyrophyllite or 7.5 g/L γ-Al2O3 for up to three months under anoxic conditions. Aqueous samples were analyzed by inductively coupled plasma optical emission spectrometry (ICP-OES) and solid samples were analyzed with X-ray absorption spectroscopy (XAS). Shell-by-shell fits of Fe(II) and co-sorption samples with pyrophyllite show the formation of a mixed divalent metal (Fe(II)-Zn-Al) layered hydroxide phase, while Fe(II) and Zn co-sorption samples with γ-Al2O3 produce Fe(II)-Al-LDH phases and Zn in inner-sphere complexation with the γ-Al2O3. This study demonstrates the formation of a mixed divalent metal layered hydroxide and further iterates the importance of sorbent reactivity on LDH phase formation.« less

  10. Mesoporous Silica Matrix as a Tool for Minimizing Dipolar Interactions in NiFe2O4 and ZnFe2O4 Nanoparticles

    PubMed Central

    Virumbrales, Maider; Saez-Puche, Regino; Torralvo, María José; Blanco-Gutierrez, Veronica

    2017-01-01

    NiFe2O4 and ZnFe2O4 nanoparticles have been prepared encased in the MCM (Mobile Composition of Matter) type matrix. Their magnetic behavior has been studied and compared with that corresponding to particles of the same composition and of a similar size (prepared and embedded in amorphous silica or as bare particles). This study has allowed elucidation of the role exerted by the matrix and interparticle interactions in the magnetic behavior of each ferrite system. Thus, very different superparamagnetic behavior has been found in ferrite particles of similar size depending on the surrounding media. Also, the obtained results clearly provide evidence of the vastly different magnetic behavior for each ferrite system. PMID:28640197

  11. Trace metals in Bermuda rainwater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jickells, T.D.; Knap, A.H.; Church, T.M.

    1984-02-20

    The concentration of Cd, Cu, Fe, Mn, Ni, Pb, and Zn have been measured in Bermuda rainwater. Factor analysis indicates that Fe, Mn, and Pb have similar to acidic components derived from North America. The other metals all behave simiarly but differently to the acides. Sea salt, even after allowances for fractionation, apparently contributes minor amounts of Cu, Pb, and Zn and uncertain amounts of Fe, Mn, and Cd to Atlantic Ocean precipitation. Wash out ratios, calculated from this data along with earlier measurements of atmospheric trace metal concentration on Bermuda, are of the same order as those reported frommore » other remote ocean areas. The wet depositional fluxes of Cu, Ni, Pb, and Zn to the western Atlantic Ocean are significant compared to measured oceanic flux rates. However, the wet depositional fluxes of Fe and Mn to this area are relatively small, suggesting additional inputs, while an excess wet depositional flux of Cd suggests large-scale atmospheric recycling of this element.« less

  12. Boric acid flux synthesis, structure and magnetic property of MB₁₂O₁₄(OH)₁₀ (M=Mn, Fe, Zn)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Dingfeng; Cong, Rihong; Gao, Wenliang, E-mail: gaowl@cqu.edu.cn

    2013-05-01

    Three new borates MB₁₂O₁₄(OH)₁₀ (M=Mn, Fe, Zn) have been synthesized by boric acid flux methods, which are isotypic to NiB₁₂O₁₄(OH)₁₀. Single-crystal XRD was performed to determine the crystal structures in detail. They all crystallize in the monoclinic space group P2₁/c. The size of MO{sub 6} (M=Mg, Mn, Fe, Co, Ni, Zn) octahedron shows a good agreement with the Shannon effective ionic radii of M²⁺. Magnetic measurements indicate MnB₁₂O₁₄(OH)₁₀ is antiferromagnetic without a long-range ordering down to 2 K. The values of its magnetic superexchange constants were evaluated by DFT calculations, which explain the observed magnetic behavior. The UV–vis diffuse reflectancemore » spectrum of ZnB₁₂O₁₄(OH)₁₀ suggests a band gap ~4.6 eV. DFT calculations indicate it has a direct band gap 4.9 eV. The optical band gap is contributed by charge transfers from the occupied O 2p to the unoccupied Zn 4s states. - Graphical abstract: Experimental and theoretical studies indicate MnB₁₂O₁₄(OH)₁₀ is antiferromagnetic without a long-range ordering. DFT calculations show ZnB₁₂O₁₄(OH)₁₀ has a direct band gap of 4.9 eV. Highlights: • MB₁₂O₁₄(OH)₁₀ (M=Mn, Fe, Zn) are synthesized by two-step boric acid flux method. • Single-crystal XRD was performed to determine the crystal structures in detail. • Size of MO₆ (M=Mg, Mn, Fe, Co, Ni, Zn) agrees with the effective ionic radii. • MnB₁₂O₁₄(OH)₁₀ is antiferromagnetic without a long-range ordering down to 2 K. • DFT calculations indicate ZnB₁₂O₁₄(OH)₁₀ has a direct band gap 4.9 eV.« less

  13. Synthesis, characterization and antimicrobial studies of Schiff base complexes

    NASA Astrophysics Data System (ADS)

    Zafar, Hina; Ahmad, Anis; Khan, Asad U.; Khan, Tahir Ali

    2015-10-01

    The Schiff base complexes, MLCl2 [M = Fe(II), Co(II), Ni(II), Cu(II) and Zn(II)] have been synthesized by the template reaction of respective metal ions with 2-acetylpyrrole and 1,3-diaminopropane in 1:2:1 M ratio. The complexes have been characterized by elemental analyses, ESI - mass, NMR (1H and 13C), IR, XRD, electronic and EPR spectral studies, magnetic susceptibility and molar conductance measurements. These studies show that all the complexes have octahedral arrangement around the metal ions. The molar conductance measurements of all the complexes in DMSO indicate their non-electrolytic nature. The complexes were screened for their antibacterial activity in vitro against Gram-positive (Streptococcus pyogenes) and Gram-negative (Klebsiella pneumoniae) bacteria. Among the metal complexes studied the copper complex [CuLCl2], showed highest antibacterial activity nearly equal to standard drug ciprofloxacin. Other complexes also showed considerable antibacterial activity. The relative order of activity against S. Pyogenes is as Cu(II) > Zn(II) > Co(II) = Fe(II) > Ni(II) and with K. Pneumonia is as Cu(II) > Co(II) > Zn(II) > Fe(II) > Ni(II).

  14. Investigation of phase stability of novel equiatomic FeCoNiCuZn based-high entropy alloy prepared by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Soni, Vinay Kumar; Sanyal, S.; Sinha, S. K.

    2018-05-01

    The present work reports the structural and phase stability analysis of equiatomic FeCoNiCuZn High entropy alloy (HEA) systems prepared by mechanical alloying (MA) method. In this research effort some 1287 alloy combinations were extensively studied to arrive at most favourable combination. FeCoNiCuZn based alloy system was selected on the basis of physiochemical parameters such as enthalpy of mixing (ΔHmix), entropy of mixing (ΔSmix), atomic size difference (ΔX) and valence electron concentration (VEC) such that it fulfils the formation criteria of stable multi component high entropy alloy system. In this context, we have investigated the effect of novel alloying addition in view of microstructure and phase formation aspect. XRD plots of the MA samples shows the formation of stable solid solution with FCC (Face Cantered Cubic) after 20 hr of milling time and no indication of any amorphous or intermetallic phase formation. Our results are in good agreement with calculation and analysis done on the basis of physiochemical parameters during selection of constituent elements of HEA.

  15. Influence of Na+, K+, Mn2+, Fe2+ and Zn2+ ions on the electrodeposition of Ni-Co alloys: Implications for the recycling of Ni-MH batteries

    NASA Astrophysics Data System (ADS)

    Blanco, S.; Orta-Rodriguez, R.; Delvasto, P.

    2017-01-01

    A hydrometallurgical recycling procedure for the recovery of a mixed rare earths sulfate and an electrodeposited Ni-Co alloy has been described. The latter step was found to be complex, due to the presence of several ions in the battery electrode materials. Electrochemical evaluation of the influence of the ions on the Ni-Co alloy deposition was carried out by cyclic voltammetry test. It was found that ions such as K+, Fe2+ and Mn2+ improved the current efficiency for the Ni-Co deposition process on a copper surface. On the other hand, Na+ and Zn2+ ions exhibited a deleterious behaviour, minimizing the values of the reduction current. The results were used to suggest the inclusion of additional steps in the process flow diagram of the recycling operation, in order to eliminate deleterious ions from the electroplating solution.

  16. Determining baseline element composition of lichens. I. Parmelia sulcata at Theodore Roosevelt national park, North Dakota

    USGS Publications Warehouse

    Gough, L.P.; Severson, R.C.; Jackson, L.L.

    1988-01-01

    Element-concentration baselines are given for Parmelia sulcata and associated soils. Parmelia chlorochroa was found sporadically and therefore only representative concentration ranges are reported for this species. Element data include (1) for lichens; Al, As, Ba, B, Ca, Cr, Cu, Fe, Hg, Mn, Ni, P, Sr, S, Ti, V, Y, and Zn; and (2) for soils: Al, Ba, Be, Ca, Cs, Cr, Cu, Fe, Hg, Mg, Mn, Ni, Nb, P, Pb, Sr, S, Ti, V, Y, and Zn. Very little (usually 7.2 km); thus, P sulcata is, in general, chemically similar throughout the park. This same uniformity was found for soil geochemistry. Numerous samples collected at close intervals would be required, therefore, to produce detailed element-concentration maps for P. sulcata and soils. No instances of elemental phytotoxic conditions were found; however, P. sulcata apparently possesses large concentrations of Ba, Cu, Fe, Pb, S, V, and possibly Zn.

  17. Tunable Twin Matching Frequency (fm1/fm2) Behavior of Ni1−xZnxFe2O4/NBR Composites over 2–12.4 GHz: A Strategic Material System for Stealth Applications

    PubMed Central

    Saini, Lokesh; Patra, Manoj Kumar; Jani, Raj Kumar; Gupta, Goutam Kumar; Dixit, Ambesh; Vadera, Sampat Raj

    2017-01-01

    The gel to carbonate precipitate route has been used for the synthesis of Ni1−xZnxFe2O4 (x = 0, 0.25, 0.5 and 0.75) bulk inverse spinel ferrite powder samples. The optimal zinc (50%) substitution has shown the maximum saturation magnetic moment and resulted into the maximum magnetic loss tangent (tanδm) > −1.2 over the entire 2–10 GHz frequency range with an optimum value ~−1.75 at 6 GHz. Ni0.5Zn0.5Fe2O4- Acrylo-Nitrile Butadiene Rubber (NBR) composite samples are prepared at different weight percentage (wt%) of ferrite loading fractions in rubber for microwave absorption evaluation. The 80 wt% loaded Ni0.5Zn0.5Fe2O4/NBR composite (FMAR80) sample has shown two reflection loss (RL) peaks at 5 and 10 GHz. Interestingly, a single peak at 10 GHz for 3.25 mm thickness, can be scaled down to 5 GHz by increasing the thickness up to 4.6 mm. The onset of such twin matching frequencies in FMAR80 composite sample is attributed to the spin resonance relaxation at ~5 GHz (fm1) and destructive interference at λm/4 matched thickness near ~10 GHz (fm2) in these composite systems. These studies suggest the potential of tuning the twin frequencies in Ni0.5Zn0.5Fe2O4/NBR composite samples for possible microwave absorption applications. PMID:28294151

  18. Tunable Twin Matching Frequency (fm1/fm2) Behavior of Ni1-xZnxFe2O4/NBR Composites over 2-12.4 GHz: A Strategic Material System for Stealth Applications

    NASA Astrophysics Data System (ADS)

    Saini, Lokesh; Patra, Manoj Kumar; Jani, Raj Kumar; Gupta, Goutam Kumar; Dixit, Ambesh; Vadera, Sampat Raj

    2017-03-01

    The gel to carbonate precipitate route has been used for the synthesis of Ni1-xZnxFe2O4 (x = 0, 0.25, 0.5 and 0.75) bulk inverse spinel ferrite powder samples. The optimal zinc (50%) substitution has shown the maximum saturation magnetic moment and resulted into the maximum magnetic loss tangent (tanδm) > -1.2 over the entire 2-10 GHz frequency range with an optimum value ~-1.75 at 6 GHz. Ni0.5Zn0.5Fe2O4- Acrylo-Nitrile Butadiene Rubber (NBR) composite samples are prepared at different weight percentage (wt%) of ferrite loading fractions in rubber for microwave absorption evaluation. The 80 wt% loaded Ni0.5Zn0.5Fe2O4/NBR composite (FMAR80) sample has shown two reflection loss (RL) peaks at 5 and 10 GHz. Interestingly, a single peak at 10 GHz for 3.25 mm thickness, can be scaled down to 5 GHz by increasing the thickness up to 4.6 mm. The onset of such twin matching frequencies in FMAR80 composite sample is attributed to the spin resonance relaxation at ~5 GHz (fm1) and destructive interference at λm/4 matched thickness near ~10 GHz (fm2) in these composite systems. These studies suggest the potential of tuning the twin frequencies in Ni0.5Zn0.5Fe2O4/NBR composite samples for possible microwave absorption applications.

  19. Heavy metal displacement in chelate-irrigated soil during phytoremediation

    NASA Astrophysics Data System (ADS)

    Madrid, F.; Liphadzi, M. S.; Kirkham, M. B.

    2003-03-01

    Heavy metals in wastewater sewage sludge (biosolids), applied to land, contaminate soils. Phytoremediation, the use of plants to clean up toxic heavy metals, might remove them. Chelating agents are added to soil to solubilize the metals for enhanced phytoextraction. Yet no studies follow the displacement and leaching of heavy metals in soil with and without roots following solubilization with chelates. The objective of this work was to determine the mobility of heavy metals in biosolids applied to the surface of soil columns (76 cm long; 17 cm diam.) with or without plants (barley; Hordeum vulgare L.). Three weeks after barley was planted, all columns were irrigated with the disodium salt of the chelating agent, EDTA (ethylenediamine tetraacetic acid) (0.5 g/kg soil). Drainage water, soil, and plants were analyzed for heavy metals (Cd, Cu, Fe, Mn, Ni, Pb, Zn). Total concentrations of the heavy metals in all columns at the end of the experiment generally were lower in the top 30 cm of soil with EDTA than without EDTA. The chelate increased concentrations of heavy metals in shoots. With or without plants, the EDTA mobilized Cd, Fe, Mn, Ni, Pb, and Zn, which leached to drainage water. Drainage water from columns without EDTA had concentrations of these heavy metals below detection limits. Only Cu did not leach in the presence of EDTA. Even though roots retarded the movement of Cd, Fe, Mn, Ni, Pb, and Zn through the EDTA-treated soil from 1 d (Cd) to 5 d (Fe), the drainage water from columns with EDTA had concentrations of Cd, Fe, Mn, and Pb that exceeded drinking water standards by 1.3, 500, 620, and 8.6 times, respectively. Because the chelate rendered Cd, Fe, Mn, Ni, Pb, and Zn mobile, it is suggested that the theory for leaching of soluble salts, put forward by Nielsen and associates in 1965, could be applied to control movement of the heavy metals for maximum uptake during chelate-assisted phytoremediation.

  20. The effect of abandoned mining ponds on trace elements dynamics in the soil-plant system

    NASA Astrophysics Data System (ADS)

    Gabarrón, María; Faz, Ángel; Zornoza, Raúl; Acosta, Jose A.

    2017-04-01

    In semiarid climate regions lack of vegetation and dryer climate contribute to erosion of abandoned mining surface areas making them up important potential sources of metal pollution into the environment. The objectives of this study were to determine the influence of mine ponds in agriculture and forest soils, and identify the dynamic of metals in the soil-plant system for native plant species (Ballota hirsuta) and crop species (Hordeum vulgare) in two ancient mining districts: La Unión and Mazarrón. To achieve these objectives, wastes samples from mine ponds and soil samples (rhizosphere and non-rhizosphere soils) from natural and agricultural lands were collected. In addition, six plants (Ballota hirsuta) from natural area and 3 plants (Hordeum vulgare) from crops were collected. Physicochemical properties and total, water soluble and bioavailable metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) and arsenic were measured in waste/soil samples. The chemical speciation of metals in soil was estimated by a sequential extraction procedure. For plants analyses, each plant were divided in roots, stem and leaves and metal content measured by ICP-MS. Results indicated that mine, natural and agricultural soils were contaminated by As, Cd, Cu, Pb, and Zn. Chemical partitioning revealed higher mobility of metals in mine ponds than natural and agriculture soils while only Fe and As are completely bound to the soil matrix due to the mineralogical compositions of soils. The accumulation of metals in Ballota hirsuta in La Union decrease as Fe>As>Cr>Ni>Cu>Zn>Cd>Mn>Co>Pb while in Mazarrón did as As>Fe>Cr>Pb>Cu>Ni>Co>Mn>Zn>Cd. Ballota hirsuta showed high ability to bio-accumulate Cu, Cr, Fe, Ni, and As, transferring a large amount to edible parts without exceeding the toxicity limits for animals. Results for barley plants (Hordeum vulgare) showed the ability to absorb and accumulate As, Fe, Mn, Pb and Zn, although the transfer ability of As, Cd and Pb was lower. Although the behavior of metals reflects a root barrier effect, the amount of Pb in grain overreached the permissible limit in aliments.

  1. Size dependent magnetic and magneto-optical properties of Ni0.2Zn0.8Fe2O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Oksana A.; Lin, Chun-Rong; Chen, Hung-Yi; Hsu, Hua-Shu; Shih, Kun-Yauh; Edelman, Irina S.; Wu, Kai-Wun; Tseng, Yaw-Teng; Ovchinnikov, Sergey G.; Lee, Jiann-Shing

    2016-06-01

    Ni0.2Zn0.8Fe2O4 spinel nanoparticles have been synthesized by combustion method. Average particles size varies from 15.5 to 50.0 nm depending on annealing temperature. Correlations between particles size and magnetic and magneto-optical properties are investigated. Magnetization dependences on temperature and external magnetic field correspond to the sum of paramagnetic and superparamagnetic response. Critical size of single-domain transition is found to be 15.9 nm. Magnetic circular dichroism (MCD) studies of nickel zinc spinel are presented here for the first time. The features in magnetic circular dichroism spectrum are assigned to the one-ion d-d transitions in Fe3+ and Ni2+ ions, as well to the intersublattice and intervalence charge transfer transitions. The MCD spectrum rearrangement was revealed with the change of the nanoparticles size.

  2. Magnetic properties of Mn0.1Mg0.2TM0.7Fe2O4 (TM = Zn, Co, or Ni) prepared by hydrothermal processes: The effects of crystal size and chemical composition

    NASA Astrophysics Data System (ADS)

    Nhlapo, T. A.; Msomi, J. Z.; Moyo, T.

    2018-02-01

    Nano-crystalline Zn-, Co-, and Ni-substituted Mn-Mg ferrites were prepared by hydrothermal process and annealed at 1100 °C. Annealing conditions are critical on the crystalline phase. TEM and XRD data reveal particle sizes between 8 nm and 15 nm for the as-prepared fine powders, which increase to about 73 nm after sintering at 1100 °C. Mӧssbauer spectra show well resolved magnetic splitting in bulk samples. The as-prepared fine powders show weak hyperfine splitting and broad central doublets associated with fine particles. Magnetization data reveal a high coercive field at about 300 K of about 945 Oe in the Co-based nanosized oxide, which reduces to about 360 Oe after thermal annealing at 1100 °C. The magnetization curves of Zn- and Ni-based samples show much lower coercive fields indicative of superparamagnetic nanoparticles. The crystallite size and chemical composition have significant effects on the properties of Mn0.1Mg0.2(Zn,Co,Ni)0.7Fe2O4 investigated.

  3. Formaldehyde sensor based on Ni-doped tetrapod-shaped ZnO nanopowder induced by external magnetic field

    NASA Astrophysics Data System (ADS)

    Bai, Zikui; Xie, Changsheng; Hu, Mulin; Zhang, Shunping

    2008-12-01

    The sensors based on Ni-doped ZnO nanopowder with tetrapod-shape (T-ZnO) were fabricated by screen-printing technique with external magnetic field in different direction. The morphologies and crystal structures of the thick film were characterized by X-ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM), respectively. Gas-sensing property of sensors responded to 100 ppm formaldehyde was also detected. The results show that the direction of magnetic field has crucial effect on the sensor sensitivity. The sensors based on 5 wt% Ni-doped T-ZnO induced by magnetic field in parallel direction to the thick film surface, has the optimization sensitivity, the shortest response and recovery time, which are 10.6, 16 and 15 s, respectively. The magnetic-field induction model and the gas-sensing mechanism of the Ni-doped T-ZnO are proposed.

  4. Functionalization of magnetic hollow porous oval shape NiFe2O4 as a highly selective sorbent for the simultaneous determination of five heavy metals in real samples.

    PubMed

    Liu, Mingyang; Yang, Lijun; Zhang, Lei

    2016-12-01

    In this study, a functionalized magnetic hollow porous oval-shape NiFe 2 O 4 (MHPO-NiFe 2 O 4 ) was designed by a facile synthesis procedure, and employed as magnetic solid phase extraction (MSPE) material to extract several heavy metal ions. As-prepared MHPO-NiFe 2 O 4 exhibited superior adsorption capacities of 20.17, 16.64, 16.82, 9.69 and 16.58mgg -1 , for Cu(II), Cd(II), Cr(III), Co(II) and Zn(II), and was then used to detect these heavy metals elements in real samples by combining with inductively coupled plasma optical emission spectroscopy (ICP-OES). The possible mechanism of the enrichment of heavy metals ions on MHPO-NiFe 2 O 4 was proposed, which involved the dominant adsorption and desorption. The detection limits were as low as 0.015, 0.13, 0.062, 0.035 and 0.46μgL -1 for Cu(II), Cd(II), Cr(III), Co(II) and Zn(II), respectively. A good repeatability was obtained with the relative standard deviation (RSD) of 3.87%. Moreover, the method was successfully utilized for the analysis of five heavy metals in real samples (cabbage, lettuce, apple, seawater), with satisfactory recoveries in the range of 92-108%. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Synthesis, investigation and spectroscopic characterization of piroxicam ternary complexes of Fe(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) with glycine and DL-phenylalanine.

    PubMed

    Mohamed, Gehad G; El-Gamel, Nadia E A

    2004-11-01

    The ternary piroxicam (Pir; 4-hydroxy-2-methyl-N-(2-pyridyl)-2H-1,2-benzothiazine-3-carboxamide 1,1-dioxide) complexes of Fe(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) with various amino acids (AA) such as glycine (Gly) or DL-phenylalanine (PhA) were prepared and characterized by elemental analyses, molar conductance, IR, UV-Vis, magnetic moment, diffuse reflectance and X-ray powder diffraction. The UV-Vis spectra of Pir and the effect of metal chelation on the different interligand transitions are discussed in detailed manner. IR and UV-Vis spectra confirm that Pir behaves as a neutral bidentate ligand coordinated to the metal ions via the pyridine-N and carbonyl group of the amide moiety. Gly molecule acted as a uninegatively monodentate ligand and coordinate to the metal ions through its carboxylic group, in addition PhA acted as a uninegatively bidentate ligand and coordinate to the metal ions through its carboxylic and amino groups. All the chelates have octahedral geometrical structures while Cu(II)- and Zn(II)-ternary chelates with PhA have square planar geometrical structures. The molar conductance data reveal that most of these chelates are non electrolytes, while Fe(III)-Pir-Gly, Co(II)-, Ni(II)-, Cu(II)- and Zn(II)-Pir-PhA chelates were 1:1 electrolytes. X-ray powder diffraction is used as a new tool to estimate the crystallinity of chelates as well as to elucidate their geometrical structures.

  6. Synthesis, investigation and spectroscopic characterization of piroxicam ternary complexes of Fe(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) with glycine and DL-phenylalanine

    NASA Astrophysics Data System (ADS)

    Mohamed, Gehad G.; El-Gamel, Nadia E. A.

    2004-11-01

    The ternary piroxicam (Pir; 4-hydroxy-2-methyl- N-(2-pyridyl)-2H-1,2-benzothiazine-3-carboxamide 1,1-dioxide) complexes of Fe(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) with various amino acids (AA) such as glycine (Gly) or DL-phenylalanine (PhA) were prepared and characterized by elemental analyses, molar conductance, IR, UV-Vis, magnetic moment, diffuse reflectance and X-ray powder diffraction. The UV-Vis spectra of Pir and the effect of metal chelation on the different interligand transitions are discussed in detailed manner. IR and UV-Vis spectra confirm that Pir behaves as a neutral bidentate ligand coordinated to the metal ions via the pyridine- N and carbonyl group of the amide moiety. Gly molecule acted as a uninegatively monodentate ligand and coordinate to the metal ions through its carboxylic group, in addition PhA acted as a uninegatively bidentate ligand and coordinate to the metal ions through its carboxylic and amino groups. All the chelates have octahedral geometrical structures while Cu(II)- and Zn(II)-ternary chelates with PhA have square planar geometrical structures. The molar conductance data reveal that most of these chelates are non electrolytes, while Fe(III)-Pir-Gly, Co(II)-, Ni(II)-, Cu(II)- and Zn(II)-Pir-PhA cheletes were 1:1 electrolytes. X-ray powder diffraction is used as a new tool to estimate the crystallinity of chelates as well as to elucidate their geometrical structures.

  7. High temperature dissolution of oxides in complexing media

    NASA Astrophysics Data System (ADS)

    Sathyaseelan, Valil S.; Rufus, Appadurai L.; Subramanian, Hariharan; Bhaskarapillai, Anupkumar; Wilson, Shiny; Narasimhan, Sevilimedu V.; Velmurugan, Sankaralingam

    2011-12-01

    Dissolution of transition metal oxides such as magnetite (Fe 3O 4), mixed ferrites (NiFe 2O 4, ZnFe 2O 4, MgFe 2O 4), bonaccordite (Ni 2FeBO 5) and chromium oxide (Cr 2O 3) in organic complexing media was attempted at higher temperatures (80-180 °C). On increasing the temperature from 80 to 180 °C, the dissolution rate of magnetite in nitrilo triacetic acid (NTA) medium increased six folds. The trend obtained for the dissolution of other oxides was ZnFe 2O 4 > NiFe 2O 4 > MgFe 2O 4 > Cr 2O 3, which followed the same trend as the lability of their metal-oxo bonds. Other complexing agents such as ethylene diamine tetra acetic acid (EDTA), pyridine dicarboxylic acid (PDCA), citric acid and reducing agents viz., oxalic acid and ascorbic acid were also evaluated for their oxide dissolution efficiency at 160 °C. EDTA showed maximum dissolution rate of 21.4 μm/h for magnetite. Addition of oxalic acid/ascorbic acid to complexing media (NTA/EDTA) showed identical effect on the dissolution of magnetite. Addition of hydrazine, another reducing agent, to NTA decreased the rate of dissolution of magnetite by 50%.

  8. Spin canting and magnetic transition in NixZn1-xFe2O4 (x=0.0, 0.5 and 1.0) nanoparticles

    NASA Astrophysics Data System (ADS)

    Rani, Stuti; Raghav, Dharmendra Singh; Yadav, Prashant; Varma, G. D.

    2018-04-01

    Nanoparticles of NixZn1-xFe2O4(x=0.0, 0.5 and 1.0) have been synthesized via co-precipitation method and studied thestructural and magnetic properties. Rietveld refinement of X ray diffraction data of as synthesized samples revealthat the samples have mixed spinel structure with space group Fd-3m. The lattice parameter of the samples decreases as doping concentration of Ni ions increases. Magnetic measurements show paramagnetic to ferrimagnetic transition at room temperature on Ni doping in ZnFe2O4 nanoparticles. The magnetic measurements also show spin canting in samples possibly due to their nanocrystalline nature. The spin canting angles have been calculated with the help of Yafet-Kittel (Y-K) model. Furthermore, the Law of approach (LA) fitting of M-H curves indicates that the samples are highly anisotropicin nature. The Arrot plots of as synthesized samples also indicate the paramagnetic to ferrimagnetic transition. The correlation between the structural and observed magnetic properties of NixZn1-xFe2O4(x=0.0, 0.5 and 1.0) nanocrystals will be described and discussed in this paper.

  9. Structural and magnetic properties of sol-gel Co2xNi0.5-x Zn0.5-xFe2O4 thin films

    NASA Astrophysics Data System (ADS)

    Rebrov, Evgeny V.; Gao, Pengzhao; Verhoeven, Tiny M. W. G. M.; Schouten, Jaap C.; Kleismit, Richard; Turgut, Zafer; Kozlowski, Gregory

    2011-03-01

    Nanocrystalline Co2xNi0.5-xZn0.5-xFe2O4 (x=0-0.5) thin films have been synthesized with various grain sizes by a sol-gel method on polycrystalline silicon substrates. The morphology as well as magnetic and microwave absorption properties of the films calcined at 1073 K were studied using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and vibrating sample magnetometry. All films were uniform without microcracks. The Co content in the Co-Ni-Zn films resulted in a grain size ranging from 15 to 32 nm while it ranged from 33 to 49 nm in the corresponding powders. Saturation and remnant magnetization increased with increase in grain size, while coercivity demonstrated a drop due to multidomain behavior of crystallites for a given value of x. Saturation magnetization increased and remnant magnetization had a maximum as a function of grain size independent of x. In turn, coercivity increased with x independent of grain size. Complex permittivity of the Co-Ni-Zn ferrite films was measured in the frequency range 2-15 GHz. The highest hysteretic heating rate in the temperature range 315-355 K was observed in CoFe2O4. The maximum absorption band shifted from 13 to 11 GHz as cobalt content increased from x=0.1 to 0.2.

  10. Preparation and investigation of dc conductivity and relative permeability of epoxy/Li-Ni-Zn ferrite composites

    NASA Astrophysics Data System (ADS)

    Darwish, M. A.; Saafan, S. A.; El-Kony, D.; Salahuddin, N. A.

    2015-07-01

    Ferrite nanoparticles - having the compositions Li(x/2)(Ni0.5Zn0.5)(1-x)Fe(2+x/2)O4 (x=0, 0.2, 0.3) - have been prepared by the co-precipitation method. The prepared powders have been divided into groups and sintered at different temperatures (373 K, 1074 K and 1473 K). X-Ray diffraction analysis (XRD) for all samples has confirmed the formation of the desired ferrites with crystallite sizes within the nanoscale (<100 nm). The dc conductivity, the relative permeability and the magnetization of the ferrite samples have been investigated and according to the results, the sample Li0.15(Ni0.5Zn0.5)0.7 Fe2.15O4 sintered at 1473 K has been chosen to prepare the composites. The particle size of this sample has been recalculated by using JEOL JEM-100SX transmission electron microscope and it has been found about 64.7 nm. Then, a pure epoxy sample and four pristine epoxy resin /Li0.15(Ni0.5Zn0.5)0.7 Fe2.15O4 composites have been prepared using different ferrite contents (20%, 30%, 40%, and 50%) wt.%. These samples have been characterized by Fourier transform infrared (FTIR) spectroscopy and their dc conductivity, relative permeability and magnetization have also been investigated. The obtained results indicate that the investigated composites may be promising candidates for practical applications such as EMI suppressor and high frequency applications.

  11. Decontamination of coal mine effluent generated at the Rajrappa coal mine using phytoremediation technology.

    PubMed

    Lakra, Kalpana C; Lal, B; Banerjee, T K

    2017-06-03

    Toxicity of the effluent generated at the Rajrappa coal mine complex under the Central Coalfields Limited (CCL, a subsidiary of Coal India Limited) in Jharkhand, India was investigated. The concentrations (mg L -1 ) of all the toxic metals (Fe, Mn, Ni, Zn, Cu, Pb, Cr, and Cd) in the coal mine effluent were above the safe limit suggested by the Environmental Protection Agency (EPA 2003). Among these, Fe showed the highest concentration (18.21 ± 3.865), while Cr had the lowest effluent concentration (0.15 ± 0.014). Efforts were also made to detoxify the effluent using two species of aquatic macrophytes namely "'Salvinia molesta and Pistia stratiotes." After 10 days of phytoremediation, S. molesta removed Pb (96.96%) > Ni (97.01%) > Cu (96.77%) > Zn (96.38%) > Mn (96.22%) > Fe (94.12%) > Cr (92.85%) > Cd (80.99%), and P. stratiotes removed Pb (96.21%) > Fe (94.34%) > Ni (92.53%) > Mn (85.24%) > Zn (79.51%) > Cr (78.57%) > Cu (74.19%) > Cd (72.72%). The impact of coal mine exposure on chlorophyll content showed a significant decrease of 42.49% and 24.54% from control values in S. molesta and P. stratiotes, respectively, perhaps due to the damage inflicted by the toxic metals, leading to the decay of plant tissues.

  12. Effect of flood events on transport of suspended sediments, organic matter and particulate metals in a forest watershed in the Basque Country (Northern Spain).

    PubMed

    Peraza-Castro, M; Sauvage, S; Sánchez-Pérez, J M; Ruiz-Romera, E

    2016-11-01

    An understanding of the processes controlling sediment, organic matter and metal export is critical to assessing and anticipating risk situations in water systems. Concentrations of suspended particulate matter (SPM), dissolved (DOC) and particulate (POC) organic carbon and metals (Cu, Ni, Pb, Cr, Zn, Mn, Fe) in dissolved and particulate phases were monitored in a forest watershed in the Basque Country (Northern Spain) (31.5km(2)) over three hydrological years (2009-2012), to evaluate the effect of flood events on the transport of these materials. Good regression was found between SPM and particulate metal concentration, making it possible to compute the load during the twenty five flood events that occurred during the study period at an annual scale. Particulate metals were exported in the following order: Fe>Mn>Zn>Cr>Pb>Cu>Ni. Annual mean loads of SPM, DOC and POC were estimated at 2267t, 104t and 57t, respectively, and the load (kg) of particulate metals at 76 (Ni), 83 (Cu), 135 (Pb), 256 (Cr), 532 (Zn), 1783 (Mn) and 95170 (Fe). Flood events constituted 91%-SPM, 65%-DOC, 71%-POC, 80%-Cu, 85%-Ni, 72%-Pb, 84%-Cr, 74%-Zn, 87%-Mn and 88%-Fe of total load exported during the three years studied. Flood events were classified into three categories according to their capacity for transporting organic carbon and particulate metals. High intensity flood events are those with high transport capacity of SPM, organic carbon and particulate metals. Most of the SPM, DOC, POC and particulate metal load was exported by this type of flood event, which contributed 59% of SPM, 45% of organic carbon and 54% of metals. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Evaluation of heavy metal concentrations of edible wild-grown mushrooms from China.

    PubMed

    Wang, Xuemei; Liu, Honggao; Zhang, Ji; Li, Tao; Wang, Yuanzhong

    2017-03-04

    The heavy metal contents (Co, Cu, Fe, Mn, Ni, and Zn) of eight species of wild edible mushrooms from China were determined. The analyses were performed using inductively coupled plasma atomic emission spectrophotometry after microwave digestion. The contents of Co, Cu, Fe, Mn, Ni, and Zn in caps of mushroom samples were 0.7-7.2, 16.2-70.4, 371-1315, 12.5-29.8, 7.1-58.5, and 77.8-187.4 mg kg -1 dry matter (dm), respectively, while considerable differences were found to be 1.8-25.9, 9.8-36.3, 288-6762, 13.3-103.9, 5.9-78.7, and 38.7-118 mg kg -1 dm for stipes. The results indicated that higher levels of Co, Fe, and Ni were found in the mushrooms samples analyzed. Zinc and manganese levels were similar to previous reports, whereas Cu was lower than literature values. Correlation analysis suggested that significant correlations were found between the minerals determined and the greatest amount of contamination is associated with Co, Mn, Ni, and Fe. The results of this study indicate that heavy metal contents in mushroom species are mainly related to the mineral resources of sampling sites.

  14. Molecule-based magnets formed by bimetallic three-dimensional oxalate networks and chiral tris(bipyridyl) complex cations. The series [ZII(bpy)3][ClO4][MIICrIII(ox)3] (ZII = Ru, Fe, Co, and Ni; MII = Mn, Fe, Co, Ni, Cu, and Zn; ox = oxalate dianion).

    PubMed

    Coronado, E; Galán-Mascarós, J R; Gómez-García, C J; Martínez-Agudo, J M

    2001-01-01

    The synthesis, structure, and physical properties of the series of molecular magnets formulated as [ZII(bpy)3][ClO4][MIICrIII(ox)3] (ZII = Ru, Fe, Co, and Ni; MII = Mn, Fe, Co, Ni, Cu, and Zn; ox = oxalate dianion) are presented. All the compounds are isostructural to the [Ru(bpy)3][ClO4][MnCr(ox)3] member whose structure (cubic space group P4(1)32 with a = 15.506(2) A, Z = 4) consists of a three-dimensional bimetallic network formed by alternating MII and CrIII ions connected by oxalate anions. The identical chirality (lambda in the solved crystal) of all the metallic centers determines the 3D chiral structure adopted by these compounds. The anionic 3D sublattice leaves some holes where the chiral [Z(bpy)3]2+ and ClO4- counterions are located. These compounds behave as soft ferromagnets with ordering temperatures up to 6.6 K and coercive fields up to 8 mT.

  15. Metal concentrations in sediments from tourist beaches of Miri City, Sarawak, Malaysia (Borneo Island).

    PubMed

    Nagarajan, R; Jonathan, M P; Roy, Priyadarsi D; Wai-Hwa, L; Prasanna, M V; Sarkar, S K; Navarrete-López, M

    2013-08-15

    Forty-three sediment samples were collected from the beaches of Miri City, Sarawak, Malaysia to identify the enrichment of partially leached trace metals (PLTMs) from six different tourist beaches. The samples were analyzed for PLTMs Fe, Mn, Cr, Co, Cu, Ni, Pb, Sr and Zn. The concentration pattern suggest that the southern side of the study area is enriched with Fe (1821-6097 μg g(-1)), Mn (11.57-90.22 μg g(-1)), Cr (51.50-311 μg g(-1)), Ni (18-51 μg g(-1)), Pb (8.81-84.05 μg g(-1)), Sr (25.95-140.49 μg g(-1)) and Zn (12.46-35.04 μg g(-1)). Compared to the eco-toxicological values, Cr>Effects range low (ERL), Lowest effect level (LEL), Severe effect level (SEL); Cu>Unpolluted sediments, ERL, LEL; Pb>Unpolluted sediments and Ni>ERL and LEL. Comparative results with other regions indicate that Co, Cr, Cu, Ni and Zn are higher, indicating an external input rather than natural process. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Distribution and Potential Toxicity of Trace Metals in the Surface Sediments of Sundarban Mangrove Ecosystem, Bangladesh

    NASA Astrophysics Data System (ADS)

    Kumar, A.; Ramanathan, A.; Mathukumalli, B. K. P.; Datta, D. K.

    2014-12-01

    The distribution, enrichment and ecotoxocity potential of Bangladesh part of Sundarban mangrove was investigated for eight trace metals (As, Cd, Cr, Cu, Fe, Mn, Pb and Zn) using sediment quality assessment indices. The average concentration of trace metals in the sediments exceeded the crustal abundance suggesting sources other than natural in origin. Additionally, the trace metals profile may be a reflection of socio-economic development in the vicinity of Sundarban which further attributes trace metals abundance to the anthropogenic inputs. Geoaccumulation index suggests moderately polluted sediment quality w.r.t. Ni and As and background concentrations for Al, Fe, Mn, Cu, Zn, Pb, Co, As and Cd. Contamination factor analysis suggested low contamination by Zn, Cr, Co and Cd, moderate by Fe, Mn, Cu and Pb while Ni and As show considerable and high contamination, respectively. Enrichment factors for Ni, Pb and As suggests high contamination from either biota or anthropogenic inputs besides natural enrichment. As per the three sediment quality guidelines, Fe, Mn, Cu, Ni, Co and As would be more of a concern with respect to ecotoxicological risk in the Sundarban mangroves. The correlation between various physiochemical variables and trace metals suggested significant role of fine grained particles (clay) in trace metal distribution whereas owing to low organic carbon content in the region the organic complexation may not be playing significant role in trace metal distribution in the Sundarban mangroves.

  17. Influence of La3+ Substitution on Structure, Morphology and Magnetic Properties of Nanocrystalline Ni-Zn Ferrite

    PubMed Central

    Dasan, Y. K.; Guan, B. H.; Zahari, M. H.; Chuan, L. K.

    2017-01-01

    Lanthanum substituted Ni-Zn ferrite nanoparticles (Ni0.5Zn0.5LaxFe1-xO4; 0.00 ≤x≤ 1.00) synthesized by sol-gel method were presented. X-ray diffraction patterns reveal the typical single phase spinel cubic ferrite structure, with the traces of secondary phase for lanthanum substituted nanocrystals. In addition, the structural analysis also demonstrates that the average crystallite size varied in the range of 21–25 nm. FTIR spectra present the two prominent absorption bands in the range of 400 to 600 cm-1 which are the fingerprint region of all ferrites. Surface morphology of both substituted and unsubstituted Ni-Zn ferrite nanoparticle samples was studied using FESEM technique and it indicates a significant increase in the size of spherical shaped particles with La3+ substitution. Magnetic properties of all samples were analyzed using vibrating sample magnetometer (VSM). The results revealed that saturation magnetization (Ms) and coercivity (Hc) of La3+ substituted samples has decreased as compared to the Ni-Zn ferrite samples. Hence, the observed results affirm that the lanthanum ion substitution has greatly influenced the structural, morphology and magnetic properties of Ni-Zn ferrite nanoparticles. PMID:28081257

  18. Influence of La3+ Substitution on Structure, Morphology and Magnetic Properties of Nanocrystalline Ni-Zn Ferrite.

    PubMed

    Dasan, Y K; Guan, B H; Zahari, M H; Chuan, L K

    2017-01-01

    Lanthanum substituted Ni-Zn ferrite nanoparticles (Ni0.5Zn0.5LaxFe1-xO4; 0.00 ≤x≤ 1.00) synthesized by sol-gel method were presented. X-ray diffraction patterns reveal the typical single phase spinel cubic ferrite structure, with the traces of secondary phase for lanthanum substituted nanocrystals. In addition, the structural analysis also demonstrates that the average crystallite size varied in the range of 21-25 nm. FTIR spectra present the two prominent absorption bands in the range of 400 to 600 cm-1 which are the fingerprint region of all ferrites. Surface morphology of both substituted and unsubstituted Ni-Zn ferrite nanoparticle samples was studied using FESEM technique and it indicates a significant increase in the size of spherical shaped particles with La3+ substitution. Magnetic properties of all samples were analyzed using vibrating sample magnetometer (VSM). The results revealed that saturation magnetization (Ms) and coercivity (Hc) of La3+ substituted samples has decreased as compared to the Ni-Zn ferrite samples. Hence, the observed results affirm that the lanthanum ion substitution has greatly influenced the structural, morphology and magnetic properties of Ni-Zn ferrite nanoparticles.

  19. Distribution of Bioactive Trace Metals (Fe, Co, Ni, Cu and Zn) in the semiarid Kuwait Bay, stressed by natural and anthropogenic processes

    NASA Astrophysics Data System (ADS)

    Al-Said, T. F.; Pokavanich, T.; Al-Hashem, A.; Kedila, R.

    2016-02-01

    Kuwait is in the northwestern part of the Arabian Gulf and receives flow from Shatt Al-Arab River as the main fresh water input to the Gulf. Kuwait's waters can be described as eutrophic, euphotic, and highly saline waters. The main objective of the study is to assess spatial and temporal distribution of Cu, Co, Zn, Fe and Ni, nutrients such as nitrate and phosphate, chlorophyll-a and physical variables along transects in Kuwait's Waters. No systematic research on bioactive metals has been studied in the region. Concentration of trace metal in the shallow Kuwait Bay was relatively high and decreased towards the southern water. This is attributed to higher sewage input, domestic and industrial effluents, dust storms and human activities. Cu, Ni, Fe, Zn and Co levels were measured using proven tested methodology i.e., Adsorptive Cathodic Stripping Voltammetry (Ad-CSV) and Flow Injection Analyzer (FIA). Surface seawater samples were collected from 26 stations using clean polyethylene sampling devices from four transects during two seasons in 2015. Average concentrations of Copper, Nickel, Cobalt, Zinc and chlorophyll-a corresponded to 14.99, 22.32, 0.74, 14.56 nM and 3.05µg/L during June 2015. These values indicated lower concentrations compared to previously published values from Kuwait's waters: Cu 48.52, Ni 26.12, Co 4.69, Zn 93.86 nM. Two transects conducted during summer 2015 showed positive relationship between metals (Cu, Co and Ni) and chlorophyll. Strong and apparent correlation was observed between cobalt and chlorophyll-a in Kuwait Bay indicating that these micronutrient are abundant and higher than phytoplankton essential requirements. Recent measured Fe concentration 7.95nM in Kuwait Bay was comparable to values found in similar coastal water. Latest results obtained during the transactional surveys and processes involved in Kuwait's waters will be shown and discussed during the presentation.

  20. Effect of different amendments on rice (Oryza sativa L.) growth, yield, nutrient uptake and grain quality in Ni-contaminated soil.

    PubMed

    Ramzani, Pia Muhammad Adnan; Khan, Waqas-Ud-Din; Iqbal, Muhammad; Kausar, Salma; Ali, Shafaqat; Rizwan, Muhammad; Virk, Zaheer Abbas

    2016-09-01

    Rice ( Oryza sativa L.) is one of the main staple food crops which is inherently low in micronutrients, especially iron (Fe), and can lead to severe Fe deficiency in populations having higher consumption of rice. Soils polluted with nickel (Ni) can cause toxicity to rice and decreased Fe uptake by rice plants. We investigated the potential role of biochar (BC) and gravel sludge (GS), alone and in combination, for in situ immobilization of Ni in an industrially Ni-contaminated soil at original and sulfur-amended altered soil pH. Our further aim was to increase Fe bioavailability to rice plants by the exogenous application of ferrous sulfate to the Ni-immobilized soil. Application of the mixture of both amendments reduced grain Ni concentration, phytate, Phytate/Fe, Phyt/Zn molar ratios, and soil DTPA-extractable Ni. In addition, the amendment mixture increased 70 % Fe and 229 % ferritin concentrations in rice grains grown in the soil at original pH. The Fe and ferritin concentrations in S-treated soil was increased up to 113 and 383 % relative to control respectively. This enhanced Fe concentration and corresponding ferritin in rice grains can be attributed to Ni/Fe antagonism where Ni has been immobilized by GS and BC mixture. This proposed technique can be used to enhance growth, yield, and Fe biofortification in rice by reducing soil pH while in parallel in situ immobilizing Ni in polluted soil.

  1. Effect on the grain size of single-mode microwave sintered NiCuZn ferrite and zinc titanate dielectric resonator ceramics.

    PubMed

    Sirugudu, Roopas Kiran; Vemuri, Rama Krishna Murthy; Venkatachalam, Subramanian; Gopalakrishnan, Anisha; Budaraju, Srinivasa Murty

    2011-01-01

    Microwave sintering of materials significantly depends on dielectric, magnetic and conductive Losses. Samples with high dielectric and magnetic loss such as ferrites could be sintered easily. But low dielectric loss material such as dielectric resonators (paraelectrics) finds difficulty in generation of heat during microwave interaction. Microwave sintering of materials of these two classes helps in understanding the variation in dielectric and magnetic characteristics with respect to the change in grain size. High-energy ball milled Ni0.6Cu0.2Zn0.2Fe1.98O4-delta and ZnTiO3 are sintered in conventional and microwave methods and characterized for respective dielectric and magnetic characteristics. The grain size variation with higher copper content is also observed with conventional and microwave sintering. The grain size in microwave sintered Ni0.6Cu0.2Zn0.2Fe1.98O4-delta is found to be much small and uniform in comparison with conventional sintered sample. However, the grain size of microwave sintered sample is almost equal to that of conventional sintered sample of Ni0.3Cu0.5Zn0.2Fe1.98O4-delta. In contrast to these high dielectric and magnetic loss ferrites, the paraelectric materials are observed to sinter in presence of microwaves. Although microwave sintered zinc titanate sample showed finer and uniform grains with respect to conventional samples, the dielectric characteristics of microwave sintered sample are found to be less than that of conventional sample. Low dielectric constant is attributed to the low density. Smaller grain size is found to be responsible for low quality factor and the presence of small percentage of TiO2 is observed to achieve the temperature stable resonant frequency.

  2. Ring head recording on perpendicular media: Output spectra for CoCr and CoCr/NiFe media

    NASA Astrophysics Data System (ADS)

    Stubbs, D. P.; Whisler, J. W.; Moe, C. D.; Skorjanec, J.

    1985-04-01

    The recording density response for sputtered CoCr (thickness=0.5 μm) and CoCr/NiFe (t=0.25 μm/0.5 μm) as well as evaporated CoNi (t=0.12 μm) and Co surface-doped iron oxide particulate media has been measured by reading and writing with Mn-Zn ferrite heads (gap length=0.375 μm, track width=37 μm) in contact with the media. Measurements to 200 kfc/i (thousand flux changes per inch) show a gap null around 115 kfc/i. The data have been normalized by dividing out the head sensitivity to obtain the value of spacing plus transition width (d+a) for the various media. For the CoCr media this value varied from 0.075-0.088 μm; for CoNi, 0.100 μm, and for the particulate medium, 0.163 μm. In addition, testing with a larger gapped Mn-Zn ferrite head (g=2.43 μm) shows that the head fields are distorted by the soft magnetic underlayer in dual layer CoCr/NiFe samples when the gap length is large compared to the distance to the underlayer.

  3. Heavy metals characteristics of settled particles of streets dust from Diwaniyah City- Qadisiyah Governorate - Southern Iraq

    NASA Astrophysics Data System (ADS)

    Al-Dabbas, Moutaz A.; Mahdi, Khalid H.; Al-Khafaji, Raad; Obayes, Kawthar H.

    2018-05-01

    Road-side dust samples were collected from selected areas of Diwaniyah city-Qadisiyah Governorate - Southern Iraq. The heavy metals (Fe, Co, Ni, Cu, Zn and Pb) in these streets dust samples were studied and used as indicator for pollution by using three of main indices (I-geo, CF, and PLI). Determination of heavy metal in the roadside dust is with XRD and XRF methods. I-geo for Co, Zn, Pb, and Ni in the studied sites shows relative values of class 1, which indicated the slightly polluted, while I-geo for Fe and Cu shows relative values of class 0, which indicated no pollution. The contamination factor for Co, Zn, Pb, and Ni classified as class 2, which indicate moderately contamination, while the contamination factor for Fe and Cu classified as class 1, which indicate low contamination. PLI values in the all of studied sites classified as class 2 (Deterioration on site quality) indicating local pollution, as well as denote perfection with (class 0) of no pollution. The distribution pattern of metals percentages was affected by gases emitted from transportation vehicles as well as the prevailing wind direction.

  4. Ordered mesoporous MFe(2)O(4) (M = Co, Cu, Mg, Ni, Zn) thin films with nanocrystalline walls, uniform 16 nm diameter pores and high thermal stability: template-directed synthesis and characterization of redox active trevorite.

    PubMed

    Haetge, Jan; Suchomski, Christian; Brezesinski, Torsten

    2010-12-20

    In this paper, we report on ordered mesoporous NiFe(2)O(4) thin films synthesized via co-assembly of hydrated ferric nitrate and nickel chloride with an amphiphilic diblock copolymer, referred to as KLE. We establish that the NiFe(2)O(4) samples are highly crystalline after calcination at 600 °C, and that the conversion of the amorphous inorganic framework comes at little cost to the ordering of the high quality cubic network of pores averaging 16 nm in diameter. We further show that the synthesis method employed in this work can be readily extended to other ferrites, such as CoFe(2)O(4), CuFe(2)O(4), MgFe(2)O(4), and ZnFe(2)O(4), which could pave the way for innovative device design. While this article focuses on the self-assembly and characterization of these materials using various state-of-the-art techniques, including electron microscopy, grazing incidence small-angle X-ray scattering (GISAXS), time-of-flight secondary ion mass spectrometry (TOF-SIMS), X-ray photoelectron spectroscopy (XPS), as well as UV-vis and Raman spectroscopy, we also examine the electrochemical properties and show the benefits of combining a continuous mesoporosity with nanocrystalline films. KLE-templated NiFe(2)O(4) electrodes exhibit reasonable levels of lithium ion storage at short charging times which stem from facile pseudocapacitance.

  5. Diamond and Unusual Minerals Discovered from the Chromitite in Polar Ural: A First Report

    NASA Astrophysics Data System (ADS)

    Yang, J.; Bai, W.; Fang, Q.; Meng, F.; Chen, S.; Zhang, Z.

    2007-12-01

    Ultrahigh pressure (UHP) minerals, such as diamond, coesite, and pseudomorphs of octahedral olivine, and as well as about 80 other mineral species have been recovered from podiform chromitites of the Luobusa ophiolite, southern Tibet, and a new mineral, Luobusaite (Fe0.82Si2), has been approved recently by CNMMN. The UHP minerals from Luobusa are controversial because they have not found in situ and because ophiolites are currently believed to form at shallow levels above oceanic spreading centers. More detailed study and experimental work are needed to understand the origin and significance of these unusual minerals and investigations of other ophiolites are needed to determine if such minerals occur elsewhere. For this purpose, we collected about 1500 kg of chromitite from two orebodies in an ultramafic body in the Polar Urals. Thus far, more than 60 different mineral species have been separated from these ores. The most exciting discovery is the common occurrence of diamond, a typical UHP mineral in the Luobusa chromitites. Diamonds from Ural chromitite are clear, colorless, well-developed crystals with octahedral morphology, generally 0.2-0.3 mm in size. Attached with the diamonds and perhaps also occurring as inclusions within them are many minerals as chromite, MnNiCrFe alloy, native Si and Ta, corundum, zircon, feldspar, garnet, moissanite, confirming their natural origin and suggesting a long residence time in the mantle. Other mineral group include: (1) native elements: Cr, W, Ni, Co, Si, Al and Ta; (2) carbides: SiC and WC; (3) alloys: Cr-Fe, Si-Al-Fe, Ni-Cu, Ag-Au, Ag-Sn, Fe-Si, Fe-P, and Ag-Zn-Sn; (4) oxides: NiCrFe, PbSn, REE, rutile and Si- bearing rutile, ilmenite, corundum, chromite, MgO, and SnO2; (5) silicates: kyanite, pseudomorphs of octahedral olivine, zircon, garnet, feldspar, and quartz,; (6) sulfides of Fe, Ni, Cu, Mo, Pb, Ab, AsFe, FeNi, CuZn, and CoFeNi; and (7) iron groups: native Fe, FeO, and Fe2O3. These minerals are very similar in composition and structure to those reported from the Luobusa chromitites. For examples, some spherules of native iron contain spherical inclusions of FeO, exactly like comparable grains in the Luobusa sample.

  6. Fate and Distribution of Heavy Metals in Wastewater Irrigated Calcareous Soils

    PubMed Central

    Stietiya, Mohammed Hashem; Duqqah, Mohammad; Udeigwe, Theophilus; Zubi, Ruba; Ammari, Tarek

    2014-01-01

    Accumulation of heavy metals in Jordanian soils irrigated with treated wastewater threatens agricultural sustainability. This study was carried out to investigate the environmental fate of Zn, Ni, and Cd in calcareous soils irrigated with treated wastewater and to elucidate the impact of hydrous ferric oxide (HFO) amendment on metal redistribution among soil fractions. Results showed that sorption capacity for Zarqa River (ZR1) soil was higher than Wadi Dhuleil (WD1) soil for all metals. The order of sorption affinity for WD1 was in the decreasing order of Ni > Zn > Cd, consistent with electrostatic attraction and indication of weak association with soil constituents. Following metal addition, Zn and Ni were distributed among the carbonate and Fe/Mn oxide fractions, while Cd was distributed among the exchangeable and carbonate fractions in both soils. Amending soils with 3% HFO did not increase the concentration of metals associated with the Fe/Mn oxide fraction or impact metal redistribution. The study suggests that carbonates control the mobility and bioavailability of Zn, Ni, and Cd in these calcareous soils, even in presence of a strong adsorbent such as HFO. Thus, it can be inferred that in situ heavy metal remediation of these highly calcareous soils using iron oxide compounds could be ineffective. PMID:24723833

  7. Micro-spatial variation of elemental distribution in estuarine sediment and their accumulation in mangroves of Indian Sundarban.

    PubMed

    Bakshi, Madhurima; Ram, S S; Ghosh, Somdeep; Chakraborty, Anindita; Sudarshan, M; Chaudhuri, Punarbasu

    2017-05-01

    This work describes the micro-spatial variation of elemental distribution in estuarine sediment and bioaccumulation of those elements in different mangrove species of the Indian Sundarbans. The potential ecological risk due to such elemental load on this mangrove-dominated habitat is also discussed. The concentrations of elements in mangrove leaves and sediments were determined using energy-dispersive X-ray fluorescence spectroscopy. Sediment quality and potential ecological risks were assessed from the calculated indices. Our data reflects higher concentration of elements, e.g., Al, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, and Pb, in the sediment, as compared to that reported by earlier workers. Biological concentration factors for K, Ca, Mn, Fe, Cu, and Zn in different mangroves indicated gradual elemental bioaccumulation in leaf tissues (0.002-1.442). Significant variation was observed for elements, e.g., Ni, Mn, and Ca, in the sediments of all the sites, whereas in the plants, significant variation was found for P, S, Cl, K, Ca, Mn, Fe, Cu, and Zn. This was mostly due to the differences in uptake and accumulation potential of the plants. Various sediment quality indices suggested the surface sediments to be moderately contaminated and suffering from progressive deterioration. Cu, Cr, Zn, Mn, and Ni showed higher enrichment factors (0.658-1.469), contamination factors (1.02-2.7), and geo-accumulation index (0.043-0.846) values. The potential ecological risk index values considering Cu, Cr, Pb, and Zn were found to be within "low ecological risk" category (20.04-24.01). However, Cr and Ni in the Sundarban mangroves exceeded the effect range low and probable effect level limits. Strong correlation of Zn with Fe and K was observed, reflecting their similar transportation and accumulation process in both sediment and plant systems. The plant-sediment elemental correlation was found to be highly non-linear, suggesting role of some physiological and edaphic factors in the accumulation process. Overall, the study of micro-spatial distribution of elements can act as a useful tool for determining health of estuarine ecosystem.

  8. A baseline study on the concentration of trace elements in the surface sediments off Southwest coast of Tamil Nadu, India.

    PubMed

    Godson, Prince S; Magesh, N S; Peter, T Simon; Chandrasekar, N; Krishnakumar, S; Vincent, Salom Gnana Thanga

    2018-01-01

    Forty two surface sediment samples were collected in order to document baseline elemental concentration along the Southwest coast of Tamil Nadu, India. The elements detected were Manganese (Mn), Zinc (Zn), Iron (Fe), Copper (Cu), Nickel (Ni) and Lead (Pb). The concentration of Fe and Mn was primarily controlled by the riverine input. The source of Pb and Zn is attributed to leaded petrol and anti-biofouling paints. The calculated index (EF, Igeo and CF) suggests that the sediments of the study area are significantly enriched with all elements except Pb. The contamination factor showed the order of Mn>Zn>Fe>Cu>Ni>Pb. The sediment pollution index (SPI) revealed that the sediments belonged to low polluted to dangerous category. The correlation matrix and dendrogram showed that the elemental distribution was chiefly controlled by riverine input as well as anthropogenic activity in the coast. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Synchrotron X-Ray Microprobe In-Situ Analysis of Extraterrestrial Particles Collected in Aerogel on the MIR Space Station

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Sutton, S. R.; Horz, F.

    2000-01-01

    Using in-situ x-ray fluorescence, we determined the Cr/Fe, Mn/Fe and Ni/Fe of a particle captured in aerogel on MIR are approximately chondritic, indicating an extraterrestrial origin. Impurity of the aerogel precluded determining the Cu and Zn.

  10. ONR Tokyo Scientific Bulletin. Volume 5, Number 1, January-March 1980,

    DTIC Science & Technology

    1980-03-01

    alloys studied are in die AI-Zn, Al -Mg, Al -Si. Al - Cu . Cu - Al . and Cu -Fe... alloys Digital processing Measuring N 20. Abstract (cont.) with certain reports also being contributed by visiting stateside scientist. Occasionally a...atomic absorption spectrophotometer with tubes for the determination of Zn, Cu , Pb, Cr, Fe, Mg, Mn, Al , Co, Cd, Si, Ti, Zr, Ga, Au, Ag, Ni, Na, and

  11. Analysis of ferrite nanoparticles in the flow of ferromagnetic nanofluid.

    PubMed

    Muhammad, Noor; Nadeem, Sohail; Mustafa, M T

    2018-01-01

    Theoretical analysis has been carried out to establish the heat transport phenomenon of six different ferromagnetic MnZnFe2O4-C2H6O2 (manganese zinc ferrite-ethylene glycol), NiZnFe2O4-C2H6O2 (Nickel zinc ferrite-ethylene glycol), Fe2O4-C2H6O2 (magnetite ferrite-ethylene glycol), NiZnFe2O4-H2O (Nickel zinc ferrite-water), MnZnFe2O4-H2O (manganese zinc ferrite-water), and Fe2O4-H2O (magnetite ferrite-water) nanofluids containing manganese zinc ferrite, Nickel zinc ferrite, and magnetite ferrite nanoparticles dispersed in a base fluid of ethylene glycol and water mixture. The performance of convective heat transfer is elevated in boundary layer flow region via nanoparticles. Magnetic dipole in presence of ferrites nanoparticles plays a vital role in controlling the thermal and momentum boundary layers. In perspective of this, the impacts of magnetic dipole on the nano boundary layer, steady, and laminar flow of incompressible ferromagnetic nanofluids are analyzed in the present study. Flow is caused by linear stretching of the surface. Fourier's law of heat conduction is used in the evaluation of heat flux. Impacts of emerging parameters on the magneto-thermomechanical coupling are analyzed numerically. Further, it is evident that Newtonian heating has increasing behavior on the rate of heat transfer in the boundary layer. Comparison with available results for specific cases show an excellent agreement.

  12. Hydrometallurgical Treatment for Mixed Waste Battery Material

    NASA Astrophysics Data System (ADS)

    Ma, L. W.; Xi, X. L.; Zhang, Z. Z.; Huang, Z. Q.; Chen, J. P.

    2017-02-01

    Hydrometallurgical experiments are generally required to assess the appropriate treatment process before the establishment of the industrial recovery process for waste battery materials. The effects of acid systems and oxidants in metal leaching were studied. The comprehensive leaching effects of the citric acid were superior to the sulfuric acid. The potassium permanganate inhibits the dissolution of metals. Thermodynamic calculations showed that metals precipitate more easily in sulfuric acid system than in citric acid system. The Fe precipitation efficiency in sulfuric acid system was 90% at pH 3.5, but with considerable losses of Co (30%) and Ni (40%). The proper pH and organic/aqueous (O/A) ratio for Fe and Zn removal with Di-(2-ethylhexyl) phosphoric acid extraction were 2 and 0.5, respectively; while for the removal of Cu and Mn, the best pH and O/A ratio were 3 and 0.75, respectively. Crude manganese carbonate and a cobalt-nickel enriched liquid were obtained by selective precipitation in raffinate using an ammonium bicarbonate solution. In citric acid systems, the precipitation efficiency of Co, Ni, Mn, Fe, Cu and Zn were less than 20% at pH 7. The proper pH and O/A ratio for the separation of the metals in two groups (Ni/Co/Cu and Mn/Fe/Zn) were 1.5 and 2. The cobalt-nickel-copper enriched liquid was finally obtained.

  13. Marine molluscs as biomonitors for heavy metal levels in the Gulf of Suez, Red Sea

    NASA Astrophysics Data System (ADS)

    Hamed, Mohamed A.; Emara, Ahmed M.

    2006-05-01

    Levels of the heavy metals Copper (Cu), Zinc (Zn), Lead (Pb), Cadmium (Cd), Chromium (Cr), Nickel (Ni), Iron (Fe) and Manganese (Mn) were determined in coastal water, sediments and soft tissues of the gastropod limpet, Patella caerulea, and the bivalve, Barbatus barbatus, from seven different stations in the western coast of the Gulf of Suez. The concentrations of heavy metals in water ranged between 3.37-4.78, 18.83-21.46, 2.75-3.17, 0.22-0.27, 0.99-1.21, 2.69-3.65, 3.75-4.56 μg L - 1 and 23.82-32.78 mg g - 1 for Cu, Zn, Pb, Cd, Cr, Ni, Mn and Fe, respectively. The corresponding concentration values in the sediments were 8.65-12.16, 51.78-58.06, 36.52-42.15, 3.23-3.98, 9.03-12.75, 34.31-49.63, 3.28-4.56 and 64.20-70.22 μg g - 1 for Cu, Zn, Pb, Cd, Cr, Ni, Mn and Fe, respectively. The highest accumulated metals were Fe, Zn and Mn in both P. caerulea and B. barbatus, while the lowest one was Cd. The accumulation of metals was more pronounced in P. caerulea than B. barbatus. The highest concentrations of all metals in water, sediments and mollusca were recorded at Adabiya harbour north of the Gulf, while the lowest concentrations were recorded at Gabal El-Zeit and Hurghada. Land based activities and ships awaiting berth are the main source of metal pollution in the northern part of the Gulf.

  14. For cermet inert anode containing oxide and metal phases useful for the electrolytic production of metals

    DOEpatents

    Ray, Siba P.; Liu, Xinghua; Weirauch, Douglas A.

    2002-01-01

    A cermet inert anode for the electrolytic production of metals such as aluminum is disclosed. The inert anode comprises a ceramic phase including an oxide of Ni, Fe and M, where M is at least one metal selected from Zn, Co, Al, Li, Cu, Ti, V, Cr, Zr, Nb, Ta, W, Mo, Hf and rare earths, preferably Zn and/or Co. Preferred ceramic compositions comprise Fe.sub.2 O.sub.3, NiO and ZnO or CoO. The cermet inert anode also comprises a metal phase such as Cu, Ag, Pd, Pt, Au, Rh, Ru, Ir and/or Os. A preferred metal phase comprises Cu and Ag. The cermet inert anodes may be used in electrolytic reduction cells for the production of commercial purity aluminum as well as other metals.

  15. Metal pollution and ecological risk assessment in marine sediments of Karachi Coast, Pakistan.

    PubMed

    Mashiatullah, Azhar; Chaudhary, Muhammad Zaman; Ahmad, Nasir; Javed, Tariq; Ghaffar, Abdul

    2013-02-01

    Concentrations of 12 metals (Fe, Mn, Cr, Mo, Ni, Pb, Se, Sr, U, V, Zn, and Zr) in surface sediments of Karachi Coast, Pakistan were determined to evaluate their distribution and pollution assessment. The measured metals in the sediments were found to be in the range of Fe, 0.84-6.96 %; Mn, 300-1,300 μg/g; Cr, 12.0-319.84 μg/g; Mo, 0.49-2.03 μg/g; Ni, 1.53-58.86 μg/g; Pb, 9.0-49.46 μg/g; Se, 0.25-.86 μg/g; Sr, 192-1185 μg/g; U, 0.19-1.66 μg/g; V, 15.80-118.20 μg/g; Zn, 15.60-666.28 μg/g; and Zr, 44.02-175.26 μg/g. The mean contents of the metal studied were: Fe, 3.07 %, Mn, 0.05 %; Cr, 96.75 μg/g; Mo, 1.34 μg/g; Ni, 31.39 μg/g; Pb, 23.24 μg/g; Se, 0.61 μg/g; Sr, 374.83 μg/g; U, 0.64 μg/g; V, 61.75 μg/g; Zn, 204.75 μg/g; and Zr:76.27 μg/g, and arrangement of the metals from higher to lower mean content in this area is: Fe > Zn > Mn > Sr > Zn > Cr > Zr > V > Ni > Pb > Mo > U > Se. There is no significant correlation among most of these metals, indicating different anthropogenic and natural sources. To assess ecotoxic potential of marine sediments, Numerical Sediment Quality Guidelines were also applied. The concentration of Pb in all the sediments except one was lower than the threshold effect concentration (TECs) showing that there are no harmful effects to marine life from Pb. On the other hand, the concentrations of Cr, Ni, and Zn exceeded TEC in three stations, indicating their potential risk. The degree of pollution in sediments for metals was assessed by calculating enrichment factor (EF) and pollution load index (PLI). The results indicated that sediments of Layari River Mouth Area, Fish Harbour, and KPT Boat Building Area are highly enriched with Cr and Zn (EF > 5). Sediments of Layari River Outfall Zone were moderately enriched with Ni and Pb (EF > 2). The pollution load index was found in the range of 0.98 to 1.34. Lower values of PLI (≤ 1) at most of sampling locations imply no appreciable input from anthropogenic sources. However, relatively higher PLI values (>1) at Layari River Mouth Area, Fish Harbour, and KPT Boat Building Area are attributed to increased human activity in the area.

  16. Trace Metals Derived from Electronic Cigarette (ECIG) Generated Aerosol: Potential Problem of ECIG Devices That Contain Nickel

    PubMed Central

    Palazzolo, Dominic L.; Crow, Andrew P.; Nelson, John M.; Johnson, Robert A.

    2017-01-01

    Introduction: ECIGs are currently under scrutiny concerning their safety, particularly in reference to the impact ECIG liquids (E-liquids) have on human health. One concern is that aerosolized E-liquids contain trace metals that could become trapped in respiratory tissues and induce pathology. Methods: To mimic this trapping, peristaltic pumps were used to generate and transport aerosol onto mixed cellulose ester (MCE) membranes where aluminum (Al), arsenic (As), cadmium (Cd), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), lead (Pb), and zinc (Zn) were subsequently captured and quantified. The presence of trace metals on unexposed MCE membranes and on MCE membranes exposed to mainstream smoke served as control and comparison, respectively. The presence of these metals was also determined from the E-liquid before aerosolization and untouched by the ECIG device. All metals were quantified using ICP-MS. The ECIG core assembly was analyzed using scanning electron microscopy with elemental analysis capability. Results: The contents (μg) of Al, As, Cd, Cu, Fe, Mn, Ni, Pb, and Zn on control MCE membranes were 1.2 ± 0.2, 0.050 ± 0.002, 0.047 ± 0.003, 0.05 ± 0.01, 0.001 ± 0.001, 0.16 ± 0.04, 0.005 ± 0.003, 0.014 ± 0.006, and 0.09 ± 0.02, respectively. The contents of all trace metals on MCE membranes exposed to aerosol were similar to controls, except Ni which was significantly (p < 0.01) higher (0.024 ± 0.004 μg). In contrast, contents of Al, As, Fe, Mn, and Zn on MCE membranes exposed to smoke were significantly higher (p < 0.05) than controls. The contents of Al, As, Cu, Fe, and Mn on smoke-exposed MCE membranes were also significantly higher (p < 0.05) than their content on aerosol-exposed membranes. The contents per cigarette equivalent of metals in E-liquid before aerosolization were negligible compared to amounts of aerosolized E-liquid, except for Fe (0.002 μg before and 0.001 μg after). Elemental analysis of the core assembly reveals the presence of several of these trace metals, especially Al, Fe, Ni, and Zn. Conclusions: In general, from the single ECIG-device/E-liquid combination used, the amount of trace metals from ECIG-generated aerosol are lower than in traditional mainstream smoke, Only Ni in the ECIG-generated aerosol was higher than control. The most probable source of Ni in this aerosol is the core assembly. PMID:28119618

  17. Effects of metal on the biochemical properties of Helicobacter pylori HypB, a maturation factor of [NiFe]-hydrogenase and urease.

    PubMed

    Sydor, Andrew M; Liu, Jenny; Zamble, Deborah B

    2011-03-01

    The biosyntheses of the [NiFe]-hydrogenase and urease enzymes in Helicobacter pylori require several accessory proteins for proper construction of the nickel-containing metallocenters. The hydrogenase accessory proteins HypA and HypB, a GTPase, have been implicated in the nickel delivery steps of both enzymes. In this study, the metal-binding properties of H. pylori HypB were characterized, and the effects of metal binding on the biochemical behavior of the protein were examined. The protein can bind stoichiometric amounts of Zn(II) or Ni(II), each with nanomolar affinity. Mutation of Cys106 and His107, which are located between two major GTPase motifs, results in undetectable Ni(II) binding, and the Zn(II) affinity is weakened by 2 orders of magnitude. These two residues are also required for the metal-dependent dimerization observed in the presence of Ni(II) but not Zn(II). The addition of metals to the protein has distinct impacts on GTPase activity, with zinc significantly reducing GTP hydrolysis to below detectable levels and nickel only slightly altering the k(cat) and K(m) of the reaction. The regulation of HypB activities by metal binding may contribute to the maturation of the nickel-containing enzymes.

  18. Heavy metal distribution in sediments from Calabar River, southeastern Nigeria

    NASA Astrophysics Data System (ADS)

    Ntekim, E. E. U.; Ekwere, S. J.; Ukpong, E. E.

    1993-08-01

    The concentration and areal distribution of selected metals (Pb, Zn, Cu, Cd, Ni, Fe, and Cr) in the sediments of the Calabar River were studied to determine the extent of anthropogenic input and to estimate the effects of dumping industrial waste materials into the river. The concentrations of Pb, Zn, and Cu indicate relatively moderate pollution mainly on the left-hand side of the river while Ni, Cr, Co, Cd, and Fe levels are below values found to have adverse effects on the lives of marine biota. High metal contents are found close to industrial establishments and so enhanced metal concentrations are related to industrial sewage and metal leaching from garbage and solid waste dumps.

  19. UV Spectra of Tris(2,2'-bipyridine)-M(II) Complex Ions in Vacuo (M = Mn, Fe, Co, Ni, Cu, Zn).

    PubMed

    Xu, Shuang; Smith, James E T; Weber, J Mathias

    2016-11-21

    We present electronic spectra in the π-π* region of a series of tris(bpy)-M(II) complex ions (bpy = 2,2'-bipyridine; M = Mn, Fe, Co, Ni, Cu, Zn) in vacuo for the first time. By applying photodissociation spectroscopy to cryogenically cooled and mass selected [M II (bpy) 3 ] 2+ ions, we obtain the intrinsic spectra of these ions at low temperature without perturbation by solvent interaction or crystal lattice shifts. This allows spectroscopic analysis of these complex ions in greater detail than possible in the condensed phase. We interpret our experimental data by comparison with time-dependent density functional theory.

  20. Layered double hydroxide stability. 1. Relative stabilities of layered double hydroxides and their simple counterparts

    NASA Technical Reports Server (NTRS)

    Boclair, J. W.; Braterman, P. S.

    1999-01-01

    Solutions containing di- and trivalent metal chlorides [M(II) = Mg2+, Zn2+, Co2+, Ni2+, Mn2+; M(III) = Al3+, Fe3+] were titrated with NaOH to yield hydrotalcite-like layered double hydroxides (LDH), [[M(II)]1-x[M(III)]x(OH)2][Cl]x yH2O, by way of M(III) hydroxide/hydrous oxide intermediates. Analysis of the resultant titration curves yields nominal solubility constants for the LDH. The corresponding LDH stabilities are in the order Mg < Mn < Co approximately Ni < Zn for M(II) and Al < Fe for M(III). The stability of LDH relative to the separate metal hydroxides/hydrous oxides is discussed.

  1. Structural evolution of the double perovskites Sr{sub 2}B'UO{sub 6} (B' = Mn, Fe, Co, Ni, Zn) upon reduction: Magnetic behavior of the uranium cations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinacca, R.M., E-mail: rmp@unsl.edu.ar; Viola, M.C.; Pedregosa, J.C.

    2011-11-15

    Highlights: {yields} Evolution of the double perovskites Sr{sub 2}B'UO{sub 6} upon reduction were studied by XRPD. {yields} Orthorhombic (Pnma) disordered perovskites SrB'{sub 0.5-x}U{sub 0.5+x}O{sub 3} were obtained at 900 {sup o}C. {yields} U{sup 5+/4+} and Zn{sup 2+} cations are distributed at random over the octahedral positions. {yields} AFM ordering for the perovskite with B' = Zn appears below 30 K. -- Abstract: We describe the preparation of five perovskite oxides obtained upon reduction of Sr{sub 2}B'UO{sub 6} (B' = Mn, Fe, Co, Ni, Zn) with H{sub 2}/N{sub 2} (5%/95%) at 900 {sup o}C during 8 h, and their structural characterizationmore » by X-ray powder diffraction (XRPD). During the reduction process there is a partial segregation of the elemental metal when B' = Co, Ni, Fe, and the corresponding B'O oxide when B' = Mn, Zn. Whereas the parent, oxygen stoichiometric double perovskites Sr{sub 2}B'UO{sub 6} are long-range ordered concerning B' and U cations. The crystal structures of the reduced phases, SrB'{sub 0.5-x}U{sub 0.5+x}O{sub 3} with 0.37 < x < 0.27, correspond to simple, disordered perovskites; they are orthorhombic, space group Pnma (No. 62), with a full cationic disorder at the B site. Magnetic measurements performed on the phase with B' = Zn, indicate uncompensated antiferromagnetic ordering of the U{sup 5+}/U{sup 4+} sublattice below 30 K.« less

  2. Nickel-based rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Shukla, A. K.; Venugopalan, S.; Hariprakash, B.

    Nickel-iron (Ni-Fe), nickel-cadmium (Ni-Cd), nickel-hydrogen (Ni-H 2), nickel-metal hydride (Ni-MH) and nickel-zinc (Ni-Zn) batteries employ nickel oxide electrodes as the positive plates, and are hence, categorised as nickel-based batteries. This article highlights the operating principles and advances made in these battery systems during the recent years. In particular, significant improvements have been made in the Ni-MH batteries which are slowly capturing the market occupied by the ubiquitous Ni-Cd batteries.

  3. Effect of chromium substitution on the dielectric properties of mixed Ni-Zn ferrite prepared by WOWS sol–gel technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashtar, M.; Munir, A.; Anis-ur-Rehman, M.

    2016-07-15

    Graphical abstract: Variation of AC conductivity (σ{sub AC}) as a function of natural log of angular frequency (lnω) for Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2-x}Cr{sub x}O{sub 4} nanoferrites at room temperature. - Highlights: • Cr doped mixed Ni-Zn ferrites were successfully synthesized by a newly developed WOWS sol gel technique. • The specific surface area and specific surface area to volume ratio increased with decrease in particle size. • The resonance peaks appeared in dielectric loss graphs, shifting towards low frequency with the increase in Cr concentration. • The prepared samples have the lowest values of the dielectric constant. • The dielectricmore » constant were observed to be inversely proportional to square root of the AC resistivity. - Abstract: Cr{sup +3} doped Ni-Zn nanoferrite samples with composition Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2-x}Cr{sub x}O{sub 4}(x = 0.1, 0.2, 0.3, 0.4) were synthesized With Out Water and Surfactant (WOWS) sol-gel technique. The structural, morphological and dielectric properties of the samples were investigated. The lattice constant, crystallite size, theoretical density and porosity of each sample were obtained from X-ray diffraction (XRD) data. The specific surface area and specific surface area to volume ratio increased with the decrease in the size of Cr{sup +3} doped Ni-Zn ferrite nanoparticles, as the concentration of Cr{sup +3} increased. The SEM analysis revealed that the particles were of nano size and of spherical shape. The dielectric parameters such as dielectric constant (ε′) and dielectric loss (tanδ) of all the samples as a function of frequency at room temperature were measured. The AC conductivity (σ{sub AC}) was determined from the dielectric parameters, which showed increasing trend with the rise in frequency.« less

  4. [Effect of simulated heavy metal leaching solution of electroplating sludge on the bioactivity of Acidithiobacillus ferrooxidans].

    PubMed

    Xie, Xin-Yuan; Sun, Pei-De; Lou, Ju-Qing; Guo, Mao-Xin; Ma, Wang-Gang

    2013-01-01

    An Acidithiobacillus ferrooxidans strain WZ-1 was isolated from the tannery sludge in Wenzhou, Zhejiang Province in China. The cell of WZ-1 strain is Gram negative and rod-shaped, its 16S rDNA sequence is closely related to that of Acidithiobacillus ferrooxidans ATCC23270 with 99% similarity. These results reveal that WZ-1 is a strain of Acidithiobacillus ferrooxidans. The effects of Ni2+, Cr3+, Cu2+, Zn2+ and 5 kinds of simulated leaching solutions of electroplating sludge on the bioactivity of Fe2+ oxidation and apparent respiratory rate of WZ-1 were investigated. The results showed that Ni2+ and Cr3+ did not have any influence on the bioactivity of WZ-1 at concentrations of 5.0 g x L(-1) and 0.1 g x L(-1), respectively. WZ-1 showed tolerance to high levels of Ni2+, Zn2+ (about 30.0 g x L(-1)), but it had lower tolerance to Cr3+ and Cu2+ (0.1 g x L(-1) Cr3+ and 2.5 g x L(-1) Cu2+). Different kinds of simulated leaching solution of electroplating sludge had significant differences in terms of their effects on the bioactivity of WZ-1 with a sequence of Cu/Ni/Cr/Zn > Cu/Ni/Zn > Cu/Cr/Zn > Cu/Ni/Cr > Ni/Cr/Zn.

  5. The role of annealing temperature and bio template (egg white) on the structural, morphological and magnetic properties of manganese substituted MFe2O4 (M=Zn, Cu, Ni, Co) nanoparticles

    NASA Astrophysics Data System (ADS)

    Ranjith Kumar, E.; Jayaprakash, R.; Kumar, Sanjay

    2014-02-01

    Manganese substituted ferrites (ZnFe2O4, CuFe2O4, NiFe2O4 and CoFe2O4) have been prepared in the bio template medium by using a simple evaporation method. The annealing temperature plays an important position on changing particle size and morphology of the mixed ferrite nanoparticles were found out by X-ray diffraction, transmission electron microscopy and scanning electron microscopy methods. The role of manganese substitution in the mixed ferrite nanoparticles were also analyzed for different annealing temperature. The substitution of Mn also creates a vital change in magnetic properties which is studied by using vibrating sample magnetometer (VSM). These spinel ferrites are decomposed to α-Fe2O3 after annealing above 550 °C in air. However, α-Fe2O3 phase was slowly vanished after ferrites annealing above 900 °C. The effect of this secondary phase on the structural change and magnetic properties of the mixed ferrite nanoparticles is discussed.

  6. Environmentally safe sewage sludge disposal: the impact of liming on the behaviour of Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn.

    PubMed

    Scancar, J; Milacic, R; Strazar, M; Burica, O; Bukovec, P

    2001-02-01

    Dewatered sewage sludge containing relatively high total concentrations of Cr (945 micrograms ml-1), Cu (523 micrograms ml-1), Ni (1186 micrograms ml-1) and Zn (2950 micrograms ml-1) was treated with quicklime and sawdust for sludge disinfection and post-stabilisation. The mobility of the heavy metals in the sludge samples was assessed by applying a modified five-step Tessier sequential extraction procedure. Water was added as a first step for estimation of the proportion of the easily soluble metal fractions. To check the precision of the analytical work the concentrations of heavy metals in steps 1-6 of the extraction procedure were summed and compared to the total metal concentrations. The mass balance agreed within +/- 3% for Cd, Cu, Cr, and Zn and within +/- 5% for Ni, Pb, Fe and Mn. Data from the partitioning study indicate that in the lime-treated sludge at a pH of 12 the mobility of Cu and Ni notably increased with the solubilisation of these metals from their organic and/or carbonate and Fe and Mn oxide and hydroxide fractions, respectively. Liming slightly decreased the proportion of other heavy metals in the easily soluble fractions while its impact on the partitioning between other sludge phases was almost insignificant. Due to the increased solubility of Ni and Cu as well as potential Cr oxidation at high pH, liming cannot be recommended for sludge disinfection. Addition of sawdust did not change the heavy metal partitioning.

  7. Bioaccumulation of Heavy Metals in Water, Sediments, and Tissues and Their Histopathological Effects on Anodonta cygnea (Linea, 1876) in Kabul River, Khyber Pakhtunkhwa, Pakistan

    PubMed Central

    Khan, Muhammad Iftikhar; Gulfam, Naila; Siraj, Muhammad; Zaidi, Farrah; Ahmadullah; Abidullah; Fatima, Syeda Hira; Noreen, Shumaila; Hamidullah; Shah, Zafar Ali; Qadir, Fazli

    2018-01-01

    The present investigation aimed to assess the concentrations of selected heavy metals in water and sediments and their bioaccumulation in tissues of freshwater mussels and their histopathological effects on the digestive gland, gills, and gonads of Anodonta cygnea. Water, sediments, and freshwater mussel samples were collected at four sites, that is, reference and polluted sites, along the Kabul River, Khyber Pakhtunkhwa. The polluted sites were receiving effluents from the industrial, agricultural, municipal, and domestic sources. The order of metals in the water was Zn > Pb > Ni > Cu > Mn > Fe > Cr > Cd, in sediments the order was Fe > Zn > Cr > Ni > Mn > Pb > Cu > Cd, and in the soft tissues the order was Fe > Zn > Mn > Pb > Cu > Cr > Ni > Cd. Histopathological alterations observed in polluted sites of Kabul River were inflammation, hydropic vacuolation, and lipofuscin pigments (in digestive gland), gill lamellar fusion, dilated hemolymphatic sinus, clumping, and generation of cilia and hemocytic infiltration (in gills), and atresia, necrosis, granulocytoma, hemocytic infiltration, and lipofuscin pigments (in gonads). The histopathological alterations in the organs of Anodonta cygnea can be considered as reliable biomarkers in biomonitoring of heavy metal pollution in aquatic ecosystems. PMID:29693003

  8. Chemical separation and mass spectrometry of Cr, Fe, Ni, Zn, and Cu in terrestrial and extraterrestrial materials using thermal ionization mass spectrometry.

    PubMed

    Yamakawa, Akane; Yamashita, Katsuyuki; Makishima, Akio; Nakamura, Eizo

    2009-12-01

    A sequential chemical separation technique for Cr, Fe, Ni, Zn, and Cu in terrestrial and extraterrestrial silicate rocks was developed for precise and accurate determination of elemental concentration by the isotope dilution method (ID). The technique uses a combination of cation-anion exchange chromatography and Eichrom nickel specific resin. The method was tested using a variety of matrixes including bulk meteorite (Allende), terrestrial peridotite (JP-1), and basalt (JB-1b). Concentrations of each element was determined by thermal ionization mass spectrometry (TIMS) using W filaments and a Si-B-Al type activator for Cr, Fe, Ni, and Zn and a Re filament and silicic acid-H3PO4 activator for Cu. The method can be used to precisely determine the concentrations of these elements in very small silicate samples, including meteorites, geochemical reference samples, and mineral standards for microprobe analysis. Furthermore, the Cr mass spectrometry procedure developed in this study can be extended to determine the isotopic ratios of 53Cr/52Cr and 54Cr/52Cr with precision of approximately 0.05epsilon and approximately 0.10epsilon (1epsilon = 0.01%), respectively, enabling cosmochemical applications such as high precision Mn-Cr chronology and investigation of nucleosynthetic isotopic anomalies in meteorites.

  9. Generalized green synthesis and formation mechanism of sponge-like ferrite micro-polyhedra with tunable structure and composition

    NASA Astrophysics Data System (ADS)

    Tong, Guoxiu; Du, Fangfang; Xiang, Lingjing; Liu, Fangting; Mao, Lulu; Guan, Jianguo

    2013-12-01

    This paper describes a green versatile glucose-engineered precipitation-sintering process that allows for the selective and mass preparation of spongy porous ferrite (M = Fe, Zn, Co, Ni, Mn, etc.) micro-polyhedra with tunable morphology, texture, and composition. Some kinetic factors, such as the molar ratio of glucose to metal nitrates, reaction temperature, sintering temperature and time, and type of metal nitrates, can be expediently employed to modulate their aspect ratio, shape, size, composition, and textural properties. In this protocol, glucose functions as a reductant, protecting agent, structure-directing agent, and a sacrificial template to guide the assembly of sheet-like nuclei into polyhedral precursors and the formation of spongy porous structures. Owing to larger EM parameters, multiresonant behavior, and dissipative current, spongy porous Fe3O4 polyhedra exhibited enhanced microwave-absorbing properties. This endows them with important potential applications in magnetic devices, catalysis, sorption, photoluminescence, electromagnetic wave absorbing materials, anode materials, and so on. Meanwhile, this general approach can be extended to synthesize other porous sponges with regular geometric configuration because it is simple, inexpensive, environmentally benign, and suitable for extensive production.This paper describes a green versatile glucose-engineered precipitation-sintering process that allows for the selective and mass preparation of spongy porous ferrite (M = Fe, Zn, Co, Ni, Mn, etc.) micro-polyhedra with tunable morphology, texture, and composition. Some kinetic factors, such as the molar ratio of glucose to metal nitrates, reaction temperature, sintering temperature and time, and type of metal nitrates, can be expediently employed to modulate their aspect ratio, shape, size, composition, and textural properties. In this protocol, glucose functions as a reductant, protecting agent, structure-directing agent, and a sacrificial template to guide the assembly of sheet-like nuclei into polyhedral precursors and the formation of spongy porous structures. Owing to larger EM parameters, multiresonant behavior, and dissipative current, spongy porous Fe3O4 polyhedra exhibited enhanced microwave-absorbing properties. This endows them with important potential applications in magnetic devices, catalysis, sorption, photoluminescence, electromagnetic wave absorbing materials, anode materials, and so on. Meanwhile, this general approach can be extended to synthesize other porous sponges with regular geometric configuration because it is simple, inexpensive, environmentally benign, and suitable for extensive production. Electronic supplementary information (ESI) available: Nitrogen adsorption-desorption isotherms, the corresponding pore size distribution curves, TG-DSC curves, XRD pattern, and IR spectra for the precursors; XRD patterns of the samples obtained at various temperatures under N2; XRD pattern, reduction rate, and reactive oxygen species production of ZnO-ZnFe2O4 XRD patterns, SEM images, EDX patterns, nitrogen adsorption-desorption isotherms, and the corresponding pore size distribution curves of CoFe2O4-NiFe2O4-Co1.29Ni1.71O4 polyhedra and NiO-ZnFe2O4. See DOI: 10.1039/c3nr03745b

  10. Magnetic moment in single crystalline BaFe2-xZnxAs2

    NASA Astrophysics Data System (ADS)

    Guo, Yanfeng; Wang, Xia; Li, Jun; Yamaura, Kazunari; Takayama-Muromachi, Eiji

    2012-02-01

    Nature of the magnetism for iron-based superconductors (FeSCs) has been actively studied since the discovery of this new family of compounds in 2008, largely owing to its significance for interpreting the paring mechanism. The approach through impurity substitution to shed light into this issue is always one of major ways. The substitution shows distinct responses to species of impurities, where partially replacement of Fe in parent FeSCs with a variety of d-metals like Co, Ni Ru, Rh, Pd, Ir, and Pt generally results in superconductivity, while recent progress in Zn doped FeSCs gives rather contrary result, where Zn severely degenerates the TC. Herein we show the magnetic and electrical studies on BaFe2-xZnxAs2 single crystals. Nonmagnetic Zn doping progressively suppresses the SDW without resulting in superconductivity, while it alternatively develops the spin-glass state, possibly suggestive of local magnetic moment around the Fe sites induced by Zn. The characterizations by X-ray diffraction, magnetic and electrical transport properties, specific heat capacity, and Hall coefficient have been done and the results will be discussed in detail.

  11. Distribution and solid-phase speciation of toxic heavy metals of bed sediments of Bharali tributary of Brahmaputra River.

    PubMed

    Hoque, Raza Rafiqul; Goswami, K G; Kusre, B C; Sarma, K P

    2011-06-01

    Heavy metal (Fe, Mn, Zn, Cu, Ni, Pb, and Cd) concentrations and their chemical speciations were investigated for the first time in bed sediments of Bharali River, a major tributary of the Brahmaputra River of the Eastern Himalayas. Levels of Fe, Mn, Pb, and Cd in the bed sediments were much below the average Indian rivers; however, Cu and Zn exhibit levels on the higher side. Enrichment factors (EF) of all metals was greater than 1 and a higher trend of EF was seen in the abandoned channel for most metals. Pb showed maximum EF of 32 at site near an urban center. The geoaccumulation indices indicate that Bharali river is moderately polluted. The metals speciations, done by a sequential extraction regime, show that Cd, Cu, and Pb exhibit considerable presence in the exchangeable and carbonate fraction, thereby showing higher mobility and bioavailability. On the other hand, Ni, Mn, and Fe exhibit greater presence in the residual fraction and Zn was dominant in the Fe-Mn oxide phase. Inter-species correlations at three sites did not show similar trends for metal pairs indicating potential variations in the contributing sources.

  12. Vertical variation of potential mobility of heavy metal in sediment to groundwater of the Kanto plain, Japan

    NASA Astrophysics Data System (ADS)

    Hossain, S.; Hachinohe, S.; Ishiyama, T.; Hamamoto, H.; Oguchi, C. T.

    2014-12-01

    Heavy metals release from sediment may occur due to sediment water interaction under different changing environmental conditions. This has substantial influence on groundwater quality. However, identification of potentially mobile fractions of metals like Cu, Cr, Ni, Pb, Zn, Fe, Mn and Ti requires for the sustainable land and groundwater development and pollution management. 44 sediment and pore water samples at 1 m interval were analyzed from a vertical profile beneath the Naka river at the bottom of Central Kanto plain, Japan. Sequential extraction method was applied to determine potentially mobile forms of metals such as water soluble, ion exchangeable, acid soluble and Fe-Mn oxide bound. Metals were determined using X-Ray Fluorescence, Inductively coupled plasma atomic emission and mass spectrometer. Analyses show that potential mobility is high in river bed, volcanic ash mix, marine and transitional clayey silt. Metal mobility was higher in lower gravelly aquifer than upper sandy aquifer. Potential mobility and bioavailability of Zn, Cu, Ni, Pb and Mn are very high in river bed sediment which may pose threat to river bottom aquatic system. Zn, Cu and Ni concentration in pore water is high in river bed and peat bearing sediment. In pore water of marine and transitional sediment ion concentration such as Ca2+ and SO42- is very high indicating high mobility of Calcium and Sulfur from sediment as no significant variation observed in total content. In vertical profile, potential mobility tendency of metal in sediment trends to be Zn > Cu > Ni > Cr > Pb > Mn > Fe > Ti. Current study indicates low potential mobility and pollution risk to groundwater due to overall low metal concentration in pore water and high portion of metals attached with sediment as Fe-Mn oxide bound. More over under strong reducing condition considerable amount of metals will release and pollute groundwater.

  13. Nanostructure investigation of magnetic nanomaterial Ni{sub 0.5}Zn{sub 0.3}Cu{sub 0.2}Fe{sub 2}O{sub 4} synthesized by sol-gel method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pransisco, Prengki, E-mail: prengkipransisco@gmail.com; Badan Lingkungan Hidup Derah Kabupaten Empat Lawang South of Sumatera; Shafie, Afza, E-mail: afza@petronas.com.my

    2015-07-22

    Magnetic nanomaterial Ni{sub 0.5}Zn{sub 0.3}Cu{sub 0.2}Fe{sub 2}O{sub 4} was successfully prepared by using sol-gel method. Heat treatment on material is always giving defect on properties of material. This paper investigates the effect of heat treatment on nanostructure of magnetic nanomaterial Ni{sub 0.5}Zn{sub 0.3}Cu{sub 0.2}Fe{sub 2}O{sub 4}. According to thermo gravimetric analysis (TGA) that after 600°C there is no more weight loss detected and it was decided as minimum calcination temperature. Intensity, crystallite size, structure, lattice parameter and d-spacing of the material were investigated by using X-ray diffraction (XRD). High resolution transmission electron microscope (HRTEM) was used to examine nanostructure, nanosize,more » shape and distribution particle of magnetic material Ni{sub 0.5}Zn{sub 0.3}Cu{sub 0.2}Fe{sub 2}O{sub 4} and variable pressure field emission scanning electron microscope (VP-FESEM) was used to investigate the surface morphology and topography of the material. The XRD result shows single-phase cubic spinel structure with average crystallite size in the range of 25.6-95.9 nm, the value of the intensity of the material was increased with increasing temperature, and followed by lattice parameter was increased with increasing calcination temperature, value of d-spacing was relatively decreased with accompanied increasing temperature. From HRTEM result the distribution of particles was tend to be agglomerates with particle size of 7.8-17.68 nm. VP-FESEM result shows that grain size of the material increases with increasing calcination temperature and the surface morphology shows that the material is in hexagonal shape and it was also proved by mapping result which showing the presence each of constituents inside the compound.« less

  14. Heavy metals seasonal variability and distribution in Lake Qaroun sediments, El-Fayoum, Egypt

    NASA Astrophysics Data System (ADS)

    Redwan, Mostafa; Elhaddad, Engy

    2017-10-01

    This study was carried out to investigate the seasonal variability and distribution of heavy metals ;HMs; (Fe, Mn, Co, Cr, Cu, Ni, Pb, Zn and V) in the bottom sediments of Lake Qaroun, in Egypt. The samples were collected from 10 sites in summer and winter seasons in 2015. Total metals concentrations were measured using inductively coupled plasma spectrometer. Multivariate techniques were applied to analyse the distribution and potential source of heavy metals. The mean seasonal concentrations follow a descending order of Fe > Mn > V > Zn > Cr > Ni > Cu > Co > Pb. The mean concentrations of HMs in sediments during summer were higher than the concentrations during winter and above the average world shale values, except for Pb, suggesting potential adverse toxicity to aquatic organisms. All metals showed enrichment during summer and winter at sites S3 and S5 in the southeastern parts of the lake due to the heavy discharge of contaminants from El-Bats and El-Wadi drains. Principal component analysis results suggested two principal components controlling HMs variability in sediments, which accounted for 63.9% (factor 1: Co, Cr, Cu, Ni, Zn, Pb and V), 15.9% (factor 2: Mn and Fe) during summer, and 76.7% (factor 1: Fe, Co, Cr, Cu, Ni, Zn, Pb and V), 13.8% (factor 2: Mn) during winter of the total variance. Geo-accumulation index (Igeo) showed some pollution risk at the southeastern and southern parts (sites S3 and S5). Dilution during winter, concentration during summer, impact of non-point sources from different agricultural, industrial, municipal sewage and fish farms in the southern part of Lake Qaroun, adsorption and salt dissolution reactions and lithogenic sources are the main controlling factors for HMs in the study area. Monitoring of contaminant discharge at Lake Qaroun should be introduced for future remediation and management strategies.

  15. Chemical and biological processes for multi-metal extraction from waste printed circuit boards of computers and mobile phones.

    PubMed

    Shah, Monal B; Tipre, Devayani R; Dave, Shailesh R

    2014-11-01

    E-waste printed circuit boards (PCB) of computers, mobile-phones, televisions, LX (LongXiang) PCB in LED lights and bulbs, and tube-lights were crushed to ≥250 µm particle size and 16 different metals were analysed. A comparative study has been carried out to evaluate the extraction of Cu-Zn-Ni from computer printed circuit boards (c-PCB) and mobile-phone printed circuit boards (m-PCB) by chemical and biological methods. Chemical process showed the extraction of Cu-Zn-Ni by ferric sulphate was best among the studied chemical lixiviants. Bioleaching experiments were carried out with the iron oxidising consortium, which showed that when E-waste and inoculum were added simultaneously in the medium (one-step process); 60.33% and 87.50% Cu, 75.67% and 85.67% Zn and 71.09% and 81.87% Ni were extracted from 10 g L(-1) of c-PCB and m-PCB, respectively, within 10-15 days of reaction time. Whereas, E-waste added after the complete oxidation of Fe(2+) to Fe(3+) iron containing medium (two-step process) showed 85.26% and 99.99% Cu, 96.75% and 99.49% Zn and 93.23% and 84.21% Ni extraction from c-PCB and m-PCB, respectively, only in 6-8 days. Influence of varying biogenerated Fe(3+) and c-PCB concentrations showed that 16.5 g L(-1) of Fe(3+) iron was optimum up to 100 g L(-1) of c-PCB. Changes in pH, acid consumed and redox potential during the process were also studied. The present study shows the ability of an eco-friendly process for the recovery of multi-metals from E-waste even at 100 g L(-1) printed circuit boards concentration. © The Author(s) 2014.

  16. [Determination and correlation analysis of trace elements in Boletus tomentipes].

    PubMed

    Li, Tao; Wang, Yuan-zhong; Zhang, Ji; Zhao, Yan-li; Liu, Hong-gao

    2011-07-01

    The contents of eleven trace elements in Boletus tomentipes were determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES). The results showed that the fruiting bodies of B. tomentipes were very rich in Mg and Fe (>100 mg x kg(-1)) and rich in Mn, Zn and Cu (>10 mg x kg(-1)). Cr, Pb, Ni, Cd, and As were relatively minor contents (0.1-10.0 mg x kg(-1)) of this species, while Hg occurred at the smallest content (< 0.1 mg x kg(-1)). Among the determined 11 trace elements, Zn-Cu had significantly positive correlation (r = 0.659, P < 0.05), whereas, Hg-As, Ni-Fe, and Zn-Mg had significantly negative correlation (r = -0.672, -0.610, -0.617, P < 0.05). This paper presented the trace elements properties of B. tomentipes, and is expected to be useful for exploitation and quality evaluation of this species.

  17. Discriminating between pyroxenite and peridotite sources for continental flood basalts (CFB) in southern Africa using olivine chemistry

    NASA Astrophysics Data System (ADS)

    Howarth, Geoffrey H.; Harris, Chris

    2017-10-01

    Continental Flood Basalts (CFB) result from voluminous outpourings of magma that often precede continental break-up. Notwithstanding the petrogenetic importance of CFBs, the nature of the mantle source for such magmas is contentious, particularly with regard to picrites with Ni-rich olivine phenocrysts. Previous studies have suggested that Ni-rich olivines associated with plume volcanism in regions of thickened (>90 km) lithosphere are related to either source mineralogy differences (peridotite versus pyroxenite) or change in olivine-melt partitioning due to pressure increase. In order to evaluate these two hypotheses, we present trace element data for olivines from the Karoo CFB Tuli and Mwenezi picrites and the Etendeka CFB Horingbaai/LTZ-L type picrites, all of which erupted in regions of thickened (>90 km) lithosphere in southern Africa. Karoo picrite olivines are Ni-rich, Ca- and Mn-poor, and have low (<1.4) 100*Mn/Fe. These compositions are consistent with a pyroxenitic source. Etendeka Horingbaai/LTZ-L picrite olivines do not show Ni-enrichment, but are characterized by high Al and Cr, and high (>1.4) 100*Mn/Fe, which is more consistent with high temperature melting of a dominantly peridotitic source. We also show that the Karoo and Etendeka olivines are characterized by distinct Mn/Zn ratios of <13 and >15, respectively. In addition, bulk rock geochemical data compilations and previously reported olivine δ18O for Karoo and Etendeka CFBs are discussed in order to further constrain source components based on previously described pyroxenite melt geochemical indices such as MgO-CaO systematics, FeO/MnO, Zn/Fe, and FC3MS (FeO/CaO-3*MgO/SiO2). These geochemical indices suggest a pyroxenite-dominated source for Karoo CFBs as well as for Etendeka ferropicrites whereas a peridotite-dominated source is indicated for Etendeka Horingbaai/LTZ-L type picrites analyzed in this study. Based on our data, Ni-enrichment of olivine in plume-related magmas in regions of thickened lithosphere in southern Africa is not ubiquitous. We therefore suggest that mineralogical variation of the source is a more likely major control of olivine chemistry and parent melt variations for Karoo and Etendeka CFBs. We also show that olivine Mn-Zn correlations are a useful discriminator for source variation and recommend the use of olivine Mn /Zn < 13 for a pyroxenite-dominated source relative to olivine Mn /Zn > 15 for a peridotite-dominated source.

  18. Combining cross flow ultrafiltration and diffusion gradients in thin-films approaches to determine trace metal speciation in freshwaters

    NASA Astrophysics Data System (ADS)

    Liu, Ruixia; Lead, Jamie R.; Zhang, Hao

    2013-05-01

    Cross flow ultrafiltration (CFUF) and diffusive gradients in thin films (DGT) with open pore gel (OP) and restricted pore gel (RP) were used to measure trace metal speciation in selected UK freshwaters. The proportions of metals present in particulate forms (>1 μm) varied widely between 40-85% Pb, 60-80% Al, 7-56% Mn, 10-49% Cu, 0-55% Zn, 20-38% Cr, 20-30% Fe, 6-25% Co, 5-22% Cd and <7% Ni. In the colloidal fraction (2 kDa-1 μm) values varied between 53-91% Pb, 33-55% Al, 21-55% Cu, 20-44% Fe, 34-36% Cr, 20-40% Cd, 7-28% Co and Ni, 2-32% Zn and <8% Mn. Wide variations were also observed in the ultrafiltered fraction (<2 kDa). These results indicated that colloids indeed influenced the occurrence and transport of Al, Fe, Cr, Co, Ni, Cu, Zn, Cr and Pb metals in rivers, while inorganic or organic colloids did not exert an important control on Mn transport in the selected freshwaters. Of total species, total labile metal measured by DGT-OP accounted for 1.4-50% for Al, Fe, Co, Ni, Cu, Cd and Pb in all selected waters. Of these metals total labile Pb concentration was the lowest with value less than 1.4% although this value slightly increased after deducting particulate fractions. In some waters, a majority of total Mn, Zn and Cr is DGT labile, in which the DGT labile Mn fraction accounted for 98-118% of the total dissolved phase. In most cases, the inorganic labile concentration measured by DGT-RP was lower than the total labile metal concentration. By the combination of CFUF and DGT techniques, the concentrations of total labile and inorganic labile metal species in CFUF-derived truly dissolved phase were measured in four water samples. 100% of ultrafiltered Mn species was found to be total DGT labile. The proportions of total labile metal species were lower than those of ultrafiltered fraction for Al, Fe, Co, Ni, Cu, Cd and Pb in all selected waters, and Cr and Zn in some cases, indicating a large amount of natural complexing ligands with smaller size for the metals to form kinetically inert species or thermodynamically stable complexes. Observed discrepancies in metal speciation between metals and within sampling sites were related to the differences in the characteristics of the metals and the nature of water sources.

  19. Impurity Correction Techniques Applied to Existing Doping Measurements of Impurities in Zinc

    NASA Astrophysics Data System (ADS)

    Pearce, J. V.; Sun, J. P.; Zhang, J. T.; Deng, X. L.

    2017-01-01

    Impurities represent the most significant source of uncertainty in most metal fixed points used for the realization of the International Temperature Scale of 1990 (ITS-90). There are a number of different methods for quantifying the effect of impurities on the freezing temperature of ITS-90 fixed points, many of which rely on an accurate knowledge of the liquidus slope in the limit of low concentration. A key method of determining the liquidus slope is to measure the freezing temperature of a fixed-point material as it is progressively doped with a known amount of impurity. Recently, a series of measurements of the freezing and melting temperature of `slim' Zn fixed-point cells doped with Ag, Fe, Ni, and Pb were presented. Here, additional measurements of the Zn-X system are presented using Ga as a dopant, and the data (Zn-Ag, Zn-Fe, Zn-Ni, Zn-Pb, and Zn-Ga) have been re-analyzed to demonstrate the use of a fitting method based on Scheil solidification which is applied to both melting and freezing curves. In addition, the utility of the Sum of Individual Estimates method is explored with these systems in the context of a recently enhanced database of liquidus slopes of impurities in Zn in the limit of low concentration.

  20. Analysis of ferrite nanoparticles in the flow of ferromagnetic nanofluid

    PubMed Central

    Nadeem, Sohail; Mustafa, M. T.

    2018-01-01

    Theoretical analysis has been carried out to establish the heat transport phenomenon of six different ferromagnetic MnZnFe2O4—C2H6O2 (manganese zinc ferrite-ethylene glycol), NiZnFe2O4—C2H6O2 (Nickel zinc ferrite-ethylene glycol), Fe2O4—C2H6O2 (magnetite ferrite-ethylene glycol), NiZnFe2O4—H2O (Nickel zinc ferrite-water), MnZnFe2O4—H2O (manganese zinc ferrite-water), and Fe2O4—H2O (magnetite ferrite-water) nanofluids containing manganese zinc ferrite, Nickel zinc ferrite, and magnetite ferrite nanoparticles dispersed in a base fluid of ethylene glycol and water mixture. The performance of convective heat transfer is elevated in boundary layer flow region via nanoparticles. Magnetic dipole in presence of ferrites nanoparticles plays a vital role in controlling the thermal and momentum boundary layers. In perspective of this, the impacts of magnetic dipole on the nano boundary layer, steady, and laminar flow of incompressible ferromagnetic nanofluids are analyzed in the present study. Flow is caused by linear stretching of the surface. Fourier’s law of heat conduction is used in the evaluation of heat flux. Impacts of emerging parameters on the magneto—thermomechanical coupling are analyzed numerically. Further, it is evident that Newtonian heating has increasing behavior on the rate of heat transfer in the boundary layer. Comparison with available results for specific cases show an excellent agreement. PMID:29320488

  1. Exposure of women to trace elements through the skin by direct contact with underwear clothing.

    PubMed

    Nguyen, Thao; Saleh, Mahmoud A

    2017-01-02

    Heavy metals pose a potential danger to human health when present in textile materials. In the present study, inductive coupled plasma mass spectrometry (ICPMS) was used to determine the concentrations and the identity of extractable inorganic elements from different brands of women undergarments. A total of 120 samples consisting of 63 cottons, 44 nylons and 13 polyesters manufactured in 14 different countries having different colors were analyzed for their extractable metals contents. Elements analyzed were Ag, Al, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Li, Mg, Mn, Na, Ni, Pb, Sb, Se, Sr, Ti, V and Zn. Cotton undergarments were rich in Al, Fe and Zn, nylon undergarments had high levels of Cr, Cu and Al, while polyester fabrics contained higher levels of Ni and Fe compared to cotton or nylon. With respect to manufacturing countries, China, Egypt and India showed the highest concentrations of metals in all fabrics. With respect to the color, black garments were characteristic by high concentration of Fe, blue colors with Cu, brown garments with Fe and Cu, green garments with Cu and Fe, pink garments with Al, purple garments with Al and Cu and red garments with Cr, Zn and Al. The consumer should be made aware of the potential dangers of these metals in their clothing.

  2. Chemical fractionation of arsenic and heavy metals in fine particle matter and its implications for risk assessment: A case study in Nanjing, China

    NASA Astrophysics Data System (ADS)

    Li, Huiming; Wang, Jinhua; Wang, Qin'geng; Qian, Xin; Qian, Yu; Yang, Meng; Li, Fengying; Lu, Hao; Wang, Cheng

    2015-02-01

    A four-step sequential extraction procedure was used to study the chemical fractionation of As and heavy metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) in fine particulate matter (PM2.5) collected from Nanjing, China. The mass concentrations of most PM2.5 samples exceeded the 24 h standard (75 μg/m3) recommended by the new national ambient air quality standard of China. The most abundant elements were Fe, Zn and Pb, while As and Cd were present at the lowest concentrations. As, Cd, Cu, Mn, Pb and Zn were mostly present in the two mobile fractions, including the soluble and exchangeable fraction (F1), and carbonates, oxides and reducible fraction (F2). Fe had the highest proportion present in the residual fraction (F4). Relatively high proportions of the metals Ni and Cr were present in the oxidizable and sulfidic fraction (F3). High proportions of Zn, As and Cu and lower proportions of Cd, Cr and Fe were present in the potentially mobile phases. The enrichment factor, contamination factor and risk assessment code were calculated to analyze the main sources and assess the environmental risks of the metals in PM2.5. The carcinogenic risks of As, Cd, Ni and Pb were all lower than the accepted criterion of 10-6, whereas the carcinogenic risks of Cr for children and As and Cr for adults were higher than 10-6. The non-carcinogenic health risk of As and heavy metals because of PM2.5 exposure for children and adults were lower than but close to the safe level of 1.

  3. Organic electrolyte-based rechargeable zinc-ion batteries using potassium nickel hexacyanoferrate as a cathode material

    NASA Astrophysics Data System (ADS)

    Chae, Munseok S.; Heo, Jongwook W.; Kwak, Hunho H.; Lee, Hochun; Hong, Seung-Tae

    2017-01-01

    This study demonstrates an organic electrolyte-based rechargeable zinc-ion battery (ZIB) using Prussian blue (PB) analogue potassium nickel hexacyanoferrate K0.86Ni[Fe(CN)6]0.954(H2O)0.766 (KNF-086) as the cathode material. KNF-086 is prepared via electrochemical extraction of potassium ions from K1.51Ni[Fe(CN)6]0.954(H2O)0.766 (KNF-151). The cell is composed of a KNF-086 cathode, a zinc metal anode, and a 0.5 M Zn(ClO4)2 acetonitrile electrolyte. This cell shows a reversible discharge capacity of 55.6 mAh g-1 at 0.2 C rate with the discharge voltage at 1.19 V (vs. Zn2+/Zn). As evidenced by Fourier electron density analysis with powder XRD data, the zinc-inserted phase is confirmed as Zn0.32K0.86Ni[Fe(CN)6]0.954(H2O)0.766 (ZKNF-086), and the position of the zinc ion in ZKNF-086 is revealed as the center of the large interstitial cavities of the cubic PB. Compared to KNF-086, ZKNF-086 exhibits a decreased unit cell parameter (0.9%) and volume (2.8%) while the interatomic distance of d(Fe-C) increased (from 1.84 to 1.98 Å), and the oxidation state of iron decreases from 3 to 2.23. The organic electrolyte system provides higher zinc cycling efficiency (>99.9%) than the aqueous system (ca. 80%). This result demonstrates an organic electrolyte-based ZIB, and offers a crucial basis for understanding the electrochemical intercalation chemistry of zinc ions in organic electrolytes.

  4. Cation Distribution and Local Configuration of Fe 2+ Ions in Structurally Nonequivalent Lattice Sites of Heterometallic Fe(II)/ M(II) ( M = Mn, Co, Ni, Cu, Zn) Diaquadiformato Complexes

    NASA Astrophysics Data System (ADS)

    Devillers, M.; Ladrière, J.

    1993-03-01

    57Fe Mössbauer investigations are carried out on a wide series of heterometallic diaquadiformato Fe(II)/ M(II) complexes with M = Mn, Co, Ni, Cu, and Zn to provide a local picture of the coordination environment of the 57Fe 2+ ions as a function of (i) the nature of the host cation and (ii) the relative amounts of both metals in the matrix (between 50 and 0.25 at.% Fe). Information is obtained on the quantitative distribution of both metals between the two structurally nonequivalent lattice sites and on the local geometry around the dopant atom in each crystal site. In the mixed Fe-Cu complexes. Fe 2+ ions are preferentially incorporated in the tetrahydrated site; in Cu-rich Fe xCu 1- x(HCO 2) 2· 2H 2O, the 57Fe 2+ ions located in the hexaformato-coordinated site are surrounded by an axially compressed octahedron of formate ligands which contrasts with the elongated configuration observed in the pure iron compound and in the other mixed systems. Semiquantitative estimations of the tetragonal field splitting and of the extent of metal-ligand interactions are proposed from the temperature dependence of the quadrupole splitting values.

  5. Heavy metal accumulation by Corchorus olitorius L. irrigated with wastewater.

    PubMed

    Ahmed, Dalia A; Slima, Dalia F

    2018-05-01

    Many agricultural soils in Egypt irrigated with untreated wastewater. Herein, we investigated the effect of untreated industrial wastewater irrigation on the soil and fodder plant Corchorus olittorius (Jew mallow). It also aimed to assess its effect on the growth measurements as well as analyses of soils, irrigation waters, and plants for heavy metal and nutrient concentrations. Significant differences between irrigation waters and soil irrigated with fresh and wastewater were recognized. Wastewater irrigation leads to remarkable reduction in the growth parameters and reduced its vegetative biomass. The concentration of Pb, Cd, Cr, Cu, Fe, and Zn were high significant and above phytotoxic concentrations in leaves (edible part) and roots of wastewater-irrigated plant. The present study indicated that Jew mallow plant tends to phytostabilize (Cd, Ni, and Mn) in its root and had the ability to translocate (Pb, Cu, Cr, Fe, and Zn) to its leaves. Higher concentrations of Cd, Cu, Cr, Pb, Fe, Mn, Ni, and Zn in the roots than leaves indicate that the roots are hyper-accumulators for Pb, Cr, Cu, Fe, and Zn more than the leaves. The research study recommended that there is a need to protect the soil from contamination through regular monitoring and not to cultivate Jew mallow in wastewater-irrigated soil and that it had a high capacity to accumulate heavy metals in its edible part and causes several harmful health effects for consumers.

  6. Effects of sintering atmosphere and temperature on structural and magnetic properties of Ni-Cu-Zn ferrite nano-particles: Magnetic enhancement by a reducing atmosphere

    NASA Astrophysics Data System (ADS)

    Gholizadeh, Ahmad; Jafari, Elahe

    2017-01-01

    In this work, effects of sintering atmosphere and temperature on structural and magnetic properties of Ni0.3Cu0.2Zn0.5Fe2O4 nanoparticles prepared by citrate precursor method have been studied. The structural characterization of the samples by X-ray powder diffraction and FT-IR spectroscopy is evidence for formation of a cubic structure with no presence of impurity phase. Calculated values of crystallite size and unit cell parameter show an increase with sintering temperature under different atmospheres. Variation of saturation magnetization with sintering temperature and atmosphere can be attributed to change of three factors: magnetic core size, inversion parameter and the change of Fe3+-ion concentration due to the presence of Fe4+ and Fe2+ ions. The saturation magnetization gradually grows with sintering temperature due to increase of magnetic core size and a maximum 63 emu/g was achieved at 600 °C under carbon monoxide-ambient atmosphere.

  7. [Distribution characteristics of heavy metals along an elevation gradient of montane forest].

    PubMed

    Wan, Jia-rong; Nie, Ming; Zou, Qin; Hu, Shao-chang; Chen, Jia-kuan

    2011-12-01

    In the present paper, the concentrations of fourteen heavy metals (Fe, Al, Ti, Cu, Cr, Mn, V, Zn, Ni, Co, Pb, Se, Cd and As) were determined by ICP-AES and atomic absorption spectroscopy along an elevation gradient of montane forest. The results show that the elevation gradient had significant effects on the concentrations of Fe, Al, Ti, V, Pb and As. And the concentrations of Cu, Cr, Mn, Zn, Ni, Co, Se and Cd were not significantly affected by the elevation gradient. Because the studying area is red soil, the elevation gradient had significant effects on the concentrations of Fe, Al and Ti which are characteristic heavy metals of red soil, suggesting that the red soil at different elevations has different intensities of weathering desilication and bioaccumulation. Other heavy metals have different relationships with the elevation gradient, such as the concentrations of Cr, Zn and Cd were high at relatively high elevation and Pb and As were high at relatively low elevation. These results suggest that the different elevations of montane forest soils were polluted by differently types of heavy metals.

  8. Urban and industrial contribution to trace elements in the atmosphere as measured in holm oak bark

    NASA Astrophysics Data System (ADS)

    Drava, Giuliana; Brignole, Daniele; Giordani, Paolo; Minganti, Vincenzo

    2016-11-01

    The concentrations of As, Cd, Co, Cu, Fe, Mn, Ni, Pb, V and Zn were measured by ICP-OES in samples of bark of the holm oak (Quercus ilex L.) collected from trees in different urban environments (residential and mixed residential/industrial). The use of tree bark as a bioindicator makes it easy to create maps that can provide detailed data on the levels and on the spatial distribution of each trace element. For most of the elements considered (As, Co, Fe, Mn, Ni, V and Zn), the concentrations in the industrial sites are about twice (from 1.9 to 2.8 times higher) of those in the residential area. Arsenic, Fe and Zn show the highest concentrations near a steel plant (operational until 2005), but for the other elements it is not possible to identify any localized source, as evident from the maps. In areas where urban pollution is summed up by the impact of industrial activities, the population is exposed to significantly higher amounts of some metals than people living in residential areas.

  9. Field based investigation on phytoremediation potentials of Lemna minor and Azolla filiculoides in tropical, semiarid regions: Case of Ethiopia.

    PubMed

    Amare, Elfu; Kebede, Fassil; Berihu, Tesfay; Mulat, Worku

    2017-10-16

    This study investigated the concurrent accumulation of eight heavy metals by two floating aquatic macrophytes (Lemna minor and Azolla filiculoides) cultivated in ambient media and blended wastewaters in the semiarid regions of Ethiopia. Both species accumulated heavy metals in varying degrees with a significant concentration gradient within the immediate water media. Highest bioconcentration factor was determined for Mn and Fe in both plants. Results revealed that L. minor was high phytoaccumulator for Fe, Mn, Zn and Co but moderate for Cd, Cu, Ni and Cr. On the other hand, A. filiculoides was a high accumulator for Fe, Mn, Zn and Cu, but its potency was moderate for Co, Cr and Ni, but lower for Cd. Both species exhibited significant difference in accumulating Co, Zn and Mn (p < 0.05). In general, the bioconcentration factors for both plants were comparable within the same treatment. In this study, stronger associations between the heavy metal concentrations in the plant tissues and in the grown water media were observed for A. filiculoides.

  10. Trace metals in liver from bluefish, tautog, and tilefish in relation to body length

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mears, H.C.; Eisler, R.

    1977-09-01

    Livers from bluefish, tilefish and tautog collected during the summer of 1971 off the New Jersey coast were analyzed for Cd, Cr, Cu, Fe, Mn, Ni, and Zn by atomic absorption spectrophotometry. Liver ash from male and female tautog contained decreasing concentrations of Ni with increasing body length. Smaller males also contained greater levels of Cr and Cu in liver than larger tautogs. Larger tilefish contained proportionately more Cd, Cu, and Fe in liver than smaller tilefish. Decreasing levels of Mn and Zn with body length were apparent only for females. Livers from larger male bluefish were associated with highermore » concentrations of Fe than those from smaller males, while those from larger females contained lower concentrations of Cr than those from smaller females. The data suggest that future comparisons for trace metals which vary as a function of size be made only among fish of the same length.« less

  11. Metal concentrations in demersal fish species from Santa Maria Bay, Baja California Sur, Mexico (Pacific coast).

    PubMed

    Jonathan, M P; Aurioles-Gamboa, David; Villegas, Lorena Elizabeth Campos; Bohórquez-Herrera, Jimena; Hernández-Camacho, Claudia J; Sujitha, S B

    2015-10-15

    Concentrations of 11 trace metals (Fe, Mn, Cr, Cu, Ni, Co, Pb, Zn, Cd, As, Hg) in 40 fish species from Santa Maria Bay, Baja California Sur, Mexico, the strategically important area for marine mammals and organisms were analyzed. Based on their concentrations the ranking of metals Fe>Zn>Ni>Cr>Mn>Pb>Cu>Co>As>Cd>Hg suggests that organism size, metabolism and feeding habits are correlated with metal concentrations. Local geological formations affect the concentrations of different metals in the aquatic environment and are subsequently transferred to fishes. The correlation analysis suggests that metabolism and nurturing habits impact the concentration of metals. Concentrations of Fe and Mn appear to be influenced by scavenging and absorption processes, which vary by species. The considerable variability in the metal concentrations obtained in different species underscores the importance of regular monitoring. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Structural and magnetic properties of Ni1-xZnxFe2O4 synthesized through the sol-gel method

    NASA Astrophysics Data System (ADS)

    Guan, Beh Hoe; Zahari, Muhammad Hanif; Chuan, Lee Kean

    2016-11-01

    Modification of crystal structure by means of substitution would result in the modification of the overall physical properties of crystallite materials especially in ferrites. This study aims to investigate the effect of non-magnetic Zn substitution in spinel NiFe2O4 and its direct effect towards its microstructural and magnetic properties. Magnetic nanoparticles of Nickel-Zinc ferrite with the chemical formula, Ni1-xZnxFe2O4 (x=0.00, 0.25, 0.50, 0.75) were synthesized through the sol-gel route. Phase formation and structural properties of the synthesized ferrite were identified through X-ray diffraction (XRD) analysis and transmission electron microscopy (TEM). Magnetic properties such as the magnetic saturation, coercivity and remanence were measured by a vibrating sample magnetometer (VSM). XRD measurements reveals successful synthesis of single-phased Nickel ferrite and Nickel—Zinc ferrite. Both crystallite and grain size shows fluctuation with increasing Zn content. The ferrites were found to be ferrimagnetic in nature and show differing values with different x values.

  13. Inter particle interaction in Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} prepared by self combustion method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sudheesh, V. D.; Vinesh, A.; Lakshmi, N.

    Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} has been prepared by self combustion method and studied using X-ray diffraction, Moessbauer spectroscopy and DC magnetization techniques. X-ray diffractogram shows highly crystalline nano sized sample with no impurity phases. The room temperature Moessbauer and magnetization measurements show the co-existence of superparamagnetic and ferrimagnetic particles in the sample. The presence of inter particle interaction is confirmed from the {delta}M(H) curve at 20K. The dependence of magnetic moment below blocking temperature in the field cooling curve indicates that the inter particle interaction is weak in the as prepared sample.

  14. Charge-density study on layered oxyarsenides (LaO)MAs (M = Mn, Fe, Ni, Zn)

    NASA Astrophysics Data System (ADS)

    Takase, Kouichi; Hiramoto, Shozo; Fukushima, Tetsuya; Sato, Kazunori; Moriyoshi, Chikako; Kuroiwa, Yoshihiro

    2017-12-01

    Using synchrotron X-ray powder diffraction, we investigate the charge-density distributions of the layered oxypnictides (LaO)MnAs, (LaO)FeAs, (LaO)NiAs, and (LaO)ZnAs, which are an antiferromagnetic semiconductor, a parent material of an iron-based superconductor, a low-temperature superconductor, and a non-magnetic semiconductor, respectively. For the metallic samples, clear charge densities are observed in both the transition-metal pnictide layers and the rare-earth-oxide layers. However, in the semiconducting samples, there is no finite charge density between the transition-metal element and As. These differences in charge density reflect differences in physical properties. First-principles calculations using density functional theory reproduce the experimental results reasonably well.

  15. Magnetic enhancement and coding in mechanosynthesized Ni{sub 0.3}Zn{sub 0.7}Fe{sub 2}O{sub 4} nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majumder, S.; Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700064; Dey, S.

    2015-06-24

    The nanosized Ni{sub 0.3}Zn{sub 0.7}Fe{sub 2}O{sub 4} (∼ 15 nm) has been synthesized by high energy ball milling of the bulk powder sample. The sample has been characterized by powder x-ray diffraction, field emission and transmission electron microscopic and dc magnetic measurement techniques. The dc magnetic measurement on the sample indicates that the sample exhibit enhancement of magnetization compared to its counterparts synthesized by chemical methods. Moreover, the system stores the memory of either decrease or increase of magnetic field enabling a magnetic coding of “0” and “1” which can be profitably used in magnetic storage and sensing devices.

  16. Structural, morphological and electrical properties of Sn-substituted Ni-Zn ferrites synthesized by double sintering technique

    NASA Astrophysics Data System (ADS)

    Ali, M. A.; Uddin, M. M.; Khan, M. N. I.; Chowdhury, F.-U.-Z.; Haque, S. M.

    2017-02-01

    The Sn-substituted Ni-Zn ferrites, (0.0≤x≤0.30), have been synthesized by the standard double sintering technique from the oxide nanopowders of Ni, Zn, Fe and Sn. The structural and electrical properties have been investigated by the X-ray diffraction (XRD), scanning electron microscopy (SEM), DC resistivity and dielectric measurements. From XRD data, the single cubic spinel phase has been confirmed for x≤0.1, whereas for x>0.1 an extra intermediate phase has been detected along with the cubic spinel phase of Ni-Zn ferrite. The grain size is increased due to Sn substitution in Ni-Zn ferrites. DC resistivity as a function of temperature has been measured by two probe method. The semiconducting nature has been found operative in the samples. The DC resistivity was found to decrease whilst the dielectric constant increased with increasing Sn content in Ni-Zn ferrites. The unusual behavior of the dielectric loss factor of the ferrites was explained by the Rezlescu model. The electrical relaxation of the ferrites has been studied in terms of electric modulus formalism and the time for dielectric relaxation was calculated. The contribution of grain resistance has been studied from the Cole-Cole plot. The suitability to use the as prepared samples in the miniaturized memory devices based capacitive components or energy storage principles are confirmed from the values of dielectric constant.

  17. Spatial distribution and metal contamination in the coastal sediments of Al-Khafji area, Arabian Gulf, Saudi Arabia.

    PubMed

    Alharbi, Talal; Alfaifi, Hussain; Almadani, Sattam A; El-Sorogy, Abdelbaset

    2017-11-13

    To document the spatial distribution and metal contamination in the coastal sediments of the Al-Khafji area in the northern part of the Saudi Arabian Gulf, 27 samples were collected for Al, V, Cr, Mn, Cu, Zn, Cd, Pb, Hg, Sr, As, Fe, Co, and Ni analysis using inductively coupled plasma-mass spectrometer (ICP-MS). The results revealed the following descending order of the metal concentrations: Sr > Fe > Al > As > Mn > Ni > V > Zn > Cr > Cu > Pb > Co > Hg > Cd. Average levels of enrichment factor of Sr, As, Hg, Cd, Ni, V, Cu, Co, and Pb were higher than 2 (218.10, 128.50, 80.94, 41.50, 12.31, 5.66, 2.95, 2.90, and 2.85, respectively) and that means the anthropogenic sources of these metals, while Al, Zn, Cr and Mn have enrichment factor less than 2, which implies natural sources. Average values of Sr, Hg, Cd, Cr, Ni, and As in the coastal sediments of Al-Khafji area were mostly higher than the values recorded from the background shale and earth crust and from those results along coasts of the Caspian Sea and the Mediterranean Sea. The highest levels of Cu in the northern part of the studied coastline might be due to Al-Khafji desalination plant, while levels of Al, Ni, Cr, Fe, Mn, Pb, and Zn in the central part may be a result of landfilling and industrial sewage. The highest levels of As, Cd, Co, Cu, Hg, and V in the southern part seem to be due to oil pollutants from Khafji Joint Operations (KJO). The higher values of Sr in the studied sediments in general and particularly in locality 7 could relate to the hypersalinity and aragonitic composition of the scleractinian corals abundant in that area.

  18. Calcium deficiency and CaCO/sub 3/ on micronutrient status of plants grown in solution culture. [Lycopersicon esculentum, Phaseolus vulgaris

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, A.; Cha, J.W.; Alexander, G.V.

    Plants were grown in solution culture with different levels of Ca to further evaluate Ca relationships to trace metal uptake and to toxicity of trace metals. When tomato plants (Lycopersicon esculentum L., Tropic) were grown at a low level of Ca, the Zn, Cu, Fe, Mn, Al, and Ti concentrations of leaves, stems, and roots were considerably increased. The use of an excess of CaCO/sub 3/ which increased pH did not influence the trace metal concentrations of plants any more than did Ca/sup + +/. In a factorial experiment with bush beans (Phaseolus vulgaris L. C.V. Improved Tendergreen) with Camore » (10/sup -4/, 10/sup -2/, 10/sup -2/N) and Ni (0, 2 x 10/sup -6/ M, 2 x 10/sup -5/ M), Ni phytotoxicity and Ni uptake were decreased somewhat at the highest Ca level. High Ni tended to decrease the Ca concentration in leaves. High Ca and Ni both tended to decrease Fe, Cu, Zn, and Mn concentrations in leaves. The Ni had some interactions on the P concentrations of shoots.« less

  19. Structure and mechanism of Cu- and Ni-substituted analogs of metallo-β-lactamase L1

    PubMed Central

    Hu, Zhenxin; Spadafora, Lauren J.; Hajdin, Christine E.; Bennett, Brian; Crowder, Michael W.

    2009-01-01

    In an effort to further probe metal binding to metallo-β-lactamase L1 (mβl L1), Cu- (Cu-L1) and Ni-substituted (Ni-L1) L1 were prepared and characterized by kinetic and spectroscopic studies. Cu-L1 bound 1.7 equivalents of Cu and small amounts of Zn(II) and Fe. The EPR spectrum of Cu-L1 exhibited two overlapping, axial signals, indicative of type 2 sites with distinct affinities for Cu(II). Both signals indicated multiple nitrogen ligands. Despite the expected proximity of the Cu(II) ions, however, only indirect evidence was found for spin-spin coupling. Cu-L1 exhibited higher kcat (96 s−1) and Km (224 μM) values, as compared to the values of dinuclear Zn(II)-containing L1, when nitrocefin was used as substrate. The Ni-L1 bound 1 equivalent of Ni and 0.3 equivalents of Zn(II). Ni-L1 was EPR-silent, suggesting that the oxidation state of nickel was +2; this suggestion was confirmed by 1H NMR spectra, which showed relatively sharp proton resonances. Stopped-flow kinetic studies showed that ZnNi-L1 stabilized significant amounts of the nitrocefin-derived intermediate and that the decay of intermediate is rate-limiting. 1H NMR spectra demonstrate that Ni(II) binds in the Zn2 site and that the ring-opened product coordinates Ni(II). Both Cu-L1 and ZnNi-L1 hydrolyze cephalosporins and carbapenems, but not penicillins, suggesting that the Zn2 site modulates substrate preference in mβ1 L1. These studies demonstrate that the Zn2 site in L1 is very flexible and can accommodate a number of different transition metal ions; this flexibility could possibly offer an organism that produces L1 an evolutionary advantage when challenged with β-lactam containing antibiotics. PMID:19228020

  20. Biomonitoring of Trace Metals in the Keban Dam Reservoir (Turkey) Using Mussels (Unio elongatulus eucirrus) and Crayfish (Astacus leptodactylus).

    PubMed

    Varol, Memet; Sünbül, Muhammet Raşit

    2018-01-03

    Freshwater mussels and crayfish are commonly used as biomonitors of trace metals. In the present study, the concentrations of ten metals were determined in mussels (Unio elongatulus eucirrus) and crayfish (Astacus leptodactylus) collected from the Keban Dam Reservoir in Turkey. The significant spatial differences in concentrations of studied metals except As in mussels were not found. However, Co, Cr, Cu, and Zn concentrations in mussels and As, Co, Cu, Fe, Pb, and Zn concentrations in crayfish showed significant seasonal differences. As, Cd, and Mn levels in mussels were about nine times higher than those in crayfish. The concentrations of Cd, Cr, Cu, Pb, Zn, and inorganic As in crayfish and mussels were lower than maximum permissible levels. When compared with other biomonitoring studies using mussels and crayfish, high concentrations of As, Cd, Co, Cr, and Ni in mussels and Cr and Ni in crayfish were observed due to lithogenic sources and anthropogenic activities in the basin. Bioconcentration factor values of Fe, Mn, Cd, and Zn in mussels and Zn, Cu, Fe, and Co in crayfish were > 1000, which indicates that both U. e. eucirrus and A. leptodactylus have potential to bioaccumulate these metals. Therefore, attention should be paid to mussels and crayfish from ecological and human health perspective, because they are potential vectors of metals to higher trophic levels.

  1. Superparamagnetic MFe2O 4 (M = Ni, Co, Zn, Mn) nanoparticles: synthesis, characterization, induction heating and cell viability studies for cancer hyperthermia applications.

    PubMed

    Sabale, Sandip; Jadhav, Vidhya; Khot, Vishwajeet; Zhu, Xiaoli; Xin, Meiling; Chen, Hongxia

    2015-03-01

    Superparamagnetic nanoferrites are prepared by simple and one step refluxing in polyol synthesis. The ferrite nanoparticles prepared by this method exhibit particle sizes below 10 nm and high degree of crystallinity. These ferrite nanoparticles are compared by means of their magnetic properties, induction heating and cell viability studies for its application in magnetic fluid hyperthermia. Out of all studied nanoparticles in present work, only ZnFe2O4 and CoFe2O4 MNPs are able to produce threshold hyperthermia temperature. This rise in temperature is discussed in detail in view of their magneto-structural properties. Therefore ZnFe2O4 and CoFe2O4 MNPs with improved stability, magnetic induction heating and cell viability are suitable candidates for magnetic hyperthermia.

  2. An all-electron density functional theory study of the structure and properties of the neutral and singly charged M12 and M13 clusters: M = Sc-Zn.

    PubMed

    Gutsev, G L; Weatherford, C W; Belay, K G; Ramachandran, B R; Jena, P

    2013-04-28

    The electronic and geometrical structures of the M12 and M13 clusters where M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn along with their singly negatively and positively charged ions are studied using all-electron density functional theory within the generalized gradient approximation. The geometries corresponding to the lowest total energy states of singly and negatively charged ions of V13, Mn12, Co12, Ni13, Cu13, Zn12, and Zn13 are found to be different from the geometries of the corresponding neutral parents. The computed ionization energies of the neutrals, vertical electron detachment energies from the anions, and energies required to remove a single atom from the M13 and M13(+) clusters are in good agreement with experiment. The change in a total spin magnetic moment of the cation or anion with respect to a total spin magnetic moment of the corresponding neutral is consistent with the one-electron model in most cases, i.e., they differ by ±1.0 μ(B). Exceptions are found only for Sc12(-), Ti12(+), Mn12(-), Mn12(+), Fe12(-), Fe13(+), and Co12(+).

  3. Color Tuning in Garnet Oxides: The Role of Tetrahedral Coordination Geometry for 3 d Metal Ions and Ligand-Metal Charge Transfer (Band-Gap Manipulation).

    PubMed

    Bhim, Anupam; Laha, Sourav; Gopalakrishnan, Jagannatha; Natarajan, Srinivasan

    2017-10-18

    We explored garnet-structured oxide materials containing 3d transition-metal ions (e.g., Co 2+ , Ni 2+ , Cu 2+ , and Fe 3+ ) for the development of new inorganic colored materials. For this purpose, we synthesized new garnets, Ca 3 Sb 2 Ga 2 ZnO 12 (I) and Ca 3 Sb 2 Fe 2 ZnO 12 (II), that were isostructural with Ca 3 Te 2 Zn 3 O 12 . Substitution of Co 2+ , Ni 2+ , and Cu 2+ at the tetrahedral Zn 2+ sites in I and II gave rise to brilliantly colored materials (different shades of blue, green, turquoise, and red). The materials were characterized by optical absorption spectroscopy and CIE chromaticity diagrams. The Fe 3+ -containing oxides showed band-gap narrowing (owing to strong sp-d exchange interactions between Zn 2+ and the transition-metal ion), and this tuned the color of these materials uniquely. We also characterized the color and optical absorption properties of Ca 3 Te 2 Zn 3-x Co x O 12 (0

  4. A comparison of trace metal bioaccumulation and distribution in Typha latifolia and Phragmites australis: implication for phytoremediation.

    PubMed

    Klink, Agnieszka

    2017-02-01

    The aims of the present investigation were to reveal various trace metal accumulation abilities of two common helophytes Typha latifolia and Phragmites australis and to investigate their potential use in the phytoremediation of environmental metal pollution. The concentrations of Fe, Mn, Zn, Cu, Cd, Pb and Ni were determined in roots, rhizomes, stems and leaves of both species studied as well as in corresponding water and bottom sediments from 19 sites selected within seven lakes in western Poland (Leszczyńskie Lakeland). The principal component and classification analysis showed that P. australis leaves were correlated with the highest Mn, Fe and Cd concentrations, but T. latifolia leaves with the highest Pb, Zn and Cu concentrations. However, roots of the P. australis were correlated with the highest Mn, Fe and Cu concentrations, while T. latifolia roots had the highest Pb, Zn and Cd concentrations. Despite the differences in trace metal accumulation ability between the species studied, Fe, Cu, Zn, Pb and Ni concentrations in the P. australis and T. latifolia exhibited the following accumulation scheme: roots > rhizomes > leaves > stems, while Mn decreased in the following order: root > leaf > rhizome > stem. The high values of bioaccumulation factors and low values of translocation factors for Zn, Mn, Pb and Cu indicated the potential application of T. latifolia and P. australis in the phytostabilisation of contaminated aquatic ecosystems. Due to high biomass of aboveground organs of both species, the amount of trace metals stored in these organs during the vegetation period was considerably high, despite of the small trace metals transport.

  5. Structural, dielectric and impedance spectroscopic studies of Ni0.5Zn0.5-xLixFe2O4 nanocrystalline ferrites

    NASA Astrophysics Data System (ADS)

    Venkatesh, Davuluri; Ramesh, K. V.

    2017-09-01

    Nanocrystalline lithium substituted Ni-Zn ferrites with composition Ni0.5Zn0.5-xLixFe2O4 (x = 0.00-0.25 in steps of 0.05) were synthesized by the citrate gel auto-combustion method and were sintered at 1000∘C for 4 h in air atmosphere. The structural, dielectric, impedance spectroscopic and magnetic properties were studied by using X-ray diffraction, impedance analyzer and vibrating sample magnetometer respectively. The X-ray diffraction patterns confirm that all samples exhibit a single phase cubic spinel structure. Suitable cation distribution for all compositions has been proposed by using the X-ray diffraction line intensity calculations and the theoretical lattice parameter for each composition was observed in close agreement with the experimental ones and thereby supporting the proposed distribution. An increase in the saturation magnetization was observed up to x = 0.10 level of Li+ substitution and thereafter magnetization reduced for higher concentrations to the highest level of Li+ substitution. The dielectric constant and the DC resistivity of Ni-Zn-Li ferrites were noticed to decrease with increase in the Li+ ion concentration. The impedance spectroscopic studies by using the Cole-Cole plots were studied in order to obtain the relaxation time, grain resistance and grain capacitance. AC conductivity initially remained almost independent of frequency for lower frequencies and thereafter for higher frequencies the AC conductivity increased with increase of Lithium concentration.

  6. Assessment of metal contents in spices and herbs from Saudi Arabia.

    PubMed

    Seddigi, Z S; Kandhro, G A; Shah, F; Danish, E; Soylak, Mustafa

    2016-02-01

    In the recent years, there has been a growing interest in monitoring heavy metal contamination of spices/herbs. Spices and herbs are sources of many bioactive compounds that can improve the tastes of food as well as influence digestion and metabolism processes. In the present study, the levels of some essential and toxic elements such as iron (Fe), zinc (Zn), copper (Cu), chromium (Cr), manganese (Mn), cobalt (Co), nickel (Ni), lead (Pb), and cadmium (Cd), present in common spices/herbs that were purchased from the local market in Saudi Arabia, were analyzed by atomic absorption spectroscopy after digestion with nitric acid/hydrogen peroxide mixture. Samples from the following spices/herbs were used: turmeric, cloves, black pepper, red pepper, cumin, legume, cinnamon, abazir, white pepper, ginger, and coriander. The concentration ranges for the studied elements were found as 48.8-231, 4.7-19.4, 2.5-10.5, below detection level (BDL)-1.0, 8.8-490, 1.0-2.6, and BDL-3.7 µg g(-1) for Fe, Zn, Cu, Cr, Mn, Ni, and Pb, respectively, while Cd and Co levels were below the detection limit. Consumers of these spices/herbs would not be exposed to any risk associated with the daily intake of 10 g of spices per day as far as metals Fe, Zn, Cu, Cr, Mn, Ni, and Pb are concerned. © The Author(s) 2013.

  7. Potential human health risk from consumption of metallic elements-contaminated benthic mollusks from Don Hoi Lot sandbar, Thailand.

    PubMed

    Khidkhan, Kraisiri; Imsilp, Kanjana; Poapolathep, Amnart; Poapolathep, Saranya; Tanhan, Phanwimol

    2017-04-15

    Environmental pollutants have raised more concerns for human health risk, especially via consumption of contaminated food. Terrestrial as well as aquatic animals are capable of bioaccumulation a variety of toxic substances including metallic elements. With increasing anthropogenic activities along the coastal areas, living organisms have more chances to be exposed to released contaminants. In this study, seven metallic elements (Cd, Cu, Fe, Mn, Ni, Pb and Zn) were determined in sediments and water from Don Hoi Lot sandbar, Samutsongkharm province, Thailand. Potential human health risks via the consumption of two benthic bivalves Solen corneus (Larmarck, 1818) and Meretrix meretrix (Linnaeus, 1758) were also estimated using the target hazard quotients (THQs). The variations of metallic element concentrations were apparent between wet and dry season. Fe was the predominate metallic element in the sediment and the remaining were Mn>Pb>Zn>Ni>Cu>Cd. Whereas metallic element concentrations in water were Pb>Ni>Fe>Zn>Cu>Mn>Cd. PCA analysis confirmed that the contaminations of these metallic elements were from Mae Klong river surface water. Most Pb THQ values in both S. corneus and M. meretrix were >1 indicating that human health risk is of concern. However, the sum of THQs of an individual metallic element should also be considered since multiple metallic elements exposure is so common. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Adsorption of Pb(II), Cu(II), Cd(II), Zn(II), Ni(II), Fe(II), and As(V) on bacterially produced metal sulfides.

    PubMed

    Jong, Tony; Parry, David L

    2004-07-01

    The adsorption of Pb(II), Cu(II), Cd(II), Zn(II), Ni(II), Fe(II) and As(V) onto bacterially produced metal sulfide (BPMS) material was investigated using a batch equilibrium method. It was found that the sulfide material had adsorptive properties comparable with those of other adsorbents with respect to the specific uptake of a range of metals and, the levels to which dissolved metal concentrations in solution can be reduced. The percentage of adsorption increased with increasing pH and adsorbent dose, but decreased with increasing initial dissolved metal concentration. The pH of the solution was the most important parameter controlling adsorption of Cd(II), Cu(II), Fe(II), Ni(II), Pb(II), Zn(II), and As(V) by BPMS. The adsorption data were successfully modeled using the Langmuir adsorption isotherm. Desorption experiments showed that the reversibility of adsorption was low, suggesting high-affinity adsorption governed by chemisorption. The mechanism of adsorption for the divalent metals was thought to be the formation of strong, inner-sphere complexes involving surface hydroxyl groups. However, the mechanism for the adsorption of As(V) by BPMS appears to be distinct from that of surface hydroxyl exchange. These results have important implications to the management of metal sulfide sludge produced by bacterial sulfate reduction.

  9. Ultrasmall water-soluble metal-iron oxide nanoparticles as T1-weighted contrast agents for magnetic resonance imaging.

    PubMed

    Zeng, Leyong; Ren, Wenzhi; Zheng, Jianjun; Cui, Ping; Wu, Aiguo

    2012-02-28

    Using an improved hydrolysis method of inorganic salts assisted with water-bath incubation, ultrasmall water-soluble metal-iron oxide nanoparticles (including Fe(3)O(4), ZnFe(2)O(4) and NiFe(2)O(4) nanoparticles) were synthesized in aqueous solutions, which were used as T(1)-weighted contrast agents for magnetic resonance imaging (MRI). The morphology, structure, MRI relaxation properties and cytotoxicity of the as-prepared metal-iron oxide nanoparticles were characterized, respectively. The results showed that the average sizes of nanoparticles were about 4 nm, 4 nm and 5 nm for Fe(3)O(4), ZnFe(2)O(4) and NiFe(2)O(4) nanoparticles, respectively. Moreover, the nanoparticles have good water dispersibility and low cytotoxicity. The MRI test showed the strong T(1)-weighted, but the weak T(2)-weighted MRI performance of metal-iron oxide nanoparticles. The high T(1)-weighted MRI performance can be attributed to the ultrasmall size of metal-iron oxide nanoparticles. Therefore, the as-prepared metal-iron oxide nanoparticles with good water dispersibility and ultrasmall size can have potential applications as T(1)-weighted contrast agent materials for MRI.

  10. Synthesis and characterization of mesoporous and hollow-mesoporous MxFe3-xO4 (M=Mg, Mn, Fe, Co, Ni, Cu, Zn) microspheres for microwave-triggered controllable drug delivery

    NASA Astrophysics Data System (ADS)

    Chen, Ping; Cui, Bin; Bu, Yumei; Yang, Zhenfeng; Wang, Yaoyu

    2017-12-01

    Spinel ferrites can be used in magnetic targeting and microwave heating and can therefore be used for targeted and controllable drug delivery. We used the cetyltrimethylammonium bromide-assisted solvothermal method to synthesize a series of spinel ferrites (MxFe3-xO4, M=Mg, Mn, Fe, Co, Ni, Cu, Zn) with a mesoporous or hollow-mesoporous structure suitable for direct drug loading and the particle diameters ranging from 200 to 350 nm. We investigated the effects of M2+ cation on the morphology and properties of these products by analyzing their transmission electron microscopy images, mesoporous properties, magnetic properties, and microwave responses. We chose hollow-mesoporous MxFe3-xO4 (M=Fe, Co, Zn) nanoparticles, which had better overall properties, for the drug VP16 (etoposide) loading and microwave-controlled release. The CoxFe3-xO4 and Fe3O4 particles trapped 61.5 and 64.8%, respectively, of the VP16, which were higher than that (60.4%) of ZnxFe3-xO4. Controllable drug release by these simple magnetic nanocarriers can be achieved by microwave irradiation, and VP16-loaded CoxFe3-xO4 released the most VP16 molecules (more than 50% after 1 h and 69.1% after 6 h) under microwave irradiation. Our results confirm the favorable drug loading and microwave-controlled delivery by these ferrites, and lay a theoretical foundation to promote clinical application of the targeted controllable drug delivery system. [Figure not available: see fulltext.

  11. Coordinatively Unsaturated Metal-Organic Frameworks M3(btc)2 (M = Cr, Fe, Co, Ni, Cu, and Zn) Catalyzing the Oxidation of CO by N2O: Insight from DFT Calculations.

    PubMed

    Ketrat, Sombat; Maihom, Thana; Wannakao, Sippakorn; Probst, Michael; Nokbin, Somkiat; Limtrakul, Jumras

    2017-11-20

    The oxidation of CO by N 2 O over metal-organic framework (MOF) M 3 (btc) 2 (M = Fe, Cr, Co, Ni, Cu, and Zn) catalysts that contain coordinatively unsaturated sites has been investigated by means of density functional theory calculations. The reaction proceeds in two steps. First, the N-O bond of N 2 O is broken to form a metal oxo intermediate. Second, a CO molecule reacts with the oxygen atom of the metal oxo site, forming one C-O bond of CO 2 . The first step is a rate-determining step for both Cu 3 (btc) 2 and Fe 3 (btc) 2 , where it requires the highest activation energy (67.3 and 19.6 kcal/mol, respectively). The lower value for the iron compound compared to the copper one can be explained by the larger amount of electron density transferred from the catalytic site to the antibonding of N 2 O molecules. This, in turn, is due to the smaller gap between the highest occupied molecular orbital (HOMO) of the MOF and the lowest unoccupied molecular orbital (LUMO)  of N 2 O for Fe 3 (btc) 2 compared to Cu 3 (btc) 2 . The results indicate the important role of charge transfer for the N-O bond breaking in N 2 O. We computationally screened other MOF M 3 (btc) 2 (M = Cr, Fe, Co, Ni, Cu, and Zn) compounds in this respect and show some relationships between the activation energy and orbital properties like HOMO energies and the spin densities of the metals at the active sites of the MOFs.

  12. Dietary exposure to toxic and essential trace elements by consumption of wild and farmed carp (Cyprinus carpio) and Caspian kutum (Rutilus frisii kutum) in Iran.

    PubMed

    Heshmati, Ali; Karami-Momtaz, Javad; Nili-Ahmadabadi, Amir; Ghadimi, Sabah

    2017-04-01

    This study was conducted to determine and compare the concentrations of mercury (Hg), cadmium (Cd), arsenic (As), lead (Pb), nickel (Ni), iron (Fe), zinc (Zn), copper (Cu), manganese (Mn), cobalt (Co), and selenium (Se) in the muscle of wild and farmed carp (Cyprinus carpio) and wild and farmed Caspian kutum (Rutilus frisii kutum) collected from south-western Caspian Sea areas of Iran between December 2014 and March 2015. In addition, risk assessment of consumers to exposure to metals through fish consumption was estimated. In all the samples, the arsenic concentration was lower than the detection limit. The Pb, Cd, Hg and Mn concentrations were significantly higher in the wild fish samples compared to the farmed fish samples. There was no significant difference in the Fe, Zn, Cu, Co, Ni and Se concentrations of the wild and farmed carp and the wild and farmed Caspian kutum. Iron displayed the highest concentration of all the analysed metals in both the wild and farmed fish, followed by Zn and Cu. The highest Hg, Cd, Pb, Ni, Fe, Zn, Cu, Mn, Co and Se concentrations were 0.056, 0.011, 0.065, 0.120, 4.151, 3.792, 2.948, 2.690, 0.037 and 0.162 μg g -1 , respectively. The estimated daily intake of all metals was acceptable, and the hazard quotient values showed that consumption of the analysed fish posed no health risk to consumers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Evaluation of elemental enrichments in surface sediments off southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Chen-Tung; Kandasamy, Selvaraj

    2008-05-01

    Surface slices of 20 sediment cores, off southwestern Taiwan, and bed sediment of River Kaoping were measured for major and trace elements (Al, As, Ca, Cd, Cl, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, Pb, S, Si, Ti, V, and Zn) to evaluate the geochemical processes responsible for their distribution, including elemental contamination. Major element/Al ratio and mean grain size indicate quartz-dominated, coarse grained sediments that likely derived from sedimentary rocks of Taiwan and upper crust of Yangtze Craton. Bi-plot of SiO2 versus Fe2O{3/T} suggests the possible iron enrichment in sediments of slag dumping sites. Highest concentrations of Cr, Mn, P, S, and Zn found in sediments of dumping sites support this. Correlation analysis shows dual associations, detrital and organic carbon, for Cr, P, S, and V with the latter association typical for sediments in dumping sites. Normalization of trace elements to Al indicates high enrichment factors (>2) for As, Cd, Pb, and Zn, revealing contamination. Factor analysis extracted four geochemical associations with the principal factor accounted for 25.1% of the total variance and identifies the combined effects of dumped iron and steel slag-induced C-S-Fe relationship owing to authigenic precipitation of Fe-Mn oxyhydroxides and/or metal sulfides, and organic matter complexation of Fe, Mn, Ca, Cr, P, and V. Factors 2, 3, and 4 reveal detrital association (Ti, Al, Ni, Pb, Cu, and V), effect of sea salt (Cl, Mg, Na, and K) and anthropogenic component (As and Zn)-carbonate link, respectively, in the investigated sediments.

  14. The influence of bias magnetization of nanoparticles on GMR sensor signal and sensitivity for the ultra-low concentration detection

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Xu, Jie; Cao, Derang; Li, Qiang; Zhao, Guoxia; Sun, Nian X.; Li, Shandong

    2018-05-01

    In the broad research of the GMR bio-sensing technology, it is vital to explore appropriate magnetic labels and its influences on the detection signal. In this work, four kinds of ferrite particles of γ-Fe2O3, CoFe2O4, NiFe2O4 and NiZnFe2O4 were prepared through calcining the Dimethyl Formamide (DMF) solution of the transition metal nitrates [Fe(NO3)3 and X(NO3)2, X = Co, Ni, Zn] to study the effect of magnetic properties on detection signals using a DC in-plane measuring method. It was revealed that for four particles, the output voltage differences |ΔV| between with and without magnetic particles exhibit log-linear functions of the particles concentrations x in the range from 0.1 to 10 ng/mL. A very low limitation of detection (LOD) of 0.1 ng/mL for all the samples was obtained, which is two orders smaller than that in the previous work. Moreover, the change of output voltage difference at the LOD (|ΔVlim|) is proportional to the magnetization at bias field (bias magnetization, Mbias), which indicates that larger Mbias leads to a lower LOD. This work provides a useful guidance in selecting or preparing magnetic labels to enhance the sensitivity of GMR biosensors.

  15. The effects of glass doping, temperature and time on the morphology, composition, and iron redox of spinel crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matyas, Josef; Amonette, James E.; Kukkadapu, Ravi K.

    2014-10-31

    Precipitation of large crystals/agglomerates of spinel and their accumulation in the pour spout riser of a Joule-heated ceramic melter during idling can plug the melter and prevent pouring of molten glass into canisters. Thus, there is a need to understand the effects of spinel-forming components, temperature, and time on the growth of crystals in connection with an accumulation rate. In our study, crystals of spinel [Fe, Ni, Mn, Zn, Sn][Fe, Cr]₂O₄ were precipitated from simulated high-level waste borosilicate glasses containing different concentrations of Ni, Fe, and Cr by heat treating at 850 and 900°C for different times. These crystals weremore » extracted from the glasses and analyzed with scanning electron microscopy and image analysis for size and shape, with inductively coupled plasma-atomic emission spectroscopy and atom probe tomography for concentration of spinel-forming components, and with wet colorimetry and Mössbauer spectroscopy for Fe²⁺/Fe total ratio. High concentrations of Ni, Fe, and Cr in glasses resulted in the precipitation of crystals larger than 100 µm in just two days. Crystals were a solid solution of NiFe₂O₄, NiCr₂O₄, and -Fe₂O₃ (identified only in the high-Ni-Fe glass) and also contained small concentrations of less than 1 at% of Li, Mg, Mn, and Al.« less

  16. Magnetic characteristics of M2FeV3O11 (M = Mg, Zn, Pb, Co, Ni) compounds

    NASA Astrophysics Data System (ADS)

    Groń, T.; Blonska-Tabero, A.; Filipek, E.; Stokłosa, Z.; Duda, H.; Sawicki, B.

    2018-02-01

    The unusual physical characteristics of the multicomponent oxide systems renewed the interest as the potential cathode materials in high-energy cells. Since the earlier magnetic characteristics were not entirely conclusive, we report the results of dc magnetic measurements including higher harmonics of ac magnetic susceptibility of the M2FeV3O11 (M = Mg, Zn, Pb, Co, Ni) compounds. Ferrimagnetic long-range and antiferromagnetic short-range interactions for all compounds under study at low temperatures as well as superparamagnetic-like behavior with the blocking temperature of 29 K and the freezing parameter of 0.013 were observed. These effects are discussed within the framework of superexchange and double exchange magnetic interactions as well as the mixed valence band of iron ions.

  17. Super-high-affinity binding site for [3H]diazepam in the presence of Co2+, Ni2+, Cu2+, or Zn2+.

    PubMed

    Mizuno, S; Ogawa, N; Mori, A

    1982-12-01

    Chloride salts of Li+, Na+, K+, Mg2+, Ca2+, Cr3+, Mn2+, Fe2+, and Fe3+ had no effect on [3H]diazepam binding. Chloride salts of Co2+, Ni2+, Cu2+, and Zn2+ increased [3H]diazepam binding by 34 to 68% in a concentration-dependent fashion. Since these divalent cations potentiated the GABA-enhanced [3H]diazepam binding and the effect of each divalent cation was nearly additive with GABA, these cations probably act at a site different from the GABA recognition site in the benzodiazepine-receptor complex. Scatchard plots of [3H]diazepam binding without an effective divalent cation showed a single class of binding, with a Kd value of 5.3 nM. In the presence of 1 mM Co2+, Ni2+, Cu2+, or Zn2+, two distinct binding sites were evident with apparent Kd values of 1.0 nM and 5.7 nM. The higher-affinity binding was not detected in the absence of an effective divalent cation and is probably a novel, super-high-affinity binding site.

  18. Investigations on Cu2+-substituted Ni-Zn ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Amarjeet; Kumar, Vinod

    2016-11-01

    CuxNi(1-x)/2Zn(1-x)/2Fe2O4 (x = 0.1, 0.3 and 0.5) nanoparticles were prepared by chemical co-precipitation method. The developed nanoparticles were characterized for structural properties by powder X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) techniques. Peak position in the X-ray diffraction pattern confirmed the single spinel phase of the developed particles. Infrared (IR) spectroscopy in mid-IR range showed the presence of characteristic absorption bands corresponding to octahedral and tetrahedral bonds in the spinel structure of prepared samples. Thermo-gravimetric analysis (TGA) measurements showed a considerable weight loss in the developed samples above 700∘C. Frequency dependence of the electrical properties of the developed material pellets was studied in the frequency range of 1 kHz-5 MHz. Temperature dependence of the dielectric constant of Cu0.1Ni0.45Zn0.45Fe2O4 was studied at different temperatures, i.e. at 425, 450 and 475 K, in the frequency range of 1 kHz-5 MHz. It was found that the electrical conductivity decreases with increasing Cu2+ ion content while it increases with the increase in temperature.

  19. Fe (III), Co(II), Ni(II), Cu(II) and Zn(II) complexes of schiff bases based-on glycine and phenylalanine: Synthesis, magnetic/thermal properties and antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Sevgi, Fatih; Bagkesici, Ugur; Kursunlu, Ahmed Nuri; Guler, Ersin

    2018-02-01

    Zinc (II), copper (II), nickel (II), cobalt (II) and iron (III) complexes of Schiff bases (LG, LP) derived from 2-hydroxynaphthaldehyde with glycine and phenylalanine were reported and characterized by 1H NMR, 13C NMR, elemental analyses, melting point, FT-IR, magnetic susceptibility and thermal analyses (TGA). TGA data show that iron and cobalt include to the coordinated water and metal:ligand ratio is 1:2 while the complex stoichiometry for Ni (II), Cu (II) and Zn (II) complexes is 1:1. As expected, Ni (II) and Zn (II) complexes are diamagnetic; Cu (II), Co (II) and Fe (III) complexes are paramagnetic character due to a strong ligand of LG and LP. The LG, LP and their metal complexes were screened for their antimicrobial activities against five Gram-positive (Staphylococcus aureus, Methicillin resistant Staphylococcus aureus (MRSA), Bacillus cereus, Streptococcus mutans and Enterococcus faecalis) and three Gram-negative (Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa) and one fungi (Candida albicans) by using broth microdilution techniques. The activity data show that ligands and their metal complexes exhibited moderate to good activity against Gram-positive bacteria and fungi.

  20. Determination of the spinel group end-members based on electron microprobe analyses

    NASA Astrophysics Data System (ADS)

    Ferracutti, Gabriela R.; Gargiulo, M. Florencia; Ganuza, M. Luján; Bjerg, Ernesto A.; Castro, Silvia M.

    2015-04-01

    The spinel group minerals have been the focus of many studies, not only because of their economic interest, but also due to the fact that they are very useful as petrogenetic indicators. The application End-Members Generator (EMG) allows to establish, based on electron microprobe analyses (EMPA), the 19 end-members of the spinel group: MgAl2O4 (Spinel sensu stricto, s.s.), FeAl2O4 (Hercynite), MnAl2O4 (Galaxite), ZnAl2O4 (Gahnite), MgFe2O4 (Magnesioferrite), Fe3O4 (Magnetite), MnFe2O4 (Jacobsite), ZnFe2O4 (Franklinite), NiFe2O4 (Trevorite), MgCr2O4 (Magnesiochromite), FeCr2O4 (Chromite), MnCr2O4 (Manganochromite), ZnCr2O4 (Zincochromite), NiCr2O4 (Nichromite), MgV2O4 (Magnesiocoulsonite), FeV2O4 (Coulsonite), MnV2O4 (Vuorelainenite), Mg2TiO4 (Qandilite) and Fe2TiO4 (Ulvöspinel). EMG is an application that does not require an installation process and was created with the purpose of performing calculations to obtain: cation proportions (per formula unit, p.f.u.), end-members of the spinel group, redistribution proportions for the corresponding end-members in the Magnetite prism or Ulvöspinel prism and a data validation section to check the results. EMG accepts .csv data files and the results obtained can be used to represent a given dataset with the SpinelViz program or any other 2D and/or 3D graph plotting software.

  1. β decay of the exotic Tz=-2 nuclei 48Fe,52Ni , and 56Zn

    NASA Astrophysics Data System (ADS)

    Orrigo, S. E. A.; Rubio, B.; Fujita, Y.; Gelletly, W.; Agramunt, J.; Algora, A.; Ascher, P.; Bilgier, B.; Blank, B.; Cáceres, L.; Cakirli, R. B.; Ganioǧlu, E.; Gerbaux, M.; Giovinazzo, J.; Grévy, S.; Kamalou, O.; Kozer, H. C.; Kucuk, L.; Kurtukian-Nieto, T.; Molina, F.; Popescu, L.; Rogers, A. M.; Susoy, G.; Stodel, C.; Suzuki, T.; Tamii, A.; Thomas, J. C.

    2016-04-01

    The results of a study of the β decays of three proton-rich nuclei with Tz=-2 , namely 48Fe,52Ni , and 56Zn, produced in an experiment carried out at GANIL, are reported. In all three cases we have extracted the half-lives and the total β -delayed proton emission branching ratios. We have measured the individual β -delayed protons and β -delayed γ rays and the branching ratios of the corresponding levels. Decay schemes have been determined for the three nuclei, and new energy levels are identified in the daughter nuclei. Competition between β -delayed protons and γ rays is observed in the de-excitation of the T =2 isobaric analog states in all three cases. Absolute Fermi and Gamow-Teller transition strengths have been determined. The mass excesses of the nuclei under study have been deduced. In addition, we discuss in detail the data analysis taking as a test case 56Zn, where the exotic β -delayed γ -proton decay has been observed.

  2. Rice seed toxicity tests for organic and inorganic substances

    USGS Publications Warehouse

    Wang, W.

    1994-01-01

    Plant seed toxicity tests can be used to evaluate hazardous waste sites and to assess toxicity of complex effluents and industrial chemicals. Conventional plant seed toxicity tests are performed using culture dishes containing filter paper. Some reports indicate that filter papers might interfere with the toxicity of inorganic substances. In this study, a plastic seed tray was used. Rice was used as the test species. A comparison of results in the literature and this study revealed that variation of test species, methods, exposure duration, and other factors may affect the test results. The results of this study showed that the order of decreasing toxicity of metal ions was Cu>Ag>Ni>Cd>Cr(VI)>Pb>Zn>Mn>NaF for rice. The test results were similar to those reported in the literature for lettuce Ag>Ni>Cd,Cu>Cr (VI)>Zn>Mn, millet Cu,Ni>Cd>Cr(VI)>Zn>Mn, and ryegrass Cu>Ni>Mn>>Pb>Cd>Zn> Al>Hg>Cr>Fe. The order of decreasing toxicity of organic herbicides was paraquat, 2,4-D>>glyphosate>bromacil.

  3. [Spatial variations of heavy metals in precipitation at Mount Taishan region].

    PubMed

    Wang, Yan; Liu, Xiao-Huan; Jin, Ling-Ren; Yue, Tai-Xing; Wang, De-Zhong; Wang, Wen-Xing

    2007-11-01

    Zn, Al, Mn, Fe, Pb, Cu, Ni, Cr, As, Cd in rain samples collected from two sites at Mount Taishan region were determined by ICP-MS, to evaluate the spatial variation characteristics of heavy metals in precipitation. Individual rain events were sampled for one whole year from Jan. to Dec. 2006. High concentrations of heavy metals were found at both sites, indicating serious heavy metal pollution. Zn was the most abundant element, accounting for 54% - 57% of the total metals concentrations. Its volume-weighted mean concentrations of precipitation at Mt-top and Mt-foot sites were 92.94 microg/L and 70.41 microg/L respectively. The following elements were Fe, Al and Mn and their concentrations were much higher than toxic heavy metals (As, Cd and Cd) except Pb (8.04 microg/L and 7.79 microg/L at two sites respectively). Comparison results between two sites suggested that heavy metal characteristics of precipitation at two sites were different, due to the influences of different ambient air conditions. Correlation analysis between two sites showed that Al, Mn, Fe, As, Cd, Pb influenced by air mass origin greatly, while Ni, Cu, Zn affected by other different factors.

  4. In situ growth of NiFe alloy nanoparticles embedded into N-doped bamboo-like carbon nanotube as a bifunctional electrocatalyst for Zn-air battery.

    PubMed

    Bin, Duan; Yang, Beibei; Li, Chao; Liu, Yao; Zhang, Xiao; Wang, Yong-Gang; Xia, Yongyao

    2018-06-26

    Developing low-cost catalysts for electrochemical oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) with superior performance in alkaline solution is of significance for large-scale application in aqueous zinc-air batteries (ZABs). Herein, we describe in situ design of embedded NiFe nanoparticles into the N-doped bamboo-like carbon nanotube (NBCNT) with high catalytic performance and stability. The obtained NiFe@NBCNT hybrid exhibits a high electrochemical activity and stability with an unexpectedly low overpotential of ~195 mV for OER at 10 mA cm-2, and an onset potential at 1.03 V for ORR, superior to the state-of-the-art Pt/C and RuO2 catalysts. Additionally, compared to the mixture Pt/C and RuO2 cathode, the ZAB based on the NiFe@NBCNT cathode displays lower overpotential (0.80 V), higher stable round-trip efficiency (58.3%) and improved power density for 200 cycles at 10 mA cm-2. Apparently, the obtained results indicate that NiFe@NBCNT hybird is proven to be one of the best non-noble metal catalysts for achieving commercial implementation of rechargeable ZABs.

  5. Trace metals in estuaries in the Russian Far East and China: case studies from the Amur River and the Changjiang.

    PubMed

    Shulkin, Vladimir; Zhang, Jing

    2014-11-15

    This paper compares the distributions of dissolved and particulate forms of Mn, Fe, Ni, Cu, Zn, Cd, and Pb in the estuaries of the largest rivers in East Asia: the Amur River and the Changjiang (Yangtze River). High suspended solid concentrations, elevated pH, and relatively low dissolved trace metal concentrations are characteristics of the Changjiang. Elevated dissolved Fe and Mn concentrations, neutral pH, and relatively low suspended solid concentrations are characteristics of the Amur River. The transfer of dissolved Fe to suspended forms is typical in the Amur River estuary, though Cd and Mn tend to mobilize to solution, and Cu and Ni are diluted in the estuarine system. Metal concentrations in suspended matter in the Amur River estuary are controlled by the ratio of terrigenous riverine material, enriched in Al and Fe, and marine biogenic particles, enriched in Cu, Mn, Cd, and in some cases Ni. The increase in dissolved forms of Mn, Fe, Ni, Cu, Cd, and Pb compared with river end-member is unique to the Changjiang estuary. Particle-solution interactions are not reflected in bulk suspended-solid metal concentrations in the Changjiang estuary due to the dominance of particulate forms of these metals. Cd is an exception in the Changjiang estuary, where the increase in dissolved Cd is of comparable magnitude to the decrease in particulate Cd. Despite runoff in the Amur River being lower than that in the Changjiang, the fluxes of dissolved Mn, Zn and Fe in the Amur River exceed those in the Changjiang. Dissolved Ni, and Cd fluxes are near equal in both estuaries, but dissolved Cu is lower in the Amur River estuary. The hydrological and physico-chemical river characteristics are dominated at the assessment of river influence on the adjoining coastal sea areas despite differences in estuarine processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. The effect of an oil drilling operation on the trace metal concentrations in offshore bottom sediments of the Campos Basin oil field, SE Brazil.

    PubMed

    Rezende, C E; Lacerda, L D; Ovalle, A R C; Souza, C M M; Gobo, A A R; Santos, D O

    2002-07-01

    The concentrations of Al, Fe, Mn, Zn, Cu, Pb, Ni, Cr, Ba, V, Sn and As in offshore bottom sediments from the Bacia de Campos oil field, SE Brazil, were measured at the beginning and at 7 months after completion of the drilling operation. Concentrations of Al, Fe, Ba, Cr, Ni and Zn were significantly higher closer to the drilling site compared to stations far from the site. Average concentrations of Al, Cu, and in particular of Ni, were significantly higher at the end of the drilling operation than at the beginning. Comparison between drilling area sediments with control sediments of the continental platform, however, showed no significant difference in trace metal concentrations. Under the operation conditions of this drilling event, the results show that while changes in some trace metal concentrations do occur during drilling operations, they are not significantly large to be distinguished from natural variability of the local background concentrations.

  7. Bioremoval of trace metals from rhizosediment by mangrove plants in Indian Sundarban Wetland.

    PubMed

    Chowdhury, Ranju; Favas, Paulo J C; Jonathan, M P; Venkatachalam, Perumal; Raja, P; Sarkar, Santosh Kumar

    2017-11-30

    The study accentuated the trace metal accumulation and distribution pattern in individual organs of 13 native mangrove plants along with rhizosediments in the Indian Sundarban Wetland. Enrichment of the essential micronutrients (Mn, Fe, Zn, Cu, Co, Ni) was recorded in all plant organs in comparison to non-essential ones, such as Cr, As, Pb, Cd, Hg. Trunk bark and root/pneumatophore showed maximum metal accumulation efficiency. Rhizosediment recorded manifold increase for most of the trace metals than plant tissue, with the following descending order: Fe>Mn>Zn>Cu>Pb>Ni>Cr>Co>As>Cd>Hg. Concentrations of Cu, Ni, Pb and Hg were found to exceed prescribed sediment quality guidelines (SQGs) indicating adverse effect on adjacent biota. Both index of geoaccumulation (I geo ) and enrichment factor (EF) also indicated anthropogenic contamination. Based on high (>1) translocation factor (TF) and bioconcentration factor (BCF) values Sonneratiaapetala and Avicenniaofficinalis could be considered as potential accumulators, of trace metals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Trace elements in chondritic stratospheric particles - Zinc depletion as a possible indicator of atmospheric entry heating

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Sutton, S. R.

    1992-01-01

    Major-element abundances in 11 C, C?, and TCA cosmic dust particles have been measured using SEM and TEM energy dispersive X-ray (EDX) systems. The Fe/Ni ratio, when coupled with major element abundances, appears to be a useful discriminator of cosmic particles. Three particles classified as C?, but having Fe/Ni peak height ratios similar to those measured on the powdered Allende meteorite sample in their HSC EDX spectra, exhibit chondritic minor-/trace-element abundance patterns, suggesting they are extraterrestrial. The one particle classified as C-type, but without detectable Ni in its JSC EDX spectrum, exhibits an apparently nonchondritic minor-/trace-element abundance pattern. A class of particles that are chondritic except for large depletions in the volatile elements Zn and S has been identified. It is likely that these particles condensed with a C1 abundance pattern and that Zn and S were removed by some subsequent process.

  9. Spatial and temporal characterization of trace elements and nutrients in the Rawal Lake Reservoir, Pakistan using multivariate analysis techniques.

    PubMed

    Malik, Riffat Naseem; Nadeem, Muhammad

    2011-12-01

    Rawal Lake Reservoir is renowned for its ecological significance and is the sole source of drinking water of the third largest city of Pakistan. However, fish kill in recent years and anthropogenic impacts from human-related activities in its catchment area have resulted in deterioration of its surface water quality. This study aims to characterize spatial and temporal variations in surface water quality, identify contaminant sources, and compare their levels with quality guidelines. Surface water samples were collected from 10 sites and analyzed for 27 physicochemical parameters for a period of 2 years on a seasonal basis. Concentration of metals in surface water in pre-monsoon were in the order: Fe > Mg > Ca > Mn > Zn > Ni > Cr > Cu > Co > Pb, whereas in post-monsoon, the order of elemental concentrations was: Ca > Mg > Na > Fe > K > Zn > Cr > Li > Pb > Co > Ni > Cu > Mn > Cd. Metals (Ni, Fe, Zn, and Ca), pH, electrical conductivity (EC), dissolved oxygen (DO), chemical oxygen demand (COD), and nutrients (PO (4) (3-) , NO(3)-N, and SO (4) (2-) ) were measured higher in pre-monsoon, whereas concentration of Cu, Mn, Cr, Co, Pb, Cd, K, Na, Mg, Li, Cl(-), and NH(4)-N were recorded higher in post-monsoon. Results highlighted serious metal pollution of surface water. Mean concentration of Zn, Cd, Ni, Cu, Fe, Cr, and Pb in both seasons and Mn in post-monsoon were well above the permissible level of surface water quality criteria. Results stress the dire need to reduce heavy-metal input into the lake basin and suggest that heavy-metal contamination should be considered as an integral part of future planning and management strategies for restoration of water quality of the lake reservoir.

  10. Investigation of novel superparamagnetic Ni0.5Zn0.5Fe2O4@albumen nanoparticles for controlled delivery of anticancer drug

    NASA Astrophysics Data System (ADS)

    Qasim, Mohd; Asghar, Khushnuma; Dharmapuri, Gangappa; Das, D.

    2017-09-01

    In the present work, multifunctional Ni0.5Zn0.5Fe2O4@albumen (NZF@Alb) and doxorubicin-loaded Ni0.5Zn0.5Fe2O4@albumen (NZF@Alb-Dox) core-shell nanoparticles have been prepared by a green and simple method using inexpensive chicken egg albumen and have been characterized for different physiochemical properties. The structural, morphological, thermal, and magnetic properties of the prepared nanoparticles have been investigated by an x-ray diffractometer, high-resolution transmission electron microscopy (HRTEM), field emission scanning electron microscopy, Fourier-transformed infrared, thermogravimetric analysis, and vibrating sample magnetometer techniques. Superparamagnetic Ni0.5Zn0.5Fe2O4 nanoparticles (NZF NPs) with the mean size ˜20 nm were coated with albumen matrix by an ultrasonication process. Inverse fast Fourier transform-assisted HRTEM micrographs and FTIR analysis revealed the coating of amorphous albumen on crystalline NZF NPs. NZF@Alb and NZF@Alb-Dox NPs have the mean size (D50) of ˜100 nm, good stability, and magnetic controllability. Magnetic measurements (field (H)-dependent magnetization (M)) show all samples to be super-paramagnetic in nature. Biocompatibilities of the NZF and NZF@Alb NPs were confirmed by in vitro 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay against RAW 264.7 cells. NZF@Alb NPs have been found to be more biocompatible than bare NZF. In Vitro Dox release behavior from NZF@Alb-Dox NPs has been studied at pH 7.4 and 5, and a sustained and pH-dependent drug release profile were observed. In vitro cytotoxicity or anticancer activity of the blank NZF@Alb NPs, free Dox, and NZF@Alb-Dox NPs against HeLa cells (cancer cell line) were also examined by MTT assay. The obtained results suggest that this scalable egg-albumen-based magnetic nanoformulation is suitable for targeted drug delivery applications. Thus, the present study could be extremely useful for the advancement of albumin-based nanocarrier design and development for biomedical applications such as targeted and controlled delivery of anticancer drugs.

  11. Comparative study on the physical properties of transition metal-doped (Co, Ni, Fe, and Mn) ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Azab, A. A.; Ateia, Ebtesam E.; Esmail, S. A.

    2018-07-01

    Nano-crystalline of TM-doped ZnO with general formula Zn0.97TM0.03O (TM: Mn, Fe, Co, and Ni) was prepared using sol-gel method. The dependence of crystal structure, morphology, and optical and magnetic properties on the type of transition metals was investigated. The XRD investigation of pure and TM-doped ZnO nanoparticles samples confirms the formation of single-phase hexagonal wurtzite structure. The estimated crystallite sizes are found in the range of 17 and 38 nm for the doped and pure samples, respectively. The obtained data suggest that the dopant type plays a vital role in the physical properties of the investigated samples. The optical band-gap energy Eg has been calculated from near infrared (NIR) and visible (VIS) reflectance spectra using the Kubelka-Munk function. Minimum value of 2.398 eV and maximum one of 3.29 eV were obtained for Manganese-doped ZnO and pure ZnO, respectively. The analysis of XRD and VSM of the samples confirms that the observed room-temperature (RT) ferromagnetism can be attributed to an intrinsic property of doped material sample and not due to formation of any secondary phase. The magnetic results show that Mn is the most effective dopant for producing ferromagnetism in nanoparticles of ZnO.

  12. Fractionation of heavy metals and assessment of contamination of the sediments of Lake Titicaca.

    PubMed

    Cáceres Choque, Luis Fernando; Ramos Ramos, Oswaldo E; Valdez Castro, Sulema N; Choque Aspiazu, Rigoberto R; Choque Mamani, Rocío G; Fernández Alcazar, Samuel G; Sracek, Ondra; Bhattacharya, Prosun

    2013-12-01

    Chemical weathering is one of the major geochemical processes that control the mobilization of heavy metals. The present study provides the first report on heavy metal fractionation in sediments (8-156 m) of Lake Titicaca (3,820 m a.s.l.), which is shared by the Republic of Peru and the Plurinational State of Bolivia. Both contents of total Cu, Fe, Ni, Co, Mn, Cd, Pb, and Zn and also the fractionation of these heavy metals associated with four different fractions have been determined following the BCR scheme. The principal component analysis suggests that Co, Ni, and Cd can be attributed to natural sources related to the mineralized geological formations. Moreover, the sources of Cu, Fe, and Mn are effluents and wastes generated from mining activities, while Pb and Zn also suggest that their common source is associated to mining activities. According to the Risk Assessment Code, there is a moderate to high risk related to Zn, Pb, Cd, Mn, Co, and Ni mobilization and/or remobilization from the bottom sediment to the water column. Furthermore, the Geoaccumulation Index and the Enrichment Factor reveal that Zn, Pb, and Cd are enriched in the sediments. The results suggest that the effluents from various traditional mining waste sites in both countries are the main source of heavy metal contamination in the sediments of Lake Titicaca.

  13. Structural, dielectric and gas sensing behavior of Mn substituted spinel MFe2O4 (M=Zn, Cu, Ni, and Co) ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Ranjith Kumar, E.; Siva Prasada Reddy, P.; Sarala Devi, G.; Sathiyaraj, S.

    2016-01-01

    Spinel ferrite (MnZnFe2O4, MnCuFe2O4, MnNiFe2O4 and MnCoFe2O4) nanoparticles have been prepared by evaporation method. The annealing temperature plays an important role on changing particle size of the spinel ferrite nanoparticles was found out by X-ray diffraction and transmission electron microscopy. The role of manganese substitution in the spinel ferrite nanoparticles were also analyzed for different annealing temperature. The substitution of Mn also creates a vital change in dielectric properties have been measured in the frequency range of 100 kHz to 5 MHz. These spinel ferrites are decomposed to α-Fe2O3 after annealing above 550 °C in air. Through the characterization of the prepared powder, the effect of annealing temperature, chemical composition and preparation technique on the microstructure, particle size and dielectric properties of the Mn substituted spinel ferrite nanoparticles are discussed. Furthermore, Conductance response of Mn substituted MFe2O4 ferrite nanoparticles were measured by exposing the materials to reducing gas like liquefied petroleum gas (LPG).

  14. Magnetic properties of Zn1-xNixO

    NASA Astrophysics Data System (ADS)

    Mondal, A.; Giri, N.; Sarkar, S.; Ray, Ruma

    2018-05-01

    Ni doped ZnO (Zn1-xNixO for 0.01 ≤ x ≤ 0.11) have been prepared by chemical precipitation method. X-ray diffraction corroborates a hexagonal wurzite structure without any impurity phases upto 11% Ni doping. Morphology of the particles is investigated by FE-SEM which exhibits either rod or tube like structure depending on the dopant concentration. Magnetization of Zn1-xNixO for 0.03 ≤ x ≤ 0.11 measured at room temperature infers the paramagnetic behavior. Zero field cooled and field cooled magnetization for x = 0.11 follows Curie-Weiss behavior above 122 K with effective paramagnetic moment 3.9μB. The non-linear magnetic hysteresis loop at 2 K with a small coercivity (300 Oe) indicates signature of ferromagnetic ordering.

  15. Hydrothermal conversion of xylose, glucose, and cellulose under the catalysis of transition metal sulfates.

    PubMed

    Cao, Xuefei; Peng, Xinwen; Sun, Shaoni; Zhong, Linxin; Chen, Wei; Wang, Sha; Sun, Run-Cang

    2015-03-15

    Hydrothermal conversion (HTC) is an important thermochemical process to upgrade low-cost biomass into valuable chemicals or fuels. As compared with non-catalytic HTC, catalytic HTC shows high energy efficiency on biomass upgradation. In this work, the catalytic performances of various transition metal sulfates (Mn(2+), Fe(2+), Fe(3+), Co(2+), Ni(2+), Cu(2+), and Zn(2+)) in the HTCs of xylose, glucose, and cellulose under different conditions were explored. Among these catalysts, Zn(2+) and Ni(2+) showed obvious effects on the conversions of xylose, glucose, and cellulose into lactic acid, while Cu(2+) and Fe(3+), which could significantly accelerate the hydrolysis of cellulose into glucose at 200°C, displayed high efficiency on converting glucose and cellulose into levulinic acid and formic acid at high temperature. Additionally, significant positive correlative relationships among xylose, glucose, and cellulose degradations were observed. This study is helpful for screening appropriate catalysts for biomass upgradation through catalytic HTC of monosaccharide. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Mineral Composition of Wild and Cultivated Blueberries.

    PubMed

    Dróżdż, Paulina; Šėžienė, Vaida; Pyrzynska, Krystyna

    2018-01-01

    The concentrations of 13 elements (Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, and Zn) were determined in several samples of native (wild) naturally growing and cultivated blueberry fruits. The total metal contents after mineralization were analyzed by inductively coupled plasma optical emission spectrometry. Reliability of the procedure was checked by the analysis of the certified reference materials Mixed Polish Herbs (INGT-MPH-2) and Leaves of Poplar (NCS DC 73350). In the fruits collected in the forest (wild blueberries), higher contents of Ca, Na, and Mg as well as Mn and Zn were observed. Similar levels of Cu, Cr, Fe, and Ni were detected in both wild-growing and cultivated plants. The significantly higher content of Fe and Cd in cultivated blueberries was connected with the content of these metals in soil samples collected from the same places. The metal extraction efficiency by hot water varied widely for the different blueberries (wild or cultivated) as well as their form (fresh or dried).

  17. Metal concentrations in the growth bands of Porites sp.: A baseline record on the history of marine pollution in the Gulf of Mannar, India.

    PubMed

    Krishnakumar, S; Ramasamy, S; Magesh, N S; Chandrasekar, N; Simon Peter, T

    2015-12-15

    The present study was carried out on the Porites coral growth bands (1979 to 2014) to measure the metal accumulation for assessing the environmental pollution status. The concentrations of studied metals are compared with similar global studies, which indicate that the metals are probably derived from natural sources. The identical peaks of Fe and Mn are perfectly matched with Cu, Cr and Ni concentrations. However, the metal profile trend is slightly depressed from a regular trend in Zn, Cd and Pb peaks. The metal accumulation affinity of the reef skeleton is ranked in the following order Cr>Cd>Pb>Fe>Mn>Cu>Ni>Zn. The distribution of metal constituents in coral growth bands is primarily controlled by Fe and Mn in the reef skeleton. Other reef associated metals such as Pb and Cd are derived from other sources like coastal developments and anthropogenic sources. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Effects of metal ions on biomass and 5-aminolevulinic acid production in Rhodopseudomonas palustris wastewater treatment.

    PubMed

    Liu, Shuli; Zhang, Guangming; Li, Jianzheng; Li, Xiangkun; Zhang, Jie

    2016-01-01

    This work investigated the effects of eight metal ions on Rhodopseudomonas palustris growth and 5-aminolevulinic acid (ALA) yield in wastewater treatment. Results show that metal ions (Mg(2+) of 15 mmol/L, Fe(2+) of 400 μmol/L, Co(2+) of 4 μmol/L, Ni(2+) of 8 μmol/L and Zn(2+) of 4 μmol/L) could effectively improve the chemical oxygen demand (COD) removal, Rp. palustris biomass and ALA yield. The highest ALA yield of 13.1 mg/g-biomass was achieved with Fe(2+) of 400 μmol/L. ALA yields were differentially increased under different metal ions in the following order: Fe(2+) group > Mg(2+) group > Co(2+) group = Ni(2+) group > Zn(2+) group = Mo(2+) group > control. Cu(2+) and Mn(2+) inhibited Rp. palustris growth and ALA production. Mechanism analysis revealed that metal ions changed ALA yields by influencing the activities of ALA synthetase and ALA dehydratase.

  19. Effects of processing on the proximate and metal contents in three fish species from Nigerian coastal waters

    PubMed Central

    Bassey, Francisca I; Oguntunde, Fehintola C; Iwegbue, Chukwujindu M A; Osabor, Vincent N; Edem, Christopher A

    2014-01-01

    The effects of culinary practices such as boiling, frying, and grilling on the proximate compositions and concentrations of metals (Cd, Pb, Cr, Zn, Fe, Cu, Mn, Ni, and Hg) in commonly consumed fish species from the Nigerian coastal waters were investigated. The selected fish species were Polydactylus quadratifilis, Chrysicthys nigrodigitatus and Cynoglossus senegalensis. The culinary practices lead to increased protein, fat, and ash contents and decreased moisture contents of these fish species. The culinary practices resulted significant increase in the concentrations of most of the studied metals and decrease in the concentrations of Fe, Cr, and Pb in some fish types. The concentrations and estimated dietary intakes of Cd, Pb, Cr, Zn, Fe, Cu, Mn, Ni, and Hg from consumption of the processed fish were within their statutory safe limits. The individual metal target hazard quotient (THQ) values and the total THQs were less than 1 which indicates that no health risks would arise from the long-term consumption of these fish species. PMID:24936297

  20. Metals in some lagoons of Mexico.

    PubMed

    Vazquez, F G; Sharma, V K; Alexander, V H; Frausto, C A

    1995-02-01

    The concentrations of metals, Cd, Cu, Fe, Mn, Ni, Pb, and Zn were determined in some lagoons to establish the level of metal pollution. The lagoons studied were Alvarado lagoon, Veracruz; San Andres lagoon, Tamaulipas; and Terminos lagoon, Campeche. The concentrations were determined in water, oyster (Crassostrea virginica), and sediments. Metals were accumulated in either oysters or sediments. Cu and Zn were higher in oysters and Fe and Mn were higher in sediments. The results in water samples were compared with the limit established by the Secretaria de Ecologia and Desarrollo Urbano Report and briefly discussed.

  1. Sugar beet factory lime affects the mobilization of Cd, Co, Cr, Cu, Mo, Ni, Pb, and Zn under dynamic redox conditions in a contaminated floodplain soil.

    PubMed

    Shaheen, Sabry M; Rinklebe, Jörg

    2017-01-15

    The impact of sugar beet factory lime (SBFL) on the release dynamics and mobilization of toxic metals (TMs) under dynamic redox conditions in floodplain soils has not been studied up to date. Therefore, the aim of this study was to verify the scientific hypothesis that SBFL is able to immobilize Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, and Zn under different redox potentials (E H ) in a contaminated floodplain soil. For this purpose, the non-treated contaminated soil (CS) and the same soil treated with SBFL (CS+SBFL) were flooded in the laboratory using a highly sophisticated automated biogeochemical microcosm apparatus. The experiment was conducted stepwise from reducing (-13 mV) to oxidizing (+519 mV) soil conditions. Soil pH decreased under oxic conditions in CS (from 6.9 to 4.0) and in CS+SBFL (from 7.5 to 4.4). The mobilization of Cu, Cr, Pb, and Fe were lower in CS+SBFL than in CS under both reducing/neutral and oxic/acidic conditions. Those results demonstrate that SBFL is able to decrease concentrations of these elements under a wide range of redox and pH conditions. The mobilization of Cd, Co, Mn, Mo, Ni, and Zn were higher in CS+SBFL than in CS under reducing/neutral conditions; however, these concentrations showed an opposite behavior under oxic/acidic conditions and were lower in CS+SBFL than in CS. We conclude that SBFL immobilized Cu, Cr, Pb, and Fe under dynamic redox conditions and immobilized Cd, Co, Mn, Mo, Ni, and Zn under oxic acidic conditions; however, the latter elements were mobilized under reducing neutral conditions in the studied soil. Therefore, the addition of SBFL to acid floodplain soils contaminated with TMs might be an important alternative for ameliorating these soils with view to a sustainable management of these soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Magnetic, Electric and Optical Properties of Mg-Substituted Ni-Cu-Zn Ferrites

    NASA Astrophysics Data System (ADS)

    Kabbur, S. M.; Ghodake, U. R.; Kambale, Rahul C.; Sartale, S. D.; Chikhale, L. P.; Suryavanshi, S. S.

    2017-10-01

    The Ni0.25- x Mg x Cu0.30Zn0.45Fe2O4 ( x = 0.00 mol, 0.05 mol, 0.10 mol, 0.15 mol, 0.20 mol and 0.25 mol) magnetic oxide system was prepared by a sol-gel auto-combustion method using glycine as a fuel. X-ray diffraction study reveals the formation of pure spinel lattice symmetry along with the presence of a small fraction of unreacted Fe2O3 phase as a secondary phase due to incomplete combustion reaction between fuel and oxidizer. The lattice constant ( a) was found to decrease with the increase of Mg2+ content; the average crystallite size ( D) is observed in the range of 26.78-33.14 nm. At room temperature, all the samples show typical magnetic hysteresis loops with the decrease of magnetic moment ( n B) of Ni-Cu-Zn ferrites with the increase of Mg2+ content. The intrinsic vibrational absorption bands for the tetrahedral and octahedral sites of the spinel structure were confirmed by infrared (IR) spectroscopy. The optical parameters such as refractive index ( η), velocity of IR waves ( v) and jump rates ( J 1, J 2, J) were studied and found to be dependent on the variation of the lattice constant. The Curie temperature ( T c) of Ni-Cu-Zn mixed ferrite was found to decrease with Mg2+ addition. The composition x = 0.15 mol.% with a low dielectric loss tangent of 2% seems to have potential for multilayer chip inductor applications at a wide range of frequencies.

  3. Influence of Sn4+ on Structural and DC Electrical Resistivity of Ni-Zn Ferrite Thick Films

    NASA Astrophysics Data System (ADS)

    Dalawai, S. P.; Shinde, T. J.; Gadkari, A. B.; Tarwal, N. L.; Jang, J. H.; Vasambekar, P. N.

    2017-03-01

    Among the soft ferrites, Ni-Zn ferrite is one of the most versatile ceramic materials because of their important electrical and magnetic properties. These properties were improved by substituting Sn4+ in Ni-Zn ferrites with chemical composition of Ni x Zn1+ y- x Fe2-2 y Sn y O4 ( x = 0, 0.2, 0.4, 0.6, 0.8, 1.0; y = 0.1, 0.2). To achieve homogenous ferrite powder at lower sintering temperature and smaller duration in nano-size form, the oxalate co-precipitation method was preferred as compared to other physical and chemical methods. Using this powder, ferrite thick films (FTFs) were prepared by the screen printing technique because of its low cost and easy use. To study structural behavior, the FTFs were characterized by different techniques. The x-ray diffraction and thermo-gravimetric and differential thermal analysis studies show the formation of cubic spinel structure and ferrite phase formation, respectively. There is no remarkable trend observed in lattice constants for the Sn4+ ( y = 0.1)- and Sn4+ ( y = 0.2)-substituted Ni-Zn ferrites. The bond lengths as well as ionic radii on the A-site of Ni-Zn-Sn ferrites were found to decrease with increasing nickel content. The bond length and ionic radii on the B-sites remained almost constant for Sn4+ ( y = 0.1, 0.2)-substituted Ni-Zn ferrites. The energy dispersive x-ray analysis confirms the elemental analysis of FTFs. The Fourier transform infrared spectra show two major absorption bands near 400 cm-1 and 600 cm-1 corresponding to octahedral and tetrahedral sites, respectively, which also confirms the formation of the ferrites. The field emission scanning electron microscopy images shows that the particles are highly porous in nature and located in loosely packed agglomerates. The average particle size of the FTFs lies in the range 20-60 nm. Direct current (DC) resistivity of Ni-Zn-Sn FTFs shows the semiconductor nature. The DC resistivity of Ni-Zn-Sn0.2FTFs is lower than Ni-Zn-Sn0.1 FTFs. The DC resistivity is found to decrease with the increase in Ni2+ content up to x = 0.6. It increases thereafter for a further increase in Ni2+ content up to x = 1.0, and a similar trend is observed for the variations of activation energy with Ni2+ content.

  4. Exchangeable Ions Are Responsible for the In Vitro Antibacterial Properties of Natural Clay Mixtures

    PubMed Central

    Otto, Caitlin C.; Haydel, Shelley E.

    2013-01-01

    We have identified a natural clay mixture that exhibits in vitro antibacterial activity against a broad spectrum of bacterial pathogens. We collected four samples from the same source and demonstrated through antibacterial susceptibility testing that these clay mixtures have markedly different antibacterial activity against Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA). Here, we used X-ray diffraction (XRD) and inductively coupled plasma – optical emission spectroscopy (ICP-OES) and – mass spectrometry (ICP-MS) to characterize the mineralogical and chemical features of the four clay mixture samples. XRD analyses of the clay mixtures revealed minor mineralogical differences between the four samples. However, ICP analyses demonstrated that the concentrations of many elements, Fe, Co, Cu, Ni, and Zn, in particular, vary greatly across the four clay mixture leachates. Supplementation of a non-antibacterial leachate containing lower concentrations of Fe, Co, Ni, Cu, and Zn to final ion concentrations and a pH equivalent to that of the antibacterial leachate generated antibacterial activity against E. coli and MRSA, confirming the role of these ions in the antibacterial clay mixture leachates. Speciation modeling revealed increased concentrations of soluble Cu2+ and Fe2+ in the antibacterial leachates, compared to the non-antibacterial leachates, suggesting these ionic species specifically are modulating the antibacterial activity of the leachates. Finally, linear regression analyses comparing the log10 reduction in bacterial viability to the concentration of individual ion species revealed positive correlations with Zn2+ and Cu2+ and antibacterial activity, a negative correlation with Fe3+, and no correlation with pH. Together, these analyses further indicate that the ion concentration of specific species (Fe2+, Cu2+, and Zn2+) are responsible for antibacterial activity and that killing activity is not solely attributed to pH. PMID:23691149

  5. Heavy metals distribution in the coral reef ecosystems of the Northern Red Sea

    NASA Astrophysics Data System (ADS)

    Ali, Abdel-Hamid A. M.; Hamed, Mohamed A.; Abd El-Azim, Hoda

    2011-03-01

    Concentrations of seven heavy metals (Cu, Zn, Pb, Cd, Ni, Co and Fe) were measured in the seawater, sediments, common scleractinian reef-building corals and soft corals (Octocorallia : Alcyonacea) at seven reef sites in the Northern Red Sea: I (Hurghada), II (Ras Za'farana), III (El-Ain Al-Sukhna), IV (El-Tur), V (Sha'b Rashdan), VI (Sharm El-Sheikh) and VII (Dahab). Levels of heavy metals were considerably elevated in seawater, sediments and corals collected from reef sites exposed to increased environmental contamination, as a result of diversified natural and anthropogenic inputs. Soft corals of genera Lithophyton, Sarcophyton and Sinularia showed higher concentrations of Zn, Pb, Cd and Ni than hard coral genera Acropora and Stylophora. Soft coral Sarcophyton trocheliophorum collected from El Ain Al-Suhkna (Gulf of Suez) had greater concentration of Cu, followed by hard corals Acropora pharaonis and Acropora hemprichi. The elevated levels of Zn, Cd and Ni were reported in the dry tissue of soft coral Sinularia spp. On the other hand, the soft coral Lithophyton arboreum displayed the highest concentration of Pb at Sha'b Rashdan (Gulf of Suez) and elevated concentration of Zn at Sharm El-Sheikh. Sediments showed significantly higher concentration of Fe than corals. The higher levels of Fe in hard corals than soft corals reflected the incorporation of Fe into the aragonite and the chelation with the organic matrix of the skeleton. The greater abundance of soft corals in metal-contaminated reef sites and the elevated levels of metals in their tissue suggesting that the soft corals could develop a tolerance mechanism to relatively high concentrations of metals. Although the effects of heavy metals on reef corals were not isolated from the possible effects of other stresses, the percentage cover of dead corals were significantly higher as the concentrations of heavy metals increased.

  6. Giant flexoelectricity in Ba0.6Sr0.4TiO3/Ni0.8Zn0.2Fe2O4 composite

    NASA Astrophysics Data System (ADS)

    Li, Yong; Shu, Longlong; Huang, Wenbin; Jiang, Xiaoning; Wang, Hong

    2014-10-01

    Enhanced flexoelectricity in perovskite ceramics and single crystals has been reported before. In this letter, 3-3 ceramic-ceramic Ba0.6Sr0.4TiO3/Ni0.8Zn0.2Fe2O4 composite with a colossal permittivity was employed in the conventional pure bending experiment in order to examine the transverse flexoelectric response. The measured flexoelectric coefficient at 30 Hz is 128 μC/m and varies to 16 μC/m with the frequency increasing from 30 Hz to 120 Hz, mainly due to the inverse correlation between the permittivity and the frequency. This result reveals the permittivity dependence of flexoelectric coefficient in the frequency dispersion materials, suggesting that the giant permittivity composites can be good flexoelectric materials.

  7. Analysis of elements in lake sediment samples by PIXE spectrometry

    NASA Astrophysics Data System (ADS)

    Chelarescu, E. D.; Radulescu, C.; Stihi, C.; Bretcan, P.; Tanislav, D.; Dulama, I. D.; Stirbescu, R. M.; Teodorescu, S.; Bucurica, I. A.; Andrei, R.; Morarescu, C.

    2017-09-01

    This work aims to determine the concentrations of several elements (e.g. Pb, Ni, Zn, Mn, Cr, and Fe) from lake sediments, in order to characterize their origin and evolution. Particle Induced X-ray Emission (PIXE) technique using the 3 MV Tandetron™ particle accelerator from National Institute for R&D in Physics and Nuclear Engineering "Horia Hulubei" (IFIN-HH), Magurele-Bucharest, Romania, was applied. Sediment cores from different salt lakes from Romania (i.e. Amara Lake, Caineni Lake, and Movila Miresii Lake) were collected, in August 2015. The content of Pb, Cr, Mn, Fe, and Ni from sediment samples show similarities with other data presented in literature and international regulation. The Zn was the only element with a higher content in all samples (e.g. maximum 401.7-517.3 mg/kg d.w.).

  8. Simultaneous production of pullulan and biosorption of metals by Aureobasidium pullulans strain CH-1 on peat hydrolysate.

    PubMed

    Radulović, Milanka D; Cvetković, Olga G; Nikolić, Snezana D; Dordević, Dragana S; Jakovljević, Dragica M; Vrvić, Miroslav M

    2008-09-01

    It was demonstrated that during the growth of Aureobasidium pullulans strain CH-1 on the acid hydrolysate of peat from the Vlasina Lake, the content of metals (Cu, Fe, Zn, Mn, Pb, Cd, Ni and Cr) decreased due to biosorption. The reduction in the metal content was found to be in the range (%): 38.2-62.2, 67.7-97.3, 0.02-62.05, 0.05-23.97, 0.16-4.24, 3.45-51.72, 1.18-35.82, 0.86-44.44, for Cu, Fe, Zn, Mn, Pb, Cd, Ni and Cr, respectively. During this process, the metals were accumulated in the biomass, while pullulan, an extracellular polysaccharide produced by Aureobasidium pullulans strain CH-1, was found not to bind the above-mentioned metals.

  9. Size dependent exchange bias in single-phase Zn0.3Ni0.7Fe2O4 ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Mohan, Rajendra; Ghosh, Mritunjoy Prasad; Mukherjee, Samrat

    2018-07-01

    We report the microstructural and magnetic characterization of single phase nanocrystalline partially inverted Zn0.3Ni0.7Fe2O4 mixed spinel ferrite. The samples were annealed at 200 °C, 400 °C, 600 °C, 800 °C and 1000 °C. X-ray diffraction results indicate phase purity of all the samples and application of Debye- Scherrer yielded a crystallite size variation from 5 nm to 33 nm for the different samples. Magnetic measurements have revealed the freezing of interfacial spins which were the cause of the large horizontal M-H loop shift causing large exchange bias with high anisotropy. The magnetic measurements show a hysteresis loop with high effective anisotropy constant due to highly magnetically disordered surface spin at 5 K.

  10. Total and labile metals in surface sediments of the tropical river-estuary system of Marabasco (Pacific coast of Mexico): Influence of an iron mine.

    PubMed

    Marmolejo-Rodríguez, Ana Judith; Prego, Ricardo; Meyer-Willerer, Alejandro; Shumilin, Evgueni; Cobelo-García, Antonio

    2007-01-01

    Marabasco is a tropical river-estuary system comprising the Marabasco river and the Barra de Navidad Lagoon. The river is impacted by the Peña Colorada iron mine, which produces 3.5 million tons of pellets per year. Thirteen surface sediment samples were collected in May 2005 (dry season) in order to establish background levels of Al, Cd, Co, Cu, Fe, Ni, Pb, and Zn in the system and to ascertain the potential mobility of metals in the sediments. Analyses were carried out in the fraction finer than 63 microm, and labile metals extracted according the BCR procedure. Certified reference materials were used for validation of methods. Total concentrations of Cd, Co, Cu, Ni, Pb, and Zn were in the range of 0.05-0.34, 6-95, 0.7-31, 9-26, 2-18, and 53-179 mgkg(-1), respectively; Al and Fe ranges of 24-127, and 26-69 mgg(-1) correspondingly. Cadmium was found to be significantly labile in the sediments (20-100%), followed by Co (0-35%), Ni (3-16%) and Zn (0-25%), whereas the labile fraction for Cu, Fe and Pb was almost negligible (<4%). According with the total metal concentrations, background levels and normalised enrichment factors (NEF) of the metals studied, the impact of the Peña Colorada iron mine on the Marabasco system is lower than expected when compared with other similar World systems influenced by mining activities.

  11. Quaternary M{sub 0.25}Cu{sub 0.25}Mg{sub 0.5}Fe{sub 2}O{sub 4} (M = Ni, Zn, Co, Mn) ferrite oxides: Synthesis, characterization and magnetic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciocarlan, Radu George; Laboratory of Adsorption and Catalysis, Department of Chemistry, University of Antwerpen; Pui, Aurel, E-mail: aurel@uaic.ro

    2016-09-15

    Highlights: • Superparamagnetic quaternary nanoferrite (M{sub 0.25}Cu{sub 0.25}Mg{sub 0.5}Fe{sub 2}O{sub 4,} where M = Mn, Zn, Co, Ni) were obtained. • C, O, H and metals were observed by XPS analysis. • Phases purity were confirmed by XRD diffraction and crystallite size (3–10 nm) were determind. - Abstract: We report the synthesis of M{sub 0.25}Cu{sub 0.25}Mg{sub 0.5}Fe{sub 2}O{sub 4} (where M = Mn, Zn, Co, Ni) nanoparticles using the coprecipitation method in the presence of carboxymethyl cellulose (CMC) as the in-situ surfactant. The crystalline structure and surface morphology were examined by means of X-ray diffraction (XRD) and scanning electron microscopymore » (SEM) and it was established that the average diameter of the magnetic nanoparticles (MNPs) is in the range of 3–10 nm. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) show that the MNPs are activated by the hydrophilic groups of the surfactant, which coat them and enhance their stability. The vibrating sample magnetometry measurements show the superparamagnetic behavior of the nanoparticles. Due to their small crystallite size, which implies large surface area, and their functionalization with organic groups, the obtained nanoparticles could have medical and catalytic applications.« less

  12. Chthamalus montagui as biomonitor of metal contamination in the northwest coast of Portugal.

    PubMed

    Reis, Pedro A; Salgado, Maria Antónia; Vasconcelos, Vitor

    2012-09-01

    The concentrations of seven metals (Cd, Cr, Cu, Fe, Mn, Ni and Zn) were determined in coastal seawaters and soft and hard tissues of the barnacle Chthamalus montagui from the northwest coast of Portugal to assess the potential use of C. montagui as biomonitor of metal contamination. The results of this study showed that C. montagui soft tissues can be used for monitoring metal bioavailabilities in these coastal seawaters: (1) there were significant correlations (p < 0.05) between the metal concentrations in soft tissues and their concentrations in seawaters and (2) barnacle soft tissues were sensitive to spatial variation of metal bioavailabilities, accumulating different amounts of metals in different locations. The range of concentrations in tissues were: 0.59-1.7 mg Cd kg(-1), 0.5-3.2 mg Cr kg(-1), 0.72-3.0 mg Ni kg(-1), 1.2-6.7 mg Cu kg(-1), 9-26 mg Mn kg(-1), 214-785 mg Fe kg(-1) and 178-956 mg Zn kg(-1); (3) mean logarithmic bioaccumulation factors (log BAF) of Fe, Cr and Cd were higher, 5.49, 4.93 and 4.46, respectively, than mean log BAFs of Mn, Zn, Cu and Ni, 4.03, 3.97, 3.74 and 3.61, respectively. In contrary, C. montagui shell plates were not a good matrix to monitor metal bioavailability in these coastal seawaters, with no significant correlations (p < 0.05) between metal concentrations in the shell and in seawater. Regarding the high Zn concentrations obtained in the coastal seawaters and C. montagui soft tissues, all seawaters from northwest coast of Portugal should be classified as "moderately/remarkably polluted".

  13. Spatial distribution of arsenic and heavy metals in willow roots from a contaminated floodplain soil measured by X-ray fluorescence spectroscopy.

    PubMed

    Zimmer, Dana; Kruse, Jens; Baum, Christel; Borca, Camelia; Laue, Michael; Hause, Gerd; Meissner, Ralph; Leinweber, Peter

    2011-09-01

    Under changing redox conditions some plants create plaques at their root surface, which may affect the mobility and uptake of As and heavy metals but it is unknown to what extent this also holds true for willows in contaminated floodplain soils. Therefore, willow roots were sampled from a phytoremediation trial in the contaminated floodplain of the river Elbe (Germany), cryofixed, freeze-dried, and cross sections were mapped for the distribution of As, Ca, Cu, Fe, K, Mn, Ni, S and Zn by synchrotron based X-ray fluorescence spectroscopy. The elements Ca, Cu, Ni, S and Zn were concentrated in the aerenchymatic tissue, and not associated with Fe and Mn. Mixed Fe-Mn plaques covered the surface of the willow roots and As was accumulated in these plaques. The observed association pattern between As and Fe was explained by the different sorption/desorption properties of As(III) and As(V). The Cu and Zn intensities were not associated with the intensity of Fe in the plaque, which seems to be a willow-specific difference compared to other wetland plants. These results suggested that willows are especially suited to stabilize low-phytoextractable elements like Cu and As in their roots and rhizosphere. Thus, short rotation coppicing of willows may be a practical approach to mitigate the adverse effects of floodplain soil contamination. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Relationship between Ni(II) and Zn(II) Coordination and Nucleotide Binding by the Helicobacter pylori [NiFe]-Hydrogenase and Urease Maturation Factor HypB*

    PubMed Central

    Sydor, Andrew M.; Lebrette, Hugo; Ariyakumaran, Rishikesh; Cavazza, Christine; Zamble, Deborah B.

    2014-01-01

    The pathogen Helicobacter pylori requires two nickel-containing enzymes, urease and [NiFe]-hydrogenase, for efficient colonization of the human gastric mucosa. These enzymes possess complex metallocenters that are assembled by teams of proteins in multistep pathways. One essential accessory protein is the GTPase HypB, which is required for Ni(II) delivery to [NiFe]-hydrogenase and participates in urease maturation. Ni(II) or Zn(II) binding to a site embedded in the GTPase domain of HypB modulates the enzymatic activity, suggesting a mechanism of regulation. In this study, biochemical and structural analyses of H. pylori HypB (HpHypB) revealed an intricate link between nucleotide and metal binding. HpHypB nickel coordination, stoichiometry, and affinity were modulated by GTP and GDP, an effect not observed for zinc, and biochemical evidence suggests that His-107 coordination to nickel toggles on and off in a nucleotide-dependent manner. These results are consistent with the crystal structure of HpHypB loaded with Ni(II), GDP, and Pi, which reveals a nickel site distinct from that of zinc-loaded Methanocaldococcus jannaschii HypB as well as subtle changes to the protein structure. Furthermore, Cys-142, a metal ligand from the Switch II GTPase motif, was identified as a key component of the signal transduction between metal binding and the enzymatic activity. Finally, potassium accelerated the enzymatic activity of HpHypB but had no effect on the other biochemical properties of the protein. Altogether, this molecular level information about HpHypB provides insight into its cellular function and illuminates a possible mechanism of metal ion discrimination. PMID:24338018

  15. Relationship between Ni(II) and Zn(II) coordination and nucleotide binding by the Helicobacter pylori [NiFe]-hydrogenase and urease maturation factor HypB.

    PubMed

    Sydor, Andrew M; Lebrette, Hugo; Ariyakumaran, Rishikesh; Cavazza, Christine; Zamble, Deborah B

    2014-02-14

    The pathogen Helicobacter pylori requires two nickel-containing enzymes, urease and [NiFe]-hydrogenase, for efficient colonization of the human gastric mucosa. These enzymes possess complex metallocenters that are assembled by teams of proteins in multistep pathways. One essential accessory protein is the GTPase HypB, which is required for Ni(II) delivery to [NiFe]-hydrogenase and participates in urease maturation. Ni(II) or Zn(II) binding to a site embedded in the GTPase domain of HypB modulates the enzymatic activity, suggesting a mechanism of regulation. In this study, biochemical and structural analyses of H. pylori HypB (HpHypB) revealed an intricate link between nucleotide and metal binding. HpHypB nickel coordination, stoichiometry, and affinity were modulated by GTP and GDP, an effect not observed for zinc, and biochemical evidence suggests that His-107 coordination to nickel toggles on and off in a nucleotide-dependent manner. These results are consistent with the crystal structure of HpHypB loaded with Ni(II), GDP, and Pi, which reveals a nickel site distinct from that of zinc-loaded Methanocaldococcus jannaschii HypB as well as subtle changes to the protein structure. Furthermore, Cys-142, a metal ligand from the Switch II GTPase motif, was identified as a key component of the signal transduction between metal binding and the enzymatic activity. Finally, potassium accelerated the enzymatic activity of HpHypB but had no effect on the other biochemical properties of the protein. Altogether, this molecular level information about HpHypB provides insight into its cellular function and illuminates a possible mechanism of metal ion discrimination.

  16. Disturbances to metal partitioning during toxicity testing of iron(II)-rich estuarine pore waters and whole sediments.

    PubMed

    Simpson, Stuart L; Batley, Graeme E

    2003-02-01

    Metal partitioning is altered when suboxic estuarine sediments containing Fe(II)-rich pore waters are disturbed during collection, preparation, and toxicity testing. Experiments with model Fe(II)-rich pore waters demonstrated the rates at which adsorptive losses of Cd, Cu, Ni, Mn, Pb, and Zn occur upon exposure to air. Experiments with Zn-contaminated estuarine sediments demonstrated large and often unpredictable changes to metal partitioning during sediment storage, removal of organisms, and homogenization before testing. Small modifications to conditions, such as aeration of overlying waters, caused large changes to the metal partitioning. Disturbances caused by sediment collection required many weeks for reestablishment of equilibrium. Bioturbation by benthic organisms led to oxidation of pore-water Fe(II) and lower Zn fluxes because of the formation of Fe hydroxide precipitates that adsorb pore-water Zn. For five weeks after the addition of organisms to sediments, Zn fluxes increased slowly as the organisms established themselves in the sediments, indicating that the establishment of equilibrium was not rapid. The results are discussed in terms of the dynamic nature of suboxic, Fe(II)-rich estuarine sediments, how organisms perturb their environment, and the importance of understanding chemistry in toxicity testing with whole sediments or pore water. Recommendations are provided for the handling of sediments for toxicity testing.

  17. Effects of inorganic nanoparticles on viability and catabolic activities of Agrobacterium sp. PH-08 during biodegradation of dibenzofuran.

    PubMed

    Le, Thao Thanh; Murugesan, Kumarasamy; Kim, Eun-Ju; Chang, Yoon-Seok

    2014-09-01

    This study investigated the cytotoxicity, genotoxicity, and growth inhibition effects of four different inorganic nanoparticles (NPs) such as aluminum (nAl), iron (nFe), nickel (nNi), and zinc (nZn) on a dibenzofuran (DF) degrading bacterium Agrobacterium sp. PH-08. NP (0-1,000 mg L(-1)) -treated bacterial cells were assessed for cytotoxicity, genotoxicity, growth and biodegradation activities at biochemical and molecular levels. In an aqueous system, the bacterial cells treated with nAl, nZn and nNi at 500 mg L(-1) showed significant reduction in cell viability (30-93.6 %, p < 0.05), while nFe had no significant inhibition on bacterial cell viability. In the presence of nAl, nZn and nNi, the cells exhibited elevated levels of reactive oxygen species (ROS), DNA damage and cell death. Furthermore, NP exposure showed significant (p < 0.05) impairment in DF and catechol biodegradation activities. The reduction in DF biodegradation was ranged about 71.7-91.6 % with single NPs treatments while reached up to 96.3 % with a mixture of NPs. Molecular and biochemical investigations also clearly revealed that NP exposure drastically affected the catechol-2,3-dioxygenase activities and its gene (c23o) expression. However, no significant inhibition was observed in nFe treatment. The bacterial extracellular polymeric materials and by-products from DF degradation can be assumed as key factors in diminishing the toxic effects of NPs, especially for nFe. This study clearly demonstrates the impact of single and mixed NPs on the microbial catabolism of xenobiotic-degrading bacteria at biochemical and molecular levels. This is the first study on estimating the impact of mixed NPs on microbial biodegradation.

  18. Spatial distribution, ecological and health risk assessment of heavy metals in marine surface sediments and coastal seawaters of fringing coral reefs of the Persian Gulf, Iran.

    PubMed

    Ranjbar Jafarabadi, Ali; Riyahi Bakhtiyari, Alireza; Shadmehri Toosi, Amirhossein; Jadot, Catherine

    2017-10-01

    Concentrations of 13 heavy metals (Al, Fe, Mn, Zn, Cu, Cr, Co, Ni, V, As, Cd, Hg, Pb) in 360 reef surface sediments (0-5 cm) and coastal seawater samples from ten coral Islands in the Persian Gulf were analyzed to determine their spatial distribution and potential ecological risks. Different sediment quality indices were applied to assess the surface sediment quality. The mean concentrations of metals in studied sediments followed the order: Al > Fe > Ni > V > Mn > Zn > Cu > Cr > Co > As > Cd > Pb > As. Average Cd and Hg exceeded coastal background levels at most sampling sites. With the exception of As, concentrations of heavy metals decreased progressively from the west to the east of the Persian Gulf. Based on the Enrichment Factor (EF) and Potential Ecological Risk Index (RI), concentrations of V, Ni, Hg and Cd indicated moderate contamination and is of some concern. The mean values of heavy metals Toxic Units (TUs) were calculated in the following order: Hg (0.75)> Cr (0.41)> Cd (0.27)> As (0.23)> Cu (0.12)> Zn (0.05)> Pb (0.009). Furthermore, the mean contributing ratios of six heavy metals to Toxic Risk Index (TRI) values were 79% for Hg, 11.48% for Cd, 6.16% for Cr, 3.27% for Cu, 0.07% for Zn and 0.01% for Pb. Calculated values of potential ecological risk factor, revealed that the risk of the heavy metals followed the order Cd > Pb > Ni > Cr > V > Cu > Zn. The results reflected that the level of heavy metals, especially Hg and Cd, are on rise due to emerging oil exploration, industrial development, and oil refineries along the entire Gulf. Fe, Mn, Cu, Zn, V and Ni concentrations in seawater were significantly higher (p < 0.05) than the other detected dissolved heavy metals in the sampling sites. A health risk assessment using the hazard quotient index (HQ) recommended by the USEPA suggests that there is no adverse health effect through dermal exposure, and there is no carcinogenic and non-carcinogenic harm to human health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Mobilities and leachabilities of heavy metals in sludge with humus soil.

    PubMed

    Zhu, Rui; Wu, Min; Yang, Jian

    2011-01-01

    Chemical forms of Zn, Ni, Cu, and Pb in municipal sewage sludge were investigated by adding humus soil to sludge and by performing sequential extraction procedures. In the final sludge mixtures, Zn and Ni were mainly found in Fe/Mn oxide-bound (F3) and organic matter/sulfide-bound (F4) forms. For Zn, exchangeable (F1), carbonate-bound (F2), and F3 forms were transformed to F4 and residual forms (F5). For Ni, F1 and F2 forms were transformed to F1, F2, and F3 forms. Both Cu and Pb were strongly associated with the stable forms F4 and F5. For Cu, F2 and F3 forms were major contributors, while for Pb, F3 and F4 forms were major contributors to F5. Humus soil dosage and pH conditions in the sludge were strongly correlated with the forms of heavy metals. Five forms were used to evaluate metal mobilities in the initial and final sludge mixtures. The mobilities of the four heavy metals studied decreased after 28 days. The metal mobilities in the final sludge mixtures were ranked in the following order: Ni > Zn > Cu = Pb. Leaching tests showed that the mobilities of Zn and Ni in lower pH conditions (pH 4) were higher than those in higher pH conditions (pH 8).

  20. Construction of hierarchically porous graphitized carbon-supported NiFe layered double hydroxides with a core-shell structure as an enhanced electrocatalyst for the oxygen evolution reaction.

    PubMed

    Ni, Yuanman; Yao, Lihua; Wang, Yin; Liu, Bing; Cao, Minhua; Hu, Changwen

    2017-08-17

    The oxygen evolution reaction (OER) is a vital half-reaction in water splitting and metal-air batteries. Developing earth-abundant, highly efficient and durable OER catalysts has faced huge challenges until now, because OER is a strict kinetic sluggish process. Herein, we report the construction of hierarchically porous graphitized carbon (HPGC) supported NiFe layered double hydroxides (LDHs) with a core-shell structure (denoted as HPGC@NiFe) by a facile strategy. The HPGC was first obtained by pyrolysing phenolic resin nanospheres with FeCl 3 and ZnCl 2 as the catalyst and the activator, respectively. Then the NiFe LDH arrays were directly grown on the HPGC by a one-step hydrothermal method. The as-synthesized HPGC@NiFe reveals excellent OER properties with a low onset potential, a lower overpotential of 265 mV (corresponding to the current density at 10 mA cm -2 ) and a small Tafel slope (56 mV per decade). And its catalytic activity is even superior to that of the start-of-the-art noble-metal catalyst IrO 2 /C. Notably, the HPGC@NiFe electrode shows admirable stability measured by performing 2000 cycle CVs and long-term electrolysis for 50 h. The prominent performance can be attributed to the synergistic effect between the NiFe-LDHs and the hierarchically porous graphitized carbon, in which the former can increase the exposure of the active sites, while the latter can increase the charge transfer efficiency. Our research implies the possibility for the development of low-cost layered double hydroxides as a promising candidate in electrochemical energy storage and conversion equipment.

  1. Applied Crystallography - Proceedings of the XVth Conference

    NASA Astrophysics Data System (ADS)

    Morawiec, H.; Ströż, D.

    1993-06-01

    The Table of Contents for the full book PDF is as follows: * Foreword * The International Centre for Diffraction Data and Its Future Developments * The Rietveld Method - A Historical Perspective * Real Structure in Quantitative Powder Diffraction Phase Analysis * Neutron Focusing Optics in Applied Crystallography * The Crystal Structures of Oxygen Deficient Rare Earth Oxides * Short-Range Order in Layer-Structured Ba1-xSrxBi2Nb2O9 Ferroelectrics * Radial Distribution Function as a Tool of Structural Studies on Noncrystalline Materials * Determination of Radial Distribution Function (RDF) of Electrodeposited Cu-Cd Alloys After Annealing * Spheres Packing as a Factor Describing the Local Environment and Structure Stability * X-Ray Stress Measurement of Samples Combined with Diffraction Line Analysis * Phase Stability and Martensitic Transformation in Cu-Zn and Cu-Zn-Al Single Crystals * Order, Defects, Precipitates and the Martensitic Transformation in β Cu-Zn-Al * Effect of γ Precipitates on the Martensitic Transformation in Cu-Zn-Al Alloys * Phase Transitions and Shape Memory Effect in a Thermomechanically Treated NiTi Alloy * Structure of Martensite and Bainite in CuAlMn Alloys * Glass-Ceramics * Mechanism of Texture Formation at the Rolling of Low Stacking Fault Energy Metals and Alloys * Shear Texture of Zinc and the Conditions of Its Occuring * The Development of Texture of ZnAlMg Sheets Depending on Deformation Geometry * Texture Stability of the D.S. NiAlMoCrTi Alloy After Heat Treatment * X-Ray Diffraction Method for Controlling of Texture Evolution in Layers * Texture and Lattice Imperfections Study of Some Low Alloyed Copper Alloys * Selected Examples of the Calculation of the Orientation Distribution Function for Low Crystal and Sample Symmetries * Automatical X-Ray Quantitative Phase Analysis * Application of a PC Computer for Crystallographic Calculations * Electron Diffraction Analysis using a Personal Computer * CA.R.INE Crystallography Version 2.1-1992 * PC-MINREF: The Computer Program Package for Neutron Refinement of Incommensurate Multiphase Crystal and Magnetic Structures on IBM PC Computers * Possibilities of Deflections from Stoichiometry Investigation for Phases of b1-b37 Structure by X-Ray Method * A Computer Program: “Measurement of Elastic Constants of Phases in Nontextured Polycrystalline Materials by X-Ray Method” * Crystallite Sizes and Lattice Strains of Hydrogenatid Tungsten Carbid Powder * The Bragg-Case Images of Dislocations at Different Absorption * Extended X-Ray Bremsstrahlung Isochromat of Molybdenum * Size Distribution Determination of Heterogeneity Regions in Electrodeposited Metals by Saxs Method * The Possibility of the Application of the CH2I2 - Paraffin Oil Mixture as a Masking Liquid for Metal/Carrier Systems in Saxs Investigations * Investigation on Mechanical Alloying and Amorphisation Processes by the Rietveld Method * Growth of β' Phase Single Crystals of Sn-Sb Alloy * Effect of Oxygen Agglomeration on Structure of Annealed Cz-Si Single Crystal * X-Ray Investigation of Non-Uniform Stress Fields * Problem of Polytype Structures Series for Martensitic Phases of Metals and Alloys * Structure of Strain-Induced Martensite in β-CuZnAl Alloy * The Effect of Heat Treatment on the Phase Transitions in NiTiCo Shape Memory Alloy * 9R → 18R Phase Transformation in Cu-13Zn-8Al Alloy * Effect of Austenite Thermal Instability on Characteristics of Martensitic Transformation in Fe-Ni Alloys * Vacuum Annealing Study of Thin Ti Layers on High Carbon Steel Substrates * Vacuum Annealing Study of Thin Ta Layers on High Carbon Steel Substrates * Investigation of Speed of Ionic Sputtering of NiTi Alloys in Sea 02 Auger Spectrometer * Effect of Precipitation Hardening on Thermal Stability of Austenite in Fe-Ni Alloys * Structure of 18Cr-25Ni-Nb L Steel After Two Years Operation in Catalytic Tubes * Influence of Magnetic Field on Mechanical Barkhausen Effect Stress Dependence in Steel * Precipitation Structure in High Strength Aluminium Alloys * Morphology of Laser Treated Al-Zn and Al-Fe Alloys * Structure of Rapidly Solidified AlFe and AlFeNi Ribbons After Continuous Heating * X-Ray Diffractometric Investigations of Anatase—Rutile Titanium Dioxide Forms Transformation in the Presence of Some Additives * Investigations on Phase Transformation of Coprecipitated Iron-Magnesium Hydroxides * Determination of the Crystallinity of Polymer Blends by X-Ray Diffraction Method * XPD Study of the Selected Magnesium Compounds with the Expected Pharmacological Activity * Supermolecular Structure of the Nylon 6.10 Crystallized from the Melt and Its Changes During Heating * The Analysis of Substructural Parameters of PZT-Type Ferroelectric Ceramics

  2. Structural investigations and magnetic properties of sol-gel Ni0.5Zn0.5Fe2O4 thin films for microwave heating

    NASA Astrophysics Data System (ADS)

    Gao, Pengzhao; Rebrov, Evgeny V.; Verhoeven, Tiny M. W. G. M.; Schouten, Jaap C.; Kleismit, Richard; Kozlowski, Gregory; Cetnar, John; Turgut, Zafer; Subramanyam, Guru

    2010-02-01

    Nanocrystalline Ni0.5Zn0.5Fe2O4 thin films have been synthesized with various grain sizes by a sol-gel method on polycrystalline silicon substrates. The morphology, magnetic, and microwave absorption properties of the films calcined in the 673-1073 K range were studied with x-ray diffraction, scanning electron microscopy, x-ray photoelectron spectroscopy, atomic force microscopy, vibrating sample magnetometry, and evanescent microwave microscopy. All films were uniform without microcracks. Increasing the calcination temperature from 873 to 1073 K and time from 1 to 3 h resulted in an increase of the grain size from 12 to 27 nm. The saturation and remnant magnetization increased with increasing the grain size, while the coercivity demonstrated a maximum near a critical grain size of 21 nm due to the transition from monodomain to multidomain behavior. The complex permittivity of the Ni-Zn ferrite films was measured in the frequency range of 2-15 GHz. The heating behavior was studied in a multimode microwave cavity at 2.4 GHz. The highest microwave heating rate in the temperature range of 315-355 K was observed in the film close to the critical grain size.

  3. Adsorption of metal-phthalocyanine molecules onto the Si(111) surface passivated by δ doping: Ab initio calculations

    NASA Astrophysics Data System (ADS)

    Veiga, R. G. A.; Miwa, R. H.; McLean, A. B.

    2016-03-01

    We report first-principles calculations of the energetic stability and electronic properties of metal-phthalocyanine (MPc) molecules (M = Cr, Mn, Fe, Co, Ni, Cu, and Zn) adsorbed on the δ -doped Si(111)-B (√{3 }×√{3 }) reconstructed surface. (i) It can be seen that CrPc, MnPc, FePc, and CoPc are chemically anchored to the topmost Si atom. (ii) Contrastingly, the binding of the NiPc, CuPc, and ZnPc molecules to the Si (111 ) -B (√{3 }×√{3 }) surface is exclusively ruled by van der Waals interactions, the main implication being that these molecules may diffuse and rearrange to form clusters and/or self-organized structures on this surface. The electronic structure calculations reveal that in point (i), owing to the formation of the metal-Si covalent bond, the net magnetic moment of the molecule is quenched by 1 μB , remaining unchanged in point (ii). In particular, the magnetic moment of CuPc (1 μB ) is preserved after adsorption. Finally, we verify that the formation of ZnPc, CuPc, and NiPc molecular (self-assembled) arrangements on the Si(111)-B (√{3 }×√{3 } ) surface is energetically favorable, in good agreement with recent experimental findings.

  4. Binding Selectivity of Methanobactin from Methylosinus trichosporium OB3b for Copper(I), Silver(I), Zinc(II), Nickel(II), Cobalt(II), Manganese(II), Lead(II), and Iron(II)

    NASA Astrophysics Data System (ADS)

    McCabe, Jacob W.; Vangala, Rajpal; Angel, Laurence A.

    2017-12-01

    Methanobactin (Mb) from Methylosinus trichosporium OB3b is a member of a class of metal binding peptides identified in methanotrophic bacteria. Mb will selectively bind and reduce Cu(II) to Cu(I), and is thought to mediate the acquisition of the copper cofactor for the enzyme methane monooxygenase. These copper chelating properties of Mb make it potentially useful as a chelating agent for treatment of diseases where copper plays a role including Wilson's disease, cancers, and neurodegenerative diseases. Utilizing traveling wave ion mobility-mass spectrometry (TWIMS), the competition for the Mb copper binding site from Ag(I), Pb(II), Co(II), Fe(II), Mn(II), Ni(II), and Zn(II) has been determined by a series of metal ion titrations, pH titrations, and metal ion displacement titrations. The TWIMS analyses allowed for the explicit identification and quantification of all the individual Mb species present during the titrations and measured their collision cross-sections and collision-induced dissociation patterns. The results showed Ag(I) and Ni(II) could irreversibly bind to Mb and not be effectively displaced by Cu(I), whereas Ag(I) could also partially displace Cu(I) from the Mb complex. At pH ≈ 6.5, the Mb binding selectivity follows the order Ag(I)≈Cu(I)>Ni(II)≈Zn(II)>Co(II)>>Mn(II)≈Pb(II)>Fe(II), and at pH 7.5 to 10.4 the order is Ag(I)>Cu(I)>Ni(II)>Co(II)>Zn(II)>Mn(II)≈Pb(II)>Fe(II). Breakdown curves of the disulfide reduced Cu(I) and Ag(I) complexes showed a correlation existed between their relative stability and their compact folded structure indicated by their CCS. Fluorescence spectroscopy, which allowed the determination of the binding constant, compared well with the TWIMS analyses, with the exception of the Ni(II) complex. [Figure not available: see fulltext.

  5. Binding Selectivity of Methanobactin from Methylosinus trichosporium OB3b for Copper(I), Silver(I), Zinc(II), Nickel(II), Cobalt(II), Manganese(II), Lead(II), and Iron(II).

    PubMed

    McCabe, Jacob W; Vangala, Rajpal; Angel, Laurence A

    2017-12-01

    Methanobactin (Mb) from Methylosinus trichosporium OB3b is a member of a class of metal binding peptides identified in methanotrophic bacteria. Mb will selectively bind and reduce Cu(II) to Cu(I), and is thought to mediate the acquisition of the copper cofactor for the enzyme methane monooxygenase. These copper chelating properties of Mb make it potentially useful as a chelating agent for treatment of diseases where copper plays a role including Wilson's disease, cancers, and neurodegenerative diseases. Utilizing traveling wave ion mobility-mass spectrometry (TWIMS), the competition for the Mb copper binding site from Ag(I), Pb(II), Co(II), Fe(II), Mn(II), Ni(II), and Zn(II) has been determined by a series of metal ion titrations, pH titrations, and metal ion displacement titrations. The TWIMS analyses allowed for the explicit identification and quantification of all the individual Mb species present during the titrations and measured their collision cross-sections and collision-induced dissociation patterns. The results showed Ag(I) and Ni(II) could irreversibly bind to Mb and not be effectively displaced by Cu(I), whereas Ag(I) could also partially displace Cu(I) from the Mb complex. At pH ≈ 6.5, the Mb binding selectivity follows the order Ag(I)≈Cu(I)>Ni(II)≈Zn(II)>Co(II)>Mn(II)≈Pb(II)>Fe(II), and at pH 7.5 to 10.4 the order is Ag(I)>Cu(I)>Ni(II)>Co(II)>Zn(II)>Mn(II)≈Pb(II)>Fe(II). Breakdown curves of the disulfide reduced Cu(I) and Ag(I) complexes showed a correlation existed between their relative stability and their compact folded structure indicated by their CCS. Fluorescence spectroscopy, which allowed the determination of the binding constant, compared well with the TWIMS analyses, with the exception of the Ni(II) complex. Graphical abstract ᅟ.

  6. Environmental effects on the aquatic system and metal discharge to the Mediterranean Sea from a near-neutral zinc-ferrous sulfate mine drainage

    USGS Publications Warehouse

    Frau, Franco; Medas, Daniela; Da Pelo, Stefania; Wanty, Richard B.; Cidu, Rosa

    2015-01-01

    After mine closure in the 1980s and subsequent shutdown of the dewatering system, groundwater rebound led to drainage outflow from the Casargiu gallery (Montevecchio mine, SW Sardinia, Italy) beginning in 1997. Mine drainage had pH 6.0 and dissolved concentrations of sulfate (5000 mg/L) and metals (e.g., 1000 mg/L Zn, 230 mg/L Fe, 150 mg/L Mn) much higher than those previously measured in groundwater under dewatering conditions. As compared with the first stages of rebound at Casargiu, a very high contamination level still persists after more than 15 years of flushing. Mine drainage (20–70 L/s; pH 6.0 ± 0.2; Zn-Mg-Ca-SO4 composition) flowed into the Rio Irvi. Abundant precipitation of amorphous Fe(III)-(oxy)hydroxides occurred. Moreover, sulfate-bearing green rust was observed to flocculate in the reach of the Rio Irvi where pH was still circumneutral. Water sampling along this stream for about 6 km almost to its mouth in the Mediterranean Sea showed a pH decrease from 6.0 to 4.0 and a significant removal of Fe (46 %) and As (96 %), while sulfate, Zn, Mn, Co, Ni, and Cd showed small variations downstream. Lead was initially adsorbed onto Fe(III)-(oxy)hydroxides, then desorbed as pH dropped below 5. The estimated amount of dissolved metals discharged into the Mediterranean Sea is significant (e.g., 900 kg/day Zn, 1.4 kg/day Cd, 5 kg/day Ni). In particular, a conservative estimation of the amount of Zn discharged to the sea is about 330 ton/year, which would correspond to 1.4 % of the global annual flux of dissolved Zn from uncontaminated rivers to the oceans.

  7. Machine Casting of Ferrous Alloys

    DTIC Science & Technology

    1975-10-01

    casting from entrapped air. This fact, together with the lower amount of solidification shrinkage of semi-solid alloys , results in the now firmly...compositions and solidification ranges. Figures 5 and 6 illustrate -24- typical quenched microstructures obtained for several of the alloys investi...COBALT SUPERALLOY Cu - 10%Sn - 2%Zn Fe - 2.6%C - 3.2% Si Fe - 17%Cr - l% Si l%Mn - 1.1%C Fe - 17%Cr - USi l%Mn - 0.6%C Fe - 18.5%Cr - 9.5% Ni 0.08

  8. Structure and properties of α-NaFeO{sub 2}-type ternary sodium iridates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baroudi, Kristen, E-mail: kbaroudi@princeton.edu; Yim, Cindi; Wu, Hui

    2014-02-15

    The synthesis, structure, and elementary magnetic and electronic properties are reported for layered compounds of the type Na{sub 3−x}MIr{sub 2}O{sub 6} and Na{sub 3−x}M{sub 2}IrO{sub 6}, where M is a transition metal from the 3d series (M=Zn, Cu, Ni, Co, Fe and Mn). The rhombohedral structures, in space group R−3m, were determined by refinement of neutron and synchrotron powder diffraction data. No clear evidence for long range 2:1 or 1:2 honeycomb-like M/Ir ordering was found in the neutron powder diffraction patterns except in the case of M=Zn, and thus in general the compounds are best designated as sodium deficient α-NaFeO{submore » 2}-type phases with formulas Na{sub 1−x}M{sub 1/3}Ir{sub 2/3}O{sub 2} or Na{sub 1−x}M{sub 2/3}Ir{sub 1/3}O{sub 2}. Synchrotron powder diffraction patterns indicate that several of the compounds likely have honeycomb in-plane metal–iridium ordering with disordered stacking of the layers. All the compounds are sodium deficient under our synthetic conditions and are black and insulating. Weiss constants derived from magnetic susceptibility measurements indicate that Na{sub 0.62}Mn{sub 0.61}Ir{sub 0.39}O{sub 2}, Na{sub 0.80}Fe{sub 2/3}Ir{sub 1/3}O{sub 2}, Na{sub 0.92}Ni{sub 1/3}Ir{sub 2/3}O{sub 2}, Na{sub 0.86}Cu{sub 1/3}Ir{sub 2/3}O{sub 2}, and Na{sub 0.89}Zn{sub 1/3}Ir{sub 2/3}O{sub 2} display dominant antiferromagnetic interactions. For Na{sub 0.90}Co{sub 1/3}Ir{sub 2/3}O{sub 2} the dominant magnetic interactions at low temperature are ferromagnetic while at high temperatures they are antiferromagnetic; there is also a change in the effective moment. Low temperature specific heat measurements (to 2 K) on Na{sub 0.92}Ni{sub 1/3}Ir{sub 2/3}O{sub 2} indicate the presence of a broad magnetic ordering transition. X-ray absorption spectroscopy shows that iridium is at or close to the 4+ oxidation state in all compounds. {sup 23}Na nuclear magnetic resonance measurements comparing Na{sub 2}IrO{sub 3} to Na{sub 0.92}Ni{sub 1/3}Ir{sub 2/3}O{sub 2} and Na{sub 0.89}Zn{sub 1/3}Ir{sub 2/3}O{sub 2} provide strong indications that the electron spins are short-range ordered in the latter two materials. Na{sub 0.62}Mn{sub 0.61}Ir{sub 0.39}O{sub 2}, Na{sub 0.80}Fe{sub 2/3}Ir{sub 1/3}O{sub 2}, Na{sub 0.90}Co{sub 1/3}Ir{sub 2/3}O{sub 2}, Na{sub 0.92}Ni{sub 1/3}Ir{sub 2/3}O{sub 2}, Na{sub 0.86}Cu{sub 1/3}Ir{sub 2/3}O{sub 2} and Na{sub 0.89}Zn{sub 1/3}Ir{sub 2/3}O{sub 2} are spin glasses. (CSD-numbers: Na{sub 0.62}Mn{sub 0.61}Ir{sub 0.39}O{sub 2}: 426657, Na{sub 0.80}Fe{sub 2/3}Ir{sub 1/3}O{sub 2}: 426659, Na{sub 0.90}Co{sub 1/3}Ir{sub 2/3}O{sub 2}: 426658, Na{sub 0.92}Ni{sub 1/3}Ir{sub 2/3}O{sub 2}: 426656, Na{sub 0.86}Cu{sub 1/3}Ir{sub 2/3}O{sub 2}: 426655, and Na{sub 2.8}ZnIr{sub 2}O{sub 6}: 426660.) - Graphical abstract: Diffraction patterns of Na{sub 0.92}Ni{sub 1/3}Ir{sub 2/3}O{sub 2}, Na{sub 0.86}Cu{sub 1/3}Ir{sub 2/3}O{sub 2} and Na{sub 0.89}Zn{sub 1/3}Ir{sub 2/3}O{sub 2}: neutron diffraction patterns in the main panel and synchrotron diffraction in the insets. The patterns show a small amount of ordering in the transition metal iridium layer. Display Omitted - Highlights: • We report six ternary sodium iridates with the α-NaFeO{sub 2} structure. • Compounds Na{sub 1−x}M{sub 1/3}Ir{sub 2/3}O{sub 2}, M=Co, Ni, Cu, Zn and Na{sub 1−x}M{sub 2/3}Ir{sub 1/3}O{sub 2}, M=Mn, Fe. • Rietveld refinement of powder neutron diffraction data. • All compounds are spin glasses. • NMR comparison to Na{sub 2}IrO{sub 3}.« less

  9. Testing the toxicity of metals, phenol, effluents, and receiving waters by root elongation in Lactuca sativa L.

    PubMed

    Lyu, Jie; Park, Jihae; Kumar Pandey, Lalit; Choi, Soyeon; Lee, Hojun; De Saeger, Jonas; Depuydt, Stephen; Han, Taejun

    2018-03-01

    Phytotoxicity tests using higher plants are among the most simple, sensitive, and cost-effective of the methods available for ecotoxicity testing. In the present study, a hydroponic-based phytotoxicity test using seeds of Lactuca sativa was used to evaluate the water quality of receiving waters and effluents near two industrial sites (Soyo and Daejon) in Korea with respect to the toxicity of 10 metals (As, Cd, Cr, Cu, Fe, Pb, Mn, Hg, Ni, Zn) and phenol, and of the receiving waters and effluents themselves. First, the L. sativa hydroponic bioassay was used to determine whether the receiving water or effluents were toxic; then, the responsible toxicant was identified. The results obtained with the L. sativa bioassay ranked the EC 50 toxicities of the investigated metal ions and phenol as: Cd > Ni > Cu > Zn > Hg > phenol > As > Mn > Cr > Pb > Fe. We found that Zn was the toxicant principally responsible for toxicity in Daejeon effluents. The Daejeon field effluent had a higher Zn concentration than permitted by the effluent discharge criteria of the Ministry of Environment of Korea. Our conclusion on the importance of Zn toxicity was supported by the results of the L. sativa hydroponic assay, which showed that the concentration of Zn required to inhibit root elongation in L. sativa by 50% (EC 50 ) was higher in the Daejeon field effluent than that of pure Zn. More importantly, we proved that the L. sativa hydroponic test method can be applied not only as an alternative tool for determining whether a given waste is acceptable for discharge into public water bodies, but also as an alternative method for measuring the safety of aquatic environments using EC 20 values, with respect to the water pollutants investigated (i.e., Cd, Cr, Cu, Pb, Mn, Hg, Ni, Zn, and phenol). Copyright © 2017. Published by Elsevier Inc.

  10. Heavy metals in bark of Pinus massoniana (Lamb.) as an indicator of atmospheric deposition near a smeltery at Qujiang, China.

    PubMed

    Kuang, Yuan Wen; Zhou, Guo Yi; Da Wen, Zhi; Liu, Shi Zhong

    2007-06-01

    Rapid urbanization and the expansion of industrial activities in the past several decades have led to large increases in emissions of pollutants in the Pearl River Delta of south China. Recent reports have suggested that industrial emission is a major factor contributing to the damages in current natural ecosystem in the Delta area. Tree barks have been used successfully to monitor the levels of atmospheric metal deposition in many areas, but rarely in China. This study aimed at determining whether atmospheric heavy metal deposition from a Pb-Zn smeltery at Qujiang, Guangdong province, could be accurately reflected both in the inner bark and the outer bark of Masson pine (Pinus massoniana L.). The impact of the emission from smeltery on the soils beneath the trees and the relationships of the concentrations between the soils and the barks were also analyzed. Barks around the bole of Pinus massoniana from a pine forest near a Pb-Zn smeltery at Qujiang and a reference forest at Dinghushan natural reserve were sampled with a stainless knife at an average height of 1.5 m above the ground. Mosses and lichens on the surface barks were cleaned prior to sampling. The samples were carefully divided into the inner bark (living part) and the outer bark (dead part) in the laboratory, and dried and ground, respectively. After being dry-ashed, the powder of the barks was dissolved in HNO3. The solutions were analyzed for iron (Fe), manganese (Mn), copper (Cu), zinc (Zn), chromium (Cr), nickel (Ni) and cobalt (Co) by inductively coupled plasmas emission spectrometry (ICP, PS-1000AT, USA) and Cadmium (Cd) and lead (Pb) by graphite furnace atomic absorption spectrometry (GFAAS, ZEENIT 60, Germany). Surface soils (0-10 cm) beneath the sample trees were also collected and analyzed for the selected metals. Concentrations of the selected metals in soils at Qujiang were far above their environmental background values in the area, except for Fe and Mn, whilst at Dinghushan, they were far below their background values, except for Cd and Co. Levels of the metals, in particular Pb and Zn, in the soils beneath the sample trees at Qujiang were higher than those at Dinghushan with statistical significance. The result suggested that the pine forest soils at Qujiang had a great input of heavy metals from wet and dry atmospheric deposition, with the Pb-Zn smeltery most probably being the source. Levels of Cu, Fe, Mn, Zn, Ni and Pb at Qujiang, both in the inner and the outer bark, were statistically higher than those at Dinghushan. Higher concentrations of Pb, Fe, Zn and Cu may come from the stem-flow of elements leached from the canopy, soil splash on the 1.5 m height and sorption of metals in the mosses and lichens growing on the bark, which were direct or indirect results from the atmospheric deposition. Levels of heavy metals in the outer barks were associated well with the metal concentrations in the soil, reflecting the close relationships between the metal atmospheric deposition and their accumulation in the outer bark of Masson pine. The significant (p<0.01) correlations of Fe-Cu, Fe-Cr, Fe-Pb, Fe-Ni, Pb-Ni, and Pb-Zn in the outer barks at Qujiang again suggested a common source for the metals. The correlation only occurred between Pb and Ni, Cd and Co in the outer barks at Dinghushan, which suggested that those metals must possibly have other uncommon sources. Atmospheric deposition of the selected metals was great at Qujiang, based on the levels in the bark of Pinus massoniana and on the concentrations in the soils beneath the trees compared with that at Dinghushan. Bark of Pinus massoniana, especially the outer bark, was an indicator of metal loading at least at the time of sampling. The results from this study and the techniques employed constituted a new contribution to the development of biogeochemical methods for environmental monitoring particularly in areas with high frequency of pollution in China. The method would be of value for follow up studies aimed at the assessment of industrial pollution in other areas similar with the Pearl River Delta.

  11. Metals in some lagoons of Mexico.

    PubMed Central

    Vazquez, F G; Sharma, V K; Alexander, V H; Frausto, C A

    1995-01-01

    The concentrations of metals, Cd, Cu, Fe, Mn, Ni, Pb, and Zn were determined in some lagoons to establish the level of metal pollution. The lagoons studied were Alvarado lagoon, Veracruz; San Andres lagoon, Tamaulipas; and Terminos lagoon, Campeche. The concentrations were determined in water, oyster (Crassostrea virginica), and sediments. Metals were accumulated in either oysters or sediments. Cu and Zn were higher in oysters and Fe and Mn were higher in sediments. The results in water samples were compared with the limit established by the Secretaria de Ecologia and Desarrollo Urbano Report and briefly discussed. PMID:7621796

  12. PIXE as a complement to ICP-OES trace metal analysis in Sudanese medicinal plants.

    PubMed

    Mubark Ebrahim, Ammar; Etayeb, M A; Khalid, H; Noun, Manale; Roumie, M; Michalke, B

    2014-08-01

    This paper compares trace element concentrations (Ca, K, Sr, Fe, Mn, Zn, Ni, Cu, Co and Cr) in 27 Sudanese medical plants determined in parallel by PIXE and ICP-OES to get information on which technique is preferable at different matrices and element concentrations. PIXE correlates well to ICP-OES for Sr, Mn, Ca, K, Zn and Fe determinations. ICP-OES seems to be the superior technique over PIXE when measuring low concentrated elements (chromium, cobalt, nickel and copper) in the medicinal plants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Frequency and temperature dependence of dielectric and ac electrical properties of NiFe2O4-ZnO multiferroic nanocomposite

    NASA Astrophysics Data System (ADS)

    Dutta, Papia; Mandal, S. K.; Dey, P.; Nath, A.

    2018-04-01

    We have presented the ac electrical properties and dielectric studies of 0.5 NiFe2O4 - 0.5 ZnO multiferroic nanocomposites prepared through low temperature "pyrophoric reaction process". Structural characterization has been carried out through X-ray diffraction technique, which shows the co-existence of both the phases of the nanocomposites. The ac electrical properties of nanocomposites have been studied employing impedance spectroscopy technique. The impedance value is found to increase with increase in magnetic field attributing the magnetostriction property of the composites. Dielectric constant is found to decrease with both the increase in magnetic fields and temperatures. Studies of dielectric constant reveal the Maxwell Wagner interfacial polarization at low frequency regime. Relaxation frequency as a function of magnetic fields and temperatures is found to shift towards the high frequency region.

  14. Geologic cross sections showing the concentrations of As, Cd, Co, Cu, Cr, Fe, Mo, Ni, Pb, and Zn in acid-insoluble residues of Paleozoic rocks within the Doniphan/Eleven Point Ranger District of the Mark Twain National Forest, Missouri, USA

    USGS Publications Warehouse

    Lee, Lopaka; Goldhaber, Martin B.

    2002-01-01

    This report is a product of a U.S. Geological Survey investigation that is focused on characterizing the potential environmental impacts of lead-zinc mining within the Doniphan/Eleven Point ranger district of the Mark Twain national forest. The elemental concentrations of iron (Fe), arsenic (As), cadmium (Cd), cobalt (Co), copper (Cu), chromium (Cr), nickel (Ni), lead (Pb), and zinc (Zn) in acidinsoluble residues are shown for boreholes along two geologic cross sections within Doniphan/Elevan Point ranger district (Figure 1). The purpose of this report is to characterize, in a general sense, the distribution of economically and environmentally important elements within the rocks and aquifers of the Doniphan/Eleven Point ranger district

  15. [Comparison of heavy metal elements between natural and plantation forests in a subtropical Montane forest].

    PubMed

    Nie, Ming; Wan, Jia-Rong; Chen, Xiao-Feng; Wang, Li; Li, Bo; Chen, Jia-Kuan

    2011-11-01

    Heavy metals as one of major pollutants is harmful to the health of forest ecosystems. In the present paper, the concentrations of thirteen heavy metals (Fe, Al, Ti, Cr, Cu, Mn, V, Zn, Ni, Co, Pb, Se and Cd) were compared between natural and plantation forests in the Mt. Lushan by ICP-AES and atomic absorption spectroscopy. The results suggest that the soil of natural forest had higher concentrations of Fe, Al, Ti, Cu, Mn, V, Zn, Ni, Co, Pb, Se, and Cd than the plantation forest except for Cr. The soil of natural forest had a higher level of heavy metals than that of the plantation forest as a whole. This might be due to that the natural forest has longer age than the plantation forest, and fixed soil heavy metals take a longer period of time than the plantation forest.

  16. The bimodal distribution spin Seebeck effect enhancement in epitaxial Ni0.65Zn0.35Al0.8Fe1.2O4 thin film

    NASA Astrophysics Data System (ADS)

    Wang, Hua; Hou, Dazhi; Kikkawa, Takashi; Ramos, Rafael; Shen, Ka; Qiu, Zhiyong; Chen, Yao; Umeda, Maki; Shiomi, Yuki; Jin, Xiaofeng; Saitoh, Eiji

    2018-04-01

    The temperature dependence of the spin Seebeck effect (SSE) in epitaxial Ni0.65Zn0.35Al0.8Fe1.2O4 (NZA ferrite) thin film has been investigated systematically. The SSE at high fields shows a bimodal distribution enhancement from 3 K to 300 K and is well fitted with a double-peak Lorentzian function. We speculate the symmetric SSE enhancement in Pt/NZA ferrite bilayer, which is different from the magnon polarons induced asymmetric spikes in the SSE of Pt/YIG [T. Kikkawa et al. Phys. Rev. Lett. 117, 207203 (2016)], may result from the magnon-phonon interactions occurring at the intersections of the quantized magnon and phonon dispersions. The SSE results are helpful for the investigation of the magnon-phonon interaction in the magnetic ultrathin films.

  17. Efficient Removal of Uranium from Aqueous Solution by Reduced Graphene Oxide-Zn0.5Ni0.5Fe2O4 Ferrite-Polyaniline Nanocomposite

    NASA Astrophysics Data System (ADS)

    Tran, Dat Quang; Pham, Hung Thanh; Do, Hung Quoc

    2017-06-01

    Reduced graphene oxide-Zn0.5Ni0.5Fe2O4 ferrite-polyaniline nanocomposite (RGO-ZNF-PANI) was synthesized by a three-step method. The prepared samples were characterized by x-ray diffraction, Raman spectroscopy, scanning electron microscopy and vibrating sample magnetometer. In particular, we found that this material is capable of effectively removing uranium from an aquatic environment. This is confirmed by our experimental results using the method of inductively coupled plasma mass spectrometry. Adsorptive behaviour of uranium from an aqueous solution on the RGO-ZNF-PANI nanocomposite was examined as a function of pH, contact time, and equilibrium. Uranium concentration was carried out by batch techniques. The adsorption isotherm agrees well with the Langmuir model, having a maximum sorption capacity of 1885 mg/g, at pH 5 and 25°C.

  18. Multivariate analysis and geochemical approach for assessment of metal pollution state in sediment cores.

    PubMed

    Jamshidi-Zanjani, Ahmad; Saeedi, Mohsen

    2017-07-01

    Vertical distribution of metals (Cu, Zn, Cr, Fe, Mn, Pb, Ni, Cd, and Li) in four sediment core samples (C 1 , C 2 , C 3 , and C 4 ) from Anzali international wetland located southwest of the Caspian Sea was examined. Background concentration of each metal was calculated according to different statistical approaches. The results of multivariate statistical analysis showed that Fe and Mn might have significant role in the fate of Ni and Zn in sediment core samples. Different sediment quality indexes were utilized to assess metal pollution in sediment cores. Moreover, a new sediment quality index named aggregative toxicity index (ATI) based on sediment quality guidelines (SQGs) was developed to assess the degree of metal toxicity in an aggregative manner. The increasing pattern of metal pollution and their toxicity degree in upper layers of core samples indicated increasing effects of anthropogenic sources in the study area.

  19. Mass attenuation coefficients in the range 3.8⩽E⩽11 keV, K fluorescence yield and Kβ/Kα relative X-ray emission rate for Ti, V, Fe, Co, Ni, Cu and Zn measured with a tunable monochromatic X-ray source

    NASA Astrophysics Data System (ADS)

    Ménesguen, Y.; Lépy, M.-C.

    2010-08-01

    This work presents new measurements of mass attenuation coefficients in the range 3.8⩽E⩽11 keV, K-absorption jump-ratios, Kα and Kβ fluorescence yields for Ti, V, Fe, Co, Ni, Cu and Zn. We use the experimental facility SOLEX, a tunable monochromatic X-ray source combined with an energy-dispersive high-purity germanium detector. The results are compared with theoretical values as well as with other experimental data and show a relatively good agreement. However, the derived K-jump-ratios appear larger than those widely used in the XCOM database. The Kα and Kβ fluorescence yields and the corresponding relative emission rates Kβ/Kα are also derived, which was made possible by the use of energy-dispersive detectors with good spectral resolution.

  20. Quantification of chemical elements in blood of patients affected by multiple sclerosis.

    PubMed

    Forte, Giovanni; Visconti, Andrea; Santucci, Simone; Ghazaryan, Anna; Figà-Talamanca, Lorenzo; Cannoni, Stefania; Bocca, Beatrice; Pino, Anna; Violante, Nicola; Alimonti, Alessandro; Salvetti, Marco; Ristori, Giovanni

    2005-01-01

    Although some studies suggested a link between exposure to trace elements and development of multiple sclerosis (MS), clear information on their role in the aetiology of MS is still lacking. In this study the concentrations of Al, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Hg, Li, Mg, Mn, Mo, Ni, Pb, Sb, Si, Sn, Sr, Tl, V, W, Zn and Zr were determined in the blood of 60 patients with MS and 60 controls. Quantifications were performed by inductively coupled plasma (ICP) atomic emission spectrometry and sector field ICP mass spectrometry. When the two groups were compared, an increased level of Co, Cu and Ni and a decrement of Be, Fe, Hg, Mg, Mo, Pb and Zn in blood of patients were observed. In addition, the discriminant analysis pointed out that Cu, Be, Hg, Co and Mo were able to discriminate between MS patients and controls (92.5% of cases correctly classified).

  1. DETECTION OF PHOSPHORUS, SULPHUR, AND ZINC IN THE CARBON-ENHANCED METAL-POOR STAR BD+44 493

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roederer, Ian U.; Placco, Vinicius M.; Beers, Timothy C., E-mail: iur@umich.edu

    2016-06-20

    The carbon-enhanced metal-poor star BD+44°493 ([Fe/H] = −3.9) has been proposed as a candidate second-generation star enriched by metals from a single Pop III star. We report the first detections of P and S and the second detection of Zn in any extremely metal-poor carbon-enhanced star, using new spectra of BD+44°493 collected by the Cosmic Origins Spectrograph on the Hubble Space Telescope . We derive [P/Fe] = −0.34 ± 0.21, [S/Fe] = +0.07 ± 0.41, and [Zn/Fe] = −0.10 ± 0.24. We increase by 10-fold the number of Si i lines detected in BD+44°493, yielding [Si/Fe] = +0.15 ± 0.22.more » The [S/Fe] and [Zn/Fe] ratios exclude the hypothesis that the abundance pattern in BD+44°493 results from depletion of refractory elements onto dust grains. Comparison with zero-metallicity supernova (SN) models suggests that the stellar progenitor that enriched BD+44°493 was massive and ejected much less than 0.07 M {sub ⊙} of {sup 56}Ni, characteristic of a faint SN.« less

  2. Citrate, in collaboration with a guanidinium ion, as a generator of cubane-like complexes with a range of metal cations: synthesis, structures, and magnetic properties of [C(NH2)3]8[(M(II))4(cit)4].8H2O (M = Mg, Mn, Fe, Co, Ni, and Zn; cit = Citrate).

    PubMed

    Hudson, Timothy A; Berry, Kevin J; Moubaraki, Boujemaa; Murray, Keith S; Robson, Richard

    2006-05-01

    Aqueous reaction mixtures containing citric acid, guanidinium carbonate, and a range of metal cations (Mg2+, Mn2+, Fe2+, Co2+, Ni2+, and Zn2+) at room temperature give crystalline products of composition [C(NH2)3]8[(M(II))4(cit)4].8H2O (cit = citrate). In all cases, the crystals are suitable for single-crystal X-ray diffraction studies, which reveal that the compounds are isostructural (space group P4(2)/n; a approximately 16.2 A, and c approximately 11.5 A). As was intended, cubane-like [M4(cit)4]8- complex anions are present. The individual citrate units are chiral, but each cubane unit contains two of one hand and two of the other, related around an S4 axis. The cubane units are involved in no less than 40 H-bonding interactions with guanidinium cations and lattice water molecules. Detailed susceptibility and magnetization studies show that the intracluster magnetic coupling within the Mn(II), Fe(II), Co(II), and Ni(II) cubanes is very weak in all cases with J values of -0.82, -0.43, and -0.09 cm(-1) for the Mn, Fe, and Co species, respectively. A two-J model gave the best agreement with the susceptibility and high-field magnetization data for the Ni(II) case, over the whole temperature range studied, and the sign of the parameters, J12 = -0.3 cm(-1) and J13 = +2.97 cm(-1), correlated with the two Ni-(mu3-O)-Ni angles observed in the cluster structure. All members of the 3d-block [M4(cit)4]8- family have spin ground states, ST, of zero, with the higher ST levels just a few reciprocal centimeters away in energy.

  3. Diamonds in ophiolitic mantle rocks and podiform chromitites: An unsolved mystery

    NASA Astrophysics Data System (ADS)

    Yang, J.; Zhang, Z.; Xu, X.; Ba, D.; Bai, W.; Fabg, Q.; Meng, F.; Chen, S.; Robinson, P. T.; Dobrzhinetskaya, L.

    2009-05-01

    In recent years ultrahigh pressure minerals, such as diamond and coesite, and other unusual minerals were discovered in chromitites of the Luobusa ophiolite in Tibet, and 4 new minerals have been approved by the CNMMN. These results have raised many questionsWhat are the occurrences of the diamonds, what is the source of their carbon and how were they formed? What is the origin of the chromites hosting the diamonds and at what depth did they form? What is the genetic relationship between the diamonds and the host chromitites? In what geological, geophysical and geochemical environments can the diamonds be formed and how are they preserved? The UHP minerals from Luobusa are controversial because they have not been found in situ and because ophiolites are currently believed to form at shallow levels above oceanic spreading centers in suprasubduction zone environments. More detailed study and experimental work are needed to understand the origin and significance of these unusual minerals and investigations of other ophiolites are needed to determine if such minerals occur elsewhere To approach these problems, we have collected two one-ton samples of harzburgite hosting chromitite orebodies in the Luobusa ophiolite in Tibet. The harzburgite samples were taken close to chromitite orebody 31, from which the diamonds, coesite and other unusual minerals were recovered. We processed these two samples in the same manner as the chromitites and discovered numerous diamonds and more than 50 other mineral species. These preliminary results show that the minerals in the harzburgites are similar to those in the chromitites, suggesting a genetic relationship between them. To determine if such UHP and unusual minerals occur elsewhere, we collected about 1.5 t of chromitite from two orebodies in an ultramafic body in the Polar Urals. Thus far, more than 60 different mineral species have been separated from these ores. The most exciting discovery is the common occurrence of diamond, a typical UHP mineral in the Luobusa chromitites. Other minerals include: (1) native elements: Cr, W, Ni, Co, Si, Al and Ta; (2) carbides: SiC and WC; (3) alloys: Cr-Fe, Si-Al-Fe, Ni-Cu, Ag-Au, Ag-Sn, Fe-Si, Fe-P, and Ag-Zn-Sn; (4) oxides: NiCrFe, PbSn, REE, rutile and Si-bearing rutile, ilmenite, corundum, chromite, MgO, and SnO2; (5) silicates: kyanite, pseudomorphs of octahedral olivine, zircon, garnet, feldspar, and quartz,; (6) sulfides of Fe, Ni, Cu, Mo, Pb, Ab, AsFe, FeNi, CuZn, and CoFeNi; and (7) iron groups: native Fe, FeO, and Fe2O3. These minerals are very similar in composition and structure to those reported from the Luobusa chromitites.

  4. Flexible porous coordination polymer of Ni(II) for developing nanoparticles through acid formation and redox activity of the framework

    NASA Astrophysics Data System (ADS)

    Agarwal, Rashmi A.

    2017-10-01

    Immobilization of the nanoparticles (NPs) in a two dimensional porous coordination polymer (PCP) is currently an emerging field for a number of applications. But still it is a great challenge to fabricate any specified metal NPs in a single network. Herein the synthesis of Au, Pd, Mn, Fe, Cu, Zn, Mg, Li, Fe/Cu, Zn/Mg etc, NPs in a highly flexible PCP of Ni(II); {[Ni3(TBIB)2(BTC)2(H2O)6]·5C2H5OH·9H2O}n [TBIB = 1,3,5-tri(1H-benzo[d]imidazol-1-yl)benzene, H3BTC = 1,3,5-benzenetricarboxylic acid] have been reported. This universal host is able to grow mixed metal NPs from mixed metal precursors. Monodentate carboxylate groups of BTC linker act as anchoring sites for the metal ions of the metal precursors. This is the main driving force to grow NPs within the cavities along with the high flexibility of this polymer at room temperature. Mechanism involves acid formation followed by redox reaction to synthesize metal NPs explained by EPR and FTIR. Paramagnetic properties have been shown by as-synthesized Fe NPs integrated framework at room temperature under applied magnetic field up to 17,500 Oe.

  5. Size tuned polyol-made Zn0.9M0.1Fe2O4 (M = Mn, Co, Ni) ferrite nanoparticles as potential heating agents for magnetic hyperthermia: from synthesis control to toxicity survey

    NASA Astrophysics Data System (ADS)

    Basti, H.; Hanini, A.; Levy, M.; Ben Tahar, L.; Herbst, F.; Smiri, L. S.; Kacem, K.; Gavard, J.; Wilhelm, C.; Gazeau, F.; Chau, F.; Ammar, S.

    2014-12-01

    Zn-rich substituted Zn0.9M0.1Fe2O4 (M = Mn, Co, Ni) ferrite nanoparticles (NPs) of about 5 and 10 nm were produced by the so-called polyol method. They were engineered for hyperthermia therapy based on their magnetic and morphological properties. Indeed, because of their comparatively low Curie temperature and reasonable magnetization, these probes may turn into useful self-regulated heating agents under suitable conditions. For such a purpose, the structure, the microstructure, the magnetic and magnetocalorimetric properties of the produced NPs as well as their in vitro cytotoxicity were investigated. Our results demonstrate that the magnetic properties of these magnetically diluted spinel ferrite particles can be largely modified by just changing their size. They also show that the about 10 nm sized manganese-based ones exhibit the highest heating power under a 700 kHz ac magnetic field and the lowest cytotoxicity on Immortalized human umbilical vascular endothelial cells (HUVEC).

  6. Seasonal study of concentration of heavy metals in waters from lower São Francisco River basin, Brazil.

    PubMed

    Souza, A M; Salviano, A M; Melo, J F B; Felix, W P; Belém, C S; Ramos, P N

    2016-01-01

    In this study we determined the concentration of metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) in the water lower São Francisco River basin, to evaluate the influence of urbanization and industrialization on environmental changes in the water resource. All samples were analyzed using the IUPAC adapted method and processed in an atomic absorption spectrophotometer. The sampling stations located near the industrial areas were influenced by industrialization because they presented higher concentrations of Cd, Cr, Ni and Cu. The other sampled locations showed changes with regard the trace elements probably originating in the soil, like Fe, Zn and Pb. There was a gradual increase in the concentrations of metals, in general, in the period of highest rainfall of the hydrographic network. Overall, except for Zn and Mn, the trace elements exceeded the maximum allowed value established by national legislation (CONAMA). Lower São Francisco River basin has suffered interference from urbanization and industrialization, so awareness programs should be developed so as to control and lessen future problems.

  7. Tunable magnetism of 3d transition metal doped BiFeO3

    NASA Astrophysics Data System (ADS)

    Lu, S.; Li, C.; Zhao, Y. F.; Gong, Y. Y.; Niu, L. Y.; Liu, X. J.; Wang, T.

    2017-10-01

    Electronic polarization or bond relaxation can effectively alter the electronic and magnetic behavior of materials by doping impurity atom. For this aim, the thermodynamic, electronic and magnetic performances of cubic BiFeO3 have been modulated by the 3d transition metal (TM) dopants (Sc, Ti, V, Cr, Mn, Co, Ni, Cu and Zn) based on the density functional theory. Results show that the doped specimen with low impurity concentration is more stable than that with high impurity concentration. The Mulliken charge values and spin magnetic moments of TM element are making major changes, while those of all host atoms are making any major changes. Especially, it is the linear relation between the spin magnetic moments of TM dopants and the total magnetic moment of doped specimens; thus, the variations of total magnetic moment of doped specimens are decided by the spin magnetic moments of TM dopants, thought the total magnetic moments of doped specimens mainly come from Fe atom and TM dopants. Besides, as double TM atoms substitution the Fe atoms, the Sc-, Ti-, Mn-, Co- and Zn-doped specimens show AFM state, while the V-, Cr-, Ni- and Cu-doped specimens show FM state.

  8. Unique coordination of pyrazine in T[Ni(CN){sub 4}].2pyz with T=Mn, Zn, Cd

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemus-Santana, A.A.; Rodriguez-Hernandez, J.; Castillo, L.F. del, E-mail: lfelipe@servidor.unam.m

    2009-04-15

    The materials under study, T[Ni(CN){sub 4}].2pyz with T=Mn, Zn, Cd, were prepared by separation of T[Ni(CN){sub 4}] layers in citrate aqueous solution to allow the intercalation of the pyrazine molecules. The obtained solids were characterized from chemical analyses, X-ray diffraction, infrared, Raman, thermogravimetry, UV-Vis, magnetic and adsorption data. Their crystal structure was solved from ab initio using direct methods and then refined by the Rietveld method. A unique coordination for pyrazine to metal centers at neighboring layers was observed. The pyrazine molecule is found forming a bridge between Ni and T atoms, quite different from the proposed structures for T=Fe,more » Ni where it remains coordinated to two T atoms to form a vertical pillar between neighboring layers. The coordination of pyrazine to both Ni and T atoms minimizes the material free volume and leads to form a hydrophobic framework. On heating the solids remain stable up to 140 deg. C. No CO{sub 2} and H{sub 2} adsorption was observed in the small free spaces of their frameworks. - Graphical abstract: Framework for T[Ni(CN){sub 4}].2pyz with T=Mn, Zn, Cd.« less

  9. Assessment of heavy metal contamination in the sediments of Nansihu Lake Catchment, China.

    PubMed

    Liu, Enfeng; Shen, Ji; Yang, Liyuan; Zhang, Enlou; Meng, Xianghua; Wang, Jianjun

    2010-02-01

    At present, anthropogenic contribution of heavy metals far exceeds natural input in some aquatic sediment, but the proportions are difficult to differentiate due to the changes in sediment characters. In this paper, the metal (Al, Fe, K, Mg, Ca, Cr, Cu, Ni, and Zn) concentrations, grain size, and total organic carbon (TOC) content in the surface and core sediments of Nansihu Lake Catchment (the open lake and six inflow rivers) were determined. The chemical speciations of the metals (Al, Fe, Cr, Cu, Ni, and Zn) in the surface sediments were also analyzed. Approaches of factor analysis, normalized enrichment factor (EF) and the new non-residual fractions enrichment factor (K(NRF)) were used to differentiate the sources of the metals in the sediments, from detrital clastic debris or anthropogenic input, and to quantify the anthropogenic contamination. The results indicate that natural processes were more dominant in concentrating the metals in the surface and core sediments of the open lake. High concentration of Ca and deficiency of other metals in the upper layers of the sediment core were attributed to the input of carbonate minerals in the catchment with increasing human activities since 1980s. High TOC content magnified the deficiency of the metals. Nevertheless, the EF and K(NRF) both reveal moderate to significant anthropogenic contamination of Cr, Cu, Ni, and Zn in the surface sediments of Laoyun River and the estuary and Cr in the surface sediments of Baima River. The proportion of non-residual fractions (acid soluble, reducible, and oxidizable fractions) of Cr, Cu, Ni, and Zn in the contaminated sediments increased to 37-99% from the background levels less than 30%.

  10. Trace elements in feathers and eggshells of brown booby Sula leucogaster in the Marine National Park of Currais Islands, Brazil.

    PubMed

    Dolci, Natiely Natalyane; Sá, Fabian; da Costa Machado, Eunice; Krul, Ricardo; Rodrigues Neto, Renato

    2017-09-10

    Levels of trace elements were investigated in feathers of 51 adults and 47 eggshells of brown boobies Sula leucogaster from one bird colony in the Marine National Park of Currais Islands, Brazil, between December 2013 and October 2014. Average concentrations (μg g -1 , dry weight) in feathers and eggshells, respectively, were Al 50.62-9.58, As 0.35-2.37, Cd 0.05-0.03, Co 0.38-2.1, Cu 15.12-0.99, Fe 47.47-22.92, Mg 815.71-1116.92, Ni 0.29-11.85, and Zn 94.16-1.98. In both arrays, the average concentration of Mg was the highest among all the elements analyzed, while the lowest was recorded for Cd. As and Ni presented levels at which biological impacts might occur. Zn concentrations were higher than those considered normal in other organs. Levels of Al, Fe, Cu, Zn, and Cd were higher in feathers, whereas higher contents of Mg, Co, Ni, and As occurred in eggshells. The comparison between the elements in eggshells collected at different seasons showed no significant difference (p > 0.05) due, probably, to the lack of temporal variation on foraging behavior and/or on bioavailability of trace elements. Metals and arsenic in feathers and eggshells were mostly not correlated. Future studies on Paraná coast should focus on the speciation of the elements, especially As, Ni, and Zn, which proved to be a possible problem for the environment and biota. It is necessary to investigate both matrices, shell and internal contents of the eggs, in order to verify if the differences previously reported in other studies also occur in eggs of brown boobies in the Marine National Park of Currais Islands.

  11. Redistribution of fractions of zinc, cadmium, nickel, copper, and lead in contaminated calcareous soils treated with EDTA.

    PubMed

    Jalali, Mohsen; Khanlari, Zahra V

    2007-11-01

    Effect of ethylene diamine tetraacetic acid (EDTA) on the fractionation of zinc (Zn), cadmium (Cd), nickel (Ni), copper (Cu), and lead (Pb) in contaminated calcareous soils was investigated. Soil samples containing variable levels of contamination, from 105.9 to 5803 mg/kg Zn, from 2.2 to 1361 mg/kg Cd, from 31 to 64.0 mg/kg Ni, from 24 to 84 mg/kg Cu, and from 109 to 24,850 mg/kg Pb, were subjected to EDTA treatment at different dosages of 0, 1.0, and 2.0 g/kg. Metals in the incubated soils were fractionated after 5 months by a sequential extraction procedure, in which the metal fractions were experimentally defined as exchangeable (EXCH), carbonate (CARB), Mn oxide (MNO), Fe oxide (FEO), organic matter (OM), and residual (RES) fractions. In contaminated soils without EDTA addition, Zn, Ni, Cu, and Pb were predominately present in the RES fraction, up to 60.0%, 32.3%, 41.1%, and 36.8%, respectively. In general, with the EDTA addition, the EXCH and CARB fractions of these metals increased dramatically while the OM fraction decreased. The Zn, Ni, Cu, and Pb were distributed mostly in RES, OM, FEO, and CARB fractions in contaminated soils, but Cd was found predominately in the CARB, MNO, and RES fractions. The OM fraction decreased with increasing amounts of EDTA. In the contaminated soils, EDTA removed some Pb, Zn, Cu, and Ni from MNO, FEO, and OM fractions and redistributed them into CARB and EXCH fractions. Based on the relative percent in the EXCH and CARB fractions, the order of solubility was Cd > Pb > Ni > Cu > Zn for contaminated soils, before adding of EDTA, and after adding of EDTA, the order of solubility was Pb > Cd > Zn > Ni > Cu. The risk of groundwater contamination will increase after applying EDTA and it needed to be used very carefully.

  12. The Role of Anionogenic Elements (As, Sb, Mo, Se, S, P, N, Cl, F, C) In The Formation of Technogenic Geochemical Anomalies

    NASA Astrophysics Data System (ADS)

    Abrosimova, Natalya; Bortnikova, Svetlana

    2017-12-01

    The study was conducted on the example of sulphide-containing mine tailings with a varying amount of sulphide and arsenide minerals, from three distinct tailings dumps situated in Russia: Karabash Mine Site, South Ural; Komsomolsk tailings impoundment, Kemerovo region; Khovu-Aksy mine site, Tuva Republic. The aim of the study was to compare the mobility of anionogenic elements (As, Sb, Mo, Se, S, P, N, Cl, F, C) and their role in migration, precipitation, and concentration of metals during the water-tailings interaction depending on the physicochemical parameters (pH, Eh) of the medium and the mineral composition of the waste material. Using slightly acidic leaching experiments the quantitative estimation of mobile forms of elements is given. Based on the compositions of the obtained water leaching solutions, aqueous speciation of chemical elements and saturation index of key minerals in the experimental solutions were calculated. The results of calculating forms of chemical elements made it possible to construct series of mobility of metals and metalloids in solutions with different physicochemical parameters. In the alkaline conditions, Sb>As>Cd>Cu>Zn>Fe>Pb, when the medium is acidified, the series changes, As>Cd>Cu>Zn>Pb>Sb>Fe in weakly alkaline conditions, Sb>Mn>As>Zn>Fe however, when the medium is acidified, the series changes to Cd>Mn>Pb>Cu>Zn>Sb>Ni>Fe>As under acidic conditions Cd>Cu>Zn>Pb>Mn>Fe>Se>Mo>Sb>As>Ni. The mineral composition of the tailings was investigated, which will allow to determine the sources of toxic elements and to understand the processes of secondary mineral formation in technogenic objects. Arsenopyrite and pyrite predominate in the heavy fraction of the Komsomolsk tailings impoundment, arsenopyrite grains are often corroded, Sb contained in Sb oxide and Sb sulfide. The pyrite and barite are determined in the solid matter of the Karabash Mine Site and chalcopyrite, sphalerite, tennantite Cu3AsS3, and tetrahedrite (Cu,Fe)12Sb4S13 are determined in the form of inclusions in grains of pyrite.

  13. Refinement of atomic and magnetic structures using neutron diffraction for synthesized bulk and nano-nickel zinc gallate ferrite

    NASA Astrophysics Data System (ADS)

    Ata-Allah, S. S.; Balagurov, A. M.; Hashhash, A.; Bobrikov, I. A.; Hamdy, Sh.

    2016-01-01

    The parent NiFe2O4 and Zn/Ga substituted spinel ferrite powders have been prepared by solid state reaction technique. As a typical example, the Ni0.7Zn0.3Fe1.5Ga0.5O4 sample has been prepared by sol-gel auto combustion method with the nano-scale crystallites size. X-ray and Mössbauer studies were carried out for the prepared samples. Structure and microstructure properties were investigated using the time-of-flight HRFD instrument at the IBR-2 pulsed reactor, at a temperatures range 15-473 K. The Rietveld refinement of the neutron diffraction data revealed that all samples possess cubic symmetry corresponding to the space group Fd3m. Cations distribution show that Ni2+ is a complete inverse spinel ion, while Ga3+ equally distributed between the two A and B-sublattices. The level of microstrains in bulk samples was estimated as very small while the size of coherently scattered domains is quite large. For nano-structured sample the domain size is around 120 Å.

  14. 10 CFR Appendix E to Part 835 - Values for Establishing Sealed Radioactive Source Accountability and Radioactive Material Posting...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ....9E+06 Fe-59 1.9E+02 Fe-60 8.1E+03 Co-56 3.9E+01 Co-57 2.3E+02 Co-58 1.3E+02 Co-60 1.7E+01 Ni-59 3.2E+06 Ni-63 1.3E+06 Zn-65 1.1E+02 Ge-68 5.6E+02 As-73 5.3E+02 Se-75 6.3E+01 Se-79 8.7E+05 Rb-83 9.1E+01...

  15. 10 CFR Appendix E to Part 835 - Values for Establishing Sealed Radioactive Source Accountability and Radioactive Material Posting...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ....9E+06 Fe-59 1.9E+02 Fe-60 8.1E+03 Co-56 3.9E+01 Co-57 2.3E+02 Co-58 1.3E+02 Co-60 1.7E+01 Ni-59 3.2E+06 Ni-63 1.3E+06 Zn-65 1.1E+02 Ge-68 5.6E+02 As-73 5.3E+02 Se-75 6.3E+01 Se-79 8.7E+05 Rb-83 9.1E+01...

  16. Synthesis and characterization of T[Ni(CN){sub 4}].2pyz with T=Fe, Ni; pyz=pyrazine: Formation of T-pyz-Ni bridges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemus-Santana, A.A.; Rodriguez-Hernandez, J.; Institute of Materials Science and Technology, University of Havana

    2011-08-15

    The formation of T-pyz-Ni bridges (pyz=pyrazine) in the T[Ni(CN){sub 4}].2pyz series is known for T=Mn, Zn, Cd and Co but not with T=Fe, Ni. In this contribution the existence of such bridges also for T=Fe, Ni is discussed. The obtained pillared solids, T[Ni(CN){sub 4}].2pyz, were characterized from XRD, TG, UV-Vis, IR, Raman, Moessbauer and magnetic data. Their crystal structures were refined in the orthorhombic Pmna space group from XRD powder patterns. The structural behavior of these solids on cooling down to 77 K was also studied. In the 180-200 K temperature range the occurrence of a structural transition to amore » monoclinic structure (P2{sub 1}/c space group) was observed. No temperature induced spin transition was observed for Fe[Ni(CN){sub 4}].2pyz. The iron (II) was found to be in high spin electronic state and this configuration is preserved on cooling down to 2 K. The magnetic data indicate the occurrence of a low temperature weak anti-ferromagnetic interaction between T metal centers within the T[Ni(CN){sub 4}] layer. In the paramagnetic region for Ni[Ni(CN){sub 4}].2pyz, a reversible temperature induced spin transition for the inner Ni atom was detected. - Graphical abstract: Rippled sheets structure for the pillared solids T[Ni(CN){sub 4}].2pyz. The pyrazine molecule is found forming T-pyz-Ni bridges between neighboring layers. Highlights: > Pillared 2D solids. > Inorganic-organic solids. > Assembling of molecular blocks. > From 1D and 2D building blocks to 3D solids.« less

  17. Total reflection X-ray fluorescence spectrometric determination of elements in water hyacinth from the Lerma River

    NASA Astrophysics Data System (ADS)

    Tejeda, S.; Zarazúa, G.; Ávila-Pérez, P.; Carapia-Morales, L.; Martínez, T.

    2010-06-01

    The Lerma River is one of the most polluted body water in Mexico. For this reason, only the highly resistant organisms such as water hyacinth are able to reproduce in this river. The aim of this work was to evaluate the concentration of K, S, Fe, Ca, Mn, Ti, Zn, Sr, Rb, Cu, Cr, Ni, Pb and Br in roots of water hyacinth ( Eichhornia crassipes) from the Lerma River. The samples were collected from five sites in the river and analyzed in triplicate using a TXRF Spectrometer 'TX-2000 Ital Structures' with a Si(Li) detector and a resolution of 140 eV (FWHM) at Mn Kα. A Mo tube (40 kV, 30 mA) with 17.4 KeV excitation energy was used for a counting time of 500 s. Results show that the average metal concentration in the water hyacinth roots decrease in the following order: K (9698.2 µg/g) > S (7593.3 µg/g) > Fe (4406.6 µg/g) > Ca (2601.8 µg/g) > Mn (604.2 µg/g) > Ti (230.7 µg/g) > Zn (51.65 µg/g) > Sr (43.55 µg/g) > Rb (18.61 µg/g) > Cu (12.78 µg/g) > Cr (6.45 µg/g) > Ni (4.68 µg/g) > Pb (4.32 µg/g) > Br (4.31 µg/g) and the bioconcentration factors in the water hyacinth decrease in the sequence: Ti > Fe > Mn > Cu > Ni > Zn > S > Pb > Rb > K > Cr > Sr > Br > Ca. The concentrations in roots of water hyacinth reflect the high pollution level of the river.

  18. Secondary metabolites and metal content dynamics in Teucrium montanum L. and Teucrium chamaedrys L. from habitats with serpentine and calcareous substrate.

    PubMed

    Zlatić, Nenad M; Stanković, Milan S; Simić, Zoran S

    2017-03-01

    The purpose of this comparative analysis is the determination of the total quantity of metals (Mg, Ca, K, Ni, Fe, Mn, Zn, Cu, Cr and Pb) in soil samples, above ground plant parts and tea made of plants Teucrium montanum and T. chamaedrys from different serpentine and calcareous habitats as well as of the total quantity of phenolic compounds and antioxidant activity. The obtained results showed that the quantities of certain metals (Mg, Fe, Ni and Mn) in the soil from the serpentine habitats were greater in comparison with other metals (Ca, Zn and Pb) which were more frequently found in the soil from the calcareous habitats. The results demonstrated that the analysed plant samples from the serpentine habitats contained higher quantity of Fe, Ni and Cr as opposed to the plant samples from the calcareous habitats which contained greater quantity of Ca and Zn. Although the studied species accumulate analysed metals in different quantities, depending on the substrate type, they are not hyperaccumulators of these metals. The use of these species from serpentine habitats for tea preparation is safe to a great extent, because in spite of the determined metal absorption by plant organs, the tea does not contain dangerous quantity of heavy metals. The results showed greater total quantity of phenolic compounds and the higher level of antioxidant activity in the plant samples from serpentine habitats in comparison with the samples from calcareous habitats, which is an indicator of one of the mechanisms of adaptation to the serpentine habitat conditions.

  19. Phytoremediation potential of weeds in heavy metal contaminated soils of the Bassa Industrial Zone of Douala, Cameroon.

    PubMed

    Lum, A Fontem; Ngwa, E S A; Chikoye, D; Suh, C E

    2014-01-01

    Phytoremediation is a promising option for reclaiming soils contaminated with toxic metals, using plants with high potentials for extraction, stabilization and hyperaccumulation. This study was conducted in Cameroon, at the Bassa Industrial Zone of Douala in 2011, to assess the total content of 19 heavy metals and 5 other elements in soils and phytoremediation potential of 12 weeds. Partial extraction was carried out in soil, plant root and shoot samples. Phytoremediation potential was evaluated in terms of the Biological Concentration Factor, Translocation Factor and Biological Accumulation Coefficient. The detectable content of the heavy metals in soils was Cu:70-179, Pb:8-130, Zn:200-971, Ni:74-296, Co:31-90, Mn:1983-4139, V:165-383, Cr:42-1054, Ba:26-239, Sc:21-56, Al:6.11-9.84, Th:7-22, Sr:30-190, La:52-115, Zr:111-341, Y:10-49, Nb:90-172 in mg kg(-1), and Ti:2.73-4.09 and Fe:12-16.24 in wt%. The contamination index revealed that the soils were slightly to heavily contaminated while the geoaccumulation index showed that the soils ranged from unpolluted to highly polluted. The concentration of heavy metals was ranked as Zn > Ni > Cu > V > Mn > Sc > Co > Pb and Cr in the roots and Mn > Zn > Ni > Cu > Sc > Co > V > Pb > Cr > Fe in the shoots. Dissotis rotundifolia and Kyllinga erecta had phytoextraction potentials for Pb and Paspalum orbicularefor Fe. Eleusine indica and K. erecta had phytostabilisation potential for soils contaminated with Cu and Pb, respectively.

  20. Airborne mineral components and trace metals in Paris region: spatial and temporal variability.

    PubMed

    Poulakis, E; Theodosi, C; Bressi, M; Sciare, J; Ghersi, V; Mihalopoulos, N

    2015-10-01

    A variety of mineral components (Al, Fe) and trace metals (V, Cr, Mn, Ni, Cu, Zn, Cd, Pb) were simultaneously measured in PM2.5 and PM10 fractions at three different locations (traffic, urban, and suburban) in the Greater Paris Area (GPA) on a daily basis throughout a year. Mineral species and trace metal levels measured in both fractions are in agreement with those reported in the literature and below the thresholds defined by the European guidelines for toxic metals (Cd, Ni, Pb). Size distribution between PM2.5 and PM10 fractions revealed that mineral components prevail in the coarse mode, while trace metals are mainly confined in the fine one. Enrichment factor analysis, statistical analysis, and seasonal variability suggest that elements such as Mn, Cr, Zn, Fe, and Cu are attributed to traffic, V and Ni to oil combustion while Cd and Pb to industrial activities with regional origin. Meteorological parameters such as rain, boundary layer height (BLH), and air mass origin were found to significantly influence element concentrations. Periods with high frequency of northern and eastern air masses (from high populated and industrialized areas) are characterized by high metal concentrations. Finally, inner city and traffic emissions were also evaluated in PM2.5 fraction. Significant contributions (>50 %) were measured in the traffic site for Mn, Fe, Cr, Zn, and Cu, confirming that vehicle emissions contribute significantly to their levels, while in the urban site, the lower contributions (18 to 33 %) for all measured metals highlight the influence of regional sources on their levels.

  1. Sediment heavy metals and benthic diversities in Hun-Tai River, northeast of China.

    PubMed

    Qu, Xiaodong; Ren, Ze; Zhang, Min; Liu, Xiaobo; Peng, Wenqi

    2017-04-01

    In aquatic ecosystems, metal contamination in sediments has become a ubiquitous environmental problem, causing serious issues. Hun-Tai River, located in northeast of China, flows through an important heavy industry region and metropolitan area. This study examined the heavy metals (Cd, Cr, Cu, Fe, Mn, Pb, Ni, and Zn) of sediments and diversities (taxa richness, Shannon diversity, and evenness) of benthic assemblages (benthic algae and macroinvertebrate) in Hun-Tai River. The results clearly described the spatial patterns of metal contamination in terms of geo-accumulation index and contamination factor, as well as the spatial patterns of benthic diversities in terms of taxa richness, Shannon index, and evenness by kriging interpolation. The sediments were largely contaminated by Cd, followed by Cu, Fe, Zn, Mn, and Ni. Cd and Zn had similar spatial patterns and similar sources. Cu, Fe, Mn, and Ni showed similar spatial patterns and similar sources. The surface sediments were unpolluted by Cr and Pb. The metal mines and the heavy industry in the major cities were the potential pollution sources. Benthic algae and macroinvertebrate responded similarly to the heterogeneous environment and metal contamination, with high taxa richness and Shannon index in middle-upper reaches of Hun-Tai River. Evenness showed complex spatial patterns. Under low contamination, both taxa richness, Shannon diversity, and evenness had a large variation range. However, under the moderate and high contamination, the taxa richness and Shannon diversity kept to a low level but the evenness had a high level. This study provided insights into the sediment heavy metal contamination in Hun-Tai River.

  2. Structural, optical and dielectric properties of transition metal (MFe2O4; M = Co, Ni and Zn) nanoferrites

    NASA Astrophysics Data System (ADS)

    Chand, Prakash; Vaish, Swapnil; Kumar, Praveen

    2017-11-01

    In the present work, transition metal spinel ferrite (MFe2O4; M = Co, Ni, Zn) nanostructures synthesized by chemical co-precipitation method. XRD analysis confirms the formation of cubic spinel-type structure with space group Fd3m and the average crystallite size calculated by Scherrer's formula found to be in 9-14 nm range. Scanning electron microscopy was used to study surface morphology of the samples. Moreover, Raman and PL spectra also confirm the formation of the cubic structure. The Raman spectra measured on cobalt, nickel and zinc ferrite revealed a larger number of phonon bands than expected for the cubic spinel structure. The calculated optical energy band gaps, obtained by Tauc's relation from UV-Vis absorption spectra are found to be as 2.44, 3.54 and 3.25 eV for CoFe2O4, NiFe2O4&ZnFe2O, respectively. The analysis of the complex impedance spectra of all ferrites samples shows the presence of one semicircular arc at all selected temperatures, signifying a key role of the grain boundary contribution. The dielectric constants (ε ‧) were measured in the frequency range from 10 Hz to 5 MHz at different temperatures and is found to be decreased suddenly with an increase in frequency and maintain a steady state or constant at higher frequencies for all the three samples. The AC conductivity is found to be increased with frequency and temperature of all the three samples which is explained on the basis of Koop's phenomenological theory.

  3. Bioaugmentation in growing plants for lunar bases

    NASA Astrophysics Data System (ADS)

    Zaets, I.; Burlak, O.; Rogutskyy, I.; Vasilenko, A.; Mytrokhyn, O.; Lukashov, D.; Foing, B.; Kozyrovska, N.

    2011-03-01

    Microorganisms may be a key element in a precursory scenario of growing pioneer plants for extraterrestrial exploration. They can be used for plant inoculation to leach nutritional elements from regolith, to alleviate lunar stressors, as well as to decompose both lunar rocks and the plant straw in order to form a protosoil. Bioleaching capacities of both French marigold (Tagetes patula L.) and the associated bacteria in contact with a lunar rock simulant (terrestrial anorthosite) were examined using the model plant-bacteria microcosms under controlled conditions. Marigold accumulated K, Na, Fe, Zn, Ni, and Cr at higher concentrations in anorthosite compared to the podzol soil. Plants inoculated with the consortium of well-defined species of bacteria accumulated higher levels of K, Mg, and Mn, but lower levels of Ni, Cr, Zn, Na, Ca, Fe, which exist at higher levels in anorthosite. Bacteria also affected the Са/Mg and Fe/Mn ratios in the biomass of marigold grown on anorthosite. Despite their growth retardation, the inoculated plants had 15% higher weight on anorthosite than noninoculated plants. The data suggest that the bacteria supplied basic macro-and microelements to the model plant.

  4. Bioaccumulation of metals in fish species from water and sediments in macrotidal Ennore creek, Chennai, SE coast of India: A metropolitan city effect.

    PubMed

    Jayaprakash, M; Kumar, R Senthil; Giridharan, L; Sujitha, S B; Sarkar, S K; Jonathan, M P

    2015-10-01

    Accumulation of trace metals (Fe, Mn, Cr, Cu, Ni, Co, Pb, Zn, Cd) were investigated in water, sediment (n=20) along with six fish of diverse feeding guilds (Sillago sihama, Liza parsia, Etroplus suratensis, Oreochromis mossambicus, Arius parkii and Gerres oyena) from the Ennore creek, northern part of Chennai metropolitan megacity, southeast coast of India. Dissolved trace metals (DTMs) in surface water samples and total trace metals (TTMs) in surface sediments (top 0-10cm) indicate that concentration pattern of metals was higher in the discharge point of the river/channels entering the main creek. The maximum mean values of DTMs exhibited the following decreasing order (expressed in µg/L): Fe (1698)>Mn (24)>Zn (14.50)>Pb (13.89)>Ni (6.73)>Cu (3.53)>Co (3.04)>Cr (2.01) whereas the trend is somewhat different in sediments (µgg(-1)): Fe (4300)>Mn (640)>Cr (383)>Zn (155)>Cu (102)>Ni (35)>Pb (32)>Cd (0.51) are mainly due to the industrial complexes right on the banks of the river/channels. Species-specific heterogeneous patterns of tissue metal loads were apparent and the overall metal enrichment exhibited the following decreasing order (expressed in µgg(-1)): Cu (7.33)>Fe (6.53)>Zn (4.91)>Cr (1.67)>Pb (1.33)>Ni (0.44)>Mn (0.43)>Co (0.36)>Cd (0.11). This indicates that metals are absorbed onto the different organs, which is also endorsed by the calculated values of bioaccumulation factor (BAFs) (avg. muscle 117, gill 126, liver 123, intestine 118) in fishes. The high calculated biota sediment accumulation factor (BSAF) (0.437) for the species Arius parkii is considered to be a potential bioindicator in this region. The enrichment of trace metals is also supported by the association of metals in water, sediments and different body organs (muscle, gill, liver, intestine) of fish samples. Comparative studies with other coastal regions indicate considerable enrichment of DTMs & TTMs in sediments as well as in various organs of fish samples. Holistic spatial, temporal monitoring and comprehensive regional strategies are required to prevent health risks and ensure nutritional safety conditions. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Submicron-scale mineralogy of lithotypes and the implications for trace element associations: Blue Gem coal, Knox County, Kentucky

    DOE PAGES

    Hower, James C.; Berti, Debora; Hochella, Michael F.; ...

    2018-04-16

    Transmission electron microscopy accompanied by energy-dispersive spectroscopy and selected area electron diffraction of density-gradient separates from two lithotypes of the low-ash, low-sulfur Blue Gem coal, eastern Kentucky, revealed an array of previously unrecognized (in this coal, and arguable in most others) sub-micron minerals, some <10 nm in size. The first sample representing the 1.22–1.24 specific gravity fraction of the middle bench contains a mineral identified as a La-, Ce-, Nd-bearing monazite; other minerals with CrFe, CuFeS, FeZn-S, and Pb; and areas, probably comprising agglomerates of several grains, if not several minerals, with concentrations of Mg, Ca, Ti, Fe, Zn, Zr,more » and Mo. The second sample representing the 1.30–1.31 specific gravity fraction of the basal lithotype has aggregates of particles enriched in Mg, Ca, Ti, and Fe. Individual grains not specifically quantified include CrNiMnCuFeS, AgS, and CuS. Detailed investigation of one area (most of the variation within a <4 μm 2 region) demonstrates the presence of greenockite (CdS); minute phases containing NiCoGe and AgCdBi, the latter with a more evident S association than the former; metallic Bi; nisnite (Ni 3Sn); silver cadmium; manganosite (MnO); and siderite. Some minerals, such as the monazite, are most likely of detrital or tuffaceous origin. Many of the other assemblages could be of hydrothermal origin, a hypothesis supported by known regional geochemical and coal rank trends, but not previously demonstrated in mineral assemblages at the 10's of nm scale in this region.« less

  6. Submicron-scale mineralogy of lithotypes and the implications for trace element associations: Blue Gem coal, Knox County, Kentucky

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hower, James C.; Berti, Debora; Hochella, Michael F.

    Transmission electron microscopy accompanied by energy-dispersive spectroscopy and selected area electron diffraction of density-gradient separates from two lithotypes of the low-ash, low-sulfur Blue Gem coal, eastern Kentucky, revealed an array of previously unrecognized (in this coal, and arguable in most others) sub-micron minerals, some <10 nm in size. The first sample representing the 1.22–1.24 specific gravity fraction of the middle bench contains a mineral identified as a La-, Ce-, Nd-bearing monazite; other minerals with CrFe, CuFeS, FeZn-S, and Pb; and areas, probably comprising agglomerates of several grains, if not several minerals, with concentrations of Mg, Ca, Ti, Fe, Zn, Zr,more » and Mo. The second sample representing the 1.30–1.31 specific gravity fraction of the basal lithotype has aggregates of particles enriched in Mg, Ca, Ti, and Fe. Individual grains not specifically quantified include CrNiMnCuFeS, AgS, and CuS. Detailed investigation of one area (most of the variation within a <4 μm 2 region) demonstrates the presence of greenockite (CdS); minute phases containing NiCoGe and AgCdBi, the latter with a more evident S association than the former; metallic Bi; nisnite (Ni 3Sn); silver cadmium; manganosite (MnO); and siderite. Some minerals, such as the monazite, are most likely of detrital or tuffaceous origin. Many of the other assemblages could be of hydrothermal origin, a hypothesis supported by known regional geochemical and coal rank trends, but not previously demonstrated in mineral assemblages at the 10's of nm scale in this region.« less

  7. Characterization of nanodimensional Ni-Zn ferrite prepared by mechanochemical and thermal methods

    NASA Astrophysics Data System (ADS)

    Manova, E.; Paneva, D.; Kunev, B.; Rivière, E.; Estournès, C.; Mitov, I.

    2010-03-01

    Nickel zinc ferrite nanoparticles, Ni1-xZnxFe2O4 (x = 0, 0.2, 0.5, 0.8, 1.0), with dimensions below 10 nm have been prepared by combining chemical precipitation with high-energy ball milling. For comparison, their analogues obtained by thermal synthesis have also been studied. Mössbauer spectroscopy, X-ray diffraction, and magnetic measurements are used for the characterization of the obtained materials. X-ray diffraction shows that after 3h of mechanical treatment ferrites containing zinc are formed, while 6h of treatment is needed to obtain NiFe2O4. The magnetic properties of the samples exhibit a strong dependence on the phase composition, particle size and preparation method.

  8. Magnetic activity of surface plasmon resonance using dielectric magnetic materials fabricated on quartz glass substrate

    NASA Astrophysics Data System (ADS)

    Narushima, Kazuki; Ashizawa, Yoshito; Brachwitz, Kerstin; Hochmuth, Holger; Lorenz, Michael; Grundmann, Marius; Nakagawa, Katsuji

    2016-07-01

    The magnetic activity of surface plasmons in Au/MFe2O4 (M = Ni, Co, and Zn) polycrystalline bilayer films fabricated on a quartz glass substrate was studied for future magnetic sensor applications using surface plasmon resonance. The excitation of surface plasmons and their magnetic activity were observed in all investigated Au/MFe2O4 films. The magnetic activity of surface plasmons of the polycrystalline Au/NiFe2O4 film was larger than those of the other polycrystalline Au/MFe2O4 films, the epitaxial NiFe2O4 film, and metallic films. The large magnetic activity of surface plasmons of the polycrystalline film is controlled by manipulating surface plasmon excitation conditions and magnetic properties.

  9. Metal transport and remobilisation in a basin affected by acid mine drainage: the role of ochreous amorphous precipitates.

    PubMed

    Consani, Sirio; Carbone, Cristina; Dinelli, Enrico; Balić-Žunić, Tonci; Cutroneo, Laura; Capello, Marco; Salviulo, Gabriella; Lucchetti, Gabriella

    2017-06-01

    Metal-polluted mine waters represent a major threat to the quality of waters and sediments in a downstream basin. At the confluence between acidic mine waters and the unpolluted waters of the Gromolo Torrent (Liguria, North-West Italy), the massive formation of an ochreous amorphous precipitate takes place. This precipitate forms a soft blanket that covers the torrent bed and can be observed down to its mouth in the sea. The aim of this work is to evaluate the dispersion of metals in the Gromolo Torrent basin from the abandoned Cu-Fe sulphide mine of Libiola to the Ligurian Sea and to assess the metal remobilisation from the amorphous precipitates. The mineralogy of the superficial sediments collected in the torrent bed and the concentrations of different elements of environmental concern (Cu, Zn, Cd, Co, Cr, Mn, Ni, Pb, As, and Sb) were therefore analysed. The results showed that the precipitates contain high concentration of Fe, Al, Cu, and Zn, significantly modifying the bulk chemistry of the Gromolo Torrent sediments. In order to evaluate the possible remobilisation of ecotoxic elements from the amorphous precipitates, bulk leaching tests were performed with both deionised and seawater. Bulk leaching tests with deionised water mobilised primarily high Pb amounts, but also relatively high concentrations of Fe, Al, Cu, and Zn are released in the leachate. In seawater tests, Fe, Al, Cu, and Zn were released in smaller amounts, while other elements like Mn, Cd, Co, and Ni increased in the released fraction. Pb was still strongly released as in deionised water experiments. The results show that the interaction of precipitates and seawater can remobilise high concentrations of metals, thus affecting the surrounding environment.

  10. Investigations of metal leaching from mobile phone parts using TCLP and WET methods.

    PubMed

    Yadav, Satyamanyu; Yadav, Sudesh

    2014-11-01

    Metal leaching from landfills containing end-of-life or otherwise discarded mobile phones poses a threat to the environment as well as public health. In the present study, the metal toxicity of printed wire boards (PWBs), plastics, liquid crystal displays (LCDs) and batteries of mobile phones was assessed using the Toxicity Characteristics Leaching Procedures (TCLP) and the Waste Extraction Test (WET). The PWBs failed TCLP for Pb and Se, and WET for Pb and Zn. In WET, the two PWB samples for Pb and Zn and the battery samples for Co and Cu failed the test. Furthermore, the PWBS for Ni and the battery samples for Ni and Co failed the WET in their TCLP leachates. Both, Ni and Co are the regulatory metals in only WET and not covered under TCLP. These observations indicate that the TCLP seems to be a more aggressive test than the WET for the metal leaching from the mobile phone parts. The compositional variations, nature of leaching solution (acetate in TCLP and citrate in WET) and the redox conditions in the leaching solution of the PWBs resulted in different order of metals with respect to their amounts of leaching from PWBs in TCLP (Fe > Pb > Zn > Ni > Co > Cu) and WET (Zn > Fe > Ni > Pb > Cu). The metal leaching also varied with the make, manufacturing year and part of the mobile phone tested. PWBs, plastics and batteries should be treated as hazardous waste. Metal leaching, particularly of Se and Pb, from mobile phones can be harmful to the environment and human health. Therefore, a scientifically sound and environmentally safe handling and disposal management system needs to be evolved for the mobile phone disposal. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Effect of aluminium substitution on the electrical properties of Ni-Zn nanoferrites

    NASA Astrophysics Data System (ADS)

    Paramesh, D.; Vijaya Kumar, K.; Venkat Reddy, P.

    2017-12-01

    Nanoferrites of general formula Ni0.5 Zn0.5 Alx Fe2-x O4 (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8 and 2.0) synthesized by sol-gel auto combustion technique can be characterized by dielectric behaviour and AC conductivity studies with the help of LCR impedance meter. This paper gives an insight on variations in dielectric constant, dielectric loss with reference to frequency, temperature and Al3+ ion substitution and also the determination of DC resistivity, activation energy and Curie temperature by two probe experimental set-up.

  12. Battery testing at Argonne National Laboratory

    NASA Astrophysics Data System (ADS)

    Deluca, W. H.; Gillie, K. R.; Kulaga, J. E.; Smaga, J. A.; Tummillo, A. F.; Webster, C. E.

    1993-03-01

    Argonne National Laboratory's Analysis & Diagnostic Laboratory (ADL) tests advanced batteries under simulated electric and hybrid vehicle operating conditions. The ADL facilities also include a post-test analysis laboratory to determine, in a protected atmosphere if needed, component compositional changes and failure mechanisms. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The battery evaluations and post-test examinations help identify factors that limit system performance and life and the most-promising R&D approaches for overcoming these limitations. Since 1991, performance characterizations and/or life evaluations have been conducted on eight battery technologies: Na/S, Li/S, Zn/Br, Ni/MH, Ni/Zn, Ni/Cd, Ni/Fe, and lead-acid. These evaluations were performed for the Department of Energy's. Office of Transportation Technologies, Electric and Hybrid Propulsion Division (DOE/OTT/EHP), and Electric Power Research Institute (EPRI) Transportation Program. The results obtained are discussed.

  13. Association of recent exposure to ambient metals on fractional exhaled nitric oxide in 9-11 year old inner-city children.

    PubMed

    Rosa, Maria José; Perzanowski, Matthew S; Divjan, Adnan; Chillrud, Steven N; Hoepner, Lori; Zhang, Hanjie; Ridder, Robert; Perera, Frederica P; Miller, Rachel L

    2014-08-31

    Exposure to ambient metals in urban environments has been associated with wheeze, and emergency room visits and hospitalizations due to respiratory illness. However, the effect of ambient metals exposure on airway inflammation, and how these associations may be modified by seroatopy, has not been determined. Fractional exhaled nitric oxide (FENO) is a reliable proxy marker of airway inflammation. We hypothesized that recent ambient concentrations of Ni, V, Zn and Fe would be associated differentially with proximal and distal fractions of exhaled NO, and that these associations would be modified by seroatopy. As part of the Columbia Center for Children's Environmental Health (CCCEH) birth cohort study, 9-11 year old children (n=192) were evaluated. Ambient measures of Ni, V, Zn and Fe were obtained from a local central monitoring site and averaged over 9 days based on three 24h measures every third day. Fractional exhaled nitric oxide (FENO) samples were obtained at constant flows of 50 (FENO50), 83 and 100mL/s, and used to determine surrogate measures for proximal (JNO) and alveolar (Calv) inflammation. Seroatopy was determined by specific IgE at age 7. Data were analyzed using multivariable linear regression. Ambient V and Fe concentrations were associated positively with FENO50 (p=0.018, p=0.027). Ambient Fe was associated positively with JNO (p=0.017). Ambient Ni and V concentrations were associated positively with Calv (p=0.004, p=0.018, respectively). A stronger association of Ni concentrations with Calv was observed among the children with seroatopy. These results suggest that ambient metals are associated differentially with different fractions of FENO production, and this relationship may be modified by seroatopy. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Synthesis of Ferrite Nickel Nano-particles and Its Role as a p-Dopant in the Improvement of Hole Injection of an Organic Light-Emitting Diode

    NASA Astrophysics Data System (ADS)

    Noori, Maryam; Jafari, Mohammad Reza; Hosseini, Sayed Mohsen; Shahedi, Zahra

    2017-07-01

    We fabricated an organometallic complex based on zinc ions using zinc complex as a fluorescent in organic light-emitting diodes (OLEDs). Also, the nano-particles of ferrite nickel were produced in a simple aqueous system prepared by mixing Ni (NO3)2, Fe (NO3)3 and deionized water solutions. The synthesized zinc bis (8-hydroxyquinoline) (Znq2) complex and NiFe2O4 nano-particles were characterized by using x-ray diffraction (XRD), ultraviolet-visible (UV-Vis), Fourier transform infrared spectroscopy (FT-IR) as well as photoluminescence spectroscopy analysis. Their energy level was also determined by some cyclic voltammetry (CV) measurements. The maximum green photoluminescence was observed at 565 nm. The nano-particles of ferrite nickel were utilized in preparation of OLEDs by blending of the magnetic nano-particles with PEDOT:PSS and Zn-complex solutions. The electrical and optical performance of prepared OLEDs with/without doped nano-particle was studied. The samples were configured into two structures: (1) Indium Tin Oxide (ITO)/ poly(3,4-ethylenedi-oxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/Znq2/(2-4-biphenylyl)-5-phenyl-oxadiazole (PBD)/aluminum (Al) and (2) ITO/PEDOT:PSS:NiFe2O4(NPs)/Znq2/PBD/Al. Obtained results showed that the current density and electroluminescence efficiency were increased and the turn-on voltage decreased (about 3 V) by using nano-particles into a PEDOT:PSS layer (Hole transport layer). Also, the electroluminescence efficiency was decreased by incorporating magnetic nano-particles into a Zn-complex layer (emissive layer). It was found that utilizing NiFe2O4 nano-particles caused an increase of hole-injection layer conductivity effectively and a decrease of the turn-on voltage.

  15. Comparative study of synthesis, structural and magnetic properties of Cu2+ substituted Co-Ni, Co-Zn and Co-Mg nano ferrites

    NASA Astrophysics Data System (ADS)

    Ramakrishna, A.; Murali, N.; Margarette, S. J.; Samatha, K.; Veeraiah, V.

    2018-02-01

    Mixed ferrites of the form Co0.5M0.1Cu0.4Fe2O4 (M = Ni, Zn and Mg) have been synthesized using the sol-gel auto combustion technique. Structural analyses are carried out using powder X-ray diffraction to idntify pure ferrite phases. SEM analysis revealed clear crystal morphology with relatively uniform grain sizes with polygonal structures. The FT-IR studies also confirm the bond formation and cation vibrations at low (365-392 cm-1) and high (579-587 cm-1) bands that correspond to the tetrahedral and octahedral sites, respectively. The magnetic properties studied through vibrating sample magnetometer showed that the Ni substituted sample has more magnetic character by exhibiting the highest saturation magnetization.

  16. Effects of iron(III)chelates on the solubility of heavy metals in calcareous soils.

    PubMed

    Ylivainio, Kari

    2010-10-01

    In this study I evaluated the effects of complexing agents on the solubility of heavy metals in an incubation experiment up to 56 days when complexing agents were applied as Fe-chelates (Fe-EDDS(S,S), Fe-EDDS(mix), Fe-EDTA and Fe-EDDHA) on calcareous soils at a level sufficient to correct Fe chlorosis (0.1 mmol kg(-1)). Of these ligands, EDDHA was the most efficient in keeping Fe in water-soluble form, and EDDS increased the solubility of Cu and Zn most, and only EDTA increased the solubility of Cd and Pb. EDTA increased the solubility of Ni steadily during the incubation period, equalling about 5-8% of the added EDTA concentration. [S,S]-EDDS was biodegraded within 56 days, whereas EDDS(mix) was less biodegradable. Ni-chelates were the most recalcitrant against biodegradation. The study shows that even a moderate input of chelates to soil increases the solubility of toxic heavy metals and their risk of leaching. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  17. Single and multi-layered core-shell structures based on ZnO nanorods obtained by aerosol assisted chemical vapor deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sáenz-Trevizo, A.; Amézaga-Madrid, P.; Pizá-Ruiz, P.

    2015-07-15

    Core–shell nanorod structures were prepared by a sequential synthesis using an aerosol assisted chemical vapor deposition technique. Several samples consisting of ZnO nanorods were initially grown over TiO{sub 2} film-coated borosilicate glass substrates, following the synthesis conditions reported elsewhere. Later on, a uniform layer consisting of individual Al, Ni, Ti or Fe oxides was grown onto ZnO nanorod samples forming the so-called single MO{sub x}/ZnO nanorod core–shell structures, where MO{sub x} was the metal oxide shell. Additionally, a three-layer core–shell sample was developed by growing Fe, Ti and Fe oxides alternately, onto the ZnO nanorods. The microstructure of the core–shellmore » materials was characterized by grazing incidence X-ray diffraction, scanning and transmission electron microscopy. Energy dispersive X-ray spectroscopy was employed to corroborate the formation of different metal oxides. X-ray diffraction outcomes for single core–shell structures showed solely the presence of ZnO as wurtzite and TiO{sub 2} as anatase. For the multi-layered shell sample, the existence of Fe{sub 2}O{sub 3} as hematite was also detected. Morphological observations suggested the existence of an outer material grown onto the nanorods and further microstructural analysis by HR-STEM confirmed the development of core–shell structures in all cases. These studies also showed that the individual Al, Fe, Ni and Ti oxide layers are amorphous; an observation that matched with X-ray diffraction analysis where no apparent extra oxides were detected. For the multi-layered sample, the development of a shell consisting of three different oxide layers onto the nanorods was found. Overall results showed that no alteration in the primary ZnO core was produced during the growth of the shells, indicating that the deposition technique used herein was and it is suitable for the synthesis of homogeneous and complex nanomaterials high in quality and purity. In addition, materials absorptance determined from the total transmittance and reflectance spectra revealed a broader absorption interval including visible light, indicating potential uses of these nanostructures on solar energy appliances. - Graphical abstract: Display Omitted - Highlights: • Uniform ZnO nanorods (core)–metal oxide (shell) were obtained sequentially by AACVD. • Shells were structured of homogeneous single or multi-layered non-mixed metal oxides. • ZnO nanorod core was preserved during the shell synthesis. • Optical absorptance revealed visible interval absorption for FeO{sub x} shell samples. • Materials can be suitable for photocatalytic or photovoltaic applications.« less

  18. Short and long term modulation of tissue minerals concentrations following oral administration of black cumin (Nigella sativa L.) seed oil to laboratory rats.

    PubMed

    Basheer, Irum; Qureshi, Irfan Zia

    2018-01-15

    Nigella sativa, or commonly called black cumin is a small herb of family Ranunculaceae is a well-known medicinal plant but its effects on tissue mineral concentrations of animal bodies is unknown. To study the effect of oral administration of fixed oil of black cumin seeds on tissues mineral content using laboratory rats as experimental model. Experimental animals were exposed to two oral doses of seed oil (60 and 120 ml kg -1 body weight). Short- and long term experiments lasted 24 h and 60 days respectively, with three replicates each. Oil extracted from black cumin seeds was subjected to GC-MS to identify chemical components. Following the wet digestion in nitric acid, samples of whole blood and organs of rats were subjected to atomic absorption spectrophotometry for determination of elements concentrations. Data were compared statistically at p < .05. Compared to control, Cr, Mn, Ni, Cu, Zn showed decrease, whereas Co, Na, Mg and K demonstrated increase, but Ca showed both increase and decrease in most of the tissues upon short term exposure to low and high doses of black cumin oil. During long term exposure, Cr, Fe, Mn, Cu exhibited decrease; Co, Na, Mg and Ca concentrations demonstrated an upregulation, whereas Ni and Zn showed increase and decrease in most of the tissues. Comparison of short term with long term experiments at low dose revealed increases in Fe, Zn, Cu, Mg, K and Ca, a decrease in Cr, Mn, Ni and Cu in most tissues, but both increase and decrease in Na. At high dose, an increase occurred in Fe, Ni, Zn, K, Ca, Mg, a decrease in Cr, while both increase and decrease in Cu, Co and Na concentrations. Our study demonstrates that oral administration of black cumin seeds oil to laboratory rats significantly alters tissue trace elements and electrolytes concentrations. The study appears beneficial but indicates modulatory role of black cumin oil as regards mineral metabolism with far reaching implications in health and disease. Copyright © 2017. Published by Elsevier GmbH.

  19. Dopant driven tunability of dielectric relaxation in MxCo(1-x)Fe2O4 (M: Zn2+, Mn2+, Ni2+) nano-ferrites

    NASA Astrophysics Data System (ADS)

    Datt, Gopal; Abhyankar, A. C.

    2017-07-01

    Nano-ferrites with tunable dielectric and magnetic properties are highly desirable in modern electronics industries. This work reports the effect of ferromagnetic (Ni), anti-ferromagnetic (Mn), and non-magnetic (Zn) substitution on cobalt-ferrites' dielectric and magnetic properties. The Rietveld analysis of XRD data and the Raman spectroscopic study reveals that all the samples are crystallized in the Fd-3m space group. The T2g Raman mode was observed to split into branches, which is due to the presence of different cations (with different vibrational frequencies) at crystallographic A and B-sites. The magnetization study shows that the MnCoFe2O4 sample has the highest saturation magnetization of 87 emu/g, which is attributed to the presence of Mn2+ cations at the B-site with a magnetic moment of 5 μB. The dielectric permittivity of these nanoparticles (NPs) obeys the modified Debye model, which is further supported by Cole-Cole plots. The dielectric constant of MnCoFe2O4 ferrite is found to be one order higher than that of the other two ferrites. The increased bond length of the Mn2+-O2- bond along with the enhanced d-d electron transition between Mn 2 +/Co 2 +⇋Fe 3 + cations at the B-site are found to be the main contributing factors for the enhanced dielectric constant of MnCoFe2O4 ferrite. We find evidence of variable-range hopping of localized polarons in these ferrite NPs. The activation energy, hopping range, and density of states N (" separators="|EF ), of these polarons were calculated using Motts' 1/4th law. The estimated activation energies of these polarons at 300 K were found to be 288 meV, 426 meV, and 410 meV, respectively, for the MnCoFe2O4, NiCoFe2O4, and ZnCoFe2O4 ferrite NPs, while the hopping range of these polarons were found to be 27.14 Å, 11.66 Å, and 8.17 Å, respectively. Observation of a low dielectric loss of ˜0.04, in the frequency range of 0.1-1 MHz, in these NPs makes them potential candidates for energy harvesting devices in the modern electronics industry.

  20. [Distribution Characteristics, Sources and Pollution Assessment of Trace Elements in Surficial Sediments of the Coastal Wetlands, Northeastern Hainan Island].

    PubMed

    Zhang, Wei-kun; Gan, Hua-yang; Bi, Xiang-yang; Wang, Jia-sheng

    2016-04-15

    Totally 128 surficial sediments samples were collected from the coastal wetlands, northeastern Hainan Island and analyzed for their concentrations of 14 elements including Al2O3, Fe2O3, MnO, Cu, Ni, Sr, Zn, V, Pb, Cr, Zr, As, Cd and Hg, TOC and grain sizes. The mean concentrations of trace metals V, Cr, Ni, Cu, Zn, As, Pb, Cd and Hg were (40.13 +/- 32.65), (35.92 +/- 26.90), (13.03 +/- 11.46), (11.56 +/- 10.27)-, (48.75 +/- 27.00), (5.48 +/- 1.60), ( 18.70 +/- 8.66), (0.054 +/- 0.045 ), (0.050 +/- 0.050) microg x g(-1), respectively, which were much lower than those in Pearl River Estuary, Yangzi River Estuary, Bohai Bay, upper crust and average shale. The average concentrations of Sr and Zr were much higher, reaching up to (1253.60 +/- 1649.58) microg x g(-1) and (372.40 +/- 516.49) microg x g(-1), respectively. The spatial distribution patterns of Al2O3, Fe2O3, MnO, Cu, Ni, Zn, V, Pb, Cr, Cd and Hg concentrations were the same as each other except for those of As, Sr and Zr. Generally, relatively high concentrations of these elements only appeared in the Haikou Bay, Nandu estuary, Dongzhai Harbor, Qinglan Harbor and Xiaohai in study area. The factor analysis revealed that the trace elements Al2O3 Fe2O3, MnO, Cu, Ni, Zn, V, Pb, Cr and part of Hg were mainly originated from the rock material by natural weathering processes, while the Cd and a part of Hg were from the biological source controlled by TOC. As and part of MnO were influenced by anthropogenic source, especially by aquacultures. Zr and some MnO were derived from heavy minerals dominated by the coarse grain of sediments. In contrast to the ERL, ERM and the results of enrichment factors (EF) , the environment of study area was good in general and the degree of contamination by trace elements was low on the whole. However, there are still some places where anthropogenic input have caused serious enrichments of trace elements and the occasional adverse effect on benthic organism induced by Ni could probably occur in 22% areas of all the sampling stations.

  1. Trace elements in tourmalines from massive sulfide deposits and tourmalinites: Geochemical controls and exploration applications

    USGS Publications Warehouse

    Griffin, W.L.; Slack, J.F.; Ramsden, A.R.; Win, T.T.; Ryan, C.G.

    1996-01-01

    Trace element contents of tourmalines from massive sulfide deposits and tourmalinites have been determined in situ by proton microprobe; >390 analyses were acquired from 32 polished thin sections. Concentrations of trace elements in the tourmalines vary widely, from <40 to 3,770 ppm Mn, <4 to 1,800 ppm Ni, <2 to 1,430 ppm Cu, <9 to 4,160 ppm Zn, 3 to 305 ppm Ga, <6 to 1,345 ppm Sr, <10 to 745 ppm Sn, <49 to 510 ppm Ba, and <3 to 4,115 ppm Pb. Individual grains and growth zones are relatively homogeneous, suggesting that these trace elements are contained within the crystal structure of the tourmaline, and are not present in inclusions. The highest base metal contents are in ore-related tourmaline samples from Kidd Creek (Ontario), Broken Hill (Australia), and Sazare (Japan). Tourmaline data from these and many other massive sulfide deposits cluster by sample and display broadly linear trends on Zn vs. Fe plots, suggesting chemical control by temperature and hydrothermal and/or metamorphic fluid-mineral equilibria. Significant Ni occurs only in samples from the Kidd Creek Cu-Zn-Pb-Ag deposit, which is associated with a large footwall ultramafic body. An overall antithetic relationship between Zn and Ni probably reflects fluid source controls. Mn is correlated with Fe in tourmalines from barren associations, and possibly in some tourmalines associated with sulfide vein deposits. Sn increases systematically with Fe content irrespective of association; the highest values are found in schorls from granites. Other trace elements are generally uncorrelated with major element concentrations (e.g., Sr-Ca). Base metal proportions in the tourmalines show systematic patterns on ternary Cu-Pb-Zn diagrams that correlate well with the major commodity metals in the associated massive sulfide deposits. For example, data for tourmalines from Cu-Zn deposits (e.g., Ming mine, Newfoundland) fall mainly on the Cu-Zn join, whereas those from Pb-Zn deposits (e.g., Broken Hill, Australia) plot on the Pb-Zn join; no data fall on the Cu-Pb join, consistent with the lack of this metal association in massive sulfide deposits. The systematic relationship between base metal proportions in the tourmalines and the metallogeny of the host massive sulfide deposits indicates that the analyzed tourmalines retain a strong chemical signature of their original hydrothermal formation, in spite of variable metamorphic recrystallization. Such trace element patterns in massive sulfide tourmalines may be useful in mineral exploration, specifically for the evaluation of tourmaline concentrations in rocks, soils, and stream sediments.

  2. Impact of metals in surface matrices from formal and informal electronic-waste recycling around Metro Manila, the Philippines, and intra-Asian comparison.

    PubMed

    Fujimori, Takashi; Takigami, Hidetaka; Agusa, Tetsuro; Eguchi, Akifumi; Bekki, Kanae; Yoshida, Aya; Terazono, Atsushi; Ballesteros, Florencio C

    2012-06-30

    We report concentrations, enrichment factors, and hazard indicators of 11 metals (Ag, As, Cd, Co, Cu, Fe, In, Mn, Ni, Pb, and Zn) in soil and dust surface matrices from formal and informal electronic waste (e-waste) recycling sites around Metro Manila, the Philippines, referring to soil guidelines and previous data from various e-waste recycling sites in Asia. Surface dust from e-waste recycling sites had higher levels of metal contamination than surface soil. Comparison of formal and informal e-waste recycling sites (hereafter, "formal" and "informal") revealed differences in specific contaminants. Formal dust contained a mixture of serious pollutant metals (Ni, Cu, Pb, and Zn) and Cd (polluted modestly), quite high enrichment metals (Ag and In), and crust-derived metals (As, Co, Fe, and Mn). For informal soil, concentration levels of specific metals (Cd, Co, Cu, Mn, Ni, Pb, and Zn) were similar among Asian recycling sites. Formal dust had significantly higher hazardous risk than the other matrices (p<0.005), excluding informal dust (p=0.059, almost significant difference). Thus, workers exposed to formal dust should protect themselves from hazardous toxic metals (Pb and Cu). There is also a high health risk for children ingesting surface matrices from informal e-waste recycling sites. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Abundances of O, Mg, S, Cr, Mn, Ti, NI and Zn from absorption lines of neutral gas in the Large Magellanic Cloud in front of R136

    NASA Astrophysics Data System (ADS)

    de Boer, K. S.; Fitzpatrick, E. L.; Savage, B. D.

    1985-11-01

    The authors have searched six high-dispersion IUE spectra of R136 for weak absorption lines of C I, O I, Mg I, Mg II, Si I, Si II, P I, Cl I, Cr II, Mn II, Fe I, Ni II, Zn II, CO and C2. The absorption detected is from neutral gas in front of the 30 Doradus H II region. For the first time abundances of Mg, Cr, Mn, Ti, Ni, and Zn are determined for an extragalactic system. The LMC abundances from the absorption lines are a factor of 2 to 3 below those of the Milky Way, in agreement with general results from emission line studies. The density and temperature of the neutral gas are estimates from the observed excitation and ionization at approximately n(H) = 300 cm-3 and T = 100K, implying a gas pressure of about 3×104cm-3K.

  4. Multivariate Analyses of Heavy Metals in Surface Soil Around an Organized Industrial Area in Eskisehir, Turkey.

    PubMed

    Malkoc, S; Yazici, B

    2017-02-01

    A total of 50 surface industrial area soil in Eskisehir, Turkey were collected and the concentrations of As, Cr, Cd, Co, Cu, Ni, Pb, Zn, Fe and Mg, at 11.34, 95.8, 1.37, 15.28, 33.06, 143.65, 14.34, 78.79 mg/kg, 188.80% and 78.70%, respectively. The EF values for As, Cu, Pb and Zn at a number of sampling sites were found to be the highest among metals. Igeo-index results show that the study area is moderately polluted with respect to As, Cd, Ni. According to guideline values of Turkey Environmental Quality Standard for Soils, there is no problem for Pb, but the Cd values are fairly high. However, Cr, Cu, Ni and Zn values mostly exceed the limits. Cluster analyses suggested that soil the contaminator values are homogenous in those sub classes. The prevention and remediation of the heavy metal soil pollution should focus on these high-risk areas in the future.

  5. Structural and DC electrical resistivity, magnetic properties of Co0.5M0.5Fe2O4 (M= Ni, Zn, and Mg) ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Ramakrishna, A.; Murali, N.; Mammo, Tulu Wegayehu; Samatha, K.; Veeraiah, V.

    2018-04-01

    Inverse spinel structured nanoparticles of cobalt ferrite partially substituted by divalent cations of Ni, Zn, and Mg have been synthesized through sol-gel auto combustion route. Structural parameters are studied by powder X-ray diffraction at the diffraction angle range of 10-80°; and FT-IR spectroscopy in the wavenumber range of 1600-400 cm-1. Lattice parameters were calculated from the (hkl) values of the diffraction planes and interplanar spacing and found to be in the range of 8.3659-8.4197 Å. The surface morphology and crystalline nature are studied using scanning electron microscopy and also using HRTEM. The magnetic properties are analyzed through vibrating sample magnetometer. High saturation magnetization of 90.12 emu/g has been achieved from Co-Zn sample whereas high coercive force of 883.45 Oe is achieved in Co-Ni sample. A two-probe DC resistivity was measured in temperature ranges of 300-450 K.

  6. Trace metal enrichment and organic matter sources in the surface sediments of Arabian Sea along southwest India (Kerala coast).

    PubMed

    Sreekanth, Athira; Mrudulrag, S K; Cheriyan, Eldhose; Sujatha, C H

    2015-12-30

    The geochemical distribution and enrichment of trace metals (Cd, Co, Cu, Fe, Mn, Ni, Pb and Zn) were determined in the surface sediments of Arabian Sea, along southwest India, Kerala coast. The results of geochemical indices indicated that surficial sediments of five transects are uncontaminated with respect to Mn, Zn and Cu, uncontaminated to moderately contaminated with Co and Ni, and moderately to strongly contaminated with Pb. The deposition of trace elements exhibited three different patterns i) Cd and Zn enhanced with settling biodetritus from the upwelled waters, ii) Pb, Co and Ni show higher enrichment, evidenced by the association through adsorption of iron-manganese nodules onto clay minerals and iii) Cu enrichment observed close to major urban sectors, initiated by the precipitation as Cu sulfides. Correlation, principal component analysis (PCA) and cluster analysis (CA) were used to confirm the origin information of metals and the nature of organic matter composition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Design of lightweight broadband microwave absorbers in the X-band based on (polyaniline/MnNiZn ferrite) nanocomposites

    NASA Astrophysics Data System (ADS)

    Ali, Nassim Nasser; Al-Qassar Bani Al-Marjeh, Rama; Atassi, Yomen; Salloum, Akil; Malki, Adnan; Jafarian, Mojtaba

    2018-05-01

    We present the design of novel, lightweight, broadband microwave absorbers based on polyaniline/Mn0.1Ni0.45Zn0.45Fe2O4 (PANI/MnNiZn ferrite) nanocomposites. The ferrite is synthesized by sol-gel technique. Then, the polymer is deposited by in-situ chemical oxidative polymerization. The structural and morphological characterizations of the composites are investigated by SEM, XRD, FT-IR and UV-vis spectroscopy. The functional characterization is performed by measuring the dc-conductivity and microwave absorption characteristics in the X-band. The absorbers exhibit broad bandwidths under -10 dB ranging from 2.60 to 3.74 GHz and low surface density ranging from 2.5 to 3.1 kg/m2. The absorber of 3.74 GHz bandwidth has a minimum reflection loss of -31.32 dB at 11.13 GHz with a matching thickness of 3 mm and a low loading in paraffin of only 25% w/w.

  8. Cation distribution of Ni-Zn-Mn ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Parvatheeswara Rao, B.; Dhanalakshmi, B.; Ramesh, S.; Subba Rao, P. S. V.

    2018-06-01

    Mn substituted Ni-Zn ferrite nanoparticles, Ni0.4Zn0.6-xMnxFe2O4 (x = 0.00-0.25 in steps of 0.05), using metal nitrates were prepared by sol-gel autocombustion in citric acid matrix. The samples were examined by X-ray diffraction and vibrating sample magnetometer techniques. Rietveld structural refinements using the XRD data were performed on the samples to consolidate various structural parameters like phase (spinel), crystallite size (24.86-37.43 nm), lattice constant (8.3764-8.4089 Å) etc and also to determine cation distributions based on profile matching and integrated intensity ratios. Saturation magnetization values (37.18-68.40 emu/g) were extracted from the measured M-H loops of these nanoparticles to estimate their magnetic moments. Experimental and calculated magnetic moments and lattice constants were used to confirm the derived cation distributions from Rietveld analysis. The results of these ferrite nanoparticles are discussed in terms of the compositional modifications, particle sizes and the corresponding cation distributions as a result of Mn substitutions.

  9. Crystal structure of the Entamoeba histolytica RNA lariat debranching enzyme EhDbr1 reveals a catalytic Zn 2+/Mn 2+ heterobinucleation

    DOE PAGES

    Ransey, Elizabeth; Paredes, Eduardo; Dey, Sourav K.; ...

    2017-05-17

    Here, the RNA lariat debranching enzyme, Dbr1, is a metallophosphoesterase that cleaves 2'-5' phosphodiester bonds within intronic lariats. Previous reports have indicated that Dbr1 enzymatic activity is supported by diverse metal ions including Ni 2+, Mn 2+, Mg 2+, Fe 2+, and Zn 2+. While in initial structures of the Entamoeba histolytica Dbr1 only one of the two catalytic metal-binding sites were observed to be occupied (with a Mn 2+ ion), recent structures determined a Zn 2+/Fe 2+ heterobinucleation. We solved a high-resolution X-ray crystal structure (1.8 Å) of the E. histolytica Dbr1 and determined a Zn 2+/Mn 2+ occupancy.more » ICP-AES corroborate this finding, and in vitro debranching assays with fluorescently labeled branched substrates confirm activity.« less

  10. Crystal structure of the Entamoeba histolytica RNA lariat debranching enzyme EhDbr1 reveals a catalytic Zn 2+/Mn 2+ heterobinucleation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ransey, Elizabeth; Paredes, Eduardo; Dey, Sourav K.

    Here, the RNA lariat debranching enzyme, Dbr1, is a metallophosphoesterase that cleaves 2'-5' phosphodiester bonds within intronic lariats. Previous reports have indicated that Dbr1 enzymatic activity is supported by diverse metal ions including Ni 2+, Mn 2+, Mg 2+, Fe 2+, and Zn 2+. While in initial structures of the Entamoeba histolytica Dbr1 only one of the two catalytic metal-binding sites were observed to be occupied (with a Mn 2+ ion), recent structures determined a Zn 2+/Fe 2+ heterobinucleation. We solved a high-resolution X-ray crystal structure (1.8 Å) of the E. histolytica Dbr1 and determined a Zn 2+/Mn 2+ occupancy.more » ICP-AES corroborate this finding, and in vitro debranching assays with fluorescently labeled branched substrates confirm activity.« less

  11. Toxic and essential mineral elements content of black tea leaves and their tea infusions consumed in Iran.

    PubMed

    Salahinejad, Maryam; Aflaki, Fereydoon

    2010-04-01

    The metal contents of eleven black tea samples, four cultivated in Iran and seven imported, and their tea infusions were determined. Twelve elements consisting toxic metals (Al, As, Pb, Cr, Cd, and Ni) and essential mineral elements (Fe, Zn, Cu, Mn, Ca, and Mg) were analyzed using inductively coupled plasma atomic emission spectroscopy (ICP-AES). Al, Ca, Mg, and Mn ranged in black tea leaves at mg g(-1) levels, while Cr, Fe, Ni, Cu, Zn were at microg g(-1) levels. Analysis of variance showed no statistically significant differences among most elements determined in cultivated and imported black teas in Iran except for Ni and Cu. The extraction efficiency of each element into tea infusions was evaluated. The solubility of measured metals in infusion extracts varied widely and ranged from 0 to 59.3%. Among the studied elements, Cr, Pb, and Cd showed the lowest rates of solubility and Ni had the highest rates of solubility. The amount of toxic metals and essential mineral elements that one may take up through consumption of black tea infusion was estimated. The amount of realizing each element into tea infusions and acceptable daily intake, for safety consumption of black tea, was compared.

  12. The Content of the 14 Metals in Cancellous and Cortical Bone of the Hip Joint Affected by Osteoarthritis

    PubMed Central

    Zioła-Frankowska, Anetta; Kubaszewski, Łukasz; Dąbrowski, Mikołaj; Kowalski, Artur; Rogala, Piotr; Strzyżewski, Wojciech; Łabędź, Wojciech; Kanicky, Viktor

    2015-01-01

    The aim of the study was to determine the content of particular elements Ca, Mg, P, Na, K, Zn, Cu, Fe, Mo, Cr, Ni, Ba, Sr, and Pb in the proximal femur bone tissue (cancellous and cortical bone) of 96 patients undergoing total hip replacement for osteoarthritis using ICP-AES and FAAS analytical techniques. The interdependencies among these elements and their correlations depended on factors including age, gender, place of residence, tobacco consumption, alcohol consumption, exposure to environmental pollution, physical activity, and type of degenerative change which were examined by statistical and chemometric methods. The factors that exerted the greatest influence on the elements in the femoral head and neck were tobacco smoking (higher Cr and Ni content in smokers), alcohol consumption (higher concentrations of Ni, Cu in people who consume alcohol), and gender (higher Cu, Zn, and Ni concentrations in men). The factors influencing Pb accumulation in bone tissue were tobacco, alcohol, gender, and age. In primary and secondary osteoarthritis of the hip, the content and interactions of elements are different (mainly those of Fe and Pb). There were no significant differences in the concentrations of elements in the femoral head and neck that could be attributed to residence or physical activity. PMID:26357659

  13. Synthesis, characterization, and ligand exchange reactivity of a series of first row divalent metal 3-hydroxyflavonolate complexes.

    PubMed

    Grubel, Katarzyna; Rudzka, Katarzyna; Arif, Atta M; Klotz, Katie L; Halfen, Jason A; Berreau, Lisa M

    2010-01-04

    A series of divalent metal flavonolate complexes of the general formula [(6-Ph(2)TPA)M(3-Hfl)]X (1-5-X; X = OTf(-) or ClO(4)(-); 6-Ph(2)TPA = N,N-bis((6-phenyl-2-pyridyl)methyl)-N-((2-pyridyl)methyl)amine; M = Mn(II), Co(II), Ni(II), Cu(II), Zn(II); 3-Hfl = 3-hydroxyflavonolate) were prepared and characterized by X-ray crystallography, elemental analysis, FTIR, UV-vis, (1)H NMR or EPR, and cyclic voltammetry. All of the complexes have a bidentate coordinated flavonolate ligand. The difference in M-O distances (Delta(M-O)) involving this ligand varies through the series, with the asymmetry of flavonolate coordination increasing in the order Mn(II) approximately Ni(II) < Cu(II) < Zn(II) < Co(II). The hypsochromic shift of the absorption band I (pi-->pi*) of the coordinated flavonolate ligand in 1-5-OTf (relative to that in free anion) increases in the order Ni(II) < Mn(II) < Cu(II) < Zn(II), Co(II). Previously reported 3-Hfl complexes of divalent metals fit well with this ordering. (1)H NMR studies indicate that the 3-Hfl complexes of Co(II), Ni(II), and Zn(II) exhibit a pseudo-octahedral geometry in solution. EPR studies suggest that the Mn(II) complex 1-OTf may form binuclear structures in solution. The mononuclear Cu(II) complex 4-OTf has a distorted square pyramidal geometry. The oxidation potential of the flavonolate ligand depends on the metal ion present and/or the solution structure of the complex, with the Mn(II) complex 1-OTf exhibiting the lowest potential, followed by the pseudo-octahedral Ni(II) and Zn(II) 3-Hfl complexes, and the distorted square pyramidal Cu(II) complex 4-OTf. The Mn(II) complex [(6-Ph(2)TPA)Mn(3-Hfl)]OTf (1-OTf) is unique in the series in undergoing ligand exchange reactions in the presence of M(ClO(4))(2).6H(2)O (M = Co, Ni, Zn) in CD(3)CN to produce [(6-Ph(2)TPA)M(CD(3)CN)(n)](X)(2), [Mn(3-Hfl)(2).0.5H(2)O], and MnX(2) (X = OTf(-) or ClO(4)(-)). Under similar conditions, the 3-Hfl complexes of Co(II), Ni(II), and Cu(II) undergo flavonolate ligand exchange to produce [(6-Ph(2)TPA)M(CD(3)CN)(n)](X)(2) (M = Co, Ni, Cu; n = 1 or 2) and [Zn(3-Hfl)(2).2H(2)O]. An Fe(II) complex of 3-Hfl, [(6-Ph(2)TPA)Fe(3-Hfl)]ClO(4) (8), was isolated and characterized by elemental analysis, FTIR, UV-vis, (1)H NMR, cyclic voltammetry, and a magnetic moment measurement. This complex reacts with O(2) to produce the diiron(III) mu-oxo compound [(6-Ph(2)TPAFe(3Hfl))(2)(mu-O)](ClO(4))(2) (6).

  14. Composition and Elution Behavior of Various Elements from Printed Circuit Boards, Cathode-ray Tube Glass, and Liquid-crystal Displays in Waste Consumer Electronics.

    PubMed

    Inaba, Kazuho; Murata, Tomoyoshi; Yamamura, Shigeki; Nagano, Masaaki; Iwasaki, Kazuhiro; Nakajima, Daisuke; Takigami, Hidetaka

    2018-01-01

    The contents and elution behavior of metals in consumer electronics parts were determined so as to understand their maximum environmental risk. Elements contained most in printed-circuit boards were Cu, Si, Br, Ca, Al, Sn, Pb, Sb, Ba, Fe, Ni, Ti, and Zn; in cathode-ray tube glass were Si, Pb, Ba, Sr, Zn, Zr, Ca, and Sb; in arsenic contained liquid-crystal displays were Si, Ca, Sr, Ba, As, and Fe; and in antimony contained liquid-crystal displays were Si, Ba, Ca, Sb, Sr, Fe, and Sn. The elements eluted most from printed-circuit boards were Zn, Pb, and Cu; from cathode-ray tube glass were Pb, Zn, B, Ba, and Si; and from liquid-crystal displays were B and Si, and the toxic As and Sb. The amount eluted was greatest at acidic pH. It was revealed that officially recommended 6-h-shaking with a pure water test was insufficient to understand the real environmental risk of waste electronics.

  15. Porous framework of T{sub 2}[Fe(CN){sub 6}].xH{sub 2}O with T=Co, Ni, Cu, Zn, and H{sub 2} storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avila, M.; Reguera, L.; Rodriguez-Hernandez, J.

    2008-11-15

    The materials under study were prepared from aqueous solutions of ferrocyanic acid and salts of the involved transition metals and their crystal structure solved and refined from X-ray powder diffraction data. Complementary information from thermogravimetric, infrared and Moessbauer data was also used for the structural study. Three different crystal structures were found: hexagonal (P-3) for Zn with the zinc atom coordinated to three N ends of CN groups plus a water molecule, cubic (Pm-3m) for Ni and Cu, and monoclinic (P2{sub 1}/m) for Co. For Ni and Cu the obtained solids have an open channel framework related to 50% ofmore » vacancies for the building unit, [Fe(CN){sub 6}]. In the as-synthesized material the framework free volume is occupied by coordinated and hydrogen-bonded water molecules. These of hexacyanoferrates (II) have received certain attention as prototype of materials for the hydrogen storage. In the anhydrous phase of Ni and Cu, 50% of the metal (T) coordination sites, located at the cavities surface, will be available to interact with the hydrogen molecule. However, when the crystal waters are removed the porous frameworks collapse as it is suggested by H{sub 2} and CO{sub 2} adsorption data. For Co, a structure of stacked layers was found where the cobalt atoms have both tetrahedral and octahedral coordination. The layers remain together through a network of hydrogen-bonding interactions between coordinated and weakly bonded water molecules. No H{sub 2} adsorption was observed in the anhydrous phase of Co. For Zn, the porous framework remains stable on the water removal but with a system of narrow channels and a small available volume, also inaccessible to H{sub 2}. - Graphical abstract: Structure of stacked layers for CO{sub 2}[Fe(CN){sub 6}].xH{sub 2}O.« less

  16. Effect of γ-rays irradiation on the structural, magnetic, and electrical properties of Mg-Cu-Zn and Ni-Cu-Zn ferrites

    NASA Astrophysics Data System (ADS)

    Assar, S. T.; Abosheiasha, H. F.; El Sayed, A. R.

    2017-01-01

    Nanoparticles of Ni0.35Cu0.15Zn0.5Fe2O4 and Mg0.35Cu0.15Zn0.5Fe2O4, have been synthesized by citrate precursor method. Then some of the prepared samples have been irradiated by γ-rays of 60Co radioactive source at room temperature with doses of 1 Mrad and 2 Mrad, at a dose rate of 0.1 Mrad/h to study the effect of γ-rays irradiation on some structural, magnetic and electrical properties of the samples. The X-ray diffraction analysis (XRD), transmission electron microscopy, Fourier transform infrared spectroscopy and vibrating sample magnetometer measurements have been used to investigate the samples. The XRD results show that the irradiation has caused a decrease in the crystallite size and the measured density and an increase in the porosity, specific surface area, and microstrain in the case of Ni-Cu-Zn ferrite whereas in the case of Mg-Cu-Zn ferrite the reverse trend has been noticed. The lattice constant of the investigated samples has been increased with the increase of irradiation due to the conversion of Fe3+ (0.67 Å) to Fe2+ (0.76 Å). The magnetization results show an increase in saturation and remnant magnetizations for the two prepared ferrites after γ-rays irradiation. The main reason of this behavior is most probably due to the redistribution of the cations between A and B sites. The cation distribution has been proposed such that the values of theoretical and experimental magnetic moment are identical and increase as the magnetization increases. Moreover, a theoretical estimation of the lattice constant has been calculated on the basis of the proposed cation distribution for each sample and compared with the corresponding experimental values obtained by XRD analysis; where they have been found in a good agreement with each other. This can be considered as another confirmation of the validity of the cation distribution. Moreover, the cation distribution is thought to play an important role in increasing the values of dc conductivity of all samples with increasing the irradiation dose. The frequency dependence of ac conductivity, dielectric constant and dielectric loss of all samples have been studied. The Cole-Cole plots of (Z″ vs. Z‧) give different two overlapping incomplete semi-circles depending upon the electrical parameters. Also, The Cole-Cole plots of (M″ vs. M‧) insure that the electric stiffness is the dominant property of the investigated samples.

  17. Micronutrient metal speciation is driven by competitive organic chelation in grassland soils.

    NASA Astrophysics Data System (ADS)

    Boiteau, R.; Shaw, J. B.; Paša-Tolić, L.; Koppenaal, D.; Jansson, J.

    2017-12-01

    Many elements are scarcely soluble in aqueous conditions found in high pH environments, such as calcareous grassland soils, unless complexed to strong binding organic ligands. To overcome this limitation, some plants and microbes produce chelators that solubilize micronutrient metals such as Fe, Ni, Cu, and Zn from mineral phases. These complexes are taken up by organisms via specific membrane receptors, thereby differentially impacting the bioavailability of these metals to the plant and microbial community. Although the importance of these chelation strategies for individual organisms has been well established, little is known about which pathways coexist within rhizosphere microbiomes or how they interact and compete for metal binding. Identifying these metallo-organic species within natural ecosystems has remained a formidable analytical challenge due to the vast diversity of compounds and poorly defined metabolic processes in complex soil matrix. Herein, we employed recently developed liquid chromatography (LC) mass spectrometry (MS) methods to characterize the speciation of water-soluble dissolved trace elements (Fe, Ni, Cu, and Zn) from Kansas Prairie soil. Both plant and fungal chelators were identified, revealing compound-specific patterns of chelation to biologically essential metals. Numerous metabolites typically implicated in plant iron acquisition and homeostasis, including mugineic acids, deoxymugineic acid, nicotianamine, and hydroxynicotianamine, dominated the speciation of divalent metals such as Ni, Cu, and Zn (2-57 pmol / g soil). In contrast, the fungal siderophore ferricrocine bound comparatively more trivalent Fe (9pmol / g soil). These results define biochemical pathways that underpin the regulation of metals in the grassland rhizosphere. They also raise new questions about the competition of these compounds for metal binding and their bioavailability to different members of the rhizosphere population.

  18. Primary fragmentation pathways of gas phase [M(uracil-H)(uracil)]+ complexes (M=Zn, Cu, Ni, Co, Fe, Mn, Cd, Pd , Mg, Ca, Sr, Ba, and Pb): loss of uracil versus HNCO.

    PubMed

    Ali, Osama Y; Randell, Nicholas M; Fridgen, Travis D

    2012-04-23

    Complexes formed between metal dications, the conjugate base of uracil, and uracil are investigated by sustained off-resonance irradiation collision-induced dissociation (SORI-CID) in a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. Positive-ion electrospray spectra show that [M(Ura-H)(Ura)](+) (M=Zn, Cu, Ni, Co, Fe, Mn, Cd, Pd, Mg, Ca, Sr, Ba, or Pb) is the most abundant ion even at low concentrations of uracil. SORI-CID experiments show that the main primary decomposition pathway for all [M(Ura-H)(Ura)](+) , except where M=Ca, Sr, Ba, or Pb, is the loss of HNCO. Under the same SORI-CID conditions, when M is Ca, Sr, Ba, or Pb, [M(Ura-H)(Ura)](+) are shown to lose a molecule of uracil. Similar results were observed under infrared multiple-photon dissociation excitation conditions, except that [Ca(Ura-H)(Ura)](+) was found to lose HNCO as the primary fragmentation product. The binding energies between neutral uracil and [M(Ura-H)](+) (M=Zn, Cu, Ni, Fe, Cd, Pd ,Mg, Ca, Sr Ba, or Pb) are calculated by means of electronic-structure calculations. The differences in the uracil binding energies between complexes which lose uracil and those which lose HNCO are consistent with the experimentally observed differences in fragmentation pathways. A size dependence in the binding energies suggests that the interaction between uracil and [M(Ura-H)](+) is ion-dipole complexation and the experimental evidence presented supports this. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Analysis of Trace Elements in Rat Bronchoalveolar Lavage Fluid by Inductively Coupled Plasma Mass Spectrometry.

    PubMed

    Qamar, Wajhul; Al-Ghadeer, Abdul Rahman; Ali, Raisuddin; Abuelizz, Hatem A

    2017-08-01

    The main objective was to determine the elemental profile of the lung lining fluid of rats which are used as model animals in various experiments. Lung lining fluid elemental constitution obtained after bronchoalveolar lavage fluid (BALF) was analyzed by inductively coupled plasma mass spectrometry (ICP-MS) to determine the biological trace elements along with calcium and magnesium. BALF was collected from healthy rats using a tracheal cannula. However, cells in BALF were counted to monitor any underlying inflammatory lung condition. Cell free BALF samples were processed and analyzed for the elements including magnesium (Mg), calcium (Ca), chromium (Cr), manganese (Mn), iron (Fe), nickel (Ni), copper (Cu), zinc (Zn), selenium (Se), bromine (Br), and iodine (I). In view of this, calcium concentration was the highest (6318.08 ± 3094.3 μg/L) and copper concentration was the lowest (0.89 ± 0.21 μg/L). The detected elements, from high to low concentration, include Ca > Mg > Fe > Br > I > Cr > Ni > Zn > Mn > Se > Cu. Pearson's correlation analysis revealed no significant correlation between cell count and concentration of any of the element detected in BALF. Correlation analysis also revealed significant positive correlation among Fe, I, Cr, Ni, and Mn. Ca was found to be correlated negatively with Cu and positively with Se. Br and Mg found to be positively correlated with each other. Zn remained the only element that was not found to be correlated with any of the elements in the rat BALF.

  20. The use of feather as an indicator for heavy metal contamination in house crow (Corvus splendens) in the Klang area, Selangor, Malaysia.

    PubMed

    Janaydeh, Mohammed; Ismail, Ahmad; Zulkifli, Syaizwan Zahmir; Bejo, Mohd Hair; Aziz, Nor Azwady Abd; Taneenah, Ayat

    2016-11-01

    The Klang area of Peninsular Malaysia has experienced rapid industrial growth with intense activities, which can increase the concentration of pollutants in the environment that significantly impact on habitats and the human health. The purpose of this study was to determine the levels of selected heavy metals (Cu, Zn, Ni, Fe, and Pb) in the heart, lung, brain, liver, kidney, muscle tissues, and feathers of house crow, Corvus splendens, in Klang, Peninsular Malaysia. House crow samples were collected from the Klang area through the Department of Public Health at Majlis Perbandaran Klang. Quantitative determination of heavy metals was carried out using atomic absorption spectrophotometer (AAS). The result shows the presence of heavy metals in all biological samples of house crows. For heavy metals in all the house crow tissues analyzed, Fe concentrations were the highest, followed by those of Zn, Cu, Pb, and Ni. The feathers and kidney accumulated high concentrations of Pb, whereas the liver accumulated high concentrations of essential heavy metals (Fe > Zn > Cu > Ni). Significant variations were also detected in the concentrations of Pb among adult and juvenile and male and female bird samples. The results also revealed significant positive correlations between Pb metal concentration in the breast feathers and all internal organs. Accumulation of toxic heavy metals in feathers reflected storing and elimination processes, while the accumulation of toxic heavy metals in the kidney can be consequential to chronic exposure. The present study clearly shows the usefulness of house crow breast feather as a suitable indicator for heavy metal accumulation in the internal organs of house crows in the Klang area.

  1. FTIR, magnetic, 1H NMR spectral and thermal studies of some chelates of caproic acid: inhibitory effect on different kinds of bacteria.

    PubMed

    Refat, Moamen S; El-Korashy, Sabry A; Kumar, Deo Nandan; Ahmed, Ahmed S

    2008-06-01

    A convenient method for the preparation of complexes of the Cr3+, Mn2+, Fe3+, Co2+, Ni2+, Zn2+, ZrO2+, UO2(2+), Zr4+ and Th4+ ions with caproic acid (Hcap) is reported and this has enabled 10 complexes of caproate anion to be formulated: [Cr(cap)3].5H2O, [Mn(cap)2(H2O)2], [Fe(cap)3].12H2O, [Co(cap)2(H2O)2].4H2O, [Ni(cap)2(H2O)2].3H2O, [Zn(cap)2], [ZrO(cap)2].3H2O, [UO2(cap)(NO3)], [Zr(cap)2(Cl)2] and [Th(cap)4]. These new complexes were synthesized and characterized by elemental analysis, molar conductivity, magnetic measurements, spectral methods (mid infrared, 1H NMR and UV-vis spectra) and simultaneous thermal analysis (TG and DTG) techniques. It has been found from the elemental analysis as well as thermal studies that the caproate ligand behaves as bidentate ligand and forming chelates with 1:1 (metal:ligand) stoichiometry for UO2(2+), 1:2 for (Mn2+, Co2+, Ni2+, Zn2+, ZrO2+ and Zr4+), 1:3 stoichiometry for (Cr3+ and Fe3+) and 1:4 for Th4+ caproate complexes, respectively, as bidentate chelating. The molar conductance measurements proved that the caproate complexes are non-electrolytes. The kinetic thermodynamic parameters such as: E*, DeltaH*, DeltaS* and DeltaG* are estimated from the DTG curves. The antibacterial activity of the caproic acid and their complexes was evaluated against some gram positive/negative bacteria.

  2. Evaluated the Twenty-Six Elements in the Pectoral Muscle of As-Treated Chicken by Inductively Coupled Plasma Mass Spectrometry.

    PubMed

    Sun, Bonan; Xing, Mingwei

    2016-02-01

    This study assessed the impacts of dietary arsenic trioxide on the contents of 26 elements in the pectoral muscle of chicken. A total of 100 Hy-line laying cocks were randomly divided into two groups (n = 50), including an As-treated group (basic diet supplemented with arsenic trioxide at 30 mg/kg) and a control group (basal diet). The feeding experiment lasted for 90 days and the experimental animals were given free access to feed and drinking water. The elements lithium (Li), boron (B), natrum (Na), magnesium (Mg), aluminium (AI), silicium (Si), kalium (K), calcium (Ca), vanadium (V), chromium (Cr), manganese (Mn), ferrum (Fe), cobalt (Co.), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), selenium (Se), molybdenum (Mo), cadmium (Cd), stannum (Sn), stibium (Sb), barium (Ba), hydrargyrum (Hg), thallium (Tl) and plumbum (Pb) in the pectoral muscles were determined using inductively coupled plasma mass spectrometry (ICP-MS). The resulted data indicated that Li, Na, AI, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sn, Ba, Tl and Pb were significantly increased (P < 0.05) in chicken exposed to As2O3 compared to control chicken, while Mg, Si, K, As and Cd decreased significantly (P < 0.05). These results suggest that ICP-MS determination of elements in chicken tissues enables a rapid analysis with good precision and accuracy. Supplementation of high levels of As affected levels of 20 elements (Li, Na, AI, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sn, Ba, Tl, Pb, Mg, Si, K, As and Cd) in the pectoral muscles of chicken. Thus, it is needful to monitor the concentration of toxic metal (As) in chicken for human health.

  3. The Preparation of Soft Magnetic Composites Based on FeSi and Ferrite Fibers

    NASA Astrophysics Data System (ADS)

    Strečková, Magdaléna; Fáberová, Mária; Bureš, Radovan; Kurek, Pavel

    2016-12-01

    The fields of soft magnetic composites and powder metallurgy technologies have a powerful potential to redesign the way of electric motor preparation, and will continue to grow for years to come. A design of the novel soft microcomposite material composed of spherical FeSi particles and Ni0.3Zn0.7Fe2O4 ferrite nanofibers is reported together with a characterization of basic mechanical and electrical properties. The needle-less electrospinning method was used for a preparation of Ni0.3Zn0.7Fe2O4 ferrite nanofibers, which has a spinel-type crystal structure as verified by XRD and TEM analysis. The dielectric coating was prepared by mixing of nanofibers with glycerol and ethanol because of safe manipulation with fumed fibers and homogeneous distribution of the coating around the FeSi particle surface. The final microcomposite samples were prepared by a combination of the traditional PM compaction technique supplemented with a conventional sintering process of the prepared green compacts. The composition and distribution of the secondary phase formed by the spinel ferrite fibers were examined by SEM. It is demonstrated that the prepared composite material has a tight arrangement without any significant porosity, which manifest itself through superior mechanical properties (high mechanical hardness, Young modulus, and transverse rupture strength) and specific electric resistivity compared to the related composite materials including resin as the organic binder.

  4. Investigation of Co, Ni and Fe Doped II-VI Chalcogenides

    DTIC Science & Technology

    2013-01-04

    dopants to the Fe ions. Figure 4. Cobalt doped ZnSe (7×3.1×50 mm3) samples after annealing for 7 days at 950C. A B 8 Approved for public...distribution unlimited. 4.2 Cobalt doped samples ........................................................................................................77...curve for the deposition monitor used for cobalt deposition during magnetron spattering at 1000 nm; B) percentage transmission of a cobalt thin film

  5. Impact of biostimulated redox processes on metal dynamics in an iron-rich creek soil of a former uranium mining area.

    PubMed

    Burkhardt, Eva-Maria; Akob, Denise M; Bischoff, Sebastian; Sitte, Jana; Kostka, Joel E; Banerjee, Dipanjan; Scheinost, Andreas C; Küsel, Kirsten

    2010-01-01

    Understanding the dynamics of metals and radionuclides in soil environments is necessary for evaluating risks to pristine sites. An iron-rich creek soil of a former uranium-mining district (Ronneburg, Germany) showed high porewater concentrations of heavy metals and radionuclides. Thus, this study aims to (i) evaluate metal dynamics during terminal electron accepting processes (TEAPs) and (ii) characterize active microbial populations in biostimulated soil microcosms using a stable isotope probing (SIP) approach. In biostimulated soil slurries, concentrations of soluble Co, Ni, Zn, As, and unexpectedly U increased during Fe(III)-reduction. This suggests that there was a release of sorbed metals and As during reductive dissolution of Fe(III)-oxides. Subsequent sulfate-reduction was concurrent with a decrease of U, Co, Ni, and Zn concentrations. The relative contribution of U(IV) in the solid phase changed from 18.5 to 88.7% after incubation. The active Fe(III)-reducing population was dominated by delta-Proteobacteria (Geobacter) in (13)C-ethanol amended microcosms. A more diverse community was present in (13)C-lactate amended microcosms including taxa related to Acidobacteria, Firmicutes, delta-Proteobacteria, and beta-Proteobacteria. Our results suggested that biostimulated Fe(III)-reducing communities facilitated the release of metals including U to groundwater which is in contrast to other studies.

  6. Electroplating wastewater treatment by the combined electrochemical and ozonation methods.

    PubMed

    Orescanin, Visnja; Kollar, Robert; Mikelic, Ivanka Lovrencic; Nad, Karlo

    2013-01-01

    This article presents a pilot-plant study of the electroplating wastewater treatment by the processes of electroreduction with iron electrode plates, and electrocoagulation/ozonation with aluminum electrode set, followed by the process of ozonation. The initial effluent was found to be highly enriched in heavy metals and to possess the elevated levels of organic contaminants. The values of Cr(VI), Fe, Ni, Cu, Zn, Pb, TOC, and COD exceeded the upper permissible limits of 63, 220.2, 1.1, 7, 131.3, 1.7, 12.3, and 11.4 times, respectively. The heavy metal removal was forced either by the coagulation/flocculation using Fe(II), Fe(III), and Al(III) ions released into the treated solution by the electrochemical corrosion of the sacrificial iron and aluminum electrodes, or the precipitation of the metal hydroxides as well as co-precipitation with iron and aluminum hydroxides. The principle organic matter destruction mechanisms were ozone oxidation and the indirect oxidation with chlorine/hypochlorite formed by the anodic oxidation of chloride already present in the wastewater. Following the combined treatment, the removal efficiencies of Cr(VI), Fe, Ni, Cu, Zn, Pb, TOC, and COD were 99.94%, 100.00%, 95.86%, 98.66%, 99.97%, 96.81%, 93.24%, and 93.43%, respectively, thus complying with the regulated values.

  7. Trace element contaminants in mineral fertilizers used in Iran.

    PubMed

    Latifi, Zahra; Jalali, Mohsen

    2018-05-25

    The application of mineral fertilizers which have contaminants of trace elements may impose concern regarding the entry and toxic accumulation of these elements in agro-ecosystems. In this study, 57 mineral fertilizers (nitrogen, potassium, phosphate, and compound fertilizers) distributed in Iran were analyzed for their contents of Cd, Co, Cr, Cu, Mn, Ni, Pb, Zn, and Fe. The results revealed that the contents of these trace elements varied considerably depending on the type of the element and the fertilizer. Among these elements, Fe displayed the highest average content, whereas Cd showed the lowest. Generally, the trace element contents in P-containing fertilizers were higher than those in nitrogen and potassium fertilizers. The mean values of trace elements (mg kg -1 ) in P-containing fertilizers were 4.0 (Cd), 5.5 (Co), 35.7 (Cr), 24.4 (Cu), 272 (Mn), 14.3 (Ni), 6.0 (Pb), 226 (Zn), and 2532 (Fe). Comparing trace element contents to limit values set by the German Fertilizer Ordinance showed that the mean contents of potentially toxic trace elements, such as Cd and Pb, were lower than their limit values in all groups of fertilizers. On the other hand, while a number of fertilizers contained a high content of some essential trace elements, particularly Fe, they were not labeled as such.

  8. Micronutrient metal speciation is controlled by competitive organic chelation in grassland soils

    DOE PAGES

    Boiteau, Rene M.; Shaw, Jared B.; Pasa-Tolic, Ljiljana; ...

    2018-03-08

    Many elements are scarcely soluble in aqueous conditions found in high pH environments, such as calcareous grassland soils, unless complexed to strong binding organic ligands. To overcome this limitation, some plants and microbes produce chelators that solubilize micronutrient metals such as Fe, Ni, Cu, and Zn from mineral phases. These complexes are taken up by organisms via specific membrane receptors, thereby differentially impacting the bioavailability of these metals to the plant and microbial community. Although the importance of these chelation strategies for individual organisms has been well established, little is known about which pathways coexist within rhizosphere microbiomes or howmore » they interact and compete for metal binding. Identifying these metallophores within natural ecosystems has remained a formidable analytical challenge due to the vast diversity of compounds and poorly defined metabolic processes in complex soil matrices. Herein, we employed recently developed liquid chromatography (LC) mass spectrometry (MS) methods to characterize the speciation of water-soluble dissolved trace elements (Fe, Ni, Cu, and Zn) of soils from native tallgrass prairies in Kansas and Iowa. Both plant and fungal metallophores were identified, revealing compound-specific patterns of chelation to biologically essential metals. Numerous metabolites typically implicated in plant Fe acquisition and homeostasis, including mugineic acids, deoxymugineic acid, nicotianamine, and hydroxynicotianamines, dominated the speciation of divalent metals such as Ni, Cu, and Zn (2–90 pmol/g soil). In contrast, the fungal siderophore ferricrocin was specific for trivalent Fe (7–32 pmol/g soil). These results define biochemical pathways that underpin the regulation of metals in the grassland rhizosphere. They also raise new questions about the competition of these compounds for metal binding and their bioavailability to different members of the rhizosphere population. In conclusion, small structural modifications result in significant differences in metal ligand selectivity, and likely impact metal uptake within the rhizosphere of grassland soils.« less

  9. Distribution of potentially toxic elements (PTEs) in tailings, soils, and plants around Gol-E-Gohar iron mine, a case study in Iran

    PubMed Central

    Soltani, Naghmeh; Keshavarzi, Behnam; Moore, Farid; Sorooshian, Armin; Ahmadi, Mohamad Reza

    2017-01-01

    This study investigated the concentration of potentially toxic elements (PTEs) including Al, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Sb, V, and Zn in 102 soils (in the Near and Far areas of the mine), 7 tailings, and 60 plant samples (shoots and roots of Artemisia sieberi and Zygophylum species) collected at the Gol-E-Gohar iron ore mine in Iran. The elemental concentrations in tailings and soil samples (in Near and Far areas) varied between 7.4 and 35.8 mg kg−1 for As (with a mean of 25.39 mg kg−1 for tailings), 7.9 and 261.5 mg kg−1 (mean 189.83 mg kg−1 for tailings) for Co, 17.7 and 885.03 mg kg−1 (mean 472.77 mg kg−1 for tailings) for Cu, 12,500 and 400,000 mg kg−1 (mean 120,642.86 mg kg−1 for tailings) for Fe, and 28.1 and 278.1 mg kg−1 (mean 150.29 mg kg−1 for tailings) for Ni. A number of physicochemical parameters and pollution index for soils were determined around the mine. Sequential extractions of tailings and soil samples indicated that Fe, Cr, and Co were the least mobile and that Mn, Zn, Cu, and As were potentially available for plants uptake. Similar to soil, the concentration of Al, As, Co, Cr, Cu, Fe, Mn, Mo, Ni, and Zn in plant samples decreased with the distance from the mining/processing areas. Data on plants showed that metal concentrations in shoots usually exceeded those in roots and varied significantly between the two investigated species (Artemisia sieberi > Zygophylum). All the reported results suggest that the soil and plants near the iron ore mine are contaminated with PTEs and that they can be potentially dispersed in the environment via aerosol transport and deposition. PMID:28620857

  10. Tolerance and growth kinetics of bacteria isolated from gold and gemstone mining sites in response to heavy metal concentrations.

    PubMed

    Oladipo, Oluwatosin Gbemisola; Ezeokoli, Obinna Tobechukwu; Maboeta, Mark Steve; Bezuidenhout, Jacobus Johannes; Tiedt, Louwrens R; Jordaan, Anine; Bezuidenhout, Cornelius Carlos

    2018-04-15

    Response and growth kinetics of microbes in contaminated medium are useful indices for the screening and selection of tolerant species for eco-friendly bio-augmentative remediation of polluted environments. In this study, the heavy metal (HM) tolerance, bioaccumulation and growth kinetics of seven bacterial strains isolated from mining sites to 10 HMs (Cd, Hg, Ni, Al, Cr, Pb, Cu, Fe, Mn and Zn) at varied concentrations (25-600 mgL -1 ) were investigated. The isolates were phylogenetically (16S rRNA gene) related to Lysinibacillus macroides, Achromobacter spanius, Bacillus kochii, B. cereus, Klebsiella pneumoniae, Pseudomonas mosselii and P. nitroreducens. Metal tolerance, effects on lag phase duration and growth rates were assessed using the 96-well micro-titre method. Furthermore, metal bioaccumulation and quantities within cells were determined by transmission electron microscopy and electron dispersive x-ray analyses. Tolerance to Ni, Pb, Fe and Mn occurred at highest concentrations tested. Growth rates increased with increasing Fe concentrations, but reduced significantly (p < .05) with increasing Zn, Cu, Hg, Cd and Al. Significantly higher (p < .05) growth rates (compared to controls) was found with some isolates in Hg (25 mgL -1 ), Ni (100 mgL -1 ), Cr (150 mgL -1 ), Mn (600 mgL -1 ), Pb (100 mgL -1 ), Fe (600 mgL -1 ) and Al (50 mgL -1 ). Lag phase urations were isolate- and heavy metal-specific, in direct proportion to concentrations. A. spanius accumulated the most Mn and Zn, while B. cereus accumulated the most Cu. Metals accumulated intra-cellularly without cell morphology distortions. The isolates' multi-metal tolerance, intra-cellular metal bioaccumulation and growth kinetics suggest potentials for application in the synergetic biodegradation and bioremediation of polluted environments, especially HM-rich sites. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Micronutrient metal speciation is controlled by competitive organic chelation in grassland soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boiteau, Rene M.; Shaw, Jared B.; Pasa-Tolic, Ljiljana

    Many elements are scarcely soluble in aqueous conditions found in high pH environments, such as calcareous grassland soils, unless complexed to strong binding organic ligands. To overcome this limitation, some plants and microbes produce chelators that solubilize micronutrient metals such as Fe, Ni, Cu, and Zn from mineral phases. These complexes are taken up by organisms via specific membrane receptors, thereby differentially impacting the bioavailability of these metals to the plant and microbial community. Although the importance of these chelation strategies for individual organisms has been well established, little is known about which pathways coexist within rhizosphere microbiomes or howmore » they interact and compete for metal binding. Identifying these metallophores within natural ecosystems has remained a formidable analytical challenge due to the vast diversity of compounds and poorly defined metabolic processes in complex soil matrices. Herein, we employed recently developed liquid chromatography (LC) mass spectrometry (MS) methods to characterize the speciation of water-soluble dissolved trace elements (Fe, Ni, Cu, and Zn) of soils from native tallgrass prairies in Kansas and Iowa. Both plant and fungal metallophores were identified, revealing compound-specific patterns of chelation to biologically essential metals. Numerous metabolites typically implicated in plant Fe acquisition and homeostasis, including mugineic acids, deoxymugineic acid, nicotianamine, and hydroxynicotianamines, dominated the speciation of divalent metals such as Ni, Cu, and Zn (2–90 pmol/g soil). In contrast, the fungal siderophore ferricrocin was specific for trivalent Fe (7–32 pmol/g soil). These results define biochemical pathways that underpin the regulation of metals in the grassland rhizosphere. They also raise new questions about the competition of these compounds for metal binding and their bioavailability to different members of the rhizosphere population. In conclusion, small structural modifications result in significant differences in metal ligand selectivity, and likely impact metal uptake within the rhizosphere of grassland soils.« less

  12. Manganese containing layer for magnetic recording media

    DOEpatents

    Lambeth, David N.; Lee, Li-Lien; Laughlin, David E.

    1999-01-01

    The present invention provides for a magnetic recording media incorporating Mn-containing layers between a substrate and a magnetic layer to provide media having increased coercivity and lower noise. The Mn-containing layer can be incorporated in a rotating, translating or stationary recording media to operate in conjunction with magnetic transducing heads for recording and reading of magnetic data, as well as other applications. The magnetic recording medium of the invention preferably includes a Co or Co alloy film magnetic layer, and Mn-containing layer, preferably comprised of VMn, TiMn, MnZn, CrMnMo, CrMnW, CrMnV, and CrMnTi, and most preferably a CrMn alloy, disposed between the substrate and the magnetic layer to promote an epitaxial crystalline structure in the magnetic layer. The medium can further include seed layers, preferably polycrystalline MgO for longitudinal media, underlayers, and intermediate layers. Underlayers and intermediate layers are comprised of materials having either an A2 structure or a B2-ordered crystalline structure disposed between the seed layer and the magnetic layer. Materials having an A2 structure are preferably Cr or Cr alloys, such as CrV, CrMo, CrW and CrTi. Materials having a B2-ordered structure having a lattice constant that is substantially comparable to that of Cr, such as those preferably selected from the group consisting of NiAl, AILCo, FeAl, FeTi, CoFe, CoTi, CoHf, CoZr, NiTi, CuBe, CuZn, A-LMn, AlRe, AgMg, and Al.sub.2 FeMn.sub.2, and is most preferably FeAl or NiAl.

  13. Assessment of spatial variability of heavy metals in Metropolitan Zone of Toluca Valley, Mexico, using the biomonitoring technique in mosses and TXRF analysis.

    PubMed

    Zarazúa-Ortega, Graciela; Poblano-Bata, Josefina; Tejeda-Vega, Samuel; Ávila-Pérez, Pedro; Zepeda-Gómez, Carmen; Ortiz-Oliveros, Huemantzin; Macedo-Miranda, Guadalupe

    2013-01-01

    This study is aimed at assessing atmospheric deposition of heavy metals using the epiphytic moss genera Fabronia ciliaris collected from six urban sites in the Metropolitan Zone of the Toluca Valley in Mexico. The concentrations of K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Rb, Sr, and Pb were determined by total reflection X-ray fluorescence technique. Results show that the average metal concentration decrease in the following order: Fe (8207 mg/Kg) > Ca (7315 mg/Kg) > K (3842 mg/Kg) > Ti (387 mg/Kg) > Mn, Zn (191 mg/Kg) > Sr (71 mg/Kg) > Pb (59 mg/Kg) > Cu, V (32 mg/Kg) > Cr (24 mg/Kg) > Rb (13 mg/Kg) > Ni (10 mg/Kg). Enrichment factors show a high enrichment for Cr, Cu, Zn, and Pb which provides an evidence of anthropogenic impact in the industrial and urban areas, mainly due to the intense vehicular traffic and the fossil fuel combustion. Monitoring techniques in mosses have proved to be a powerful tool for determining the deposition of heavy metals coming from diverse point sources of pollution.

  14. Toxic Metals Enrichment in the Surficial Sediments of a Eutrophic Tropical Estuary (Cochin Backwaters, Southwest Coast of India)

    PubMed Central

    Martin, G. D.; George, Rejomon; Shaiju, P.; Muraleedharan, K. R.; Nair, S. M.; Chandramohanakumar, N.

    2012-01-01

    Concentrations and distributions of trace metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in surficial sediments of the Cochin backwaters were studied during both monsoon and pre-monsoon periods. Spatial variations were in accordance with textural charaterstics and organic matter content. A principal component analysis distinguished three zones with different metal accumulation capacity: (i) highest levels in north estuary, (ii) moderate levels in central zone, and (iii) lowest levels in southern part. Trace metal enrichments are mainly due to anthropogenic contribution of industrial, domestic, and agricultural effluents, whose effect is enhanced by settling of metals due to organic flocculation and inorganic precipitation associated with salinity changes. Enrichments factors using Fe as a normalizer showed that metal contamination was the product of anthropogenic activities. An assessment of degree of pollution-categorized sediments as moderately polluted with Cu and Pb, moderately-to-heavily polluted with Zn, and heavily-to-extremely polluted with Cd. Concentrations at many sites largely exceed NOAA ERL (e.g., Cu, Cr, and Pb) or ERM (e.g., Cd, Ni, and Zn). This means that adverse effects for benthic organisms are possible or even highly probable. PMID:22645488

  15. ``Amarna blue'' painted on ancient Egyptian pottery

    NASA Astrophysics Data System (ADS)

    Uda, M.; Nakamura, M.; Yoshimura, S.; Kondo, J.; Saito, M.; Shirai, Y.; Hasegawa, S.; Baba, Y.; Ikeda, K.; Ban, Y.; Matsuo, A.; Tamada, M.; Sunaga, H.; Oshio, H.; Yamashita, D.; Nakajima, Y.; Utaka, T.

    2002-04-01

    "Amarna blue" pigments (18 Dynasty, c. 1400 BC) painted on pottery fragments were investigated using the PIXE, XRF and XRD methods in laboratories and also using a portable type of X-ray spectrometer at the sites of excavation. On the blue-colored part enrichment of Na, Al, S, Cl, Ca, Mn, Co, Ni and Zn was found using X-ray spectroscopy, and CaSO 4, NaCl and Co(M)Al 2O 4, M denoting Mn, Fe, Ni and Zn, were found by the help of X-ray diffraction. This means that Amarna blue is a mixture of CaSO 4 and Co(M)Al 2O 4, at least in part.

  16. Influence of heavy metal leaf contaminants on the in vitro growth of urban-tree phylloplane-fungi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, W.H.

    1977-01-01

    The surfaces of urban woody vegetation are contaminated with varying amounts of numerous metallic compounds, including Cd, Cu, Mn, Al, Cr, Ni, Fe, Pb, Na, and Zn. To examine the possibility that these metals may affect phylloplane fungi, the above cations were tested in vitro for their ability to influence the growth of numerous saprophytic and parasitic fungi isolated from the leaves of London plane trees. Considerable variation in growth inhibition by the metals was observed. Generally Aureobasidium pullulans, Epicoccum sp., and Phialophora verrucosa were relatively tolerant; Gnomonia platani, Cladsporium sp., and Pleurophomella sp. were intermediate; and Pestalotiopsis and Chaetomiummore » sp. were relatively sensitive to the incorporation of certain metals into solid and liquid media. If similar growth inhibitions occur in nature, competitive abilities or population structures of plant surface microbes may be altered by surface metal contamination. Metals causing the greatest and broadest spectrum growth suppression included Ni, Zn, Pb, Al, Fe, and Mn. 25 references, 4 figures.« less

  17. Surface properties of neutron-rich exotic nuclei within relativistic mean field formalisms

    NASA Astrophysics Data System (ADS)

    Bhuyan, M.; Carlson, B. V.; Patra, S. K.; Zhou, Shan-Gui

    2018-02-01

    In this theoretical study, we establish a correlation between the neutron skin thickness and the nuclear symmetry energy for the even-even isotopes of Fe, Ni, Zn, Ge, Se, and Kr within the framework of the axially deformed self-consistent relativistic mean field for the nonlinear NL 3* and density-dependent DD-ME1 interactions. The coherent density functional method is used to formulate the symmetry energy, the neutron pressure, and the curvature of finite nuclei as a function of the nuclear radius. We have performed broad studies for the mass dependence on the symmetry energy in terms of the neutron-proton asymmetry for mass 70 ≤A ≤96 . From this analysis, we found a notable signature of a shell closure at N =50 in the isotopic chains of Fe, Ni, Zn, Ge, Se, and Kr nuclei. The present study reveals a interrelationship between the characteristics of infinite nuclear matter and the neutron skin thickness of finite nuclei.

  18. The removal of bacteria by modified natural zeolites.

    PubMed

    Milán, Z; de Las Pozas, C; Cruz, M; Borja, R; Sánchez, E; Ilangovan, K; Espinosa, Y; Luna, B

    2001-01-01

    The removal effect of natural and modified zeolites containing different heavy metals (Ni2+, Zn2+, Fe3+ and Cu2+) on pure cultures of Escherichia coli and Staphylococcus aureus in a solid medium was evaluated in this work. These experiments were carried out in a continuous mode treating municipal wastewater. Faecal coliform species and Pseudomonas aeruginosa were identified. The rate constants of heavy metal lixiviation were determined using a first order kinetic model. The removal effect of modified natural zeolites in both a solid medium and in continuous mode showed an increased elimination of the bacterial population. The results established a decreasing order of the removal effect as follows: Cu2+ > Fe3+ > Zn2+ > Ni2+. The best performance of columns was obtained for inlet bacterial concentrations below 10(6) cells/100 ml. Most of the identified bacterial species were affected by copper modified zeolites, although Serratia marcescens presented the highest sensitivity and Klebsiella pneumoniae the greatest resistance.

  19. Multivariate analysis of heavy metal contents in soils, sediments and water in the region of Meknes (central Morocco).

    PubMed

    Tahri, M; Benyaïch, F; Bounakhla, M; Bilal, E; Gruffat, J J; Moutte, J; Garcia, D

    2005-03-01

    Concentrations of Al, Fe, Cr, Cu, Ni, Pb and Zn in soils, sediments and water samples collected along the Oued Boufekrane river (Meknes, central Morocco) were determined. In soils, a homogeneous distribution of metal concentrations was observed throughout the study area except for Pb, which presents high enrichment at sites located at the vicinity of a main highway. In sediments, high enrichment, with respect to upstream sites, were observed downstream of the city of Meknes for Al, Cr, Fe and Ni and inside the city for Cu, Zn and Pb. In water samples, the metal contents showed to correlate with their homologues in sediments suggesting that the metal contents in water and sediments have identical origins. Descriptive statistics and multivariate analysis (principal factor method, PFM) were used to assist the interpretation of elemental data. This allowed the determination of the correlations between the metals and the identification of three main factor loadings controlling the metal variability in soils and sediments.

  20. Determination of Elemental Composition of Malabar spinach, Lettuce, Spinach, Hyacinth Bean, and Cauliflower Vegetables Using Proton Induced X-Ray Emission Technique at Savar Subdistrict in Bangladesh

    PubMed Central

    Fahad, S. M.; Islam, A. F. M. Mahmudul; Ahmed, Mahiuddin; Alam, Md. Rezaul; Alam, Md. Ferdous; Khalik, Md. Farhan; Hossain, Md. Lokman; Abedin, Md. Joynal

    2015-01-01

    The concentrations of 18 different elements (K, Ca, Fe, Cl, P, Zn, S, Mn, Ti, Cr, Rb, Co, Br, Sr, Ru, Si, Ni, and Cu) were analyzed in five selected vegetables through Proton Induced X-ray Emission (PIXE) technique. The objective of this study was to provide updated information on concentrations of elements in vegetables available in the local markets at Savar subdistrict in Bangladesh. These elements were found in varying concentrations in the studied vegetables. The results also indicated that P, Cl, K, Ca, Mn, Fe, and Zn were found in all vegetables. Overall, K and Ca exhibited the highest concentrations. Cu and Ni exhibited the lowest concentrations in vegetables. The necessity of these elements was also evaluated, based on the established limits of regulatory standards. The findings of this study suggest that the consumption of these vegetables is not completely free of health risks. PMID:26229953

  1. Biomonitoring of heavy metals contamination by mosses and lichens around Slovinky tailing pond (Slovakia).

    PubMed

    Demková, Lenka; Bobul'ská, Lenka; Árvay, Július; Jezný, Tomáš; Ducsay, Ladislav

    2017-01-02

    Three moss (Pleurozium spp., Polytrichum spp., and Rhytidiadelphus spp.) and two lichen (Hypogymnia physodes and Pseudevernia furfuracea) taxons covered in the bags were used to monitor air quality. Bags were exposed at the different distances from the tailing pond because of insufficient security and source of heavy metal pollution. Moss/lichen bags were exposed for six weeks at 0-, 50-, 100-, 150- and 200-m distances from Slovinky tailing pond, in the main wind direction (down the valley). Accumulation ability of heavy metals expressed by relative accumulation factor (RAF) increases in the order of Polytrichum spp.

  2. Formation of the structure of thin-sheet rolled product from a high-strength sparingly alloyed aluminum alloy ``nikalin''

    NASA Astrophysics Data System (ADS)

    Shurkin, P. K.; Belov, N. A.; Akopyan, T. K.; Alabin, A. N.; Aleshchenko, A. S.; Avxentieva, N. N.

    2017-09-01

    The regime of thermomechanical treatment of flat ingots of a high-strength sparingly alloyed alloy based on the Al-Zn-Mg-Ni-Fe system upon the production of thin-sheet rolled products with a reduction of more than 97% has been substantiated. Using experimental and calculated methods, the structure and phase composition of the experimental alloy in the as cast and deformed state and after heat treatment including quenching with subsequent aging have been studied. It has been found that the structure of the wrought semi-finished products after aging according to T and T1 regimes consists of the precipitation-hardened aluminum matrix and uniformly distributed isolated particles of Al9FeNi with a size of 1-2 μm, which provides a combination of high strength and satisfactory plasticity at the level of standard high-strength aluminum alloys of the Al-Zn-Mg-Cu system. The fractographic analysis confirmed that the tested samples underwent a ductile fracture.

  3. A baseline record of trace elements concentration along the beach placer mining areas of Kanyakumari coast, South India.

    PubMed

    Simon Peter, T; Chandrasekar, N; John Wilson, J S; Selvakumar, S; Krishnakumar, S; Magesh, N S

    2017-06-15

    Trace element concentration in the beach placer mining areas of Kanyakumari coast, South India was assessed. Sewage and contaminated sediments from mining sites has contaminated the surface sediments. Enrichment factor indicates moderately severe enrichment for Pb, minor enrichment for Mn, Zn, Ni, Fe and no enrichment for Cr and Cu. The Igeo values show higher concentration of Pb ranging in the scale of 3-4, which shows strong contamination due to high anthropogenic activity such as mining and terrestrial influences into the coastal regions. Correlation coefficient shows that most of the elements are associated with each other except Ni and Pb. Factor analysis reveals that Mn, Zn, Fe, Cr, Pb and Cu are having a significant loading and it indicates that these elements are mainly derived from similar origin. The cluster analysis clearly indicated that the mining areas are grouped under cluster 2 and non-mining areas are clustered under group 1. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Too much is bad--an appraisal of phytotoxicity of elevated plant-beneficial heavy metal ions.

    PubMed

    Anjum, Naser A; Singh, Harminder P; Khan, M Iqbal R; Masood, Asim; Per, Tasir S; Negi, Asha; Batish, Daizy R; Khan, Nafees A; Duarte, Armando C; Pereira, Eduarda; Ahmad, Iqbal

    2015-03-01

    Heavy metal ions such as cobalt (Co), copper (Cu), iron (Fe), manganese (Mn), molybdenum (Mo), nickel (Ni), and zinc (Zn) are considered essential/beneficial for optimal plant growth, development, and productivity. However, these ions readily impact functions of many enzymes and proteins, halt metabolism, and exhibit phytotoxicity at supra-optimum supply. Nevertheless, the concentrations of these heavy metal ions are increasing in agricultural soils worldwide via both natural and anthropogenic sources that need immediate attention. Considering recent breakthroughs on Co, Cu, Fe, Mn, Mo, Ni, and Zn in soil-plant system, the present paper: (a) overviews the status in soils and their uptake, transport, and significance in plants; (b) critically discusses their elevated level-mediated toxicity to both plant growth/development and cell/genome; (c) briefly cross talks on the significance of potential interactions between previous plant-beneficial heavy metal ions in plants; and (d) highlights so far unexplored aspects in the current context.

  5. A proposed magnetic digital temperature transducer, volume 1

    NASA Technical Reports Server (NTRS)

    Collier, T. E.; Tchernev, D. I.; Hartwig, W. H.

    1972-01-01

    A study has been made of the feasibility of using the discontinuous permeability versus temperature characteristics of some magnetic materials for a digital temperature transducer and a thermally controlled ON-OFF switch. Simple logic converts the number of output pulse to a digital word recognizable by the system. Efforts have been concentrated on materials with Curie temperatures between 0 and 100 C. One compound has the composition Mn(5-x)Fe(x)Ge3 where the amount of iron determines the transition temperature. The other compound is Ni-Zn ferrite and has the compositon Ni(1-x)Zn(x)Fe(1.95)O4 where the nickel: zinc ratio determines the transition temperature. A detailed report of materials prepared is presented. Toroidal inductors of the material have been constructed and the change in inductance with temperature measured. In view of these initial measurements, it is felt that a transducer utilizing the permeability versus temperature characteristics of these materials has promise as a reliable and sensitive solid state digital temperature transducer.

  6. Bioavailable metals in tourist beaches of Richards Bay, Kwazulu-Natal, South Africa.

    PubMed

    Vetrimurugan, E; Jonathan, M P; Roy, Priyadarsi D; Shruti, V C; Ndwandwe, O M

    2016-04-15

    Acid Leachable Trace Metal (ALTMs) concentrations in tourist beaches of Richards Bay, Kwazulu-Natal, South Africa were assessed. 53 surface sediment samples were collected from five different beaches (Kwambonambi Long Beach; Nhlabane Beach; Five Mile Beach; Alkanstrand Beach and Port Durnford Beach). The results of ALTMs (Fe, Mn, Cr, Cu, Ni, Co, Pb, Cd, Zn, As, Hg) suggest that they are enriched naturally and with some local industrial sources for (avg. in μgg(-1)) Fe (3530-7219), Mn (46-107.11), Cd (0.43-1.00) and Zn (48-103.98). Statistical results indicate that metal concentrations were from natural origin attributed to leaching, weathering process and industrial sources. Comparative studies of metal concentrations with sediment quality guidelines and ecotoxicological values indicate that there is no adverse biological effect. Enrichment factor and geoaccumulation indices results indicate moderate enhancement of Fe (Igeo class 1 in FMB), Cd (EF>50; Igeo classes 2-4) and Zn (Igeo classes 1 & 2). Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Synthesis, morphology and electrical properties of Co2+ substituted NiCuZn ferrites for MLCI applications

    NASA Astrophysics Data System (ADS)

    Kabbur, S. M.; Waghmare, S. D.; Ghodake, U. R.; Suryavanshi, S. S.

    2018-04-01

    Co2+ is a fast relaxing ion which can enhance microwave properties. This work focuses on the synthesis and analysis of Ni0.25-xCoxCu0.30Zn0.45Fe2O4 (x = 0.00, 0.05, 0.01, 0.15, 0.20 and 0.25) ferrites by auto combustion method using glycine as the chelating agent. From X-ray Diffraction (XRD) spectra, the structural parameters are analysed. The lattice parameter (a) decreases due to smaller ionic radius of Co2+ (0.072 nm) which replaces Ni2+ (0.078 nm). Bulk density and porosity measurements show that there are pores and lattice imperfections. The cation distribution of the ferrites based on Neel's two sublattice model is proposed. Transmission Electron Micrographs (TEM) indicate narrow size distribution of spherical shaped nanoparticles. DC electrical resistivity (ρD.C.) is very important factor of low temperature sintered ferrites for MLCI applications. Electroplating of the devices is much affected by electrical resistivity. Maximum DC resistivity (2.89 × 106 Ω-cm) is observed for the sample with x=0.20. The dielectric parameters (ɛ', ɛ″ and tan δ) decrease as the alternating field increases which is due to space charge distribution and hopping mechanism. AC resistivity (ρAC) decreases with frequency, increased concentration of Fe2+ ions induces electron hopping: Fe3+ ↔ Fe2+ at B sites thereby reducing the resistivity. The low dielectric loss factor of 0.07 for x=0.20 ferrite indicates that the sample can be potential candidate for MLCI applications.

  8. Mineralogic sources of metals in leachates from the weathering of sedex, massive sulfide, and vein deposit mining wastes

    USGS Publications Warehouse

    Diehl, S.F.; Hageman, P.L.; Seal, R.R.; Piatak, N.M.; Lowers, H.

    2011-01-01

    Weathered mine waste consists of oxidized primary minerals and chemically unstable secondary phases that can be sources of readily soluble metals and acid rock drainage. Elevated concentrations of metals such as Cd, Cu, Fe, Mn, Ni, Pb, and Zn are observed in deionized water-based leachate solutions derived from complex sedex and Cu-Pb-Zn mine wastes. Leachate (USGS FLT) from the Elizabeth mine, a massive sulfide deposit, has a pH of 3.4 and high concentrations of Al (16700 ug/L), Cu (440 ug/L), and Zn (8620 ug/L). Leachate from the sedex Faro mine has a pH of 3.5 and high concentrations of Al (2040 ug/L), Cu (1930 ug/L), Pb (2080 ug/L), and Zn (52900 ug/L). In contrast, higher-pH leachates produced from tailings of polymetallic vein deposits have order of magnitude lower metal concentrations. These data indicate that highly soluble secondary mineral phases exist at the surface of waste material where the samples were collected. Sulfide minerals from all sites exhibit differential degrees of weathering, from dissolution etched grain rims, to rinds of secondary minerals, to skeletal remnants. These microscale mineral-dissolution textures enhance weathering and metal teachability of waste material. Besides the formation of secondary minerals, sulfide grains from dried tailings samples may be coated by amorphous Fe-Al-Si minerals that also adsorb metals such as Cu, Ni, and Zn.

  9. Street dust from a heavily-populated and industrialized city: Evaluation of spatial distribution, origins, pollution, ecological risks and human health repercussions.

    PubMed

    Urrutia-Goyes, R; Hernandez, N; Carrillo-Gamboa, O; Nigam, K D P; Ornelas-Soto, N

    2018-09-15

    Emissions from vehicles include particles from tire and brake wearing that can settle down and join industrial discharges into street dust. Metals present in street dust may create ecological and health threats and their analysis is of great environmental relevance. The city of Monterrey, Mexico is an industrial pillar of the country and shows an increasing fleet during the last years, which has yielded higher traffic and emissions. This study analyzes 44 street dust samples taken across the city for total element concentrations by using X-ray fluorescence. Associations and indicators are calculated to define possible origins, levels of pollution, natural or anthropogenic sources, and ecological and human health risks. High concentrations of As, Ba, Cu, Fe, Mo, Ni, Pb, Ti, and Zn were found. Main sources of metals were defined as: tire wearing for Zn and Fe; brake wearing for Ba, Cu, Fe, Pb and Zr; additional industrial sources for Mo, Ni, Pb, and Ti; and other natural sources for As. Ecological risk was found to be moderate across the city and risk due to Pb concentrations was established for children. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Health risk assessment of heavy metals in wheat using different water qualities: implication for human health.

    PubMed

    Khan, Zafar Iqbal; Ahmad, Kafeel; Rehman, Sidrah; Siddique, Samra; Bashir, Humayun; Zafar, Asma; Sohail, Muhammad; Ali, Salem Alhajj; Cazzato, Eugenio; De Mastro, Giuseppe

    2017-01-01

    In the recent years, the use of sewage water for irrigation has attracted the attention of arid and semi-arid countries where the availability of fresh water is poor. Despite the potential use of sewage water in crop irrigation as effective and sustainable strategy, the environmental and human risks behind this use need to be deeply investigated. In this regard, an experiment was carried out under field conditions in Nursery, University College of Agriculture Sargodha, to evaluate the possible health risks of undesirable metals in wheat grains. Wheat variety Sarang was cultivated and irrigated with different combinations of ground (GW) and sewage water (SW). The concentrations of heavy metals (Cr, Cd, Ni, and Pb) and trace elements (Cu, Zn, and Fe) in wheat grains as well as in soil were determined. Moreover, the pollution load index (PLI), accumulation factor (AF), daily intake of metals (DIM), and health risk index (HRI) were calculated. Results showed that the concentration trend of heavy metals was Pb

  11. Levels and speciation of heavy metals in soils of industrial Southern Nigeria.

    PubMed

    Olajire, A A; Ayodele, E T; Oyedirdan, G O; Oluyemi, E A

    2003-06-01

    A knowledge of the total content of trace metals is not enough to fully assess the environmental impact of polluted soils. For this reason, the determination of metal species in solution is important to evaluate their behaviour in the environment and their mobilization capacity. Sequential extraction procedure was used to speciate five heavy metals (Cd, Pb, Cu, Ni and Zn) from four contaminated soils of Southern Nigeria into six operationally defined geochemical species: water soluble, enchangeable, carbonates, Fe-Mn oxide, organic and residual. Metal recoveries were within +/- 10% of the independently determined total Cd, Pb, Cu, Ni and Zn concentrations. The highest amount of Cd (avg. 30%) in the nonresidual fractions was found in the exchangeable fraction, while Cu and Zn were significantly associated with the organic fraction. The carbonate fraction contained on average 14, 18.6, 12.6, 13 and 11% and the residual fraction contained on average 47, 18, 33, 50 and 25% of Cd, Pb, Cu, Ni and Zn respectively. Assuming that mobility and bioavailability of these metals are related to the solubility of the geochemical form of the metals, and that they decrease in the order of extraction sequence, the apparent mobility and potential bioavailability for these five metals in the soil were: Pb > Zn > Cu > Ni > Cd. The mobility indexes of copper and nickel correlated positively and significantly with the total content of metals, while mobility indexes of cadmium and zinc correlated negatively and significantly with the total content of metals.

  12. Determination of bioavailable macro- and microelements from agricultural soil using different extractants

    NASA Astrophysics Data System (ADS)

    Milićević, Tijana; Relić, Dubravka; Popović, Aleksandar

    2015-04-01

    Translocation of elements from soil to plant has a major impact on the growing plants and on their quality in any agricultural field. In this study, soil samples were collected from agricultural area Radmilovac, Serbia during grapevine season in 2013. Bioavailable elements from soil to plant (grapevine) were isolated by five different extractants: 0.11 mol L-1 CH3COOH, 0.05 mol L-1 Na-EDTA, 0.01 mol L-1 CaCl2, 1 mol L-1 NH4NO3 and distilled water during 2 and 16 h. Concentrations of 22 bioavailable macroelements: Al, Ca, Fe, K, Mg, Mn, Na, P, S, Si and microelements: B, Be, Cd, Co, Cr, Cu, Mo, Ni, Pb, Sb, V, Zn were determined by ICP-OES. The best extractant for Al, B, Be, Mg, Mo, Si and Zn was CH3COOH, Na-EDTA for Ca, Cd, Co, Cu, Fe, K, Mn, Ni, P, Pb, V, and distilled water for Na and S. Acetic acid has been proven to be an aggressive extractant and it can be used for isolation of higher concentrations of plant bioavailable elements from soil, rather than distilled water, CaCl2 and NH4NO3. The acidity of CH3COOH enhances the extraction of bioavailable fraction of microelements from various substrates and destruction of carbonates as well. However, it can be concluded that there is no unique extractant for isolation of the most bioavailable fraction for all elements from the soil. It can be noticed that the most common concentrations of macroelements, K and Mn, are in correlation with concentrations of microelements, Cd, Co, Ni and Zn. This indicates that the most of their concentrations in soils are followed by microelements, whose concentrations are much lower than concentrations of macroelements. However, as these correlations are the most common, it can be concluded that the pairs of macro- and microelements (e.g. Mn-Cd, Mn-Co, Ni-Cd, Ni-Co, Ni-Mn, Zn-Cd, Zn-Co, Zn-Mn, Zn-Ni) have the same source in soil and can be isolated by the same extractant. It is interesting to note that the concentrations of Ca and Mg extracted from soil using CH3COOH are in correlation and that neither of these macroelements is in correlation with the concentration of microelements isolated with the same extractant. The concentrations of Cu and S extracted from soil by distilled water during 16 h are in correlation. These elements could have entered only through the soil surface layer while grapevines were primarily treated by fungicide copper(II)-sulphate. In addition, the concentration of S is correlated with the concentrations of Mn, P and Na. It can be assumed that the correlation between these elements points to their origin from the pesticides used in agriculture production.

  13. Spinel NixZn1-xFe2O4 (0.0 ≤ x ≤ 1.0) nano-photocatalysts: Synthesis, characterization and photocatalytic degradation of methylene blue dye

    NASA Astrophysics Data System (ADS)

    Padmapriya, G.; Manikandan, A.; Krishnasamy, V.; Jaganathan, Saravana Kumar; Antony, S. Arul

    2016-09-01

    Spinel NixZn1-xFe2O4 (x = 0.0 to 1.0) nanoparticles were successfully synthesized by a simple microwave combustion method (MCM) using metal nitrates as raw materials and glycine as the fuel. The structural, morphological and opto-magnetic properties of the spinel NixZn1-xFe2O4 ferrites were determined by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), high resolution scanning electron microscopy (HR-SEM), energy dispersive X-ray (EDX) spectroscopy, high resolution transmission electron microscopy (HR-TEM), selected area electron diffraction (SAED) pattern, UV-Visible diffuse reflectance spectroscopy (DRS), photoluminescence (PL) spectroscopy and vibrating sample magnetometer (VSM). Powder XRD, and EDX analysis was confirmed the formation of pure phase of spinel ferrites. HR-SEM and HR-TEM analysis was confirmed the formation of sphere like-particle morphology of the samples with smaller agglomeration. VSM analysis clearly showed the superparamagnetic and ferromagnetic nature of the samples. The Ms value is 3.851 emu/g for undoped ZnFe2O4 sample and it increased with increase in Ni content. Photo-catalytic degradation (PCD) of methylene blue (MB) dye using the samples were carried out and observed good PCD results.

  14. Metal concentrations of wild edible mushrooms from Turkey.

    PubMed

    Sarikurkcu, Cengiz; Tepe, Bektas; Solak, Mehmet Halil; Cetinkaya, Serap

    2012-01-01

    In the present study, the contents of Zn, Fe, Cu, Mn, Co, Ni, Pb, Cd, Cr, Al, Ca, Mg, and K in Agaricus campestris, Agrocybe cylindracea, Collybia dryophila, Helvella leucopus, Russula delica, Tricholoma auratum, Amanita ovoidea, Melanoleuca excissa, Rhizopogon roseolus, Russula chloroides, Volvoriella gloiocephala, Lyophyllum decastes, Morcella angusticeps, Morchella esculenta and Morcella eximia collected from Isparta, Mugla, and Osmaniye provinces (Turkey) were determined by inductively coupled plasma optical emission spectrometry (ICP-OES) after microwave digestion. The intake of heavy metals (Pb, Cd) and other metals (Fe, Cu, Zn) by consumption of 30 g dry weight of mushrooms daily poses no risk at all except in A. cylindracea and H. leucopus (for Cd) for the consumer.

  15. HIGH TEMPERATURE INTERACTIONS BETWEEN RESIDUAL OIL ASH AND DISPERSED KAOLINITE POWDERS

    EPA Science Inventory

    The potential use of sorbents to manage ultrafine ash aerosol emissions from residual oil combustion was investigated using a downfired 82-kW-rated laboratory-scale refractory-lined combustor. The major constituents were vanadium (V), iron (Fe), nickel, (Ni) and zinc (Zn). Of the...

  16. Distribution and bioavailability of Cr in central Euboea, Greece

    NASA Astrophysics Data System (ADS)

    Megremi, Ifigeneia

    2010-06-01

    Plants and soils from central Euboea, were analyzed for Cr(totai), Cr(VI), Ni, Mn, Fe and Zn. The range of metal concentrations in soils is typical to those developed on Fe-Ni laterites and ultramafic rocks. Their bioavailability was expressed in terms of concentrations extractable with EDTA and 1 M HNO3, with EDTA having a limited effect on metal recovery. Cr(VI) concentrations in soils evaluated by alkaline digestion solution were lower than phytotoxic levels. Chromium and Ni — and occasionally Zn — in the majority of plants were near or above toxicity levels. Cr(VI) concentrations in plants were extremely low compared to total chromium concentrations. Cr(total) in ground waters ranged from <1 μg.L-1 to 130 μg.L-1, with almost all chromium present as Cr(VI). With the exception of Cr(total) and in some cases Zn, all elements were below regulatory limits for drinking water. On the basis of Ca, Mg, Cr(total) and Si ground waters were classified into three groups: Group(I) with Cr concentrations less than 1 μg.L-1 from a karstic aquifer; Group(II) with average concentrations of 24 μg.L-1 of Cr and relatively high Si associated with ophiolites; and Group(III) with Cr concentrations of up to 130 μg.L-1, likely due to anthropogenic activity. Group(III) is comparable to ground waters from Assopos basin, characterized by high Cr(VI) concentrations, probably due to industrial actrivities.

  17. Cation hydrolysis and the regulation of trace metal composition in seawater

    NASA Astrophysics Data System (ADS)

    Kumar, M. Dileep

    1987-08-01

    Thermodynamic calculations have been performed for cation hydrolysis, including temperatures from 2°C to the high values of significance near Mid-Oceanic Ridge Systems (MORS). Eighteen elements with wide range of residence times ( t) in seawater (Mn, Th, Al, Bi, Ce, Co, Cr(III), Fe, Nd, Pb, Sc, Sm, Ag, Cd, Cu, Hg, Ni and Zn) have been considered. A model for the regulation of trace metal composition in seawater by cation hydrolytic processes, including those at MORS, is presented. Results show an increase in the abundance of neutral metal hydroxyl species with increase in temperature. During hydrothermal mixing, as the temperature increases, transformation from lower positive hydroxyl complexes to higher or neutral complexes would occur for Cd, Ce, Co, Cr(III), Cu, Mn, Nd, Ni, Pb, Sm and Zn. pH values for adsorption of the metal ion onto solid surfaces have direct relation with pH values of hydrolysis. Co, Mn and Pb could be oxidized to higher states (at Mn-oxide surfaces) that would occur even at MORS. Ce can also be oxidized at 25°C. Solubility calculations show that Al, Bi, Cr(III), Sc, Fe and Th are saturated while Ce, Nd and Sm are not with respect to their oxyhydroxide solids at their concentrations in seawater at 25°C. Cu, Hg, Ni and Zn reach saturation equilibrium at 250°C, whereas Co, Mn and Pb exhibit unsaturation. The results suggest an increase in scavenging capacity of a cation with rise in temperature.

  18. Magnetic properties of Sn-substituted Ni-Zn ferrites synthesized from nano-sized powders of NiO, ZnO, Fe2O3, and SnO2

    NASA Astrophysics Data System (ADS)

    Ali, MA; Uddin, MM; Khan, MNI; Chowdhury, FUZ; Hoque, SM; Liba, SI

    2017-06-01

    A series of Ni0.6-x/2Zn0.4-x/2Sn x Fe2O4 (x = 0.0, 0.05, 0.1, 0.15, 0.2, and 0.3) (NZSFO) ferrite composities have been synthesized from nano powders using a standard solid state reaction technique. The spinel cubic structure of the investigated samples has been confirmed by x-ray diffraction (XRD). The magnetic properties such as saturation magnetization ({M}{{s}}), remanent magnetization ({M}{{r}}), coercive field ({H}{{c}}), and Bohr magneton (μ) are calculated from the hysteresis loops. The value of {M}{{s}} is found to decrease with increasing Sn content in the samples. This change is successfully explained by the variation of A-B interaction strength due to Sn substitution in different sites. The compositional stability and quality of the prepared ferrite composites have also been endorsed by the fairly constant initial permeability ({μ }^{\\prime }) over a wide range of frequency. The decreasing trend of {μ }^{\\prime } with increasing Sn content has been observed. Curie temperature {T}{{C}} has been found to increase with the increase in Sn content. A wide spread frequency utility zone indicates that the NZSFO can be considered as a good candidate for use in broadband pulse transformers and wide band read-write heads for video recording. The composition of x = 0.05 shows unusual results and the possible reason is also mentioned with the established formalism.

  19. Macro- and microelement distribution in organs of Glyceria maxima and biomonitoring applications.

    PubMed

    Klink, Agnieszka; Stankiewicz, Andrzej; Wisłocka, Magdalena; Polechońska, Ludmiła

    2014-07-01

    The content of nutrients (N, P, K, Ca and Mg) and of trace metals (Fe, Cu, Mn, Zn, Pb, Cd, Co and Ni) in water, bottom sediments and various organs of Glyceria maxima from 19 study sites selected in the Jeziorka River was determined. In general, the concentrations of nutrients recorded in the plant material decreased in the following order: leaf>root>rhizome>stem, while the concentrations of the trace elements showed the following accumulation scheme: root>rhizome>leaf>stem. The bioaccumulation and transfer factors for nutrients were significantly higher than for trace metals. G. maxima from agricultural fields was characterised by the highest P and K concentrations in leaves, and plants from forested land contained high Zn and Ni amounts. However, the manna grass from small localities showed high accumulation of Ca, Mg and Mn. Positive significant correlations between Fe, Cu, Zn, Cd, Co and Ni concentrations in water or sediments and their concentrations in plant indicate that G. maxima may be employed as a biomonitor of trace element contamination. Moreover, a high degree of similarity was noted between self-organizing feature map (SOFM)-grouped sites of comparable quantities of elements in the water and sediments and sites where G. maxima had a corresponding content of the same elements in its leaves. Therefore, SOFM could be recommended in analysing ecological conditions of the environment from the perspective of nutrients and trace element content in different plant species and their surroundings.

  20. In vitro cytotoxicity evaluation of elemental ions released from different prosthodontic materials.

    PubMed

    Elshahawy, Waleed M; Watanabe, Ikuya; Kramer, Phillip

    2009-12-01

    This study investigated the cytotoxicity of elemental ions contained in four fixed prosthodontic materials (gold, nickel-chromium, stainless-steel alloys and CAD-CAM ceramics). According to the determination of elements released from prosthodontic materials by using inductively coupled plasma mass spectroscopy, similar amounts of elements Pd, Ag, Zn, Cu, Ni, Cr, Mo, Be, Fe, Al, and K were prepared as salt solutions. Wells with a tenfold higher concentration of the tested elements were used as positive controls, while a well without any tested element was used as a negative control. These salt solutions were tested for cytotoxicity by culturing mouse L-929 fibroblasts in the salt solutions for a 7-day period of incubation. Then, the percentage of viable cells for each element was measured using trypan blue exclusion assay. The data (n=5) were statistically analyzed by ANOVA/Tukey test (p<0.05). The results showed a statistically significant difference for the cytotoxic effect of the tested elements salt solutions. For the released element concentrations the lowest percentage of viable cells (mean+/-SD) was evident with Zn, Cu or Ni indicating that they are the highly toxic elements. Be and Ag were found to be intermediate in cytotoxic effect. Fe, Cr, Mo, Al, Pd or K were found to be the least cytotoxic elements. Zn and Cu released from gold alloys, and Ni released from nickel-chromium alloys, which are commonly used as fixed prosthodontic restorations, show evidence of a high cytotoxic effect on fibroblast cell cultures.

  1. Sensitive and selective detection of trivalent chromium using Hyper Rayleigh Scattering with 5,5'-dithio-bis-(2-nitrobenzoic acid)-modified gold nanoparticles.

    PubMed

    Hughes, Shantelle I; Dasary, Samuel S R; Singh, Anant K; Glenn, Zachery; Jamison, Hakim; Ray, Paresh C; Yu, Hongtao

    2013-03-01

    Hyper Rayleigh Scattering (HRS) and absorption spectral assays using surface-modified gold nanoparticles (AuNP) have been developed for sensitive and selective detection of trivalent chromium (Cr 3+ ) from other metal ions including hexavalent chromium (as Cr 2 O 7 2- ). Gold nanoparticles of 13 nm, covalently attached with 5,5'-dithio- bis -(2-nitrobenzoic acid) (AuNP-DTNBA), is used as a probe for both the absorption and HRS assays. AuNP-DTNBA is able to detect Cr 3+ at 20 ppb level at pH 6.0 using absorption spectral change of the AuNP-DTNBA. Visible color change can be observed when mixed with 250 ppb of Cr 3+ , while there is no color change when mixed with 2 ppm level of some of the most common metal ions such as Cr 2 O 7 2- , Hg 2+ , Ba 2+ , Fe 3+ , Pb 2+ , Na + , Zn 2+ , Cd 2+ , Co 2+ , Mn 2+ , Ca 2+ , and Ni 2+ . However, a color change is observed when mixed with Ni 2+ , Zn 2+ , and Cd 2+ at a concentration higher than 2 ppm. The detection limit for the HRS assay is on a remarkable 25 ppt level, and there is no detectable HRS signal at 2 ppm level for Cr 2 O 7 2- , Hg 2+ , Ba 2+ , Fe 3+ , Pb 2+ , Na + , Zn 2+ , Cd 2+ , Co 2+ , Mn 2+ , Ca 2+ , and Ni 2+ .

  2. Trace elements distribution in hawksbill turtle (Eretmochelys imbricata) and green turtle (Chelonia mydas) tissues on the northern coast of Bahia, Brazil.

    PubMed

    de Macêdo, Gustavo R; Tarantino, Taiana B; Barbosa, Isa S; Pires, Thaís T; Rostan, Gonzalo; Goldberg, Daphne W; Pinto, Luis Fernando B; Korn, Maria Graças A; Franke, Carlos Roberto

    2015-05-15

    Concentrations of elements (As, Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Mo, Na, Ni, Pb, Sb, Se, Sr, V, Zn) were determined in liver, kidneys and bones of Eretmochelys imbricata and Chelonia mydas specimens found stranded along the northern coast of Bahia, Brazil. Results showed that the concentrations of Cd, Cu, Ni and Zn in the liver and kidneys of juvenile C. mydas were the highest found in Brazil. We also observed a significant difference (p<0.05) on the bioaccumulation of trace elements between the two species: Al, Co, Mo, Na and Se in the liver; Al, Cr, Cu, K, Mo, Ni, Pb, Sr and V in the kidneys; and Al, Ba, Ca, Cd, Mn, Ni, Pb, Se, Sr and V in the bones. This study represents the first report on the distribution and concentration of trace elements in E. imbricata in the Brazilian coast. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Cation substitution in synthetic meridianiite (MgSO4·11H2O) I: X-ray powder diffraction analysis of quenched polycrystalline aggregates

    NASA Astrophysics Data System (ADS)

    Fortes, A. Dominic; Browning, Frank; Wood, Ian G.

    2012-05-01

    Meridianiite, MgSO4·11H2O, is the most highly hydrated phase in the binary MgSO4-H2O system. Lower hydrates in the MgSO4-H2O system have end-member analogues containing alternative divalent metal cations (Ni2+, Zn2+, Mn2+, Cu2+, Fe2+, and Co2+) and exhibit extensive solid solution with MgSO4 and with one another, but no other undecahydrate is known. We have prepared aqueous MgSO4 solutions doped with these other cations in proportions up to and including the pure end-members. These liquids have been solidified into fine-grained polycrystalline blocks of metal sulfate hydrate + ice by rapid quenching in liquid nitrogen. The solid products have been characterised by X-ray powder diffraction, and the onset of partial melting has been quantified using a thermal probe. We have established that of the seven end-member metal sulfates studied, only MgSO4 forms an undecahydrate; ZnSO4 forms an orthorhombic heptahydrate (synthetic goslarite), MnSO4, FeSO4, and CoSO4 form monoclinic heptahydrates (syn. mallardite, melanterite, bieberite, respectively), and CuSO4 crystallises as the well-known triclinic pentahydrate (syn. chalcanthite). NiSO4 forms a new hydrate which has been indexed with a triclinic unit cell of dimensions a = 6.1275(1) Å, b = 6.8628(1) Å, c = 12.6318(2) Å, α = 92.904(2)°, β = 97.678(2)°, and γ = 96.618(2)°. The unit-cell volume of this crystal, V = 521.74(1) Å3, is consistent with it being an octahydrate, NiSO4·8H2O. Further analysis of doped specimens has shown that synthetic meridianiite is able to accommodate significant quantities of foreign cations in its structure; of the order 50 mol. % Co2+ or Mn2+, 20-30 mol. % Ni2+ or Zn2+, but less than 10 mol. % of Cu2+ or Fe2+. In three of the systems we examined, an `intermediate' phase occurred that differed in hydration state both from the Mg-bearing meridianiite end-member and the pure dopant end-member hydrate. In the case of CuSO4, we observed a melanterite-structured heptahydrate at Cu/(Cu + Mg) = 0.5, which we identify as synthetic alpersite [(Mg0.5Cu0.5)SO4·7H2O)]. In the NiSO4- and ZnSO4-doped systems we characterised an entirely new hydrate which could also be identified to a lesser degree in the CuSO4- and the FeSO4-doped systems. The Ni-doped substance has been indexed with a monoclinic unit-cell of dimensions a = 6.7488(2) Å, b = 11.9613(4) Å, c = 14.6321(5) Å, and β = 95.047(3)°, systematic absences being indicative of space-group P21/ c with Z = 4. The unit-cell volume, V = 1,176.59(5) Å3, is consistent with it being an enneahydrate [i.e. (Mg0.5Ni0.5)SO4·9H2O)]. Similarly, the new Zn-bearing enneahydrate has refined unit cell dimensions of a = 6.7555(3) Å, b = 11.9834(5) Å, c = 14.6666(8) Å, β = 95.020(4)°, V = 1,182.77(7) Å3, and the new Fe-bearing enneahydrate has refined unit cell dimensions of a = 6.7726(3) Å, b = 12.0077(3) Å, c = 14.6920(5) Å, β = 95.037(3)°, and V = 1,190.20(6) Å3. The observation that synthetic meridianiite can form in the presence of, and accommodate significant quantities of other ions increases the likelihood that this mineral will occur naturally on Mars—and elsewhere in the outer solar system—in metalliferous brines.

  4. Acquisition and evaluation of thermodynamic data for morenosite-retgersite equilibria at 0.1 MPa

    USGS Publications Warehouse

    Chou, I.-Ming; Seal, R.R.

    2003-01-01

    Metal-sulfate salts in mine drainage environments commonly occur as solid solutions containing Fe, Cu, Mg, Zn, Al, Mn, Ni, Co, Cd, and other elements. Thermodynamic data for some of the end-member salts containing Fe, Cu, Zn, and Mg have been collected and evaluated previously, and the present study extends to the system containing Ni. Morenosite (NiSO4-7H2O)-retgersite (NiSO4-6H2O) equilibria were determined along five humidity buffer curves at 0.1 MPa and between 5 and 22??C. Reversals along these humidity-buffer curves yield In K = 17.58-6303.35/T, where K is the equilibrium constant, and T is temperature in K. The derived standard Gibbs free energy of reaction is 8.84 kJ/mol, which agrees very well with the values of 8.90, 8.83, and 8.85 kJ/mol based on the vapor pressure measurements of Schumb (1923), Bonnell and Burridge (1935), and Stout et al. (1966). respectively. This value also agrees reasonably well with the values of 8.65 and 9.56 kJ/mol calculated from the data compiled by Wagman et al. (1982) and DeKock (1982), respectively. The temperature-humidity relationships defined by this study for dehydration equilibria between morenosite and retgersite explain the more common occurrence of retgersite relative to morenosite in nature.

  5. Metal amounts in the lichen Ramalina duriaei (De Not. ) Bagl. transplanted at biomonitoring sites around a new coal-fired power station after 1 year of operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garty, J.

    1987-06-01

    The lichen Ramalina duriaei (De Not.) Bagl. was transplanted to 22 biomonitoring sites for 1 year (1981-1982). The amounts of Ni, Cr, Cu, Zn, Pb, Mn, and Fe in the lichen material were measured at the end of the transplantation period and the data were compared with the amounts of five of these metals (Ni, Cr, Cu, Zn, and Pb) which were detected in the same lichen species transplanted in the same study area during the 1979-1980 period. The differences between the amounts of the five metals detected during the two periods are discussed. The increase in amounts of somemore » of the metals in the 1981-1982 lichen material (Pb, Ni, and probably Cr) reflects the increase in the total number of motor vehicles between the two periods within the study area. The decrease of Zn in the lichen after the second period reflects a decrease in the use of Zn as a constituent of foliar nutrients in agriculture used for crop spraying. The increase of Cr and Ni in the transplanted lichen after the 1981-1982 period probably also reflects, apart from vehicle pollution, a certain emission from the 250-m-high stacks of a new coal-fired electricity-generating power station.« less

  6. Speciation and distribution characteristics of heavy metals and pollution assessments in the sediments of Nashina Lake, Heilongjiang, China.

    PubMed

    Li, Miao; Zang, Shuying; Xiao, Haifeng; Wu, Changshan

    2014-05-01

    Sediment core samples from Nashina Lake, Heilongjiang, China were collected using a gravity sampler. The cores were sliced horizontally at 1 cm each to determine the particle size, total concentrations and speciation of Cd, Cr, Cu, Mn, Ni, Pb, and Zn. Total concentrations of heavy metals were extracted using an acid mixture (containing hydro fluoric acid, nitric acid, and sulphuric acid) and analyzed using an inductively coupled plasma spectrometry. A sequential extraction procedure was employed to separate chemical species. Analysis of results indicate that the concentrations of heavy metals in the sediments of Nashina Lake in descending order are Mn, Cr, Zn, Pb, Ni, Cu, and Cd. The ratios of the average concentrations of four heavy metals (e.g.Cr, Cu, Ni, Zn) to their background values were >1; and those of Mn, Cd, and Pb were >1. Moreover, some toxic metals were mainly distributed in bioavailable fractions. For instance, both Cd and Mn were typically found in Acid-extractable species or Fe-Mn oxide species, and thus can be easily remobilized and enter the food chain. Finally, the analysis of geo-accumulation index showed that anthropogenic pollution levels of Cr, Cu, Mn, Ni, Zn were low, but those of Pb and Cd were at the moderate level. As both Pb and Cd are toxic metals, it is highly necessary to prohibit their transformation and accumulation in the sediments.

  7. Bimetallic Porous Iron (pFe) Materials for Remediation/Removal of Tc from Aqueous Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, D.

    Remediation of Tc remains an unresolved challenge at SRS and other DOE sites. The objective of this project was to develop novel bimetallic porous iron (pFe) materials for Tc removal from aqueous systems. We showed that the pFe is much more effective in removing TcO 4 - (×30) and ReO 4 - (×8) from artificial groundwater than granular iron. Tc K-edge XANES spectroscopy indicated that Tc speciation on the pFe was 18% adsorbed TcO 4 -, 28% Tc(IV) in Tc dioxide and 54% Tc(IV) into the structure of Fe hydroxide. A variety of catalytic metal nanoparticles (i.e., Ni, Cu, Zn,more » Ag, Sn and Pd) were successfully deposited on the pFe using scalable chemical reduction methods. The Zn-pFe was outstanding among the six bimetallic pFe materials, with a capacity increase of >100% for TcO 4 - removal and of 50% for ReO 4 - removal, compared to the pFe. These results provide a highly applicable platform for solving critical DOE and industrial needs related to nuclear environmental stewardship and nuclear power production.« less

  8. Spectroscopic geochemical study of vanadiferous marine sediments of the Gibellini claims, southern Fish Creek Range, Eureka County, Nevada

    USGS Publications Warehouse

    Böhlke, J.K.; Radtke, A.S.; Heropoulos, Chris; Lamothe, P.J.

    1981-01-01

    Samples of cuttings from three drill holes in the Gibellini claims were analyzed by emission spectroscopic techniques for a large suite of major and trace elements. Unoxidized siliceous "black shale" from drill hole NGA 7 is strongly enriched in Cd, Mo, Sb, Se, V, and Zn, and also contains relatively high concentrations of As, Ba, Cu, Ni, and Tl compared with nonmetalliferous shales. Analyses of 103 samples plotted against depth in drill holes NGA, NG31, and NGA7, and selected XRD data, show the following: 1. Groups of elements with distinct distribution patterns define most of major mineralogic components of the rocks. The "normal shale" component, which includes several detrital and authigenic phases, is indicated by covariations among Ti, Al, Fe, Na, Mg, K, B, Be, Co, Cr, Ga, La, Sc, Sr, and Zr. The shale component is diluted by varying amounts of the following minerals (and associated elements): silica (Si); dolomite (Mg, Ca, Mn, Sr); apatite (Ca, Be, Cr, La, Sr, Y); barite (Ba, Sr); sphalerite (Zn, Cd, Fe?); smithsonite (Cd, Co, Mn, Ni, Zn); bianchite (Cd, Ni, Zn) ; and bokite (V). Pyrite, gypsum, and jarosite were also identified.2. The highly siliceous kerogenous metalliferous Gibellini facies is underlain by argillaceous and (or) dolomitic rocks. The transition zone deduced from the chemical data is not well defined in all instances, but probably represents the bottom of the black shale deposit. 3. Oxidation has reached to variable depths up to at least 150 ft, and has caused profound changes in the distributions of the enriched metals. Molybdenum, Se, and V have been partially removed from the upper parts of the sections and are concentrated near or slightly above the base of the Gibellini facies. Cadmium, Ni, and Zn have been strongly leached and now occur at or below the base of the Gibellini facies. The variable depth of oxidation, the redistribution and separation of the metals, and the complex mineralogy of the deposit may make development of the claim complicated.

  9. Ferromagnetic behaviour of ZnO: the role of grain boundaries

    PubMed Central

    Protasova, Svetlana G; Mazilkin, Andrei A; Goering, Eberhard; Schütz, Gisela; Straumal, Petr B; Baretzky, Brigitte

    2016-01-01

    The possibility to attain ferromagnetic properties in transparent semiconductor oxides such as ZnO is very promising for future spintronic applications. We demonstrate in this review that ferromagnetism is not an intrinsic property of the ZnO crystalline lattice but is that of ZnO/ZnO grain boundaries. If a ZnO polycrystal contains enough grain boundaries, it can transform into the ferromagnetic state even without doping with “magnetic atoms” such as Mn, Co, Fe or Ni. However, such doping facilitates the appearance of ferromagnetism in ZnO. It increases the saturation magnetisation and decreases the critical amount of grain boundaries needed for FM. A drastic increase of the total solubility of dopants in ZnO with decreasing grain size has been also observed. It is explained by the multilayer grain boundary segregation. PMID:28144542

  10. Volatility in the lunar crust: Trace element analyses of lunar minerals by PIXE proton microprobe

    NASA Technical Reports Server (NTRS)

    Norman, M. D.; Griffin, W. L.; Ryan, C. G.

    1993-01-01

    In situ determination of mineral compositions using microbeam techniques can characterize magma compositions through mineral-melt partitioning, and be used to investigate fine-grained or rare phases which cannot be extracted for analysis. Abundances of Fe, Mn, Sr, Ga, Zr, Y, Nb, Zn, Cu, Ni, Se, and Sb were determined for various mineral phases in a small number of lunar highlands rocks using the PIXE proton microprobe. Sr/Ga ratios of plagioclase and Mn/Zn ratios of mafic silicates show that the ferroan anorthosites and Mg-suite cumulates are depleted in volatile lithophile elements to about the same degree compared with chondrites and the Earth. This links the entire lunar crust to common processes or source compositions. In contrast, secondary sulfides in Descartes breccia clasts are enriched in chalcophile elements such as Cu, Zn, Ni, Se, and Sb, and represent a potential resource in the lunar highlands.

  11. Investigation of potentially toxic heavy metals in different organic wastes used to fertilize market garden crops.

    PubMed

    Tella, M; Doelsch, E; Letourmy, P; Chataing, S; Cuoq, F; Bravin, M N; Saint Macary, H

    2013-01-01

    The benefits of using organic waste as fertilizer and soil amendment should be assessed together with the environmental impacts due to the possible presence of heavy metals (HMs). This study involved analysing major element and HM contents in raw and size-fractionated organic wastes (17 sewage sludges and composts) from developed and developing countries. The overall HM concentration pattern showed an asymmetric distribution due to the presence of some wastes with extremely high concentrations. HM concentrations were correlated with the size of cities or farms where the wastes had been produced, and HM were differentiated with respect to their origins (geogenic: Cr-Ni; anthropogenic agricultural and urban: Cu-Zn; anthropogenic urban: Cd-Pb). Size fractionation highlighted Cd, Cu, Zn and Pb accumulation in fine size fractions, while Cr and Ni were accumulated in the coarsest. HM associations with major elements revealed inorganic (Al, Fe, etc.) bearing phases for Cr and Ni, and sulfur or phosphorus species for Cd, Cu Pb and Zn. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. High temperature dielectric studies of indium-substituted NiCuZn nanoferrites

    NASA Astrophysics Data System (ADS)

    Hashim, Mohd.; Raghasudha, M.; Shah, Jyoti; Shirsath, Sagar E.; Ravinder, D.; Kumar, Shalendra; Meena, Sher Singh; Bhatt, Pramod; Alimuddin; Kumar, Ravi; Kotnala, R. K.

    2018-01-01

    In this study, indium (In3+)-substituted NiCuZn nanostructured ceramic ferrites with a chemical composition of Ni0.5Cu0.25Zn0.25Fe2-xInxO4 (0.0 ≤ x ≤ 0.5) were prepared by chemical synthesis involving sol-gel chemistry. Single phased cubic spinel structure materials were prepared successfully according to X-ray diffraction and transmission electron microscopy analyses. The dielectric properties of the prepared ferrites were measured using an LCR HiTester at temperatures ranging from room temperature to 300 °C at different frequencies from 102 Hz to 5 × 106 Hz. The variations in the dielectric parameters ε‧ and (tanδ) with temperature demonstrated the frequency- and temperature-dependent characteristics due to electron hopping between the ions. The materials had low dielectric loss values in the high frequency range at all temperatures, which makes them suitable for high frequency microwave applications. A qualitative explanation is provided for the dependences of the dielectric constant and dielectric loss tangent on the frequency, temperature, and composition. Mӧssbauer spectroscopy was employed at room temperature to characterize the magnetic behavior.

  13. Trace elements and metals in farmed sea bass and gilthead bream from Tenerife Island, Spain.

    PubMed

    Rubio, C; Jalilli, A; Gutiérrez, A J; González-Weller, D; Hernández, F; Melón, E; Burgos, A; Revert, C; Hardisson, A

    2011-11-01

    The aim of this study was to determine the levels of metals (Ca, K, Na, Mg) and trace metals (Ni, Fe, Cu, Mn, Zn, Pb, Cd) in two fish species (gilthead bream [Sparus aurata] and sea bass [Dicentrarchus labrax]) collected from fish farms located along the coast of Tenerife Island. Ca, K, Na, Mg, Fe, Cu, Zn, and Mn were measured by flame atomic absorption spectrometry, whereas Pb, Cd, and Ni were determined using graphite furnace atomic absorption spectrometry. Mean Fe, Cu, Mn, and Zn contents were 3.09, 0.59, 0.18, and 8.11 mg/kg (wet weight) in S. aurata and 3.20, 0.76, 0.24, and 10.11 mg/kg (wet weight) in D. labrax, respectively. In D. labrax, Ca, K, Na, and Mg levels were 1,955, 2,787, 699.7, and 279.2 mg/kg (wet weight), respectively; in S. aurata, they were 934.7, 3,515, 532.8, and 262.8 mg/kg (wet weight), respectively. The Pb level in S. aurata was 7.28 ± 3.64 μg/kg (wet weight) and, in D. labrax, 4.42 ± 1.56 μg/kg (wet weight). Mean Cd concentrations were 3.33 ± 3.93 and 1.36 ± 1.53 μg/kg (wet weight) for D. labrax and S. aurata, respectively. All Pb and Cd levels measured were well below the accepted European Commission limits, 300 and 50 μg/kg for lead and cadmium, respectively.

  14. Portulaca grandiflora as green roof vegetation: Plant growth and phytoremediation experiments.

    PubMed

    Vijayaraghavan, K; Arockiaraj, Jesu; Kamala-Kannan, Seralathan

    2017-06-03

    Finding appropriate rooftop vegetation may improve the quality of runoff from green roofs. Portulaca grandiflora was examined as possible vegetation for green roofs. Green roof substrate was found to have low bulk density (360.7 kg/m 3 ) and high water-holding capacity (49.4%), air-filled porosity (21.1%), and hydraulic conductivity (5270 mm/hour). The optimal substrate also supported the growth of P. grandiflora with biomass multiplication of 450.3% and relative growth rate of 0.038. Phytoextraction potential of P. grandiflora was evaluated using metal-spiked green roof substrate as a function of time and spiked substrate metal concentration. It was identified that P. grandiflora accumulated all metals (Al, Cd, Cr, Cu, Fe, Ni, Pb, and Zn) from metal-spiked green roof substrate. At the end of 40 days, P. grandiflora accumulated 811 ± 26.7, 87.2 ± 3.59, 416 ± 15.8, 459 ± 15.6, 746 ± 20.9, 357 ± 18.5, 565 ± 6.8, and 596 ± 24.4 mg/kg of Al, Cd, Cr, Cu, Fe, Ni, Pb and Zn, respectively. Results also indicated that spiked substrate metal concentration strongly influenced metal accumulation property of P. grandiflora with metal uptake increased and accumulation factor decreased with increase in substrate metal concentration. P. grandiflora also showed potential to translocate all the examined metals with translocation factor greater than 1 for Al, Cu, Fe, and Zn, indicating hyperaccumulation property.

  15. Effects of wastewater irrigation on chemical and physical properties of Petroselinum crispum.

    PubMed

    Keser, Gonca; Buyuk, Gokhan

    2012-06-01

    The present study was carried out to assess the impact of wastewater on parsley (Petroselinum crispum). The parameters determined for soil were pH, electrical conductivity (EC), soil organic matter (SOM), nutrient elements (Ca, Mg, Na, K, Mn, Cu, Zn, and Fe), and heavy metals (Cd, Cr, Ni, and Pb), while the parameters determined for the plant included pigment content, dry matter, nutrient element, and heavy metals. SOM, EC, and clay contents were higher, and pH was slightly acidic in soil treated with wastewater compared to control soil. The enrichment factors (EF) of the nutrient elements in contaminated soil are in the sequence of Na (2) > Ca (1.32) > Mn = Mg (1.17) > Cu (1.11) > Zn (1.08) > Fe (1.07) > K (0.93), while EF in parsley are Na (6.63) > Ca (1.60) > Mg (1.34) > Zn (1.15) > Fe (0.95) > Cu = K (0.90) > Mn (0.85). Application of wastewater significantly decreased dry matter, while photosynthetic pigment content increased in parsley. The enrichment of the heavy metals is in the sequence: Cd (1.142) > Pb (1.131) > Ni (1.112) > Cr (1.095). P. crispum shows a high transfer factor (TF > 1) for Cd signifying a high mobility of Cd from soil to plant. Thus, although the wastewater irrigation in parsley production aims to produce socioeconomic benefits, study results indicated that municipal wastewater is not suitable for irrigation of parsley because it has negative effects on plant and causes heavy metal accumulation.

  16. Accumulation of Metals and Boron in Phragmites australis Planted in Constructed Wetlands Polishing Real Electroplating Wastewater.

    PubMed

    Sochacki, Adam; Guy, Bernard; Faure, Olivier; Surmacz-Górska, Joanna

    2015-01-01

    The concentration of metals (Al, Cu, Fe, Mn, Ni, Zn) and B were determined in the above- and belowground biomass of Phragmites australis collected from the microcosm constructed wetland system used for the polishing of real electroplating wastewater. Translocation factor and bioconcentration factor were determined. Pearson correlation test was used to determine correlation between metal concentration in substrate and above- and belowground parts of Phragmites australis. The obtained results suggested that Phragmites australis did not play a major role as an accumulator of metals. It was observed also that the substrate could have exerted an effect on the translocation of Ni, Cu, Zn and Mn. The analysed concentrations of metals and B in biomass were in the range or even below the concentrations reported in the literature with the exception of Ni. The aboveground biomass was found suitable as a composting input in terms of metals concentrations.

  17. Stardust Interstellar Preliminary Examination VII: Synchrotron X-Ray Fluorescence Analysis of Six Stardust Interstellar Candidates Measured with the Advanced Photon Source 2-ID-D Microprobe

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.; Anderson, David; Bastien, Ron K.; Brenker, Frank E.; Flynn, George J.; Frank, David; Gainsforth, Zack; Sandford, Scott A.; Simionovici, Alexandre S.; Zolensky, Michael E.

    2014-01-01

    The NASA Stardust spacecraft exposed an aerogel collector to the interstellar dust passing through the solar system. We performed X-ray fluorescence element mapping and abundance measurements, for elements 19 < or = Z < or = 30, on six "interstellar candidates," potential interstellar impacts identified by Stardust@Home and extracted for analyses in picokeystones. One, I1044,3,33, showed no element hot-spots within the designated search area. However, we identified a nearby surface feature, consistent with the impact of a weak, high-speed particle having an approximately chondritic (CI) element abundance pattern, except for factor-of-ten enrichments in K and Zn and an S depletion. This hot-spot, containing approximately 10 fg of Fe, corresponds to an approximately 350 nm chondritic particle, small enough to be missed by Stardust@Home, indicating that other techniques may be necessary to identify all interstellar candidates. Only one interstellar candidate, I1004,1,2, showed a track. The terminal particle has large enrichments in S, Ti, Cr, Mn, Ni, Cu, and Zn relative to Fe-normalized CI values. It has high Al/Fe, but does not match the Ni/Fe range measured for samples of Al-deck material from the Stardust sample return capsule, which was within the field-of-view of the interstellar collector. A third interstellar candidate, I1075,1,25, showed an Al-rich surface feature that has a composition generally consistent with the Al-deck material, suggesting that it is a secondary particle. The other three interstellar candidates, I1001,1,16, I1001,2,17, and I1044,2,32, showed no impact features or tracks, but allowed assessment of submicron contamination in this aerogel, including Fe hot-spots having CI-like Ni/Fe ratios, complicating the search for CI-like interstellar/interplanetary dust.

  18. Stardust Interstellar Preliminary Examination VII: Synchrotron X-ray fluorescence analysis of six Stardust interstellar candidates measured with the Advanced Photon Source 2-ID-D microprobe

    NASA Astrophysics Data System (ADS)

    Flynn, George J.; Sutton, Steven R.; Lai, Barry; Wirick, Sue; Allen, Carlton; Anderson, David; Ansari, Asna; Bajt, SašA.; Bastien, Ron K.; Bassim, Nabil; Bechtel, Hans A.; Borg, Janet; Brenker, Frank E.; Bridges, John; Brownlee, Donald E.; Burchell, Mark; Burghammer, Manfred; Butterworth, Anna L.; Changela, Hitesh; Cloetens, Peter; Davis, Andrew M.; Doll, Ryan; Floss, Christine; Frank, David; Gainsforth, Zack; Grün, Eberhard; Heck, Philipp R.; Hillier, Jon K.; Hoppe, Peter; Hudson, Bruce; Huth, Joachim; Hvide, Brit; Kearsley, Anton; King, Ashley J.; Leitner, Jan; Lemelle, Laurence; Leroux, Hugues; Leonard, Ariel; Lettieri, Robert; Marchant, William; Nittler, Larry R.; Ogliore, Ryan; Ong, Wei Ja; Postberg, Frank; Price, Mark C.; Sandford, Scott A.; Tresseras, Juan-Angel Sans; Schmitz, Sylvia; Schoonjans, Tom; Silversmit, Geert; Simionovici, Alexandre; Sol, Vicente A.; Srama, Ralf; Stadermann, Frank J.; Stephan, Thomas; Sterken, Veerle; Stodolna, Julien; Stroud, Rhonda M.; Trieloff, Mario; Tsou, Peter; Tsuchiyama, Akira; Tyliszczak, Tolek; Vekemans, Bart; Vincze, Laszlo; von Korff, Joshua; Westphal, Andrew J.; Wordsworth, Naomi; Zevin, Daniel; Zolensky, Michael E.

    2014-09-01

    The NASA Stardust spacecraft exposed an aerogel collector to the interstellar dust passing through the solar system. We performed X-ray fluorescence element mapping and abundance measurements, for elements 19 ≤ Z ≤ 30, on six "interstellar candidates," potential interstellar impacts identified by Stardust@Home and extracted for analyses in picokeystones. One, I1044,3,33, showed no element hot-spots within the designated search area. However, we identified a nearby surface feature, consistent with the impact of a weak, high-speed particle having an approximately chondritic (CI) element abundance pattern, except for factor-of-ten enrichments in K and Zn and an S depletion. This hot-spot, containing approximately 10 fg of Fe, corresponds to an approximately 350 nm chondritic particle, small enough to be missed by Stardust@Home, indicating that other techniques may be necessary to identify all interstellar candidates. Only one interstellar candidate, I1004,1,2, showed a track. The terminal particle has large enrichments in S, Ti, Cr, Mn, Ni, Cu, and Zn relative to Fe-normalized CI values. It has high Al/Fe, but does not match the Ni/Fe range measured for samples of Al-deck material from the Stardust sample return capsule, which was within the field-of-view of the interstellar collector. A third interstellar candidate, I1075,1,25, showed an Al-rich surface feature that has a composition generally consistent with the Al-deck material, suggesting that it is a secondary particle. The other three interstellar candidates, I1001,1,16, I1001,2,17, and I1044,2,32, showed no impact features or tracks, but allowed assessment of submicron contamination in this aerogel, including Fe hot-spots having CI-like Ni/Fe ratios, complicating the search for CI-like interstellar/interplanetary dust.

  19. Inclusions of Sulphide Immiscible Melts in Primitive Olivine Phenocrysts from Mantle-Derived Magmas; Preliminary Results

    NASA Astrophysics Data System (ADS)

    Danyushevsky, L.; Ryan, C.; Kamenetsky, V.; Crawford, A.

    2001-12-01

    Sulphide inclusions have been identified in olivine phenocrysts (and in one case in a spinel phenocryst) in primitive volcanic rocks from mid- ocean ridges, subduction-related island arcs and backarc basins. These inclusions represent droplets of an immiscible sulphide melt and are trapped by olivine crystals growing from silicate melts. Sulphide melt is usually trapped as separate inclusions, however combined inclusions of sulphide and silicate melts have also been observed. Sulphide inclusions have rounded shapes and vary in size from several up to 100 microns in diameter. At room temperature sulphide inclusions consist of several phases. These phases are formed as a result of crystallisation of the sulphide melt after it was trapped. Crystallisation occurs due to decreasing temperature in the magma chamber after trapping and/or when magma ascents from the magma chamber during eruptions. In all studied sulphides three different phases can be identified: a high- Fe, low-Ni, low-Cu phase; a high-Fe, high-Ni, low-Cu phase; and high-Fe, low-Ni, high-Cu phase. Low-Cu phases appear to be monomineralic, whereas the high-Cu phase is usually composed of a fine intergrowth of high- and low-Cu phases, resembling the quench 'spinifex' structure. Fe, Ni and Cu are the major elements in all sulphides studied. The amount of Ni decreases with decreasing forsterite content of the host olivine phenocryst, which is an index of the degree of silicate magma fractionation. Since Ni content of the silicate magma is decreasing during fractionation, this indicates either that the immiscible sulfide melt remains in equilibrium with the silicate melt continuously changing its composition during fractionation, or that the sulfide melt is continuously separated from the silicate melt during fractionation, with later formed droplets having lower Ni content due to the lower Ni content of the evolved, stronger fractionated silicate melt. Trace element contents of the sulfide inclusions have been analysed on the proton microprobe at CSIRO in Sydney. The main trace elements in the sulfide inclusions are Zn, Pb, Ag, and Se. Other trace elements are below detection limits, which are normally at a level of several ppm. Zn concentrations (120 +/- 40 ppm) in sulphides are similar to those in silicate melts. This indicates that separation of the sulfide melt does not affect Zn contents of silicate melts. On the contrary, Ag (30 +/- 10 ppm) and Pb (40 +/- 10 ppm) contents in sulphides are at least in order of magnitude higher than in the silicate melt, and thus separation of the immiscible sulfide melt can significantly decrease Pb and Ag contents of the silicate magma. The widespread occurrence of sulfide inclusions, which were also described in olivine phenocrysts from ocean island basalts, indicates common saturation at low pressure of mantle-derived magmas with reduced sulfur.

  20. Trace metal concentrations in single specimens of the intestinal broad flatworm ( Diphyllobothrium latum), compared to their fish host ( Oncorhynchus mykiss) measured by total reflection X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Woelfl, Stefan; Mages, Margarete; Torres, Patricio

    2008-12-01

    The aim of this study was to investigate (1) whether intestine endoparasites ( Diphyllobothrium latum) accumulate trace elements related to its body size and (2) whether parasites bioconcentrate more trace elements than their host. Freshwater fish (rainbow trout Oncorhynchus mykiss) were sampled in the deep, oligotrophic and uncontaminated Lake Riñihue in Southern Chile. The element concentration of different organs (intestine, muscle, liver) and of the intestine endoparasites were analyzed using total reflection X-ray fluorescence spectrometry. The results showed that the mass fraction for Mn, Fe, Ni, Cu, and Pb decreased significantly with the body size (dry weight) of the endoparasite. Only Zn did not reveal such a relationship. Small parasites accumulated up to 80 times more Fe, Ni, Mn, Pb, and Cu than large parasites. Compared to the fish organs, small parasites accumulated in maximum 35 to 307 times more Mn, 5 to 255 times more Fe, 98 to 220 times more Ni, 3 to 175 times more Cu, and 0.4 to 12 times more Zn than the fish. Lead was only found in the endoparasite, but not in the fish organs. We conclude that (1) D. latum is a good indicator for trace element accumulation in fishes and that (2) small endoparasites are more sensitive as bioindicators because they showed higher bioconcentrations of trace metals than larger parasites.

  1. Assessment of total soil and plant trace elements in rice-based production systems in NE Italy

    NASA Astrophysics Data System (ADS)

    Bini, Claudio; Nadimi-Goki, Mandana; Kato, Yoichi; Vianello, Gilmo; Vittori, Livia; Wahsha, Mohammad; Spiandorello, Massimo

    2014-05-01

    Macro- and micronutrients concentrations, and PTEs contents in soils and plants (rice) from the rice district in the Venetian territory (NE Italy) have been determined by ICP-MS spectrometry, with the following aims: - to determine the background levels of macro- and microelements in the study area; - to assess possible contamination of soils and plants; - to calculate the Translocation Factor (TF) of metals from soil to plant, and the possible hazard for human health. Four rice plots with different rotation systems were investigated from seedling time to harvesting; sampling of soils (0-30cm) and plants was carried out 4 times during growing season (three replicates). Rice plants were separated into roots, stems, leaves and grains, and then oven-dried. Chemical and physical analyses were carried out at the Soil Science Lab of the University of Bologna and Venice, respectively. The results obtained point to a land with moderate soil contamination by trace elements (namely Li, Sn, Tl, Sr, Ti, Fe). Heavy metal (Sb, As, Be, Cd, Co, Cr, Ni, Pb, Cu, V, Zn ) concentrations in soils are below the threshold indicated by the Italian legislation (DM 152/2006). Cd, Sn, and Ti contents in soils are positively correlated with soil pH, while As, Fe, Li, Ti, Tl and Zn are negatively correlated with organic matter content. With the exception of Strontium, soil metal contents are always correlated between variable couples. HMs in plants vary according to the sampling season, texture and moisture, and soil pH. Most non-essential trace elements are accumulated in rice roots and, only in cases of essential micronutrients, in leaves. Therefore, rice can be assumed as an accumulator plant of As, Pb, Cr, Ba, and Ti, whereas it is as an indicator plant for Cu, Fe, Ni, Mn and Zn. The results of multiple linear regression analysis showed that soil pH has a larger effect on Ba, Cr, Cu, Fe, Mn, Ni, Ti and Zn concentrations in grain than other soil parameters. The average translocation of metals from soil to root was found to be >1, irrespective of the essential/not essential function; conversely, only essential elements ((Cu, Fe, Mn, Zn) are translocated rather easily from roots to leaves (TF ≤1) via phloem (TF< <1), and very little translocated to grains (TF< <1). Therefore, it is suggested that rice could be useful in contaminated-sites restoration projects by the phytostabilization technique. Moreover, there is very limited hazard for human population consuming rice crops. Key Words: Macro- and micronutrients concentrations, heavy metals, trace elements, rice plant, Italy, accumulator plant, indicator plant * Corresponding author. Tel.: +39 3891356251 E-mail address: mandy.nadimi@gmail.com

  2. Background concentrations and reference values for heavy metals in soils of Cuba.

    PubMed

    Alfaro, Mirelys Rodríguez; Montero, Alfredo; Ugarte, Olegario Muñiz; do Nascimento, Clístenes Williams Araújo; de Aguiar Accioly, Adriana Maria; Biondi, Caroline Miranda; da Silva, Ygor Jacques Agra Bezerra

    2015-01-01

    The potential threat of heavy metals to human health has led to many studies on permissible levels of these elements in soils. The objective of this study was to establish quality reference values (QRVs) for Cd, Pb, Zn, Cu, Ni, Cr, Fe, Mn, As, Hg, V, Ba, Sb, Ag, Co, and Mo in soils of Cuba. Geochemical associations between trace elements and Fe were also studied, aiming to provide an index for establishing background concentrations of metals in soils. Surface samples of 33 soil profiles from areas of native forest or minimal anthropic influence were collected. Samples were digested (USEPA method 3051A), and the metals were determined by ICP-OES. The natural concentrations of metals in soils of Cuba followed the order Fe > Mn > Ni > Cr > Ba > V > Zn > Cu > Pb > Co > As > Sb > Ag > Cd > Mo > Hg. The QRVs found for Cuban soils were as follows (mg kg(-1)): Ag (1), Ba (111), Cd (0.6), Co (25), Cr (153), Cu (83), Fe (54,055), Mn (1947), Ni (170), Pb (50), Sb (6), V (137), Zn (86), Mo (0.1), As (19), and Hg (0.1). The average natural levels of heavy metals are above the global average, especially for Ni and Cr. The chemical fractionation of soil samples presenting anomalous concentrations of metals showed that Cu, Ni, Cr, Sb, and As have low bioavailability. This suggests that the risk of contamination of agricultural products via plant uptake is low. However, the final decision on the establishment of soil QRVs in Cuba depends on political, economic, and social issues and in-depth risk analyses considering all routes of exposure to these elements.

  3. The Unique Biogeochemical Signature of the Marine Diazotroph Trichodesmium

    PubMed Central

    Nuester, Jochen; Vogt, Stefan; Newville, Matthew; Kustka, Adam B.; Twining, Benjamin S.

    2012-01-01

    The elemental composition of phytoplankton can depart from canonical Redfield values under conditions of nutrient limitation or production (e.g., N fixation). Similarly, the trace metal metallome of phytoplankton may be expected to vary as a function of both ambient nutrient concentrations and the biochemical processes of the cell. Diazotrophs such as the colonial cyanobacteria Trichodesmium are likely to have unique metal signatures due to their cell physiology. We present metal (Fe, V, Zn, Ni, Mo, Mn, Cu, Cd) quotas for Trichodesmium collected from the Sargasso Sea which highlight the unique metallome of this organism. The element concentrations of bulk colonies and trichomes sections were analyzed by ICP-MS and synchrotron x-ray fluorescence, respectively. The cells were characterized by low P contents but enrichment in V, Fe, Mo, Ni, and Zn in comparison to other phytoplankton. Vanadium was the most abundant metal in Trichodesmium, and the V quota was up to fourfold higher than the corresponding Fe quota. The stoichiometry of 600C:101N:1P (mol mol−1) reflects P-limiting conditions. Iron and V were enriched in contiguous cells of 10 and 50% of Trichodesmium trichomes, respectively. The distribution of Ni differed from other elements, with the highest concentration in the transverse walls between attached cells. We hypothesize that the enrichments of V, Fe, Mo, and Ni are linked to the biochemical requirements for N fixation either directly through enrichment in the N-fixing enzyme nitrogenase or indirectly by the expression of enzymes responsible for the removal of reactive oxygen species. Unintentional uptake of V via P pathways may also be occurring. Overall, the cellular content of trace metals and macronutrients differs significantly from the (extended) Redfield ratio. The Trichodesmium metallome is an example of how physiology and environmental conditions can cause significant deviations from the idealized stoichiometry. PMID:22557997

  4. Evaluation of constitutive iron reductase (AtFRO2) expression on mineral accumulation and distribution in soybean (Glycine max. L)

    PubMed Central

    Vasconcelos, Marta W.; Clemente, Thomas E.; Grusak, Michael A.

    2014-01-01

    Iron is an important micronutrient in human and plant nutrition. Adequate iron nutrition during crop production is central for assuring appropriate iron concentrations in the harvestable organs, for human food or animal feed. The whole-plant movement of iron involves several processes, including the reduction of ferric to ferrous iron at several locations throughout the plant, prior to transmembrane trafficking of ferrous iron. In this study, soybean plants that constitutively expressed the AtFRO2 iron reductase gene were analyzed for leaf iron reductase activity, as well as the effect of this transgene’s expression on root, leaf, pod wall, and seed mineral concentrations. High Fe supply, in combination with the constitutive expression of AtFRO2, resulted in significantly higher concentrations of different minerals in roots (K, P, Zn, Ca, Ni, Mg, and Mo), pod walls (Fe, K, P, Cu, and Ni), leaves (Fe, P, Cu, Ca, Ni, and Mg) and seeds (Fe, Zn, Cu, and Ni). Leaf and pod wall iron concentrations increased as much as 500% in transgenic plants, while seed iron concentrations only increased by 10%, suggesting that factors other than leaf and pod wall reductase activity were limiting the translocation of iron to seeds. Protoplasts isolated from transgenic leaves had three-fold higher reductase activity than controls. Expression levels of the iron storage protein, ferritin, were higher in the transgenic leaves than in wild-type, suggesting that the excess iron may be stored as ferritin in the leaves and therefore unavailable for phloem loading and delivery to the seeds. Also, citrate and malate levels in the roots and leaves of transgenic plants were significantly higher than in wild-type, suggesting that organic acid production could be related to the increased accumulation of minerals in roots, leaves, and pod walls, but not in the seeds. All together, these results suggest a more ubiquitous role for the iron reductase in whole-plant mineral accumulation and distribution. PMID:24765096

  5. Heavy metal concentrations in redeveloping soil of mine spoil under plantations of certain native woody species in dry tropical environment, India.

    PubMed

    Singh, Anand N; Zeng, De-hui; Chen, Fu-sheng

    2005-01-01

    Total concentration of heavy metals (Cd, Cr, Cu, Fe, Pb, Ni, Mn and Zn) was estimated in the redeveloping soil of mine spoil under 5-yr old plantations of four woody species namely: Albizia lebbeck, Albizia procera, Tectona grandis and Dendrocalamus strictus. The data recorded in the present study were compared with other unplanted coal mine spoil colliery, which was around to the study site and adjoining area of dry tropical forest. Among all the heavy metals, the maximum concentration was found for Fe and minimum for Cd. However, among all four species, total concentrations of these heavy metals were recorded maximally in the plantation plots of T. grandis except for Fe, while minimally in A. lebbeck except for Zn, whereas, the maximum concentration of Fe and Zn was in the plantation plots of D. strictus and A. procera. Statistical analysis revealed significant differences due to species for all the heavy metals except Cu. Among four species, A. lebbeck, A. procera and D. strictus showed more efficient for reducing heavy metal concentrations whereas T. grandis was not more effective to reduce heavy metal concentrations in redeveloping soil of mine spoil.

  6. Influence of Sulfur Metalation on the Accessibility of the Ni(II/I) Couple in [N,N'-Bis(2-mercaptoethyl)-1,5-diazacyclooctanato]nickel(II): Insight into the Redox Properties of [NiFe]-Hydrogenase.

    PubMed

    Musie, Ghezai; Farmer, Patrick J.; Tuntulani, Thawatchai; Reibenspies, Joseph H.; Darensbourg, Marcetta Y.

    1996-04-10

    A redox model study of [NiFe] hydrogenase has examined a series of five polymetallics based on the metalation of the dithiolate complex [1,5-bis(mercaptoethyl)-1,5-diazacyclooctane]Ni(II), Ni-1. Crystal structures of three polymetallics of the series have been reported earlier: [(Ni-1)(2)()Ni]Cl(2)(), [(Ni-1)(2)()FeCl(2)()](2)(), and [(Ni-1)(3)()(ZnCl)(2)()]Cl(2)(). Two are described here: [(Ni-1)(2)()Pd]Cl(2)().2H(2)()Ocrystallizes in the monoclinic system, space group P2(1)/c with cell constants a = 12.212(4) Å, b = 7.642(2) Å, c = 16.625(3) Å, beta = 107.69(2) degrees, V = 1443.230(0) Å(3), Z = 2, R = 0.051, and R(w) = 0.056. [(Ni-1)(2)()CoCl]PF(6)() crystallizes in the triclinic system, space group P&onemacr;, with cell constants a = 8.14(2) Å, b = 13.85(2) Å, c = 15.67(2) Å, alpha = 113.59(10) degrees, beta = 101.84(14) degrees, gamma = 94.0(2) degrees, V = 1561.620(0)Å(3), Z = 2, R = 0.072, and R(w) = 0.077. In all Ni-1 serves as a bidentate metallothiolate ligand with a "hinge" angle in the range 105-118 degrees and Ni-M distances of 2.7- 3.7 Å. The most accessible redox event is shown by EPR and electrochemistry to reside in the N(2)S(2)Ni unit and is the Ni(II/I) couple. Charge neutralization of the thiolate sulfurs by metalation can (dependent on the interacting metal) stabilize the Ni(I) state as efficiently as methylation forming a thioether. The implication of these results for the heterometallic active site of [NiFe]-hydrogenase as structured from Desulfovibrio gigas (Volbeda, A., et al. Nature, 1995, 373, 580), the generality of the Ni(&mgr;-SR)(2)M hinge structure, and a possible explanation for the unusual redox potentials are discussed.

  7. Distribution and chemistry of suspended particles from an active hydrothermal vent site on the Mid-Atlantic Ridge at 26°N

    NASA Astrophysics Data System (ADS)

    Trocine, Robert P.; Trefry, John H.

    1988-04-01

    Suspended particles were collected from an area of active hydrothermal venting at the Trans-Atlantic Geotraverse (TAG) Hydrothermal Field on the Mid-Atlantic Ridge and analyzed for Fe, Mn, Cd, Zn, Cu, V, Ni, Cr, Pb, Mg, Ca, Al and Si. Rapid advection of vent-derived precipitates produced a lens with total suspended matter (TSM) loadings of 14-60 μg/l at 200-700 m above the seafloor; TSM concentrations > 60 μg/l were observed only at near-vent sites. The distribution of suspended particles correlated well with increased dissolved Mn concentrations and particulate Fe values near the vent source. Particulate Fe values decreased linearly relative to TSM concentrations as hydrothermal precipitates mixed with background suspended matter. Near-vent precipitates were characterized by up to 35% Fe, 2% Zn, 0.6% Cu and > 100 μg/g Cd. In comparison to Fe, particulate Cd, Zn and Cu values decreased dramatically away from the vent source. This trend supports differential settling and/or dissolution of Cd-, Zn- and Cu-bearing phases. Particulate Mn and Fe values were inversely related with only 50 μg Mn/g in the near-vent particles. At near-vent sites, > 99% of the total Mn was in solution; this fraction decreased to 75-80% at background TSM values. In contrast to Cd, Zn and Cu, particulate V levels show a continuous, linear decrease with particulate Fe values. This trend is explained by adsorption of V on Fe-oxides in the vent plume. Scavenging of Cr, Pb and Mg by hydrothermal precipitates is also suggested by the data. Nickel and Al values were low in near-vent particles at < 100 and < 3 μg/g, respectively. The complementary behavior of dissolved Mn and particulate trace metals provides a useful framework for studying broad aspects of hydrothermal plume processes.

  8. Investigation of the synthesis, activation, and isosteric heats of CO2 adsorption of the isostructural series of metal-organic frameworks M3(BTC)2 (M = Cr, Fe, Ni, Cu, Mo, Ru).

    PubMed

    Wade, Casey R; Dincă, Mircea

    2012-07-14

    The synthesis, activation, and heats of CO(2) adsorption for the known members of the M(3)(BTC)(2) (HKUST-1) isostructural series (M = Cr, Fe, Ni, Zn, Ni, Cu, Mo) were investigated to gain insight into the impact of CO(2)-metal interactions for CO(2) storage/separation applications. With the use of modified syntheses and activation procedures, improved BET surface areas were obtained for M = Ni, Mo, and Ru. The zero-coverage isosteric heats of CO(2) adsorption were measured for the Cu, Cr, Ni, Mo, and Ru analogues and gave values consistent with those reported for MOFs containing coordinatively unsaturated metal sites, but lower than for amine functionalized materials. Notably, the Ni and Ru congeners exhibited the highest CO(2) affinities in the studied series. These behaviors were attributed to the presence of residual guest molecules in the case of Ni(3)(BTC)(2)(Me(2)NH)(2)(H(2)O) and the increased charge of the dimetal secondary building unit in [Ru(3)(BTC)(2)][BTC](0.5).

  9. Volatile Element Behavior During Melting and Vaporisation on Earth and Protoplanets.

    NASA Astrophysics Data System (ADS)

    Wood, B. J.; Norris, C. A.

    2017-12-01

    During accretion the Earth and many of the smaller bodies which were added to it, underwent periods of partial melting, vaporisation and re-condensation. This resulted in patterns of volatile element depletion relative to CI chondrite which are difficult to interpret. The behavior of moderately volatile elements (Pb, Cd, Zn,Cu, In,Tl etc) during these melting, vaporisation and condensation processes is usually approximated by the temperature of condensation from a gas of solar composition. Thus, Tl and In have low condensation temperatures and are regarded as the most volatile of this group. In order to test this volatility approximation we have studied the vaporisation behavior of 13 elements (Ag,Bi,Cd,Cr,Cu,Ga,Ge,In,Pb,Sb,Sn,Tl,Zn) from molten basalt at 1 atm pressure and oxygen fugacities between Ni-NiO and 2 log units below Fe-FeO. The relative volatilities of the elements turn out to be only weakly correlated with condensation temperature, indicating that the latter is a poor proxy for volatility on molten bodies. Cu, Zn and In for example all have similar volatility in the oxygen fugacity range of concern, despite the condensation temperature of Cu (1037K at 10-4bar) being 500K greater than that of In. The oxygen fugacity dependence of volatility indicates that the volatile species are, for all elements more reduced than the melt species. We addressed the differences between condensation temperature and relative volatility in 2 steps. Firstly we used metal-silicate partitioning experiments to estimate the activity coefficients of the trace element oxides in silicate melts. We then used available thermodynamic data to compute the vapor pressures of the stable species of these 13 elements over the silicate melt at oxygen fugacities ranging from Ni-NiO to about 6 log units below Fe-FeO, which approximates the solar gas. Thus we find that presence of Cl and S in the solar gas and the stable Cl and S species of In,Tl Ga Ge Cd and Sn are important contributing factors to volatility in the solar nebula. Our measured volatilities from silicate melt under reducing (S and Cl-absent) conditions are consistent with abundances in the silicate Earth, indicating that these moderately volatile elements were added to Earth in bodies which had undergone episodes of melting and vaporisation.

  10. Trace metal characterization of aerosol particles and cloud water during HCCT 2010

    NASA Astrophysics Data System (ADS)

    Fomba, K. W.; van Pinxteren, D.; Müller, K.; Iinuma, Y.; Lee, T.; Collett, J. L., Jr.; Herrmann, H.

    2015-08-01

    Trace metal characterization of bulk and size-resolved aerosol and cloud water samples were performed during the Hill Cap Cloud Thuringia (HCCT) campaign. Cloud water was collected at the top of Mt. Schmücke while aerosol samples were collected at two stations upwind and downwind of Mt. Schmücke. Fourteen trace metals including Ti, V, Fe, Mn, Co, Zn, Ni, Cu, As, Sr, Rb, Pb, Cr, and Se were investigated during four full cloud events (FCEs) that fulfilled the conditions of a continuous air mass flow through the three stations. Aerosol particle trace metal concentrations were found to be lower than those observed in the same region during previous field experiments but were within a similar range to those observed in other rural regions in Europe. Fe and Zn were the most abundant elements with concentration ranges of 0.2-111.6 and 1.1-32.1 ng m-3, respectively. Fe, Mn, and Ti were mainly found in coarse mode aerosols while Zn, Pb, and As were mostly found in the fine mode. Correlation and enrichment factor analysis of trace metals revealed that trace metals such as Ti and Rb were mostly of crustal origin while trace metals such as Zn, Pb, As, Cr, Ni, V, and Cu were of anthropogenic origin. Trace metals such as Fe and Mn were of mixed origins including crustal and combustion sources. Trace metal cloud water concentration decreased from Ti, Mn, Cr, to Co with average concentrations of 9.18, 5.59, 5.54, and 0.46 μg L-1, respectively. A non-uniform distribution of soluble Fe, Cu, and Mn was observed across the cloud drop sizes. Soluble Fe and Cu were found mainly in cloud droplets with diameters between 16 and 22 μm, while Mn was found mostly in larger drops greater than 22 μm. Fe(III) was the main form of soluble Fe especially in the small and larger drops with concentrations ranging from 2.2 to 37.1 μg L-1. In contrast to other studies, Fe(II) was observed mainly in the evening hours, implying its presence was not directly related to photochemical processes. Aerosol-cloud interaction did not lead to a marked increase in soluble trace metal concentrations; rather it led to differences in the chemical composition of the aerosol due to preferential loss of aerosol particles through physical processes including cloud drop deposition to vegetative surfaces.

  11. Trace metal characterization of aerosol particles and cloud water during HCCT 2010

    NASA Astrophysics Data System (ADS)

    Fomba, K. W.; van Pinxteren, D.; Müller, K.; Iinuma, Y.; Lee, T.; Collet, J., Jr.; Herrmann, H.

    2015-04-01

    Trace metal characterization of bulk and size resolved aerosol and cloud water samples were performed during the Hill Cap Cloud Thuringia (HCCT) campaign. Cloud water was collected at the top of Mt. Schmücke while aerosol samples were collected at two stations upwind and downwind of Mt. Schmücke. Fourteen trace metals including Ti, V, Fe, Mn, Co, Zn, Ni, Cu, As, Sr, Rb, Pb, Cr, and Se were investigated during four full cloud events (FCE) that fulfilled the conditions of a continuous air mass flow through the three stations. Aerosol particle trace metal concentrations were found to be lower than those observed in the same region during previous field experiments but were within a similar range to those observed in other rural regions in Europe. Fe and Zn were the most abundant elements with concentration ranges of 0.2-111.6 and 1.1-32.1 ng m-3, respectively. Fe, Mn and Ti were mainly found in coarse mode aerosols while Zn, Pb and As were mostly found in the fine mode. Correlation and enrichment factor analysis of trace metals revealed that trace metals such as Ti and Rb were mostly of crustal origin while trace metals such as Zn, Pb, As, Cr, Ni, V, and Cu were of anthropogenic origin. Trace metals such as Fe, Mn, were of mixed origins including crustal and combustion sources. Trace metal cloud water concentration decreased from Ti, Mn, Cr, to Co with average concentrations of 9.18, 5.59, 5.54, and 0.46 μg L-1, respectively. A non-uniform distribution of soluble Fe, Cu and Mn was observed across the cloud drop sizes. Soluble Fe and Cu were found mainly in cloud droplets with diameters between 16 and 22 μm while Mn was found mostly in larger drops greater than 22 μm. Fe (III) was the main form of soluble Fe especially in the small and larger drops with concentrations ranging from 2.2 to 37.1 μg L-1. In contrast to other studies, Fe (II) was observed mainly in the evening hours, implying its presence was not directly related to photochemical processes. Aerosol cloud interaction did not lead to a mark increase in soluble trace metal concentrations, but led to differences in the chemical composition of the aerosol due to preferential loss of aerosol particles through physical processes including cloud drop deposition to vegetative surfaces.

  12. Distribution of selected heavy metals in sediments of the Agueda river (Central Portugal).

    PubMed

    dos Reis, Anabela Ribeiro; Parker, Andrew; Carter, Joy; Ferreira, Martim Portugal

    2005-01-01

    The state of river water deterioration in the Agueda hydrographic basin, mostly in the western part, partly reflects the high rate of housing and industrial development in this area in recent years. The streams have acted as a sink for organic and inorganic loads from several origins: domestic and industrial sewage and agricultural waste. The contents of the heavy metals Cr, Cd, Ni, Cu, Pb, and Zn were studied by sequential chemical extraction of the principal geochemical phases of streambed sediments, in the <63 microm fraction, in order to assess their potential availability to the environment, investigating the metal concentrations, assemblages, and trends. The granulometric and mineralogical characteristics of this sediment fraction were also studied. This study revealed clear pollution by Cr, Cd, Ni, Cu, Zn, and Pb, as a result from both natural and anthropogenic origins. The chemical transport of metals appears to be essentially by the following geochemical phases, in decreasing order of significance: (exchangeable + carbonates) > (organics) > (Mn and Fe oxides and hydroxides). The (exchangeable + carbonate) phase plays an important part in the fixation of Cu, Ni, Zn, and Cd. The organic phase is important in the fixation of Cr, Pb, and also Cu and Ni. Analyzing the metal contents in the residual fraction, we conclude that Zn and Cd are the most mobile, and Cr and Pb are less mobile than Cu and Ni. The proximity of the pollutant sources and the timing of the influx of contaminated material control the distribution of the contaminant-related sediments locally and on the network scale.

  13. Determination of trace element level in different tissues of the leaping mullet (Liza saliens, Mugilidae) collected from Caspian Sea.

    PubMed

    Ebrahimzadeh, Mohammad Ali; Eslami, Shahram; Nabavi, Seyed Fazel; Nabavi, Seyed Mohammad

    2011-12-01

    The concentrations of Cr, Cu, Fe, Mn, Ni, Pb, Cd, and Zn were determined in the brain, heart, liver, gill, gonad, spleen, kidney, and red and white muscles of Liza saliens (leaping mullet). Trace element levels in fish samples were analyzed by flame atomic absorption spectrometry. Among the non-essential metals, the levels of Ni and Pb in the tissues were higher than limits for fish proposed by FAO/WHO, EU, and TFC. Generally, the levels of the non-essential metals were much higher than those of manganese in the red and white muscles. Fe distribution pattern in tissues was in order of spleen > liver > heart > gill > brain > kidney > gonad > red muscle > white muscle. Red muscle was not within the safe limits for human consumption because non-essential metal (Ni, Pb) contents were higher than standard limits.

  14. On the chemical composition of L-chondrites

    NASA Technical Reports Server (NTRS)

    Neal, C. W.; Dodd, R. T.; Jarosewich, E.; Lipschutz, M. E.

    1980-01-01

    Radiochemical neutron activation analysis of Ag, As, Au, Bi, Co, Cs, Ga, In, Rb, Sb, Te, Tl, and Zn and major element data in 14 L4-6 and 3 LL5 chondrites indicates that the L group is unusually variable and may represent at least 2 subgroups differing in formation history. Chemical trends in the S/Fe rich subgroup support textural evidence indicating late loss of a shock formed Fe-Ni-S melt; the S/Fe poor subgroup seemingly reflects nebular fractionation only. Highly mobile In and Zn apparently reflect shock induced loss from L chondrites. However, contrasting chemical trends in several L chondrite sample sets indicate that these meteorites constitute a more irregular sampling of, or more heterogeneous parent material than do carbonaceous or enstatite chondrites. Data for 15 chondrites suggest higher formation temperatures and/or degrees of shock than for LL5 chondrites.

  15. Hydrometallurgical recovery of metals: Ce, La, Co, Fe, Mn, Ni and Zn from the stream of used Ni-MH cells.

    PubMed

    Sobianowska-Turek, Agnieszka

    2018-04-11

    The utilization of the stream of waste secondary nickel-metal hydride (Ni-MH) and lithium-ion (Li-ion) cells, representing annually about 33% of all consumer batteries and accumulators placed on the Polish market, will soon become a big challenge for both legislators and plants dealing with the recycling of this type of hazardous waste. It is due to the fact that no company in Poland operating on the market has a complete technology for the processing of a full stream of waste chemical energy sources produced in this country. Until now, the most commonly used techniques of processing this type of waste were pyrometallurgical process. In this paper, the quantitative and qualitative characteristics of the stream of waste batteries and accumulators collected at separate collection points are presented. The results of metal recovery: caesium, lanthanum, cobalt, iron, manganese, nickel and zinc from the stream of waste Ni-MH cells, type R6 (AA), using hydrometallurgical methods are also offered. The paper demonstrates that one-stage leaching at an initial temperature of 25.0 °C, with 3 M H 2 SO 4 and at the solid to liquid ratio of s/l = 1/10, within 75 min, at a mixing speed of 500 rpm and in a strongly acidic environment should be adopted as optimal parameters for acid leaching of the paramagnetic fraction created after mechanical machining of Ni-MH battery, for which the leaching rates of individual metals were as follows: Ce - 97.7%, La - 88.7%, Co - 79.4%, Fe - 68.5%, Mn - 91.9%, Ni - 66.2% and Zn - 100%. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Use of Geochemical Indices in Environmental Assessment of Soil; the Predictable and the Predictably Unpredictable

    NASA Astrophysics Data System (ADS)

    Mikkonen, Hannah; Clarke, Bradley; van de Graaff, Robert; Reichman, Suzie

    2016-04-01

    Geochemical correlations between common contaminants (Pb, Ni, As, Cr, Co and Zn) and earth metals, Fe and Mn, have been recommended as empirical tools to estimate "background" concentrations of metals in soil. A limited number of studies indicate that geochemical ratios between Pb, Ni, As, Cr, Co, V and Zn with scavenger metals Fe or Mn, are consistent between soils collected from different regions (Hamon et al. 2004, Myers and Thorbjornsen 2004). These studies have resulted in the incorporation of geochemical indices into Australian guidance, for derivation of ecological investigation levels for Ni, Cr, Cu and Zn. However, little research has been undertaken to assess the variation of geochemical patterns between soils derived from different parent materials or different weathering environments. A survey of background soils derived from four different parent materials, across Victoria, Australia, was undertaken, comprising collection of samples (n=640) from the surface (0 to 0.1 m) and sub-surface (0.3 to 0.6 m). Soil samples were collected from urban and rural areas of low disturbance, away from point sources of contamination. Samples were analysed for metals/metalloids and soil physical and chemical properties. Statistical review of results included regression and multivariate analysis. The results of the soil survey were compared against geochemical relationships reported within Australia and internationally. Compilation of results from this study and international data sets, indicates that geochemical relationships for metals Cr and V (in the format of log[Cr] = alog[Fe] +c) are predictable, not only between soils derived from different parent materials, but also between soils of different continents. Conversely, relationships between Zn and Fe, Pb and Fe, Cu and Fe, Co and Mn are variable, particularly within soils derived from alluvial sediments, which may have undergone periods of reducing conditions, resulting in dissociation from metal oxides. Broad application of geochemical indices without an understanding of site specific conditions could result in significant underestimation of anthropogenic impacts to soil and potential risks to the environment. The reliability and application of geochemical indices for estimation of background concentrations will be discussed, including comment on statistical limitations, (such as management of censored results and the behaviour of composition data) and miss-use/miss-interpretation of geochemical indices within the environmental assessment industry, including inferences of causation based on empirical relationships. HAMON, R. E., MCLAUGHLIN, M. J., GILKES, R. J., RATE, A. W., ZARCINAS, B., ROBERTSON, A., COZENS, G., RADFORD, N. & BETTENAY, L. 2004. Geochemical indices allow estimation of heavy metal background concentrations in soils. Global Biogeochemical Cycles, 18, GB1014. MYERS, J. & THORBJORNSEN, K. 2004. Identifying Metals Contamination in Soil: A Geochemical Approach. Soil & Sediment Contamination, 13, 1-16.

  17. Ni-P/Zn-Ni compositionally modulated multilayer coatings - Part 1: Electrodeposition and growth mechanism, composition, morphology, roughness and structure

    NASA Astrophysics Data System (ADS)

    Bahadormanesh, Behrouz; Ghorbani, Mohammad

    2018-06-01

    The Ni-P/Zn-Ni compositionally modulated multilayer coatings CMMCs were electrodeposited from a single bath by switching the cathodic current density. The composition, surface morphology, roughness, layers growth pattern as well as the phase structure of deposits were extensively studied via SEM, EDS, AFM and XRD analysis. Effects of bath ingredients on the electrodeposition behavior were analyzed through cathodic linear sweep voltammetry. Although the concentration of Zn2+ in bath was 13 times higher than Ni2+, the Zn-Ni deposition potential was much nearer to Ni deposition potential rather than that of Zn. Addition of NaH2PO2 to the Ni deposition bath considerably raised the current density and shifted the crystallization potential of Ni to more nobble values. Codeposition of P with Zn-Ni alloy lead to crack formation in the monolayer that was deposited in 60 mA/cm2. However, the cracks were not observed in the Zn-Ni layers of multilayers. Zn-Ni layers in CMMCs exhibited a three-dimensional pattern of growth while that of Ni-P layers was two-dimensional. Also, the Ni-P deposits tends to fill the discontinuities in Zn-Ni layers and performed leveling properties and lowered the surface roughness of Zn-Ni layers and CMMCs. Structural analysis demonstrated that Ni-P layers were amorphous and the Zn-Ni layers exhibited crystallite phase of Zn11Ni2. Thus, the Ni-P/Zn-Ni CMMCs comprised of alternate layers of amorphous Ni-P and nanocrystalline Zn Ni.

  18. HUMAN SCALP HAIR: AN ENVIRONMENTAL EXPOSURE INDEX FOR TRACE ELEMENTS. II. SEVENTEEN TRACE ELEMENTS IN FOUR NEW JERSEY COMMUNITIES (1972)

    EPA Science Inventory

    Seventeen trace elements - arsenic (As), barium (Ba), boron (B), cadmium (Cd), chromium (Cr), copper (Cu), Iron (Fe), lead (Pb), lithium (Li), manganese (Mn), mercury (Hg), nickle (Ni), selenium (Se), silver (Ag), tin (Sn), vanadium (V), and zinc (Zn) - were measured in human sca...

  19. Laser-Induced Breakdown Spectroscopy of Trace Metals

    NASA Technical Reports Server (NTRS)

    Simons, Stephen (Technical Monitor); VanderWal, Randall L.; Ticich, Thomas M.; West, Joseph R., Jr.

    2004-01-01

    An alternative approach for laser-induced breakdown spectroscopy (LIBS) determination of trace metal determination in liquids is demonstrated. The limits of detection (LOD) for the technique ranged from 10 ppb to 10 ppm for 15 metals metals (Mg, Al, Si, Ca, Ti, Cr, Fe, Co, Ni, Cu, Zn, As, Cd, Hg, Pb) tested.

  20. Sintered silicon carbide molded body and method for its production

    NASA Technical Reports Server (NTRS)

    Omori, M.; Sendai, M.; Ohira, K.

    1984-01-01

    Sintered silicon carbide shapes are described. They are produced by using a composition containing an oxide of at least one element chosen from the group: Li, Be, Mg, Si, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Nb, Mo, Ba, Tc, Ta, W and Th as a supplement to known sintering aids.

  1. Path analyses of grain P, Zn, Cu, Fe, and Ni in a biosolids-amended dryland wheat agroecosystem

    USDA-ARS?s Scientific Manuscript database

    Biosolids land application is an effective means of recycling plant nutrients and is the preferred method of biosolids reuse by the US Environmental Protection Agency. One issue concerning biosolids application is the extent of the contribution of biosolids-borne plant nutrients to the overall crop...

  2. Chemically stable ceramic-metal composite membrane for hydrogen separation

    DOEpatents

    Chen, Fanglin; Fang, Shumin; Brinkman, Kyle S.

    2017-06-27

    A hydrogen permeation membrane is provided that can include a metal and a ceramic material mixed together. The metal can be Ni, Zr, Nb, Ta, Y, Pd, Fe, Cr, Co, V, or combinations thereof, and the ceramic material can have the formula: BaZr.sub.1-x-yY.sub.xT.sub.yO.sub.3-.delta. where 0.ltoreq.x.ltoreq.0.5, 0.ltoreq.y.ltoreq.0.5, (x+y)>0; 0.ltoreq..delta..ltoreq.0.5, and T is Sc, Ti, Nb, Ta, Mo, Mn, Fe, Co, Ni, Cu, Zn, Ga, In, Sn, or combinations thereof. A method of forming such a membrane is also provided. A method is also provided for extracting hydrogen from a feed stream.

  3. Impedance response and dielectric relaxation in co-precipitation derived ferrite (Ni,Zn)Fe{sub 2}O{sub 4} ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, D. G.; Tang, X. G.; Liu, Q. X.

    2013-06-07

    Dielectric spectra and magnetization hysteresis loops were used to investigate the grain size effect with temperature on the electrical and magnetic response of co-precipitation derived spinel (Ni{sub 0.5}Zn{sub 0.5})Fe{sub 2}O{sub 4} (NZFO) ceramics. Remarkable dielectric relaxation phenomena of non-Debye type have been observed in each NZFO ceramics as confirmed by two kinds of Cole-Cole plots of the 1100 Degree-Sign C sintered samples, mainly due to the electron-hopping mechanism between n-type and p-type carriers and interfacial ion effect when applied an increase of temperature. The high and low response of grain and grain-boundary regions were determined by modeling the impedance experimentalmore » results on two equivalent RC circuits taking into account grain deep trap states. By employing the modified Arrhenius equation, activation energy values of different sintering temperatures were calculated and analyzed in combination with oxygen vacancy. In addition, the magnetization of various sintering temperature samples is dominated by cation distribution and surface effect in different particle ranges.« less

  4. Study of 0.1Ni0.8Zn0.2Fe2O4-0.9Pb1-3x/2LaxZr0.65Ti0.35O3 magnetoelectric composites

    NASA Astrophysics Data System (ADS)

    Rani, Rekha; Juneja, J. K.; Singh, Sangeeta; Raina, K. K.; Prakash, Chandra

    2013-01-01

    Magnetoelectric composites of nickel zinc ferrite (NZF) and La substituted lead zirconate titanate (PLZT) having representative formula 0.1Ni0.8Zn0.2Fe2O4-0.9Pb1-3x/2LaxZr0.65Ti0.35O3 (x=0, 0.01, 0.02 and 0.03) were synthesized by a conventional solid state route. X-ray diffraction analysis was carried out to confirm the coexistence of individual phases. Scanning electron microscope micrographs were taken for microstructural study of the samples. Dielectric properties were studied as a function of temperature and frequency. To study ferroelectric and magnetic ordering in composite samples, P-E and M-H hysteresis loops were recorded respectively. M-H hysteresis loops were taken for electrically poled and unpoled samples to confirm magnetoelectric coupling between the two phases (NZF and PLZT). La substitution results in significant improvement in dielectric, ferroelectric and piezoelectric properties of composite samples.

  5. Distribution and relationships of trace metals in the isopod Saduria entomon and adjacent bottom sediments in the southern Baltic.

    PubMed

    Góral, Marta; Szefer, Piotr; Ciesielski, Tomasz; Warzocha, Jan

    2009-10-01

    The concentrations of Ag, Cd, Co, Cr, Cu, Fe, Ni, Pb, Mn and Zn in Saduria entomon and adjacent bottom sediments from the southern Baltic were determined by FAAS. In order to estimate the strength of correlations between accumulated elements in these crustaceans and surficial sediment, bioaccumulation factors (BAFs) were calculated. The results of factor analysis (FA) and the Kruskal-Wallis analysis of variance (ANOVA) clearly indicate geographical differences between the concentrations of these elements. Cd, Co, Fe, Ni, Pb and Zn levels were higher in S. entomon from the Gulf of Gdańsk, whereas Cr and Mn levels were higher in the crustaceans inhabiting open Baltic waters. The concentrations of Ag and Cu were comparable in both regions. There was a tendency for metal concentrations to distinguish organisms inhabiting the muddy bottom from those living in sandy sediments. The granulometric composition of the sediment appears to influence trace metal bioavailability. The results show that S. entomon could be a valuable sentinel organism for biomonitoring heavy metal contamination in the southern Baltic.

  6. Fractionation study in bioleached metallurgy wastes using six-step sequential extraction.

    PubMed

    Krasnodebska-Ostrega, Beata; Pałdyna, Joanna; Kowalska, Joanna; Jedynak, Łukasz; Golimowski, Jerzy

    2009-08-15

    The stored metallurgy wastes contain residues from ore processing operations that are characterized by relatively high concentrations of heavy metals. The bioleaching process makes use of bacteria to recover elements from industrial wastes and to decrease potential risk of environmental contamination. Wastes were treated by solutions containing bacteria. In this work, the optimized six-stage sequential extraction procedure was applied for the fractionation of Ni, Cr, Fe, Mn, Cu and Zn in iron-nickel metallurgy wastes deposited in Southern Poland (Szklary). Fractionation and total concentrations of elements in wastes before and after various bioleaching treatments were studied. Analyses of the extracts were performed by ICP-MS and FAAS. To achieve the most effective bioleaching of Zn, Cr, Ni, Cu, Mn, Fe the usage of both autotrophic and heterotrophic bacteria in sequence, combined with flushing of the residue after bioleaching is required. 80-100% of total metal concentrations were mobilized after the proposed treatment. Wastes treated according to this procedure could be deposited without any risk of environmental contamination and additionally the metals could be recovered for industrial purposes.

  7. Accumulation and environmental risk assessment of heavy metals in soil and plants of four different ecosystems in a former polymetallic ores mining and smelting area (Slovakia).

    PubMed

    Demková, Lenka; Árvay, Július; Bobuľská, Lenka; Tomáš, Ján; Stanovič, Radovan; Lošák, Tomáš; Harangozo, Luboš; Vollmannová, Alena; Bystrická, Judita; Musilová, Janette; Jobbágy, Ján

    2017-04-16

    Heavy metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in soils and plants of four different ecosystems (forest, grassland, agro and urban ecosystem) at different distances from the source of the pollution were analyzed in order to assess and compare soil contamination in the various ecosystems and determine the potential accumulation of plants depending on the place they inhabit. Correlation relationships among heavy metals in soils differ depending on the ecosystem, and between soil and plant, the heavy metals showed significant correlation for Cu, Mn, Ni, Pb and Zn. Contamination factor (C f ), degree of contamination (C d ) and pollution load index (PLI) were used in order to determine the level of environmental contamination of the study area. All studied ecosystems were rated as moderately contaminated (except agroecosystem, which was found as low contamination ecosystem) according to C d and extremely polluted according to PLI. The highest pollution in both cases was found in urban ecosystem, and Cd, Cu and Fe were determined as the biggest pollutants.

  8. Characterization of trace metal removal products in vertical flow bioreactor substrates at the Mayer Ranch Passive Treatment System in the Tar Creek Superfund Site.

    PubMed

    LaBar, Julie A; Nairn, Robert W

    2018-05-01

    A passive treatment system (PTS), including two parallel vertical flow bioreactors (VFBR), was constructed in 2008 for the treatment of unabated net-alkaline ferruginous mine drainage in the Tar Creek Superfund Site in northeastern Oklahoma. Water quality data collected since the PTS began operation indicate significant removal of trace metals in the VFBR. Results of a sequential extraction procedure (SEP) performed on substrate samples showed that the majority of Cd, Co, Fe, Ni, Pb, and Zn were retained in the refractory organic/sulfide fraction. Subsequent acid volatile sulfide/simultaneously extracted metals (AVS/SEM) analyses confirmed the retention of Cd, Fe, Pb, and Zn as sulfides, but Co and Ni results were less certain. The majority of trace metals were retained as insoluble products in the VFBR, while up to 20% of most of the trace metals were retained in soluble, bioavailable fractions. Nearly 70% of Mn was retained in the soluble and bioavailable exchangeable, carbonate, and labile organic fractions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Effect on the structural, DC resistivity and magnetic properties of Zr and Cu co-SubstitutedNi0.5Zn0.5Fe2O4using sol-gel auto-combustion method

    NASA Astrophysics Data System (ADS)

    Jalaiah, K.; Vijaya Babu, K.; Chandra mouli, K.; Subba Rao, P. S. V.

    2018-04-01

    The Zr and Cu co-substituted Ni0.5Zn0.5Fe2O4 ferrite nanoparticles have been synthesized by the sol-gel auto combustion method. The XRD patterns confirmed single phase cubic spinel structure for present ferrite systems. The substitution of co-dopants in the spinel structure initially decreases the lattice parameter from x = 0.00 to 0.08 and thereafter increases and the same tendency reflecting in cell volume. The DC resistivity was initially increased later followed the decreasing trend; however the drift mobility of all ferrite samples appears to be in opposite phenomenon to DC resistivity. The saturation magnetization and net magnetic moments of all ferrite samples are decreasing with increasing dopant concentration. The coercive field and Y-K angles are increased with dopant concentration. The initial permeability of all samples is decreased with increasing dopant concentration. The Q-Factor for all samples shows the narrow frequency band with increasing frequency.

  10. Anode materials for lithium ion batteries

    DOEpatents

    Abouimrane, Ali; Amine, Khalil

    2017-04-11

    An electrochemical device includes a composite material of general Formula (1-x)J-(x)Q wherein: J is a metal carbon alloy of formula Sn.sub.zSi.sub.z'Met.sub.wMet'.sub.w'C.sub.t; Q is a metal oxide of formula A.sub..gamma.M.sub..alpha.M'.sub..alpha.'O.sub..beta.; and wherein: A is Li, Na, or K; M and M' are individually Ge, Mo, Al, Ga, As, Sb, Te, Ti, Ta, Zr, Ca, Mg, Sr, Ba, Li, Na, K, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Nb, Rt, Ru or Cd; Met and Met' are individually Ge, Mo, Al, Ga, As, Sb, Te, Ti, Ta, Zr, Ca, Mg, Sr, Ba, Li, Na, K, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Nb, Rt, Ru or Cd; 0

  11. [Contents of nutrient elements in NH4(+)-N fertilizer and urea].

    PubMed

    Wang, Zheng-Rui; Qu, Gui-Qin; Rui, Yu-Kui; Shen, Jian-Bo; Zhang, Fu-Suo

    2009-03-01

    Fertilizer contains not only one compound or one element, so it is important to determine the contents of other elements necessitous and beneficial to plant. All the other nutrient elements for plant, including necessitous elements and beneficial elements in ammonia nitrogen fertilizer ((NH4)2SO4) and CO(NH2)2, were analyzed by method of ICP-MS. The results showed that ammonia nitrogen fertilizer ((NH4)2SO4) and CO(NH2)2 both contain many necessitous elements, Mg, P, K, Ca, Mn, Fe, Ni, Cu, Zn and Mo, thereinto the contents of Mg, P, K, Ca, Mn and Fe were on microg x g(-1) the level, and Ni, Cu, Zn and Mo were on the ng x g(-1) level; compared with CO(NH2)2, ammonia nitrogen fertilizer ((NH4)2SO4) contains more necessitous elements and beneficial elements except Mo and Si. All the above elements could influence the results of nitrogen fertilizer efficiency experiments, so pure fertilizer should be used in the future nitrogen fertilizer efficiency experiments and the comparative experiments of different form nitrogen fertilizer.

  12. Interaction between Diethyldithiocarbamate and Cu(II) on Gold in Non-Cyanide Wastewater

    PubMed Central

    Ly, Nguyễn Hoàng; Nguyen, Thanh Danh; Zoh, Kyung-Duk; Joo, Sang-Woo

    2017-01-01

    A surface-enhanced Raman scattering (SERS) detection method for environmental copper ions (Cu2+) was developed according to the vibrational spectral change of diethyldithiocarbamate (DDTC) on gold nanoparticles (AuNPs). The ultraviolet-visible (UV-Vis) absorption spectra indicated that DDTC formed a complex with Cu2+, showing a prominent peak at ~450 nm. We found Raman spectral changes in DDTC from ~1490 cm−1 to ~1504 cm−1 on AuNPs at a high concentration of Cu2+ above 1 μM. The other ions of Zn2+, Pb2+, Ni2+, NH4+, Mn2+, Mg2+, K+, Hg2+, Fe2+, Fe3+, Cr3+, Co2+, Cd2+, and Ca2+ did not produce such spectral changes, even after they reacted with DDTC. The electroplating industrial wastewater samples were tested under the interference of highly concentrated ions of Fe3+, Ni2+, and Zn2+. The Raman spectroscopy-based quantification of Cu2+ ions was able to be achieved for the wastewater after treatment with alkaline chlorination, whereas the cyanide-containing water did not show any spectral changes, due to the complexation of the cyanide with the Cu2+ ions. A micromolar range detection limit of Cu2+ ions could be achieved by analyzing the Raman spectra of DDTC in the cyanide-removed water. PMID:29140287

  13. Interaction between Diethyldithiocarbamate and Cu(II) on Gold in Non-Cyanide Wastewater.

    PubMed

    Ly, Nguyễn Hoàng; Nguyen, Thanh Danh; Zoh, Kyung-Duk; Joo, Sang-Woo

    2017-11-15

    A surface-enhanced Raman scattering (SERS) detection method for environmental copper ions (Cu 2+ ) was developed according to the vibrational spectral change of diethyldithiocarbamate (DDTC) on gold nanoparticles (AuNPs). The ultraviolet-visible (UV-Vis) absorption spectra indicated that DDTC formed a complex with Cu 2+ , showing a prominent peak at ~450 nm. We found Raman spectral changes in DDTC from ~1490 cm -1 to ~1504 cm -1 on AuNPs at a high concentration of Cu 2+ above 1 μM. The other ions of Zn 2+ , Pb 2+ , Ni 2+ , NH₄⁺, Mn 2+ , Mg 2+ , K⁺, Hg 2+ , Fe 2+ , Fe 3+ , Cr 3+ , Co 2+ , Cd 2+ , and Ca 2+ did not produce such spectral changes, even after they reacted with DDTC. The electroplating industrial wastewater samples were tested under the interference of highly concentrated ions of Fe 3+ , Ni 2+ , and Zn 2+ . The Raman spectroscopy-based quantification of Cu 2+ ions was able to be achieved for the wastewater after treatment with alkaline chlorination, whereas the cyanide-containing water did not show any spectral changes, due to the complexation of the cyanide with the Cu 2+ ions. A micromolar range detection limit of Cu 2+ ions could be achieved by analyzing the Raman spectra of DDTC in the cyanide-removed water.

  14. Effect of grain size on the magnetic properties of superparamagnetic Ni 0.5Zn 0.5Fe 2O 4 nanoparticles by co-precipitation process

    NASA Astrophysics Data System (ADS)

    Chen, D. G.; Tang, X. G.; Wu, J. B.; Zhang, W.; Liu, Q. X.; Jiang, Y. P.

    2011-06-01

    Ni 0.5Zn 0.5Fe 2O 4 (NZFO) spinel-type nanoparticles were directly fabricated by the chemical co-precipitation process using metal nitrate and acetate as precursors since nitrogen and carbon would be taken away in the forms of oxynitride and oxycarbide, respectively, after the precursors were annealed and then investigated in detail by employing X-ray diffraction (XRD), magnetic measurement and Raman spectroscopy. XRD analysis indicates that the as-prepared nanocrystals are all of a pure cubic spinel structure with their sizes ranging from 20.8 to 53.3 nm, as well as peaks of some samples shifting to lower angles due to lattice expansion. Calculations from the derived XRD data indicate that the activation energy is 30.83 kJ/mol. The magnetic measurements show that these samples are superparamagnetic. The saturation magnetization increases with annealing temperature, which may be explained by super-exchange interactions of Fe ions occurring at A- and B-sites. The variation of coercivity with particle size is interpreted on the basis of domain structure and crystal anisotropy. Furthermore, these nanoparticles exhibit a redshift phenomenon at lower temperatures seen in the Raman spectra, which could be related to ionic substitution.

  15. The 3D Distribution of Dissolved and Colloidal Fe, Mn, Zn, Cu, Ni, Cd and Pb in the Western Antarctic Peninsula Shelf Region; Implications for Natural Fe Fertilization

    NASA Astrophysics Data System (ADS)

    Sherrell, R. M.; Fitzsimmons, J. N.; Roccanova, J.; Schofield, O.; Meredith, M. P.

    2016-02-01

    The Western Antarctic Peninsula (WAP) shelf region is is a natural Fe fertilization zone where primary production exceeds that of the adjacent open Southern Ocean. Until recently, however, distributions of Fe and of other bioactive metals were completely lacking for the WAP, and the sources and delivery mechanisms of Fe to the euphotic zone were only speculated upon. We have previously presented surface water (2m) dissolved (dTM, <0.2µm) and particulate (pTM, >0.45µm) distributions for Fe and a suite of other bioactive metals over the WAP shelf, covering the Palmer LTER sampling grid for Jan. 2010, 2011 and 2012. We now report the first complete 3D distribution of dissolved and colloidal Fe (and Mn, Zn, Cu, Ni, Cd and Pb) over the LTER grid in Jan. 2015, allowing assessment of dFe size speciation, sources and transport pathways in this dynamic shelf system. Dissolved metals were analyzed by automated offline preconcentration (seaFAST-pico, ESI) followed by sector-field ICP-MS. We confirm previous findings of low ( 0.1nM) dFe in surface waters on the mid-outer shelf in the northern portion of the grid, and now find that concentrations at this level or below persist through the euphotic zone. However, dFe increases rapidly with depth, with low surface values underlain by substantially higher concentrations even at 50m. Inner shelf surface waters are generally substantially > 0.1nM, suggesting Fe replete conditions in this region. Vertical profiles reveal that dFe generally increases with depth, much moreso in the inner shelf (dFe up to 5.0nM) than the outer shelf. A general N-S gradient in dFe is also evident, with concentrations higher in the southern WAP, especially in Marguerite Bay. In addition, shelf stations often show a dFe maximum suggesting remineralization from sinking biogenic particles. These findings for dFe and for the other metals, will be used to help unravel the biogeochemical workings of natural Fe fertilization in this region.

  16. Pseudo-indicator behaviour of platinum electrode explored for the potentiometric estimation of non-redox systems.

    PubMed

    Raashid, Syed; Chat, Oyais Ahmad; Rizvi, Masood A; Bhat, Mohsin Ahmad; Khan, Badruddin

    2012-11-15

    A pseudo-indicator electrode based potentiometric method for estimation of non-redox metal ions is presented. In the proposed method, nature and concentration specific impact of analyte over the redox potential of ideally polarisable Pt/pregenerated-redox-couple interface forms the basis of quantification. Utility of the method in estimation of six non-redox metal ions viz. Zn(2+), Cu(2+), Ni(2+), Cd(2+), Pb(2+), Al(3+) in the concentration range of 10(-1)-10(-3) moldm(-3), individually and as binary mixtures is also presented. Three types of potentiometric behaviours, which we ascribe to the nature specific thermodynamic and kinetic aspects of metal-EDTA binding, were observed. While Cu(2+), Ni(2+), Pb(2+) and Al(3+) were found to bind EDTA efficiently, without exchanging Fe(3+); Zn(2+) and Cd(2+) were observed to replace Fe(3+) from EDTA. In contrast, Ca(2+) and Mg(2+) were found to show no binding affinity to EDTA in the pH range employed in the present work. The proposed method was also used to explore the reversibility and the Nernestian behaviour of ferricyanide/ferrocyanide redox couple through spectroelectrochemical titration of Zn(2+) with ferrocyanide. The presented method is presaged to be a reliable and low cost future replacement for costly and delicate ion selective electrodes (ISE) in the estimation of non-redox species like Zn(2+), Cu(2+), etc. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Effect of pulsed and continuous ultrasound on structural and magnetic properties of nano-sized Ni0.4Cu0.2Zn0.4Fe2O4 ferrite

    NASA Astrophysics Data System (ADS)

    Hassen, Harzali; Adel, Megriche; Arbi, Mgaidi

    2018-03-01

    Ultrasound-assisted co-precipitation has been used to prepare nano-sized Ni0.4Cu0.2Zn0.4Fe2O4 ferrite. Continuous (C-US) and pulsed (P-US) ultrasound modes are used at constant frequency = 20 kHz, reaction time = 2 h and pulse durations of 10 s on and 10 s off. All experiments were conducted at two temperatures 90 and 100°C. Samples were characterized by X-ray diffraction (XRD), Fourier transform spectroscopy (FT-IR), N2 adsorption isotherms at 77 k analysis (BET), transmission electron microscopy (TEM) and vibrating sample magnetometry (VSM) techniques. A nanocrystalline single-phase with particle size in the range 12-18 nm is obtained in both modes: continuous and pulsed ultrasound mode. FT-IR measurements show two absorption bands assigned to the tetrahedral and octahedral vibrations (ν1 and ν2) characteristics of cubic spinel ferrite. The specific surface area (S BET) is in the range of 110-140 m2 g-1 and an average pore size between 5.5 and 6.5 nm. The lowest values are obtained in pulsed mode. Finally, this work shows that the magnetic properties are affected by the ultrasound conditions, without affecting the particle shape. The saturation magnetization (Ms) values obtained for all samples are comparable. In P-US mode, the saturation magnetization (Ms) increases as temperature increases. Moreover, P-US mode opens a new avenue for synthesis of NiCuZn ferrites.

  18. Assessing heavy metal toxicity in sediments of Chennai Coast of Tamil Nadu using Energy Dispersive X-Ray Fluorescence Spectroscopy (EDXRF) with statistical approach.

    PubMed

    Tholkappian, M; Ravisankar, R; Chandrasekaran, A; Jebakumar, J Prince Prakash; Kanagasabapathy, K V; Prasad, M V R; Satapathy, K K

    2018-01-01

    The concentration of some heavy metals: Al, Ca, K, Fe, Ti, Mg, Mn, V, Cr, Zn, Ni and Co in sediments from Pulicat Lake to Vadanemmeli along Chennai Coast, Tamil Nadu has been determined using EDXRF technique. The mean concentrations of Mg, Al, K, Ca, Ti, Fe, V, Cr, Mn, Co, Ni, and Zn were found to be 1918, 25436, 9832, 9859, 2109, 8209, 41.58, 34.14, 160.80, 2.85. 18.79 and 29.12 mg kg -1 respectively. These mean concentrations do not exceed the world crustal average. The level of pollution attributed to heavy metals was evaluated using several pollution indicators in order to determine anthropogenically derived contaminations. Enrichment Factor (EF), Geoaccumulation Index (I geo ), Contamination Factor (CF) and Pollution Load Index (PLI) were used in evaluating the contamination status of sediments. Enrichment Factors (EF) reveal the anthropogenic sources of V, Cr, Ni and Zn Geoaccumulation Index (I geo ) results reveal that the study area is not contaminated by the heavy metals. Similar results were also obtained by using pollution load index (PLI). The results of pollution indices indicates that most of the locations were not polluted by heavy metals. Multivariate statistical analysis performed using principal components and clustering techniques were used to identify the source of the heavy metals. The result of statistical procedures indicate that heavy metals in sediments are mainly of natural origin. This study provides a relatively novel technique for identifying and mapping the distribution of metal pollutants and their sources in sediment.

  19. Bioaccumulation of elements in three selected mushroom species from southwest Poland.

    PubMed

    Mleczek, Mirosław; Siwulski, Marek; Mikołajczak, Patrycja; Goliński, Piotr; Gąsecka, Monika; Sobieralski, Krzysztof; Dawidowicz, Luiza; Szymańczyk, Mateusz

    2015-01-01

    The contents of 16 minerals and trace elements (Ag, As, Ca, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Ni, Pb, Pt, Ti and Zn) were analyzed in edible mushrooms (Leccinum scabrum, Boletus edulis and Boletus badius) collected in southwest Poland. Content of Co, Ni and Pb was similar in all tested mushroom species, while content of Ag, Ca, Cd, Hg and Ti was significantly higher in B. edulis than in L. scabrum and B. badius. The largest differences between these species were observed for Fe and Zn accumulation. The highest contents of these elements were noted in B. badius bodies (202 ± 88 and 137 ± 24 mg kg(-1) dry matter, respectively), lower in B. edulis (131 ± 99 and 89 ± 26 mg kg(-1) dry matter, respectively) and lowest in L. scabrum. Differences in As, Cu and Cr content between tested species were observed mainly between L. scabrum and B. badius fruiting bodies. Content of Pt was below 0.01 mg kg(-1) dry matter). In the case of Mg and Mn accumulation, differences between B. edulis and B. badius were not observed (478 and 440 mg kg(-1) dry matter for Mg and 23 and 19 mg kg(-1) dry matter for Mn), and the results showed significantly higher content of these elements than in L. scabrum bodies (312 and 10 mg kg(-1) dry matter, respectively). It is worth underlining that clear accumulation shown by the bioconcentration factor (BCF>1) observed for all three mushroom species was noted in the case of elements Ag, Cd, Co, Cu, Hg, Ni and Zn only.

  20. Distribution of potentially toxic elements (PTEs) in tailings, soils, and plants around Gol-E-Gohar iron mine, a case study in Iran.

    PubMed

    Soltani, Naghmeh; Keshavarzi, Behnam; Moore, Farid; Sorooshian, Armin; Ahmadi, Mohamad Reza

    2017-08-01

    This study investigated the concentration of potentially toxic elements (PTEs) including Al, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Sb, V, and Zn in 102 soils (in the Near and Far areas of the mine), 7 tailings, and 60 plant samples (shoots and roots of Artemisia sieberi and Zygophylum species) collected at the Gol-E-Gohar iron ore mine in Iran. The elemental concentrations in tailings and soil samples (in Near and Far areas) varied between 7.4 and 35.8 mg kg -1 for As (with a mean of 25.39 mg kg -1 for tailings), 7.9 and 261.5 mg kg -1 (mean 189.83 mg kg -1 for tailings) for Co, 17.7 and 885.03 mg kg -1 (mean 472.77 mg kg -1 for tailings) for Cu, 12,500 and 400,000 mg kg -1 (mean 120,642.86 mg kg -1 for tailings) for Fe, and 28.1 and 278.1 mg kg -1 (mean 150.29 mg kg -1 for tailings) for Ni. A number of physicochemical parameters and pollution index for soils were determined around the mine. Sequential extractions of tailings and soil samples indicated that Fe, Cr, and Co were the least mobile and that Mn, Zn, Cu, and As were potentially available for plants uptake. Similar to soil, the concentration of Al, As, Co, Cr, Cu, Fe, Mn, Mo, Ni, and Zn in plant samples decreased with the distance from the mining/processing areas. Data on plants showed that metal concentrations in shoots usually exceeded those in roots and varied significantly between the two investigated species (Artemisia sieberi > Zygophylum). All the reported results suggest that the soil and plants near the iron ore mine are contaminated with PTEs and that they can be potentially dispersed in the environment via aerosol transport and deposition.

  1. Long-term variations in sediment heavy metals of a reservoir with changing trophic states: Implications for the impact of climate change.

    PubMed

    Wu, Qiong; Qi, Jun; Xia, Xinghui

    2017-12-31

    Two dated sediment cores from the Miyun Reservoir of Beijing in China were analyzed to reconstruct the pollution history of heavy metals including cadmium (Cd), chromium (Cr), iron (Fe), nickel (Ni), and zinc (Zn) as well as phosphorus (P). Enrichment factor (EF) and geoaccumulation index (I geo ) were applied to assess the enrichment status of heavy metals. Average EF and I geo values indicated that the studied heavy metals in the sediments mainly originated from non-point source pollution and soil-water erosion, showing low ecological risks. In addition, correlation analysis and principal component analysis (PCA) identified that Cd, Zn, and P were mainly from agricultural diffusion pollution caused by utilization of the phosphate fertilizer; Zn, Ni, and Cr originated from soil erosion. PCA analysis was further conducted to investigate the relationships among meteorological factors, algae-dominant total organic carbon (TOC), and heavy metals. Results showed that algae-dominant TOC had strong positive correlation with temperature, which can be explained by that increased temperature accelerated the growth of algae. Meanwhile the opposite loadings between algae-dominant TOC and heavy metal suggested that primary production played an important role in migration and transformation of metals. Moreover, stepwise multiple regression models showed that Fe was sensitive to temperature, which accounted for approximately 39.0% and 40.1% of the variations in Fe of two sediment cores, respectively. Fe showed significant decreasing trends during the past 50years. Reductive environment of water-sediment interface caused by increasing temperature probably contributed to the restoration of ferric iron, resulting in the release of soluble Fe to overlying waters. Future climate change with elevated temperature and extreme weather events will aggravate the ecological risk of heavy metals in water environment due to the enhanced leaching effect and non-point source pollution as well as the release of heavy metals from sediments to water environment. Copyright © 2017. Published by Elsevier B.V.

  2. Chemical Compositions of Kinematically Selected Outer Halo Stars

    NASA Astrophysics Data System (ADS)

    Zhang, Lan; Ishigaki, Miho; Aoki, Wako; Zhao, Gang; Chiba, Masashi

    2009-12-01

    Chemical abundances of 26 metal-poor dwarfs and giants are determined from high-resolution and high signal-to-noise ratio spectra obtained with the Subaru/High Dispersion Spectrograph. The sample is selected so that most of the objects have outer-halo kinematics. Self-consistent atmospheric parameters were determined by an iterative procedure based on spectroscopic analysis. Abundances of 13 elements, including α-elements (Mg, Si, Ca, Ti), odd-Z light elements (Na, Sc), iron-peak elements (Cr, Mn, Fe, Ni, Zn), and neutron-capture elements (Y, Ba), are determined by two independent data reduction and local thermodynamic equillibrium analysis procedures, confirming the consistency of the stellar parameters and abundances results. We find a decreasing trend of [α/Fe] with increasing [Fe/H] for the range of -3.5< [Fe/H] <-1, as found by Stephens & Boesgaard. [Zn/Fe] values of most objects in our sample are slightly lower than the bulk of halo stars previously studied. These results are discussed as possible chemical properties of the outer halo in the Galaxy. Based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  3. Spatial distributions, fractionation characteristics, and ecological risk assessment of trace elements in sediments of Chaohu Lake, a large eutrophic freshwater lake in eastern China.

    PubMed

    Wu, Lei; Liu, Guijian; Zhou, Chuncai; Liu, Rongqiong; Xi, Shanshan; Da, Chunnian; Liu, Fei

    2018-01-01

    The concentrations, spatial distribution, fractionation characteristics, and potential ecological risks of trace elements (Cu, Pb, Zn, Cr, Ni, and Co) in the surface sediment samples collected from 32 sites in Chaohu Lake were investigated. The improved BCR sequential extraction procedure was applied to analyze the chemical forms of trace elements in sediments. The enrichment factor (EF), sediment quality guidelines (SQGs), potential ecological risk index (PERI), and risk assessment code (RAC) were employed to evaluate the pollution levels and the potential ecological risks. The results found that the concentrations of Cu, Pb, Zn, Cr, Ni, and Co in the surface sediments were 78.59, 36.91, 161.84, 98.87, 38.92, and 10.09 mg kg -1 , respectively. The lower concentrations of Cu, Pb, Zn, Cr, and Ni were almost found in the middle part of the lake, while Co increased from the western toward the eastern parts of the lake. Cr, Ni, Co, and Zn predominantly existed in the residual fractions, with the average values of 76.35, 59.22, 45.60, and 44.30%, respectively. Cu and Pb were mainly combined with Fe/Mn oxides in reducible fraction, with the average values of 66.4 and 69.1%, respectively. The pollution levels were different among the selected elements. Cu had the highest potential ecological risk, while Cr had the lowest potential ecological risk.

  4. Micronutrient metal speciation is controlled by competitive organic chelation in grassland soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boiteau, Rene M.; Shaw, Jared B.; Pasa-Tolic, Ljiljana

    Many elements are scarcely soluble in aqueous conditions found in high pH environments, such as calcareous grassland soils, unless complexed to strong binding organic ligands. To overcome this limitation, some plants and microbes produce chelators that solubilize micronutrient metals such as Fe, Ni, Cu, and Zn from mineral phases. These complexes are taken up by organisms via specific membrane receptors, thereby differentially impacting the bioavailability of these metals to the plant and microbial community. Although the importance of these chelation strategies for individual organisms has been well established, little is known about which pathways coexist within rhizosphere microbiomes or howmore » they interact and compete for metal binding. Identifying these metallo-organic species within natural ecosystems has remained a formidable analytical challenge due to the vast diversity of compounds and poorly defined metabolic processes in complex soil matrix. Herein, we employed recently developed liquid chromatography (LC) mass spectrometry (MS) methods to characterize the speciation of water-soluble dissolved trace elements (Fe, Ni, Cu, and Zn) from Kansas Prairie soil. Both plant and fungal chelators were identified, revealing compound-specific patterns of chelation to biologically essential metals. Numerous metabolites typically implicated in plant iron acquisition and homeostasis, including mugineic acids, deoxymugineic acid, nicotianamine, and hydroxynicotianamine, dominated the speciation of divalent metals such as Ni, Cu, and Zn (2-57 pmol / g soil). In contrast, the fungal siderophore ferricrocine bound comparatively more trivalent Fe (9pmol / g soil). These results define biochemical pathways that underpin the regulation of metals in the grassland rhizosphere. They also raise new questions about the competition of these compounds for metal binding and their bioavailability to different members of the rhizosphere population. Even small structural differences result in significant differences in their environmental metal speciation, and likely impact metal uptake within the rhizosphere of calcareous soils.« less

  5. Effect of Co2+ and Y3+ ions insertion on the microstructure development and magnetic properties of Ni0.5Zn0.5Fe2O4 powders synthesized using Co-precipitation method

    NASA Astrophysics Data System (ADS)

    Rashad, M. M.; Rayan, D. A.; Turky, A. O.; Hessien, M. M.

    2015-01-01

    Nanocrystalline Ni0.5Zn0.5-xCoxFe2-zYzO4 powders (x=0-0.3 and z from 0 to 0.3) have been synthesized via a facile co-precipitation technique. X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM) are utilized in order to study the effect of variation of cobalt and yttrium substitutions and its impact on crystalline size, lattice parameter, X-ray density, microstructure and magnetic properties of the formed powders. X-ray diffraction data indicated that, after doping, all samples consisted of the main spinel phase for the formed precursors precipitated at pH 10 annealed at 1000 oC for 2 h. The lattice parameter and the unit cell were decreased linearly with increasing Co content whereas they were increased with increasing the Y incorporation. Additionally, the porosity was increased with increasing Co concentration while it was decreased with increasing the Y insertion. The mean ionic radii and hopping and bond lengths was decreased with the value of Co2+ and they were increased with the value of Y3+ ion as well as both of Y3+ and Co2+ ions. The microstructures of the produced powders were found to be cubic like structure. The addition of Y3+ ion suppressed the grain size whereas addition of Co2+ ion enhanced the grain growth availably. An examination of the magnetic properties revealed an increase in saturation magnetization with increasing Co and Y concentrations incorporation up to x=0.3. Meanwhile, the formed powders exhibited superparamagnetic characteristics. A high saturation magnetization (77.0 emu/g) was achieved for Ni0.5Zn0.2Co0.3Fe2O4 sample annealed at 1000 oC for 2 h.

  6. Trace elements in stormflow, ash, and burned soil following the 2009 station fire in southern California

    USGS Publications Warehouse

    Burton, Carmen; Hoefen, Todd M.; Plumlee, Geoffrey S.; Baumberger, Katherine L.; Backlin, Adam R.; Gallegos, Elizabeth; Fisher, Robert N.

    2016-01-01

    Most research on the effects of wildfires on stream water quality has focused on suspended sediment and nutrients in streams and water bodies, and relatively little research has examined the effects of wildfires on trace elements. The purpose of this study was two-fold: 1) to determine the effect of the 2009 Station Fire in the Angeles National Forest northeast of Los Angeles, CA on trace element concentrations in streams, and 2) compare trace elements in post-fire stormflow water quality to criteria for aquatic life to determine if trace elements reached concentrations that can harm aquatic life. Pre-storm and stormflow water-quality samples were collected in streams located inside and outside of the burn area of the Station Fire. Ash and burned soil samples were collected from several locations within the perimeter of the Station Fire. Filtered concentrations of Fe, Mn, and Hg and total concentrations of most trace elements in storm samples were elevated as a result of the Station Fire. In contrast, filtered concentrations of Cu, Pb, Ni, and Se and total concentrations of Cu were elevated primarily due to storms and not the Station Fire. Total concentrations of Se and Zn were elevated as a result of both storms and the Station Fire. Suspended sediment in stormflows following the Station Fire was an important transport mechanism for trace elements. Cu, Pb, and Zn primarily originate from ash in the suspended sediment. Fe primarily originates from burned soil in the suspended sediment. As, Mn, and Ni originate from both ash and burned soil. Filtered concentrations of trace elements in stormwater samples affected by the Station Fire did not reach levels that were greater than criteria established for aquatic life. Total concentrations for Fe, Pb, Ni, and Zn were detected at concentrations above criteria established for aquatic life.

  7. Heavy metals in soils and sediments from Dongting Lake in China: occurrence, sources, and spatial distribution by multivariate statistical analysis.

    PubMed

    Zhang, Yaxin; Tian, Ye; Shen, Maocai; Zeng, Guangming

    2018-05-01

    Heavy metal contamination in soils/sediments and its impact on human health and ecological environment have aroused wide concerns. Our study investigated 30 samples of soils and sediments around Dongting Lake to analyze the concentration of As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn in the samples and to distinguish the natural and anthropogenic sources. Also, the relationship between heavy metals and the physicochemical properties of samples was studied by multivariate statistical analysis. Concentration of Cd at most sampling sites were more than five times that of national environmental quality standard for soil in China (GB 15618-1995), and Pb and Zn levels exceeded one to two times. Moreover, Cr in the soil was higher than the national environmental quality standards for one to two times while in sediment was lower than the national standard. The investigation revealed that the accumulations of As, Cd, Mn, and Pb in the soils, and sediments were affected apparently by anthropogenic activities; however, Cr, Fe, and Ni levels were impacted by parent materials. Human activities around Dongting Lake mainly consisted of industrial activities, mining and smelting, sewage discharges, fossil fuel combustion, and agricultural chemicals. The spatial distribution of heavy metal in soil followed the rule of geographical gradient, whereas in sediments, it was significantly affected by the river basins and human activities. The result of principal component analysis (PCA) demonstrated that heavy metals in soils were associated with pH and total phosphorus (TP), while in sediments, As, Cr, Fe, and Ni were closely associated with cation exchange capacity (CEC) and pH, where Pb, Zn, and Cd were associated with total nitrogen (TN), TP, total carbon (TC), moisture content (MC), soil organic matter (SOM), and ignition lost (IL). Our research provides comprehensive approaches to better understand the potential sources and the fate of contaminants in lakeshore soils and sediments.

  8. High density array screening to identify the genetic requirements for transition metal tolerance in Saccharomyces cerevisiae.

    PubMed

    Bleackley, Mark R; Young, Barry P; Loewen, Christopher J R; MacGillivray, Ross T A

    2011-02-01

    Biological systems have developed with a strong dependence on transition metals for accomplishing a number of biochemical reactions. Iron, copper, manganese and zinc are essential for virtually all forms of life with their unique chemistries contributing to a variety of physiological processes including oxygen transport, generation of cellular energy and protein structure and function. Properties of these metals (and to a lesser extent nickel and cobalt) that make them so essential to life also make them extremely cytotoxic in many cases through the formation of damaging oxygen radicals via Fenton chemistry. While life has evolved to exploit the chemistries of transition metals to drive physiological reactions, systems have concomitantly evolved to protect against the damaging effects of these same metals. Saccharomyces cerevisiae is a valuable tool for studying metal homeostasis with many of the genes identified thus far having homologs in higher eukaryotes including humans. Using high density arrays, we have screened a haploid S. cerevisiae deletion set containing 4786 non-essential gene deletions for strains sensitive to each of Fe, Cu, Mn, Ni, Zn and Co and then integrated the six screens using cluster analysis to identify pathways that are unique to individual metals and others with function shared between metals. Genes with no previous implication in metal homeostasis were found to contribute to sensitivity to each metal. Significant overlap was observed between the strains that were sensitive to Mn, Ni, Zn and Co with many of these strains lacking genes for the high affinity Fe transport pathway and genes involved in vacuolar transport and acidification. The results from six genome-wide metal tolerance screens show that there is some commonality between the cellular defenses against the toxicity of Mn, Ni, Zn and Co with Fe and Cu requiring different systems. Additionally, potential new factors been identified that function in tolerance to each of the six metals.

  9. Trace Elements in Stormflow, Ash, and Burned Soil following the 2009 Station Fire in Southern California

    PubMed Central

    Burton, Carmen A.; Hoefen, Todd M.; Plumlee, Geoffrey S.; Baumberger, Katherine L.; Backlin, Adam R.; Gallegos, Elizabeth; Fisher, Robert N.

    2016-01-01

    Most research on the effects of wildfires on stream water quality has focused on suspended sediment and nutrients in streams and water bodies, and relatively little research has examined the effects of wildfires on trace elements. The purpose of this study was two-fold: 1) to determine the effect of the 2009 Station Fire in the Angeles National Forest northeast of Los Angeles, CA on trace element concentrations in streams, and 2) compare trace elements in post-fire stormflow water quality to criteria for aquatic life to determine if trace elements reached concentrations that can harm aquatic life. Pre-storm and stormflow water-quality samples were collected in streams located inside and outside of the burn area of the Station Fire. Ash and burned soil samples were collected from several locations within the perimeter of the Station Fire. Filtered concentrations of Fe, Mn, and Hg and total concentrations of most trace elements in storm samples were elevated as a result of the Station Fire. In contrast, filtered concentrations of Cu, Pb, Ni, and Se and total concentrations of Cu were elevated primarily due to storms and not the Station Fire. Total concentrations of Se and Zn were elevated as a result of both storms and the Station Fire. Suspended sediment in stormflows following the Station Fire was an important transport mechanism for trace elements. Cu, Pb, and Zn primarily originate from ash in the suspended sediment. Fe primarily originates from burned soil in the suspended sediment. As, Mn, and Ni originate from both ash and burned soil. Filtered concentrations of trace elements in stormwater samples affected by the Station Fire did not reach levels that were greater than criteria established for aquatic life. Total concentrations for Fe, Pb, Ni, and Zn were detected at concentrations above criteria established for aquatic life. PMID:27144270

  10. Metals in Some Edible Fish and Shrimp Species Collected in Dry Season from Subarnarekha River, India.

    PubMed

    Giri, Soma; Singh, Abhay Kumar

    2015-08-01

    The concentration of As, Cd, Cu, Fe, Pb, Ni, Zn, Cr, Co and Sr were determined in five fish and one shrimp species collected from the Subarnarekha River during pre-monsoon season using inductively coupled plasma-mass spectrometry for a risk assessment and source apportionment study. Concentrations of metals in the fish and shrimp exceeded the recommended food standards for As, Cu, Ni, Cd and Zn in many samples. Principal component analysis suggested both innate and anthropogenic activities as contributing sources of metal in the fish and shrimp. The calculated target hazard quotients and hazard indices indicated that high concentrations of metals in some species at some locations present an appreciable risk to the health of consumers of these species.

  11. Trace elements in urban and suburban rainfall, Mersin, Northeastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Özsoy, Türkan; Örnektekin, Sermin

    2009-10-01

    Spatial/temporal variabilities of rainwater constituents are examined based on soluble/insoluble trace elements, pH and electrical conductivity measurements in rainfall sampled during December 2003-May 2005 at two urban and two suburban sites in Mersin, an industrialized city of 850,000 inhabitants on the southern coast of Turkey. In the analyses, backward air mass trajectories for rainy days were used in addition to factor analyses, enrichment factors, phase distributions and correlations between trace elements. The pH varied from 4.8 to 8.5 with an average value of 6.2, reflecting a mainly alkaline regime. Mean concentrations of trace elements collected from urban and suburban sites are spatially variable. Based on the overall data, total concentrations of trace elements were ordered as Ca > Na > Fe > Al > Mg > K > Zn > Mn > Sr > Pb > Ni > Cr > Ba > Cu > Co > Cd. Mainly terrigeneous (Ca, Fe, Al) and, to a lesser extent, sea salt particles (Na, Mg) were shown to be the major source of trace elements. Excluding major cations, the solubilities of trace elements were found to be ordered as Sr > Zn > Ba > Mn > Cu > Ni > Cr > Fe > Al, confirming the lower solubility of crustal elements. Cd, Co and Pb were excluded from the above evaluation because of the low numbers of soluble samples allowing quantitative measurements. The solubilities of Al, Fe, Mn and particularly of Ni were found to be considerably lower than those reported for various sites around the world, most likely due to the effect of pH. During the entire sampling period, a total of 28 dust transport episodes associated with 31 red rain events were identified. Extremely high mean concentration ratios of Al (8.2), Fe (14.4) and Mn (13.1) were observed in red rain, compared to normal rain. The degree of this enhancement displayed a decrease from crustal to anthropogenic origin elements and the lowest enhancements were found for anthropogenic origin elements of Zn and Cd (both having a ratio of 1.1). Aerosol dust was found to be the main source of almost all analyzed elements in Mersin precipitation, regardless that they are crustal or anthropic derived elements. The magnitude of crustal source contribution to trace element budget of precipitation was at its highest levels for crustal originated elements, most probably due to much higher scavenging ratios of crustal elements compared to anthropogenic ones.

  12. Bioaccumulation of macro- and trace elements by European frogbit (Hydrocharis morsus-ranae L.) in relation to environmental pollution.

    PubMed

    Polechońska, Ludmiła; Samecka-Cymerman, Aleksandra

    2016-02-01

    The aim of present study was to investigate the level of trace metals and macroelements in Hydrocharis morsus-ranae collected from regions differing in the degree and type of pollution. Concentrations of 17 macro- and microelements were determined in roots and shoots of European frogbit as well as in water and bottom sediments from 30 study sites. Plants differed in concentrations of elements and bioaccumulation capacity depending on the characteristics of dominant anthropogenic activities in the vicinity of the sampling site. Shoots of H. morsus-ranae growing in the vicinity of organic chemistry plants and automotive industry contained particularly high levels of Cd, Co, and S. Plants from area close to heat and power plant, former ferrochrome industry and new highway, were distinguished by the highest concentrations of Cr, Cu, and Pb. European frogbit from both these regions contained more Fe, Hg, Mn, Ni, and Zn than plants from agricultural and recreational areas. The concentrations of alkali metals and Co, Fe, and N in H. morsus-ranae were elevated in relation to the natural content in macrophytes irrespectively to their content in the environment. Based on the values of Bioaccumulation and Translocation Factors, European frogbit is an accumulator for Co, Cr, Cu, Fe, K, Mn, Ni, Pb, and Zn and a good candidate for phytoremediation of water polluted with Co, Cu, Hg, K, Mn, and Ni. The amount of Co and Mn removed from water and accumulated in the plant biomass during the vegetation season was considerably high.

  13. Transport and attenuation of metal(loid)s in mine tailings amended with organic carbon: Column experiments

    NASA Astrophysics Data System (ADS)

    Lindsay, Matthew B. J.; Blowes, David W.; Ptacek, Carol J.; Condon, Peter D.

    2011-07-01

    A laboratory-scale column experiment was conducted to evaluate the effect of organic carbon amendments on the mobility of As, Cu, Fe, Mn, Mo, Ni, Pb, Sb, Tl and Zn in mine tailings. Three columns were packed with sulfide- and carbonate-rich tailings, which were amended with a 1:1 (vol.) mixture of peat and spent brewing grain at proportions of 0, 2 and 5 vol. %. A simulated input solution characterized by circumneutral pH and elevated concentrations of SO 4 and S 2O 3 was passed through the columns for 540 days. The input solution contained low concentrations of metal(loid)s during the initial 300 days and elevated concentrations thereafter. Decreases in mass transport of S 2O 3 were observed in all columns; with increased attenuation observed at 5 vol. % organic carbon content. Removal of Mn, Ni, Cu, Sb and Mo was observed in all columns during the initial 300 days. However, during this time, mobilization of Fe, As, Zn and Pb was observed, with the greatest increases in concentration observed at the higher organic carbon content. During the final 240 days, S 2O 3 removal was enhanced in columns containing organic carbon, and Fe, Mn, Ni, Tl, As and Sb removal also was observed. This study demonstrates the influence of organic carbon amendments on metal(loid) mobility in mine tailings. Decreases in mass discharge of metal(loid)s may be achieved using this technique; however, site-specific geochemical conditions must be considered before field-scale implementation.

  14. Assessment of heavy metals in sediment of Aguamilpa Dam, Mexico.

    PubMed

    Rangel-Peraza, Jesús Gabriel; de Anda, José; González-Farías, Fernando A; Rode, Michael; Sanhouse-García, Antonio; Bustos-Terrones, Yaneth A

    2015-03-01

    The Aguamilpa Dam is part of the reservoir cascade system formed by four reservoirs in the middle and lower part of the Santiago River. For decades, this system has received urban and industrial wastewater from the metropolitan area of Guadalajara and the runoff of agricultural fields located in the river basin. The present study was carried out to obtain a preliminary assessment on the concentration distribution of heavy metals (Al, Ba, Cd, Cr, Cu, Fe, Hg, Mg, Ni, Pb, and Zn) in surface sediments of the Aguamilpa reservoir collected from 10 sampling stations. The metal concentrations (mg kg(-1)) in the sampling stations ranged as follows: Al, 27,600-7760; Ba, 190.0-15.9; Cd, 0.27-0.02; Cr, 18.30-0.22; Cu, 60.80-0.79; Fe, 15,900-4740; Hg, 0.04-0.01; Mg, 7590-8.05; Ni, 189.00-0.24; Pb, 13.6-1.64; and Zn, 51.8-14.8. Significant spatial variation in concentrations was observed for Al, Fe, and Pb. Sediment pollution was evaluated using the enrichment factor, the geo-accumulation index, the pollution load index, and sediment quality guidelines. Based on geo-accumulation and pollution load indexes, Aguamilpa sediments were found, in some sampling stations, as unpolluted to moderately polluted with Ni, Cd, Cu, and Mg. Enrichment factors showed that Cd is highly related to agricultural activities that take place in the surrounding areas of the Aguamilpa reservoir. Despite these results, none of the heavy metals evaluated exceeded international concentrations limits, indicating that the Aguamilpa reservoir surface sediments are not contaminated.

  15. Metals and metalloid bioconcentrations in the tissues of Typha latifolia grown in the four interconnected ponds of a domestic landfill site.

    PubMed

    Ben Salem, Zohra; Laffray, Xavier; Al-Ashoor, Ahmed; Ayadi, Habib; Aleya, Lotfi

    2017-04-01

    The uptake of metals in roots and their transfer to rhizomes and above-ground plant parts (stems, leaves) of cattails (Typha latifolia L.) were studied in leachates from a domestic landfill site (Etueffont, France) and treated in a natural lagooning system. Plant parts and corresponding water and sediment samples were taken at the inflow and outflow points of the four ponds at the beginning and at the end of the growing season. Concentrations of As, Cd, Cr, Cu, Fe, Mn, Ni and Zn in the different compartments were estimated and their removal efficiency assessed, reaching more than 90% for Fe, Mn and Ni in spring and fall as well in the water compartment. The above- and below-ground cattail biomass varied from 0.21 to 0.85, and 0.34 to 1.24kgdryweight/m 2 , respectively, the highest values being recorded in the fourth pond in spring 2011. The root system was the first site of accumulation before the rhizome, stem and leaves. The highest metal concentration was observed in roots from cattails growing at the inflow of the system's first pond. The trend in the average trace element concentrations in the cattail plant organs can generally be expressed as: Fe>Mn>As > Zn>Cr>Cu>Ni>Cd for both spring and fall. While T. latifolia removes trace elements efficiently from landfill leachates, attention should also be paid to the negative effects of these elements on plant growth. Copyright © 2016. Published by Elsevier B.V.

  16. Synthesis, characterization, and reactivity studies of heterodinuclear complexes modeling active sites in purple acid phospatases.

    PubMed

    Jarenmark, Martin; Haukka, Matti; Demeshko, Serhiy; Tuczek, Felix; Zuppiroli, Luca; Meyer, Franc; Nordlander, Ebbe

    2011-05-02

    To model the heterodinuclear active sites in plant purple acid phosphatases, a mononuclear synthon, [Fe(III)(H(2)IPCPMP)(Cl(2))][PF(6)] (1), has been generated in situ from the ligand 2-(N-isopropyl-N-((2-pyridyl)methyl)aminomethyl)-6-(N-(carboxylmethyl)-N-((2-pyridyl)methyl)amino methyl)-4-methylphenol (IPCPMP) and used to synthesize heterodinuclear complexes of the formulas [Fe(III)M(II)(IPCPMP)(OAc)(2)(CH(3)OH)][PF(6)] (M = Zn (2), Co (3), Ni (4), Mn (5)), [Fe(III)Zn(II)(IPCPMP)(mpdp)][PF(6)] (6) (mpdp = meta-phenylene-dipropionate), and [Fe(III)Cu(II)(IPCPMP) (OAc)}(2)(μ-O)][PF(6)] (7). Complexes 2-4, 6, and 7 have been crystallographically characterized. The structure of 6 is a solid state coordination polymer with heterodinuclear monomeric units, and 7 is a tetranuclear complex consisting of two heterodinuclear phenolate-bridged Fe(III)Cu(II) units bridged through a μ-oxido group between the two Fe(III) ions. Mössbauer spectra confirm the presence of high spin Fe(III) in an octahedral environment for 1, 3, and 5 while 2 and 4 display relaxation effects. Magnetic susceptibility measurements indicate weak antiferromagnetic coupling for 3, 4, and 5 and confirm the assignment of the metal centers in 2-5 as high spin Fe(III)-M(II) (M = Zn, Co (high spin), Ni (high spin), Mn (high spin)). Complexes 2-5 are intact in acetonitrile solution as indicated by IR spectroscopy (for 2-4) and electrospray ionization mass spectrometry (ESI-MS) but partly dissociate to hydroxide species and a mononuclear complex in water/acetonitrile solutions. UV-vis spectroscopy reveal pH-dependent behavior, and species that form upon increasing the pH have been assigned to μ-hydroxido-bridged Fe(III)M(II) complexes for 2-5 although 2 and 3 is further transformed into what is propsed to be a μ-oxido-bridged tetranuclear complex similar to 7. Complexes 2-5 enhance phosphodiester cleavage of 2-hydroxy-propyl-p-nitrophenyl phosphate (HPNP) and bis(2,4-dinitrophenyl)phosphate (BDNPP), but the reactivities are different for different complexes and generally show strong pH dependence. © 2011 American Chemical Society

  17. The Dart estuary, Devon, UK: a case study of chemical dynamics and pollutant mobility

    NASA Astrophysics Data System (ADS)

    Schuwerack, P.-M. M.; Neal, M.; Neal, C.

    2007-01-01

    Water, sediments and gill and digestive gland tissues of adult common shore crab (Carcinus maenas), collected at Noss Marina, Sandquay (Britannia Royal Naval College), the Dartmouth Pier, Warfleet Cove and Sugary Cove in the Dart estuary, Devon, UK, were analysed for major, minor and trace elements in spring 2004. Total acid-available measurements analysed included the truly dissolved component and acid-available sediments. Trace metal concentrations are associated largely with particulate and micro-particulate/colloidal phases, the latter being able to pass through standard filter papers. Wide ranges of chemical concentrations were found in the water, sediments and tissues at all the locations. In the water column, 48% of the variance is linked to the sea-salt component (Cl, Na, K, Ca, Mg, B, Li and Sr) and the sediment-associated acid-available fractions are linked to Fe-rich lithogenous materials (Ba, Co, Cu, Fe, Mn, V and Zn). In the sediments, trace elements of Cd, Co, Cr, Fe, Pb, Mn, Ni and V are correlated with the sea salts and associated with the fraction of fine sediments within the total sediment. In the gills and the digestive gland tissues of crabs, high concentrations of Al, Cu and Fe are found and there are correlations between acid-available trace metals of Cu, Cr, Fe, Mn, Ni, Sr and Zn. The relationships between trace metal contaminants, their site-specific concentrations, their temporal and spatial variability and the effects of human activities, such as moorland/agriculture with historic mining and recreational activities in the lower Dart estuary, are discussed.

  18. New approach towards the polyol route to fabricate MFe2O4 magnetic nanoparticles: The use of MCl2 and Fe(acac)3 as chemical precursors

    NASA Astrophysics Data System (ADS)

    Solano, Eduardo; Yáñez, Ramón; Ricart, Susagna; Ros, Josep

    2015-05-01

    A new more efficient approach of the polyol route to generate MFe2O4 (M=Mn, Fe, Co, Ni, Cu, Zn) nanoparticles in triethylene glycol (TREG) is presented. The selected thermal procedure is based on the Fe metalorganic precursor (iron(III) acetylacetonate) decomposition in presence of an inorganic transition metal chloride salt (MCl2, M=Mn, Fe, Co, Ni, Cu, Zn) to produce high quality polar dispersible nanoparticles with lower production cost. In addition, the nanoparticles are stabilized by ionic (from the Cl-) and steric (TREG as capping ligand) effects inducing into the nanoparticles an extraordinary stability in different polar solvents. As result of this optimized methodology, the colloidal polar dispersible nanoparticles present a size around 10 nm with an adequate size dispersion demonstrated by analyzing transmission electron microscopy (TEM) images. X-ray powder diffraction (XRPD) results corroborate the absence of secondary phases and the high crystalline degree obtained for the spinel structure, fact proved by using synchrotron X-ray diffraction. The high magnetic performance at low and room temperature of the nanoparticles studied by magnetometry proves the high internal crystal order of the spinel. Parallel to this, the influence of the heating ramp and annealing time in the thermal procedure were also investigated for the CuFe2O4 case, where a relationship between these two parameters and the final size and their associated diameter distribution was found, allowing a possible size control of the final ferrite magnetic nanoparticles synthesized.

  19. Land Contamination and Soil-Plant Interactions in the Imperina Valley Mine (Belluno, Venetian Region, Italy)

    NASA Astrophysics Data System (ADS)

    Bini, Claudio; Wahsha, Mohammad; Fontana, Silvia; Zilioli, Diana

    2010-05-01

    In Italy, ore exploitation, particularly that of mixed sulphides, has been abandoned since the final thirty years of the last century, and a quantity of mine dumps has been discharged in wide areas of the land, provoking evident environmental damages to landscape, soil and vegetation, with potential risk for human health. The present study concerns the distribution and mobility of heavy metals (Ni, Cr, Cu, Pb, Zn, Fe and Mn) in the soils of a mine site and their transfer to wild flora. Soils and wild plants were sampled from mixed sulphides mine dumps in Imperina valley (Belluno, Italy), and the concentrations of heavy metals were determined. Chemical analyses carried out on 10 soil profiles (mostly entisols) of the mineralised area revealed metal concentrations generally above the international target levels (Cu up to 3160 mg kg-1 , Pb up to 23600 mg kg-1, Zn up to 1588 mg kg-1, Fe up to 52,30 %). The concentrations of Ni, Cr and Mn, instead, are below the reference limits. Moreover, a highly significant correlation was observed between the concentrations of metals in soils (Fe, Pb, Zn and Cu). Metal concentration in selected wild plants of the mineralized area is moderately high, in particolar Cu, Pb, Zn in the roots of Plantago major, Pb and Zn in the leaves of Taraxacum officinale, Zn and Pb in Salix spp. The translocation coefficient (BAC) from soil to plant (hypogean portion), and within the plant (epigean portion) vary from 0,37 in Plantago major to 2,97 in Silene dioica, two known accumulator plants. Salix spp present high translocation coefficients from soil to plant, and from roots to leaves. In particular, essential metals present a translocation coefficient ≥1 (with the order Mn>Zn>Cu>Fe), while toxic metals have coefficients <1 (Pb

  20. Comparative leaching of six toxic metals from raw and chemically stabilized MSWI fly ash using citric acid.

    PubMed

    Wang, Huawei; Fan, Xinxiu; Wang, Ya-Nan; Li, Weihua; Sun, Yingjie; Zhan, Meili; Wu, Guizhi

    2018-02-15

    The leaching behavior of six typical toxic metals (Pb, Zn, Cr, Cd, Cu and Ni) from raw and chemically stabilized (phosphate and chelating agent) municipal solid waste incineration (MSWI) fly ash were investigated using citric acid. Leaching tests indicated that phosphate stabilization can effectively decrease the leaching of Zn, Cd and Cr; whereas chelating agent stabilization shows a strong ability to lower the release of Pb, Cd and Cu, but instead increases the solubility of Zn and Cr at low pH conditions. Sequential extraction results suggested that the leaching of Pb, Zn and Cd in both the stabilized MSWI fly ash samples led to the decrease in Fe/Mn oxide fraction and the increase in exchangeable and carbonate fractions. The leaching of Cr was due to the decrease in exchangeable, carbonate and Fe/Mn oxide fractions in phosphate-stabilized and chelating agent-stabilized MSWI fly ash. The leaching of Cu in both stabilized MSWI fly ash was greatly ascribed to the decrease in Fe/Mn oxide and oxidisable fractions. Moreover, predicted curves by geochemical model indicated that both stabilized MSWI fly ash have the risk of releasing toxic metals under strong acid environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Structural and magnetic properties of Ni-Zn doped BaM nanocomposite via citrate precursor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rana, Kush; Thakur, Preeti; Thakur, Atul, E-mail: atulphysics@gmail.com

    2016-05-23

    Ni-Zn substituted M-type barium ferrite nanocomposite has been prepared via citrate precursor method. Nanocomposite having composition BaNi{sub 0.5}Zn{sub 0.5}Fe{sub 11}O{sub 19} was sintered at 900°C for 3hrs and characterized by using different characterization techniques. X-ray diffraction (XRD) confirmed the formation of double phase with most prominent peak at (114). Average crystallite size for pure BaM and BNZFO were found to be 36 nm & 45 nm. Field emission scanning electron microscopy (FESEM) confirmed the formation of hexagonal platelets with a layered structure. Magnetic properties of these samples were investigated by using vibrating sample magnetometer (VSM). Magnetic parameters like saturation magnetization (M{sub s}),more » coericivity (H{sub c}) and squareness ratio (SQR) of nanocomposite were found to be 60 emu/g, 3663 Oe and 0.6163 respectively. These values were noticed to be higher as compared to pure BaM. Enhanced magnetic properties of nanocomposite were strongly dependent on exchange coupling. Therefore these properties make this nanocomposite a suitable candidate for magnetic recording and high frequency applications.« less

  2. Distribution and enrichment of heavy metals in Sabratha coastal sediments, Mediterranean Sea, Libya

    NASA Astrophysics Data System (ADS)

    Nour, Hamdy E.; El-Sorogy, Abdelbaset S.

    2017-10-01

    In order to assess heavy metal pollutants in Sabratha coastal sediments, Mediterranean Sea, Libya, 30 sediment samples were collected for Fe, Cu, Pb, Mn, Cd, Co, Ni and Zn analysis using Atomic Absorption Spectrometry. The analysis indicated that, the Sabratha 's coastal sediments were enriched with Cd, Pb, Cu, Ni, Co and Zn (EF = 81.48, 17.26, 12.80, 11.42, 9.85 and 8.56 respectively). The highest levels of Mn, Cu, Ni, Pb and Co were recorded nearby the Mellitah complex oil and gas station in the western Libyan region, while the highest levels of Zn and Cd were recorded at the central part of the study area nearby fishing port and Sabratha hospital. Average values of Cd, Pb and Co were mostly higher than the ones recorded from the Arabian and Oman gulfs, the Red Sea, the Gulf of Aqaba, the Caspian Sea, coast of Tanzania and the background shale and the earth's crust. The high levels of most of the studied heavy metals suggested significant anthropogenic sources along Sabratha coast. The results of the present study provide a useful background for further marine studies on the Mediterranean area.

  3. Comparison of classic and microwave-assisted synthesis of benzo-thio crown ethers, and investigation of their ion pair extractions

    NASA Astrophysics Data System (ADS)

    Calisir, Umit; Çiçek, Baki

    2017-11-01

    Macrocyclic benzo-thio crown ethers and benzo-oxo crown ethers were prepared using an esterification-ring closing method. These compounds were synthesised using 2,2‧-dithiodibenzoyl chloride, and various glycols and dithiols, in the presence of pyridine base under a nitrogen atmosphere in chloroform. All reactions were performed under reflux condition with conventional heating and microwave (MW) irradiation. The synthesised macrocycles were characterised by FT-IR, 1H NMR, 13C NMR, LC-MS, and elemental analysis methods. Extraction studies have been performed on these original macrocycles using liquid-liquid ion-pair extraction with Li+, Na+, K+, Ni2+, Ca2+, Mg2+, Zn2+, Fe2+,Fe3+, Co3+, Pb2+, Cr3+, Ag+, and Cd2+.The KD, ext.%, ΔG and log KExt values were also calculated. While (U1-U7) ligands exhibits selectivity for Zn2+, Ag+, Ca2+, Pb2+, Fe3+, Cr3+, Co2+, Mg2+, Cd2+, and Ni2+ metal salts, they showed no selectivity for Li+, K+ and Na+ metal salts. Furthermore, Fe3+is the most selective cation for all ligands for competitive extraction. We also observed that microwave heating can have certain benefits over conventional ovens: reaction rate acceleration, milder reaction conditions, higher chemical yield, and lower energy usage. These ligands could be used as metal sensors, enzyme inhibitors, antimicrobial/antifungal agents, and in biological applications.

  4. Thermodynamic Study of the Nickel Addition in Zinc Hot-Dip Galvanizing Baths

    NASA Astrophysics Data System (ADS)

    Pistofidis, N.; Vourlias, G.

    2010-01-01

    A usual practice during zinc hot-dip galvanizing is the addition of nickel in the liquid zinc which is used to inhibit the Sandelin effect. Its action is due to the fact that the ζ (zeta) phase of the Fe-Zn system is replaced by the Τ (tau) phase of the Fe-Zn-Ni system. In the present work an attempt is made to explain the formation of the Τ phase with thermodynamics. For this reason the Gibbs free energy changes for Τ and ζ phases were calculated. The excess free energy for the system was calculated with the Redlich-Kister polyonyme. From this calculation it was deduced that the Gibbs energy change for the tau phase is negative. As a result its formation is spontaneous.

  5. HUMAN SCALP HAIR: AN ENVIRONMENTAL EXPOSURE INDEX FOR TRACE ELEMENTS. III. SEVENTEEN TRACE ELEMENTS IN BIRMINGHAM, ALABAMA AND CHARLOTTE, NORTH CAROLINA (1972)

    EPA Science Inventory

    Seventeen trace elements - arsenic (As), barium (Ba), boron, (B), cadmium, (Cd), chromium (Cr), copper (Cu), Iron (Fe), lead (Pb), lithium (Li), manganese (Mn), mercury (Hg), nickel (Ni), selenium (Se), silver (Ag), tin (Sn), vanadium (V), and Zinc (Zn) - were measured in human s...

  6. Heavy metals in soils of cocoa plantation (Theobroma cacao L.)

    USDA-ARS?s Scientific Manuscript database

    Cocoa has experienced significant growth in recent years in Peru and the presence of heavy metals in the soils of these plantations is a potential problem for the export of this product. Contents of heavy metals (Cd, Ni, Pb, Fe, Cu, Zn, Mn) in soils from 19 plantations that have been in production f...

  7. Generalized Low-Temperature Fabrication of Scalable Multi-Type Two-Dimensional Nanosheets with a Green Soft Template.

    PubMed

    Wang, Lanfang; Song, Chuang; Shi, Yi; Dang, Liyun; Jin, Ying; Jiang, Hong; Lu, Qingyi; Gao, Feng

    2016-04-11

    Two-dimensional nanosheets with high specific surface areas and fascinating physical and chemical properties have attracted tremendous interests because of their promising potentials in both fundamental research and practical applications. However, the problem of developing a universal strategy with a facile and cost-effective synthesis process for multi-type ultrathin 2 D nanostructures remains unresolved. Herein, we report a generalized low-temperature fabrication of scalable multi-type 2 D nanosheets including metal hydroxides (such as Ni(OH)2, Co(OH)2, Cd(OH)2, and Mg(OH)2), metal oxides (such as ZnO and Mn3O4), and layered mixed transition-metal hydroxides (Ni-Co LDH, Ni-Fe LDH, Co-Fe LDH, and Ni-Co-Fe layered ternary hydroxides) through the rational employment of a green soft-template. The synthesized crystalline inorganic nanosheets possess confined thickness, resulting in ultrahigh surface atom ratios and chemically reactive facets. Upon evaluation as electrode materials for pseudocapacitors, the Ni-Co LDH nanosheets exhibit a high specific capacitance of 1087 F g(-1) at a current density of 1 A g(-1), and excellent stability, with 103% retention after 500 cycles. This strategy is facile and scalable for the production of high-quality ultrathin crystalline inorganic nanosheets, with the possibility of extension to the preparation of other complex nanosheets. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Determination of trace elements in honey from different regions in Rio de Janeiro State (Brazil) by total reflection X-ray fluorescence.

    PubMed

    Ribeiro, Roberta de Oliveira Resende; Mársico, Eliane Teixeira; de Jesus, Edgar Francisco Oliveira; da Silva Carneiro, Carla; Júnior, Carlos Adam Conte; de Almeida, Eduardo; Filho, Virgílio Franco do Nascimento

    2014-04-01

    Trace and minor elements in Brazilian honey were analyzed by total reflection X-ray fluorescence spectroscopy. Up to 12 elements (K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Se, Br, and Sr) were detected in 160 samples of honey from 4 regions of Rio de Janeiro State (Barra Mansa, Teresópolis, northern and southern Nova Friburgo). The results showed the samples from Teresópolis had higher rates of essential and nonessential elements than samples from the other regions, except for Ni. K and Ca were the most abundant elements in all samples, in the range of 116.5 to 987.0 μg g(-1) . Ni, Cu, Zn, Se, and Sr were identified in small concentrations (0.01 to 12.08 μg g(-1) ) in all samples, indicating a low level of contamination in all the regions. © 2014 Institute of Food Technologists®

  9. Metal concentration in the tourist beaches of South Durban: An industrial hub of South Africa.

    PubMed

    Vetrimurugan, E; Shruti, V C; Jonathan, M P; Roy, Priyadarsi D; Kunene, N W; Villegas, Lorena Elizabeth Campos

    2017-04-15

    South Durban basin of South Africa has witnessed tremendous urban, industrial expansion and mass tourism impacts exerting significant pressure over marine environments. 43 sediment samples from 7 different beaches (Bluff beach; Ansteys beach; Brighton beach; Cutting beach; Isipingo beach; Tiger Rocks beach; Amanzimtoti beach) were analyzed for acid leachable metals (ALMs) Fe, Mg, Mn, Cr, Cu, Mo, Ni, Co, Pb, Cd, Zn and Hg. The metal concentrations found in all the beaches were higher than the background reference values (avg. in μgg -1 ) for Cr (223-352), Cu (27.67-42.10), Mo (3.11-4.70), Ni (93-118), Co (45.52-52.44), Zn (31.26-57.01) and Hg (1.13-2.36) suggesting the influence of industrial effluents and harbor activities in this region. Calculated geochemical indexes revealed that extreme contamination of Cr and Hg in all the beach sediments and high Cr and Ni levels poses adverse biological effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Solvothermal synthesis, characterization and optical properties of ZnO, ZnO-MgO and ZnO-NiO, mixed oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Aslani, Alireza; Arefi, Mohammad Reza; Babapoor, Aziz; Amiri, Asghar; Beyki-Shuraki, Khalil

    2011-03-01

    ZnO-MgO and ZnO-NiO mixed oxides nanoparticles were produced from a solution containing Zinc acetate, Mg and Ni nitrate by Solvothermal method. The calcination process of the ZnO-MgO and ZnO-NiO composites nanoparticles brought forth polycrystalline two-phase ZnO-MgO and ZnO-NiO nanoparticles of 40-80 nm in diameters. ZnO, MgO and NiO were crystallized into würtzite and rock salt structures, respectively. The optical properties of ZnO-MgO and ZnO-NiO nanoparticles were obtained by solid state UV and solid state florescent. The XRD, SEM and Raman spectroscopies of these nanoparticles were analyzed.

  11. Estimation of dietary intake and target hazard quotients for metals by consumption of wines from the Canary Islands.

    PubMed

    Gutiérrez, Angel J; Rubio, Carmen; Moreno, Isabel M; González, A Gustavo; Gonzalez-Weller, Dailos; Bencharki, Naouel; Hardisson, Arturo; Revert, Consuelo

    2017-10-01

    This paper describes the impact of mineral content on wines and assesses the potential health risk from consuming these wines from Canary Islands. The metal content (B, Ca, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, Pb, Zn) of red wines belonging to different regions in the Canary Islands was determined by ICP-OES. The studied wine regions were Valle de la Orotava, Tacoronte-Acentejo, Ycoden-Daute-Isora, Abona and Valle de Güimar in Tenerife Island and only one in La Gomera and La Palma Islands. According to the content found, elements could be classified in two categories: the main group including Ca, K, Mg, Na, and the ''minor'' set consisting of B, Co, Cr, Cu, Fe, Li, Mn, Mo, Ni, Pb and Zn. Once calculated the metal intake through red wines consumption, we can conclude that Canarian drinkers are not exposed to unsafe levels of the metals studied, actually, the safety intake limits (daily) ranges between 0.9% in Zn and 2% in Cu, for normal drinkers. And also it has been demonstrated the good quality of Canarian red wines and there is no reason for health concern through the THQ calculation being the highest values determined in La Gomera wines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Trace elements in two odontocete species (Kogia breviceps and Globicephala macrorhynchus) stranded in New Caledonia (South Pacific).

    PubMed

    Bustamante, P; Garrigue, C; Breau, L; Caurant, F; Dabin, W; Greaves, J; Dodemont, R

    2003-01-01

    Liver, muscle and blubber tissues of two short-finned pilot whales (Globicephala macrorhynchus) and two pygmy sperm whales(Kogia breviceps) stranded on the coast of New Caledonia have been analysed for 12 trace elements (Al, Cd, Co, Cr, Cu. Fe, organic and total Hg, Mn, Ni, Se, V, and Zn). Liver was shown to be the most important accumulating organ for Cd, Cu, Fe, Hg, Se, and Zn in both species, G. macrorhynchus having the highest Cd, Hg, Se and Zn levels. In this species, concentrations of total Hg are particularly elevated, reaching up to 1452 microg g(-1) dry wt. Only a very low percentage of the total Hg was organic. In both species,the levels of Hg are directly related to Se in liver. Thus, a molar ratio of Hg:Se close to 1.0 was found for all specimens, except for the youngest K. breviceps. Our results suggest that G. macrorhynchus have a physiology promoting the accumulation of high levels of naturally occurring toxic elements. Furthermore, concentrations of Ni, Cr and Co are close to or below the detection limit in the liver and muscles of all specimens. This suggests that mining activity in New Caledonia, which typically elevates the levels of these contaminants in the marine environment, does not seem to be a significant source of contamination for these pelagic marine mammals.

  13. Evidence for a Sub-Chandrasekhar-mass Type Ia Supernova in the Ursa Minor Dwarf Galaxy

    NASA Astrophysics Data System (ADS)

    McWilliam, Andrew; Piro, Anthony L.; Badenes, Carles; Bravo, Eduardo

    2018-04-01

    A long-standing problem is identifying the elusive progenitors of Type Ia supernovae (SNe Ia), which can roughly be split into Chandraksekhar and sub-Chandrasekhar-mass events. An important difference between these two cases is the nucleosynthetic yield, which is altered by the increased neutron excess in Chandrasekhar progenitors due to their pre-explosion simmering and high central density. Based on these arguments, we show that the chemical composition of the most metal-rich star in the Ursa Minor dwarf galaxy, COS 171, is dominated by nucleosynthesis from a low-metallicity, low-mass, sub-Chandrasekhar-mass SN Ia. Key diagnostic abundance ratios include Mn/Fe and Ni/Fe, which could not have been produced by a Chandrasekhar-mass SN Ia. Large deficiencies of Ni/Fe, Cu/Fe and Zn/Fe also suggest the absence of alpha-rich freeze-out nucleosynthesis, favoring low-mass white dwarf progenitors of SNe Ia, near 0.95 M ⊙, from comparisons to numerical detonation models. We also compare Mn/Fe and Ni/Fe ratios to the recent yields predicted by Shen et al., finding consistent results. To explain the [Fe/H] at ‑1.35 dex for COS 171 would require dilution of the SN Ia ejecta with ∼104 M ⊙ of material, which is expected for an SN remnant expanding into a warm interstellar medium with n ∼ 1 cm‑3. In the future, finding more stars with the unique chemical signatures we highlight here will be important for constraining the rate and environments of sub-Chandrasekhar SNe Ia.

  14. Metal-dependent hydrolysis of myelin basic protein by IgGs from the sera of patients with multiple sclerosis.

    PubMed

    Polosukhina, Dar'ya I; Kanyshkova, Tat'yana G; Doronin, Boris M; Tyshkevich, Olga B; Buneva, Valentina N; Boiko, Alexey N; Gusev, Evgenii I; Nevinsky, Georgy A; Favorova, Olga O

    2006-02-28

    Homogeneous IgG fractions were obtained by chromatography of the sera of patients with multiple sclerosis (MS) on Protein G-Sepharose under conditions that remove non-specifically bound proteins. These IgGs contained several chelated metals, the relative amount of which decreases in the order: Fe>or=Ca>Cu>or=Zn>or=Mg>or=Mn>or=Pb>or=Co>or=Ni. In contrast to homogeneous IgGs of healthy individuals, Abs of MS patients effectively hydrolyzed human myelin basic protein (MBP). A minor metal-dependent fraction was obtained by chromatography of highly purified IgGs from MS patient on Chelex-100. This IgG fraction did not hydrolyze human MBP in the absence of Me(2+) ions but was activated after addition of Me(2+) ions: Mg(2+)>Mn(2+)>Cu(2+)>Ca(2+). Proteolytic activities of IgGs from other MS patients were also activated by other metal ions (Ni(2+), Fe(2+), Co(2+), Zn(2+), Pb(2+), and Co(2+)) and especially Ni(2+). Ni(2+)-activated IgGs were separated into distinct MBP-hydrolyzing fractions by chromatography on HiTraptrade mark Chelating Sepharose charged with Ni(2+). Detection of Mg(2+)-dependent proteolytic activity in the SDS-PAGE area corresponding only to IgG provided direct evidence that IgG from sera of MS patients possesses metal-dependent human MBP-hydrolyzing activity. Observed properties of MS abzymes distinguish them from other known mammalian metalloproteases and demonstrate their pronounced catalytic diversity. Metal-dependent IgGs from MS patients represent the first example of abzymes with metal-dependent proteolytic activity.

  15. Gain-of-function mutations identify amino acids within transmembrane domains of the yeast vacuolar transporter Zrc1 that determine metal specificity

    PubMed Central

    Lin, Huilan; Burton, Damali; Li, Liangtao; Warner, David E.; Phillips, John D.; Ward, Diane McVEY; Kaplan, Jerry

    2015-01-01

    Cation diffusion facilitator transporters are found in all three Kingdoms of life and are involved in transporting transition metals out of the cytosol. The metals they transport include Zn2+, Co2+, Fe2+, Cd2+, Ni2+ and Mn2+; however, no single transporter transports all metals. Previously we showed that a single amino acid mutation in the yeast vacuolar zinc transporter Zrc1 changed its substrate specificity from Zn2+ to Fe2+ and Mn2+ [Lin, Kumanovics, Nelson, Warner, Ward and Kaplan (2008) J. Biol. Chem. 283, 33865–33873]. Mutant Zrc1 that gained iron transport activity could protect cells with a deletion in the vacuolar iron transporter (CCC1) from high iron toxicity. Utilizing suppression of high iron toxicity and PCR mutagenesis of ZRC1, we identified other amino acid substitutions within ZRC1 that changed its metal specificity. All Zrc1 mutants that transported Fe2+ could also transport Mn2+. Some Zrc1 mutants lost the ability to transport Zn2+, but others retained the ability to transport Zn2+. All of the amino acid substitutions that resulted in a gain in Fe2+ transport activity were found in transmembrane domains. In addition to alteration of residues adjacent to the putative metal-binding site in two transmembrane domains, alteration of residues distant from the binding site affected substrate specificity. These results suggest that substrate selection involves co-operativity between transmembrane domains. PMID:19538181

  16. Development of land use regression models for particle composition in twenty study areas in Europe.

    PubMed

    de Hoogh, Kees; Wang, Meng; Adam, Martin; Badaloni, Chiara; Beelen, Rob; Birk, Matthias; Cesaroni, Giulia; Cirach, Marta; Declercq, Christophe; Dėdelė, Audrius; Dons, Evi; de Nazelle, Audrey; Eeftens, Marloes; Eriksen, Kirsten; Eriksson, Charlotta; Fischer, Paul; Gražulevičienė, Regina; Gryparis, Alexandros; Hoffmann, Barbara; Jerrett, Michael; Katsouyanni, Klea; Iakovides, Minas; Lanki, Timo; Lindley, Sarah; Madsen, Christian; Mölter, Anna; Mosler, Gioia; Nádor, Gizella; Nieuwenhuijsen, Mark; Pershagen, Göran; Peters, Annette; Phuleria, Harisch; Probst-Hensch, Nicole; Raaschou-Nielsen, Ole; Quass, Ulrich; Ranzi, Andrea; Stephanou, Euripides; Sugiri, Dorothea; Schwarze, Per; Tsai, Ming-Yi; Yli-Tuomi, Tarja; Varró, Mihály J; Vienneau, Danielle; Weinmayr, Gudrun; Brunekreef, Bert; Hoek, Gerard

    2013-06-04

    Land Use Regression (LUR) models have been used to describe and model spatial variability of annual mean concentrations of traffic related pollutants such as nitrogen dioxide (NO2), nitrogen oxides (NOx) and particulate matter (PM). No models have yet been published of elemental composition. As part of the ESCAPE project, we measured the elemental composition in both the PM10 and PM2.5 fraction sizes at 20 sites in each of 20 study areas across Europe. LUR models for eight a priori selected elements (copper (Cu), iron (Fe), potassium (K), nickel (Ni), sulfur (S), silicon (Si), vanadium (V), and zinc (Zn)) were developed. Good models were developed for Cu, Fe, and Zn in both fractions (PM10 and PM2.5) explaining on average between 67 and 79% of the concentration variance (R(2)) with a large variability between areas. Traffic variables were the dominant predictors, reflecting nontailpipe emissions. Models for V and S in the PM10 and PM2.5 fractions and Si, Ni, and K in the PM10 fraction performed moderately with R(2) ranging from 50 to 61%. Si, NI, and K models for PM2.5 performed poorest with R(2) under 50%. The LUR models are used to estimate exposures to elemental composition in the health studies involved in ESCAPE.

  17. Sources and fluxes of atmospheric trace elements to the Gulf of Aqaba, Red Sea

    NASA Astrophysics Data System (ADS)

    Chen, Ying; Paytan, Adina; Chase, Zanna; Measures, Christopher; Beck, Aaron J.; SañUdo-Wilhelmy, Sergio A.; Post, Anton F.

    2008-03-01

    We present the first comprehensive investigation of the concentrations, fluxes and sources of aerosol trace elements over the Gulf of Aqaba. We found that the mean atmospheric concentrations of crustally derived elements such as Al, Fe and Mn (1081, 683, and 16.7 ng m-3) are about 2-3 times higher than those reported for the neighboring Mediterranean area. This is indicative of the dominance of the mineral dust component in aerosols over the Gulf. Anthropogenic impact was lower in comparison to the more heavily populated areas of the Mediterranean. During the majority of time (69%) the air masses over the Gulf originated from Europe or Mediterranean Sea areas delivering anthropogenic components such as Cu, Cd, Ni, Zn, and P. Airflows derived from North Africa in contrast contained the highest concentrations of Al, Fe, and Sr but generally lower Cu, Cd, Ni, Zn, and P. Relatively high Pb, Ni, and V were found in the local and Arabian airflows suggesting a greater influence of local emission of fuel burning. We used the data and the measured trace metal seawater concentrations to calculate residence times of dissolved trace elements in the upper 50 m surface water of the Gulf (with respect to atmospheric input) and found that the residence times for most elements are in the range of 5-37 years while Cd and V residence times are longer.

  18. Separation and characterization of magnetic fractions from waste-to-energy bottom ash with an emphasis on the leachability of heavy metals.

    PubMed

    Wei, Yunmei; Mei, Xiaoxia; Shi, Dezhi; Liu, Guotao; Li, Li; Shimaoka, Takayuki

    2017-06-01

    Magnetic fractions were extracted from pulverized waste-to-energy (WTE) bottom ashes using a combined wet-dry extraction method. The resulting magnetic and non-magnetic fractions were subjected to compositional, mineralogical, and redox state analyses by X-ray diffraction (XRD), X-ray fluorescence, and X-ray photoelectron spectroscopy (XPS), respectively. The distribution and leaching toxicity of heavy metals were assessed to evaluate potential effects on the environment. Compositional analyses revealed that Fe accounted for 35% of the magnetic fraction of pulverized ashes, which was approximately seven times that of the raw ash. In addition to Fe, elemental Ni, Mn, and Cr were also significantly enriched in the magnetic fractions. The mineralogical analysis determined that Fe was primarily present as hematite and magnetite, and metallic iron was also identified in the magnetic fraction samples. The XPS analysis further proved the existence of zero-valence Fe. However, a significant amount of Fe remained in the non-magnetic fractions, which could partially be ascribed to the intergrowth structure of the various minerals. The elevated concentrations of toxicity characteristic leaching procedure (TCLP)-extracted Mn, Ni, Cr, Cu, Pb, and Zn were primarily ascribed to the lower buffering capability of the magnetic fractions, with the enrichment of Mn, Ni, and Cr in the magnetic fractions also contributing to this elevation.

  19. Synthesis and characterization of ZnS:Ni-NPs loaded on AC derived from apple tree wood and their applicability for the ultrasound assisted comparative adsorption of cationic dyes based on the experimental design.

    PubMed

    Khafri, Hossein Zare; Ghaedi, Mehrorang; Asfaram, Arash; Safarpoor, Mohammad

    2017-09-01

    The applicability of ZnS:Ni nanoparticles loaded on activated carbon derived from apple tree wood (ZnS:Ni-NPs-ACATW) for the adsorption of Methylene Blue (MB) and Janus Green B (JGB) dyes in single system from water solution has been described. The synthesized adsorbent characterized and identified by UV-Vis, FE-SEM, EDX, TEM, FTIR and XRD. The influences of operation parameters including initial MB or JGB concentration (9.0-33.0mgL -1 ), pH (4.0-10.0), extent of adsorbent (0.08-0.12g) and sonication time (4.0-8.0min) investigated and subsequently best operational condition optimized by central composite design (CCD) combined with response surface methodology (RSM) and desirability function (DF) using STATISTICA 10.0 software. At optimum conditions, maximum MB and JSB adsorption onto ZnS:Ni-NPs-ACATW, i.e. 99.57%±1.34 and 98.70%±2.01, respectively was achieved pH of 7.0, 0.11g adsorbent, 14 and 28mgL -1 of MB and JSB concentration respectively and 8min sonication time. Experimental data were modelled by Langmuir, Freundlich, Temkin and Dubinin-Radushkevich (D-R) isotherms. Langmuir isotherm and monolayer adsorption capacity of MB and JSB was found to be 21.79 and 28.01mgg -1 respectively. The regression results strongly support more contribution of pseudo-second-order model for more accurate and repeatable representation of kinetic data. These results reveal that ZnS:Ni-NPs-ACATW could be useful as agents to efficiently remove dyes (JGB and MB) from contaminated water and can be very well recommended for wastewater remediation and control of environmental pollution. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Physical Properties of NiFeCrCo-based High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Zaddach, Alexander Joseph

    Conventional alloy design has been based on improving the properties of a single base, or solvent, element through relatively small additions of other elements. More recently, research has been conducted on alloys that contain multiple principal elements, particularly multi-component equiatomic alloys. When such alloys form solid solution phases, they are termed "high-entropy alloys" (HEAs) due to their high configurational entropy. These alloys often have favorable properties compared to conventional dilute solution alloys, but their compositional complexity and relative novelty means that they remain difficult to design and their basic properties are often unknown. The motivation for this work is a detailed experimental exploration of some of the basic physical properties of NiFeCrCo-based alloys. NiFeCrCoMn was one of the first equiatomic HEAs developed. As the compositional space within this single system is extremely large, this work focuses primarily on equiatomic alloys and a limited subset of non-equiatomic alloys chosen for their specific properties. Several alloys are prepared using both conventional methods (arc melting) and nonequilibrium methods (mechanical alloying). Properties studied include stacking fault energy, bulk mechanical properties, single crystal elastic constants, and magnetic properties. The equiatomic NiFeCrCo and NiFeCrCoMn alloys were found to have a moderate to low stacking fault energy, 18 -- 30 mJ m-2. As they are single-phase, fcc alloys, they have high tensile ductility. Additionally, they also exhibit high work-hardening rates, resulting in high toughness. NiFeCrCo outperforms the 5-component equiatomic alloy in ductility and toughness. A 5-component alloy with higher Co content to reduce the stacking fault energy also performs well. The single crystal elastic constants were measured using nanoindentation modulus measurements of grains of known orientation. The measured elastic constants were consistent with those calculated using first-principles modeling. Adding Zn in addition to Mn resulted in an alloy that preferred to form multiple phases. After the optimal heat treatment, it forms nano-sized grains of FeCo, which results in permanent magnetic behavior at room temperature.

  1. Combination of lightweight elements and nanostructured materials for batteries.

    PubMed

    Chen, Jun; Cheng, Fangyi

    2009-06-16

    In a society that increasingly relies on mobile electronics, demand is rapidly growing for both primary and rechargeable batteries that power devices from cell phones to vehicles. Existing batteries utilize lightweight active materials that use electrochemical reactions of ions such as H(+), OH(-) and Li(+)/Mg(2+) to facilitate energy storage and conversion. Ideal batteries should be inexpensive, have high energy density, and be made from environmentally friendly materials; batteries based on bulk active materials do not meet these requirements. Because of slow electrode process kinetics and low-rate ionic diffusion/migration, most conventional batteries demonstrate huge gaps between their theoretical and practical performance. Therefore, efforts are underway to improve existing battery technologies and develop new electrode reactions for the next generation of electrochemical devices. Advances in electrochemistry, surface science, and materials chemistry are leading to the use of nanomaterials for efficient energy storage and conversion. Nanostructures offer advantages over comparable bulk materials in improving battery performance. This Account summarizes our progress in battery development using a combination of lightweight elements and nanostructured materials. We highlight the benefits of nanostructured active materials for primary zinc-manganese dioxide (Zn-Mn), lithium-manganese dioxide (Li-Mn), and metal (Mg, Al, Zn)-air batteries, as well as rechargeable lithium ion (Li-ion) and nickel-metal hydride (Ni-MH) batteries. Through selected examples, we illustrate the effect of structure, shape, and size on the electrochemical properties of electrode materials. Because of their numerous active sites and facile electronic/ionic transfer and diffusion, nanostructures can improve battery efficiency. In particular, we demonstrate the properties of nanostructured active materials including Mg, Al, Si, Zn, MnO(2), CuV(2)O(6), LiNi(0.8)Co(0.2)O(2), LiFePO(4), Fe(2)O(3), Co(3)O(4), TiS(2), and Ni(OH)(2) in battery applications. Electrochemical investigations reveal that we generally attain larger capacities and improved kinetics for electrode materials as their average particle size decreases. Novel nanostructures such as nanowires, nanotubes, nanourchins, and porous nanospheres show lower activation energy, enhanced reactivity, improved high-rate charge/discharge capability, and more controlled structural flexibility than their bulk counterparts. In particular, anode materials such as Si nanospheres and Fe(2)O(3) nanotubes can deliver reversible capacity exceeding 500 mA.h/g. (Graphite used commercially has a theoretical capacity of 372 mA x h/g.) Nanocomposite cathode materials such as NiP-doped LiFePO(4) and metal hydroxide-coated Ni(OH)(2) nanotubes allow us to integrate functional components, which enhance electrical conductivity and suppress volume expansion. Therefore, shifting from bulk to nanostructured electrode materials could offer a revolutionary opportunity to develop advanced green batteries with large capacity, high energy and power density, and long cycle life.

  2. Hydrothermal recrystallization of transition metal nitroprussides. Formation of the most stable phases

    NASA Astrophysics Data System (ADS)

    Echevarría, F.; Reguera, L.; González M, M.; Galicia, J.; Ávila, M.; Reguera, E.

    2018-02-01

    Hydrothermal recrystallization appears to be an appropriate treatment to explore the structural diversity of porous coordination polymers. In this contribution, such a post-synthesis treatment is applied to divalent transition metal nitroprussides, T[Fe(CN)5NO]•xH2O with T =Mn, Fe, Co, Ni, Cu, Zn, Cd. This family of compounds forms an interesting series of nanoporous coordination polymers with a wide structural diversity, related to the synthesis route used and the solid hydration degree (x). The effect of a hydrothermal recrystallization of previously prepared fine powders using the precipitation method, on their crystal structure and related properties is herein discussed. In this series of coordination polymers, for Fe, Co, Ni the precipitated powders are obtained as cubic phase, with a high porosity related to presence of systematic vacancies for building unit [Fe(CN)5NO]. For Fe and Co a structural transition, from cubic to orthorhombic, was observed, which is associated to formation of a most compact structure. The crystal structure for the new orthorhombic phases was refined from the collected powder HR-XRD patterns. For Ni, the cubic phase remains stable even for large heating time, which is ascribed to the high polarizing power of this metal. The high porosity for the cubic phase allows an easy accommodation for the local deformations around the Ni atom coordination sphere. The structural information from XRD was complemented with CO2 and H2 adsorption and TG data, IR and UV-vis spectra, and magnetic measurements. The magnetic data, through the presence of spin-orbit coupling for Fe and Co in the two phases, provide fine details on the coordination environment for the metal linked at the N ends of the CN group.

  3. Multivariate analysis of selected metals in tannery effluents and related soil.

    PubMed

    Tariq, Saadia R; Shah, Munir H; Shaheen, N; Khalique, A; Manzoor, S; Jaffar, M

    2005-06-30

    Effluent and relevant soil samples from 38 tanning units housed in Kasur, Pakistan, were obtained for metal analysis by flame atomic absorption spectrophotometric method. The levels of 12 metals, Na, Ca, K, Mg, Fe, Mn, Cr, Co, Cd, Ni, Pb and Zn were determined in the two media. The data were evaluated towards metal distribution and metal-to-metal correlations. The study evidenced enhanced levels of Cr (391, 16.7 mg/L) and Na (25,519, 9369 mg/L) in tannery effluents and relevant soil samples, respectively. The effluent versus soil trace metal content relationship confirmed that the effluent Cr was strongly correlated with soil Cr. For metal source identification the techniques of principal component analysis, and cluster analysis were applied. The principal component analysis yielded two factors for effluents: factor 1 (49.6% variance) showed significant loading for Ca, Fe, Mn, Cr, Cd, Ni, Pb and Zn, referring to a tanning related source for these metals, and factor 2 (12.6% variance) with higher loadings of Na, K, Mg and Co, was associated with the processes during the skin/hide treatment. Similarly, two factors with a cumulative variance of 34.8% were obtained for soil samples: factor 1 manifested the contribution from Mg, Mn, Co, Cd, Ni and Pb, which though soil-based is basically effluent-derived, while factor 2 was found associated with Na, K, Ca, Cr and Zn which referred to a tannery-based source. The dendograms obtained from cluster analysis, also support the observed results. The study exhibits a gross pollution of soils with Cr at levels far exceeding the stipulated safe limit laid down for tannery effluents.

  4. Magnetic Characterization of Stream-Sediments From Buenos Aires Province, Argentina, Affected by Pollution

    NASA Astrophysics Data System (ADS)

    Chaparro, M. A.; Sinito, A. M.; Bidegain, J. C.; Gogorza, C. S.; Jurado, S.

    2001-12-01

    A wide urban area from Northeast of Buenos Aires Province is exposed to an important anthropogenic influence, mainly due to industrial activity. In this two water streams were chosen: one of them (Del Gato stream, G) next to La Plata City and the another one (El Pescado stream, P) on the outskirts of the city. Both streams have similar characteristics, although the first one (G) has a higher input of pollutants (fluvial effluents, fly ashes, solid wastes, etc.) than the last one (P). Sediments analyzed in this work are limes from continental origin of PostPampeano (Holocene). Although, some cores were affected by sandy-limy sediments with mollusc valves from Querandino Sea (Pleistocene - later Holocene) and limy sediments of chestnut color with calcareous concretions from the Ensenadense. Magnetic measurements and geochemical studies were carried out on the samples. Among the magnetic parameters, specific susceptibility (X), X frequency-dependence (Xfd%), X temperature-dependence, Natural Remanent Magnetization (NRM), Isothermal Remanent Magnetization (IRM), Saturation IRM (SIRM), coercivity of remanence (Bcr), S ratio and SIRM/X ratio, Anhysteric Remanent Magnetization (ARM), Magnetic and Thermal Demagnetization were studied. The magnetic characteristics for both sites indicate the predominance of magnetically soft minerals on G site and relatively hard minerals on P site. Magnetite is the main magnetic carrier, Pseudo Single Domain and Single Domain grains were found. Chemical studies show (in some cases) a high concentration for some heavy metals (Pb, Cu, Zn, Ni and Fe) on the upper 22-cm. Contents of heavy metals and ARM were correlated. Very good correlation (R> 0.81) is found for Cu, Zn, Ni, Fe and the sum (of Pb, Cu, Zn and Ni), and a weaker correlation for Pb.

  5. Determination of metals in coal fly ashes using ultrasound-assisted digestion followed by inductively coupled plasma optical emission spectrometry.

    PubMed

    Pontes, Fernanda V M; Mendes, Bruna A de O; de Souza, Evelyn M F; Ferreira, Fernanda N; da Silva, Lílian I D; Carneiro, Manuel C; Monteiro, Maria I C; de Almeida, Marcelo D; Neto, Arnaldo A; Vaitsman, Delmo S

    2010-02-05

    A method for determination of Co, Cr, Cu, Fe, Mn, Ni, Ti, V and Zn in coal fly ash samples using ultrasound-assisted digestion followed by inductively coupled plasma optical emission spectrometry (ICP-OES) is proposed. The digestion procedure consisted in the sonication of the previously dried sample with hydrofluoric acid and aqua regia at 80 degrees C for 30 min, elimination of fluorides by heating until dryness for about 1h and dissolution of the residue with nitric acid solution. A classical digestion method, used as comparative method, consisted in the addition of HCl, HNO(3) and HF to 1 g of sample, and heating on a hot plate until dryness for about 6h. The proposed method presents several advantages: it requires lower amounts of sample and reagents, and it is faster. It is also advantageous when compared to the published methods, which also use ultrasound-assisted digestion procedure: lower detection limits for Co, Cu, Ni, V and Zn, and it does not require shaking during the digestion. The detection limits (microg g(-1)) for Co, Cr, Cu, Fe, Mn, Ni, Ti, V and Zn were 0.06, 0.37, 1.0, 25, 0.93, 0.45, 4.0, 1.7 and 4.3, respectively. The results were in good agreement with those obtained by the classical method and reference values. The exception was Cr, which presented low recoveries in classical and proposed methods (83 and 87%, respectively). Also, the concentration for Cu obtained by the proposed method was significantly different from the reference value, in spite of the good recovery (91+/-1%). Copyright 2009 Elsevier B.V. All rights reserved.

  6. Geochemical properties of topsoil around the coal mine and thermoelectric power plant.

    PubMed

    Stafilov, Trajče; Šajn, Robert; Arapčeska, Mila; Kungulovski, Ivan; Alijagić, Jasminka

    2018-03-19

    The results of the systematic study of the spatial distribution of trace metals in surface soil over the Bitola region, Republic of Macedonia, known for its coal mine and thermo-electrical power plant activities are reported. The investigated region (3200 km 2 ) is covered by a sparse sampling grid of 5 × 5 km, but in the urban zone and around the thermoelectric power plant the sampling grid is denser (1 × 1 km). In total, 229 soil samples from 149 locations were collected including top-soil (0-5 cm) and bottom-soil samples (20-30 cm and 0-30 cm). Inductively coupled plasma - atomic emission spectrometry (ICP-AES) was applied for the determinations of 21 elements (Al, As, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, P, Pb, Sr, V and Zn). Based on the results of factor analyses, three geogenic associations of elements have been defined: F1 (Fe, Ni, V, Co, Cr, Mn and Li), F2 (Zn, B, Cu, Cd, Na and K) and F3 (Ca, Sr, Mg, Ba and Al). Even typical trace metals such as As, Cd, Cu, Ni, P, Pb and Zn are not isolated into anthropogenic geochemical associations by multivariate statistical methods still show some trends of local anthropogenic enrichment. The distribution maps for each analyzed element is showing the higher content of these elements in soil samples collected around the thermoelectric power plants than their average content for the soil samples collected from the whole Bitola Region. It was found that this enrichment is a result of the pollution by fly ash from coal burning which deposited near the plant having a high content of these elements.

  7. Dandelion Taraxacum linearisquameum does not reflect soil metal content in urban localities.

    PubMed

    Kováčik, Jozef; Dudáš, Matej; Hedbavny, Josef; Mártonfi, Pavol

    2016-11-01

    Accumulation of selected heavy metals (Cd, Pb, Ni, Cr, Fe, and Zn) and phenolic metabolites (total soluble phenols, cichoric and caftaric acid) in dandelion organs (leaves, roots, inflorescences/anthodia) collected from six localities within the industrial town Košice (eastern Slovakia) were studied. Localities from the vicinity of a steel factory (Cd, Fe) and heavy traffic (Pb, Ni, Cr, Zn) contained the highest amount of individual metals in the soil but a significant correlation between soil and organ metal content was found only for Cr in the leaves (r 2  = 0.7679). The amount of Cd and partially Pb differed among localities in all organs and especially in the leaves and anthodia, indicating probably the impact of atmospheric pollution. The bioaccumulation factor was <1 for almost all metals, suggesting that given dandelion species is not metal accumulator. Translocation factor did not reach values close to or over 1 only for Cd, indicating a root-to-shoot movement of Pb, Ni and Zn though the impact of air pollution on leaves cannot be excluded. A strong correlation between leaf Cd and leaf total phenols, cichoric and caftaric acids was observed (r 2  = 0.7926, 0.8682 and 0.8830, respectively), indicating that phenolic metabolites act in the protection of dandelion against Cd excess. Overall, our data indicate low pollution of urban soil by Cd (5.53-113.8 ng g -1 ) and partially by Cr and the suitability of above-ground organs of dandelion species for the monitoring of air pollution mainly by Cd. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Iron oxide nanozyme catalyzed synthesis of fluorescent polydopamine for light-up Zn2+ detection

    NASA Astrophysics Data System (ADS)

    Liu, Biwu; Han, Xiao; Liu, Juewen

    2016-07-01

    Fluorescent polydopamine (FPD) is an interesting material with excellent biocompatibility. However, its preparation is currently a lengthy and potentially dangerous process. We herein employ magnetic iron oxide (Fe3O4) nanoparticles as a peroxidase-mimicking nanozyme to produce FPD under mild conditions. Different from previous protocols using multiple steps with up to 6% (~2 M) H2O2, this preparation takes place in a single step with just 5 mM H2O2 at room temperature. The oxidized product shows excitation-wavelength-dependent emission peaks, similar to previous reports. The reaction kinetics, pH, temperature, and ionic strength are individually optimized. Among a diverse range of other nanomaterials tested, including Fe2O3, CeO2, CoO, Co3O4, NiO, TiO2, gold nanoparticles, and graphene oxide, Fe2O3 and graphene oxide yielded relatively weak emission, while the rest of the materials failed to produce FPD. The Fe3O4 nanoparticles retained ~90% catalytic activity even after ten cycles of synthesis. Finally, Zn2+ can enhance the fluorescence of FPD under 360 nm excitation but not under 480 nm excitation, leading to a sensitive light-up sensor with a detection limit of 60 nM Zn2+. Therefore, this work has demonstrated not only a novel use of nanozymes, but also an interesting application of FPD.Fluorescent polydopamine (FPD) is an interesting material with excellent biocompatibility. However, its preparation is currently a lengthy and potentially dangerous process. We herein employ magnetic iron oxide (Fe3O4) nanoparticles as a peroxidase-mimicking nanozyme to produce FPD under mild conditions. Different from previous protocols using multiple steps with up to 6% (~2 M) H2O2, this preparation takes place in a single step with just 5 mM H2O2 at room temperature. The oxidized product shows excitation-wavelength-dependent emission peaks, similar to previous reports. The reaction kinetics, pH, temperature, and ionic strength are individually optimized. Among a diverse range of other nanomaterials tested, including Fe2O3, CeO2, CoO, Co3O4, NiO, TiO2, gold nanoparticles, and graphene oxide, Fe2O3 and graphene oxide yielded relatively weak emission, while the rest of the materials failed to produce FPD. The Fe3O4 nanoparticles retained ~90% catalytic activity even after ten cycles of synthesis. Finally, Zn2+ can enhance the fluorescence of FPD under 360 nm excitation but not under 480 nm excitation, leading to a sensitive light-up sensor with a detection limit of 60 nM Zn2+. Therefore, this work has demonstrated not only a novel use of nanozymes, but also an interesting application of FPD. Electronic supplementary information (ESI) available: Methods, TEM, ζ-potential, and original fluorescence spectra. See DOI: 10.1039/c6nr02584f

  9. Effect of lanthanum substitution on structural and magnetic properties of nickel zinc ferrites

    NASA Astrophysics Data System (ADS)

    Šoka, Martin; Ušáková, Mariana; Dosoudil, Rastislav; Ušák, Elemír; Lokaj, Ján

    2018-04-01

    The purpose of the presented research is to investigate the effect of La3+ ions substitution for Fe3+ ions in Ni0.42Zn0.58LaxFe2-xO4 (x = 0, 0.02, 0.04, 0.06, 0.08, 0.10) ferrite compositions prepared by the innovated glycine-nitrate process based on auto-combustion method. Structural and magnetic properties of examined samples were estimated by the analysis of X-ray spectra, EDAX spectrum, SEM micrographs, thermomagnetic characteristics, magnetic hysteresis loops and complex permeability spectra.

  10. Investigation of Local Hydrogen Uptake in Rescaled Model Occluded Sites Using Crevice Scaling Laws

    DTIC Science & Technology

    2005-04-01

    13- 8 Mo . Under anodic polarization, there is a combination of x and G in a crevice or crack where the stainless steel would be passive and remain...2004). 8 . G.A. Young, Jr., J.R. Scully, "The Effects of Test Temperature , Temper and Alloyed Copper on Hydrogen Controlled Crack Growth of an A1-Zn-Mg...sharp crack tip.[16] Precipitation-aged hardened martensitic stainless steels (i.e., Fe-Cr-Ni- Mo alloys) that release hydrolysable Cr and Fe cations

  11. Influence of marine, terrestrial and anthropogenic sources on ionic and metallic composition of rainwater at a suburban site (northwest coast of Spain)

    NASA Astrophysics Data System (ADS)

    Moreda-Piñeiro, Jorge; Alonso-Rodríguez, Elia; Moscoso-Pérez, Carmen; Blanco-Heras, Gustavo; Turnes-Carou, Isabel; López-Mahía, Purificación; Muniategui-Lorenzo, Soledad; Prada-Rodríguez, Darío

    2014-05-01

    In the present research, the rainwater chemistry of soluble (SF) and non-soluble (NSF) fractions is studied over a one a half year period (from March 2011 to August 2012) at a suburban site (Oleiros, A Coruña, Spain). The monthly rainfall in this region during the studied period ranged from 10 to 137 mm, while the NSF ranged from 0.9 to 54 mg L-1. More rainfall occurs within October-January. Eighteen samples, which provide information pertaining to the monthly variation in chemistry, were analyzed. Trace metals (Al, As, Ba, Co, Cu, Cr, Fe, Mn, Ni, Pb, Sr, V, Zn) were enclosed in the study of both fractions of the rainwater. Major inorganic ions (Cl-, NO3-, SO42-, Na+, K+, Ca2+, Mg2+ and NH4+) were also enclosed in the study of the SF of the rainwater. After partition coefficients analysis, univariate and principal components analysis (PCA) and air mass back trajectories analysis, three sources were found for the ionic and metal composition of the SF of rainwater; terrestrial (Ca2+, non sea salt SO42-, Al and Fe), marine (Mg2+, Na+, Cl-) and anthropogenic (K+, NH4+, NO3-, Fe, Mn, Pb, Sr, V and Zn). Results also suggest ubiquitous sources for Ba, Co, Cu, Cr and Ni. One source (terrestrial) was found for NSF of rainwater.

  12. Partitioning of Dissolved Metals (Fe, Mn, Cu, Cd, Zn, Ni, and Pb) into Soluble and Colloidal Fractions in Continental Shelf and Offshore Waters, Northern California

    NASA Astrophysics Data System (ADS)

    Fitzsimmons, J. N.; Parker, C.; Sherrell, R. M.

    2016-02-01

    The physicochemical speciation of trace metals in seawater influences their cycling as essential micronutrients for microorganisms or as tracers of anthropogenic influences on the marine environment. While chemical speciation affects lability, the size of metal complexes influences their ability to be accessed biologically and also influences their fate in the aggregation pathway to marine particles. In this study, we show that multiple trace metals in shelf and open ocean waters off northern California (IRN-BRU cruise, July 2014) have colloidal-sized components. Colloidal fractions were operationally defined using two ultrafiltration methods: a 0.02 µm Anopore membrane and a 10 kDa ( 0.003 µm) cross flow filtration (CFF) system. Together these two methods distinguished small (0.003 - 0.02 µm) and large (0.02 µm - 0.2 µm) colloids. As has been found previously for seawater in other ocean regimes, dissolved Fe had a broad size distribution with 50% soluble (<10 kDa) complexes and both small and large colloidal species. Dissolved Mn had no measurable colloidal component, consistent with its predicted chemical speciation as free Mn(II). Dissolved Cu, which like Fe is thought to be nearly fully organically bound in seawater, was only 25% colloidal, and these colloids were all small. Surprisingly Cd, Ni, and Pb also showed colloidal components (8-20%, 25-40%, and 10-50%) despite their hypothesized low organic speciation. Zn and Pb were nearly completely sorbed onto the Anopore membrane, making CFF the only viable ultrafiltration method for those elements. Zn suffered incomplete recovery ( 50-75%) through the CFF system but showed 30-85% colloidal contribution; thus, verifying a Zn colloidal phase with these methods is challenging. Conclusions will reveal links between the physical and chemical speciation for these metals and what role these metal colloids might have on trace metal exchange between the ocean margin and offshore waters.

  13. Effect of nickel diffusion and oxygen behavior on heterojunction Schottky diodes of Au/NiO/ZnO with a NiO interlayer prepared by radio-frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Hwang, Jun-Dar; Chen, Hsin-Yu; Chen, Yu-Huang; Ho, Ting-Hsiu

    2018-07-01

    The rectifying characteristic of Au/ZnO Schottky diodes (SDs) was remarkably improved by introducing a NiO layer in-between the Au and ZnO layers. Compared with the Au/ZnO SDs, the introduction of the NiO layer significantly enhanced the rectification ratio from 1.38 to 1300, and reduced the ideality factor from 5.78 to 2.14. The NiO and ZnO layers were deposited on an indium-tin-oxide/glass substrate by radio-frequency magnetron sputtering. Secondary ion mass spectroscopy showed that Ni atoms diffused from NiO to ZnO, leading to a graded distribution of Ni in ZnO. X-ray diffraction demonstrated that the diffusion of Ni atoms increased the grain size and electron concentration of ZnO. X-ray photoelectron spectroscopy showed that the interstitial oxygen (Oi) atoms in NiO and ZnO compensated the oxygen vacancies (OV) at the NiO/ZnO interface; the amount of OV was significantly reduced, while Oi vanished at the interface. The band diagram revealed a potential drop in the bulk ZnO, owing to the graded distribution of Ni in ZnO, which accelerated the carriers, collected by the outer circuit. The carriers at the NiO/ZnO interface easily crossed over the barrier height, instead of being recombined by OV, owing to the lower amount of OV at the interface.

  14. Distribution of metals in various particle-size fractions in topsoils of a small dry valley system (European Russia, forest zone)

    NASA Astrophysics Data System (ADS)

    Samonova, Olga; Aseyeva, Elena

    2017-04-01

    A detailed study of heavy metals distribution in various soil grain-size fractions helps to increase the knowledge about the complex nature of metals' occurrence and their distribution pathways in the environment. On the basis of particle size fractionation of topsoil horizons we examined the specific behavior of heavy metals in a small erosional landform located in the humid temperate zone of the Russian Plain. The object of the study is a 400 m small U-shaped dry valley (balka in Russian) with a catchment area of 32.8 ha located in the central part of the Protva river basin, 100 km southwest of Moscow. The uppermost parts of the landform are incised in Late Pleistocene loessial loams, which cover significant portions of interfluve area in the region, while the middle and the lower parts cut through Middle Pleistocene glacial sediments. A total of 50 samples were collected from topsoil horizons of different landform geomorphic units along three cross-sections as well as along the bottom of the landform and its detrital fan. Samples were analyzed for Mn, Cu, Ni, Co, Cr, Zn, Pb, Ti, Zr, and Fe content. Eleven samples were chosen for physical fractionation into 5 grain-size fractions (1-0.25 mm, 0.25-0.05 mm, 0.05-0.01 mm, 0.01-0.001 mm and <0.001 mm) and further analysis for fractionized metal contents. Across the grain-size fractions the maximum Zr content was observed in the coarse silt fraction and Ti - in the medium and fine silt fraction, while other metals, such as Fe, Mn, Co, Ni, Cr, Pb, and Zn revealed their highest concentrations in the clay fraction. For Fe, Mn, Co and Ni a second concentration peak was observed in the coarse and medium sand fraction. Due to probably eolian genesis and (or) transformation during weathering, the coarse silt fraction in comparison to other fractions showed a depletion of the majority of metals while the minimum concentrations of Ti, Zr and Cr were limited to the coarse and medium sand. Statistical analysis showed that the variation of metal contents depends on particle sizes: the Cv coefficients calculated for Cu, Ni, Co, Fe, Mn, Ti and Zr reach their maximum in the 1-0.25 mm fraction (for Cu and Ni exceeding 75%, for Ti, Zr being around 40%). For Zn, Cr and Pb the maximum variation (50-60%) was found in the 0.25-0.05 mm fraction. In contrast, the two studied silt fractions and also the clay showed very low variations of all metal contents (except for Mn) characteristically in the range between 6% (Cr) and 23.5% (Zn). Unlike the finer fractions, which displayed very poor geochemical differentiation across the landform's geomorphic units, the coarser (sand) fractions showed distinct spatial patterns in the elements' distribution, possibly related to migration processes, the depletion of metals in the landforms' slopes and their prevalent enrichment in the bottom unit is observed.

  15. A simple quinolone Schiff-base containing CHEF based fluorescence 'turn-on' chemosensor for distinguishing Zn2+ and Hg2+ with high sensitivity, selectivity and reversibility.

    PubMed

    Dong, Yuwei; Fan, Ruiqing; Chen, Wei; Wang, Ping; Yang, Yulin

    2017-05-23

    A new simple 'dual' chemosensor MQA ((E)-2-methoxy-N-((quinolin-2-yl)methylene)aniline) for distinguishing Zn 2+ and Hg 2+ has been designed, synthesized and characterized. The sensor showed excellent selectivity and sensitivity with a fluorescence enhancement to Zn 2+ /Hg 2+ over other commonly coexisting cations (such as Na + , Mg 2+ , Al 3+ , K + , Mn 2+ , Fe 2+ , Fe 3+ , Co 2+ , Ni 2+ , Cu 2+ , Ga 3+ , Cd 2+ , In 3+ and Pb 2+ ) in DMSO-H 2 O solution (1/99 v/v), which was reversible with the addition of ethylenediaminetetraacetic acid (EDTA). The detection limit for Zn 2+ /Hg 2+ by MQA both reached the 10 -8 M level. The 1 : 1 ligand-to-metal coordination patterns of the MQA-Zn2+ and MQA-Hg2+ were calculated through a Job's plot and ESI-MS spectra, and were further confirmed by X-ray crystal structures of complexes MQA-Zn2+ and MQA-Hg2+. This chemosensor can recognize similar metal ions by coherently utilizing intramolecular charge transfer (ICT) and different electronic affinities of various metal ions. DFT calculations have revealed that the energy gap between the HOMO and LUMO of MQA has decreased upon coordination with Zn(ii)/Hg(ii).

  16. Uptake of Al, As, Cr, Cd, Cu, Fe, Mn, Ni, Pb, Sr, and Zn in native wheatgrasses, wildryes, and bluegrass on three metal-contaminated soils from Montana

    USDA-ARS?s Scientific Manuscript database

    One of the biggest challenges to successfully phytoremediate contaminated mineland soils is the identification of native plants that possess a broad adaptation to ecological sites and either exclude or uptake heavy metals of interest. This study evaluated forage concentrations of aluminum (Al), ars...

  17. Effects of Natural Rubber on Microwave Absorption Characteristics of Some Li-Ni-Zn Ferrite-Thermoplastic Natural Rubber Composites

    NASA Astrophysics Data System (ADS)

    Abdul Hamid, Siti Atkah; Abdullah, Mustaffa Hj.; Ahmad, Sahrim Hj.; Mansor, Abdul Aziz; Yusoff, Ahmad Nazlim

    2002-09-01

    A microwave (Li0.5Fe0.5)0.4Ni0.3Zn0.3Fe2O4 (LNZ) ferrite was prepared by a conventional sintering method in air. Thermoplastic natural rubber (TPNR) was prepared from polypropylene (PP) and natural rubber (NR) in the ratios of 80:20, 70:30, 60:40, 50:50 and 40:60 with liquid natural rubber as a compatibilizer by a melt blending technique. LNZ ferrite-TPNR composites with 20 wt% ferrite filler were prepared using a Brabender plasticorder internal mixer. The microwave electromagnetic properties of the composites were studied in the frequency range of 0.3-13.5 GHz using a microwave vector network analyzer (MVNA). The real and imaginary components of the relative complex dielectric permittivity (\\varepsilonr*=\\varepsilonr\\prime-j\\varepsilonr\\prime\\prime) and magnetic permeability (μr*=μr\\prime-jμr\\prime\\prime) were calculated from the measured complex scattering parameters (S11* and S12*) using the Nicolson-Ross model. The dielectric and magnetic properties were found to depend on the NR and PP content in the composites. The minimum reflection loss (RL) under the matching conditions increases with increasing NR content.

  18. Distribution of rare-earth (Y, La, Ce) and other heavy metals in the profiles of the podzolic soil group

    NASA Astrophysics Data System (ADS)

    Vodyanitskii, Yu. N.; Goryachkin, S. V.; Savichev, A. T.

    2011-05-01

    Along with Fe and Al, many heavy metals (Mn, Cr, Zn, Cu, and Ni) show a markedly pronounced eluvial-illuvial redistribution in the profiles of soils of the podzolic group. The intensity of the redistribution of the bulk forms of these metals is comparable with that of Fe and exceeds that of Al. Although the podzolic soils are depleted of rare-earth metals, the latter respond readily to soil podzolization. The inactive participation of Al is explained by an insignificant portion of the active reaction-capable fraction. Podzolization does not influence the profile distribution of Sr and Ba. The leaching degree of heavy metals such as Mn, Cr, Zn, Ni, and Zr is noticeably higher in the sandy podzols than in the loamy podzolic soils. Leaching of heavy metals from the podzolic horizons is of geochemical importance, whereas the depletion of metals participating in plant nutrition and biota development is of ecological importance. The leaching of heavy metals is related to the destruction of clay particles in the heavy-textured podzolic soils; the effect of the soil acidity on the leaching of heavy metals is less significant.

  19. Essential and toxic elements in infant foods from Spain, UK, China and USA.

    PubMed

    Carbonell-Barrachina, Ángel A; Ramírez-Gandolfo, Amanda; Wu, Xiangchun; Norton, Gareth J; Burló, Francisco; Deacon, Claire; Meharg, Andrew A

    2012-09-01

    Spanish gluten-free rice, cereals with gluten, and pureed baby foods were analysed for essential macro-elements (Ca and Na), essential trace elements (Fe, Cu, Zn, Mn, Se, Cr, Co and Ni) and non-essential trace elements (As, Pb, Cd and Hg) using ICP-MS and AAS. Baby cereals were an excellent source of most of the essential elements (Ca, Fe, Cu, Mn and Zn). Sodium content was high in pureed foods to improve their flavour; fish products were also rich in Se. USA pure baby rice samples had the highest contents of all studied essential elements, showing a different nutrient pattern compared to those of other countries. Mineral fortification was not always properly stated in the labelling of infant foods. Complementary infant foods may also contain significant amounts of contaminants. The contents of Hg and Cd were low enough to guarantee the safety of these infant foods. However, it will be necessary to identify the source and reduce the levels of Pb, Cr and As in Spanish foods. Pure baby rice samples contained too much: Pb in Spain; As in UK; As, Cr and Ni in USA; and Cr and Cd in China.

  20. Source identification of particulate matter in a semi-urban area of Malaysia using multivariate techniques.

    PubMed

    Wahid, N B A; Latif, M T; Suan, L S; Dominick, D; Sahani, M; Jaafar, S A; Mohd Tahir, N

    2014-03-01

    This study aims to determine the composition and sources of particulate matter with an aerodynamic diameter of 10 μm or less (PM10) in a semi-urban area. PM10 samples were collected using a high volume sampler. Heavy metals (Fe, Zn, Pb, Mn, Cu, Cd and Ni) and cations (Na(+), K(+), Ca(2+) and Mg(2+)) were detected using inductively coupled plasma mass spectrometry, while anions (SO4 (2-), NO3 (-), Cl(-) and F(-)) were analysed using Ion Chromatography. Principle component analysis and multiple linear regressions were used to identify the source apportionment of PM10. Results showed the average concentration of PM10 was 29.5 ± 5.1 μg/m(3). The heavy metals found were dominated by Fe, followed by Zn, Pb, Cu, Mn, Cd and Ni. Na(+) was the dominant cation, followed by Ca(2+), K(+) and Mg(2+), whereas SO4 (2-) was the dominant anion, followed by NO3 (-), Cl(-) and F(-). The main sources of PM10 were the Earth's crust/road dust, followed by vehicle emissions, industrial emissions/road activity, and construction/biomass burning.

Top