NASA Astrophysics Data System (ADS)
Maji, Bikas C.; Krishnan, Madangopal; Sujata, M.; Gouthama; Ray, Ranjit K.
2013-01-01
The effect of Co addition has been studied in Fe-30Mn-6Si- xCo ( x = 0 to 9 wt pct) shape memory alloys in terms of their microstructure, martensitic transformation and shape recovery. Microstructural investigations reveal that in Fe-Mn-Si-Co alloys, the microstructure remains single-phase austenite (γ) up to 5 pct Co and beyond that becomes two-phase comprising γ and off-stoichiometric (Fe,Co)5Mn3Si2 intermetallic π-phases. The forward γ-ɛ martensite transformation start temperature ( M S) decreases with the addition of Co up to 5 pct, and alloys containing more than 5 pct Co, show slightly higher M S possibly on account of two-phase microstructure. Unlike M S, the ɛ-γ reverse transformation start temperature ( A S) has been found to remain almost unaltered by Co addition. In general, addition of Co to Fe-Mn-Si alloys deteriorates shape recovery due to decreasing resistance to plastic yielding concomitant with the formation of stress induced ɛ martensite. However, there is an improvement in shape recovery beyond 5 pct Co addition, possibly due to the strengthening effect arising from the presence of (Fe,Co)5Mn3Si2 precipitates within the two-phase microstructure and due to higher amount of stress induced ɛ martensite.
NASA Astrophysics Data System (ADS)
Ju, Heng; Lin, Chengxin; Liu, Zhijie; Zhang, Jiaqi
2018-08-01
To reduce the residual stresses and improve the mechanical properties of laser weldments, produced with the restrained mixing uniform design method, a Fe-Mn-Si shape memory alloy (SMA) welding seam was formed inside the 304 stainless steel by laser welding with powder filling. The mass fraction, shape memory effect, and phase composition of the welding seam was measured by SEM-EDS (photometric analyser), bending recovery method, and XRD, respectively. An optical microscope was used to observe the microstructure of the Fe-Mn-Si SMA welding seam by solid solution and pre-deformation treatment. Meanwhile, the mechanical properties (residual stress distribution, tensile strength, microhardness and fatigue strength) of the laser welded specimen with an Fe-Mn-Si SMA welding seam (experimental material) and a 304 stainless steel welding seam (contrast material) were measured by a tensile testing machine hole drilling method and full cycle bending fatigue test. The results show that Fe15Mn5Si12Cr6Ni SMA welding seam was formed in situ with shape memory effect and stress-induced γ → ε martensite phase transformation characteristic. The residual stress of the experimental material is lower than that of the contrast material. The former has larger tensile strength, longer elongation and higher microhardness than the latter has. The experimental material and contrast material possess 249 and 136 bending fatigue cycles at the strain of 6%, respectively. The mechanisms by which mechanical properties of the experimental material are strengthened includes (1) release of the residual stress inside the Fe-Mn-Si SMA welding seam due to the stress-induced γ → ε martensite phase transformation and (2) energy absorption and plastic slip restraint due to the deformations in martensite and reverse phase transformation.
Research on residual stress inside Fe-Mn-Si shape memory alloy coating by laser cladding processing
NASA Astrophysics Data System (ADS)
Ju, Heng; Lin, Cheng-xin; Zhang, Jia-qi; Liu, Zhi-jie
2016-09-01
The stainless Fe-Mn-Si shape memory alloy (SMA) coating was prepared on the surface of AISI 304 stainless steel. The principal residual stress measured by the mechanical hole-drilling method indicates that the Fe-Mn-Si SMA cladding specimen possesses a lower residual stress compared with the 304 stainless steel cladding specimen. The mean stress values of the former and the latter on 10-mm-thick substrate are 4.751 MPa and 7.399 MPa, respectively. What's more, their deformation values on 2-mm-thick substrate are about 0° and 15°, respectively. Meanwhile, the variation trend and the value of the residual stress simulated by the ANSYS finite element software consist with experimental results. The X-ray diffraction (XRD) pattern shows ɛ-martensite exists in Fe-Mn-Si SMA coating, which verifies the mechanism of low residual stress. That's the γ→ɛ martensite phase transformation, which relaxes the residual stress of the specimen and reduces its deformation in the laser cladding processing.
NASA Astrophysics Data System (ADS)
Evard, Margarita E.; Volkov, Aleksandr E.; Belyaev, Fedor S.; Ignatova, Anna D.
2018-05-01
The choice of Gibbs' potential for microstructural modeling of FCC ↔ HCP martensitic transformation in FeMn-based shape memory alloys is discussed. Threefold symmetry of the HCP phase is taken into account on specifying internal variables characterizing volume fractions of martensite variants. Constraints imposed on model constants by thermodynamic equilibrium conditions are formulated.
Low-cost high-quality Fe-based shape memory alloys suitable for pipe joints
NASA Astrophysics Data System (ADS)
Kajiwara, Setsuo; Baruj, Albert L.; Kikuchi, Takehiko; Shinya, Norio
2003-08-01
By addition of small amount of Nb and C to the conventional Fe-Mn-Si based shape memory alloys, shape memory properties are greatly improved in such an extent that the costly 'training' heat treatment is no more necessary. The key to this remarkable improvement of shape memory effect is to produce small NbC precipitates of about several nm in size in austenite. In order to generate such very small NbC particles, the sample is firstly rolled at 870 K and then aged at 1070 K. An example of Fe-28Mn-6Si-5Cr-0.53Nb-0.06C (mass %) alloy is shown; 95% shape recovery for initial strain of 4% is obtained and the shape recovery stress of about 300 MPa is attained for the sample pre-rolled 14%, which is well above the criterion for industry application of pipe jointing. A pipe jointing with this material is demonstrated.
Shape-Memory Effect and Pseudoelasticity in Fe-Mn-Based Alloys
NASA Astrophysics Data System (ADS)
La Roca, P.; Baruj, A.; Sade, M.
2017-03-01
Several Fe-based alloys are being considered as potential candidates for applications which require shape-memory behavior or superelastic properties. The possibility of using fabrication methods which are well known in the steel industry is very attractive and encourages a large amount of research in the field. In the present article, Fe-Mn-based alloys are mainly addressed. On the one hand, attention is paid to the shape-memory effect where the alloys contain (a) a maximum amount of Mn up to around 30 wt%, (b) several possible substitutional elements like Si, Cr, Ni, Co, and Nb and (c) some possible interstitial elements like C. On the other hand, superelastic alloys are analyzed, mainly the Fe-Mn-Al-Ni system discovered a few years ago. The most noticeable properties resulting from the martensitic transformations which are responsible for the mentioned properties, i.e., the fcc-hcp in the first case and the bcc-fcc in the latter are discussed. Selected potential applications are also analyzed.
Effect of Pre-straining on the Shape Recovery of Fe-Mn-Si-Cr-Ni Shape Memory Alloys
NASA Astrophysics Data System (ADS)
Maji, Bikas C.; Krishnan, Madangopal; Verma, Amit; Basu, R.; Samajdar, I.; Ray, Ranjit K.
2015-02-01
The effect of pre-straining on the shape recovery behavior of Fe-14Mn-6Si-9Cr-5Ni (wt pct) shape memory alloy (SMA) has been studied. The shape recovery associated with the reverse ɛ martensitic transformation, i.e., ɛ → γ, was characterized by dilatometry using specimens which were pre-strained to different extent (0 to 14 pct). Dilatometric studies revealed that in Fe-Mn-Si-Cr-Ni SMA, the shape recovery takes place in two stages: (i) in the first stage, the unpinned fraction of stress-induced ɛ martensite reverts back to parent phase γ in the temperature regime of 353 K to 653 K (80 °C to 380 °C) and (ii) in the second stage the remaining "pinned" ɛ martensite is unpinned by the decomposition of deformation-induced α' martensite in the temperature range of 743 K to 893 K (470 °C to 620 °C). The amount of recovery in the first stage decreases with pre-strain, whereas it increases in the second stage. The ɛ → γ transformation finish temperature, A f, increases with increase in pre-strain amount, though the reverse transformation start temperature, A S, remains unaffected. Microstructural characterization revealed that the amount of deformation-induced α' martensite depends on the mode of straining and the crystallographic texture of the starting material. The reversion of α' martensite is seen to occur by the precipitation of Fe5Ni3Si2-type intermetallic π-phase within these plates.
Effect of nitrogen on iron-manganese-based shape memory alloys
NASA Astrophysics Data System (ADS)
Ariapour, Azita
Shape memory effect is due to a reversible martensitic transformation. The major drawback in case of Fe-Mn-based shape memory alloys is their inferior shape memory effect compared to Ni-Ti and Cu-based shape memory alloys and their low strength and corrosion resistance compared to steel alloys. It is known that by increasing the alloy strength the shape memory effect can be improved. Nitrogen in solid solution can increase the strength of steels to a greater extent than other major alloying elements. However, its effect on shape memory effect of Fe-Mn-based alloys is ambiguous. In this work first we investigated the effect of nitrogen addition in solid solution on both shape memory effect (SME) and strength of a Fe-Mn-Cr-Ni-Si shape memory alloy (SMA). It was found that interstitial nitrogen suppressed the shape memory effect in these alloys. As an example addition of 0.24 wt % nitrogen in solid solution to the alloy system suppressed the SME by ˜80% and increased the strength by 20%. A reduction of martensitic phase formation was found to be the dominant factor in suppression of the SME. This was related, experimentally and theoretically to stacking fault energy of the alloy as well as the driving force and friction force during the transformation. The second approach was doping the alloy with both 0.36 wt% of nitrogen and 0.36 wt% of niobium. Niobium has great affinity for nitrogen and thus NbN dispersed particles can be produced in the alloy following hot rolling. Then particles prevent growth of the alloy and increase the strength of the alloy due to reduced grain size, and precipitation hardening. The improvement of SME in this alloy compared to the interstitial containing alloys was due to the large removal of the nitrogen from solid solution. In case of all the alloys studied in this work, the presence of nitrogen in solid solution improved the corrosion resistance of the alloy. This suggests that nitrogen can replace nickel in the alloy. One of the proposed applications for high strength Fe-Mn-based alloys is as tendon rods in prestressed concrete. The advantage of M alloys in this application is the possibility of producing curved structural prestressed concrete.
Magnetic and conventional shape memory behavior of Mn-Ni-Sn and Mn-Ni-Sn(Fe) alloys
NASA Astrophysics Data System (ADS)
Turabi, A. S.; Lázpita, P.; Sasmaz, M.; Karaca, H. E.; Chernenko, V. A.
2016-05-01
Magnetic and conventional shape memory properties of Mn49Ni42Sn9(at.%) and Mn49Ni39Sn9Fe3(at.%) polycrystalline alloys exhibiting martensitic transformation from ferromagnetic austenite into weakly magnetic martensite are characterized under compressive stress and magnetic field. Magnetization difference between transforming phases drastically increases, while transformation temperature decreases with the addition of Fe. Both Mn49Ni42Sn9 and Mn49Ni39Sn9Fe3 alloys show remarkable superelastic and shape memory properties with recoverable strain of 4% and 3.5% under compression at room temperature, respectively. These characteristics can be counted as extraordinary among the polycrystalline NiMn-based magnetic shape memory alloys. Critical stress for phase transformation was increased by 34 MPa in Mn49Ni39Sn9Fe3 and 21 MPa in Mn49Ni42Sn9 at 9 T, which can be qualitatively understood in terms of thermodynamic Clausius-Clapeyron relationships and in the framework of the suggested physical concept of a volume magnetostress.
NASA Astrophysics Data System (ADS)
Hosseini, E.; Ghafoori, E.; Leinenbach, C.; Motavalli, M.; Holdsworth, S. R.
2018-02-01
The stress recovery and cyclic deformation behaviour of Fe-17Mn-5Si-10Cr-4Ni-1(V,C) shape memory alloy (Fe-SMA) strips, which are often used for pre-stressed strengthening of structural members, were studied. The evolution of recovery stress under different constraint conditions was studied. The results showed that the magnitude of the tensile stress in the Fe-SMA member during thermal activation can have a signification effect on the final recovery stress. The higher the tensile load in the Fe-SMA (e.g., caused by dead load or thermal expansion of parent structure during heating phase), the lower the final recovery stress. Furthermore, this study investigated the cyclic behaviour of the activated SMA followed by a second thermal activation. Although the magnitude of the recovery stress decreased during the cyclic loading, the second thermal activation could retrieve a significant part of the relaxed recovery stress. This observation suggests that the relaxation of recovery stress during cyclic loading is due to a reversible phase transformation-induced deformation (i.e., forward austenite-to-martensite transformation) rather than an irreversible dislocation-induced plasticity. Retrieval of the relaxed recovery stress by the reactivation process has important practical implications as the prestressing loss in pre-stressed civil structures can be simply recovered by reheating of the Fe-SMA elements.
NASA Astrophysics Data System (ADS)
Paleu, V.; Gurău, G.; Comăneci, R. I.; Sampath, V.; Gurău, C.; Bujoreanu, L. G.
2018-07-01
A new application of Fe-Mn-Si based shape memory alloys (SMAs) was developed under the form of truncated cone-shaped module, for self-adaptive axial preload control in angular contact bearings. The modules were processed by high-speed high-pressure torsion (HS-HPT), from circular crowns cut from axially drilled ingots of Fe-28Mn-6Si-9Cr (mass%) SMA. The specimens were mechanically tested in the hot rolled state, prior to HS-HPT processing, demonstrating free-recovery shape memory effect (SME) and high values for ultimate tensile stress and strain as well as low cycle fatigue life. The HS-HPT modules were subjected to static loading–unloading compression, without/with lubrication at specimen-tool interface, both individually and in different coupling modes. Dry compression cycles revealed reproducible stress plateaus both during loading and unloading stages, being associated with hardness gradient, along cone generator, caused by HS-HPT processing. Constrained recovery tests, performed using compressed modules, emphasized the continuous generation of stress during heating, by one way SME, at a rate of ∼9.3 kPa/%. Dynamic compression tests demonstrated the capability of modules to develop closed stress–strain loops after 50 000 cycles, without visible signs of fatigue. HS-HPT caused the fragmentation of crystalline grains, while compression cycles enabled the formation of ε hexagonal close-packed stress-induced martensite (ε), which is characterized by a high density of stacking faults. Using an experimental setup, specifically designed and manufactured for this purpose, both feasibility and functionality tests were performed using HS-HPT modules. The feasibility tests proved the existence of a general tendency of both axial force and friction torque to increase in time, favoured by the increase of initial preloading force and the augmentation of rotation speed. Functionality tests, performed on two pairs of HS-HPT modules fastened in base-to-base coupling mode, demonstrated the capacity of modules to accommodate high preloads while maintaining both axial force and friction torque at constant values in time. These preliminary results suggest that, for the time being, the modules can operate only as single use applications, more effective during the running-in period. This bevahior recommends HS-HPT modules as a new application of Fe-Mn-Si SMAs, with the potential to be used for the development of new temperature-responsive compression displacement systems.
NASA Astrophysics Data System (ADS)
Singh, Kirandeep; Kaur, Davinder
2017-02-01
The manipulation of magnetic states and materials' spin degree-of-freedom via a control of an electric (E-) field has been recently pursued to develop magnetoelectric (ME) coupling-driven electronic data storage devices with high read/write endurance, fast dynamic response, and low energy dissipation. One major hurdle for this approach is to develop reliable materials which should be compatible with prevailing silicon (Si)-based complementary metal-oxide-semiconductor (CMOS) technology, simultaneously allowing small voltage for the tuning of magnetization switching. In this regard, multiferroic heterostructures where ferromagnetic (FM) and ferroelectric (FE) layers are alternatively grown on conventional Si substrates are promising as the piezoelectric control of magnetization switching is anticipated to be possible by an E-field. In this work, we study the ferromagnetic shape memory alloys based PbZr0.52Ti0.48O3/Ni50Mn35In15 (PZT/Ni-Mn-In) multiferroic heterostructures, and investigate their potential for CMOS compatible non-volatile magnetic data storage applications. We demonstrate the voltage-impulse controlled nonvolatile, reversible, and bistable magnetization switching at room temperature in Si-integrated PZT/Ni-Mn-In thin film multiferroic heterostructures. We also thoroughly unveil the various intriguing features in these materials, such as E-field tuned ME coupling and magnetocaloric effect, shape memory induced ferroelectric modulation, improved fatigue endurance as well as Refrigeration Capacity (RC). This comprehensive study suggests that these novel materials have a great potential for the development of unconventional nanoscale memory and refrigeration devices with self-cooling effect and enhanced refrigeration efficiency, thus providing a new venue for their applications.
Development of an engineering model for ferromagnetic shape memory alloys
NASA Astrophysics Data System (ADS)
Tani, Yoshiaki; Todaka, Takashi; Enokizono, Masato
This paper presents a relationship among stress, temperature and magnetic properties of a ferromagnetic shape memory alloy. In order to derive an engineering model of ferromagnetic shape memory alloys, we have developed a measuring system of the relationship among stress, temperature and magnetic properties. The samples used in this measurement are Fe68-Ni10-Cr9-Mn7-Si6 wt% ferromagnetic shape memory alloy. They are thin ribbons made by rapid cooling in air. In the measurement, the ribbon sample is inserted into a sample holder winding consisting of the B-coil and compensation coils, and magnetized in an open solenoid coil. The ribbon is stressed with attachment weights and heated with a heating wire. The specific susceptibility was increased by applying tension, and slightly increased by heating below the Curie temperature.
NASA Astrophysics Data System (ADS)
Qian, Hui-Dong; Si, Ping-Zhan; Choi, Chul-Jin; Park, Jihoon; Cho, Kyung Mox
2018-05-01
The effects of elemental doping of Si and Fe on the ɛ→τ phase transformation and the magnetic properties of MnAl were studied. The magnetic powders of Si- and Fe-doped MnAl were prepared by using induction melting followed by water-quenching, annealing, and salt-assisted ball-milling. The Fe-doped MnAl powders are mainly composed of the L10-structured τ-phase, while the Si-doped MnAl are composed of τ-phase and a small fraction of γ2- and β-phases. A unique thin leaves-like morphology with thickness of several tens of nanometers and diameter size up to 500 nm were observed in the Si-doped MnAl powders. The Fe-doped MnAl powders show irregular shape with much larger dimensions in the range from several to 10 μm. The morphology difference of the samples was ascribed to the variation of the mechanical properties affected by different doping elements. The phase transformation temperatures of the ɛ-phase of the samples were measured. The doping of Fe decreases the onset temperature of the massive phase transformation in MnAl, while the Si-doping increases the massive phase transformation temperature. Both Fe and Si increase the Curie temperature of MnAl. A substantially enhanced coercivity up to 0.45 T and 0.42 T were observed in the ball-milled MnAl powders doped with Si and Fe, respectively.
Secondary Al-Si-Mg High-pressure Die Casting Alloys with Enhanced Ductility
NASA Astrophysics Data System (ADS)
Bösch, Dominik; Pogatscher, Stefan; Hummel, Marc; Fragner, Werner; Uggowitzer, Peter J.; Göken, Mathias; Höppel, Heinz Werner
2015-03-01
Al-Si-Mg-based secondary cast alloys are attractive candidates for thin-walled high-pressure die castings for applications in the transport industry. The present study investigates the effect of manganese additions at high cooling rates on microstructure, mechanical properties, and on the dominating fracture mechanisms of alloy AlSi10Mg with an elevated iron concentration. Systematic variations of the Mn content from 0.20 to 0.85 wt pct at a constant Fe content of 0.55 wt pct illustrate the key changes in type, phase fraction, and shape of the Fe-containing intermetallic phases, and the corresponding influence on the alloy's ductility. For high-pressure die casting (HPDC), an optimal range of the Mn content between 0.40 and 0.60 wt pct, equivalent to a Mn/Fe ratio of approximately 1, has been identified. At these Mn and Fe contents, the high cooling rates obtained in HPDC result in the formation of fine and homogeneously distributed α-Al15(Fe,Mn)3Si2 phase, and crack initiation is transferred from AlFeSi intermetallics to eutectic silicon. The study interprets the microstructure-property relationship in the light of thermodynamic calculations which reveal a significant increase in undercooling of the α-Al15(Fe,Mn)3Si2 phase with increased Mn content. It concludes that the interdependence of the well-defined Mn/Fe ratio and the high cooling rate in HPDC can generate superior ductility in secondary AlSi10Mg cast alloys.
Effects of Mn addition on microstructure and hardness of Al-12.6Si alloy
NASA Astrophysics Data System (ADS)
Biswas, Prosanta; Patra, Surajit; Mondal, Manas Kumar
2018-03-01
In this work, eutectic Al-12.6Si alloy with and without manganese (Mn) have been developed through gravity casting route. The effect of Mn concentration (0.0 wt.%, 1 wt%, 2 wt% and 3 wt%) on microstructural morphology and hardness property of the alloy has been investigated. The eutectic Al-12.6 Si alloy exhibits the presence of combine plate, needle and rod-like eutectic silicon phase with very sharp corners and coarser primary silicon particles within the α-Al phase. In addition of 1wt.% of Mn in the eutectic Al-12.6Si alloy, sharp corners of the primary Si and needle-like eutectic Si are became blunt and particles size is reduced. Further, increase in Mn concentration (2.0 wt.%) in the Al-12.6Si alloy, irregular plate shape Al6(Mn,Fe) intermetallics are formed inside the α-Al phase, but the primary and eutectic phase morphology is similar to the eutectic Al-12.6Si alloy. The volume fraction of Al6(Mn,Fe) increases and Al6(Mn,Fe) particles appear as like chain structure in the alloy with 3 wt.% Mn. An increase in Mn concentration in the Al-12.6Si alloys result in the increase in bulk hardness of the alloy as an effects of microstructure modification as well as the presence of harder Al6(Mn,Fe) phase in the developed alloy.
Reverse Shape Memory Effect Related to α → γ Transformation in a Fe-Mn-Al-Ni Shape Memory Alloy
NASA Astrophysics Data System (ADS)
Peng, Huabei; Huang, Pan; Zhou, Tiannan; Wang, Shanling; Wen, Yuhua
2017-05-01
In this study, we investigated the shape memory behavior and phase transformations of solution-treated Fe43.61Mn34.74Al13.38Ni8.27 alloy between room temperature and 1173 K (900 °C). This alloy exhibits the reverse shape memory effect resulting from the phase transformation of α (bcc) → γ (fcc) between 673 K and 1073 K (400 °C and 800 °C) in addition to the shape memory effect resulting from the martensitic reverse transformation of γ' (fcc) → α (bcc) below 673 K (400 °C). There is a high density of hairpin-shaped dislocations in the α phase undergoing the martensitic reverse transformation of γ' → α. The lath γ phase, which preferentially nucleates and grows in the reversed α phase, has the same crystal orientation with the reverse-transformed γ' martensite. However, the vermiculate γ phase, which is precipitated in the α phase between lath γ phase, has different crystal orientations. The lath γ phase is beneficial to attaining better reverse shape memory effect than the vermiculate γ phase.
Chen, Yan; Bei, Hongbin; Dela Cruz, Clarina R; ...
2016-05-07
Annealing plays an important role in modifying structures and properties of ferromagnetic shape memory alloys (FSMAs). The annealing effect on the structures and magnetic properties of off-stoichiometric Fe 45Mn 26Ga 29 FSMA has been investigated at different elevated temperatures. Rietveld refinements of neutron diffraction patterns display that the formation of the γ phase in Fe 45Mn 26Ga 29 annealed at 1073 K increases the martensitic transformation temperature and reduces the thermal hysteresis in comparison to the homogenized sample. The phase segregation of a Fe-rich cubic phase and a Ga-rich cubic phase occurs at the annealing temperature of 773 K. Themore » atomic occupancies of the alloys are determined thanks to the neutron's capability of differentiating transition metals. The annealing effects at different temperatures introduce a different magnetic characteristic that is associated with distinctive structural changes in the crystal.« less
NASA Astrophysics Data System (ADS)
Drevet, Richard; Zhukova, Yulia; Malikova, Polina; Dubinskiy, Sergey; Korotitskiy, Andrey; Pustov, Yury; Prokoshkin, Sergey
2018-03-01
The Fe-Mn-Si alloys are promising materials for biodegradable metallic implants for temporary healing process in the human body. In this study, three different compositions are considered (Fe23Mn5Si, Fe26Mn5Si, and Fe30Mn5Si, all in wt pct). The phase composition analysis by XRD reveals ɛ-martensite, α-martensite, and γ-austenite in various proportions depending on the manganese amount. The DSC study shows that the starting temperature of the martensitic transformation ( M s) of the alloys decreases when the manganese content increases (416 K, 401 K, and 323 K (143 °C, 128 °C, and 50 °C) for the Fe23Mn5Si, Fe26Mn5Si, and Fe30Mn5Si alloys, respectively). Moreover, mechanical compression tests indicate that these alloys have a much lower Young's modulus ( E) than pure iron (220 GPa), i.e., 145, 133, and 118 GPa for the Fe23Mn5Si, Fe26Mn5Si, and Fe30Mn5Si alloys, respectively. The corrosion behavior of the alloys is studied in Hank's solution at 310 K (37 °C) using electrochemical experiments and weight loss measurements. The corrosion kinetics of the Fe-Mn-Si increases with the manganese content (0.48, 0.59, and 0.80 mm/year for the Fe23Mn5Si, Fe26Mn5Si, and Fe30Mn5Si alloys, respectively). The alloy with the highest manganese content shows the most promising properties for biomedical applications as a biodegradable and biomechanically compatible implant material.
NASA Astrophysics Data System (ADS)
Bai, J.; Raulot, J. M.; Zhang, Y. D.; Esling, C.; Zhao, X.; Zuo, L.
2011-01-01
The crystallographic, magnetic and electronic structures of the ferromagnetic shape memory alloys Ni2XGa (X=Mn, Fe, and Co), are systematically investigated by means of the first-principles calculations within the framework of density functional theory using the VIENNA AB INITIO SOFTWARE PACKAGE. The lattice parameters of both austenitic and martensitic phases in Ni2MnGa have been calculated. The formation energies of the cubic phase of Ni2XGa are estimated, and show a destabilization tendency if Mn atom is substituted by Fe or Co. From Ni2MnGa to Ni2CoGa, the down spin total density of states (DOS) at Fermi level is gradually increasing, whereas that of the up spin part remains almost unchanged. This is the main origin of the difference of the magnetic moment in these alloys. The partial DOS is dominated by the Ni and Mn 3d states in the bonding region below EF. There are two bond types existing in Ni2XGa: one is between neighboring Ni atoms in Ni2MnGa; the other is between Ni and X atoms in Ni2FeGa and Ni2CoGa alloys.
Magnetic and mechanical properties of Ni-Mn-Ga/Fe-Ga ferromagnetic shape memory composite
NASA Astrophysics Data System (ADS)
Tan, Chang-Long; Zhang, Kun; Tian, Xiao-Hua; Cai, Wei
2015-05-01
A ferromagnetic shape memory composite of Ni-Mn-Ga and Fe-Ga was fabricated by using spark plasma sintering method. The magnetic and mechanical properties of the composite were investigated. Compared to the Ni-Mn-Ga alloy, the threshold field for magnetic-field-induced strain in the composite is clearly reduced owing to the assistance of internal stress generated from Fe-Ga. Meanwhile, the ductility has been significantly improved in the composite. A fracture strain of 26% and a compressive strength of 1600 MPa were achieved. Projects supported by the National Natural Science Foundation of China (Grant Nos. 51271065 and 51301054), the Program for New Century Excellent Talents in Heilongjiang Provincial Education Department, China (Grant No. 1253-NCET-009), the Youth Academic Backbone in Heilongjiang Provincial Education Department, China (Grant No. 1251G022), the Projects of Heilongjiang, China, and China Postdoctoral Science Foundation.
NiMnGa/Si Shape Memory Bimorph Nanoactuation
NASA Astrophysics Data System (ADS)
Lambrecht, Franziska; Lay, Christian; Aseguinolaza, Iván R.; Chernenko, Volodymyr; Kohl, Manfred
2016-12-01
The size dependences of thermal bimorph and shape memory effect of nanoscale shape memory alloy (SMA)/Si bimorph actuators are investigated in situ in a scanning electron microscope and by finite element simulations. By combining silicon nanomachining and magnetron sputtering, freestanding NiMnGa/Si bimorph cantilever structures with film/substrate thickness of 200/250 nm and decreasing lateral dimensions are fabricated. Electrical resistance and mechanical beam bending tests upon direct Joule heating demonstrate martensitic phase transformation and reversible thermal bimorph effect, respectively. Corresponding characteristics are strongly affected by the large temperature gradient in the order of 50 K/µm forming along the nano bimorph cantilever upon electro-thermal actuation, which, in addition, depends on the size-dependent heat conductivity in the Si nano layer. Furthermore, the martensitic transformation temperatures show a size-dependent decrease by about 40 K for decreasing lateral dimensions down to 200 nm. The effects of heating temperature and stress distribution on the nanoactuation performance are analyzed by finite element simulations revealing thickness ratio of SMA/Si of 90/250 nm to achieve an optimum SME. Differential thermal expansion and thermo-elastic effects are discriminated by comparative measurements and simulations on Ni/Si bimorph reference actuators.
UV Light-Driven Photodegradation of Methylene Blue by Using Mn0.5Zn0.5Fe2O4/SiO2 Nanocomposites
NASA Astrophysics Data System (ADS)
Indrayana, I. P. T.; Julian, T.; Suharyadi, E.
2018-04-01
The photodegradation activity of nanocomposites for 20 ppm methylene blue solution has been investigated in this work. Nanocomposites Mn0.5Zn0.5Fe2O4/SiO2 have been synthesized using coprecipitation method. The X-ray diffraction (XRD) pattern confirmed the formation of three phases in sample Mn0.5Zn0.5Fe2O4/SiO2 i.e., Mn0.5Zn0.5Fe2O4, Zn(OH)2, and SiO2. The appearance of SiO2 phase showed that the encapsulation process has been carried out. The calculated particles size of Mn0.5Zn0.5Fe2O4/SiO2 is greater than Mn0.5Zn0.5Fe2O4. Bonding analysis via vibrational spectra for Mn0.5Zn0.5Fe2O4/SiO2 confirmed the formation of bonds Me-O-Si stretching (2854.65 cm-1) and Si-O-Si asymmetric stretching (1026.13 cm-1). The optical gap energy of Mn0.5Zn0.5Fe2O4/SiO2 was smaller (2.70 eV) than Mn0.5Zn0.5Fe2O4 (3.04 eV) due to smaller lattice dislocation and microstrain that affect their electronic structure. The Mn0.5Zn0.5Fe2O4/SiO2 showed high photodegradation ability due to smaller optical gap energy and the appearance of SiO2 ligand that can easily attract dye molecules. The Mn0.5Zn0.5Fe2O4/SiO2 also showed high degradation activity even without UV light radiation. The result showed that photodegradation reaction doesn’t follow pseudo-first order kinetics.
McGuire, Michael A.; Parker, David S.
2015-10-22
Crystallographic and magnetic properties of Fe 5PB 2, Fe 4CoPB 2, Fe 4MnPB 2, Fe 5SiB 2, Fe 4CoSiB 2, and Fe 4MnSiB 2 are reported. All adopt the tetragonal Cr 5B 3 structure-type and are ferromagnetic at room temperature with easy axis of magnetization along the c-axis. The spin reorientation in Fe 5SiB 2 is observed as an anomaly in the magnetization near 170 K, and is suppressed by substitution of Co or Mn for Fe. The silicides are found to generally have larger magnetic moments than the phosphides, but the data suggests smaller magnetic anisotropy in the silicides.more » Cobalt substitution reduces the Curie temperatures by more than 100 K and ordered magnetic moments by 16-20%, while manganese substitution has a much smaller effect. This suggests Mn moments align ferromagnetically with the Fe and that Co does not have an ordered moment in these structures. Anisotropic thermal expansion is observed in Fe 5PB 2 and Fe 5SiB 2, with negative thermal expansion seen along the c-axis of Fe 5SiB 2. First principles calculations of the magnetic properties of Fe 5SiB 2 and Fe 4MnSiB 2 are reported. The results, including the magnetic moment and anisotropy, and are in good agreement with experiment.« less
Reduction Behavior of Assmang and Comilog ore in the SiMn Process
NASA Astrophysics Data System (ADS)
Kim, Pyunghwa Peace; Holtan, Joakim; Tangstad, Merete
The reduction behavior of raw materials from Assmang and Comilog based charges were experimentally investigated with CO gas up to 1600 °C. Quartz, HC FeMn slag or limestone were added to Assmang or Comilog according to the SiMn production charge, and mass loss results were obtained by using a TGA furnace. The results showed that particle size, type of manganese ore and mixture have close relationship to the reduction behavior of raw materials during MnO and SiO2 reduction. The influence of particle size to mass loss was apparent when Assmang or Comilog was mixed with only coke (FeMn) while it became insignificant when quartz and HC FeMn slag (SiMn) were added. This implied that quartz and HC FeMn slag had favored the incipient slag formation regardless of particle size. This explained the similar mass loss tendencies of SiMn charge samples between 1200-1500 °C, contrary to FeMn charge samples where different particle sizes showed significant difference in mass loss. Also, while FeMn charge samples showed progressive mass loss, SiMn charge samples showed diminutive mass loss until 1500 °C. However, rapid mass losses were observed with SiMn charge samples in this study above 1500 °C, and they have occurred at different temperatures. This implied rapid reduction of MnO and SiO2 and the type of ore and addition of HC FeMn slag have significant influence determining these temperatures. The temperatures observed for the rapid mass loss were approximately 1503 °C (Quartz and HC FeMn slag addition in Assmang), 1543 °C (Quartz addition in Assmang) and 1580-1587 °C (Quartz and limestone addition in Comilog), respectively. These temperatures also showed indications of possible SiMn production at process temperatures lower than 1550 °C.
NASA Astrophysics Data System (ADS)
Kang, Youn-Bae; Jung, In-Ho
2017-06-01
A critical evaluation and thermodynamic modeling for thermodynamic properties of all oxide phases and phase diagrams in the Fe-Mn-Si-O system (MnO-Mn2O3-SiO2 and FeO-Fe2O3-MnO-Mn2O3-SiO2 systems) are presented. Optimized Gibbs energy parameters for the thermodynamic models of the oxide phases were obtained which reproduce all available and reliable experimental data within error limits from 298 K (25°C) to above the liquidus temperatures at all compositions covering from known oxide phases, and oxygen partial pressure from metal saturation to 0.21 bar. The optimized thermodynamic properties and phase diagrams are believed to be the best estimates presently available. Slag (molten oxide) was modeled using the modified quasichemical model in the pair approximation. Olivine (Fe2SiO4-Mn2SiO4) was modeled using two-sublattice model in the framework of the compound energy formalism (CEF), while rhodonite (MnSiO3-FeSiO3) and braunite (Mn7SiO_{12} with excess Mn2O3) were modeled as simple Henrian solutions. It is shown that the already developed models and databases of two spinel phases (cubic- and tetragonal-(Fe, Mn)3O4) using CEF [Kang and Jung, J. Phys. Chem. Solids (2016), vol. 98, pp. 237-246] can successfully be integrated into a larger thermodynamic database to be used in practically important higher order system such as silicate. The database of the model parameters can be used along with a software for Gibbs energy minimization in order to calculate any type of phase diagram section and thermodynamic properties.
Xue, Xu; Zhou, Ziyao; Peng, Bin; Zhu, Mingmin; Zhang, Yijun; Ren, Wei; Ren, Tao; Yang, Xi; Nan, Tianxiang; Sun, Nian X.; Liu, Ming
2015-01-01
E-field control of interfacial exchange coupling and deterministic switching of magnetization have been demonstrated in two sets of ferromagnetic(FM)/antiferromagnetic(AFM)/ferroelectric(FE) multiferroic heterostructures, including NiFe/NiCoO/glass/PZN-PT (011) and NiFe/FeMn/glass/PZN-PT (011). We designed this experiment to achieve exchange bias tuning along the magnetic easy axis, which is critical for realizing reversible 180° magnetization deterministic switching at zero or small magnetic bias. Strong exchange coupling were established across AFM-FM interfaces, which plays an important role in voltage control of magnetization switching. Through the competition between the E-field induced uniaxial anisotropy in ferromagnetic layer and unidirectional anisotropy in antiferromagnetic layer, the exchange bias was significantly shifted by up to |∆Hex|/Hex = 8% in NiFe/FeMn/glass/PZN-PT (011) and 13% in NiFe/NiCoO/glass/PZN-PT (011). In addition, the square shape of the hysteresis loop, as well as a strong shape tunability of |∆Hex|/Hc = 67.5 ~ 125% in NiFe/FeMn/glass/PZN-PT and 30 ~ 38% in NiFe/NiCoO/glass/PZN-PT were achieved, which lead to a near 180° magnetization switching. Electrical tuning of interfacial exchange coupling in FM/AFM/FE systems paves a new way for realizing magnetoelectric random access memories and other memory technologies. PMID:26576658
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue, Xu; Zhou, Ziyao; Peng, Bin
2015-11-18
E-field control of interfacial exchange coupling and deterministic switching of magnetization have been demonstrated in two sets of ferromagnetic(FM)/antiferromagnetic(AFM)/ferroelectric(FE) multiferroic heterostructures, including NiFe/NiCoO/glass/PZN-PT (011) and NiFe/FeMn/glass/PZN-PT (011). We designed this experiment to achieve exchange bias tuning along the magnetic easy axis, which is critical for realizing reversible 180° magnetization deterministic switching at zero or small magnetic bias. Strong exchange coupling were established across AFM-FM interfaces, which plays an important role in voltage control of magnetization switching. Through the competition between the E-field induced uniaxial anisotropy in ferromagnetic layer and unidirectional anisotropy in antiferromagnetic layer, the exchange bias was significantly shiftedmore » by up to |ΔH ex|/H ex=8% in NiFe/FeMn/glass/PZN-PT (011) and 13% in NiFe/NiCoO/glass/PZN-PT (011). In addition, the square shape of the hysteresis loop, as well as a strong shape tunability of |ΔH ex|/H c=67.5~125% in NiFe/FeMn/glass/PZN-PT and 30~38% in NiFe/NiCoO/glass/PZN-PT were achieved, which lead to a near 180° magnetization switching. Lastly, electrical tuning of interfacial exchange coupling in FM/AFM/FE systems paves a new way for realizing magnetoelectric random access memories and other memory technologies.« less
NASA Astrophysics Data System (ADS)
Xue, Xu; Zhou, Ziyao; Peng, Bin; Zhu, Mingmin; Zhang, Yijun; Ren, Wei; Ren, Tao; Yang, Xi; Nan, Tianxiang; Sun, Nian X.; Liu, Ming
2015-11-01
E-field control of interfacial exchange coupling and deterministic switching of magnetization have been demonstrated in two sets of ferromagnetic(FM)/antiferromagnetic(AFM)/ferroelectric(FE) multiferroic heterostructures, including NiFe/NiCoO/glass/PZN-PT (011) and NiFe/FeMn/glass/PZN-PT (011). We designed this experiment to achieve exchange bias tuning along the magnetic easy axis, which is critical for realizing reversible 180° magnetization deterministic switching at zero or small magnetic bias. Strong exchange coupling were established across AFM-FM interfaces, which plays an important role in voltage control of magnetization switching. Through the competition between the E-field induced uniaxial anisotropy in ferromagnetic layer and unidirectional anisotropy in antiferromagnetic layer, the exchange bias was significantly shifted by up to |ΔHex|/Hex = 8% in NiFe/FeMn/glass/PZN-PT (011) and 13% in NiFe/NiCoO/glass/PZN-PT (011). In addition, the square shape of the hysteresis loop, as well as a strong shape tunability of |ΔHex|/Hc = 67.5 ~ 125% in NiFe/FeMn/glass/PZN-PT and 30 ~ 38% in NiFe/NiCoO/glass/PZN-PT were achieved, which lead to a near 180° magnetization switching. Electrical tuning of interfacial exchange coupling in FM/AFM/FE systems paves a new way for realizing magnetoelectric random access memories and other memory technologies.
Xue, Xu; Zhou, Ziyao; Peng, Bin; Zhu, Mingmin; Zhang, Yijun; Ren, Wei; Ren, Tao; Yang, Xi; Nan, Tianxiang; Sun, Nian X; Liu, Ming
2015-11-18
E-field control of interfacial exchange coupling and deterministic switching of magnetization have been demonstrated in two sets of ferromagnetic(FM)/antiferromagnetic(AFM)/ferroelectric(FE) multiferroic heterostructures, including NiFe/NiCoO/glass/PZN-PT (011) and NiFe/FeMn/glass/PZN-PT (011). We designed this experiment to achieve exchange bias tuning along the magnetic easy axis, which is critical for realizing reversible 180° magnetization deterministic switching at zero or small magnetic bias. Strong exchange coupling were established across AFM-FM interfaces, which plays an important role in voltage control of magnetization switching. Through the competition between the E-field induced uniaxial anisotropy in ferromagnetic layer and unidirectional anisotropy in antiferromagnetic layer, the exchange bias was significantly shifted by up to |∆Hex|/Hex = 8% in NiFe/FeMn/glass/PZN-PT (011) and 13% in NiFe/NiCoO/glass/PZN-PT (011). In addition, the square shape of the hysteresis loop, as well as a strong shape tunability of |∆Hex|/Hc = 67.5 ~ 125% in NiFe/FeMn/glass/PZN-PT and 30 ~ 38% in NiFe/NiCoO/glass/PZN-PT were achieved, which lead to a near 180° magnetization switching. Electrical tuning of interfacial exchange coupling in FM/AFM/FE systems paves a new way for realizing magnetoelectric random access memories and other memory technologies.
Dust input in the formation of rock varnish from the Dry Valleys (Antarctica)
NASA Astrophysics Data System (ADS)
Zerboni, A.; Guglielmin, M.
2017-12-01
Rock varnish is a glossy, yellowish to dark brown coating that covers geomorphically stable, aerially exposed rock surfaces and landforms in warm and cold arid lands. In warm deserts, rock varnish consists of clay minerals, Mn-Fe oxides/hydroxides, and Si+alkalis dust; it occasionally containis sulphates, phosphates, and organic remains. In Antarctica, rock varnish developed on a variety of bedrocks and has been described being mostly formed of Si, Al, Fe, and sulphates, suggesting a double process in its formation, including biomineralization alternated to dust accretion. We investigated rock coatings developed on sandstones outcropping in the Dry Valleys of Antarctica and most of the samples highlithed an extremely complex varnish structure, alternating tihn layer of different chemical compostion. Optical microscope evidenced the occurrence of highly birefringent minerals, occasionally thinly laminated and consisitng of Si and Al-rich minerals (clays). These are interlayered by few micron-thick dark lenses and continous layers. The latter are well evident under the scanning electron microscope and chemical analysis confirmed that they consist of different kinds of sulphates; jarosite is the most represented species, but gypsum crystals were also found. Fe-rich hypocoatings and intergranula crusts were also detected, sometimes preserving the shape of the hyphae they have replaced. Moreover, small weathering pits on sandstone surface display the occurrence of an amorphous, dark Mn/Fe-rich rock varnish. The formation of rock varnish in the Dry Valleys is a complex process, which required the accretion of airborne dust of variable composition and subsequent recrystallization of some constituent, possibly promoted by microorganisms. In particualr, the formation of sulphates seems to preserve the memory of S-rich dust produced by volcanic eruptions. On the contrary, the formation of Mn-rich varnish should be in relation with the occurrence of higher environmental humidity within weathering pits. Rock varnish in the Dry Valleys represents a potential tool to reconstruct past water availability and changes in the aeolian fallout.
Li, Na; Fu, Fenglian; Lu, Jianwei; Ding, Zecong; Tang, Bing; Pang, Jiabin
2017-01-01
Chromium-contaminated water is regarded as one of the biggest threats to human health. In this study, a novel magnetic mesoporous MnFe 2 O 4 @SiO 2 -CTAB composite was prepared by a facile one-step modification method and applied to remove Cr(VI). X-ray diffraction, scanning electron microscopy, transmission electron microscopy, specific surface area, and vibrating sample magnetometer were used to characterize MnFe 2 O 4 @SiO 2 -CTAB composites. The morphology analysis showed that the composites displayed a core-shell structure. The outer shell was mesoporous silica with CTAB and the core was MnFe 2 O 4 nanoparticles, which ensured the easy separation by an external magnetic field. The performance of MnFe 2 O 4 @SiO 2 -CTAB composites in Cr(VI) removal was far better than that of bare MnFe 2 O 4 nanoparticles. There were two reasons for the effective removal of Cr(VI) by MnFe 2 O 4 @SiO 2 -CTAB composites: (1) mesoporous silica shell with abundant CTA + significantly enhanced the Cr(VI) adsorption capacity of the composites; (2) a portion of Cr(VI) was reduced to less toxic Cr(III) by MnFe 2 O 4 , followed by Cr(III) immobilized on MnFe 2 O 4 @SiO 2 -CTAB composites, which had been demonstrated by X-ray photoelectron spectroscopy results. The adsorption of Cr(VI) onto MnFe 2 O 4 @SiO 2 -CTAB followed the Freundlich isotherm model and pseudo-second-order model. Tests on the regeneration and reuse of the composites were performed. The removal efficiency of Cr(VI) still retained 92.4% in the sixth cycle. MnFe 2 O 4 @SiO 2 -CTAB composites exhibited a great potential for the removal of Cr(VI) from water. Copyright © 2016 Elsevier Ltd. All rights reserved.
Simultaneous enhancement of magnetic and mechanical properties in Ni-Mn-Sn alloy by Fe doping
Tan, Changlong; Tai, Zhipeng; Zhang, Kun; Tian, Xiaohua; Cai, Wei
2017-01-01
Both magnetic-field-induced reverse martensitic transformation (MFIRMT) and mechanical properties are crucial for application of Ni-Mn-Sn magnetic shape memory alloys. Here, we demonstrate that substitution of Fe for Ni can simultaneously enhance the MFIRMT and mechanical properties of Ni-Mn-Sn, which are advantageous for its applications. The austenite in Ni44Fe6Mn39Sn11 shows the typical ferromagnetic magnetization with the highest saturation magnetization of 69 emu/g at 223 K. The result shows that an appropriate amount of Fe substitution can really enhance the ferromagnetism of Ni50Mn39Sn11 alloy in austenite, which directly leads to the enhancement of MFIRMT. Meanwhile, the mechanical property significantly improves with Fe doping. When there is 4 at.% Fe added, the compressive and maximum strain reach the maximum value (approximately 725.4 MPa and 9.3%). Furthermore, using first-principles calculations, we clarify the origin of Fe doping on martensitic transformation and magnetic properties. PMID:28230152
NASA Astrophysics Data System (ADS)
Kwon, E. P.; Sato, S.; Fujieda, S.; Shinoda, K.; Kajiwara, K.; Sato, M.; Suzuki, S.
2018-01-01
Microscopic residual stress evolution in an austenite (γ) grain during a shape-memory process in an Fe-Mn-Si-Cr alloy was investigated using the white X-ray microbeam diffraction technique. The stresses were measured on a coarse grain, which had an orientation near <144>, parallel to the tensile loading direction with a high Schmid factor for a martensitic transformation. The magnitude of the residual stresses in a grain of the sample, which was subjected to a 23 % tensile strain and subsequent shape-recovery heating, was found to be very small and comparable to that prior to tensile deformation. Measurements of the recovery strain and microstructural analyses using electron backscatter diffraction suggested that the low residual stresses could be attributed to the significant shape recovery caused by a highly reversible martensitic transformation in the grain with a particular orientation.
Microstructure and degradation behavior of forged Fe-Mn-Si alloys
NASA Astrophysics Data System (ADS)
Xu, Zhigang; Hodgson, Michael A.; Cao, Peng
2015-03-01
This work presents a comparative study of a series of Fe-Mn-Si alloys proposed as degradable biomaterials for medical applications. Five Fe-28wt.%Mn-xSi (where x = 0 to 8 wt.%) alloys were fabricated by an arc-melting method. All the as-cast alloys were subsequently subjected to homogenization treatment and hot forging. The microstructure and phase constituents were investigated. It is found that the grain size of the as-forged alloys ranged approximately from 30 to 50 μm. The as-forged Fe-Mn-Si alloys containing Si from 2 to 6 wt.% was comprised of duplex martensitic ɛ and austenitic γ phases; however, the Si-free and 8 wt.% Si alloys only consisted of a single γ phase. After 30 days of static immersion test in a simulated body fluid (SBF) medium, it is found that pitting and general corrosion occur on the sample surfaces. Potentiodynamic analysis reveals that the degradation rate of the Fe-Mn-Si alloys increased gradually with Si content up to 6 wt.%, beyond which the degradation slows down.
NASA Astrophysics Data System (ADS)
Que, Zhongping; Wang, Yun; Fan, Zhongyun
2018-06-01
Iron (Fe) is the most common and the most detrimental impurity element in Al alloys due to the formation of Fe-containing intermetallic compounds (IMCs), which are harmful to mechanical performance of the Al-alloy components. In this paper we investigate the formation of Fe-containing IMCs during solidification of an Al-5Mg-2Si-0.7Mn-1.1Fe alloy under varied solidification conditions. We found that the primary Fe-containing intermetallic compound (P-IMC) in the alloy is the BCC α-Al15(Fe,Mn)3Si2 phase and has a polyhedral morphology with {1 1 0} surface termination. The formation of the P-IMCs can be easily suppressed by increasing the melt superheat and/or cooling rate, suggesting that the nucleation of the α-Al15(Fe,Mn)3Si2 phase is difficult. In addition, we found that the IMCs with a Chinese script morphology is initiated on the {1 0 0} surfaces of the P-IMCs during the binary eutectic reaction with the α-Al phase. Both the binary and ternary eutectic IMCs are also identified as the BCC α-Al15(Fe,Mn)3Si2 phase. Furthermore, we found that the Fe content increases and the Mn content decreases in the Fe-containing intermetallic compounds with the decrease of the formation temperature, although the sum of the Fe and Mn contents in all of the IMCs is constant.
NASA Astrophysics Data System (ADS)
Wang, A. Q.; Tian, H. W.; Xie, J. P.
2018-01-01
In this study, 35 vol.% SiC particles with different sizes reinforced 6061 aluminium alloy matrix composites were prepared by a powder metallurgy method. The Scanning Electron Microscope (SEM) images of composites were observed, the Coefficient of Thermal Expansion (CTE) and tensile strength of composites were examined, and the influences of SiC particle size on microstructures and properties of the composites were analyzed. Furthermore, the SiCp/6061Al composites with SiC particle size of 7.5 µm were selected to investigate the SiCp/Al interface microstructure and precipitated phases by the means of SEM, TEM and HRTEM. The study indicated that, with the increase of SiC particle size, the SiC particles distributed more uniformly in the matrix, the CTE of composites increased, but the tensile strength of composites decreased. The SiCp/Al interface in this experiment is clean and smooth, and the combination mechanism of SiC and Al is the formation of a half coherent interface by closely matching of atoms. Some micron-sized coarse intermetallic particles existed in the hot-pressed composites, such as random-shaped Mg2Si, long stick shaped Al15(Mn, Fe, Cu)3Si2. When the composites were solution treated at 510 °C for 2 h and then aging treated at 190 °C for 9 h, except long stick shaped Al15(Mn, Fe, Cu)3Si2, numerous nano-sized precipitated phases (Mg2Si) with diameters of 50-200 nm dispersively distributed in the matrix. After heat treatment, the tensile strength of composite with SiC particle size of 7.5 µm enhance from 298 MPa to 341 MPa.
Koufopoulou, Sofia; Michalopoulos, Charalampos; Tzamtzis, Nikolaos; Pappa, Athina
2014-06-01
Long term fire retardant (LTR) application for forest fire prevention purposes as well as wildland fires can result in chemical leaching from forest soils. Large quantities of sodium (Na), aluminium (Al), iron (Fe), manganese (Mn), copper (Cu) and silicon (Si) in leachates, mainly due to ammonium (one of the major LTR components) soil deposition, could affect the groundwater quality. The leaching of Na, Al, Fe, Mn, Cu and Si due to nitrogen based LTR application (Fire Trol 931) was studied at laboratory scale. The concentrations of Na(+), Al(3+), Fe(3+)/Fe(2+), Mn(2+), Cu(2+) and Si(4+) were measured in the resulting leachates from pots with forest soil and pine trees alone and in combination with fire. The leaching of Na, Fe and Si from treated pots was significantly greater than that from control pots. The leaching of Al, Mn and Cu was extremely low.
NASA Astrophysics Data System (ADS)
Zhao, Yuliang; Zhang, Weiwen; Yang, Chao; Zhang, Datong; Wang, Zhi
2018-04-01
The effect of Si on Fe-rich intermetallics formation and mechanical properties of heat-treated squeeze cast Al-5.0Cu-0.6Mn-0.7Fe alloy was investigated. Our results show that increasing Si content promotes the formation of Al15(FeMn)3(SiCu)2 (${\\alpha}$-Fe), and varying the morphology of T (Al20Cu3Mn2) where the size decreases and the amount increases. The major reason is that Si promotes heterogeneous nucleation of the intermetallics leading to finer precipitates. Si addition significantly enhances ultimate tensile strength and yield strength of the alloys. The strengthening effect is mainly owing to the dispersoid strengthening by increasing volume fraction of T phase and less harmful ${\\alpha}$-Fe with a compact structure, which make the cracks more difficult to initiate and propagation during tensile test. The squeeze cast Al-5.0Cu-0.6Mn-0.7Fe alloy with 1.1% Si shows significantly improved mechanical properties than the alloy without Si addition, which has tensile strength of 386 MPa, yield strength of 280 MPa and elongation of 8.6%.
Ab initio study of Fe{sub 2}MnZ (Al, Si, Ge) Heusler alloy using GGA approximation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, Vivek Kumar, E-mail: vivek.jain129@gmail.com; Jain, Vishal, E-mail: vivek.jain129@gmail.com; Lakshmi, N., E-mail: vivek.jain129@gmail.com
Density functional theory based on FP-LAPW method used to investigate the electronic structure of Fe{sub 2}MnZ, shows that the total spin magnetic moment shows a trend consistent with the Slater–Pauling curve. The Fe and Mn magnetic moment depend on choice of Z element although the magnetic moment of Z element is negative and less than 0.1 μ{sub B}. Spin polarization calculations evidence 100% spin polarization for Fe{sub 2}MnSi. Fe{sub 2}MnAl and Fe{sub 2}MnGe show metallic behavior with 93%, 98% spin polarization.
Ab initio investigation of competing antiferromagnetic structures in low Si-content FeMn(PSi) alloy
NASA Astrophysics Data System (ADS)
Li, Guijiang; Eriksson, Olle; Johansson, Börje; Vitos, Levente
2016-06-01
The antiferromagnetic structures of a low Si-content FeMn(PSi) alloy were investigated by first principles calculations. One possible antiferromagnetic structure in supercell along the c-axis was revealed in FeMnP0.75Si0.25 alloy. It was found that atomic disorder occupation between Fe atom on 3f and Mn atoms on 3g sites is responsible for the formation of antiferromagnetic structures. Furthermore the magnetic competition and the coupling between possible AFM supercells along the c and a-axis can promote a non-collinear antiferromagnetic structure. These theoretical investigations help to deeply understand the magnetic order in FeMn(PSi) alloys and benefit to explore the potential magnetocaloric materials in Fe2P-type alloys.
Giant magnetic coercivity in CaCu{sub 5}-type SmNi{sub 3}TSi (T=Mn–Cu) solid solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Jinlei; Yan, Xu; Morozkin, A.V., E-mail: morozkin@tech.chem.msu.ru
The effects of transition metal substitution for Ni on the magnetic properties of the CaCu{sub 5}-type SmNi{sub 3}TSi (T=Mn, Fe, Co, Cu) solid solutions have been investigated. SmNi{sub 3}MnSi, SmNi{sub 3}FeSi, SmNi{sub 3}CoSi and SmNi{sub 3}CuSi show ferromagnetic ordering at 125 K, 190 K, 46 K and 12 K and field induced transitions at 65 K, 110 K, 30 K and 6 K, respectively. The magnetocaloric effects of SmNi{sub 3}TSi (T=Mn, Fe, Co, Cu) were calculated in terms of isothermal magnetic entropy change (ΔS{sub m}). The magnetic entropy ΔS{sub m} reaches value of −1.1 J/kg K at 130 K formore » SmNi{sub 3}MnSi, −0.4 J/kg K at 180 K for SmNi{sub 3}FeSi, −0.37 J/kg K at 45 K for SmNi{sub 3}CoSi and −0.5 J/kg K at 12 K for SmNi{sub 3}CuSi in field change of 0–50 kOe around the ferromagnetic ordering temperature. They show positive ΔS{sub m} of +2.4 J/kg K at 30 K for SmNi{sub 3}MnSi, −2.6 J/kg K at 65 K for SmNi{sub 3}FeSi, +0.73 J/kg K at 15 K for SmNi{sub 3}CoSi and −0.5 J/kg K at 6 K for SmNi{sub 3}CuSi in field change of 0–50 kOe around the metamagnetic-like transition temperature. Below the field induced transition temperature, SmNi{sub 3}TSi (T=Mn, Fe, Co, Cu) exhibits giant magnetic coercivity of 80 kOe at 20 K for SmNi{sub 3}MnSi, 87 kOe at 40 K for SmNi{sub 3}FeSi, 27 kOe at 20 K for SmNi{sub 3}CoSi and 54 kOe at 5 K for SmNi{sub 3}CuSi. - Graphical abstract: CaCu{sub 5}-type SmNi{sub 3}MnSi, SmNi{sub 3}FeSi, SmNi{sub 3}CoSi and SmNi{sub 3}CuSi show ferromagnetic ordering at 125 K, 190 K, 46 K and 12 K and field induced transitions at 65 K, 110 K, 30 K and 6 K, respectively. The magnetic entropy ΔS{sub m} reaches value of −1.1 J/kg K at 130 K for SmNi{sub 3}MnSi, −0.4 J/kg K at 180 K for SmNi{sub 3}FeSi, −0.37 J/kg K at 45 K for SmNi{sub 3}CoSi and −0.5 J/kg K at 12 K for SmNi{sub 3}CuSi in field change of 0–50 kOe around the ferromagnetic ordering temperature. They show positive ΔS{sub m} of +2.4 J/kg K at 30 K for SmNi{sub 3}MnSi, −2.6 J/kg K at 65 K for SmNi{sub 3}FeSi, +0.73 J/kg K at 15 K for SmNi{sub 3}CoSi and −0.5 J/kg K at 6 K for SmNi{sub 3}CuSi in field change of 0–50 kOe around the metamagnetic-like transition temperature. Below the field induced transition temperature, SmNi{sub 3}TSi (T=Mn, Fe, Co, Cu) exhibits giant magnetic coercivity of 80 kOe at 20 K for SmNi{sub 3}MnSi, 87 kOe at 40 K for SmNi{sub 3}FeSi, 27 kOe at 20 K for SmNi{sub 3}CoSi and 54 kOe at 5 K for SmNi{sub 3}CuSi. - Highlights: • CaCu{sub 5}-type SmNi{sub 3}{Mn, Fe, Co, Cu}Si exhibit the Curie points at 12–190 K. • SmNi{sub 3}{Mn, Fe, Co, Cu}Si show field induced transition at 6–110 K. • SmNi{sub 3}MnSi shows huge magnetic hysteresis with coercive field of 80 kOe at 20 K. • SmNi{sub 3}FeSi shows huge magnetic hysteresis with coercive field of 87 kOe at 40 K. • SmNi{sub 3}CuSi shows giant coercive field of 54 kOe at 5 K.« less
Superelasticity and cryogenic linear shape memory effects of CaFe 2As 2
Sypek, John T.; Yu, Hang; Dusoe, Keith J.; ...
2017-10-20
Shape memory materials have the ability to recover their original shape after a significant amount of deformation when they are subjected to certain stimuli, for instance, heat or magnetic fields. But, their performance is often limited by the energetics and geometry of the martensitic-austenitic phase transformation. We report a unique shape memory behavior in CaFe 2As 2, which exhibits superelasticity with over 13% recoverable strain, over 3 GPa yield strength, repeatable stress–strain response even at the micrometer scale, and cryogenic linear shape memory effects near 50 K. These properties are acheived through a reversible uni-axial phase transformation mechanism, the tetragonal/orthorhombic-to-collapsed-tetragonalmore » phase transformation. These results offer the possibility of developing cryogenic linear actuation technologies with a high precision and high actuation power per unit volume for deep space exploration, and more broadly, suggest a mechanistic path to a class of shape memory materials, ThCr 2Si 2-structured intermetallic compounds.« less
NASA Technical Reports Server (NTRS)
Bozzolo, Guillermo; Mosca, Hugo O.; Noebe, Ronald D.
2006-01-01
The phasc structure and concentration dependence of the lattice parameter and energy of formation of ternary Pd-'I-X and Pt-Ti-X alloys for a large number of ternary alloying additions X (X = Na, Mg, Al, Si, Sc. V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Ag, Cd, Hf, Ta, W, Re, Os, Ir) are investigated with an atomistic modeling approach. In addition, a detailed description of the site preference behavior of such additions showing that the elements can be grouped according to their absolute preference for a specific site, regardless of concentration, or preference for available sites in the deficient sublattice is provided.
Fornell, Jordina; Soriano, Jorge; Guerrero, Miguel; Sirvent, Juan de Dios; Ferran-Marqués, Marta; Ibáñez, Elena; Barrios, Leonardo; Baró, Maria Dolors; Suriñach, Santiago; Nogués, Carme; Sort, Jordi; Pellicer, Eva
2017-01-01
Pure Fe and FeMnSi thin films were sputtered on macroporous polypropylene (PP) membranes with the aim to obtain biocompatible, biodegradable and, eventually, magnetically-steerable platforms. Room-temperature ferromagnetic response was observed in both Fe- and FeMnSi-coated membranes. Good cell viability was observed in both cases by means of cytotoxicity studies, though the FeMnSi-coated membranes showed higher biodegradability than the Fe-coated ones. Various strategies to functionalize the porous platforms with transferrin-Alexa Fluor 488 (Tf-AF488) molecules were tested to determine an optimal balance between the functionalization yield and the cargo release. The distribution of Tf-AF488 within the FeMnSi-coated PP membranes, as well as its release and uptake by cells, was studied by confocal laser scanning microscopy. A homogeneous distribution of the drug within the membrane skeleton and its sustained release was achieved after three consecutive impregnations followed by the addition of a layer made of gelatin and maltodextrin, which prevented exceedingly fast release. The here-prepared organic-inorganic macroporous membranes could find applications as fixed or magnetically-steerable drug delivery platforms. PMID:28672792
NASA Astrophysics Data System (ADS)
Kurtan, U.; Amir, Md.; Yıldız, A.; Baykal, A.
2016-07-01
In this study, magnetically recycable MnFe2O4@SiO2@Ag nanocatalyst (MnFe2O4@SiO2@Ag MRCs) has been synthesized through co-precipition and chemical reduction method. XRD analysis confirmed the synthesis of single phase nanoproduct with crystallite size of 10 nm. VSM measurements showed the superparamagnetic property of the product. Catalytic studies showed that MnFe2O4@SiO2@Ag MRC could catalyze the reduction of the various azo compounds like methyl orange (MO), methylene blue (MB), eosin Y (EY), and rhodamine B (RhB) and also aromatic nitro compounds such as 4-nitrophenol (4-NP), 4-nitroaniline (4-NA) and 2-nitroaniline (2-NA). Moreover, the magnetic nanocatalyst showed an excellent reusability properties that remained unchanged after several cycles. Therefore, MnFe2O4@SiO2@Ag is the potential candidate for the application of organic pollutants for wastewater treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yu-Gang; Truong, Tu T.; Liu, Yu-Zi
2015-02-01
Microflowers made of interconnected MnO2 nanosheets have been successfully synthesized in a microwave reactor through a hydrothermal reduction of KMnO4 with aqueous HCl at elevated temperatures in the presence of superparamagnetic Fe3O4@SiO2 core-shell nanoparticles. Due to the chemical compatibility between SiO2 and MnO2, the heterogeneous reaction leads to the spontaneous encapsulation of the Fe3O4@SiO2 core-shell nanoparticles in the MnO2 microflowers. The resulting hybrid particles exhibit multiple properties including high surface area associated with the MnO2 nanosheets and superparamagnetism originated from the Fe3O4@SiO2 core-shell nanoparticles, which are beneficial for applications requiring both high surface area and magnetic separation. (C) 2014 Yu-Gangmore » Sun.« less
NASA Astrophysics Data System (ADS)
Domashevskaya, E. P.; Guda, A. A.; Chernyshev, A. V.; Sitnikov, V. G.
2017-02-01
Multilayered nanostructures (MN) were prepared by ion-beam successive sputtering from two targets, one of which was a metallic Co45Fe45Zr10 alloy plate and another target was a quartz (SiO2) or silicon plate on the surface of a rotating glass-ceramic substrate in an argon atmosphere. The Co and Fe K edges X-ray absorption fine structure of XANES in the (CoFeZr/SiO2)32 sample with oxide interlayers was similar to XANES of metallic Fe foil. This indicated the existence in metallic layers of multilayered CoFeZr nanocrystals with a local environment similar to the atomic environment in solid solutions on the base of bcc Fe structure, which is also confirmed by XRD data. XANES near the Co and Fe K edges absorption in another multilayered nanostructure with silicon interlayers (CoFeZr/ a-Si)40 differs from XANES of MN with dielectric SiO2 interlayer, which demonstrates a dominant influence of the Fe-Si and Co-Si bonds in the local environment of 3 d Co and Fe metals when they form CoFeSi-type silicide phases in thinner bilayers of this MN.
NASA Astrophysics Data System (ADS)
Wendler, Marco; Hauser, Michael; Sandig, Eckhard Frank; Volkova, Olena
2018-04-01
The influence of chemical composition, temperature, and pressure on the nitrogen solubility of various high alloy stainless steel grades, namely Fe-14Cr-(0.17-7.77)Mn-6Ni-0.5Si-0.03C [wt pct], Fe-15Cr-3Mn-4Ni-0.5Si-0.1C [wt pct], and Fe-19Cr-3Mn-4Ni-0.5Si-0.15C [wt pct], was studied in the melt. The temperature-dependent N-solubility was determined using an empirical approach proposed by Wada and Pehlke. The thus calculated N-concentrations overestimate the actual N-solubility of all the studied Fe-Cr-Mn-Ni-Si-C steel melts at a given temperature and pressure. Consequently, the calculation model has to be modified by Si and C because both elements are not recognized in the original equation. The addition of the 1st and 2nd order interaction parameters for Si and C to the model by Wada and Pehlke allows a precise estimation of the temperature-dependent nitrogen solubility in the liquid steel bath, and fits very well with the measured nitrogen concentrations during processing of the steels. Moreover, the N-solubility enhancing effect of Cr- and Mn-additions has been demonstrated.
NASA Astrophysics Data System (ADS)
Kundu, Ashis; Ghosh, Sheuly; Ghosh, Subhradip
2017-11-01
We investigate the effects of Fe and Co substitutions on the phase stability of the martensitic phase and mechanical, electronic, and magnetic properties of the magnetic shape memory system Mn2NiGa by first-principles density functional theory calculations. The evolution of these aspects upon substitution of Fe and Co at different crystallographic sites is investigated by computing the electronic structure, mechanical properties (tetragonal shear constant, Pugh ratio, and Cauchy pressure), and magnetic exchange parameters. We find that the austenite phase of Mn2NiGa gradually stabilizes with increase in concentration of Fe/Co due to the weakening of the minority spin hybridization of Ni and Mn atoms occupying crystallographically equivalent sites. The interplay between relative structural stability and the compositional changes is understood from the variations in the elastic moduli and electronic structures. We find that like in the Ni2MnGa -based systems, the elastic shear modulus C' can be considered as a predictor of composition dependence of martensitic transformation temperature Tm in substituted Mn2NiGa , thus singling it out as the universally acceptable predictor for martensitic transformation in Ni-Mn-Ga compounds over a wide composition range. The magnetic properties of Mn2NiGa are found to be greatly improved by the substitutions due to stronger ferromagnetic interactions in the compounds. The gradually weaker (stronger) Jahn-Teller distortion (covalent bonding) in the minority spin densities of states due to substitutions leads to a half-metallic-like gap in these compounds resulting in materials with high spin polarization when the substitutions are complete. The substitutions at the Ga site result in the two compounds Mn2NiFe and Mn2NiCo with very high magnetic moments and Curie temperatures. Thus, our work indicates that although the substitutions destroy the martensitic transformation and thus the possibility of realization of shape memory properties in Mn2NiGa , magnetic materials with very good magnetic parameters that are potentially useful for novel magnetic applications can be obtained. This can trigger interest in the experimental community in further research on substituted Mn2NiGa .
Kinetic Investigations of SiMn Slags From Different Mn Sources
NASA Astrophysics Data System (ADS)
Kim, Pyunghwa Peace; Tangstad, Merete
2018-06-01
The kinetics of MnO and SiO2 reduction were investigated for Silicomanganese (SiMn) slags using a Thermogravimetric analysis (TGA) between 1773 K and 1923 K (1500 °C and 1650 °C) under CO atmospheric pressure. The charge materials were based on Assmang ore and HC FeMn Slag. Rate models for MnO and SiO2 reduction were applied to describe the metal-producing rates, as shown by the following equations: r_{MnO} = k_{MnO} × A × ( {a_{MnO} - {a_{Mn} }/{K_{T }}} ) r_{{{SiO}2 }} = k_{SiO2} × A × ( {a_{{{SiO}2 }} - {a_{Si} }/{K_{T }}} ). The results show that the choice of raw materials in the charge considerably affected the reduction rate of MnO and SiO2. The highest reduction rate was found to be from charges using HC FeMn slag. The difference in the driving forces was insignificant among the SiMn slags, and the similar slag viscosities could not explain the different reduction rates. Instead, the difference is attributed to small amounts of sulfur and the amount of iron in the charge. In addition, the rate models were applicable to describe the reduction of MnO and SiO2 in SiMn slags.
Průša, Filip; Bláhová, Markéta; Vojtěch, Dalibor; Kučera, Vojtěch; Bernatiková, Adriana; Kubatík, Tomáš František; Michalcová, Alena
2016-01-01
In this work, Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn (wt %) alloys were prepared by a combination of short-term mechanical alloying and spark plasma sintering. The microstructure was composed of homogeneously dispersed intermetallic particles forming composite-like structures. X-ray diffraction analysis and TEM + EDS analysis determined that the α-Al along with α-Al15(Fe,Cr)3Si2 or α-Al15(Fe,Mn)3Si2 phases were present, with dimensions below 130 nm. The highest hardness of 380 ± 7 HV5 was observed for the Al-20Si-10Fe-6Mn alloy, exceeding the hardness of the reference as-cast Al-12Si-1Cu-1 Mg-1Ni alloy (121 ± 2 HV5) by nearly a factor of three. Both of the prepared alloys showed exceptional thermal stability with the hardness remaining almost the same even after 100 h of annealing at 400 °C. Additionally, the compressive strengths of the Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn alloys reached 869 MPa and 887 MPa, respectively, and had virtually the same values of 870 MPa and 865 MPa, respectively, even after 100 h of annealing. More importantly, the alloys showed an increase in ductility at 400 °C, reaching several tens of percent. Thus, both of the investigated alloys showed better mechanical properties, including superior hardness, compressive strength and thermal stability, as compared to the reference Al-10Si-1Cu-1Mg-1Ni alloy, which softened remarkably, reducing its hardness by almost 50% to 63 ± 8 HV5. PMID:28774094
NASA Astrophysics Data System (ADS)
Mukhopadhyay, A. K.
1998-03-01
The deleterious effects of Fe-bearing constituent particles on the fracture toughness of wrought A1 alloys have been known. Recent studies have shown that the presence of Fe-bearing, constituent particles is also determental to the nature and growth of the hard anodic oxide coating formed on such materials. The present study, using a combination of scanning electron microscopy (SEM), transmission electron microscopy (TEM), and electron probe microanalysis (EPMA), was made to examine the influence of the nature of the Fe-bearing particles on the hard anodizing behavior of AA 7075 extrusion products containing varying amounts of Si, Mn, and Fe impurities. It was found that, in the alloy containing 0.25 wt pct Si, 0.27 wt pct Mn, and 0.25 wt pct Fe, the Fe-bearing constituent particles are based on the Al12(FeMn)3Si phase (bcc with α=1.260 nm). These particles survive the hard anodizing treatment, add resistance to the electrical path, causing a rapid rise in the bath voltage with time, and cause a nonuniform growth of the anodic oxide film. In the materials containing 0.05 wt pct Si, 0.04 wt pct Mn, and 0.18 wt pct Fe, on the other hand, the formation of the Al12(FeMn)3Si-based phase is suppressed, and two different Fe-bearing phases, based on Al-Fe-Cu-Mn-based (simple cubic with a=1.265 nm) and Al7Cu2Fe, respectively form. Neither the Al-Fe-Cu-Mn-based phase nor the Al7Cu2Fe-based phase survive the hard anodizing treatment, and this results in a steady rise in the bath voltage with time and a relatively uniform growth of the anodic oxide film. Consideration of the size of the Fe-bearing, particles reveals that the smaller the particle, the more uniform the growth of the anodic oxide film.
Stability of half-metallic behavior with lattice variation for Fe2MnZ (Z = Si, Ge, Sn) Heusler alloy
NASA Astrophysics Data System (ADS)
Jain, Vivek Kumar; Lakshmi, N.; Jain, Rakesh
2018-05-01
The electronic structure and magnetic properties with variation of lattice constant for Fe2MnZ (Z = Si, Ge, Sn) Heusler alloys have been studied. Optimized lattice constant are found to be 5.59, 5.69, 6.00 Å for Z= Si, Ge and Sn respectively. Total magnetic moments of the alloys are ˜3 µB as predicted by the Slater Pauling rule and is maintained over a wide range of lattice variation for all three alloys. Half metallic ferromagnetic nature with 100% spin polarization is observed for Fe2MnSi for a lattice range from 5.40-5.70 Å. Fe2MnGe and Fe2MnSn show ferromagnetic and metallic natures with more than 90% spin polarization over a wide range of lattice constant. Due to the stability of half metallic character of these alloys with respect to variation in the lattice parameters, they are promising robust materials suitable for spintronics device applications.
Carrasco-Gil, Sandra; Rodríguez-Menéndez, Sara; Fernández, Beatriz; Pereiro, Rosario; de la Fuente, Vicenta; Hernandez-Apaolaza, Lourdes
2018-04-01
A protective effect by silicon in the amelioration of iron chlorosis has recently been proved for Strategy 1 species, at acidic pH. However in calcareous conditions, the Si effect on Fe acquisition and distribution is still unknown. In this work, the effect of Si on Fe, Mn, Cu and Zn distribution was studied in rice (Strategy 2 species) under Fe sufficiency and deficiency. Plants (+Si or-Si) were grown initially with Fe, and then Fe was removed from the nutrient solution. The plants were then analysed using a combined approach including LA-ICP-MS images for each element of interest, the analysis of the Fe and Si concentration at different cell layers of root and leaf cross sections by SEM-EDX, and determining the apoplastic Fe, total micronutrient concentration and oxidative stress indexes. A different Si effect was observed depending on plant Fe status. Under Fe sufficiency, Si supply increased Fe root plaque formation, decreasing Fe concentration inside the root and increasing the oxidative stress in the plants. Therefore, Fe acquisition strategies were activated, and Fe translocation rate to the aerial parts was increased, even under an optimal Fe supply. Under Fe deficiency, +Si plants absorbed Fe from the plaque more rapidly than -Si plants, due to the previous activation of Fe deficiency strategies during the growing period (+Fe + Si). Higher Fe plaque formation due to Si supply during the growing period reduced Fe uptake and could activate Fe deficiency strategies in rice, making it more efficient against Fe chlorosis alterations. Silicon influenced Mn and Cu distribution in root. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Irradiation-induced microchemical changes in highly irradiated 316 stainless steel
NASA Astrophysics Data System (ADS)
Fujii, K.; Fukuya, K.
2016-02-01
Cold-worked 316 stainless steel specimens irradiated to 74 dpa in a pressurized water reactor (PWR) were analyzed by atom probe tomography (APT) to extend knowledge of solute clusters and segregation at higher doses. The analyses confirmed that those clusters mainly enriched in Ni-Si or Ni-Si-Mn were formed at high number density. The clusters were divided into three types based on their size and Mn content; small Ni-Si clusters (3-4 nm in diameter), and large Ni-Si and Ni-Si-Mn clusters (8-10 nm in diameter). The total cluster number density was 7.7 × 1023 m-3. The fraction of large clusters was almost 1/10 of the total density. The average composition (in at%) for small clusters was: Fe, 54; Cr, 12; Mn, 1; Ni, 22; Si, 11; Mo, 1, and for large clusters it was: Fe, 44; Cr, 9; Mn, 2; Ni, 29; Si, 14; Mo,1. It was likely that some of the Ni-Si clusters correspond to γ‧ phase precipitates while the Ni-Si-Mn clusters were precursors of G phase precipitates. The APT analyses at grain boundaries confirmed enrichment of Ni, Si, P and Cu and depletion of Fe, Cr, Mo and Mn. The segregation behavior was consistent with previous knowledge of radiation induced segregation.
NASA Astrophysics Data System (ADS)
Vinodh Kumar, S.; Seenithurai, S.; Manivel Raja, M.; Mahendran, M.
2015-10-01
Polycrystalline Ni-Mn-Ga ferromagnetic shape-memory thin films have been deposited on Si (100) substrates using a direct-current magnetron sputtering technique. The microstructure and the temperature dependence of magnetic properties of the films have been investigated by x-ray diffraction, scanning electron microscopy, and thermomagnetic measurements. As-deposited Ni50.2Mn30.6Ga19.2 film showed quasi-amorphous structure with paramagnetic nature at room temperature. When annealed at 873 K, the quasi-amorphous film attained crystallinity and possessed L21 cubic ordering with high magnetic transition temperature. Saturation magnetization and coercivity values for the annealed film were found to be 220 emu/cm3 and 70 Oe, respectively, indicating soft ferromagnetic character with low magnetocrystalline anisotropy. The magnetic transitions of the film deposited at 100 W were above room temperature, making this a potential candidate for use in microelectromechanical system devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Go, Anna, E-mail: annago@alpha.uwb.edu.pl
2014-11-15
Ab-initio electronic structure calculations are carried out for quinternary Fe{sub 2}Mn{sub 1−x}V{sub x}Si{sub 0.5}Al{sub 0.5} alloys. When x=0 the alloy is half-metallic ferromagnet, with magnetic moment following the Slater–Pauling rule. Replacement of Mn by V, changes its electronic and magnetic structure. V-doped alloys exhibit half-metallic behavior for x≤0.25. However, even for higher V concentrations, electronic spin polarization is still very high, what makes the alloys interesting for spintronic applications. - Graphical abstract: Densities of states of Fe{sub 2}MnSi{sub 0.5}Al{sub 0.5} and magnetic moments of Fe{sub 2}Mn{sub 1−x}V{sub x}Si{sub 0.5}Al{sub 0.5}. - Highlights: • Fe{sub 2}MnSi{sub 0.5}Al{sub 0.5} is a half-metallicmore » ferromagnet with a minority band gap of 0.49 eV. • Half-metallic band gap is very stable against the change of the lattice parameter. • Half-metallic band gap is obtained for Fe{sub 2}Mn{sub 1−x}V{sub x}Si{sub 0.5}Al{sub 0.5} for x≤0.25. • Electronic spin polarization is very high and equal to at least 95% for x≤0.625. • The main carrier of magnetism of the compound is manganese.« less
Průša, Filip; Bláhová, Markéta; Vojtěch, Dalibor; Kučera, Vojtěch; Bernatiková, Adriana; Kubatík, Tomáš František; Michalcová, Alena
2016-11-30
In this work, Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn (wt %) alloys were prepared by a combination of short-term mechanical alloying and spark plasma sintering. The microstructure was composed of homogeneously dispersed intermetallic particles forming composite-like structures. X-ray diffraction analysis and TEM + EDS analysis determined that the α-Al along with α-Al 15 (Fe,Cr)₃Si₂ or α-Al 15 (Fe,Mn)₃Si₂ phases were present, with dimensions below 130 nm. The highest hardness of 380 ± 7 HV5 was observed for the Al-20Si-10Fe-6Mn alloy, exceeding the hardness of the reference as-cast Al-12Si-1Cu-1 Mg-1Ni alloy (121 ± 2 HV5) by nearly a factor of three. Both of the prepared alloys showed exceptional thermal stability with the hardness remaining almost the same even after 100 h of annealing at 400 °C. Additionally, the compressive strengths of the Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn alloys reached 869 MPa and 887 MPa, respectively, and had virtually the same values of 870 MPa and 865 MPa, respectively, even after 100 h of annealing. More importantly, the alloys showed an increase in ductility at 400 °C, reaching several tens of percent. Thus, both of the investigated alloys showed better mechanical properties, including superior hardness, compressive strength and thermal stability, as compared to the reference Al-10Si-1Cu-1Mg-1Ni alloy, which softened remarkably, reducing its hardness by almost 50% to 63 ± 8 HV5.
High Curie temperature of Ce-Fe-Si compounds with ThMn12 structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, C; Pinkerton, FE; Herbst, JF
2015-01-15
We report the discovery of ternary CeFe(12-x)Si(x)compounds possessing the ThMn12 structure. The samples were prepared by melt spinning followed by annealing. In contrast to other known Ce Fe-based binary and ternary compounds, CeFe12-xSix compounds exhibit exceptionally high Curie temperatures whose values increase with added Si substitution. The highest T. = 583 K in CeFe10Si2 rivals that of the well-established Nd2Fe14B compound. We ascribe the T-c behavior to a combination of Si-induced 3d band structure changes and partial Ce3+ stabilization. (C) 2014 Published by Elsevier Ltd.
Investigation of the mechanical properties of FeNiCrMnSi high entropy alloy wear resistant
NASA Astrophysics Data System (ADS)
Buluc, G.; Florea, I.; Chelariu, R.; Popescu, G.; Carcea, I.
2016-06-01
In this paper we investigated microstructure, hardness and wear resistance for FeNiCrMnAl, high entropy alloy. The FeNiCrMnSi, high entropy alloy was elaborated in a medium induction furnace, by choosing the silicon, as an alliance element within the equi- atomic high entropy alloy, we managed to obtain a dendritic structure, the formation of intermetallic compounds or separated silicon. The medium hardness value of the investigated alloy was 948.33 HV and the medium value of the friction coefficient was 0.6655 in the first 20 seconds and 0.5425 for 1667 seconds. The volume loss of the high entropy alloy FeNiCrMnSi was 0.0557 mm3.
NASA Astrophysics Data System (ADS)
Rashid, Zahra; Soleimani, Masoud; Ghahremanzadeh, Ramin; Vossoughi, Manouchehr; Esmaeili, Elaheh
2017-12-01
The present study is aimed at the synthesis of MnFe2O4@SiO2@PMIDA in terms of highly efficient sensing platform for anti-prostate specific membrane antigen (PSMA) immobilization. Superparamagnetic manganese ferrite nanoparticles were synthesized following co-precipitation method and then SiO2 shell was coated on the magnetic core with tetraethyl orthosilicate (TEOS) through a silanization reaction to prevent oxidation, agglomeration and, increase the density of OH groups on the surface of MnFe2O4. Subsequently, MnFe2O4@SiO2@PMIDA obtained as a result of the reaction between N-(phosphonomethyl)iminodiacetic acid (PMIDA) and MnFe2O4@SiO2. The reactive carboxyl groups on the surface of magnetic nanoparticles can efficiently conjugate to a monoclonal antibody, specific to PSMA, which was confirmed by enzyme-linked immune sorbent assay (ELISA). Thus, this kind of functionalized magnetic nanoparticles is promising to be utilized in the improvement of ELISA-based biosensors and also will be effective in a variety of biomedical applications such as cell separation, diagnosis, and monitoring of human diseases.
NASA Astrophysics Data System (ADS)
Cengizler, Hakan; Eric, R. Hurman
Equilibrium between MnO-CaO-MgO-SiO2-Al2O3 slags and carbon saturated Mn-Si-Fe-C alloys was investigated under CO at 1500oC. Manganese and silicon activities were obtained by using the present data and the previously determined MnO and SiO2 activities of the slag. Quadratic multi-coefficient regression equations were developed for activity coefficients of manganese and silicon. The conclusions of this work are:(i)increase in the basicity and the CaO/Al2O3 ratios decreases the Mn distribution ratio,(ii)increase in the silica concentration and the MgO/CaO ratio increases the Mn distribution ratio, iii)carbon and manganese as well as carbon and silicon of the metal phase are inversely proportional,(iv)as Mn/Fe and Mn/Si ratio increases in the metal the carbon solubility increases,(v)decrease in the basicity increases the silicon content of the metal and (vi)increase in the silica content of the slag increases the silicon content of the metal and this effect is more pronounced at the higher Mn/Fe and Mn/Si ratios.
Synthesis of hard magnetic Mn3Ga micro-islands by e-beam evaporation
NASA Astrophysics Data System (ADS)
Akdogan, O.
2018-05-01
The permanent magnet industry heavily depends on Nd-Fe-B and Sm-Co alloys because of their high-energy product and high room temperature coercivity. Main ingredient for having such superior magnetic properties compared to other known ferromagnetic materials is rare earth elements (Nd, Sm, Dy…). However recent worldwide reserve and export limitation problem of rare earths, shifted researchers' focus to rare earth free permanent magnets. Among many alternatives (FePt, Zr2Co11, FeNi …), Mn-based alloys are the most suitable due to abundance of the forming elements and trivial formation of the necessary hard phases. In this study, Mn3Ga micro islands have been prepared. Mn3Ga owes its hard magnetic properties to tetragonal D022 phase with magnetic anisotropy energy of 2 MJ/m3. Thin films and islands of Cr/MnGa/Cr layers have been deposited on Si/SiO2 wafers using combination of e-beam and thermal evaporation techniques. Cr has been used as buffer and cover layer to protect the sample from the substrate and prevent oxidation during annealing. Annealing under Ar/H2 forming gas has been performed at 350oC for 10 min. Nano thick islands of 25, 50 and 100 μm lateral size have been produced by photolithography technique. Room temperature coercivity of 7.5 kOe has been achieved on 100 μm micro islands of Mn3Ga. Produced micro islands could be a rare earth free alternative for magnetic memory and MEMS applications.
Sintered silicon carbide molded body and method for its production
NASA Technical Reports Server (NTRS)
Omori, M.; Sendai, M.; Ohira, K.
1984-01-01
Sintered silicon carbide shapes are described. They are produced by using a composition containing an oxide of at least one element chosen from the group: Li, Be, Mg, Si, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Nb, Mo, Ba, Tc, Ta, W and Th as a supplement to known sintering aids.
NASA Astrophysics Data System (ADS)
Inoue, Masaki; Hu, Bing; Moges, Kidist; Inubushi, Kazuumi; Nakada, Katsuyuki; Yamamoto, Masafumi; Uemura, Tetsuya
2017-08-01
The influence of off-stoichiometry of Co2MnSi (CMS) spin sources on giant magnetoresistance characteristics was investigated for CMS/Ag-based current-perpendicular-to-plane spin valves prepared with various Mn compositions α in Co2MnαSi0.82 electrodes. The magnetoresistance ratio of the prepared CMS/Co50Fe50 (CoFe) (1.1 nm)/Ag/CoFe (1.1)/CMS spin valves systematically increased with α from 11.4% for Mn-deficient α = 0.62 to 20.7% for Mn-rich α = 1.45 at 290 K. This result suggests that increasing α from a Mn-deficient to Mn-rich value increases the spin polarization by suppressing CoMn antisites harmful to the half-metallicity. Thus, our results demonstrate that appropriately controlling the film composition toward a Mn-rich one is highly effective for enhancing the half-metallicity of CMS in CMS-based spin valves, as it is in CMS-based magnetic tunnel junctions.
NASA Astrophysics Data System (ADS)
Zhang, Xueliang; Yang, Shufeng; Liu, Chengsong; Li, Jingshe; Hao, Weixing
2018-06-01
The effect of heat-treatment temperature on the interfacial reaction between MnO-SiO2-FeO oxide and Fe-Mn-Si alloy was investigated by the diffusion couple method in the temperature range of 1173-1573 K. The reaction at the interface between the alloy and oxide was not obvious during treatment at 1173 K, but, with increasing heat-treatment temperature, the interfacial reaction was strengthened and the proportion of the MnO·SiO2 phase in the oxide increased. The width of the particle-precipitation zone in the alloy increased with increasing temperature from 1173 K to 1473 K but decreased at 1573 K owing to coarsening of the precipitated particles. In addition, Mn2+ and Si4+ in the oxide significantly diffused into the alloy at 1573 K, resulting in an obvious increase of the Mn and Si contents in the alloy near the interface.
NASA Technical Reports Server (NTRS)
Van Buren, Dave
1986-01-01
Equivalent width data from Copernicus and IUE appear to have an exponential, rather than a Gaussian distribution of errors. This is probably because there is one dominant source of error: the assignment of the background continuum shape. The maximum likelihood method of parameter estimation is presented for the case of exponential statistics, in enough generality for application to many problems. The method is applied to global fitting of Si II, Fe II, and Mn II oscillator strengths and interstellar gas parameters along many lines of sight. The new values agree in general with previous determinations but are usually much more tightly constrained. Finally, it is shown that care must be taken in deriving acceptable regions of parameter space because the probability contours are not generally ellipses whose axes are parallel to the coordinate axes.
Kero, Ida; Naess, Mari K.; Tranell, Gabriella
2015-01-01
The present article presents a comprehensive evaluation of the potential use of an Electrical Low Pressure Impactor (ELPI) in the ferroalloy industry with respect to indoor air quality and fugitive emission control. The ELPI was used to assess particulate emission properties, particularly of the fine particles (Dp ≤ 1 μm), which in turn may enable more satisfactory risk assessments for the indoor working conditions in the ferroalloy industry. An ELPI has been applied to characterize the fume in two different ferroalloy plants, one producing silicomanganese (SiMn) alloys and one producing ferrosilicon (FeSi) alloys. The impactor classifies the particles according to their aerodynamic diameter and gives real-time particle size distributions (PSD). The PSD based on both number and mass concentrations are shown and compared. Collected particles have also been analyzed by transmission and scanning electron microscopy with energy dispersive spectroscopy. From the ELPI classification, particle size distributions in the range 7 nm – 10 μm have been established for industrial SiMn and FeSi fumes. Due to the extremely low masses of the ultrafine particles, the number and mass concentration PSD are significantly different. The average aerodynamic diameters for the FeSi and the SiMn fume particles were 0.17 and 0.10 μm, respectively. Based on this work, the ELPI is identified as a valuable tool for the evaluation of airborne particulate matter in the indoor air of metallurgical production sites. The method is well suited for real-time assessment of morphology (particle shape), particle size, and particle size distribution of aerosols. PMID:25380385
Yoo, Hyo-Sang; Kim, Yong-Ho; Lee, Seong-Hee; Son, Hyeon-Taek
2018-09-01
The microstructure and mechanical properties of as-extruded Al-0.1 wt%Si-0.2 wt%Fe- 0.4 wt%Cu-0.04 wt%Zr-xMn-xAlTiB (x = 1.0 wt%) alloys under various annealing processes were investigated and compared. After the as-cast billets were kept at 400 °C for 1 hr, hot extrusion was carried out with a reduction ratio of 38:1. In the case of the as-extruded Al-Si-Fe-Cu-Zr alloy at annealed at 620 °C, large equiaxed grain was observed. When the Mn content is 1.0 wt%, the phase exhibits a skeleton morphology, the phase formation in which Mn participated. Also, the volume fraction of the intermetallic compounds increased with Mn and AlTiB addition. For the Al-0.1Si-0.2Fe-0.4Cu-0.04Zr alloy with Mn and AlTiB addition from 1.0 wt%, the ultimate tensile strength increased from 100.47 to 119.41 to 110.49 MPa. The tensile strength of the as-extruded alloys improved with the addition of Mn and AlTiB due to the formation of Mn and AlTiB-containing intermetallic compounds.
NASA Astrophysics Data System (ADS)
Bannenberg, L. J.; Kakurai, K.; Falus, P.; Lelièvre-Berna, E.; Dalgliesh, R.; Dewhurst, C. D.; Qian, F.; Onose, Y.; Endoh, Y.; Tokura, Y.; Pappas, C.
2017-04-01
We present a comprehensive small angle neutron scattering and neutron spin echo spectroscopy study of the structural and dynamical aspects of the helimagnetic transition in Fe1 -xCoxSi with x =0.30 . In contrast to the sharp transition observed in the archetype chiral magnet MnSi, the transition in Fe1 -xCoxSi is gradual, and long-range helimagnetic ordering coexists with short-range correlations over a wide temperature range. The dynamics are more complex than in MnSi and involve long relaxation times with a stretched exponential relaxation which persists even under magnetic field. These results in conjunction with an analysis of the hierarchy of the relevant length scales show that the helimagnetic transition in Fe1 -xCoxSi differs substantially from the transition in MnSi and question the validity of a universal approach to the helimagnetic transition in chiral magnets.
Magnetic spectroscopy and microscopy of functional materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenkins, Catherine Ann
2011-05-01
Heusler intermetallics Mn 2Y Ga and X 2MnGa (X; Y =Fe, Co, Ni) undergo tetragonal magnetostructural transitions that can result in half metallicity, magnetic shape memory, or the magnetocaloric effect. Understanding the magnetism and magnetic behavior in functional materials is often the most direct route to being able to optimize current materials for todays applications and to design novel ones for tomorrow. Synchrotron soft x-ray magnetic spectromicroscopy techniques are well suited to explore the the competing effects from the magnetization and the lattice parameters in these materials as they provide detailed element-, valence-, and site-specifc information on the coupling ofmore » crystallographic ordering and electronic structure as well as external parameters like temperature and pressure on the bonding and exchange. Fundamental work preparing the model systems of spintronic, multiferroic, and energy-related compositions is presented for context. The methodology of synchrotron spectroscopy is presented and applied to not only magnetic characterization but also of developing a systematic screening method for future examples of materials exhibiting any of the above effects. The chapter progression is as follows: an introduction to the concepts and materials under consideration (Chapter 1); an overview of sample preparation techniques and results, and the kinds of characterization methods employed (Chapter 2); spectro- and microscopic explorations of X 2MnGa/Ge (Chapter 3); spectroscopic investigations of the composition series Mn 2Y Ga to the logical Mn 3Ga endpoint (Chapter 4); and a summary and overview of upcoming work (Chapter 5). Appendices include the results of a Think Tank for the Graduate School of Excellence MAINZ (Appendix A) and details of an imaging project now in progress on magnetic reversal and domain wall observation in the classical Heusler material Co 2FeSi (Appendix B).« less
Amos-Kroohs, Robyn M; Davenport, Laurie L; Atanasova, Nina; Abdulla, Zuhair I; Skelton, Matthew R; Vorhees, Charles V; Williams, Michael T
Manganese (Mn) is an essential element but neurotoxic at higher exposure levels. The effects of Mn overexposure (MnOE) on hippocampal and striatal-dependent learning and memory in rats were tested in combination with iron deficiency (FeD) and developmental stress that often co-occur with MnOE. Moderate FeD affects up to 15% of U.S. children and developmental stress is common in lower socio-economic areas where MnOE occurs. Pregnant Sprague-Dawley rats and their litters were housed in cages with or without (barren cage (BAR)) standard bedding from embryonic day (E)7 to postnatal day (P)28. Dams were fed a 90% FeD or iron sufficient (FeS) diet from E15-P28. Within each litter, separate offspring were treated with 100mg/kg Mn (MnOE) or vehicle (VEH) by gavage on alternate days from P4-28. Offspring were tested as adults in the Morris and Cincinnati water mazes. FeD and developmental stress interactively impaired spatial learning in the Morris water maze. Developmental stress and MnOE impaired learning and memory in both mazes. MnOE resulted in reduced CA1 hippocampal long-term potentiation (LTP) and increased levels of α-synuclein. Preweaning MnOE resulted in cognitive deficits on multiple domains of learning and memory accompanied by impaired LTP and α-synuclein changes, effects worsened by developmental stress. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Hu, Q. B.; Hu, Y.; Zhang, S.; Tang, W.; He, X. J.; Li, Z.; Cao, Q. Q.; Wang, D. H.; Du, Y. W.
2018-01-01
The MnCoSi compound is a potential magnetostriction material since the magnetic field can drive a metamagnetic transition from an antiferromagnetic phase to a high magnetization phase in it, which accompanies a large lattice distortion. However, a large driving magnetic field, magnetic hysteresis, and poor mechanical properties seriously hinder its application for magnetostriction. By substituting Fe for Mn and introducing vacancies of the Mn element, textured and dense Mn0.97Fe0.03CoSi and Mn0.88CoSi compounds are prepared through a high-magnetic-field solidification approach. As a result, large room-temperature and reversible magnetostriction effects are observed in these compounds at a low magnetic field. The origin of this large magnetostriction effect and potential applications are discussed.
Van, Ngoc Huynh; Lee, Jae-Hyun; Whang, Dongmok; Kang, Dae Joon
2015-07-21
Nanowire-based ferroelectric-complementary metal-oxide-semiconductor (NW FeCMOS) nonvolatile memory devices were successfully fabricated by utilizing single n- and p-type Si nanowire ferroelectric-gate field effect transistors (NW FeFETs) as individual memory cells. In addition to having the advantages of single channel n- and p-type Si NW FeFET memory, Si NW FeCMOS memory devices exhibit a direct readout voltage and ultralow power consumption. The reading state power consumption of this device is less than 0.1 pW, which is more than 10(5) times lower than the ON-state power consumption of single-channel ferroelectric memory. This result implies that Si NW FeCMOS memory devices are well suited for use in non-volatile memory chips in modern portable electronic devices, especially where low power consumption is critical for energy conservation and long-term use.
NASA Astrophysics Data System (ADS)
Feng, Wang; Jishan, Zhang; Baiqing, Xiong; Yongan, Zhang
2011-02-01
It has been recognized generally that the spray-deposited process is an innovative technique of rapid solidification. In this paper, Al-20Si-5Fe-3Mn-3Cu-1Mg alloy was synthesized by the spray atomization and deposition technique. The microstructure and mechanical properties of the spray-deposited alloy were studied using x-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), and tensile tests. It is observed that the microstructure of spray-deposited Al-20Si-5Fe-3Mn-3Cu-1Mg alloy is composed of the α-Al,Si and the particle-like Al15(FeMn)3Si2 compounds. The aging process of the alloy was investigated by microhardness measurement, differential scanning calorimetry analysis, and TEM observations. The results indicate that the two types of precipitates, S-Al2CuMg and σ-Al5Cu6Mg2 precipitate from matrix and improve the tensile strength of the alloy efficiently at both the ambient and elevated temperatures (300 °C).
Liu, Shi-Yuan; Li, Shu-Jin; Wu, Shun; Wang, Li-Jun; Chou, Kuo-Chih
2018-07-15
Vanadium slag is a by-product from steelmaking process of vanadium-titanium magnetite, which mainly contains FeO, MnO, V 2 O 3 , and Cr 2 O 3 , The elements Fe and Mn are major components of Mn-Zn ferrite. The elements V and Cr are major components of V-Cr alloy. In view of the potential application in these study, a Mn 0.8 Zn 0.2 Fe 2 O 4 of high saturation magnetization (Ms = 68.6 emu/g) and low coercivity (Hc = 3.3 Oe) was successfully synthesized from the leaching solutions of vanadium slag by adding appropriate chemical reagents, ZnCl 2 and MnCl 2 ·4H 2 O, via roasting at 1300 °C for 1 h. The minor components (CaO and SiO 2 ) in the leaching solution of vanadium slag segregated to the grain boundaries resulting in increasing the resistivity of ferrite. The value of DC resistivity of Mn 0.8 Zn 0.2 Fe 2 O 4 at 25 °C reached 1230.7Ω m. The residue containing Fe, V and Cr was chlorinated by AlCl 3 and the Fe 3+ , V 3+ , and Cr 3+ ions were released into the NaCl-KCl eutectic. The current-time curve for the electrolysis of molten salt was investigated. Alloy (Fe, V, and Cr) of granular shape was obtained. The residue can be used to produce the mulite. This process provided a new approach to utilize slag from steelmaking. Copyright © 2018 Elsevier B.V. All rights reserved.
Surface Selective Oxidation of Sn-Added CMnSi TRIP Steel
NASA Astrophysics Data System (ADS)
Cho, Lawrence; Seo, Eun Jung; Jung, Geun Su; Suh, Dong Woo; De Cooman, Bruno C.
2016-04-01
The influence of the addition of Sn on the selective oxidation and the reactive wetting of CMnSi transformation-induced plasticity (TRIP) steels was studied by means of galvanizing simulator tests. A reference TRIP steel and TRIP steels containing Sn in the range of 0.05 to 1 wt pct were intercritically annealed at 1093 K (820 °C) in an N2+ 5 pct H2 gas atmosphere with a dew point of -60 °C. The thin-film oxides formed on the surface of the Sn-added CMnSi TRIP steel were investigated using transmission electron microscopy and 3-dimensional atom probe tomography. The addition of Sn (≥0.05 wt pct) changed the morphology of the xMnO·SiO2 surface oxides from a continuous film morphology to a lens-shaped island morphology. It also suppressed the formation of the Mn-rich oxides of MnO and 2MnO·SiO2. The changes in the morphology and chemistry of the surface oxides were clearly related to the surface segregation of Sn, which appeared to result in a decrease of the oxygen permeability at the surface. The formation of lens-shaped oxides improved the wettability of the CMnSi TRIP steel surface by the molten Zn. The improved wetting effect was attributed to an increased area fraction of the surface where the oxide layer was thinner. This enabled a direct, unhindered reaction between Fe and the Al in the liquid Zn and the formation of the inhibition layer in the initial stages of the hot dipping. The addition of a small amount of Sn was also found to decrease significantly the density of Zn-coating defects on CMnSi TRIP steel.
Elasticity and magnetocaloric effect in MnFe 4Si 3
Herlitschke, Marcus; Klobes, B.; Sergueev, I.; ...
2016-03-16
The room temperature magnetocaloric material MnFe 4Si 3 was investigated with nuclear inelastic scattering (NIS) and resonant ultrasound spectroscopy (RUS) at different temperatures and applied magnetic fields in order to assess the infuence of the magnetic transition and the magnetocaloric effect on the lattice dynamics. The NIS data give access to phonons with energies above 3 meV, whereas RUS probes the elasticity of the material in the MHz frequency range and thus low energy, ~5 neV, phonon modes. A significant infuence of the magnetic transition on the lattice dynamics is observed only in the low energy region. Here, MnFe 4Simore » 3 and other compounds in the Mn 5-xFe xSi 3 series were also investigated with vibrating sample magnetometry, resistivity measurements and Moessbauer spectroscopy in order to study the magnetic transitions and to complement the obtained results on the lattice dynamics.« less
The effects of Ni, Mo, Ti and Si on the mechanical properties of Cr free Mn steel (Fe-25Mn-5Al-2C)
NASA Technical Reports Server (NTRS)
Schuon, S. R.
1982-01-01
The FeMnAlC alloys may hold potential as Cr-free replacements for high strategic material iron base superalloys, but little is known about their intermediate temperature (650 C to 870 C) mechanical properties. The effects of alloying elements on the mechanical properties of model FeMnAlC alloys were studied. Results showed that modified FeMnAlC alloys had promising short term, intermediate temperature properties but had relatively poor stress rupture lives at 172 MPa and 788 C. Room temperature and 788 C tensile strength of FeMnAlC alloys were better than common cast stainless steels. Changes in room temperature tensile and 788 C tensile strength and ductility, and 788 C stress rupture life were correlated with changes in Ni, Mo, Ti, and Si levels due to alloying effects on interstitial carbon levels and carbide morphology. Fe-25Mn-5Al-2C had a very poor stress rupture life at 172 MPa and 788 C. Addition of carbide-forming elements improved the stress rupture life.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuping, Duan, E-mail: duanyp@dlut.edu.c; Jia, Zhang; Hui, Jing
Fe-doped MnO{sub 2} with a hollow sea urchin-like ball chain shape was first synthesized under a high magnetic field of 10 T. The formation mechanism was investigated and discussed in detail. The synthesized samples were characterized by XRD, SEM, TEM, EMPA, and vector network analysis. By doping MnO{sub 2} with Fe, the relative complex permittivity of MnO{sub 2} and its corresponding loss tangent clearly decreases, but its relative complex permeability and its corresponding loss tangent markedly increases. Moreover, the theoretically calculated values of reflection loss show that with increasing the Fe content, the as-prepared Fe-doped MnO{sub 2} exhibits good microwavemore » absorption capability. -- Graphical Abstract: Fe-doped MnO{sub 2} with a hollow sea urchin-like ball chain shape was first synthesized in a high magnetic field of 10 T via a simple chemical process. Display Omitted Highlights: {yields} Fe-doped MnO{sub 2} with a hollow sea urchin-like ball chain shape was first synthesized. {yields} We investigated formation mechanism and electromagnetic properties of the Fe-doped MnO{sub 2}. {yields} By doping MnO{sub 2} with Fe, the electromagnetic properties are improved obviously.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, S.H.; Song, B.
The reoxidation behavior of steels by slag in the secondary steelmaking process was addressed by investigating the thermodynamic equilibria between the liquid iron containing Mn and P and CaO-MgO-SiO{sub 2}-Al{sub 2}O{sub 3}-P{sub 2}O{sub 5}-MnO-Fe{sub t}O ladle slag at 1873 K. The activity coefficient of Fe{sub t}O shows a maximum value in the vicinity of the basicity ((X{sub CaO} + X{sub MgO} + X{sub MnO})/(X{sub SiO{sub 2}} + X{sub Al{sub 2}O{sub 3}} + XP{sub 2}O{sub 5})) = 2.5 at the specific mole fraction range of Fe{sub t}O, while that of MnO seems to increase gradually with increasing the basicity. However, themore » values of {gamma}{sub Fe{sub t}O} and {gamma}{sub MnO} showed minima with respect to P{sub 2}O{sub 5} content of slag. In addition, the values of {gamma}{sub Fe{sub t}O} and {gamma}{sub MnO} increased as (pct CaO)/(pct Al{sub 2}O{sub 3}) ratio increased at given SiO{sub 2}, MgO, and P{sub 2}O{sub 5} contents. The conversion equations between the Fe{sub t}O and MnO activities and their calculated activities via regular solution model were derived by the correlation between the measured and calculated activities over the limited ranges of Fe{sub t}O and MnO contents. The regular solution model was used to estimate the oxygen potential in the slag. For MgO saturated slags, a{sub Fe{sub t}O{sub (l)}} = 0.864a{sub FeO{sub (R.S.)}}, a{sub MnO{sub (l)}} = 6.38a{sub MnO{sub (R.S.)}}. For Al{sub 2}O{sub 3} saturated slags, a{sub Fe{sub t}O{sub (l)}} = 2.086a{sub FeO{sub (R.S.)}}, a{sub MnO{sub (l)}} = 14.39a{sub MnO{sub (R.S.)}}.« less
NASA Astrophysics Data System (ADS)
Bai, J.; Raulot, J. M.; Zhang, Y. D.; Esling, C.; Zhao, X.; Zuo, L.
2010-09-01
The crystallographic and magnetic structures of the Ni2XGa (X=Mn, Fe, Co), are systematically investigated by means of the first-principles calculations within the framework of density functional theory using the VIENNA AB INITIO SOFTWARE PACKAGE. The formation energies of several kinds of defects (atomic exchange, antisite, vacancy) are estimated. The Ga atoms stabilize the cubic structure, and the effect of X atoms on the structural stability is opposite. For most cases of the site occupation, the excess atoms of the rich component directly occupy the site(s) of the deficient one(s), except for Ga-rich Ni-deficient type. The magnitude of the variation in Ni moments is much larger than that of Mn in defective Ni2XGa. The value of Ni magnetic moment sensitively depends on the distance between Ni and X. Excess Mn could be ferromagnetic or antiferromagnetic, depending on the distance between the neighboring Mn atoms.
Exploring the origins of the Dzyaloshinskii-Moriya interaction in MnSi
Dhital, C.; DeBeer-Schmitt, L.; Zhang, Q.; ...
2017-12-19
By using magnetization and small-angle neutron scattering (SANS) measurements, we have investigated the magnetic behavior of the Mn 1-xIr xSi system to explore the effect of increased carrier density and spin-orbit interaction on the magnetic properties of MnSi. We determine estimates of the spin wave stiffness and the Dzyalloshinski-Moriya (DM) interaction strength and compare with Mn 1-xCo xSi and Mn 1-xFe xSi. Despite the large differences in atomic mass and size of the substituted elements, Mn 1-xCo xSi and Mn 1-xIr xSi show nearly identical variations in their magnetic properties with substitution. We find a systematic dependence of the transitionmore » temperature, the ordered moment, the helix period, and the DM interaction strength with electron count for Mn 1-xIr xSi, Mn 1-xCo xSi, and Mn 1-xFe xSi, indicating that the magnetic behavior is primarily dependent upon the additional carrier density, rather than on the mass or size of the substituting species. This indicates that the variation in magnetic properties, including the DM interaction strength, is primarily controlled by the electronic structure, as Co and Ir are isovalent. Our work suggests that although the rigid band model of electronic structure, along with Moriya’s model of weak itinerant magnetism, describes this system surprisingly well, phenomenological models for the DM interaction strength are not adequate to describe this system.« less
Numerical Study of Microstructural Evolution During Homogenization of Al-Si-Mg-Fe-Mn Alloys
NASA Astrophysics Data System (ADS)
Priya, Pikee; Johnson, David R.; Krane, Matthew J. M.
2016-09-01
Microstructural evolution during homogenization of Al-Si-Mg-Fe-Mn alloys occurs in two stages at different length scales: while holding at the homogenization temperature (diffusion on the scale of the secondary dendrite arm spacing (SDAS) in micrometers) and during quenching to room temperature (dispersoid precipitation at the nanometer to submicron scale). Here a numerical study estimates microstructural changes during both stages. A diffusion-based model developed to simulate evolution at the SDAS length scale predicts homogenization times and microstructures matching experiments. That model is coupled with a Kampmann Wagner Neumann-based precipitate nucleation and growth model to study the effect of temperature, composition, as-cast microstructure, and cooling rates during posthomogenization quenching on microstructural evolution. A homogenization schedule of 853 K (580 °C) for 8 hours, followed by cooling at 250 K/h, is suggested to optimize microstructures for easier extrusion, consisting of minimal α-Al(FeMn)Si, no β-AlFeSi, and Mg2Si dispersoids <1 μm size.
Synthesis Gas Conversion over Rh-Based Catalysts Promoted by Fe and Mn
Liu, Yifei; Göeltl, Florian; Ro, Insoo; ...
2017-06-13
Rh/SiO2 catalysts promoted with Fe and Mn are selective for synthesis gas conversion to oxygenates and light hydrocarbons at 523 K and 580 psi. Selective anchoring of Fe and Mn species on Rh nanoparticles was achieved by controlled surface reactions and was evidenced by ultraviolet–visible absorption spectroscopy, scanning transmission electron microscopy, and inductively coupled plasma absorption emission spectroscopy. The interaction between Rh and Fe promotes the selective production of ethanol through hydrogenation of acetaldehyde and enhances the selectivity toward C2 oxygenates, which include ethanol and acetaldehyde. The interaction between Rh and Mn increases the overall reaction rate and the selectivitymore » toward C2+ hydrocarbons. The combination of Fe and Mn on Rh/SiO2 results in trimetallic Rh-Fe-Mn catalysts that surpass the performance of their bimetallic counterparts. The highest selectivities toward ethanol (36.9%) and C2 oxygenates (39.6%) were achieved over the Rh-Fe-Mn ternary system with a molar ratio of 1:0.15:0.10, as opposed to the selectivities obtained over Rh/SiO2, which were 3.5% and 20.4%, respectively. The production of value-added oxygenates and C2+ hydrocarbons over this trimetallic catalyst accounted for 55% of the total products. X-ray photoelectron spectroscopy measurements suggest that significant fractions of the Fe and Mn species exist as metallic iron and manganese oxides on the Rh surface upon reduction. These findings are rationalized by density functional theory (DFT) calculations, which reveal that the exact state of metals on the surfaces is condition-dependent, with Mn present as Mn(I) and Mn(II) oxide on the Rh (211) step edges and Fe present as Fe(I) oxide on the step edge and metallic subsurface iron on both Rh steps and terraces. CO Fourier transform infrared spectroscopy and DFT calculations suggest that the binding of CO to Rh (211) step edges modified by Fe and/or manganese oxide is altered in comparison to CO adsorption on a clean Rh (211) surface. These results suggest that Mn2Ox species and Fe and Fe2O modify bonding at Rh step edges and shift reaction selectivity away from CH4.« less
Sulfur evolution in chemical looping combustion of coal with MnFe2O4 oxygen carrier.
Wang, Baowen; Gao, Chuchang; Wang, Weishu; Zhao, Haibo; Zheng, Chuguang
2014-05-01
Chemical looping combustion (CLC) of coal has gained increasing attention as a novel combustion technology for its advantages in CO2 capture. Sulfur evolution from coal causes great harm from either the CLC operational or environmental perspective. In this research, a combined MnFe2O4 oxygen carrier (OC) was synthesized and its reaction with a typical Chinese high sulfur coal, Liuzhi (LZ) bituminous coal, was performed in a thermogravimetric analyzer (TGA)-Fourier transform infrared (FT-IR) spectrometer. Evolution of sulfur species during reaction of LZ coal with MnFe2O4 OC was systematically investigated through experimental means combined with thermodynamic simulation. TGA-FTIR analysis of the LZ reaction with MnFe2O4 indicated MnFe2O4 exhibited the desired superior reactivity compared to the single reference oxides Mn3O4 or Fe2O3, and SO2 produced was mainly related to oxidization of H2S by MnFe2O4. Experimental analysis of the LZ coal reaction with MnFe2O4, including X-ray diffraction and X-ray photoelectron spectroscopy analysis, verified that the main reduced counterparts of MnFe2O4 were Fe3O4 and MnO, in good agreement with the related thermodynamic simulation. The obtained MnO was beneficial to stabilize the reduced MnFe2O4 and avoid serious sintering, although the oxygen in MnO was not fully utilized. Meanwhile, most sulfur present in LZ coal was converted to solid MnS during LZ reaction with MnFe2O4, which was further oxidized to MnSO4. Finally, the formation of both MnS and such manganese silicates as Mn2SiO4 and MnSiO3 should be addressed to ensure the full regeneration of the reduced MnFe2O4. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
Review of Manganese Processing for Production of TRIP/TWIP Steels, Part 2: Reduction Studies
NASA Astrophysics Data System (ADS)
Elliott, R.; Coley, K.; Mostaghel, S.; Barati, M.
2018-02-01
Production of ultrahigh-manganese steels is expected to result in significant increase in demand for low-carbon (LC) ferromanganese (FeMn) and silicomanganese (SiMn). Current manganese processing techniques are energy intensive and typically yield a high-carbon product. The present work therefore reviews available literature regarding carbothermic reduction of Mn oxides and ores, with the objective of identifying opportunities for future process development to mitigate the cost of LC FeMn and SiMn. In general, there is consensus that carbothermic reduction of Mn oxides and ores is limited by gasification of carbon. Conditions which enhance or bypass this step (e.g., by application of CH4) show higher rates of reduction at lower temperatures. This phenomenon has potential application in solid-state reduction of Mn ore. Other avenues for process development include optimization of the prereduction step in conventional FeMn production and metallothermic reduction as a secondary reduction step.
Machine Casting of Ferrous Alloys
1975-10-01
casting from entrapped air. This fact, together with the lower amount of solidification shrinkage of semi-solid alloys , results in the now firmly...compositions and solidification ranges. Figures 5 and 6 illustrate -24- typical quenched microstructures obtained for several of the alloys investi...COBALT SUPERALLOY Cu - 10%Sn - 2%Zn Fe - 2.6%C - 3.2% Si Fe - 17%Cr - l% Si l%Mn - 1.1%C Fe - 17%Cr - USi l%Mn - 0.6%C Fe - 18.5%Cr - 9.5% Ni 0.08
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhital, C.; DeBeer-Schmitt, L.; Zhang, Q.
By using magnetization and small-angle neutron scattering (SANS) measurements, we have investigated the magnetic behavior of the Mn 1-xIr xSi system to explore the effect of increased carrier density and spin-orbit interaction on the magnetic properties of MnSi. We determine estimates of the spin wave stiffness and the Dzyalloshinski-Moriya (DM) interaction strength and compare with Mn 1-xCo xSi and Mn 1-xFe xSi. Despite the large differences in atomic mass and size of the substituted elements, Mn 1-xCo xSi and Mn 1-xIr xSi show nearly identical variations in their magnetic properties with substitution. We find a systematic dependence of the transitionmore » temperature, the ordered moment, the helix period, and the DM interaction strength with electron count for Mn 1-xIr xSi, Mn 1-xCo xSi, and Mn 1-xFe xSi, indicating that the magnetic behavior is primarily dependent upon the additional carrier density, rather than on the mass or size of the substituting species. This indicates that the variation in magnetic properties, including the DM interaction strength, is primarily controlled by the electronic structure, as Co and Ir are isovalent. Our work suggests that although the rigid band model of electronic structure, along with Moriya’s model of weak itinerant magnetism, describes this system surprisingly well, phenomenological models for the DM interaction strength are not adequate to describe this system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sypek, John T.; Yu, Hang; Dusoe, Keith J.
Shape memory materials have the ability to recover their original shape after a significant amount of deformation when they are subjected to certain stimuli, for instance, heat or magnetic fields. But, their performance is often limited by the energetics and geometry of the martensitic-austenitic phase transformation. We report a unique shape memory behavior in CaFe 2As 2, which exhibits superelasticity with over 13% recoverable strain, over 3 GPa yield strength, repeatable stress–strain response even at the micrometer scale, and cryogenic linear shape memory effects near 50 K. These properties are acheived through a reversible uni-axial phase transformation mechanism, the tetragonal/orthorhombic-to-collapsed-tetragonalmore » phase transformation. These results offer the possibility of developing cryogenic linear actuation technologies with a high precision and high actuation power per unit volume for deep space exploration, and more broadly, suggest a mechanistic path to a class of shape memory materials, ThCr 2Si 2-structured intermetallic compounds.« less
A case of Alzheimer's disease in magmatic crystals
NASA Astrophysics Data System (ADS)
Costa Rodriguez, F.; Bouvet de Maisonneuve, C.
2012-12-01
The reequilibration of chemical zoning in crystals from volcanic rocks is increasingly used to determine the duration of the processes involved in their origin, residence and transport. There now exist a good number of determinations of diffusion coefficients in olivine (Fe-Mg, Mn, Ca, Ni, Cr), plagioclase (CaAl-NaSi, Mg, Sr, Ba, REE), pyroxenes (Fe-Mg, Mn, Ca, REE) and quartz (Ti), but most studies have used a single element or component in a single mineral group. Although this is a good approach, it can only access a limited range of time scales, typically the short-term memory of the crystal. In other words, for process durations that are longer than the combination of the diffusivity and diffusion distance (and for a constant boundary), the long-term memory of the crystal might have been lost. This could explain why most time determinations of magmatic processes from volcanic rocks give times of about < 100 years, and why these are shorter than the thousands of years obtained from U-Th series disequilibrium isotopes. We have done a series of numerical calculations and natural observation to determine the time windows that can be accessed with different elements and minerals, and how they may affect the time scales and interpretations of processes that the crystals might be recording. We have looked at two end-members representative of mafic and silicic magmas by changing the temperature and mineral compositions. 3 dimensional calculations of diffusion reequilibration at the center of a 1 x 0.5 x 0.5 mm crystal and using a constant boundary as first case. We find that for mafic magma and olivine, 90 % of equilibration of Fe-Mg, Mn, and Ni occurs in a few decades, but gradients in Ca and Cr persist for a few thousand years. These results can for example explain the large ranges of Ca and Cr contents at a given Fe/Mg of olivine, and why apparently contradictory times can be obtained from elements with different diffusivities in the same crystal. At the same time these findings also highlight that there is a long-term memory of the crystal that is typically not accessed by current studies. However, unraveling this memory is more complex because it seems unrealistic to assume a constant composition at the boundary for hundreds or thousands of years, and because crystals can be growing and dissolving multiple times. Additional models considering growth and a variable boundary show that a significant part of the memory is lost by multiple changes in concentration being superimposed at the crystal rim. Here we also report a case where accessing the older history of the crystals might be possible by a combination of X-Ray element maps plus multiple element zoning traverses (Fe-Mg, Ca, Mn, Ni, Al, P, Cr) in olivine from Llaima volcano (Chile). Element distributions reveal that the crystals had an early history of fast growth. The delicate structures of P zoning have been used to recognize any crystal dissolution. Cr, Fe-Mg, Ni, Mn are zoned but the times obtained from Cr are 4 x longer than those of the other elements. Our interpretation is that the Cr zoning records the older memory of the crystal since eruption but that of Fe-Mg has lost part of the memory due to multiple changes at the rim or complete homogenization of the crystal. Thus using multiple elements and minerals allow accessing the long and short term memory of the crystals and associated magma.
NASA Astrophysics Data System (ADS)
Chen, Jian; Zhang, Weijie; Zhang, Min; Guo, Zhen; Wang, Haibao; He, Mengni; Xu, Pengping; Zhou, Jiajia; Liu, Zhenbang; Chen, Qianwang
2015-07-01
Artemisinin (ART) is a natural drug with potent anticancer activities related with Fe2+ mediated cleavage of the endoperoxide bridge in ART. Herein, we reported that Mn2+ could substitute for Fe2+ to react with ART and generate toxic products, inducing a much higher anticancer efficiency. On this basis, we prepared pH-responsive Fe3O4@MnSiO3-FA nanospheres which can efficiently deliver hydrophobic ART into tumors in mice models. Mn2+ was released in acidic tumor environments and intracellular lysosomes, interacting with ART to kill cancer cells. The ART-loaded nanocarriers could suppress tumor growth more efficiently than free ART, which could be further illustrated by magnetic resonance imaging (MRI). Histological analysis revealed that the drug delivery system had no obvious effect on the major organs of mice. ART has been reported to have lower toxicity than chemotherapeutics. The ART-loaded nanocarriers are promising to be used in improving the survival of chemotherapy patients, providing a novel method for clinical tumor therapy.Artemisinin (ART) is a natural drug with potent anticancer activities related with Fe2+ mediated cleavage of the endoperoxide bridge in ART. Herein, we reported that Mn2+ could substitute for Fe2+ to react with ART and generate toxic products, inducing a much higher anticancer efficiency. On this basis, we prepared pH-responsive Fe3O4@MnSiO3-FA nanospheres which can efficiently deliver hydrophobic ART into tumors in mice models. Mn2+ was released in acidic tumor environments and intracellular lysosomes, interacting with ART to kill cancer cells. The ART-loaded nanocarriers could suppress tumor growth more efficiently than free ART, which could be further illustrated by magnetic resonance imaging (MRI). Histological analysis revealed that the drug delivery system had no obvious effect on the major organs of mice. ART has been reported to have lower toxicity than chemotherapeutics. The ART-loaded nanocarriers are promising to be used in improving the survival of chemotherapy patients, providing a novel method for clinical tumor therapy. Electronic supplementary information (ESI) available: Iron mediated degradation mechanism for artemisinin, mechanism of alkylation of iron(ii)-heme or iron(ii)/heme dimethylester by artemisinin, mechanism of alkylation of the heme model MnIITPP by artemisinin, schematic illustration of the synthesis of ART-loaded Fe3O4@MnSiO3-FA nanospheres, further characterization such as XRD and EDX patterns, N2 adsorption and desorption isotherm and BJH pore distribution, FT-IR spectra, UV-vis spectra, DLS and parallel test results of flow cytometric detection are given in Fig. S1-S13, Fe2+ or Mn2+ release from Fe3O4@MnSiO3 nanospheres in PBS at different pHs is given in Table S1. See DOI: 10.1039/c5nr02402a
Wang, Zemin; Fang, Xulei; Li, Hui; Liu, Wenqing
2017-04-01
The formation of copper-rich precipitates of 17-4 precipitate hardened stainless steel has been investigated, after tempering at 350-570°C for 4 h, by atom probe tomography (APT). The results reveal that the clusters, enriched only with Cu, were observed after tempering at 420°C. Segregation of Ni, Mn to the Cu-rich clusters took place at 450°C, contributing to the increased hardening. After tempering at 510°C, Ni and Mn were rejected from Cu-rich precipitates and accumulated at the precipitate/matrix interfaces. Al and Si were present and uniformly distributed in the precipitates that were <1.5 nm in radius, but Ni, Mn, Al, and Si were enriched at the interfaces of larger precipitates/matrix. The proxigram profiles of the Cu-rich precipitates formed at 570°C indicated that Ni, Mn, Al, and Si segregated to the precipitate/matrix interfaces to form a Ni(Fe, Mn, Si, Al) shell, which significantly reduced the interfacial energy as the precipitates grew into an elongated shape. In addition, the number density of Cu-rich precipitates was increased with the temperature elevated from 350 up to 450°C and subsequently decreased at higher temperatures. Also, the composition of the matrix and the precipitates were measured and found to vary with temperature.
NASA Astrophysics Data System (ADS)
Wang, Kuang-Kuo; Hsu, Chiung-Wen; Chang, Liuwen; Gan, Dershin; Yang, Kuo-Cheng
2013-11-01
This study investigated the interaction between the Al in the Zn bath and the surface oxides formed by selective oxidation on a 1.2Si-1.5Mn TRIP steel during hot-dip galvanizing. XPS and TEM were employed for characterization. The results indicated that the amorphous xMnO·SiO2 oxide could react with Al to form a Si-Mn-Al-containing oxide. The crystalline MnSiO3 and Mn2SiO4 oxides could be largely reduced by Al to form holes in the oxide film. Consequently, the steel covered by a layer of mixed xMnO·SiO2 and MnSiO3 could form a continuous Fe2Al5 inhibition layer and showed the highest galvanizability among the three samples examined.
Gunst, S; Weinbruch, S; Wentzel, M; Ortner, H M; Skogstad, A; Hetland, S; Thomassen, Y
2000-02-01
Aerosol particle samples were collected at ELKEM ASA ferromanganese (FeMn) and silicomanganese (SiMn) smelters at Porsgrunn, Norway, during different production steps: raw material mixing, welding of protective steel casings, tapping of FeMn and slag, crane operation moving the ladles with molten metal, operation of the Metal Oxygen Refinement (MOR) reactor and casting of SiMn. Aerosol fractions were assessed for the analysis of the bulk elemental composition as well as for individual particle analysis. The bulk elemental composition was determined by inductively coupled plasma atomic emission spectrometry. For individual particle analysis, an electron microprobe was used in combination with wavelength-dispersive techniques. Most particles show a complex composition and cannot be attributed to a single phase. Therefore, the particles were divided into six groups according to their chemical composition: Group I, particles containing mainly metallic Fe and/or Mn; Group II, slag particles containing mainly Fe and/or Mn oxides; Group III, slag particles consisting predominantly of oxidized flux components such as Si, Al, Mg, Ca, Na and K; Group IV, particles consisting mainly of carbon; Group V, mixtures of particles from Groups II, III and IV; Group VI, mixtures of particles from Groups II and III. In raw material mixing, particles originating from the Mn ores were mostly found. In the welding of steel casings, most particles were assigned to Group II, Mn and Fe oxides. During the tapping of slag and metal, mostly slag particles from Group III were found (oxides of the flux components). During movement of the ladles, most particles came from Group II. At the MOR reactor, most of the particles belonged to the slag phase consisting of the flux components (Group III). The particles collected during the casting of SiMn were mainly attributed to the slag phase (Groups III and V). Due to the compositional complexity of the particles, toxicological investigations on the kinetics of pure compounds may not be easily associated with the results of this study.
NASA Astrophysics Data System (ADS)
Surour, Adel A.
2015-01-01
In the Jabal Samran area (western Saudi Arabia), secondary copper mineralization in a NE-trending shear zone in which the arc metavolcanic host rocks (dacite-rhyodacite) show conjugate fractures and extensive hydrothermal alteration and bleaching. The zones contain frequent Fe-Mn(III) oxyhydroxides (FeOH-MnOH) that resulted from oxidation of pyrite and Mn-bearing silicates. In the bleached part, the groundmass is represented by Fe-bearing interstratified illite-smectite with up to 4.02 wt% FeOt. FeOH-MnOH are pre-weathering phases formed by hydrothermal alteration in a submarine environment prior to uplifting. Five varieties of FeOH are distinguished, four of them are exclusively hydrothermal with ∼20 wt% H2O whereas the fifth contains ∼31-33 wt% H2O and might represent reworking of earlier hydrothermal FeOH phases by weathering. FeOH fills thin fractures in the form of veinlets and crenulated laminae or as a pseudomorph for pyrite, goethite and finally ferrihydrite, and this oxyhydroxide is characterized by positive correlation of Fe2O3 with SiO2 and Al2O3. On the other hand, MOH shows positive correlation between MnO2 and Al2O3 whereas it is negative between Fe2O3 and SiO2. Paratacamite is the most common secondary copper mineral that fills fractures and post-dates FeOH and MnOH. It is believed that Cl- in the structure of paratacamite represents inherited marine storage rather than from surfacial evaporates or meteoric water. The mineralogy of slags suggests a complicated mineral assemblage that includes native Cu prills, synthetic spinifixed Mn-rich amphiboles with 16.73 wt% MnO, brown glass and Ca-Mn-Fe phase close to the olivine structure. EMPA indicate that the some Cu prills have either grey discontinuous boarder zone of S-rich Mn-Cu alloy (with up to 21.95 wt% S and 19.45 wt% Mn) or grey Cu-Mn-Fe alloy (with up to 15.9 wt% Cu, 39. 12 wt% Mn and 61.64 wt% Fe). Mn in the Cu prills is expelled inward as Cu-Mn-Fe alloy inclusions whereas S is expelled outward as S-rich Mn-Cu alloy crust. Remains in the Samran smelter sites suggest the use of charcoal as a source of energy, quartzite as a flux and an air-cooling technique was used.
Ferrorhodonite, CaMn3Fe[Si5O15], a new mineral species from Broken Hill, New South Wales, Australia
NASA Astrophysics Data System (ADS)
Shchipalkina, Nadezhda V.; Chukanov, Nikita V.; Pekov, Igor V.; Aksenov, Sergey M.; McCammon, Catherine; Belakovskiy, Dmitry I.; Britvin, Sergey N.; Koshlyakova, Natalya N.; Schäfer, Christof; Scholz, Ricardo; Rastsvetaeva, Ramiza K.
2017-05-01
The new mineral ferrorhodonite, a Mn2+-Fe2+ ordered analogue of rhodonite with the idealized formula CaMn3Fe[Si5O15], was found in the manganese-rich metamorphic rocks of the Broken Hill Pb-Zn-Ag deposit, Yancowinna Co., New South Wales, Australia. Ferrorhodonite occurs as brownish red coarsely crystalline aggregates in association with galena, chalcopyrite, spessartine, and quartz. The mineral is brittle. Its Mohs hardness is 6. Cleavage is perfect on {201} and good on {021} and {210}. The measured and calculated values of density are 3.71 (2) and 3.701 g cm-3, respectively. Ferrorhodonite is optically biaxial positive, with α = 1.731 (4), β = 1.736 (4), γ = 1.745 (5) and 2 V (meas.) = 80 (10)°. The average chemical composition of ferrorhodonite is (electron-microprobe data, wt%): CaO 7.09, MgO 0.24, MnO 32.32, FeO 14.46, ZnO 0.36, SiO2 46.48, and total 100.95. The empirical formula calculated on 15 O apfu ( Z = 2) is Ca0.81Mn2.92Fe1.29Mg0.04Zn0.03Si4.96O15. The Mössbauer and IR spectra are reported. The strongest reflections in the powder X-ray diffraction pattern [( d, Å ( I, %) ( hkl)] are: 3.337 (32) (-1-13), 3.132 (54) (-210), 3.091 (41) (0-23), 2.968 (100) (-2-11), 2.770 (91) (022), 2.223 (34) (-204), 2.173 (30) (-310). Ferrorhodonite is isostructural with rhodonite. The crystal structure was solved based on single-crystal X-ray diffraction data and refined to R 1 = 4.02% [for 3114 reflections with I > 2 σ( I)]. The mineral is triclinic, space group P \\bar{1}, a = 6.6766 (5), b = 7.6754 (6), c = 11.803 (1) Å, α = 105.501 (1)°, β = 92.275 (1)°, γ = 93.919 (1)°; V = 580.44 (1). The crystal-chemical formula of ferrorhodonite inferred to be: M5(Ca0.81Mn0.19) M1-3(Mn2.52Fe0.48) M4(Fe 0.81 2+ Mn0.12Mg0.04Zn0.03) [Si5O15]..
Structure and soft magnetic properties of Fe-Si-B-P-Cu nanocrystalline alloys with minor Mn addition
NASA Astrophysics Data System (ADS)
Jia, Xingjie; Li, Yanhui; Wu, Licheng; Zhang, Wei
2018-05-01
Addition of minor Mn effectively improves the amorphous-forming ability and thermal stability of the Fe85Si2B8P4Cu1 alloy. With increasing the Mn content from 0 to 3 at.%, the critical thickness for amorphous formation and onset temperature of the primary crystallization increase from 14 μm and 659 K to 27 μm and 668 K, respectively. The fine nanocrystalline structure with α-Fe grains in size (D) of < 20 nm was obtained for the annealed amorphous alloys, which show excellent soft magnetic properties. The alloying of Mn reduces the coercivity (Hc) by decreasing the D value and widens the optimum annealing temperature range for obtaining low Hc, although the saturation magnetic flux density (Bs) is decreased slightly. The Fe83Mn2Si2B8P4Cu1 nanocrystalline alloy possesses fine structure with a D of ˜17.5 nm, and exhibits a high Bs of ˜1.75 T and a low Hc of ˜5.9 A/m. The mechanism related to the alloying effects on the structure and magnetic properties was discussed in term of the crystallization activation energy.
Effect of Fe-Mn addition on microstructure and magnetic properties of NdFeB magnetic powders
NASA Astrophysics Data System (ADS)
Kurniawan, C.; Purba, A. S.; Setiadi, E. A.; Simbolon, S.; Warman, A.; Sebayang, P.
2018-03-01
In this paper, the effect of Fe-Mn alloy addition on microstructures and magnetic properties of NdFeB magnetic powders was investigated. Varied Fe-Mn compositions of 1, 5, and 10 wt% were mixed with commercial NdFeB type MQA powders for 15 minutes using shaker mill. The characterizations were performed by powder density, PSA, XRD, SEM, and VSM. The Fe-Mn addition increased the powder density of NdFeB/Fe-Mn powders. On the other side, particle size distribution slightly decreased as the Fe-Mn composition increases. Magnetic properties of NdFeB/Fe-Mn powders changed with the increasing of Fe-Mn content. SEM analysis showed the particle size of NdFeB/Fe-Mn powder was smaller as the Fe-Mn composition increases. It showed that NdFeB/Fe-Mn particles have different size and shape for NdFeB and Fe-Mn particles separately. The optimum magnetic properties of NdFeB/Fe-Mn powder was achieved on the 5 wt% Fe-Mn composition with remanence M r = 49.45 emu/g, coercivity H c = 2.201 kOe, and energy product, BH max = 2.15 MGOe.
Lattice sites of ion-implanted Mn, Fe and Ni in 6H-SiC
NASA Astrophysics Data System (ADS)
Costa, A. R. G.; Wahl, U.; Correia, J. G.; David-Bosne, E.; Amorim, L. M.; Augustyns, V.; Silva, D. J.; da Silva, M. R.; Pereira, L. M. C.
2018-01-01
Using radioactive isotopes produced at the CERN-ISOLDE facility, the lattice location of the implanted transition metal (TM) ions 56Mn, 59Fe and 65Ni in n-type single-crystalline hexagonal 6H-SiC was studied by means of the emission channeling technique. TM probes on carbon coordinated tetrahedral interstitial sites (T C) and on substitutional silicon sites (S Si,h+k ) were identified. We tested for but found no indication that the TM distribution on S Si sites deviates from the statistical mixture of 1/3 hexagonal and 2/3 cubic sites present in the 6H crystal. The TM atoms partially disappear from T C positions during annealing at temperatures between 500 °C and 700 °C which is accompanied by an increase on S Si and random sites. From the temperature associated with these site changes, interstitial migration energies of 1.7-2.7 eV for Mn and Ni, and 2.3-3.2 eV for Fe were estimated. TM lattice locations are compared to previous results obtained in 3C-SiC using the same technique.
GW study of the half-metallic Heusler compounds Co2MnSi and Co2FeSi
NASA Astrophysics Data System (ADS)
Meinert, Markus; Friedrich, Christoph; Reiss, Günter; Blügel, Stefan
2012-12-01
Quasiparticle spectra of potentially half-metallic Co2MnSi and Co2FeSi Heusler compounds have been calculated within the one-shot GW approximation in an all-electron framework without adjustable parameters. For Co2FeSi the many-body corrections are crucial: a pseudogap opens and good agreement of the magnetic moment with experiment is obtained. Otherwise, however, the changes with respect to the density-functional-theory starting point are moderate. For both cases we find that photoemission and x-ray absorption spectra are well described by the calculations. By comparison with the GW density of states, we conclude that the Kohn-Sham eigenvalue spectrum provides a reasonable approximation for the quasiparticle spectrum of the Heusler compounds considered in this work.
Antiferromagnetic CuMnAs multi-level memory cell with microelectronic compatibility
NASA Astrophysics Data System (ADS)
Olejník, K.; Schuler, V.; Marti, X.; Novák, V.; Kašpar, Z.; Wadley, P.; Campion, R. P.; Edmonds, K. W.; Gallagher, B. L.; Garces, J.; Baumgartner, M.; Gambardella, P.; Jungwirth, T.
2017-05-01
Antiferromagnets offer a unique combination of properties including the radiation and magnetic field hardness, the absence of stray magnetic fields, and the spin-dynamics frequency scale in terahertz. Recent experiments have demonstrated that relativistic spin-orbit torques can provide the means for an efficient electric control of antiferromagnetic moments. Here we show that elementary-shape memory cells fabricated from a single-layer antiferromagnet CuMnAs deposited on a III-V or Si substrate have deterministic multi-level switching characteristics. They allow for counting and recording thousands of input pulses and responding to pulses of lengths downscaled to hundreds of picoseconds. To demonstrate the compatibility with common microelectronic circuitry, we implemented the antiferromagnetic bit cell in a standard printed circuit board managed and powered at ambient conditions by a computer via a USB interface. Our results open a path towards specialized embedded memory-logic applications and ultra-fast components based on antiferromagnets.
Improved thermal stability of Mn-Ir-based magnetic tunnel junction with nano-oxide layer
NASA Astrophysics Data System (ADS)
Yoon, S. Y.; Kim, Y. I.; Lee, D. H.; Kim, Y. S.; Suh, S. J.
2004-06-01
Si/SiO2/Ta/NiFe/Mn-Ir/CoFe/NOL/CoFe/Al-O/CoFe/NiFe/Ta bottom conventional (without nano-oxide layer, NOL) and specular (with NOL) MTJs were prepared by DC magnetron sputtering methods. In the case of a conventional MTJ, the TMR ratio increased up to 300 °C but the TMR ratio of a specular MTJ increased up to 400 °C. The highest TMR ratios of two samples after annealing at each optimal temperature were 21.6% (conventional MTJ) and 22.7% (specular MTJ), respectively, This improved thermal property of the specular MTJ is due to the NOL, which could act as a diffusion barrier for Mn. The bias-voltage dependence of both samples was vastly improved after annealing at each optimal temperature.
The Evolution of Second-Phase Particles in 6111 Aluminum Alloy Processed by Hot and Cold Rolling
NASA Astrophysics Data System (ADS)
Zhang, Lixin; Wang, Yihan; Ni, Song; Chen, Gang; Li, Kai; Du, Yong; Song, Min
2018-03-01
The evolution of coarse Al9.9Fe2.65Ni1.45 phase, spherical Al12(Mn,Fe)3Si phase and rod-like Q phase in a 6111 aluminum alloy during hot and cold rolling deformation processes was systematically investigated in this work. The results showed that the coarse Al9.9Fe2.65Ni1.45 particles are mainly distributed at the grain boundaries, accompanied by the co-formation of Al12(Fe,Mn)3Si phase and Mg2Si phase, while the spherical Al12(Mn,Fe)3Si particles are mainly distributed in the grain interiors. Hot rolling has little effects on the size and distribution of both phases, but cold deformation can severely decrease the size of the particles by breaking the particles into small pieces. In addition, the temperature of 450 °C is not high enough for the dissolution of Q phase in the Al matrix, but the Q particles can be broken into small pieces due to the stress concentration during both hot and cold rolling deformation. In addition, the influences of phase evolution, dislocations and recrystallization on the mechanical properties evolution were also discussed.
A new Fe-Mn-Si alloplastic biomaterial as bone grafting material: In vivo study
NASA Astrophysics Data System (ADS)
Fântânariu, Mircea; Trincă, Lucia Carmen; Solcan, Carmen; Trofin, Alina; Strungaru, Ştefan; Şindilar, Eusebiu Viorel; Plăvan, Gabriel; Stanciu, Sergiu
2015-10-01
Designing substrates having suitable mechanical properties and targeted degradation behavior is the key's development of bio-materials for medical application. In orthopedics, graft material may be used to fill bony defects or to promote bone formation in osseous defects created by trauma or surgical intervention. Incorporation of Si may increase the bioactivity of implant locally, both by enhancing interactions at the graft-host interface and by having a potential endocrine like effect on osteoblasts. A Fe-Mn-Si alloy was obtained as alloplastic graft materials for bone implants that need long recovery time period. The surface morphology of the resulted specimens was investigated using scanning electrons microscopy (VegaTescan LMH II, SE detector, 30 kV), X-ray diffractions (X'Pert equipment) or X-ray dispersive energy analyze (Bruker EDS equipment). This study objective was to evaluate in vivo the mechanisms of degradation and the effects of its implantation over the main metabolic organs. Biochemical, histological, plain X radiography and computed tomography investigations showed good compatibility of the subcutaneous implants in the rat organism. The implantation of the Fe-Mn-Si alloy, in critical size bone (tibiae) defect rat model, did not induced adverse biological reactions and provided temporary mechanical support to the affected bone area. The biodegradation products were hydroxides layers which adhered to the substrate surface. Fe-Mn-Si alloy assured the mechanical integrity in rat tibiae defects during bone regeneration.
Wear and corrosion resistance of laser-cladded Fe-based composite coatings on AISI 4130 steel
NASA Astrophysics Data System (ADS)
Fan, Li; Chen, Hai-yan; Dong, Yao-hua; Dong, Li-hua; Yin, Yan-sheng
2018-06-01
The wear and corrosion resistance of Fe72.2Cr16.8Ni7.3Mo1.6Mn0.7C0.2Si1.2 and Fe77.3Cr15.8Ni3.9Mo1.1Mn0.5C0.2Si1.2 coatings laser-cladded on AISI 4130 steel were studied. The coatings possess excellent wear and corrosion resistance despite the absence of expensive yttrium, tungsten, and cobalt and very little molybdenum. The microstructure mainly consists of dendrites and eutectic phases, such as duplex (γ+α)-Fe and the Fe-Cr (Ni) solid solution, confirmed via energy dispersive spectrometry and X-ray diffraction. The cladded Fe-based coatings have lower coefficients of friction, and narrower and shallower wear tracks than the substrate without the cladding, and the main wear mechanism is mild abrasive wear. Electrochemical test results suggest that the soft Fe72.2Cr16.8Ni7.3Mo1.6Mn0.7C0.2Si1.2 coating with high Cr and Ni concentrations has high passivation resistance, low corrosion current, and positive corrosion potential, providing a better protective barrier layer to the AISI 4130 steel against corrosion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aireddy, H.; Das, A. K., E-mail: amal@phy.iitkgp.ernet.in
2016-05-06
Fe{sub 2.5}Mn{sub 0.5}O{sub 4}/p-Si heterojunction was fabricated using a pulsed laser deposition technique and investigated it’s structural and electrical transport properties. The high-resolution transmission electron microscopy results reveal the formation of a polycrystalline film on silicon substrate. The heterojunction shows good rectifying property and giant negative junction magnetoresistance especially in reverse bias condition at room temperature. The origin of this giant negative junction magnetoresistance may be attributing to the injection of electrons to the majority spin-up band of the Fe{sub 2.5}Mn{sub 0.5}O{sub 4} film.
Mechanical and shape memory properties of ferromagnetic Ni2MnGa sputter-deposited films
NASA Astrophysics Data System (ADS)
Ohtsuka, M.; Matsumoto, M.; Itagaki, K.
2003-10-01
The ternary intermetallic compound Ni2MnGa is an intelligent material, which has a shape memory effect and a ferromagnetic property. Use of shape memory alloy films for an actuator of micro machines is very attractive because of its large recovery force. The data of mechanical and shape memory properties of the films are required to use for the actuator. The purpose of this study is to investigate the effects of fabrication conditions and to clarify the relationships between these properties and fabrication conditions of the Ni{2}MnGa films. The Ni{2}MnGa films were deposited with a radio-frequency magnetron sputtering apparatus using a Ni{50}Mn{25}Ga{25} or Ni{52}Mn{24}Ga{24} target. After deposition, the films were annealed at 873sim 1173 K. The asdeposited films were crystalline and had columnar grains. After the heat treatment, the grains widened and the grain boundary became indistinct with increasing heat treatment temperature. MnO and Ni{3} (Mn, Ga) precipitations were observed in the heat-treated films. The mechanical properties of the films were measured by the nanoindentation method. Hardness and elastic modulus of as-deposited films were larger than those of arcmelted bulk alloys. The hardness of the films was affected by the composition, crystal structure, microstructure and precipitation, etc. The elastic modulus of the films was also changed with the heat treatment conditions. The heat-treated films showed a thermal two-way shape memory effect.
Observation of the TWIP + TRIP Plasticity-Enhancement Mechanism in Al-Added 6 Wt Pct Medium Mn Steel
NASA Astrophysics Data System (ADS)
Lee, Seawoong; Lee, Kyooyoung; De Cooman, Bruno C.
2015-06-01
The intercritically annealed Fe-0.15 pctC-6.0 pctMn-1.5 pctSi-3.0 pctAl and Fe-0.30 pctC-6.0 pctMn-1.5 pctSi-3.0 pctAl medium Mn steels were found to have improved mechanical properties due to the TWIP and TRIP plasticity-enhancing mechanisms being activated in succession during tensile deformation. The increase of the C content from 0.15 to 0.30 pct resulted in ultra-high strength properties and a strength-ductility balance of approximately 65,000 MPa-pct, i.e., equivalent to the strength-ductility balance of high Mn TWIP steel with a fully austenitic microstructure.
Orbital ordering in FeV2O4: Spinel with two orbitally active sites
NASA Astrophysics Data System (ADS)
Sarkar, Soumyajit; Saha-Dasgupta, T.
2011-12-01
By employing first-principles electronic structure calculations, we investigate orbital ordering in FeV2O4, a spinel with orbital degrees of freedom both at Fe and V sites that exhibits two tetragonal phases, one compressed at high temperature and another elongated at low temperature. Our first-principles study shows the ferro-orbital ordering of dx2-y2 and d3z2-r2 types at Fe sites at the high- and low-temperature phases, respectively. The orbital ordering at V sites is found to consist of orbital chains running along different directions with orbitals rotated alternatively within each chain, similar to that found for MnV2O4 [S. Sarkar , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.102.216405 102, 216405 (2009)]. Further, we find that the single-ion anisotropy effect with hard and easy c axis favors the compressed and elongated tetrahedral shapes. This gives rise to magnetocrystalline anisotropy-dependent shapes, similar to that reported in the context of rare-earth-based magnetic shape memory alloys.
Transition metal intercalated bilayer silicene
NASA Astrophysics Data System (ADS)
Pandey, Dhanshree; Kamal, C.; Chakrabarti, Aparna
2018-04-01
We investigate the electronic and magnetic properties of Mn, Fe and Co-intercalated silicene bilayer with AA and AB stacking by using spin polarized density functional theory. The intercalation of Mn increases the gap between the two layers of silicene due to the larger atomic radii of Mn as compared to Fe and Co. Bader charge analysis has been performed to understand the bonding between the TM and Si atoms. This also helps in explaining the magnetic moment possessed by the composite systems after intercalating TM in between the layers of bilayer silicene system. This study reveals that a significant net magnetic moment is observed in cases of Mn-intercalated silicene bilayers, whereas Fe has a very small moment of 0.78 µB in the case of AA stacking configuration only. Co intercalation leads to net zero magnetic moment. Further, we find that Fe and Co marginally favor the AB stacking whereas Mn has a slight preference of the AA over the AB configuration. The composite systems, specifically when intercalated with Fe and Co atoms, favor a hybridization which is far away from sp3-like hybridization along the plane of Si atoms in bilayer silicene.
Diffusion Behavior of Mn and Si Between Liquid Oxide Inclusions and Solid Iron-Based Alloy at 1473 K
NASA Astrophysics Data System (ADS)
Kim, Sun-Joong; Tago, Hanae; Kim, Kyung-Ho; Kitamura, Shin-ya; Shibata, Hiroyuki
2018-06-01
In order to clarify the changes in the composition of oxide inclusions in steel, the effect of the metal and oxide composition on the reaction between solid Fe-based alloys and liquid multi-component oxides was investigated using the diffusion couple method at 1473 K. The measured concentration gradients of Mn and Si in the metal indicated that Mn diffused into the metal from the oxide, while the diffusion of Si occurred in the opposite direction. In addition, the MnO content in the oxide decreased with heat treatment time, while the SiO2 content increased. The compositional changes in both phases indicated that the Mn content in the metal near the interface increased with heat treatment with decreasing MnO content in the oxide. Assuming local equilibrium at the interface, the calculated [Mn]2/[Si] ratio at the interface in equilibrium with the oxide increased with increases in the MnO/SiO2 ratio in the oxide. The difference in the [Mn]2/[Si] ratios between the interface and the metal matrix increased, which caused the diffusion of Mn and Si between the multi-component oxide and metal. By measuring the diffusion lengths of Mn and Si in the metal, the chemical diffusion coefficients of Mn and Si were obtained to calculate the composition changes in Mn and Si in the metal. The calculated changes in Mn and Si in the metal agreed with the experimental results.
Fatigue-Crack-Growth Behavior of Two Pipeline Steels
Chen, Bilin; Wang, Gongyao; Chen, Shuying; ...
2016-10-17
This paper focuses on studying the fatigue-crack-growth behavior of two types of pipeline steels, and investigating their microstructural differences, which could influence the fatigue behavior. For fatigue experiments, compact-tension (CT) specimens are employed. These two kinds of base pipeline steels are Alloy B [Fe-0.05C-1.52Mn-0.12Si-0.092Nb, weight percent (wt.%)] and Alloy C [(Fe- 0.04C-1.61Mn-0.14Si-0.096Nb, wt.%)]. They have been tested at various frequencies (10 Hz, 1 Hz, and 0.1 Hz) and different R ratios (0.1 and 0.5, R = P min./P max. where P min. is the minimum applied load, and P max. is the maximum applied load) in air. The effects ofmore » frequencies and R ratios on crackpropagation behavior are compared. The microstructures of fracture surfaces are investigated, using both scanning-electron microscopy (SEM) and transmission-electron microscopy (TEM). It is concluded that higher R ratios lead to faster crack-growth rates, while frequency does not have much influence on the fatigue-crack-growth rates. Moreover, Alloy B (Fe-0.05C-1.52Mn-0.12Si-0.092Nb, wt.%) tends to have better fatigue resistance than Alloy C (Fe-0.04C-1.61Mn-0.14Si-0.096Nb, wt.%) under various test conditions in air.« less
Fatigue-Crack-Growth Behavior of Two Pipeline Steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Bilin; Wang, Gongyao; Chen, Shuying
This paper focuses on studying the fatigue-crack-growth behavior of two types of pipeline steels, and investigating their microstructural differences, which could influence the fatigue behavior. For fatigue experiments, compact-tension (CT) specimens are employed. These two kinds of base pipeline steels are Alloy B [Fe-0.05C-1.52Mn-0.12Si-0.092Nb, weight percent (wt.%)] and Alloy C [(Fe- 0.04C-1.61Mn-0.14Si-0.096Nb, wt.%)]. They have been tested at various frequencies (10 Hz, 1 Hz, and 0.1 Hz) and different R ratios (0.1 and 0.5, R = P min./P max. where P min. is the minimum applied load, and P max. is the maximum applied load) in air. The effects ofmore » frequencies and R ratios on crackpropagation behavior are compared. The microstructures of fracture surfaces are investigated, using both scanning-electron microscopy (SEM) and transmission-electron microscopy (TEM). It is concluded that higher R ratios lead to faster crack-growth rates, while frequency does not have much influence on the fatigue-crack-growth rates. Moreover, Alloy B (Fe-0.05C-1.52Mn-0.12Si-0.092Nb, wt.%) tends to have better fatigue resistance than Alloy C (Fe-0.04C-1.61Mn-0.14Si-0.096Nb, wt.%) under various test conditions in air.« less
NASA Astrophysics Data System (ADS)
Ranjbar, R.; Suzuki, K. Z.; Sugihara, A.; Ando, Y.; Miyazaki, T.; Mizukami, S.
2017-07-01
The thickness dependencies of the structural and magnetic properties for bilayers of cubic Co-based Heusler alloys (CCHAs: Co2FeAl (CFA), Co2FeSi (CFS), Co2MnAl (CMA), and Co2MnSi (CMS)) and D022-MnGa were investigated. Epitaxy of the B2 structure of CCHAs on a MnGa film was achieved; the smallest thickness with the B2 structure was found for 3-nm-thick CMS and CFS. The interfacial exchange coupling (Jex) was antiferromagnetic (AFM) for all of the CCHAs/MnGa bilayers except for unannealed CFA/MnGa samples. A critical thickness (tcrit) at which perpendicular magnetization appears of approximately 4-10 nm for the CMA/MnGa and CMS/MnGa bilayers was observed, whereas this thickness was 1-3 nm for the CFA/MnGa and CFS/MnGa films. The critical thickness for different CCHAs materials is discussed in terms of saturation magnetization (Ms) and the Jex .
Exploitation of Smart Materials and Sensors as Disruptive Technologies
2010-03-01
commercially available SMA, with current work aimed at new NiTi–X (X = Fe, Nb, Cu) alloys to further extend their range of properties and potential...ultra-light and micro-air vehicles. However, in common with alloy systems challenges exist regarding the long-term properties of polymeric-based SM... properties of single crystals of Ni-Mn-Ga magnetic shape memory alloys ", in Proc. SPIE, 186–197 (2004). 41 Gharghouri, M. A., Elsawy, A., & Hyatt
NASA Astrophysics Data System (ADS)
Tejnecký, V.; Samonil, P.; Boruvka, L.; Nikodem, A.; Drabek, O.; Valtera, M.
2013-12-01
Tree uprooting dynamics plays an important role in the development of forest ecosystems. This process causes bioturbation of soils and creates new microenvironments which consist of pits and mounds. These microtopographical forms could persist for some thousands of years. Pits and mounds undergo different pedogenesis in comparison to adjacent undisturbed soils. The stage of pedogenesis can be assessed according to the results of fractionation of Fe and also partially Mn, Al and Si. The main aim of this contribution is to assess the fractionation of Fe, Mn, Al and Si for three different soil regions. Soil samples were collected at three localities occurred along hypothetical gradient of soil weathering and leaching processes: The first was a (spruce)-fir-beech natural forest in the Razula region. The second location is the same type of natural forest in Zofin; however it has contrasting lithology. Both these natural forests are located in the Czech Republic (CZ). The third forest was a northern hardwood forest in Upper Peninsula, Michigan, USA. The prevailing soil types - Haplic Cambisols have formed on flysch parent materials in the Razula reserve; Entic Podzols have developed on granite residuum at the Zofin reserve, and Albic Podzols occurred in outwash parent materials at the Michigan sites (Šamonil et al., in press). In total 790 soil samples were analysed. These samples were collected from 5 depths (0-10, 15, 30, 50 and 100 cm) within the pit, mound and control, currently undisturbed position. For each sample, content of Fe (and Mn, Al, Si) forms: exchangeable, crystalline, and amorphous together with organically complexed Fe were determined. We generally observed an increased content of Fe soil forms in the pits of studied treethrows. The content of Fe forms increased along depth gradient at the disturbed sites. However, exchangeable Fe was most abundant in the 0-10cm layer which corresponds to the A horizon. Naturally, if present, the E horizon exhibited the lowest content of exchangeable Fe forms. The content of crystalline Fe forms also increased with the age of the windthrow. Differences in the amounts of Fe, Mn, Al and Si forms were observed between all studied localities. Research was supported by the Czech Science Foundation (project No. P504/11/2135). Šamonil P., Schaetzl R. J., Valtera M., Goliáš V., Baldrian P., Vašíčková I., Adam D., Janík D., Hort L. (in press). Crossdating of disturbances by tree uprooting: Can treethrow microtopography persist for 6,000 years? Forest Ecology and Management.
Growth and Electronic Structure of Heusler Compounds for Use in Electron Spin Based Devices
NASA Astrophysics Data System (ADS)
Patel, Sahil Jaykumar
Spintronic devices, where information is carried by the quantum spin state of the electron instead of purely its charge, have gained considerable interest for their use in future computing technologies. For optimal performance, a pure spin current, where all electrons have aligned spins, must be generated and transmitted across many interfaces and through many types of materials. While conventional spin sources have historically been elemental ferromagnets, like Fe or Co, these materials pro duce only partially spin polarized currents. To increase the spin polarization of the current, materials like half-metallic ferromagnets, where there is a gap in the minority spin density of states around the Fermi level, or topological insulators, where the current transport is dominated by spin-locked surface states, show promise. A class of materials called Heusler compounds, with electronic structures that range from normal metals, to half metallic ferromagnets, semiconductors, superconductors and even topological insulators, interfaces well with existing device technologies, and through the use of molecular beam epitaxy (MBE) high quality heterostructures and films can be grown. This dissertation examines the electronic structure of surfaces and interfaces of both topological insulator (PtLuSb-- and PtLuBi--) and half-metallic ferromagnet (Co2MnSi-- and Co2FeSi--) III-V semiconductor heterostructures. PtLuSb and PtLuBi growth by MBE was demonstrated on Alx In1--xSb (001) ternaries. PtLuSb (001) surfaces were observed to reconstruct with either (1x3) or c(2x2) unit cells depending on Sb overpressure and substrate temperature. viii The electronic structure of these films was studied by scanning tunneling microscopy/spectroscopy (STM/STS) and photoemission spectroscopy. STS measurements as well as angle resolved photoemission spectropscopy (ARPES) suggest that PtLuSb has a zero-gap or semimetallic band structure. Additionally, the observation of linearly dispersing surface states, with an approximate crossing point 240meV above the Fermi level, suggests that PtLuSb (001) films are topologically non-trivial. PtLuBi films also display a Fermi level position approximately 500meV below the valence band maximum. Co2MnSi and Co2FeSi were also grown by MBE on GaAs (001) for use as spin injectors into GaAs lateral spin valve devices. By the growth of the quaternary alloy Co2FexMn1-- xSi and varying x, electron doping of the full Heusler compound was demonstrated by observation of a crossover from a majority spin polarization of Co2MnSi to a minority spin polarization in Co2FeSi. Co2MnSi films were studied as a function of the nucleation sequence, using either Co-- or MnSi-- initiated films on c(4x4) GaAs. Studies using x-ray photoemission spectroscopy (XPS), STM/STS, and transmission electron microscopy (TEM) suggest that the bulk of the Co2MnSi films and the interfacial structure between Co 2MnSi and GaAs is not modified by the nucleation sequence, but a change in spin transport characteristics suggests a modification of semiconductor band structure at the Co2MnSi/GaAs interface due to diffusion of Mn leading to compensation of the Schottky barrier contact. Diffusion of Mn into the GaAs was confirmed by secondary ion mass spectrometry (SIMS) measurements. The proposed mechanism for the modified spin transport characteristics for MnSi initiated films is that additional diffusion of Mn into the GaAs, widens the Schottky barrier contact region. These studies suggest that the ideal initiation sequence for Co2MnSi/GaAs (001) lateral spin valve devices is achieved by deposition of Co first.
NASA Astrophysics Data System (ADS)
Zhang, Yao; Zhan, Qingfeng; Zuo, Zhenghu; Yang, Huali; Zhang, Xiaoshan; Dai, Guohong; Liu, Yiwei; Yu, Ying; Wang, Jun; Wang, Baomin; Li, Run-Wei
2015-05-01
We fabricated epitaxial exchange biased (EB) IrMn/FeGa bilayers by oblique deposition and systematically investigated their magnetization reversal. Two different configurations with the uniaxial magnetic anisotropy Ku parallel and perpendicular to the unidirectional anisotropy Ke b were obtained by controlling the orientation of the incident FeGa beam during deposition. A large ratio of Ku/Ke b was obtained by obliquely depositing the FeGa layer to achieve a large Ku while reducing the IrMn thickness to obtain a small Ke b. Besides the previously reported square loops, conventional asymmetrically shaped loops, and one-sided and two-sided two-step loops, unusual asymmetrically shaped loops with a three-step magnetic transition for the descending branch and a two-step transition for the ascending branch and biased three-step loops were observed at various field orientations in the films of both IrMn (tIrMn=1.5 to 20 nm)/FeGa (10 nm) with Ku⊥ Ke b and IrMn (tIrMn≤2 nm)/FeGa (10 nm) with Ku|| Ke b . Considering the geometries of anisotropies, a model based on domain wall nucleation and propagation was employed to quantitatively describe the angular dependent behaviors of IrMn/FeGa bilayers. The biased three-step magnetic switching was predicted to take place when | Ku|> ɛ90°+Ke b , where ɛ90° is the 90° domain wall nucleation energy, and the EB leads to the appearance of the unusual asymmetrically shaped hysteresis loops.
NASA Astrophysics Data System (ADS)
Nageswaran, Shubha; Keppeler, Miriam; Kim, Sung-Jin; Srinivasan, Madhavi
2017-04-01
Well-crystallized, microspherical LiNi0.5Mn1.5-nSinO4 (0.05 < n < 0.2) is successfully synthesized by a template directed approach in combination with the partial substitution of manganese by silicon. Structural and electrochemical characteristics are investigated through FE-SEM, XRD, EDX, cyclic voltammetry and galvanostatic charge/discharge testing. Spherical shape and incorporation of silicon into the crystal leads to higher proportion of the disordered Fd-3m phase, and electrochemical performance is significantly improved. High capacity retention of 99.4% after 100 cycles at 1 C rate for LiNi0.5Mn1.45Si0.05O4 microspheres is achieved, which is superior compared to 93.1% capacity retention of the pristine LiNi0.5Mn1.5O4 microspheres. Since the Sisbnd O bond exhibits higher dissociation energy compared to the dissociation energies of the Mnsbnd O or Nisbnd O bonds, the excellent electrochemical performance might be associated with an increased structural and chemical stability caused by incorporation of silicon into the oxygen rich crystal lattice.
NASA Astrophysics Data System (ADS)
Shchipalkina, N. V.; Aksenov, S. M.; Chukanov, N. V.; Pekov, I. V.; Rastsvetaeva, R. K.; Schäfer, C.; Ternes, B.; Shüller, W.
2016-11-01
The pyroxferroite and pyroxmangite from xenoliths of aluminous gneisses in the alkaline basalts of Bellerberg paleovulcano (Eifel, Germany) have been studied by electron-probe and X-ray diffraction methods and IR spectroscopy. The parameters of the triclinic unit cells are found to be a = 6.662(1) Å, b = 7.525(1) Å, c = 15.895(2) Å, α = 91.548(3)°, β = 96.258(3)°, and γ = 94.498(3)° for pyroxferroite and a = 6.661(3) Å, b = 7.513(3) Å, c = 15.877(7) Å, α = 91.870(7)°, β = 96.369(7)°, and γ = 94.724(7)° for pyroxmangite; sp. gr. Poverline 1 . The crystallochemical formulas ( Z = 2) are, respectively, M(1-2)(Mn0.5Ca0.4Na0.1)2 M(3-6)(Fe, Mn)4 M7[Mg0.6(Fe, Mn)0.4][Si7O21] and M(1-3)(Mn, Fe)3 M(4-6)[(Fe, Mn)0.7Mg0.3]3 M7[Mg0.5(Fe, Mn)0.5][Si7O21]. For these and previously studied representatives of the pyroxmangite structural type, an analysis of the cation distribution over sites indicates wide isomorphism of Mn2+, Fe2+, and Mg in all cation M(1-7) sites and the preferred incorporation of Ca and Na into large seven-vertex M1O7 and M2O7 polyhedra and Mg into the smallest five-vertex M7O5 polyhedron.
Designing shape-memory Heusler alloys from first-principles
NASA Astrophysics Data System (ADS)
Siewert, M.; Gruner, M. E.; Dannenberg, A.; Chakrabarti, A.; Herper, H. C.; Wuttig, M.; Barman, S. R.; Singh, S.; Al-Zubi, A.; Hickel, T.; Neugebauer, J.; Gillessen, M.; Dronskowski, R.; Entel, P.
2011-11-01
The phase diagrams of magnetic shape-memory Heusler alloys, in particular, ternary Ni-Mn-Z and quarternary (Pt, Ni)-Mn-Z alloys with Z = Ga, Sn, have been addressed by density functional theory and Monte Carlo simulations. Finite temperature free energy calculations show that the phonon contribution stabilizes the high-temperature austenite structure while at low temperatures magnetism and the band Jahn-Teller effect favor the modulated monoclinic 14M or the nonmodulated tetragonal structure. The substitution of Ni by Pt leads to a series of magnetic shape-memory alloys with very similar properties to Ni-Mn-Ga but with a maximal eigenstrain of 14%.
Fabrication of Multilayer-Type Mn-Si Thermoelectric Device
NASA Astrophysics Data System (ADS)
Kajitani, T.; Ueno, T.; Miyazaki, Y.; Hayashi, K.; Fujiwara, T.; Ihara, R.; Nakamura, T.; Takakura, M.
2014-06-01
This research aims to develop a direct-contact manganese silicon p/ n multilayer-type thermoelectric power generation block. p-type MnSi1.74 and n-type Mn0.7Fe0.3Si1.68 ball-milled powders with diameter of about 10 μm or less were mixed with polyvinyl butyl alcohol diluted with methylbenzene at pigment volume concentration of approximately 70%. The doctor-blade method produced 45- μm-thick p- and n-type pigment plates. The insulator, i.e., powdered glass, was mixed with cellulose to form insulator slurry. Lamination of manganese silicide pigment layers and screen-printed insulator layers was carried out to fabricate multilayer direct-contact thermoelectric devices. Hot pressing and spark plasma sintering were carried out at 450°C and 900°C, respectively. Four to 30 thermoelectric (TE) p/ n pairs were fabricated in a 10 mm × 10 mm × 10 mm sintered TE block. The maximum output was 11.7 mW/cm2 at a temperature difference between 20°C and 700°C, which was about 1/85 of the ideal power generation estimated from the thermoelectric data of the bulk MnSi1.74 and Mn0.7Fe0.3Si1.68 materials. A power generation test using an engine test bench was also carried out.
The development of new ferromagnetic shape memory alloys in Ni-Mn-Ga system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chernenko, V.A.; Kokorin, V.V.; Vitenko, I.N.
1995-10-15
The Ferromagnetic Heusler alloy Ni{sub 2}MnGa is known to undergo a structural phase transformation of martensitic type. Thermoelastic nature, shape memory effect (SME) and superelasticity were sound to be intrinsic to this transformation. In this work the authors present the results of the investigation of the following problems: how M{sub s}, the thermal hysteresis, Curie temperature, transformation heat are affected by the composition variation in the Ni-Mn-Ga alloy system in a concentration interval for each component of about 10 at. %. This work was performed to make sure that the new family of Ni-Mn-Ga based shape memory alloys (SMA) withmore » a wide variety of structural and magnetic properties is actually elaborated.« less
Metal insulator transition in nickel substituted FeSi
NASA Astrophysics Data System (ADS)
Krishnan, M.; Mishra, Ashish; Singh, Durgesh; Venkatesh, R.; Gangrade, Mohan; Ganesan, V.
2018-04-01
Resistivity of Fe1-xNixSi has been reported. Metal Insulator transition (MIT) is observed in Nickel (Ni) substituted FeSi for x in the range from 2 to 4 percentage. Two Band Model has been employed in order to calculate activation energy and to predict how band structure renormalized with substitution of nickel in FeSi. At sufficient level of nickel concentration an impurity band forms around Fermi level and contributes to the conduction heavily at low temperatures. Concentration around x = 0.04, displays metallic property below ˜ 70 K and is quantitatively similar to systems like Fe1-xTxSi (T = Co, Mn). Metallic component thus derived from Ni substituted FeSi seems to have an unconventional temperature dependence that may be attributed to the onset of departures from Fermi liquid picture.
Real-space and reciprocal-space Berry phases in the Hall effect of Mn(1-x)Fe(x)Si.
Franz, C; Freimuth, F; Bauer, A; Ritz, R; Schnarr, C; Duvinage, C; Adams, T; Blügel, S; Rosch, A; Mokrousov, Y; Pfleiderer, C
2014-05-09
We report an experimental and computational study of the Hall effect in Mn(1-x)Fe(x)Si, as complemented by measurements in Mn(1-x)Co(x)Si, when helimagnetic order is suppressed under substitutional doping. For small x the anomalous Hall effect (AHE) and the topological Hall effect (THE) change sign. Under larger doping the AHE remains small and consistent with the magnetization, while the THE grows by over a factor of 10. Both the sign and the magnitude of the AHE and the THE are in excellent agreement with calculations based on density functional theory. Our study provides the long-sought material-specific microscopic justification that, while the AHE is due to the reciprocal-space Berry curvature, the THE originates in real-space Berry phases.
A Structural Molar Volume Model for Oxide Melts Part III: Fe Oxide-Containing Melts
NASA Astrophysics Data System (ADS)
Thibodeau, Eric; Gheribi, Aimen E.; Jung, In-Ho
2016-04-01
As part III of this series, the model is extended to iron oxide-containing melts. All available experimental data in the FeO-Fe2O3-Na2O-K2O-MgO-CaO-MnO-Al2O3-SiO2 system were critically evaluated based on the experimental condition. The variations of FeO and Fe2O3 in the melts were taken into account by using FactSage to calculate the Fe2+/Fe3+ distribution. The molar volume model with unary and binary model parameters can be used to predict the molar volume of the molten oxide of the Li2O-Na2O-K2O-MgO-CaO-MnO-PbO-FeO-Fe2O3-Al2O3-SiO2 system in the entire range of compositions, temperatures, and oxygen partial pressures from Fe saturation to 1 atm pressure.
Dekov, V.M.; Kamenov, George D.; Savelli, C.; Stummeyer, Jens; Thiry, M.; Shanks, Wayne C.; Willingham, A.L.; Boycheva, T.B.; Rochette, P.; Kuzmann, E.; Fortin, D.; Vertes, A.
2009-01-01
A sediment core taken from the south-east slope of the Eolo Seamount is composed of alternating red-brown and light-brown to bluish-grey layers with signs of re-deposition in the middle-upper section. The red-brown layers are Fe-rich metalliferous sediments formed as a result of low-temperature (??? 77????C) hydrothermal discharge, whereas the bluish-grey layers most probably originated from background sedimentation of Al-rich detrital material. The metalliferous layers are composed mainly of Si-rich goethite containing some Al. Co-precipitation of hydrothermally released SiO44- and Fe2+ as amorphous or poorly crystalline Fe-Si-oxyhydroxides explains the high Si concentration in goethite. The elevated Al content of the goethite is fairly unusual, but reflects the extremely high background Al content of the Tyrrhenian seawater due to the high eolian terrigenous flux from the Sahara desert. The Sr and Nd isotope data suggest that the Eolo metalliferous sediments are the product of a 3-component mixture: hydrothermal fluid, seawater, and detrital material (Saharan dust and Aeolian Arc material). The enrichment in Fe, P, As, Mo, Cd, Be, Sb, W, Y, V, depletion in REE and transition elements (Cu, Co, Ni, Zn) and the REE distribution patterns support the low-temperature hydrothermal deposition of the metalliferous layers. The hydrothermal field is located in a seawater layer of relative O2 depletion, which led to a significant fractionation of the hydrothermally emitted Fe and Mn. Fe-oxyhydroxides precipitated immediately around the vents whereas Mn stayed in solution longer and the Mn-oxides precipitated higher up on the seamount slope in seawater with relatively higher O2 levels. High seismic activity led to sediment re-deposition and slumping of the Mn-rich layers down slope and mixing with the Fe-rich layers. ?? 2009 Elsevier B.V. All rights reserved.
Ejaz, Sohail; Camer, Gerry Amor; Anwar, Khaleeq; Ashraf, Muhammad
2014-04-01
Environmental toxicants invariably affect all biological organisms resulting to sufferings ranging from subclinical to debilitating clinical conditions. This novel research aimed to determine the toxic burdens of increased environmental elements in some vital organs/tissues of the wild animals (starling, owl, crow and pigeon), exposed to air polluted environment were assessed using particle induced X-ray emission and histopathological approaches. The presence of significantly elevated amounts of elemental toxicants namely: Aluminum (Al), Chlorine (Cl), Iron (Fe), Potassium (K), Magnesium (Mg), Manganese (Mn), Silicon (Si) and Vanadium (V) from the skin, muscle, lungs, liver and kidney of sampled animals were in concurrence with the observed histopathological changes. The skin of sampled starling, owl, pigeon and crow spotlighted highly significant increase (P < 0.001) in Al, Cl, Mg and Si. Muscle samples with myodegenerative lesions and mineral depositions highlighted substantial augmentation (P < 0.001) in the amount of Al, Fe, Mn, Si and V. The lungs of starling, owl, and pigeon were severely intoxicated (P < 0.001) with increased amount of Al, Fe, K, Mn and Si producing pulmonary lesions of congestion, edema, pneumonitis and mineral debris depositions. Liver samples revealed that the sampled animals were laden with Cl, Fe, Mg, Mn and V with histopathological profound degenerative changes and hepatic necrosis. Kidney sections presented severe tubular degenerative and necrotic changes that may be attributed to increased amounts of Cl and Fe. These current findings implied that the environmental/elemental toxicants and the accompanying lesions that were discerned in the organs/tissues of sampled birds may as well be afflicting people living within the polluted area. Further assessment to more conclusively demonstrate correlations of current findings to those of the populace within the area is encouraged.
Modeling and Characterization of the Magnetocaloric Effect in Ni2MnGa Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nicholson, Don M; Odbadrakh, Khorgolkhuu; Rios, Orlando
2012-01-01
Magnetic shape memory alloys have great promise as magneto-caloric effect refrigerant materials due to their combined magnetic and structural transitions. Computational and experimental research is reported on the Ni2MnGa material system. The magnetic states of this system have been explored using the Wang-Landau statistical approach in conjunction with the Locally Self-consistent Multiple-Scattering (LSMS) method to explore the magnetic states responsible for the magnet-caloric effect in this material. The effects of alloying agents on the transition temperatures of the Ni2MnGa alloy were investigated using differential scanning calorimetry (DSC) and superconducting quantum interference device (SQUID). Neutron scattering experiments were performed to observemore » the structural and magnetic phase transformations at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) on alloys of Ni-Mn-Ga and Ni-Mn-Ga-Cu-Fe. Data from the observations are discussed in comparison with the computational studies.« less
NASA Astrophysics Data System (ADS)
Liu, Bingbing; Zhang, Yuanbo; Wang, Juan; Wang, Jia; Su, Zijian; Li, Guanghui; Jiang, Tao
2018-06-01
Magnetic reduction roasting followed by magnetic separation process is reported as a simple route to realize separation of Mn and Fe from ferruginous manganese ores (Fe-Mn ores). However, the separation and recovery of Mn and Fe oxides are not very effective. This work clarified the underlying reason for the poor separation and also proposed some suggestions for the magnetic reduction process. In this work, the effect of temperature on the magnetic reduction roasting - magnetic separation of Fe-Mn ore was investigated firstly. Then the reduction behaviors of MnO2-Fe2O3 system and MnO2-Fe2O3-10 wt.%SiO2 system under 10 vol.% CO-90 vol.% CO2 at 600-1000 °C were investigated by XRD, XPS, SEM-EDS, VSM, DSC and thermodynamics analyses. Reduction and separation tests showed that higher reduction temperature was beneficial to the recovery of iron while it's not in favor of the recovery of manganese when the temperature was over 800 °C. The formation of composite oxide MnxFe3-xO4 with strong magnetism between the interface of the MnO2 and Fe2O3 particles leaded to the poor separation of iron and manganese. In addition, the formation mechanism of MnxFe3-xO4 from MnO2 and Fe2O3 as well as the interface reaction reduced under 10 vol.% CO was discussed in this study. Finally, some suggestions were recommended for the magnetic reduction roasting for utilizing the Fe-Mn ores effectively.
NASA Astrophysics Data System (ADS)
Fan, Xingdu; Li, Meng; Zhang, Tao; Yuan, Chenchen; Shen, Baolong
2018-05-01
The effect of transverse magnetic field annealing (TFA) on soft magnetic properties of Co71Fe2Si14-xB9+xMn4 amorphous alloys was investigated with the aim of reducing effective permeability (μe). It was revealed that the increasing B content improved thermal stability, increased saturation magnetic flux density (Bs) of as-quenched alloys, while the samples exhibited a slightly larger coercivity (Hc) when the atom percentages of Si and B were similar. Permeability decreased dramatically after TFA. The decrease of permeability mainly depended on annealing temperature and magnetic field intensity. Besides, flat hysteresis loops were obtained after TFA, Lorentz micrograph observation revealed the TFA sample exhibited denser magnetic domain walls, which confirmed it was more difficult to be saturated. The Co71Fe2Si9B14Mn4 alloy was successful prepared with low μe of 3020, low Hc of 1.7 A/m and high resistance to DC bias 6 times that of as-quenched alloy at the DC field of 300 A/m.
L10-Ordered Thin Films with High Perpendicular Magnetic Anisotropy for STT-MRAM Applications
NASA Astrophysics Data System (ADS)
Huang, Efrem Yuan-Fu
The objective of the research conducted herein was to develop L10-ordered materials and thin film stack structures with high perpendicular magnetic anisotropy (PMA) for spin-transfertorque magnetoresistive random access memory (STT-MRAM) applications. A systematic approach was taken in this dissertation, culminating in exchange coupled L1 0-FePt and L10- MnAl heterogeneous structures showing great promise for developing perpendicular magnetic tunnel junctions (pMTJs) with both high thermal stability and low critical switching current. First, using MgO underlayers on Si substrates, sputtered MnAl films were systematically optimized, ultimately producing a Si substrate/MgO (20 nm)/MnAl (30)/Ta (5) film stack with a high degree of ordering and large PMA. Next, noting the incompatibility of insulating MgO underlayers with industrial-scale CMOS processes, attention was turned to using conductive underlayers. TiN was found to excel at promoting growth of L10-MnAl, with optimized films showing improved magnetic properties over those fabricated on MgO underlayers. The use of different post-annealing processes was then studied as an alternative to in situ annealing. Rapid thermal annealing (RTA) was found to produce PMA in films at lower annealing temperatures than tube furnace annealing, but tube furnace annealing produced films with higher maximum PMA than RTA. While annealed samples had lower surface roughness than those ordered by high in situ deposition temperatures, relying solely on annealing to achieve L10-ordering resulted drastically reduced PMA. Finally, heterogeneous L10-ordered FePt/MgO/MnAl film stacks were explored for pMTJs. Film stacks with MgO barrier layers thinner than 2 nm showed significant interdiffusion between the FePt and MnAl, while film stacks with thicker MgO barrier layers exhibited good ordering and high PMA in both the FePt and MnAl films. It is believed that this limitation is caused by the roughness of the underlying FePt, which was thicker than 2 nm. Unfortunately, MgO barrier layers thinner than 2 nm are needed to make good MTJs. With further study, thin, continuous barriers may be achievable for high-PMA, L10- ordered materials with more materials exploration, deposition optimization, and more advanced thin film processing techniques and fabrication equipment. Use of appropriate underlayers, capping layers, dopant elements, and improved fabrication techniques may help reduce surface roughness while preserving PMA. If smooth electrodes can be developed, the heterogeneous structures discussed have great potential in taking advantage of exchange coupling for developing pMTJs with both high thermal stability and low critical switching current. (Abstract shortened by ProQuest.).
NASA Astrophysics Data System (ADS)
Ramudu, M.; Satish Kumar, A.; Seshubai, V.; Rajasekharan, T.
2015-02-01
The martensitic transformation TM of the alloys of Ni-Mn-Ga and Ni-Mn-Al show a general trend of increase with electron per atom ratio (e/a) calculated from the total number of electrons outside the rare gas shell of the atoms. However prediction of TM fails among iron substituted Ni-Mn-Ga alloys and those with In doped for Ga, due to the absence of a useful trend. A scheme of computing modified electron concentration is presented considering only the non-bonding electrons per atom Ne/a of the compounds, based on Pauling's ideas on the electronic structure of metallic elements. Systematic variation of TM with Ne/a is reproduced for a large number of alloys of Ni-Mn-Ga and the anomaly observed for Fe containing alloys with e/a disappears. The non-bonding electron concentration is thus demonstrated to be effective in predicting TM of shape memory alloys of Ni-Mn-Ga-X system including the isoelectronic compounds of Ni-Mn-Ga-In.
Trace Elemental Characterization of Chalk Dust and Their Associated Health Risk Assessment.
Maruthi, Y A; Ramprasad, S; Lakshmana Das, N
2017-02-01
It is evident that chalk produces dust on use, i.e., particulate matter, which will alter the air quality of classrooms and can cause health hazards in teachers. The possible causes for health effects of chalk dust on teachers are still unclear. Hence, the aim of this study is to estimate the concentration of trace elements (Al, Cr, Mn, Fe, Co, Ni, Si, Pb) in chalk dust collected from classrooms by using ICP-MS. Both suspended and settled chalk dust was collected from selected classrooms. Suspended chalk dust was collected with PM2.5 filter paper using fine dust sampler, and settled chalk dust was collected by placing petriplates at a distance of 3 m from the board for a duration period of 30 min. Scanning electron microscopy images of chalk dust were taken up. Potential health risk analysis was also assessed. Results showed that Al, Fe, and Mn are in higher concentration (>1000 μg kg -1 ) in both settled and suspended chalk dust. Cr, Mn, Fe, Co, and Ni were beyond the minimal risk levels in both settled and suspended chalk dust. There are no minimal risk levels for the elements Al, Si, and Pb. The concentration of trace elements in suspended chalk dust was higher than that in settled chalk dust. The SEM images of PM2.5 filter papers (suspended chalk dust) showed that all pores of the sampled filter papers are clogged with chalk dust. The few SEM images of the settled chalk dust showed fibrous shape which is associated with good-quality chalk whereas others showed circular and more aggregated nature of chalk dust from low-quality chalk from which the dust production will be very high. As observed from the result that the trace elements concentration was high in the suspended chalk dust, the fact can be correlated with the SEM images which have shown high density of absorbed chalk dust. With reference to human health risk, dermal exposure was the main route of exposure followed by inhalation and ingestion. Al (aluminum), Fe (iron), Si (silicon), and Mn (manganese) are the major contributors for the non-carcinogenic effects. For all the elements, the carcinogenic effect calculated (LADD) is within the global acceptable limit (10 -6 -10 -4 ).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sorour, A.A., E-mail: ahmad.sorour@mail.mcgill.ca; Chromik, R.R., E-mail: richard.chromik@mcgill.ca; Gauvin, R., E-mail: raynald.gauvin@mcgill.ca
2013-12-15
The present is a study of the solidification and microstructure of Fe–28.2%Cr–3.8%B–1.5%Si–1.5%Mn (wt.%) alloy deposited onto a 1020 plain carbon steel substrate using the controlled short-circuit metal inert gas welding process. The as-solidified alloy was a metal matrix composite with a hypereutectic microstructure. Thermodynamic calculation based on the Scheil–Gulliver model showed that a primary (Cr,Fe){sub 2}B phase formed first during solidification, followed by an eutectic formation of the (Cr,Fe){sub 2}B phase and a body-centered cubic Fe-based solid solution matrix, which contained Cr, Mn and Si. Microstructure analysis confirmed the formation of these phases and showed that the shape of themore » (Cr,Fe){sub 2}B phase was irregular plate. As the welding heat input increased, the weld dilution increased and thus the volume fraction of the (Cr,Fe){sub 2}B plates decreased while other microstructural characteristics were similar. - Highlights: • We deposit Fe–Cr–B-based alloy onto plain carbon steel using the CSC-MIG process. • We model the solidification behavior using thermodynamic calculation. • As deposited alloy consists of (Cr,Fe){sub 2}B plates embedded in Fe-based matrix. • We study the effect of the welding heat input on the microstructure.« less
Dissolved trace elements in a nitrogen-polluted river near to the Liaodong Bay in Northeast China.
Bu, Hongmei; Song, Xianfang; Guo, Fen
2017-01-15
Dissolved trace element concentrations (Ba, Fe, Mn, Si, Sr, and Zn) were investigated in the Haicheng River near to the Liaodong Bay in Northeast China during 2010. Dissolved Ba, Fe, Mn, and Sr showed significant spatial variation, whereas dissolved Fe, Mn, and Zn displayed seasonal variations. Conditions such as water temperature, pH, and dissolved oxygen were found to have an important impact on redox reactions involving dissolved Ba, Fe, and Zn. Dissolved Fe and Mn concentrations were regulated by adsorption or desorption of Fe/Mn oxyhydroxides and the effects of organic carbon complexation on dissolved Ba and Sr were found to be significant. The sources of dissolved trace elements were found to be mainly from domestic sewage, industrial waste, agricultural surface runoff, and natural origin, with estimated seasonal and annual river fluxes established as important inputs of dissolved trace elements from the Haicheng River into the Liaodong Bay or Bohai Sea. Copyright © 2016 Elsevier Ltd. All rights reserved.
Determination of Fe, Hg, Mn, and Pb in three-rings of poplar (Populus alba L.) by U-shaped DC arc
NASA Astrophysics Data System (ADS)
Marković, D. M.; Novović, I.; Vilotić, D.; Ignjatović, Lj.
2007-09-01
The U-shaped DC arc with aerosol supply was applied for the determination of Fe, Hg, Mn, and Pb in poplar (Populus alba L.) tree-rings. By optimization of the operating parameters and by selection of the most appropriate signal integration time (20 s for Fe, Mn, and Pb and 30 s for Hg), the obtained limits of detection for Fe, Hg, Mn, and Pb are 5.8, 2.6, 1.6, and 2.0 ng/ml, respectively. The detection limits achieved by this method for Fe, Hg, Mn, and Pb are comparable with the detection limits obtained for these elements by such methods as inductively coupled plasma-atomic emission spectrometry (ICP-AES), direct coupled plasmatomic emission spectrometry (DCP-AES), and microwave-induced plasma-atomic emission spectrometry (MIP-AES). We used the tree-rings of poplar from two different locations. The first one is in the area close to the power plant “Nikola Tesla” TENT A, Obrenovac, while the other one is in the urban area of Novi Sad. In almost all cases, samples from the location at Obrenovac registered elevated average concentrations of Fe, Hg, Mn, and Pb in the tree-rings of poplar.
Synthesis of SiO2-coated ZnMnFe2O4 nanospheres with improved magnetic properties.
Wang, Jun; Zhang, Kai; Zhu, Yuejin
2005-05-01
A core-shell structured composite, SiO2 coated ZnMnFe2O4 spinel ferrite nanoparticles (average diameter of approximately 80 nm), was prepared by hydrolysis of tetraethyl orthosilicate (TEOS) in the presence of ZnMnFe2O4 nanoparticles (average diameter of approximately 10 nm) synthesized by a hydrothermal method. The obtained samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and field emission scanning electron microscopy (FESEM). The magnetic measurements were carried out on a vibrating sample magnetometer (VSM), and the measurement results indicate that the core-shell samples possess better magnetic properties at room temperature, compared with paramagnetic colloids with a magnetic core by a coprecipitation method. These core-shell nanospherical particles with self-assembly under additional magnetic fields could have potential application in biomedical systems.
Yoo, Hyo-Sang; Kim, Yong-Ho; Jung, Chang-Gi; Lee, Sang-Chan; Lee, Seong-Hee; Son, Hyeon-Taek
2018-03-01
We investigated the effects of Al-5.0wt%Ti-1.0wt%B addition on the microstructure and mechanical properties of the as-extruded Al-0.15wt%Si-0.2wt%Fe-0.3wt%Cu-0.15wt%Zn-0.9wt%Mn based alloys. The Aluminum alloy melt was held at 800 °C and then poured into a mould at 200 °C. Aluminum alloys were hot-extruded into a rod that was 12 mm in thickness with a reduction ratio of 38:1. AlTiB addition to Al-0.15Si-0.2Fe-0.3Cu-0.15Zn-0.9Mn based alloys resulted in the formation of Al3Ti and TiB2 intermetallic compounds and grain refinement. With increasing of addition AlTiB, ultimate tensile strength increased from 93.38 to 99.02 to 100.01 MPa. The tensile strength of the as-extruded alloys was improved due to the formation of intermetallic compounds and grain refinement.
NASA Astrophysics Data System (ADS)
Yuping, Duan; Jia, Zhang; Hui, Jing; Shunhua, Liu
2011-05-01
Fe-doped MnO 2 with a hollow sea urchin-like ball chain shape was first synthesized under a high magnetic field of 10 T. The formation mechanism was investigated and discussed in detail. The synthesized samples were characterized by XRD, SEM, TEM, EMPA, and vector network analysis. By doping MnO 2 with Fe, the relative complex permittivity of MnO 2 and its corresponding loss tangent clearly decreases, but its relative complex permeability and its corresponding loss tangent markedly increases. Moreover, the theoretically calculated values of reflection loss show that with increasing the Fe content, the as-prepared Fe-doped MnO 2 exhibits good microwave absorption capability.
NASA Astrophysics Data System (ADS)
Suo, Xiaojing; Liao, Hengcheng; Hu, Yiyun; Dixit, Uday S.; Petrov, Pavel
2018-02-01
The formation of Al15Mn3Si2 phase in Al-12Si-4Cu-1.2Mn (wt.%) alloy during solidification was investigated by adopting CALPHAD method and microstructural observation by optical microscopy, SEM-EDS, TEM-EDS/SAD and XRD analysis; SEM fixed-point observation method was applied to evaluate its thermal stability. As-cast microstructural observation consistently demonstrates the solidification sequence of the studied alloy predicted by phase diagram calculation. Based on the phase diagram calculation, SEM-EDS, TEM-EDS/SAD and XRD analysis, as well as evidences on Al-Si-Mn-Fe compounds from the literature, the primary and eutectic Mn-rich phases with different morphologies in the studied alloy are identified to be Al15Mn3Si2 that has a body-centered cubic (BCC) structure with a lattice constant of a = 1.352 nm. SEM fixed-point observation and XRD analysis indicate that Al15Mn3Si2 phase has more excellent thermal stability at high temperature than that of CuAl2 phase and can serve as the major strengthening phase in heat-resistant aluminum alloy that has to face a high-temperature working environment. Results of tension test show that addition of Mn can improve the strength of Al-Si-Cu alloy, especially at elevated temperature.
The ferromagnetic shape-memory effect in Ni Mn Ga
NASA Astrophysics Data System (ADS)
Marioni, M. A.; O'Handley, R. C.; Allen, S. M.; Hall, S. R.; Paul, D. I.; Richard, M. L.; Feuchtwanger, J.; Peterson, B. W.; Chambers, J. M.; Techapiesancharoenkij, R.
2005-04-01
Active materials have long been used in the construction of sensors and devices. Examples are piezo-electric ceramics and shape memory alloys. The more recently developed ferromagnetic shape-memory alloys (FSMAs) have received considerable attention due to their large magnetic field-induced, reversible strains (up to 10%). In this article, we review the basic physical characteristics of the FSMA Ni-Mn-Ga (crystallography, thermal, mechanical and magnetic behavior). Also, we present some of the works currently under way in the areas of pulse-field and acoustic-assisted actuation, and vibration energy absorption.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nie, Z. H.; Lin Peng, R.; Johansson, S.
2008-01-01
In situ time-of-flight neutron diffraction and high-energy x-ray diffraction techniques were used to reveal the preferred reselection of martensite variants through a detwinning process in polycrystalline Ni-Mn-Ga ferromagnetic shape memory alloys under uniaxial compressive stress. The variant reorientation via detwinning during loading can be explained by considering the influence of external stress on the grain/variant orientation-dependent distortion energy. These direct observations of detwinning provide a good understanding of the deformation mechanisms in shape memory alloys.
NASA Astrophysics Data System (ADS)
Liu, Peitao; Xing, Weiwei; Cheng, Xiyue; Li, Dianzhong; Li, Yiyi; Chen, Xing-Qiu
2014-07-01
By means of first-principles calculations coupled with the kinetic Monte Carlo simulations, we have systematically investigated the effects of dilute substitutional solutes on the behaviors of carbon in α-Fe. Our results uncover the following. (i) Without the Fe vacancy the interactions between most solutes and carbon are repulsive due to the strain relief, whereas Mn has a weak attractive interaction with its nearest-neighbor carbon due to the local ferromagnetic coupling effect. (ii) The presence of the Fe vacancy results in attractive interactions of all the solutes with carbon. In particular, the Mn-vacancy pair shows an exceptionally large binding energy of -0.81 eV with carbon. (iii) The alloying addition significantly impacts the atomic-scale concentration distributions and chemical potential of carbon in the Fe matrix. Among them, Mn and Cr increase the carbon chemical potential, whereas Al and Si reduce it. (iv) Within the dilute scale of the alloying solution, the solute concentration- and temperature-dependent carbon diffusivities demonstrate that Mn has a little impact on the carbon diffusion, whereas Cr (Al or Si) remarkably retards the carbon diffusion. Our results provide a certain implication for better understanding the experimental observations related with the carbon solubility limit, carbon microsegregation, and carbide precipitations in the ferritic steels.
Bell, Anthony M T; Henderson, C Michael B
2018-06-01
The leucite tectosilicate mineral analogues K 2 X 2+ Si 5 O 12 (X = Fe 2+ , Co, Zn) and Rb 2 X 2+ Si 5 O 12 (X = Mn) have been synthesized at elevated temperatures both dry at atmospheric pressure and at controlled water vapour pressure; for X = Co and Zn both dry and hydrothermally synthesized samples are available. Rietveld refinement of X-ray data for hydrothermal K 2 X 2+ Si 5 O 12 (X = Fe 2+ , Co, Zn) samples shows that they crystallize in the monoclinic space group P2 1 /c and have tetrahedral cations (Si and X) ordered onto distinct framework sites [cf. hydrothermal K 2 MgSi 5 O 12 ; Bell et al. (1994a), Acta Cryst. B50, 560-566]. Dry-synthesized K 2 X 2+ Si 5 O 12 (X = Co, Zn) and Rb 2 X 2+ Si 5 O 12 (X = Mn) samples crystallize in the cubic space group Ia{\\overline 3}d and with Si and X cations disordered in the tetrahedral framework sites as typified by dry K 2 MgSi 5 O 12 . Both structure types have tetrahedrally coordinated SiO 4 and XO 4 sharing corners to form a partially substituted silicate framework. Extraframework K + and Rb + cations occupy large channels in the framework. Structural data for the ordered samples show that mean tetrahedral Si-O and X-O bond lengths cover the ranges 1.60 Å (Si-O) to 2.24 Å (Fe 2+ -O) and show an inverse relationship with the intertetrahedral angles (T-O-T) which range from 144.7° (Si-O-Si) to 124.6° (Si-O-Fe 2+ ). For the compositions with both disordered and ordered tetrahedral cation structures (K 2 MgSi 5 O 12 , K 2 CoSi 5 O 12 , K 2 ZnSi 5 O 12 , Rb 2 MnSi 5 O 12 and Cs 2 CuSi 5 O 12 leucites) the disordered polymorphs always have larger unit-cell volumes, larger intertetrahedral T-O-T angles and smaller mean T-O distances than their isochemical ordered polymorphs. The ordered samples clearly have more flexible frameworks than the disordered structures which allow the former to undergo a greater degree of tetrahedral collapse around the interframework cavity cations. Multivariant linear regression has been used to develop equations to predict intertetrahedral T-O-T angle variation depending on the independent variables Si-O and X-O bond lengths, cavity cation ideal radius, intratetrahedral (O-T-O) angle variance, and X cation electronegativity.
Li, Zongbin; Yang, Bo; Zou, Naifu; Zhang, Yudong; Esling, Claude; Gan, Weimin; Zhao, Xiang; Zuo, Liang
2017-04-27
Heusler type Ni-Mn-Ga ferromagnetic shape memory alloys can demonstrate excellent magnetic shape memory effect in single crystals. However, such effect in polycrystalline alloys is greatly weakened due to the random distribution of crystallographic orientation. Microstructure optimization and texture control are of great significance and challenge to improve the functional behaviors of polycrystalline alloys. In this paper, we summarize our recent progress on the microstructure control in polycrystalline Ni-Mn-Ga alloys in the form of bulk alloys, melt-spun ribbons and thin films, based on the detailed crystallographic characterizations through neutron diffraction, X-ray diffraction and electron backscatter diffraction. The presented results are expected to offer some guidelines for the microstructure modification and functional performance control of ferromagnetic shape memory alloys.
NASA Astrophysics Data System (ADS)
Zhang, Xiufeng; Tan, Xiumin; Yi, Yuejun; Liu, Weizao; Li, Chun
2017-11-01
With the depletion of high-grade manganese ores, Mn ore tailings are considered valuable secondary resources. In this study, a process combining high-gradient magnetic separation (HGMS) with hydrometallurgical methods is proposed to recycle fine-grained Mn tailings. The Mn tailings were treated by HGMS at 12,500 G to obtain a Mn concentrate of 30% Mn with the recovery efficiency of 64%. The Mn concentrate could be used in the ferromanganese industry. To recover Mn further, the nonmagnetic fraction was leached by SO2 in an H2SO4 solution. Hydrogen peroxide was added to the leachate to oxidize Fe2+ to Fe3+, and the solution pH was adjusted to 5.0-5.5 with ammonia to remove Al, Fe, and Si impurities. The purified solution was reacted with NH4HCO3, and a saleable product of MnCO3 with 97.9% purity was obtained. The combined process can be applied to Mn recovery from finely dispersed weakly magnetic Mn ores or tailings.
Allenstein, Uta; Selle, Susanne; Tadsen, Meike; Patzig, Christian; Höche, Thomas; Zink, Mareike; Mayr, Stefan G
2015-07-22
Durable, mechanically robust osseointegration of metal implants poses one of the largest challenges in contemporary orthopedics. The application of biomimetic hydroxyapatite (HAp) coatings as mediators for enhanced mechanical coupling to natural bone constitutes a promising approach. Motivated by recent advances in the field of smart metals that might open the venue for alternate therapeutic concepts, we explore their mechanical coupling to sputter-deposited HAp layers in a combined experimental-theoretical study. While experimental delamination tests and comprehensive structural characterization, including high-resolution transmission electron microscopy, are utilized to establish structure-property relationships, density functional theory based total energy calculations unravel the underlying physics and chemistry of bonding and confirm the experimental findings. Experiments and modeling indicate that sputter-deposited HAp coatings are strongly adherent to the exemplary ferromagnetic shape-memory alloys, Ni-Mn-Ga and Fe-Pd, with delamination stresses and interface bonding strength exceeding the physiological scales by orders of magnitude.
NASA Astrophysics Data System (ADS)
Jeong, Soon-Jong
2000-08-01
Shape memory alloys (SMAs) have excellent mechanical properties showing large stroke and high power density when used as actuators. In terms of response speed, however, conventional SMAs have a drawback due to the isothermal nature of the associated phase transformation. A new type of SMA, called ferromagnetic SMA, is considered to replace conventional SMAs and is hoped to overcome such a slow response drawback by changing driving mode of shape memory behaviors from thermal to magnetic. The new type of ferromagnetic SMAs is expected to exhibit not only a large displacement but also rapid response when magnetic field is applied and removed. There are three kinds of ferromagnetic SMAs and among them, Ni2MnGa-based compounds exhibit prominent shape memory effects and superelasticity. In this study, Ni2MnGa-based alloys were chosen and studied to characterize shape memory behavior upon the application and removal of magnetic field. The relevance of the magnetic field-induced shape memory behavior to the magnetization process was investigated by using transformation and/or the movement of martensite variant interfaces. Two mechanisms have been proposed for controlling magnetic field-induced shape memory behaviors. One mechanism is related to shape memory behavior associated with magnetic field-induced martensitic transformation. The other is related to the rearrangement of martensite variants by magnetic field application. Magnetic field-induced martensitic transformation and shape memory effects for single- and poly-crystalline Ni2MnGa alloys were investigated under various conditions. In single crystalline specimens, it was observed that considerable strain changes are a function of magnetic field at temperatures below Mf (martensite finish temperature). Such strain changes, by application and subsequent removal of magnetic field, may be attributed to the martensite variant motion at lower temperatures than Mf. Magnetic field application made a significant contribution to the martensite transformation and related strain changes (0.3%--0.82%) at temperatures above Af (austenite finish temperature) in some polycrystalline Ni2MnGa alloys, where austenite and martensite phases possess paramagnetic and ferromagnetic properties, respectively.
Effect of sputtering condition and heat treatment in Co/Cu/Co/FeMn spin valve
NASA Astrophysics Data System (ADS)
Kim, Hong Jin; Bae, Jun Soo; Lee, Taek Dong; Lee, Hyuck Mo
2002-03-01
The exchange field of Cu(50 Å)/FeMn(50 Å)/Co(50 Å) sputtered on Si substrate was studied in terms of surface roughness and phase formation of γ-FeMn under a variety of Ar pressures and powers in sputtering. It was found that the exchange field is stronger when the surface is smoother and the FeMn layer forms better. The exchange bias field increased by more than three times after heat treatment. The effect of heat treament on magnetoresistance (MR) and resistance of the top spin valve, substrate/Co(30 Å)/Cu(30 Å)/Co(30 Å)/FeMn(150 Å), was studied. It was observed that the MR started to increase with annealing temperature and the effect was significant at 150°C. The heat treatment led to the disappearance of the intermixed layer between Co and Cu, and the concentration profile of Cu became flat and smooth at this temperature.
An x-ray absorption spectroscopy study of Ni-Mn-Ga shape memory alloys.
Sathe, V G; Dubey, Aditi; Banik, Soma; Barman, S R; Olivi, L
2013-01-30
The austenite to martensite phase transition in Ni-Mn-Ga ferromagnetic shape memory alloys was studied by extended x-ray absorption fine structure (EXAFS) and x-ray absorption near-edge structure (XANES) spectroscopy. The spectra at all the three elements', namely, Mn, Ga and Ni, K-edges in several Ni-Mn-Ga samples (with both Ni and Mn excess) were analyzed at room temperature and low temperatures. The EXAFS analysis suggested a displacement of Mn and Ga atoms in opposite direction with respect to the Ni atoms when the compound transforms from the austenite phase to the martensite phase. The first coordination distances around the Mn and Ga atoms remained undisturbed on transition, while the second and subsequent shells showed dramatic changes indicating the presence of a modulated structure. The Mn rich compounds showed the presence of antisite disorder of Mn and Ga. The XANES results showed remarkable changes in the unoccupied partial density of states corresponding to Mn and Ni, while the electronic structure of Ga remained unperturbed across the martensite transition. The post-edge features in the Mn K-edge XANES spectra changed from a double peak like structure to a flat peak like structure upon phase transition. The study establishes strong correlation between the crystal structure and the unoccupied electronic structure in these shape memory alloys.
Edmondson, P. D.; Parish, C. M.; Nanstad, R. K.
2017-05-29
Nano-scale Ni-Mn-Si-rich precipitates formed in a reactor pressure vessel steel under high neutron fluence have been characterized using highly complimentary atom probe tomography (APT) and scanning transmission electron microscopy with energy dispersive spectroscopy (STEM-EDS) combined with STEM-EDS modeling. Using these techniques in a synergistic manner to overcome the well-known trajectory aberrations in APT data, the average upper limit Fe concentration within the precipitates was found to be ~6 at.%. Using this knowledge, accurate compositions of the precipitates was determined and it was found that the spread of precipitate compositions was large, but mostly centered around the Γ2-and G-phases. The usemore » of STEM-EDS also allowed for larger areas to be examined, and segregation of minor solutes was observed to occur on grain boundaries, along with Ni-Mn-Si-rich precipitates that were smaller in size than those in the matrix. Solute segregation at the grain boundaries is proposed to occur through a radiation induced segregation or radiation enhanced diffusion mechanism due to the presence of a denuded zone about the grain boundary. It is also proposed that the reduced precipitate size at the grain boundaries is due to the structure of the grain boundary. The lack of Ni-Mn-Si precipitates observed in larger Mo-rich precipitates is also discussed, and the absence of the minor solutes required to form the Ni-Mn-Si precipitates results in the lack of nucleation. This is in contrast to cementite phases in which Ni-Mn-Si precipitates have been seen to be formed. It was also determined through this work that the exclusion of all the Fe ions during atom probe analysis is a reasonable approximation.« less
Characteristics of 5M modulated martensite in Ni-Mn-Ga magnetic shape memory alloys
NASA Astrophysics Data System (ADS)
Ćakır, A.; Acet, M.; Righi, L.; Albertini, F.; Farle, M.
2015-09-01
The applicability of the magnetic shape memory effect in Ni-Mn-based martensitic Heusler alloys is closely related to the nature of the crystallographically modulated martensite phase in these materials. We study the properties of modulated phases as a function of temperature and composition in three magnetic shape memory alloys Ni49.8Mn25.0Ga25.2, Ni49.8Mn27.1Ga23.1 and Ni49.5Mn28.6Ga21.9. The effect of substituting Ga for Mn leads to an anisotropic expansion of the lattice, where the b-parameter of the 5M modulated structure increases and the a and c-parameters decrease with increasing Ga concentration. The modulation vector is found to be both temperature and composition dependent. The size of the modulation vector corresponds to an incommensurate structure for Ni49.8Mn25.0Ga25.2 at all temperatures. For the other samples the modulation is incommensurate at low temperatures but reaches a commensurate value of q ≈ 0.400 close to room temperature. The results show that commensurateness of the 5M modulated structure is a special case of incommensurate 5M at a particular temperature.
NASA Technical Reports Server (NTRS)
Wasson, John T.; Krot, Alexander N
1994-01-01
We report ten occurrences of high-fayalite (Fa56-99 mol%; four with Fa greater than 82 mol%) olivine in association with silica in type-3 ordinary chondrites. Pyroxene with high Fs contents is much less common; Fs contents do not exceed 66 mol%, and most maxima are less than 50 mol%. In those cases where the amount of fayalite is minor relative to that of silica, the fayalite forms a layer on the silica, and shows textural evidence of formation by reaction of silica with oxidized Fe; the latter seems to have resulted from reaction of metallic Fe-Ni with an oxidant, most likely H2O vapor. The fayalite is generally in contact with pyroxene (and, in one case, olivine) having a much lower Fe/(Fe + Mg) ratios, indicating that lattice diffusion has been minimal. Formation of fayalite from SiO2 explains the low Mg content of this olivine; the Mg was sequestered inside the lattices of mafic minerals and was thus inaccessible. In contrast, the moderately high Mn contents of the fayalite indicate that an appreciable fraction of the Mn in the precursor assemblage was accessible; it was probably sited in the matrix in the form of tiny, poorly crystallized oxide grains produced by nebular condensation at temperatures too low to permit diffusion into forsterite or enstatite. The reaction of SiO2 with FeO produced by oxidation (during metamorphism) of Fe-Ni can also account for fayalitic olivine associated with SiO2 microspherules in the fine-grained matrices of type-3 ordinary chondrites and, because matrix is SiO2 normative, for other occurrences of fayalite in matrix. The presence of Mn in the fayalitic rims on the olivine of carbonaceous chondrites does not require a nebular sign.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raghavan, C.M.; Kim, H.J.; Kim, J.W.
2013-11-15
Graphical abstract: - Highlights: • Chemical solution deposition of (Bi{sub 0.95}La{sub 0.05})(Fe{sub 0.97}Mn{sub 0.03})O{sub 3}–NiFe{sub 2}O{sub 4} double layered thin film. • Studies on structural, electrical and multiferroic properties. • NiFe{sub 2}O{sub 4} acts as both resistive buffer layer and magnetic source. - Abstract: (Bi{sub 0.95}La{sub 0.05})(Fe{sub 0.97}Mn{sub 0.03})O{sub 3}/NiFe{sub 2}O{sub 4} double layered thin film was prepared on a Pt(111)/Ti/SiO{sub 2}/Si(100) substrate by a chemical solution deposition method. X-ray diffraction and Raman scattering spectroscopy studies confirmed the formation of the distorted rhombohedral perovskite and the inverse spinel cubic structures for the (Bi{sub 0.95}La{sub 0.05})(Fe{sub 0.97}Mn{sub 0.03})O{sub 3}/NiFe{sub 2}O{sub 4}more » double layered thin film. The (Bi{sub 0.95}La{sub 0.05})(Fe{sub 0.97}Mn{sub 0.03})O{sub 3}/NiFe{sub 2}O{sub 4} double layered thin film exhibited well saturated ferromagnetic (2 M{sub r} of 18.1 emu/cm{sup 3} and 2H{sub c} of 0.32 kOe at 20 kOe) and ferroelectric (2P{sub r} of 60 μC/cm{sup 2} and 2E{sub c} of 813 kV/cm at 866 kV/cm) hysteresis loops with low order of leakage current density (4.5 × 10{sup −6} A/cm{sup 2} at an applied electric field of 100 kV/cm), which suggest the ferroelectric and ferromagnetic multi-layers applications in real devices.« less
Gao, Peng; Fu, Tong-Gang; Wang, Ke-Lin; Chen, Hong-Song; Zeng, Fu-Ping
2013-11-01
A total of 163 soil samples (0-20 cm layer) were collected from the grid sampling plots (80 m x 80 m) in Huanjiang Observation and Research Station of Karst Ecosystem in a small catchment in Karst cluster-peak depression area, South China. By using classical statistics and geostatistics, the spatial heterogeneity of mineral components (SiO2, Fe2O3, CaO, MgO, Al2O3, MnO, and TiO2) in the soils were studied. The contents of the seven soil mineral components in the study area differed greatly, being in the order of SiO2 > Al2O3 > CaO > MgO > Fe2O3 > TiO2 > MnO, and the variance coefficients also varied obviously, in the order of CaO > MgO > Fe2O3 > TiO2 > SiO2 > Al2O3 > MnO. The seven mineral components accounted for 69.4% of the total soil mass. The spatial patterns and the fittest models of the seven soil mineral components differed from each other. All the seven soil mineral components had a strong spatial autocorrelation, with shorter variation ranges and stronger spatial dependence. The Kriging contour maps indicated that the distribution patterns of soil SiO2, Fe2O3, Al2O3, MnO, and TiO2 were similar, being higher in south and east, lower in north and west, higher in depression, and lower in slope, while the distribution patterns of soil CaO and MgO were in adverse. Natural conditions (vegetation, bare rock rate, slope degree, and slope aspect, etc. ) and human disturbance were the most important factors affecting the spatial patterns of the soil mineral components.
CuO, MnO2 and Fe2O3 doped biomass ash as silica source for glass production in Thailand
NASA Astrophysics Data System (ADS)
Srisittipokakun, N.; Ruangtaweep, Y.; Rachniyom, W.; Boonin, K.; Kaewkhao, J.
In this research, glass productions from rice husk ash (RHA) and the effect of BaO, CuO, MnO2 and Fe2O3 on physical and optical properties were investigated. All properties were compared with glass made from SiO2 using same preparations. The results show that a higher density and refractive index of BaO, CuO, MnO2 and Fe2O3 doped in RHA glasses were obtained, compared with SiO2 glasses. The optical spectra show no significant difference between both glasses. The color of CuO glasses show blue from the absorption band near 800 nm (2B1g → 2B2g) due to Cu2+ ion in octahedral coordination with a strong tetragonal distortion. The color of MnO2 glasses shows brown from broad band absorption at around 500 nm. This absorption band is assigned to a single allowed 5Eg → 5T2g transition which arises from the Mn3+ ions (3d4 configuration) in octahedral symmetry. The yellow color derives from F2O3 glass due to the homogeneous distribution of Fe3+ (460 nm) and Fe2+ (1050 nm) ions in the glass matrices. Glass production from RHA is possible and is a new option for recycling waste from biomass power plant systems and air pollution reduction.
Efficiency of Energy Harvesting in Ni-Mn-Ga Shape Memory Alloys
NASA Astrophysics Data System (ADS)
Lindquist, Paul; Hobza, Tony; Patrick, Charles; Müllner, Peter
2018-03-01
Many researchers have reported on the voltage and power generated while energy harvesting using Ni-Mn-Ga shape memory alloys; few researchers report on the power conversion efficiency of energy harvesting. We measured the magneto-mechanical behavior and energy harvesting of Ni-Mn-Ga shape memory alloys to quantify the efficiency of energy harvesting using the inverse magneto-plastic effect. At low frequencies, less than 150 Hz, the power conversion efficiency is less than 0.1%. Power conversion efficiency increases with (i) increasing actuation frequency, (ii) increasing actuation stroke, and (iii) decreasing twinning stress. Extrapolating the results of low-frequency experiments to the kHz actuation regime yields a power conversion factor of about 20% for 3 kHz actuation frequency, 7% actuation strain, and 0.05 MPa twinning stress.
Li, Zongbin; Yang, Bo; Zou, Naifu; Zhang, Yudong; Esling, Claude; Gan, Weimin; Zhao, Xiang; Zuo, Liang
2017-01-01
Heusler type Ni-Mn-Ga ferromagnetic shape memory alloys can demonstrate excellent magnetic shape memory effect in single crystals. However, such effect in polycrystalline alloys is greatly weakened due to the random distribution of crystallographic orientation. Microstructure optimization and texture control are of great significance and challenge to improve the functional behaviors of polycrystalline alloys. In this paper, we summarize our recent progress on the microstructure control in polycrystalline Ni-Mn-Ga alloys in the form of bulk alloys, melt-spun ribbons and thin films, based on the detailed crystallographic characterizations through neutron diffraction, X-ray diffraction and electron backscatter diffraction. The presented results are expected to offer some guidelines for the microstructure modification and functional performance control of ferromagnetic shape memory alloys. PMID:28772826
NASA Astrophysics Data System (ADS)
Heczko, O.; Drahokoupil, J.; Straka, L.
2015-05-01
Enhanced magnetic hysteresis due to boron doping in combination with magnetic shape memory effect in Ni-Mn-Ga single crystal results in new interesting functionality of magnetic shape memory (MSM) alloys such as mechanical demagnetization. In Ni50.0Mn28.5Ga21.5 single crystal, the boron doping increased magnetic coercivity from few Oe to 270 Oe while not affecting the transformation behavior and 10 M martensite structure. However, the magnetic field needed for MSM effect also increased in doped sample. The magnetic behavior is compared to undoped single crystal of similar composition. The evidence from the X-ray diffraction, magnetic domain structure, magnetization loops, and temperature evolution of the magnetic coercivity points out that the enhanced hysteresis is caused by stress-induced anisotropy.
High-temperature oxidation of aluminum electroplated Fe-Mn alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernabai, U.; Felli, F.; Capuano, G.A.
1990-04-01
Austenitic Mn-Al alloys (20-32 W/O Mn, 7-10 Al, 2-3 Si, 1C) were found to have satisfactory oxidation resistance up to 950{degree}C under isothermal conditions in air. Surface enrichment of aluminum is a necessary condition for obtaining an almost pure alumina scale for uses at higher temperatures. Four different Mn-steels were Al-coated by the Capuano electroplating process. In all the steels there was an increase in the hot-oxidation resistance. The best results were obtained with steels containing both Al and Si, and this for temperatures up to 1,100{degree}C.
Band structure of the quaternary Heusler alloys ScMnFeSn and ScFeCoAl
NASA Astrophysics Data System (ADS)
Shanthi, N.; Teja, Y. N.; Shaji, Shephine M.; Hosamani, Shashikala; Divya, H. S.
2018-04-01
In our quest for materials with specific applications, a theoretical study plays an important role in predicting the properties of compounds. Heusler alloys or compounds are the most studied in this context. More recently, a lot of quaternary Heusler compounds are investigated for potential applications in fields like Spintronics. We report here our preliminary study of the alloys ScMnFeSn and ScFeCoAl, using the ab-initio linear muffin-tin orbital method within the atomic sphere approximation (LMTO-ASA). The alloy ScMnFeSn shows perfect half-metallicity, namely, one of the spins shows a metallic behaviour and the other spin shows semi-conducting behaviour. Such materials find application in devices such as the spin-transfer torque random access memory (STT-MRAM). In addition, the alloy ScMnFeSn is found to have an integral magnetic moment of 4 µB, as predicted by the Slater-Pauling rule. The alloy ScFeCoAl does not show half-metallicity.
NASA Astrophysics Data System (ADS)
Kumaresh Babu, S. P.; Natarajan, S.
2010-07-01
Higher productivity is registered with Flux cored arc welding (FCAW) process in many applications. Further, it combines the characteristics of shielded metal arc welding (SMAW), gas metal arc welding (GMAW), and submerged arc welding (SAW) processes. This article describes the experimental work carried out to evaluate and compare corrosion and its inhibition in SA 387 Gr.22 (2.25Cr-1Mo) steel weldments prepared by FCAW process with four different heat inputs exposed to hydrochloric acid medium at 0.1, 0.5, and 1.0 M concentrations. The parent metal, weld metal, and heat-affected zone are chosen as regions of exposure for the study carried out at 100 °C. Electrochemical polarization techniques such as Tafel line extrapolation (Tafel) and linear polarization resistance (LPR) have been used to measure the corrosion current. The role of hexamine and mixed inhibitor (thiourea + hexamine in 0.5 M HCl), each at 100 ppm concentration is studied in these experiments. Microstructural observation, hardness survey, surface characterization, and morphology using scanning electron microscope (SEM) and x-ray diffraction (XRD) have been made on samples to highlight the nature and extent of film formation. The film is found to contain Fe2Si, FeSi2, FeMn3, Fe7Mo3, Fe3O4, FeO, FeCr, AlO7Fe3SiO3, and KFe4Mn77Si19.
NASA Astrophysics Data System (ADS)
Upadhyaya, Rajat; Singh, K. K.; Kumar, Rajeev
2018-03-01
The technology of thin parts is necessary steps to designers for energy consuming equipment to choose accurate material based on material properties. Here austempering treatment process was utilized to acquire thin wall austempered ductile iron castings. The plate thickness (2-5) mm were austenitized at 900 °C for, 30 minutes took after by holding at 350°C, 400°C and 450°C inoculated by Ce-Ca-Al-S-O-FeSi,Zr-Mn-Ca-Al-Ba-FeSi and Sr-Al-Ca-FeSi at 0.2wt%,0.4wt% and 0.6wt% for 2,5 and 10 minutes for every temperature.The austempered samples are comparatively harder than the as-cast ductile iron plates. The micro hardness(HV20) also decreases with increase in austempering temperature for a given austempering time for thinner plates and also the micro hardness(HV20) is more for the samples treated at 350°C than those treated at 400°C and 450°C at 0.4wt% for a given austempering time. The yield strength and ultimate tensile strength of 2 mm thin wall austempered ductile iron are higher and ductility and impact strength are lower than that of as-cast 2 mm thin plate ductile iron inoculated by Ce-Ca-Al-S-O-FeSi compare to Zr-Mn-Ca-Al-Ba-FeSi and Sr-Al-Ca-FeSi at 0.4wt%. This may be attributed to the change in the structure change from ferrite-pearlite to austenite-bainite.
Itinerant Antiferromagnetism in FeMnP 0.8Si 0.2
Sales, Brian C.; Susner, Michael A.; Conner, Benjamin S.; ...
2015-09-25
Compounds based on the Fe 2P structure have continued to attract interest because of the interplay between itinerant and localized magnetism in a noncentrosymmetric crystal structure, and because of the recent developments of these materials for magnetocaloric applications. We report the growth and characterization of millimeter-sized single crystals of FeMnP 0.8Si 0.2 with the Fe 2P structure. Single-crystal x-ray diffraction, magnetization, resistivity, and Hall and heat capacity data are reported. The crystals exhibit itinerant antiferromagnetic order below 158 K with no hint of ferromagnetic behavior in the magnetization curves and with the spins ordered primarily in the ab plane. Themore » room-temperature resistivity is close to the Ioffe-Regel limit for a metal. Single-crystal x-ray diffraction indicates a strong preference for Mn to occupy the larger pyramidal 3g site. The cation site preference in the as-grown crystals and the antiferromagnetism were not changed after high-temperature anneals and a rapid quench to room temperature« less
Magnetic susceptibilities of liquid Cr-Au, Mn-Au and Fe-Au alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohno, S.; Shimakura, H.; Tahara, S.
The magnetic susceptibility of liquid Cr-Au, Mn-Au, Fe-Au and Cu-Au alloys was investigated as a function of temperature and composition. Liquid Cr{sub 1-c}Au{sub c} with 0.5 ≤ c and Mn{sub 1-c}Au{sub c} with 0.3≤c obeyed the Curie-Weiss law with regard to their dependence of χ on temperature. The magnetic susceptibilities of liquid Fe-Au alloys also exhibited Curie-Weiss behavior with a reasonable value for the effective number of Bohr magneton. On the Au-rich side, the composition dependence of χ for liquid TM-Au (TM=Cr, Mn, Fe) alloys increased rapidly with increasing TM content, respectively. Additionally, the composition dependences of χ for liquidmore » Cr-Au, Mn-Au, and Fe-Au alloys had maxima at compositions of 50 at% Cr, 70 at% Mn, and 85 at% Fe, respectively. We compared the composition dependences of χ{sub 3d} due to 3d electrons for liquid binary TM-M (M=Au, Al, Si, Sb), and investigated the relationship between χ{sub 3d} and E{sub F} in liquid binary TM-M alloys at a composition of 50 at% TM.« less
Crystal structures of two new low-symmetry calcium-deficient analogs of eudialyte
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rastsvetaeva, R. K.; Rozenberg, K. A.; Pekov, I. V.
2006-03-15
The crystal structures of two new low-symmetry (sp. gr. R3) representatives of the eudialyte group from Mont Saint-Hilaire (Quebec, Canada) and the Lovozero massif (Kola Peninsula, Russia) were studied by single-crystal X-ray diffraction analysis and refined to R = 0.068 and 0.054 using 2899 reflections with F > 5{sigma}(F) and 2927 reflections with F > 3{sigma}(F), respectively. The idealized formulas of these representatives are Na{sub 13}(Ca{sub 3}Mn{sub 3})Zr{sub 3}(Fe, Mn){sub 3}({open_square})(Si)[Si{sub 3}O{sub 9}]{sub 2}[Si{sub 9}O{sub 27}]{sub 2}(O, OH, Cl){sub 3} . 2H{sub 2}O and Na{sub 15}(Ca{sub 3}Mn{sub 3})Zr{sub 3}(Fe, Zr){sub 3}(Si)(Si) . [Si{sub 3}O{sub 9}]{sub 2}[Si{sub 9}O{sub 27}]{sub 2}O{sub 2}(OH,more » F, Cl){sub 2} . 2H{sub 2}O. Both minerals are analogs of oneillite and are characterized by a low Ca content. The distinguishing features of the mineral from Quebec are that the M(4) site is essentially vacant (>50%) and Ca atoms occupy one independent site in the six-membered ring, whereas another site is occupied by Mn along with a small impurity of Na. In the mineral from the Lovozero massif, both the M(3) and M(4) sites are occupied predominantly by silicon, while Ca atoms are distributed between both octahedral sites of the six-membered ring, one of these sites being occupied predominantly by Mn.« less
Loche, Danilo; Casula, Maria F; Falqui, Andrea; Marras, Sergio; Corrias, Anna
2010-02-01
The preparation of highly porous MnFe2O4-SiO2 and NiFe2O4-SiO2 nanocomposite aerogels with high purity and homogeneity was successfully achieved by a sol-gel procedure involving urea-assisted co-gelation of the precursor phases firstly applied for the synthesis of CoFe2O4-SiO2. This method allows fast gelation, giving rise to aerogels with 97% porosity. The structural, morphological and textural characterization as a function of thermal treatments was carried out by a multitechnique approach confirming that, as in the case of CoFe2O4-SiO2, the formation of single nanocrystals of manganese ferrite and nickel ferrite with spinel structure occurs after heating at 750 degrees C and is complete at 900 degrees C when the high porosity typical of aerogels is still retained. Thermogravimetric analysis (TG), differential thermal analysis (DTA), N2-physisorption at 77 K, powder X-ray diffraction (XRD), and transmission electron microscopy (TEM) indicate that the compositional homogeneity, crystallite size, thermal stability, and porosity are controlled by the sol-gel parameters of the preparation.
Micromirror structure actuated by TiNi shape memory thin films
NASA Astrophysics Data System (ADS)
Fu, Y. Q.; Luo, J. K.; Hu, M.; Du, H. J.; Flewitt, A. J.; Milne, W. I.
2005-10-01
TiNi films were deposited by co-sputtering TiNi and Ti targets. Results from differential scanning calorimetry and curvature measurement revealed martensitic transformation and shape memory effect upon heating and cooling. Two types of TiNi/Si micromirror structures with a Si mirror cap (40 µm thick) and TiNi/Si actuation beams were designed and fabricated. For the first design, a V-shaped cantilever based on the TiNi/Si bimorph structure was used as the actuation mechanism for the micromirror. In the second design, three elbow-shaped Si beams with TiNi electrodes were used as the arms to actuate the mirror. The TiNi/Si microbeams were flat at room temperature and bent up by applying voltage in the TiNi electrodes (due to phase transformation and shape memory effect), thus causing changes in angles of the micromirror.
Effect of Cr and Mn addition and heat treatment on AlSi3Mg casting alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tocci, Marialaura, E-mail: m.tocci@unibs.it
In the present paper the effect of heat treatment on an AlSi3Mg alloy with and without Cr and Mn addition was investigated. Beside the well-known modification of the morphology of Fe-containing intermetallics, it was found that Cr and Mn allowed the formation of dispersoids in the aluminium matrix after solution heat treatment at 545 °C, as shown by scanning transmission electron microscope observations. These particles were responsible of the enhanced Vickers microhardness of the aluminium matrix in comparison with the base alloy after solution treatment and quenching, according to dispersion hardening mechanism. The presence of these particles was not affectedmore » by ageing treatment, which instead allowed the precipitation of β-Mg{sub 2}Si, as shown by the elaboration of differential scanning calorimeter curves. The formation of dispersoids and the study of their effect on mechanical properties can represent an interesting development for applications at high temperatures of casting alloys due to their thermal stability compared to other strengthening phases as β-Mg{sub 2}Si. - Highlights: •Cr and Mn successfully modified the morphology of Fe-containing intermetallics. •Cr- and Mn-dispersoids formed in the aluminium matrix during solution treatment. •Dispersion hardening was detected after solution treatment for Cr-containing alloy. •The dispersion hardening effect was maintained after ageing treatment.« less
Comparative study of the mechanical and tribological properties of a Hadfield and a Fermanal steel
NASA Astrophysics Data System (ADS)
Astudillo A., P. C.; Soriano G., A. F.; Barona Osorio, G. M.; Sánchez Sthepa, H.; Ramos, J.; Durán, J. F.; Pérez Alcázar, G. A.
2017-11-01
In this study, Fe-12.50Mn-1.10C-1.70Cr-0.40Mo-0.40Si-0.50(max)P-0.50(max)S (Hadfield alloy) and Fe-28.4Mn-0.86C-1.63Al-0.42Cu-1.80Mo-1.59Si-0.60W (Fermanal alloy) (Wt. %) in the aged condition were compared in terms of its tribological and microstructural properties. The x-ray diffraction (XRD) patterns were refined with the lines of the austenitic γ-phase, Chromium Iron Carbide (Cr2Fe14C), Iron Carbide (Fe2C), and Iron Oxide (Fe0.974O (II)) for the Hadfield alloy, and the lines of the austenitic γ-phase, martensite (M), Mn1.1Al0.9 phase and iron carbide (Fe7C3) for the Fermanal alloy. Mössbauer spectra were fit with two sites for the Hadfield alloy, which displayed as a broad singlet because of the austenitic disordered phase, and had a magnetic hyperfine field distribution, which corresponds to the Cr2Fe14C ferromagnetic carbides found by XRD. There were two paramagnetic sites, a singlet, which corresponds to the austenite disordered phase, and a doublet, which can be attributed to the Fe7C3 carbide. The obtained Rockwell C hardness for aged Hadfield and Fermanal alloys were 43.786 and 50.018 HRc, respectively.
NASA Astrophysics Data System (ADS)
Yang, K.; Park, H.; Baik, H.; Kim, J.; Park, K. R.; Yoon, J.; Kim, J. W.
2016-12-01
Understanding the biogeochemical process in the Fe-Mn crust layer is important to reconstruct the paleo-environment when the Fe-Mn crust layer forms. Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Electron Energy Loss Spectroscopy (EELS), and Polymerase Chain Reaction (PCR) were utilized to determine the redox states of Fe/Mn and microbial diversity at each layer. Samples were dredged from the western Pacific Magellan Seamount (OSM11) that consists of five well-defined layers from the rim (L1) to the core (L5). Some microbial like structures of sheath-like with filaments (L1 - L3), capsule-shaped (L2), fossilized coccolith mounds with phosphatized globules (L4), and bean-shaped (L4) were detected in entire layers. The cross sectional observation of bean-shaped microbe like structures encrusted with Fe-vernadite (L3) by Scanning Transmission Electron Microscopy (STEM) and Focused Ion Beam (FIB) technique revealed 1-μm diameter cavity in the center and porous structures of encrusting Fe-vernadite in periphery. Moreover, the organic carbon in the center cavity compared with inorganic C (from carbonate) in periphery was differentiated by C-K edge EELS spectra, suggesting that the microbe used to occupy. Indeed, the PCR analysis indicated the presence of functional gene (cumA; 1056bp & coxC; 810bp) association with Mn & Fe oxidizer that promote the formation of the crust. The cloning and sequencing of DNA PCR fragments revealed the appearance of geobacter species in L3 (G. sulfurreducens and G. lovleyi). The DNA molecular biological analysis and SEM direct observations suggest the evidence of biotic process in the formation of Fe-Mn crust.
Geological applications of synchrotron radiation
NASA Astrophysics Data System (ADS)
Henderson, C. M. B.; Cressey, G.; Redfern, S. A. T.
1995-03-01
Synchrotron-based, Earth sciences research carried out over the last 5 years is reviewed with special attention being given to X-ray absorption studies; X-ray diffraction and X-ray fluorescence microprobe applications are considered more briefly. A comprehensive bibliography is included. The main part of the paper summarizes recent work carried out at the Daresbury SRS. K-edge XAS studies of glasses as models for silicate melts provide information on the local structural environments of Si, Fe 2+ and Fe 3+. By analogy with synthetic "leucites" which contain Fe 2+ and Fe 3+ in tetrahedral framework sites, it seems that many model glasses also contain both oxidation states of Fe in the network, rather than as network modifiers. The structural sites occupied by the minor elements Mn, Zn and Ti in staurolite have been identified using XAFS; Mn and Zn substitute for Fe 2+ in the tetrahedral T2 site, while Ti occupies the distorted M2 octahedral site. L-edge spectroscopy is used to identify the valencies and electronic structures of Mn and Fe in minerals and the Fe 2+:Fe 3+ ratio in a natural spinel is determined. The polarized nature of the synchrotron beam is exploited in determining the Fe X-ray absorption anisotropy in single crystal tourmaline and epidote. XRD powder studies include Rietveld-refinement structure determination and compressibility studies. Synthetic "leucites" having the stoichiometry K 2MgSi 5O 12 have distinctly different structures. The dry-synthesized form is cubic Ia3d with Si and Mg fully disordered on tetrahedral framework sites, while the hydrothermally-synthesized polymorph is monoclinic P2 1/c with Si and Mg fully disordered on, respectively, 10 and 2 tetrahedral sites. The reversible tetragonal to orthorhombic phase transition in gillespite (BaFeSi 4O 10) has been studied in a diamond anvil cell using ED detection and found to occur at 1.2 ± 0.1 GPa. The anomalous compressibility observed has been interpreted in terms of ferroelastic and coelastic phenomena and the related order parameters analysed using Landau theory. The compressibility of MgCO 3, determined up to 20 GPa, has been combined with thermochemical data to obtain an "equation to state" for magnesite and it is found that magnesite is likely to be the main host for carbon in the Earth's lower mantle.
NASA Astrophysics Data System (ADS)
Chukanov, N. V.; Aksenov, S. M.; Rastsvetaeva, R. K.; Van, K. V.; Belakovskiy, D. I.; Pekov, I. V.; Gurzhiy, V. V.; Schüller, W.; Ternes, B.
2015-12-01
A new mineral, mendigite (IMA no. 2014-007), isostructural with bustamite, has been found in the In den Dellen pumice quarry near Mendig, Laacher Lake area, Eifel Mountains, Rhineland-Palatinate (Rheinland-Pfalz), Germany. Associated minerals are sanidine, nosean, rhodonite, tephroite, magnetite, and a pyrochlore-group mineral. Mendigite occurs as clusters of long-prismatic crystals (up to 0.1 × 0.2 × 2.5 mm in size) in cavities within sanidinite. The color is dark brown with a brown streak. Perfect cleavage is parallel to (001). D calc = 3.56 g/cm3. The IR spectrum shows the absence of H2O and OH groups. Mendigite is biaxial (-), α = 1.722 (calc), β = 1.782(5), γ = 1.796(5), 2 V meas = 50(10)°. The chemical composition (electron microprobe, mean of 4 point analyses, the Mn2+/Mn3+ ratio determined from structural data and charge-balance constraints) is as follows (wt %): 0.36 MgO, 10.78 CaO, 37.47 MnO, 2.91 Mn2O3, 4.42 Fe2O3, 1.08 Al2O3, 43.80 SiO2, total 100.82. The empirical formula is Mn2.00(Mn1.33Ca0.67) (Mn0.50 2+ Mn0.28 3+ Fe0.15 3+ Mg0.07)(Ca0.80 (Mn0.20 2+)(Si5.57 Fe0.27 3+ Al0.16O18). The idealized formula is Mn2Mn2MnCa(Si3O9)2. The crystal structure has been refined for a single crystal. Mendigite is triclinic, space group Pbar 1; the unit-cell parameters are a = 7.0993(4), b = 7.6370(5), c = 7.7037(4) Å, α = 79.58(1)°, β = 62.62(1)°, γ = 76.47(1)°; V = 359.29(4) Å3, Z = 1. The strongest reflections on the X-ray powder diffraction pattern [ d, Å ( I, %) ( hkl)] are: 3.72 (32) (020), 3.40 (20) (002, 021), 3.199 (25) (012), 3.000 (26), (01bar 2, 1bar 20), 2.885 (100) (221, 2bar 11, 1bar 21), 2.691 (21) (222, 2bar 10), 2.397 (21) (02bar 2, 21bar 1, 203, 031), 1.774 (37) (412, 3bar 21). The type specimen is deposited in the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, registration number 4420/1.
A Two-Phase Intergrowth in Genthelvite from Mont Saint-Hilaire, Quebec
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antao, Sytle M.; Hassan, Ishmael; West Indies)
Synchrotron high-resolution powder X-ray-diffraction (HRPXRD) data and Rietveld structure refinement were used to examine a two-phase intergrowth of genthelvite, ideally Zn{sub 8}[Be{sub 6}Si{sub 6}O{sub 24}]S{sub 2}, from the alkaline intrusive complex at Mont Saint-Hilaire, Quebec, where genthelvite occurs in nepheline syenite pegmatites. The structural parameters obtained for the two phases are slightly different from each other. The unit-cell parameters are 8.119190(7) {angstrom} (51% phase 1) and 8.128914(9) {angstrom} (49% phase 2). The refinement gives the chemical formulae and interstitial M cation in terms of Zn and Mn (the Fe content is practically zero) for the Mn-poor genthelvite phase 1 asmore » (Zn{sub 7.8}Mn{sub 0.2}){Sigma}{sub 8}[Be{sub 6}Si{sub 6}O{sub 24}]S{sub 2}, and the Mn-rich genthelvite phase 2 as (Zn{sub 7.0}Mn{sub 1.0}){Sigma}{sub 8}[Be{sub 6}Si{sub 6}O{sub 24}]S{sub 2}. These formulae are comparable to the Mn-poor and Mn-rich phases obtained by electron-microprobe analysis. The intergrowth indicates that diffusion is absent among the interstitial M cations of similar size (Zn{sup 2+}, Fe{sup 2+} and Mn{sup 2+}). Such intergrowths may form under distinct f(O{sub 2}) conditions and probably low temperature of crystallization that inhibits diffusion of M cations.« less
New Inverse-Heusler Materials with Potential Spintronics Applications
NASA Astrophysics Data System (ADS)
Bakkar, Said Adnan
Spintronics or spin-electronics attempt to utilize the electronic spin degree of freedom to make advanced materials and devices for the future. Heusler materials are considered very promising for spintronics applications as many highly spin-polarized materials potentially exist in this family. To accelerate materials discovery and development, The Materials Genome Initiative (https://www.mgi.gov/) was undertaken in 2011 to promote theory-driven search of new materials. In this thesis work, we outline our effort to develop several new materials that are predicted to be 100% spin-polarized (half-metallic) and thermodynamically stable by theory. In particular, two Mn-based Heusler families were investigated: Mn2CoZ (Z= Ga, Sb, Ge) and Mn2FeZ (Z=Si,Ge), where the latter is potentially a new Heusler family. These materials were synthesized using the arc-melting technique and their crystal structure was investigated using the X-ray diffraction (XRD) method before and after appropriate annealing of the samples. Preliminary magnetometry measurements are also reported. We first developed a heat-treatment procedure that could be applied to all the Mn-based compounds mentioned above. Mn2CoGa was successfully stabilized in the cubic inverse-Heusler phase with a=5.869 A and magnetic moment of 2.007 muB/fu. This is in good agreement with prior literature reports [1]. However, cubic phases of Mn2CoSb and Mn2CoGe could not be stabilized within the annealing temperature range that is accessible in our lab. We successfully synthesized a cubic Mn2FeSi phase using an annealing procedure similar to Mn2CoGa. The measured cubic lattice parameter of Mn2FeSi was 5.682 A. This is the first experimental report of this material to the best of our knowledge. Detailed analysis of relative intensities of different X-ray peaks revealed that the structure is most likely in an inverse Heusler phase, in agreement with theory. However, a substantial atomic-level disorder was also uncovered from XRD analysis that requires further investigation to understand its effect on its magnetism and half-metallicity. Mn2FeGe showed the existence of non-cubic phases that substantially weakened at high annealing temperatures.
NASA Astrophysics Data System (ADS)
Sun, Mingling; Kubota, Takahide; Takahashi, Shigeki; Kawato, Yoshiaki; Sonobe, Yoshiaki; Takanashi, Koki
2018-05-01
Buffer layer dependence of tunnel magnetoresistance (TMR) effects was investigated in Co2Fe0.4Mn0.6Si (CFMS)/MgO/Co50Fe50 magnetic tunnel junctions (MTJs). Pd, Ru and Cr were selected for the buffer layer materials, and MTJs with three different CFMS thicknesses (30, 5, and 0.8 nm) were fabricated. A maximum TMR ratio of 136% was observed in the Ru buffer layer sample with a 30-nm-thick CFMS layer. TMR ratios drastically degraded for the CFMS thickness of 0.8 nm, and the values were 26% for Cr buffer layer and less than 1% for Pd and Ru buffer layers. From the annealing temperature dependence of the TMR ratios, amounts of interdiffusion and effects from the lattice mismatch were discussed.
Effect of MgO and MnO on Phosphorus Utilization in P-Bearing Steelmaking Slag
NASA Astrophysics Data System (ADS)
Lin, Lu; Bao, Yan-Ping; Wang, Min; Li, Xiang
2016-04-01
In order to recycle the phosphorus in P-bearing converter slag and make it used as slag phosphate fertilizer, the effect of MgO and MnO in P-bearing steelmaking slag on phosphorus existence form, P2O5 solubility and magnetic separation behavior were researched systematically. The results show that the phosphorus in slag is mainly in the form of n2CaO · SiO2-3CaO · P2O5 (for short nC2S-C3P) solid solution in the P-rich phase for CaO-SiO2-FetO-P2O5-X (X stands for MgO and MnO, respectively). And the increasing of MgO and MnO content has no influence on precipitation of nC2S-C3P solid solution in slag, MnO and MgO mainly enter into RO phase and base phase to form MnFe2O4 and MgFe2O4, which has little effect on the P2O5 content of P-rich phase, so which has little effect on the degree of phosphorus enrichment and phosphorus occurrence form of the P-bearing slag. And adding MgO and MnO into CaO-SiO2-P2O5-Fe2O3 slag system can break the complex net structure formed by Si-O on certain degree, and also hinder the precipitation of β-Ca3(PO4)2 crystal with low citric acid solubility during the melting-cooling process. Therefore, adding appropriate MgO and MnO content into slag can improve the slag P2O5 solubility, but the effect of different amounts of MgO and MnO on the P2O5 solubility has little difference. Meanwhile, adding MgO and MnO into slag can improve the metallization of slag and magnetism of iron-rich phase, make the magnetic substances content increase and separation of phosphorus and iron incomplete, so it is adverse to phosphorus resources recovery from P-bearing slag by magnetic separation method. In order to recycle the phosphorus in P-bearing converter slag, the MgO and MnO content in the P-bearing slag should be controlled in the steelmaking process.
NASA Astrophysics Data System (ADS)
Matsuda, Shinpei; Kikuchi, Erumu; Yamane, Yasumasa; Okazaki, Yutaka; Yamazaki, Shunpei
2015-04-01
Field-effect transistors (FETs) with c-axis-aligned crystalline In-Ga-Zn-O (CAAC-IGZO) active layers have extremely low off-state leakage current. Exploiting this feature, we investigated the application of CAAC-IGZO FETs to LSI memories. A high on-state current is required for the high-speed operation of these LSI memories. The field-effect mobility μFE of a CAAC-IGZO FET is relatively low compared with the electron mobility of single-crystal Si (sc-Si). In this study, we measured and calculated the channel length L dependence of μFE for CAAC-IGZO and sc-Si FETs. For CAAC-IGZO FETs, μFE remains almost constant, particularly when L is longer than 0.3 µm, whereas that of sc-Si FETs decreases markedly as L shortens. Thus, the μFE difference between both FET types is reduced by miniaturization. This difference in μFE behavior is attributed to the different susceptibilities of electrons to phonon scattering. On the basis of this result and the extremely low off-state leakage current of CAAC-IGZO FETs, we expect high-speed LSI memories with low power consumption.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castro, I. L.; Nascimento, V. P.; Passamani, E. C.
2013-05-28
Magnetic properties of sputtered NiFe/IrMn/Co trilayers grown on different seed layers (Cu or Ta) deposited on Si (100) substrates were investigated by magnetometry and ferromagnetic resonance measurements. Exchange bias effect and magnetic spring behavior have been studied by changing the IrMn thickness. As shown by X-ray diffraction, Ta and Cu seed layers provoke different degrees of (111) fcc-texture that directly affect the exchange bias and indirectly modify the exchange spring coupling behavior. Increasing the IrMn thickness, it was observed that the coupling angle between the Co and NiFe ferromagnetic layers increases for the Cu seed system, but it reduces formore » the Ta case. The results were explained considering (i) different anisotropies of the Co and IrMn layers induced by the different degree of the (111) texture and (ii) the distinct exchange bias set at the NiFe/IrMn and IrMn/Co interfaces in both systems. The NiFe and Co interlayer coupling angle is strongly correlated with both exchange bias and exchange magnetic spring phenomena. It was also shown that the highest exchange bias field occurs when an unstressed L1{sub 2} IrMn structure is stabilized.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Chen; Pinkerton, Frederick E.; Herbst, Jan F.
New magnetic materials containing cerium, iron, and small additions of a third element are disclosed. These materials comprise compounds Ce(Fe.sub.12-xM.sub.x) where x=1-4, having the ThMn.sub.12 tetragonal crystal structure (space group I4/mmm, #139). Compounds with M=B, Al, Si, P, S, Sc, Co, Ni, Zn, Ga, Ge, Zr, Nb, Hf, Ta, and W are identified theoretically, and one class of compounds based on M=Si has been synthesized. The Si cognates are characterized by large magnetic moments (4.pi.M.sub.s greater than 1.27 Tesla) and high Curie temperatures (264.ltoreq.T.sub.c.ltoreq.305.degree. C.). The Ce(Fe.sub.12-xM.sub.x) compound may contain one or more of Ti, V, Cr, and Mo inmore » combination with an M element. Further enhancement in T.sub.c is obtained by nitriding the Ce compounds through heat treatment in N.sub.2 gas while retaining the ThMn.sub.12 tetragonal crystal structure; for example CeFe.sub.10Si.sub.2N.sub.1.29 has T.sub.c=426.degree. C.« less
Origin of the broad three-terminal Hanle signals in Fe/SiO{sub 2}/Si tunnel junctions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sato, Shoichi; Tanaka, Masaaki; Nakane, Ryosho
2015-07-20
Lorentzian-shaped broader three-terminal Hanle (B-3TH) signals are observed in Fe/SiO{sub 2}/Si tunnel junction devices at 6–300 K. We propose a spin conducting model, which explains all the characteristics of our experimental results, such as field angle dependence and bias dependence of the B-3TH signals, as well as experimental results reported by other groups. It was found that the shape of the B-3TH signals is determined by the spin depolarization at the Fe/SiO{sub 2} interface caused by local magnetic fields, unlike the conventional understanding. The shape of the B-3TH signals, including narrower and inverted Hanle signals, reflects the magnetic order of anmore » ultrathin paramagnetic layer formed at the Fe/SiO{sub 2} interface. Our model provides a unified explanation of the B-3TH signals observed in three-terminal Hanle measurements.« less
Critical exponents and universal magnetic behavior of noncentrosymmetric Fe0.6Co0.4Si
NASA Astrophysics Data System (ADS)
Shanmukharao Samatham, S.; Suresh, K. G.
2018-05-01
The critical magnetic properties of a non-centrosymmetric B20 cubic helimagnet Fe0.6Co0.4Si are investigated using magnetization isotherms. It belongs to the 3D-Heisenberg universality class with short range magnetic coupling as inferred from the self-consistent critical exponents , , and in combination with exchange interaction . Itinerant magnetic nature of the compound is realized by the Rhodes–Wholfarth analysis. Field-induced weak first (parahelical) to second (parafield-polarized) order transition is reported to occur at low critical field due to the weak spin–orbit coupling arising from the weak Dzyaloshinksii–Moriya interactions. Our study suggests the distinct phenomenological magnetic structures for Fe-based cubic magnets (Fe1‑x Co x Si and FeGe) and MnSi which cause contrasting physical properties.
Solid-state reaction of iron on β-SiC
NASA Astrophysics Data System (ADS)
Kaplan, R.; Klein, P. H.; Addamiano, A.
1985-07-01
The solid-state reaction between Fe and β-SiC has been studied using Auger-electron and electron-energy-loss spectroscopies and ion sputter profiling. Fe films from submonolayer coverage to 1000 Å thickness were grown in ultrahigh vacuum, and annealed at temperatures up to 550 °C. Auger line-shape changes occurred even for initial Fe coverage at 190 °C, indicating substantial bond alteration in the SiC substrate. A 1000-Å film was largely consumed by reaction with Si and C diffused from the substrate during a 500 °C anneal, and exhibited both Fe silicide and carbide throughout most of its original volume and free C present as graphite primarily at the surface. As an aid in identifying the reaction products studied in this work, Auger line shapes were first determined for the SiLVV peak in Fe silicide and for the CKLL transition in Fe carbide.
High-Temperature Oxidation Behavior of Al-Co-Cr-Ni-(Fe or Si) Multicomponent High-Entropy Alloys
NASA Astrophysics Data System (ADS)
Butler, T. M.; Alfano, J. P.; Martens, R. L.; Weaver, M. L.
2015-01-01
High-entropy alloys (HEAs) are a class of alloys that are being considered for a number of applications. In the present study, the microstructures and 1050°C oxidation behaviors of two HEAs, Al10Cr22.5Co22.5Ni22.5Fe22.5 (at.%) and Al20Cr25Co25Ni25Si5 have been investigated along with Al15Cr10Co35Ni35Si5, which is a high-temperature shape-memory alloy. Oxide formation occurred via selective oxidation in a manner that was consistent with the oxide formation model devised by Giggins and Pettit for model Ni-Cr-Al alloys. The lower Al content alloy formed an external Cr2O3 scale and an internal subscale consisting of Al2O3 and AlN precipitates. The higher Al content alloys exhibited smaller mass gains and formed external Al2O3 scales without any internal oxidation of the alloys.
The Effect of Interface Texture on Exchange Biasing in Ni(80)Fe(20)/Ir(20)Mn(80) System.
Chen, Yuan-Tsung
2009-01-01
Exchange-biasing phenomenon can induce an evident unidirectional hysteresis loop shift by spin coupling effect in the ferromagnetic (FM)/antiferromagnetic (AFM) interface which can be applied in magnetoresistance random access memory (MRAM) and recording-head applications. However, magnetic properties are the most important to AFM texturing. In this work, top-configuration exchange-biasing NiFe/IrMn(x A) systems have been investigated with three different conditions. From the high-resolution cross-sectional transmission electron microscopy (HR X-TEM) and X-ray diffraction results, we conclude that the IrMn (111) texture plays an important role in exchange-biasing field (H(ex)) and interfacial exchange energy (J(k)). H(ex) and J(k) tend to saturate when the IrMn thickness increases. Moreover, the coercivity (H(c)) dependence on IrMn thickness is explained based on the coupling or decoupling effect between the spins of the NiFe and IrMn layers near the NiFe/IrMn interface. In this work, the optimal values for H(ex) and J(k) are 115 Oe and 0.062 erg/cm(2), respectively.
NASA Astrophysics Data System (ADS)
Azzawi, Wessam Al; Epaarachchi, J. A.; Islam, Mainul; Leng, Jinsong
2017-12-01
Shape memory polymers (SMPs) offer a unique ability to undergo a substantial shape deformation and subsequently recover the original shape when exposed to a particular external stimulus. Comparatively low mechanical properties being the major drawback for extended use of SMPs in engineering applications. However the inclusion of reinforcing fibres in to SMPs improves mechanical properties significantly while retaining intrinsic shape memory effects. The implementation of shape memory polymer composites (SMPCs) in any engineering application is a unique task which requires profound materials and design optimization. However currently available analytical tools have critical limitations to undertake accurate analysis/simulations of SMPC structures and slower derestrict transformation of breakthrough research outcomes to real-life applications. Many finite element (FE) models have been presented. But majority of them require a complicated user-subroutines to integrate with standard FE software packages. Furthermore, those subroutines are problem specific and difficult to use for a wider range of SMPC materials and related structures. This paper presents a FE simulation technique to model the thermomechanical behaviour of the SMPCs using commercial FE software ABAQUS. Proposed technique incorporates material time-dependent viscoelastic behaviour. The ability of the proposed technique to predict the shape fixity and shape recovery was evaluated by experimental data acquired by a bending of a SMPC cantilever beam. The excellent correlation between the experimental and FE simulation results has confirmed the robustness of the proposed technique.
NASA Astrophysics Data System (ADS)
Singh, Kirandeep; Kaur, Davinder
2017-04-01
The current study reports the strong magnetoelectric coupling (M-E) in silicon (Si)-integrated ferromagnetic shape memory alloy-based PZT/Ni-Mn-In thin-film multiferroic heterostructure. The strain-mediated nature of converse M-E coupling is reflected from the butterfly-shaped normalized magnetization (M/M s) versus electric field plots. The direct M-E properties of the heterostructure were measured with a frequency of AC magnetic field, bias magnetic field, as well as with temperature. A maximum direct M-E coupling in the bilayered thin-film multiferroic heterostructures occurred at resonance frequencies around the first-order structural transitional temperature of the bottom Ni-Mn-In layer. It was observed that the measuring temperature remarkably affects the direct M-E characteristic of the heterostructure. A large direct ME effect and converse ME effect coefficient α DME ~ 894 mV cm-1.Oe and α CME ~ 2.7 × 10-5 s m-1, respectively, were achieved in the bilayer at room temperature. The mechanism of direct as well as converse M-E effects in the thin-film multiferroic heterostructures is discussed. The electrically driven angular dependence of normalized magnetization (M/M s) reveals the twofold symmetric magnetic anisotropy of the heterostructure, with the drastic shifting of the magnetic hard axis at E > E c (coercivity of PZT).
NASA Technical Reports Server (NTRS)
Levine, S. R.; Grisaffe, S. J.
1972-01-01
Edge and surface modification of niobium alloys prior to coating with Si-20Cr-20Fe and slurry composition modification were investigated to improve performance in a 1370 C, ambient pressure, slow-cycle test. The best coating obtained was Si-20Cr-20Mn with an average life of 63 cycles compared to 40 for Si-20Cr-20Fe on FS-85 (100 percent improvement in weight parity life). Edge beading extended the lives of Si-20Cr-20Fe coated Cb-752 and FS-85 to 57 and 41 cycles, respectively (50 and 20 percent improvements in weight parity life, respectively).
Structures and stability of metal-doped Ge nM (n = 9, 10) clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin, Wei; Lu, Wen-Cai; Xia, Lin-Hua
The lowest-energy structures of neutral and cationic Ge nM (n = 9, 10; M = Si, Li, Mg, Al, Fe, Mn, Pb, Au, Ag, Yb, Pm and Dy) clusters were studied by genetic algorithm (GA) and first-principles calculations. The calculation results show that doping of the metal atoms and Si into Ge 9 and Ge 10 clusters is energetically favorable. Most of the metal-doped Ge cluster structures can be viewed as adding or substituting metal atom on the surface of the corresponding ground-state Ge n clusters. However, the neutral and cationic FeGe 9,10,MnGe 9,10 and Ge 10Al are cage-like withmore » the metal atom encapsulated inside. Such cage-like transition metal doped Ge n clusters are shown to have higher adsorption energy and thermal stability. Our calculation results suggest that Ge 9,10Fe and Ge 9Si would be used as building blocks in cluster-assembled nanomaterials because of their high stabilities.« less
NASA Astrophysics Data System (ADS)
Kim, Cheol-Woo; Cho, Jae-Ik; Choi, Se-Weon; Kim, Young-Chan; Kang, Chang-Seog
Recently, demand of aluminum alloys for use in high thermal conductivity application is increases but the most aluminum die casting alloys exhibit very lower thermal properties because of their high concentrations of alloying elements. However, those alloying elements are essential to obtain sufficient fluidity and mechanical strength. Therefore, the purpose of this study is to analyze the effect of alloying elements in die casting alloys, Si, Cu, Mg, Fe and Mn, in thermal conductivity, die casting characteristics and mechanical properties and find out the appropriate amount of each alloying element for development of heat sink component. The results showed that Mn had the most deleterious effect in thermal conductivity and Si and Fe contents were important to improve strength and limit casting defects, such as hot tearing and die soldering. The alloy with 0.2 1.0wt%Cu, 0.3 0.6wt%Fe and 1.0 2.0wt%Si showed very good combination of high thermal conductivity and good casting characteristics.
Structures and stability of metal-doped Ge nM (n = 9, 10) clusters
Qin, Wei; Lu, Wen-Cai; Xia, Lin-Hua; ...
2015-06-26
The lowest-energy structures of neutral and cationic Ge nM (n = 9, 10; M = Si, Li, Mg, Al, Fe, Mn, Pb, Au, Ag, Yb, Pm and Dy) clusters were studied by genetic algorithm (GA) and first-principles calculations. The calculation results show that doping of the metal atoms and Si into Ge 9 and Ge 10 clusters is energetically favorable. Most of the metal-doped Ge cluster structures can be viewed as adding or substituting metal atom on the surface of the corresponding ground-state Ge n clusters. However, the neutral and cationic FeGe 9,10,MnGe 9,10 and Ge 10Al are cage-like withmore » the metal atom encapsulated inside. Such cage-like transition metal doped Ge n clusters are shown to have higher adsorption energy and thermal stability. Our calculation results suggest that Ge 9,10Fe and Ge 9Si would be used as building blocks in cluster-assembled nanomaterials because of their high stabilities.« less
Structures and stability of metal-doped GenM (n = 9, 10) clusters
NASA Astrophysics Data System (ADS)
Qin, Wei; Lu, Wen-Cai; Xia, Lin-Hua; Zhao, Li-Zhen; Zang, Qing-Jun; Wang, C. Z.; Ho, K. M.
2015-06-01
The lowest-energy structures of neutral and cationic GenM (n = 9, 10; M = Si, Li, Mg, Al, Fe, Mn, Pb, Au, Ag, Yb, Pm and Dy) clusters were studied by genetic algorithm (GA) and first-principles calculations. The calculation results show that doping of the metal atoms and Si into Ge9 and Ge10 clusters is energetically favorable. Most of the metal-doped Ge cluster structures can be viewed as adding or substituting metal atom on the surface of the corresponding ground-state Gen clusters. However, the neutral and cationic FeGe9,10,MnGe9,10 and Ge10Al are cage-like with the metal atom encapsulated inside. Such cage-like transition metal doped Gen clusters are shown to have higher adsorption energy and thermal stability. Our calculation results suggest that Ge9,10Fe and Ge9Si would be used as building blocks in cluster-assembled nanomaterials because of their high stabilities.
MnFe2O4: Synthesis, morphology and electrochemical properties
NASA Astrophysics Data System (ADS)
Kulkarni, Shrikant; Thombare, Balu; Patil, Shankar
2017-05-01
MnFe2O4 has been synthesized by simple ammonia assisted co-precipitation method to obtain nanocrystalline powder. X-ray diffraction studies confirmed its crystallinity and phase purity. The MnFe2O4 calcined at 1000°C for 4 h has spinel crystal structure with Fd3m space group and lattice constant 8.511 Å. The electrode was prepared by dip coating method on stainless steel substrate and fired at 600°C for 2 h. Random shape grains of 0.2 to 1.5 micron with pores of 1-2 micron dimensions were observed in SEM images. The electrochemical studies of MnFe2O4 were carried out with 1 mole Na2SO4 electrolyte. The MnFe2O4 electrode shows highest specific capacitance of 27.53 F.g-1 and interfacial capacitance of 0.83 F.cm-2.
NASA Astrophysics Data System (ADS)
Singh, Sanjay; D'Souza, S. W.; Nayak, J.; Caron, L.; Suard, E.; Chadov, S.; Felser, C.
2016-04-01
Ni2MnGa exhibits ideal ferromagnetic shape memory properties, however, brittleness and a low-temperature martensite transition hinder its technological applications motivating the search for novel materials showing better mechanical properties as well as higher transition temperatures. In this work, the crystal structure, phase transitions, and the magnetic properties of quaternary Ni2 -xPtxMnGa (0 ≤x ≤1 ) shape memory alloys were studied experimentally by x-ray diffraction, magnetization measurements, and neutron diffraction and compared to ab initio calculations. Compositions within 0 ≤x ≤0.25 exhibit the cubic austenite phase at room temperature. The x ≈0.3 composition exhibits a seven-layer modulated monoclinic martensite structure. Within 0.4 ≤x ≤1 , the system stabilizes in the nonmodulated tetragonal structure. The martensite transition has very narrow thermal hysteresis 0 ≤x ≤0.3 , which is a typical characteristic of a shape memory alloy. By increasing x , the temperature of the martensite transition increases, while that of the magnetic transition decreases. The x =1 composition (NiPtMnGa) in the martensite phase undergoes a para-to-ferrimagnetic transition. The saturation magnetization exhibits a nontrivial behavior with increasing up to x ≈0.25 , above which, it suddenly decreases. Powder neutron diffraction reveals the presence of antisite disorder, with about 17% of the original Ga sites being occupied by Mn. Computations suggest that the antisite disorder triggers an antiferromagnetic coupling between two Mn atoms in different crystallographic positions, resulting into a sudden drop of the saturation magnetization for higher x .
Steam Oxidation Behavior of Advanced Steels and Ni-Based Alloys at 800 °C
NASA Astrophysics Data System (ADS)
Dudziak, T.; Boroń, L.; Deodeshmukh, V.; Sobczak, J.; Sobczak, N.; Witkowska, M.; Ratuszek, W.; Chruściel, K.
2017-03-01
This publication studies the steam oxidation behavior of advanced steels (309S, 310S and HR3C) and Ni-based alloys (Haynes® 230®, alloy 263, alloy 617 and Haynes® 282®) exposed at 800 °C for 2000 h under 1 bar pressure, in a pure water steam system. The results revealed that all exposed materials showed relatively low weight gain, with no spallation of the oxide scale within the 2000 h of exposure. XRD analysis showed that Ni-based alloys developed an oxide scale consisting of four main phases: Cr2O3 (alloy 617, Haynes® 282®, alloy 263 and Haynes® 230®), MnCr2O4 (alloy 617, Haynes® 282® and Haynes® 230®), NiCr2O4 (alloy 617) and TiO2 (alloy 263, Haynes® 282®). In contrast, advanced steels showed the development of Cr2O3, MnCr2O4, Mn7SiO12, FeMn(SiO4) and SiO2 phases. The steel with the highest Cr content showed the formation of Fe3O4 and the thickest oxide scale.
Formation of Fe-Mn crusts within a continental margin environment
Conrad, Tracey A.; Hein, James R.; Paytan, Adina; Clague, David A.
2017-01-01
This study examines Fe-Mn crusts that form on seamounts along the California continental-margin (CCM), within the United States 200 nautical mile exclusive economic zone. The study area extends from approximately 30° to 38° North latitudes and from 117° to 126° West longitudes. The area of study is a tectonically active northeast Pacific plate boundary region and is also part of the North Pacific Subtropical Gyre with currents dominated by the California Current System. Upwelling of nutrient-rich water results in high primary productivity that produces a pronounced oxygen minimum zone. Hydrogenetic Fe-Mn crusts forming along the CCM show distinct chemical and mineral compositions compared to open-ocean crusts. On average, CCM crusts contain more Fe relative to Mn than open-ocean Pacific crusts. The continental shelf and slope release both Fe and Mn under low-oxygen conditions. Silica is also enriched relative to Al compared to open-ocean crusts. This is due to the North Pacific silica plume and enrichment of Si along the path of deep-water circulation, resulting in Si enrichment in bottom and intermediate waters of the eastern Pacific.The CCM Fe-Mn crusts have a higher percentage of birnessite than open-ocean crusts, reflecting lower dissolved seawater oxygen that results from the intense coastal upwelling and proximity to zones of continental slope pore-water anoxia. Carbonate fluorapatite (CFA) is not present and CCM crusts do not show evidence of phosphatization, even in the older sections. The mineralogy indicates a suboxic environment under which birnessite forms, but in which pH is not high enough to facilitate CFA deposition. Growth rates of CCM crusts generally increase with increasing water depth, likely due to deep-water Fe sources mobilized from reduced shelf and slope sediments.Many elements of economic interest including Mn, Co, Ni, Cu, W, and Te have slightly or significantly lower concentrations in CCM crusts relative to crusts from the Pacific Prime Crust Zone and other open-ocean basins. However, concentrations of total rare earth elements and yttrium average only slightly lower contents and in the future may be a strategic resource for the U.S.
Characterization of Sumbawa manganese ore and recovery of manganese sulfate as leaching products
NASA Astrophysics Data System (ADS)
Kusumaningrum, Retno; Rahmani, Siti Astari; Widayatno, Wahyu Bambang; Wismogroho, Agus Sukarto; Nugroho, Dwi Wahyu; Maulana, Syahrizal; Rochman, Nurul Taufiqu; Amal, M. Ikhlasul
2018-05-01
The aims of this research were to study the leaching process of manganese ore which originated from Sumbawa, Indonesia and its characterization. A high grade Indonesian manganese ore from Sumbawa, West of Nusa Tenggara was characterized by X-Ray Fluorescence (XRF). The result showed composition of 78.8 % Mn, 17.77% Fe and the rest were trace elements such as Si, Co, Ti, Zn, V and Zr contents. X-Ray Diffraction analysis showed that the manganese ore was consisted of pyrolusite (MnO2), rhodonite (MnSiO3), rhodochrosite (MnCO3) and hematite (Fe2O3). Manganese ore was also analyzed by thermal analysis to observe their thermal decomposition character. In this study, sulphuric acid (H2SO4, 6 M) was deployed as leaching agent. The leaching process was performed at 90 °C for two hours with the addition of NH4OH to control pH. Recovery percentage of leaching process yielded of 87 % Mn extracted. The crystallization process result at heating temperature of 200 °C was confirmed by XRD as manganese sulfate.
Disproportionation of marokite at high pressures and temperatures with geophysical implications
NASA Astrophysics Data System (ADS)
Liu, Lin-gun
1983-07-01
Natural marokite (CaMn 2O 4) has been studied at high pressures and temperatures using a diamond-anvil press coupled with laser heating in the pressure range 100-250 kbar. A mixture of marokite, CaMnO 3 (perovskite) and MnO (rocksalt) has been observed in all runs in the above pressure range by X-ray diffraction study of the quenched samples. It was interpreted that marokite disproportionates into the mixture CaMnO 3 (perovskite) + MnO (rocksalt) at pressures below 100 kbar. A general comparison of the molar volume for all known compounds having the marokite-related structures (including CaFe 2O 4 and CaTi 2O 4) with those for a mixture of perovskite plus rocksalt structures suggested that the mixture is more stable than the marokite-related structures at high pressures, as confirmed by the present experimental result. The CaFe 2O 4-modification of common nepheline (NaAlSiO 4) is also suggested to be unstable relative to the component oxides of α-NaAlO 2 + SiO 2 (stishovite) at high pressures.
NASA Astrophysics Data System (ADS)
Heo, N. H.; Yoon, G. G.
2010-04-01
The solubility of sulfur is calculated in 0.1 %Mn-added 3 %Si-Fe alloys. The segregation kinetics of sulfur is compared in the alloy containing 95 ppm sulfur, depending on the annealing atmosphere. The effects of pre-annealing and annealing atmosphere on final annealing texture are investigated. Segregation behaviors of sulfur at free surfaces and grain boundaries are compared and, during the selective growth, the importance of the grain boundary concentration of sulfur is emphasized. Finally, a correlation between the development of the annealing texture and segregation kinetics of sulfur in the alloy strip is discussed.
The formation and structure of Fe-Mn-Ni-Si solute clusters and G-phase precipitates in steels
NASA Astrophysics Data System (ADS)
King, D. J. M.; Burr, P. A.; Middleburgh, S. C.; Whiting, T. M.; Burke, M. G.; Wenman, M. R.
2018-07-01
Solute clustering and G-phase precipitation cause hardening phenomena observed in some low alloy and stainless steels, respectively. Density functional theory was used to investigate the energetic driving force for the formation of these precipitates, capturing temperature effects through analysis of the system's configurational and magnetic entropies. It is shown that enrichment of Mn, Ni and Si is thermodynamically favourable compared to the dilute ferrite matrix of a typical A508 low alloy steel. We predict the ordered G-phase to form preferentially rather than a structure with B2-type ordering when the Fe content of the system falls below 10-18 at. %. The B2 → G-phase transformation is predicted to occur spontaneously when vacancies are introduced into the B2 structure in the absence of Fe.
NASA Astrophysics Data System (ADS)
Ćakιr, Aslι; Righi, Lara; Albertini, Franca; Acet, Mehmet; Farle, Michael; Aktürk, Selçuk
2013-11-01
Martensitic transitions in shape memory Ni-Mn-Ga Heusler alloys take place between a high temperature austenite and a low temperature martensite phase. However, intermartensitic transformations have also been encountered that occur from one martensite phase to another. To examine intermartensitic transitions in magnetic shape memory alloys in detail, we carried out temperature dependent magnetization, resistivity, and x-ray diffraction measurements to investigate the intermartensitic transition in Ni50Mn50-xGax in the composition range 12≤x≤25 at. %. Rietveld refined x-ray diffraction results are found to be consistent with magnetization and resistivity data. Depending on composition, we observe that intermartensitic transitions occur in the sequences 7M→L10, 5M →7M, and 5M→7M→L10 with decreasing temperature. The L10 non-modulated structure is most stable at low temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heczko, O., E-mail: heczko@fzu.cz; Drahokoupil, J.; Straka, L.
2015-05-07
Enhanced magnetic hysteresis due to boron doping in combination with magnetic shape memory effect in Ni-Mn-Ga single crystal results in new interesting functionality of magnetic shape memory (MSM) alloys such as mechanical demagnetization. In Ni{sub 50.0}Mn{sub 28.5}Ga{sub 21.5} single crystal, the boron doping increased magnetic coercivity from few Oe to 270 Oe while not affecting the transformation behavior and 10 M martensite structure. However, the magnetic field needed for MSM effect also increased in doped sample. The magnetic behavior is compared to undoped single crystal of similar composition. The evidence from the X-ray diffraction, magnetic domain structure, magnetization loops, and temperature evolutionmore » of the magnetic coercivity points out that the enhanced hysteresis is caused by stress-induced anisotropy.« less
Preparation and characterization of chain-like and peanut-like Fe3O4@SiO2 core-shell structure.
Shi, Haowei; Huang, Yan; Cheng, Chao; Ji, Guoyuan; Yang, Yuxiang; Yuan, Hongming
2013-10-01
The size- and shape-controlled Fe3O4@SiO2 nanocomposites were successfully synthesized via the sol-gel method. The results showed that the size, shape, and property of the products were directly influenced by the amount of TEOS, and the concentration of water-based magnetic fluid in the coating process. The morphology and properties of the products were characterized by TEM, SEM, X-ray powder diffraction, IR and EDS. The Fe3O4@SiO2 composites with easily-controlled size arranged from 58 to 835 nm could be synthesized by adjusting the experimental parameters. When TEOS amount is 1 mL and the concentration of magnetic fluid were 30.0 and 10.0 mg/mL respectively, chain-like and peanuts-like well-dispersed Fe3O4@SiO2 particles with clear core-shell structure were obtained. These size- and shape-controlled Fe3O4@SiO2 composites may have potential application in the field of targeted drug delivery and MRI contrast agent.
NASA Astrophysics Data System (ADS)
Kumar, Anil; Chopkar, Manoj
2018-05-01
Effect of Si addition on phase formation of AlCoCrCuFeMnSix (x=0, 0.3, 0.6 and 0.9) high entropy alloy have been investigated in this work. The alloys are prepared by mechanical alloying and vacuum arc melting technique. The X-ray diffraction results reveals the formation of mixture of face centered and body centered cubic solid solution phases in milled powders. The addition of Si favours body centered cubic structure formation during milling process. Whereas, after melting the milled powders, body centered phases formed during milling is partial transformed into sigma phases. XRD results were also correlated with the SEM elemental mapping of as casted samples. Addition of Si favours σ phase formation in the as cast samples.
NASA Astrophysics Data System (ADS)
Pedro, S. S.; Caraballo Vivas, R. J.; Andrade, V. M.; Cruz, C.; Paixão, L. S.; Contreras, C.; Costa-Soares, T.; Caldeira, L.; Coelho, A. A.; Carvalho, A. Magnus G.; Rocco, D. L.; Reis, M. S.
2015-01-01
The so-called half-metallic magnets have been proposed as good candidates for spintronic applications due to the feature of exhibiting a hundred percent spin polarization at the Fermi level. Such materials follow the Slater-Pauling rule, which relates the magnetic moment with the valence electrons in the system. In this paper, we study the bulk polycrystalline half-metallic Fe2MnSi Heusler compound replacing Si by Ga to determine how the Ga addition changes the magnetic, the structural, and the half-metal properties of this compound. The material does not follow the Slater-Pauling rule, probably due to a minor structural disorder degree in the system, but a linear dependence on the magnetic transition temperature with the valence electron number points to the half-metallic behavior of this compound.
In Situ SEM Observations of Fracture Behavior of Laser Welded-Brazed Al/Steel Dissimilar Joint
NASA Astrophysics Data System (ADS)
Xia, Hongbo; Tan, Caiwang; Li, Liqun; Ma, Ninshu
2018-03-01
Laser welding-brazing of 6061-T6 aluminum alloy to DP590 dual-phase steel with Al-Si12 flux-cored filler wire was performed. The microstructure at the brazing interface was characterized. Fracture behavior was observed and analyzed by in situ scanning electron microscope. The microstructure of the brazing interface showed that inhomogeneous intermetallic compounds formed along the thickness direction, which had a great influence on the crack initiation and propagation. In the top region, the reaction layer at the interface consisted of scattered needle-like Fe(Al,Si)3 and serration-shaped Fe1.8Al7.2Si. In the middle region, the compound at the interface was only serration-shaped Fe1.8Al7.2Si. In the bottom region, the interface was composed of lamellar-shaped Fe1.8Al7.2Si. The cracks were first detected in the bottom region and propagated from bottom to top along the interface. At the bottom region, the crack initiated and propagated along the Fe1.8Al7.2Si/weld seam interface during the in situ tensile test. When the crack propagated into the middle region, a deflection of crack propagation appeared. The crack first propagated along the steel/Fe1.8Al7.2Si interface and then moved along the weld seam until the failure of the joint. The tensile strength of the joint was 146.5 MPa. Some micro-cracks were detected at Fe(Al,Si)3 and the interface between the steel substrate and Fe(Al,Si)3 in the top region while the interface was still connected.
ONR Tokyo Scientific Bulletin. Volume 5, Number 1, January-March 1980,
1980-03-01
alloys studied are in die AI-Zn, Al -Mg, Al -Si. Al - Cu . Cu - Al . and Cu -Fe... alloys Digital processing Measuring N 20. Abstract (cont.) with certain reports also being contributed by visiting stateside scientist. Occasionally a...atomic absorption spectrophotometer with tubes for the determination of Zn, Cu , Pb, Cr, Fe, Mg, Mn, Al , Co, Cd, Si, Ti, Zr, Ga, Au, Ag, Ni, Na, and
Critical exponents and universal magnetic behavior of noncentrosymmetric Fe0.6Co0.4Si.
Samatham, S Shanmukharao; Suresh, K G
2018-05-31
The critical magnetic properties of a non-centrosymmetric B20 cubic helimagnet Fe 0.6 Co 0.4 Si are investigated using magnetization isotherms. It belongs to the 3D-Heisenberg universality class with short range magnetic coupling as inferred from the self-consistent critical exponents [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] in combination with exchange interaction [Formula: see text]. Itinerant magnetic nature of the compound is realized by the Rhodes-Wholfarth analysis. Field-induced weak first (para[Formula: see text]helical) to second (para[Formula: see text]field-polarized) order transition is reported to occur at low critical field due to the weak spin-orbit coupling arising from the weak Dzyaloshinksii-Moriya interactions. Our study suggests the distinct phenomenological magnetic structures for Fe-based cubic magnets (Fe 1-x Co x Si and FeGe) and MnSi which cause contrasting physical properties.
Ferromagnetic properties of manganese doped iron silicide
NASA Astrophysics Data System (ADS)
Ruiz-Reyes, Angel; Fonseca, Luis F.; Sabirianov, Renat
We report the synthesis of high quality Iron silicide (FeSi) nanowires via Chemical Vapor Deposition (CVD). The materials exhibits excellent magnetic response at room temperature, especially when doped with manganese showing values of 2.0 X 10-04 emu for the FexMnySi nanowires. SEM and TEM characterization indicates that the synthesized nanowires have a diameter of approximately 80nm. MFM measurements present a clear description of the magnetic domains when the nanowires are doped with manganese. Electron Diffraction and XRD measurements confirms that the nanowires are single crystal forming a simple cubic structure with space group P213. First-principle calculations were performed on (111) FeSi surface using the Vienna ab initio simulation package (VASP). The exchange correlations were treated under the Ceperley-Alder (CA) local density approximation (LDA). The Brillouin Zone was sampled with 8x8x1 k-point grid. A total magnetic moment of about 10 μB was obtained for three different surface configuration in which the Iron atom nearest to the surface present the higher magnetization. To study the effect of Mn doping, Fe atom was replaced for a Mn. Stronger magnetization is presented when the Mn atom is close to the surface. The exchange coupling constant have been evaluated calculating the energy difference between the ferromagnetic and anti-ferromagnetic configurations.
NASA Astrophysics Data System (ADS)
Osetkovsky, I. V.; Kozyrev, N. A.; Kryukov, R. E.; Usoltsev, A. A.; Gusev, A. I.
2017-09-01
The effect of introduction of cobalt in the charge of the flux cored wire of Fe-C-Si-Mn-Cr-Ni-Mo-V system operating under abrasive and abrasive-shock loads is studied. In the laboratory conditions samples of flux cored wires were made, deposition was performed, the effect of cobalt on the hardness and the degree of wear was evaluated, metallographic studies were carried out. The influence of cobalt introduced into the charge of the flux cored wire of Fe-C-Si-Mn-Cr-Ni-Mo-V system on the structure, nature of nonmetallic inclusions, hardness and wear resistance of the weld metal was studied. In the laboratory conditions samples flux cored wire were made using appropriate powdered materials. As a carbon-fluorine-containing material dust from gas cleaning units of aluminum production was used. In the course of the study the chemical composition of the weld metal was determined, metallographic analysis was performed, mechanical properties were determined. As a result of the metallographic analysis the size of the former austenite grain, martensite dispersion in the structure of the weld metal, the level of contamination with its nonmetallic inclusions were established.
A concise approach for building the s-T diagram for Mn-Fe-P-Si hysteretic magnetocaloric material
NASA Astrophysics Data System (ADS)
Christiaanse, T. V.; Campbell, O.; Trevizoli, P. V.; Misra, S.; van Asten, D.; Zhang, L.; Govindappa, P.; Niknia, I.; Teyber, R.; Rowe, A.
2017-09-01
The use of first order magnetocaloric materials (FOM’s) in magnetic cycles is of interest for the development of efficient magnetic heat pumps. FOM’s present promising magnetocaloric properties; however, hysteresis reduces the reversible adiabatic temperature change (Δ Tad ) of these materials, and consequently, impacts performance. The present paper evaluates the reversible Δ Tad in a FOM. Six samples of the Mn-Fe-P-Si material with different transition temperatures are examined. The samples are measured for heat capacity, magnetization, and adiabatic temperature change using heating and cooling protocols to characterize hysteresis. After correcting demagnetizing fields, the entropy-temperature (s-T ) diagrams are constructed and used to calculate adiabatic temperature change using four different thermal paths. The post-calculated Δ Tad is compared with experimental data from direct Δ Tad measurements. Most of the samples of Mn-Fe-P-Si show that post-calculated Δ Tad resulting from the heating zero field and cooling in-field entropy curves align best with the Δ Tad measurements. The impact of the demagnetizing field is shown in terms of absolute variation to the post-calculated Δ Tad . A functional representation is used to explain observed data sensitivities in the post-calculated Δ Tad .
Zhang, Yujie; Chen, Junhong; Fan, Huili; Chou, Kuo-Chih; Hou, Xinmei
2015-12-14
In this research, we demonstrate a simple route for preparing SiC@SiO2 core-shell nanocables and furthermore obtain SiC@SiO2 nanocables/MnO2 as hybrid electrodes for supercapacitors using various modified methods. The modified procedure consists of mild modifications using sodium hydroxide as well as UV light irradiation and deposition of MnO2. The morphology and microstructural characteristics of the composites are investigated using XRD, XPS, FE-SEM with EDS and TEM. The results indicate that the surfaces of modified SiC@SiO2 nanocables are uniformly coated with a MnO2 thin layer. The electrochemical behaviors of the hybrid electrodes are systematically measured in a three-electrode system using cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy. The resultant electrode presents a superb charge storage characteristic with a large specific capacitance of 276.3 F g(-1) at the current density of 0.2 A g(-1). Moreover, the hybrid electrode also displays a long cycle life with a good capacitance retention (∼92.0%) after 1000 CV cycles, exhibiting a promising potential for supercapacitors.
Soft ferromagnetic properties of Ni44Fe6Mn32Al18 doped Co partially
NASA Astrophysics Data System (ADS)
Notonegoro, Hamdan Akbar; Kurniawan, Budhy; Kurniawan, Candra; Manaf, Azwar
2017-01-01
Research in finding suitable magnetocaloric material around room temperature made ferromagnetic (FM) (Ni-Mn)-based Heusler alloys receive considerable attention as a potential candidate for the magnetic refrigerator. This compound are associated with the shape-memory effect, magnetic superelasticity, and more others magneto-functional properties. The compounds were prepared by vacuum arc melter (VAM) under argon atmosphere which sintering and annealing process were running with quartz cube in vacuum condition. A small amount of coercivity value at σ = 0 in the hysteresis curve occurred whereas magnetization of the sample in various temperature does not reach saturation. The Currie temperature Tc of the sample was obtained at 358 K. Nevertheless, this is dubious value because at T = 300 K the curves had swooped down. Additional measurements necessary to taken as a comparison to verify this value.
Engineering helimagnetism in MnSi thin films
NASA Astrophysics Data System (ADS)
Zhang, S. L.; Chalasani, R.; Baker, A. A.; Steinke, N.-J.; Figueroa, A. I.; Kohn, A.; van der Laan, G.; Hesjedal, T.
2016-01-01
Magnetic skyrmion materials have the great advantage of a robust topological magnetic structure, which makes them stable against the superparamagnetic effect and therefore a candidate for the next-generation of spintronic memory devices. Bulk MnSi, with an ordering temperature of 29.5 K, is a typical skyrmion system with a propagation vector periodicity of ˜18 nm. One crucial prerequisite for any kind of application, however, is the observation and precise control of skyrmions in thin films at room-temperature. Strain in epitaxial MnSi thin films is known to raise the transition temperature to 43 K. Here we show, using magnetometry and x-ray spectroscopy, that the transition temperature can be raised further through proximity coupling to a ferromagnetic layer. Similarly, the external field required to stabilize the helimagnetic phase is lowered. Transmission electron microscopy with element-sensitive detection is used to explore the structural origin of ferromagnetism in these Mn-doped substrates. Our work suggests that an artificial pinning layer, not limited to the MnSi/Si system, may enable room temperature, zero-field skyrmion thin-film systems, thereby opening the door to device applications.
Quality of Metal Deposited Flux Cored Wire With the System Fe-C-Si-Mn-Cr-Mo-Ni-V-Co
NASA Astrophysics Data System (ADS)
Gusev, Aleksander I.; Kozyrev, Nikolay A.; Osetkovskiy, Ivan V.; Kryukov, Roman E.; Kozyreva, Olga A.
2017-10-01
Studied the effect of the introduction of vanadium and cobalt into the charge powder fused wire system Fe-C-Si-Mn-Cr-Ni-Mo-V, used in cladding assemblies and equipment parts and mechanisms operating under abrasive and abrasive shock loads. the cored wires samples were manufactured in the laboratory conditions and using appropriate powder materials and as a carbonfluoride contained material were used the dust from gas purification of aluminum production, with the following components composition, %: Al2O3 = 21-46.23; F = 18-27; Na2O = 8-15; K2O = 0.4-6; CaO = 0.7-2.3; Si2O = 0.5-2.48; Fe2O3 = 2.1-3.27; C = 12.5-30.2; MnO = 0.07-0.9; MgO = 0.06-0.9; S = 0.09-0.19; P = 0.1-0.18. Surfacing was produced on the St3 metal plates in 6 layers under the AN-26C flux by welding truck ASAW-1250. Cutting and preparation of samples for research had been implemented. The chemical composition and the hydrogen content of the weld metal were determined by modern methods. The hardness and abrasion rate of weld metal had been measured. Conducted metallographic studies of weld metal: estimated microstructure, grain size, contamination of oxide non-metallic inclusions. Metallographic studies showed that the microstructure of the surfaced layer by cored wire system Fe-C-Si-Mn-Cr-Mo-Ni-V-Co is uniform, thin dendrite branches are observed. The microstructure consists of martensite, which is formed inside the borders of the former austenite grain retained austenite present in small amounts in the form of separate islands, and thin layers of δ-ferrite, which is located on the borders of the former austenite grains. Carried out an assessment the effect of the chemical composition of the deposited metal on the hardness and wear and hydrogen content. In consequence of multivariate correlation analysis, it was determined dependence to the hardness of the deposited layer and the wear resistance of the mass fraction of the elements included in the flux-cored wires of the system Fe-C-Si-Mn-Cr-Mo-Ni-V-Co. The calculated value of the average approximation error suggests that the dependence is adequate and can be used to determine the resulting indicators. These dependencies can be used to predict the hardness of the deposited layer and its wear resistance while changing the chemical composition of the weld metal.
Zhang, Jia; Zhang, Dongsheng
2009-01-01
Manganese-zinc-ferrite nanoparticles (Mn(0.5)Zn(0.5)Fe(2)O(4), MZF-NPs) prepared by an improved co-precipitation method and were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and energy dispersive spectrometry (EDS). Then thermodynamic testing of various doses of MZF-NPs was performed in vitro. The cytotoxicity of the Mn(0.5)Zn(0.5)Fe(2)O(4) nanoparticles in vitro was tested by the MTT assay. A nanosized As(2)O(3)/Mn(0.5)Zn(0.5)Fe(2)O(4) complex was made by an impregnation process. The complex's shape, component, envelop rate and release rate of As(2)O(3) were measured by SEM, EDS and atom fluorescence spectrometry, respectively. The therapeutic effect of nanosized As(2)O(3)/Mn(0.5)Zn(0.5)Fe(2)O(4) complex combined with magnetic fluid hyperthermia (MFH) on human hepatocelluar cells were evaluated in vitro by an MTT assay and flow cytometry. The results indicated that Mn(0.5)Zn(0.5)Fe(2)O(4) and nanosized As(2)O(3)/Mn(0.5)Zn(0.5)Fe(2)O(4) complex were both prepared successfully. The Mn(0.5)Zn(0.5)Fe(2)O(4) nanoparticles had powerful absorption capabilities in a high-frequency alternating electromagnetic field, and had strong magnetic responsiveness. Moreover, Mn(0.5)Zn(0.5)Fe(2)O(4) didn't show cytotoxicity in vitro. The therapeutic result reveals that the nanosized As(2)O(3)/Mn(0.5)Zn(0.5)Fe(2)O(4) complex can significantly inhibit the growth of hepatoma carcinoma cells.
Accumulative Roll Bonding and Post-Deformation Annealing of Cu-Al-Mn Shape Memory Alloy
NASA Astrophysics Data System (ADS)
Moghaddam, Ahmad Ostovari; Ketabchi, Mostafa; Afrasiabi, Yaser
2014-12-01
Accumulative roll bonding is a severe plastic deformation process used for Cu-Al-Mn shape memory alloy. The main purpose of this study is to investigate the possibility of grain refinement of Cu-9.5Al-8.2Mn (in wt.%) shape memory alloy using accumulative roll bonding and post-deformation annealing. The alloy was successfully subjected to 5 passes of accumulative roll bonding at 600 °C. The microstructure, properties as well as post-deformation annealing of this alloy were investigated by optical microscopy, scanning electron microscopy, x-ray diffraction, differential scanning calorimeter, and bend and tensile testing. The results showed that after 5 passes of ARB at 600 °C, specimens possessed α + β microstructure with the refined grains, but martensite phases and consequently shape memory effect completely disappeared. Post-deformation annealing was carried out at 700 °C, and the martensite phase with the smallest grain size (less than 40 μm) was obtained after 150 s of annealing at 700 °C. It was found that after 5 passes of ARB and post-deformation annealing, the stability of SME during thermal cycling improved. Also, tensile properties of alloys significantly improved after post-deformation annealing.
Manganese micro-nodules on ancient brick walls.
López-Arce, P; García-Guinea, J; Fierro, J L G
2003-01-20
Romans, Jews, Arabs and Christians built the ancient city of Toledo (Spain) with bricks as the main construction material. Manganese micro-nodules (circa 2 microm in diameter) have grown under the external bio-film surface of the bricks. Recent anthropogenic activities such as industrial emissions, foundries, or traffic and housing pollution have further altered these old bricks. The energy-dispersive X-ray microanalyses (XPS) of micro-nodules show Al, Si, Ca, K, Fe and Mn, with some carbon species. Manganese atoms are present only as Mn(4+) and iron as Fe(3+) (FeOOH-Fe(2)O(3) mixtures). The large concentration of alga biomass of the River Tagus and the Torcón and Guajaraz reservoirs suggest manganese micro-nodules are formed either from water solutions rich in anthropogenic MnO(4)K in a reduction environment (from Mn(7+) to Mn(4+)) or by oxidation mechanisms from dissolved Mn(2+) (from Mn(2+) to Mn(4+)) linked to algae biofilm onto the ancient brick surfaces. Ancient wall surfaces were also studied by scanning electron microscopy (SEM-EDS) and X-ray diffraction (XRD). Chemical and biological analyses of the waters around Toledo are also analysed for possible sources of manganese. Manganese micro-nodules on ancient brick walls are good indicators of manganese pollution. Copyright 2002 Elsevier Science B.V.
Search for the Origin of Hematite at Meridiani Planum and Gusev Crater
NASA Astrophysics Data System (ADS)
Dreibus, G.; Brückner, J.; Jagoutz, E.
2005-05-01
The landscape in Meridiani Planum encountered by the Rover Opportunity is different to all previous Mars landing sites. While those locations look like typical unsorted alluvials, Meridiani Planum consists of sorted sands with aeolian features like small dunes and desert pavements in places. Chemical compositions of soils and rocks at Gusev crater and Meridiani Planum were measured by the Alpha Proton X-Ray Spectrometer (APXS) [1, 2]. At Meridiani Planum all soils and outcrops have a higher mean Fe/Si ratio of 0.75 compared to rocks and soils in Gusev crater with a mean Fe/Si of 0.57. The enrichment of Fe results from an admixture of hematite (Fe2O3) as determined in-situ by the Mössbauer spectrometer (MB) [3]. The formation of hematite is an indicator for aqueous activities under oxidizing conditions. The highest portion of this mineral was found in the spherical grains, also nicknamed `blueberries', which cover most place at the landing site. These spherules were also found in rock exposures in Eagle crater to about 2 % by volume and were interpreted as concretions that formed by precipitation from aqueous fluids inside sedimentary rocks [4]. At Gusev crater no hematite was observed until sol 90 except for layering on a rock. However, about three months later at the foot of the Columbia Hills the MB detected hematite in a rock, dubbed `Pot of Gold'. Our investigations of hematite bearing materials, measured by APXS, MB, and Microscopic Imager (MI) [5], provide an integrated view of different occurrences of hematite on the Martian surface. Ratios of Fe to Mn are compared with Fe concentrations for various soils and outcrops in Meridiani Planum and Gusev crater. Most samples cluster at a mean Fe/Mn ratio of about 50 and range in Fe from 12 to 17 wt. %. Exceptions are found for those Meridiani Planum soils that have very high Fe contents of about 26 wt. %, such as targets dubbed `JackRussell', `FredRipple', and `Berry Bowl full', all showing Fe/Mn ratios of about 110. Based on APXS measurements we cannot distinguish, whether spherules consist of pure hematite or carry a thin layer of hematite. All these high hematite bearing soils are top surface samples, while corresponding subsurface soil samples or soils disturbed by rover wheels have low hematite contents. The very high Fe/Mn ratios of three undisturbed samples together with very high hematite contents suggest the presence of a hematite-rich top layer irrespectively of shape and area coverage of spherules or fragments and could be interpreted as a surface coating similar to terrestrial surface coatings. In the hematite rich outcrops with the same Fe/Mn ratio as found for the soil samples the formation of the main portion of fine dispersed hematite must be an isochemical re-crystallization process under strongly oxidizing conditions. [1] Gellert, R. et al. (2004) Science, 305, 829-832. [2] Rieder, R. et al. (2004) Science, 306, 1746-1749. [3] Klingelhöfer, G. et al. (2004) Science, 306, 1740-1745. [4] Squyres, S, et al. (2004) Science, 306, 1698-1703. [5] Herkenhoff, K. E. et al. (2004) Science, 306, 1727-1730.
NASA Astrophysics Data System (ADS)
Iro, Zaharaddeen S.; Subramani, C.; Kesavan, T.; Dash, S. S.; Sasidharan, M.; Sundramoorthy, Ashok K.
2017-12-01
A composite of MnO2/SiO2 sphere was coated on single-wall carbon nanotubes (MnO2/SiO2/SWCNT) using one-pot hydrothermal synthesis method. KMnO4 was used as an oxidizing agent for mild functionalization of single-wall carbon nanotubes (SWCNT), and also as a precursor of MnO2. A comparative study in the presence of SiO2 and SWCNT was carried out using bare MnO2 as a reference. After addition of SiO2, the composite obtained showed an increase in both the specific capacitance and cycle life which can be associated with spherical shape of SiO2 which offered reduction sites for MnO2. With the addition of SWCNT less than 5%, the composite further showed an increase in capacitance and cycle life, this is because of the good conductive nature, excellent mechanical property and chemical stability of SWCNT. The electrochemical behaviour was studied using cyclic voltammetry and galvanostatic charge/discharge method in 1 M Na2SO4 electrolyte. The specific capacitance of MnO2, MnO2/SiO2 and MnO2/SiO2/SWCNT composite is 73.6 F g-1, 108.7 F g-1 and 136 F g-1 at a current density of 1 A g-1, respectively. The MnO2/SiO2/SWCNT energy density was 68 Wh kg-1 with power density of 444.4 W kg-1. The MnO2/SiO2/SWCNT composite retained 88% of its specific capacitance after 500 cycles. We envisage that this hybrid material could be applied for preparation of supercapacitor electrode.
NASA Astrophysics Data System (ADS)
Fridrichová, Jana; Bačík, Peter; Ertl, Andreas; Wildner, Manfred; Dekan, Július; Miglierini, Marcel
2018-01-01
Red beryl from Utah is chemically homogeneous and contains only Fe < 0.163, Mn < 0.018, and Mg < 0.016 apfu. Channel sites contain only up to Cs 0.011, K 0.009, Rb 0.004, and Na 0.004 apfu. This suggests only very slight tetrahedral (Cs,K,Rb)Li□-1Be-1 substitution, octahedral Na(Fe2+,Mg)□-1Al-1 substitution can be excluded. Fe and Mn are trivalent as documented by Mössbauer spectroscopy and optical absorption spectroscopy. Red beryl optimized formula is ∼[(Cs,Rb,K)0.02□0.98]Σ1.00□1.00(Al1.79Fe3+0.16Mn3+0.02Ti4+0.02Mg0.01)Σ2.00Be3(Si6O18). Location of Mn3+ was estimated to the octahedral Al3+ site, other choices are improbable due to the bond-length requirements. No Mn3+-induced Jahn-Teller structural distortion was detected due to site symmetry restrictions and small Mn3+ content. However, optical spectroscopy shows broad band at ∼7190 cm-1 assigned to the excited level of the spin-allowed pseudo-tetragonal split E ground state of elongated six-fold Mn3+ coordination. Crystal field calculations indicate that the local Mn3+ environment complies well with crystal chemical expectations for Jahn-Teller distorted Mn3+O6 octahedra.
NASA Astrophysics Data System (ADS)
Kondo, T.; Mori, K.; Hachisu, M.; Yamazaki, T.; Okamoto, D.; Watanabe, M.; Gonda, K.; Tada, H.; Hamada, Y.; Takano, M.; Ohuchi, N.; Ichiyanagi, Y.
2015-05-01
Mn-Zn ferrite, Mn1-xZnxFe2O4 nanoparticles encapsulated in amorphous SiO2 were prepared using our original wet chemical method. X-ray diffraction patterns confirmed that the diameters of these particles were within 7-30 nm. Magnetization measurements for various sample compositions revealed that the saturation magnetization (Ms) of 7 nm particles was maximum for the x = 0.2 sample. AC magnetic susceptibility measurements were performed for Mn0.8Zn0.2Fe2O4 (x = 0.2) samples with 13-30 nm particles. The peak of the imaginary part of the magnetic susceptibility χ″ shifted to higher temperatures as the particle size increased. An AC field was found to cause the increase in temperature, with the 18 nm particles exhibiting the highest temperature increase, as expected. In addition, in vitro experiments were carried out to study the hyperthermia effects of Mn1-xZnxFe2O4 (x = 0.2, 18 nm) particles on human cancer cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pedro, S. S., E-mail: sandrapedro@uerj.br; Caraballo Vivas, R. J.; Andrade, V. M.
2015-01-07
The so-called half-metallic magnets have been proposed as good candidates for spintronic applications due to the feature of exhibiting a hundred percent spin polarization at the Fermi level. Such materials follow the Slater-Pauling rule, which relates the magnetic moment with the valence electrons in the system. In this paper, we study the bulk polycrystalline half-metallic Fe{sub 2}MnSi Heusler compound replacing Si by Ga to determine how the Ga addition changes the magnetic, the structural, and the half-metal properties of this compound. The material does not follow the Slater-Pauling rule, probably due to a minor structural disorder degree in the system,more » but a linear dependence on the magnetic transition temperature with the valence electron number points to the half-metallic behavior of this compound.« less
Analysis of charcoal blast furnace slags by laser-induced breakdown spectroscopy
Bhatt, Chet R.; Goueguel, Christian L.; Jain, Jinesh C.; ...
2017-09-22
Laser-induced breakdown spectroscopy (LIBS) was used for the analysis of charcoal blast furnace slags. Plasma was generated by an application of a 1064 nm wavelength Nd:YAG laser beam to the surface of pellets created from the slags. The presence of Al, Ca, Fe, K, Mg, Mn, and Si was determined by identifying their characteristic spectral signatures. Multivariate analysis was performed for the quantification of these elements. The predicted LIBS results were found in agreement with the inductively coupled plasma optical emission spectrometry analysis. The limit of detection for Al, Ca, Fe, K, Mg, Mn, and Si was calculated to bemore » 0.10%, 0.22%, 0.02%, 0.01%, 0.01%, 0.005%, and 0.18%, respectively.« less
Analysis of charcoal blast furnace slags by laser-induced breakdown spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhatt, Chet R.; Goueguel, Christian L.; Jain, Jinesh C.
Laser-induced breakdown spectroscopy (LIBS) was used for the analysis of charcoal blast furnace slags. Plasma was generated by an application of a 1064 nm wavelength Nd:YAG laser beam to the surface of pellets created from the slags. The presence of Al, Ca, Fe, K, Mg, Mn, and Si was determined by identifying their characteristic spectral signatures. Multivariate analysis was performed for the quantification of these elements. The predicted LIBS results were found in agreement with the inductively coupled plasma optical emission spectrometry analysis. The limit of detection for Al, Ca, Fe, K, Mg, Mn, and Si was calculated to bemore » 0.10%, 0.22%, 0.02%, 0.01%, 0.01%, 0.005%, and 0.18%, respectively.« less
NASA Astrophysics Data System (ADS)
Aydogdu, Yildirim; Turabi, Ali Sadi; Kok, Mediha; Aydogdu, Ayse; Tobe, Hirobumi; Karaca, Haluk Ersin
2014-12-01
The effects of the substitution of gallium with boron on the physical, mechanical and magnetic shape memory properties of Ni51Mn28.5Ga20.5- xBx (at.%) ( x = 0, 1, 2, 3) polycrystalline alloys are investigated. It has been found that transformation temperatures are decreasing while hardness is increasing with boron addition. B-doping of NiMnGa alloys results in the formation of a second phase that increases its ductility and strength in compression. Moreover, saturation magnetization of austenite is decreasing, while Curie temperature of austenite is increasing with B-doping.
Various physical properties of Mn_1-xFex alloy films
NASA Astrophysics Data System (ADS)
Kim, J. B.; Cho, K. H.; Nahm, T.-U.; Lee, Y. P.; Kim, K. W.; Kudryavtsev, Y. V.; Gontarz, R.; Szymanski, B.
2003-03-01
The structural dependences of the magneto-optical, the optical and the magnetic properties of Mn_1-xFex alloy films have been investigated. It was revealed that the EKE (equatorial Kerr effect) signal at 293 K for the Mn_1-xFex alloy films can be observed only for x > 0.50. All the EKE spectra have nearly the same spectral shape (Fe-like) and differ from each other only in the intensity. The observed experimental EKE spectra for the Fe-rich Mn_1-xFex alloy films can be nicely described by the simulated ones made in the framework of the effective medium approximation. The optical properties such as optical conductivity of all the investigated alloys can be separated into three groups which are related to the different crystalline structures of alloys: predominance of the α-Fe (0.8 < x < 0.97), the γ-Mn-Fe (0.2 < x < 0.6) and the α-Mn (0.02 < x < 0.23) phases, respectively.
Structures and stability of metal-doped Ge{sub n}M (n = 9, 10) clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin, Wei, E-mail: qinw@qdu.edu.cn; Xia, Lin-Hua; Zhao, Li-Zhen
The lowest-energy structures of neutral and cationic Ge{sub n}M (n = 9, 10; M = Si, Li, Mg, Al, Fe, Mn, Pb, Au, Ag, Yb, Pm and Dy) clusters were studied by genetic algorithm (GA) and first-principles calculations. The calculation results show that doping of the metal atoms and Si into Ge{sub 9} and Ge{sub 10} clusters is energetically favorable. Most of the metal-doped Ge cluster structures can be viewed as adding or substituting metal atom on the surface of the corresponding ground-state Ge{sub n} clusters. However, the neutral and cationic FeGe{sub 9,10},MnGe{sub 9,10} and Ge{sub 10}Al are cage-like withmore » the metal atom encapsulated inside. Such cage-like transition metal doped Ge{sub n} clusters are shown to have higher adsorption energy and thermal stability. Our calculation results suggest that Ge{sub 9,10}Fe and Ge{sub 9}Si would be used as building blocks in cluster-assembled nanomaterials because of their high stabilities.« less
Evaluation of elemental enrichments in surface sediments off southwestern Taiwan
NASA Astrophysics Data System (ADS)
Chen, Chen-Tung; Kandasamy, Selvaraj
2008-05-01
Surface slices of 20 sediment cores, off southwestern Taiwan, and bed sediment of River Kaoping were measured for major and trace elements (Al, As, Ca, Cd, Cl, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, Pb, S, Si, Ti, V, and Zn) to evaluate the geochemical processes responsible for their distribution, including elemental contamination. Major element/Al ratio and mean grain size indicate quartz-dominated, coarse grained sediments that likely derived from sedimentary rocks of Taiwan and upper crust of Yangtze Craton. Bi-plot of SiO2 versus Fe2O{3/T} suggests the possible iron enrichment in sediments of slag dumping sites. Highest concentrations of Cr, Mn, P, S, and Zn found in sediments of dumping sites support this. Correlation analysis shows dual associations, detrital and organic carbon, for Cr, P, S, and V with the latter association typical for sediments in dumping sites. Normalization of trace elements to Al indicates high enrichment factors (>2) for As, Cd, Pb, and Zn, revealing contamination. Factor analysis extracted four geochemical associations with the principal factor accounted for 25.1% of the total variance and identifies the combined effects of dumped iron and steel slag-induced C-S-Fe relationship owing to authigenic precipitation of Fe-Mn oxyhydroxides and/or metal sulfides, and organic matter complexation of Fe, Mn, Ca, Cr, P, and V. Factors 2, 3, and 4 reveal detrital association (Ti, Al, Ni, Pb, Cu, and V), effect of sea salt (Cl, Mg, Na, and K) and anthropogenic component (As and Zn)-carbonate link, respectively, in the investigated sediments.
NASA Technical Reports Server (NTRS)
Levine, S. R.; Grisaffe, S. J.
1972-01-01
Edge and surface modifications of niobium alloys were investigated prior to coating with Si-20Cr-20Fe and slurry composition modification for performance in a 1370 C ambient pressure slow cycle test. The best coating obtained was Si-20Cr-20Mn with an average life of 63 cycles, compared to 40 for Si-20Cr-20Fe on FS-85 (100 percent improvement in weight parity life). Edge beading extended the lives of Si-20Cr-20Fe-coated Cb-752 and FS-85 to 57 and 41 cycles respectively (50 and 20 percent improvements in weight parity life respectively). W, Al2O3 and ZrO2(CaO) surface modifications altered coating crack frequency and microstructure and increased life somewhat.
NASA Astrophysics Data System (ADS)
Geisler, Benjamin; Kratzer, Peter
2013-09-01
We present a comprehensive study of different 3d transition metal monosilicides in their ground state crystal structure (B20), ranging from equilibrium bulk over biaxially strained bulk to epitaxial thin films on Si(111), by means of density functional theory. The magnetic properties of MnSi and FeSi films are found to be considerably modified due to the epitaxial strain induced by the substrate. In MnSi bulk material, which can be seen as a limit of thick films, we find a strain-induced volume expansion, an increase of the magnetic moments, and a significant rise of the energy difference between different spin configurations. The latter can be associated with an increase of the Curie temperature, which is in accordance with recent experimental results. While a ferromagnetic spin alignment is found to be the ground state also for ultrathin films, we show that for films of intermediate thickness a partially compensating magnetic ordering is more favorable; however, the films retain a net magnetic moment. Furthermore, we analyze the orbital structure in FeSi around the band gap, which can be located somewhere in the density of states for all studied B20 transition metal monosilicides, and find that FeSi becomes metallic and ferromagnetic under epitaxial strain. Finally, the influence of on-site electronic correlation and the reliability of ab initio calculations for 3d transition metal monosilicides are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Çakir, Asli; Aktürk, Selçuk; Righi, Lara
2013-11-14
Martensitic transitions in shape memory Ni-Mn-Ga Heusler alloys take place between a high temperature austenite and a low temperature martensite phase. However, intermartensitic transformations have also been encountered that occur from one martensite phase to another. To examine intermartensitic transitions in magnetic shape memory alloys in detail, we carried out temperature dependent magnetization, resistivity, and x-ray diffraction measurements to investigate the intermartensitic transition in Ni{sub 50}Mn{sub 50–x}Ga{sub x} in the composition range 12≤x≤25 at. %. Rietveld refined x-ray diffraction results are found to be consistent with magnetization and resistivity data. Depending on composition, we observe that intermartensitic transitions occur inmore » the sequences 7M→L1{sub 0}, 5M→7M, and 5M→7M→L1{sub 0} with decreasing temperature. The L1{sub 0} non-modulated structure is most stable at low temperature.« less
Chemistry of impact events on Mercury
NASA Astrophysics Data System (ADS)
Berezhnoy, Alexey A.
2018-01-01
Based on the equilibrium thermochemical approach and quenching theory, formation of molecules and dust grains in impact-produced clouds formed after collisions between meteoroids and Mercury is considered. Based on observations of Al, Fe, and Mn atoms in the exosphere of Mercury and new results of studies of the elemental composition of the surface of Mercury, quenching temperatures and pressures of main chemical reactions and condensation of dust particles were estimated. The behavior of the main Na-, K-, Ca-, Fe-, Al-, Mn-, Mg-, Si-, Ti, Ni-, Cr-, Co, Zn-, O-, H-, S-, C-, Cl-, N-, and P-containing species delivered to the Hermean exosphere during meteoroid impacts was studied. The importance of meteoroid bombardment as a source of Na, K, Ca, Fe, Al, Mn, Mg, and O atoms in the exosphere of Mercury is discussed.
The chemical phenol extraction of intermetallic particles from casting AlSi5Cu1Mg alloy.
Mrówka-Nowotnik, G; Sieniawski, J; Nowotnik, A
2010-03-01
This paper presents a chemical extraction technique for determination of intermetallic phases formed in the casting AlSi5Cu1Mg aluminium alloy. Commercial aluminium alloys contain a wide range of intermetallic particles that are formed during casting, homogenization and thermomechanical processing. During solidification, particles of intermetallics are dispersed in interdendritic spaces as fine primary phases. Coarse intermetallic compounds that are formed in this aluminium alloy are characterized by unique atomic arrangement (crystallographic structure), morphology, stability, physical and mechanical properties. The volume fraction, chemistry and morphology of the intermetallics significantly affect properties and material behaviour during thermomechanical processing. Therefore, accurate determination of intermetallics is essential to understand and control microstructural evolution in Al alloys. Thus, in this paper it is shown that chemical phenol extraction method can be applied for precise qualitative evaluation. The results of optical light microscopy LOM, scanning electron microscopy SEM and X-ray diffraction XRD analysis reveal that as-cast AlSi5Cu1Mg alloy contains a wide range of intermetallic phases such as Al(4)Fe, gamma- Al(3)FeSi, alpha-Al(8)Fe(2)Si, beta-Al(5)FeSi, Al(12)FeMnSi.
NASA Astrophysics Data System (ADS)
Kim, Min-Su; Lee, Su-Wan; Cho, Jung-Wook; Park, Min-Seok; Lee, Hae-Geon; Kang, Youn-Bae
2013-04-01
In order to elucidate the reaction mechanism between high Mn-high Al steel such as twin-induced plasticity steel and molten mold flux composed mainly of CaO-SiO2 during continuous casting process, a series of laboratory-scale experiments were carried out in the present study. Molten steel and molten flux were brought to react in a refractory crucible in a temperature range between 1713 K to 1823 K (1440 °C to 1550 °C) and composition evolution in the steel and the flux was analyzed using inductively coupled plasma atomic emission spectroscopy, X-ray fluorescence, and electron probe microanalysis. The amount of SiO2 in the flux was significantly reduced by Al in the steel; thus, Al2O3 was accumulated in the flux as a result of a chemical reaction, 4[Al] + 3(SiO2) = 3[Si] + 2(Al2O3). In order to find a major factor which governs the reaction, a number of factors ((pct CaO/pct SiO2), (pct Al2O3), [pct Al], [pct Si], and temperature) were varied in the experiments. It was found that the above chemical reaction was mostly governed by [pct Al] in the molten steel. Temperature had a mild effect on the reaction. On the other hand, (pct CaO/pct SiO2), (pct Al2O3), and [pct Si] did not show any noticeable effect on the reaction. Apart from the above reaction, the following reactions are also thought to happen simultaneously: 2[Mn] + (SiO2) = [Si] + 2(MnO) and 2[Fe] + (SiO2) = [Si] + 2(FeO). These oxide components were subsequently reduced by Al in the molten steel. Na2O in the molten flux was gradually decreased and the decrease was accelerated by increasing [pct Al] and temperature. Possible reactions affecting the Al2O3 accumulation are summarized.
Biocorrosion investigation of two shape memory nickel based alloys: Ni-Mn-Ga and thin film NiTi.
Stepan, L L; Levi, D S; Gans, E; Mohanchandra, K P; Ujihara, M; Carman, G P
2007-09-01
Thin film nitinol and single crystal Ni-Mn-Ga represent two new shape memory materials with potential to be used as percutaneously placed implant devices. However, the biocompatibility of these materials has not been adequately assessed. Immersion tests were conducted on both thin film nitinol and single crystal Ni-Mn-Ga in Hank's balanced salt solution at 37 degrees C and pH 7.4. After 12 h, large pits were found on the Ni-Mn-Ga samples while thin film nitinol displayed no signs of corrosion. Further electrochemical tests on thin film nitinol samples revealed breakdown potentials superior to a mechanically polished nitinol disc. These results suggest that passivation or electropolishing of thin film nitinol maybe unnecessary to promote corrosion resistance.
Magnetic-field-driven electron transport in ferromagnetic/ insulator/semiconductor hybrid structures
NASA Astrophysics Data System (ADS)
Volkov, N. V.; Tarasov, A. S.; Rautskii, M. V.; Lukyanenko, A. V.; Varnakov, S. N.; Ovchinnikov, S. G.
2017-10-01
Extremely large magnetotransport phenomena were found in the simple devices fabricated on base of the Me/SiO2/p-Si hybrid structures (where Me are Mn and Fe). These effects include gigantic magnetoimpedance (MI), dc magnetoresistance (MR) and the lateral magneto-photo-voltaic effect (LMPE). The MI and MR values exceed 106% in magnetic field about 0.2 T for Mn/SiO2/p-Si Schottky diode. LMPE observed in Fe/SiO2/p-Si lateral device reaches the value of 104% in a field of 1 T. We believe that in case with the Schottky diode MR and MI effects are originate from magnetic field influence on impact ionization process by two different ways. First, the trajectory of the electron is deflected by a magnetic field, which suppresses acquisition of kinetic energy and therefore impact ionization. Second, the magnetic field gives rise to shift of the acceptor energy levels in silicon to a higher energy. As a result, the activation energy for impact ionization significantly increases and consequently threshold voltage rises. Moreover, the second mechanism (acceptor level energy shifting in magnetic field) can be responsible for giant LMPE.
NASA Astrophysics Data System (ADS)
Chukanov, Nikita V.; Rastsvetaeva, Ramiza K.; Kruszewski, Łukasz; Aksenov, Sergey M.; Rusakov, Vyacheslav S.; Britvin, Sergey N.; Vozchikova, Svetlana A.
2018-03-01
The new eudialyte-group mineral siudaite, ideally Na8(Mn2+ 2Na)Ca6Fe3+ 3Zr3NbSi25O74(OH)2Cl·5H2O, was discovered in a peralkaline pegmatite situated at the Eveslogchorr Mt., Khibiny alkaline massif, Kola Peninsula, Russia. The associated minerals are aegirine, albite, microcline, nepheline, astrophyllite, and loparite-(Ce). Siudaite forms yellow to brownish-yellow equant anhedral grains up to 1.5 cm across. Its lustre is vitreous, and the streak is white. Cleavage is none observed. The Mohs' hardness is 4½. Density measured by hydrostatic weighing is 2.96(1) g/cm3. Density calculated using the empirical formula is equal to 2.973 g/cm3. Siudaite is nonpleochroic, optically uniaxial, negative, with ω = 1.635(1) and ɛ = 1.626(1) (λ = 589 nm). The IR spectrum is given. The chemical composition of siudaite is (wt%; electron microprobe, H2O determined by HCN analysis): Na2O 8.40, K2O 0.62, CaO 9.81, La2O3 1.03, Ce2O3 1.62, Pr2O3 0.21, Nd2O3 0.29, MnO 6.45, Fe2O3 4.51. TiO2 0.54, ZrO2 11.67, HfO2 0.29, Nb2O5 2.76, SiO2 47.20, Cl 0.54, H2O 3.5, -O = Cl - 0.12, total 99.32. According to Mössbauer spectroscopy data, all iron is trivalent. The empirical formula (based on 24.5 Si atoms pfu, in accordance with structural data) is [Na7.57(H2O)1.43]Σ9(Mn1.11Na0.88Ce0.31La0.20Nd0.05Pr0.04K0.41)Σ3(H2O)1.8(Ca5.46Mn0.54)Σ6(Fe3+ 1.76Mn2+ 1.19)Σ2.95Nb0.65(Ti0.20Si0.50)Σ0.71(Zr2.95Hf0.04Ti0.01)Σ3Si24.00Cl0.47O70(OH)2Cl0.47·1.82H2O. The crystal structure was determined using single-crystal X-ray diffraction data. The new mineral is trigonal, space group R3m, with a = 14.1885(26) Å, c = 29.831(7) Å, V = 5200.8(23) Å3 and Z = 3. Siudaite is chemically related to georgbarsanovite and is its analogue with Fe3+-dominant M2 site. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 6.38 (60) (-114), 4.29 (55) (-225), 3.389 (47) (131), 3.191 (63) (-228). 2.963 (100) (4-15), 2.843 (99) (-444), 2.577 (49) (3-39). Siudaite is named after the Polish mineralogist and geochemist Rafał Siuda (b. 1975).
Effect of Heat-Treatment on the Phases of Ni-Mn-Ga Magnetic Shape Memory Alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huq, Ashfia; Ari-Gur, Pnina; Kimmel, Giora
2009-01-01
The Heusler alloys Ni50Mn25+xGa25-x display magnetic shape memory effect (MSM) with very fast and large reversible strain under magnetic fields. This large strain and the speed of reaction make MSM alloys attractive as smart materials. Our crystallographic investigation of these alloys, focused on non-stoichiometric composition with excess of manganese. Using neutron diffraction, we revealed the necessary processing parameters to achieve and preserve the homogeneous metastable one-phase martensitic structure that is needed for an MSM effect at room temperature.
Direct observation of magnetic domains by Kerr microscopy in a Ni-Mn-Ga magnetic shape-memory alloy
NASA Astrophysics Data System (ADS)
Perevertov, O.; Heczko, O.; Schäfer, R.
2017-04-01
The magnetic domains in a magnetic shape-memory Ni-Mn-Ga alloy were observed by magneto-optical Kerr microscopy using monochromatic blue LED light. The domains were observed for both single- and multivariant ferroelastic states of modulated martensite. The multivariant state with very fine twins was spontaneously formed after transformation from high-temperature austenite. For both cases, bar domains separated by 180∘ domain walls were found and their dynamics was studied. A quasidomain model was applied to explain the domains in the multivariant state.
NASA Astrophysics Data System (ADS)
Lysyuk, G. N.
2011-10-01
Manganese oxides, which are widespread and of great practical importance, are formed and transformed by the active role of microorganisms. Manganese aggregates occur as both crystallized varieties and disordered fine-grained phases with significant ore grade and up to 50-60 vol % of X-ray amorphous components. X-ray amorphous nanosizedMn oxides in Fe-Mn nodules from the Pacific Ocean floor were examined from the standpoint of their biogenic origin. SEM examination showed abundant mineralized biofilms on the studied samples. The chemical composition of bacterial mass is as follows (wt %): 28.34 MnO, 17.14 Fe2O3, 7.11 SiO2, 2.41 CaO, 17.90 TiO2, 1.74Na2O,1.73 A12O3,1.30 MgO, 1.25P2O5,1.25 SO3,0.68 CoO, 0.54 CuO, 0.53 NiO, and 0.50 K2O. The chemical composition of fossilized cyanobacterial mats within the interlayer space of nodules is as follows (wt %): 48.35 MnO, 6.23 Fe2O3, 8.76 MgO, 5.05 A12O3, 4.45 SiO2, 3.63 NiO, 2.30 Na2O, 2.19 CuO, 1.31 CaO, and 0.68 K2O is direct evidence for participation of bacteria in Mn oxide formation. This phase consists of mineralized glycocalix consisting of nanosized flakes of todorokite. Native metals (Cu, Fe, and Zn) as inclusions 10-20 μm in size were identified in ferromanganese nodules as well. The formation of native metals can be explained by their crystallization at highly reducing conditions maintained by organic matter.
Search for New Superconductors for Energy and Power Applications
2014-10-21
superconductors, borides , carbides, silicides, and chalcogenides. In addition, a number of thin film systems have been explored: A15s, superlattices, arrays of...YBa2Cu3O7 Bi2Se3 Eu-Si-C ErRh4B4 Bi2Sr2CaCu2O8 (UD, OD) Sb2Se3 V-Si-C (Ga,Mn)As CuO ZrSe2 Sm-Si-C Hf(FeCo)P Y1-xCaxCrO3 Fe-Te-Se BORIDES Hf-Fe-C-P...Physics, Warsaw, Poland Table III New superconductors, discovered by UCSD MURI team. BORIDES Tc (K) Nb0.9Zr0.1B 11.2 ZrNbxB 9.0 ZrVxB 9.0
NASA Astrophysics Data System (ADS)
Ghasemi-Nanesa, H.; Nili-Ahmadabadi, M.; Shirazi, H.
2010-07-01
Fe-Ni-Mn martensitic steels are one of the major groups of ultra-high strength steels that have good mechanical properties and ductility in as annealed condition but they suffer from severe inter-granular embitterment after aging. In this paper, the effect of heavy shaped cold rolling and wire drawing on the mechanical properties of Fe-Ni-Mn steel was investigated. This process could provide a large strain deformation in this alloy. The total strain was epsilon ~7. Aging behavior and tensile properties of Fe-10Ni-7Mn were studied after aging at 753 K. The results showed that the ultimate tensile strength and ductility after cold rolling, wire drawing and aging increased up to 2540 MPa and 7.1 %, respectively, while the conventional steels show a premature fracture stress of 830 MPa with about zero ductility after aging.
Basak, C B; Babu, N Hari
2017-07-18
High iron impurity affects the castability and the tensile properties of the recycled Al-Si alloys due to the presence of the Fe containing intermetallic β-Al 9 Fe 2 Si 2 phase. To date only Mn addition is known to transform the β-Al 9 Fe 2 Si 2 phase in the Al-Si-Fe system. However, for the first time, as reported here, it is shown that β-phase transforms to the ω-Al 7 Cu 2 Fe phase in the presence of Cu, after solutionization at 793 K. The ω-phase decomposes below 673 K resulting into the formation of θ-Al 2 Cu phase. However, the present thermodynamic description of the Al-Si-Fe-Cu system needs finer tuning to accurately predict the stability of the ω-phase in these alloys. In the present study, an attempt was made to enhance the strength of Al-6wt%Si-2wt%Fe model recycled cast alloy with different amount of Cu addition. Microstructural and XRD analysis were carried out in detail to show the influence of Cu and the stability range of the ω-phase. Tensile properties and micro-hardness values are also reported for both as-cast and solutionized alloys with different amount of Cu without and with ageing treatment at 473 K. The increase in strength due to addition of Cu, in Fe-rich Al-Si alloys is promising from the alloy recyclability point of view.
Structure and magnetic properties of ScFe 10Si 2
NASA Astrophysics Data System (ADS)
Bodak, O. I.; Stȩpień-Damm, J.; Drulis, H.; Kotur, B.; Suski, W.; Vagizov, F. G.; Wochowski, K.; Mydlarz, T.
1995-02-01
ScFe 10Si 2 crystallizes in the ThMn 12-type tetragonal structure with the space group I4/mmm and the lattice parameters: a = 0.8280 (1) nm, c = 0.4706 (1) nm and c/ a = 0.57. In the refinement performed for 317 independent reflections and 10 variable parameters, a final discrepancy factor R = 4.69% has been reached. The compound is ferromagnetic below 506 K ( 57Fe ME) and 560 K (magnetic). The distribution of the Fe atoms in the 8( i), 8( j) and 8( f) positions corresponds to 40, 31 and 29%, respectively. The Debye temperature determined from the temperature dependence of the isomer shift is 340 K.
Microstructure design of low alloy transformation-induced plasticity assisted steels
NASA Astrophysics Data System (ADS)
Zhu, Ruixian
The microstructure of low alloy Transformation Induced Plasticity (TRIP) assisted steels has been systematically varied through the combination of computational and experimental methodologies in order to enhance the mechanical performance and to fulfill the requirement of the next generation Advanced High Strength Steels (AHSS). The roles of microstructural parameters, such as phase constitutions, phase stability, and volume fractions on the strength-ductility combination have been revealed. Two model alloy compositions (i.e. Fe-1.5Mn-1.5Si-0.3C, and Fe-3Mn-1Si-0.3C in wt%, nominal composition) were studied. Multiphase microstructures including ferrite, bainite, retained austenite and martensite were obtained through conventional two step heat treatment (i.e. intercritical annealing-IA, and bainitic isothermal transformation-BIT). The effect of phase constitution on the mechanical properties was first characterized experimentally via systematically varying the volume fractions of these phases through computational thermodynamics. It was found that martensite was the main phase to deteriorate ductility, meanwhile the C/VA ratio (i.e. carbon content over the volume fraction of austenite) could be another indicator for the ductility of the multiphase microstructure. Following the microstructural characterization of the multiphase alloys, two microstructural design criteria (i.e. maximizing ferrite and austenite, suppressing athermal martensite) were proposed in order to optimize the corresponding mechanical performance. The volume fraction of ferrite was maximized during the IA with the help of computational thermodyanmics. On the other hand, it turned out theoretically that the martensite suppression could not be avoided on the low Mn contained alloy (i.e. Fe- 1.5Mn-1.5Si-0.3C). Nevertheless, the achieved combination of strength (~1300MPa true strength) and ductility (˜23% uniform elongation) on the low Mn alloy following the proposed design criteria fulfilled the requirement of the next generation AHSS. To further optimize the microstructure such that the designed criteria can be fully satisfied, further efforts have been made on two aspects: heat treatment and alloy addition. A multi-step BIT treatment was designed and successfully reduced the martensite content on the Fe-1.5Mn-1.5Si-0.3C alloy. Microstructure analysis showed a significant reduction on the volume fraction of martensite after the multi-step BIT as compared to the single BIT step. It was also found that, a slow cooling rate between the two BIT treatments resulted in a better combination of strength and ductility than rapid cooling or conventional one step BIT. Moreover, the athermal martensite formation can be fully suppressed by increasing the Mn content (Fe-3Mn-1Si-0.3C) and through carefully designed heat treatments. The athermal martensite-free alloy provided consistently better ductility than the martensite containing alloy. Finally, a microstructure based semi-empirical constitutive model has been developed to predict the monotonic tensile behavior of the multiphase TRIP assisted steels. The stress rule of mixture and isowork assumption for individual phases was presumed. Mecking-Kocks model was utilized to simulate the flow behavior of ferrite, bainitic ferrite and untransformed retained austenite. The kinetics of strain induced martensitic transformation was modeled following the Olson-Cohen method. The developed model has results in good agreements with the experimental results for both TRIP steels studied with same model parameters.
NASA Astrophysics Data System (ADS)
Ali, T.; Polakowski, P.; Riedel, S.; Büttner, T.; Kämpfe, T.; Rudolph, M.; Pätzold, B.; Seidel, K.; Löhr, D.; Hoffmann, R.; Czernohorsky, M.; Kühnel, K.; Thrun, X.; Hanisch, N.; Steinke, P.; Calvo, J.; Müller, J.
2018-05-01
The recent discovery of ferroelectricity in thin film HfO2 materials renewed the interest in ferroelectric FET (FeFET) as an emerging nonvolatile memory providing a potential high speed and low power Flash alternative. Here, we report more insight into FeFET performance by integrating two types of ferroelectric (FE) materials and varying their properties. By varying the material type [HfO2 (HSO) versus hafnium zirconium oxide (HZO)], optimum content (Si doping/mixture ratio), and film thickness, a material relation to FeFET device physics is concluded. As for the material type, an improved FeFET performance is observed for HZO integration with memory window (MW) comparable to theoretical values. For different Si contents, the HSO based FeFET exhibited a MW trend with different stabilized phases. Similarly, the HZO FeFET shows MW dependence on the Hf:Zr mixture ratio. A maximized MW is obtained with cycle ratios of 16:1 (HfO2:Si) and 1:1 (Hf:Zr) as measured on HSO and HZO based FeFETs, respectively. The thickness variation shows a trend of increasing MW with the increased FE layer thickness confirming early theoretical predictions. The FeFET material aspects and stack physics are discussed with insight into the interplay factors, while optimum FE material parameters are outlined in relation to performance.
Tripathi, J K; Garbrecht, M; Kaplan, W D; Markovich, G; Goldfarb, I
2012-12-14
Self-assembled α-FeSi(2) nanoislands were formed using solid-phase epitaxy of low (~1.2 ML) and high (~21 ML) Fe coverages onto vicinal Si(111) surfaces followed by thermal annealing. At a resulting low Fe-covered Si(111) surface, we observed in situ, by real-time scanning tunneling microscopy and surface electron diffraction, the entire sequence of Fe-silicide formation and transformation from the initially two-dimensional (2 × 2)-reconstructed layer at 300 °C into (2 × 2)-reconstructed nanoislands decorating the vicinal step-bunch edges in a self-ordered fashion at higher temperatures. In contrast, the silicide nanoislands at a high Fe-covered surface were noticeably larger, more three-dimensional, and randomly distributed all over the surface. Ex situ x-ray photoelectron spectroscopy and high-resolution transmission electron microscopy indicated the formation of an α-FeSi(2) island phase, in an α-FeSi(2){112} // Si{111} orientation. Superconducting quantum interference device magnetometry showed considerable superparamagnetism, with ~1.9 μ(B)/Fe atom at 4 K for the low Fe-coverage, indicating stronger ferromagnetic coupling of individual magnetic moments, as compared to high Fe-coverage, where the calculated moments were only ~0.8 μ(B)/Fe atom. Such anomalous magnetic behavior, particularly for the low Fe-coverage case, is radically different from the non-magnetic bulk α-FeSi(2) phase, and may open new pathways to high-density magnetic memory storage devices.
Bacterial Disproportionation of Elemental Sulfur Coupled to Chemical Reduction of Iron or Manganese
Thamdrup, Bo; Finster, Kai; Hansen, Jens Würgler; Bak, Friedhelm
1993-01-01
A new chemolithotrophic bacterial metabolism was discovered in anaerobic marine enrichment cultures. Cultures in defined medium with elemental sulfur (S0) and amorphous ferric hydroxide (FeOOH) as sole substrates showed intense formation of sulfate. Furthermore, precipitation of ferrous sulfide and pyrite was observed. The transformations were accompanied by growth of slightly curved, rod-shaped bacteria. The quantification of the products revealed that S0 was microbially disproportionated to sulfate and sulfide, as follows: 4S0 + 4H2O → SO42- + 3H2S + 2H+. Subsequent chemical reactions between the formed sulfide and the added FeOOH led to the observed precipitation of iron sulfides. Sulfate and iron sulfides were also produced when FeOOH was replaced by FeCO3. Further enrichment with manganese oxide, MnO2, instead of FeOOH yielded stable cultures which formed sulfate during concomitant reduction of MnO2 to Mn2+. Growth of small rod-shaped bacteria was observed. When incubated without MnO2, the culture did not grow but produced small amounts of SO42- and H2S at a ratio of 1:3, indicating again a disproportionation of S0. The observed microbial disproportionation of S0 only proceeds significantly in the presence of sulfide-scavenging agents such as iron and manganese compounds. The population density of bacteria capable of S0 disproportionation in the presence of FeOOH or MnO2 was high, > 104 cm-3 in coastal sediments. The metabolism offers an explanation for recent observations of anaerobic sulfide oxidation to sulfate in anoxic sediments. PMID:16348835
NASA Astrophysics Data System (ADS)
Oh, Eun Jee; Heo, Nam Hoe; Koo, Yang Mo
2017-11-01
The correlation between final thickness reduction and development of Goss texture has been investigated in a C- and Al-free Fe-3%Si electrical steel. During final annealing, the annealing texture is transited from {110}⊥ND to {100}⊥ND texture with increasing final thickness reduction. This is due to the decrease in primary grain size after pre-annealing with increasing final thickness reduction which accelerates the selective growth rate of the {100} grains at the expense of the other {hkl} grains. At an optimal final thickness reduction of 75.8%, the high magnetic induction of 1.95 Tesla, which arises from the sharp {110}<001> Goss texture and is comparable to that of conventional grain-oriented electrical steels, is obtained from the C- and Al-free Fe-3%Si-0.1%Mn electrical steel. Such a high magnetic property is produced through the surface-energy-induced selective grain growth of the Goss grains under the lower surface-segregated condition of sulfur which makes the surface energy of the {110} plane lowest among the {hkl} planes.
H+-induced irradiation damage resistance in Fe- and Ni-based metallic glass
NASA Astrophysics Data System (ADS)
Zhang, Hongran; Mei, Xianxiu; Zhang, Xiaonan; Li, Xiaona; Wang, Yingmin; Sun, Jianrong; Wang, Younian
2016-05-01
In this study, use of 40-keV H+ ion for irradiating metallic glass Fe80Si7.43B12.57 and Ni62Ta38 as well as metallic tungsten (W) at fluences of 1 × 1018 and 3 × 1018 ions/cm2, respectively, was investigated. At the fluence of 1 × 1018 ions/cm2, a crystalline layer appeared in metallic glass Fe80Si7.43B12.57, with α-Fe as the major crystalline phase, coupled with a little Fe2B, Fe3B, and metastable β-Mn-type phase. Fe80Si7.43B12.57 exhibited good soft magnetic properties after irradiation. At the fluence of 3 × 1018 ions/cm2, Ni62Ta38 was found to be amorphous-based, with a little μ-NiTa and Ni3Ta phases. No significant irradiation damage phenomenon appeared in metallic glasses Fe80Si7.43B12.57 and Ni62Ta38. Blistering, flaking, and other damage occurred on the surface of metallic W, and the root-mean-square (RMS) roughness increased with the increase of fluence. Metallic glass Ni62Ta38 exhibited better resistance to H+ irradiation than Fe80Si7.43B12.57, both of which were superior to the metallic W.
Chinese Script vs Plate-Like Precipitation of Beta-Al9Fe2Si2 Phase in an Al-6.5Si-1Fe Alloy
NASA Astrophysics Data System (ADS)
Ferdian, Deni; Josse, Claudie; Nguyen, Patrick; Gey, Nathalie; Ratel-Ramond, Nicolas; de Parseval, Philippe; Thebault, Yannick; Malard, Benoit; Lacaze, Jacques; Salvo, Luc
2015-07-01
The microstructure of a high-purity Al-6.5Si-1Fe (wt pct) alloy after solidification at various cooling rates was investigated. In most of the cases, the monoclinic beta-Al9Fe2Si2 phase was observed as long and thin lamellae. However, at a very slow cooling rate, Fe-bearing precipitates with Chinese script morphology appeared together with lamellae. Further analysis showed all these Chinese script precipitates correspond also to the monoclinic beta phase. This finding stresses that differentiating second phases according to their shape may be misleading.
NASA Astrophysics Data System (ADS)
Chukanov, N. V.; Blass, G.; Pekov, I. V.; Belakovskiy, D. I.; Van, K. V.; Rastsvetaeva, R. K.; Aksenov, S. M.
2012-12-01
Non-metamict perrierite-(La) discovered in the Dellen pumice quarry, near Mendig, in the Eifel volcanic district, Rheinland-Pfalz, Germany has been approved as a new mineral species (IMA no. 2010-089). The mineral was found in the late assemblage of sanidine, phlogopite, pyrophanite, zirconolite, members of the jacobsite-magnetite series, fluorcalciopyrochlore, and zircon. Perrierite-(La) occurs as isolated prismatic crystals up to 0.5 × 1 mm in size within cavities in sanidinite. The new mineral is black with brown streak; it is brittle, with the Mohs hardness of 6 and distinct cleavage parallel to (001). The calculated density is 4.791 g/cm3. The IR spectrum does not contain absorption bands that correspond to H2O and OH groups. Perrierite-(La) is biaxial (-), α = 1.94(1), β = 2.020(15), γ = 2.040(15), 2 V meas = 50(10)°, 2 V calc = 51°. The chemical composition (electron microprobe, average of seven point analyses, the Fe2+/Fe3+ ratio determined from the X-ray structural data, wt %) is as follows: 3.26 CaO, 22.92 La2O3, 19.64 Ce2O3, 0.83 Pr2O2, 2.09 Nd2O3, 0.25 MgO, 2.25 MnO, 3.16 FeO, 5.28 Fe2O3, 2.59 Al2O3, 16.13 TiO2, 0.75 Nb2O5, and 20.06 SiO2, total is 99.21. The empirical formula is (La1.70Ce1.45Nd0.15Pr0.06Ca0.70)Σ4.06(Fe{0.53/2+}Mn0.38Mg0.08)Σ0.99(Ti2.44Fe{0.80/3+}Al0.62Nb0.07)Σ3.93Si4.04O22. The simplified formula is (La,Ce,Ca)4(Fe2+,Mn)(Ti,Fe3+,Al)4(Si2O7)2O8. The crystal structure was determined by a single crystal. Perrierite-(La) is monoclinic, space group P21/ a, and the unit-cell dimensions are as follows: a =13.668(1), b = 5.6601(6), c = 11.743(1) Å, β = 113.64(1)°; V = 832.2(2) Å3, Z = 2. The strong reflections in the X-ray powder diffraction pattern are [ d, Å ( I, %) ( hkl)]: 5.19 (40) (110), 3.53 (40) (overline 3 11), 2.96 (100) (overline 3 13, 311), 2.80 (50) (020), 2.14 (50) (overline 4 22, overline 3 15, 313), 1.947 (50) (024, 223), 1.657 (40) (overline 4 07, overline 4 33, 331). The holotype specimen of perrierite-(La) is deposited at the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, Russia, with the registration number 4059/1.
NASA Astrophysics Data System (ADS)
Steinbach, S.; Ratke, L.; Zimmermann, G.; Budenkova, O.
2016-03-01
Ternary Al-6.5wt.%Si-0.93wt.%Fe alloy samples were directionally solidified on-board of the International Space Station ISS in the ESA payload Materials Science Laboratory (MSL) equipped with Low Gradient Furnace (LGF) under both purely diffusive and stimulated convective conditions induced by a rotating magnetic field. Using different analysis techniques the shape and distribution of the intermetallic phase β-Al5SiFe in the dendritic microstructure was investigated, to study the influence of solidification velocity and fluid flow on the size and spatial arrangement of intermetallics. Deep etching as well as 3-dimensional computer tomography measurements characterized the size and the shape of β-Al5SiFe platelets: Diffusive growth results in a rather homogeneous distribution of intermetallic phases, whereas forced flow promotes an increase in the amount and the size of β-Al5SiFe platelets in the centre region of the samples. The β-Al5SiFe intermetallics can form not only simple platelets, but also be curved, branched, crossed, interacting with dendrites and porosity located. This leads to formation of large and complex groups of Fe-rich intermetallics, which reduce the melt flow between dendrites leading to lower permeability of the mushy zone and might significantly decrease feeding ability in castings.
NASA Astrophysics Data System (ADS)
Veiga, R. G. A.; Miwa, R. H.; McLean, A. B.
2016-03-01
We report first-principles calculations of the energetic stability and electronic properties of metal-phthalocyanine (MPc) molecules (M = Cr, Mn, Fe, Co, Ni, Cu, and Zn) adsorbed on the δ -doped Si(111)-B (√{3 }×√{3 }) reconstructed surface. (i) It can be seen that CrPc, MnPc, FePc, and CoPc are chemically anchored to the topmost Si atom. (ii) Contrastingly, the binding of the NiPc, CuPc, and ZnPc molecules to the Si (111 ) -B (√{3 }×√{3 }) surface is exclusively ruled by van der Waals interactions, the main implication being that these molecules may diffuse and rearrange to form clusters and/or self-organized structures on this surface. The electronic structure calculations reveal that in point (i), owing to the formation of the metal-Si covalent bond, the net magnetic moment of the molecule is quenched by 1 μB , remaining unchanged in point (ii). In particular, the magnetic moment of CuPc (1 μB ) is preserved after adsorption. Finally, we verify that the formation of ZnPc, CuPc, and NiPc molecular (self-assembled) arrangements on the Si(111)-B (√{3 }×√{3 } ) surface is energetically favorable, in good agreement with recent experimental findings.
Reiman, Jeremy H; Xu, Y Jun; He, Songjie; DelDuco, Emily M
2018-08-01
Discharging 680 km 3 of freshwater annually to the Northern Gulf of Mexico (NGOM), the Mississippi-Atchafalaya River System (MARS) plays a significant role in transporting major and trace elements to the ocean. In this study, we analyzed total recoverable concentrations of thirty-one metals from water samples collected at five locations along the MARS during 2013-2016 to quantify their seasonal mass exports. The Atchafalaya River flows through a large swamp floodplain, allowing us to also test the hypothesis that floodplains function as a sink for metals. We found that the seven major elements (Ca, Na, Mg, Si, K, Al, and Fe) constituted 99% of the total annual mass load of metals (7.38 × 10 7 tons) from the MARS. Higher concentrations of Al, Ba, B, Ca, Fe, Mg, Mn, Ag, and Ti were found in the Mississippi River, while significantly higher Si and Na concentrations were found in the Atchafalaya River. Significant relationships were found between daily discharge and daily loads of Ba, Ca, Fe, K, Sr, and Ti in both rivers, while significant relationships were also found for Al, Mg, Mn, V, and Zn in the Atchafalaya River and B in the Mississippi River. Overall, the Mississippi River contributed 64-76% of the total annual loading of metals from the MARS to the NGOM. Daily loads of Al, Ba, B, Fe, Li, Mn, P, K, Si, Ag, Ti, V, and Zn regularly decreased upstream to downstream in the Atchafalaya River, partially accepting the initial hypothesis on metals transport in river floodplains. Copyright © 2018 Elsevier Ltd. All rights reserved.
Formation of spherical-shaped GaN and InN quantum dots on curved SiN/Si surface.
Choi, Ilgyu; Lee, Hyunjoong; Lee, Cheul-Ro; Jeong, Kwang-Un; Kim, Jin Soo
2018-08-03
This paper reports the formation of GaN and InN quantum dots (QDs) with symmetric spherical shapes, grown on SiN/Si(111). Spherical QDs are grown by modulating initial growth behavior via gallium and indium droplets functioning as nucleation sites for QDs. Field-emission scanning electron microscope (FE-SEM) images show that GaN and InN QDs are formed on curved SiN/Si(111) instead of on a flat surface similar to balls on a latex mattress. This is considerably different from the structural properties of In(Ga)As QDs grown on GaAs or InP. In addition, considering the shape of the other III-V semiconductor QDs, the QDs in this study are very close to the ideal shape of zero-dimensional nanostructures. Transmission-electron microscope images show the formation of symmetric GaN and InN QDs with a round shape, agreeing well with the FE-SEM results. Compared to other III-V semiconductor QDs, the unique structural properties of Si-based GaN and InN QDs are strongly related to the modulation in the initial nucleation characteristics due to the presence of droplets, the degree of lattice mismatch between GaN or InN and SiN/Si(111), and the melt-back etching phenomenon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
L'vov, Victor A.; Taras Shevchenko National University, Kyiv 01601; Kosogor, Anna, E-mail: annakosogor@gmail.com
2016-01-07
A simple thermodynamic theory is proposed for the quantitative description of giant magnetocaloric effect observed in metamagnetic shape memory alloys. Both the conventional magnetocaloric effect at the Curie temperature and the inverse magnetocaloric effect at the transition from the ferromagnetic austenite to a weakly magnetic martensite are considered. These effects are evaluated from the Landau-type free energy expression involving exchange interactions in a system of a two magnetic sublattices. The findings of the thermodynamic theory agree with first-principles calculations and experimental results from Ni-Mn-In-Co and Ni-Mn-Sn alloys, respectively.
Ni-Mn-Ga shape memory nanoactuation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohl, M., E-mail: manfred.kohl@kit.edu; Schmitt, M.; Krevet, B.
2014-01-27
To probe finite size effects in ferromagnetic shape memory nanoactuators, double-beam structures with minimum dimensions down to 100 nm are designed, fabricated, and characterized in-situ in a scanning electron microscope with respect to their coupled thermo-elastic and electro-thermal properties. Electrical resistance and mechanical beam bending tests demonstrate a reversible thermal shape memory effect down to 100 nm. Electro-thermal actuation involves large temperature gradients along the nanobeam in the order of 100 K/μm. We discuss the influence of surface and twin boundary energies and explain why free-standing nanoactuators behave differently compared to constrained geometries like films and nanocrystalline shape memory alloys.
Ni-Mn-Ga shape memory nanoactuation
NASA Astrophysics Data System (ADS)
Kohl, M.; Schmitt, M.; Backen, A.; Schultz, L.; Krevet, B.; Fähler, S.
2014-01-01
To probe finite size effects in ferromagnetic shape memory nanoactuators, double-beam structures with minimum dimensions down to 100 nm are designed, fabricated, and characterized in-situ in a scanning electron microscope with respect to their coupled thermo-elastic and electro-thermal properties. Electrical resistance and mechanical beam bending tests demonstrate a reversible thermal shape memory effect down to 100 nm. Electro-thermal actuation involves large temperature gradients along the nanobeam in the order of 100 K/μm. We discuss the influence of surface and twin boundary energies and explain why free-standing nanoactuators behave differently compared to constrained geometries like films and nanocrystalline shape memory alloys.
Ferroelectric control of a Mott insulator
Yamada, Hiroyuki; Marinova, Maya; Altuntas, Philippe; Crassous, Arnaud; Bégon-Lours, Laura; Fusil, Stéphane; Jacquet, Eric; Garcia, Vincent; Bouzehouane, Karim; Gloter, Alexandre; Villegas, Javier E.; Barthélémy, Agnès; Bibes, Manuel
2013-01-01
The electric field control of functional properties is an important goal in oxide-based electronics. To endow devices with memory, ferroelectric gating is interesting, but usually weak compared to volatile electrolyte gating. Here, we report a very large ferroelectric field-effect in perovskite heterostructures combining the Mott insulator CaMnO3 and the ferroelectric BiFeO3 in its “supertetragonal” phase. Upon polarization reversal of the BiFeO3 gate, the CaMnO3 channel resistance shows a fourfold variation around room temperature, and a tenfold change at ~200 K. This is accompanied by a carrier density modulation exceeding one order of magnitude. We have analyzed the results for various CaMnO3 thicknesses and explain them by the electrostatic doping of the CaMnO3 layer and the presence of a fixed dipole at the CaMnO3/BiFeO3 interface. Our results suggest the relevance of ferroelectric gates to control orbital- or spin-ordered phases, ubiquitous in Mott systems, and pave the way toward efficient Mott-tronics devices. PMID:24089020
Letter Report Documenting Progress of Second Generation ATF FeCrAl Alloy Fabrication
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamamoto, Y.; Yang, Y.; Field, K. G.
2014-06-10
Development of the 2nd generation ATF FeCrAl alloy has been initiated, and a candidate alloy was selected for trial tube fabrication through hot-extrusion and gun-drilling processes. Four alloys based on Fe-13Cr-4.5Al-0.15Y in weight percent were newly cast with minor alloying additions of Mo, Si, Nb, and C to promote solid-solution and second-phase precipitate strengthening. The alloy compositions were selected with guidance from computational thermodynamic tools. The lab-scale heats of ~ 600g were arc-melted and drop-cast, homogenized, hot-forged and -rolled, and then annealed producing plate shape samples. An alloy with Mo and Nb additions (C35MN) processed at 800°C exhibits very finemore » sub-grain structure with the sub-grain size of 1-3μm which exhibited more than 25% better yield and tensile strengths together with decent ductility compared to the other FeCrAl alloys at room temperature. It was found that the Nb addition was key to improving thermal stability of the fine sub-grain structure. Optimally, grains of less than 30 microns are desired, with grains up to and order of magnitude in desired produced through Nb addition. Scale-up effort of the C35MN alloy was made in collaboration with a commercial cast company who has a capability of vacuum induction melting. A 39lb columnar ingot with ~81mm diameter and ~305mm height (with hot-top) was commercially cast, homogenized, hot-extruded, and annealed providing 10mm-diameter bar-shape samples with the fine sub-grain structure. This commercial heat proved consistent with materials produced at ORNL at the lab-scale. Tubes and end caps were machined from the bar sample and provided to another work package for the ATF-1 irradiation campaign in the milestone M3FT-14OR0202251.« less
Liu, B; Zheng, Y F
2011-03-01
Pure iron was determined to be a valid candidate material for biodegradable metallic stents in recent animal tests; however, a much faster degradation rate in physiological environments was desired. C, Mn, Si, P, S, B, Cr, Ni, Pb, Mo, Al, Ti, Cu, Co, V and W are common alloying elements in industrial steels, with Cr, Ni, Mo, Cu, Ti, V and Si being acknowledged as beneficial in enhancing the corrosion resistance of iron. The purpose of the present work (using Fe-X binary alloy models) is to explore the effect of the remaining alloying elements (Mn, Co, Al, W, B, C and S) and one detrimental impurity element Sn on the biodegradability and biocompatibility of pure iron by scanning electron microscopy, X-ray diffraction, metallographic observation, tensile testing, microhardness testing, electrochemical testing, static (for 6 months) and dynamic (for 1 month with various dissolved oxygen concentrations) immersion testing, cytotoxicity testing, hemolysis and platelet adhesion testing. The results showed that the addition of all alloying elements except for Sn improved the mechanical properties of iron after rolling. Localized corrosion of Fe-X binary alloys was observed in both static and dynamic immersion tests. Except for the Fe-Mn alloy, which showed a significant decrease in corrosion rate, the other Fe-X binary alloy corrosion rates were close to that of pure iron. It was found that compared with pure iron all Fe-X binary alloys decreased the viability of the L929 cell line, none of experimental alloying elements significantly reduced the viability of vascular smooth muscle cells and all the elements except for Mn increased the viability of the ECV304 cell line. The hemolysis percentage of all Fe-X binary alloy models were less than 5%, and no sign of thrombogenicity was observed. In vitro corrosion and the biological behavior of these Fe-X binary alloys are discussed and a corresponding mechanism of corrosion of Fe-X binary alloys in Hank's solution proposed. As a concluding remark, Co, W, C and S are recommended as alloying elements for biodegradable iron-based biomaterials. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Pure-iron/iron-based-alloy hybrid soft magnetic powder cores compacted at ultra-high pressure
NASA Astrophysics Data System (ADS)
Saito, Tatsuya; Tsuruta, Hijiri; Watanabe, Asako; Ishimine, Tomoyuki; Ueno, Tomoyuki
2018-04-01
We developed Fe/FeSiAl soft magnetic powder cores (SMCs) for realizing the miniaturization and high efficiency of an electromagnetic conversion coil in the high-frequency range (˜20 kHz). We found that Fe/FeSiAl SMCs can be formed with a higher density under higher compaction pressure than pure-iron SMCs. These SMCs delivered a saturation magnetic flux density of 1.7 T and iron loss (W1/20k) of 158 kW/m3. The proposed SMCs exhibited similar excellent characteristics even in block shapes, which are closer to the product shapes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kondo, T.; Mori, K.; Hachisu, M.
2015-05-07
Mn-Zn ferrite, Mn{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} nanoparticles encapsulated in amorphous SiO{sub 2} were prepared using our original wet chemical method. X-ray diffraction patterns confirmed that the diameters of these particles were within 7–30 nm. Magnetization measurements for various sample compositions revealed that the saturation magnetization (M{sub s}) of 7 nm particles was maximum for the x = 0.2 sample. AC magnetic susceptibility measurements were performed for Mn{sub 0.8}Zn{sub 0.2}Fe{sub 2}O{sub 4} (x = 0.2) samples with 13–30 nm particles. The peak of the imaginary part of the magnetic susceptibility χ″ shifted to higher temperatures as the particle size increased. An AC field was found to causemore » the increase in temperature, with the 18 nm particles exhibiting the highest temperature increase, as expected. In addition, in vitro experiments were carried out to study the hyperthermia effects of Mn{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} (x = 0.2, 18 nm) particles on human cancer cells.« less
NASA Astrophysics Data System (ADS)
Babacan, N.; Ma, J.; Turkbas, O. S.; Karaman, I.; Kockar, B.
2018-01-01
In the present study, the effect of thermo-mechanical treatments on the shape memory and the superelastic characteristics of Cu73Al16Mn11 (at%) shape memory alloy were investigated. 10%, 50% and 70% cold rolling and subsequent heat treatment processes were conducted to achieve strengthening via grain size refinement. 70% grain size reduction compared to the homogenized condition was obtained using 70% cold rolling and subsequent recrystallization heat treatment technique. Moreover, 10% cold rolling was applied to homogenized specimen to reveal the influence of the low percentage cold rolling reduction with no heat treatment on shape memory properties of Cu73Al16Mn11 (at%) alloy. Stress free transformation temperatures, monotonic tension and superelasticity behaviors of these samples were compared with those of the as-aged sample. Isobaric heating-cooling experiments were also conducted to see the dimensional stability of the samples as a function of applied stress. The 70% grain-refined sample exhibited better dimensional stability showing reduced residual strain levels upon thermal cycling under constant stress compared with the as-aged material. However, no improvement was achieved with grain size reduction in the superelasticity experiments. This distinctive observation was attributed to the difference in the magnitude of the stress levels achieved during two different types of experiments which were the isobaric heating-cooling and superelasticity tests. Intergranular fracture due to the stress concentration overcame the strengthening effect via grain refinement in the superelasticity tests at higher stress values. On the other hand, the strength of the material and resistance of material against plastic deformation upon phase transformation were increased as a result of the grain refinement at lower stress values in the isobaric heating-cooling experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matzel, J; Jacobsen, B; Hutcheon, I D
2009-09-09
The {sup 53}Mn-{sup 53}Cr systematics of meteorite samples provide an important high resolution chronometer for early solar system events. Accurate determination of the initial abundance of {sup 53}Mn ({tau}{sub 1/2} = 3.7 Ma) by secondary ion mass spectrometry (SIMS) is dependent on properly correcting for differing ion yields between Mn and Cr by use of a relative sensitivity factor (RSF). Ideal standards for SIMS analysis should be compositionally and structurally similar to the sample of interest. However, previously published Mn-Cr studies rely on few standards (e.g., San Carlos olivine, NIST 610 glass) despite significant variations in chemical composition. We investigatemore » a potential correlation between RSF and bulk chemical composition by determining RSFs for {sup 55}Mn/{sup 52}Cr in 11 silicate glass and mineral standards (San Carlos olivine, Mainz glasses KL2-G, ML3B-G, StHs6/80-G, GOR128-G, BM90/21-G, and T1-G, NIST 610 glass, and three LLNL pyroxene-composition glasses). All standards were measured on the Cameca ims-3f ion microprobe at LLNL, and a subset were also measured on the Cameca ims-1270 ion microprobe at the Geological Survey of Japan. The standards cover a range of bulk chemical compositions with SiO{sub 2} contents of 40-71 wt.%, FeO contents of 0.05-20 wt.% and Mn/Cr ratios between 0.4 and 58. We obtained RSF values ranging from 0.83 to 1.15. The data obtained on the ims-1270 ion microprobe are within {approx}10% of the RSF values obtained on the ims-3f ion microprobe, and the RSF determined for San Carlos olivine (0.86) is in good agreement with previously published data. The typical approach to calculating an RSF from multiple standard measurements involves making a linear fit to measured {sup 55}Mn/{sup 52}Cr versus true {sup 55}Mn/{sup 52}Cr. This approach may be satisfactory for materials of similar composition, but fails when compositions vary significantly. This is best illustrated by the {approx}30% change in RSF we see between glasses with similar Mn/Cr ratios but variable Fe and Na content. We are developing an approach that uses multivariate analysis to evaluate the importance of different chemical components in controlling the RSF and predict the RSF of unknowns when standards of appropriate composition are not available. Our analysis suggests that Fe, Si, and Na are key compositional factors in these silicate standards. The RSF is positively correlated with Fe and Si and negatively correlated with Na. Work is currently underway to extend this analysis to a wider range of chemical compositions and to evaluate the variability of RSF on measurements obtained by NanoSIMS.« less
NASA Astrophysics Data System (ADS)
Symonds, Robert B.; Reed, Mark H.; Rose, William I.
1992-02-01
Thermochemical modeling predicts that trace elements in the Augustine gas are transported from near-surface magma as simple chloride (NaCl, KCl, FeCl 2, ZnCl 2, PbCl 2, CuCl, SbCl 3, LiCl, MnCl 2, NiCl 2, BiCl, SrCl 2), oxychloride (MoO 2Cl 2), sulfide (AsS), and elemental (Cd) gas species. However, Si, Ca, Al, Mg, Ti, V, and Cr are actually more concentrated in solids, beta-quartz (SiO 2), wollastonite (CaSiO 3), anorthite (CaAl 2Si 2O 8), diopside (CaMgSi 2O 6), sphene (CaTiSiO 5), V 2O 3(c), and Cr 2O 3(c), respectively, than in their most abundant gaseous species, SiF 4, CaCl 2, AlF 2O, MgCl 2 TiCl 4, VOCl 3, and CrO 2Cl 2. These computed solids are not degassing products, but reflect contaminants in our gas condensates or possible problems with our modeling due to "missing" gas species in the thermochemical data base. Using the calculated distribution of gas species and the COSPEC SO 2 fluxes, we have estimated the emission rates for many species (e.g., COS, NaCl, KCl, HBr, AsS, CuCl). Such forecasts could be useful to evaluate the effects of these trace species on atmospheric chemistry. Because of the high volatility of metal chlorides (e.g., FeCl 2, NaCl, KCl, MnCl 2, CuCl), the extremely HCl-rich Augustine volcanic gases are favorable for transporting metals from magma. Thermochemical modeling shows that equilibrium degassing of magma near 870°C can account for the concentrations of Fe, Na, K, Mn, Cu, Ni and part of the Mg in the gases escaping from the dome fumaroles on the 1986 lava dome. These calculations also explain why gases escaping from the lower temperature but highly oxidized moat vents on the 1976 lava dome should transport less Fe, Na, K, Mn and Ni, but more Cu; oxidation may also account for the larger concentrations of Zn and Mo in the moat gases. Nonvolatile elements (e.g., Al, Ca, Ti, Si) in the gas condensates came from eroded rock particles that dissolved in our samples or, for Si, from contamination from the silica sampling tube. Only a very small amount of rock contamination occurred (water/rock ratios between 10 4 and 10 6). Erosion is more prevalent in the pyroclastic flow fumaroles than in the summit vents, reflecting physical differences in the fumarole walls: ash vs. lava. Trace element contents of volcanic gases show enormous variability because of differences in the intensive parameters of degassing magma and variable amounts of wall rock erosion in volcanic fumaroles.
Nanoscale cluster dynamics in the martensitic phase of Ni-Mn-Sn shape-memory alloys
NASA Astrophysics Data System (ADS)
Hoch, Michael; Yuan, Shaojie; Kuhns, Phillip; Reyes, Arneil; Brooks, James; Phelan, Daniel; Srivastava, Vijay; James, Richard; Leighton, Chris
2015-03-01
The martensitic phases of Ni-Mn-Sn magnetic shape memory alloys exhibit interesting low temperature magnetic properties, including intrinsic superparamagnetism and exchange bias effects, which have previously been rationalized in terms of spin clusters. We show here that spin-echo NMR, involving 55Mn hyperfine fields, permits ferromagnetic and antiferromagnetic nanoregions to be directly identified in these materials and yields estimates of their size distributions. Nuclear relaxation rate measurements, made as a function of temperature, provide information on both the dynamics and on the electronic structure of the nanoregions. The relaxation rates are analyzed using a combination of Redfield and Korringa mechanisms, the Korringa procedure providing information on the density of states at the Fermi level. Results will be presented for a number of these alloys. DMR-1309463.
Biodegradable shape-memory block co-polymers for fast self-expandable stents.
Xue, Liang; Dai, Shiyao; Li, Zhi
2010-11-01
Block co-polymers PCTBVs (M(n) of 36,300-65,300 g/mol, T(m) of 39-40 and 142 degrees C) containing hyperbranched three-arm poly(epsilon-caprolactone) (PCL) as switching segment and microbial polyester PHBV as crystallizable hard segment were designed as biodegradable shape-memory polymer (SMP) for fast self-expandable stent and synthesized in 96% yield by the reaction of three-arm PCL-triol (M(n) of 4200 g/mol, T(m) of 47 degrees C) with methylene diphenyl 4,4'-diisocyanate isocynate (MDI) to form the hyperbrached MDI-linked PCL (PTCM; M(n) of 25,400 g/mol and a T(m) of 38 degrees C), followed by further polymerization with PHBV-diol (M(n) of 2200 g/mol, T(m) of 137 and 148 degrees C). The polymers were characterized by (1)H NMR, GPC, DSC, tensile test, and cyclic thermomechanical tensile test. PCTBVs showed desired thermal properties, mechanical properties, and ductile nature. PCTBV containing 25 wt% PHBV (PCTBV-25) demonstrated excellent shape-memory property at 40 degrees C, with R(f) of 94%, R(r) of 98%, and shape recovery within 25s. PCTBV-25 was also shown as a safe material with good biocompatibility by cytotoxicity tests and cell growth experiments. The stent made from PCTBV-25 film showed nearly complete self-expansion at 37 degrees C within only 25 s, which is much better and faster than the best known self-expandable stents. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Late Reduction Textures in Almahata Sitta Ureilite
NASA Technical Reports Server (NTRS)
Herrin, J. S.; Le, L.; Zolensky, M. E.; Ito, M.; Jenniskens, P.; Shaddad, M. H.
2009-01-01
The Almahata Sitta ureilite, derived from asteroid 2008 TC3, consists of many individual fragments recovered from the Nubian dessert strewn field [1]. Like most ureilites, it contains abundant carbon and exhibits examples of disequilibrium textures that record a late reduction event accompanied by rapid cooling (tens of degC/h) from high temperatures (1150-1300 C). Variations in Fe/Mg of silicate minerals are accompanied by variations in Fe/Mn, indicating loss of Fe into metal [2]. In coarser-grained fragments of Almahata Sitta, olivine exhibits irregular high mg# rims in contact with networks of interstitial metal 5- 20 microns in typical thickness. This is a common ureilite texture thought to be driven by the reaction of graphite to a CO gas phase and the concurrent reduction of FeO in olivine to Fe metal, with excess silica going primarily into pyroxene (2MgFeSiO4 + C approaches MgSiO4 + MgSiO3 + 2Fe + CO) [3, see also 4,5,6]. Other fragments of Almahata Sitta exhibit anomalous textures such as fine grain size, high porosity, and abundant graphite. Within these fragments pyroxene locally exhibits high-mg# rims in contact with metal and a discreet silica phase, suggesting that the reduction mechanism MgFeSi2O6 + C approaches MgSiO3 + Fe + SiO2 + CO. Metals in Almahata Sitta are particularly unaltered in comparison to ureilite finds. Variations in minor and trace element composition of this metal might partly result from localized dilution as iron is supplied by reduction of silicates.
NASA Astrophysics Data System (ADS)
Orlandi, Paolo; Biagioni, Cristian; Pasero, Marco; Mellini, Marcello
2013-03-01
The new mineral species lavoisierite, ideally Mn2+ 8[Al10(Mn3+Mg)][Si11P]O44(OH)12, has been discovered in piemontite-bearing micaschists belonging to the Piedmontese Nappe from Punta Gensane, Viù Valley, Western Alps, Italy. It occurs as yellow-orange acicular to prismatic-tabular crystals up to a few millimeters in length, with white streak and vitreous luster, elongated along [010] and flattened on {001}. Lavoisierite is associated with quartz, "mica," sursassite, piemontite, spessartine, braunite, and "tourmaline." Calculated density is 3.576 g cm-3. In plane-polarized light, it is transparent, pleochroic, with pale yellow parallel to [010] and yellow-orange normal to this direction; extinction is parallel and elongation is positive. Birefringence is moderate; the calculated average refraction index n is 1.750. Lavoisierite is orthorhombic, space group Pnmm, with a 8.6891(10), b 5.7755(3), c 36.9504(20) Å, V 1854.3(2) Å3, Z = 2. Calculated main diffraction lines of the X-ray powder diffraction pattern are [ d in Å, ( I), ( hkl); relative intensities are visually estimated]: 4.62 (m) (112), 2.931 (vs) (11 10), 2.765 (s) (11 11), 2.598 (s) (310), 2.448 (ms) (028). Chemical analyses by electron microprobe give (in wt%) P2O5 2.08, V2O5 0.37, SiO2 34.81, TiO2 0.13, Al2O3 22.92, Cr2O3 0.32, Fe2O3 0.86, Mn2O3 6.92, MnO 19.09, MgO 5.73, CaO 1.94, Na2O 0.01, H2O 5.44, sum 100.62 wt%. H2O content was calculated from structure refinement. The empirical formula, based on 56 anions, is (Mn{5.340/2+}Mg1.810Ca0.686Na0.006)Σ=7.852(Al8.921Mn{1.739/3+}Mg1.010Fe{0.214/3+}Cr0.084Ti0.032)Σ=12.000(Si11.496P0.582V0.081)Σ=12.159O43.995(OH)12.005. The crystal structure of lavoisierite was solved by direct methods and refined on the basis of 1743 observed reflections to R 1 = 4.6 %. The structure is characterized by columns of edge-sharing octahedra running along [010] and linked to each other by means of [SiO4], [Si2O7], and [Si3O10] groups. Lavoisierite, named after the French chemist and biologist Antoine-Laurent de Lavoisier (1743-1794), displays an unprecedented kind of structure, related to those of "ardennite" and sursassite.
Qi, Jianying; Zhang, Gaosheng; Li, Haining
2015-10-01
A novel sorbent of Fe-Mn binary oxide impregnated chitosan bead (FMCB) was fabricated through impregnating Fe-Mn binary oxide into chitosan matrix. The FMCB is sphere-like with a diameter of 1.6-1.8 mm, which is effective for both As(V) and As(III) sorption. The maximal sorption capacities are 39.1 and 54.2 mg/g, respectively, outperforming most of reported granular sorbents. The arsenic was mainly removed by adsorbing onto the Fe-Mn oxide component. The coexisting SO4(2-), HCO3(-) and SiO3(2-) have no great influence on arsenic sorption, whereas, the HPO4(2-) shows negative effects. The arsenic-loaded FMCB could be effectively regenerated using NaOH solution and repeatedly used. In column tests, about 1500 and 3200 bed volumes of simulated groundwater containing 233 μg/L As(V) and As(III) were respectively treated before breakthrough. These results demonstrate the superiority of the FMCB in removing As(V) and As(III), indicating that it is a promising candidate for arsenic removal from real drinking water. Copyright © 2015 Elsevier Ltd. All rights reserved.
Protected Fe valence in quasi-two-dimensional α-FeSi2.
Miiller, W; Tomczak, J M; Simonson, J W; Smith, G; Kotliar, G; Aronson, M C
2015-05-08
We report the first comprehensive study of the high temperature form (α-phase) of iron disilicide. Measurements of the magnetic susceptibility, magnetization, heat capacity and resistivity were performed on well characterized single crystals. With a nominal iron d(6) configuration and a quasi-two-dimensional crystal structure that strongly resembles that of LiFeAs, α-FeSi2 is a potential candidate for unconventional superconductivity. Akin to LiFeAs, α-FeSi2 does not develop any magnetic order and we confirm its metallic state down to the lowest temperatures (T = 1.8 K). However, our experiments reveal that paramagnetism and electronic correlation effects in α-FeSi2 are considerably weaker than in the pnictides. Band theory calculations yield small Sommerfeld coefficients of the electronic specific heat γ = Ce/T that are in excellent agreement with experiment. Additionally, realistic many-body calculations further corroborate that quasi-particle mass enhancements are only modest in α-FeSi2. Remarkably, we find that the natural tendency to vacancy formation in the iron sublattice has little influence on the iron valence and the density of states at the Fermi level. Moreover, Mn doping does not significantly change the electronic state of the Fe ion. This suggests that the iron valence is protected against hole doping and indeed the substitution of Co for Fe causes a rigid-band like response of the electronic properties. As a key difference from the pnictides, we identify the smaller inter-iron layer spacing, which causes the active orbitals near the Fermi level to be of a different symmetry in α-FeSi2. This change in orbital character might be responsible for the lack of superconductivity in this system, providing constraints on pairing theories in the iron based pnictides and chalcogenides.
Ilyukhinite (H3O,Na)14Ca6Mn2Zr3Si26O72(OH)2 • 3H2O, a New Mineral of the Eudialyte Group
NASA Astrophysics Data System (ADS)
Chukanov, N. V.; Rastsvetaeva, R. K.; Rozenberg, K. A.; Aksenov, S. M.; Pekov, I. V.; Belakovsky, D. I.; Kristiansen, R.; Van, K. V.
2017-12-01
A new eudialyte-group mineral, ilyukhinite, ideally (H3O,Na)14Ca6Mn2Zr3Si26O72(OH)2 · 3H2O, has been found in peralkaline pegmatite at Mt. Kukisvumchorr, Khibiny alkaline pluton, Kola Peninsula, Russia. It occurs as brownish orange, with vitreous luster anhedral grains up to 1 mm across in hydrothermally altered peralkaline rock, in association with aegirine, murmanite, albite, microcline, rhabdophane-(Ce), fluorite, sphalerite and molybdenite. The Mohs hardness is 5; cleavage is not observed. D meas 2.67(2), D calc 2.703 g/cm3. Ilyukhinite is optically uniaxial (-): ω = 1.585(2), ɛ = 1.584(2). The IR spectrum is given. The average chemical composition of ilyukhinite (wt %; electron microprobe, ranges given in parentheses; H2O determined by gas chromatography) is as follows: 3.07 (3.63-4.43) Na2O, 0.32 (0.28-0.52) K2O, 10.63 (10.26-10.90) CaO, 3.06 (2.74-3.22) MnO, 1.15 (0.93-1.37) FeO, 0.79 (0.51-0.89) La2O3, 1.21 (0.97-1.44) Ce2O3, 0.41 (0.30-0.56) Nd2O3, 0.90 (0.77-1.12) TiO2, 10.94 (10.15-11.21) ZrO2, 1.40 (0.76-1.68) Nb2O5, 51.24 (49.98-52.28) SiO2, 1.14 (0.89-1.37) SO3, 0.27 (0.19—0.38) Cl, 10.9(5 )H2O,-0.06-O = C1, total is 98.27. The empirical formula is H36.04(Na3.82K0.20)(Ca5.65Ce0.22La0.14Nd0.07)(Mn1.285Fe0.48)(Zr2.645Ti0.34)Nb0.31Si25.41S0.42Cl0.23O86.82. The crystal structure has been solved ( R = 0.046). Ilyukhinite is trigonal, R3 m; a = 14.1695(6) Å, b = 31.026(1) Å, V = 5394.7(7) Å3, Z = 3. The strongest XRD reflections [ d, Å (I, %) ( hkl)] are 11.44 (82) (101), 7.09 (70) (110), 6.02 (44) (021), 4.371 (89) 205), 3.805 (47) (303, 033), 3.376 (41) (131), 2.985 (100) (315, 128), 2.852 (92) (404). Ilyukhinite was named in memory of Vladimir V. Ilyukhin (1934-1982), an outstanding Soviet crystallographer. The type specimen of ilyukhinite has been deposited in the collection of the Natural History Museum, University of Oslo, Norway.
NiO and Fe/Mn in Fo-rich olivines from OIB, MORB, and mantle peridotites
NASA Astrophysics Data System (ADS)
Li, H.; Baker, M.; Hofmann, A. E.; Clague, D.; Stolper, E.
2006-12-01
Olivines from mantle peridotites have a narrow range of NiO (0.36±0.03 [1σ] wt%), but NiO of olivines in basalts suggest NiO in mantle olivines is actually more variable: e.g., Hawaiian phenocrysts (Fo>90) have NiO >0.55%, and olivines from continental flood basalts can have >0.5% NiO. At the other end of the spectrum, some basaltic suites (e.g., Iceland, MORBs) have Fo>90 olivines with NiO >0.2%. Partial melting calculations on peridotites show it is difficult to generate liquids that crystallize Fo>90 olivines with >0.4% NiO without resorting to complex processes. Hypotheses to explain the variability of NiO in mantle-derived olivines include (1) reaction of peridotite with silica-rich melts of eclogite results in decreasing modal abundance of olivine and increasing NiO in olivine [1,2]; (2) magmas with NiO-rich olivines come from sources enriched in NiO due to a core-derived component [3]. [4] proposed that high Fe/Mn of Hawaiian vs. Icelandic and MORB lavas reflect a core-derived component in their sources. Possible core incorporation is poorly constrained but FeO and NiO are expected to increase by such processes, leading to correlations between NiO and Fe/Mn in mantle rocks with significant core-derived components. We present high-precision analyses of Fo-rich olivines from OIBs, MORBs, komatiites, and mantle peridotites, focusing on NiO contents and Fe/Mn ratios. Our goal is to test hypotheses to explain elevated NiO of Fo-rich olivines in basalts. Olivines are Fo85.1-93.4; more were analyzed, but we focused on this range to avoid complications due to decreasing NiO in olivine with crystallization. Errors (1σ) are 0.01 wt% in NiO and 1.5 in Fe/Mn (wt). Our data show several features: (1) NiO contents and Fe/Mn ratios of Fo>88 olivines are positively correlated, with the low end of the trend (NiO ~0.23%, Fe/Mn ~61) defined by MORB and Iceland and the high end of the trend (NiO ~0.55%, Fe/Mn ~80) by Reunion and Hawaii. Between these end points, there is a regular trend from MORB/Iceland, to Baffin Isl, to mantle peridotites/Juan Fernandez, to Reunion/Hawaii. This array can't be explained by simple crystallization (all have similar Fo) or by variable degrees of partial melting of a single source. The NiO-Fe/Mn correlation can be modeled by quantitative addition of 1-2% oxidized core to depleted mantle and thus is consistent with the core-addition hypothesis. However, more complex core-mantle interactions/fractionations would still be required to explain trace siderophile and chalcophile elements and isotopes. Moreover, other hypotheses to explain the observed trend (including addition of silicic melts to peridotite) cannot be ruled out. (2) The Hawaiian data, although clearly defining with Reunion the upper end of the overall NiO-Fe/Mn array, are more complex. For example, a single Mauna Kea sample has ~Fo90 phenocrysts with NiO from 0.30 to 0.54%, all with Fe/Mn=72-80, and North Arch and Loihi olivines have relatively low NiO at Fe/Mn ratios comparable to other Hawaiian olivines. Although Loihi and North Arch lavas are low in SiO2, in detail the NiO of Hawaiian olivines are not well predicted by SiO2 contents of the host lavas. (3) The Gorgona Isl komatiites fall off the overall trend, extending to NiO >0.5 wt% at Fe/Mn ~62, perhaps reflecting different sources, processes, or anomalous degrees of melting. [1] Kelemen et al (1998) EPSL 164, 387-406 [2] Sobolev et al (2005) Nature 434, 590-597 [3] Ryabchikov (2003) Doklady Earth Sci. 389A, 437-439 [4] Humayun et al (2004) Science 306, 91-94
NASA Astrophysics Data System (ADS)
Hadef, Fatma
2016-12-01
The last decade has witnessed an intensive research in the field of nanocrystalline materials due to their enhanced properties. A lot of processing techniques were developed in order to synthesis these novel materials, among them mechanical alloying or high-energy ball milling. In fact, mechanical alloying is one of the most common operations in the processing of solids. It can be used to quickly and easily synthesize a variety of technologically useful materials which are very difficult to manufacture by other techniques. One advantage of MA over many other techniques is that is a solid state technique and consequently problems associated with melting and solidification are bypassed. Special attention is being paid to the synthesis of alloys through reactions mainly occurring in solid state in many metallic ternary Fe-Al-X systems, in order to improve mainly Fe-Al structural and mechanical properties. The results show that nanocrystallization is the common result occurring in all systems during MA process. The aim of this work is to illustrate the uniqueness of MA process to induce phase transformation in metallic Fe-Al-X (X=Ni, Mn, Cu, Ti, Cr, B, Si) systems.
Papp, C.S.E.; Harms, T.F.
1985-01-01
In order to find the most efficient digestion method for the total elemental recovery in peat, ten samples were subjected to different techniques and analysed for Ca, Mg, Fe, AI, Na, K, Mn, P, Zn, Cu, Li, Cd, Co, Ni, Pb and Si using atomic-absorption spectrophotometry. The most satisfactory procedures were dry ashing followed by hydrofluoric acid treatment and wet digestion using a mixture of hot nitric, perchloric and hydrofluoric acids. The wet digestion offers the advantage of a single decomposition method for the determination of Ca, Mg, Fe, AI, K, Na, Mn, Cu, Li, Zn and P. An alkaline fusion technique was required for the determination of Si. Hydrogen peroxide was used to separate the peat into its organic and inorganic components, leading to the total recovery of the elements for both fractions.
Spin-wave stiffness in the Dzyaloshinskii-Moriya helimagnets Mn1 -xFexSi
NASA Astrophysics Data System (ADS)
Grigoriev, S. V.; Altynbaev, E. V.; Siegfried, S.-A.; Pschenichnyi, K. A.; Menzel, D.; Heinemann, A.; Chaboussant, G.
2018-01-01
The small-angle neutron scattering is used to measure the spin-wave stiffness in the field-polarized state of the Dzyaloshinskii-Moriya helimagnets Mn1 -xFexSi with x =0.03 , 0.06, 0.09, and 0.10. The Mn1 -xFexSi compounds are helically ordered below Tc and show a helical fluctuation regime above Tc in a wide range up to TDM. The critical temperatures Tc and TDM decrease with x and tend to 0 at x =0.11 and 0.17, respectively. We have found that the spin-wave stiffness A change weakly with temperature for each individual Fe-doped compound. On the other hand, the spin-wave stiffness A decreases with x duplicating the TDM dependence on x , rather than Tc(x ) . These findings classify the thermal phase transition in all Mn1 -xFexSi compounds as an abrupt change in the spin state caused, most probably, by the features of an electronic band structure. Moreover, the criticality in these compounds is not related to the value of the ferromagnetic interaction but demonstrates the remarkable role of the Dzyaloshinskii-Moriya interaction as a factor destabilizing the magnetic order.
Influence of Gas Atmosphere Dew Point on the Galvannealing of CMnSi TRIP Steel
NASA Astrophysics Data System (ADS)
Cho, Lawrence; Kim, Myung Soo; Kim, Young Ha; De Cooman, Bruno C.
2013-11-01
The Fe-Zn reaction occurring during the galvannealing of a Si-bearing transformation-induced plasticity (TRIP) steel was investigated by field-emission electron probe microanalysis and field-emission transmission electron microscopy. The galvannealing was simulated after hot dipping in a Zn bath containing 0.13 mass pct Al at 733 K (460 °C). The galvannealing temperature was in the range of 813 K to 843 K (540 °C to 570 °C). The kinetics and mechanism of the galvannealing reaction were strongly influenced by the gas atmosphere dew point (DP). After the galvannealing of a panel annealed in a N2+10 pct H2 gas atmosphere with low DPs [213 K and 243 K (-60 °C and -30 °C)], the coating layer consisted of δ (FeZn10) and η (Zn) phase crystals. The Mn-Si compound oxides formed during intercritical annealing were present mostly at the steel/coating interface after the galvannealing. Galvannealing of a panel annealed in higher DP [263 K and 273 K, and 278 K (-10 °C, 0 °C, and +5 °C)] gas atmospheres resulted in a coating layer consisting of δ and Г (Fe3Zn10) phase crystals, and a thin layer of Г 1 (Fe11Zn40) phase crystals at the steel/coating interface. The Mn-Si oxides were distributed homogeneously throughout the galvannealed (GA) coating layer. When the surface oxide layer thickness on panels annealed in a high DP gas atmosphere was reduced, the Fe content at the GA coating surface increased. Annealing in a higher DP gas atmosphere improved the coating quality of the GA panels because a thinner layer of oxides was formed. A high DP atmosphere can therefore significantly contribute to the suppression of Zn-alloy coating defects on CMnSi TRIP steel processed in hot dip galvanizing lines.
Lind, Carol J.; Oscarson, R.L.
1997-01-01
In a column experiment, acidic groundwater from Pinal Creek Arizona, a Cu mining area, was eluted through a composited alluvial sample obtained from a core that had been removed from a well downgradient of the acidic groundwater. The minerals present in typical grains and flakes in the alluvium before and after the elution were determined by X-ray diffraction (XRD), scanning electron microscopy, and energy dispersive multichannel analyses (EDX). The concentrations of Fe, Ti, Mn, Si, Al, Na, Ca, K, Mg and S in these grains and flakes and in their microcrystalline surface coatings were measured by EDX. In addition to magnetite, hematite, and Fe-Ti oxides, Fe was most concentrated in micas (especially biotite-like flakes) and in the microcrystalline coatings. The measured elements in these microcrystalline coatings were primarily K, Fe, Al, and Si. The microcrystalline coatings on the mica flakes also contained Mg. The approximate 1:3 Mg:Si atomic ratios (ARs) of the biotite-like flakes both before and after the elution would suggest that the Fe deposited during the elution had not substituted for Mg in these flakes. As a result of the elution, assuming no loss of Si, the averaged recorded Fe:Si AR of the microcrystalline coatings increased from (0,46 to 0.58):3.00. Iron deposition on the typical grains and flakes may relate to the presence of Fe in the particle on which it is deposited or to the presence of Fe in the microcrystalline surface coatings before elution. The data here are not sufficient for a statistical evaluation, but elution caused the following trends: (1) The Fe:Si A R increased in the (K,Fe,Al,Si)-microcrystalline surface coatings; (2) For the mica flakes, there was more than a 2-fold increase in the Fe:Si AR for the microcrystalline surface coatings of the Fe-rich biotite-like flakes but no measurable increase of the Fe:Si AR for the microcrystalline surface coatings of the muscovite-like flakes that contained 3-5 times less Fe; (3) Also for the biotite-like flakes, the increase in Fe:Si AR was greater in the flakes that had a higher Fe:Si AR; (4) The Fe deposition on the Fe-rich microcrystalline surface coatings of the feldspar was much greater than on the Fe-poor, beige quartz and feldspar grains that, prior to elution, had only CaSO4 microcrystalline coatings; and (5) No Fe was deposited on Fe-poor grains with no microcrystalline surface coating.
Elastic Constants of Ni-Mn-Ga Magnetic Shape Memory Alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stipcich, M.; Manosa, L.; Planes, A.
2004-01-01
We have measured the adiabatic second order elastic constants of two Ni-Mn-Ga magnetic shape memory crystals with different martensitic transition temperatures, using ultrasonic methods. The temperature dependence of the elastic constants has been followed across the ferromagnetic transition and down to the martensitic transition temperature. Within experimental errors no noticeable change in any of the elastic constants has been observed at the Curie point. The temperature dependence of the shear elastic constant C' has been found to be very different for the two alloys. Such a different behavior is in agreement with recent theoretical predictions for systems undergoing multi-stage structuralmore » transitions.« less
Vacancy dynamic in Ni-Mn-Ga ferromagnetic shape memory alloys
NASA Astrophysics Data System (ADS)
Merida, D.; García, J. A.; Sánchez-Alarcos, V.; Pérez-Landazábal, J. I.; Recarte, V.; Plazaola, F.
2014-06-01
Vacancies control any atomic ordering process and consequently most of the order-dependent properties of the martensitic transformation in ferromagnetic shape memory alloys. Positron annihilation spectroscopy demonstrates to be a powerful technique to study vacancies in NiMnGa alloys quenched from different temperatures and subjected to post-quench isothermal annealing treatments. Considering an effective vacancy type the temperature dependence of the vacancy concentration has been evaluated. Samples quenched from 1173 K show a vacancy concentration of 1100 ± 200 ppm. The vacancy migration and formation energies have been estimated to be 0.55 ± 0.05 eV and 0.90 ± 0.07 eV, respectively.
NASA Astrophysics Data System (ADS)
Tazaki, Kazue; Morii, Issei
Environmental changes recorded in the shell nacre of Sinohyliopsis schlegeli were observed with elemental factors of characteristic water and nutrition for eight months in a cultivated drainage pond at Kanazawa University, Ishikawa Prefecture, Japan. Tetracycline as an indicator was injected into the shell nacre once every month from May to November in 2007. Water qualities such as the pH, redox potential, electrical conductivity, dissolved oxygen concentration, and water temperature were measured periodically, and the suspended solids in the water were removed by filtration for optical microscopy, X-ray fluorescence analysis, and scanning electron microscopy-energy dispersive X-ray (SEM-EDX) observations. X-ray fluorescence chemical analysis of shell nacre indicated layers with strong tetracycline accumulation corresponding to high concentrations of Si, Mn, Fe, and Sr ions. The redox potential and dissolved oxygen concentration measurements supported the existence of layers in the nacre. The suspended materials in the drainage pond water comprised mainly of Si, Mn, and Fe elements, which were the same elements involved in microbial immobilization in the shell nacre during the summer of 2007. SEM-EDX analyses confirmed that the ions originated from diatoms, Siderocapsa sp. and Gallionella ferruginea in the stomach. There was little microbial immobilization of the ions in winter. The results suggested elemental immobilization in the layered shell nacre and indicated that Sinohyliopsis schlegeli fed on the ions, to grow the nacre during summer. Sinohyliopsis schlegeli with these biogenic oxides might contribute to the scavenging of heavy metals in natural water.
NASA Astrophysics Data System (ADS)
Santamarta, Ruben; Evirgen, Alper; Perez-Sierra, Aquilina M.; Pons, Jaume; Cesari, Eduard; Karaman, Ibrahim; Noebe, Ron D.
2015-11-01
Among all the promising high-temperature shape memory alloys (HTSMAs), the Ni-Mn-Ga and the Ni-Ti-Hf/Zr systems exhibit interesting shape memory and superelastic properties that may place them in a good position for potential applications. The present work shows that thermal treatments play a crucial role in controlling the martensitic phase transformation characteristics of both systems, but in different ways. On one hand, the equilibrium phase diagram of the Ni-Mn-Ga family allows selecting compositions with high transformation temperatures and outstanding thermal stability at relatively high temperatures in air, showing no significant changes in the transformation behavior for continuous aging up to ˜5 years at 500 °C. Moreover, the excellent thermal stability correlates with a good thermal cyclic stability and an exceptional oxidation resistance of the parent phase. On the other hand, precipitation processes controlled by thermal treatments are needed to manipulate the transformation temperatures, mechanical properties, and thermal stability of Ni-rich Ni-Ti-Hf/Zr alloys to become HTSMAs. These changes in the functional properties are a consequence of the competition between the mechanical and compositional effects of the precipitates on the martensitic transformation.
NASA Astrophysics Data System (ADS)
Babakhani, Banafsheh
The aim of this thesis work was to synthesize Mn-based oxide electrodes with high surface area structures by anodic electrodeposition for application as electrochemical capacitors. Rod-like structures provide large surface areas leading to high specific capacitances. Since templated electrosynthesis of rods is not easy to use in practical applications, it is more desirable to form rod-like structures without using any templates. In this work, Mn oxide electrodes with rod-like structures (˜1.5 µm in diameter) were synthesized from a solution of 0.01 M Mn acetate under galvanostatic control without any templates, on Au coated Si substrates. The electrochemical properties of the synthesized nanocrystalline electrodes were investigated to determine the effect of morphology, chemistry and crystal structure on the corresponding electrochemical behavior of Mn oxide electrodes. Mn oxides prepared at different current densities showed a defective antifluoritetype crystal structure. The rod-like Mn oxide electrodes synthesized at low current densities (5 mAcm.2) exhibited a high specific capacitance due to their large surface areas. Also, specific capacity retention after 250 cycles in an aqueous solution of 0.5 M Na2SO4 at 100 mVs -1 was about 78% of the initial capacity (203 Fg-1 ). To improve the electrochemical capacitive behavior of Mn oxide electrodes, a sequential approach and a one-step method were adopted to synthesize Mn oxide/PEDOT electrodes through anodic deposition on Au coated Si substrates from aqueous solutions. In the former case, free standing Mn oxide rods (about 10 µm long and less than 1.5 µm in diameter) were first synthesized, then coated by electro-polymerization of a conducting polymer (PEDOT) giving coaxial rods. The one-step, co-electrodeposition method produced agglomerated Mn oxide/PEDOT particles. The electrochemical behavior of the deposits depended on the morphology and crystal structure of the fabricated electrodes, which were affected by the composition and pH of the electrolyte, temperature, current density and polymer deposition time. Mn oxide/PEDOT coaxial core/shell rods consisted of MnO2 with an antifluorite-type structure coated with amorphous PEDOT. The Mn oxide/PEDOT coaxial core/shell electrodes prepared by the sequential method showed significantly better specific capacity and redox performance properties relative to both uncoated Mn oxide rods and co- electrodeposited Mn oxide/PEDOT electrodes. The best specific capacitance for Mn oxide/PEDOT rods produced sequentially was ˜295 F g-1 with ˜92% retention after 250 cycles in 0.5 M Na2SO4 at 100 mV s-1. To further improve the electrochemical capacitive behavior of Mn oxide electrodes, Co-doped and Fe-doped Mn oxide electrodes with a rod-like morphology and antifluorite-type crystal structure were synthesized by anodic electrodeposition, on Au coated Si substrates, from dilute solutions of Mn acetate and Co sulphate and Mn acetate and Fe chloride. Also, Mn-Co oxide/PEDOT coaxial core/shell rods were synthesized by applying a shell of PEDOT on Mn-Co oxide electrodes. Mn-Co oxide/PEDOT electrodes consisted of MnO2, with partial Co 2+ and Co3+ ion substitution for Mn4+, and amorphous PEDOT. Mn-Fe oxide electrodes consisted of MnO2, with partial Fe2+ and Fe3+ ion substitution for Mn4+. Electrochemical analysis showed that the capacitance values for all deposits increased with increasing scan rate to 100 mVs -1, and then decreased after 100 mVs-1. The Mn-Co oxide/PEDOT electrodes showed improved specific capacity and electrochemical cyclability relative to uncoated Mn-Co oxides and Mn-Fe oxides. Mn-Co oxide/PEDOT electrodes with rod-like structures had high capacitances (up to 310 Fg -1) at a scan rate of 100 mVs-1 and maintained their capacitance after 500 cycles in 0.5 M Na2SO4 (91% retention). Capacitance reduction for the deposits was mainly due to the loss of Mn ions by dissolution in the electrolyte solution. To better understand the nucleation and growth mechanisms of Mn oxide electrodes, the effects of supersaturation ratio on the morphology and crystal structure of electrodeposited Mn oxide were studied. By changing deposition parameters, including deposition current density, electrolyte composition, pH and temperature, a series of nanocrystalline Mn oxide electrodes with various morphologies (continuous coatings, rod-like structures, aggregated rods and thin sheets) and an antifluorite-type crystal structure was obtained. Mn oxide thin sheets showed instantaneous nucleation and single crystalline growth; rods had a mix of instantaneous/progressive nucleation and polycrystalline growth and continuous coatings formed by progressive nucleation and polycrystalline growth. Electrochemical analysis revealed the best capacitance behaviour obtained for Mn oxide thin sheets followed by Mn oxide rods, with dimensions on the microscale, and then continuous coatings. The highest specific capacitance (˜230 Fg-1) and capacitance retention rates (˜88%) were obtained for Mn oxide thin sheets after 250 cycles in 0.5 M Na2 SO4 at 20 mVs-1.
NASA Astrophysics Data System (ADS)
Qu, Y. H.; Cong, D. Y.; Chen, Z.; Gui, W. Y.; Sun, X. M.; Li, S. H.; Ma, L.; Wang, Y. D.
2017-11-01
High-performance magnetocaloric materials should have a large reversible magnetocaloric effect and good heat exchange capability. Here, we developed a Ni48.1Co2.9Mn35.0In14.0 metamagnetic shape memory microwire with a large and reversible inverse magnetocaloric effect. As compared to the bulk counterpart, the microwire shows a better combination of magnetostructural transformation parameters (magnetization difference across transformation ΔM, transformation entropy change ΔStr, thermal hysteresis ΔThys, and transformation interval ΔTint) and thus greatly reduced critical field required for complete and reversible magnetic-field-induced transformation. A strong and reversible metamagnetic transition occurred in the microwire, which facilitates the achievement of large reversible magnetoresponsive effects. Consequently, a large and reversible magnetic-field-induced entropy change ΔSm of 12.8 J kg-1 K-1 under 5 T was achieved in the microwire, which is the highest value reported heretofore in Ni-Mn-based magnetic shape memory wires. Furthermore, since microwires have a high surface/volume ratio, they exhibit very good heat exchange capability. The present Ni48.1Co2.9Mn35.0In14.0 microwire shows great potential for magnetic refrigeration. This study may stimulate further development of high-performance magnetocaloric wires for high-efficiency and environmentally friendly solid-state cooling.
Thermoelectric Properties of the Quasi-Binary MnSi1.73-FeSi2 System
NASA Astrophysics Data System (ADS)
Sadia, Yatir; Madar, Naor; Kaler, Ilan; Gelbstein, Yaniv
2015-06-01
The higher manganese silicides (HMS) are regarded as very attractive p-type thermoelectric materials for direct conversion of heat to electricity. To compete with other thermodynamic engines (e.g. the Stirling and Rankine cycles), however, the thermoelectric figure of merit of such silicides must be improved. HMS follow a complicated solidification reaction on cooling from the melt, which leads to formation of undesired secondary phases. Furthermore, the electronic carrier concentration of HMS is much higher than the optimum for thermoelectric applications and should be compensated by introduction of doping agents. In this research, the electronic donor action associated with substitution of HMS by FeSi2 was investigated. The effects of excess Si on phase distribution and thermoelectric properties are also discussed in detail.
NASA Astrophysics Data System (ADS)
Guoxing, Ren; Songwen, Xiao; Meiqiu, Xie; Bing, Pan; Youqi, Fan; Fenggang, Wang; Xing, Xia
Plenty of valuable metals, such as cobalt, nickel, copper, manganese and lithium, are present in spent lithium-ion batteries. A novel smelting reduction process based on MnO-SiO2-Al2O3 slag system for spent lithium ion batteries is developed, using pyrolusite ore as the major flux. And Co-Ni-Cu-Fe alloy and manganese-rich slag contained lithium are obtained. The results show that it is reasonable to control MnO/SiO2 ratio in the range of 2.05-3.23 (w/w) and Al2O3 content in 19.23-26.32wt.%, while the MnO and Li2O contents in the manganese-rich slag can reach 47.03 wt.% and 2.63 wt.%, respectively. In the following leaching experiments of the manganese-rich slag by sulphuric acid solution, the recovery efficiency of manganese and lithium can reach up to 79.86% and 94.85%, respectively. Compared with the conventional hydro-pyrometallurgical process of spent lithium-ion batteries, the present can preferably recover Mn and Li besides Co, Ni and Cu.
NASA Astrophysics Data System (ADS)
Postma, D.; Appelo, C. A. J.
2000-04-01
The reduction of Mn-oxide by Fe2+ was studied in column experiments, using a column filled with natural Mn-oxide coated sand. Analysis of the Mn-oxide indicated the presence of both Mn(III) and Mn(IV) in the Mn-oxide. The initial exchange capacity of the column was determined by displacement of adsorbed Ca2+ with Mg2+. Subsequently a FeCl2 solution was injected into the column causing the reduction of the Mn-oxide and the precipitation of Fe(OH)3. Finally the exchange capacity of the column containing newly formed Fe(OH)3 was determined by injection of a KBr solution. During injection of the FeCl2 solution into the column, an ion distribution pattern was observed in the effluent that suggests the formation of separate reaction fronts for Mn(III)-oxide and Mn(IV)-oxide travelling at different velocities through the column. At the proximal reaction front, Fe2+ reacts with MnO2 producing Fe(OH)3, Mn2+ and H+. The protons are transported downstream and cause the disproportionation of MnOOH at a separate reaction front. Between the two Mn reaction fronts, the dissolution and precipitation of Fe(OH)3 and Al(OH)3 act as proton buffers. Reactive transport modeling, using the code PHREEQC 2.0, was done to quantify and analyze the reaction controls and the coupling between transport and chemical processes. A model containing only mineral equilibria constraints for birnessite, manganite, gibbsite, and ferrihydrite, was able to explain the overall reaction pattern with the sequential appearance of Mn2+, Al3+, Fe3+, and Fe2+ in the column outlet solution. However, the initial breakthrough of a peak of Ca2+ and the observed pH buffering indicated that exchange processes were of importance as well. The amount of potential exchangers, such as birnessite and ferrihydrite, did vary in the course of the experiment. A model containing surface complexation coupled to varying concentrations of birnessite and ferrihydrite and a constant charge exchanger in addition to mineral equilibria provided a satisfactory description of the distribution of all solutes in time and space. However, the observed concentration profiles are more gradual than indicated by the equilibrium model. Reaction kinetics for the dissolution of MnO2 and MnOOH and dissolution of Al(OH)3 were incorporated in the model, which explained the shape of the breakthrough curves satisfactorily. The results of this study emphasize the importance of understanding the interplay between chemical reactions and transport in addition to interactions between redox, proton buffering, and adsorption processes when dealing with natural sediments. Reactive transport modeling is a powerful tool to analyze and quantify such interactions.
Processing and Characterization of Nickel-Manganese-Gallium Shape-Memory Fibers and Foams
NASA Astrophysics Data System (ADS)
Zheng, Peiqi-Paige
Ferromagnetic Ni-Mn-Ga shape memory alloys with large magnetic field-induced strains are promising candidates for actuators. Magnetic shape memory alloys display magnetic-field-induced strain (MFIS) of up to 10%, as single crystals. Polycrystalline materials are much easier to create but display a near-zero MFIS because twinning of neighboring grains introduces strain incompatibility leading to high internal stresses. Pores reduce these incompatibilities between grains and thus increase the MFIS of polycrystalline Ni-Mn-Ga which after training (thermo-magneto-mechanical cycling) exhibits MFIS as high as 8.7%. In this thesis, a systematic study of the effect of porosity on the magneto-mechanical properties of polycrystalline Ni-Mn-Ga foams is presented. The MFIS increased with increasing porosity, demonstrating that removal of constraints by addition of porosity is responsible for the high MFIS in polycrystalline foams. Ni-Mn-Ga foams with 57 volume percent of 355-500 micrometers open pores, with and without directional solidification were cast replicated. One directional solidified foam specimen showed a maximum magnetic-field induced strain of 0.65%, which is twice the value displayed by other foam specimens without directional solidification. This improvement is consistent with a reduction of incompatibility stresses under magnetic field from the reduced crystallographic misorientation between neighboring grains. Polycrystalline Ni-Mn-Ga foam displays ˜1% MFIS after the hermo-magnetic training. To show this effect in this highly textured sample, neutron diffraction texture measurements were conducted with a magnetic field applied at various orientations to the sample, demonstrating that selection of martensite variants takes place during cooling. Oligocrystalline Ni-Mn-Ga foams with an open porosity of 63.5?0.7% were created by a sintering replication process using NaCl space-holders. The high surface/volume ratio and mechanical stability under cyclic strain makes polycrystalline Ni-Mn-Ga metallic foams attractive for magnetic refrigeration. Compared to a polycrystalline bulk material, open-cells Ni-Mn-Ga foams shows a reduction in the temperature span of the phase transition and an increase in the magnetocaloric effect (MCE). Ni-Mn-Ga wires with sub-millimeter diameter, either as individual wires or as part of a 2D/3D wire assemblies, are promising candidates for actuators, sensors, magnetic cooling systems and energy harvesting devices. Here, we report the mechanical behavior of oligocrystalline Ni-Mn-Ga Taylor wires by tensile tests at room temperature. Magnetic-field induced shape recovery is demonstrated at 0°C in a martensitic Ni-Mn-Ga microwire, where a mechanically-produced 120° bend is recovered near fully within a magnetic field produced by permanent magnets. Tubes of the ferromagnetic shape-memory alloy Ni-Mn-Ga of composition near the Ni2MnGa Heusler phase can be used, alone or combined in structures, in magnetic actuators or magnetic refrigerators. However, fabrication of Ni-Mn-Ga tubes with sub-millimeter diameter by classical cold or hot drawing methods is hampered by the brittleness of the alloy. Here, we demonstrate a new process, where Ni-Mn-Ga tubes are fabricated by interdiffusion of Mn and Ga into drawn, ductile Ni tubes with 500 and 760 micrometers inner and outer diameters.
NASA Astrophysics Data System (ADS)
Trocine, Robert P.; Trefry, John H.
1988-04-01
Suspended particles were collected from an area of active hydrothermal venting at the Trans-Atlantic Geotraverse (TAG) Hydrothermal Field on the Mid-Atlantic Ridge and analyzed for Fe, Mn, Cd, Zn, Cu, V, Ni, Cr, Pb, Mg, Ca, Al and Si. Rapid advection of vent-derived precipitates produced a lens with total suspended matter (TSM) loadings of 14-60 μg/l at 200-700 m above the seafloor; TSM concentrations > 60 μg/l were observed only at near-vent sites. The distribution of suspended particles correlated well with increased dissolved Mn concentrations and particulate Fe values near the vent source. Particulate Fe values decreased linearly relative to TSM concentrations as hydrothermal precipitates mixed with background suspended matter. Near-vent precipitates were characterized by up to 35% Fe, 2% Zn, 0.6% Cu and > 100 μg/g Cd. In comparison to Fe, particulate Cd, Zn and Cu values decreased dramatically away from the vent source. This trend supports differential settling and/or dissolution of Cd-, Zn- and Cu-bearing phases. Particulate Mn and Fe values were inversely related with only 50 μg Mn/g in the near-vent particles. At near-vent sites, > 99% of the total Mn was in solution; this fraction decreased to 75-80% at background TSM values. In contrast to Cd, Zn and Cu, particulate V levels show a continuous, linear decrease with particulate Fe values. This trend is explained by adsorption of V on Fe-oxides in the vent plume. Scavenging of Cr, Pb and Mg by hydrothermal precipitates is also suggested by the data. Nickel and Al values were low in near-vent particles at < 100 and < 3 μg/g, respectively. The complementary behavior of dissolved Mn and particulate trace metals provides a useful framework for studying broad aspects of hydrothermal plume processes.
The memory effect of magnetoelectric coupling in FeGaB/NiTi/PMN-PT multiferroic heterostructure
Zhou, Ziyao; Zhao, Shishun; Gao, Yuan; Wang, Xinjun; Nan, Tianxiang; Sun, Nian X.; Yang, Xi; Liu, Ming
2016-01-01
Magnetoelectric coupling effect has provided a power efficient approach in controlling the magnetic properties of ferromagnetic materials. However, one remaining issue of ferromagnetic/ferroelectric magnetoelectric bilayer composite is that the induced effective anisotropy disappears with the removal of the electric field. The introducing of the shape memory alloys may prevent such problem by taking the advantage of its shape memory effect. Additionally, the shape memory alloy can also “store” the magnetoelectric coupling before heat release, which introduces more functionality to the system. In this paper, we study a FeGaB/NiTi/PMN-PT multiferroic heterostructure, which can be operating in different states with electric field and temperature manipulation. Such phenomenon is promising for tunable multiferroic devices with multi-functionalities. PMID:26847469
Philpotts, J.A.; Aruscavage, P. J.; Von Damm, Karen L.
1987-01-01
Abundances of Li, Na, K, Rb, Ca, Sr, Ba, Mn, Fe, Zn, and Si have been determined in fluid samples from 7 vents located in three areas on the southern Juan de Fuca Ridge. The hydrothermal component estimated from the Mg contents of the samples ranges from 7% to 76%. Concentrations of Fe and Si, among other elements, in acid-stabilized solutions appear to be generally representative of the parental hydrothermal fluids, but some Zn determinations and most Ba values appear to be too low.-from Authors
Upper bound for the s -d exchange integral in n -(Ga,Mn)N:Si from magnetotransport studies
NASA Astrophysics Data System (ADS)
Adhikari, R.; Stefanowicz, W.; Faina, B.; Capuzzo, G.; Sawicki, M.; Dietl, T.; Bonanni, A.
2015-05-01
A series of recent magneto-optical studies pointed to contradicting values of the s -d exchange energy N0α in Mn-doped GaAs and GaN as well as in Fe-doped GaN. Here, a strong sensitivity of weak-localization phenomena to symmetry-breaking perturbations (such as spin-splitting and spin-disorder scattering) is exploited to evaluate the magnitude of N0α for n -type wurtzite (Ga,Mn)N:Si films grown by metalorganic vapor phase epitaxy. Millikelvin magnetoresistance studies and their quantitative interpretation point to N0α <40 meV, a value at least 5 times smaller than the one found with similar measurements on, e.g., n -(Zn,Mn)O. It is shown that this striking difference in the values of the s -d coupling between n -type III-V and II-VI dilute magnetic semiconductors can be explained by a theory that takes into account the acceptor character of Mn in III-V compounds.
Magneto-optical spectroscopy of ferromagnetic shape-memory Ni-Mn-Ga alloy
NASA Astrophysics Data System (ADS)
Veis, M.; Beran, L.; Zahradnik, M.; Antos, R.; Straka, L.; Kopecek, J.; Fekete, L.; Heczko, O.
2014-05-01
Magneto-optical properties of single crystal of Ni50.1Mn28.4Ga21.5 magnetic shape memory alloy in martensite and austenite phase were systematically studied. Crystal orientation was approximately along {100} planes of parent cubic austenite. At room temperature, the sample was in modulated 10M martensite phase and transformed to cubic austenite at 323 K. Spectral dependence of polar magneto-optical Kerr effect was obtained by generalized magneto-optical ellipsometry with rotating analyzer in the photon energy range from 1.2 to 4 eV, and from room temperature to temperature above the Curie point. The Kerr rotation spectra exhibit prominent features typical for complexes containing Mn atoms. Significant spectral changes during transformation to austenite can be explained by different optical properties caused by changes in density of states near the Fermi energy.
EVIDENCE FOR GAS FROM A DISINTEGRATING EXTRASOLAR ASTEROID
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, S.; Jura, M.; Zuckerman, B.
We report high-resolution spectroscopic observations of WD 1145+017—a white dwarf that was recently found to be transitted by multiple asteroid-sized objects within its tidal radius. We discovered numerous circumstellar absorption lines with linewidths of ∼300 km s{sup −1} from Mg, Ca, Ti, Cr, Mn, Fe, and Ni, possibly from several gas streams produced by collisions among the actively disintegrating objects. The atmosphere of WD 1145+017 is polluted with 11 heavy elements, including O, Mg, Al, Si, Ca, Ti, V:, Cr, Mn, Fe, and Ni. Evidently, we are witnessing the active disintegration and subsequent accretion of an extrasolar asteroid.
Unoccupied electronic structure of Ni2MnGa ferromagnetic shape memory alloy
NASA Astrophysics Data System (ADS)
Maniraj, M.; D`Souza, S. W.; Rai, Abhishek; Schlagel, D. L.; Lograsso, T. A.; Chakrabarti, Aparna; Barman, S. R.
2015-11-01
Momentum resolved inverse photoemission spectroscopy measurements show that the dispersion of the unoccupied bands of Ni2MnGa is significant in the austenite phase. In the martensite phase, it is markedly reduced, which is possibly related to the structural transition to an incommensurate modulated state in the martensite phase. Based on the first principle calculations of the electronic structure of Ni-Mn-Ga, we show that the modification of the spectral shape with surface composition is related to change in the hybridization between the Mn 3d and Ni 3d-like states that dominate the unoccupied conduction band.
NASA Astrophysics Data System (ADS)
Krishnan, Vinu B.
Shape memory alloys are incorporated as actuator elements due to their inherent ability to sense a change in temperature and actuate against external loads by undergoing a shape change as a result of a temperature-induced phase transformation. The cubic so-called austenite to the trigonal so-called R-phase transformation in NiTiFe shape memory alloys offers a practical temperature range for actuator operation at low temperatures, as it exhibits a narrow temperature-hysteresis with a desirable fatigue response. Overall, this work is an investigation of selected science and engineering aspects of low temperature NiTiFe shape memory alloys. The scientific study was performed using in situ neutron diffraction measurements at the newly developed low temperature loading capability on the Spectrometer for Materials Research at Temperature and Stress (SMARTS) at Los Alamos National Laboratory and encompasses three aspects of the behavior of Ni46.8Ti50Fe3.2 at 92 K (the lowest steady state temperature attainable with the capability). First, in order to study deformation mechanisms in the R-phase in NiTiFe, measurements were performed at a constant temperature of 92 K under external loading. Second, with the objective of examining NiTiFe in one-time, high-stroke, actuator applications (such as in safety valves), a NiTiFe sample was strained to approximately 5% (the R-phase was transformed to B19' phase in the process) at 92 K and subsequently heated to full strain recovery under a load. Third, with the objective of examining NiTiFe in cyclic, low-stroke, actuator applications (such as in cryogenic thermal switches), a NiTiFe sample was strained to 1% at 92 K and subsequently heated to full strain recovery under load. Neutron diffraction spectra were recorded at selected time and stress intervals during these experiments. The spectra were subsequently used to obtain quantitative information related to the phase-specific strain, texture and phase fraction evolution using the Rietveld technique. The mechanical characterization of NiTiFe alloys using the cryogenic capability at SMARTS provided considerable insight into the mechanisms of phase transformation and twinning at cryogenic temperatures. Both mechanisms contribute to shape memory and pseudoelasticity phenomena. Three phases (R, B19' and B33 phases) were found to coexist at 92 K in the unloaded condition (nominal holding stress of 8 MPa). For the first time the elastic modulus of R-phase was reported from neutron diffraction experiments. Furthermore, for the first time a base-centered orthorhombic (B33) martensitic phase was identified experimentally in a NiTi-based shape memory alloy. The orthorhombic B33 phase has been theoretically predicted in NiTi from density function theory (DFT) calculations but hitherto has never been observed experimentally. The orthorhombic B33 phase was observed while observing shifting of a peak (identified to be {021}B33) between the {111}R and {100}B19' peaks in the diffraction spectra collected during loading. Given the existing ambiguity in the published literature as to whether the trigonal R-phase belongs to the P3 or P3¯ space groups, Rietveld analyses were separately carried out incorporating the symmetries associated with both space groups and the impact of this choice evaluated. The constrained recovery of the B19' phase to the R-phase recorded approximately 4% strain recovery between 150 K and 170 K, with half of that recovery occurring between 160 K and 162 K. Additionally, the aforementioned research methodology developed for Ni46.8Ti50Fe3.2 shape memory alloys was applied to experiments performed on a new high temperature Ni 29.5Ti50.5Pd20 shape memory alloys. The engineering aspect focused on the development of (i) a NiTiFe based thermal conduction switch that minimized the heat gradient across the shape memory actuator element, (ii) a NiTiFe based thermal conduction switch that incorporated the actuator element in the form of helical springs, and (iii) a NiTi based release mechanism. Patents are being filed for all the three shape memory actuators developed as a part of this work. This work was supported by grants from SRI, NASA (NAG3-2751) and NSF (CAREER DMR-0239512) to UCF. Additionally, this work benefited from the use of the Lujan Center at the Los Alamos Neutron Science Center, funded by the United States Department of Energy, Office of Basic Energy Sciences, under Contract No. W-7405-ENG-36.
NASA Astrophysics Data System (ADS)
Ding, Zhengping; Liu, Jiatu; Ji, Ran; Zeng, Xiaohui; Yang, Shuanglei; Pan, Anqiang; Ivey, Douglas G.; Wei, Weifeng
2016-10-01
Li2MSiO4 (M = Mn, Fe, Co, Ni, et al.) has received great attention because of the theoretical possibility to reversibly deintercalate two Li+ ions from the structure. However, the silicates still suffer from low electronic conductivity, sluggish lithium ion diffusion and structural instability upon deep cycling. In order to solve these problems, a "hard-soft" templating method has been developed to synthesize three-dimensionally ordered macroporous (3DOM) Li2FeSiO4/C composites. The 3DOM Li2FeSiO4/C composites show a high reversible capacity (239 mAh g-1) with ∼1.50 lithium ion insertion/extraction, a capacity retention of nearly 100% after 420 cycles and excellent rate capability. The enhanced electrochemical performance is ascribed to the interconnected carbon framework that improves the electronic conductivity and the 3DOM structure that offers short Li ion diffusion pathways and restrains volumetric changes.
Enhanced microwave absorption properties of Fe3O4-modified flaky FeSiAl
NASA Astrophysics Data System (ADS)
He, Jun; Deng, Lianwen; Liu, Sheng; Yan, Shuoqing; Luo, Heng; Li, Yuhan; He, Longhui; Huang, Shengxiang
2017-12-01
The magnetic insulator Fe3O4-modified flaky Fe85Si9.5Al5.5 (FeSiAl) powders with significantly enhanced electromagnetic wave absorption properties in the frequency range of 2-8 GHz were prepared by chemical co-precipitation. X-ray diffraction (XRD) and scanning electron microscopy (SEM) have confirmed the formation of nanoparticles Fe3O4 precipitated on the flake-shaped FeSiAl. The electromagnetic measurements of the modified flakes presents a nearly invariable complex permeability and decreased complex permittivity in the 2-8 GHz, as well as improved impedance matching performance. More importantly, an excellent microwave absorbing performance with the bandwidth (RL <-10 dB) of 5.36 GHz is achieved in modified sample with the thickness of 1.5 mm, which is a promising microwave absorbing material in 2-8 GHz.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoeber, Stefan, E-mail: stefan.stoeber@geo.uni-halle.de; Redhammer, Guenther; Schorr, Susan
2013-01-15
Four different brownmillerite solid solutions Ca{sub 2}Al{sub x}(Fe{sub 0.5}Mn{sub 0.5}){sub 2-x}O{sub 5+{delta}} with 1/2{<=}x{<=}4/3 were synthesized by a solid oxide ceramic method. The phases crystallize either in a primitive centered orthorhombic cell with space group Pnma or in a body centered cell with space group I2mb dependent on the aluminum concentration present in the solid solution. Mn{sup 3+} ions occupy exclusively site 4a coordinated by six oxygen anions. Increasing Mn{sup 3+} concentrations cause a remarkable distortion of the octahedron and indirectly of the tetrahedron, resulting in twisted and tilted octahedral layers as well as buckled tetrahedral chains. The influences aremore » discussed on the site 4a of trivalent manganese due to its Jahn-Teller activity, with regard to the occupation of octahedron and tetrahedron with different sized iron and aluminum ions. - Graphical Abstract: The coupled substitution Fe{sup 3+}>Mn{sup 3+}+Fe{sup 3+} <=>2 Al{sup 3+} in brownmillerite phases (Ca{sub 2}(Fe{sub 0.5}Mn{sub 0.5}){sub 2-x}Al{sub x}O{sub 5+{delta}}) changes predominantly their structural properties, which is essential for the hydration performance of the calcium aluminate cement, where brownmillerites occur as clinker phases. Highlights: Black-Right-Pointing-Pointer We present structural data of four Ca-Al-Fe-Mn-brownmillerites. Black-Right-Pointing-Pointer Mn{sup 3+}-ions occupy exclusively the octahedrally coordinated site 0,0,0. Black-Right-Pointing-Pointer Bonds and angles of the octahedrally coordinated site are distorted strongly. Black-Right-Pointing-Pointer Mn{sup 3+}-ions influence indirectly the shape of the tetrahedron. Black-Right-Pointing-Pointer Mn{sup 3+}-ions stabilize Pnma instead of I2mb in Ca-Al-Fe-Mn-brownmillerites.« less
Low-cost, high-strength Fe--Ni--Cr alloys for high temperature exhaust valve application
Muralidharan, Govindarajan
2017-09-05
An Fe--Ni--Cr alloy is composed essentially of, in terms of wt. %: 2.4 to 3.7 Al, up to 1.05 Co, 14.8 to 15.9 Cr, 25 to 36 Fe, up to 1.2 Hf, up to 4 Mn, up to 0.6 Mo, up to 2.2 Nb, up to 1.05 Ta, 1.9 to 3.6 Ti, up to 0.08 W, up to 0.03 Zr, 0.18 to 0.27 C, up to 0.0015 N, balance Ni, wherein, in terms of atomic percent: 8.5.ltoreq.Al+Ti+Zr+Hf+Ta.ltoreq.11.5, 0.53.ltoreq.Al/(Al+Ti+Zr+Hf+Ta).ltoreq.0.65, and 0.16.ltoreq.Cr/(Fe+Ni+Cr+Mn).ltoreq.0.21, the alloy being essentially free of Cu, Si, and V.
Micromirror structure based on TiNi shape memory thin films
NASA Astrophysics Data System (ADS)
Fu, Yong Qing; Hu, Min; Du, Hejun; Luo, Jack; Flewitt, Andrew J.; Milne, William I.
2005-02-01
TiNi films were deposited on silicon by co-sputtering TiNi target and a separate Ti target at a temperature of 450°C. Results from differential scanning calorimeter, in-situ X-ray diffraction and curvature measurement revealed clearly martensitic transformation upon heating and cooling. Two types of TiNi/Si optical micromirror structures with a Si mirror cap (20 micron thick) and TiNi/Si actuation beams were designed and fabricated. For the first design, three elbow shaped Si beams with TiNi electrodes were used as the arms to actuate the mirror. In the second design, a V-shaped cantilever based on TiNi/Si bimorph beams was used as the actuation mechanism for micromirror. TiNi electrodes were patterned and wet-etched in a solutions of HF:HNO3:H2O (1:1:20) with an etch rate of 0.6 μm/min. The TiNi/Si microbeams were flat at room temperature, and bent up with applying voltage in TiNi electrodes (due to phase transformation and shape memory effect), thus causing the changes in angles of micromirror.
NASA Astrophysics Data System (ADS)
Miyata, Yusuke; Yoshimura, Takeshi; Ashida, Atsushi; Fujimura, Norifumi
2016-04-01
Si-based metal-ferroelectric-semiconductor (MFS) capacitors have been fabricated using poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] as a ferroelectric gate. The pinhole-free P(VDF-TrFE) thin films with high resistivity were able to be prepared by spin-coating directly onto hydrogen-terminated Si. The capacitance-voltage (C-V) characteristics of the ferroelectric gate field effect transistor (FeFET) using this MFS structure clearly show butterfly-shaped hysteresis originating from the ferroelectricity, indicating carrier modulation on the Si surface at gate voltages below 2 V. The drain current-gate voltage (I D-V G) characteristics also show counterclockwise hysteresis at gate voltages below 5 V. This is the first report on the low-voltage operation of a Si-based FeFET using P(VDF-TrFE) as a gate dielectric. This organic gate FeFET without any insulator layer at the ferroelectric/Si interface should be one of the promising devices for overcoming the critical issues of the FeFET, such as depolarization field and a decrease in the gate voltage.
de Souza, Edna Santos; Fernandes, Antonio Rodrigues; de Souza Braz, Anderson Martins; Sabino, Lorena Lira Leite; Alleoni, Luís Reynaldo Ferracciú
2015-01-01
The Trans-Amazonian Highway (TAH) is located in the northern region of Brazil, comprising a border region where agricultural, mining, and logging activities are the main activities responsible for fostering economic development, in addition to large hydroelectric plants. Such activities lead to environmental contamination by potentially toxic elements (PTEs). Environmental monitoring is only possible through the determination of element contents under natural conditions. Many extraction methods have been proposed to determine PTEs' bioavailability in the soil; however, there is no consensus about which extractor is most suitable. In this study, we determined the contents of PTEs in soils in the surroundings of TAH after mineral extraction with diethylenetriaminepentaacetic acid-triethanolamine (DTPA-TEA), Mehlich I, and Mehlich III solutions. Soil samples were collected in areas of natural vegetation in the vicinity of TAH in the state of Pará, Brazil. Chemical attributes and particle size were determined, besides concentrations of Fe, Al, Mn, and Ti by sulfuric acid digestion, Si after alkaline solution attack, and poorly crystalline Fe, Al, and "free" Fe oxides. Mehlich III solution extracted greater contents from Fe, Al, and Pb as compared to Mehlich I and DTPA-TEA and similar contents from Cd, Mn, Zn, and Cu. Significant correlations were found between concentrations of PTEs and the contents of Fe and Mn oxides as well as organic carbon and soil cation exchange capacity. Contents of Cu, Mn, Fe, and Zn by the three methods were positively correlated.
Controlled Synthesis and Utilization of Metal and Oxide Hybrid Nanoparticles
NASA Astrophysics Data System (ADS)
Crane, Cameron
This dissertation reports the development of synthetic methods concerning rationally-designed, hybrid, and multifunctional nanomaterials. These methods are based on a wet chemical, solution phase approach that utilizes the knowledge of synthetic organic and inorganic chemistry to generate building blocks in solution for the growth of nanocrystals and hybrid nanostructures. This work builds on the prior knowledge of shape-controlled synthesis of noble metal nanocrystals and expands into the challenging realm of the more reactive first row transition metals. Specifically, a microemulsion sol-gel method was developed to synthesize Au-SiO2 dimers as precursors for the synthesis of segmented heterostructures of noble metals that can be used for catalysis. This microemulsion sol-gel method was modified to synthesize an aqueous suspension of oxidation-resistant Cu-SiO2 core-shell nanoparticles that can be used for sensing and catalysis. A thermal decomposition approach was developed, wherein zero-valence metal precursor complexes in the presence of seed nanoparticles produced metal-metal oxide core-shell structures with well-controlled shell thickness. This method was demonstrated on AuCu 3-Fe3O4, AuCu3-NiO, and AuCu3 -MnO core-shell systems. Switching the core from AuCu3 alloy to pure Cu, this method could extend to Cu-Fe3O4 and Cu-MnO systems. Further etching the Cu core in these core-shell structures led to the formation of the hollow metal oxides which provides a versatile route to hollow nanostructures of metal oxides. This work develops the synthetic library of tools for the production of hybrid nanostructures with multiple functionalities.
Spintronics with multiferroics
NASA Astrophysics Data System (ADS)
Béa, H.; Gajek, M.; Bibes, M.; Barthélémy, A.
2008-10-01
In this paper, we review the recent research on the functionalization of multiferroics for spintronics applications. We focus more particularly on antiferromagnetic and ferroelectric BiFeO3 and its integration in several types of architectures. For instance, when used as a tunnel barrier, BiFeO3 allows the observation of a large tunnel magnetoresistance with Co and (La,Sr)MnO3 ferromagnetic electrodes. Also, its antiferromagnetic and magnetoelectric properties have been exploited to induce an exchange coupling with a ferromagnet. The mechanisms of such an exchange coupling open ways to electrically control magnetization and possibly the logic state of spintronics devices. We also discuss recent results concerning the use of ferromagnetic and ferroelectric (La,Bi)MnO3 as an active tunnel barrier in magnetic tunnel junctions with Au and (La,Sr)MnO3 electrodes. A four-resistance-state device has been obtained, with two states arising from a spin filtering effect due to the ferromagnetic character of the barrier and two resulting from the ferroelectric behavior of the (La,Bi)MnO3 ultrathin film. These results show that the additional degree of freedom provided by the ferroelectric polarization brings novel functionalities to spintronics, either as a extra order parameter for multiple-state memory elements, or as a handle for gate-controlled magnetic memories.
Positron Annihilation Spectroscopy Characterization of Nanostructural Features in Reactor Steels
NASA Astrophysics Data System (ADS)
Glade, Stephen; Wirth, Brian; Asoka-Kumar, Palakkal; Sterne, Philip; Alinger, Matthew; Odette, George
2004-03-01
Irradiation embrittlement in nuclear reactor pressure vessel steels results from the formation of a high number density of nanometer sized copper rich precipitates and sub-nanometer defect-solute clusters. We present results of study to characterize the size and compositions of simple binary and ternary Fe-Cu-Mn model alloys and more representative Fe-Cu-Mn-Ni-Si-Mo-C reactor pressure vessel steels using positron annihilation spectroscopy (PAS). Using a recently developed spin-polarized PAS technique, we have also measured the magnetic properties of the nanometer-sized copper rich precipitates. Mn retards the precipitation kinetics and inhibits large vacancy cluster formation, suggesting a strong Mn-vacancy interaction which reduces radiation enhanced diffusion. The spin-polarized PAS measurements reveal the non-magnetic nature of the copper precipitates, discounting the notion that the precipitates contain significant quantities of Fe and providing an upper limit of at most a few percent Fe in the precipitates. PAS results on oxide dispersion-strengthened steel for use in fusion reactors will also be presented. Part of this work was performed under the auspices of the US Department of Energy by the University of California, Lawrence Livermore National Laboratory, under contract No. W-7405-ENG-48 with partial support provided from Basic Energy Sciences, Division of Materials Science.
NASA Astrophysics Data System (ADS)
Kabra, Saurabh; Kelleher, Joe; Kockelmann, Winfried; Gutmann, Matthias; Tremsin, Anton
2016-09-01
Single crystals of a partially twinned magnetic shape memory alloy, Ni2MnGa, were imaged using neutron diffraction and energy-resolved imaging techniques at the ISIS spallation neutron source. Single crystal neutron diffraction showed that the crystal produces two twin variants with a specific crystallographic relationship. Transmission images were captured using a time of flight MCP/Timepix neutron counting detector. The twinned and untwinned regions were clearly distinguishable in images corresponding to narrow-energy transmission images. Further, the spatially-resolved transmission spectra were used to elucidate the orientations of the crystallites in the different volumes of the crystal.
NASA Astrophysics Data System (ADS)
Anjum, Safia; Rafique, M. S.; Khaleeq-ur-Rahaman, M.; Siraj, K.; Usman, Arslan; Ahsan, A.; Naseem, S.; Khan, K.
2011-06-01
Zn 0.2Mn 0.81Zr 0.01Fe 1.98O 4 and Zn 0.2Mn 0.83Zr 0.03Fe 1.94O 4 thin films with different concentrations of Mn and Zr have been deposited on single crystal n-Si (400) at room temperature (RT) by pulse laser deposition technique (PLD). The films have been deposited under two conditions: (i) with the applied external magnetic field across the propagation of the plume (ii) without applied external magnetic field ( B=0). XRD results show the films have spinel cubic structure when deposited in the presence of magnetic field. SEM and AFM observations clearly show the effect of external applied magnetic field on the growth of films in terms of small particle size, improved uniformity and lower r.m.s. roughness. Thin films deposited under the influence of external magnetic field exhibit higher magnetization as measured by the VSM. The optical band gap energy Eg, refractive index n, reflection, absorption and the thickness of the thin films were measured by spectroscopy ellipsometer. The reflection of Zn 0.2Mn 0.83Zr 0.03Fe 1.94O 4 thin films is higher than Zn 0.2Mn 0.81Zr 0.01Fe 1.98O 4 thin films due to the greater concentration of Zr. The thicknesses of the thin films under the influence of external magnetic field are larger than the films grown without field for both samples. The optical band gap energy Eg decreases with increasing film thickness. The films with external magnetic field are found highly absorbing in nature due to the larger film thickness.
Structural Disorder and Magnetism in the Spin-Gapless Semiconductor CoFeCrAl
2016-08-24
of the Fe doped half-Heusler and Heusler compounds CoFexCrAl and Co2-xFexCrAl (x = 0, 0.25, 0.5, 0.75, 1.0), respectively, have been studied both...Oogane, A. Hirohata, and V. K. Lazarov, “The Effect of Cobalt -Sublattice Disorder on Spin Polarisation in Co2FexMn1−xSi Heusler Alloys,” Materials 7
Thermal and damping behaviour of magnetic shape memory alloy composites
NASA Astrophysics Data System (ADS)
Glock, Susanne; Michaud, Véronique
2015-06-01
Single crystals of ferromagnetic shape memory alloys (MSMA) exhibit magnetic field and stress induced strains via energy dissipating twinning. Embedding single crystalline MSMA particles into a polymer matrix could thus produce composites with enhanced energy dissipation, suitable for damping applications. Composites of ferromagnetic, martensitic or austenitic Ni-Mn-Ga powders embedded in a standard epoxy matrix were produced by casting. The martensitic powder composites showed a crystal structure dependent damping behaviour that was more dissipative than that of austenitic powder or Cu-Ni reference powder composites and than that of the pure matrix. The loss ratio also increased with increasing strain amplitude and decreasing frequency, respectively. Furthermore, Ni-Mn-Ga powder composites exhibited an increased damping behaviour at the martensite/austenite transformation temperature of the Ni-Mn-Ga particles in addition to that at the glass transition temperature of the epoxy matrix, creating possible synergetic effects.
Magneto-optical spectroscopy of ferromagnetic shape-memory Ni-Mn-Ga alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veis, M., E-mail: veis@karlov.mff.cuni.cz; Beran, L.; Zahradnik, M.
2014-05-07
Magneto-optical properties of single crystal of Ni{sub 50.1}Mn{sub 28.4}Ga{sub 21.5} magnetic shape memory alloy in martensite and austenite phase were systematically studied. Crystal orientation was approximately along (100) planes of parent cubic austenite. At room temperature, the sample was in modulated 10M martensite phase and transformed to cubic austenite at 323 K. Spectral dependence of polar magneto-optical Kerr effect was obtained by generalized magneto-optical ellipsometry with rotating analyzer in the photon energy range from 1.2 to 4 eV, and from room temperature to temperature above the Curie point. The Kerr rotation spectra exhibit prominent features typical for complexes containing Mn atoms. Significantmore » spectral changes during transformation to austenite can be explained by different optical properties caused by changes in density of states near the Fermi energy.« less
Rashid, Zahra; Ghahremanzadeh, Ramin; Nejadmoghaddam, Mohammad-Reza; Nazari, Mahboobeh; Shokri, Mohammad-Reza; Naeimi, Hossein; Zarnani, Amir-Hassan
2017-03-24
In this research, a simple, efficient, inexpensive, rapid and high yield method for the purification of 6×histidine-tagged recombinant protein was developed. For this purpose, manganese ferrite magnetic nanoparticles (MNPs) were synthesized through a co-precipitation method and then they were conveniently surface-modified with tetraethyl orthosilicate (TEOS) in order to prevent oxidation and form high density of hydroxyl groups. Next, the salen ligand was prepared from condensation reaction of salicylaldehyde and 3-aminopropyl (trimethoxy) silane (APTMS) in 1:1 molar ratio; followed by complexation with Ni(OAc) 2 .4H 2 O. Finally, the prepared Ni(II)-salen complex conjugated to silica coated MNPs and MnFe 2 O 4 @SiO 2 @Ni-Salen complex nanoparticles were obtained. The functionalized nanoparticles were spherical with an average diameter around 70nm. The obtained MNPs had a saturation magnetization about 54 emu/g and had super paramagnetic character. These MNPs were used efficiently to enrich recombinant histidine-tagged (His-tagged) protein-A from bacterial cell lysate. In about 45min, highly pure His-tagged recombinant protein was obtained, as judged by SDS-PAGE analysis and silver staining. The amount of target protein in flow through and washing fractions was minimal denoting the high efficiency of purification process. The average capacity of the matrix was found to be high and about 180±15mgg -1 (protein/MnFe 2 O 4 @SiO 2 @Ni-Salen complex). Collectively, purification process with MnFe 2 O 4 @SiO 2 @Ni-Salen complex nanoparticles is rapid, efficient, selective and whole purification can be carried out in only a single tube without the need for expensive systems. Copyright © 2017 Elsevier B.V. All rights reserved.
Sun, Bonan; Xing, Mingwei
2016-02-01
This study assessed the impacts of dietary arsenic trioxide on the contents of 26 elements in the pectoral muscle of chicken. A total of 100 Hy-line laying cocks were randomly divided into two groups (n = 50), including an As-treated group (basic diet supplemented with arsenic trioxide at 30 mg/kg) and a control group (basal diet). The feeding experiment lasted for 90 days and the experimental animals were given free access to feed and drinking water. The elements lithium (Li), boron (B), natrum (Na), magnesium (Mg), aluminium (AI), silicium (Si), kalium (K), calcium (Ca), vanadium (V), chromium (Cr), manganese (Mn), ferrum (Fe), cobalt (Co.), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), selenium (Se), molybdenum (Mo), cadmium (Cd), stannum (Sn), stibium (Sb), barium (Ba), hydrargyrum (Hg), thallium (Tl) and plumbum (Pb) in the pectoral muscles were determined using inductively coupled plasma mass spectrometry (ICP-MS). The resulted data indicated that Li, Na, AI, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sn, Ba, Tl and Pb were significantly increased (P < 0.05) in chicken exposed to As2O3 compared to control chicken, while Mg, Si, K, As and Cd decreased significantly (P < 0.05). These results suggest that ICP-MS determination of elements in chicken tissues enables a rapid analysis with good precision and accuracy. Supplementation of high levels of As affected levels of 20 elements (Li, Na, AI, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sn, Ba, Tl, Pb, Mg, Si, K, As and Cd) in the pectoral muscles of chicken. Thus, it is needful to monitor the concentration of toxic metal (As) in chicken for human health.
Structure and magnetic properties of Fe12X clusters
NASA Astrophysics Data System (ADS)
Gutsev, G. L.; Johnson, L. E.; Belay, K. G.; Weatherford, C. A.; Gutsev, L. G.; Ramachandran, B. R.
2014-02-01
The electronic and geometrical structures of a Fe12X family of binary clusters Fe12Al, Fe12Sc, Fe12Ti, Fe12V, Fe12Cr, Fe12Mn, Fe12Co, Fe12Ni, Fe12Cu, Fe12Zn, Fe12Y, Fe12Zr, Fe12Nb, Fe12Mo, Fe12Tc, Fe12Ru, Fe12Rh, Fe12Pd, Fe12Ag, Fe12Cd, and Fe12Gd are studied using density functional theory within generalized gradient approximation. It is found that the geometrical structures corresponding to the lowest total energy states found for the Fe12X clusters possess icosahedral shape with the substituent atom occupying the central or a surface site. The only exception presents Fe12Nb where a squeezed cage structure is the energetically most favorable. The substitution of an atom in the Fe13 cluster results in the decrease of its total spin magnetic moment of 44 μB, except for Fe12Mn and Fe12Gd. The Fe12X clusters are more stable than the parent Fe13 cluster when X = Al, Sc, Ti, V, Co, Y, Zr, Nb, Mo, Tc, Ru, and Rh.
Park, Jae Hyo; Kim, Hyung Yoon; Jang, Gil Su; Seok, Ki Hwan; Chae, Hee Jae; Lee, Sol Kyu; Kiaee, Zohreh; Joo, Seung Ki
2016-01-01
The development of ferroelectric random-access memory (FeRAM) technology with control of grain boundaries would result in a breakthrough for new nonvolatile memory devices. The excellent piezoelectric and electrical properties of bulk ferroelectrics are degraded when the ferroelectric is processed into thin films because the grain boundaries then form randomly. Controlling the nature of nucleation and growth are the keys to achieving a good crystalline thin-film. However, the sought after high-quality ferroelectric thin-film has so far been thought to be impossible to make, and research has been restricted to atomic-layer deposition which is extremely expensive and has poor reproducibility. Here we demonstrate a novel epitaxial-like growth technique to achieve extremely uniform and large rectangular-shaped grains in thin-film ferroelectrics by dividing the nucleation and growth phases. With this technique, it is possible to achieve 100-μm large uniform grains, even made available on Si, which is large enough to fabricate a field-effect transistor in each grain. The electrical and reliability test results, including endurance and retention test results, were superior to other FeRAMs reported so far and thus the results presented here constitute the first step toward the development of FeRAM using epitaxial-like ferroelectric thin-films. PMID:27005886
Pink manganian phengite in a high P/ T meta-conglomerate from northern Syros (Cyclades, Greece)
NASA Astrophysics Data System (ADS)
Altherr, Rainer; Soder, Christian; Panienka, Sandra; Peters, Daniel; Meyer, Hans-Peter
2013-11-01
A new occurrence of Mn-rich rocks was discovered within the high-pressure/low-temperature metamorphic rocks on the Palos peninsula of Syros (Greece). Near the summit of Mount Príonas, a meta-conglomerate consists of calcite (~63 wt%), pink manganian phengite, blue-purple manganian aegirine-jadeite, microcline, albite and quartz. In addition, it contains abundant braunite-rich aggregates (up to ~1.5 cm in diameter) that include hollandite [(Ba0.98-1.02K<0.01Na<0.02Ca<0.03) (Mn{1.02-1.52/3+}Fe{0.38-0.88/3+}Ti0.29-0.92Mn{5.11-5.76/4+})O16], barite and manganian hematite. Due to metamorphic recrystallization and deformation, the contacts between clasts and matrix are blurred and most clasts have lost their identity. In back-scattered electron images, many aegirine-jadeite grains appear patchy and show variable jadeite contents (Jd10-67). These pyroxenes occur in contact with either quartz or albite. Manganian phengite (3.41-3.49 Si per 11 oxygen anions) is of the 3T type and contains 1.4-2.2 wt% of Mn2O3. At the known P- T conditions of high-pressure metamorphism on Syros (~1.4 GPa/ 470 °C), the mineral sub-assemblage braunite + quartz + calcite (former aragonite) suggests high oxygen fugacities relative to the HM buffer (+7 ≤ ΔfO2 ≤ + 17) and relatively high CO2 fugacities. The exact origin of the conglomerate is not known, but it is assumed that the Fe-Mn-rich and the calcite-rich particles originated from different sources. Braunite has rather low contents of Cu (~0.19 wt%) and the concentrations of Co, Ni and Zn are less than 0.09 wt%. Hollandite shows even lower concentrations of these elements. Furthermore, the bulk-rock compositions of two samples are characterized by low contents of Cu, Co and Ni, suggesting a hydrothermal origin of the manganese ore. Most likely, these Fe-Mn-Si oxyhydroxide deposits consisted of ferrihydrite, todorokite, birnessite, amorphous silica (opal-A) and nontronite. Al/(Al + Fe + Mn) ratios of 0.355 and 0.600 suggest the presence of an aluminosilicate detrital component.
NASA Astrophysics Data System (ADS)
Hein, James R.; Konstantinova, Natalia; Mikesell, Mariah; Mizell, Kira; Fitzsimmons, Jessica N.; Lam, Phoebe J.; Jensen, Laramie T.; Xiang, Yang; Gartman, Amy; Cherkashov, Georgy; Hutchinson, Deborah R.; Till, Claire P.
2017-11-01
Little is known about marine mineral deposits in the Arctic Ocean, an ocean dominated by continental shelf and basins semi-closed to deep-water circulation. Here, we present data for ferromanganese crusts and nodules collected from the Amerasia Arctic Ocean in 2008, 2009, and 2012 (HLY0805, HLY0905, and HLY1202). We determined mineral and chemical compositions of the crusts and nodules and the onset of their formation. Water column samples from the GEOTRACES program were analyzed for dissolved and particulate scandium concentrations, an element uniquely enriched in these deposits. The Arctic crusts and nodules are characterized by unique mineral and chemical compositions with atypically high growth rates, detrital contents, Fe/Mn ratios, and low Si/Al ratios, compared to deposits found elsewhere. High detritus reflects erosion of submarine outcrops and North America and Siberia cratons, transport by rivers and glaciers to the sea, and distribution by sea ice, brines, and currents. Uniquely high Fe/Mn ratios are attributed to expansive continental shelves, where diagenetic cycling releases Fe to bottom waters, and density flows transport shelf bottom water to the open Arctic Ocean. Low Mn contents reflect the lack of a mid-water oxygen minimum zone that would act as a reservoir for dissolved Mn. The potential host phases and sources for elements with uniquely high contents are discussed with an emphasis on scandium. Scandium sorption onto Fe oxyhydroxides and Sc-rich detritus account for atypically high scandium contents. The opening of Fram Strait in the Miocene and ventilation of the deep basins initiated Fe-Mn crust growth ˜15 Myr ago.
Hein, James; Konstantinova, Natalia; Mikesell, Mariah; Mizell, Kira; Fitzsimmons, Jessica N.; Lam, Phoebe; Jensen, Laramie T.; Xiang, Yang; Gartman, Amy; Cherkashov, Georgy; Hutchinson, Deborah; Till, Claire P.
2017-01-01
Little is known about marine mineral deposits in the Arctic Ocean, an ocean dominated by continental shelf and basins semi-closed to deep-water circulation. Here, we present data for ferromanganese crusts and nodules collected from the Amerasia Arctic Ocean in 2008, 2009, and 2012 (HLY0805, HLY0905, HLY1202). We determined mineral and chemical compositions of the crusts and nodules and the onset of their formation. Water column samples from the GEOTRACES program were analyzed for dissolved and particulate scandium concentrations, an element uniquely enriched in these deposits.The Arctic crusts and nodules are characterized by unique mineral and chemical compositions with atypically high growth rates, detrital contents, Fe/Mn ratios, and low Si/Al ratios, compared to deposits found elsewhere. High detritus reflects erosion of submarine outcrops and North America and Siberia cratons, transport by rivers and glaciers to the sea, and distribution by sea ice, brines, and currents. Uniquely high Fe/Mn ratios are attributed to expansive continental shelves, where diagenetic cycling releases Fe to bottom waters, and density flows transport shelf bottom water to the open Arctic Ocean. Low Mn contents reflect the lack of a mid-water oxygen minimum zone that would act as a reservoir for dissolved Mn. The potential host phases and sources for elements with uniquely high contents are discussed with an emphasis on scandium. Scandium sorption onto Fe oxyhydroxides and Sc-rich detritus account for atypically high scandium contents. The opening of Fram Strait in the Miocene and ventilation of the deep basins initiated Fe-Mn crust growth ∼15 Myr ago.
NASA Astrophysics Data System (ADS)
Gu, Shu-Ying; Jin, Sheng-Peng; Gao, Xie-Feng; Mu, Jian
2016-05-01
Polylactide-based polyurethane shape memory nanocomposites (Fe3O4/PLAUs) with fast magnetic responsiveness are presented. For the purpose of fast response and homogeneous dispersion of magnetic nanoparticles, oleic acid was used to improve the dispersibility of Fe3O4 nanoparticles in a polymer matrix. A homogeneous distribution of Fe3O4 nanoparticles in the polymer matrix was obtained for nanocomposites with low Fe3O4 loading content. A small agglomeration was observed for nanocomposites with 6 wt% and 9 wt% loading content, leading to a small decline in the mechanical properties. PLAU and its nanocomposites have glass transition around 52 °C, which can be used as the triggering temperature. PLAU and its nanocomposites have shape fixity ratios above 99%, shape recovery ratios above 82% for the first cycle and shape recovery ratios above 91% for the second cycle. PLAU and its nanocomposites also exhibit a fast water bath or magnetic responsiveness. The magnetic recovery time decreases with an increase in the loading content of Fe3O4 nanoparticles due to an improvement in heating performance for increased weight percentage of fillers. The nanocomposites have fast responses in an alternating magnetic field and have potential application in biomedical areas such as intravascular stent.
Room temperature ferrimagnetism and ferroelectricity in strained, thin films of BiFe 0.5Mn 0.5O 3
Choi, Eun -Mi; Fix, Thomas; Kursumovic, Ahmed; ...
2014-10-14
In this study, highly strained films of BiFe 0.5Mn 0.5O 3 (BFMO) grown at very low rates by pulsed laser deposition were demonstrated to exhibit both ferrimagnetism and ferroelectricity at room temperature and above. Magnetization measurements demonstrated ferrimagnetism (T C ~ 600K), with a room temperature saturation moment (M S) of up to 90 emu/cc (~0.58μ B/f.u) on high quality (001) SrTiO 3. X-ray magnetic circular dichroism showed that the ferrimagnetism arose from antiferromagnetically coupled Fe 3+ and Mn 3+ . While scanning transmission electron microscope studies showed there was no long range ordering of Fe and Mn, the magneticmore » properties were found to be strongly dependent on the strain state in the films. The magnetism is explained to arise from one of three possible mechanisms with Bi polarization playing a key role. A signature of room temperature ferroelectricity in the films was measured by piezoresponse force microscopy and was confirmed using angular dark field scanning transmission electron microscopy. The demonstration of strain induced, high temperature multiferroism is a promising development for future spintronic and memory applications at room temperature and above.« less
Pauling, Linus
1988-01-01
A unified structure theory of icosahedral quasicrystals, combining the twinned-cubic-crystal theory and the Penrose-tiling-six-dimensional-projection theory, is described. Values of the primitive-cubic lattice constant for several quasicrystals are evaluated from x-ray and neutron diffraction data. The fact that the low-angle diffraction maxima can be indexed with cubic unit cells provides additional support for the twinned-cubic-crystal theory of icosahedral quasicrystals. PMID:16593990
NASA Astrophysics Data System (ADS)
Pekov, I. V.; Chukanov, N. V.; Dubinchuk, V. T.; Zadov, A. E.
2007-12-01
Middendorfite, a new mineral species, has been found in a hydrothermal assemblage in Hilairite hyperperalkaline pegmatite at the Kirovsky Mine, Mount Kukisvumchorr apatite deposit, Khibiny alkaline pluton, Kola Peninsula, Russia. Microcline, sodalite, cancrisilite, aegirine, calcite, natrolite, fluorite, narsarsukite, labuntsovite-Mn, mangan-neptunite, and donnayite are associated minerals. Middendorfite occurs as rhombshaped lamellar and tabular crystals up to 0.1 × 0.2 × 0.4 mm in size, which are combined in worm-and fanlike segregations up to 1 mm in size. The color is dark to bright orange, with a yellowish streak and vitreous luster. The mineral is transparent. The cleavage (001) is perfect, micalike; the fracture is scaly; flakes are flexible but not elastic. The Mohs hardness is 3 to 3.5. Density is 2.60 g/cm3 (meas.) and 2.65 g/cm3 (calc.). Middendorfite is biaxial (-), α = 1.534, β = 1.562, and γ = 1.563; 2 V (meas.) = 10°. The mineral is pleochroic strongly from yellowish to colorless on X through brown on Y and to deep brown on Z. Optical orientation: X = c. The chemical composition (electron microprobe, H2O determined with Penfield method) is as follows (wt %): 4.55 Na2O, 10.16 K2O, 0.11 CaO, 0.18 MgO, 24.88 MnO, 0.68 FeO, 0.15 ZnO, 0.20 Al2O3, 50.87 SiO2, 0.17 TiO2, 0.23 F, 7.73 H2O; -O=F2-0.10, total is 99.81. The empirical formula calculated on the basis of (Si,Al)12(O,OH,F)36 is K3.04(Na2.07Ca0.03)Σ2.10(Mn4.95Fe0.13Mg0.06Ti0.03Zn0.03)Σ5.20(Si11.94Al0.06)Σ12O27.57(OH)8.26F0.17 · 1.92H2O. The simplified formula is K3Na2Mn5Si12(O,OH)36 · 2H2O. Middenforite is monoclinic, space group: P21/ m or P21. The unit cell dimensions are a = 12.55, b = 5.721, c = 26.86 Å; β = 114.04°, V = 1761 Å3, Z = 2. The strongest lines in the X-ray powder pattern [ d, Å, ( I)( hkl)] are: 12.28(100)(002), 4.31(81)(11overline 4 ), 3.555(62)(301, 212), 3.063(52)(008, 31overline 6 ), 2.840(90)(312, 021, 30overline 9 ), 2.634(88)(21overline 9 , 1.0.overline 1 0, 12overline 4 ), 2.366(76)(22overline 6 , 3.1.overline 1 0, 32overline 3 ), 2.109(54)(42 33, 42 44, 51overline 9 , 414), 1.669(64)(2.2.overline 1 3, 3.2.overline 1 3, 62overline 3 , 6.1.overline 1 3), 1.614(56)(5.0.overline 1 6, 137, 333, 71overline 1 ). The infrared spectrum is given. Middendorfite is a phyllosilicate related to bannisterite, parsenttensite, and the minerals of the ganophyllite and stilpnomelane groups. The new mineral is named in memory of A.F. von Middendorff (1815 1894), an outstanding scientist, who carried out the first mineralogical investigations in the Khibiny pluton. The type material of middenforite has been deposited at the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow.
Thermal-history dependent magnetoelastic transition in (Mn,Fe){sub 2}(P,Si)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, X. F., E-mail: x.f.miao@tudelft.nl; Dijk, N. H. van; Brück, E.
The thermal-history dependence of the magnetoelastic transition in (Mn,Fe){sub 2}(P,Si) compounds has been investigated using high-resolution neutron diffraction. As-prepared samples display a large difference in paramagnetic-ferromagnetic (PM-FM) transition temperature compared to cycled samples. The initial metastable state transforms into a lower-energy stable state when the as-prepared sample crosses the PM-FM transition for the first time. This additional transformation is irreversible around the transition temperature and increases the energy barrier which needs to be overcome through the PM-FM transition. Consequently, the transition temperature on first cooling is found to be lower than on subsequent cycles characterizing the so-called “virgin effect.” High-temperaturemore » annealing can restore the cycled sample to the high-temperature metastable state, which leads to the recovery of the virgin effect. A model is proposed to interpret the formation and recovery of the virgin effect.« less
NASA Astrophysics Data System (ADS)
Cho, Lawrence; Kim, Myung Soo; Kim, Young Ha; De Cooman, Bruno C.
2014-09-01
The influence of the addition of minor alloying elements on the selective oxidation and the reactive wetting of CMnSi transformation-induced plasticity (TRIP) steels was studied by means of galvanizing simulator tests. Five TRIP steels containing small alloying additions of Cr, Ni, Ti, Cu, and Sn were investigated. After intercritical annealing (IA) at 1093 K (820 °C) in a N2 + 5 pct H2 gas atmosphere with a dew point of 213 K (-60 °C), two types of oxides were formed on the strip surface: Mn-rich xMnO·SiO2 ( x > 1.5) and Si-rich xMnO·SiO2 ( x < 0.3) oxides. The addition of the minor alloying elements changed the morphology of the Si-rich oxides from a continuous film to discrete islands and this improved the wettability by molten Zn. The improved wetting effect of the minor alloying elements was attributed to an increased area fraction of the surface where the oxides were thinner, enabling a direct unhindered reaction between Fe and the Al in the liquid Zn and the formation of the inhibition layer during the hot dip galvanizing. The addition of a small amount of Sn is shown to significantly decrease the density of Zn-coating defects on CMnSi TRIP steels.
NASA Astrophysics Data System (ADS)
Kumar, Ajay; Jayakumar, O. D.; Naik, V. M.; Nazri, G. A.; Naik, R.
Lithium transition metal orthosilicates, such as Li2FeSiO4 and Li2MnSiO4, as cathode material have attracted much attention lately due to their high theoretical capacity ( 330 mAh/g), low cost, and environmental friendliness. However, they suffer from poor electronic conductivity and slow lithium ion diffusion in the solid phase. Several cation-doped orthosilicates have been studied to improve their electrochemical performance. We have synthesized partially Mg-substituted Li2Mgx Fe1-x SiO4-C, (x = 0.0, 0.01, 0.02, and 0.04) nano-composites by solvothermal method followed by annealing at 600oC in argon flow. The structure and morphology of the composites were characterized by XRD, SEM and TEM. The surface area and pore size distribution were measured by using N2 adsorption/desorption curves. The electrochemical performance of the Li2MgxFe1-x SiO4-C composites was evaluated by Galvanostatic cycling against metallic lithium anode, electrochemical impedance spectroscopy, and cyclic voltammetry. Li2Mg0.01Fe0.99SiO4-C sample shows a capacity of 278 mAh/g (at C/30 rate in the 1.5-4.6 V voltage window) with an excellent rate capability and stability, compared to the other samples. We attribute this observation to its higher surface area, enhanced electronic conductivity and higher lithium ion diffusion coefficient.
Code of Federal Regulations, 2012 CFR
2012-01-01
...+05 C-14 4.6E+06 Na-22 1.9E+01 Al-26 1.5E+01 Si-32 4.9E+04 S-35 2.4E+06 Cl-36 5.2E+05 K-40 2.7E+02 Ca-41 9.3E+06 Ca-45 1.1E+06 Sc-46 6.2E+01 Ti-44 1.5E+02 V-49 1.0E+08 Mn-53 7.5E+07 Mn-54 6.5E+01 Fe-55 2.9E+06 Fe-59 1.9E+02 Fe-60 8.1E+03 Co-56 3.9E+01 Co-57 2.3E+02 Co-58 1.3E+02 Co-60 1.7E+01 Ni-59 3.2E...
Code of Federal Regulations, 2013 CFR
2013-01-01
...+05 C-14 4.6E+06 Na-22 1.9E+01 Al-26 1.5E+01 Si-32 4.9E+04 S-35 2.4E+06 Cl-36 5.2E+05 K-40 2.7E+02 Ca-41 9.3E+06 Ca-45 1.1E+06 Sc-46 6.2E+01 Ti-44 1.5E+02 V-49 1.0E+08 Mn-53 7.5E+07 Mn-54 6.5E+01 Fe-55 2.9E+06 Fe-59 1.9E+02 Fe-60 8.1E+03 Co-56 3.9E+01 Co-57 2.3E+02 Co-58 1.3E+02 Co-60 1.7E+01 Ni-59 3.2E...
Code of Federal Regulations, 2014 CFR
2014-01-01
...+05 C-14 4.6E+06 Na-22 1.9E+01 Al-26 1.5E+01 Si-32 4.9E+04 S-35 2.4E+06 Cl-36 5.2E+05 K-40 2.7E+02 Ca-41 9.3E+06 Ca-45 1.1E+06 Sc-46 6.2E+01 Ti-44 1.5E+02 V-49 1.0E+08 Mn-53 7.5E+07 Mn-54 6.5E+01 Fe-55 2.9E+06 Fe-59 1.9E+02 Fe-60 8.1E+03 Co-56 3.9E+01 Co-57 2.3E+02 Co-58 1.3E+02 Co-60 1.7E+01 Ni-59 3.2E...
NASA Astrophysics Data System (ADS)
Chukanov, N. V.; Aksenov, S. M.; Pekov, I. V.; Ternes, B.; Schüller, W.; Belakovskiy, D. I.; Van, K. V.; Blass, G.
2014-12-01
A new mineral, ferroindialite, a Fe2+-dominant analog of indialite, has been found in a pyrometamorphosed xenolith of pelitic rock hosted in alkaline basalts. Associated minerals are phlogopite, sanidine, sillimanite, pyroxenes of the enstatite-ferrosilite series, wagnerite, fluorapatite, tridymite, zircon and almandine. Ferroindialite forms brown-purple to gray with a violet-blue tint short prismatic or thick tabular hexagonal crystals up to 1.5 mm in size. The new mineral is brittle, with a Mohs' hardness of 7. Cleavage is not observed. D meas = 2.66(1), D calc = 2.667 g/cm3. IR spectrum shows neither H2O nor OH groups. Ferroindialite is anomalously biaxial (-), α = 1.539(2), β = 1.552(2), γ = 1.554(2), 2 V meas = 30(10)°. The mineral is weakly pleochroic, ranging from colorless on X to pale violet on Z. Dispersion is weak, r < v. The chemical composition (electron microprobe, mean of five point analyses, wt %) is as follows: 0.14 Na2O, 0.46 K2O, 4.95 MgO, 1.13 MnO, 12.66 FeO, 2.64 Fe2O3, 30.45 Al2O3, 47.22 SiO2, total is 99.65. The distribution of total iron content between Fe2+ and Fe3+ was carried out according to structural data. The empirical formula of ferroindialite is: (K0.06Na0.03)(Fe{1.12/2+}Mg0.78Mn0.10)Σ2.00(Al3.79Fe{0.21/3+})Σ4.00Si4.98O18. The simplified formula is: (Fe2+,Mg)2Al4Si5O18. The crystal structure has been refined on a single crystal, R = 0.049. Ferroindialite is hexagonal, space group P6/ mcc; a = 9.8759(3), c = 9.3102(3) Å, V = 786.40(3) Å3, Z = 2. The strongest lines in the X-ray powder diffraction pattern [ d, Å ( I, %) ( hkl)] are: 8.59 (100) (100), 4.094 (27) (102), 3.390 (35) (112), 3.147 (19) (202), 3.055 (31) (211), 2.657 (12) (212), 1.695 (9) (224). The type specimen of ferroindialite is deposited in the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, registration number 4400/1.
NASA Astrophysics Data System (ADS)
Zhang, Z. T.; Sohn, I. R.; Pettit, F. S.; Meier, G. H.; Sridhar, S.
2009-08-01
The present research deals with an investigation of the effect of alloying element additions (Si, P, and Sb) and water vapor content ({{{{{P}}_{{{{H}}_{ 2} {{O}}}} } {{{P}}_{{{{H}}_{ 2} }} }}} = 0.01{{ to }}0.13}) on the oxidation and decarburization behavior of transformation-induced plasticity (TRIP) steels in a gas mixture of 95 vol pct argon and 5 vol pct hydrogen/steam, by thermogravimetry (TG). The oxidation proceeds primarily as an internal oxidation front in the TRIP steels, but a thin external scale on the order of a micrometer thickness exists and is comprised primarily of fayalite ((Mn,Fe)2SiO4) and ((MnO) x (FeO)1- x . The oxidation products are distributed near the surface and along grain boundaries. A comparison between calculated and measured oxidation curves indicated that the oxidation and decarburization are independent. The results for TRIP steels, both with and without an Sb addition, indicate that increasing Si and P contents accelerate, whereas Sb addition suppresses, both decarburization and oxidation rates. Water vapor content has no obvious effect on decarburization but has a pronounced effect on oxidation, and decreasing water vapor content decreases the oxidation rates.
NASA Astrophysics Data System (ADS)
Xu, Xiaoming; Ding, Hongrui; Li, Yan; Lu, Anhuai; Li, Yan; Wang, Changqiu
2018-03-01
Identification of Mn oxides in natural Mn coatings is very difficult due to their poor crystallinity, fine grains, complex chemistry and tiny amounts. In this work, we investigated three types of Mn coatings including rock varnish, dendrite and soil Fe-Mn cutan from different weathering environments in China. Optical microscope, scanning electron microscope, energy dispersive X-ray spectroscopy and micro-Raman spectrometer were employed to achieve non-destructive, sensitive, in-situ and micro analysis on their mineral assemblages, micromorphological features and elemental distribution characteristics. The observed results suggest that rock varnish and soil cutan comprise birnessite, while dendrite is mainly composed of hollandite. Rock varnish with a layered structure has a clear boundary with its substrate, and microlaminations which arise from the fluctuations in Mn content (6.42-17.07 wt%) within the sample profile are obvious on closer inspection. Branch-like dendrite is rich in Mn (32.53-42.96 wt%) but poor in Si and Al, which shows a pilotaxitic texture with its substrate. Soil Fe-Mn cutan can be further divided into an outer black Mn-rich (8.26-13.58 wt%) belt and an inner yellowish-brown Fe-rich (2.06-4.85 wt%) belt, and a clear border can be identified between these two belts. Mn in the substrate of rock varnish and soil cutan is below detection limit while it can be detected in the substrate of dendrite (1.43-7.83 wt%). Our in-situ analysis provides more precise results than traditional powder test. These mineralogical characteristics indicate that dendrite is most likely endogenic, while rock varnish and soil cutan are external accretion formed under different weathering environments.
Zeng, Min; Or, Siu Wing; Chan, Helen Lai Wa
2010-10-01
A sandwich composite consisting of one layer of ferromagnetic shape memory Ni-Mn-Ga crystal plate bonded between two layers of piezoelectric PVDF polymer film was fabricated, and its magnetic field-induced strain (MFIS) and magnetoelectric (ME) effects were investigated, together with a monolithic Ni-Mn-Ga crystal, as functions of magnetic fields and mechanical load. The load-free dc- and ac-MFISs were 0.35 and 0.05% in the composite, and 5.6 and 0.3% in the monolithic crystal, respectively. The relatively smaller load-free MFISs in the composite than the monolithic crystal resulted from the clamping of martensitic twin-boundary motion in the Ni-Mn-Ga plate by the PVDF films. The largest ME coefficient (α(E)) was 0.58 V/cm·Oe at a magnetic bias field (H(Bias)) of 8.35 kOe under load-free condition. The mechanism of the ME effect originated from the mechanically mediated MFIS effect in the Ni-Mn-Ga plate and piezoelectric effect in the PVDF films. The measured α(E)-H(Bias) responses under different loads showed good agreement with the model prediction.
Fe-Si particles on the surface of blast furnace coke
NASA Astrophysics Data System (ADS)
Gornostayev, Stanislav S.; Heikkinen, Eetu-Pekka; Heino, Jyrki J.; Fabritius, Timo M. J.
2015-07-01
This study investigates the surface of unpolished samples of blast furnace (BF) coke drilled from the tuyere zone, which hosts Fe-Si particles (mostly Fe3Si) that vary in size, shape, depth of submersion (penetration) into the coke matrix, and contact features with the surface. Based on the shape of the particles and the extent of their contact with the coke matrix, they have been grouped into three major types: (I) sphere-like droplets with limited contact area, (II) semi-spheres with a larger contact area, and (III) irregular segregations with a spherical surface, which exhibit the largest contact area among the three types of particles. Considering the ratio between the height ( h) of the particles and half of their length at the surface level ( l) along the cross-section, these three types can be characterized as follows: (I) h > l, (II) h ≈ l, and (III) h < l. All the three types of particles can be found near each other. The shape and the extent of the contact depend on the degree of penetration of the material into the matrix, which is a function of the composition of the particles. Type (I) particles were initially saturated with Si at an earlier stage and, for that reason, they can react less with carbon in the coke matrix than type (II) and (III), thereby moving faster through the coke cone. Thermodynamic calculations have shown that the temperature interval of 1250-1300°C can be considered the starting point for Si entering into molten iron under quartz-dominated coke ash. Accordingly, the initial pick-up of Si by molten iron can be assumed to be mineral-related. In terms of BF practice, better conditions for sliding Fe-Si droplets through the coke cone are available when they come into contact with free SiO2 concentrated into small grains, and when the SiO2/ΣMe x O y mass ratio in the coke ash is high.
Bahloul, Moez; Chabbi, Iness; Dammak, Rim; Amdouni, Ridha; Medhioub, Khaled; Azri, Chafai
2015-12-01
The present study investigates the geochemical behaviour of PM10 aerosol constituents (Cl, Na, Si, Al, Ca, Fe, Mg, Mn, Pb, Zn, S) at Sfax City (Tunisia) under succeeding meteorological conditions, including short-lived anticyclonic, cyclonic and prolonged anticyclonic situations. The results revealed daily total concentrations fluctuating between 4.07 and 88.51 μg/m(3). The highest level recorded was noted to occur under the effect of the short-lived anticyclonic situation characterized by low wind speeds. It was 1.5 times higher than those recorded during cyclonic and long-lived anticyclonic situations characterized by moderate to high wind speeds. During the cyclonic situation, the marked increase of (Na and Cl) concentrations is associated with relatively high sea wind speeds (6 to 9 m/s), which are in turn responsible for a slight increase of crustal elements such as Al, Ca, Si, Fe and Mg, by the entrainment in the air of dust from roads and undeveloped areas. During the two anticyclonic situations, the simultaneous increase (due to communal transport) of crustal (Ca, Si, Al, Fe, Mg) and man-made (Mn, S, Pb, Zn) elements was noted to be associated with the dominance of terrigenious wind flows with speeds varying between 1.5 and 4 m/s. However, the significant contribution rates observed for Cl under the prevalence of such winds as compared to other crustal elements such as Fe suggested the influence of the sebkhas of Southern Tunisia.
Thin film Heusler compounds manganese nickel gallium
NASA Astrophysics Data System (ADS)
Jenkins, Catherine Ann
Multiferroic Heusler compounds Mn3--xNi xGa (x=0,1,2) have a tetragonal unit cell that can variously be used for magneto-mechanically coupled shape memory ( x=1,2) and spin-mechanical applications (x=0). The first fabrication of fully epitaxial thin films of these and electronically related compounds by sputtering is discussed. Traditional and custom lab characterization of the magnetic and temperature driven multiferroic behavior is augmented by more detailed synchrotron-based high energy photoemission spectroscopic techniques to describe the atomic and electronic structure. Integration of the MnNi2Ga magnetic shape memory compound in microwave patch antennas and active free-standing structures represents a fraction of the available and promising applications for these compounds. Prototype magnetic tunnel junctions are demonstrated by Mn3Ga electrodes with perpendicular anisotropy for spin torque transfer memory structures. The main body of the work concentrates on the definition and exploration of the material series Mn3--xNi xGa (x=0,1,2) and the relevant multiferroic phenomena exhibited as a function of preparation and external stimuli. Engineering results on each x=0,1,2 are presented with device prototypes where relevant. In the appendices the process of the materials design undertaken with the goal of developing new ternary intermetallics with enhanced properties is presented with a full exploration of the road from band structure calculations to device implementation. Cobalt based compounds in single crystal and nanoparticle form are fabricated with an eye to developing the production methods for new cobalt- and iron-based magnetic shape memory compounds for device applications in different forms. Mn2CoSn, a compound isolectronic and with similar atomic ordering to Mn2NiGa is experimentally determined to be a nearly half-metallic ferromagnet in contrast to the metallic ferrimagnetism in the parent compound. High energy photoemission spectroscopy is shown to be applicable to the analysis and observation of deeply buried metallic and semiconducting interface in an analysis of chalcopyrite solar cell heterolayers and model magnetic tunnel junctions with half-metalic Heusler electrodes.
NASA Astrophysics Data System (ADS)
Alyaldin, Loay
In recent years, aluminum and aluminum alloys have been widely used in automotive and aerospace industries. Among the most commonly used cast aluminum alloys are those belonging to the Al-Si system. Due to their mechanical properties, light weight, excellent castability and corrosion resistance, these alloys are primarily used in engineering and in automotive applications. The more aluminum is used in the production of a vehicle, the less the weight of the vehicle, and the less fuel it consumes, thereby reducing the amount of harmful emissions into the atmosphere. The principal alloying elements in Al-Si alloys, in addition to silicon, are magnesium and copper which, through the formation of Al2Cu and Mg2Si precipitates, improve the alloy strength via precipitation hardening following heat treatment. However, most Al-Si alloys are not suitable for high temperature applications because their tensile and fatigue strengths are not as high as desired in the temperature range 230-350°C, which are the temperatures that are often attained in automotive engine components under actual service conditions. The main challenge lies in the fact that the strength of heat-treatable cast aluminum alloys decreases at temperatures above 200°C. The strength of alloys under high temperature conditions is improved by obtaining a microstructure containing thermally stable and coarsening-resistant intermetallics, which may be achieved with the addition of Ni. Zr and Sc. Nickel leads to the formation of nickel aluminide Al3Ni and Al 9FeNi in the presence of iron, while zirconium forms Al3Zr. These intermetallics improve the high temperature strength of Al-Si alloys. Some interesting improvements have been achieved by modifying the composition of the base alloy with additions of Mn, resulting in an increase in strength and ductility at both room and high temperatures. Al-Si-Cu-Mg alloys such as the 354 (Al-9wt%Si-1.8wt%Cu-0.5wt%Mg) alloys show a greater response to heat treatment as a result of the presence of both Mg and Cu. These alloy types display excellent strength values at both low and high temperatures. Additions of Zr, Ni, Mn and Sc would be expected to maintain the performance of these alloys at still higher temperatures. Six alloys were prepared using 0.2 wt% Ti grain-refined 354 alloy, comprising alloy R (354 + 0.25wt% Zr) considered as the base or reference alloy, and five others, viz., alloys S, T, U, V, and Z containing various amounts of Ni, Mn, Sc and Zr, added individually or in combination. For comparison purposes, another alloy L was prepared from 398 (Al-16%Si) alloy, reported to give excellent high temperature properties, to which the same levels of Zr and Sc additions were made, as in alloy Z. Tensile test bars were prepared from the different 354 alloys using an ASTM B-108 permanent mold. The test bars were solution heat treated using a one-step or a multi-step solution heat treatment, followed by quenching in warm water, and then artificial aging employing different aging treatments (T5, T6, T62 and T7). The one-step (or SHT 1) solution treatment consisted of 5 h 495 °C) and the multi-step (or SHT 2) solution treatment comprised 5 h 495°C + 2 h 515°C + 2 h 530°C. Thermal analysis of the various 354 alloy melts was carried out to determine the sequence of reactions and phases formed during solidification under close-to-equilibrium cooling conditions. The main reactions observed comprised formation of the alpha-Al dendritic network at 598°C followed by precipitation of the Al-Si eutectic and post-eutectic beta-Al5FeSi phase at 560°C; Mg2Si phase and transformation of the beta-phase into pi-Al8Mg 3FeSi6 phase at 540°C and 525°C; and lastly, precipitation of Al2Cu and Q-Al5Mg8Cu2Si 6 almost simultaneously at 498°C and 488°C. Larger sizes of AlFeNi and AlCuNi phase particles were observed in T alloy with its higher Ni content of 4 wt%, when compared to those seen in S alloy at 2% Ni content. Mn addition in Alloy U helps in reducing the detrimental effect of the beta-iron phase by replacing it with the less-detrimental Chinese script alpha-Al 15(Fe,Mn)3Si2 phase and sludge particles.
NASA Astrophysics Data System (ADS)
Lin, Qisheng; Taufour, Valentin; Zhang, Yuemei; Wood, Max; Drtina, Thomas; Bud'ko, Sergey L.; Canfield, Paul C.; Miller, Gordon J.
2015-09-01
Single crystals of Nd4FeOS6 were grown from an Fe-S eutectic solution. Single crystal X-ray diffraction analysis revealed a Nd4MnOSe6-type structure (P63mc, a=9.2693(1) Å, c=6.6650(1)Å, V=495.94(1) Å3, Z=2), featuring parallel chains of face-sharing [FeS6×1/2]4- trigonal antiprisms and interlinked [Nd4OS3]4+ cubane-like clusters. Oxygen atoms were found to be trapped by Nd4 clusters in the [Nd4OS3]4+ chains. Structural differences among Nd4MnOSe6-type Nd4FeOS6 and the related La3CuSiS7- and Pr8CoGa3-type structures have been described. Magnetic susceptibility measurements on Nd4FeOS6 suggested the dominance of antiferromagnetic interactions at low temperature, but no magnetic ordering down to 2 K was observed. Spin-polarized electronic structure calculations revealed magnetic frustration with dominant antiferromagnetic interactions.
Hemingway, B.S.; Robie, R.A.
1984-01-01
The heat capacities of a synthetic gehlenite and a natural staurolite were measured from 12 and 5 K, respectively, to 370 K by adiabatic calorimetry, and the heat capacities of staurolite were measured to 900 K by differential scanning calorimetry. At 298.15 K and 1 bar the entropy of gehlenite is 210.1 + or - 0.6 J/(mol.K) and that of staurolite is 1019.6 + or - 12.0 for H2Al2Fe4Al16Si8O48 and 1101.0 + or - 12.0 for 103(H3Al1.15Fe2+0.60)- 324(Fe2+2.07Fe3+0.54 Ti0.08Mn0.02Al1.19)(Mg0.44Al15.26)Si8O48. -J.A.Z.
Magnetic Properties and Phase Diagram of Ni50Mn_{50-x}Ga_{x/2}In_{x/2} Magnetic Shape Memory Alloys
NASA Astrophysics Data System (ADS)
Xu, Xiao; Yoshida, Yasuki; Omori, Toshihiro; Kanomata, Takeshi; Kainuma, Ryosuke
2016-12-01
Ni50Mn50- x Ga x/2In x/2 magnetic shape memory alloys were systematically prepared, and the magnetic properties as well as the phase diagram, including atomic ordering, martensitic and magnetic transitions, were investigated. The B2- L21 order-disorder transformation showed a parabolic-like curve against the Ga+In composition. The martensitic transformation temperature was found to decrease with increasing Ga+In composition and to slightly bend downwards below the Curie temperature of the parent phase. Spontaneous magnetization was investigated for both parent and martensite alloys. The magnetism of martensite phase was found to show glassy magnetic behaviors by thermomagnetization and AC susceptibility measurements.
Vacancy dynamic in Ni-Mn-Ga ferromagnetic shape memory alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merida, D., E-mail: david.merida@ehu.es; Elektrizitate eta Elektronika Saila, Euskal Herriko Unibertsitatea UPV/EHU, p.k. 644, 48080 Bilbao; García, J. A.
2014-06-09
Vacancies control any atomic ordering process and consequently most of the order-dependent properties of the martensitic transformation in ferromagnetic shape memory alloys. Positron annihilation spectroscopy demonstrates to be a powerful technique to study vacancies in NiMnGa alloys quenched from different temperatures and subjected to post-quench isothermal annealing treatments. Considering an effective vacancy type the temperature dependence of the vacancy concentration has been evaluated. Samples quenched from 1173 K show a vacancy concentration of 1100 ± 200 ppm. The vacancy migration and formation energies have been estimated to be 0.55 ± 0.05 eV and 0.90 ± 0.07 eV, respectively.
Sun, Wuzhu; Yang, Weiyi; Xu, Zhengchao; Li, Qi; Shang, Jian Ku
2016-01-27
Superparamagnetic nanocatalysts could minimize both the external and internal mass transport limitations and neutralize OH(-) produced in the reaction more effectively to enhance the catalytic nitrite reduction efficiency with the depressed product selectivity to undesirable ammonium, while possess an easy magnetic separation capability. However, commonly used qusi-monodispersed superparamagnetic Fe3O4 nanosphere is not suitable as catalyst support for nitrite reduction because it could reduce the catalytic reaction efficiency and the product selectivity to N2, and the iron leakage could bring secondary contamination to the treated water. In this study, protective shells of SiO2, polymethylacrylic acid, and carbon were introduced to synthesize Fe3O4@SiO2/Pd, Fe3O4@PMAA/Pd, and Fe3O4@C/Pd catalysts for catalytic nitrite reduction. It was found that SiO2 shell could provide the complete protection to Fe3O4 nanosphere core among these shells. Because of its good dispersion, dense structure, and complete protection to Fe3O4, the Fe3O4@SiO2/Pd catalyst demonstrated the highest catalytic nitrite reduction activity without the detection of NH4(+) produced. Due to this unique structure, the activity of Fe3O4@SiO2/Pd catalysts for nitrite reduction was found to be independent of the Pd nanoparticle size or shape, and their product selectivity was independent of the Pd nanoparticle size, shape, and content. Furthermore, their superparamagnetic nature and high saturation magnetization allowed their easy magnetic separation from treated water, and they also demonstrated a good stability during the subsequent recycling experiment.
LEAD SORPTION ON RUTHENIUM OXIDE: A MACROSCOPIC AND SPECTROSCOPIC STUDY
Metal oxide phases play an important role in governing the sorption and desorption mechanisms of metals in water, soils, and sediments. Many researchers have examined the efficiency of Pb sorption on Mn, Fe, Al, Ti, and Si oxide surfaces. Most studies concluded that adsorption ...
Kinetic parameters and structural variations in Cu-Al-Mn and Cu-Al-Mn-Mg shape memory alloys
NASA Astrophysics Data System (ADS)
Canbay, Canan Aksu
2017-02-01
In this work polycrystalline Cu-Al-Mn and Cu-Al-Mn-Mg SMAs were fabricated by arc melting. The thermal analysis was made to determine the characteristic transformation temperatures of the samples and kinetic parameters. Also the effect of Mg on transformation temperatures and kinetic parameters detected. The structural analysis was made to designate the diffraction planes of martensite phase at room temperature and this was supported by optical measurement observations.
Mn-Fe base and Mn-Cr-Fe base austenitic alloys
Brager, Howard R.; Garner, Francis A.
1987-09-01
Manganese-iron base and manganese-chromium-iron base austenitic alloys designed to have resistance to neutron irradiation induced swelling and low activation have the following compositions (in weight percent): 20 to 40 Mn; up to about 15 Cr; about 0.4 to about 3.0 Si; an austenite stabilizing element selected from C and N, alone or in combination with each other, and in an amount effective to substantially stabilize the austenite phase, but less than about 0.7 C, and less than about 0.3 N; up to about 2.5 V; up to about 0.1 P; up to about 0.01 B; up to about 3.0 Al; up to about 0.5 Ni; up to about 2.0 W; up to about 1.0 Ti; up to about 1.0 Ta; and with the remainder of the alloy being essentially iron.
Mn-Fe base and Mn-Cr-Fe base austenitic alloys
Brager, Howard R.; Garner, Francis A.
1987-01-01
Manganese-iron base and manganese-chromium-iron base austenitic alloys designed to have resistance to neutron irradiation induced swelling and low activation have the following compositions (in weight percent): 20 to 40 Mn; up to about 15 Cr; about 0.4 to about 3.0 Si; an austenite stabilizing element selected from C and N, alone or in combination with each other, and in an amount effective to substantially stabilize the austenite phase, but less than about 0.7 C, and less than about 0.3 N; up to about 2.5 V; up to about 0.1 P; up to about 0.01 B; up to about 3.0 Al; up to about 0.5 Ni; up to about 2.0 W; up to about 1.0 Ti; up to about 1.0 Ta; and with the remainder of the alloy being essentially iron.
González-Muñoz, María José; Garcimartán, Alba; Meseguer, Isabel; Mateos-Vega, Carmen José; Orellana, José María; Peña-Fernández, Antonio; Benedí, Juana; Sánchez-Muniz, Francisco J
2017-01-01
Emerging evidence suggests that by affecting mineral balance, aluminum (Al) may enhance some events associated with neurodegenerative diseases. To examine the effect of Al(NO3)3 exposure on brain Al, cooper (Cu), iron (Fe), magnesium (Mg), manganese (Mn), silicon (Si), and zinc (Zn) levels, and the metal-change implication in brain oxidant and inflammatory status. Four groups of six-week-old male NMRI mice were treated for three months: i) controls, administrated with deionized water; ii) Al, which received Al(NO3)3; iii) Al+silicic acid, which were given Al(NO3)3 plus silicic acid; and iv) Al+beer, which received Al(NO3)3 plus beer. Brain Al and TBARS levels and TNFα and GPx expressions increased, while Cu, Mn, and Zn levels, and catalase and CuZn-SOD expression decreased (at least, p < 0.05) in Al versus control animals. Al, Si, and TBARS levels and TNFα expression decreased (p < 0.05) in Al+silicic acid and Al+beer specimens while Cu, Mn, and Zn levels and antioxidant expression increased versus the Al group. Brain Al levels correlated negatively with those of Cu, Fe, Mn, and Zn, and catalase, CuZn-SOD, and GPx enzyme expressions but positively with Si and TBARS levels and TNFα expression. Two components of the principal component analysis (PCA) explained 71.2% of total data variance (p < 0.001). PCA connected the pro-oxidant markers with brain Al content, while brain Zn and Cu levels were closer to antioxidant enzyme expression. Administration of Al(NO3)3 induced metal imbalance, inflammation, and antioxidant status impairment in the brain. Those effects were blocked to a significant extent by silicic acid and beer administration.
NASA Astrophysics Data System (ADS)
Singamaneni, S. R.; Prater, J. T.; Glavic, A.; Lauter, V.; Narayan, J.
2018-05-01
This work reports polarized neutron reflectivity (PNR) measurements performed using the Magnetism Reflectometer at Oak Ridge National Laboratory on epitaxial BiFeO3(BFO)/La0.7Sr0.3MnO3(LSMO)/SrTiO3(STO)/MgO/TiN heterostructure deposited on Si (100) substrates. By measuring the angular dependence of neutrons reflected from the sample, PNR can provide insights on interface magnetic spin structure, chemical composition and magnetic depth profiles with a nanometer resolution. Our first analysis of nuclear scattering length density (NSLD) and magnetic scattering length density (MSLD) depth profiles measured at 4 K have successfully reproduced most of the expected features of this heterostructure, such as the NSLD for the Si, TiN, MgO, STO, LSMO layers and remanent magnetization (2.28μB/Mn) of bulk LSMO. However, the SLD of the BFO is decreased by about 30% from the expected value. When 5 V was applied across the BFO/LSMO interface, we found that the magnetic moment of the LSMO layer could be varied by about 15-20% at 6 K. Several mechanisms such as redistribution of oxygen vacancies, interface strain, charge screening and valence state change at the interface could be at play. Work is in progress to gain an improved in-depth understanding of these effects using MOKE and STEM-Z interface specific measurements.
NASA Astrophysics Data System (ADS)
Razumov, Nikolay G.; Popovich, Anatoly A.; Wang, QingSheng
2018-03-01
This paper presents the results of experimental studies on the treatment of Fe-23Cr-11Mn-1N high-nitrogen stainless steel powder alloys, synthesized by the mechanical alloying (MA) of elemental powders in the flow of a thermal plasma. Fe-23Cr-11Mn-1N high-nitrogen stainless steel powder alloys were prepared by MA in the attritor under an argon atmosphere. For spheroidization of Fe-23Cr-11Mn-1N high-nitrogen stainless steel powder alloys, the TekSphero 15 plant manufactured by Tekna Plasma Systems Inc was used. The studies have shown the possibility of obtaining Fe-23Cr-11Mn-1N high-nitrogen spherical powders steel alloys from the powder obtained by MA. According to the results of a series of experiments, it was found that the results of plasma spheroidization of powders essentially depend on the size of the fraction due to some difference in the particle shape and flowability, and on the gas regime of the plasma torch. It is established that during the plasma spheroidization process, some of the nitrogen leaves the alloy. The loss rate of nitrogen depends on the size of the initial particles.
Aronhime, Natan; Zoghlin, Eli; Keylin, Vladimir; ...
2017-09-26
Fe-Ni based metal amorphous nanocomposites (MANCs) are investigated in the pseudo-binary alloys (Fe 100–xNi x) 80Nb 4Si 2B 14. To optimize the soft magnetic properties of the nanocomposites, primary and secondary crystallization kinetics must be understood. As such, primary and secondary crystallization temperatures are determined by differential scanning calorimetry, and activation energies are calculated, along with the resulting crystalline phases. Time-temperature-transformation diagrams for primary and secondary crystallization in (Fe 70Ni 30) 80Nb 4Si 2B 14 are presented. Saturation magnetization and Curie temperature are determined. In conclusion, the shape of magnetization vs. time curves for (Fe 30Ni 70) 80Nb 4Si 2Bmore » 14 at various temperatures suggest that the secondary crystal product often consumes some of the primary crystalline product.« less
Singu, Bal Sydulu; Hong, Sang Eun; Yoon, Kuk Ro
2016-06-01
Sea-urchin shaped α-MnO2 hierarchical nano structures have been synthesized by facile thermal method without using any hard or soft template under the mild conditions. The structural and morphology of the 3D-MnO2 was characterized by X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). From the XRD analysis indicates that MnO2 present in the α form. Morphology analysis shows that α-MnO2 sea-urchins are made by stacked nanorods, the diameter and length of the stacked nanorods present in the range of 50-120 nm and 200-400 nm respectively. The electrochemical behaviour of α-MnO2 has been investigated by cyclic voltammetry (CV) and charge-discharge (CD). The specific capacitance, energy density and power density are 212.0 F g(-1), 21.2 Wh kg(-1) and 1200 W kg(-1) respectively at the current density of 2 A g(-1). The retention of the specific capacitance after completion of 1000 charge-discharge cycles is around 97%. The results reveal that the prepared Sea-urchin shaped α-MnO2 has high specific capacitance and exhibit excellent cycle life.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, N. K., E-mail: naikunsun@163.com; Guo, J.; Zhao, X. G., E-mail: xgzhao@imr.ac.cn
2015-03-02
La(Fe, Si){sub 13} hydride is regarded as one of the most promising room-temperature refrigerants. However, to use the alloys in an active magnetic regenerator machine, it is vital to prepare thin refrigerants. In this work, a high H{sub 2} gas pressure of 50 MPa was employed to suppress the desorption of hydrogen atoms during the sintering process of plate-shaped La{sub 0.5}Pr{sub 0.5}Fe{sub 11.4}Si{sub 1.6} hydrides. At 330 K, a high-density sintered thin plate shows a large magnetic-entropy change ΔS{sub m} of 15.5 J/kg K (106 mJ/cm{sup 3 }K) for a field change of 2 T. The volumetric ΔS{sub m} is almost twice as large as that ofmore » bonded La(Fe,Si){sub 13} hydrides. Favorably, hysteresis is almost absent due to the existence of micropores with a porosity of 0.69% which has been analyzed with high-resolution X-ray microtomography.« less
Unoccupied electronic structure of Ni 2MnGa ferromagnetic shape memory alloy
Maniraj, M.; D׳Souza, S. W.; Rai, Abhishek; ...
2015-08-20
Momentum resolved inverse photoemission spectroscopy measurements show that the dispersion of the unoccupied bands of Ni 2MnGa is significant in the austenite phase. Furthermore, in the martensite phase, it is markedly reduced, which is possibly related to the structural transition to an incommensurate modulated state in the martensite phase. Finally, based on the first principle calculations of the electronic structure of Ni–Mn–Ga, we show that the modification of the spectral shape with surface composition is related to change in the hybridization between the Mn 3d and Ni 3d-like states that dominate the unoccupied conduction band.
Temperature dependent evolution of wrinkled single-crystal silicon ribbons on shape memory polymers.
Wang, Yu; Yu, Kai; Qi, H Jerry; Xiao, Jianliang
2017-10-25
Shape memory polymers (SMPs) can remember two or more distinct shapes, and thus can have a lot of potential applications. This paper presents combined experimental and theoretical studies on the wrinkling of single-crystal Si ribbons on SMPs and the temperature dependent evolution. Using the shape memory effect of heat responsive SMPs, this study provides a method to build wavy forms of single-crystal silicon thin films on top of SMP substrates. Silicon ribbons obtained from a Si-on-insulator (SOI) wafer are released and transferred onto the surface of programmed SMPs. Then such bilayer systems are recovered at different temperatures, yielding well-defined, wavy profiles of Si ribbons. The wavy profiles are shown to evolve with time, and the evolution behavior strongly depends on the recovery temperature. At relatively low recovery temperatures, both wrinkle wavelength and amplitude increase with time as evolution progresses. Finite element analysis (FEA) accounting for the thermomechanical behavior of SMPs is conducted to study the wrinkling of Si ribbons on SMPs, which shows good agreement with experiment. Merging of wrinkles is observed in FEA, which could explain the increase of wrinkle wavelength observed in the experiment. This study can have important implications for smart stretchable electronics, wrinkling mechanics, stimuli-responsive surface engineering, and advanced manufacturing.
Controlling the switching field in nanomagnets by means of domain-engineered antiferromagnets
Folven, Eric; Linder, J.; Gomonay, O. V.; ...
2015-09-14
Using soft x-ray spectromicroscopy, we investigate the magnetic domain structure in embedded nanomagnets defined in La 0.7Sr 0.3MnO 3 thin films and LaFeO 3/La 0.7Sr 0.3MnO 3 bilayers. We find that shape-controlled antiferromagnetic domain states give rise to a significant reduction of the switching field of the rectangular nanomagnets. This is discussed within the framework of competition between an intrinsic spin-flop coupling and shape anisotropy. In conclusion, the data demonstrates that shape effects in antiferromagnets may be used to control the magnetic properties in nanomagnets.
Controlling the switching field in nanomagnets by means of domain-engineered antiferromagnets
NASA Astrophysics Data System (ADS)
Folven, E.; Linder, J.; Gomonay, O. V.; Scholl, A.; Doran, A.; Young, A. T.; Retterer, S. T.; Malik, V. K.; Tybell, T.; Takamura, Y.; Grepstad, J. K.
2015-09-01
Using soft x-ray spectromicroscopy, we investigate the magnetic domain structure in embedded nanomagnets defined in L a0.7S r0.3Mn O3 thin films and LaFe O3/L a0.7S r0.3Mn O3 bilayers. We find that shape-controlled antiferromagnetic domain states give rise to a significant reduction of the switching field of the rectangular nanomagnets. This is discussed within the framework of competition between an intrinsic spin-flop coupling and shape anisotropy. The data demonstrates that shape effects in antiferromagnets may be used to control the magnetic properties in nanomagnets.
Microstructural Influence on Dynamic Properties of Age Hardenable FeMnAl Alloys
2011-04-01
precipitated . In alloys without silicon, β-Mn nucleates within the ferrite . In alloys with silicon, a DO3 intermetallic phase precipitates ...Figure 7 compares the 2.24% Si alloy at 950°C and 1000°C. At 950°C the growth of ferrite and the precipitation of an intermetallic phase is apparent...whereas the alloy remains predominately austenite with 2 vol.% ferrite at 1000°C. The intermetallic phase appears as prism-rods precipitated
Discovery of the Fe-analogue of akimotoite in the shocked Suizhou L6 chondrite
Bindi, Luca; Chen, Ming; Xie, Xiande
2017-01-01
We report the first natural occurrence of the Fe-analogue of akimotoite, ilmenite-structured MgSiO3, a missing phase among the predicted high-pressure polymorphs of Fe-pyroxene, with the composition (Fe2+0.48Mg0.37Ca0.04Na0.04Mn2+0.03Al0.03Cr3+0.01)Σ=1.00Si1.00O3. The new mineral was approved by the International Mineralogical Association (IMA 2016-085) and named hemleyite in honour of Russell J. Hemley. It was discovered in an unmelted portion of the heavily shocked L6 Suizhou chondrite closely associated to olivine, clinoenstatite and Fe-bearing pyroxene with a composition nearly identical to that of hemleyite. We also report the first single-crystal X-ray diffraction study of a Si-bearing, ilmenite-structured phase. The fact that hemleyite formed in a meteorite exposed to high pressures (<20 GPa) and temperatures (<2000 °C) during impact-induced shocks indicates that it could play a crucial role at the bottom of the Earth’s mantle transition zone and within the uppermost lower mantle. PMID:28198399
Diamond and Unusual Minerals Discovered from the Chromitite in Polar Ural: A First Report
NASA Astrophysics Data System (ADS)
Yang, J.; Bai, W.; Fang, Q.; Meng, F.; Chen, S.; Zhang, Z.
2007-12-01
Ultrahigh pressure (UHP) minerals, such as diamond, coesite, and pseudomorphs of octahedral olivine, and as well as about 80 other mineral species have been recovered from podiform chromitites of the Luobusa ophiolite, southern Tibet, and a new mineral, Luobusaite (Fe0.82Si2), has been approved recently by CNMMN. The UHP minerals from Luobusa are controversial because they have not found in situ and because ophiolites are currently believed to form at shallow levels above oceanic spreading centers. More detailed study and experimental work are needed to understand the origin and significance of these unusual minerals and investigations of other ophiolites are needed to determine if such minerals occur elsewhere. For this purpose, we collected about 1500 kg of chromitite from two orebodies in an ultramafic body in the Polar Urals. Thus far, more than 60 different mineral species have been separated from these ores. The most exciting discovery is the common occurrence of diamond, a typical UHP mineral in the Luobusa chromitites. Diamonds from Ural chromitite are clear, colorless, well-developed crystals with octahedral morphology, generally 0.2-0.3 mm in size. Attached with the diamonds and perhaps also occurring as inclusions within them are many minerals as chromite, MnNiCrFe alloy, native Si and Ta, corundum, zircon, feldspar, garnet, moissanite, confirming their natural origin and suggesting a long residence time in the mantle. Other mineral group include: (1) native elements: Cr, W, Ni, Co, Si, Al and Ta; (2) carbides: SiC and WC; (3) alloys: Cr-Fe, Si-Al-Fe, Ni-Cu, Ag-Au, Ag-Sn, Fe-Si, Fe-P, and Ag-Zn-Sn; (4) oxides: NiCrFe, PbSn, REE, rutile and Si- bearing rutile, ilmenite, corundum, chromite, MgO, and SnO2; (5) silicates: kyanite, pseudomorphs of octahedral olivine, zircon, garnet, feldspar, and quartz,; (6) sulfides of Fe, Ni, Cu, Mo, Pb, Ab, AsFe, FeNi, CuZn, and CoFeNi; and (7) iron groups: native Fe, FeO, and Fe2O3. These minerals are very similar in composition and structure to those reported from the Luobusa chromitites. For examples, some spherules of native iron contain spherical inclusions of FeO, exactly like comparable grains in the Luobusa sample.
Cysteine-functionalized silica-coated magnetite nanoparticles as potential nanoadsorbents
NASA Astrophysics Data System (ADS)
Enache, Daniela F.; Vasile, Eugenia; Simonescu, Claudia M.; Răzvan, Anca; Nicolescu, Alina; Nechifor, Aurelia-Cristina; Oprea, Ovidiu; Pătescu, Rodica-Elena; Onose, Cristian; Dumitru, Florina
2017-09-01
Fe3O4, Fe3O4@SiO2, and Fe3O4@SiO2@ICPTES-cysteine MNPs have been prepared by the deposition of silica onto magnetite nanoparticles via controlled hydrolysis of TEOS. The new formed silica surface has been functionalized by grafting 3-(triethoxysilyl) propyl isocyanate (ICPTES) and, subsequently, by condensation of isocyanate moiety with cysteine. The morphology of magnetic silica nanoparticles has been investigated by FTIR, PXRD, TEM-HRTEM/SEM/EDX as well as TG experiments. HRTEM microscopy revealed that the Fe3O4, Fe3O4@SiO2 and Fe3O4@SiO2@ICPTES-cysteine nanoparticles are all of spherical shape with particle of ca. 10-30 nm diameters and the silica-coated magnetites have a core-shell structure. Fe3O4, Fe3O4@SiO2, and Fe3O4@SiO2@ICPTES-cysteine MNPs have been tested for their sorption capacity of Pb(II) from synthetic aqueous solutions and the influence of pH solution, contact time, initial heavy metal ion concentrations, and adsorption isotherms on the sorption behavior were also studied. The kinetic studies revealed that the Pb(II) sorption process is mainly controlled by chemical mechanisms. Fe3O4@SiO2@ICPTES-cysteine, with a sorption capacity of 81.8 mg Pb(II)/g, has the potential to be an efficient Pb(II) adsorbent.
Control of Vibration in Mechanical Systems Using Shaped Reference Inputs
1988-01-01
damping with several discrete actuators. Burke and Hubbard 34! generated a distributed control law by applying a piezoelectric film to the beam that...setpoints from successive memory locations. DATA-kYOVE (- starts servoing to setpoints from successive memory locations for mnicro scified by MN while taking
Copper modified austenitic stainless steel alloys with improved high temperature creep resistance
Swindeman, R.W.; Maziasz, P.J.
1987-04-28
An improved austenitic stainless steel that incorporates copper into a base Fe-Ni-Cr alloy having minor alloying substituents of Mo, Mn, Si, T, Nb, V, C, N, P, B which exhibits significant improvement in high temperature creep resistance over previous steels. 3 figs.
NASA Astrophysics Data System (ADS)
Choi, Yun-Il; Beom, Won-Jin; Park, Chan-Jin; Paik, Doojin; Hong, Moon-Hi
2010-12-01
This study examined the surface oxidation of high-strength steels electrodeposited with Cu or Fe and the resultant defect formation in their coating during the following galvanizing and galvannealing processes. The high-strength steels were coated with an Cu or Fe layer by the electroplating method. Then, the coated steels were annealed in a reducing atmosphere, dipped in a molten zinc, and finally transformed into galvannealed steels through the galvannealing process. The formation of Si and Mn oxides on the surface of the high-strength steel was effectively suppressed, and the density of surface defects on the galvanized steel was significantly reduced by the pre-electrodeposition of Cu and Fe. This effect was more prominent for the steels electrodeposited at higher cathodic current densities. The finer electrodeposit layer formed at higher cathodic current density on the steels enabled the suppression of partial surface oxidation by Mn or Si and better wetting of Zn on the surface of the steels in the following galvanizing process. Furthermore, the pre-electrodeposited steels exhibited a smoother surface without surface cracks after the galvannealing process compared with the untreated steel. The diffusion of Fe and Zn in the Zn coating layer in the pre-electrodeposited steels appears to occur more uniformly during the galvannealing process due to the low density of surface defects induced by oxides.
Mn cycling in marine biofilms: effect on the rate of localized corrosion.
Dexter, S C; Xu, K; Luther, G L
2003-04-01
Microelectrodes of the Au-Hg amalgam type have been used together with square wave voltammetry to measure profiles of oxygen, peroxide, Fe, Mn and sulfur chemical species through the thickness of natural assemblage marine biofilms grown on stainless steel alloy Nitronic 50 (UNS S20910). The data show Mn+2 and peroxide together at locations where the dissolved oxygen concentration was low. Oxidized species of Fe were also found at some locations. Sulfur species (predominantly S-2) was often found at locations where the dissolved oxygen concentration was below the detectable limit. Confocal scanning laser microscopy was used to image the microbial assemblage at the locations of the chemical profile data. Organisms with a filamentous morphology were found in consortia with rod and coccoidal shaped microbes at locations where dissolved Mn and peroxide were measured. The filamentous forms were usually absent at locations where Mn was not detected. It is suggested that the filamentous organisms may be Mn metabolizers, and that peroxidatic Mn re-oxidation may be taking place within the biofilm.
Magnetization Processes in Ribbons of Soft Magnetic Amorphous Alloys
NASA Astrophysics Data System (ADS)
Skulkina, N. A.; Ivanov, O. A.; Mazeeva, A. K.; Kuznetsov, P. A.; Stepanova, E. A.; Blinova, O. V.; Mikhalitsyna, E. A.
2018-02-01
Using iron-based (Fe-B-Si-C; Fe-Ni-Si-B) and cobalt-based (Co-Fe-Ni-Cr-Mn-Si-B) soft magnetic alloys as examples, we have studied the dependences of the remanence measured using minor hysteresis loops on the maximum induction. The different degrees of stabilization of the 180° and 90° domain walls allows these dependences to be used to analyze the magnetization processes that occur in the rapidly quenched soft magnetic alloys. It has been established from the B r( B m) dependences that, in the ribbons of soft magnetic amorphous alloys, the processes of the rotation of the magnetization oriented perpendicular to the ribbon plane start before the end of the processes of the displacement of the walls of domains with planar magnetization. After the end of the magnetization rotation processes, the magnetization processes can be interpreted as the displacement of the domain walls with a planar magnetization accompanied by a decrease in their number and a transition to a bistable state.
On the Formation of Sludge Intermetallic Particles in Secondary Aluminum Alloys
NASA Astrophysics Data System (ADS)
Ferraro, Stefano; Bjurenstedt, Anton; Seifeddine, Salem
2015-08-01
The primary precipitation of Fe-rich intermetallics in AlSi9Cu3(Fe) type alloys is studied for different Fe, Mn, and Cr contents and cooling rates. Differential scanning calorimetry, thermal analysis, and interrupted solidification with a rapid quenching technique were used in combination in order to assess the nucleation temperature of sludge particles, as well as to follow their evolution. The results revealed that the sludge nucleation temperature and the release of latent heat during sludge formation are functions of Fe, Mn, and Cr levels in the molten alloy ( i.e., the sludge factor, SF) and cooling rate. Moreover, it can be concluded that sensitivity to sludge formation is not affected by cooling rate; i.e., a decrease in the SF will reduce sludge nucleation temperature to the same extent for a higher cooling rate as for a lower cooling rate. The sludge formation temperature detected will assist foundries in setting the optimal molten metal temperature for preventing sludge formation in holding furnaces and plunger systems.
Near surface silicide formation after off-normal Fe-implantation of Si(001) surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khanbabaee, B., E-mail: khanbabaee@physik.uni-siegen.de; Pietsch, U.; Lützenkirchen-Hecht, D.
We report on formation of non-crystalline Fe-silicides of various stoichiometries below the amorphized surface of crystalline Si(001) after irradiation with 5 keV Fe{sup +} ions under off-normal incidence. We examined samples prepared with ion fluences of 0.1 × 10{sup 17} and 5 × 10{sup 17} ions cm{sup −2} exhibiting a flat and patterned surface morphology, respectively. Whereas the iron silicides are found across the whole surface of the flat sample, they are concentrated at the top of ridges at the rippled surface. A depth resolved analysis of the chemical states of Si and Fe atoms in the near surface region was performed by combining X-raymore » photoelectron spectroscopy and X-ray absorption spectroscopy (XAS) using synchrotron radiation. The chemical shift and the line shape of the Si 2p core levels and valence bands were measured and associated with the formation of silicide bonds of different stoichiometric composition changing from an Fe-rich silicides (Fe{sub 3}Si) close to the surface into a Si-rich silicide (FeSi{sub 2}) towards the inner interface to the Si(001) substrate. This finding is supported by XAS analysis at the Fe K-edge which shows changes of the chemical environment and the near order atomic coordination of the Fe atoms in the region close to surface. Because a similar Fe depth profile has been found for samples co-sputtered with Fe during Kr{sup +} ion irradiation, our results suggest the importance of chemically bonded Fe in the surface region for the process of ripple formation.« less
Elastocaloric effect in CuAlZn and CuAlMn shape memory alloys under compression
Qian, Suxin; Wang, Yi; Pillsbury, Thomas E.; Hada, Yoshiharu; Yamaguchi, Yuki; Fujimoto, Kenjiro; Hwang, Yunho; Radermacher, Reinhard; Cui, Jun; Yuki, Yoji; Toyotake, Koutaro; Takeuchi, Ichiro
2016-01-01
This paper reports the elastocaloric effect of two Cu-based shape memory alloys: Cu68Al16Zn16 (CuAlZn) and Cu73Al15Mn12 (CuAlMn), under compression at ambient temperature. The compression tests were conducted at two different rates to approach isothermal and adiabatic conditions. Upon unloading at a strain rate of 0.1 s−1 (adiabatic condition) from 4% strain, the highest adiabatic temperature changes (ΔTad) of 4.0 K for CuAlZn and 3.9 K for CuAlMn were obtained. The maximum stress and hysteresis at each strain were compared. The stress at the maximum recoverable strain of 4.0% for CuAlMn was 120 MPa, which is 70% smaller than that of CuAlZn. A smaller hysteresis for the CuAlMn alloy was also obtained, about 70% less compared with the CuAlZn alloy. The latent heat, determined by differential scanning calorimetry, was 4.3 J g−1 for the CuAlZn alloy and 5.0 J g−1 for the CuAlMn alloy. Potential coefficients of performance (COPmat) for these two alloys were calculated based on their physical properties of measured latent heat and hysteresis, and a COPmat of approximately 13.3 for CuAlMn was obtained. This article is part of the themed issue ‘Taking the temperature of phase transitions in cool materials’. PMID:27402936
Computational investigation of half-Heusler compounds for spintronics applications
NASA Astrophysics Data System (ADS)
Ma, Jianhua; Hegde, Vinay I.; Munira, Kamaram; Xie, Yunkun; Keshavarz, Sahar; Mildebrath, David T.; Wolverton, C.; Ghosh, Avik W.; Butler, W. H.
2017-01-01
We present first-principles density functional calculations of the electronic structure, magnetism, and structural stability of 378 XYZ half-Heusler compounds (with X = Cr, Mn, Fe, Co, Ni, Ru, Rh; Y = Ti, V, Cr, Mn, Fe, Ni; Z = Al, Ga, In, Si, Ge, Sn, P, As, Sb). We find that a "Slater-Pauling gap" in the density of states (i.e., a gap or pseudogap after nine states in the three atom primitive cell) in at least one spin channel is a common feature in half-Heusler compounds. We find that the presence of such a gap at the Fermi energy in one or both spin channels contributes significantly to the stability of a half-Heusler compound. We calculate the formation energy of each compound and systematically investigate its stability against all other phases in the open quantum materials database (OQMD). We represent the thermodynamic phase stability of each compound as its distance from the convex hull of stable phases in the respective chemical space and show that the hull distance of a compound is a good measure of the likelihood of its experimental synthesis. We find low formation energies and mostly correspondingly low hull distances for compounds with X = Co, Rh, or Ni, Y = Ti or V, and Z = P, As, Sb, or Si. We identify 26 18-electron semiconductors, 45 half-metals, and 34 near half-metals with negative formation energy that follow the Slater-Pauling rule of three electrons per atom. Our calculations predict several new, as-yet unknown, thermodynamically stable phases, which merit further experimental exploration—RuVAs, CoVGe, FeVAs in the half-Heusler structure, and NiScAs, RuVP, RhTiP in the orthorhombic MgSrSi-type structure. Further, two interesting zero-moment half-metals, CrMnAs and MnCrAs, are calculated to have negative formation energy. In addition, our calculations predict a number of hitherto unreported semiconducting (e.g., CoVSn and RhVGe), half-metallic (e.g., RhVSb), and near half-metallic (e.g., CoFeSb and CoVP) half-Heusler compounds to lie close to the respective convex hull of stable phases, and thus may be experimentally realized under suitable synthesis conditions, resulting in potential candidates for various semiconducting and spintronics applications.
Geochemical Evidence Against Pyroxenites in the Sources of Hawaiian Volcanoes
NASA Astrophysics Data System (ADS)
Humayun, M.; Yang, S.; Clague, D. A.
2017-12-01
Hawaiian lavas exhibit high Fe/Mn ratios, and other elemental and isotopic characteristics, that have been argued to be evidence for chemical interactions at the core-mantle boundary. Alternatively, the enrichment in silica relative to 3 GPa melts of garnet peridotite, and the high Fe/Mn, has been argued to represent the contributions of garnet pyroxenite melts generated beneath a thick lithosphere. Here, we present a set of new elemental ratios designed to effectively discriminate partial melts of peridotite from pyroxenite in mantle sources. A set of 200 Hawaiian volcanic glasses from 7 volcanoes were analyzed by LA-ICP-MS for the abundances of 63 elements, with an emphasis on obtaining precise Ge/Si ratios. From experimental partitioning, silica-rich partial melts of MORB-like garnet pyroxenite are expected to have low Ge/Si ratios relative to their sources due to the retention of Ge in the residue by both garnet and pyroxene. In contrast, partial melts of peridotite are expected to have high Ge/Si ratios relative to mantle peridotites due to the incompatibility of Ge in olivine. We observed that Ge abundances in subaerial Hawaiian volcanoes are correlated with indicators of volcanic degassing, including S, Re and As. Subaerial and submarine lavas exhibit a correlation between Ge/Si ratio and S content that indicates that all Hawaiian lavas share the same pre-eruptive Ge/Si ratio. Submarine glasses with the least evidence of degassing exhibit a constant Ge/Si ratio over the range of SiO2 (44-52 %) observed in Hawaiian volcanics. Surprisingly, MORB glasses exhibit more variation in Ge/Si ratio than the pre-eruptive Ge/Si of Hawaiian glasses, implying the presence of 0-12% recycled crust in the MORB source. The constant Ge/Si ratio of Hawaiian glasses implies that pyroxenite melting did not enrich Hawaiian lavas in silica. Processes that could yield Si-rich melts without changing the Ge/Si ratio may involve melt-lithosphere interaction or bridgmanite/ferropericlase fractionation in the deep mantle.
Huang, L.; Cong, D. Y.; Ma, L.; ...
2015-07-02
A polycrystalline Ni 41Co 9Mn 40Sn 10 (at. %) magnetic shape memory alloy was prepared by arc melting and characterized mainly by magnetic measurements, in-situ high-energy X-ray diffraction (HEXRD), and mechanical testing. A large magnetoresistance of 53.8% (under 5 T) and a large magnetic entropy change of 31.9 J/(kg K) (under 5 T) were simultaneously achieved. Both of these values are among the highest values reported so far in Ni-Mn-Sn-based Heusler alloys. The large magnetic entropy change, closely related to the structural entropy change, is attributed to the large unit cell volume change across martensitic transformation as revealed by ourmore » in-situ HEXRD experiment. Furthermore, good compressive properties were also obtained. Lastly, the combination of large magnetoresistance, large magnetic entropy change, and good compressive properties, as well as low cost makes this alloy a promising candidate for multifunctional applications.« less
NASA Astrophysics Data System (ADS)
Beran, L.; Cejpek, P.; Kulda, M.; Antos, R.; Holy, V.; Veis, M.; Straka, L.; Heczko, O.
2015-05-01
Optical and magneto-optical properties of single crystal of Ni50.1Mn28.4Ga21.5 magnetic shape memory alloy during its transformation from martensite to austenite phase were systematically studied. Crystal orientation was approximately along {100} planes of parent cubic austenite. X-ray reciprocal mapping confirmed modulated 10 M martensite phase. Temperature depended measurements of saturation magnetization revealed the martensitic transformation at 335 K during heating. Magneto-optical spectroscopy and spectroscopic ellipsometry were measured in the sample temperature range from 297 to 373 K and photon energy range from 1.2 to 6.5 eV. Magneto-optical spectra of polar Kerr rotation as well as the spectra of ellipsometric parameter Ψ exhibited significant changes when crossing the transformation temperature. These changes were assigned to different optical properties of Ni-Mn-Ga in martensite and austenite phases due to modification of electronic structure near the Fermi energy during martensitic transformation.
Sánchez-Alarcos, V; Pérez-Landazábal, J I; Recarte, V; Rodríguez-Velamazán, J A; Chernenko, V A
2010-04-28
The influence of long-range L2(1) atomic order on the martensitic and magnetic transformations of Ni-Mn-Ga shape memory alloys has been investigated. In order to correlate the structural and magnetic transformation temperatures with the atomic order, calorimetric, magnetic and neutron diffraction measurements have been performed on polycrystalline and single-crystalline alloys subjected to different thermal treatments. It is found that both transformation temperatures increase with increasing atomic order, showing exactly the same linear dependence on the degree of L2(1) atomic order. A quantitative correlation between atomic order and transformation temperatures has been established, from which the effect of atomic order on the relative stability between the structural phases has been quantified. On the other hand, the kinetics of the post-quench ordering process taking place in these alloys has been studied. It is shown that the activation energy of the ordering process agrees quite well with the activation energy of the Mn self-diffusion process.
NASA Astrophysics Data System (ADS)
Kumar, E. Ranjith; Kamzin, A. S.; Janani, K.
2016-11-01
Microstructure, morphological and gas sensor studies of Mn substituted cobalt ferrite nanoparticles synthesized by a simple evaporation method and auto- combustion method. The influence of heat treatment on phase and particle size of spinel ferrite nanoparticles were determined by X-ray diffraction and Mossbauer spectroscopy. The XRD study reveals that the lattice constant and crystallite size of the samples increases with the increase of annealing temperature. Last one was confirmed by Mossbauer data. The lowest size of particles of MnCoFe2O4 (~3 nm) is obtained by auto combustion method. The spherical shaped nanoparticles are recorded by TEM. Furthermore, conductance response of Mn-Co ferrite nanomaterial was measured by exposing the material to reducing gas like liquefied petroleum gas (LPG) which showed a sensor response of ~0.19 at an optimum operating temperature of 250 °C.
Desert Varnish - Preservation of Biofabrics/Implcations for Mars
NASA Technical Reports Server (NTRS)
Probst, Luke W.; Allen, Carlton C.; Thomas-Keprta, Kathie L.; Clemett, Simon J.; Longazo, Teresa G.; Nelman-Gonzalez, Mayra A.; Sams, Clarence
2002-01-01
Desert varnish is the orange to dark brown rind that accumulates on exposed rock surfaces in many arid environments. Samples from the Sonoran Desert of Arizona are composed predominantly of clays (illite, smectite) and Mn- and Fe- oxides (birnessite, hematite). Features that appear to be single organisms are found within the varnish and at the rock-varnish interface. Many of these features are embedded in films that strongly resemble the water-rich extracellular polysaccharides produced by diverse microorganisms. Most common are rod-shaped celllike objects, 0.5-2 microns in the longest dimension, located within the varnish coatings. Some of these objects are shown to contain amines by fluorescence microscopy. The rod-shaped objects are observed in various states of degradation, as indicated by C and S abundances. Rods with higher C and S abundances appear less degraded than those with lower concentrations of these two elements. Regions rich in apparent microbes are present, while other regions display Mn- and Fe-rich mineral fabrics with microbe-sized voids and no obvious cells. These textures are interpreted as biofabrics, preserved by the precipitation of Mn and Fe minerals. We are researching the preservation of biofabrics by desert varnish in Earth's geological record. Rock coatings may similarly preserve evidence of microbial life on the hyper-arid surface of Mars.
Liu, Yulin; Huang, Gaoren; Sun, Yimeng; Zhang, Li; Huang, Zhenwei; Wang, Jijie; Liu, Chunzhong
2016-01-29
Mn was an important alloying element used in Al-Mg-Mn alloys. However, it had to be limited to a low level (<1.0 wt %) to avoid the formation of coarse intermetallics. In order to take full advantage of the benefits of Mn, research was carried out to investigate the possibility of increasing the content of Mn by studying the effect of cooling rate on the formation of Fe- and Mn-rich intermetallics at different content levels of Mn and Fe. The results indicated that in Al-5Mg-Mn alloy with low Fe content (<0.1 wt %), intermetallic Al₆(Fe,Mn) was small in size and amount. With increasing Mn content, intermetallic Al₆(Fe,Mn) increased, but in limited amount. In high-Fe-containing Al-5Mg-Mn alloys (0.5 wt % Fe), intermetallic Al₆(Fe,Mn) became the dominant phase, even in the alloy with low Mn content (0.39 wt %). Cooling rate played a critical role in the refinement of the intermetallics. Under near-rapid cooling, intermetallic Al₆(Fe,Mn) was extremely refined. Even in the high Mn and/or high-Fe-containing alloys, it still demonstrated fine Chinese script structures. However, once the alloy composition passed beyond the eutectic point, the primary intermetallic Al₆(Fe,Mn) phase displayed extremely coarse platelet-like morphology. Increasing the content of Fe caused intermetallic Al₆(Fe,Mn) to become the primary phase at a lower Mn content.
NASA Astrophysics Data System (ADS)
Nawaz, S.; Roy, S.; Tulapurkar, A. A.; Palkar, V. R.
2017-03-01
Magnetoelectric multiferroic PbTi0.5Fe0.5O3 films are deposited on a ⟨100⟩ conducting p-Si substrate without any buffer layer by using pulsed laser deposition and characterized for possible non-volatile memory applications. Their crystalline structure and surface morphology were characterized by using x-ray diffraction and AFM techniques. HRTEM was employed to determine the film-substrate interface. The electronic structure of the film was investigated by XPS, and no signature of metal was found for all the elements. The chemical shift of the Ti 2p XPS peak is attributed to the replacement of Ti with Fe in the PbTiO3 matrix. Piezoelectric force microscopy (PFM) results indicate the 180° phase shift of ferroelectric polarization. The upward self-polarization phenomenon is also observed in the PFM study. Magnetic and magneto-electric coupling measurements were carried out to confirm the magnetic nature and electro-magnetic coupling characteristics. C-V measurements exhibit clock-wise hysteresis loops with a maximum memory window of 1.2 V and a sweep voltage of ±7 V. This study could influence the fabrication of silicon compatible multiple memory device structures.
Analysis of XPS spectra of Fe 2+ and Fe 3+ ions in oxide materials
NASA Astrophysics Data System (ADS)
Yamashita, Toru; Hayes, Peter
2008-02-01
Samples of the iron oxides Fe 0.94O, Fe 3O 4, Fe 2O 3, and Fe 2SiO 4 were prepared by high temperature equilibration in controlled gas atmospheres. The samples were fractured in vacuum and high resolution XPS spectra of the fractured surfaces were measured. The peak positions and peak shape parameters of Fe 3p for Fe 2+ and Fe 3+ were derived from the Fe 3p XPS spectra of the standard samples of 2FeO·SiO 2 and Fe 2O 3, respectively. Using these parameters, the Fe 3p peaks of Fe 3O 4 and Fe 1- yO are analysed. The results indicate that high resolution XPS techniques can be used to determine the Fe 2+/Fe 3+ ratios in metal oxides. The technique has the potential for application to other transition metal oxide systems.
Structure of Ancient Glass by 29 Si Magic Angle Spinning NMR Spectroscopy.
Bradford, Henry; Ryder, Amy; Henderson, Julian; Titman, Jeremy J
2018-05-23
29 Si magic angle spinning (MAS) NMR spectroscopy has been applied for the first time to the structural analysis of ancient glass samples obtained from archaeological excavations. The results show that it is possible to establish the distribution of Si environments in ancient glass by 29 Si MAS NMR, so long as the concentrations of magnetic impurities, such as Mn and Fe oxides, are low. In general, good agreement has been obtained with compositions determined by means of electron probe microanalysis. In addition, the 29 Si MAS NMR data reveal structural differences between glasses manufactured at separate ancient sites. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Galvanizing and Galvannealing Behavior of CMnSiCr Dual-Phase Steels
NASA Astrophysics Data System (ADS)
Lin, Ko-Chun; Chu, Peng-Wei; Lin, Chao-Sung; Chen, Hon-Bor
2013-06-01
Alloying elements, such as Mn, Mo, Si, and Cr, are commonly used to enhance the strength of advanced high-strength steels. Those elements also play an important role in the hot-dip galvanizing (GI) and galvannealing (GA) process. In this study, two kinds of CMnSiCr dual-phase steels were galvanized and galvannealed using a hot-dip simulator to investigate the effect of the alloying elements on the microstructure of the GI and GA coatings. The results showed that the dual-phase steels had good galvanizability because no bare spots were observed and the Fe-Zn phases were readily formed at the interface. However, the alloying reaction during the GA process was significantly hindered. XPS analysis showed that external oxidation occurred under an extremely low dew point [213 K to 203 K (-60 °C to -70 °C)] atmosphere during the annealing prior to hot dipping. However, most of the oxides were reduced during the GI process. After the GI process, the Al was present as solid solutes in the Fe-Zn phase, suggesting that the Fe-Zn phase was formed from the transformation of the Fe-Al inhibition alloy. Meanwhile, the solubility of Si in the ζ phase was extremely low. With continued GA reaction, the ζ phase transformed into the δ phase, which contained approximately 1.0 at.pct Si. The Si also diffused into the Zn layer during the GA reaction. Hence, the ζ phase did not homogeneously nucleate at the steel substrate/Zn coating interface, but was found at the area away from the interface. Therefore, the Fe-Zn phases on the CMnSiCr dual-phase steels were relatively non-uniform compared to those on interstitial-free steel.
Zhang, Nan; Peng, Hanyong; Hu, Bin
2012-05-30
We report here the preparation of high-magnetization Fe(3)O(4)@SiO(2)@TiO(2) nanoparticles for solid phase extraction of trace amounts of Cd(II), Cr(III), Mn(II) and Cu(II) from environmental waters. The prepared nanoparticles were characterized by scanning electron micrograph (SEM) and transmission electron microscopy (TEM). The high-magnetization nanoparticles carrying the target metals could be easily and fast separated from the aqueous solution simply by applying an external magnetic field while no filtration or centrifugation was necessary. A light-induced hydroxide ion emitter, molecular malachite green carbinol base (MGCB) was applied to adjust pH value of solution for quantitative adsorption instead of the conventional used buffer. In the presence of UV light, MGCB gives out OH(-) ions, and this leads to an increase in the pH value without the aid of buffer solution. Using high-magnetization Fe(3)O(4)@SiO(2)@TiO(2) nanoparticles as the extraction material and the light-induced MGCB for pH adjustment, we developed an efficient and convenient two-step method for separation/preconcentration trace amounts of Cd(II), Cr(III), Mn(II) and Cu(II) in environmental water samples followed by inductively coupled plasma mass spectrometry (ICP-MS) detection. The parameters affecting the extraction such as MGCB concentration, exposal time, sample volume, eluent condition, and interfering ions have been investigated in detail. Under the optimized conditions, the limits of detection for Cd(II), Cr(III), Mn(II) and Cu(II) were 4.0, 2.6, 1.6 and 2.3 ng L(-1), respectively, and the relative standard deviations (RSDs, c=1 μg L(-1), n=7) were 3.6%, 4.5%, 4.0 and 4.1%, respectively. The proposed method has been validated using certified reference materials, and it has been successfully applied in the determination of trace Cd(II), Cr(III), Mn(II) and Cu(II) in environmental water samples. Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xin; Niu, Yongan; Li, Yang
2014-03-15
The spindle α-Fe{sub 2}O{sub 3}@SiO{sub 2} core–shell nanoparticles (NPs) are prepared via hydrothermal synthesis and modified Stöber method. During these processes, shell thicknesses could be easily adjusted by the amount of tetraethylorthosilicate (TEOS), and the formation of core-free SiO{sub 2} could be effectively avoided. The structures and compositions of α-Fe{sub 2}O{sub 3}@SiO{sub 2} NPs are investigated by transmission electron microscope (TEM), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and ultraviolet–visible (UV–vis) absorption spectroscopy. These results reveal that the α-Fe{sub 2}O{sub 3}@SiO{sub 2} NPs with certain sizes are monodisperse and homogeneous. To estimate the thermal stability, the α-Fe{sub 2}O{submore » 3}, α-Fe{sub 2}O{sub 3}@SiO{sub 2} and SiO{sub 2} NPs are annealed at 600, 800 and 1000 °C for 1 h under air atmosphere, respectively. Furthermore, the stabilities of these NPs are confirmed by thermal analysis methods. The structure and shape stabilities of these as-prepared α-Fe{sub 2}O{sub 3}@SiO{sub 2} NPs are investigated by XRD and scanning electron microscope (SEM). -- Graphical abstract: Schematic of preparation of the monodisperse spindle α-Fe{sub 2}O{sub 3}@SiO{sub 2} nanoparticles (NPs). Highlights: • The spindle α-Fe{sub 2}O{sub 3}@SiO{sub 2} nanoparticles (NPs) are successfully prepared by hydrothermal synthesis and modified Stöber method. • Optical properties are estimated and calculated by UV vis absorption spectrum. • Thermal stability of the α-Fe{sub 2}O{sub 3}, α-Fe{sub 2}O{sub 3}@SiO{sub 2} and SiO{sub 2} NPs are compared and analyzed by the SEM technique. • The structural changes of α-Fe{sub 2}O{sub 3}@SiO{sub 2} NPs are measured by XRD measurement.« less
NASA Astrophysics Data System (ADS)
Raland, R. D.; Saikia, D.; Borgohain, C.; Borah, J. P.
2017-08-01
In pursuit of developing magnetic nanoparticles with optimal heat dissipation capabilities, we have successfully synthesized manganese ferrite (MnFe2O4) nanoparticles coated with various concentrations of oleic acid (OA) via co-precipitation. We found that the particle size decreases gradually with increasing OA concentration (35 nm for 0% OA → 30 nm for 5% OA → 27 nm for 7% OA → 20 nm for 9% OA), which was confirmed by the x-ray diffractogram, Williamson-Hall plot and transmission electron micrograph. We also observe a decrease in lattice parameter, and interestingly, change in the shape of MnFe2O4 nanoparticles to quasi-cubic with the increase of OA concentration. These structural changes also manifest in the cation re-distribution, bond length and angle between the octahedral and tetrahedral sites. The magnetic properties are determined by vibrational sample magnetometry (VSM), which shows an increase in the saturation magnetization (M s) from 26 emu g-1 to 38 emu g-1 with almost negligible coercivity, indicating the superparamagnetic nature of the nanoparticles. Finally, the efficiency of induction heating is measured by its specific absorption rate (SAR) and intrinsic loss power (ILP), whose value varies as a function of saturation magnetization, engendered by the changes in the structural motifs of the MnFe2O4 nanoparticles under the influence of OA coating and their concentrations. This study demonstrates the quantitative link between the size, shape and magnetic anisotropy, which are intimately entwined with the heating performance of the nanoparticle.
Structural and Electromagnetic Properties of Ni-Mn-Ga Thin Films Deposited on Si Substrates
NASA Astrophysics Data System (ADS)
Pereira, M. J.; Lourenço, A. A. C. S.; Amaral, V. S.
2014-07-01
Ni2MnGa thin films raise great interest due to their properties, which provide them with strong potential for technological applications. Ni2MnGa thin films were prepared by r.f. sputtering deposition on Si substrates at low temperature (400 ºC). Film thicknesses in the range 10-120 nm were obtained. A study of the structural, magnetic and electrical properties of the films is presented. We find that the deposited films show some degree of crystallinity, with coexisting cubic and tetragonal structural phases, the first one being preponderant over the latter, particularly in the thinner films. The films possess soft magnetic properties and their coercivity is thickness dependent in the range 15-200 Oe at 300K. Electrical resistivity measurements signal the structural transition and suggest the occurrence of avalanche and return-point memory effects, in temperature cycling through the magnetic/structural transition range.
NASA Astrophysics Data System (ADS)
Righter, K.; Pando, K.; Humayun, M.; Waeselmann, N.; Yang, S.; Boujibar, A.; Danielson, L. R.
2018-07-01
Earth's core contains ∼10% of a light element that may be a combination of Si, S, C, O or H, with Si potentially being the major light element. Metal-silicate partitioning of siderophile elements can place important constraints on the P-T-fO2 and composition of the early Earth, but the effect of Si alloyed in Fe liquids is unknown for many of these elements. In particular, the effect of Si on the partitioning of highly siderophile elements (Au, Re and PGE) is virtually unknown. To address this gap in understanding, we have undertaken a systematic study of the highly siderophile elements Au, Pd, and Pt, and the volatile siderophile elements P, Ga, Cu, Zn, and Pb at variable Si content of metal, and 1600 °C and 1 GPa. From our experiments we derive epsilon interaction parameters between these elements and Si in Fe metallic liquids. The new parameters are used to update an activity model for trace siderophile elements in Fe alloys; Si causes large variation in the magnitude of activity coefficients of these elements in FeSi liquids. Because the interaction parameters are all positive, Si causes a decrease in their metal/silicate partition coefficients. We combine these new activity results with experimental studies of Au, Pd, Pt, P, Ga, Cu, Zn and Pb, to derive predictive expressions for metal/silicate partition coefficients which can then be applied to Earth. The expressions are applied to two scenarios for continuous accretion of Earth; specifically for constant and increasing fO2 during accretion. The results indicate that mantle concentrations of P, Ga, Cu, Zn, and Pb can be explained by metal-silicate equilibrium during accretion of the Earth where Earth's early magma ocean deepens to pressures of 40-60 GPa. Au, Pd, and Pt, on the other hand become too high in the mantle in such a scenario, and require a later removal mechanism, rather than an addition as traditionally argued. A late reduction event that removes 0.5% metal from a shallow magma ocean can lower the Au, Pd, and Pt contents to values near the current day BSE. On the other hand, removal of 0.2-1.0% of a late sulfide-rich matte to the core would lower the Au, Pd, and Pt concentrations in the mantle, but not to chondritic relative concentrations observed in the BSE. If sulfide matte is called upon to remove HSEs, they must be later added via a late veneer to re-establish the high and chondritic relative PUM concentrations. These results suggest that although accretion and core formation (involving a Si, S, and C-bearing metallic liquid) were the primary processes establishing many of Earth's mantle volatile elements and HSE, a secondary removal process is required to establish HSEs at their current and near-chondritic relative BSE levels. Mn and P - two siderophile elements that are central to biochemical processes (photosynthesis and triphosphates, respectively) - have significant and opposite interactions with FeSi liquids, and their mantle concentrations would be notably different if Earth had a Si-free core.
Liu, Yulin; Huang, Gaoren; Sun, Yimeng; Zhang, Li; Huang, Zhenwei; Wang, Jijie; Liu, Chunzhong
2016-01-01
Mn was an important alloying element used in Al–Mg–Mn alloys. However, it had to be limited to a low level (<1.0 wt %) to avoid the formation of coarse intermetallics. In order to take full advantage of the benefits of Mn, research was carried out to investigate the possibility of increasing the content of Mn by studying the effect of cooling rate on the formation of Fe- and Mn-rich intermetallics at different content levels of Mn and Fe. The results indicated that in Al–5Mg–Mn alloy with low Fe content (<0.1 wt %), intermetallic Al6(Fe,Mn) was small in size and amount. With increasing Mn content, intermetallic Al6(Fe,Mn) increased, but in limited amount. In high-Fe-containing Al–5Mg–Mn alloys (0.5 wt % Fe), intermetallic Al6(Fe,Mn) became the dominant phase, even in the alloy with low Mn content (0.39 wt %). Cooling rate played a critical role in the refinement of the intermetallics. Under near-rapid cooling, intermetallic Al6(Fe,Mn) was extremely refined. Even in the high Mn and/or high-Fe-containing alloys, it still demonstrated fine Chinese script structures. However, once the alloy composition passed beyond the eutectic point, the primary intermetallic Al6(Fe,Mn) phase displayed extremely coarse platelet-like morphology. Increasing the content of Fe caused intermetallic Al6(Fe,Mn) to become the primary phase at a lower Mn content. PMID:28787888
Investigating the effect of Cd-Mn co-doped nano-sized BiFeO3 on its physical properties
NASA Astrophysics Data System (ADS)
Ishaq, B.; Murtaza, G.; Sharif, S.; Azhar Khan, M.; Akhtar, Naeem; Will, I. G.; Saleem, Murtaza; Ramay, Shahid M.
This work deals with the investigation of different effects on the structural, magnetic, electronic and dielectric properties of Cd and Mn doped Bi0.75Cd0.25Fe1-xMnxO3 multiferroic samples by taking fixed ratios of Cd and varying the Mn ratio with values of x = 0.0, 0.5, 0.10 and 0.15. Cd-Mn doped samples were synthesized chemically using a microemulsion method. All the samples were finally sintered at 700 °C for 2 h to obtain the single phase perovskites structure of BiFeO3 materials. The synthesized samples were characterized by different techniques, such as X-ray diffractometry (XRD), Scanning Electron Microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), LCR meter and magnetic properties using VSM. XRD results confirm BFO is a perovskite structure having crystallite size in the range of 24-54 nm. XRD results also reveal observed structural distortion due to doping of Cd at the A-site and Mn at the B-site of BFO. SEM results depict that, as the substitution of Cd-Mn increases in BFO, grain size decreases up to 30 nm. FTIR spectra showed prominent absorption bands at 555 cm-1 and 445 cm-1 corresponding to the stretching vibrations of the metal ions complexes at site A and site B, respectively. Variation of dielectric constant (ɛ‧) and loss tangent (tan δ) at room temperature in the range of 1 MHz to 3 GHz have been investigated. Results reveal that with Cd-Mn co doping a slight decrease in dielectric constant have been observed. Magnetic properties of Cd-Mn doped pure BFO samples have been studied at 300 K. Results reveal that undoped BiFeO3 exhibits weak ferromagnetic ordering due to the canting of its spin. Increase in magnetization and decrease in coercivity is a clear indication that a material can be used in high density recording media and memory devices.
Material growth and characterization for solid state devices
NASA Technical Reports Server (NTRS)
Stefanakos, E. K.; Collis, W. J.; Abul-Fadl, A.; Iyer, S.
1984-01-01
Manganese was used as the dopant for p-type InGaAs layers grown on semi-insulating (Fe-doped) and n-type (Sn-doped) InP substrates. Optical, electrical (Hall) and SIMS measurements were used to characterize the layers. Mn-diffusion into the substrate (during the growth of In GaAs) was observed only when Fe-doped substrates were used. Quaternary layers of two compositions corresponding to wavelengths (energy gaps) of approximated 1.52 micrometers were successfully grown at a constant temperature of 640 C and InP was grown in the temperature range of 640 C to 655 C. A study of the effect of pulses on the growth velocity of InP indicated no significant change as long as the average applied current was kept constant. A system for depositing films of Al2O3 by the pyrolysis of aluminum isopropoxide was designed and built. Deposited layers on Si were characterized with an ellipsometer and exhibited indices of refraction between 1.582 and 1.622 for films on the order of 3000 A thick. Undoped and p-type (Mn-doped) InGaAs epitaxial layers were also grown on Fe-doped InP substrates through windows in sputtered SiO2 (3200 A thick) layers.
Li, Guolian; Xie, Fazhi; Zhang, Jin; Wang, Jingrou; Yang, Ying; Sun, Ruoru
2016-09-01
Phosphorus (P) in a water body is mainly controlled by the interaction between surface sediment and the overlying water column after the complete control of external pollution. Significant enhancement of P in a water body would cause eutrophication of lakes. Thus, a better understanding is needed of the occurrences of P between the sediment and water column in eutrophic lakes. Here, we measured total phosphorus (TP) and major elements (Fe, Al, Ca, Mn, Si) in the water column, and total nitrogen, organic matter, TP and major oxides (Fe 2 O 3 , Al 2 O 3 , CaO, SiO 2 ) in surface sediment of Chaohu Lake, a continuously eutrophic lake. The results showed that the rank of TP levels was western lake > eastern lake > southern lake. There were significantly positive correlations between TP (including water TP and sedimentary TP) and Fe, Al, Mn, while the correlation coefficients between water TP and sedimentary TP were -0.43, -0.41 and 0.18 for the western, eastern and southern lake respectively. The negative and significant correlations of water TP and sedimentary TP may indicate that the risk of sedimentary P release was great in the western and eastern lake during algae bloom sedimentation, while the southern lake showed weak P exchange between the sediment and water column.
Magnetic and structural characterization of ultra-thin Fe (222) films
NASA Astrophysics Data System (ADS)
Loving, Melissa G.; Brown, Emily E.; Rizzo, Nicholas D.; Ambrose, Thomas F.
2018-05-01
Varied thickness body centered cubic (BCC) ultrathin Fe films (10-50Å) have been sputter deposited onto Si (111) substrates. BCC Fe with the novel (222) texture was obtained by H- terminating the Si (111) starting substrate then immediately depositing the magnetic films. Structural results derived from grazing incidence x-ray diffraction and x-ray reflectivity confirm the crystallographic texture, film thickness, and interface roughness. Magnetic results indicate that Fe (222) exhibits soft magnetic switching (easy axis), high anisotropy (hard axis), which is maintained across the thickness range, and a positive magnetostriction (for the thicker film layers). The observed soft magnetic switching in this system makes it an ideal candidate for future magnetic memory development as well as other microelectronics applications that utilize magnetic materials.
Fellinger, Michael R.; Hector, Jr., Louis G.; Trinkle, Dallas R.
2016-11-29
Here, we present computed datasets on changes in the lattice parameter and elastic stiffness coefficients of BCC Fe due to substitutional Al, B, Cu, Mn, and Si solutes, and octahedral interstitial C and N solutes. The data is calculated using the methodology based on density functional theory (DFT). All the DFT calculations were performed using the Vienna Ab initio Simulations Package (VASP). The data is stored in the NIST dSpace repository.
Qiao, Fengmin; Wang, Zhenzhen; Xu, Ke; Ai, Shiyun
2015-10-07
A facile process was developed for the synthesis of FeSe-Pt@SiO2 nanospheres based on the hydrothermal treatment of FeCl3·6H2O, selenium and NaBH4 in ethanolamine solvent, followed by reducing HPtCl4 with NaBH4 in the presence of FeSe particles to obtain FeSe coated with Pt NPs (FeSe-Pt), ending with a surfactant assembled sol-gel process to obtain FeSe-Pt@SiO2. The morphology and composition of FeSe-Pt@SiO2 were characterized by transmission electron microscopy, high resolution TEM, X-ray diffraction and Fourier transform infrared spectroscopy. Structural analyses revealed that FeSe-Pt@SiO2 nanospheres were of regular spherical shape with smooth surfaces due to the SiO2 shells, compared with FeSe particles with 150 nm lateral diameter. The prepared FeSe-Pt@SiO2 nanospheres possessed both intrinsic glucose oxidase (GOx-) and peroxidase-mimic activities, and we engineered an artificial enzymatic cascade system with high activity and stability based on this nanostructure. The good catalytic performance of the composites could be attributed to the synergy between the functions of FeSe particles and Pt NPs. Significantly, the FeSe-Pt@SiO2 nanospheres as robust nanoreactors can catalyze a self-organized cascade reaction, which includes oxidation of glucose by oxygen to yield gluconic acid and H2O2, and then oxidation of 3,3,5,5-tetramethylbenzidine (TMB) by H2O2 to produce a colour change. Colorimetric detection of H2O2 and glucose using the FeSe-Pt@SiO2 nanospheres was conducted with high detection sensitivities, 0.227 nM and 1.136 nM, respectively, demonstrating the feasibility of practical sensing applications. It is therefore believed that our findings in this study could open up the possibility of utilizing FeSe-Pt@SiO2 nanospheres as enzymatic mimics in diagnostic and biotechnology fields.
Galactic interstellar abundance surveys with IUE and IRAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Steenberg, M.E.
1987-01-01
This thesis is a survey of interstellar densities, abundances, and cloud structure in the Galaxy, using two NASA satellites: the International Ultraviolet Explorer (IUE) and Infrared Astronomical Satellite (IRAS). From IUE high-resolution spectra, the author measured equivalent widths of 18 ultraviolet resonance transitions and derived column densities for Si/sup +/, Mn/sup +/, Fe/sup +/, S/sup +/, and Zn/sup +/ toward 261 early-type stars. From the IRAS all-sky survey he also measured the infrared cirrus flux. He examined the variations of the measured parameters with spectral type, E(B-V), galactic longitude and latitude, distance from the Sun, and mean density. The hydrogen-columnmore » densities, metal-column densities, and gas-to-dust ratio are in good agreement with Copernicus surveys. The derived interstellar abundances yield mean logarithmic depletions. These depletions correlate with mean density but not with the physical density derived from Copernicus H/sub 2/ rotational states. Abundance ratios indicate a larger Fe halo abundance compared to Si, Mn, S, or Zn, which may result from selective grain processing in shocks or from Type I supernovae.« less
Age-related differences in hair trace elements: a cross-sectional study in Orenburg, Russia.
Skalnaya, Margarita G; Tinkov, Alexey A; Demidov, Vasily A; Serebryansky, Eugeny P; Nikonorov, Alexandr A; Skalny, Anatoly V
2016-09-01
Age-related differences in the trace element content of hair have been reported. However, some discrepancies in the data exist. The primary objective of this study was to estimate the change in hair trace elements content in relation to age. Six hundred and eighteen women and 438 men aged from 10-59 years took part in the current cross-sectional study. Hair Cr, Mn, Ni, Si, Al, As, Be, Cd and Pb tended to decrease with age in the female sample, whereas hair Cu, Fe, I, Se, Li and Sn were characterised by an age-associated increase. Hair levels of Cr, Cu, I, Mn, Ni, Si and Al in men decreased with age, whereas hair Co, Fe, Se, Cd, Li and Pb content tended to increase. Hair mercury increased in association with age in men and in women, whereas hair vanadium was characterised by a significant decrease in both sexes. The difference in hair trace element content between men and women decreased with age. These data suggest that age-related differences in trace element status may have a direct implication in the ageing process.
Preparation and evaluation of ageing effect of Cu-Al-Be-Mn shape memory alloys
NASA Astrophysics Data System (ADS)
Shivasiddaramaiah, A. G.; Mallik, U. S.; Mahato, Ranjit; Shashishekar, C.
2018-04-01
10-14 wt. % of aluminum, 0.3-0.6 wt. % of beryllium and 0.1-0.4 wt. % of manganese and remaining copper melted in the induction furnace through ingot metallurgy. The prepared SMAs are subjected to homogenization. It was observed that the samples exhibits β-phase at high temperature and shape memory effect after going through step quenching to a low temperature. Scanning Electron Microscope, DSC, bending test were performed on the samples to determine the microstructure, transformation temperatures and shape memory effect respectively. The alloy exhibit good shape memory effect, up to around 96% strain recovery by shape memory effect. The ageing is performed on the specimen prepared according to ASTM standard for testing micro-hardness and tensile test. Precipitation hardening method was employed to age the samples and they were aged at different temperature and at different times followed by quenching. Various forms of precipitates were formed. It was found that the formation rate and transformation temperature increased with ageing time, while the amount of precipitate had an inverse impact on strain recovery by shape memory effect. The result expected is to increase in mechanical properties of the material such as hardness.
Fu, Xiaofei; Li, Xianli; Lv, Jingwei; Wang, Famei; Wang, Liying
2017-01-01
The structure and nanoscale mechanical properties of Ni48.8Mn27.2Ga24 thin film fabricated by DC magnetron sputtering are investigated systematically. The thin film has the austenite state at room temperature with the L21 Hesuler structure. During nanoindentation, stress-induced martensitic transformation occurs on the nanoscale for the film annealed at 823 K for 1 hour and the shape recovery ratio is up to 85.3%. The associated mechanism is discussed. PMID:29109812
NASA Astrophysics Data System (ADS)
Bergmair, Bernhard; Liu, Jian; Huber, Thomas; Gutfleisch, Oliver; Suess, Dieter
2012-07-01
An ultra-low cost, wireless magnetoelastic temperature indicator is presented. It comprises a magnetostrictive amorphous ribbon, a Ni-Mn-Sn-Co magnetic shape memory alloy with a highly tunable transformation temperature, and a bias magnet. It allows to remotely detect irreversible changes due to transgressions of upper or lower temperature thresholds. Therefore, the proposed temperature indicator is particularly suitable for monitoring the temperature-controlled supply chain of, e.g., deep frozen and chilled food or pharmaceuticals.
Kinetics of Magnetoelastic Twin-Boundary Motion in Ferromagnetic Shape-Memory Alloys
NASA Astrophysics Data System (ADS)
Pramanick, A.; Wang, X.-L.; Stoica, A. D.; Yu, C.; Ren, Y.; Tang, S.; Gai, Z.
2014-05-01
We report the kinetics of twin-boundary motion in the ferromagnetic shape-memory alloy of Ni-Mn-Ga as measured by in situ high energy synchrotron diffraction. The temporal evolution of twin reorientation during the application of a magnetic field is described by thermally activated creep motion of twin boundaries over a distribution of energy barriers. The dynamical creep exponent μ was found to be ˜0.5, suggesting that the distribution of energy barriers is a result of short-range disorders.
Ranzieri, Paolo; Campanini, Marco; Fabbrici, Simone; Nasi, Lucia; Casoli, Francesca; Cabassi, Riccardo; Buffagni, Elisa; Grillo, Vincenzo; Magén, Cesar; Celegato, Federica; Barrera, Gabriele; Tiberto, Paola; Albertini, Franca
2015-08-26
Giant magnetically induced twin variant reorientation, comparable in intensity with bulk single crystals, is obtained in epitaxial magnetic shape-memory thin films. It is found to be tunable in intensity and spatial response by the fine control of microstructural patterns at the nanoscopic and microscopic scales. A thorough experimental study (including electron holography) allows a multiscale comprehension of the phenomenon. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Recarte, V.; Pérez-Landazábal, J. I.; Sánchez-Alarcos, V.; Rodríguez-Velamazán, J. A.
2014-11-01
Ni-Mn-Ga alloys show the highest magnetic-field-induced strain among ferromagnetic shape memory alloys. A great effort is being done in this alloy system to increase the application temperature range. In this sense, the addition of small amounts of Cobalt to NiMnGa alloys has been proved to increase the MT temperatures through the increase of the electron per atom relation (e/a). In this work, the analysis of the crystal structure of the present phases and the phase transformations has been performed on a Ni-Mn-Ga-Co alloy by neutron diffraction measurements from 10 K to 673 K. The study has been completed by means of calorimetric and magnetic measurements. On cooling the alloy undergoes a martensitic transformation from a face centered cubic structure to a nonmodulated tetragonal martensite. The appearance of intermartensite transformations can be disregarded in the whole temperature range below the martensitic transformation. However, a jump in the unit-cell volume of the tetragonal martensite has been observed at 325 K. Since this temperature is close to the Curie temperature of the alloy both, the structural and magnetic contributions are taken into account to explain the results.
NASA Astrophysics Data System (ADS)
Lin, Yin-Chih; Lin, Chien-Feng
2015-05-01
The phase transformation and magnetostriction of bulk Fe73Ga27 and Fe73Ga18Zn9 (at. %) ferromagnetic shape memory alloys (FSMs) were investigated by transmission electron microscopy (TEM), x-ray diffraction (XRD), and a magnetostrictive-meter setup. For the Fe73Ga27 FSM alloy solution treated at 1100 °C for 4 h and quenched in ice brine, the antiphase boundary segments of the D03 domain were observed in the A2 (disordered) matrix, and the Fe73Ga27 FSM alloy had an optimal magnetostriction (λ‖s = 71 × 10-6 and λ⊥s = -31 × 10-6). In Fe73Ga27 FSM alloy as-quenched, aged at 700 °C for 24 h, and furnace cooled, D03 nanoclusters underwent phase transformation to an intermediate tetragonal phase (i.e., L10-like martensite) via Bain distortion, and finally L12 (Fe3Ga) structures precipitated, as observed by TEM and XRD. The L10-like martensite and L12 phases in the aged Fe73Ga27 FSM alloy drastically decreased the magnetostriction from positive to negative (λ‖s = -20 × 10-6 and λ⊥s = -8 × 10-6). However, in Fe73Ga18Zn9 FSM alloy as-quenched and aged, the phase transformation of D03 to an intermediate tetragonal martensite phase and precipitation of L12 structures were not found. The results indicate that the aged Fe73Ga18Zn9 FSM alloy maintained stable magnetostriction (λ‖s = 36 × 10-6 and λ⊥s = -31 × 10-6). Adding Zn can improve the ferromagnetic shape memory effect of aged Fe73Ga18Zn9 alloy, which may be useful in application of the alloy in high temperature environments.
Engineering and characterization of aluminum oxide-based Magnetic Tunnel Junctions
NASA Astrophysics Data System (ADS)
Ji, Chengxiang
Magnetic Tunnel Junctions (MTJs) consisting of two ferromagnetic layers separated by an insulator layer have attracted great interest due to their applications in magnetic read heads and potential applications in magnetic random access memory. Materials science plays an important role in the performance of the MTJs. The goal of this research was to focus on how the materials properties affect the tunneling magnetoresistance (TMR) of AlOx-based MTJs with (Co, Fe) electrodes. A method was developed to fabricate epitaxial (Co, Fe) (001) thin films on Si substrates using TiN buffer and a novel processing technique in order to achieve smooth interfaces between the electrode and the AlOx tunnel barrier. The (Co, Fe) thin films with other orientations, i.e. (110) and (211), were also grown on TiN buffered substrates of Si (111) and (011). Numerous MTJs with epitaxial bottom electrode were fabricated to investigate the effect of the materials properties of the (Co, Fe) electrode on the TMR of these junctions. A strain induced TMR enhancement was discovered, where the trend of increasing TMR of the MTJs is the same as that of the strain of the bottom electrode. The strain was originated from the lattice mismatch between (Co, Fe) electrode and the buffer layers in the MTJs, which will vary with annealing temperatures. Since the interface roughness and the barrier properties were the same within the uncertainties of the measurement, this TMR enhancement was attributed to the presence of strain. The TMR values were also compared for MTJs with the bottom electrode in the (001), (110) and (211) orientations. The anisotropic property of (Co, Fe) was confirmed and the (001) orientation has larger spin polarization than the (110) and (211) orientations. By careful manipulation of the bottom electrode, including strain, roughness and orientation, 77% TMR was obtained for AlOx-based MTJs. The phase transformation of Pt0.5-xMn0.5+x from fcc to Ll0 was investigated. The experimental results showed the onset temperature for phase transformation increase as the composition deviates from stoichiometry but slows down the kinetics of transformation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morozkin, A.V., E-mail: morozkin@general.chem.msu.ru; Knotko, A.V.; Yapaskurt, V.O.
2013-10-15
X-ray and microprobe analyses were employed for the investigation of Dy–Mn–Si system at 870/1070/1170 K. The Dy–Mn–Si system, contains the known DyMn{sub 2}Si{sub 2}, DyMnSi and Dy{sub 2}Mn{sub 3}Si{sub 5} compounds and DyMn{sub 4}Si{sub 2}, Dy{sub 2}MnSi{sub 2} and Dy{sub 3}Mn{sub 2}Si{sub 3} were new compounds identified first time and their structure are of the type TmCu{sub 4}Sb{sub 2}, Sc{sub 2}CoSi{sub 2} and Hf{sub 3}Ni{sub 2}Si{sub 3} respectively. The quasi-binary solid solutions were detected at 870/1070/1170 K: the ThMn{sub 12}-type Dy{sub 8}Mn{sub 87}Si{sub 5}, Th{sub 6}Mn{sub 23}-type Dy{sub 23}Mn{sub 72}Si{sub 5}, MgCu{sub 2}-type Dy{sub 33}Mn{sub 58}Si{sub 9} and AlB{sub 2}-typemore » Dy{sub 38}Mn{sub 2}Si{sub 58}. The other binary compounds of the Dy–Mn–Si system do not show any visible solubility. New phases R{sub 2}MnSi{sub 2} and R{sub 3}Mn{sub 2}Si{sub 3} (R=Gd, Tb, Ho–Tm) were found out and their structure of the type Sc{sub 2}CoSi{sub 2} and Hf{sub 3}Ni{sub 2}Si{sub 3} respectively. The specific features of ‘Dy–Transition Metal–Si’ systems were discussed. - Graphical abstract: The isothermal section of Dy–Mn–Si contains the known DyMn{sub 2}Si{sub 2}, DyMnSi, Dy{sub 2}Mn{sub 3}Si{sub 5} and new TmCu{sub 4}Sb{sub 2}-type DyMn{sub 4}Si{sub 2}, Sc{sub 2}CoSi{sub 2}-type Dy{sub 2}MnSi{sub 2} and Hf{sub 3}Ni{sub 2}Si{sub 3}-type Dy{sub 3}Mn{sub 2}Si{sub 3} ternary compounds. The ternary solid solution based on the binary compounds of the Dy–Mn and Dy–Si systems: the ThMn{sub 12}-type Dy{sub 8}Mn{sub 87}Si{sub 5}, Th{sub 6}Mn{sub 23}-type Dy{sub 23}Mn{sub 72}Si{sub 5}, MgCu{sub 2}-type Dy{sub 33}Mn{sub 58}Si{sub 9} and AlB{sub 2}-type Dy{sub 38}Mn{sub 2}Si{sub 58}. The other binary compounds of the Dy–Mn–Si system do not show any visible solubility. New Sc{sub 2}CoSi{sub 2}-type R{sub 2}MnSi{sub 2} and Hf{sub 3}Ni{sub 2}Si{sub 3}-type R{sub 3}Mn{sub 2}Si{sub 3} phases were discovered for R=Gd, Tb, Ho–Tm. Display Omitted - Highlights: • The Dy–Mn–Si section contains three known and three new ternary compounds (phases). • New phase the TmCu{sub 4}Sb{sub 2}-type DyMn{sub 4}Si{sub 2} compound. • New Sc{sub 2}CoSi{sub 2}-type R{sub 2}MnSi{sub 2} and Hf{sub 3}Ni{sub 2}Si{sub 3}-type R{sub 3}Mn{sub 2}Si{sub 3} were detected for R=Gd–Tm. • Dy–Mn–Si supplements the ‘Dy–3d metal–Si’ series and leads to the ‘RT{sub m}X{sub n}’ row's rule.« less
NASA Astrophysics Data System (ADS)
Johnston, Scott G.; Rose, Andrew L.; Burton, Edward D.; Webster-Brown, Jenny
2015-01-01
Large alpine landslides that entrain substantial organic material below the water table and create suspended floodplains may have long-term consequences for the mobilisation of redox sensitive elements, such as Fe, into streamwaters. In turn, the cycling of iron in aquatic systems can influence the fate of nutrients, alter primary productivity, enhance accumulation of trace metals and induce fractionation of rare earth elements (REE). In this study we examine a reach of a pristine oligotrophic alpine stream bracketing a 30 year-old landslide and explore the consequences of landslide-induced Fe mobilisation for aqueous geochemistry and the composition of benthic stream cobble biofilm. Elevated Fe2+ and Mn in landslide zone stream waters reflect inputs of circumneutral groundwater from the landslide debris-zone floodplain. Geochemical characteristics are consistent with reductive dissolution being a primary mechanism of Fe2+ and Mn mobilisation. Stream cobble biofilm in the landslide zone is significantly (P < 0.01) enriched in poorly crystalline Fe(III) (∼10-400 times background) and Mn (∼15-150 times background) (1 M HCl extractable; Fe(III)Ab). While the landslide zone accounts for less than ∼9% of the total stream length, we estimate it is responsible for approximately 60-80% of the stream's benthic biofilm load of poorly crystalline Fe(III) and Mn. Biofilm Fe(III) precipitates are comprised mainly of ferrihydrite, lepidocrocite and an organic-Fe species, while precipitate samples collected proximal to hyporheic seeps contain abundant sheath structures characteristic of the neutrophilic Fe(II)-oxidising bacteria Leptothrix spp. Stream-cobble Fe(III)-rich biofilm is accumulating PO43- (∼3-30 times background) and behaving as a preferential substrate for photosynthetic periphyton, with benthic PO43-, chlorophyll a, organic carbonHCl and total N all significantly positively correlated with Fe(III)Ab and significantly elevated within the landslide zone (P < 0.01). P K-edge XANES indicates P is associated with both ferric and Ca-phosphate minerals, while SEM-EDX elemental mapping of Fe(III) precipitates reveal strong spatial associations between P, Ca and Fe. Cobble Fe(III)-rich biofilm is also sorbing and accumulating multiple trace metals and REE. Within the landslide zone there are significant (P < 0.01) enrichments (up to ∼10-100 times background) for most trace metals examined here and metals display significant positive linear correlations with Fe(III)Ab on a log transformed basis. Stream cobble biofilm also exhibits distinct REE fractionation along the flow path, with light REE (La, Ce, Nd, Pr) preferentially partitioning to the Fe(III) and Mn-rich biofilm within the landslide zone. Accumulation of PO43- and trace metals in this relatively environmentally labile form may have implications for their bioavailability and downstream transport, but further research is required to assess possible ecological consequences. This study demonstrates the potential for large alpine landslides to encourage reach-scale circumneutral Fe mobilisation in adjacent streams, thereby shaping multiple aspects of benthic stream geochemistry for many years after the landslide event itself.
Experimental determination of activities in FeTiO3-MnTiO3 ilmenite solid solution by redox reversals
NASA Astrophysics Data System (ADS)
Feenstra, A.; Peters, Tjerk
1996-12-01
Solid solutions of (Fe,Mn)TiO3 were synthesized, mostly at 0.10 XMn intervals, at 1 bar, 900°C and log f O 2 = 17.50. Analysis by EMP indicate an ideal stoichiometry for the Fe-Mn ilmenites with (Fe+Mn) = Ti = 1.000 when normalized to 3 oxygens. Their unit cell volume increases linearly with XMn. The composition of Fe-Mn ilmenite coexisting with metallic Fe and rutile was reversed at 1 bar, 700 900°C and fixed f O 2 in a gas-mixing furnace. Oxygen fugacity was controlled by mixing CO2 and H2 gas and was continuously monitored with an yttrium-stabilized zirconia electrolyte. Solution properties of Fe-Mn ilmenite were derived from the experimental data by mathematical programming (Engi and Feenstra, in preparation) including notably the results of Fe-Mn exchange experiments between ilmenite and garnet (Feenstra and Engi, submitted) and anchoring the standard state properties to the updated thermodynamic dataset of Berman and Aranovich (1996). The thermodynamic analysis resulted in positive deviations from ideality for (Fe,Mn)TiO3 ilmenite, which is well described by an asymmetric Margules model with WH FeFeMn = 9.703 and WH FeMnMn = 23.234 kJ/mol, WS FeFeMn = 19.65 and WS FeMnMn = 22.06 J/(K·mol). The excess free energy for Fe-Mn ilmenite derived from the redox reversals is larger than in the symmetric ilmenite model (WG FeMn = +2.2 kJ/mol) determined by O'Neill et al. from emf measurements on the assemblage iron-rutile-(Fe,Mn)ilmenite.
NASA Astrophysics Data System (ADS)
Furuya, Yasubumi; Tamoto, Shizuka; Kubota, Takeshi; Okazaki, Teiko; Hagood, Nesbitt W.; Spearing, S. Mark
2002-07-01
The possibility to detect the phase transformation with martensites by heating or cooling as well as stress-loading in ferromagnetic shape memory Fe-30at percent Pd alloy thin foil by using magnetic Markhausen noise sensor was studied. MBHN is caused by the irregular interactions between magnetic domain and thermally activated martensite twins during magnetization. In general, the envelope of the MBHN voltage versus time signals in Fe-29at percent Pd ribbon showed two peaks during magnetization, where secondary peak at intermediate state of magnetization process decreased with increasing temperature, while the MBHN envelopes in pure iron did not change with increasing temperature. The variety of MBHN due to the phase transformation was apt to arise at higher frequency part of spectrum during intermediate state of magnetization process and it decreased with disappearance of martensite twins. Besides, MBHN increased monotonically with increasing loading stress and then, it decreased with unloading, however MBHN showed large hysteresis between loading and unloading passes. Based on the experimental results from MBHN measurements for both thermoelastic and stress-induced martensite phase transformations in Fe-30at percent Pd ribbon samples, MBHN method seems a useful technique to non-destructive evaluation of martensite phase transformation of ferromagnetic shape memory alloy.
Liu, Rongrong; Zhang, Qian; Zhou, Qian; Zhang, Ping; Dai, Honglian
2018-06-01
In this study, nondegradable poly (carbonate urethane) (PCU) and poly (carbonate urethane) incorporated variable Fe 3 O 4 content microspheres (PCU/Fe 3 O 4 ) were synthesized using pre-polymerization and suspension polymerization. Synthesis was confirmed through Fourier transform infrared spectroscopy (FTIR). The effect of Fe 3 O 4 incorporation was investigated on crystalline, thermal, shape memory and degradation properties by X-Ray diffraction (XRD), Differential scanning calorimetery (DSC), compression test and degradation in vitro, respectively. Otherwise, the assessment of magnetic characteristics by vibrational sample magnetometry (VSM) disclosed superparamagnetic behavior. The tunable superparamagnetic behavior depends on the amount of magnetic particles incorporated within the networks. The biological study results of as-synthesized polymers from the platelet adhesion test and the cell proliferation inhibition test indicated they were biocompatible in vitro. Fe 3 O 4 incorporation was conductive to reducing platelet adhesion in blood contacting test and promotion of rat vascular smooth muscle cell proliferation and growth. These nondegradable, superparamagnetic, biocompatible polymers, combined with their good shape memory properties may allow for their future exploitation in the biomedical field, such as, in cardiovascular implants, targeted tumor treatment, tissue engineering and artificial organ's engineering. Copyright © 2018. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toutam, Vijaykumar; Singh, Sandeep; Pandey, Himanshu
Double ring formation on Co{sub 2}MnSi (CMS) films is observed at electrical breakdown voltage during local anodic oxidation (LAO) using atomic force microscope (AFM). Corona effect and segregation of cobalt in the vicinity of the rings is studied using magnetic force microscopy and energy dispersive spectroscopy. Double ring formation is attributed to the interaction of ablated material with the induced magnetic field during LAO. Steepness of forward bias transport characteristics from the unperturbed region of the CMS film suggest a non equilibrium spin contribution. Such mesoscopic textures in magnetic films by AFM tip can be potentially used for memory storagemore » applications.« less
NASA Astrophysics Data System (ADS)
Wu, Haokaifeng; Sudoh, Iori; Xu, Ruihan; Si, Wenshuo; Vaz, C. A. F.; Kim, Jun-young; Vallejo-Fernandez, Gonzalo; Hirohata, Atsufumi
2018-05-01
Polycrystalline Mn3Ga layers with thickness in the range from 6–20 nm were deposited at room temperature by a high target utilisation sputtering. To investigate the onset of exchange-bias, a ferromagnetic Co0.6Fe0.4 layer (3.3–9 nm thick) capped with 5 nm Ta, were subsequently deposited. X-ray diffraction measurements confirm the presence of Mn3Ga (0 0 0 2) and (0 0 0 4) peaks characteristic of the D019 antiferromagnetic structure. The 6 nm thick Mn3Ga film shows the largest exchange bias of 430 Oe at 120 K with a blocking temperature of 225 K. The blocking temperature is found to decrease with increasing Mn3Ga thickness. These results in combination with x-ray reflectivity measurements confirm that the quality of the Mn3Ga/Co0.6Fe0.4 interface controls the exchange bias, with the sharp interface with the 6-nm-thick Mn3Ga inducing the largest exchange bias. The magneto-crystalline anisotropy for 6 nm thick Mn3Ga thin film sample is calculated to be . Such a binary antiferromagnetic Heusler alloy is compatible with the current memory fabrication process and hence has a great potential for antiferromagnetic spintronics.
Aerosol characteristics and sources for the Amazon basin during the wet season
DOE Office of Scientific and Technical Information (OSTI.GOV)
Artaxo, P.; Maenhaut, W.; Storms, H.
1990-09-20
Fine (< 2.0 {mu}m) and coarse (2.0 - 15 {mu}m) aerosol fractions were collected using stacked filter units, at three sites under the forest canopy and at three levels of a tower inside the jungle. Particle-induced x-ray emission (PIXE) was used to measure concentrations Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr, Zr, and Pb. Morphological and trace element measurements of individual particles were carried out by automated electron probe x-ray microanalysis. Gravimetric analysis was performed to obtain the fine and coarse aerosol mass concentration. The concentrations ofmore » soil dust related elements (Al, Si, Ti, Fe, Mn) were 5 times larger in the wet season compared to the 1985 ABLE 2A dry season experiment. Biogenic aerosol related elements in the fine fraction showed lower concentrations in the wet season. Fine aerosol mass concentration averaged only 2.1 {plus minus} 0.7 {mu}g m{sup {minus}3}, while the average coarse mass concentration was 6.1 {plus minus} 1.8 {mu}g m{sup {minus}3}. Sulfur concentrations averaged 76 {plus minus} 14 ng m{sup {minus}3} in the fine fraction and 37 {plus minus} 9 ng m{sup {minus}3} in the coarse fraction. Only two factors explained about 90% of the data variability for the fine and coarse aerosol fractions. These were soil dust (represented mainly by Al, Si, Ti, Mn, and Fe) and biogenic aerosol (represented by K, P, Cl, S, Zn, and the aerosol mass concentration). Biogenic particles account for 55-95% of the airborne concentrations and consisted of leaf fragments, pollen grains, fungi, algae, and other types of particles. It is possible that biogenic particles can play an important role in the global aerosol budget and in the global biogeochemical cycles of various elements.« less
Low Cost Solar Array Project: Composition Measurements by Analytical Photo Catalysis
NASA Technical Reports Server (NTRS)
Sutton, D. G.; Galvan, L.; Melzer, J.; Heidner, R. F., III
1979-01-01
The applicability of the photon catalysis technique for effecting composition analysis of silicon samples is discussed. A detector for the impurities Al, Cr, Fe, Mn, Ti, V, Mo and Zr is evaluated. During the first reporting period Al, Cr, Fe, and Mn were detected with the photon catalysis method. The best fluorescence lines to monitor and determine initial sensitivities to each of these elements by atomic absorption calibration were established. In the course of these tests vapor pressure curves for these four pure substances were also mapped. Ti and Si were detected. The best lines to monitor were catalogued and vapor pressure curves were determined. Attempts to detect vanadium were unsuccessful due to the refractory nature of this element and the limited temperature range of the evaporator.
Dhaka, Kapil; Bandyopadhyay, Debashis
2016-08-02
The present study reports transition metal (TM = Cr, Mn and Fe) doped silicon nanotubes with tunable band structures and magnetic properties by careful selection of cluster assemblies as building blocks using the first-principles density functional theory. We found that the transition metal doping and in addition, the hydrogen termination process can stabilize the pure silicon nanoclusters or cluster assemblies and then it could be extended as magnetic nanotubes with finite magnetic moments. Study of the band structures and density of states (DOS) of different empty and TM doped nanotubes (Type 1 to Type 4) show that these nanotubes are useful as metals, semiconductors, semi-metals and half-metals. These designer magnetic materials could be useful in spintronics and magnetic devices of nanoscale order.
Bibby, Rebecca L; Webster-Brown, Jenny G
2005-05-01
Suspended particulate matter (SPM) is an important transport agent for metal contaminants in streams, particularly during high flow periods such as storm events. For highly contaminated urban catchments in the greater Auckland (New Zealand) area, trace metal partitioning between the dissolved phase and SPM was determined, and SPM characterised in terms of its Si, Al, Fe, Mn, Zn, Cu, Pb, TOC, TON and PO(4) concentrations, as well as particle size, abundance, type and surface area. This data was compared to similar data from representative non-urban catchments in the Auckland region, the Kaipara River and Waikato River catchments, to identify any significant differences in the SPM and its potential trace metal adsorption capacity. Trace metal partitioning was assessed by way of a distribution coefficient: K(D)=[Me(SPM)]/[Me(DISS)]. Auckland urban SPM comprises quartz, feldspars and clay minerals, with Fe-oxides and minor Mn-oxides. No particles of anthropogenic origin, other than glass shards, were observed. No change in urban SPM particle size or SSA was observed with seasonal change in temperature, but the nature of the SPM was observed to change with flow regime. The abundance of finer particles, SSA and Al content of the SPM increased under moderate flow conditions; however, Si/Al ratios remained constant, confirming the importance of aluminosilicate detrital minerals in surface run-off. The SPM Fe content was observed to decrease with increased flow and was attributed to dilution of SPM Fe-oxide of groundwater origin. The Kaipara River SPM was found to be mineralogically, chemically and biologically similar to the urban SPM. However, major differences between urban catchment SPM and SPM from the much larger (non-urban) Waikato River were observed, and attributed to a higher abundance of diatoms. The Fe content of the Waikato River SPM was consistently lower (<5%), and the Si/Al ratio and Mn content was higher. Such differences observed between urban and non-urban SPM did not appear to affect the partitioning of Zn and Cu; however, Pb in the Kaipara and Waikato Rivers was found to be more associated with the dissolved phase. This is likely to reflect higher particulate Pb inputs to urban systems.
Structure and magnetic properties of Sm1-xZrx Fe10Si2 (x=0.2-0.6) alloys
NASA Astrophysics Data System (ADS)
Gjoka, M.; Sarafidis, C.; Psycharis, V.; Devlin, E.; Niarchos, D.; Hadjipanayis, G.
2017-10-01
Structure and magnetic properties of Sm1-xZrxFe10Si2 (0.1 ≤ x ≤ 0.6) alloys have been characterized using X-ray diffraction, thermomagnetic analysis and Mössbauer spectroscopy. The formation of the tetragonal ThMn12 -type structure was been observed in all alloys, without further annealing. The Curie temperature decreases linearly with Zr substitution from 322 °C for x=0.1 to 395 °C for x=0.6. Mössbauer spectroscopy showed the iron hyperfine field values decrease with increasing Zr content, and also confirmed changes to the magnetic anisotropy with increasing Zr content observed by XRD on oriented samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aronhime, Natan; Zoghlin, Eli; Keylin, Vladimir
Fe-Ni based metal amorphous nanocomposites (MANCs) are investigated in the pseudo-binary alloys (Fe 100–xNi x) 80Nb 4Si 2B 14. To optimize the soft magnetic properties of the nanocomposites, primary and secondary crystallization kinetics must be understood. As such, primary and secondary crystallization temperatures are determined by differential scanning calorimetry, and activation energies are calculated, along with the resulting crystalline phases. Time-temperature-transformation diagrams for primary and secondary crystallization in (Fe 70Ni 30) 80Nb 4Si 2B 14 are presented. Saturation magnetization and Curie temperature are determined. In conclusion, the shape of magnetization vs. time curves for (Fe 30Ni 70) 80Nb 4Si 2Bmore » 14 at various temperatures suggest that the secondary crystal product often consumes some of the primary crystalline product.« less
NASA Astrophysics Data System (ADS)
Elmanov, G.; Dzhumaev, P.; Ivanitskaya, E.; Skrytnyi, V.; Ruslanov, A.
2016-04-01
This paper presents results of research of the structure and phase transformations during the multistage crystallization of the metallic glasses with the compositions Ni71,5Cr6,8Fe2,7B11,9Si7,1 and Ni63,4Cr7,4Fe4,3Mn0,8B15,6Si8,5 labeled as AWS BNi-2 according to American Welding Society. Differential scanning calorimetry (DSC), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDX) were used as experimental research methods. The influence of the alloys chemical composition (boron, manganese and iron) on the temperatures and the exothermic heat effects of phase transformations, as well as on the phase composition of alloys at three stages of crystallization was analyzed. We present a thermodynamic explanation of the observed heat effects. It has been shown that manganese has the main influence on the phase transformations temperatures and heat effects in these two alloys. It is also assumed that at the final crystallization stage simultaneously with the formation of phases Ni3B and β1-Ni3Si should occur the nucleation of borides of CrB type with high Cr and low Si content.
Strain-induced dimensionality crossover of precursor modulations in Ni2MnGa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nie, Zhihua; Wang, Yandong; Shang, Shunli
2015-01-01
Precursor modulations often occur in functional materials like magnetic shape memory alloys, ferroelectrics, and superconductors. In this letter, we have revealed the underlying mechanism of the precursor modulations in ferromagnetic shape memory alloys Ni2MnGa by combining synchrotron-based x-ray diffraction experiments and first-principles phonon calculations. We discovered the precursor modulations along [011] direction can be eliminated with [001] uniaxial loading, while the precursor modulations or premartensite can be totally suppressed by hydrostatic pressure condition. The TA2 phonon anomaly is sensitive to stress induced lattice strain, and the entire TA2 branch is stabilized along the directions where precursor modulations are eliminated bymore » external stress. Our discovery bridges precursor modulations and phonon anomalies, and sheds light on the microscopic mechanism of the two-step superelasticity in precursor martensite.« less
Identification of novel compositions of ferromagnetic shape-memory alloys using composition spreads.
Takeuchi, I; Famodu, O O; Read, J C; Aronova, M A; Chang, K-S; Craciunescu, C; Lofland, S E; Wuttig, M; Wellstood, F C; Knauss, L; Orozco, A
2003-03-01
Exploration of new ferroic (ferroelectric, ferromagnetic or ferroelastic) materials continues to be a central theme in condensed matter physics and to drive advances in key areas of technology. Here, using thin-film composition spreads, we have mapped the functional phase diagram of the Ni-Mn-Ga system whose Heusler composition Ni(2)MnGa is a well known ferromagnetic shape-memory alloy. A characterization technique that allows detection of martensitic transitions by visual inspection was combined with quantitative magnetization mapping using scanning SQUID (superconducting quantum interference device) microscopy. We find that a large, previously unexplored region outside the Heusler composition contains reversible martensites that are also ferromagnetic. A clear relationship between magnetization and the martensitic transition temperature is observed, revealing a strong thermodynamical coupling between magnetism and martensitic instability across a large fraction of the phase diagram.
Martensitic and magnetic transformation in Ni-Mn-Ga-Co ferromagnetic shape memory alloys.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cong, D. Y.; Wang, S.; Wang, Y. D.
2008-01-01
The effect of Co addition on crystal structure, martensitic transformation, Curie temperature and compressive properties of Ni{sub 53-x}Mn{sub 25}Ga{sub 22}Co{sub x} alloys with the Co content up to 14 at% was investigated. An abrupt decrease of martensitic transformation temperature was observed when the Co content exceeded 6 at.%, which can be attributed to the atomic disorder resulting from the Co addition. Substitution of Co for Ni proved efficient in increasing the Curie temperature. Compression experiments showed that the substitution of 4 at.% Co for Ni did not change the fracture strain, but lead to the increase in the compressive strengthmore » and the decrease in the yield stress. This study may offer experimental data for developing high performance ferromagnetic shape memory alloys.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Y. D.; Key Laboratory for Anisotropy and Texture of Materials; Brown, D. W.
2007-05-01
The in situ time-of-flight neutron-diffraction measurements captured well the martensitic transformation behavior of the Ni-Mn-Ga ferromagnetic shape-memory alloys under uniaxial stress fields. We found that a small uniaxial stress applied during phase transformation dramatically disturbed the distribution of variants in the product phase. The observed changes in the distributions of variants may be explained by considering the role of the minimum distortion energy of the Bain transformation in the effective partition among the variants belonging to the same orientation of parent phase. It was also found that transformation kinetics under various stress fields follows the scale law. The present investigationsmore » provide the fundamental approach for scaling the evolution of microstructures in martensitic transitions, which is of general interest to the condensed matter community.« less
Characterization of Bi and Fe co-doped PZT capacitors for FeRAM.
Cross, Jeffrey S; Kim, Seung-Hyun; Wada, Satoshi; Chatterjee, Abhijit
2010-08-01
Ferroelectric random access memory (FeRAM) has been in mass production for over 15 years. Higher polarization ferroelectric materials are needed for future devices which can operate above about 100 °C. With this goal in mind, co-doping of thin Pb(Zr 40 ,Ti 60 )O 3 (PZT) films with 1 at.% Bi and 1 at.% Fe was examined in order to enhance the ferroelectric properties as well as characterize the doped material. The XRD patterns of PZT-5% BiFeO 3 (BF) and PZT 140-nm thick films showed (111) orientation on (111) platinized Si wafers and a 30 °C increase in the tetragonal to cubic phase transition temperature, often called the Curie temperature, from 350 to 380 °C with co-doping, indicating that Bi and Fe are substituting into the PZT lattice. Raman spectra revealed decreased band intensity with Bi and Fe co-doping of PZT compared to PZT. Polarization hysteresis loops show similar values of remanent polarization, but square-shaped voltage pulse-measured net polarization values of PZT-BF were higher and showed higher endurance to repeated cycling up to 10 10 cycles. It is proposed that Bi and Fe are both in the +3 oxidation state and substituting into the perovskite A and B sites, respectively. Substitution of Bi and Fe into the PZT lattice likely creates defect dipoles, which increase the net polarization when measured by the short voltage pulse positive-up-negative-down (PUND) method.
Characterization of Bi and Fe co-doped PZT capacitors for FeRAM
Cross, Jeffrey S; Kim, Seung-Hyun; Wada, Satoshi; Chatterjee, Abhijit
2010-01-01
Ferroelectric random access memory (FeRAM) has been in mass production for over 15 years. Higher polarization ferroelectric materials are needed for future devices which can operate above about 100 °C. With this goal in mind, co-doping of thin Pb(Zr40,Ti60)O3 (PZT) films with 1 at.% Bi and 1 at.% Fe was examined in order to enhance the ferroelectric properties as well as characterize the doped material. The XRD patterns of PZT-5% BiFeO3 (BF) and PZT 140-nm thick films showed (111) orientation on (111) platinized Si wafers and a 30 °C increase in the tetragonal to cubic phase transition temperature, often called the Curie temperature, from 350 to 380 °C with co-doping, indicating that Bi and Fe are substituting into the PZT lattice. Raman spectra revealed decreased band intensity with Bi and Fe co-doping of PZT compared to PZT. Polarization hysteresis loops show similar values of remanent polarization, but square-shaped voltage pulse-measured net polarization values of PZT-BF were higher and showed higher endurance to repeated cycling up to 1010 cycles. It is proposed that Bi and Fe are both in the +3 oxidation state and substituting into the perovskite A and B sites, respectively. Substitution of Bi and Fe into the PZT lattice likely creates defect dipoles, which increase the net polarization when measured by the short voltage pulse positive-up-negative-down (PUND) method. PMID:27877349
Combination of lightweight elements and nanostructured materials for batteries.
Chen, Jun; Cheng, Fangyi
2009-06-16
In a society that increasingly relies on mobile electronics, demand is rapidly growing for both primary and rechargeable batteries that power devices from cell phones to vehicles. Existing batteries utilize lightweight active materials that use electrochemical reactions of ions such as H(+), OH(-) and Li(+)/Mg(2+) to facilitate energy storage and conversion. Ideal batteries should be inexpensive, have high energy density, and be made from environmentally friendly materials; batteries based on bulk active materials do not meet these requirements. Because of slow electrode process kinetics and low-rate ionic diffusion/migration, most conventional batteries demonstrate huge gaps between their theoretical and practical performance. Therefore, efforts are underway to improve existing battery technologies and develop new electrode reactions for the next generation of electrochemical devices. Advances in electrochemistry, surface science, and materials chemistry are leading to the use of nanomaterials for efficient energy storage and conversion. Nanostructures offer advantages over comparable bulk materials in improving battery performance. This Account summarizes our progress in battery development using a combination of lightweight elements and nanostructured materials. We highlight the benefits of nanostructured active materials for primary zinc-manganese dioxide (Zn-Mn), lithium-manganese dioxide (Li-Mn), and metal (Mg, Al, Zn)-air batteries, as well as rechargeable lithium ion (Li-ion) and nickel-metal hydride (Ni-MH) batteries. Through selected examples, we illustrate the effect of structure, shape, and size on the electrochemical properties of electrode materials. Because of their numerous active sites and facile electronic/ionic transfer and diffusion, nanostructures can improve battery efficiency. In particular, we demonstrate the properties of nanostructured active materials including Mg, Al, Si, Zn, MnO(2), CuV(2)O(6), LiNi(0.8)Co(0.2)O(2), LiFePO(4), Fe(2)O(3), Co(3)O(4), TiS(2), and Ni(OH)(2) in battery applications. Electrochemical investigations reveal that we generally attain larger capacities and improved kinetics for electrode materials as their average particle size decreases. Novel nanostructures such as nanowires, nanotubes, nanourchins, and porous nanospheres show lower activation energy, enhanced reactivity, improved high-rate charge/discharge capability, and more controlled structural flexibility than their bulk counterparts. In particular, anode materials such as Si nanospheres and Fe(2)O(3) nanotubes can deliver reversible capacity exceeding 500 mA.h/g. (Graphite used commercially has a theoretical capacity of 372 mA x h/g.) Nanocomposite cathode materials such as NiP-doped LiFePO(4) and metal hydroxide-coated Ni(OH)(2) nanotubes allow us to integrate functional components, which enhance electrical conductivity and suppress volume expansion. Therefore, shifting from bulk to nanostructured electrode materials could offer a revolutionary opportunity to develop advanced green batteries with large capacity, high energy and power density, and long cycle life.
Giant perpendicular exchange bias with antiferromagnetic MnN
NASA Astrophysics Data System (ADS)
Zilske, P.; Graulich, D.; Dunz, M.; Meinert, M.
2017-05-01
We investigated an out-of-plane exchange bias system that is based on the antiferromagnet MnN. Polycrystalline, highly textured film stacks of Ta/MnN/CoFeB/MgO/Ta were grown on SiOx by (reactive) magnetron sputtering and studied by x-ray diffraction and Kerr magnetometry. Nontrivial modifications of the exchange bias and the perpendicular magnetic anisotropy were observed as functions of both film thicknesses and field cooling temperatures. In optimized film stacks, a giant perpendicular exchange bias of 3600 Oe and a coercive field of 350 Oe were observed at room temperature. The effective interfacial exchange energy is estimated to be Jeff = 0.24 mJ/m2 and the effective uniaxial anisotropy constant of the antiferromagnet is Keff = 24 kJ/m3. The maximum effective perpendicular anisotropy field of the CoFeB layer is Hani = 3400 Oe. These values are larger than any previously reported values. These results possibly open a route to magnetically stable, exchange biased perpendicularly magnetized spin valves.
NASA Astrophysics Data System (ADS)
Saravanan, G.; Asvini, V.; Kalaiezhily, R. K.; Parveen, I. Mubeena; Ravichandran, K.
2018-05-01
Half-metallic ferromagnetic [HMF] nanoparticles are of considerable interest in spintronics applications due to their potential use as a highly spin polarized current source. HMF exhibits a semiconductor in one spin band at the Fermi level Ef and at the other spin band they poses strong metallic nature which shows 100 % spin polarization at Ef. Fe based full Heusler alloys are primary interest due to high Curie temperature. Fe2CrSi Heusler alloys are synthesized using metallic powders of Fe, Cr and Si by mechanical alloying method. X-Ray diffractions studies were performed to analyze the structural details of Fe2CrSi nanoparticles with High resolution scanning electron microscope (HRSEM) studies for the morphological details of nanoparticles and magnetic properties were studied using Vibrating sample magnetometer (VSM). XRD Data analysis conforms the Heusler alloy phase showing the existence of L21 structure. Magnetic properties are measured for synthesized samples exhibiting a soft magnetic property possessing low coercivity (HC = 60.5 Oe) and saturation magnetic moment of Fe2CrSi is 3.16 µB, which is significantly higher than the ideal value of 2 µB from the Slater-Pauling rule due to room temperature measurement. The change in magnetic properties are half-metallic nature of Fe2CrSi is due to the shift of the Fermi level with respect to the gap were can be used as spin sensors and spin injectors in magnetic random access memories and other spin dependent devices.
NASA Astrophysics Data System (ADS)
de Boer, K. S.; Fitzpatrick, E. L.; Savage, B. D.
1985-11-01
The authors have searched six high-dispersion IUE spectra of R136 for weak absorption lines of C I, O I, Mg I, Mg II, Si I, Si II, P I, Cl I, Cr II, Mn II, Fe I, Ni II, Zn II, CO and C2. The absorption detected is from neutral gas in front of the 30 Doradus H II region. For the first time abundances of Mg, Cr, Mn, Ti, Ni, and Zn are determined for an extragalactic system. The LMC abundances from the absorption lines are a factor of 2 to 3 below those of the Milky Way, in agreement with general results from emission line studies. The density and temperature of the neutral gas are estimates from the observed excitation and ionization at approximately n(H) = 300 cm-3 and T = 100K, implying a gas pressure of about 3×104cm-3K.
NASA Astrophysics Data System (ADS)
Arslan Hafeez, Muhammad; Farooq, Ameeq
2018-01-01
The aim of the research was to investigate the variation in microstructural, mechanical and tribological characteristics of 30CrMnSiNi2A ultra-high strength steel as a function of tempering temperatures. Steel was quenched at 880 °C and tempered at five different tempering temperatures ranging from 250 °C to 650 °C. Optical microscopy and pin on disc tribometer was used to evaluate the microstructural and wear properties. Results show that characteristics of 30CrMnSiNi2A are highly sensitive to tempering temperatures. Lathe and plate shaped martensite obtained by quenching transform first into ε-carbide, second cementite, third coarsened and spheroidized cementite and finally into recovered ferrite and austenite. Hardness, tensile and yield strengths decreased while elongation increased with tempering temperatures. On the other hand, wear rate first markedly decreased and then increased. Optimum amalgamation of characteristics was achieved at 350 °C.
Semin, B К; Davletshina, L N; Seibert, M; Rubin, A B
2018-01-01
Extraction of Mn cations from the oxygen-evolving complex (OEC) of Ca-depleted PSII membranes (PSII[-Ca,4Mn]) by reductants like hydroquinone (H 2 Q) occurs with lower efficiency at acidic pH (2Mn/reaction center [RC] are extracted at pH5.7) than at neutral pH (3Mn/RC are extracted at pH6.5) [Semin et al. Photosynth. Res. 125 (2015) 95]. Fe(II) also extracts Mn cations from PSII(-Ca,4Mn), but only 2Mn/RC at pH6.5, forming a heteronuclear 2Mn/2Fe cluster [Semin and Seibert, J. Bioenerg. Biomembr. 48 (2016) 227]. Here we investigated the efficiency of Mn extraction by Fe(II) at acidic pH and found that Fe(II) cations can extract only 1Mn/RC from PSII(-Ca,4Mn) membranes at pH 5.7, forming a 3Mn/1Fe cluster. Also we found that the presence of Fe cations in a heteronuclear cluster (2Mn/2Fe) increases the resistance of the remaining Mn cations to H 2 Q action, since H 2 Q can extract Mn cations from homonuclear Mn clusters of PSII(-Ca,4Mn) and PSII(-Ca,2Mn) membranes but not from the heteronuclear cluster in PSII(-Ca,2Mn,2Fe) membranes. H 2 Q also cannot extract Mn from PSII membranes obtained by incubation of PSII(-Ca,4Mn) membranes with Fe(II) cations at pH5.7, which suggests the formation of a heteronuclear 3Mn/1Fe cluster in the OEC. Functional activity of PSII with a 3Mn/1Fe cluster was investigated. PSII preparations with a 3Mn/1Fe cluster in the OEC are able to photoreduce the exogenous electron acceptor 2,6-dichlorophenolindophenol, possibly due to incomplete oxidation of water molecules as is the case with PSII(-Ca,2Mn,2Fe) samples. However, in the contrast to PSII(-Ca,2Mn,2Fe) samples PSII(-Ca,3Mn,1Fe) membranes can evolve O 2 at a low rate in the presence of exogenous Ca 2+ (at about 27% of the rate of O 2 evolution in native PSII membranes). The explanation for this phenomenon (either water splitting and production of molecular O 2 by the 3Mn/1Fe cluster or apparent O 2 evolution due to minor contamination of PSII(3Mn,1Fe) samples with PSII(-Ca,4Mn) membranes) is discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
Bioavailability of Lead in Small Arms Range Soils
2007-09-01
minerals, and may also exist inside particles of inert matrix such as rock or slag of variable size, shape, and association; these chemical and...Abbreviations: Fe=iron, Pb=lead, Cu=copper, Ti=titanium, Zn= zinc , Sb=antimony, Rb=rubidium, Zr=zirconium, As=arsenic. Values are mean of three...20 30 40 50 60 70 80 FeOOH Cerussite Organic Phosphate PbMO PbAsO MnOOH Anglesite PbOOH PbCl4 Slag FeSO4 PbO Frequency of Occurrence Relative Pb
Morphology dependent field emission characteristics of ZnS/silicon nanoporous pillar array
NASA Astrophysics Data System (ADS)
Wang, Ling Li; Zhao, Cheng Zhou; Kang, Li Ping; Liu, De Wei; Zhao, Hui Chun; Hao, Shan Peng; Zhang, Yuan Kai; Chen, Zhen Ping; Li, Xin Jian
2016-10-01
Through depositing zinc sulphide (ZnS) nanoparticals on silicon nanoporous pillar array (Si-NPA) and crater-shaped silicon nanoporous pillar array (c-Si-NPA) by chemical bath deposition (CBD) method, ZnS/Si-NPA and c-ZnS/Si-NPA were prepared and the field emission (FE) properties of them were investigated. The turn-on electric fields of were 3.8 V/mm for ZnS/Si-NPA and 5.0 V/mm for c-ZnS/Si-NPA, respectively. The lower turn-on electric fields of ZnS/Si-NPA than that of c-ZnS/Si-NPA were attributed to the different electric distribution of the field emitters causing by the different surface morphology of the two samples, which was further demonstrated via the simulated results by finite element modeling. The FN curves for the ZnS/Si-NPA showed two-slope behavior. All the results indicate that the morphology play an important role in the FE properties and designing an appropriate top morphology for the emitter is a very efficient way to improve the FE performance.
NASA Astrophysics Data System (ADS)
Timokhina, I. B.; Hodgson, P. D.; Pereloma, E. V.
2004-08-01
Two Fe-0.2C-1.55Mn-1.5Si (in wt pct) steels, with and without the addition of 0.039Nb (in wt pct), were studied using laboratory rolling-mill simulations of controlled thermomechanical processing. The microstructures of all samples were characterized by optical metallography, X-ray diffraction (XRD), and transmission electron microscopy (TEM). The microstructural behavior of phases under applied strain was studied using a heat-tinting technique. Despite the similarity in the microstructures of the two steels (equal amounts of polygonal ferrite, carbide-free bainite, and retained austenite), the mechanical properties were different. The mechanical properties of these transformation-induced-plasticity (TRIP) steels depended not only on the individual behavior of all these phases, but also on the interaction between the phases during deformation. The polygonal ferrite and bainite of the C-Mn-Si steel contributed to the elongation more than these phases in the C-Mn-Si-Nb-steel. The stability of retained austenite depends on its location within the microstructure, the morphology of the bainite, and its interaction with other phases during straining. Granular bainite was the bainite morphology that provided the optimum stability of the retained austenite.
Engineering nonspherical hollow structures with complex interiors by template-engaged redox etching.
Wang, Zhiyu; Luan, Deyan; Li, Chang Ming; Su, Fabing; Madhavi, Srinivasan; Boey, Freddy Yin Chiang; Lou, Xiong Wen
2010-11-17
Despite the significant advancement in making hollow structures, one unsolved challenge in the field is how to engineer hollow structures with specific shapes, tunable compositions, and desirable interior structures. In particular, top-down engineering the interiors inside preformed hollow structures is still a daunting task. In this work, we demonstrate a facile approach for the preparation of a variety of uniform hollow structures, including Cu(2)O@Fe(OH)(x) nanorattles and Fe(OH)(x) cages with various shapes and dimensions by template-engaged redox etching of shape-controlled Cu(2)O crystals. The composition can be readily modulated at different structural levels to generate other interesting structures such as Cu(2)O@Fe(2)O(3) and Cu@Fe(3)O(4) rattles, as well as Fe(2)O(3) and Fe(3)O(4) cages. More remarkably, this strategy enables top-down engineering the interiors of hollow structures as demonstrated by the fabrication of double-walled nanorattles and nanoboxes, and even box-in-box structures. In addition, this approach is also applied to form Au and MnO(x) based hollow structures.
Tularosa Basin Play Fairway Analysis: Water Chemistry
Adam Brandt
2015-12-15
This shapefile contains 409 well data points on Tularosa Basin Water Chemistry, each of which have a location (UTM), temperature, quartz and Potassium/Magnesium geothermometer; as well as concentrations of chemicals like Mn, Fe, Ba, Sr, Cs, Rb, As, NH4, HCO3, SO4, F, Cl, B, SiO2, Mg, Ca, K, Na, and Li.
Impact of soils and cropping systems on composition of mineral elements of dry cacao beans
USDA-ARS?s Scientific Manuscript database
In view of its high economic value, cacao (Theobroma cacao L.) researchers are seeking technological innovations that increase production and improve the quality of cacao beans. The objective of this study was to characterize the mineral (P, K, Ca, Mg, Si, Fe, Mn, Zn, Cu, Cd, Ba) composition of caca...
USDA-ARS?s Scientific Manuscript database
There has been controversy as to whether the glyphosate resistance gene and/or glyphosate applied to glyphosate-resistant (GR) soybean affect mineral content (especially Mg, Mn, and Fe), yield and amino acid content of GR soybean. A two-year field study (2013 and 2014) examined these questions at si...
Boonyongmaneerat, Yuttanant; Chmielus, Markus; Dunand, David C; Müllner, Peter
2007-12-14
Foams with 55% and 76% open porosity were produced from a Ni-Mn-Ga magnetic shape-memory alloy by replication casting. These polycrystalline martensitic foams display a fully reversible magnetic-field-induced strain of up to 0.115% without bias stress, which is about 50 times larger than nonporous, fine-grained Ni-Mn-Ga. This very large improvement is attributed to the bamboolike structure of grains in the foam struts which, due to reduced internal constraints, deform by magnetic-field-induced twinning more easily than equiaxed grains in nonporous Ni-Mn-Ga.
NASA Astrophysics Data System (ADS)
Luo, Xing; Wu, Yanhui; Han, Mangui; Deng, Longjiang
2018-04-01
Fe-Cu-Nb-Si-B flakes with multiphase nanostructures have been obtained by annealing the amorphous ribbon and subsequently ball milled for 30 h. The crystal structures have been examined by X-ray diffraction pattern and Mössbauer spectrum. The results show that the particles annealed at 900 °C are made up of amorphous ferromagnetic phase, α-Fe3Si ferromagnetic phase and Fe2B phase, and the average hyperfine magnetic field (HBhf) of particles is 24.02 T. Meanwhile, the relationships between the structure and the high frequency permeability have been studied. Compared with particles annealed at 600 °C, particles annealed at 900 °C exhibit higher saturation magnetization, which is evidenced by the larger HBhf. Also, three magnetic loss peaks in a permeability spectrum have been observed for the particles annealed at 900 °C. The natural resonance frequencies are calculated, which are in good agreement with the experimental resonance peaks. The origin of the multiple magnetic loss peaks can be explained from the perspective of the distribution of shape anisotropy fields which is caused by multiple phase structure.
NASA Astrophysics Data System (ADS)
Feltzing, S.; Gustafsson, B.
1998-04-01
We have derived elemental abundances of O, Na, Mg, Al, Si, Ca, Ti, Cr, Mn, Fe, Co, Ni as well as for a number of s-elements for 47 G and K dwarf, with [Me/H]>0.1 dex. The selection of stars was based on their kinematics as well as on their uvby-beta photometry. One sample of stars on rather eccentric orbits traces the chemical evolution interior to the solar orbit and another, on circular orbits, the evolution around the solar orbit. A few Extreme Population I stars were included in the latter sample. The stars have -0.1 dex < [Fe/H] < 0.42 dex. The spectroscopic [Fe/H] correlate well with the [Me/H] derived from uvby-beta photometry. We find that the elemental abundances of Mg, Al, Si, Ca, Ti, Cr and Ni all follow [Fe/H]. Our data put further constraints on models of galactic chemical evolution, in particular of Cr, Mn and Co which have not previously been studied for dwarf stars with [Me/H] >0.1 dex. The increase in [Na/Fe] and [Al/Fe] as a function of [Fe/H] found previously by \\cite[Edvardsson et al. (1993a)]{Edv93} has been confirmed for [Na/Fe]. This upturning relation, and the scatter around it, are shown not to be due to a mixture of populations with different mean distances to the galactic centre. We do not confirm the same trend for aluminium, which is somewhat surprising since both these elements are thought to be produced in the same environments in the pre-supernova stars. Nor have we been able to trace any tendency for relative abundances of O, Si, and Ti relative to Fe to vary with the stellar velocities, i.e. the stars present mean distance to the galactic centre. These results imply that there is no significant difference in the chemical evolution of the different stellar populations for stars with [Me/H]>0.1 dex. We find that [O/Fe] continue to decline with increasing [Fe/H] and that oxygen and europium correlate well. However [Si/Fe] and [Ca/Fe] seem to stay constant. A real (``cosmic'') scatter in [Ti/Fe] at given [Fe/H] is suggested as well as a decreasing abundance of the s-elements relative to iron for the most metal-rich dwarf stars. We discuss our results in the context of recent models of galactic chemical evolution. In our sample we have included a few very metal rich stars, sometimes called SMR (super metal rich) stars. We find these stars to be among the most iron-rich in our sample but far from as metal-rich as indicated by their photometric metallicities. SMR stars on highly eccentric orbits, alleged to trace the evolution of the chemical evolution in the galactic Bulge, have previously been found overabundant in O, Mg and Si. We have included three such stars from the study by \\cite[Barbuy & Grenon (1990)]{Bar90}. We find them to be less metal rich and the other elemental abundances remain puzzling. Detailed spectroscopic abundance analyses of K dwarf stars are rare. Our study includes 5 K dwarf stars and has revealed what appears to be a striking example of overionization. The overionization is especially prominent for Ca, Cr and Fe. The origin of this apparent overionization is not clear and we discuss different explanations in some detail. Based on observations at the McDonald Observatory.
Shape-Control of a 0D/1D NaFe0.9Mn0.1PO4 Nano-Complex by Electrospinning
NASA Astrophysics Data System (ADS)
Shin, Mi-Ra; Son, Jong-Tae
2018-03-01
NaFePO4 with a maricite structure was one of the most promising candidates for sodium ion batteries (SIBs) due to its advantages of environmental friendly and having low cost. However, it has low electrochemical conductivity and energy density, which impose limitations on its application as commercial cathode materials. In this study, other transition-metal ions such as Mn2+ were substituted into the iron (Fe2+) site in NaFePO4 to increase the surface area and the number of nanofibers in the prepared one-dimensional (1D) nano-sized material with 0D/1D dimensions to enhance the energy density. Also, the 0D/1D NaFe0.9Mn0.1PO4 cathode material has increased electrochemical conductivity because the fiber size was reduced to the nano-scale level by using the electrospinning method in order to decrease the diffusion path of Na-ions. The morphology of the 0D/1D nanofiber was evaluated by Field-emission scanning electron microscope and atomic force microscope analyses. The NaFe0.9Mn0.1PO4 nanofibers had a diameter of approximately 180 nm, while the spherical particle had a diameter 1 μm. The 0D/1D nano-sized cathode material show a discharge capacity of 27 mAhg -1 at a 0.05 C rate within the 2.0 4.5 V voltage range and a low R ct of 110 Ω.
Sherman, David M.
1990-01-01
Metal-metal charge-transfer and magnetic exchange interactions have important effects on the optical spectra, crystal chemistry, and physics of minerals. Previous molecular orbital calculations have provided insight on the nature of Fe2+-Fe3+ and Fe2+-Ti4+ charge-transfer transitions in oxides and silicates. In this work, spin-unrestricted molecular orbital calculations on (FeMnO10) clusters are used to study the nature of magnetic exchange and electron delocalization (charge transfer) associated with Fe3+-Mn2+, Fe3+-Mn3+, and Fe2+-Mn3+ interactions in oxides and silicates.
Magnetic Torque in Single Crystal Ni-Mn-Ga
NASA Astrophysics Data System (ADS)
Hobza, Anthony; Müllner, Peter
2017-06-01
Magnetic shape memory alloys deform in an external magnetic field in two distinct ways: by axial straining—known as magnetic-field-induced strain—and by bending when exposed to torque. Here, we examine the magnetic torque that a magnetic field exerts on a long Ni-Mn-Ga rod. A single crystal specimen of Ni-Mn-Ga was constrained with respect to bending and subjected to an external magnetic field. The torque required to rotate the specimen in the field was measured as a function of the orientation of the sample with the external magnetic field, strain, and the magnitude of the external magnetic field. The torque was analyzed based on the changes in the free energy with the angle between the field and the sample. The contributions of magnetocrystalline anisotropy and shape anisotropy to the Zeeman energy determine the net torque. The torque is large when magneotcrystalline and shape anisotropies act synergistically and small when these anisotropies act antagonistically.
Martensitic transformation in as-grown and annealed near-stoichiometric epitaxial Ni2MnGa thin films
NASA Astrophysics Data System (ADS)
Machain, P.; Condó, A. M.; Domenichini, P.; Pozo López, G.; Sirena, M.; Correa, V. F.; Haberkorn, N.
2015-08-01
Magnetic shape memory nanostructures have a great potential in the field of the nanoactuators. The relationship between dimensionality, microstructure and magnetism characterizes the materials performance. Here, we study the martensitic transformation in supported and free-standing epitaxial Ni47Mn24Ga29 films grown by sputtering on (0 0 1) MgO using a stoichiometric Ni2MnGa target. The films have a Curie temperature of ~390 K and a martensitic transition temperature of ~120 K. Similar transition temperatures have been observed in films with thicknesses of 1, 3 and 4 μm. Thicker films (with longer deposition time) present a wider martensitic transformation range that can be associated with small gradients in their chemical concentration due to the high vapour pressure of Mn and Ga. The magnetic anisotropy of the films shows a strong change below the martensitic transformation temperature. No features associated with variant reorientation induced by magnetic field have been observed. Annealed films in the presence of a Ni2MnGa bulk reference change their chemical composition to Ni49Mn26Ga25. The change in the chemical composition increases the martensitic transformation temperature, being closer to the stoichiometric compound, and reduces the transformation hysteresis. In addition, sharper transformations are obtained, which indicate that chemical inhomogeneities and defects are removed. Our results indicate that the properties of Ni-Mn-Ga thin films grown by sputtering can be optimized (fixing the chemical concentration and removing crystalline defects) by the annealing process, which is promising for the development of micromagnetic shape memory devices.
NASA Astrophysics Data System (ADS)
Han, X. L.; Song, K. K.; Zhang, L. M.; Xing, H.; Sarac, B.; Spieckermann, F.; Maity, T.; Mühlbacher, M.; Wang, L.; Kaban, I.; Eckert, J.
2018-03-01
In this work, the microstructure and mechanical properties of rapidly solidified Ti50- x/2Ni50- x/2Hf x ( x = 0, 2, 4, 6, 8, 10, and 12 at.%) and Ti50- y/2Ni50- y/2Si y ( y = 1, 2, 3, 5, 7, and 10 at.%) shape memory alloys (SMAs) were investigated. The sequence of the phase formation and transformations in dependence on the chemical composition is established. Rapidly solidified Ti-Ni-Hf or Ti-Ni-Si SMAs are found to show relatively high yield strength and large ductility for specific Hf or Si concentrations, which is due to the gradual disappearance of the phase transformation from austenite to twinned martensite and the predominance of the phase transformation from twinned martensite to detwinned martensite during deformation as well as to the refinement of dendrites and the precipitation of brittle intermetallic compounds.
NASA Astrophysics Data System (ADS)
Li, Zongbin; Hu, Wei; Chen, Fenghua; Zhang, Mingang; Li, Zhenzhuang; Yang, Bo; Zhao, Xiang; Zuo, Liang
2018-04-01
Polycrystalline Ni44.5Co5.1Mn37.1In13.3 alloy with coarse columnar-shaped grains and 〈0 0 1〉A preferred orientation was prepared by directional solidification. Due to the strong magnetostructural coupling, inverse martensitic transformation can be induced by the magnetic field, resulting in large negative magnetoresistance up to -58% under the field of 3 T. Such significant field controlled functional behaviors should be attributed to the coarse grains and strong preferred orientation in the directionally solidified alloy.
Superplasticity in a lean Fe-Mn-Al steel.
Han, Jeongho; Kang, Seok-Hyeon; Lee, Seung-Joon; Kawasaki, Megumi; Lee, Han-Joo; Ponge, Dirk; Raabe, Dierk; Lee, Young-Kook
2017-09-29
Superplastic alloys exhibit extremely high ductility (>300%) without cracks when tensile-strained at temperatures above half of their melting point. Superplasticity, which resembles the flow behavior of honey, is caused by grain boundary sliding in metals. Although several non-ferrous and ferrous superplastic alloys are reported, their practical applications are limited due to high material cost, low strength after forming, high deformation temperature, and complicated fabrication process. Here we introduce a new compositionally lean (Fe-6.6Mn-2.3Al, wt.%) superplastic medium Mn steel that resolves these limitations. The medium Mn steel is characterized by ultrafine grains, low material costs, simple fabrication, i.e., conventional hot and cold rolling, low deformation temperature (ca. 650 °C) and superior ductility above 1300% at 850 °C. We suggest that this ultrafine-grained medium Mn steel may accelerate the commercialization of superplastic ferrous alloys.Research in new alloy compositions and treatments may allow the increased strength of mass-produced, intricately shaped parts. Here authors introduce a superplastic medium manganese steel which has an inexpensive lean chemical composition and which is suited for conventional manufacturing processes.
NASA Astrophysics Data System (ADS)
Khoury, Hani N.; Sokol, Ella V.; Kokh, Svetlana N.; Seryotkin, Yurii V.; Nigmatulina, Elena N.; Goryainov, Sergei V.; Belogub, Elena V.; Clark, Ian D.
2016-02-01
Tululite (Ca14(Fe3+,Al)(Al,Zn,Fe3+,Si,P,Mn,Mg)15O36 (the hypothetical end-member formula Ca14{Fe3+O6}[SiO4][Zn5Al9]O26) (IMA2014-065) is a new natural Ca zincate-aluminate, identified in medium-temperature (800-850 °C) combustion metamorphic (CM) spurrite-fluorellestadite marbles from central Jordan. The type locality (Tulul Al Hammam area) is situated in the northern part of the Siwaqa complex, the largest area of the "Mottled Zone" Formation in the Dead Sea region. The marbles originated from bitumen-rich chalky marine sediments of the Maastrichtian-Paleogene Muwaqqar Chalk Marl Formation, which have low clay content (and, consequently, low Al) and high Zn, Cd, and U enrichments. The bulk CM rocks derived from the low-Al protolith have unusually high (Zn + Cd)/Al ratios ( 0.2) and, as a result, a mineralogy with negligibly small percentages of Ca aluminates having low Ca:Al molar ratios (minerals of mayenite supergroup, Ca:Al = 6:7) common to most of calcareous CM rocks in the Mottled Zone. Instead, the mineral assemblage of the Zn-rich marbles contains tululite, with high Ca:Al = 2.55 molar ratios and Zn substituting for a large portion of Al (Zn:Al = 1.1). Tululite occurs in thin clusters as irregular grains with indented outlines (20-100 μm in size), having typical open-work textures associated with rock-forming calcite, fluorellestadite, spurrite, and accessory Zn-rich periclase, lime-monteponite solid solutions, calcium uranates, and zincite. Marbles also bear brownmillerite, dorrite, fluormayenite, high-fluorine Ca aluminate, and lakargiite. Secondary phases are brucite, gel-like calcium silicate hydrates and calcium silicate aluminate hydrates, including Zn- and U-bearing and Cd-rich compounds, Si-bearing hydrated compounds after calcium uranates, and basic Cd chlorides. The empirical formula of the holotype tululite (a mean of 32 analyses) is (Ca13.29Cd0.75)Σ14.04(Al5.46Zn5.20Fe3+ 2.23Si0.95Mn3+ 1.01Mg0.78P0.41)Σ16.04O36. Tululite is cubic, space group F23; a = 14.9346(4) Å; V = 3331.07(15) Å3, Z = 4. The strongest lines of the X-ray powder-diffraction pattern [ d, Å - ( I obs )] are: 2.874(57), 2.640 (100), 2.524(42), 2.278(41), 1.760(54), 1.725(25), 1.524(33), 1.500(33). The crystal structure was solved from single-crystal X-ray diffraction data and refined to wR2 = 0.0672 on the basis of 913 unique reflections with I 0 > 2σ( I). Tululite belongs to a group of compounds with the general formula Ca14 MT 15O35+ x (0 ≤ x ≤ 1), and is a new structure type. The tetrahedral framework of tululite structure is formed by T7O13 secondary building units (SBU), which consist of four corner-linked tetrahedra sharing a common oxygen atom and three tetrahedra sharing two O atoms with the neighbor SBU. Ca2+ cations occupy three positions; two of them also contain a minor amount of Cd2+. The Ca sites surround an island (Fe3+,Al)O6 octahedron and a (Si,P)O4 tetrahedron in the centers of framework cages at the junction of eight SBUs. The (Fe3+,Al)O6 octahedron is coordinated by fourteen Ca positions into a 6-capped cube, whereas the (Si,P)O4 tetrahedron is coordinated by six Ca positions into a regular octahedron. The structural formula of tululite is Ca14{Fe3+O6}M1[(Si,P)O4]T1[(Al,Zn)7O13]2 T2-T4. The mineral is yellow with greenish tint, transparent with vitreous luster, non-fluorescent under ultraviolet light, and showing neither parting nor cleavage; Mohs hardness is 6.5. The density calculated on the basis of the empirical formula is 3.826 g/cm3. Its Raman spectrum shows strong bands at 522, 550 and 636 cm-1 and weak bands at 199, 260, 295, 456, and 754 cm-1.
Dassama, Laura M.K.; Krebs, Carsten; Bollinger, J. Martin; Rosenzweig, Amy C.; Boal, Amie K.
2013-01-01
The class Ic ribonucleotide reductase (RNR) from Chlamydia trachomatis (Ct) employs a MnIV/FeIII cofactor in each monomer of its β2 subunit to initiate nucleotide reduction. The cofactor forms by reaction of MnII/FeII-β2 with O2. Previously, in vitro cofactor assembly from apo β2 and divalent metal ions produced a mixture of two forms, with Mn in site 1 (MnIV/FeIII) or site 2 (FeIII/MnIV), of which the more active MnIV/FeIII product predominates. Here we have addressed the basis for metal site-selectivity by solving X-ray crystal structures of apo, MnII, and MnII/FeII complexes of Ct β2. A structure obtained anaerobically with equimolar MnII, FeII, and apo protein reveals exclusive incorporation of MnII in site 1 and FeII in site 2, in contrast to the more modest site-selectivity achieved previously. Site-specificity is controlled thermodynamically by the apo protein structure, as only minor adjustments of ligands occur upon metal binding. Additional structures imply that, by itself, MnII binds in either site. Together the structures are consistent with a model for in vitro cofactor assembly in which FeII specificity for site 2 drives assembly of the appropriately configured heterobimetallic center, provided that FeII is substoichiometric. This model suggests that use of an MnIV/FeIII cofactor in vivo could be an adaptation to FeII limitation. A 1.8 Å resolution model of the MnII/FeII-β2 complex reveals additional structural determinants for activation of the cofactor, including a proposed site for side-on (η2) addition of O2 to FeII and a short (3.2 Å) MnII-FeII interionic distance, promoting formation of the MnIV/FeIV activation intermediate. PMID:23924396
NASA Astrophysics Data System (ADS)
Su, Jianwei; Zhang, Yunxia; Xu, Sichao; Wang, Shuan; Ding, Hualin; Pan, Shusheng; Wang, Guozhong; Li, Guanghai; Zhao, Huijun
2014-04-01
Herein, we demonstrate the design and fabrication of the well-defined triple-shelled Ag@Fe3O4@SiO2@TiO2 nanospheres with burr-shaped hierarchical structures, in which the multiple distinct functional components are integrated wonderfully into a single nanostructure. In comparison with commercial TiO2 (P25), pure TiO2 microspheres, Fe3O4@SiO2@TiO2 and annealed Ag@Fe3O4@SiO2@TiO2 nanocomposites, the as-obtained amorphous triple-shelled Ag@Fe3O4@SiO2@TiO2 hierarchical nanospheres exhibit a markedly enhanced visible light or sunlight photocatalytic activity towards the photodegradation of methylene blue and photoreduction of hexavalent chromium ions in wastewater. The outstanding photocatalytic activities of the plasmonic photocatalyst are mainly due to the enhanced light harvesting, reduced transport paths for both mass and charge transport, reduced recombination probability of photogenerated electrons/holes, near field electromagnetic enhancement and efficient scattering from the plasmonic nanostructure, increased surface-to-volume ratio and active sites in three dimensional (3D) hierarchical porous nanostructures, and improved photo/chemical stability. More importantly, the hierarchical nanostructured Ag@Fe3O4@SiO2@TiO2 photocatalysts could be easily collected and separated by applying an external magnetic field and reused at least five times without any appreciable reduction in photocatalytic efficiency. The enhanced photocatalytic activity and excellent chemical stability, in combination with the magnetic recyclability, make these multifunctional nanostructures promising candidates to remediate aquatic contaminants and meet the demands of future environmental issues.Herein, we demonstrate the design and fabrication of the well-defined triple-shelled Ag@Fe3O4@SiO2@TiO2 nanospheres with burr-shaped hierarchical structures, in which the multiple distinct functional components are integrated wonderfully into a single nanostructure. In comparison with commercial TiO2 (P25), pure TiO2 microspheres, Fe3O4@SiO2@TiO2 and annealed Ag@Fe3O4@SiO2@TiO2 nanocomposites, the as-obtained amorphous triple-shelled Ag@Fe3O4@SiO2@TiO2 hierarchical nanospheres exhibit a markedly enhanced visible light or sunlight photocatalytic activity towards the photodegradation of methylene blue and photoreduction of hexavalent chromium ions in wastewater. The outstanding photocatalytic activities of the plasmonic photocatalyst are mainly due to the enhanced light harvesting, reduced transport paths for both mass and charge transport, reduced recombination probability of photogenerated electrons/holes, near field electromagnetic enhancement and efficient scattering from the plasmonic nanostructure, increased surface-to-volume ratio and active sites in three dimensional (3D) hierarchical porous nanostructures, and improved photo/chemical stability. More importantly, the hierarchical nanostructured Ag@Fe3O4@SiO2@TiO2 photocatalysts could be easily collected and separated by applying an external magnetic field and reused at least five times without any appreciable reduction in photocatalytic efficiency. The enhanced photocatalytic activity and excellent chemical stability, in combination with the magnetic recyclability, make these multifunctional nanostructures promising candidates to remediate aquatic contaminants and meet the demands of future environmental issues. Electronic supplementary information (ESI) available: Synthesis of TiO2 microspheres; synthesis of Fe3O4@SiO2@TiO2 nanospheres; synthesis of Ag@Fe3O4@TiO2 nanospheres; SEM images of the as-prepared products: (a) Ag@Fe3O4, (b) Ag@Fe3O4@SiO2 and (c) Ag@Fe3O4@SiO2@TiO2 (Fig. S1); TEM images of the Ag@Fe3O4@SiO2 synthesized with adding different amount of TEOS (Fig. S2); SEM, TEM and EDS spectrum of Fe3O4@SiO2@TiO2 NPs (Fig. S3); SEM and TEM images of as-prepared TiO2 microspheres (Fig. S4); nitrogen adsorption-desorption isotherm and pore size distribution plot for as-prepared Fe3O4@SiO2@TiO2 and TiO2 microspheres (Fig. S5); adsorption rate curve of MB in dark for Ag@Fe3O4@SiO2@TiO2 samples (Fig. S6); photocatalytic degradation of MB over unannealed Ag@Fe3O4@SiO2@TiO2 (3 mg) and P25 (10 mg) under Xe lamp illumination (Fig. S7). See DOI: 10.1039/c4nr00534a
Symonds, R.B.; Rose, William I.; Reed, M.H.; Lichte, F.E.; Finnegan, David L.
1987-01-01
Condensates, silica tube sublimates and incrustations were sampled from 500-800??C fumaroles and lava samples were collected at Merapi Volcano, Indonesia in Jan.-Feb., 1984. With respect to the magma, Merapi gases are enriched by factors greater than 105 in Se, Re, Bi and Cd; 104-105 in Au, Br, In, Pb and W; 103-104 in Mo, Cl, Cs, S, Sn and Ag; 102-103 in As, Zn, F and Rb; and 1-102 in Cu, K, Na, Sb, Ni, Ga, V, Fe, Mn and Li. The fumaroles are transporting more than 106 grams/day ( g d) of S, Cl and F; 104-106 g/d of Al, Br, Zn, Fe, K and Mg; 103-104 g d of Pb, As, Mo, Mn, V, W and Sr; and less than 103 g d of Ni, Cu, Cr, Ga, Sb, Bi, Cd, Li, Co and U. With decreasing temperature (800-500??C) there were five sublimate zones found in silica tubes: 1) cristobalite and magnetite (first deposition of Si, Fe and Al); 2) K-Ca sulfate, acmite, halite, sylvite and pyrite (maximum deposition of Cl, Na, K, Si, S, Fe, Mo, Br, Al, Rb, Cs, Mn, W, P, Ca, Re, Ag, Au and Co); 3) aphthitalite (K-Na sulfate), sphalerite, galena and Cs-K. sulfate (maximum deposition of Zn, Bi, Cd, Se and In; higher deposition of Pb and Sn); 4) Pb-K chloride and Na-K-Fe sulfate (maximum deposition of Pb, Sn and Cu); and 5) Zn, Cu and K-Pb sulfates (maximum deposition of Pb, Sn, Ti, As and Sb). The incrustations surrounding the fumaroles are also chemically zoned. Bi, Cd, Pb, W, Mo, Zn, Cu, K, Na, V, Fe and Mn are concentrated most in or very close to the vent as expected with cooling, atmospheric contamination and dispersion. The highly volatile elements Br, Cl, As and Sb are transported primarily away from high temperature vents. Ba, Si, P, Al, Ca and Cr are derived from wall rock reactions. Incomplete degassing of shallow magma at 915??C is the origin of most of the elements in the Merapi volcanic gas, although it is partly contaminated by particles or wall rock reactions. The metals are transported predominantly as chloride species. As the gas cools in the fumarolic environment, it becomes saturated with sublimate phases that fractionate from the gas in the order of their equilibrium saturation temperatures. Devolatilization of a cooling batholith could transport enough acids and metals to a hydrothermal system to play a significant role in forming an ore deposit. However, sublimation from a high temperature, high velocity carrier gas is not efficient enough to form a large ore deposit. Re, Se, Cd and Bi could be used as supporting evidence for magmatic fluid transport in an ore deposit. ?? 1987.
Complex, Precision Cast Columbium Alloy Gas Turbine Engine Nozzles Coated to Resist Oxidation.
1980-04-01
Microstructures of Sprayed Specimens 64 Table 19 NS-4 Coated C129Y Alloy Specimens Weight Bisque Weight Sintered Weight Silicided Weight Pre-Oxidized...choice of another alloy , while perhaps assisting in the foundry process , would not have yielded a mechanical property data base with advantage over...Mo 250 ppm max; Fe 30 ppm max; Al , Ca, C, Si, Cr, Ni, Cu , Mn, Mg and Sn 10 ppm max each). Molybdenum វim powder (02 2000 ppm max; W 250 ppm max; Fe
NASA Astrophysics Data System (ADS)
Gryzia, Aaron; Predatsch, Hans; Brechling, Armin; Hoeke, Veronika; Krickemeyer, Erich; Derks, Christine; Neumann, Manfred; Glaser, Thorsten; Heinzmann, Ulrich
2011-08-01
We report on the characterization of various salts of [ Mn III 6 Cr III ] 3+ complexes prepared on substrates such as highly oriented pyrolytic graphite (HOPG), mica, SiO2, and Si3N4. [ Mn III 6 Cr III ] 3+ is a single-molecule magnet, i.e., a superparamagnetic molecule, with a blocking temperature around 2 K. The three positive charges of [ Mn III 6 Cr III ] 3+ were electrically neutralized by use of various anions such as tetraphenylborate (BPh4 -), lactate (C3H5O3 -), or perchlorate (ClO4 -). The molecule was prepared on the substrates out of solution using the droplet technique. The main subject of investigation was how the anions and substrates influence the emerging surface topology during and after the preparation. Regarding HOPG and SiO2, flat island-like and hemispheric-shaped structures were created. We observed a strong correlation between the electronic properties of the substrate and the analyzed structures, especially in the case of mica where we observed a gradient in the analyzed structures across the surface.
Composition and genesis of ferromanganese deposits from the northern South China Sea
NASA Astrophysics Data System (ADS)
Zhong, Yi; Chen, Zhong; González, Francisco Javier; Hein, James R.; Zheng, Xufeng; Li, Gang; Luo, Yun; Mo, Aibin; Tian, Yuhang; Wang, Shuhong
2017-05-01
Marine ferromanganese (Fe-Mn) nodules and crusts are archives of past environmental conditions and potential mineral resources. Over the last 30 years, many have been discovered in the northern South China Sea (SCS). To determine the origin of the Fe-Mn deposits, a comprehensive laboratory analysis of physical properties, mineralogy and geochemistry was conducted on newly collected Fe-Mn nodule/crust samples. The results revealed that there are three types of Fe-Mn deposits: (1) Fe-rich nodules containing essentially goethite occur on the northeastern slope of the SCS, with high Fe, low Mn (Mn/Fe = 0.03) and low trace metals and rare earth elements concentrations; (2) Smooth Fe-Mn nodules and crusts composed of asbolane, todorokite and CFA occur along the northwestern marginal of the SCS that have similar Fe and Mn contents (Mn/Fe = 1.21), moderate trace metal enrichments, and a positive Ce anomaly; (3) Fe-Mn nodules and crusts composed of asbolane, todorokite and birnessite that occur in the central basin of the SCS have higher Mn and lower Fe contents (Mn/Fe = 1.45). This depositional pattern was associated with major changes in oceanographic conditions and tectonic regimes. The northeastern slope deposits occur in a contourite depositional system, are strongly enriched in Fe relative to Mn (average 38.7% and 0.96%, respectively), formed from the combination of hydrogenetic and diagenetic processes. We propose a new genetic model for Fe-Mn nodules, which formed through the oxidation of pyrite and pyrite-barite concretions that formed by rapid early diagenetic growth (average 3320 mm/Myr) on continental margins above the carbonate compensation depth, and dominated by hydrocarbon seep structures and strong erosive action of bottom currents along the northeastern slope. In contrast, the introduction of vigorous deep-water flow from the North Pacific promoted the slow growth (4-7 mm/Myr) of hydrogenetic Fe-Mn nodules and crusts along the northwestern margin. Finally, hydrogenetic growth of Fe-Mn nodules and crusts in the central basin may have been enhanced by volcanic processes. Our data provide new insights into the genesis and province characteristics of the Fe-Mn nodules and crusts of the northern SCS.
NASA Astrophysics Data System (ADS)
Uba, S.; Bonda, A.; Uba, L.; Bekenov, L. V.; Antonov, V. N.; Ernst, A.
2016-08-01
In this joint experimental and ab initio study, we focused on the influence of the chemical composition and martensite phase transition on the electronic, magnetic, optical, and magneto-optical properties of the ferromagnetic shape-memory Ni-Mn-Ga alloys. The polar magneto-optical Kerr effect (MOKE) spectra for the polycrystalline sample of the Ni-Mn-Ga alloy of Ni60Mn13Ga27 composition were measured by means of the polarization modulation method over the photon energy range 0.8 ≤h ν ≤5.8 eV in magnetic field up to 1.5 T. The optical properties (refractive index n and extinction coefficient k ) were measured directly by spectroscopic ellipsometry using the rotating analyzer method. To complement experiments, extensive first-principles calculations were made with two different first-principles approaches combining the advantages of a multiple scattering Green function method and a spin-polarized fully relativistic linear-muffin-tin-orbital method. The electronic, magnetic, and MO properties of Ni-Mn-Ga Heusler alloys were investigated for the cubic austenitic and modulated 7M-like incommensurate martensitic phases in the stoichiometric and off-stoichiometric compositions. The optical and MOKE properties of Ni-Mn-Ga systems are very sensitive to the deviation from the stoichiometry. It was shown that the ab initio calculations reproduce well experimental spectra and allow us to explain the microscopic origin of the Ni2MnGa optical and magneto-optical response in terms of interband transitions. The band-by-band decomposition of the Ni2MnGa MOKE spectra is presented and the interband transitions responsible for the prominent structures in the spectra are identified.
Substituting Fe for two of the four Mn ions in photosystem II-effects on water-oxidation.
Semin, Boris K; Seibert, Michael
2016-06-01
We have investigated the interaction of Fe(II) cations with Ca-depleted PSII membranes (PSII[-Ca,4Mn]) in the dark and found that Fe(II) incubation removes 2 of 4 Mn ions from the tetranuclear Mn cluster of the photosynthetic O2-evolving complex (OEC). The reduction of Mn ions in PSII(-Ca,4Mn) by Fe(II) and the concomitant release of two Mn(II) cations is accompanied by the binding of newly generated Fe(III) in at least one vacated Mn site. Flash-induced chlorophyll (Chl) fluorescence yield measurements of this new 2Mn/nFe cluster (PSII[-Ca,2Mn,nFe]) show that charge recombination in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) occurs between Qa (-) and the remaining Mn/Fe cluster (but not YZ (●)) in the OEC, and extraction of 2 Mn occurs uniformly in all PSII complexes. No O2 evolution is observed, but the heteronuclear metal cluster in PSII(-Ca,2Mn,nFe) samples is still able to supply electrons for reduction of the exogenous electron acceptor, 2,6-dichlorophrenolindophenol, by photooxidizing water and producing H2O2 in the absence of an exogenous donor as seen previously with PSII(-Ca,4Mn). Selective extraction of Mn or Fe cations from the 2Mn/nFe heteronuclear cluster demonstrates that the high-affinity Mn-binding site is occupied by one of the iron cations. It is notable that partial water-oxidation function still occurs when only two Mn cations are present in the PSII OEC.
Strain-induced dimensionality crossover of precursor modulations in Ni{sub 2}MnGa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nie, Zhihua, E-mail: zhihua-nie@yahoo.com, E-mail: ydwang@neu.edu.cn; Wang, Yandong, E-mail: zhihua-nie@yahoo.com, E-mail: ydwang@neu.edu.cn; Shang, Shunli
2015-01-12
Precursor modulations often occur in functional materials like magnetic shape memory alloys, ferroelectrics, and superconductors. In this letter, we have revealed the underlying mechanism of the precursor modulations in ferromagnetic shape memory alloys Ni{sub 2}MnGa by combining synchrotron-based x-ray diffraction experiments and first-principles phonon calculations. We discovered the precursor modulations along [011] direction can be eliminated with [001] uniaxial loading, while the precursor modulations or premartensite can be totally suppressed by hydrostatic pressure condition. The TA{sub 2} phonon anomaly is sensitive to stress induced lattice strain, and the entire TA{sub 2} branch is stabilized along the directions where precursor modulationsmore » are eliminated by external stress. Our discovery bridges precursor modulations and phonon anomalies, and sheds light on the microscopic mechanism of the two-step superelasticity in precursor martensite.« less
NASA Astrophysics Data System (ADS)
Canbay, Canan Aksu; Polat, Tercan
2017-09-01
In this work the effects of the applied pressure on the characteristic transformation temperatures, the high temperature order-disorder phase transitions, the variation in diffraction peaks and the surface morphology of the CuAlMnNi shape memory alloy was investigated. The evolution of the transformation temperatures was studied by differential scanning calorimetry (DSC) with different heating and cooling rates. The differential thermal analysis measurements were performed to obtain the ordered-disordered phase transformations from room temperature to 900 °C. The characteristic transformation temperatures and the thermodynamic parameters were highly sensitive to variations in the applied pressure and also the applied pressure affected the thermodynamic parameters. The activation energy of the sample according to applied pressure values calculated by Kissinger method. The structural changes of the samples were studied by X-ray diffraction (XRD) measurements and by optical microscope observations at room temperature.
NASA Astrophysics Data System (ADS)
Emre, Baris; Yüce, Süheyla; Stern-Taulats, Enric; Planes, Antoni; Fabbrici, Simone; Albertini, Franca; Mañosa, Lluís
2013-06-01
Calorimetry under magnetic field has been used to study the inverse magnetocaloric effect in Ni-Co-Mn-Ga-In magnetic shape memory alloys. It is shown that the energy dissipated during a complete transformation loop only represents a small fraction (5% to 7%) of the latent heat of the martensitic transition. It is found that the entropy values obtained from isofield temperature scans agree well with those obtained from isothermal magnetic field scans. The reproducibility of the magnetocaloric effect has been studied from isothermal measurements. Reproducible entropy values under field cycling have been found within a temperature interval bounded by the start temperature of the forward transition at zero field and the start temperature of the reverse transition under applied field. Large reversible entropy changes around 11 J/kg K have been found for fields up to 6 T.
Hawthorne, F.C.; Oberti, R.; Ungaretti, L.; Ottolini, L.; Grice, Joel D.; Czamanske, G.K.
1996-01-01
Fluor-ferro-leakeite is a new amphibole species from the Canada Pinabete pluton, Questa, New Mexico, U.S.A.; it occurs in association with quartz, alkali feldspar, acmite, ilmenite, and zircon. It forms as anhedral bluish black crystals elongated along c and up to 1 mm long. It is brittle, H = 6, Dmeas = 3.37 g/cm3, Dcalc = 3.34 g/cm3. In plane-polarized light, it is strongly pleochroic, X = very dark indigo blue, Y = gray blue, Z = yellow green; X ??? c = 10?? (in ??obtuse), Y = b, Z ??? a = 4?? (in ?? obtuse), with absorption X > Y > Z. Fluor-ferro-leakeite is biaxial positive, ?? = 1.675(2), ??= 1.683(2), ?? = 1.694(1); 2V = 87(2)??; dispersion is not visible because of the strong absorption. Fluor-ferro-leakeite is monoclinic, space group C2/m, a = 9.792(1), b = 17.938(1), c = 5.3133(4) A??, ??= 103.87(7)??, V = 906.0(1) A??3, Z = 2. The ten strongest X-ray diffraction lines in the powder pattern are [d(I,hkl)]: 2.710(100,151), 2.536(92,202), 3.404(57,131), 4.481(54,040), 8.426(45,110), 2.985(38,241), 2.585(38,061), 3.122(29,310), 2.165(26,261), and 1.586(25,403). Analysis by a combination of electron microprobe, ion microprobe, and crystal-structure refinement (Hawthorne et al. 1993) gives SiO2 51.12, Al2O3 1.13, TiO2 0.68, Fe2O3 16.73, FeO 8.87, MgO 2.02, MnO 4.51, ZnO 0.57, CaO 0.15, Na2O 9.22, K2O 1.19, Li2O 0.99, F 2.87, H2Ocalc 0.60, sum 99.44 wt%. The formula unit, calculated on the basis of 23 O atoms, is (K0.23Na0.76)(Na1.97Ca0.03)(Mg 0.46Fe2+1.4Mn2+0.59Zn0.07Fe3+1.93-Ti 0.08Al0.02Li0.61])(Si7.81Al 0.19)O22(F1.39OH0.61). A previous crystal-structure refinement (Hawthorne et al. 1993) shows Li to be completely ordered at the M3 site. Fluor-ferro-leakeite, ideally NaNa2(Fe2+2Fe3+2Li)Si8O22F2, is related to leakeite, NaNa2(Mg2Fe3+3Li)Si 8O22(OH)2, by the substitutions Fe2+ ??? Mg and F ??? OH.
Exact ab initio transport coefficients in bcc Fe-X (X=Cr, Cu, Mn, Ni, P, Si) dilute alloys
NASA Astrophysics Data System (ADS)
Messina, Luca; Nastar, Maylise; Garnier, Thomas; Domain, Christophe; Olsson, Pär
2014-09-01
Defect-driven diffusion of impurities is the major phenomenon leading to formation of embrittling nanoscopic precipitates in irradiated reactor pressure vessel (RPV) steels. Diffusion depends strongly on the kinetic correlations that may lead to flux coupling between solute atoms and point defects. In this work, flux coupling phenomena such as solute drag by vacancies and radiation-induced segregation at defect sinks are systematically investigated for six bcc iron-based dilute binary alloys, containing Cr, Cu, Mn, Ni, P, and Si impurities, respectively. First, solute-vacancy interactions and migration energies are obtained by means of ab initio calculations; subsequently, self-consistent mean field theory is employed in order to determine the exact Onsager matrix of the alloys. This innovative multiscale approach provides a more complete treatment of the solute-defect interaction than previous multifrequency models. Solute drag is found to be a widespread phenomenon that occurs systematically in ferritic alloys and is enhanced at low temperatures (as for instance RPV operational temperature), as long as an attractive solute-vacancy interaction is present, and that the kinetic modeling of bcc alloys requires the extension of the interaction shell to the second-nearest neighbors. Drag occurs in all alloys except Fe(Cr); the transition from dragging to nondragging regime takes place for the other alloys around (Cu, Mn, Ni) or above (P, Si) the Curie temperature. As far as only the vacancy-mediated solute migration is concerned, Cr depletion at sinks is foreseen by the model, as opposed to the other impurities which are expected to enrich up to no less than 1000 K. The results of this study confirm the current interpretation of the hardening processes in ferritic-martensitic steels under irradiation.
Ferromagnetic resonance investigation in as-prepared NiFe/FeMn/NiFe trilayer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, S. J.; Xu, K.; Yu, L. M.
2007-06-01
NiFe/FeMn/NiFe trilayer prepared by dc magnetron sputtering was systematically investigated by ferromagnetic resonance technique (FMR) at room temperature. For NiFe/FeMn/NiFe trilayer, there are two distinct resonance peaks both in in-plane and out-of-plane FMR spectra, which are attributed to the two NiFe layers, respectively. The isotropic in-plane resonance field shift is negative for the bottom NiFe layer, while positive for the top NiFe layer. And, such phenomena result from the negative interfacial perpendicular anisotropy at the bottom NiFe/FeMn interface and positive interfacial perpendicular anisotropy at the top FeMn/NiFe interface. The linewidth of the bottom NiFe layer is larger than that ofmore » the top NiFe layer, which might be related to the greater exchange coupling at the bottom NiFe/FeMn interface.« less
Binder-jetting 3D printing and alloy development of new biodegradable Fe-Mn-Ca/Mg alloys.
Hong, Daeho; Chou, Da-Tren; Velikokhatnyi, Oleg I; Roy, Abhijit; Lee, Boeun; Swink, Isaac; Issaev, Ilona; Kuhn, Howard A; Kumta, Prashant N
2016-11-01
3D printing of various biomaterials including titanium and stainless steel has been studied for treating patients with cranio-maxillofacial bone defect. The potential long term complications with use of inert biometals have opened the opportunities for use of biodegradable metals in the clinical arena. The authors previously reported that binder-jet 3D printing technique enhanced the degradation rates of biodegradable Fe-Mn alloy by creating engineered micropores rendering the system attractive as biodegradable implantable devices. In the present study, the authors employed CALPHAD modeling to systematically study and modify the Fe-Mn alloy composition to achieve enhanced degradation rates. Accordingly, Ca and Mg addition to Fe-35wt% Mn solid solution predicted increase in degradation rates. In order to validate the CALPHAD results, Fe - (35-y)wt% Mn - ywt% X (X=Ca, Mg, and y=0, 1, 2) were synthesized by using high energy mechanical alloying (HEMA). Sintered pellets of Fe-Mn-Ca and Fe-Mn-Mg were then subjected to potentiodynamic polarization (PDP) and live/dead cell viability tests. Sintered pellets of Fe-Mn, Fe-Mn-Ca, and Fe-Mn-Mg also exhibited MC3T3 murine pre-osteoblast cells viability in the live/dead assay results. Fe-Mn and Fe-Mn-1Ca were thus accordingly selected for 3D printing and the results further confirmed enhanced degradation of Ca addition to 3D printed constructs validating the theoretical and alloy development studies. Live/dead and MTT cell viability results also confirmed good cytocompatibility of the 3D-printed Fe-Mn and Fe-Mn-1Ca constructs. Bone grafting is widely used for the treatment of cranio-maxillofacial bone injuries. 3D printing of biodegradable Fe alloy is anticipated to be advantageous over current bone grafting techniques. 3D printing offers the fabrication of precise and tailored bone grafts to fit the patient specific bone defect needs. Biodegradable Fe alloy is a good candidate for 3D printing synthetic grafts to regenerate bone tissue without eliciting complications. CALPHAD theoretical models were used to develop new Fe-Mn-Ca/Mg alloys to enhance the degradation rates of traditional Fe-Mn alloys. In vitro experimental results also showed enhanced degradation rates and good cytocompatibility of sintered Fe-Mn-Ca/Mg compacts. 3D printing of Fe-Mn and Fe-Mn-1Ca alloys further demonstrated their feasibility as potentially viable bone grafts for the future. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
The effects of alloying elements Al and In on Ni-Mn-Ga shape memory alloys, from first principles.
Chen, Jie; Li, Yan; Shang, Jia-Xiang; Xu, Hui-Bin
2009-01-28
The electronic structures and formation energies of the Ni(9)Mn(4)Ga(3-x)Al(x) and Ni(9)Mn(4)Ga(3-x)In(x) alloys have been investigated using the first-principles pseudopotential plane-wave method based on density functional theory. The results show that both the austenite and martensite phases of Ni(9)Mn(4)Ga(3) alloy are stabilized by Al alloying, while they become unstable with In alloying. According to the partial density of states and structural energy analysis, different effects of Al and In alloying on the phase stability are mainly attributed to their chemical effects. The formation energy difference between the austenite and martensite phases decreases with Al or In alloying, correlating with the experimentally reported changes in martensitic transformation temperature. The shape factor plays an important role in the decrease of the formation energy difference.
Phase transition in a multiferroic Ni-Mn-Ga single crystal
NASA Astrophysics Data System (ADS)
Veřtát, P.; Drahokoupil, J.; Perevertov, O.; Heczko, O.
2016-08-01
We studied martensitic phase transformation, crystal structure and twinned microstructure of resulting martensite of a Ni-Mn-Ga single crystal as essential conditions for magnetic shape memory effect. Thermal dependence of electric resistivity, magnetic susceptibility and dilatation measurements were measured to characterise kinetics of the transformation. With the help of XRD analysis and optical microscopy we evaluated the hierarchical twinning microstructure in the 10M martensite.
Influence of volume magnetostriction on the thermodynamic properties of Ni-Mn-Ga shape memory alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kosogor, Anna; Institute of Magnetism, 36-b, Vernadsky Str., Kyiv 03142; Donetsk Institute for Physics and Engineering, Kyiv 03028
2015-10-07
In the present article, the thermodynamic properties of Ni-Mn-Ga ferromagnetic shape memory alloys exhibiting the martensitic transformations (MTs) above and below Curie temperature are compared. It is shown that when MT goes below Curie temperature, the elastic and thermal properties of alloy noticeably depend on magnetization value due to spontaneous volume magnetostriction. However, the separation of magnetic parts from the basic characteristics of MT is a difficult task, because the volume magnetostriction does not qualitatively change the transformational behaviour of alloy. This problem is solved for several Ni-Mn-Ga alloys by means of the quantitative theoretical analysis of experimental data obtainedmore » in the course of stress-strain tests. For each alloy, the entropy change and the transformation heat evolved in the course of MT are evaluated, first, from the results of stress-strain tests and, second, from differential scanning calorimetry data. For all alloys, a quantitative agreement between the values obtained in two different ways is observed. It is shown that the magnetic part of transformation heat exceeds the non-magnetic one for the Ni-Mn-Ga alloys undergoing MTs in ferromagnetic state, while the elevated values of transformation heat measured for the alloys undergoing MTs in paramagnetic state are caused by large MT strains.« less
Influence of volume magnetostriction on the thermodynamic properties of Ni-Mn-Ga shape memory alloys
NASA Astrophysics Data System (ADS)
Kosogor, Anna; L'vov, Victor A.; Cesari, Eduard
2015-10-01
In the present article, the thermodynamic properties of Ni-Mn-Ga ferromagnetic shape memory alloys exhibiting the martensitic transformations (MTs) above and below Curie temperature are compared. It is shown that when MT goes below Curie temperature, the elastic and thermal properties of alloy noticeably depend on magnetization value due to spontaneous volume magnetostriction. However, the separation of magnetic parts from the basic characteristics of MT is a difficult task, because the volume magnetostriction does not qualitatively change the transformational behaviour of alloy. This problem is solved for several Ni-Mn-Ga alloys by means of the quantitative theoretical analysis of experimental data obtained in the course of stress-strain tests. For each alloy, the entropy change and the transformation heat evolved in the course of MT are evaluated, first, from the results of stress-strain tests and, second, from differential scanning calorimetry data. For all alloys, a quantitative agreement between the values obtained in two different ways is observed. It is shown that the magnetic part of transformation heat exceeds the non-magnetic one for the Ni-Mn-Ga alloys undergoing MTs in ferromagnetic state, while the elevated values of transformation heat measured for the alloys undergoing MTs in paramagnetic state are caused by large MT strains.
The Origin of the Iron-rich Knot in Tycho’s Supernova Remnant
NASA Astrophysics Data System (ADS)
Yamaguchi, Hiroya; Hughes, John P.; Badenes, Carles; Bravo, Eduardo; Seitenzahl, Ivo R.; Martínez-Rodríguez, Héctor; Park, Sangwook; Petre, Robert
2017-01-01
X-ray observations of supernova remnants (SNRs) allow us to investigate the chemical inhomogeneity of ejecta, offering unique insight into the nucleosynthesis in supernova explosions. Here we present detailed imaging and spectroscopic studies of the “Fe knot” located along the eastern rim of the Type Ia SNR Tycho (SN 1572) using Suzaku and Chandra long-exposure data. Surprisingly, the Suzaku spectrum of this knot shows no emission from Cr, Mn, or Ni, which is unusual for the Fe-rich regions in this SNR. Within the framework of the canonical delayed-detonation models for SN Ia, the observed mass ratios {M}{Cr}/{M}{Fe}< 0.023, {M}{Mn}/{M}{Fe}< 0.012, and {M}{Ni}/{M}{Fe}< 0.029 (at 90% confidence) can only be achieved for a peak temperature of (5.3-5.7) × {10}9 K and a neutron excess of ≲ 2.0× {10}-3. These constraints rule out the deep, dense core of a Chandrasekhar-mass white dwarf as the origin of the Fe knot and favor either incomplete Si burning or an α-rich freeze-out regime, probably close to the boundary. An explosive He burning regime is a possible alternative, although this hypothesis is in conflict with the main properties of this SNR.
Silicon decreases both uptake and root-to-shoot translocation of manganese in rice
Che, Jing; Yamaji, Naoki; Shao, Ji Feng; Ma, Jian Feng; Shen, Ren Fang
2016-01-01
Silicon (Si) is known to alleviate manganese (Mn) toxicity in a number of plant species; however, the mechanisms responsible for this effect are poorly understood. Here, we investigated the interaction between Si and Mn in rice (Oryza sativa) by using a mutant defective in Si uptake. Silicon alleviated Mn toxicity in the wild-type (WT) rice, but not in the mutant exposed to high Mn. The Mn concentration in the shoots was decreased, but that in the roots was increased by Si in the WT. In contrast, the Mn concentration in the roots and shoots was unaffected by Si in the mutant. Furthermore, Si supply resulted in an increased Mn in the root cell sap, decreased Mn in the xylem sap in the WT, but these effects of Si were not observed in the mutant. A short-term labelling experiment with 54Mn showed that the uptake of Mn was similar between plants with and without Si and between WT and the mutant. However, Si decreased root-to-shoot translocation of Mn in the WT, but not in the mutant. The expression of a Mn transporter gene for uptake, OsNramp5, was unaffected by a short exposure (<1 d) to Si, but down-regulated by relatively long-term exposure to Si in WT. In contrast, the expression of OsNramp5 was unaffected by Si in the mutant. These results indicated that Si-decreased Mn accumulation results from both Si-decreased root-to-shoot translocation of Mn, probably by the formation of Mn-Si complex in root cells, and uptake by down-regulating Mn transporter gene. PMID:26733690
Magnetic interactions in BiFe0.5Mn0.5O3 films and BiFeO3/BiMnO3 superlattices
NASA Astrophysics Data System (ADS)
Xu, Qingyu; Sheng, Yan; Khalid, M.; Cao, Yanqiang; Wang, Yutian; Qiu, Xiangbiao; Zhang, Wen; He, Maocheng; Wang, Shuangbao; Zhou, Shengqiang; Li, Qi; Wu, Di; Zhai, Ya; Liu, Wenqing; Wang, Peng; Xu, Y. B.; Du, Jun
2015-03-01
The clear understanding of exchange interactions between magnetic ions in substituted BiFeO3 is the prerequisite for the comprehensive studies on magnetic properties. BiFe0.5Mn0.5O3 films and BiFeO3/BiMnO3 superlattices have been fabricated by pulsed laser deposition on (001) SrTiO3 substrates. Using piezoresponse force microscopy (PFM), the ferroelectricity at room temperature has been inferred from the observation of PFM hysteresis loops and electrical writing of ferroelectric domains for both samples. Spin glass behavior has been observed in both samples by temperature dependent magnetization curves and decay of thermo-remnant magnetization with time. The magnetic ordering has been studied by X-ray magnetic circular dichroism measurements, and Fe-O-Mn interaction has been confirmed to be antiferromagnetic (AF). The observed spin glass in BiFe0.5Mn0.5O3 films has been attributed to cluster spin glass due to Mn-rich ferromagnetic (FM) clusters in AF matrix, while spin glass in BiFeO3/BiMnO3 superlattices is due to competition between AF Fe-O-Fe, AF Fe-O-Mn and FM Mn-O-Mn interactions in the well ordered square lattice with two Fe ions in BiFeO3 layer and two Mn ions in BiMnO3 layer at interfaces.
A water-responsive shape memory ionomer with permanent shape reconfiguration ability
NASA Astrophysics Data System (ADS)
Bai, Yongkang; Zhang, Jiwen; Tian, Ran; Chen, Xin
2018-04-01
In this work, a water-responsive shape memory ionomer with high toughness was fabricated by cross-linking hyaluronic acid sodium (HAS) and polyvinyl alcohol (PVA) through coordination interactions. The strong Fe3+-carboxyl (from HAS) coordination interactions served as main physical cross-linking points for the performance of water-responsive shape memory, which associated with the flexibility of PVA chain producing excellent mechanical properties of this ionomer. The optimized ionomer was not only able to recover to its original shape within just 22 s by exposing to water, but exhibited high tensile strength up to 35.4 MPa and 4 times higher tractility than the ionomer without PVA. Moreover, the ionomers can be repeatedly programed to various new permanent shapes on demand due to the reversible physical interactions, which still performed complete and fast geometric recovery under stimuli even after 4 cycles of reprograming with 3 different shapes. The excellent shape memory and strong mechanical behaviors make our ionomers significant and promising smart materials for variety of applications.
NASA Astrophysics Data System (ADS)
Medghalchi, Setareh; Jamebozorgi, Vahid; Bala Krishnan, Arjun; Vincent, Smobin; Salomon, Steffen; Basir Parsa, Alireza; Pfetzing, Janine; Kostka, Aleksander; Li, Yujiao; Eggeler, Gunther; Li, Tong
2018-05-01
The dependence of the microstructure on the degree of deformation in near-surface regions of a 16MnCr5 gear wheel after 2.1 × 106 loading cycles has been investigated by x-ray diffraction analysis, transmission electron microscopy, and atom probe tomography. Retained austenite and large martensite plates, along with elongated lamella-like cementite, were present in a less deformed region. Comparatively, the heavily deformed region consisted of a nanocrystalline structure with carbon segregation up to 2 at.% at grain boundaries. Spheroid-shaped cementite, formed at the grain boundaries and triple junctions of the nanosized grains, was enriched with Cr and Mn but depleted with Si. Such partitioning of Cr, Mn, and Si was not observed in the elongated cementite formed in the less deformed zone. This implies that rolling contact loading induced severe plastic deformation as well as a pronounced annealing effect in the active contact region of the toothed gear during cyclic loading.
New Gallium End-Member in Epidote Group
NASA Astrophysics Data System (ADS)
Soboleva, A. A.; Varlamov, D.; Mayorova, T.
2011-12-01
Unique ultrahigh-Ga (Ga up to 14.5 wt. %) mineral of epidote group is discovered in Tykatlova gold-sulfure ore occurrence in the eastern slope of the Subpolar Urals, Russia. It is the first find of the Ga silicate mineral in the world. Only five Ga minerals are presented in the IMA official list. Generally, two unique deposites in Africa contain Ga minerals - Tsumeb in Namibia and Kipushi in DR Congo. Tykatlova occurrence is situated in early Ordovician rhyolites and rhyodacites metamorphosed in greenschist facies, sulfide mineralization is located in fault zones. Ga-phases were found out in sphalerite-pyrite-galena assemblage with chalcopyrite and minor Ag-bearing bornite, tetrahedrite-tennantite, various Ag and Cu sulfides and sulfosalts. Secondary ore minerals are anglesite, cerussite, lead and zinc hydroxides. Vein minerals are quartz, calcite, Zn-Mn carbonates, anhydrite (or gypsum). Ga-minerals are usually inclusions (common in sphalerite, sometimes in pyrite and galena), they are rarely located between grains of sulfides or quartz. Ga-phases are assigned to epidote group due to morphology of grains, their chemical composition (EPMA using EDS and WDS), stoichiometry and Raman data. Their grains are elongated, roundish or well-shaped, they are 30-60 up to 100 μm in length, with complex zonality. The general sequence of zones from the core to rims: a) "epidote-(Ga)" with 6-20 wt.% Ga2O3, REE are almost absent; b) high Ga allanite-(Ce) with 3-11 wt.% Ga2O3, 3-20 wt.% REE (calculated as oxide); c) allanite-(Ce) with 0.0-2.0 wt.% Ga2O3, 4-19 wt.% REE; d) epidote-allanite rims without Ga, 0-6 wt.% REE. Empirical formula of phases mostly enriched in Ga: (Ca1.88Mg0.15Mn0.03)2.06(Al1.77Ga0.97Fe3+0.26)3.00(Si2.91Al0.09)3O12(OH) (Ca1.85Mg0.11Mn0.02)1.98(Al1.89Ga1.03Fe3+0.19)3.11(Si2.93Al0.07)3O12(OH). Crystal chemistry of Ga-epidote isn't clear yet, but we assume that Ga substitutes Fe3+ rather than Al. Correlation factor in Fe3+-Ga pair (core zones of grains) reaches -0.92. Decrease of Ga toward to grain rims "allows" occurrence of REE in the epidote structure, as Ga ceases to occupy a large octahedron where bivalent ions (Fe2+, Mg, Mn2+) can enter for compensation of trivalent REE cations. Raman spectra of the Ga-phases shows a high convergence with epidote spectra. Detectable Ga concentrations (0.048-0.058 wt.%, WDS) have been established only in sphalerite that includes grains of epidote-allanite enriched in Ga. So, the most probable source of Ga is Ga-enriched sphalerite. Growth of Ga phases might take place during greenschist facies metamorphism. However, we can't exclude vice versa variant - increase of Ga concentration in sphalerite in result of decomposition of primary high-Ga silicates. Conclusions: (1) A unique high-Ga mineral of the epidote group was discovered in the Subpolar Urals. (2) It is the first find of high-Ga silicate mineral in the world. Presumably it is new member of epidote group that could be named "epidote-(Ga)" (as it is recommended by the IMA Commission). Financial support by RFBR, grant 11-05-01087-a.
NASA Astrophysics Data System (ADS)
Lázpita, P.; Gutiérrez, J.; Barandiarán, J. M.; Chernenko, V. A.; Mondelli, C.; Chapon, L.
2014-11-01
Neutron polarized diffraction technique has been used to elucidate the magnetic moment distribution density in non stoichiometric Ni—Mn—Ga single crystals. These experiments allow us to determine a localized magnetic moment in the Mn position in the austenitic phase, and to validity qualitatively previous models of magnetic distributions where there are antiferromagnetic and ferromagnetic coupling for Mn atoms that are sited out of their properly positions. This measurements show the deep dependence of the magnetic moment with the composition and the atomic order.
Understanding rhizosphere processes to enhance phytoextraction of germanium and rare earth elements
NASA Astrophysics Data System (ADS)
Wiche, Oliver
2017-04-01
Germanium (Ge) and rare earth elements (REEs) are economically valuable raw materials that are not actually rare in terms of concentrations in soils but they are hardly available for plant uptake due to interactions with organic matter (SOM), secondary soil constituents such as Fe/Mn oxides and P bearing soil fractions. Processes in the rhizosphere might influence availability of Ge and REEs in the soil-plant system, since lowering of the pH and presence of carboxylates and siderophores (small molecules that strongly chelate Fe and other elements) strongly influences the chemical speciation of Ge and REEs in soil and consequently this comprehensive knowledge helps us to improve phytomining. In a series of field and greenhouse experiments 16 plant species from the functional groups of grasses, herbs and legumes were tested with regard to their accumulation efficiency of Ge and REEs in shoots. Subsequently, we conducted mixed culture experiments in which inefficient species (e.g. cereals like Avena sativa, Hordeum vulgare, Panicum miliaceum) were cultivated in mixed cultures with efficient species (Lupinus albus, Lupinus angustifolius). Based on the plant concentrations a principal component analysis (PCA) was performed to identify significant factors that explain the accumulation behavior of different plant species with regard to Ge, REEs, Si, Fe and Mn. In this analysis Mn was used to identify plant species with efficient mechanisms to access sparingly available P-resources in soils. Particularly in nonmycorrhizal species concentrations of Mn in leaves often indicate a carboxylate based P-mobilising strategy. Herbaceous plant species accumulated significantly higher amounts of REEs while grasses accumulated significantly higher amounts of Ge. Concentrations of Ge in shoots of grasses correlated significantly positive with Si, but negatively with concentrations of Mn. Indeed, the results of the PCA clearly show that plants with high Mn concentrations tend to have lower contents of both Ge and REEs. However, intercropping of Avena sativa and Hordeum vulgare with Lupinus albus significantly enhanced uptake of REEs in Avena sativa and Hordeum vulgare but not the uptake of Ge. These results suggest that rhizosphere processes play an integral part during mobilization of Ge and REEs in soil and uptake in plants. The availability of Ge to grasses closely follows a "Si-nutrition strategy", while plants that deploy a P-mobilizing strategy based on the release of carboxylates seem to be able to mobilize REEs as well, but they are unable to accumulate the mobilized REEs in the shoots. These studies have been carried out in the framework of the PhytoGerm project, financed by the Federal Ministry of Education and Research, Germany. The author is grateful to students and laboratory assistants contributing in the field work and sample preparation.
NASA Astrophysics Data System (ADS)
Paquette, J.; Deakin, M.; Baker, D. R.
2006-12-01
Because in situ observations of actively growing surfaces are technically impractical, our understanding of crystal growth mechanisms at hydrothermal and magmatic conditions lags behind that of minerals that can be grown from aqueous solutions at or near room temperature. Growing silicate minerals from hydrous synthetic carbonate melts offers the opportunity to relate directly minor element incorporation to their surface microtopography. Natural hydrothermal diopside was used to seed experiments in which synthetic clinopyroxene crystals were grown at 800 degrees C and 10 kbars for 24 hours, from alkaline melts modelled after the lavas of the Tanzanian volcano Oldoinyo Lengai. The melts were prepared from Na2CO3, K2CO3, CaCO3, MgCO3 and Fe3O4 reagents. One run was anhydrous and the others contained either 2.5 or 5 wt. % H2O. Euhedral tabular crystals ranging in size from 100 to 300 ìm across were found in all three runs, hand-picked and freed from their carbonate matrix by overnight immersion in dilute acetic acid. The crystals consist of \\{110\\} prism, \\{100\\} and \\{001\\} pinacoids and a \\{111\\} dipyramid. AFM images resolved a distinct surface microtopography on each form: arrays of broad macrosteps on \\{100\\}, lens- shaped islands on \\{001\\} facets and striated fiber-like crystallites on \\{110\\}. EMP analyses of polished grain mounts show that compositional zoning of Na and Fe occurs not only among non-equivalent growth sectors but also within single \\{100\\} sectors. Electron microprobe maps of sequentially polished sections indicate that zoning within \\{100\\} sectors reflects differential uptake of Na and Fe on symmetrically non-equivalent steps. Near the crystal surface, the non- equivalent coeval vicinal faces of growth hillocks on \\{100\\} are either diopside-like, Na.007Ca1.00(Mg0.754Fe2+0.22Mn2+0.013Al_{0.003)Si2.00O6 , or acmitic, Ca0.63Na0.35(Mg0.64Fe3+ 0.36)Al0.01Si1.99O6 in composition. Step-specific incorporation of minor elements in a clinopyroxene face has only been documented once, in a hydrothermal diopside from Orford (Quebec), where Fe(II) and Mn(II) were differentially incorporated on steps oriented parallel to [010] on \\{100\\} faces. This natural example and our synthetic crystals reflect growth regimes where minor element incorporation was limited by surface-structural kinetics rather than diffusion- controlled kinetics. Such step-specific surface-structural control has never been reported in clinopyroxenes grown from silicate melts. Is it present, but more subtle, or do silicate melts promote a significantly different growth regime? Comparing zoning patterns in synthetic silicates grown from carbonate versus silicate melts could put new constraints on current models of element partitioning.
Rare-earth substitution in (BiYCa)3(FeSiGe)5O12 bubble films
NASA Technical Reports Server (NTRS)
Luther, L. C.; Slusky, S. E. G.; Brandle, C. D.; Norelli, M. P.
1987-01-01
The substitution of Y by Sm, Tb, Gd, and Ho in (BiYCa)3 FeSiGe)5O12 bubble garnet is shown to have large effects on the growth-induced anisotropy (GIA). The presently accepted film composition intended for 6-or 8-micron-period bubble memory devices demands partial substitution of Y by Gd and Ho. However, comparing films grown under the same growth conditions, it is observed that YGdHoBilG films posess less (GIA) than their Gd, Ho-free counterparts. Thus, to satisfy (GIA) requirements, the supercooling during growth must be increased by 20 K to 80 K with undesirable effects on defect densities. A new film composition containing Sm, Tb, and Gd has been formulated to satisfy all known material property specifications for 6- or 8-micron-period memory devices. It can be grown with only 45-50 K supercooling.
The Detroit Exposure and Aerosol Research Study (DEARS) measured personal exposures, ambient, residential indoor and residential outdoor concentrations of select PM2.5 aerosol components (SO4, NO3, Fe, Si, Ca, K, Mn, Pb, Zn, EC and OC) over a thr...
A novel sandwich Fe-Mn damping alloy with ferrite shell prepared by vacuum annealing
NASA Astrophysics Data System (ADS)
Qian, Bingnan; Peng, Huabei; Wen, Yuhua
2018-04-01
To improve the corrosion resistance of high strength Fe-Mn damping alloys, we fabricated a novel sandwich Fe-17.5Mn damping alloy with Mn-depleted ferrite shell by vacuum annealing at 1100 °C. The formation behavior of the ferrite shell obeys the parabolic law for the vacuum annealed Fe-17.5Mn alloy at 1100 °C. The sandwich Fe-17.5Mn alloy with ferrite shell exhibits not only better corrosion resistance but also higher damping capacity than the conventional annealed Fe-17.5Mn alloy under argon atmosphere. The existence of only ferrite shell on the surface accounts for the better corrosion in the sandwich Fe-17.5Mn alloy. The better damping capacity in the sandwich Fe-17.5Mn alloy is owed to more stacking faults inside both ɛ martensite and γ austenite induced by the stress from ferrite shell. Vacuum annealing is a new way to improve the corrosion resistance and damping capacity of Fe-Mn damping alloys.
NASA Astrophysics Data System (ADS)
Chen, Xing-Qiu; Podloucky, R.; Rogl, P.
2006-12-01
By means of density functional calculations, the magnetic and electronic properties and phase stabilities of the Heusler compounds Co2MSi (with M =Ti,V,Cr,Mn,Fe,Co,Ni) were investigated. Based on the calculated results, we predict the ferromagnetic phases of the compounds Co2TiSi, Co2VSi, and Co2CrSi to be half metals. Of particular interest is Co2CrSi because of its high density of majority-spin states at Fermi energy in combination with a reasonably high estimated Curie temperature of 747K. The compounds Co2TiSi and Co2VSi are thermodynamically stable, whereas Co2CrSi is of a metastable phase which might be stabilized by suitable experimental techniques.
Formation process and mechanism of iron-nitride compounds on Si(1 1 1)-7 × 7-CH3OH surface
NASA Astrophysics Data System (ADS)
Li, Wenxin; Ding, Wanyu; Ju, Dongying; Tanaka, Ken-ichi; Komori, Fumio
2018-07-01
Fe atoms were deposited on Si(1 1 1)-7 × 7 restructured surface, which had been covered by CH3OH molecules. A newly formed surface is stabilized by a quasi-potential made by breaking, and adsorbed atoms or molecules can be stabilized by forming "quasi-compounds". Then, aim to greatly enhance the magnetic properties of the memory units, nitriding experiments were implemented on the existing Fe compounds. With the in-situ observation of STM, a series of Fe3N structures make up the newly emerged iron-nitride compounds, showing good linear characteristics. By adjusting the concentration, this study further explored its formation process and compounds models.
Effect of MWCNT on prepared cathode material (Li2Mn(x)Fe(1-x)SiO4) for energy storage applications
NASA Astrophysics Data System (ADS)
Agnihotri, Shruti; Rattan, Sangeeta; Sharma, A. L.
2016-05-01
The electrode material Li2MnFeSiO4 was successfully synthesized by standard sol-gel method and further modified with multiwalled carbon nano tube (MWCNT) to achieve better electrochemical properties. Our strategy helps us to improve the performance and storage capacity as compared with the bared material. This novel composite structure constructs an efficient cation (Li+) and electron channel which significantly enhance the Li+ ion diffusion coefficient and reduced charge transfer resistance. Hence leads to high conductivity and specific capacity. Characterization technique like Field emission scanning electron microscopy (FESEM) has been used to confirm its morphology, structure and particle size which comes out to be of the order of ˜20 to 30 nm. Lesser particle size reveals better electrochemical properties. Electrical conductivity (˜10-5 Scm-1) of MWCNT doped oxide cathode materials was recorded using ac impedance spectroscopy technique which reflects tenfold increment when compared with pure oxide cathode materials. Cyclic voltametery analysis has been done to calculate specific capacity and potential window of materials with and without CNTs. The results obtained from different techniques are well correlated and suitable for energy storage applications.
NASA Astrophysics Data System (ADS)
Gusev, A. I.; Kozyrev, N. A.; Usoltsev, A. A.; Kryukov, R. E.; Osetkovsky, I. V.
2017-09-01
The effect of the introduction of vanadium and cobalt into the charge of the powder surfacing wire of Fe-C-Si-Mn-Cr-Mo-Ni system is studied. In the laboratory conditions, the samples of flux cored wires were produced. The surfacing made by the prepared wire was produced under the flux AN-26C, on the plates of steel St3 in 6 layers with the help of ASAW-1250 welding tractor. Reduction of carbon content in the deposited layer to 0.19-0.2% with simultaneous change in the content of chromium, nickel, molybdenum and other elements present in it contributes to the enlargement of the martensite needles and the increase in the size of the former austenite grain. The obtained dependences of hardness of the deposited layer and its wear resistance on the mass fraction of elements, included in the composition of powder wires of the proposed system, can be used to predict the hardness of the welded layer and its wear resistance under different operating conditions for mining equipment and coal mining equipment.
Galactic interstellar abundance surveys with IUE. III - Silicon, manganese, iron, sulfur, and zinc
NASA Technical Reports Server (NTRS)
Van Steenberg, Michael E.; Shull, J. Michael
1988-01-01
This paper continues a survey of intestellar densities, abundances, and cloud structure in the Galaxy using the IUE satellite. A statistical data set of 223 O3-B2.5 stars is constructed, including 53 stars in the Galactic halo. It is found that S II lines in B stars, of luminosity classes IV and V, have possible contamination from stellar S II, particular for stars with v sin i less than 200 km/s. The mean logarithmic depletions are -1.00, -1.19. -0.63, and -0.23 (Si, Mn,Fe,S, Zn). Depletions of Si, Mn, and Fe correlate with the mean hydrogen density n-bar along the line of sight, with a turnover for n-bar greater than 1/cm. Sulfur depletions correlate with n-bar along the line of sight. The slight Zn depletion correlation also appears to be statistically insignificant. No correlation of depletion is found with the physical density derived from H2 rotational states in 21 lines of sight. Depletion variations in the disk are consistent with a Galactic abundance gradient or with enhanced mean depletions in the anticenter region.
Chen, Rui; Zhang, Changbo; Zhao, Yanling; Huang, Yongchun; Liu, Zhongqi
2018-01-01
Nano-silicon (Si) may be more effective than regular fertilizers in protecting plants from cadmium (Cd) stress. A field experiment was conducted to study the effects of nano-Si on Cd accumulation in grains and other organs of rice plants (Oryza sativa L. cv. Xiangzaoxian 45) grown in Cd-contaminated farmland. Foliar application with 5~25 mM nano-Si at anthesis stage reduced Cd concentrations in grains and rachises at maturity stage by 31.6~64.9 and 36.1~60.8%, respectively. Meanwhile, nano-Si application significantly increased concentrations of potassium (K), magnesium (Mg), and iron (Fe) in grains and rachises, but imposed little effect on concentrations of calcium (Ca), zinc (Zn), and manganese (Mn) in them. Uppermost nodes under panicles displayed much higher Cd concentration (4.50~5.53 mg kg -1 ) than other aerial organs. After foliar application with nano-Si, translocation factors (TFs) of Cd ions from the uppermost nodes to rachises significantly declined, but TFs of K, Mg, and Fe from the uppermost nodes to rachises increased significantly. High dose of nano-Si (25 mM) was more effective than low dose of nano-Si in reducing TFs of Cd from roots to the uppermost nodes and from the uppermost nodes to rachises. These findings indicate that nano-Si supply reduces Cd accumulation in grains by inhibiting translocation of Cd and, meanwhile, promoting translocation of K, Mg, and Fe from the uppermost nodes to rachises in rice plants.
NASA Astrophysics Data System (ADS)
Lee, Eunsook; Seong, Seungho; Kim, Hyun Woo; Kim, D. H.; Thakur, Nidhi; Yusuf, S. M.; Kim, Bongjae; Min, B. I.; Kim, Younghak; Kim, J.-Y.; de Groot, F. M. F.; Kang, J.-S.
2017-11-01
The electronic structures of Prussian blue analog (RbxBay) Mn[3 -(x +2 y )]/2[Fe (CN) 6] cyanides have been investigated by employing soft x-ray absorption spectroscopy (XAS) and magnetic circular dichroism (XMCD) at the Fe and Mn L (2 p ) edges. The measured XAS spectra have been analyzed with the configuration-interaction (CI) cluster model calculations. The valence states of the Fe and Mn ions are found to be Fe2 +-Fe3 + mixed valent, with an average valency of v (Fe )˜2.8 and nearly divalent (Mn2 +), respectively. Our Mn/Fe 2 p XMCD study supports that Mn2 + ions are in the high-spin states while Fe2 +-Fe3 + ions are in the low-spin states. The Fe and Mn 2 p XAS spectra are found to be essentially the same for 80 ≤T ≤ 300 K, suggesting that a simple charge transfer upon cooling from Fe3 +-CN -Mn2 + to Fe2 +-CN -Mn3 + does not occur in (RbxBay) Mn[3 -(x +2 y )]/2[Fe (CN) 6] . According to the CI cluster model analysis, it is necessary to take into account both the ligand-to-metal charge transfer and the metal-to-ligand charge transfer in describing Fe 2 p XAS, while the effect of charge transfer is negligible in describing Mn 2 p XAS. The CI cluster model analysis also shows that the trivalent Fe3 + ions have a strong covalent bonding with the C ≡N ligands and are under a large crystal-field energy of 10 D q ˜3 eV, in contrast to the weak covalency effect and a small 10 D q ˜0.6 eV for the divalent Mn2 + ions.
XPS and EELS characterization of Mn2SiO4, MnSiO3 and MnAl2O4
NASA Astrophysics Data System (ADS)
Grosvenor, A. P.; Bellhouse, E. M.; Korinek, A.; Bugnet, M.; McDermid, J. R.
2016-08-01
X-ray Photoelectron Spectroscopy (XPS) and Electron Energy Loss Spectroscopy (EELS) are strong candidate techniques for characterizing steel surfaces and substrate-coating interfaces when investigating the selective oxidation and reactive wetting of advanced high strength steels (AHSS) during the continuous galvanizing process. However, unambiguous identification of ternary oxides such as Mn2SiO4, MnSiO3, and MnAl2O4 by XPS or EELS, which can play a significant role in substrate reactive wetting, is difficult due to the lack of fully characterized standards in the literature. To resolve this issue, samples of Mn2SiO4, MnSiO3 and MnAl2O4 were synthesized and characterized by XPS and EELS. The unique features of the XPS and EELS spectra for the Mn2SiO4, MnSiO3 and MnAl2O4 standards were successfully derived, thereby allowing investigators to fully differentiate and identify these oxides at the surface and subsurface of Mn, Si and Al alloyed AHSS using these techniques.
Kinetics and mechanism of diclofenac removal using ferrate(VI): roles of Fe3+, Fe2+, and Mn2.
Zhao, Junfeng; Wang, Qun; Fu, Yongsheng; Peng, Bo; Zhou, Gaofeng
2018-06-01
In this study, the effect of Fe 3+ , Fe 2+ , and Mn 2+ dose, solution pH, reaction temperature, background water matrix (i.e., inorganic anions, cations, and natural organic matters (NOM)), and the kinetics and mechanism for the reaction system of Fe(VI)/Fe 3+ , Fe(VI)/Fe 2+ , and Fe(VI)/Mn 2+ were investigated systematically. Traces of Fe 3+ , Fe 2+ , and Mn 2+ promoted the DCF removal by Fe(VI) significantly. The pseudo-first-order rate constant (k obs ) of DCF increased with decreasing pH (9-6) and increasing temperature (10-30 °C) due to the gradually reduced stability and enhanced reactivity of Fe(VI). Cu 2+ and Zn 2+ ions evidently improved the DCF removal, while CO 3 2- restrained it. Besides, SO 4 2- , Cl - , NO 3 - , Mg 2+ , and Ca 2+ almost had no influence on the degradation of DCF by Fe(VI)/Fe 3+ , Fe(VI)/Fe 2+ , and Fe(VI)/Mn 2+ within the tested concentration. The addition of 5 or 20 mg L -1 NOM decreased the removal efficiency of DCF. Moreover, Fe 2 O 3 and Fe(OH) 3 , the by-products of Fe(VI), slightly inhibited the DCF removal, while α-FeOOH, another by-product of Fe(VI), showed no influence at pH 7. In addition, MnO 2 and MnO 4 - , the by-products of Mn 2+ , enhanced the DCF degradation due to catalysis and superposition of oxidation capacity, respectively. This study indicates that Fe 3+ and Fe 2+ promoted the DCF removal mainly via the self-catalysis for Fe(VI), and meanwhile, the catalysis of Mn 2+ and the effect of its by-products (i.e., MnO 2 and MnO 4 - ) contributed synchronously for DCF degradation. Graphical abstract ᅟ.
Manganese inhibition of microbial iron reduction in anaerobic sediments
Lovley, D.R.; Phillips, E.J.P.
1988-01-01
Potential mechanisms for the lack of Fe(II) accumulation in Mn(IV)-containing anaerobic sediments were investigated. The addition of Mn(IV) to sediments in which Fe(II) reduction was the terminal electron-accepting process removed all the pore-water Fe(II), completely inhibited net Fe(III) reduction, and stimulated Mn(IV) reduction. Results demonstrate that preferential reduction of Mn(IV) by FE(III)-reducing bacteria cannot completely explain the lack of Fe(II) accumulation in anaerobic, Mn(IV)-containing sediments, and indicate that Mn(IV) oxidation of Fe(II) is the mechanism that ultimately prevents Fe(II) accumulation. -Authors
The Mn-Fe negative correlation in olivines in ALHA 77257 ureilite
NASA Technical Reports Server (NTRS)
Miyamoto, M.; Furuta, T.; Fujii, N.; Mckay, D. S.; Lofgren, G. E.; Duke, M. B.
1993-01-01
An electron probe microanalyzer is used to measure the Mn, Fe, and oxygen zoning profiles of olivines in the ALHA 77257 ureilite. This is done to study the effects of reduction on the Mn-Fe value, as ureilite olivines exhibit thin reduced rims. Since the Mn content gradually increases toward the rim of ureilite olivines, while the Fa (= 100 x Fe/(Mg + Fe), mol percent) component decreases, the Mn-Fe content of olivine is likely related to redox conditions. The results of melting experiments suggest that the Mn-Fe positive correlation is related to temperature and that the negative correlation of Mn-Fe in olivine and low-Ca pyroxene is related to reduction.
1976-04-01
Analyses of Westinghouse Sij^ Starting Powder ( wt %) Al 0.08 Ag < Ü.001 B 0.001 Ca 0.016 Cr 0.01 Fe > O.i Mg 0.001 Mn 0.05 Mo < 0.003 Ni < 0.01...and atter milling, showed that the WC and plastic contamination in the milled powders were in the range of 1.5-3 wt "» and 0.7-1.5 wt0», respectively...Oxidation of I As, John Witley, New York (1966). 14 FIGURE CAPTIONS Figure 1 - Experimental phase relations in the Si NI -Si0o-Y 0 system determined
Zhang, Gaosheng; Liu, Huijuan; Qu, Jiuhui; Jefferson, William
2012-01-15
Arsenate retention, arsenite sorption and oxidation on the surfaces of Fe-Mn binary oxides may play an important role in the mobilization and transformation of arsenic, due to the common occurrence of these oxides in the environment. However, no sufficient information on the sorption behaviors of arsenic on Fe-Mn binary oxides is available. This study investigated the influences of Mn/Fe molar ratio, solution pH, coexisting calcium ions, and humic acids have on arsenic sorption by Fe-Mn binary oxides. To create Fe-Mn binary oxides, simultaneous oxidation and co-precipitation methods were employed. The Fe-Mn binary oxides exhibited a porous crystalline structure similar to 2-line ferrihydrite at Mn/Fe ratios 1:3 and below, whereas exhibited similar structures to δ-MnO(2) at higher ratios. The As(V) sorption maximum was observed at a Mn/Fe ratio of 1:6, but As(III) uptake maximum was at Mn/Fe ratio 1:3. However, As(III) adsorption capacity was much higher than that of As(V) at each Mn/Fe ratio. As(V) sorption was found to decrease with increasing pH, while As(III) sorption edge was different, depending on the content of MnO(2) in the binary oxides. The presence of Ca(2+) enhanced the As(V) uptake under alkaline pH, but did not significantly influence the As(III) sorption by 1:9 Fe-Mn binary oxide; whereas the presence of humic acid slightly reduced both As(V) and As(III) uptake. These results indicate that As(III) is more easily immobilized than As(V) in the environment, where Fe-Mn binary oxides are available as sorbents and they represent attractive adsorbents for both As(V) and As(III) removal from water and groundwater. Copyright © 2011 Elsevier Inc. All rights reserved.
Liu, Wenbo; Langenhoff, Alette A M; Sutton, Nora B; Rijnaarts, Huub H M
2018-05-18
Applying manganese(IV)- or iron(III)-(hydr)oxides to remove pharmaceuticals from water could be attractive, due to the capacity of these metal oxides to remove pharmaceuticals and be regenerated. As pharmaceutical removal under anaerobic conditions is foreseen, Mn(IV) or Fe(III) regeneration under anaerobic conditions, or with minimum oxygen dosage, is preferred. In this study, batch experiments are performed to investigate (1) Mn(IV) and Fe(III) regeneration from Mn(II) and Fe(II); (2) the pharmaceutical removal during biological Mn(IV) and Fe(III) regeneration; and (3) anaerobic abiotic pharmaceutical removal with different Mn(IV) or Fe(III) species. Results show that biological re-oxidation of reduced Mn(II) to Mn(IV) occurs under oxygen-limiting conditions. Biological re-oxidation of Fe(II) to Fe(III) is obtained with nitrate under anaerobic conditions. Both bio-regenerated Mn(IV)-oxides and Fe(III)-hydroxides are amorphous. The pharmaceutical removal is insignificant by Mn(II)- or Fe(II)-oxidizing bacteria during regeneration. Finally, pharmaceutical removal is investigated with various Mn(IV) and Fe(III) sources. Anaerobic abiotic removal using Mn(IV) produced from drinking water treatment plants results in 23% metoprolol and 44% propranolol removal, similar to chemically synthesized Mn(IV). In contrast, Fe(III) from drinking water treatment plants outperformed chemically or biologically synthesized Fe(III); Fe (III) from drinking water treatment can remove 31-43% of propranolol via anaerobic abiotic process. In addition, one of the Fe(III)-based sorbents tested, FerroSorp ® RW, can also remove propranolol (20-25%). Biological regeneration of Mn(IV) and Fe(III) from the reduced species Mn(II) and Fe(II) could be more effective in terms of cost and treatment efficiency. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Sensarma, Sarajit; Singh, Hukam; Rana, R. S.; Paul, Debajyoti; Sahni, Ashok
2017-03-01
The recognition of pyroclasts preserved in sedimentary environments far from its source is uncommon. We here describe occurrences of several centimetres-thick discontinuous basaltic pumice lenses occurring within the Early Eocene Vastan lignite mine sedimentary sequence, western India at two different levels - one at ˜5 m and the other at 10 m above a biostratigraphically constrained 52 Ma old marker level postdating the Deccan Volcanism. These sections have received global attention as they record mammalian and plant radiations. We infer the repetitive occurrence of pumice have been sourced from a ˜52-50 Ma MORB related to sea-floor spreading in the western Arabian Sea, most plausibly along the Carlsberg Ridge. Pyroclasts have skeletal plagioclase with horsetail morphologies ± pyroxene ± Fe-Ti oxide euhedral crystals, and typically comprise of circular polymodal (radii ≤10 to ≥30 μm), non-coalescing microvesicles (>40-60%). The pumice have undergone considerable syngenetic alteration during oceanic transport and post-burial digenesis, and are a composite mixture of Fe-Mn-rich clay and hydrated altered basaltic glass (palagonite). The Fe-Mn-rich clay is extremely low in SiO 2, Al 2 O 3, TiO 2, MgO, alkalies and REE, but very high in Fe 2 O 3, MnO, P, Ba, Sr contents, and palagonitization involved significant loss of SiO 2, Al 2 O 3, MgO and variable gain in Fe 2 O 3, TiO 2, Ni, V, Zr, Zn and REE. Bubble initiation to growth in the ascending basaltic magma (liquidus ˜1200-1250 ∘C) may have occured in ˜3 hr. Short-distance transport, non-connected vesicles, deposition in inner shelf to more confined lagoonal condition in the Early Eocene and quick burial helped preservation of the pumice in Vastan. Early Eocene Arabian Sea volcanism thus might have been an additional source to marginal sediments along the passive margin of western India.
NASA Astrophysics Data System (ADS)
Ning, Kaijie; Bai, Xianming; Lu, Kathy
2018-07-01
Silicon carbide-nanostructured ferritic alloy (SiC-NFA) materials are expected to have the beneficial properties of each component for advanced nuclear claddings. Fabrication of pure NFA (0 vol% SiC-100 vol% NFA) and SiC-NFAs (2.5 vol% SiC-97.5 vol% NFA, 5 vol% SiC-95 vol% NFA) has been reported in our previous work. This paper is focused on the study of radiation damage in these materials under 5 MeV Fe++ ion irradiation with a dose up to ∼264 dpa. It is found that the material surfaces are damaged to high roughness with irregularly shaped ripples, which can be explained by the Bradley-Harper (B-H) model. The NFA matrix shows ion irradiation induced defect clusters and small dislocation loops, while the crystalline structure is maintained. Reaction products of Fe3Si and Cr23C6 are identified in the SiC-NFA materials, with the former having a partially crystalline structure but the latter having a fully amorphous structure upon irradiation. The different radiation damage behaviors of NFA, Fe3Si, and Cr23C6 are explained using the defect reaction rate theory.
NASA Astrophysics Data System (ADS)
Hajalilou, Abdollah; Abouzari-Lotf, Ebrahim; Etemadifar, Reza; Abbasi-Chianeh, Vahid; Kianvash, Abbas
2018-05-01
Core-shell nanostructured magnetic Fe3O4@SiO2 with particle size ranging from 3 nm to 40 nm has been synthesized via a facile precipitation method. Tetraethyl orthosilicate was employed as surfactant to prepare core-shell structures from Fe3O4 nanoparticles synthesized from pomegranate peel extract using a green method. X-ray diffraction analysis, Fourier-transform infrared and ultraviolet-visible (UV-Vis) spectroscopies, transmission electron microscopy, and scanning electron microscopy with energy-dispersive spectroscopy were employed to characterize the samples. The prepared Fe3O4 nanoparticles were approximately 12 nm in size, and the thickness of the SiO2 shell was 4 nm. Evaluation of the magnetic properties indicated lower saturation magnetization for Fe3O4@SiO2 powder ( 11.26 emu/g) compared with Fe3O4 powder ( 13.30 emu/g), supporting successful wrapping of the Fe3O4 nanoparticles by SiO2. As-prepared powders were deposited on carbon fibers (CFs) using electrophoretic deposition and their electrochemical behavior investigated. The rectangular-shaped cyclic voltagrams of Fe3O4@CF and Fe3O4@C@CF samples indicated electrochemical double-layer capacitor (EDLC) behavior. The higher specific capacitance of 477 F/g for Fe3O4@C@CF (at scan rate of 0.05 V/s in the potential range of - 1.13 to 0.45 V) compared with 205 F/g for Fe3O4@CF (at the same scan rate in the potential range of - 1.04 to 0.24 V) makes the former a superior candidate for use in energy storage applications.
NASA Astrophysics Data System (ADS)
Bolon, Bruce T.; Haugen, M. A.; Abin-Fuentes, A.; Deneen, J.; Carter, C. B.; Leighton, C.
2007-02-01
We have used ferromagnet/antiferromagnet/ferromagnet trilayers and ferromagnet/antiferromagnet multilayers to probe the grain size dependence of exchange bias in polycrystalline Co/Fe 50Mn 50. X-ray diffraction and transmission electron microscopy show that the Fe 50Mn 50 (FeMn) grain size increases with increasing FeMn thickness in the Co (30 Å)/FeMn system. Hence, in Co(30 Å)/FeMn( tAF Å)/Co(30 Å) trilayers the two Co layers sample different FeMn grain sizes at the two antiferromagnet/ferromagnet interfaces. For FeMn thicknesses above 100 Å, where simple bilayers have a thickness-independent exchange bias, we are therefore able to deduce the influence of FeMn grain size on the exchange bias and coercivity (and their temperature dependence) simply by measuring trilayer and multilayer samples with varying FeMn thicknesses. This can be done while maintaining the (1 1 1) orientation, and with little variation in interface roughness. Increasing the average grain size from 90 to 135 Å results in a fourfold decrease in exchange bias, following an inverse grain size dependence. We interpret the results as being due to a decrease in uncompensated spin density with increasing antiferromagnet grain size, further evidence for the importance of defect-generated uncompensated spins.