Science.gov

Sample records for fe3o4 polymer composites

  1. Inductive heat property of Fe3O4/polymer composite nanoparticles in an ac magnetic field for localized hyperthermia.

    PubMed

    Zhao, Dong-Lin; Zhang, Hai-Long; Zeng, Xian-Wei; Xia, Qi-Sheng; Tang, Jin-Tian

    2006-12-01

    The magnetite (Fe(3)O(4)) nanoparticles were prepared by coprecipitation of Fe(3+) and Fe(2+) with an aqueous NaOH solution. The Fe(3)O(4)/polyaniline (PANI) magnetic composite nanoparticles with a core-shell structure with a diameter of 30-50 nm were prepared via an in situ polymerization of aniline in an aqueous solution containing the Fe(3)O(4) magnetic fluid. The inductive heat property of Fe(3)O(4)/PANI composite nanoparticles in an alternating current (ac) magnetic field was investigated. The potential of Fe(3)O(4)/PANI nanoparticles was evaluated for localized hyperthermia treatment of cancers. The saturation magnetization, M(s), and coercivity, H(c), are 50.05 emu g(-1) and 137 Oe for Fe(3)O(4) nanoparticles and 26.34 emu g(-1) and 0 Oe for Fe(3)O(4)/PANI composite nanoparticles, respectively. Exposed in the ac magnetic field for 29 min, the temperatures of physiological saline suspensions containing Fe(3)O(4) nanoparticles or Fe(3)O(4)/PANI composite nanoparticles are 63.6 degrees C and 52.4 degrees C, respectively. The Fe(3)O(4)/PANI composite nanoparticles would be useful as good thermoseeds for localized hyperthermia treatment of cancers. PMID:18458406

  2. Fe3O4@polydopamine Composite Theranostic Superparticles Employing Preassembled Fe3O4 Nanoparticles as the Core.

    PubMed

    Ge, Rui; Li, Xing; Lin, Min; Wang, Dandan; Li, Shuyao; Liu, Shuwei; Tang, Qi; Liu, Yi; Jiang, Jinlan; Liu, Lidi; Sun, Hongchen; Zhang, Hao; Yang, Bai

    2016-09-01

    Iron oxide (Fe3O4), polydopamine (PDA), and in particular their composites are examples of the safest nanomaterials for developing multifunctional nanodevices to perform noninvasive tumor diagnosis and therapy. However, the structures and performances of Fe3O4-PDA nanocomposites should be further perfected to enhance the theranostic efficiency. In this work, we demonstrate the fabrication of PDA-capped Fe3O4 (Fe3O4@PDA) superparticles (SPs) employing preassembled Fe3O4 nanoparticles (NPs) as the cores. Owing to the collective effect of preassembled Fe3O4 NPs, the superparamagnetism and photothermal performance of Fe3O4@PDA SPs are greatly enhanced, thus producing nanodevices with improved magnetic resonance imaging (MRI)-guided photothermal efficiency. Systematical studies reveal that the molar extinction coefficient of the as-assembled Fe3O4 SPs is 3 orders of magnitude higher than that of individual Fe3O4 NPs. Also due to the high aggregation degree of Fe3O4 NPs, the T2-weighted MRI contrast is greatly enhanced for the SPs with r2 relaxivity of 230.5 mM(-1) s(-1), which is ∼2.5 times larger than that of individual Fe3O4 NPs. The photothermal stability, physiological stability, and biocompatibility, as well as the photothermal performance of Fe3O4 SPs, are further improved by enveloping with PDA shell.

  3. Fe3O4@polydopamine Composite Theranostic Superparticles Employing Preassembled Fe3O4 Nanoparticles as the Core.

    PubMed

    Ge, Rui; Li, Xing; Lin, Min; Wang, Dandan; Li, Shuyao; Liu, Shuwei; Tang, Qi; Liu, Yi; Jiang, Jinlan; Liu, Lidi; Sun, Hongchen; Zhang, Hao; Yang, Bai

    2016-09-01

    Iron oxide (Fe3O4), polydopamine (PDA), and in particular their composites are examples of the safest nanomaterials for developing multifunctional nanodevices to perform noninvasive tumor diagnosis and therapy. However, the structures and performances of Fe3O4-PDA nanocomposites should be further perfected to enhance the theranostic efficiency. In this work, we demonstrate the fabrication of PDA-capped Fe3O4 (Fe3O4@PDA) superparticles (SPs) employing preassembled Fe3O4 nanoparticles (NPs) as the cores. Owing to the collective effect of preassembled Fe3O4 NPs, the superparamagnetism and photothermal performance of Fe3O4@PDA SPs are greatly enhanced, thus producing nanodevices with improved magnetic resonance imaging (MRI)-guided photothermal efficiency. Systematical studies reveal that the molar extinction coefficient of the as-assembled Fe3O4 SPs is 3 orders of magnitude higher than that of individual Fe3O4 NPs. Also due to the high aggregation degree of Fe3O4 NPs, the T2-weighted MRI contrast is greatly enhanced for the SPs with r2 relaxivity of 230.5 mM(-1) s(-1), which is ∼2.5 times larger than that of individual Fe3O4 NPs. The photothermal stability, physiological stability, and biocompatibility, as well as the photothermal performance of Fe3O4 SPs, are further improved by enveloping with PDA shell. PMID:27560801

  4. Adsorption and desorption studies of lysozyme by Fe3O4-polymer nanocomposite via fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Koc, Kenan; Alveroglu, Esra

    2015-06-01

    The work have been undertaken in this study is to synthesis and characterize Fe3O4-polymer nanocomposites which are having different morphological properties. Also, investigation of the adsorption and desorption behaviour of lysozyme onto Fe3O4-polymer nanocomposites have been studied. Fe3O4 nanoparticles, synthesized by in situ in polyacrylamide hydrogels, show super-paramagnetic behaviour and saturation magnetization of composite material have been tuned by changing the hydrogel conformation. Adsorption and desorption studies of lysozyme were followed by using pure water at room temperature via fluorescence measurements. Fluorescence measurements showed that, the composite materials adsorbed lysozyme molecules less than 20 s and higher monomer concentration of composite materials cause faster adsorption. Besides, structure of lysozyme molecules were not changed during the adsorption and desorption. As a result Fe3O4-polymer nanocomposites could be used for drug delivery, protein separation and PAAm gels could be used for synthesis of magnetic composites with varying magnetic properties.

  5. Ultrasonic-assisted magnetic solid phase extraction of morphine in urine samples by new imprinted polymer-supported on MWCNT-Fe3O4-NPs: Central composite design optimization.

    PubMed

    Kolaei, Milad; Dashtian, Kheibar; Rafiee, Zahra; Ghaedi, Mehrorang

    2016-11-01

    Multiwalled carbon nanotubes (MWCNTs) were magnetized with Fe3O4 nanoparticles (MWCNTs-Fe3O4-NPs) and subsequently coated by vinyl end groups (Vinyltrimethoxysilane). MWCNT-Fe3O4-NPs were used as support for a new morphine (MO) molecularly imprinted polymer (MWCNT-Fe3O4-NPs@MO-MIP) by surface imprinting polymerization method. The MWCNT-Fe3O4-NPs@MO-MIP was characterized by FTIR, VSM and SEM techniques and successfully used for determination of MO. Ultrasonic-assisted magnetic solid phase extraction followed by UV-vis spectrophotometer (UAMSPE-UV-vis) was investigated for MWCNT-Fe3O4-NPs@MO-MIP and compared with non-imprinted polymer (NIP) using batch method. Central composite design under response surface methodology was used for the evaluation of the effect of variables, individually, as well as their possible interaction effects on the adsorption process. The variables such as sonication time, MWCNT-Fe3O4-NPs@MO-MIP mass, initial concentration of MO and pH were investigated in this study. At optimum experimental conditions, UAMSPE-UV-vis method was exhibited a linear range of 0.8-8.7mgL(-1) of the MO concentration with a detection limit of 0.18mgL(-1). The relative standard deviation for the analyte was found to be lower than 2.32%. The MWCNT-Fe3O4-NPs@MO-MIP adsorption capacity was found to be 37.01mgg(-1). The enrichment and preconcentration factors were found to be 107.01 and 98.21, respectively. The developed method was finally applied successfully to the determination of MO in urine and wastewater samples with the recoveries ranged from 96.40 to 105.6%. PMID:27245975

  6. Synthesis, characterization and magnetic properties of Fe3O4 doped chitosan polymer

    NASA Astrophysics Data System (ADS)

    Karaca, E.; Şatır, M.; Kazan, S.; Açıkgöz, M.; Öztürk, E.; Gürdağ, G.; Ulutaş, D.

    2015-01-01

    Fe3O4 nanoparticles doped into chitosan films were prepared by the solution casting technique. Various samples were synthesized in atmospheric medium and in vacuum. The morphological properties of the samples were characterized by high resolution transmission electron microscopy (HR-TEM) and Scanning Electron Microscopy (SEM). The structural, magnetic, and microwave absorption properties of magnetic chitosan films have been carried out using the Vibrating Sample Magnetometer (VSM) and Ferromagnetic Resonance (FMR). It is shown that the composite polymer behaves like a superparamagnetic material with high blocking temperature. The effective magnetization shows gradual increments with the concentration of dopant Fe3O4 nanoparticles. The microwave absorption characteristic of superparamagnetic composite polymer shows low reflection loss.

  7. Miniemulsion fabricated Fe3O4/poly(methyl methacrylate) composite particles and their magnetorheological characteristics

    NASA Astrophysics Data System (ADS)

    Park, B. O.; Song, K. H.; Park, B. J.; Choi, H. J.

    2010-05-01

    In order to improve drawbacks such as sedimentation of magnetic particles and abrasion of the magnetorheological (MR) fluid, we have fabricated Fe3O4/poly(methyl methacrylate) (PMMA) composite particles via a double miniemulsion method and studied their MR properties. Morphology and chemical composition of the synthesized Fe3O4/PMMA composite particles were investigated by transmission electron microscopy and Fourier transform infrared, respectively. The density of the Fe3O4/PMMA composite particles was measured to be lower than that of the as-synthesized Fe3O4 particles, indicative of an improvement of the composite particles to stay dispersed. Rheological characteristics of the Fe3O4/PMMA based MR fluid dispersed in a nonmagnetic carrier fluid were measured by both static and dynamic tests using a rotational rheometer under an external magnetic field. Shear stress, yield stress, and storage modulus from the rheological measurements were obtained to be increased with applied magnetic field strengths.

  8. Dispersion of Nanocrystalline Fe3O4 within Composite Electrodes: Insights on Battery-Related Electrochemistry.

    PubMed

    Bock, David C; Pelliccione, Christopher J; Zhang, Wei; Wang, Jiajun; Knehr, K W; Wang, Jun; Wang, Feng; West, Alan C; Marschilok, Amy C; Takeuchi, Kenneth J; Takeuchi, Esther S

    2016-05-11

    Aggregation of nanosized materials in composite lithium-ion-battery electrodes can be a significant factor influencing electrochemical behavior. In this study, aggregation was controlled in magnetite, Fe3O4, composite electrodes via oleic acid capping and subsequent dispersion in a carbon black matrix. A heat treatment process was effective in the removal of the oleic acid capping agent while preserving a high degree of Fe3O4 dispersion. Electrochemical testing showed that Fe3O4 dispersion is initially beneficial in delivering a higher functional capacity, in agreement with continuum model simulations. However, increased capacity fade upon extended cycling was observed for the dispersed Fe3O4 composites relative to the aggregated Fe3O4 composites. X-ray absorption spectroscopy measurements of electrodes post cycling indicated that the dispersed Fe3O4 electrodes are more oxidized in the discharged state, consistent with reduced reversibility compared with the aggregated sample. Higher charge-transfer resistance for the dispersed sample after cycling suggests increased surface-film formation on the dispersed, high-surface-area nanocrystalline Fe3O4 compared to the aggregated materials. This study provides insight into the specific effects of aggregation on electrochemistry through a multiscale view of mechanisms for magnetite composite electrodes. PMID:27096464

  9. Dispersion of nanocrystalline Fe3O4 within composite electrodes: Insights on battery-related electrochemistry

    DOE PAGES

    David C. Bock; Takeuchi, Kenneth J.; Pelliccione, Christopher J.; Zhang, Wei; Wang, Jiajun; Knehr, K. W.; Wang, Jun; Wang, Feng; West, Alan C.; Marschilok, Amy C.; et al

    2016-04-20

    Aggregation of nanosized materials in composite lithium-ion-battery electrodes can be a significant factor influencing electrochemical behavior. In this study, aggregation was controlled in magnetite, Fe3O4, composite electrodes via oleic acid capping and subsequent dispersion in a carbon black matrix. A heat treatment process was effective in the removal of the oleic acid capping agent while preserving a high degree of Fe3O4 dispersion. Electrochemical testing showed that Fe3O4 dispersion is initially beneficial in delivering a higher functional capacity, in agreement with continuum model simulations. However, increased capacity fade upon extended cycling was observed for the dispersed Fe3O4 composites relative to themore » aggregated Fe3O4 composites. X-ray absorption spectroscopy measurements of electrodes post cycling indicated that the dispersed Fe3O4 electrodes are more oxidized in the discharged state, consistent with reduced reversibility compared with the aggregated sample. Higher charge-transfer resistance for the dispersed sample after cycling suggests increased surface-film formation on the dispersed, high-surface-area nanocrystalline Fe3O4 compared to the aggregated materials. Furthermore, this study provides insight into the specific effects of aggregation on electrochemistry through a multiscale view of mechanisms for magnetite composite electrodes.« less

  10. Hollow superparamagnetic PLGA/Fe 3O 4 composite microspheres for lysozyme adsorption

    NASA Astrophysics Data System (ADS)

    Yang, Qi; Wu, Yao; Lan, Fang; Ma, Shaohua; Xie, Liqin; He, Bin; Gu, Zhongwei

    2014-02-01

    Uniform hollow superparamagnetic poly(lactic-co-glycolic acid) (PLGA)/Fe3O4 composite microspheres composed of an inner cavity, PLGA inner shell and Fe3O4 outer shell have been synthesized by a modified oil-in-water (O/W) emulsion-solvent evaporation method using Fe3O4 nanoparticles as a particulate emulsifier. The obtained composite microspheres with an average diameter of 2.5 μm showed excellent monodispersity and stability in aqueous medium, strong magnetic responsiveness, high magnetite content (>68%), high saturation magnetization (58 emu g-1) and high efficiency in lysozyme adsorption.

  11. Hollow superparamagnetic PLGA/Fe3O4 composite microspheres for lysozyme adsorption.

    PubMed

    Yang, Qi; Wu, Yao; Lan, Fang; Ma, Shaohua; Xie, Liqin; He, Bin; Gu, Zhongwei

    2014-02-28

    Uniform hollow superparamagnetic poly(lactic-co-glycolic acid) (PLGA)/Fe(3)O(4) composite microspheres composed of an inner cavity, PLGA inner shell and Fe(3)O(4) outer shell have been synthesized by a modified oil-in-water (O/W) emulsion-solvent evaporation method using Fe(3)O(4) nanoparticles as a particulate emulsifier. The obtained composite microspheres with an average diameter of 2.5 μm showed excellent monodispersity and stability in aqueous medium, strong magnetic responsiveness, high magnetite content (>68%), high saturation magnetization (58 emu g(-1)) and high efficiency in lysozyme adsorption. PMID:24492410

  12. Rapid degradation of dyes in water by magnetic Fe(0)/Fe3O4/graphene composites.

    PubMed

    Chong, Shan; Zhang, Guangming; Tian, Huifang; Zhao, He

    2016-06-01

    Magnetic Fe(0)/Fe3O4/graphene has been successfully synthesized by a one-step reduction method and investigated in rapid degradation of dyes in this work. The material was characterized by N2 sorption-desorption, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), vibrating-sample magnetometer (VSM) measurements and X-ray photoelectron spectroscopy (XPS). The results indicated that Fe(0)/Fe3O4/graphene had a layered structure with Fe crystals highly dispersed in the interlayers of graphene, which could enhance the mass transfer process between Fe(0)/Fe3O4/graphene and pollutants. Fe(0)/Fe3O4/graphene exhibited ferromagnetism and could be easily separated and re-dispersed for reuse in water. Typical dyes, such as Methyl Orange, Methylene Blue and Crystal Violet, could be decolorized by Fe(0)/Fe3O4/graphene rapidly. After 20min, the decolorization efficiencies of methyl orange, methylene blue and crystal violet were 94.78%, 91.60% and 89.07%, respectively. The reaction mechanism of Fe(0)/Fe3O4/graphene with dyes mainly included adsorption and enhanced reduction by the composite. Thus, Fe(0)/Fe3O4/graphene prepared by the one-step reduction method has excellent performance in removal of dyes in water. PMID:27266311

  13. Recyclable Fe3O4/ZnO/PPy composite photocatalyst: Fabrication and photocatalytic activity

    NASA Astrophysics Data System (ADS)

    An, Liang; Wang, Guanghui; Shi, Xiaoming; Su, Min; Gao, Fang; Cheng, Yang

    2014-12-01

    In this work, a magnetically separable polypyrrole (PPy) modified Fe3O4/ZnO composite photo-catalyst was synthesized and its photocatalytic activity was tested. The as-prepared Fe3O4/ZnO/PPy nanocomposite was characterized by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectra. Furthermore, three different photocatalysts including the Fe3O4/ZnO/PPy composite were tested using methyl orange (MO) degradation reaction under UV light irradiation. The relative results demonstrated that the Fe3O4/ZnO/PPy composite has the highest photochemical activity after 4 h photocatalytic experiment. It can be easily separated using an external magnetic field. This kind of composite photocatalysts with easiness of separation can have potential applications in the treatment of water contaminated by organic pollutants.

  14. Robust polymer grafted Fe3O4 nanospheres for benign removal of oil from water

    NASA Astrophysics Data System (ADS)

    Madhusudhana Reddy, P.; Chang, Chi-Jung; Chen, Jem-Kun; Wu, Meng-Ting; Wang, Chih-Feng

    2016-04-01

    Removal of oil from the oil-water mixture (O-W mixture) or oil-in-water emulsions (O/W emulsion) is highly imperative. We have fabricated two series of polymer grafted iron oxide (Fe3O4) nanospheres. The oil removal efficiency of the nanospheres was found to be dependent on the grafted amount of polymers. The polystyrene grafted Fe3O4 nanospheres have shown better oil removal efficiency than the corresponding poly(butyl acrylate) grafted Fe3O4 nanospheres. The higher amount of grafted polystyrene can provide more hydrophobic character to FS series nanospheres. The FS series nanospheres exhibited higher oil-absorption capability than FB series nanospheres. Both the series of nanospheres can be recycled by simple washing method. The present results can pave the way to fabricate the robust materials for efficient absorption of various oils or organic solvents from both the oil-water mixture and oil-water emulsion.

  15. Facile synthesis of monodisperse superparamagnetic Fe3O4/PMMA composite nanospheres with high magnetization.

    PubMed

    Lan, Fang; Liu, Ke-Xia; Jiang, Wen; Zeng, Xiao-Bo; Wu, Yao; Gu, Zhong-Wei

    2011-06-01

    Monodisperse superparamagnetic Fe(3)O(4)/polymethyl methacrylate (PMMA) composite nanospheres with high saturation magnetization were successfully prepared by a facile novel miniemulsion polymerization method. The ferrofluid, MMA monomer and surfactants were co-sonicated and emulsified to form stable miniemulsion for polymerization. The samples were characterized by DLS, TEM, FTIR, XRD, TGA and VSM. The diameter of the Fe(3)O(4)/PMMA composite nanospheres by DLS was close to 90 nm with corresponding polydispersity index (PDI) as small as 0.099, which indicated that the nanospheres have excellent homogeneity in aqueous medium. The TEM results implied that the Fe(3)O(4)/PMMA composite nanospheres had a perfect core-shell structure with about 3 nm thin PMMA shells, and the core was composed of many homogeneous and closely packed Fe(3)O(4) nanoparticles. VSM and TGA showed that the Fe(3)O(4)/PMMA composite nanospheres with at least 65% high magnetite content were superparamagnetic, and the saturation magnetization was as high as around 39 emu g(-1) (total mass), which was only decreased by 17% compared with the initial bare Fe(3)O(4) nanoparticles. PMID:21454944

  16. Facile synthesis of monodisperse superparamagnetic Fe3O4/PMMA composite nanospheres with high magnetization

    NASA Astrophysics Data System (ADS)

    Lan, Fang; Liu, Ke-Xia; Jiang, Wen; Zeng, Xiao-Bo; Wu, Yao; Gu, Zhong-Wei

    2011-06-01

    Monodisperse superparamagnetic Fe3O4/polymethyl methacrylate (PMMA) composite nanospheres with high saturation magnetization were successfully prepared by a facile novel miniemulsion polymerization method. The ferrofluid, MMA monomer and surfactants were co-sonicated and emulsified to form stable miniemulsion for polymerization. The samples were characterized by DLS, TEM, FTIR, XRD, TGA and VSM. The diameter of the Fe3O4/PMMA composite nanospheres by DLS was close to 90 nm with corresponding polydispersity index (PDI) as small as 0.099, which indicated that the nanospheres have excellent homogeneity in aqueous medium. The TEM results implied that the Fe3O4/PMMA composite nanospheres had a perfect core-shell structure with about 3 nm thin PMMA shells, and the core was composed of many homogeneous and closely packed Fe3O4 nanoparticles. VSM and TGA showed that the Fe3O4/PMMA composite nanospheres with at least 65% high magnetite content were superparamagnetic, and the saturation magnetization was as high as around 39 emu g - 1 (total mass), which was only decreased by 17% compared with the initial bare Fe3O4 nanoparticles.

  17. Bioinspired 2D-Carbon Flakes and Fe3O4 Nanoparticles Composite for Arsenite Removal.

    PubMed

    Venkateswarlu, Sada; Lee, Daeho; Yoon, Minyoung

    2016-09-14

    Development of carbon-based materials has received tremendous attention owing to their multifunctional properties. Biomaterials often serve as an inspiration for the preparation of new carbon materials. Herein, we present a facile synthesis of a new bioinspired graphene oxide-like 2D-carbon flake (CF) using a natural resource, waste onion sheathing (Allium cepa). The 2D-CF was further decorated with crystalline Fe3O4 nanoparticles for applications. Superparamagnetic Fe3O4 nanoparticles (7 nm) were well-dispersed on the surface of the 2D-CF, which was characterized by X-ray diffractometry, X-ray photoelectron spectroscopy, Raman spectrometry, and transmission electron microscopy. Batch As(III) adsorption experiments showed that aqueous arsenic ions strongly adsorbed to the Fe3O4@2D-CF composite. The adsorption capacity of the Fe3O4@2D-CF composite for As(III) was 57.47 mg g(-1). The synergetic effect of both graphene oxide-like 2D-CF and Fe3O4 nanoparticles aided in excellent As(III) adsorption. An As(III) ion adsorption kinetics study showed that adsorption was very fast at the initial stage, and equilibrium was reached within 60 min following a pseudo-second-order rate model. Owing to the excellent superparamagnetic properties (52.6 emu g(-1)), the Fe3O4@2D-CF composite exhibited superb reusability with the shortest recovery time (28 s) among reported materials. This study indicated that Fe3O4@2D-CF composites can be used for practical applications as a global economic material for future generations. PMID:27463424

  18. Synthesis of porous Fe3O4 hollow microspheres/graphene oxide composite for Cr(vi) removal.

    PubMed

    Liu, Mancheng; Wen, Tao; Wu, Xilin; Chen, Changlun; Hu, Jun; Li, Jie; Wang, Xiangke

    2013-10-01

    A composite of porous Fe3O4 hollow microspheres/graphene oxide (Fe3O4/GO) has been fabricated through a facile self-assembly approach. Driven by the mutual electrostatic interactions, the amine-functionalized Fe3O4 microspheres prepared by a hydrothermal method and then modified by 3-aminopropyltrimethoxysilane were decorated with negatively-charged GO sheets. The Fe3O4 microspheres were hollow with porous surfaces and the surfaces were successfully modified with the amine, which was confirmed by Fourier transform infrared spectroscopy. The specific saturation magnetization of Fe3O4/GO was 37.8 emu g(-1). The sorption performance of Fe3O4/GO for Cr(vi) was evaluated. The maximum sorption capacity for Cr(vi) on Fe3O4/GO was 32.33 mg g(-1), which was much higher than that of Fe3O4 microspheres. The GO sheets could not only prevent agglomeration of the Fe3O4 microspheres and enable a good dispersion of these oxide microspheres, but also substantially enhance the specific surface area of the composite. The Fe3O4/GO composite may be a promising sorption material for the separation and preconcentration of heavy metal ions from aqueous solutions in environmental pollution cleanup. PMID:23743481

  19. Synthesis of Fe3O4/Polyacrylonitrile Composite Electrospun Nanofiber Mat for Effective Adsorption of Tetracycline.

    PubMed

    Liu, Qing; Zhong, Lu-Bin; Zhao, Quan-Bao; Frear, Craig; Zheng, Yu-Ming

    2015-07-15

    Novel Fe3O4/polyacrylonitrile (PAN) composite nanofibers (NFs) were prepared by a simple two-step process, an electrospinning and solvothermal method. Characterization by field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) demonstrated formation of a uniform nanoparticles coating (about 20 nm in thickness) on the PAN nanofiber backbone. The coating was constructed by well-crystallized cubic phase Fe3O4 nanoparticles as examined by X-ray diffraction spectroscopy (XRD). The coating doubled the specific surface area of NFs, from 8.4 to 17.8 m2 g(-1), as confirmed by nitrogen sorption isotherm analysis. To evaluate the feasibility of Fe3O4/PAN composite NFs as a potential adsorbent for antibiotic removal, batch adsorption experiments were conducted using tetracycline (TC) as the model antibiotic molecule. The results showed that Fe3O4/PAN composite NFs were effective in removing TC with no impactful loss of Fe in the pH regime of environmental interest (5-8). The adsorption of TC onto Fe3O4/PAN composite NFs better fitted the pseudo-second-order kinetics model, and the maximum adsorption capacity calculated from Langmuir isotherm model was 257.07 mg g(-1) at pH 6. The composite NFs also exhibited good regenerability over repeated adsorption/desorption cycles. Surface complexation between TC and the composite NFs contributed most to the adsorption as elucidated by X-ray photoelectron spectroscopy (XPS). This highly effective and novel adsorbent can be easily modularized and separated, promising its huge potential in drinking and wastewater treatment for antibiotic removal. PMID:26079116

  20. Lightweight, multifunctional polyetherimide/graphene@Fe3O4 composite foams for shielding of electromagnetic pollution.

    PubMed

    Shen, Bin; Zhai, Wentao; Tao, Mimi; Ling, Jianqiang; Zheng, Wenge

    2013-11-13

    Novel high-performance polyetherimide (PEI)/graphene@Fe3O4 (G@Fe3O4) composite foams with flexible character and low density of about 0.28-0.4 g/cm(3) have been developed by using a phase separation method. The obtained PEI/G@Fe3O4 foam with G@Fe3O4 loading of 10 wt % exhibited excellent specific EMI shielding effectiveness (EMI SE) of ~41.5 dB/(g/cm(3)) at 8-12 GHz. Moreover, most the applied microwave was verified to be absorbed rather than being reflected back, resulting from the improved impedance matching, electromagnetic wave attenuation, as well as multiple reflections. Meanwhile, the resulting foams also possessed a superparamagnetic behavior and low thermal conductiviy of 0.042-0.071 W/(m K). This technique is fast, highly reproducible, and scalable, which may facilitate the commercialization of such composite foams and generalize the use of them as EMI shielding materials in the fields of spacecraft and aircraft. PMID:24134429

  1. Lightweight, multifunctional polyetherimide/graphene@Fe3O4 composite foams for shielding of electromagnetic pollution.

    PubMed

    Shen, Bin; Zhai, Wentao; Tao, Mimi; Ling, Jianqiang; Zheng, Wenge

    2013-11-13

    Novel high-performance polyetherimide (PEI)/graphene@Fe3O4 (G@Fe3O4) composite foams with flexible character and low density of about 0.28-0.4 g/cm(3) have been developed by using a phase separation method. The obtained PEI/G@Fe3O4 foam with G@Fe3O4 loading of 10 wt % exhibited excellent specific EMI shielding effectiveness (EMI SE) of ~41.5 dB/(g/cm(3)) at 8-12 GHz. Moreover, most the applied microwave was verified to be absorbed rather than being reflected back, resulting from the improved impedance matching, electromagnetic wave attenuation, as well as multiple reflections. Meanwhile, the resulting foams also possessed a superparamagnetic behavior and low thermal conductiviy of 0.042-0.071 W/(m K). This technique is fast, highly reproducible, and scalable, which may facilitate the commercialization of such composite foams and generalize the use of them as EMI shielding materials in the fields of spacecraft and aircraft.

  2. Controllable synthesis and characterization of Fe3O4/Au composite nanoparticles

    NASA Astrophysics Data System (ADS)

    Xing, Yan; Jin, Yan-Yan; Si, Jian-Chao; Peng, Ming-Li; Wang, Xiao-Fang; Chen, Chao; Cui, Ya-Li

    2015-04-01

    Fe3O4/Au composite nanoparticles (GoldMag NPs) have received considerable attention because of their advantageous properties arisen from both individual Au and Fe3O4 nanoparticles. Many efforts have been devoted to the synthesis of these composite nanoparticles. Herein, GoldMag NPs were reported to be synthesized by two-step method. Fe3O4 nanoparticles were prepared by co-precipitation and modified by the citric acid, and then citric acid-coated Fe3O4 nanoparticles were used as seeds in sodium citrate solution to reduce the HAuCl4. The size of obtained nanoparticles was geared from 25 to 300 nm by controlling the concentration of reactants. The GoldMag NPs were characterized by UV-vis spectrometer, dynamic light scattering (DLS), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and vibrating sample magnetometer (VSM). The GoldMag NPs showed good superparamagnetism at room temperature and were well dispersed in water with surface plasmon resonance absorption peak varied from 538 nm to 570 nm.

  3. Hydrophilic polymer coated monodispersed Fe3O4 nanostructures and their cytotoxicity

    NASA Astrophysics Data System (ADS)

    Kumar, S. Rajesh; Marianna, Lucafò; Gianni, Sava; Nathanael, A. Joseph; Hong, S. I.; Oh, Tae Hwan; Mangalaraj, D.; Viswanathan, C.; Ponpandian, N.

    2014-03-01

    Surface functionalized monodispersed Fe3O4 magnetic nanoparticles were synthesized by the polyol method. Surfactants were used to control size, shape and agglomeration of the magnetic nanoparticles during the preparation. The size of these nanoparticles was in the range of 10-30 nm as observed in transmission electron microscopy (TEM). The formation of monodispersed shapes was controlled by varying the surfactants without changing the reaction conditions. The x-ray diffraction (XRD) pattern validates the phase purity and cubic structure even after the addition of surfactants. The functional groups were observed from Fourier transform infrared (FTIR) spectroscopy analysis, confirming the surface modification with polymer molecules in the polyol medium. The saturation magnetization value decreases from 89 to 59 emu g-1 for the surfactant coated Fe3O4 nanoparticles and it also shows superparamagnetic behavior at room temperature. Cell viability rate and percentage of dead cells were accurately identified in human breast carcinoma cell lines using in vitro cell viability experiments, which confirms that pristine and surfactant coated Fe3O4 nanoparticles are non-toxic and can be used for biomedical applications.

  4. Polyaniline/reduced graphene oxide/Fe3O4 nano-composite for aqueous Hg(II) removal.

    PubMed

    Li, Renjie; Liu, Lifen; Yang, Fenglin

    2015-01-01

    To ease the adsorbent recovery and to increase the adsorption capacity of polyaniline (PANI), aniline was polymerized in the presence of a solvothermally prepared nano-composite of reduced graphene oxide and Fe3O4 (RGO/Fe3O4). The polyaniline was formed along the RGO/Fe3O4 composite in transmission electron microscope (TEM). The thus formed PANI/RGO/Fe3O4 adsorbent was tested and applied in removing Hg(II) in aqueous solution. The initial adsorption rate as well as the adsorption capacity increases with the incorporation of RGO/Fe3O4. The magnetic separation of PANI/RGO/Fe3O4 was easy, and its regeneration can be carried out at the optimal pH of 2. Test results proved the competence of the prepared adsorbent in pollution remediation applications for safer water quality and environmental protection. PMID:26606101

  5. Magnetic quenching of photonic activity in Fe3O4-elastomer composite

    NASA Astrophysics Data System (ADS)

    Ma, Danhao; Hess, Dustin T.; Shetty, Pralav P.; Adu, Kofi W.; Bell, Richard C.; Terrones, Mauricio

    2016-01-01

    We report a quenching phenomenon within the visible region of the electromagnetic spectrum in the photonic response of a passive Fe3O4-silicone elastomer composite film due to magnetically aligned Fe3O4 nanoparticles. We performed systematic studies of the polarization dependence, the effect of particle size, and an in- and out-of-plane particle alignment on the optical response of the Fe3O4-silicone elastomer composites using a UV/vis/NIR spectrometer. We observed systematic redshifts in the response of the out-of-plane composite films with increasing particle alignment and weight that are attributed to dipole-induced effects. There were no observable shifts in the spectra of the in-plane films, suggesting the orientation of the magnetic dipole and the induced electric dipole play a crucial role in the optical response. A dramatic suppression to near quenching of the photonic response occurred in films containing moderate concentrations of the aligned nanoparticles. This is attributed to the interplay between the intra- and the interparticle dipoles. This occurred even when low magnetic fields were used during the curing process, suggesting that particle alignment and particle size limitation are critical in the manipulation of the photonic properties. A dipole approximation model is used to explain the quenching phenomenon. An active system of such a composite has a potential application in magneto-optic switches.

  6. Preparation and Microwave Absorption Properties of Novel Carbon Nanofiber/Fe3O4 Composites.

    PubMed

    Ren, Yong; Dai, Bo; Wang, Gai-Hua; Zhang, Xiao-Wei; Zhu, Pei; Li, Shi-Rong

    2015-04-01

    Novel, carbonized bacterial cellulose (CBC)/Fe3O4 nanocomposites were synthesized using vacuum filtration and annealing (VFA) methods. The as-synthesized products were characterized by scanning electron microscopy, vibrating sample magnetometry, and transmission electron microscopy. The complex permittivity and permeability of Fe3O4-CBC (5 wt.% CBC)/paraffin wax composites were measured by vector network analysis. To study the microwave absorption (MA) performances, we compared the VFA products with the vacuum filtration (VF) products. The VFA products exhibited better absorption performances because of their larger dielectric loss. When the matching thickness was 2.4 mm, the calculated reflection loss reached a minimum value of -27 dB when VFA was used and a value of -11 dB when VF was used. The wide-range MA properties of these materials lead to potential applications in MA fields.

  7. Preparation and Microwave Absorption Properties of Novel Carbon Nanofiber/Fe3O4 Composites.

    PubMed

    Ren, Yong; Dai, Bo; Wang, Gai-Hua; Zhang, Xiao-Wei; Zhu, Pei; Li, Shi-Rong

    2015-04-01

    Novel, carbonized bacterial cellulose (CBC)/Fe3O4 nanocomposites were synthesized using vacuum filtration and annealing (VFA) methods. The as-synthesized products were characterized by scanning electron microscopy, vibrating sample magnetometry, and transmission electron microscopy. The complex permittivity and permeability of Fe3O4-CBC (5 wt.% CBC)/paraffin wax composites were measured by vector network analysis. To study the microwave absorption (MA) performances, we compared the VFA products with the vacuum filtration (VF) products. The VFA products exhibited better absorption performances because of their larger dielectric loss. When the matching thickness was 2.4 mm, the calculated reflection loss reached a minimum value of -27 dB when VFA was used and a value of -11 dB when VF was used. The wide-range MA properties of these materials lead to potential applications in MA fields. PMID:26353503

  8. Microwave complex permeability of Fe3O4 nanoflake composites with and without magnetic field-induced rotational orientation

    NASA Astrophysics Data System (ADS)

    Liu, Xianguo; Wing Or, Siu; Ming Leung, Chung; Ho, S. L.

    2013-05-01

    Magnetite (Fe3O4) nanoflakes with widths of 100-200 nm and thicknesses of 10-80 nm were prepared by a hydrothermal synthesis method. Fe3O4 nanoflake composites with and without magnetic field-induced rotational orientation of flake planes of Fe3O4 nanoflakes in paraffin binder were fabricated using 35 wt. % Fe3O4 nanoflakes. The rotationally oriented composite showed higher permeability and resonance frequency than the nonoriented one, and its value of (μ0-1)fr reached 214.8 GHz and exceeded the Snoek's limit. Considering a uniform and a random distribution of flake planes of Fe3O4 nanoflakes in the oriented and nonoriented composites, respectively, the complex permeability of both composites was calculated using the Landau-Lifshitz-Gilbert equation and the Bruggeman's effective medium theory in the 2-18 GHz microwave frequency range.

  9. One-step solvothermal synthesis of magnetic Fe3O4-graphite composite for Fenton-like degradation of levofloxacin.

    PubMed

    Wang, Long; Zhao, Qi; Hou, Juan; Yan, Jin; Zhang, Fengshuang; Zhao, Jiahui; Ding, Hong; Li, Yi; Ding, Lan

    2016-01-01

    A novel Fe3O4-graphite composite was prepared, characterized, and investigated as a heterogeneous Fenton-like catalyst for the degradation of levofloxacin (LEV) in an aqueous solution. The results revealed that the Fe3O4-graphite composite exhibited excellent properties for the degradation and mineralization of LEV, achieving a nearly complete degradation of 50 mg L(-1) LEV in 15 min and 48% of total organic carbon removal in 60 min under optimal conditions. A large electronic conjugation structure exists in graphite, which may lead to the fast production of •OH radical species because of the easy reduction of Fe(III) to Fe(II). In addition, we observed that the graphite can degrade LEV in the presence of H2O2. Therefore, the synergistic results of the graphite structure and Fe3O4 magnetic nanoparticles (MNPs) may contribute to the high catalytic activity of the Fe3O4-graphite composite. Compared with pure Fe3O4 MNPs, lesser iron leaching of the Fe3O4-graphite composite was observed during the degradation of LEV. The degradation efficiency of LEV remained approximately 80% at the fifth recycling run, which indicates that the Fe3O4-graphite composite has potential applications in water treatment for removing organic pollutants.

  10. One-step solvothermal synthesis of magnetic Fe3O4-graphite composite for Fenton-like degradation of levofloxacin.

    PubMed

    Wang, Long; Zhao, Qi; Hou, Juan; Yan, Jin; Zhang, Fengshuang; Zhao, Jiahui; Ding, Hong; Li, Yi; Ding, Lan

    2016-01-01

    A novel Fe3O4-graphite composite was prepared, characterized, and investigated as a heterogeneous Fenton-like catalyst for the degradation of levofloxacin (LEV) in an aqueous solution. The results revealed that the Fe3O4-graphite composite exhibited excellent properties for the degradation and mineralization of LEV, achieving a nearly complete degradation of 50 mg L(-1) LEV in 15 min and 48% of total organic carbon removal in 60 min under optimal conditions. A large electronic conjugation structure exists in graphite, which may lead to the fast production of •OH radical species because of the easy reduction of Fe(III) to Fe(II). In addition, we observed that the graphite can degrade LEV in the presence of H2O2. Therefore, the synergistic results of the graphite structure and Fe3O4 magnetic nanoparticles (MNPs) may contribute to the high catalytic activity of the Fe3O4-graphite composite. Compared with pure Fe3O4 MNPs, lesser iron leaching of the Fe3O4-graphite composite was observed during the degradation of LEV. The degradation efficiency of LEV remained approximately 80% at the fifth recycling run, which indicates that the Fe3O4-graphite composite has potential applications in water treatment for removing organic pollutants. PMID:26513011

  11. Facile Synthesis of Fe3O4/GCs Composites and Their Enhanced Microwave Absorption Properties.

    PubMed

    Jian, Xian; Wu, Biao; Wei, Yufeng; Dou, Shi Xue; Wang, Xiaolin; He, Weidong; Mahmood, Nasir

    2016-03-01

    Graphene has good stability and adjustable dielectric properties along with tunable morphologies, and hence can be used to design novel and high-performance functional materials. Here, we have reported a facile synthesis method of nanoscale Fe3O4/graphene capsules (GCs) composites using the combination of catalytic chemical vapor deposition (CCVD) and hydrothermal process. The resulting composite has the advantage of unique morphology that offers better synergism among the Fe3O4 particles as well as particles and GCs. The microwave-absorbing characteristics of developed composites were investigated through experimentally measured electromagnetic properties and simulation studies based on the transmission line theory, explained on the basis of eddy current, natural and exchange resonance, as well as dielectric relaxation processes. The composites bear minimum RL value of -32 dB at 8.76 GHz along with the absorption bandwidth range from 5.4 to 17 GHz for RL lower than -10 dB. The better performance of the composite based on the reasonable impedance characteristic, existence of interfaces around the composites, and the polarization of free carriers in 3D GCs that make the as-prepared composites capable of absorbing microwave more effectively. These results offer an effective way to design high-performance functional materials to facilitate the research in electromagnetic shielding and microwave absorption. PMID:26890224

  12. Facile Synthesis of Fe3O4/GCs Composites and Their Enhanced Microwave Absorption Properties.

    PubMed

    Jian, Xian; Wu, Biao; Wei, Yufeng; Dou, Shi Xue; Wang, Xiaolin; He, Weidong; Mahmood, Nasir

    2016-03-01

    Graphene has good stability and adjustable dielectric properties along with tunable morphologies, and hence can be used to design novel and high-performance functional materials. Here, we have reported a facile synthesis method of nanoscale Fe3O4/graphene capsules (GCs) composites using the combination of catalytic chemical vapor deposition (CCVD) and hydrothermal process. The resulting composite has the advantage of unique morphology that offers better synergism among the Fe3O4 particles as well as particles and GCs. The microwave-absorbing characteristics of developed composites were investigated through experimentally measured electromagnetic properties and simulation studies based on the transmission line theory, explained on the basis of eddy current, natural and exchange resonance, as well as dielectric relaxation processes. The composites bear minimum RL value of -32 dB at 8.76 GHz along with the absorption bandwidth range from 5.4 to 17 GHz for RL lower than -10 dB. The better performance of the composite based on the reasonable impedance characteristic, existence of interfaces around the composites, and the polarization of free carriers in 3D GCs that make the as-prepared composites capable of absorbing microwave more effectively. These results offer an effective way to design high-performance functional materials to facilitate the research in electromagnetic shielding and microwave absorption.

  13. Gel-limited synthesis of dumbbell-like Fe3O4-Ag composite microspheres and their SERS applications

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoli; Niu, Chunyu; Wang, Yongqiang; Zhou, Shaomin; Liu, Jin

    2014-10-01

    A novel gel-limited strategy was developed to synthesize dumbbell-like Fe3O4-Ag composite microspheres through a simple one-pot solvothermal method. In such a reaction system, a special precursor solution containing oleic, water, ethanol and silver ions was used and transformed into a bulk gel under heating at the very beginning of the reaction, thus all the subsequent reactions proceeded in the interior of the gel. The gel-limited reactions had two advantages, on the one hand, the magnetic Fe3O4 microspheres were fixed in the gel which avoided them aggregating together, whereas on the other hand, the silver ions stored in the gel could be gradually released and tended to diffuse towards the nearest Fe3O4 microsphere, which favored the generation of a dumbbell-like Fe3O4-Ag structure. From the time-dependent experiments under optimal conditions, the typical growth process of dumbbell-like structures clearly demonstrated that a silver seed first appeared on the surface of a single Fe3O4 microsphere, which then grew bigger slowly and finally formed a dumbbell-like Fe3O4-Ag structure. Moreover, the formation of the gel was found to be strongly affected by the ratio of water and ethanol in the precursor solution, which further influenced the morphologies of the Fe3O4-Ag microspheres. Furthermore, the effect of lattice match between Fe3O4 and Ag on the final products was also proven from the control experiments by using a template with a different surface crystalline structure. When used as SERS substrates, the final dumbbell-like Fe3O4-Ag microspheres show fast magnetic separation and the selective detection of thiram for the surface capped oleic chain during the growth process.A novel gel-limited strategy was developed to synthesize dumbbell-like Fe3O4-Ag composite microspheres through a simple one-pot solvothermal method. In such a reaction system, a special precursor solution containing oleic, water, ethanol and silver ions was used and transformed into a bulk gel

  14. Gel-limited synthesis of dumbbell-like Fe3O4-Ag composite microspheres and their SERS applications.

    PubMed

    Zhang, Xiaoli; Niu, Chunyu; Wang, Yongqiang; Zhou, Shaomin; Liu, Jin

    2014-11-01

    A novel gel-limited strategy was developed to synthesize dumbbell-like Fe3O4-Ag composite microspheres through a simple one-pot solvothermal method. In such a reaction system, a special precursor solution containing oleic, water, ethanol and silver ions was used and transformed into a bulk gel under heating at the very beginning of the reaction, thus all the subsequent reactions proceeded in the interior of the gel. The gel-limited reactions had two advantages, on the one hand, the magnetic Fe3O4 microspheres were fixed in the gel which avoided them aggregating together, whereas on the other hand, the silver ions stored in the gel could be gradually released and tended to diffuse towards the nearest Fe3O4 microsphere, which favored the generation of a dumbbell-like Fe3O4-Ag structure. From the time-dependent experiments under optimal conditions, the typical growth process of dumbbell-like structures clearly demonstrated that a silver seed first appeared on the surface of a single Fe3O4 microsphere, which then grew bigger slowly and finally formed a dumbbell-like Fe3O4-Ag structure. Moreover, the formation of the gel was found to be strongly affected by the ratio of water and ethanol in the precursor solution, which further influenced the morphologies of the Fe3O4-Ag microspheres. Furthermore, the effect of lattice match between Fe3O4 and Ag on the final products was also proven from the control experiments by using a template with a different surface crystalline structure. When used as SERS substrates, the final dumbbell-like Fe3O4-Ag microspheres show fast magnetic separation and the selective detection of thiram for the surface capped oleic chain during the growth process. PMID:25188029

  15. Interface composition between Fe3O4 nanoparticles and GaAs for spintronic applications

    NASA Astrophysics Data System (ADS)

    Hihath, Sahar; Kiehl, Richard A.; Benthem, Klaus van

    2014-08-01

    Recent interest in spintronic applications has necessitated the study of magnetic materials in contact with semiconductor substrates; importantly, the structure and composition of these interfaces can influence both device functionality and the magnetic properties. Nanoscale ferromagnet/semiconductor structures are of particular interest. In this study, the interface structure between a monolayer of ferromagnetic magnetite (Fe3O4) nanoparticles and a GaAs substrate was studied using cross-sectional transmission electron microscopy techniques. It was found that a continuous amorphous oxide interface layer separates the nanoparticles from the GaAs substrate, and that iron diffused into the interface layer forming a compositional gradient. Electron energy-loss near-edge fine structures of the O K absorption edge revealed that the amorphous oxide is composed of γ-Fe2O3 directly underneath the Fe3O4 nanoparticles, followed by a solid solution of Ga2O3 and FeO and mostly Ga2O3 when approaching the buckled oxide/substrate interface. Real-space density functional theory calculations of the dynamical form factor confirmed the experimental observations. The implication of the findings on the optimization of these structures for spin injection is discussed.

  16. One-step preparation of Fe3O4/Pd@polypyrrole composites with enhanced catalytic activity and stability.

    PubMed

    Zhang, Hui; Liu, Yang; Wu, Jie; Xin, Baifu

    2016-08-15

    Core/shell Fe3O4/Pd@polypyrrole (PPy) composites with a Fe3O4 core and a PPy shell embedding Pd nanoparticles were prepared in one-step. The diameter of highly dispersed Pd nanoparticles was as small as 2.9nm owing to coordination interaction generated between Pd(2+) ions and amino groups on PPy chains. The outer PPy shell was only 6.8nm: on one hand, the coverage was beneficial to improving the stability of resulting composites; on the other hand, the shell was thin enough to permit free contact between embedding Pd nanoparticles and reactants. Additionally, the as-prepared Fe3O4/Pd@PPy composites displayed good magnetic separation property due to incorporation of Fe3O4 nanospheres. Based on above merits, they served as suitable catalyst candidates. Their catalytic performance and reusability were evaluated by reduction of 4-nitrophenol with sodium borohydride as reducing agent. Compared with traditional Fe3O4/Pd composites, Fe3O4/Pd@PPy composites not only showed superior catalytic activity; but also exhibited much better stability in successive cycling tests.

  17. One-step preparation of Fe3O4/Pd@polypyrrole composites with enhanced catalytic activity and stability.

    PubMed

    Zhang, Hui; Liu, Yang; Wu, Jie; Xin, Baifu

    2016-08-15

    Core/shell Fe3O4/Pd@polypyrrole (PPy) composites with a Fe3O4 core and a PPy shell embedding Pd nanoparticles were prepared in one-step. The diameter of highly dispersed Pd nanoparticles was as small as 2.9nm owing to coordination interaction generated between Pd(2+) ions and amino groups on PPy chains. The outer PPy shell was only 6.8nm: on one hand, the coverage was beneficial to improving the stability of resulting composites; on the other hand, the shell was thin enough to permit free contact between embedding Pd nanoparticles and reactants. Additionally, the as-prepared Fe3O4/Pd@PPy composites displayed good magnetic separation property due to incorporation of Fe3O4 nanospheres. Based on above merits, they served as suitable catalyst candidates. Their catalytic performance and reusability were evaluated by reduction of 4-nitrophenol with sodium borohydride as reducing agent. Compared with traditional Fe3O4/Pd composites, Fe3O4/Pd@PPy composites not only showed superior catalytic activity; but also exhibited much better stability in successive cycling tests. PMID:27232537

  18. Multifunctional Properties of Cyanate Ester Composites with SiO2 Coated Fe3O4 Fillers

    SciTech Connect

    Sun, Weixing; Sun, Wuzhu; Kessler, Michael R; Bowler, Nicola; Dennis, Kevin W; McCallum, R William; Li, Qi; Tan, Xiaoli

    2013-02-22

    SiO2 coated Fe3O4 submicrometer spherical particles (a conducting core/insulating shell configuration) are fabricated using a hydrothermal method and are loaded at 10 and 20 vol % into a bisphenol E cyanate ester matrix for synthesis of multifunctional composites. The dielectric constant of the resulting composites is found to be enhanced over a wide frequency and temperature range while the low dielectric loss tangent of the neat cyanate ester polymer is largely preserved up to 160 ?C due to the insulating SiO2 coating on individual conductive Fe3O4 submicrometer spheres. These composites also demonstrate high dielectric breakdown strengths at room temperature. Dynamic mechanical analysis indicates that the storage modulus of the composite with a 20 vol % filler loading is twice as high as that of neat resin, but the glass transition temperature considerably decreases with increasing filler content. Magnetic measurements reveal a large saturation magnetization and negligibly low coercivity and remanent magnetization in these composites.

  19. Multifunctional properties of cyanate ester composites with SiO2 coated Fe3O4 fillers.

    PubMed

    Sun, Weixing; Sun, Wuzhu; Kessler, Michael R; Bowler, Nicola; Dennis, Kevin W; McCallum, R William; Li, Qi; Tan, Xiaoli

    2013-03-13

    SiO2 coated Fe3O4 submicrometer spherical particles (a conducting core/insulating shell configuration) are fabricated using a hydrothermal method and are loaded at 10 and 20 vol % into a bisphenol E cyanate ester matrix for synthesis of multifunctional composites. The dielectric constant of the resulting composites is found to be enhanced over a wide frequency and temperature range while the low dielectric loss tangent of the neat cyanate ester polymer is largely preserved up to 160 °C due to the insulating SiO2 coating on individual conductive Fe3O4 submicrometer spheres. These composites also demonstrate high dielectric breakdown strengths at room temperature. Dynamic mechanical analysis indicates that the storage modulus of the composite with a 20 vol % filler loading is twice as high as that of neat resin, but the glass transition temperature considerably decreases with increasing filler content. Magnetic measurements reveal a large saturation magnetization and negligibly low coercivity and remanent magnetization in these composites. PMID:23431998

  20. Multifunctional properties of cyanate ester composites with SiO2 coated Fe3O4 fillers.

    PubMed

    Sun, Weixing; Sun, Wuzhu; Kessler, Michael R; Bowler, Nicola; Dennis, Kevin W; McCallum, R William; Li, Qi; Tan, Xiaoli

    2013-03-13

    SiO2 coated Fe3O4 submicrometer spherical particles (a conducting core/insulating shell configuration) are fabricated using a hydrothermal method and are loaded at 10 and 20 vol % into a bisphenol E cyanate ester matrix for synthesis of multifunctional composites. The dielectric constant of the resulting composites is found to be enhanced over a wide frequency and temperature range while the low dielectric loss tangent of the neat cyanate ester polymer is largely preserved up to 160 °C due to the insulating SiO2 coating on individual conductive Fe3O4 submicrometer spheres. These composites also demonstrate high dielectric breakdown strengths at room temperature. Dynamic mechanical analysis indicates that the storage modulus of the composite with a 20 vol % filler loading is twice as high as that of neat resin, but the glass transition temperature considerably decreases with increasing filler content. Magnetic measurements reveal a large saturation magnetization and negligibly low coercivity and remanent magnetization in these composites.

  1. Preparation of magnetic Fe3O4/TiO2/Ag composite microspheres with enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Wu, Zheng; Chen, Liangwei; Zhang, Lianjie; Li, Xuelian; Xu, Haifeng; Wang, Hongyan; Zhu, Guang

    2016-02-01

    The novel three-component Fe3O4/TiO2/Ag composite mircospheres were prepared via a facile chemical deposition route. The Fe3O4/TiO2 mircospheres were first prepared by the solvothermal method, and then Ag nanoparticles were anchored onto the out-layer of TiO2 by the tyrosine-reduced method. The as-prepared magnetic Fe3O4/TiO2/Ag composite mircospheres were applied as photocatalysis for the photocatalytic degradation of methylene blue. The results indicate that the photocatalytic activity of Fe3O4/TiO2/Ag composite microspheres is superior to that of Fe3O4/TiO2 due to the dual effects of the enhanced light absorption and reduction of photoelectron-hole pair recombination in TiO2 with the introduction of Ag NPs. Moreover, these magnetic Fe3O4/TiO2/Ag composite microspheres can be completely removed from the dispersion with the help of magnetic separation and reused with little or no loss of catalytic activity.

  2. Fe3O4/cyclodextrin polymer nanocomposites for selective heavy metals removal from industrial wastewater.

    PubMed

    Badruddoza, Abu Zayed M; Shawon, Zayed Bin Zakir; Tay, Wei Jin Daniel; Hidajat, Kus; Uddin, Mohammad Shahab

    2013-01-01

    In this work, carboxymethyl-β-cyclodextrin (CM-β-CD) polymer modified Fe(3)O(4) nanoparticles (CDpoly-MNPs) was synthesized for selective removal of Pb(2+), Cd(2+), Ni(2+) ions from water. This magnetic adsorbent was characterized by TEM, FTIR, XPS and VSM. The adsorption of all studied metal ions onto CDpoly-MNPs was found to be dependent on pH, ionic strength, and temperature. Batch adsorption equilibrium was reached in 45 min and maximum uptakes for Pb(2+), Cd(2+) and Ni(2+) in non-competitive adsorption mode were 64.5, 27.7 and 13.2 mg g(-1), respectively at 25 °C. Adsorption data were fitted well to Langmuir isotherm and pseudo-second-order models for kinetic study. The polymer grafted on MNPs enhanced the adsorption capacity because of the complexing abilities of the multiple hydroxyl and carboxyl groups in polymer backbone with metal ions. In competitive adsorption experiments, CDpoly-MNPs could preferentially adsorb Pb(2+) ions with an affinity order of Pb(2+)>Cd(2+)>Ni(2+) which can be explained by hard and soft acids and bases (HASB) theory. Furthermore, we explored the recyclability of CDpoly-MNPs.

  3. A mild synthetic route to Fe3O4@TiO2-Au composites: preparation, characterization and photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Ma, Jianqi; Guo, Shaobo; Guo, Xiaohua; Ge, Hongguang

    2015-10-01

    To prevent and avoid magnetic loss caused by magnetite core phase transitions involved in high-temperature crystallization of sol-gel TiO2, a direct and feasible low-temperature crystallization technique was developed to deposit anatase TiO2 nanoparticle shell on Fe3O4 sphere cores. To promote the photocatalytic efficiency of the obtained core-shell Fe3O4@TiO2 magnetic photocatalyst, uniformly distributed Au nanoparticles (NPs) were successfully immobilized on the core-shell Fe3O4@TiO2 spheres via a seed-mediated growth procedure. The 3 nm Au colloid absorbed on Fe3O4@TiO2 served as a nucleation site for the growth of Au NPs overlayer. The morphology, structure, composition and magnetism of the resulting composites were characterized, and their photocatalytic activities were also evaluated. In comparison to Fe3O4@TiO2, Fe3O4@TiO2-Au exhibited higher photocatalytic activity for organic degradation under UV irradiation. This enhanced mechanism may have resulted from efficient charge separation of photogenerated electrons and holes due to the Au NPs attached on the TiO2. In addition, the composites possessed superparamagnetic properties with a high saturation magnetization of 44.6 emu g-1 and could be easily separated and recycled by a magnet.

  4. One pot synthesis and characterization of Fe3O4 Nanorod-PNIPA Nanogel Composite for protein adsorption.

    PubMed

    Rajar, Kausar; Karakus, Baris; Koc, Kenan; Alveroglu, Esra

    2016-11-01

    In this study, Fe3O4 Nanorod-PNIPA Nanogel Composite nanomaterial is synthesized, characterized and used for lysozyme adsorption. XRD, ATR-FTIR, AFM and SEM measurements reveal that nanorods-nanogels composite was prepared successfully. The diameter of nanorods and the average particle size of nanogels are found around 150nm and 300nm, respectively. VSM measurement shows that the Fe3O4 particles are in rod shape and has superparamagnetic behavior, no hysteresis and remnant is detected. The adsorption kinetic of lysozyme on composite material is studied via fluorescence method, and the adsorption reaction rate constant is calculated as 0.904s(-1) by using Langmuir-Hinshelwood pseudo second order model. Fe3O4 Nanorod-PNIPA Nanogel Composite is appeared as a fast catalyst for lysozyme like protein immobilization. PMID:27523996

  5. One pot synthesis and characterization of Fe3O4 Nanorod-PNIPA Nanogel Composite for protein adsorption.

    PubMed

    Rajar, Kausar; Karakus, Baris; Koc, Kenan; Alveroglu, Esra

    2016-11-01

    In this study, Fe3O4 Nanorod-PNIPA Nanogel Composite nanomaterial is synthesized, characterized and used for lysozyme adsorption. XRD, ATR-FTIR, AFM and SEM measurements reveal that nanorods-nanogels composite was prepared successfully. The diameter of nanorods and the average particle size of nanogels are found around 150nm and 300nm, respectively. VSM measurement shows that the Fe3O4 particles are in rod shape and has superparamagnetic behavior, no hysteresis and remnant is detected. The adsorption kinetic of lysozyme on composite material is studied via fluorescence method, and the adsorption reaction rate constant is calculated as 0.904s(-1) by using Langmuir-Hinshelwood pseudo second order model. Fe3O4 Nanorod-PNIPA Nanogel Composite is appeared as a fast catalyst for lysozyme like protein immobilization.

  6. Synthesis of composite magnetic nanoparticles Fe3O4 with alendronate for osteoporosis treatment

    PubMed Central

    Lee, Ming-Song; Su, Chao-Ming; Yeh, Jih-Chao; Wu, Pei-Ru; Tsai, Tien-Yao; Lou, Shyh-Liang

    2016-01-01

    Osteoporosis is a result of imbalance between bone formation by osteoblasts and resorption by osteoclasts (OCs). In the present study, we investigated the potential of limiting the aggravation of osteoporosis by reducing the activity of OCs through thermolysis. The proposed method is to synthesize bisphosphonate (Bis)-conjugated iron (II, III) oxide (Fe3O4) nanoparticles and incorporate them into OCs. The cells should be subsequently exposed to radiofrequency (RF) to induce thermolysis. In this study, particles of Fe3O4 were first synthesized by chemical co-precipitation and then coated with dextran (Dex). The Dex/Fe3O4 particles were then conjugated with Bis to form Bis/Dex/Fe3O4. Transmission electron microscopy revealed that the average diameter of the Bis/Dex/Fe3O4 particles was ~20 nm. All three kinds of nanoparticles were found to have cubic inverse spinel structure of Fe3O4 by the X-ray diffraction analysis. Fourier transform infrared spectroscopy confirmed that the Dex/Fe3O4 and Bis/Dex/Fe3O4 nanoparticles possessed their respective Dex and Bis functional groups, while a superconducting quantum interference device magnetometer measured the magnetic moment to be 24.5 emu. In addition, the Bis/Dex/Fe3O4 nanoparticles were fully dispersed in double-distilled water. Osteoblasts and OCs were individually cultured with the nanoparticles, and an MTT assay revealed that they were non-cytotoxic. An RF system (42 kHz and 450 A) was used to raise the temperature of the nanoparticles for 20 minutes, and the thermal effect was found to be sufficient to destroy OCs. Furthermore, in vivo studies verified that nanoparticles were indeed magnetic resonance imaging contrast agents and that they accumulated after being injected into the body of rats. In conclusion, we developed a water-dispersible magnetic nanoparticle that had RF-induced thermogenic properties, and the results indicated that the Bis/Dex/Fe3O4 nanoparticle had the potential for controlling osteoporosis.

  7. Synthesis of composite magnetic nanoparticles Fe3O4 with alendronate for osteoporosis treatment

    PubMed Central

    Lee, Ming-Song; Su, Chao-Ming; Yeh, Jih-Chao; Wu, Pei-Ru; Tsai, Tien-Yao; Lou, Shyh-Liang

    2016-01-01

    Osteoporosis is a result of imbalance between bone formation by osteoblasts and resorption by osteoclasts (OCs). In the present study, we investigated the potential of limiting the aggravation of osteoporosis by reducing the activity of OCs through thermolysis. The proposed method is to synthesize bisphosphonate (Bis)-conjugated iron (II, III) oxide (Fe3O4) nanoparticles and incorporate them into OCs. The cells should be subsequently exposed to radiofrequency (RF) to induce thermolysis. In this study, particles of Fe3O4 were first synthesized by chemical co-precipitation and then coated with dextran (Dex). The Dex/Fe3O4 particles were then conjugated with Bis to form Bis/Dex/Fe3O4. Transmission electron microscopy revealed that the average diameter of the Bis/Dex/Fe3O4 particles was ~20 nm. All three kinds of nanoparticles were found to have cubic inverse spinel structure of Fe3O4 by the X-ray diffraction analysis. Fourier transform infrared spectroscopy confirmed that the Dex/Fe3O4 and Bis/Dex/Fe3O4 nanoparticles possessed their respective Dex and Bis functional groups, while a superconducting quantum interference device magnetometer measured the magnetic moment to be 24.5 emu. In addition, the Bis/Dex/Fe3O4 nanoparticles were fully dispersed in double-distilled water. Osteoblasts and OCs were individually cultured with the nanoparticles, and an MTT assay revealed that they were non-cytotoxic. An RF system (42 kHz and 450 A) was used to raise the temperature of the nanoparticles for 20 minutes, and the thermal effect was found to be sufficient to destroy OCs. Furthermore, in vivo studies verified that nanoparticles were indeed magnetic resonance imaging contrast agents and that they accumulated after being injected into the body of rats. In conclusion, we developed a water-dispersible magnetic nanoparticle that had RF-induced thermogenic properties, and the results indicated that the Bis/Dex/Fe3O4 nanoparticle had the potential for controlling osteoporosis. PMID

  8. A solvothermal method to produce RGO-Fe3O4 hybrid composite for fast chromium removal from aqueous solution

    NASA Astrophysics Data System (ADS)

    Zhou, Li; Deng, Huiping; Wan, Junli; Shi, Jun; Su, Tong

    2013-10-01

    A simple one step solvotermal strategy using non-toxic and cost-effective precursors has been developed to prepare reduced graphene oxide (RGO)-Fe3O4 non-nanocomposite for removal of Cr(VI). Compared with the nano-adsorbent, the RGO-Fe3O4 hybrid particles with size larger than 100 nm can reduce cell toxicity in water treatment processes. The structure, surface and magnetic characteristics of the non-nanocomposite were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET), and Vibrating sample magnetometer (VSM). The RGO-Fe3O4 composite with the highest loading of Fe3O4 demonstrates the fastest removal of 500 μg/L Cr(VI) which can reach 85% within 5 min at neutral pH. The adsorption kinetics follows the pseudo-second-order model and the adosorbent exhibits better Cr(VI) removal efficiency in water at low pH. However, the removal efficiency of Cr(VI) decreased when common hazardous ions were added in water. The large saturation magnetization (41.12 emu/g) of the synthesized non-nanoparticles allows fast separation of the adsorbent from water. The RGO-Fe3O4 non-nanocomposite could be utilized as an efficient, stable, less toxic and magnetically separable adsorbent for environmental cleanup.

  9. Preparation and drug-loading properties of Fe3O4/Poly(styrene-co-acrylic acid) magnetic polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Lu, Wensheng; Shen, Yuhua; Xie, Anjian; Zhang, Weiqiang

    2013-11-01

    Fe3O4/poly(styrene-co-acrylic acid) magnetic polymer nanocomposites were synthesized by the dispersion polymerization method using styrene as hard monomer, acrylic acid as functional monomer, Fe3O4 nanoparticles modified with oleic acid as core, and poly(styrene-co-acrylic acid) as shell. Drug-loading properties of magnetic polymer nanocomposites with curcumin as a model drug were also studied. The results indicated that magnetic polymer nanocomposites with monodisperse were obtained, the particle size distribution was 50-120 nm, and the average size was about 100 nm. The contents of poly(styrene-co-acrylic acid) and Fe3O4 nanoparticles in magnetic polymer nanocomposites were 74% and 24.7%, respectively. The drug-loading capacity and entrapment efficiency were 2.5% and 44.4%, respectively. The saturation magnetization of magnetic polymer nanocomposites at 300 K was 20.2 emu/g without coercivity and remanence. The as-prepared magnetic polymer nanocomposites have not only lots of functional carboxyl groups but also stronger magnetic response, which might have potential applications in drug carrier and targeted drug release.

  10. Photothermally actuated interfacial hydration for fast friction switch on hydrophilic polymer brush modified PDMS sheet incorporated with Fe3O4 nanoparticles.

    PubMed

    Liu, Guoqiang; Cai, Meirong; Feng, Yange; Wang, Xiaolong; Zhou, Feng; Liu, Weimin

    2016-03-01

    A near-infrared light triggered fast interfacial friction switch was achieved with polyelectrolyte brush grafted PDMS embedded with Fe3O4 nanoparticles, where the in situ heating up of the photothermal Fe3O4 nanoparticles in the polymer matrix changes the interface humidity and thereafter alters the hydration level of the interfacial polymer brushes.

  11. Arsenic Removal from Aqueous Solutions Using Fe3O4-HBC Composite: Effect of Calcination on Adsorbents Performance

    PubMed Central

    Baig, Shams Ali; Sheng, TianTian; Sun, Chen; Xue, XiaoQin; Tan, LiSha; Xu, XinHua

    2014-01-01

    The presence of elevated concentration of arsenic in water sources is considered to be health hazard globally. Calcination process is known to change the surface efficacy of the adsorbent. In current study, five adsorbent composites: uncalcined and calcined Fe3O4-HBC prepared at different temperatures (400°C and 1000°C) and environment (air and nitrogen) were investigated for the adsorptive removal of As(V) and As(III) from aqueous solutions determining the influence of solution's pH, contact time, temperature, arsenic concentration and phosphate anions. Characterizations from FTIR, XRD, HT-XRD, BET and SEM analyses revealed that the Fe3O4-HBC composite at higher calcination temperature under nitrogen formed a new product (fayalite, Fe2SiO4) via phase transformation. In aqueous medium, ligand exchange between arsenic and the effective sorbent site ( = FeOOH) was established from the release of hydroxyl group. Langmuir model suggested data of the five adsorbent composites follow the order: Fe3O4-HBC-1000°C(N2)>Fe3O4-HBC (uncalcined)>Fe3O4-HBC-400°C(N2)>Fe3O4-HBC-400°C(air)>Fe3O4-HBC-1000°C(air) and the maximum As(V) and As(III) adsorption capacities were found to be about 3.35 mg g−1 and 3.07 mg g−1, respectively. The adsorption of As(V) and As(III) remained stable in a wider pH range (4–10) using Fe3O4-HBC-1000°C(N2). Additionally, adsorption data fitted well in pseudo-second-order (R2>0.99) rather than pseudo-first-order kinetics model. The adsorption of As(V) and As(III) onto adsorbent composites increase with increase in temperatures indicating that it is an endothermic process. Phosphate concentration (0.0l mM or higher) strongly inhibited As(V) and As(III) removal through the mechanism of competitive adsorption. This study suggests that the selective calcination process could be useful to improve the adsorbent efficiency for enhanced arsenic removal from contaminated water. PMID:24967645

  12. Efficient reduced graphene oxide grafted porous Fe3O4 composite as a high performance anode material for Li-ion batteries.

    PubMed

    Bhuvaneswari, Subramani; Pratheeksha, Parakandy Muzhikara; Anandan, Srinivasan; Rangappa, Dinesh; Gopalan, Raghavan; Rao, Tata Narasinga

    2014-03-21

    Here, we report facile fabrication of Fe3O4-reduced graphene oxide (Fe3O4-RGO) composite by a novel approach, i.e., microwave assisted combustion synthesis of porous Fe3O4 particles followed by decoration of Fe3O4 by RGO. The characterization studies of Fe3O4-RGO composite demonstrate formation of face centered cubic hexagonal crystalline Fe3O4, and homogeneous grafting of Fe3O4 particles by RGO. The nitrogen adsorption-desorption isotherm shows presence of a porous structure with a surface area and a pore volume of 81.67 m(2) g(-1), and 0.106 cm(3) g(-1) respectively. Raman spectroscopic studies of Fe3O4-RGO composite confirm the existence of graphitic carbon. Electrochemical studies reveal that the composite exhibits high reversible Li-ion storage capacity with enhanced cycle life and high coulombic efficiency. The Fe3O4-RGO composite showed a reversible capacity ∼612, 543, and ∼446 mA h g(-1) at current rates of 1 C, 3 C and 5 C, respectively, with a coulombic efficiency of 98% after 50 cycles, which is higher than graphite, and Fe3O4-carbon composite. The cyclic voltammetry experiment reveals the irreversible and reversible Li-ion storage in Fe3O4-RGO composite during the starting and subsequent cycles. The results emphasize the importance of our strategy which exhibited promising electrochemical performance in terms of high capacity retention and good cycling stability. The synergistic properties, (i) improved ionic diffusion by porous Fe3O4 particles with a high surface area and pore volume, and (ii) increased electronic conductivity by RGO grafting attributed to the excellent electrochemical performance of Fe3O4, which make this material attractive to use as anode materials for lithium ion storage.

  13. Synthesis and characterization of Fe3O4@SiO2 magnetic composite nanoparticles by a one-pot process

    NASA Astrophysics Data System (ADS)

    Zhang, Le; Shao, Hui-ping; Zheng, Hang; Lin, Tao; Guo, Zhi-meng

    2016-09-01

    Fe3O4@SiO2 core-shell composite nanoparticles were successfully prepared by a one-pot process. Tetraethyl-orthosilicate was used as a surfactant to synthesize Fe3O4@SiO2 core-shell structures from prepared Fe3O4 nanoparticles. The properties of the Fe3O4 and Fe3O4@SiO2 composite nanoparticles were studied by X-ray diffraction, transmission electron microscopy, energy dispersive spectroscopy, and Fourier transform infrared spectroscopy. The prepared Fe3O4 particles were approximately 12 nm in size, and the thickness of the SiO2 coating was approximately 4 nm. The magnetic properties were studied by vibrating sample magnetometry. The results show that the maximum saturation magnetization of the Fe3O4@SiO2 powder (34.85 A·m2·kg-1) was markedly lower than that of the Fe3O4 powder (79.55 A·m2·kg-1), which demonstrates that Fe3O4 was successfully wrapped by SiO2. The Fe3O4@SiO2 composite nanoparticles have broad prospects in biomedical applications; thus, our next study will apply them in magnetic resonance imaging.

  14. Ultrasensitive electrochemical detection of DNA hybridization using Au/Fe3O4 magnetic composites combined with silver enhancement.

    PubMed

    Bai, Yu-Hui; Li, Jin-Yi; Xu, Jing-Juan; Chen, Hong-Yuan

    2010-07-01

    A novel method is described for the highly effective amplifying electrochemical response of DNA based on oligonucleotides functionalized with Au/Fe(3)O(4) nanocomposites by the aid of silver (Ag) enhancement. Via electrostatic layer-by-layer (LBL) assembly, the prepared Fe(3)O(4) nanoparticles form nano-clusters coated with a bilayer composed of polystyrene sulfonate sodium salt (PSS) and poly(diallyldimethylammonium chloride) (PDDA), which are in favor of adsorbing lots of gold nanoparticles (AuNPs) on the surface. The application of magnetic Fe(3)O(4) made the procedures much more simple, convenient and feasible. The resulting composites were then used as labels via the Au-S bond for the DNA hybridization, followed by catalytic deposition of silver on the gold tags. Such an assay is then combined with a sensitive anodic stripping voltammetry (ASV) measurement of multiple silver nanoparticle tracers. A 27-mer sequence DNA target is detected at a glassy carbon (GC) electrode with a detection limit down to ca. 100 aM, which is 800 times lower than that obtained using gold nanoparticles only as labels in the control experiments. This Fe(3)O(4)/PSS/PDDA/Au composite offers a great promising future for the ultrasensitive detection of other biorecognition events.

  15. Hybrid composites made of multiwalled carbon nanotubes functionalized with Fe3O4 nanoparticles for tissue engineering applications

    NASA Astrophysics Data System (ADS)

    Cunha, C.; Panseri, S.; Iannazzo, D.; Piperno, A.; Pistone, A.; Fazio, M.; Russo, A.; Marcacci, M.; Galvagno, S.

    2012-11-01

    A straightforward technique for functionalization of multiwalled carbon nanotubes (MWCNTs) with magnetite (Fe3O4) nanoparticles was developed. Iron oxide nanoparticles were deposited on MWCNT surfaces by a deposition-precipitation method using Fe3+/Fe2+ salts precursors in basic solution. The characterizations by HRTEM, XRD, SEM/EDX, AAS and TPR analyses confirmed the successful formation of magnetic iron oxide nanoparticles on the MWCNT surface. Fe3O4/MWCNT hybrid composites were analysed in vitro by incubation with mesenchymal stem cells for 1, 3 and 7 days, either in the presence or absence of a static magnetic field. Analysis of cell proliferation was performed by the MTT assay, quantification of cellular stress was performed by the Lactate Dehydrogenase assay and analysis of cell morphology was performed by actin immunofluorescence and scanning electron microscopy. Results demonstrate that the introduction of magnetite into the MWCNT structure increases biocompatibility of oxidized MWCNTs. In addition, the presence of a static magnetic field further increases Fe3O4/MWCNT influence on cell behaviour. These results demonstrate this novel Fe3O4/MWCNT hybrid composite has good potential for tissue engineering applications.

  16. Facile one-pot synthesis of carbon/calcium phosphate/Fe3O4 composite nanoparticles for simultaneous imaging and pH/NIR-responsive drug delivery.

    PubMed

    Gou, Mingyu; Li, Shengnan; Zhang, Lingyu; Li, Lu; Wang, Chungang; Su, Zhongmin

    2016-09-25

    A facile one-pot synthetic strategy was explored to synthesize carbon/calcium phosphate/Fe3O4 composite nanoparticles (carbon/CaP/Fe3O4 composite NPs). Taking advantage of the unique structure including mesoporous, small CaP and Fe3O4 subunits homogeneously distributed in a carbon matrix, carbon/CaP/Fe3O4 NPs integrate high drug loading, pH/NIR-sensitive, photothermal and magnetic properties into one nanoplatform for cancer theranostics.

  17. [Preparation of molecularly imprinted polypyrrole/Fe3O4 composite material and its application in recognition of tryptophan enantiomers].

    PubMed

    Chen, Zhidong; Shan, Xueling; Kong, Yong

    2012-04-01

    Ferrosoferric oxide (Fe(3)O(4)) magnetic material was first synthesized, and then the in-situ chemical polymerization of pyrrole was carried out on the surface of Fe(3)O(4) by using pyrole and L-tryptophan (L-Trp) as the functional monomer and templates, respectively. As a result, molecularly imprinted polypyrrole/Fe(3)O(4) composite material was obtained. This composite material was separated from the solution because of its magnetic property. Polypyrrole in the composite was overoxidized in 1 mol/L NaOH solution by applying a potential of 1.0 V, and thus L-Trp templates were de-deoped from the composite. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and electrochemical methods were employed to characterize the composite. The solution containing L- or D-Trp was pumped through a porous ceramic tube packed with the composite, separately. High performance liquid chromatography (HPLC) was adopted for the detection of L- or D-Trp in the eluate, and the results indicated that the enrichment ability of the composite for L-Trp was almost 2 times that of D-Trp. Therefore, the electro-magnetic composite material has potential applications as chromatographic stationary phase for chiral recognition.

  18. A facile synthesis of Fe3O4-charcoal composite for the sorption of a hazardous dye from aquatic environment.

    PubMed

    Ahmed, Md Juned K; Ahmaruzzaman, M

    2015-11-01

    Herein, we synthesized Fe3O4-charcoal composite using chemical precipitation technique and utilized it for the sorption of methylene blue from aqueous solution. The synthesized composite was characterized by Infra-red spectroscopy, N2 adsorption-desorption isotherm, X-ray diffraction, selected area electron diffraction, transmission electron microscopy, and vibrating sample magnetometer. The composite depicts absorption bands conforming to Fe-O, -OH, CO, and C-O vibrations. The composite was mesoporous in nature with a surface area of 387.30 m(2) g(-1). The observed diffraction planes correspond to face-centered cubic Fe3O4 and disordered graphitic carbon. The spherical Fe3O4 particles (average diameter ∼13.8 nm) were uniformly distributed in the carbon matrix of the charcoal. The saturation and remanent magnetizations demonstrate its potential for magnetic separation and reuse. The composite showed dye sorption capacities of 97.49 mg g(-1) and 90.85 mg g(-1) in batch and fixed-bed system. Pseudo-second order kinetics and Temkin isotherm best represented the sorption data. The sorption process was endothermic, spontaneous, and administered by electrostatic, π-π dispersive interactions, film, and intraparticle diffusion. Microwave irradiations followed by methanol elution regenerated the dye-loaded composite with nearly no loss in sorption capacity. The recovery of energy and potential utilization of bottom ash enhances the prospective of Fe3O4-charcoal composite for industrial applications.

  19. A facile synthesis of Fe3O4-charcoal composite for the sorption of a hazardous dye from aquatic environment.

    PubMed

    Ahmed, Md Juned K; Ahmaruzzaman, M

    2015-11-01

    Herein, we synthesized Fe3O4-charcoal composite using chemical precipitation technique and utilized it for the sorption of methylene blue from aqueous solution. The synthesized composite was characterized by Infra-red spectroscopy, N2 adsorption-desorption isotherm, X-ray diffraction, selected area electron diffraction, transmission electron microscopy, and vibrating sample magnetometer. The composite depicts absorption bands conforming to Fe-O, -OH, CO, and C-O vibrations. The composite was mesoporous in nature with a surface area of 387.30 m(2) g(-1). The observed diffraction planes correspond to face-centered cubic Fe3O4 and disordered graphitic carbon. The spherical Fe3O4 particles (average diameter ∼13.8 nm) were uniformly distributed in the carbon matrix of the charcoal. The saturation and remanent magnetizations demonstrate its potential for magnetic separation and reuse. The composite showed dye sorption capacities of 97.49 mg g(-1) and 90.85 mg g(-1) in batch and fixed-bed system. Pseudo-second order kinetics and Temkin isotherm best represented the sorption data. The sorption process was endothermic, spontaneous, and administered by electrostatic, π-π dispersive interactions, film, and intraparticle diffusion. Microwave irradiations followed by methanol elution regenerated the dye-loaded composite with nearly no loss in sorption capacity. The recovery of energy and potential utilization of bottom ash enhances the prospective of Fe3O4-charcoal composite for industrial applications. PMID:26320009

  20. Activated carbon/Fe(3)O(4) nanoparticle composite: fabrication, methyl orange removal and regeneration by hydrogen peroxide.

    PubMed

    Do, Manh Huy; Phan, Ngoc Hoa; Nguyen, Thi Dung; Pham, Thi Thu Suong; Nguyen, Van Khoa; Vu, Thi Thuy Trang; Nguyen, Thi Kim Phuong

    2011-11-01

    In the water treatment field, activated carbons (ACs) have wide applications in adsorptions. However, the applications are limited by difficulties encountered in separation and regeneration processes. Here, activated carbon/Fe(3)O(4) nanoparticle composites, which combine the adsorption features of powdered activated carbon (PAC) with the magnetic and excellent catalytic properties of Fe(3)O(4) nanoparticles, were fabricated by a modified impregnation method using HNO(3) as the carbon modifying agent. The obtained composites were characterized by X-ray diffraction, scanning and transmission electron microscopy, nitrogen adsorption isotherms and vibrating sample magnetometer. Their performance for methyl orange (MO) removal by adsorption was evaluated. The regeneration of the composite and PAC-HNO(3) (powdered activated carbon modified by HNO(3)) adsorbed MO by hydrogen peroxide was investigated. The composites had a high specific surface area and porosity and a superparamagnetic property that shows they can be manipulated by an external magnetic field. Adsorption experiments showed that the MO sorption process on the composites followed pseudo-second order kinetic model and the adsorption isotherm date could be simulated with both the Freundlich and Langmuir models. The regeneration indicated that the presence of the Fe(3)O(4) nanoparticles is important for a achieving high regeneration efficiency by hydrogen peroxide. PMID:21840037

  1. Synthesis and microwave absorption characterization of SiO2 coated Fe3O4-MWCNT composites.

    PubMed

    Hekmatara, Hoda; Seifi, Majid; Forooraghi, Keyvan; Mirzaee, Sharareh

    2014-11-21

    This study investigated the microwave absorption properties of core-shell composites containing; iron oxide decorated carbon nanotubes (CNTs) and silica (SiO2@Fe3O4-MWCNTs) with various thicknesses of silica shells (7, 20 and 50 nm). Transmission electron microscopy (TEM) and X-ray diffraction results confirmed the formation of these core-shell structures. Microwave absorption characterization of the samples at the ranging band under consideration (the X-band) showed increased absorption and shifting of the peaks to lower frequencies compared to the uncoated sample (Fe3O4-MWCNTs). The minimum reflection loss decreased with increasing SiO2 thickness. The minimum reflection loss of the composite with an optimized thickness of the silica shell (7 nm) exceeded -41 dB at 8.7-9 GHz.

  2. The Influence of Nano-Fe3O4 on the Microstructure and Mechanical Properties of Cementitious Composites

    NASA Astrophysics Data System (ADS)

    Sikora, Pawel; Horszczaruk, Elzbieta; Cendrowski, Krzysztof; Mijowska, Ewa

    2016-04-01

    In the last decade, nanotechnology has been gathering a spectacular amount of attention in the field of building materials. The incorporation of nanosized particles in a small amount to the building materials can influence their properties significantly. And it can contribute to the creation of novel and sustainable structures. In this work, the effect of nano-Fe3O4 as an admixture (from 1 to 5 wt.% in mass of the cement) on the mechanical and microstructural properties of cementitious composites has been characterised. The study showed that Fe3O4 nanoparticles acted as a filler which improved the microstructure of a cementitious composite and reduced its total porosity, thus increasing the density of the composite. The presence of nanomagnetite did not affect the main hydration products and the rate of cement hydration. In addition, the samples containing nanomagnetite exhibited compressive strength improvement (up to 20 %). The study showed that 3 wt.% of nano-Fe3O4 in the cementitious composite was the optimal amount to improve both its mechanical and microstructural properties.

  3. The Influence of Nano-Fe3O4 on the Microstructure and Mechanical Properties of Cementitious Composites.

    PubMed

    Sikora, Pawel; Horszczaruk, Elzbieta; Cendrowski, Krzysztof; Mijowska, Ewa

    2016-12-01

    In the last decade, nanotechnology has been gathering a spectacular amount of attention in the field of building materials. The incorporation of nanosized particles in a small amount to the building materials can influence their properties significantly. And it can contribute to the creation of novel and sustainable structures. In this work, the effect of nano-Fe3O4 as an admixture (from 1 to 5 wt.% in mass of the cement) on the mechanical and microstructural properties of cementitious composites has been characterised. The study showed that Fe3O4 nanoparticles acted as a filler which improved the microstructure of a cementitious composite and reduced its total porosity, thus increasing the density of the composite. The presence of nanomagnetite did not affect the main hydration products and the rate of cement hydration. In addition, the samples containing nanomagnetite exhibited compressive strength improvement (up to 20 %). The study showed that 3 wt.% of nano-Fe3O4 in the cementitious composite was the optimal amount to improve both its mechanical and microstructural properties.

  4. Polymer Stabilized Fe3O4-Graphene as an Amphiphilic Drug Carrier for Thermo-Chemotherapy of Cancer.

    PubMed

    Swain, Akshaya Kumar; Pradhan, Lina; Bahadur, Dhirendra

    2015-04-22

    In light of the growing interest in the search for cheap and effective solutions for cancer treatment, we report a simple one pot synthesis of polymer stabilized iron oxide-graphene (PIG) that could be realized on a large scale. The structural (Fe3O4 particle size of ∼11 nm), functional (various oxygen containing moieties), and magnetic (moment of ∼43 emu/g) properties of PIG are explored using various characterization techniques for possible biomedical applications. PIG shows good colloidal stability and is biocompatible even at higher concentrations (2.5 mg/mL) by virtue of cross-linking polymers. The biocompatibility of the composite has been tested using HeLa cell lines by computing the percentage of the reactive oxygen species through the 2,7-dichlorofluorescein (DCF) intensity level. PIG has the ability to load and release both hydrophobic and hydrophilic drugs with a good loading efficiency and capacity. The dug loading efficiency of PIG is measured to be ∼87% and ∼91% for doxorubicin (DOX) and paclitaxel (PTXL), respectively. Under an AC magnetic field, superparamagnetic PIG (2.5 mg/mL) takes less than 16 min to reach the stable hyperthermia temperature, suggesting it as a good anticancer material. A time-dependent cellular uptake of doxorubicin-conjugated PIG has been studied to optimize the parameters for thermo-chemotherapy of cancer. The synergetic effect of both the drug and hyperthermia is observed in the killing of the cancerous cells, verified by computing the cell apoptotic population using a flow cytometer. However, it has been noticed that, even in the absence of chemotherapy, PIG shows good antiproliferative activity with thermotherapy alone. PMID:25821899

  5. One-step fabricated Fe3O4@C core-shell composites for dye removal: Kinetics, equilibrium and thermodynamics

    NASA Astrophysics Data System (ADS)

    Qu, Lingling; Han, Tingting; Luo, Zhijun; Liu, Cancan; Mei, Yan; Zhu, Ting

    2015-03-01

    B-Fe3O4@C core-shell composites were synthesized via one-pot hydrothermal carbonization (HTC) process and used as an adsorbent for the removal of methylene blue (MB) from aqueous solution. By using sodium borate as the catalyst, the hydrothermal carbonization process of B-Fe3O4@C core-shell composites was optimized and a higher surface area was obtained. The adsorbent was characterized by XRD, Raman spectra, SEM, TEM and N2 adsorption/desorption isotherms. We studied the dye adsorption process at different conditions and analyzed the data by employing the Langmuir and Freundlich models, and the equilibrium data fitted well with both models. Kinetic analyses were conducted by using the Lagergren pseudo-first-order and pseudo-second-order model and the results showed that the adsorption process was more consistent with the pseudo-second-order kinetics. To better understand the dye adsorption process from the thermodynamics perspective, we also calculated ΔHο, ΔSο, ΔGο and Ea, the results suggesting that the MB adsorption process was physisorption endothermic process, and spontaneous at room temperature. The as-synthesized B-Fe3O4@C showing high magnetic sensitivity provides a facile and efficient way to recycle from aqueous solution.

  6. Controlling exchange bias in Fe3O4/FeO composite particles prepared by pulsed laser irradiation

    PubMed Central

    2011-01-01

    Spherical iron oxide nanocomposite particles composed of magnetite and wustite have been successfully synthesized using a novel method of pulsed laser irradiation in ethyl acetate. Both the size and the composition of nanocomposite particles are controlled by laser irradiation condition. Through tuning the laser fluence, the Fe3O4/FeO phase ratio can be precisely controlled, and the magnetic properties of final products can also be regulated. This work presents a successful example of the fabrication of ferro (ferri) (FM)/antiferromagnetic (AFM) systems with high chemical stability. The results show this novel simple method as widely extendable to various FM/AFM nanocomposite systems. PMID:21711758

  7. Competitive fluorescence assay for specific recognition of atrazine by magnetic molecularly imprinted polymer based on Fe3O4-chitosan.

    PubMed

    Liu, Guangyang; Li, Tengfei; Yang, Xin; She, Yongxin; Wang, Miao; Wang, Jing; Zhang, Min; Wang, Shanshan; Jin, Fen; Jin, Maojun; Shao, Hua; Jiang, Zejun; Yu, Hailong

    2016-02-10

    A novel fluorescence sensing strategy for determination of atrazine in tap water involving direct competition between atrazine and 5-(4,6-dichlorotriazinyl) aminofluorescein (5-DTAF), and which exploits magnetic molecularly imprinted polymer (MMIP), has been developed. The MMIP, based on Fe3O4-chitosan nanoparticles, was synthesized to recognize specific binding sites of atrazine. The recognition capability and selectivity of the MMIP for atrazine and other triazine herbicides was investigated. Under optimal conditions, the competitive reaction between 5-DTAF and atrazine was performed to permit quantitation. Fluorescence intensity changes at 515 nm was linearly related to the logarithm of the atrazine concentration for the range 2.32-185.4 μM. The detection limit for atrazine was 0.86μM (S/N=3) and recoveries were 77.6-115% in spiked tap water samples.

  8. Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3 O4 Cores and Anatase TiO2 shells.

    PubMed

    Liu, Jiwei; Che, Renchao; Chen, Huajun; Zhang, Fan; Xia, Feng; Wu, Qingsong; Wang, Min

    2012-04-23

    Multifunctional composite microspheres with spinel Fe(3)O(4) cores and anatase TiO(2) shells (Fe(3)O(4)@TiO(2)) are synthesized by combining a solvothermal reaction and calcination process. The size, morphology, microstructure, phase purity, and magnetic properties are characterized by scanning electron microscopy, transmission electron microscopy (TEM), high-resolution TEM, selected-area electron diffraction, electron energy loss spectroscopy, powder X-ray diffraction, and superconducting quantum interference device magnetometry. The results show that the as-synthesized microspheres have a unique morphology, uniform size, good crystallinity, favorable superparamagnetism, and high magnetization. By varying the experimental conditions such as Fe(3)O(4) size and concentration, microspheres with different core sizes and shell thickneses can be readily synthesized. Furthermore, the microwave absorption properties of these microspheres are investigated in terms of complex permittivity and permeability. By integration of the chemical composition and unique structure, the Fe(3)O(4)@TiO(2) microspheres possess lower reflection loss and a wider absorption frequency range than pure Fe(3)O(4). Moreover, the electromagnetic data demonstrate that Fe(3)O(4@TiO(2) microspheres with thicker TiO(2) shells exhibit significantly enhanced microwave absorption properties compared to those with thinner TiO(2) shells, which may result from effective complementarities between dielectric loss and magnetic loss. All the results indicate that these Fe(3)O(4)@TiO(2) microspheres may be attractive candidate materials for microwave absorption applications. PMID:22331748

  9. Surface modification of porous suspended ceramsite used for water treatment by activated carbon/Fe3O4 magnetic composites.

    PubMed

    Lu, Mang; Xia, Guang-Hua; Zhao, Xiao-Dong

    2013-01-01

    In this study, porous suspended ceramsite with a specific density close to that of water was prepared by high-temperature calcination using fly ash, feldspar, calcite, fired talc and kaolin as the raw materials. The ceramsite was modified by activated carbon/Fe3O4 magnetic composites. The optimum modification conditions determined by methylene blue adsorption experiment were: KOH/glucose ratio of 1.5:1, carbonization temperature of 400 degrees C, activation temperature of 850 degrees C, activation time of 1 h, and Fe3O4/KOH+glucose ratio of 1:10. The results demonstrated that the adsorption capacity of the modified ceramsite for methylene blue was significantly higher than that of the unmodified ones. The presence of the composites did not lead to significant decrease in the mechanical properties of the modified ceramsite. Moreover, the modified ceramsite showed good resistance towards acid and alkali. The modified ceramsite can be used as biocarrier and adsorbent for a wide range of contaminants in water and can subsequently be removed from the medium by a simple magnetic procedure. PMID:24350485

  10. Surface modification of porous suspended ceramsite used for water treatment by activated carbon/Fe3O4 magnetic composites.

    PubMed

    Lu, Mang; Xia, Guang-Hua; Zhao, Xiao-Dong

    2013-01-01

    In this study, porous suspended ceramsite with a specific density close to that of water was prepared by high-temperature calcination using fly ash, feldspar, calcite, fired talc and kaolin as the raw materials. The ceramsite was modified by activated carbon/Fe3O4 magnetic composites. The optimum modification conditions determined by methylene blue adsorption experiment were: KOH/glucose ratio of 1.5:1, carbonization temperature of 400 degrees C, activation temperature of 850 degrees C, activation time of 1 h, and Fe3O4/KOH+glucose ratio of 1:10. The results demonstrated that the adsorption capacity of the modified ceramsite for methylene blue was significantly higher than that of the unmodified ones. The presence of the composites did not lead to significant decrease in the mechanical properties of the modified ceramsite. Moreover, the modified ceramsite showed good resistance towards acid and alkali. The modified ceramsite can be used as biocarrier and adsorbent for a wide range of contaminants in water and can subsequently be removed from the medium by a simple magnetic procedure.

  11. Particle-size dependent melt viscosity behavior and the properties of three-arm star polystyrene-Fe3O4 composites.

    PubMed

    Tan, Haiying; Lin, Yichao; Zheng, Jun; Gong, Jiang; Qiu, Jian; Xing, Haiping; Tang, Tao

    2015-05-28

    The melt viscosity of three-arm star polystyrene (S3PS)-Fe(3)O(4) nanoparticle composites was studied by means of rheological measurements. The arm molecular weight (M(a)) of S3PS (or radius gyration) and the particle size of Fe(3)O(4) (radius (R(p)): 3 nm and 44 nm) showed a strong influence on the melt viscosity behavior (at low shear frequencies) of S3PS-Fe(3)O(4) composites. The reinforcement (viscosity increase) was observed in the composites where the M(a) was higher than the M(c) of PS (M(c): the critical molecular weight for chain entanglement). For M(a) < M(c), when the size of Fe(3)O(4) nanoparticles was changed, the melt viscosity of the composites exhibited either plasticization (melt viscosity reduction) or reinforcement. When the content of Fe(3)O(4) was low (1 wt%), the transformation from plasticization to reinforcement behavior could be observed, which strongly depended on the size ratio of the radius of gyration (R(g)) of S3PS to the size of nanoparticles (R(p)). In addition, the magnetic properties and thermal stability of S3PS-Fe(3)O(4) composites were studied. PMID:25892158

  12. One-Pot Synthesis of Hydrophilic Superparamagnetic Fe3O4/Poly(methyl methacrylate-acrylic acid) Composite Nanoparticles with High Magnetization.

    PubMed

    Ma, Shaohua; Lan, Fang; Yang, Qi; Xie, Liqin; Wu, Yao; Gu, Zhongwei

    2015-01-01

    Uniform superparamagnetic Fe3O4/poly(methyl methacrylate-acrylic acid) (P(MMA-AA)) composite nanoparticles with high saturation magnetization and good hydrophilicity were successfully and directly synthesized via a facile one-pot miniemulsion polymerization approach. The mixture of the ferrofluids, MMA and AA monomers, surfactants and initiator was co-sonicated and emulsified to prepare stable miniemulsion for polymerization. The as-prepared products were characterized by SEM, TEM, FT-IR, XRD, TGA and VSM. The results of SEM indicated that the morphology of the Fe3O4/P(MMA-AA) composite nanoparticles all assumed near spherical geometry with diameters about 60 nm, 60 nm, and 100 nm respectively corresponding to the weight ratios of Fe3O4 to MMA and AA at 1:8, 1:4, and 1:2. The TEM images implied that the Fe3O4/P(MMA-AA) composite nanoparticles showed a perfect core-shell structure with a polymeric shell of about 2 nm thickness and a core encapsulating uniform and close packed Fe3O4 nanoparticles. TGA and VSM showed that the Fe3O4/P(MMA-AA) composite nanoparticles with a maximum saturation magnetization up to 45 emu g(-1) corresponding to the magnetite content of 78% exhibited superparamagntism. The hydrophilic modification and the high saturation magnetization impart a promising potential for biomedical applications to the as-synthesized composite nanoparticles. PMID:26328359

  13. Growth mechanism of ZnO nanorod/Fe3O4 nanoparticle composites and their photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Wang, Wenda; Yu, Leiming; Yang, Hanjia; Hong, Kunquan; Qiao, Zhenfang; Wang, Hai

    2015-11-01

    ZnO nanorods/Fe3O4 nanocomposites as the recyclable photocatalyst were synthesized by a co-precipitation method, with microwave assistant by dropping alkaline solution with Fe3O4 nanoparticles into the aqueous of zinc salt. These Fe3O4 nanoparticles were the nucleated centers for the ZnO nanorods growth so that these nanorods ended with aggregated Fe3O4 nanoparticles. The growth processes and mechanism are explained as those insoluble zinc hydroxides prefer to nucleate on the surface of Fe3O4 nanoparticles (heterogeneous nucleation) rather than nucleated as isolated ZnO nanostructures (homogeneous nucleation). These nanocomposites have strong photocatalytic ability to reduce RhB and moderate magnetization, which make them being good recyclable photocatalysts.

  14. Co-assembly of CdTe and Fe3O4 with molecularly imprinted polymer for recognition and separation of endocrine disrupting chemicals

    NASA Astrophysics Data System (ADS)

    Chang, Limin; Chen, Shaona; Chu, Jia; Li, Xin

    2013-11-01

    In this study, we present a general protocol to fabricate imprinting matrix co-loaded with CdTe quantum dots and Fe3O4 nanoparticles for the recognition of endocrine disrupting chemicals (EDCs). The resultant composites were characterized by transmission electron microscopy, fluorescence spectroscopy, and energy dispersive spectroscopy. The materials have been demonstrated to be characterized with spherical shape with a saturation magnetization value of 1.7 emu g-1. Furthermore, the rebinding experiments show that the resultant materials have greater affinity and selectivity towards p-nitrophenol (model EDCs) over structurally related compounds. We believe that the effective method proposed in this work might provide a platform to prepare magnetic and fluorescent molecularly imprinted polymers for the recognition and separation of EDCs.

  15. In situ dispersion of non-aqueous Fe3O4 nanocolloids by microdroplet coalescence and their use in the preparation of magnetic composite particles.

    PubMed

    Du, Le; Wang, Yujun; Xu, Jianhong; Shen, Chun; Luo, Guangsheng

    2016-06-21

    Monodispersity and size uniformity are critical issues for nanoparticles, especially for the inorganic particles dispersed in organic carriers serving as the precursor of composites. Herein, for the first time, we have developed a method based on flow-induced droplet coalescence for in situ dispersion of surface-modified Fe3O4 nanoparticles to prepare Fe3O4/polystyrene (Fe3O4/PS) composite particles. A plate-type microchannel was constructed to initiate droplet coalescence for reducing the water-oil interfacial area and for dispersing Fe3O4 nanoparticles into the precursor suspensions. Under optimized conditions, the precursor suspensions could be composed of monodispersed Fe3O4 nanoparticles with an average size of approximately 12 nm. In this case, the saturation magnetization of the prepared superparamagnetic composites was as high as 4.012 emu g(-1) at a magnetite content of 5 wt%. The method is simple and has great potential to be tailored for the preparation of non-aqueous suspensions with uniform and monodispersed nanoparticles. PMID:27191775

  16. Fe3O4/CuO/ZnO/Nano graphene platelets (Fe3O4/CuO/ZnO/NGP) composites prepared by sol-gel method with enhanced sonocatalytic activity for the removal of dye

    NASA Astrophysics Data System (ADS)

    Hendry, Tju; Taufik, Ardiansyah; Saleh, Rosari

    2016-04-01

    In this study, an attempt has been made to synthesize nanographene platelets coupled with Fe3O4/CuO/ZnO (Fe3O4/CuO/ZnO/NGP) with various ZnO loadings using a two step methods, sol-gel followed by hydrothermal method. Characterization was carried out by X-ray diffraction, energy-dispersive X-ray spectroscopy and vibrating sample magnetometer. The sonocatalytic performance was evaluated by degradation of methylene blue under ultrasonic irradiation.The Fe3O4/CuO/ZnO/NGP showed superior sonocatalytic activity than the Fe3O4/CuO/ZnO materials. They also showed high stability and can be easily separated from the reaction system for recycling process.

  17. Fabrication of Fe3O4@mSiO2 Core-Shell Composite Nanoparticles for Drug Delivery Applications

    NASA Astrophysics Data System (ADS)

    Uribe Madrid, Sergio I.; Pal, Umapada; Kang, Young Soo; Kim, Junghoon; Kwon, Hyungjin; Kim, Jungho

    2015-05-01

    We report the synthesis of Fe3O4@mSiO2 nanostructures of different meso-silica (mSiO2) shell thickness, their biocompatibility and behaviors for loading and release of a model drug ibuprofen. The composite nanostructures have superparamagnetic magnetite cores of 208 nm average size and meso-silica shells of 15 to 40 nm thickness. A modified Stöber method was used to grow the meso-silica shells over the hydrothermally grown monodispersed magnetite particles. The composite nanoparticles show very promising drug holding and releasing behaviors, which depend on the thickness of meso-silica shell. The biocompatibility of the meso-silica-coated and uncoated magnetite nanoparticles was tested through cytotoxicity assay on breast cancer (MCF-7), ovarian cancer (SKOV3), normal human lung fibroblasts MRC-5, and IMR-90 cells. The high drug holding capacity and reasonable biocompatibility of the nanostructures make them ideal agents for targeted drug delivery applications in human body.

  18. Synthesis, characterization, and application of Fe3O4/Ag magnetic composites for mercury removal from water

    NASA Astrophysics Data System (ADS)

    Elhouderi, Z. A.; Beesley, D. P.; Nguyen, T. T.; Lai, P.; Sheehan, K.; Trudel, S.; Prenner, E.; Cramb, D. T.; Anikovskiy, M.

    2016-04-01

    Engineered nanocomposites (NCs) have recently emerged as materials of great scientific and technological interest. In these materials, different components are combined to yield a nanoentity with desired properties not afforded by the constituent materials. Designing novel NCs and synthetic routes that enable controlling the size and functionalities remains an active area of research. Here, we present a two-step method of synthesizing Ag–Fe3O4 NCs with tunable sizes. Unlike previously reported structures, the prepared NCs do not have a familiar core–shell architecture. Instead, small Fe3O4 nanoparticles (NPs) are embedded in a larger silver matrix. The superparamagnetic Fe3O4 NPs endow the NC with magnetic properties, enabling easy separation from solution. The degree of the NC response to an external magnetic field can be controlled by varying the concentration of Fe3O4 NPs during the synthesis. The Ag matrix serves to protect the embedded Fe3O4 NPs from degradation and can be used for further functionalization of the NCs with different sulfhydryl containing linkers. To demonstrate utility, we show how decorating the outer layer of the Ag NC with diphenyl-4,4‧-dithiol transforms the NCs into a water purifying system capable of sequestering highly toxic Hg2+ ions from solution magnetically.

  19. Synthesis, characterization, and application of Fe3O4/Ag magnetic composites for mercury removal from water

    NASA Astrophysics Data System (ADS)

    Elhouderi, Z. A.; Beesley, D. P.; Nguyen, T. T.; Lai, P.; Sheehan, K.; Trudel, S.; Prenner, E.; Cramb, D. T.; Anikovskiy, M.

    2016-04-01

    Engineered nanocomposites (NCs) have recently emerged as materials of great scientific and technological interest. In these materials, different components are combined to yield a nanoentity with desired properties not afforded by the constituent materials. Designing novel NCs and synthetic routes that enable controlling the size and functionalities remains an active area of research. Here, we present a two-step method of synthesizing Ag-Fe3O4 NCs with tunable sizes. Unlike previously reported structures, the prepared NCs do not have a familiar core-shell architecture. Instead, small Fe3O4 nanoparticles (NPs) are embedded in a larger silver matrix. The superparamagnetic Fe3O4 NPs endow the NC with magnetic properties, enabling easy separation from solution. The degree of the NC response to an external magnetic field can be controlled by varying the concentration of Fe3O4 NPs during the synthesis. The Ag matrix serves to protect the embedded Fe3O4 NPs from degradation and can be used for further functionalization of the NCs with different sulfhydryl containing linkers. To demonstrate utility, we show how decorating the outer layer of the Ag NC with diphenyl-4,4‧-dithiol transforms the NCs into a water purifying system capable of sequestering highly toxic Hg2+ ions from solution magnetically.

  20. A multifunctional mesoporous Fe3O4/SiO2/CdTe magnetic-fluorescent composite nanoprobe

    NASA Astrophysics Data System (ADS)

    Yin, Naiqiang; Wu, Ping; Liang, Guo; Cheng, Wenjing

    2016-03-01

    A multifunctional mesoporous, magnetic and fluorescent Fe3O4/SiO2/CdTe nanoprobe with well-defined core-shell nanostructures was prepared. This multifunctional nanoprobe was synthesized through a novel method mainly including two steps. The first step involved the controlled growth of mesoporous silica layer onto the surface of Fe3O4 nanoparticle using tetraethyl orthosilicate as silica source, cationic surfactant cetyltrimethylammonium bromide as template, and 1,3,5-triisopropylbenzene as pore swelling agents. The second step involved the layer-by-layer assembly of 3-aminopropyltrimethoxysilane and fluorescent CdTe quantum dots with the mesoporous Fe3O4/SiO2 nanoparticles. The well-designed nanoprobe exhibits strong excitonic photoluminescence and superparamagnetism at room temperature. In attention, the mesoporous silica layer of the nanoprobe with great loading capacity makes it a promising candidate as targeted drug delivery platform.

  1. Bio-Inspired Hierarchical Nanofibrous Fe3O4-TiO2-Carbon Composite as a High-Performance Anode Material for Lithium-Ion Batteries.

    PubMed

    Li, Shun; Wang, Mengya; Luo, Yan; Huang, Jianguo

    2016-07-13

    A bioinspired hierarchical nanofibrous Fe3O4-TiO2-carbon composite was fabricated by employing natural cellulose substance (e.g., filter paper) as both the scaffold and the carbon source and showed improved electrochemical performances when it is employed as an anode material for lithium-ion batteries. FeOOH nanoparticles were first grown uniformly onto the surface of the titania thin-layer precoated cellulose nanofibers, and thereafter, the as-prepared FeOOH-TiO2-cellulose composite was calcined and carbonized in argon atmosphere at 500 °C for 6 h to produce the Fe3O4-TiO2-carbon composite. The resultant composite possesses a hierarchical structure that was faithfully inherited from the initial cellulose substance, which was composed of titania-coated carbon fibers with corncob-like shaped Fe3O4 nanoparticles immobilized on the surfaces. The diameter of the composite nanofiber is ca. 100-200 nm, and the diameter of the Fe3O4 nanoparticle is about 30 nm, which is coated with an ultrathin carbon layer with a thickness about 3 nm. This composite displayed superior lithium-ion storage performance. It showed a first-cycle discharge capacity of 1340 mAh/g, delivering a stable reversible capacity of ca. 525 mAh/g after 100 charge-discharge cycles at a current density of 100 mA/g, and the efficiency is as high as ca. 95% of the theoretical value. This is much higher than those of the commercial Fe3O4 powder (160 mAh/g) and the Fe3O4-carbon counter material (310 mAh/g). It was demonstrated that the thin titania precoating layer (thickness ca. 3-5 nm) is necessary for the high content loading of the Fe3O4 nanoparticles onto the carbon nanofibers. Owing to the unique three-dimensional porous network structure of the carbon-fiber scaffold, together with the ultrathin outer carbon-coating layer, the composite showed significantly improved cycling stability and rate capability.

  2. Bio-Inspired Hierarchical Nanofibrous Fe3O4-TiO2-Carbon Composite as a High-Performance Anode Material for Lithium-Ion Batteries.

    PubMed

    Li, Shun; Wang, Mengya; Luo, Yan; Huang, Jianguo

    2016-07-13

    A bioinspired hierarchical nanofibrous Fe3O4-TiO2-carbon composite was fabricated by employing natural cellulose substance (e.g., filter paper) as both the scaffold and the carbon source and showed improved electrochemical performances when it is employed as an anode material for lithium-ion batteries. FeOOH nanoparticles were first grown uniformly onto the surface of the titania thin-layer precoated cellulose nanofibers, and thereafter, the as-prepared FeOOH-TiO2-cellulose composite was calcined and carbonized in argon atmosphere at 500 °C for 6 h to produce the Fe3O4-TiO2-carbon composite. The resultant composite possesses a hierarchical structure that was faithfully inherited from the initial cellulose substance, which was composed of titania-coated carbon fibers with corncob-like shaped Fe3O4 nanoparticles immobilized on the surfaces. The diameter of the composite nanofiber is ca. 100-200 nm, and the diameter of the Fe3O4 nanoparticle is about 30 nm, which is coated with an ultrathin carbon layer with a thickness about 3 nm. This composite displayed superior lithium-ion storage performance. It showed a first-cycle discharge capacity of 1340 mAh/g, delivering a stable reversible capacity of ca. 525 mAh/g after 100 charge-discharge cycles at a current density of 100 mA/g, and the efficiency is as high as ca. 95% of the theoretical value. This is much higher than those of the commercial Fe3O4 powder (160 mAh/g) and the Fe3O4-carbon counter material (310 mAh/g). It was demonstrated that the thin titania precoating layer (thickness ca. 3-5 nm) is necessary for the high content loading of the Fe3O4 nanoparticles onto the carbon nanofibers. Owing to the unique three-dimensional porous network structure of the carbon-fiber scaffold, together with the ultrathin outer carbon-coating layer, the composite showed significantly improved cycling stability and rate capability. PMID:27328774

  3. Synthesis and magnetic properties of hard magnetic (CoFe 2O 4)-soft magnetic (Fe 3O 4) nano-composite ceramics by SPS technology

    NASA Astrophysics Data System (ADS)

    Fei, Chunlong; Zhang, Yue; Yang, Zhi; Liu, Yong; Xiong, Rui; Shi, Jing; Ruan, Xuefeng

    2011-07-01

    CoFe2O4/Fe3O4 nano-composite ceramics were synthesized by Spark Plasma Sintering. The X-ray diffraction patterns show that all samples are composed of CoFe2O4 and Fe3O4 phases when the sintering temperature is below 900 °C. It is found that the magnetic properties strongly depend on the sintering temperature. The two-step hysteresis loops for samples sintered below 500 °C are observed, but when sintering temperature reaches 500 °C, the step disappears, which indicates that the CoFe2O4 and Fe3O4 are well exchange coupled. As the sintering temperature increases from 500 to 800 °C, the results of X-ray diffractometer indicate the constriction of crystalline regions due to the ion diffusion at the interfaces of CoFe2O4/Fe3O4 phases, which have great impact on the magnetic properties.

  4. Monodisperse magnetite (Fe3O4) nanoparticles modified with water soluble polymers for the diagnosis of breast cancer by MRI method

    NASA Astrophysics Data System (ADS)

    Rezayan, Ali Hossein; Mousavi, Majid; Kheirjou, Somayyeh; Amoabediny, Ghasem; Ardestani, Mehdi Shafiee; Mohammadnejad, Javad

    2016-12-01

    In this study, magnetic nanoparticles (MNPs) were synthesized via co-precipitation method. To enhance the biocompatibility and colloidal stability of the synthesized nanoparticles, they were modified with carboxyl functionalized PEG via dopamine (DPA) linker. Both modified and unmodified Fe3O4 nanoparticles exhibited super paramagnetic behavior (particle size below 20 nm). The saturation magnetization (Ms) of PEGdiacid-modified Fe3O4 was 45 emu/g, which was less than the unmodified Fe3O4 nanoparticles (70 emu/g). This difference indicated that PEGdiacid polymer was immobilized on the surface of Fe3O4 nanoparticles successfully. To evaluate the efficiency of the resulting nanoparticles as contrast agents for magnetic resonance imaging (MRI), different concentration of MNPs and different value of echo time TE were investigated. The results showed that by increasing the concentration of the nanoparticles, transverse relaxation time (T2) decreased, which subsequently resulted in MR signal enhancement. T2-weighted MR images of the different concentration of MNPs in different value of echo time TE indicated that MR signal intensity increased with increase in TE value up to 66 and then remained constant. The cytotoxicity effect of the modified and unmodified nanoparticles was evaluated in three different concentrations (12, 60 and 312 mg l-1) on MDA-MB-231 cancer cells for 24 and 48 h. In both tested time (24 and 48 h) for all three samples, the modified nanoparticles had long life time than unmodified nanoparticles. Cellular uptake of modified MNPs was 80% and reduced to 9% by the unmodified MNPs.

  5. High energy density asymmetric supercapacitor based on NiOOH/Ni3S2/3D graphene and Fe3O4/graphene composite electrodes.

    PubMed

    Lin, Tsung-Wu; Dai, Chao-Shuan; Hung, Kuan-Chung

    2014-01-01

    The application of the composite of Ni3S2 nanoparticles and 3D graphene as a novel cathode material for supercapacitors is systematically investigated in this study. It is found that the electrode capacitance increases by up to 111% after the composite electrode is activated by the consecutive cyclic voltammetry scanning in 1 M KOH. Due to the synergistic effect, the capacitance and the diffusion coefficient of electrolyte ions of the activated composite electrode are ca. 3.7 and 6.5 times higher than those of the Ni3S2 electrode, respectively. Furthermore, the activated composite electrode exhibits an ultrahigh specific capacitance of 3296 F/g and great cycling stability at a current density of 16 A/g. To obtain the reasonable matching of cathode/anode electrodes, the composite of Fe(3)O(4) nanoparticles and chemically reduced graphene oxide (Fe(3)O(4)/rGO) is synthesized as the anode material. The Fe(3)O(4)/rGO electrode exhibits the specific capacitance of 661 F/g at 1 A/g and excellent rate capability. More importantly, an asymmetric supercapacitor fabricated by two different composite electrodes can be operated reversibly between 0 and 1.6 V and obtain a high specific capacitance of 233 F/g at 5 mV/s, which delivers a maximum energy density of 82.5 Wh/kg at a power density of 930 W/kg.

  6. Thermal decomposition assisted synthesis and upconversion property of Fe3O4@YPO4:Tm/Yb hybrid nano-composite phosphor

    NASA Astrophysics Data System (ADS)

    Tiwari, S. P.; Kumar, K.; Rai, V. K.

    2015-06-01

    Hybrid nano-composite phosphor has been successfully synthesized through thermal decomposition method. The dual phase of samples assigned by XRD analysis shows the formation of nano-composite with crystallite size 20 nm and 12 nm for YPO4: Tm/Yb and Fe3O4@YPO4:Tm/Yb respectively. The FESEM images show the spherical shape and non agglomerated formation of nanoparticles. Three bands in upconversion emission mode were found in intense blue at 472 nm, red at 662 nm and NIR at 798 nm regions corresponding to1G4 → 3H6, 1G4 → 3F4 and 3H4 → 3H6 transition states respectively. The lifetime for1G4 → 3H6 level is found 1150 microsecond and 1400 microsecond for YPO4: Tm/Yb and Fe3O4@YPO4:Tm/Yb samples respectively.

  7. Facile One-pot Transformation of Iron Oxides from Fe2O3 Nanoparticles to Nanostructured Fe3O4@C Core-Shell Composites via Combustion Waves

    PubMed Central

    Shin, Jungho; Lee, Kang Yeol; Yeo, Taehan; Choi, Wonjoon

    2016-01-01

    The development of a low-cost, fast, and large-scale process for the synthesis and manipulation of nanostructured metal oxides is essential for incorporating materials with diverse practical applications. Herein, we present a facile one-pot synthesis method using combustion waves that simultaneously achieves fast reduction and direct formation of carbon coating layers on metal oxide nanostructures. Hybrid composites of Fe2O3 nanoparticles and nitrocellulose on the cm scale were fabricated by a wet impregnation process. We demonstrated that self-propagating combustion waves along interfacial boundaries between the surface of the metal oxide and the chemical fuels enabled the release of oxygen from Fe2O3. This accelerated reaction directly transformed Fe2O3 into Fe3O4 nanostructures. The distinctive color change from reddish-brown Fe2O3 to dark-gray Fe3O4 confirmed the transition of oxidation states and the change in the fundamental properties of the material. Furthermore, it simultaneously formed carbon layers of 5–20 nm thickness coating the surfaces of the resulting Fe3O4 nanoparticles, which may aid in maintaining the nanostructures and improving the conductivity of the composites. This newly developed use of combustion waves in hybridized nanostructures may permit the precise manipulation of the chemical compositions of other metal oxide nanostructures, as well as the formation of organic/inorganic hybrid nanostructures. PMID:26902260

  8. Facile One-pot Transformation of Iron Oxides from Fe2O3 Nanoparticles to Nanostructured Fe3O4@C Core-Shell Composites via Combustion Waves

    NASA Astrophysics Data System (ADS)

    Shin, Jungho; Lee, Kang Yeol; Yeo, Taehan; Choi, Wonjoon

    2016-02-01

    The development of a low-cost, fast, and large-scale process for the synthesis and manipulation of nanostructured metal oxides is essential for incorporating materials with diverse practical applications. Herein, we present a facile one-pot synthesis method using combustion waves that simultaneously achieves fast reduction and direct formation of carbon coating layers on metal oxide nanostructures. Hybrid composites of Fe2O3 nanoparticles and nitrocellulose on the cm scale were fabricated by a wet impregnation process. We demonstrated that self-propagating combustion waves along interfacial boundaries between the surface of the metal oxide and the chemical fuels enabled the release of oxygen from Fe2O3. This accelerated reaction directly transformed Fe2O3 into Fe3O4 nanostructures. The distinctive color change from reddish-brown Fe2O3 to dark-gray Fe3O4 confirmed the transition of oxidation states and the change in the fundamental properties of the material. Furthermore, it simultaneously formed carbon layers of 5–20 nm thickness coating the surfaces of the resulting Fe3O4 nanoparticles, which may aid in maintaining the nanostructures and improving the conductivity of the composites. This newly developed use of combustion waves in hybridized nanostructures may permit the precise manipulation of the chemical compositions of other metal oxide nanostructures, as well as the formation of organic/inorganic hybrid nanostructures.

  9. Facile One-pot Transformation of Iron Oxides from Fe2O3 Nanoparticles to Nanostructured Fe3O4@C Core-Shell Composites via Combustion Waves.

    PubMed

    Shin, Jungho; Lee, Kang Yeol; Yeo, Taehan; Choi, Wonjoon

    2016-01-01

    The development of a low-cost, fast, and large-scale process for the synthesis and manipulation of nanostructured metal oxides is essential for incorporating materials with diverse practical applications. Herein, we present a facile one-pot synthesis method using combustion waves that simultaneously achieves fast reduction and direct formation of carbon coating layers on metal oxide nanostructures. Hybrid composites of Fe2O3 nanoparticles and nitrocellulose on the cm scale were fabricated by a wet impregnation process. We demonstrated that self-propagating combustion waves along interfacial boundaries between the surface of the metal oxide and the chemical fuels enabled the release of oxygen from Fe2O3. This accelerated reaction directly transformed Fe2O3 into Fe3O4 nanostructures. The distinctive color change from reddish-brown Fe2O3 to dark-gray Fe3O4 confirmed the transition of oxidation states and the change in the fundamental properties of the material. Furthermore, it simultaneously formed carbon layers of 5-20 nm thickness coating the surfaces of the resulting Fe3O4 nanoparticles, which may aid in maintaining the nanostructures and improving the conductivity of the composites. This newly developed use of combustion waves in hybridized nanostructures may permit the precise manipulation of the chemical compositions of other metal oxide nanostructures, as well as the formation of organic/inorganic hybrid nanostructures.

  10. A Novel Nanofilm Sensor Based on Poly-(Alizarin Red)/Fe3O4 Magnetic Nanoparticles-Multiwalled Carbon Nanotubes Composite Material for Determination of Nitrite.

    PubMed

    Qu, Jianying; Dong, Ying; Yong, Wang; Lou, Tongfang; Du, Xueping; Qu, Jianhang

    2016-03-01

    Fe3O4 magnetic nanoparticles were synthesized by chemical co-precipitation with sodium citrate as surfactant and were characterized by FT-IR spectrometer, X-ray diffraction and transmission electron microscopy. A novel nitrite sensor was fabricated by electropolymerization of alizarin red on the surface of glassy carbon electrode modified with Fe3O4-multiwalled carbon nanotubes composite nanofilm. Under the optimal experimental conditions, it was showed that the proposed sensor exhibited good electrocatalytic activity to the oxidation of nitrite, and the peak current increased linearly with the nitrite concentration from 9.64 x 10(-6) mol x L(-1) to 1.30 x 10(-3) mol x L(-1) (R = 0.9976) with a detection limit of 1.19 x 10(-6) mol x L(-1) (S/N = 3). This sensor showed excellent sensitivity, wide linear range, stability and repeatability for nitrite determination with potential applications.

  11. Magnetic field dependant backscattering of light in water based ferrofluid containing polymer covered Fe3O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Brojabasi, Surajit; Philip, John

    2013-02-01

    We probe the effect of applied magnetic field on the backscattering light intensity from a magnetic nanofluid consisting of poly-acrylic acid coated Fe3O4 nanoparticles of diameter, ˜15 nm dispersed in water. We observe a continuous evolution of backscattered speckle pattern as a function of magnetic field strength. The speckle contrast is found to increase linearly with external magnetic field possibly due to the evolution from highly dynamic to static scatterers in the dispersion. The backscattered light intensity is found to diminish with external magnetic field, which is attributed to the delay of light propagation for the formation of standing waves within the scatterer due to the resonances in backscattered efficiency and forward-backward anisotropy factor. Interestingly, the backscattered light intensity completely recovers when magnetic field is switched off. We discuss the possible reasons for the angular variation of backscattered light intensity. Our results suggest that the field dependent light propagation through the magnetic nanofluid may find interesting applications in tunable light controlling devices.

  12. Preparation and characterization of EDTAD-modified magnetic-Fe3O4 chitosan composite: application of comparative adsorption of dye wastewater with magnetic chitosan.

    PubMed

    Yang, Hongyu; Li, Yunchun; Ho, Steven Sai Hang; Tian, Xiumei; Xia, Yunxue; Shen, Yaou; Zhao, Maojun; Pan, Guangtang

    2013-01-01

    Ethylenediaminetetraacetic dianhydride (EDTAD)-modified magnetic-Fe3O4 chitosan (EMC), prepared using the cross-link agent glutaraldehyde and chemicals Fe3O4, chitosan, and EDTAD, was used to compare the adsorption of methylene blue (MB) with magnetic chitosan (MC). The composite structure was confirmed by multiple characterization techniques, including scanning electron microscopy (SEM), X-ray powder diffraction, Fourier transform infrared spectroscopy (FTIR), and potentiometric titration methods. The characterization results suggest that Fe3O4 particles successfully bound on the surface of chitosan, and the EDTAD thoroughly modified the MC. Furthermore, EMC had more amino, carboxyl, and hydroxy groups than typical MC. Adsorption conditions, such as pH values, initial concentrations of MB, reaction temperature, and contact time were systematically examined. In comparison, the maximum adsorption capacity of EMC was approximately twice as much as that of MC. The recovery efficiency for EMC was >80% using 0.1 M HCl as an eluent solution. Therefore, the results reported herein indicate that EMC is very attractive and imply a practical application for dye wastewater treatment. PMID:23823557

  13. Studies on Properties of Rice Straw/Polymer Nanocomposites Based on Polycaprolactone and Fe3O4 Nanoparticles and Evaluation of Antibacterial Activity

    PubMed Central

    Khandanlou, Roshanak; Ahmad, Mansor B.; Shameli, Kamyar; Saki, Elnaz; Kalantari, Katayoon

    2014-01-01

    Modified rice straw/Fe3O4/polycaprolactone nanocomposites (ORS/Fe3O4/PCL-NCs) have been prepared for the first time using a solution casting method. The RS/Fe3O4-NCs were modified with octadecylamine (ODA) as an organic modifier. The prepared NCs were characterized by using X-ray powder diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FT-IR). The XRD results showed that as the intensity of the peaks decreased with the increase of ORS/Fe3O4-NCs content in comparison with PCL peaks, the Fe3O4-NPs peaks increased from 1.0 to 60.0 wt. %. The TEM and SEM results showed a good dispersion of ORS/Fe3O4-NCs in the PCL matrix and the spherical shape of the NPs. The TGA analysis indicated thermal stability of ORS/Fe3O4-NCs increased after incorporation with PCL but the thermal stability of ORS/Fe3O4/PCL-NCs decreased with the increase of ORS/Fe3O4-NCs content. Tensile strength was improved with the addition of 5.0 wt. % of ORS/Fe3O4-NCs. The antibacterial activities of the ORS/Fe3O4/PCL-NC films were examined against Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus) by diffusion method using nutrient agar. The results indicated that ORS/Fe3O4/PCL-NC films possessed a strong antibacterial activity with the increase in the percentage of ORS/Fe3O4-NCs in the PCL. PMID:25318051

  14. High Energy Density Asymmetric Supercapacitor Based on NiOOH/Ni3S2/3D Graphene and Fe3O4/Graphene Composite Electrodes

    PubMed Central

    Lin, Tsung-Wu; Dai, Chao-Shuan; Hung, Kuan-Chung

    2014-01-01

    The application of the composite of Ni3S2 nanoparticles and 3D graphene as a novel cathode material for supercapacitors is systematically investigated in this study. It is found that the electrode capacitance increases by up to 111% after the composite electrode is activated by the consecutive cyclic voltammetry scanning in 1 M KOH. Due to the synergistic effect, the capacitance and the diffusion coefficient of electrolyte ions of the activated composite electrode are ca. 3.7 and 6.5 times higher than those of the Ni3S2 electrode, respectively. Furthermore, the activated composite electrode exhibits an ultrahigh specific capacitance of 3296 F/g and great cycling stability at a current density of 16 A/g. To obtain the reasonable matching of cathode/anode electrodes, the composite of Fe3O4 nanoparticles and chemically reduced graphene oxide (Fe3O4/rGO) is synthesized as the anode material. The Fe3O4/rGO electrode exhibits the specific capacitance of 661 F/g at 1 A/g and excellent rate capability. More importantly, an asymmetric supercapacitor fabricated by two different composite electrodes can be operated reversibly between 0 and 1.6 V and obtain a high specific capacitance of 233 F/g at 5 mV/s, which delivers a maximum energy density of 82.5 Wh/kg at a power density of 930 W/kg. PMID:25449978

  15. Adsorption of drinking water fluoride on a micron-sized magnetic Fe3O4@Fe-Ti composite adsorbent

    NASA Astrophysics Data System (ADS)

    Zhang, Chang; Li, Yingzhen; Wang, Ting-Jie; Jiang, Yanping; Wang, Haifeng

    2016-02-01

    A micron-sized magnetic adsorbent (MMA) for fluoride removal from drinking water was prepared by spray drying and subsequent calcination of a magnetic Fe3O4@Fe-Ti core-shell nanoparticle slurry. The MMA granules had high mechanical strength and stability against water scouring, can be easily separated from the water by a magnet, and had a high selectivity for fluoride versus common co-existing ions and high fluoride removal efficiency in a wide range of initial pH of 3-11. Abundant hydroxyl groups on the MMA surface acted as the active sites for fluoride adsorption, which resulted in a high affinity of the MMA for fluoride. The pH in the adsorption process affected the adsorption significantly. At neutral initial pH, the adsorption isotherm was well fitted with the Langmuir model, and the maximum adsorption capacity reached a high value of 41.8 mg/g. At a constant pH of 3, multilayer adsorption of fluoride occurred due to the abundant positive surface charges on the MMA, and the adsorption isotherm was well fitted with the Freundlich model. The MMA had a fast adsorption rate, and adsorption equilibrium was achieved within 2 min. The adsorption kinetics followed a quasi-second order model. The regeneration of the MMA was easy and fast, and can be completed within 2 min. After 10 recycles, the fluoride removal efficiency of the MMA still remained high. These properties showed that the MMA is a promising adsorbent for fluoride removal.

  16. Enzymatic interesterification of soybean oil and methyl stearate blends using lipase immobilized on magnetic Fe3O4/SBA-15 composites as a biocatalyst.

    PubMed

    Zang, Xuezhen; Xie, Wenlei

    2014-01-01

    The magnetic Fe3O4/SBA-15 composites were prepared, and treated with 3-aminopropyltriethoxysilane as a carrier material for enzyme immobilization. The immobilization of Candida rugosa lipase onto the amino-functionalized Fe3O4/SBA-15 composite was investigated by using glutaraldehyde as a coupling reagent. The immobilized lipase was then employed as a biocatalyst for the interesterification of soybean oil and methyl stearate in a laboratory-scale operation at 45°C. Various techniques, such as Fourier transform infrared spectroscopy (FT-IR), powder X-ray diffraction (XRD), and vibrating sample magnetometry (VSM), were used for the characterization of the immobilized lipase composite. The immobilized lipase behaved superparamagnetic and showed excellent response at applied magnetic field. The obtained results showed that the immobilized lipase could efficiently catalyze the interesterification reaction. Moreover, the interesterification reaction parameters, such as reaction temperature, substrate ratio and reaction time were investigated regarding the stearoyl incorporation into the triacylglycerols. Further, the immobilized lipase proved to be easily separated from the reaction mixture by applying an external magnetic field and to be stable in the repeated use for four cycles. PMID:25213444

  17. Magnetically separable mesoporous Fe3O4/silica catalysts with very low Fe3O4 content

    NASA Astrophysics Data System (ADS)

    Grau-Atienza, A.; Serrano, E.; Linares, N.; Svedlindh, P.; Seisenbaeva, G.; García-Martínez, J.

    2016-05-01

    Two magnetically separable Fe3O4/SiO2 (aerogel and MSU-X) composites with very low Fe3O4 content (<1 wt%) have been successfully prepared at room temperature by co-condensation of MPTES-functionalized Fe3O4 nanoparticles (NPs) with a silicon alkoxide. This procedure yields a homogeneous incorporation of the Fe3O4 NPs on silica supports, leading to magnetic composites that can be easily recovered using an external magnetic field, despite their very low Fe3O4 NPs content (ca. 1 wt%). These novel hybrid Fe3O4/SiO2 materials have been tested for the oxidation reaction of 3,3‧,5,5‧-tetramethylbenzidine (TMB) with hydrogen peroxide showing an enhancement of the stability of the NPs in the Fe3O4/silica aerogel as compared to the Fe3O4 NPs alone, even after five catalytic cycles, no leaching or agglomeration of the Fe3O4/SiO2 systems.

  18. Polyacrylic acid brushes grafted from P(St-AA)/Fe3O4 composite microspheres via ARGET-ATRP in aqueous solution for protein immobilization.

    PubMed

    Xie, Liqin; Lan, Fang; Li, Wenliao; Liu, Ziyao; Ma, Shaohua; Yang, Qi; Wu, Yao; Gu, Zhongwei

    2014-11-01

    Recently, the atom transfer radical polymerization (ATRP) of acrylic monomers in many reaction systems has been successfully accomplished. However, its application in aqueous solution is still a challenging task. In this work, polyacrylic acid (PAA) brushes with tunable length were directly grafted from P(St-AA)/Fe3O4 composite microspheres in aqueous solution via an improved method, activators regenerated by electron transfer atom transfer radical polymerization (ARGET-ATRP). This reaction was carried out in environment-friendly solvent. As well, this method overcame the sensitivity of the catalyst. Due to the strong coordination interaction of carboxyl groups, PAA brushes were employed for immobilizing gold nanoparticles, which were prepared via the in situ reduction of chloroauric acid. The PAA brushes modified magnetic composite microspheres decorating with gold nanoparticles were efficient for specific immobilization and separation of bovine serum albumin (BSA) from aqueous solution under the external magnetic field.

  19. Core-shell Fe3O4@MIL-101(Fe) composites as heterogeneous catalysts of persulfate activation for the removal of Acid Orange 7.

    PubMed

    Yue, Xinxin; Guo, Weilin; Li, Xianghui; Zhou, Haihong; Wang, Ruiqin

    2016-08-01

    In this study, a novel core-shell Fe3O4@MIL-101 (MIL stands for Materials of Institute Lavoisier) composite was successfully synthesized by hydrothermal method and was fully characterized by X-ray diffraction, transmission electron microscopy, Fourier-transform infrared spectra, and X-ray photoelectron spectroscopy. The composite was introduced as a catalyst to generate powerful radicals from persulfate for the removal of Acid Orange 7 in an aqueous solution. Effects of the central metal ions of MIL-101, amino group content of MIL-101, and pH were evaluated in batch experiments. It was found that both hydroxyl and sulfate radicals were generated; importantly, sulfate radicals were speculated to serve as the dominant active species in the catalytic oxidation of Acid Orange 7. In addition, a possible mechanism was proposed. This study provides new physical insights for the rational design of advanced metal-organic frameworks (MOF)-based catalysts for improved environmental remediation. PMID:27098883

  20. Manufacturing of Aluminum Matrix Composites Reinforced with Iron Oxide (Fe3O4) Nanoparticles: Microstructural and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Bayraktar, Emin; Ayari, Fayza; Tan, Ming Jen; Tosun-Bayraktar, Ayse; Katundi, Dhurata

    2014-04-01

    The purpose of this paper is to demonstrate the low-cost manufacturing of aluminum matrix composites reinforced with nano iron oxide as light and efficient materials for engineering applications. It is very desirable to use reinforced aluminum matrix composites in structural applications (automotive, aeronautical, etc.) because of their outstanding stiffness-to-weight and strength-to-weight ratios. In modern industry, it is increasingly important to develop new composites as alternative materials to fabricate multifunctional pieces. Detailed information is presented on the manufacturing process of this composite, and a preliminary study was performed on the cryogenic-cycling behavior to evaluate the interface between the matrix and the reinforcement. Microindentation tests were carried out to evaluate the micromechanical properties of these materials; a simple and practical finite element model is proposed to predict certain parameters related to the composition of the composite.

  1. A Study of Fe3O4 Magnetic Nanoparticle RF Heating in Gellan Gum Polymer Under Various Experimental Conditions for Potential Application in Drug Delivery

    NASA Astrophysics Data System (ADS)

    Marcus, Gabriel E.

    Magnetic nanoparticles (MNPs) have found use in a wide variety of biomedical applications including hyperthermia, imaging and drug delivery. Certain physical properties, such as the ability to generate heat in response to an alternating magnetic field, make these structures ideal for such purposes. This study's objective was to elucidate the mechanisms primarily responsible for RF MNP heating and determine how such processes affect polymer solutions that might be useful in drug delivery. 15-20 nm magnetite (Fe3O4) nanoparticles at 0.2% and 0.5% concentrations were heated with RF fields of different strengths (200 Oe, 400 Oe and 600 Oe) in water and in 0.5% gellan gum solution. Mixing and fan cooling were used in an attempt to improve accuracy of data collection. Specific absorption rate (SAR) values were determined experimentally for each combination of solvent, concentration and field strength. Theoretical calculation of SAR was performed using a model based on linear response theory. Mixing yielded greater precision in experimental determination of SAR while the effects of cooling on this parameter were negligible. Solutions with gellan gum displayed smoother heating over time but no significant changes in SAR values. This was attributed to low polymer concentration and lack of structural phase transition. The LRT model was found to be adequate for calculating SAR at low polymer concentration and was useful in identifying Neel relaxation as the dominant heating process. Heating trials with MNPs in 2% agar confirmed Neel relaxation to be primarily responsible for heat generation in the particles studied.

  2. Core-double-shell Fe3O4@carbon@poly(In(III)-carboxylate) microspheres: cycloaddition of CO2 and epoxides on coordination polymer shells constituted by imidazolium-derived Al(III)-Salen bifunctional catalysts.

    PubMed

    An, Qiao; Li, Zifeng; Graff, Robert; Guo, Jia; Gao, Haifeng; Wang, Changchun

    2015-03-01

    A hydrid microsphere Fe3O4@carbon@poly(In(III)-carboxylate) consisting of a cluster of Fe3O4 nanoparticles as the core, a carbon layer as the inner shell and a porous In(III)-carboxylate coordination polymer as the outer shell was prepared and applied as a recyclable catalyst for the cycloaddition reaction of CO2 and epoxides. Construction of this hybrid microsphere was achieved in the two steps, including (1) the one-pot solvothermal synthesis of Fe3O4@C particles with the abundant carboxylic groups on the carbon surface and (2) the subsequent growth of the outer shell polymers based on the precipitation coordination polymerization. Imidazolium-substituted Salen ligands were synthesized and chelated with the In(III) ions using the terminal carboxylic groups. The coordination polymer shell was formed on the Fe3O4@C particles, and the structures including shell thickness, surface area and porosity could be varied by tuning the feeding ratios of the In(III) ions and the ligands. The optimal structure of the coordination polymers showed a shell thickness of ca. 45 nm with ∼5 nm of mesopore, 174.7 m(2)/g of surface area and 0.2175 cm(3)/g of pore volume. In light of gas uptake capability, catalytic activity and magnetic susceptibility, cycloaddition of CO2 with a series of epoxides were studied by using Al-complexed Fe3O4@C@In(III)-[IL-Salen] microspheres. The results validated that the self-supporting catalytic layer with high surface area was of remarkable advantages, which were attributed from great increment of effective active sites and combination of nucleophilic/electrophilic synergistic property and CO2 uptake capability. Therefore, these hybrid microspheres provided excellent catalytic activity, prominent selectivity to cyclic carbonates and outstanding recyclability with the assistance of an applied magnetic field.

  3. Novel magnetic Fe3O4@CdSe composite quantum dot-based electrochemiluminescence detection of thrombin by a multiple DNA cycle amplification strategy.

    PubMed

    Jie, Guifen; Yuan, Jinxin

    2012-03-20

    A novel small magnetic electrochemiluminescent Fe(3)O(4)@CdSe composite quantum dot (QD) was facilely prepared and successfully applied to sensitive electrochemiluminescence (ECL) detection of thrombin by a multiple DNA cycle amplification strategy for the first time. The as-prepared composite QDs feature intense ECL, excellent magnetism, strong fluorescence, and favorable biocompatibility, which offers promising advantages for ECL biosensing. ECL of the composite QDs was efficiently quenched by gold nanoparticles (NPs). Taking advantages of the unique and attractive ECL and magnetic characteristics of the composite QDs, a novel DNA-amplified detection method based on ECL quenching was thus developed for a sensitive assay of thrombin. More importantly, the DNA devices by cleavage reaction were cycled multiple rounds, which greatly amplified the ECL signal and much improve the detection sensitivity. This flexible biosensing system exhibits not only high sensitivity and specificity but also excellent performance in real human serum assay. The present work opens a promising approach to develop magnetic quantum dot-based amplified ECL bioassays, which has wider potential application with more favorable analytical performances than other ECL reagent-based systems. Moreover, the composite QDs are suitable for long-term fluorescent cellular imaging, which also highlights the promising directions for further development of QD-based in vitro and in vivo imaging materials.

  4. PEGylated FePt-Fe3O4 composite nanoassemblies (CNAs): in vitro hyperthermia, drug delivery and generation of reactive oxygen species (ROS).

    PubMed

    Sahu, Niroj Kumar; Gupta, Jagriti; Bahadur, Dhirendra

    2015-05-21

    Chemothermal therapy is widely used in clinical applications for the treatment of tumors. However, the major challenge is the use of a multifunctional nano platform for significant regression of the tumor. In this study, a simple synthesis of highly aqueous stable, carboxyl enriched, PEGylated mesoporous iron platinum-iron(ii,iii) oxide (FePt-Fe3O4) composite nanoassemblies (CNAs) by a simple hydrothermal approach is reported. CNAs exhibit a high loading capacity ∼90 wt% of the anticancer therapeutic drug, doxorubicin (DOX) because of its porous nature and the availability of abundant negatively charged carboxylic groups on its surface. DOX loaded CNAs (CNAs + DOX) showed a pH responsive drug release in a cell-mimicking environment. Furthermore, the release was enhanced by the application of a alternating current magnetic field. CNAs show no appreciable cytotoxicity in mouse fibroblast (L929) cells but show toxic effects in cervical cancer (HeLa) cells at a concentration of ∼1 mg mL(-1). A suitable composition of CNAs with a concentration of 2 mg mL(-1) can generate a hyperthermic temperature of ∼43 °C. Also, CNAs, because of their Fe and Pt contents, have an ability to generate reactive oxygen species (ROS) in the presence of hydrogen peroxide inside the cancer cells which helps to enhance its therapeutic effects. The synergistic combination of chemotherapy and ROS is very efficient for killing cancer cells. PMID:25897960

  5. Variable blocking temperature of a porous silicon/Fe3O4 composite due to different interactions of the magnetic nanoparticles.

    PubMed

    Rumpf, Klemens; Granitzer, Petra; Morales, Puerto M; Poelt, Peter; Reissner, Michael

    2012-01-01

    In the frame of this work, the aim was to create a superparamagnetic nanocomposite system with a maximized magnetic moment when magnetized by an external field and a blocking temperature far below room temperature. For this purpose, iron oxide nanoparticles of 3.8-, 5- and 8-nm size have been infiltrated into the pores of porous silicon. To fabricate tailored magnetic properties of the system, the particle size and the magnetic interactions among the particles play a crucial role. Different concentrations of the particles dispersed in hexane have been used for the infiltration to vary the blocking temperature TB, which indicates the transition between the superparamagnetic behavior and blocked state. TB is not only dependent on the particle size but also on the magnetic interactions between them, which can be varied by the particle-particle distance. Thus, a modification of the pore loading on the one hand and of the porous silicon morphology on the other hand results in a composite material with a desired blocking temperature. Because both materials, the mesoporous silicon matrices as well as the Fe3O4 nanoparticles, offer low toxicity, the system is a promising candidate for biomedical applications. PMID:22873748

  6. Immobilization of a novel cold active esterase onto Fe3O4∼cellulose nano-composite enhances catalytic properties.

    PubMed

    Rahman, Mohammad Asadur; Culsum, Umma; Kumar, Ashok; Gao, Haofeng; Hu, Nan

    2016-06-01

    A novel esterase, EstH was cloned, purified and characterized from the marine bacterium Zunongwangia sp. The purified EstH showed optimum activity at 30°C and pH 8.5 with ∼50% of original activity at 0°C. EstH was stable in high salt conditions (0-4.5M NaCl). To improve the characteristics and explore the possibilities for application, a new immobilization matrix, Fe3O4∼cellulose nano-composite, was prepared and was characterized by Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope (SEM). Interestingly the optimal temperature of immobilized EstH elevated to 35°C. Compared to its free form, immobilized EstH showed better temperature stability (48.5% compared to 22.40% at 50°C after 30min), prolonged half-life (32h compared to 18h), higher storage stability (∼71% activity compared to ∼40% after 50days of storage), improved pH tolerance (∼73% activity at pH 4 and 10), and, more importantly, reusability (∼50% activity after 8 repetitive cycles of usage). Enzyme kinetics showed an increase in the Vmax (from 35.76 to 51.14μM/min) and Kcat (from 365s(-1) to 520s(-1)) after immobilization. The superior catalytic properties of immobilized EstH suggest its great potential in biotechnology and industrial processes. PMID:26976070

  7. Synthesis and electromagnetic, microwave absorbing properties of core-shell Fe3O4-poly(3, 4-ethylenedioxythiophene) microspheres.

    PubMed

    Zhou, Wencai; Hu, Xiujie; Bai, Xiaoxia; Zhou, Shuyun; Sun, Chenghua; Yan, Jun; Chen, Ping

    2011-10-01

    Highly regulated core-shell Fe(3)O(4)-poly(3, 4-ethylenedioxythiophene) (PEDOT) microspheres were successfully synthesized by a two-step method in the presence of polyvinyl alcohol (PVA) and p-toluenesulfonic acid (p-TSA). And their morphology, microstructure, electromagnetic and microwave absorbing properties were subsequently characterized. By simply adjusting the molar ratio of 3, 4-ethylenedioxythiophene (EDOT) to Fe(3)O(4) (represented by (EDOT)/(Fe(3)O(4))), the thickness of the polymer shell can be tuned from tens to hundreds of nanometers. Moreover, it was found that the composite exhibited excellent microwave absorbing property with a minimum reflection loss (RL) of about -30 dB at 9.5 GHz with a (EDOT)/(Fe(3)O(4)) ratio of 20. PMID:21913665

  8. 3-D graphene-supported mesoporous SiO2 @Fe3 O4 composites for the analysis of pesticides in aqueous samples by magnetic solid-phase extraction with high-performance liquid chromatography.

    PubMed

    Wang, Xuemei; Wang, Huan; Lu, Muxin; Ma, Xiaomin; Huang, Pengfei; Lu, Xiaoquan; Du, Xinzhen

    2016-05-01

    Three-dimensional graphene-supported mesoporous silica@Fe3 O4 composites (mSiO2 @Fe3 O4 -G) were prepared by modifying mesoporous SiO2 -coated Fe3 O4 onto hydrophobic graphene nanosheets through a simple adsorption co-condensation method. The obtained composites possess unique properties of large surface area (332.9 m(2) /g), pore volume (0.68 cm(3) /g), highly open pore structure with uniform pore size (31.1 nm), as well as good magnetic separation properties. The adsorbent (mSiO2 @Fe3 O4 -G) was used for the magnetic solid-phase extraction of seven pesticides with benzene rings in different aqueous samples before high-performance liquid chromatography. The main parameters affecting the extraction such as adsorbent amount, volume of elution solvent, time of extraction and desorption, salt effect, oscillation rate were investigated. Under the optimal conditions, this method provided low limits of detection (S/N = 3, 0.525-3.30 μg/L) and good linearity (5.0-1000 μg/L, R(2) > 0.9954). Method validation proved the feasibility of the developed adsorbent, which has a high extraction efficiency and excellent enhancement performance for pesticides in this study. The proposed method was successfully applied to real aqueous samples, and satisfactory recoveries ranging from 77.5 to 113.6% with relative standard deviations within 9.7% were obtained.

  9. Magnetic and structural characteristics of multiferroic Fe3O4/(Bi3.25Nd0.65Eu0.10)Ti3O12 composite thin films deposited by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Kobune, Masafumi; Furotani, Ryosuke; Fujita, Satoshi; Kikuchi, Kazuki; Kikuchi, Takeyuki; Fujisawa, Hironori; Shimizu, Masaru; Fukumuro, Naoki

    2016-10-01

    Ferromagnetic magnetite (Fe3O4) thin films for magnetoelectric multiferroic applications were deposited on (200) (Bi3.25Nd0.65Eu0.10)Ti3O12 (BNEuT)/(101) Nb:TiO2 substrates by metalorganic chemical vapor deposition (MOCVD) using an iron(III) tris(2,2,6,6-tetramethyl-3,5-heptanedionato) precursor as the iron source. The BNEuT film utilized as a ferroelectric template material was in the form of freestanding nanoplates with narrow spaces between them. The effects of deposition conditions such as the deposition time and substrate temperature on the magnetic and structural characteristics of the Fe3O4/BNEuT composite films were investigated. All the films consisted of mostly single-phase Fe3O4 with a cubic inverse-spinel structure. When deposition was carried out at temperatures of 400-420 °C, the filling rates of particles introduced into the narrow spaces between the BNEuT nanoplates exhibited high values of 76-89% including the amorphous phase. This suggested that the deposition in this temperature range made progress according to the growth mechanism of MOCVD in the surface reaction rate determining state. Room-temperature magnetic moment-magnetic field curves for Fe3O4 thin films deposited at 400-500 °C for 60 min exhibited narrow rectangular hysteresis loops, indicating typical soft magnetic characteristics.

  10. Preparation and Properties of Fibrous Fe3O4/Polyaniline Nanocomposites.

    PubMed

    Wang, Li; Zhang, Xin

    2015-04-01

    By using inorganic Fe3O4 nanoparticles as nucleation sites, Fe3O4/polyaniline magnetic nanocomposites are successfully synthesized by chemical oxidative polymerization method. The morphology and properties of Fe3O4/polyaniline nanocomposites are characterized by XRD, FTIR, TEM, DSC, TG and VSM. XRD, FTIR and DSC jointly indicate that the composites comprise Fe3O4 and polyaniline. TEM micrographs indicate that the Fe3O4 magnetic nanoparticles have an average diameter less than 20 nm and achieve better property of dispersion after composited with polyaniline. With the content of polyaniline increasing, Fe3O4/polyaniline composites change from aggregated particles to fibers. Fibrous composites achieve excellent thermal stability and attractive polyaniline content dependence of magnetism. TG analyses reveal that apparent weight loss of the fibrous composite appears at higher temperature than the granular Fe3O4/polyaniline composite does. With the increasing of the content of polyaniline, the magnetism of Fe3O4/polyaniline composite change from ferromagnetism to paramagnetism, while the magnetization decreases firstly and then increases. The formation of fibrous Fe3O4/polyaniline composite is favorable for the magnetization.

  11. Use of hydroxypropyl-β-cyclodextrin/polyethylene glycol 400, modified Fe3O4 nanoparticles for congo red removal.

    PubMed

    Yu, Lan; Xue, Weihua; Cui, Lei; Xing, Wen; Cao, Xinli; Li, Hongyu

    2014-03-01

    Fe3O4 nanoparticles were modified with Hydroxypropyl-β-cyclodextrin (HP-β-CD) and Polyethylene glycol 400 (PEG400) by a facile one-pot homogeneous precipitation method, and were used as a novel nano-adsorbent for the removal of congo red (CR) from aqueous solutions. The polymer-modified composites were characterized by FTIR, TEM, TGA, XRD and VSM, and showed excellent adsorption efficiency for CR. The value of the maximum adsorption capacity calculated according to the Langmuir isotherm model were 1.895g/g, which are much high and about 19 times that of Fe3O4 nanoparticles. Desorption study further indicates the good regeneration ability of the nanocomposites. The results suggest that the HP-β-CD/PEG400-modified Fe3O4 nanoparticles is a promising adsorbent for CR removal from aqueous solutions, and it is easily recycled owing to its large specific surface area and unique magnetic responsiveness. PMID:24333392

  12. A Fe3O4/FeAl2O4 composite coating via plasma electrolytic oxidation on Q235 carbon steel for Fenton-like degradation of phenol.

    PubMed

    Wang, Jiankang; Yao, Zhongping; Yang, Min; Wang, Yajing; Xia, Qixing; Jiang, Zhaohua

    2016-08-01

    The Fe3O4/FeAl2O4 composite coatings were successfully fabricated on Q235 carbon steel by plasma electrolytic oxidation technique and used to degrade phenol by Fenton-like system. XRD, SEM, and XPS indicated that Fe3O4 and FeAl2O4 composite coating had a hierarchical porous structure. The effects of various parameters such as pH, phenol concentration, and H2O2 dosage on catalytic activity were investigated. The results indicated that with increasing of pH and phenol content, the phenol degradation efficiency was reduced significantly. However, the degradation rate was improved with the addition of H2O2, but dropped with further increasing of H2O2. Moreover, 100 % removal efficiency with 35 mg/L phenol was obtained within 60 min at 303 K and pH 4.0 with 6.0 mmol/L H2O2 on 6-cm(2) iron oxide coating. The degradation process consisted of induction period and rapid degradation period; both of them followed pseudo-first-order reaction. Hydroxyl radicals were the mainly oxidizing species during phenol degradation by using n-butanol as hydroxyl radical scavenger. Based on Fe leaching and the reaction kinetics, a possible phenol degradation mechanism was proposed. The catalyst exhibited excellent stability. PMID:27074928

  13. A Fe3O4/FeAl2O4 composite coating via plasma electrolytic oxidation on Q235 carbon steel for Fenton-like degradation of phenol.

    PubMed

    Wang, Jiankang; Yao, Zhongping; Yang, Min; Wang, Yajing; Xia, Qixing; Jiang, Zhaohua

    2016-08-01

    The Fe3O4/FeAl2O4 composite coatings were successfully fabricated on Q235 carbon steel by plasma electrolytic oxidation technique and used to degrade phenol by Fenton-like system. XRD, SEM, and XPS indicated that Fe3O4 and FeAl2O4 composite coating had a hierarchical porous structure. The effects of various parameters such as pH, phenol concentration, and H2O2 dosage on catalytic activity were investigated. The results indicated that with increasing of pH and phenol content, the phenol degradation efficiency was reduced significantly. However, the degradation rate was improved with the addition of H2O2, but dropped with further increasing of H2O2. Moreover, 100 % removal efficiency with 35 mg/L phenol was obtained within 60 min at 303 K and pH 4.0 with 6.0 mmol/L H2O2 on 6-cm(2) iron oxide coating. The degradation process consisted of induction period and rapid degradation period; both of them followed pseudo-first-order reaction. Hydroxyl radicals were the mainly oxidizing species during phenol degradation by using n-butanol as hydroxyl radical scavenger. Based on Fe leaching and the reaction kinetics, a possible phenol degradation mechanism was proposed. The catalyst exhibited excellent stability.

  14. Magnetite Fe3O4 nanoparticles synthesis by wet chemical reduction and their characterization

    NASA Astrophysics Data System (ADS)

    Chaki, S. H.; Malek, Tasmira J.; Chaudhary, M. D.; Tailor, J. P.; Deshpande, M. P.

    2015-09-01

    The authors report the synthesis of Fe3O4 nanoparticles by wet chemical reduction technique at ambient temperature and its characterization. Ferric chloride hexa-hydrate (FeCl3 · 6H2O) and sodium boro-hydrate (NaBH4) were used for synthesis of Fe3O4 nanoparticles at ambient temperature. The elemental composition of the synthesized Fe3O4 nanoparticles was determined by energy dispersive analysis of x-rays technique. The x-ray diffraction (XRD) technique was used for structural characterization of the nanoparticles. The crystallite size of the nanoparticles was determined using XRD data employing Scherrer’s formula and Hall-Williamson’s plot. Surface morphology of as-synthesized Fe3O4 nanoparticles was studied by scanning electron microscopy. High resolution transmission electron microscopy analysis of the as-synthesized Fe3O4 nanoparticles showed narrow range of particles size distribution. The optical absorption of the synthesized Fe3O4 nanoparticles was studied by UV-vis-NIR spectroscopy. The as-synthesized nanoparticles were analyzed by Fourier transform infrared spectroscopy technique for absorption band study in the infrared region. The magnetic properties of the as-synthesized Fe3O4 nanoparticles were evaluated by vibrating sample magnetometer technique. The thermal stability of the as-synthesized Fe3O4 nanoparticles was studied by thermogravimetric technique. The obtained results are elaborated and discussed in details in this paper.

  15. Magnetic Pickering emulsions stabilized by Fe3O4 nanoparticles.

    PubMed

    Zhou, Jun; Qiao, Xiuying; Binks, Bernard P; Sun, Kang; Bai, Mingwen; Li, Yunlong; Liu, Yi

    2011-04-01

    Superparamagnetic Fe(3)O(4) nanoparticles prepared by a classical coprecipitation method were used as the stabilizer to prepare magnetic Pickering emulsions, and the effects of particle concentration, oil/water volume ratio, and oil polarity on the type, stability, composition, and morphology of these functional emulsions were investigated. The three-phase contact angle (θ(ow)) of the Fe(3)O(4) nanoparticles at the oil-water interface was evaluated using the Washburn method, and the results showed that for nonpolar and weakly polar oils of dodecane and silicone, θ(ow) is close to 90°, whereas for strongly polar oils of butyl butyrate and 1-decanol, θ(ow) is far below 90°. Inherently hydrophilic Fe(3)O(4) nanoparticles can be used to prepare stable dodecane-water and silicone-water emulsions, but they cannot stabilize butyl butyrate-water and decanol-water mixtures with macroscopic phase separation occurring, which is in good agreement with the contact angle data. Emulsions are of the oil-in-water type for both dodecane and silicone oil, and the average droplet size increases with an increase in the oil volume fraction. For stable emulsions, not all of the particles are adsorbed to drop interfaces; the fraction adsorbed decreases with an increase in the initial oil volume fraction. Changes in the particle concentration have no obvious influence on the stability of these emulsions, even though the droplet size decreases with concentration.

  16. Dielectric and conductivity characteristics of CuCl2 doped poly(N-vinyl carbazole) and its hybrid nanocomposite with Fe3O4.

    PubMed

    Haldar, Ipsita; Biswas, Mukul; Nayak, Arabinda

    2014-08-01

    Copper(II) chloride (CuCl2) doped poly(N-vinyl carbazole) (PNVC)-ferric oxide (Fe3O4) hybrid composites have been prepared and characterized by Fourier transform infrared spectroscopic studies, UV-Vis spectroscopy, high resolution transmission electron microscopy (HRTEM) and X-ray diffraction analyses and evaluated in regard to dielectric response and ac/dc conductivity characteristics. HRTEM images for CuCl2-(PNVC-Fe3O4) composite indicate the co-existence of both the CuCl2 and Fe3O4 nanoparticles in the composite and characteristic lattice fringes are clearly observed which endorse the formation of thin layer interfaces between Fe3O4 and CuCl2 nanoparticles. The dielectric constants of the CuCl2 doped PNVC and PNVC-Fe3O4 composites increase substantially relative to the corresponding values of the polymer and the polymer composite respectively. Likewise, the conductivities (ac and dc) are also improved substantially after doping with CuCl2. The dependence of these functional properties on the extent of metal salt loading has been evaluated and a quantitative estimation of the contribution of the grain boundary and resistance parameters has been attempted in terms of Maxwell-Wagner two-layered model. PMID:25936001

  17. Enhanced UV Photocatalytic Performance of Magnetic Fe3O4/CuO/ZnO/NGP Nanocomposites

    NASA Astrophysics Data System (ADS)

    Tju, Hendry; Taufik, Ardiansyah; Saleh, Rosari

    2016-04-01

    Fe3O4/CuO/ZnO/nanographene platelets (Fe3O4/CuO/ZnO/NGP) with varied ZnO loadings have been synthesized using a sol-gel method followed by hydrothermal method. X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) confirmed the formation of the Fe3O4/CuO/ZnO/NGP composites. All of the samples showed the presence of graphene nanoplatelets incorporating Fe3O4, CuO and ZnO structures and exhibited ferromagnetic behavior at room temperature. The composites showed photocatalytic activity under UV irradiation, which was used to affect the degradation of methylene blue. The Fe3O4/CuO/ZnO/NGP composites showed superior photocatalytic activity than the Fe3O4/CuO/ZnO materials.

  18. Preparation and electrochemical property of Fe3O4/MWCNT nanocomposite

    NASA Astrophysics Data System (ADS)

    Zhao, Tingkai; Ji, Xianglin; Guo, Xinai; Jin, Wenbo; Dang, Alei; Li, Hao; Li, Tiehu

    2016-06-01

    Ferroferric oxide (Fe3O4)/functionalized multi-walled carbon nanotube (f-MWCNT) nanomaterials were synthesized by chemical deposition & hydrothermal method. Fe3O4/f-MWCNT composites possess the same ferrimagnetism as pure Fe3O4, and the composites will present certain orientation in magnetism. The saturation magnetization (Ms) is about 48.84 emu g-1 and the coercivity (Hc) is 19.19 Oe. The electrochemical analysis displays that the glassy carbon electrode coated with Fe3O4/f-MWCNT composite has a favorable promotion for the electrochemical response of H2O2. This process not only widely improved the redox current of H2O2, but also reduced the overpotential of redox process.

  19. Dopamine as the coating agent and carbon precursor for the fabrication of N-doped carbon coated Fe3O4 composites as superior lithium ion anodes

    NASA Astrophysics Data System (ADS)

    Lei, Cheng; Han, Fei; Li, Duo; Li, Wen-Cui; Sun, Qiang; Zhang, Xiang-Qian; Lu, An-Hui

    2013-01-01

    Dopamine is an excellent and flexible agent for surface coating of inorganic nanoparticles and contains unusually high concentrations of amine groups. In this study, we demonstrate that through a controlled coating of a thin layer of polydopamine on the surface of α-Fe2O3 in the dopamine aqueous solution, followed by subsequent carbonization, N-doped carbon-encapsulated magnetite has been synthesized and shows excellent electrochemical performance as anode material for lithium-ion batteries. Due to the strong binding affinity to iron oxide and excellent coating capability of this new carbon precursor, the conformal polydopamine derived carbon is continuous and uniform, and its thickness can be tailored. Moreover, due to the high percentage of nitrogen content in the precursor, the resulting carbon layer contains a moderate amount of N species, which can substantially improve the electrochemical performance. The composites synthesized by this facile method exhibit superior electrochemical performance, including remarkably high specific capacity (>800 mA h g-1 at a current of 500 mA g-1), high rate capability (595 and 396 mA h g-1 at a current of 1000 and 2000 mA g-1, respectively) and excellent cycle performance (200 cycles with 99% capacity retention), which adds to the potential as promising anodes for the application in lithium-ion batteries.Dopamine is an excellent and flexible agent for surface coating of inorganic nanoparticles and contains unusually high concentrations of amine groups. In this study, we demonstrate that through a controlled coating of a thin layer of polydopamine on the surface of α-Fe2O3 in the dopamine aqueous solution, followed by subsequent carbonization, N-doped carbon-encapsulated magnetite has been synthesized and shows excellent electrochemical performance as anode material for lithium-ion batteries. Due to the strong binding affinity to iron oxide and excellent coating capability of this new carbon precursor, the conformal

  20. Fabrication of mesoporous SiO(2)-C-Fe(3)O(4)/gamma-Fe(2)O(3) and SiO(2)-C-Fe magnetic composites.

    PubMed

    Sevilla, Marta; Valdés-Solís, Teresa; Tartaj, Pedro; Fuertes, Antonio B

    2009-12-15

    A synthetic method for the fabrication of silica-based mesoporous magnetic (Fe or iron oxide spinel) nanocomposites with enhanced adsorption and magnetic capabilities is presented. The successful in situ synthesis of magnetic nanoparticles is a consequence of the incorporation of a small amount of carbon into the pores of the silica, this step being essential for the generation of relatively large iron oxide magnetic nanocrystals ( approximately 10+/-3nm) and for the formation of iron nanoparticles. These composites combine good magnetic properties (superparamagnetic behaviour in the case of SiO(2)-C-Fe(3)O(4)/gamma-Fe(2)O(3) samples) with a large and accessible porosity made up of wide mesopores (>9nm). In the present work, we have demonstrated the usefulness of this kind of composite for the adsorption of a globular protein (hemoglobin). The results obtained show that a significant amount of hemoglobin can be immobilized within the pores of these materials (up to 180mgg(-1) for some of the samples). Moreover, we have proved that the composite loaded with hemoglobin can be easily manipulated by means of an external magnetic field. PMID:19781711

  1. Ni doped Fe3O4 magnetic nanoparticles.

    PubMed

    Larumbe, S; Gómez-Polo, C; Pérez-Landazábal, J I; García-Prieto, A; Alonso, J; Fdez-Gubieda, M L; Cordero, D; Gómez, J

    2012-03-01

    In this work, the effect of nickel doping on the structural and magnetic properties of Fe3O4 nanoparticles is analysed. Ni(x)Fe(3-x)O4 nanoparticles (x = 0, 0.04, 0.06 and 0.11) were obtained by chemical co-precipitation method, starting from a mixture of FeCl2 x 4H2O and Ni(AcO)2 x 4H2O salts. The analysis of the structure and composition of the synthesized nanoparticles confirms their nanometer size (main sizes around 10 nm) and the inclusion of the Ni atoms in the characteristic spinel structure of the magnetite Fe3O4 phase. In order to characterize in detail the structure of the samples, X-ray absorption (XANES) measurements were performed on the Ni and Fe K-edges. The results indicate the oxidation of the Ni atoms to the 2+ state and the location of the Ni2+ cations in the Fe2+ octahedral sites. With respect to the magnetic properties, the samples display the characteristic superparamagnetic behaviour, with anhysteretic magnetic response at room temperature. The estimated magnetic moment confirms the partial substitution of the Fe2+ cations by Ni2+ atoms in the octahedral sites of the spinel structure. PMID:22755104

  2. Determination of trace/ultratrace rare earth elements in environmental samples by ICP-MS after magnetic solid phase extraction with Fe3O4@SiO2@polyaniline-graphene oxide composite.

    PubMed

    Su, Shaowei; Chen, Beibei; He, Man; Hu, Bin; Xiao, Zuowei

    2014-02-01

    A novel Fe3O4@SiO2@polyaniline-graphene oxide composite (MPANI-GO) was prepared through a simple noncovalent method and applied to magnetic solid phase extraction (MSPE) of trace rare earth elements (REEs) in tea leaves and environmental water samples followed by inductively coupled plasma mass spectrometry (ICP-MS) detection. The prepared MPANI-GO was characterized by transmission electron microscopy and vibrating sample magnetometer. Various parameters affecting MPANI-GO MSPE of REEs have been investigated. Under the optimized conditions, the limits of detection (LODs, 3σ) for REEs were in the range of 0.04-1.49 ng L(-1) and the relative standard deviations (RSDs, c=20 ng L(-1), n=7) were 1.7-6.5%. The accuracy of the proposed method was validated by analyzing a Certified Reference Material of GBW 07605 tea leaves. The method was also successfully applied for the determination of trace REEs in tea leaves and environmental water samples. The developed MPANI-GO MSPE-ICP-MS method has the advantages of simplicity, rapidity, high sensitivity, high enrichment factor and is suitable for the analysis of trace REEs in samples with complex matrix.

  3. Size-Controllable Synthesis of Fe3O4 Nanospheres for Electromagnetic Wave Absorber

    NASA Astrophysics Data System (ADS)

    Wang, Yanping; Sun, Danping; Liu, Gongzong; Wang, Yujiao; Jiang, Wei

    2015-07-01

    We present a hydrothermal method to control the size of Fe3O4 nanospheres by adjusting the concentration of FeCl3·6H2O in ethylene glycol/diethylene glycol binary solvent mixtures. The electromagnetic wave absorption properties of Fe3O4 nanospheres of different diameters have been investigated using a vector network analyzer. The reflection loss of Fe3O4 nanospheres/paraffin wax composite can reach as high as -30.00 dB at 17.50 GHz and -37.95 dB at 7.67 GHz for Fe3O4 nanospheres with diameter of about 120 nm and 170 nm, respectively. The absorption bandwidth with reflection loss below -10 dB is up to 7.01 GHz when the Fe3O4 diameter is about 220 nm. In contrast, the bandwidth decreased to 4.28 GHz when the size shrank to 70 nm. Therefore, our method can be utilized to precisely control the size of Fe3O4 nanospheres in order to manipulate their electromagnetic wave absorption properties.

  4. Spin-dependent transport properties of Fe3O4/MoS2/Fe3O4 junctions

    PubMed Central

    Wu, Han-Chun; Coileáin, Cormac Ó; Abid, Mourad; Mauit, Ozhet; Syrlybekov, Askar; Khalid, Abbas; Xu, Hongjun; Gatensby, Riley; Jing Wang, Jing; Liu, Huajun; Yang, Li; Duesberg, Georg S.; Zhang, Hong-Zhou; Abid, Mohamed; Shvets, Igor V.

    2015-01-01

    Magnetite is a half-metal with a high Curie temperature of 858 K, making it a promising candidate for magnetic tunnel junctions (MTJs). Yet, initial efforts to exploit its half metallic nature in Fe3O4/MgO/Fe3O4 MTJ structures have been far from promising. Finding suitable barrier layer materials, which keep the half metallic nature of Fe3O4 at the interface between Fe3O4 layers and barrier layer, is one of main challenges in this field. Two-dimensional (2D) materials may be good candidates for this purpose. Molybdenum disulfide (MoS2) is a transition metal dichalcogenide (TMD) semiconductor with distinctive electronic, optical, and catalytic properties. Here, we show based on the first principle calculations that Fe3O4 keeps a nearly fully spin polarized electron band at the interface between MoS2 and Fe3O4. We also present the first attempt to fabricate the Fe3O4/MoS2/Fe3O4 MTJs. A clear tunneling magnetoresistance (TMR) signal was observed below 200 K. Thus, our experimental and theoretical studies indicate that MoS2 can be a good barrier material for Fe3O4 based MTJs. Our calculations also indicate that junctions incorporating monolayer or bilayer MoS2 are metallic. PMID:26522127

  5. Incorporation of Fe3O4/CNTs nanocomposite in an epoxy coating for corrosion protection of carbon steel

    NASA Astrophysics Data System (ADS)

    Pham, Gia Vu; Truc Trinh, Anh; To, Thi Xuan Hang; Duong Nguyen, Thuy; Trang Nguyen, Thu; Hoan Nguyen, Xuan

    2014-09-01

    In this study Fe3O4/CNTs composite with magnetic property was prepared by attaching magnetic nanoparticles (Fe3O4) to carbon nanotubes (CNTs) by hydrothermal method. The obtained Fe3O4/CNTs composite was characterized by Fourier transform infrared (FTIR) spectroscopy, powder x-ray diffraction and transmission electron microscopy. The Fe3O4/CNTs composite was then incorporated into an epoxy coating at concentration of 3 wt%. Corrosion protection of epoxy coating containing Fe3O4/CNTs composite was evaluated by electrochemical impedance spectroscopy and adhesion measurement. The impedance measurements show that Fe3O4/CNTs composite enhanced the corrosion protection of epoxy coating. The corrosion resistance of the carbon steel coated by epoxy coating containing Fe3O4/CNTs composite was significantly higher than that of carbon steel coated by clear epoxy coating and epoxy coating containing CNTs. FE-SEM photographs of fracture surface of coatings showed good dispersion of Fe3O4/CNTs composite in the epoxy matrix.

  6. Synthesis and characterizations of Fe3O4-acid fuchsin tagged poly(ɛ-caprolactone) nanocomposites

    NASA Astrophysics Data System (ADS)

    Meenarathi, Balakrishnan; Kannammal, Lingasamy; Palanikumar, Shanmugavel; Anbarasan, Ramasamy

    2014-04-01

    Ring opening polymerization (ROP) of caprolactone (CL) was carried out at different experimental conditions such as variation in [M], [M/I] and temperature under N2 atmosphere at 160 °C for 2 h with mild stirring condition by using acid fuchsin (AF) decorated Fe3O4 as a novel chemical initiator with the aid of stannous octoate as an effective catalyst. Thus, prepared polymer nano composite samples were characterised by various analytical techniques such as Fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, UV-visible spectroscopy, fluorescence spectroscopy, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), gel permeation chromatography (GPC), vibrating sample measurement (VSM), scanning electron microscopy (SEM) and field emission scanning electron microscopy (FESEM). Presence of Fe2p and Fe3p was confirmed by x-ray photoelectron spectroscopy (XPS) analysis. It was found that while increasing the [M/I] the melt transition values were increased. The surface catalytic effect of Fe3O4/AF hybrid system towards the ROP of CL was also studied.

  7. Polylactide-based polyurethane shape memory nanocomposites (Fe3O4/PLAUs) with fast magnetic responsiveness

    NASA Astrophysics Data System (ADS)

    Gu, Shu-Ying; Jin, Sheng-Peng; Gao, Xie-Feng; Mu, Jian

    2016-05-01

    Polylactide-based polyurethane shape memory nanocomposites (Fe3O4/PLAUs) with fast magnetic responsiveness are presented. For the purpose of fast response and homogeneous dispersion of magnetic nanoparticles, oleic acid was used to improve the dispersibility of Fe3O4 nanoparticles in a polymer matrix. A homogeneous distribution of Fe3O4 nanoparticles in the polymer matrix was obtained for nanocomposites with low Fe3O4 loading content. A small agglomeration was observed for nanocomposites with 6 wt% and 9 wt% loading content, leading to a small decline in the mechanical properties. PLAU and its nanocomposites have glass transition around 52 °C, which can be used as the triggering temperature. PLAU and its nanocomposites have shape fixity ratios above 99%, shape recovery ratios above 82% for the first cycle and shape recovery ratios above 91% for the second cycle. PLAU and its nanocomposites also exhibit a fast water bath or magnetic responsiveness. The magnetic recovery time decreases with an increase in the loading content of Fe3O4 nanoparticles due to an improvement in heating performance for increased weight percentage of fillers. The nanocomposites have fast responses in an alternating magnetic field and have potential application in biomedical areas such as intravascular stent.

  8. Biocompatibility of magnetic Fe3O4 nanoparticles and their cytotoxic effect on MCF-7 cells

    PubMed Central

    Chen, Daozhen; Tang, Qiusha; Li, Xiangdong; Zhou, Xiaojin; Zang, Jia; Xue, Wen-qun; Xiang, Jing-ying; Guo, Cai-qin

    2012-01-01

    Background The objective of this study was to evaluate the synthesis and biocompatibility of Fe3O4 nanoparticles and investigate their therapeutic effects when combined with magnetic fluid hyperthermia on cultured MCF-7 cancer cells. Methods Magnetic Fe3O4 nanoparticles were prepared using a coprecipitation method. The appearance, structure, phase composition, functional groups, surface charge, magnetic susceptibility, and release in vitro were characterized by transmission electron microscopy, x-ray diffraction, scanning electron microscopy-energy dispersive x-ray spectroscopy, and a vibrating sample magnetometer. Blood toxicity, in vitro toxicity, and genotoxicity were investigated. Therapeutic effects were evaluated by MTT [3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide] and flow cytometry assays. Results Transmission electron microscopy revealed that the shapes of the Fe3O4 nanoparticles were approximately spherical, with diameters of about 26.1 ± 5.2 nm. Only the spinel phase was indicated in a comparison of the x-ray diffraction data with Joint Corporation of Powder Diffraction Standards (JCPDS) X-ray powder diffraction files. The O-to-Fe ratio of the Fe3O4 was determined by scanning electron microscopy-energy dispersive x-ray spectroscopy elemental analysis, and approximated pure Fe3O4. The vibrating sample magnetometer hysteresis loop suggested that the Fe3O4 nanoparticles were superparamagnetic at room temperature. MTT experiments showed that the toxicity of the material in mouse fibroblast (L-929) cell lines was between Grade 0 to Grade 1, and that the material lacked hemolysis activity. The acute toxicity (LD50) was 8.39 g/kg. Micronucleus testing showed no genotoxic effects. Pathomorphology and blood biochemistry testing demonstrated that the Fe3O4 nanoparticles had no effect on the main organs and blood biochemistry in a rabbit model. MTT and flow cytometry assays revealed that Fe3O4 nano magnetofluid thermotherapy inhibited MCF-7

  9. Fe3O4@Carbon Nanosheets for All-Solid-State Supercapacitor Electrodes.

    PubMed

    Fan, Huailin; Niu, Ruiting; Duan, Jiaqi; Liu, Wei; Shen, Wenzhong

    2016-08-01

    Fe3O4@carbon nanosheet composites were synthesized using ammonium ferric citrate as the Fe3O4/carbon precursor and graphene oxide as the structure-directing agent under a hydrothermal process. The surface chemical compositions, pore structures, and morphology of the composite were analyzed and characterized by nitrogen adsorption isotherms, TG analysis, FT-IR, X-ray photoelectron energy spectrum, transmission electron microscopy, and scanning electron microscopy. The composites showed excellent specific capacitance of 586 F/g, 340 F/g at 0.5 A/g and 10 A/g. The all-solid-state asymmetric supercapacitor device assembled using carbon nanosheets in situ embedded Fe3O4 composite and porous carbon showed a largest energy density of 18.3 Wh/kg at power density of 351 W/kg in KOH/PVA gel electrolyte. The synergism of high special surface to volume ratio, mesoporous structure, graphene-based conduction paths, and Fe3O4 nanoparticles provided a high surface area of ion-accessibility, high electric conductivity, and the utmost utilization of Fe3O4 and resulted in excellent specific capacitance, outstanding rate capability and cycling life as all-solid-state supercapacitor electrodes. PMID:27406686

  10. Microwave absorption property of aligned MWCNT/Fe3O4

    NASA Astrophysics Data System (ADS)

    Hekmatara, H.; Seifi, M.; Forooraghi, K.

    2013-11-01

    This study investigated the microwave absorption properties of magnetic modified multiwall carbon nanotubes (MWCNTs) with different alignments to the electric field (E vector) of the incident electromagnetic (EM) waves. MWCNTs were decorated with Fe3O4 nanoparticles using the wet chemical method and the resulting MWCNT/Fe3O4 was then used as a filler in a MWCNT/Fe3O4/epoxy resin composite at different weight-to-epoxy-resin ratios (2%, 5%, and 8%) with good uniformity and alignment. For each filler concentration, three samples were produced with different alignments of carbon nanotubes using the solution-casting method. For sample one, the nanotube axis (k) was parallel to the E vector of the EM wave, for sample two, k was perpendicular to E, and the third sample contained randomly oriented nanotubes. Magnetic MWCNTs were exposed to a 0.4 T magnetic field in the desired direction to achieve the desired alignment of carbon nanotubes in epoxy resin. Microwave absorption characterization of the considered ranging band (X-band) at all concentrations where the alignment of MWCNT/Fe3O4 was parallel to the incident E vector showed increased absorption. Samples with a perpendicular alignment of MWCNT/Fe3O4 to incident E had the lowest absorption. Samples containing 2 wt% and 8 wt% MWCNT/Fe3O4 aligned parallel to E and had reflection losses exceeding 14.4 dB and 23.6 dB, respectively, over a 10-11 GHz range. The 5 wt% parallel aligned MWCNT/Fe3O4 showed an absorbing peak of 27 dB and a bandwidth broadened to 1.2 GHz.

  11. Studies on the synthesis and microwave absorption properties of Fe3 O4/polyaniline FGM

    NASA Astrophysics Data System (ADS)

    Han, Xiao; Wang, Yuan-Sheng

    2007-12-01

    Electrically conducting polyaniline (PANI)-magnetic oxide (Fe3 O4) composites were synthesized by emulsion polymerization in the presence of dodecyl benzene sulfonic acid (DBSA) as the surfactant and dopant and ammonium persulfate (APS) as the oxidant. Transmission electron microscopy (TEM) indicates that the composite has a magnetic core and an electric shell and the modification has prevented the aggregation of Fe3 O4 nanoparticles effectively. The electromagnetic parameter measurements (ɛ'', ɛ', μ'' and μ') in the range of 2-18 GHz prove that Fe3 O4 in the Fe3 O4/PANI/DBSA is responsible for the electric and ferromagnetic behavior of the composites. As a result, the electromagnetic parameters can be designed by adjusting the content of the Fe3 O4. The microwave absorption of functionally graded material (FGM) was simulated by the computer according to the principle of impedance match and the calculated results agreed quite well with the experimentally measured data (R<-20 dB, Δf>4 GHz).

  12. Low-temperature hydrothermal synthesis of α-Fe/Fe3O4 nanocomposite for fast Congo red removal.

    PubMed

    Wang, Lixia; Li, Jianchen; Wang, Zhitao; Zhao, Lijun; Jiang, Qing

    2013-02-21

    A facile low-temperature hydrothermal process to synthesize α-Fe/Fe(3)O(4) nanocomposite is reported. TEM and HRTEM revealed that the α-Fe/Fe(3)O(4) nanocomposite was composed of catenulate α-Fe and lamellar structured Fe(3)O(4). The weight ratio of α-Fe in the α-Fe/Fe(3)O(4) nanocomposite is 35.6%. The α-Fe/Fe(3)O(4) nanocomposite demonstrates an extremely high Congo red (CR) removal efficiency from waste water showing almost complete removal within 3 min. For 100 mg L(-1) of CR aqueous solution, the maximum CR removal can reach 1297.06 mg g(-1). The large saturation magnetization (80.5 emu g(-1)) of the nanocomposite allows fast separation of α-Fe/Fe(3)O(4) nanoparticles loaded with CR from the liquid suspension. The synergistic effect of the nanocomposite may contribute to the enhanced CR removal ability, because the CR can be removed by reduction reaction and adsorption at the same time. Based on the degradation products identified by UV-Vis spectra, XRD and FTIR spectra, a possible degradation mechanism of CR on the α-Fe/Fe(3)O(4) composite was proposed. The significantly reduced treatment time required to remove the CR and the simple, low-cost and pollution-free preparation method make α-Fe/Fe(3)O(4) nanocomposite promising for highly efficient removal of dyes from waste water. PMID:23223415

  13. Facile self-assembly of Fe3O4 nanoparticles@WS2 nanosheets: A promising candidate for supercapacitor electrode

    NASA Astrophysics Data System (ADS)

    Dai, Yu; Wu, Xiao; Sha, Dawei; Chen, Ming; Zou, Han; Ren, Jie; Wang, Jingjing; Yan, Xuehua

    2016-10-01

    Graphene-like dichalcogenides with huge surface area and nanostructured transition metal oxides with extraordinarily high theoretical capacities could be composited as promising electrode candidates for supercapacitors. In this work, monolayer and few-layers WS2 nanosheets were exfoliated by combination of ball-milling and sonication. A facile strategy for the hierarchical self-assembly of Fe3O4 nanoparticles (Fe3O4NPs) on WS2 nanosheets was developed to synthesize Fe3O4NPs@WS2 nanocomposites via hydrothermal method. Fe3O4NPs are uniformly dispersed on the WS2 nanosheets without aggregation. The particle size of Fe3O4NPs is about 3 nm. The nanocomposite shows strong enhancements of electrochemical behaviors. This self-assembly synthesis strategy may have great prospects for other 0D/2D nanocomposites in supercapacitors and other energy devices. [Figure not available: see fulltext.

  14. Synthesis and properties of hybrid hydroxyapatite-ferrite (Fe3O4) particles for hyperthermia applications

    NASA Astrophysics Data System (ADS)

    Tkachenko, M. V.; Kamzin, A. S.

    2016-04-01

    Hybrid ceramics consisting of hydroxyapatite Ca10(PO4)6(OH)2 and ferrite Fe3O4 were synthesized using a two-stage procedure. The first stage included the synthesis of Fe3O4 ferrite particles by co-precipitation and the synthesis of hydroxyapatite. In the second stage, the magnetic hybrid hydroxyapatite-ferrite bioceramics were synthesized by a thorough mixing of the obtained powders of carbonated hydroxyapatite and Fe3O4 ferrite taken in a certain proportion, pressing into tablets, and annealing in a carbon dioxide atmosphere for 30 min at a temperature of 1200°C. The properties of the components and hybrid particles were investigated using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and Mössbauer spectroscopy. The saturation magnetization of the hybrid ceramic composite containing 20 wt % Fe3O4 was found to be 12 emu/g. The hybrid hydroxyapatite (Ca10(PO4)6(OH)2)-ferrite Fe3O4 ceramics, which are promising for the use in magnetotransport and hyperthermia treatment, were synthesized and investigated for the first time.

  15. Growth and investigation of p-n structures based on Fe3O4thin films

    NASA Astrophysics Data System (ADS)

    Šliužienė, K.; Lisauskas, V.; Butkutė, R.; Vengalis, B.; Tamulevicius, S.; Andrulevicius, M.

    2008-03-01

    We report preparation and investigation of p-n heterostructures based on Fe3O4 thin films grown on n-Si(111) substrates as well as indium oxide (IO) and tin doped indium oxide (ITO) layers deposited on lattice-matched monocrystalline ZrO2:Y2O3(100). Thin Fe3O4 films with thickness ranging from 100 to 300 nm were grown in situ at 400 K using dc magnetron sputtering technique. The measurement of microstructure revealed polycrystalline quality of Fe3O4 films on silicon substrate and epitaxial growth on (IO)ITO/YSZ. Investigation of surface composition by X-ray Photoelectron Spectroscopy (XPS) showed that Fe 2p peak consists of three main peaks, namely, metallic iron Fe(0), Fe(II) and Fe(III). Transport measurements of Fe3O4/n-Si heterostructures demonstrated rectifying behaviour in a wide temperature range (T = 78÷300 K) while those prepared by growing Fe3O4 layers on indium oxide (IO) demonstrated nonlinear current-voltage (I-V) dependencies at low temperatures (T<120K).

  16. Magnetically Recyclable Fe3O4@His@Cu Nanocatalyst for Degradation of Azo Dyes.

    PubMed

    Kurtan, U; Amir, Md; Baykal, A; Sözeri, H; Toprak, M S

    2016-03-01

    Fe3O4@His@Cu magnetic recyclable nanocatalyst (MRCs) was synthesized by reflux method using L-histidine as linker. The composition, structure and magnetic property of the product were characterized by X-ray powder diffraction (XRD), Scanning electron microscopy (SEM), Fourier Transform infrared spectroscopy (FT-IR) and vibrating sample magnetometry (VSM). Powder XRD, FT-IR and EDAX results confirmed that the as-synthesized products has Fe3O4 with spinel structure and Cu nanoparticles with moderate crystallinity without any other impurities. The surface of the Fe3O4@His nanocomposite was covered by tiny Cu nanoparticles. We examine the catalytic activity of Fe3O4@His@Cu MRCs for the degradation of two azo dyes, methyl orange (MO) and methylene blue (MB) as well as their mixture. The reusability of the nanocatalyst was good and sustained even after 3 cycles. Therefore this innovated Fe3O4@His@Cu MRCs has a potential to be used for purification of waste water. PMID:27455668

  17. A plasma protein corona enhances the biocompatibility of Au@Fe3O4 Janus particles.

    PubMed

    Landgraf, Lisa; Christner, Carolin; Storck, Wiebke; Schick, Isabel; Krumbein, Ines; Dähring, Heidi; Haedicke, Katja; Heinz-Herrmann, Karl; Teichgräber, Ulf; Reichenbach, Jürgen R; Tremel, Wolfgang; Tenzer, Stefan; Hilger, Ingrid

    2015-11-01

    Au@Fe3O4 Janus particles (JPs) are heteroparticles with discrete domains defined by different materials. Their tunable composition and morphology confer multimodal and versatile capabilities for use as contrast agents and drug carriers in future medicine. Au@Fe3O4 JPs have colloidal properties and surface characteristics leading to interactions with proteins in biological fluids. The resulting protein adsorption layer ("protein corona") critically affects their interaction with living matter. Although Au@Fe3O4 JPs displayed good biocompatibility in a standardized in vitro situation, an in-depth characterization of the protein corona is of prime importance to unravel underlying mechanisms affecting their pathophysiology and biodistribution in vitro and in vivo. Here, we comparatively analyzed the human plasma corona of Au-thiol@Fe3O4-SiO2-PEG JPs (NH2-functionalized and non-functionalized) and spherical magnetite (Fe3O4-SiO2-PEG) particles and investigated its effects on colloidal stability, biocompatibility and cellular uptake. Label-free quantitative proteomic analyses revealed that complex coronas including almost 180 different proteins were formed within only one minute. Remarkably, in contrast to spherical magnetite particles with surface NH2 groups, the Janus structure prevented aggregation and the adhesion of opsonins. This resulted in an enhanced biocompatibility of corona sheathed JPs compared to spherical magnetite particles and corona-free JPs.

  18. Nanoparticle size matters in the formation of plasma protein coronas on Fe3O4 nanoparticles.

    PubMed

    Hu, Zhengyan; Zhang, Hongyan; Zhang, Yi; Wu, Ren'an; Zou, Hanfa

    2014-09-01

    When nanoparticles (NPs) enter into biological systems, proteins would interact with NPs to form the protein corona that can critically impact the biological identity of the nanomaterial. Owing to their fundamental scientific interest and potential applications, Fe3O4 NPs of different sizes have been developed for applications in cell separation and protein separation and as contrast agents in magnetic resonance imaging (MRI), etc. Here, we investigated whether nanoparticle size affects the formation of protein coronas around Fe3O4 NPs. Both the identification and quantification results demonstrated that particle size does play an important role in the formation of plasma protein coronas on Fe3O4 NPs; it not only influenced the protein composition of the formed plasma protein corona but also affected the abundances of the plasma proteins within the coronas. Understanding the different binding profiles of human plasma proteins on Fe3O4 NPs of different sizes would facilitate the exploration of the bio-distributions and biological fates of Fe3O4 NPs in biological systems.

  19. Thermal decomposition study of Mn doped Fe3O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Malek, Tasmira J.; Chaki, S. H.; Tailor, J. P.; Deshpande, M. P.

    2016-05-01

    Fe3O4 is an excellent magnetic material among iron oxides. It has a cubic inverse spinel structure exhibiting distinguished electric and magnetic properties. In this paper the authors report the synthesis of Mn doped Fe3O4 nanoparticles by wet chemical reduction technique at ambient temperature and its thermal characterization. Ferric chloride hexa-hydrate (FeCl3•6H2O), manganese chloride tetra-hydrate (MnCl2•4H2O) and sodium boro-hydrate (NaBH4) were used for synthesis of Fe3O4 nanoparticles at ambient temperature. The elemental composition of the as-synthesized Mn doped Fe3O4 nanoparticles were determined by energy dispersive analysis of X-rays (EDAX) technique. Thermogravimetric (TG) and differential thermal analysis (DTA) were carried out on the Mn doped Fe3O4 nanoparticles in the temperature range of ambient to 1124 K. The thermo-curves revealed that the particles decompose by four steps. The kinetic parameters were evaluated using non-mechanistic equations for the thermal decomposition.

  20. In situ anchor of magnetic Fe3O4 nanoparticles onto natural maifanite as efficient heterogeneous Fenton-like catalyst

    NASA Astrophysics Data System (ADS)

    Zhao, Hang; Weng, Ling; Cui, Wei-Wei; Zhang, Xiao-Rui; Xu, Huan-Yan; Liu, Li-Zhu

    2016-09-01

    In situ anchor of magnetic Fe3O4 nanoparticles (NPs) onto the surface of natural maifanite was realized by chemical oxidation coprecipitation in hot alkaline solution. The Fe3O4/maifanite composites were characterized by XRD, FTIR, SEM, and TEM. These results indicated that polycrystalline Fe3O4 NPs with inverse spinel structure were formed and tightly dispersed on maifanite surface. Based on the measurement of surface Zeta potential of maifanite at different medium pHs, the possible combination mechanism between natural maifanite and Fe3O4 NPs was proposed. Then, the asobtained composites were developed as highly efficient heterogeneous Fenton-like catalyst for the discoloration of an azo dye, Methyl Orange (MO). The comparative tests on MO discoloration in different systems revealed that Fe3O4/maifanite composite exhibited much higher Fenton-like catalytic activity than Fe3O4 NPs and the heterogeneous Fentonlike reaction governed the discoloration of MO. Kinetic results clearly showed that MO discoloration process followed the second-order kinetic model. Fe3O4/maifanite composites exhibited the typical ferromagnetic property detected by VSM and could be easily separated from solution by an external magnetic field.

  1. Green synthesis and surface properties of Fe3O4@SA core-shell nanocomposites

    NASA Astrophysics Data System (ADS)

    Cao, Huimin; Li, Juchuan; Shen, Yuhua; Li, Shikuo; Huang, Fangzhi; Xie, Anjian

    2014-05-01

    In this paper, a one-step, economic and green approach was explored to prepare Fe3O4 nanoparticles by using L-cysteine as reducer and disperser without any inert gas protection. The Fe3O4 nanoparticles were then modified with stearic acid (SA) to form Fe3O4@SA core-shell nanocomposites. The experiment results indicate that the core-shell nanocomposites prepared could form monolayer on the water surface or films by means of Langmuir-Blodgett (LB) technology due to their hydrophobic and lipophilic properties. Also the composites exhibit paramagnetism, which make product dispersed stably in the oil medium to form magnetic fluid. Moreover, they are developed as sorbents to remove oil from water surface.

  2. Magnetically separable and recyclable Fe3O4-polydopamine hybrid hollow microsphere for highly efficient peroxidase mimetic catalysts.

    PubMed

    Liu, Shujun; Fu, Jianwei; Wang, Minghuan; Yan, Ya; Xin, Qianqian; Cai, Lu; Xu, Qun

    2016-05-01

    Magnetic Fe3O4-polydopamine (PDA) hybrid hollow microspheres, in which Fe3O4 nanoparticles were firmly incorporated in the cross-linked PDA shell, have been prepared through the formation of core/shell PS/Fe3O4-PDA composites based on template-induced covalent assembly method, followed by core removal in a tetrahydrofuran solution. The morphology, composition, thermal property and magnetic property of the magnetic hybrid hollow microspheres were characterized by SEM, TEM, FT-IR, XRD, TGA, and vibrating sample magnetometer, respectively. Results revealed that the magnetic hybrid hollow microspheres had about 380 nm of inner diameter and about 30 nm of shell thickness, and 13.6 emu g(-1) of magnetization saturation. More importantly, the Fe3O4-PDA hybrid hollow microspheres exhibited intrinsic peroxidase-like activity, as they could quickly catalyze the oxidation of typical substrates 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide. Compared with PDA/Fe3O4 composites where Fe3O4 nanoparticles were loaded on the surface of PDA microspheres, the stability of Fe3O4-PDA hybrid hollow microspheres was greatly improved. As-prepared magnetic hollow microspheres might open up a new application field in biodetection, biocatalysis, and environmental monitoring.

  3. Controlled assembly of Fe3O4 magnetic nanoparticles on graphene oxide

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Chen, Biao; Zhang, Liming; Huang, Jie; Chen, Fenghua; Yang, Zupei; Yao, Jianlin; Zhang, Zhijun

    2011-04-01

    We describe a facile approach to controllable assembly of monodisperse Fe3O4nanoparticles (NPs) on chemically reduced graphene oxide (rGO). First, reduction and functionalization of GO by polyetheylenimine (PEI) were achieved simultaneously by simply heating the PEI and GO mixture at 60 °C for 12 h. The process is environmentally friendly and convenient compared with previously reported methods. Meso-2,3-dimercaptosuccinnic acid (DMSA)-modified Fe3O4 NPs were then conjugated to the PEI moiety which is located on the periphery of the GO sheets via formation of amide bonds between COOH groups of DMSA molecules bound on the surface of the Fe3O4 NPs and aminegroups of PEI. The magnetic GO composites were characterized by means of TEM, AFM, UV-vis, FTIR, Raman, TGA, and VSM measurements. Finally, preliminary results of using the Fe3O4-rGO composites for efficient removal of tetracycline, an antibiotic that is often found as a contaminant in the environment, are reported.We describe a facile approach to controllable assembly of monodisperse Fe3O4nanoparticles (NPs) on chemically reduced graphene oxide (rGO). First, reduction and functionalization of GO by polyetheylenimine (PEI) were achieved simultaneously by simply heating the PEI and GO mixture at 60 °C for 12 h. The process is environmentally friendly and convenient compared with previously reported methods. Meso-2,3-dimercaptosuccinnic acid (DMSA)-modified Fe3O4 NPs were then conjugated to the PEI moiety which is located on the periphery of the GO sheets via formation of amide bonds between COOH groups of DMSA molecules bound on the surface of the Fe3O4 NPs and aminegroups of PEI. The magnetic GO composites were characterized by means of TEM, AFM, UV-vis, FTIR, Raman, TGA, and VSM measurements. Finally, preliminary results of using the Fe3O4-rGO composites for efficient removal of tetracycline, an antibiotic that is often found as a contaminant in the environment, are reported. Electronic supplementary information

  4. Graphene-encapsulated Fe3O4 nanoparticles with 3D laminated structure as superior anode in lithium ion batteries.

    PubMed

    Wang, Jia-Zhao; Zhong, Chao; Wexler, David; Idris, Nurul Hayati; Wang, Zhao-Xiang; Chen, Li-Quan; Liu, Hua-Kun

    2011-01-10

    Fe(3)O(4)-graphene composites with three-dimensional laminated structures have been synthesised by a simple in situ hydrothermal method. From field-emission and transmission electron microscopy results, the Fe(3)O(4) nanoparticles, around 3-15 nm in size, are highly encapsulated in a graphene nanosheet matrix. The reversible Li-cycling properties of Fe(3)O(4)-graphene have been evaluated by galvanostatic discharge-charge cycling, cyclic voltammetry and impedance spectroscopy. Results show that the Fe(3)O(4)-graphene nanocomposite with a graphene content of 38.0 wt % exhibits a stable capacity of about 650 mAh  g(-1) with no noticeable fading for up to 100 cycles in the voltage range of 0.0-3.0 V. The superior performance of Fe(3)O(4)-graphene is clearly established by comparison of the results with those from bare Fe(3)O(4). The graphene nanosheets in the composite materials could act not only as lithium storage active materials, but also as an electronically conductive matrix to improve the electrochemical performance of Fe(3)O(4).

  5. Enhanced electrical contact of microbes using Fe(3)O(4)/CNT nanocomposite anode in mediator-less microbial fuel cell.

    PubMed

    Park, In Ho; Christy, Maria; Kim, Pil; Nahm, Kee Suk

    2014-08-15

    A novel Fe(3)O(4)/CNT nanocomposite was synthesized and employed for the modification of carbon paper anode in a mediator-less microbial fuel cell (MFC) to enhance its performance. The Fe(3)O(4)/CNT composite modified anodes with various Fe(3)O(4) contents were investigated to find the optimum ratio of the nanocomposite for the best MFC performance. The Fe(3)O(4)/CNT modified anodes produced much higher power densities than unmodified carbon anode and the 30wt% Fe3O4/CNT modified anode exhibited a maximum power density of 830mW/m(2). In the Fe(3)O(4)/CNT composite modified anode, Fe(3)O(4) helps to attach the CNT on anode surface by its magnetic attraction and forms a multi layered network, whereas CNT offers a better nanostructure environment for bacterial growth and helps electron transfer from E.coli to electrode resulting in the increase in the current production with the catalytic activity of bacteria. The electrocatalytic behavior and all possible mechanism for their better performance are discussed in detail with the help of various structural and electrochemical techniques.

  6. Facile synthesis of FeCo/Fe3O4 nanocomposite with high wave-absorbing properties.

    PubMed

    Gu, Yu; Cao, Yang; Chi, Huijuan; Liang, Qing; Zhang, Yongji; Sun, Youyi

    2013-01-01

    The FeCo/Fe3O4 nanocomposite was synthesized using the hydrothermal approach, in which the FeCo alloy and Fe3O4 are formed by one step. The structure of the FeCo/Fe3O4 nanocomposite was characterized by means of Scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray energy-dispersive spectrometer spectroscopy (EDX). They show that the mass ratio of FeCo/Fe3O4 strongly depends on the reaction temperature. Such various architectures follow a stepwise growth mechanism of the composites prepared in various reaction temperatures were also discussed. It indicates that this strategy is facile, effective and controllable for the synthesis of FeCo/Fe3O4 by the one-step method. Furthermore, the magnetic and wave-absorbing properties of the nanocomposites with various structures were investigated in detail. The results show that the FeCo/Fe3O4 with higher mass ratio has higher magnetic properties. Moreover, the FeCo/Fe3O4 nanocomposite shows high wave-absorbing properties (e.g., -37.9 dB), which are expected to apply in microwave absorbing materials. PMID:23839091

  7. Optimization of oleylamine-Fe3O4/MWCNTs nanocomposite modified GC electrode for electrochemical determination of ofloxacin.

    PubMed

    Kumar, Deivasigamani Ranjith; Manoj, Devaraj; Santhanalakshmi, Jayadevan

    2014-07-01

    Iron oxide (Fe3O4) nanoparticles are prepared by nucleation method using oleylamine (OLA) as the capping agent. The OLA capped Fe3O4 nanoparticles (OLA-Fe3O4) are characterized by Fourier Transform Infrared (FT-IR) spectroscopy, X-ray Diffraction (XRD) and High Resolution Transmission Electron Microscopic (HRTEM) analysis. The morphology of the OLA-Fe3O4 nanoparticles is found to be spherical with an average size of 7.5 +/- 0.5 nm. OLA-Fe3O4 nanoparticles are incorporated into the carboxyl functionalized Multi-walled carbon nanotubes (MWCNTs) at different 10, 20, 30, 40 and 50 wt% by ultrasonication. The optimum loading of OLA-Fe3O4 nanoparticles on the MWCNTs was characterized by FTIR, Raman spectroscopy, Field Emission Scanning Electron Microscopy (FESEM) and Linear Sweep Voltammetry (LSV). Finally, the 40wt% of OLA-Fe3O4 nanoparticles on MWCNTs was chosen as the optimum loading and this composition was used for the electrochemical oxidation of ofloxacin (OFX). For determination of OFX in OLA-Fe3O4/MWCNTs modified glassy carbon (GC) electrode show high sensitivity and fast response. The sensitivity of the modified electrode was calculated to be 0.578 microAmicroM(-1) with a detection limit of 0.060 microM. The high sensitivity, wider linear range, good reproducibility and the minimal surface fouling make this OLA-Fe3O4/MWCNTs/GC modified electrode acts as a promising platform for electrochemical determination of OFX.

  8. Thermodynamics of Fe3O4-Co3O4 and Fe3O4-Mn3O4 spinel solid solutions at the bulk and nanoscale.

    PubMed

    Sahu, Sulata K; Huang, Baiyu; Lilova, Kristina; Woodfield, Brian F; Navrotsky, Alexandra

    2015-09-14

    High temperature oxide melt solution calorimetry has been performed to investigate the enthalpies of mixing (ΔmixH) of bulk and nanophase (1 -x)Fe3O4-xM3O4 (M = Co, Mn) spinel solid solutions. The entropies of mixing (ΔmixS) were calculated from the configurational entropies based on cation distributions, and the Gibbs free energies of mixing (ΔmixG) were obtained. The ΔmixH and ΔmixG for the (1 -x)Fe3O4-xCo3O4 system are negative over the complete solid solution range, for both macroscopic and nanoparticulate materials. In (1 -x)Fe3O4-xMn3O4, the formation enthalpies of cubic Fe3O4 (magnetite) and tetragonal Mn3O4 (hausmannite) are negative for Mn3O4 mole fractions less than 0.67 and slightly positive for higher manganese content. Relative to cubic Fe3O4 and cubic Mn3O4 (stable at high temperature), the enthalpies and Gibbs energies of mixing are negative over the entire composition range. A combination of measured mixing enthalpies and reported Gibbs energies in the literature provides experimental entropies of mixing. The experimental entropies of mixing are consistent with those calculated from cation distributions for x > 0.3 but are smaller than those predicted for x < 0.3. This discrepancy may be related to the calculations, having treated Fe(2+) and Fe(3+) as distinguishable species. The measured surface energies of the (1 -x)Fe3O4-xM3O4 solid solutions are in the range of 0.6-0.9 J m(-2), similar to those of many other spinels. Because the surface energies are relatively constant, the thermodynamics of mixing at a given particle size throughout the solid solution can be considered independent of the particular particle size, thus confirming and extending the conclusions of a recent study on iron spinels. PMID:26245233

  9. Bio and nanomaterials based on Fe3O4.

    PubMed

    Xu, Jia-Kun; Zhang, Fang-Fang; Sun, Jing-Jing; Sheng, Jun; Wang, Fang; Sun, Mi

    2014-01-01

    During the past few years, nanoparticles have been used for various applications including, but not limited to, protein immobilization, bioseparation, environmental treatment, biomedical and bioengineering usage, and food analysis. Among all types of nanoparticles, superparamagnetic iron oxide nanoparticles, especially Fe3O4, have attracted a great deal of attention due to their unique magnetic properties and the ability of being easily chemical modified for improved biocompatibility, dispersibility. This review covers recent advances in the fabrication of functional materials based on Fe3O4 nanoparticles together with their possibilities and limitations for application in different fields. PMID:25532846

  10. Infiltration of Fe3O4-nanoparticles into porous silicon with respect to magnetic interactions

    NASA Astrophysics Data System (ADS)

    Granitzer, P.; Rumpf, K.; Reissner, M.; Hilscher, G.; Morales, M. P.; Poelt, P.; Uusimäki, T.; Sezen, M.; Albu, M.

    2011-10-01

    Mesoporous silicon (PS) is used as matrix for infiltration of Fe3O4 nanoparticles (5 and 8 nm). The structure and magnetic behaviour of such composites are investigated and a correlation between the morphology of the nanocomposite (structure of the matrices, size and distribution of Fe3O4 particles) and the magnetic properties of the system is figured out. This system shows a superparamagnetic (SPM) behaviour at room temperature and becomes ferromagnetic (FM) at lower temperatures. The transition temperature between SPM and a blocked state depends on the particle size, their coating and on their magnetic interactions. Dipolar coupling between the particles can be influenced by varying the PS morphology as well as by the filling factor. The blocking temperature (TB) of the composite is tuneable and changes due to the variation of dipolar coupling of the Fe3O4-particles (distance between particles). Results gained from electron microscopy and tomography, respectively such as size and spatial distribution of the particles together with the magnetic data lead to a more detailed knowledge of the Fe3O4/silicon nanocomposite system.

  11. Au doping effect on the electrical and magnetic properties of Fe3O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Mahmood, Asif; Ramay, Shahid Mahmood; Al-Zaghayer, Yousef S.; Alhazaa, A. N.; Al Masary, Waheed A.; Atiq, Shahid

    2015-12-01

    Impurities free ferromagnetic Fe3O4 was prepared via sol-gel auto-combustion method and then gold was doped with various concentrations 1, 3 and 5 wt.% using conventional deposition-precipitation method. All samples of Fe3O4 with/without Au doping were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). The room temperature magnetic hysteresis loops of all the samples were measured using a physical property measuring system (PPMS), and the results showed a ferromagnetic behavior at room temperature. The results obtained confirmed the fabrication of magnetite-gold composite nanoparticles. The results showed that the resistance and the magnetic behavior of the samples decrease sharply with the increase of Au concentration indicating semiconducting behavior. The saturation magnetization (Ms) of the bare Fe3O4 sample (94.72 emu/g) is much higher than that (66.78 emu/g) of the 5 wt.% Au-doped Fe3O4 sample.

  12. Fabrication of bifunctional core-shell Fe3O4 particles coated with ultrathin phosphor layer

    PubMed Central

    2013-01-01

    Bifunctional monodispersed Fe3O4 particles coated with an ultrathin Y2O3:Tb3+ shell layer were fabricated using a facile urea-based homogeneous precipitation method. The obtained composite particles were characterized by powder X-ray diffraction, transmission electron microscopy (TEM), quantum design vibrating sample magnetometry, and photoluminescence (PL) spectroscopy. TEM revealed uniform spherical core-shell-structured composites ranging in size from 306 to 330 nm with a shell thickness of approximately 25 nm. PL spectroscopy confirmed that the synthesized composites displayed a strong eye-visible green light emission. Magnetic measurements indicated that the composite particles obtained also exhibited strong superparamagnetic behavior at room temperature. Therefore, the inner Fe3O4 core and outer Y2O3:Tb3+ shell layer endow the composites with both robust magnetic properties and strong eye-visible luminescent properties. These composite materials have potential use in magnetic targeting and bioseparation, simultaneously coupled with luminescent imaging. PMID:23962025

  13. One-step thermolysis synthesis of two-dimensional ultrafine Fe3O4 particles/carbon nanonetworks for high-performance lithium-ion batteries.

    PubMed

    Zhang, Wanqun; Li, Xiaona; Liang, Jianwen; Tang, Kaibin; Zhu, Yongchun; Qian, Yitai

    2016-02-28

    To tackle the issue of inferior cycle stability and rate capability for Fe3O4 anode materials in lithium ion batteries, ultrafine Fe3O4 nanocrystals uniformly encapsulated in two-dimensional (2D) carbon nanonetworks have been fabricated through thermolysis of a simple, low-cost iron(iii) acetylacetonate without any extra processes. Moreover, compared to the reported Fe3O4/carbon composites, the particle size of Fe3O4 is controllable and held down to ∼3 nm. Benefitting from the synergistic effects of the excellent electroconductive carbon nanonetworks and uniform distribution of ultrafine Fe3O4 particles, the prepared 2D Fe3O4/carbon nanonetwork anode exhibits high reversible capacity, excellent rate capability and superior cyclability. A high capacity of 1534 mA h g(-1) is achieved at a 1 C rate and is maintained without decay up to 500 cycles (1 C = 1 A g(-1)). Even at the high current density of 5 C and 10 C, the 2D Fe3O4/carbon nanonetworks maintain a reversible capacity of 845 and 647 mA h g(-1) after 500 discharge/charge cycles, respectively. In comparison with other reported Fe3O4-based anodes, the 2D Fe3O4/carbon nanonetwork electrode is one of the most attractive of those in energy storage applications. PMID:26859122

  14. Luminescent and magnetic Fe3O4/Py/PAM nanocomposites for the chromium(VI) determination.

    PubMed

    Hong, Shi; Chen, Hongqi; Wang, Leyu; Wang, Lun

    2008-07-01

    A novel luminescent and magnetic Fe(3)O(4)/pyrene/polyacrylamide (Fe(3)O(4)/Py/PAM) nanocomposite has been prepared under ultrasonic radiation. This magnetic nanocomposite combined with pyrene would lead to a special functional magnetic luminescent composite that enjoys both the advantages of magnetic nanoparticles of Fe(3)O(4) and fluorescence nanoparticles of pyrene. Taking advantage of the magnetic property of Fe(3)O(4) nanocomposites, we can separate Fe(3)O(4)/Py/PAM nanocomposites from solution easily just by using a permanent magnet. Based on the fluorescence quenching of Fe(3)O(4)/Py/PAM nanocomposites by Cr(VI), a method for the selective determination of Cr(VI), without separation of Cr(III) in water, was developed. Under optimal experimental conditions, a limit of detection of 0.01 microg mL(-1) was achieved. The calibration curve was linear over the concentration range of 0.1-14.0 microg mL(-1) with a correlation coefficient of 0.9975. The proposed method has been applied to the selective quantification of Cr(VI) in synthetic samples and wastewater samples with the satisfactory results. PMID:18321770

  15. Development of novel magnetic solid phase extraction materials based on Fe3O4/SiO2/poly(acrylamide-N,N'-methylene bisacrylamide)-Pluronic L64 composite microspheres and their application to the enrichment of natamycin.

    PubMed

    Tian, Miaomiao; Zou, Yongcun; Zhou, Shaoyan; Wang, Tianpeng; Lv, Xueju; Jia, Qiong

    2015-12-15

    Novel magnetic adsorbents based on Fe3O4/SiO2/poly(acrylamide-N,N'-methylene bisacrylamide) magnetic microspheres modified with non-ionic triblock copolymer surfactant were successfully prepared as a magnetic solid phase extraction adsorbent for the determination of trace natamycin in jam samples. The adsorbent was characterized by scanning electron microscopy, transmission electron microscopy, Fourier transformed infrared spectroscopy, vibrating sample magnetometer, and X-ray diffractometer analysis, confirming that Pluronic L64 was effectively functionalized on the magnetic materials. Various experimental parameters affecting the extraction capacity were investigated including adsorbent amount, extraction time, desorption time, sample pH, and ionic strength. For recovery evaluations, the jam samples were spiked at two concentration levels of 100 and 200μgkg(-1) of natamycin and the recovery values were in the range of 78.8-93.4%. The relative standard deviations (RSD) for the recoveries were less than 3.5%. The novel magnetic solid phase extraction method provided several advantages, such as simplicity, low environmental impact, convenient extraction procedure, and short analysis time when used for natamycin analysis. PMID:26554702

  16. Synthesis, characterization and electrical properties of Fe3O4/poly(vinyl alcohol-co-acrylic acid) nanocomposites

    NASA Astrophysics Data System (ADS)

    P, Jayakrishnan; Ramesan, M. T.

    2014-10-01

    This work focused on the synthesis of magnetite (Fe3O4)/poly(vinyl alcohol-co-acrylic acid) nanocomposite by in situ polymerization. The composite were characterized by FT-IR spectroscopy, XRD, SEM, TGA, AC and DC conductivity measurements. The spectroscopic studies revealed the molecular interaction between the polymer and nanocomposites. SEM, XRD indicated the uniform dispersion of nanoparticle inside the molecular chain of copolymer. TGA studies indicated the excellent thermal stability of copolymer nanocomposites. AC and DC conductivity of nanocomposites were higher than that of the copolymer and conductivity values were significantly increased with increase in concentration of metal oxide nanoparticles. These properties suggest that the polymer composite can be used as multifunctional material for nanoelectronics.

  17. Fe3O4-nanoparticles within porous silicon: Magnetic and cytotoxicity characterization

    NASA Astrophysics Data System (ADS)

    Granitzer, P.; Rumpf, K.; Tian, Y.; Akkaraju, G.; Coffer, J.; Poelt, P.; Reissner, M.

    2013-05-01

    The magnetic properties of porous silicon/Fe3O4 composites are investigated with respect to the adjustability of the blocking temperature along with an evaluation of any size-dependent changes in cytocompatibility. Fe3O4-nanoparticles have been infiltrated within mesoporous silicon, resulting in a system with tunable magnetic properties due to the matrix-morphology, the loading of the nanoparticles, and their size. In order to provide basic information regarding its suitability as a therapeutic platform, the cytotoxicity of these composites have been investigated by a trypan blue exclusion assay with respect to human embryonic kidney 293 cells, and the results compared with cell-only and known cytotoxic controls.

  18. Formation and characterization of β-cyclodextrin (β-CD) - polyethyleneglycol (PEG) - polyethyleneimine (PEI) coated Fe3O4 nanoparticles for loading and releasing 5-Fluorouracil drug.

    PubMed

    Prabha, G; Raj, V

    2016-05-01

    In this work, β-cyclodextrin (β-CD) - polyethyleneglycol (PEG) - polyethyleneimine (PEI) coated iron oxide nanoparticles (Fe3O4-β-CD-PEG-PEI) were developed as drug carriers for drug delivery applications. The 5- Fluorouracil (5-FU) was chosen as model drug molecule. The developed nanoparticles (Fe3O4-β-CD-PEG-PEI) were characterized by various techniques such as Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and vibrating sample magnetometry (VSM). The average particles size range of 5-FU loaded Fe3O4-β-CD, Fe3O4-β-CD-PEG and Fe3O4-β-CD-PEG-PEI nanoparticles were from 151 to 300nm and zeta potential value of nanoparticles were from -43mV to -20mV as measured using Malvern Zetasizer. Finally, encapsulation efficiency (EE), loading capacity (LC) and in-vitro drug release performance of 5-FU drug loaded Fe3O4-β-CD, Fe3O4-β-CD-PEG and Fe3O4-β-CD-PEG-PEI nanoparticles was evaluated by UV-vis spectroscopy. In-vitro cytotoxicity tests investigated by MTT assay indicate that 5-FU loaded Fe3O4-β-CD-PEG-PEI nanoparticles were toxic to cancer cells and non-toxic to normal cells. The in-vitro release behavior of 5-FU from drug (5-FU) loaded Fe3O4-β-CD-PEG-PEI composite at different pH values and temperature was studied. It was found that 5-FU was released faster in pH 6.8 than in the acidic mediums (pH 1.2), and the released quantity was higher. Therefore, the newly prepared Fe3O4-β-CD-PEG-PEI carrier exhibits a promising potential capability for anticancer drug delivery in tumor therapy. PMID:27133054

  19. Formation and characterization of β-cyclodextrin (β-CD) - polyethyleneglycol (PEG) - polyethyleneimine (PEI) coated Fe3O4 nanoparticles for loading and releasing 5-Fluorouracil drug.

    PubMed

    Prabha, G; Raj, V

    2016-05-01

    In this work, β-cyclodextrin (β-CD) - polyethyleneglycol (PEG) - polyethyleneimine (PEI) coated iron oxide nanoparticles (Fe3O4-β-CD-PEG-PEI) were developed as drug carriers for drug delivery applications. The 5- Fluorouracil (5-FU) was chosen as model drug molecule. The developed nanoparticles (Fe3O4-β-CD-PEG-PEI) were characterized by various techniques such as Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and vibrating sample magnetometry (VSM). The average particles size range of 5-FU loaded Fe3O4-β-CD, Fe3O4-β-CD-PEG and Fe3O4-β-CD-PEG-PEI nanoparticles were from 151 to 300nm and zeta potential value of nanoparticles were from -43mV to -20mV as measured using Malvern Zetasizer. Finally, encapsulation efficiency (EE), loading capacity (LC) and in-vitro drug release performance of 5-FU drug loaded Fe3O4-β-CD, Fe3O4-β-CD-PEG and Fe3O4-β-CD-PEG-PEI nanoparticles was evaluated by UV-vis spectroscopy. In-vitro cytotoxicity tests investigated by MTT assay indicate that 5-FU loaded Fe3O4-β-CD-PEG-PEI nanoparticles were toxic to cancer cells and non-toxic to normal cells. The in-vitro release behavior of 5-FU from drug (5-FU) loaded Fe3O4-β-CD-PEG-PEI composite at different pH values and temperature was studied. It was found that 5-FU was released faster in pH 6.8 than in the acidic mediums (pH 1.2), and the released quantity was higher. Therefore, the newly prepared Fe3O4-β-CD-PEG-PEI carrier exhibits a promising potential capability for anticancer drug delivery in tumor therapy.

  20. Synthesis and photocatalytic properties of Fe3O4@TiO2 core-shell for degradation of Rhodamine B

    NASA Astrophysics Data System (ADS)

    Mufti, Nandang; Munfarriha, Ulfatien; Fuad, Abdulloh; Diantoro, Markus

    2016-02-01

    The aim of this research is to synthesis Fe3O4@TiO2 core-shell and used it as photocatalytic for degradation of Rhodamine B. The Fe3O4 nanoparticle core was synthesized by coprecipitation method from the iron sand. The TiO2 shell synthesized using coprecipitation method to capsulated Fe3O4 nanoparticle with vary of Fe3O4 mass. The Fe3O4@TiO2 core-shells were characterized using SEM-EDX, XRD. Photocatalytic activity of Rhodamine B degradation was performed under UV irradiation with variation of time exposure. The efficiency of photodegradation is measured by UV-Vis spectrophotometer. The XRD result showed that Fe3O4 nanoparticle is single phase with crystal size of 15.5 nm. The existence of Fe3O4 and anatase of TiO2 phases in the XRD pattern shows that The Fe3O4@TiO2 core-shells are successfully synthesized. While, the TiO2 shell is confirmed by thermal test up to 550 OC for two hours to the samples. Based on SEM characterization, The Fe3O4@TiO2 core-shells are agglomerated with averages diameter sizes of particles between 38.5 nm to 72.8 nm. The concentration of TiO2 decrease with increasing Fe3O4 mass with atomic composition of Fe/Ti elements in Fe3O4@TiO2 core-shells are 0.083, 1.12, and 1.48. Based on photo degradation test of Rhodamine B under UV irradiation, we conclude that the degradation of Rhodamin B is caused by absorbsion and photocatalytic mechanism. For photocatalytic mechanism the efficiency of photodegradation of Rhodamin B increases by increasing TiO2 concentration.

  1. Synthesis of hierarchical Mg-doped Fe3O4 micro/nano materials for the decomposition of hexachlorobenzene.

    PubMed

    Su, Guijin; Liu, Yexuan; Huang, Linyan; Lu, Huijie; Liu, Sha; Li, Liewu; Zheng, Minghui

    2014-03-01

    An ethylene-glycol (EG) mediated self-assembly process was firstly developed to synthesize micrometer-sized nanostructured Mg-doped Fe3O4 composite oxides to decompose hexachlorobenzene (HCB) at 300°C. The synthesized samples were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy and inductively coupled plasma optical emission spectrometer. The morphology and composition of the composite oxide precursor were regulated by the molar ratio of the magnesium acetate and ferric nitrate as the reactants. Calcination of the precursor particles, prepared with different molar ratio of the metal salts, under a reducing nitrogen atmosphere, generated three kinds of Mg doped Fe3O4 composite oxide micro/nano materials. Their reactivity toward HCB decomposition was likely influenced by the material morphology and content of Mg dopants. Ball-like MgFe2O4-Fe3O4 composite oxide micro/nano material showed superior HCB dechlorination efficiencies when compared with pure Fe3O4 micro/nano material, prepared under similar experimental conditions, thus highlighting the benefits of doping Mg into Fe3O4 matrices.

  2. Synthesis of hierarchical Mg-doped Fe3O4 micro/nano materials for the decomposition of hexachlorobenzene.

    PubMed

    Su, Guijin; Liu, Yexuan; Huang, Linyan; Lu, Huijie; Liu, Sha; Li, Liewu; Zheng, Minghui

    2014-03-01

    An ethylene-glycol (EG) mediated self-assembly process was firstly developed to synthesize micrometer-sized nanostructured Mg-doped Fe3O4 composite oxides to decompose hexachlorobenzene (HCB) at 300°C. The synthesized samples were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy and inductively coupled plasma optical emission spectrometer. The morphology and composition of the composite oxide precursor were regulated by the molar ratio of the magnesium acetate and ferric nitrate as the reactants. Calcination of the precursor particles, prepared with different molar ratio of the metal salts, under a reducing nitrogen atmosphere, generated three kinds of Mg doped Fe3O4 composite oxide micro/nano materials. Their reactivity toward HCB decomposition was likely influenced by the material morphology and content of Mg dopants. Ball-like MgFe2O4-Fe3O4 composite oxide micro/nano material showed superior HCB dechlorination efficiencies when compared with pure Fe3O4 micro/nano material, prepared under similar experimental conditions, thus highlighting the benefits of doping Mg into Fe3O4 matrices. PMID:24290299

  3. Enhanced high-frequency absorption of anisotropic Fe3O4/graphene nanocomposites

    PubMed Central

    Yin, Yichao; Zeng, Min; Liu, Jue; Tang, Wukui; Dong, Hangrong; Xia, Ruozhou; Yu, Ronghai

    2016-01-01

    Anisotropic Fe3O4 nanoparticle and a series of its graphene composites have been successfully prepared as high-frequency absorbers. The crystal structure, morphology and magnetic property of the samples were detailed characterized through X-ray diffractometer (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). The high-frequency absorbing performance of the composites is evaluated within 2.0–18.0 GHz. Combining reduced graphene oxide (RGO) to Fe3O4 helps to adjust the permittivity and permeability of the composite, balance the dielectric loss and magnetic loss, consequently improve the absorbing performance in view of the impedance matching characteristic. The optimal reflection loss of the pure Fe3O4 sample reaches −38.1 dB with a thickness of 1.7 mm, and it increases to −65.1 dB for the sample grafted with 3 wt.% RGO. The addition of proper content of RGO both improves the reflection loss and expands the absorbing bandwidth. This work not only opens a new method and an idea for tuning the electromagnetic properties and enhancing the capacity of high-efficient absorbers, but also broadens the application of such kinds of lightweight absorbing materials frameworks. PMID:27142260

  4. [Adsorption of methylene blue from aqueous solution onto magnetic Fe3O4/ graphene oxide nanoparticles].

    PubMed

    Chang, Qing; Jiang, Guo-Dong; Hu, Meng-Xuan; Huang, Jia; Tang, He-Qing

    2014-05-01

    A simple ultrasound-assisted co-precipitation method was developed to prepare magnetic Fe3O4/graphene oxide (Fe3O4/ GO) nanoparticles. The characterization with transmission electron microscope (TEM) indicated that the products possessed small particle size. The hysteresis loop of the dried Fe3O4/GO nanoparticles demonstrated that the sample had typical features of superparamagnetic material. Batch adsorption studies were carried out to investigate the effects of the initial pH of the solution, the dosage of adsorbent, the contact time and temperature on the adsorption of methylene blue. The results indicated that the composites prepared could be used over a broad pH range (pH 6-9). The adsorption process was very fast within the first 25 min and the equilibrium was reached at 180 min. The adsorption equilibrium and kinetics data fitted well with the Langmuir isotherm model and the pseudo-second-order kinetic model. The adsorption process was a spontaneous and endothermic process in nature. The composite exhibited fairly high adsorption capacity (196.5 mg.g-1) of methylene blue at 313 K. In addition, the magnetic composite could be effectively and simply separated by using an external magnetic field, and then regenerated by hydrogen peroxide and recycled for further use. The results indicated that the adsorbent had a potential in the application of the dye wastewater treatment.

  5. Fe3 O4 Anisotropic Nanostructures in Hydrogels: Efficient Catalysts for the Rapid Removal of Organic Dyes from Wastewater.

    PubMed

    Gao, Yang; Hu, Chen; Zheng, Wen Jiang; Yang, Sen; Li, Fei; Sun, Shao Dong; Zrínyi, Miklós; Osada, Yoshihito; Yang, Zhi Mao; Chen, Yong Mei

    2016-07-01

    Fe3 O4 anisotropic nanostructures that exhibit excellent catalytic performance are rarely used to catalyze Fenton-like reactions because of the inevitable drawbacks resulting from traditional preparation methods. In this study, a facile, nontoxic, water-based approach is developed for directly regulating a series of anisotropic morphologies of Fe3 O4 nanostructures in a hydrogel matrix. In having the advantages of both the catalytic activity of Fe3 O4 and the adsorptive capacity of an anionic polymer network, the hybrid nanocomposites have the capability to effect the rapid removal of cationic dyes, such as methylene blue, from water samples. Perhaps more interestingly, hybrid nanocomposites loaded with Fe3 O4 nanorods exhibit the highest catalytic activity compared to those composed of nanoneedles and nanooctahedra, revealing the important role of nanostructure morphology. By means of scanning electrochemical microscopy, it is revealed that Fe3 O4 nanorods can efficiently catalyze H2 O2 decomposition and thus generate more free radicals ((.) OH, (.) HO2 ) for methylene blue degradation, which might account for their high catalytic activity.

  6. Fe3 O4 Anisotropic Nanostructures in Hydrogels: Efficient Catalysts for the Rapid Removal of Organic Dyes from Wastewater.

    PubMed

    Gao, Yang; Hu, Chen; Zheng, Wen Jiang; Yang, Sen; Li, Fei; Sun, Shao Dong; Zrínyi, Miklós; Osada, Yoshihito; Yang, Zhi Mao; Chen, Yong Mei

    2016-07-01

    Fe3 O4 anisotropic nanostructures that exhibit excellent catalytic performance are rarely used to catalyze Fenton-like reactions because of the inevitable drawbacks resulting from traditional preparation methods. In this study, a facile, nontoxic, water-based approach is developed for directly regulating a series of anisotropic morphologies of Fe3 O4 nanostructures in a hydrogel matrix. In having the advantages of both the catalytic activity of Fe3 O4 and the adsorptive capacity of an anionic polymer network, the hybrid nanocomposites have the capability to effect the rapid removal of cationic dyes, such as methylene blue, from water samples. Perhaps more interestingly, hybrid nanocomposites loaded with Fe3 O4 nanorods exhibit the highest catalytic activity compared to those composed of nanoneedles and nanooctahedra, revealing the important role of nanostructure morphology. By means of scanning electrochemical microscopy, it is revealed that Fe3 O4 nanorods can efficiently catalyze H2 O2 decomposition and thus generate more free radicals ((.) OH, (.) HO2 ) for methylene blue degradation, which might account for their high catalytic activity. PMID:26955896

  7. Tailoring mechanical and antibacterial properties of chitosan/gelatin nanofiber membranes with Fe3O4 nanoparticles for potential wound dressing application

    NASA Astrophysics Data System (ADS)

    Cai, Ning; Li, Chao; Han, Chao; Luo, Xiaogang; Shen, Liang; Xue, Yanan; Yu, Faquan

    2016-04-01

    In this work, magnetic Fe3O4 nanoparticles (NPs) were utilized to improve the mechanical and antibacterial properties of chitosan (CS)/gelatin (GE) composite nanofiber membranes. Homogeneous Fe3O4/CS/GE nanofibers were electrospun successfully. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images confirmed the presence of well-dispersed Fe3O4 NPs in the composite nanofibers. Fourier transform infrared spectroscopy (FTIR) spectra revealed the effective interactions of Fe3O4 NPs to the composite matrix through hydrogen bonding. The improvement on the thermal stability of the Fe3O4/CS/GE was observed by differential scanning calorimetry (DSC) and thermo gravimetric analysis (TGA), which is tightly correlated to strong filler-matrix adhesion. The incorporation of Fe3O4 NPs resulted in a substantial enhancement of mechanical properties. The optimum mechanical performance was demonstrated on 1 wt% Fe3O4/CS/GE nanofiber membranes, achieving 155% augment of Young's modulus, 128% increase of tensile strength, and 100% boost of toughness from CS/GE. The excellent mechanical enhancement can be explained by the effective dispersion of fillers and the filler-matrix interactions, which ensures the efficient load transfer from CS/GE matrix to Fe3O4 nanofillers. Moreover, zones of inhibition for Escherichia coli and Staphylococcus aureus expanded markedly with the supplement of Fe3O4 NPs. In all, nanofiber membranes made of Fe3O4/CS/GE composite with tailored mechanical and antibacterial properties appear a promising wound dressing material.

  8. Schottky barrier effect on the electrical properties of Fe3O4/ZnO and Fe3O4/Nb : SrTiO3 heterostructures

    NASA Astrophysics Data System (ADS)

    Yang, Kiwon; Kim, D. H.; Dho, Joonghoe

    2011-09-01

    The current-voltage (I-V) characteristics of Fe3O4/Nb-doped SrTiO3(Nb : STO) and Fe3O4/ZnO junctions prepared by pulsed laser deposition were investigated as a function of temperature. The rectifying behaviour was more distinctive in Fe3O4/Nb : STO than in the Fe3O4/ZnO. Contrary to Fe3O4/Nb : STO, remarkably, the current flow in Fe3O4/ZnO was slightly larger for negative bias voltages than for positive bias voltages. The threshold voltage in Fe3O4/Nb : STO dramatically shifted to a higher voltage by decreasing the temperature, and hysteresis behaviour with a cyclic voltage sweep appeared below 120 K. Upon cooling, the rectifying behaviour in Fe3O4/ZnO gradually disappeared within the measurement range. The observed difference between Fe3O4/Nb : STO and Fe3O4/ZnO could be explained by the shape and height of the Schottky barrier which was determined by the relative magnitude of the work functions of the two contact materials. The formation of the Schottky barrier presumably resulted from an upward shift of the interface band in Fe3O4/Nb : STO, while a little downward shift of the interface band occurred in Fe3O4/ZnO. In addition, Al-doping into ZnO induced a complete disappearance of the Schottky barrier in the Fe3O4/Al-doped ZnO junction.

  9. A facile synthesis of superparamagnetic Fe3O4 supraparticles@MIL-100(Fe) core-shell nanostructures: Preparation, characterization and biocompatibility.

    PubMed

    Yu, Shoushan; Wan, Jiaqi; Chen, Kezheng

    2016-01-01

    Superparamagnetic Fe3O4 supraparticles@MIL-100(Fe) core-shell nanostructure microspheres were successfully constructed by a facile step-by-step method. The polyacrylate formed in situ during the process of the preparation of Fe3O4 supraparticles not only acted as a stabilizer on the Fe3O4 nanoparticles surface, but also played a crucial role as a "bridge" in the initial stage of the framework components selectively assembly on the Fe3O4 supraparticle surfaces. The structure and composition of the obtained microspheres were characterized by SEM, TEM, DLS, XRD, FTIR, and TG analysis. The MPMS results revealed that the introduction of the MOF shells can inhibit the interplay among the neighboring Fe3O4 supraparticles while an external magnetic field applied. The well-dispersed microspheres are biocompatible, which endow the microspheres great potential in drug targeting applications with enhanced efficiency. PMID:26397925

  10. Synthesis and characterization of Fe3O4-TiO2 core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Stefan, M.; Pana, O.; Leostean, C.; Bele, C.; Silipas, D.; Senila, M.; Gautron, E.

    2014-09-01

    Composite core-shell nanoparticles may have morpho-structural, magnetic, and optical (photoluminescence (PL)) properties different from each of the components considered separately. The properties of Fe3O4-TiO2 nanoparticles can be controlled by adjusting the titania amount (shell thinness). Core-shell nanoparticles were prepared by seed mediated growth of semiconductor (TiO2) through a modified sol-gel process onto preformed magnetite (Fe3O4) cores resulted from the co-precipitation method. The structure and morphology of samples were characterized by X-ray diffraction, transmission electron microscopy (TEM), and high resolution-TEM respectively. X-ray photoelectron spectroscopy was correlated with ICP-AES. Magnetic measurements, optical absorption spectra, as well as PL spectroscopy indicate the presence of a charge/spin transfer from the conduction band of magnetite into the band gap of titania nanocrystals. The process modifies both Fe3O4 and TiO2 magnetic and optical properties, respectively.

  11. Coupling Hollow Fe3O4-Fe Nanoparticles with Graphene Sheets for High-Performance Electromagnetic Wave Absorbing Material.

    PubMed

    Qu, Bin; Zhu, Chunling; Li, Chunyan; Zhang, Xitian; Chen, Yujin

    2016-02-17

    We developed a strategy for coupling hollow Fe3O4-Fe nanoparticles with graphene sheets for high-performance electromagnetic wave absorbing material. The hollow Fe3O4-Fe nanoparticles with average diameter and shell thickness of 20 and 8 nm, respectively, were uniformly anchored on the graphene sheets without obvious aggregation. The minimal reflection loss RL values of the composite could reach -30 dB at the absorber thickness ranging from 2.0 to 5.0 mm, greatly superior to the solid Fe3O4-Fe/G composite and most magnetic EM wave absorbing materials recently reported. Moreover, the addition amount of the composite into paraffin matrix was only 18 wt %.

  12. Amino-Fe3O4 Microspheres Directed Synthesis of a Series of Polyaniline Hierarchical Nanostructures with Different Wettability.

    PubMed

    Ma, Yong; Chen, Yanhui; Hou, Chunping; Zhang, Hao; Qiao, Mingtao; Zhang, Hepeng; Zhang, Qiuyu

    2016-01-01

    We demonstrated polyaniline (PANI) dimensional transformation by adding trace amino-Fe3O4 microspheres to aniline polymerization. Different PANI nanostructures (i.e., flowers, tentacles, and nanofibers) could be produced by controlling the nucleation position and number on the surface of Fe3O4 microspheres, where hydrogen bonding were spontaneously formed between amino groups of Fe3O4 microspheres and aniline molecules. By additionally introducing an external magnetic field, PANI towers were obtained. These PANI nanostructures displayed distinctly different surface wettability in the range from hydrophobicity to hydrophilicity, which was ascribed to the synergistic effect of their dimension, hierarchy, and size. Therefore, the dimension and property of PANI nanostructures can be largely rationalized and predicted by adjusting the PANI nucleation and growth. Using PANI as a model system, the strategies presented here provide insight into the general scheme of dimension and structure control for other conducting polymers. PMID:27633753

  13. Amino-Fe3O4 Microspheres Directed Synthesis of a Series of Polyaniline Hierarchical Nanostructures with Different Wettability

    NASA Astrophysics Data System (ADS)

    Ma, Yong; Chen, Yanhui; Hou, Chunping; Zhang, Hao; Qiao, Mingtao; Zhang, Hepeng; Zhang, Qiuyu

    2016-09-01

    We demonstrated polyaniline (PANI) dimensional transformation by adding trace amino-Fe3O4 microspheres to aniline polymerization. Different PANI nanostructures (i.e., flowers, tentacles, and nanofibers) could be produced by controlling the nucleation position and number on the surface of Fe3O4 microspheres, where hydrogen bonding were spontaneously formed between amino groups of Fe3O4 microspheres and aniline molecules. By additionally introducing an external magnetic field, PANI towers were obtained. These PANI nanostructures displayed distinctly different surface wettability in the range from hydrophobicity to hydrophilicity, which was ascribed to the synergistic effect of their dimension, hierarchy, and size. Therefore, the dimension and property of PANI nanostructures can be largely rationalized and predicted by adjusting the PANI nucleation and growth. Using PANI as a model system, the strategies presented here provide insight into the general scheme of dimension and structure control for other conducting polymers.

  14. Amino-Fe3O4 Microspheres Directed Synthesis of a Series of Polyaniline Hierarchical Nanostructures with Different Wettability

    PubMed Central

    Ma, Yong; Chen, Yanhui; Hou, Chunping; Zhang, Hao; Qiao, Mingtao; Zhang, Hepeng; Zhang, Qiuyu

    2016-01-01

    We demonstrated polyaniline (PANI) dimensional transformation by adding trace amino-Fe3O4 microspheres to aniline polymerization. Different PANI nanostructures (i.e., flowers, tentacles, and nanofibers) could be produced by controlling the nucleation position and number on the surface of Fe3O4 microspheres, where hydrogen bonding were spontaneously formed between amino groups of Fe3O4 microspheres and aniline molecules. By additionally introducing an external magnetic field, PANI towers were obtained. These PANI nanostructures displayed distinctly different surface wettability in the range from hydrophobicity to hydrophilicity, which was ascribed to the synergistic effect of their dimension, hierarchy, and size. Therefore, the dimension and property of PANI nanostructures can be largely rationalized and predicted by adjusting the PANI nucleation and growth. Using PANI as a model system, the strategies presented here provide insight into the general scheme of dimension and structure control for other conducting polymers. PMID:27633753

  15. Magnetic nanoparticle of Fe3O4 and 5-bromotetrandrin interact synergistically to induce apoptosis by daunorubicin in leukemia cells

    PubMed Central

    Chen, Baoan; Cheng, Jian; Shen, Mingfang; Gao, Feng; Xu, Wenlin; Shen, Huilin; Ding, Jiahua; Gao, Chong; Sun, Qian; Sun, Xinchen; Cheng, Hongyan; Li, Guohong; Chen, Wenji; Chen, Ningna; Liu, Lijie; Li, Xiaomao; Wang, Xuemei

    2009-01-01

    Apoptosis is a common pathway that finally mediated the killing functions of anticancer drugs, which is an important cause of multidrug resistance (MDR). The aim of this study was to investigate the potential benefit of combination therapy with magnetic nanoparticle of Fe3O4 (MNP(Fe3O4)) and 5-bromotetrandrin (BrTet). Analysis of the apoptosis percentage showed that combination of daunorubicin (DNR) with either MNP(Fe3O4) or BrTet exerted a potent cytotoxic effect on K562/A02 cells, while MNP(Fe3O4) and BrTet cotreatment can synergistically enhance DNR-induced apoptosis. Importantly, we confirmed that the distinct synergism effect of that composite on reverse multidrug resistance may owe to the regulation of various proliferative and antiapoptotic gene products, including P53 and caspase-3. Thus our in vitro data strongly suggests a potential clinical application of MNP(Fe3O4) and BrTet combination on CML. PMID:19421371

  16. Microbial synthesis of Pd/Fe3O4, Au/Fe3O4 and PdAu/Fe3O4 nanocomposites for catalytic reduction of nitroaromatic compounds

    PubMed Central

    Tuo, Ya; Liu, Guangfei; Dong, Bin; Zhou, Jiti; Wang, Aijie; Wang, Jing; Jin, Ruofei; Lv, Hong; Dou, Zeou; Huang, Wenyu

    2015-01-01

    Magnetically recoverable noble metal nanoparticles are promising catalysts for chemical reactions. However, the chemical synthesis of these nanocatalysts generally causes environmental concern due to usage of toxic chemicals under extreme conditions. Here, Pd/Fe3O4, Au/Fe3O4 and PdAu/Fe3O4 nanocomposites are biosynthesized under ambient and physiological conditions by Shewanella oneidensis MR-1. Microbial cells firstly transform akaganeite into magnetite, which then serves as support for the further synthesis of Pd, Au and PdAu nanoparticles from respective precursor salts. Surface-bound cellular components and exopolysaccharides not only function as shape-directing agent to convert some Fe3O4 nanoparticles to nanorods, but also participate in the formation of PdAu alloy nanoparticles on magnetite. All these three kinds of magnetic nanocomposites can catalyze the reduction of 4-nitrophenol and some other nitroaromatic compounds by NaBH4. PdAu/Fe3O4 demonstrates higher catalytic activity than Pd/Fe3O4 and Au/Fe3O4. Moreover, the magnetic nanocomposites can be easily recovered through magnetic decantation after catalysis reaction. PdAu/Fe3O4 can be reused in at least eight successive cycles of 4-nitrophenol reduction. The biosynthesis approach presented here does not require harmful agents or rigorous conditions and thus provides facile and environmentally benign choice for the preparation of magnetic noble metal nanocatalysts. PMID:26310728

  17. The Influence of Active Carbon Supports Toward the Electrocatalytic Behavior of Fe3O4 Nanoparticles for the Extended Energy Generation of Mediatorless Microbial Fuel Cells.

    PubMed

    Park, In Ho; Kim, Pil; Gnana Kumar, G; Nahm, Kee Suk

    2016-08-01

    Magnetite (Fe3O4) nanoparticles anchored over the different active carbon supports were developed by a simple wet solution method. The developed nanostructures were magnetically self-assembled over the electrode surface and exploited as anode catalysts in mediatorless microbial fuel cells (MFC). The morphological characterizations revealed that 3∼8-nm-sized Fe3O4 nanoparticles were homogeneously anchored over the different carbon matrices and the obtained diffraction patterns ensured the cubic inverse spinel structure of prepared Fe3O4 nanoparticles. The morphology, size, and structure of Fe3O4 nanoparticles anchored over the different active carbon supports were maintained identical, and the influence of active carbon support toward the effectual MFC performances was evaluated under various electrochemical regimes and conditions by using Escherichia coli as a catalytic microorganism. The electrochemical characterizations revealed that carbon nanotube (CNT)-supported Fe3O4 nanoparticles exhibited lower charge transfer resistance and high coulombic efficiency in comparison with the graphene and graphite nanofiber-supported composites. Among the studied anode catalysts, Fe3O4/CNT composite exhibited the maximum MFC power density of 865 mW m(-2) associated with excellent durability performances, owing to the specific interaction exerted between the microorganisms and the Fe3O4/CNT composite. Thus, the binder-free electrode modification process, mediatorless environment, rapid electron transfer kinetics, high power generation, and long durability performances achieved for the developed system paved futuristic dimensions for the high performance MFCs. PMID:27038051

  18. The Influence of Active Carbon Supports Toward the Electrocatalytic Behavior of Fe3O4 Nanoparticles for the Extended Energy Generation of Mediatorless Microbial Fuel Cells.

    PubMed

    Park, In Ho; Kim, Pil; Gnana Kumar, G; Nahm, Kee Suk

    2016-08-01

    Magnetite (Fe3O4) nanoparticles anchored over the different active carbon supports were developed by a simple wet solution method. The developed nanostructures were magnetically self-assembled over the electrode surface and exploited as anode catalysts in mediatorless microbial fuel cells (MFC). The morphological characterizations revealed that 3∼8-nm-sized Fe3O4 nanoparticles were homogeneously anchored over the different carbon matrices and the obtained diffraction patterns ensured the cubic inverse spinel structure of prepared Fe3O4 nanoparticles. The morphology, size, and structure of Fe3O4 nanoparticles anchored over the different active carbon supports were maintained identical, and the influence of active carbon support toward the effectual MFC performances was evaluated under various electrochemical regimes and conditions by using Escherichia coli as a catalytic microorganism. The electrochemical characterizations revealed that carbon nanotube (CNT)-supported Fe3O4 nanoparticles exhibited lower charge transfer resistance and high coulombic efficiency in comparison with the graphene and graphite nanofiber-supported composites. Among the studied anode catalysts, Fe3O4/CNT composite exhibited the maximum MFC power density of 865 mW m(-2) associated with excellent durability performances, owing to the specific interaction exerted between the microorganisms and the Fe3O4/CNT composite. Thus, the binder-free electrode modification process, mediatorless environment, rapid electron transfer kinetics, high power generation, and long durability performances achieved for the developed system paved futuristic dimensions for the high performance MFCs.

  19. Preparation of the chitosan grafted poly (quaternary ammonium)/Fe3O4 nanoparticles and its adsorption performance for food yellow 3.

    PubMed

    Yu, Chen; Geng, Jianqiang; Zhuang, Yunxia; Zhao, Jian; Chu, Liqiu; Luo, Xiaoxuan; Zhao, Ying; Guo, Yanwen

    2016-11-01

    Chitosan and its derivatives can be used to modify magnetic materials to promote the adsorption properties of the magnetic materials and avoid the weakness of chitosan and its derivatives. In the present study, chitosan grafted poly(trimethyl allyl ammonium chloride) (CTS-g-PTMAAC) was prepared by graft copolymerization; then it was coated on the surfaces of the sodium citrate coated Fe3O4 nanoparticles (SC-Fe3O4) to prepare a novel composite CTS-g-PTMAAC/SC-Fe3O4 magnetic nanoparticles, with which possesses abundant surface positive charges. The structure and properties of the CTS-g-PTMAAC/SC-Fe3O4 composite magnetic nanoparticles were characterized by FTIR, TEM, VSM, and zeta potential. The dye adsorption characteristics of the CTS-g-PTMAAC/SC-Fe3O4 nanoparticles were determined using the food yellow 3 aqueous solutions as a model food effluent. Effect of pH of the dye solution on the adsorption of food yellow 3 was determined and compared with N-2-hydroxylpropyl trimethyl ammonium chloride chitosan coated sodium citrate-Fe3O4 (CTS-g-HTCC/SC-Fe3O4) composite magnetic nanoparticles. The adsorption kinetics, adsorption isotherms, adsorption thermodynamics, and desorption and reusability of the magnetic nanoparticles were investigated. PMID:27516279

  20. Preparation of the chitosan grafted poly (quaternary ammonium)/Fe3O4 nanoparticles and its adsorption performance for food yellow 3.

    PubMed

    Yu, Chen; Geng, Jianqiang; Zhuang, Yunxia; Zhao, Jian; Chu, Liqiu; Luo, Xiaoxuan; Zhao, Ying; Guo, Yanwen

    2016-11-01

    Chitosan and its derivatives can be used to modify magnetic materials to promote the adsorption properties of the magnetic materials and avoid the weakness of chitosan and its derivatives. In the present study, chitosan grafted poly(trimethyl allyl ammonium chloride) (CTS-g-PTMAAC) was prepared by graft copolymerization; then it was coated on the surfaces of the sodium citrate coated Fe3O4 nanoparticles (SC-Fe3O4) to prepare a novel composite CTS-g-PTMAAC/SC-Fe3O4 magnetic nanoparticles, with which possesses abundant surface positive charges. The structure and properties of the CTS-g-PTMAAC/SC-Fe3O4 composite magnetic nanoparticles were characterized by FTIR, TEM, VSM, and zeta potential. The dye adsorption characteristics of the CTS-g-PTMAAC/SC-Fe3O4 nanoparticles were determined using the food yellow 3 aqueous solutions as a model food effluent. Effect of pH of the dye solution on the adsorption of food yellow 3 was determined and compared with N-2-hydroxylpropyl trimethyl ammonium chloride chitosan coated sodium citrate-Fe3O4 (CTS-g-HTCC/SC-Fe3O4) composite magnetic nanoparticles. The adsorption kinetics, adsorption isotherms, adsorption thermodynamics, and desorption and reusability of the magnetic nanoparticles were investigated.

  1. Core-shell SiO2 -coated Fe3 O4 with a surface molecularly imprinted polymer coating of folic acid and its applicable magnetic solid-phase extraction prior to determination of folates in tomatoes.

    PubMed

    Areerob, Yonrapach; Sricharoen, Phitchan; Limchoowong, Nunticha; Chanthai, Saksit

    2016-08-01

    A novel core-shell magnetic surface molecularly imprinted polymer with folic acid as a template was successfully synthesized by the sol-gel method. To generate Lewis acid sites in the silica matrix for the interaction of the metal coordinate with the template, 3-aminopropyltriethoxysilane was used as a functional monomer, tetraethyl orthosilicate as a cross-linker, and aluminum ions as a dopant. The magnetite encapsulated by the silica shell plays an important role as a magnetic-coated polymer. The synthesized product was characterized by powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and FTIR and UV/Vis spectroscopy. The powder X-ray diffraction patterns, FTIR and UV/Vis spectra confirmed the characteristics of the as-prepared silica coated magnetite and folic acid molecularly imprinted polymer. It was successfully applied for magnetic solid-phase extraction prior to the determination of folates in tomato samples using high-performance liquid chromatography with photodiode array detection. The detection limit of the proposed method was 1.67 μg/L, and results were satisfactory, with a relative standard deviation of < 3.94%. PMID:27296679

  2. One-pot green synthesis of reduced graphene oxide (RGO)/Fe3O4 nanocomposites and its catalytic activity toward methylene blue dye degradation

    NASA Astrophysics Data System (ADS)

    Vinothkannan, M.; Karthikeyan, C.; Gnana kumar, G.; Kim, Ae Rhan; Yoo, Dong Jin

    2015-02-01

    The reduced graphene oxide (RGO)/Fe3O4 nanocomposites were synthesized through a facile one-pot green synthesis by using solanum trilobatum extract as a reducing agent. Spherical shaped Fe3O4 nanoparticles with the diameter of 18 nm were uniformly anchored over the RGO matrix and the existence of fcc structured Fe3O4 nanoparticles over the RGO matrix was ensured from X-ray diffraction patterns. The amide functional groups exist in the solanum trilobatum extract is directly responsible for the reduction of Fe3+ ions and GO. The thermal stability of GO was increased by the removal of hydrophilic functional groups via solanum trilobatum extract and was further promoted by the ceramic Fe3O4 nanoparticles. The ID/IG ratio of RGO/Fe3O4 was increased over GO, indicating the extended number of structural defects and disorders in the RGO/Fe3O4 composite. The catalytic efficiency of prepared nanostructures toward methylene blue (MB) dye degradation mediated through the electron transfer process of BH4- ions was studied in detail. The π-π stacking, hydrogen bonding and electrostatic interaction exerted between the RGO/Fe3O4 composite and methylene blue, increased the adsorption efficiency of dye molecules and the large surface area and extended number of active sites completely degraded the MB dye within 12 min.

  3. Synthesis of Fe3O4 and Pt nanoparticles on reduced graphene oxide and their use as a recyclable catalyst.

    PubMed

    Wu, Shixin; He, Qiyuan; Zhou, Chunmei; Qi, Xiaoying; Huang, Xiao; Yin, Zongyou; Yang, Yanhui; Zhang, Hua

    2012-04-01

    A bifunctional Fe(3)O(4)-Pt/reduced graphene oxide (rGO) composite, i.e. Fe(3)O(4) nanoparticles (~4.8 nm in size) and Pt nanoparticles (~5 nm in size) loaded on a rGO surface, has been synthesized. It shows great catalytic performance for the reduction of methylene blue. Recycling of the composite can be achieved by simply applying an external magnetic field. In addition, the Fe(3)O(4)-Pt/rGO composite exhibits a higher catalytic activity and selectivity for aqueous-phase aerobic oxidation of benzyl alcohol than does the FeO(x)-Pt on carbon nanotubes (i.e. FeO(x)-Pt/CNT composite). Moreover, the approach for the synthesis of Fe(3)O(4)-Pt/rGO composite is simple, and can be widely employed to produce other rGO-based composites with special properties. Our work indicates that the rGO-based bifunctional composite has great potential for practical applications in various fields, such as catalytic reaction, electrochemical sensing, clean energy, etc. PMID:22388949

  4. Electrochemical sensing behaviour of Ni doped Fe3O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Suresh, R.; Giribabu, K.; Manigandan, R.; Vijayalakshmi, L.; Stephen, A.; Narayanan, V.

    2014-01-01

    Ni doped Fe3O4 nanoparticles were synthesized by simple hydrothermal method. The prepared nanomaterials were characterized by X-ray diffraction analysis, DRS-UV-Visible spectroscopy and field emission scanning electron microscopy. The XRD confirms the phase purity of the synthesized Ni doped Fe3O4 nanoparticles. The optical property of Ni doped Fe3O4 nanoparticles were studied by DRS UV-Visible analysis. The electrochemical sensing property of pure and Ni doped Fe3O4 nanoparticles were examined using uric acid as an analyte. The obtained results indicated that the Ni doped Fe3O4 nanoparticles exhibited higher electrocatalytic activity towards uric acid.

  5. Chitosan and O-carboxymethyl chitosan modified Fe3O4 for hyperthermic treatment

    NASA Astrophysics Data System (ADS)

    Thu Trang Mai, Thi; Thu Ha, Phuong; Pham, Hong Nam; Thu Huong Le, Thi; Linh Pham, Hoai; Bich Hoa Phan, Thi; Tran, Dai Lam; Phuc Nguyen, Xuan

    2012-03-01

    In this study magnetic fluids were manufactured by the adsorption of chitosan (CS) and O-carboxymethyl chitosan (OCMCS) on Fe3O4 nanoparticles to be used as hyperthermic thermoseeds. Fe3O4 particles were characterized by physico-chemical methods such as: thermogravimetry analysis (TGA), x-ray diffraction (XRD), Raman spectrum, Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and vibrating sample magnetometer (VSM). The SEM images and XRD patterns showed that the synthesized Fe3O4 nanoparticles were of single phase and spherical shape with 10–15 nm in diameter. The VSM measurements showed that Fe3O4 particles were superparamagnetic with saturation magnetization of 70 emu g‑1. The adsorbed layers of CS and OCMCS on the magnetite surface (Fe3O4/CS) and (Fe3O4/OCMCS) were confirmed by FTIR, Raman spectra and SEM. In the ac magnetic field of 80 Oe and 236 kHz, the saturation heating temperatures of the sample Fe3O4/CS and Fe3O4/OCMCS were 100 and 98 °C, respectively. At the same concentration of Fe3O4 nanoparticles in suspension, the two magnetic fluids exhibited quite high heating capacity, with different behaviors of concentration dependence. The Fe3O4/CS and Fe3O4/OCMCS nanoparticles would serve as good thermoseeds for localized hyperthermia treatment of cancers.

  6. Chitosan and O-carboxymethyl chitosan modified Fe3O4 for hyperthermic treatment

    NASA Astrophysics Data System (ADS)

    Thu Trang Mai, Thi; Thu Ha, Phuong; Pham, Hong Nam; Thu Huong Le, Thi; Linh Pham, Hoai; Bich Hoa Phan, Thi; Tran, Dai Lam; Phuc Nguyen, Xuan

    2012-03-01

    In this study magnetic fluids were manufactured by the adsorption of chitosan (CS) and O-carboxymethyl chitosan (OCMCS) on Fe3O4 nanoparticles to be used as hyperthermic thermoseeds. Fe3O4 particles were characterized by physico-chemical methods such as: thermogravimetry analysis (TGA), x-ray diffraction (XRD), Raman spectrum, Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and vibrating sample magnetometer (VSM). The SEM images and XRD patterns showed that the synthesized Fe3O4 nanoparticles were of single phase and spherical shape with 10-15 nm in diameter. The VSM measurements showed that Fe3O4 particles were superparamagnetic with saturation magnetization of 70 emu g-1. The adsorbed layers of CS and OCMCS on the magnetite surface (Fe3O4/CS) and (Fe3O4/OCMCS) were confirmed by FTIR, Raman spectra and SEM. In the ac magnetic field of 80 Oe and 236 kHz, the saturation heating temperatures of the sample Fe3O4/CS and Fe3O4/OCMCS were 100 and 98 °C, respectively. At the same concentration of Fe3O4 nanoparticles in suspension, the two magnetic fluids exhibited quite high heating capacity, with different behaviors of concentration dependence. The Fe3O4/CS and Fe3O4/OCMCS nanoparticles would serve as good thermoseeds for localized hyperthermia treatment of cancers.

  7. One-step synthesis of novel PANI-Fe3O4@ZnO core-shell microspheres: An efficient photocatalyst under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoyuan; Wu, Jianning; Meng, Guihua; Guo, Xuhong; Liu, Chang; Liu, Zhiyong

    2016-03-01

    For the first time, novel multifunctional superparamagnetic PANI-Fe3O4@ZnO core-shell composite photocatalysts with different PANI: ZnO ratios were synthesized by Pickering emulsion route in one step in the presence of ZnO nanoparticles. PANI-Fe3O4@ZnO core-shell microspheres consist of PANI core which embedded with Fe3O4-OA (oleic acid modified Fe3O4) nanoparticles and tunable ZnO shell thickness. The resulting samples were thoroughly studied by using X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), transmission electron microscopy (TEM), scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDS). The catalytic activity of the as-prepared PANI-Fe3O4@ZnO core-shell microspheres is investigated by the degradation of MB under visible light irradiation. As expected, the as prepared PANI-Fe3O4@ZnO photocatalysts exhibit highly enhanced photocatalytic activities in the degradation of MB under visible light irradiation owing to fast separation of photo-generated electron-hole pairs. Significantly, the PANI-Fe3O4@ZnO catalysts can be separated from the reaction media by applying an external magnet, and can be reused for seven cycles without change in stability and degradation efficiency.

  8. Rapid degradation of methylene blue in a novel heterogeneous Fe3O4 @rGO@TiO2-catalyzed photo-Fenton system.

    PubMed

    Yang, Xiaoling; Chen, Wei; Huang, Jianfei; Zhou, Ying; Zhu, Yihua; Li, Chunzhong

    2015-05-22

    Herein, a ternary nanocomposite with TiO2 nanoparticles anchored on reduced graphene oxide (rGO)-encapsulated Fe3O4 spheres (Fe3O4@rGO@TiO2) is presented as a high efficient heterogeneous catalyst for photo-Fenton degradation of recalcitrant pollutants under neutral pH. Fe3O4@rGO@TiO2 was synthesized by depositing TiO2 nanoparticles on the surface of the Fe3O4 spheres wrapped by graphene oxide (GO) which was obtained by an electrostatic layer-by-layer method. This as-prepared catalyst reflected good ferromagnetism and superior stability which makes it convenient to be separated and recycled. Due to the synergic effects between the different components composed the catalyst, swift reduction of Fe(3+) can be achieved to regenerate Fe(2+). Fe3O4@rGO@TiO2 exhibited enhancing catalytic activity for the degradation of azo-dyes compared with Fe3O4, Fe3O4@SiO2@TiO2 or SiO2@rGO@TiO2, further conforming the rapid redox reaction between Fe(2+) and Fe(3+). All these merits indicate that the composite catalyst possesses great potential for visible-light driven destruction of organic compounds.

  9. Rapid degradation of methylene blue in a novel heterogeneous Fe3O4 @rGO@TiO2-catalyzed photo-Fenton system.

    PubMed

    Yang, Xiaoling; Chen, Wei; Huang, Jianfei; Zhou, Ying; Zhu, Yihua; Li, Chunzhong

    2015-01-01

    Herein, a ternary nanocomposite with TiO2 nanoparticles anchored on reduced graphene oxide (rGO)-encapsulated Fe3O4 spheres (Fe3O4@rGO@TiO2) is presented as a high efficient heterogeneous catalyst for photo-Fenton degradation of recalcitrant pollutants under neutral pH. Fe3O4@rGO@TiO2 was synthesized by depositing TiO2 nanoparticles on the surface of the Fe3O4 spheres wrapped by graphene oxide (GO) which was obtained by an electrostatic layer-by-layer method. This as-prepared catalyst reflected good ferromagnetism and superior stability which makes it convenient to be separated and recycled. Due to the synergic effects between the different components composed the catalyst, swift reduction of Fe(3+) can be achieved to regenerate Fe(2+). Fe3O4@rGO@TiO2 exhibited enhancing catalytic activity for the degradation of azo-dyes compared with Fe3O4, Fe3O4@SiO2@TiO2 or SiO2@rGO@TiO2, further conforming the rapid redox reaction between Fe(2+) and Fe(3+). All these merits indicate that the composite catalyst possesses great potential for visible-light driven destruction of organic compounds. PMID:26000975

  10. Rapid degradation of methylene blue in a novel heterogeneous Fe3O4 @rGO@TiO2-catalyzed photo-Fenton system

    PubMed Central

    Yang, Xiaoling; Chen, Wei; Huang, Jianfei; Zhou, Ying; Zhu, Yihua; Li, Chunzhong

    2015-01-01

    Herein, a ternary nanocomposite with TiO2 nanoparticles anchored on reduced graphene oxide (rGO)-encapsulated Fe3O4 spheres (Fe3O4@rGO@TiO2) is presented as a high efficient heterogeneous catalyst for photo-Fenton degradation of recalcitrant pollutants under neutral pH. Fe3O4@rGO@TiO2 was synthesized by depositing TiO2 nanoparticles on the surface of the Fe3O4 spheres wrapped by graphene oxide (GO) which was obtained by an electrostatic layer-by-layer method. This as-prepared catalyst reflected good ferromagnetism and superior stability which makes it convenient to be separated and recycled. Due to the synergic effects between the different components composed the catalyst, swift reduction of Fe3+ can be achieved to regenerate Fe2+. Fe3O4@rGO@TiO2 exhibited enhancing catalytic activity for the degradation of azo-dyes compared with Fe3O4, Fe3O4@SiO2@TiO2 or SiO2@rGO@TiO2, further conforming the rapid redox reaction between Fe2+ and Fe3+. All these merits indicate that the composite catalyst possesses great potential for visible-light driven destruction of organic compounds. PMID:26000975

  11. Investigation of electric field effect on the third order nonlinear optical properties of Fe3O4 nanoparticles-doped nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Dehghani, Z.; Saievar Iranizad, E.; Nadafan, M.

    2015-01-01

    Third order nonlinearity of Fe3O4 nanoparticles (NPs) doped in nematic liquid crystals (NLCs) was evaluated due to laser induced self-phase modulation. The influence of electric field on the nonlinear optical responses of the NLCs doped with Fe3O4 NPs was considered in different voltages. The measurements were performed for two commonly initial alignments (homogeneous and homeotropic) with different small compositional percentages of magnetic NPs. The experimental results show that the homogenous- aligned cell was considerably affected on the applied electric field while the nonlinearity of homeotropic-aligned NLCs with the Fe3O4 NPs did not approximately change in the presence of electric field.

  12. Encapsulation of Fe3O4 Nanoparticles into N, S co-Doped Graphene Sheets with Greatly Enhanced Electrochemical Performance

    PubMed Central

    Yang, Zunxian; Qian, Kun; Lv, Jun; Yan, Wenhuan; Liu, Jiahui; Ai, Jingwei; Zhang, Yuxiang; Guo, Tailiang; Zhou, Xiongtu; Xu, Sheng; Guo, Zaiping

    2016-01-01

    Particular N, S co-doped graphene/Fe3O4 hybrids have been successfully synthesized by the combination of a simple hydrothermal process and a subsequent carbonization heat treatment. The nanostructures exhibit a unique composite architecture, with uniformly dispersed Fe3O4 nanoparticles and N, S co-doped graphene encapsulant. The particular porous characteristics with many meso/micro holes/pores, the highly conductive N, S co-doped graphene, as well as the encapsulating N, S co-doped graphene with the high-level nitrogen and sulfur doping, lead to excellent electrochemical performance of the electrode. The N-S-G/Fe3O4 composite electrode exhibits a high initial reversible capacity of 1362.2 mAhg−1, a high reversible specific capacity of 1055.20 mAhg−1 after 100 cycles, and excellent cycling stability and rate capability, with specific capacity of 556.69 mAhg−1 when cycled at the current density of 1000 mAg−1, indicating that the N-S-G/Fe3O4 composite is a promising anode candidate for Li-ion batteries. PMID:27296103

  13. Encapsulation of Fe3O4 Nanoparticles into N, S co-Doped Graphene Sheets with Greatly Enhanced Electrochemical Performance.

    PubMed

    Yang, Zunxian; Qian, Kun; Lv, Jun; Yan, Wenhuan; Liu, Jiahui; Ai, Jingwei; Zhang, Yuxiang; Guo, Tailiang; Zhou, Xiongtu; Xu, Sheng; Guo, Zaiping

    2016-01-01

    Particular N, S co-doped graphene/Fe3O4 hybrids have been successfully synthesized by the combination of a simple hydrothermal process and a subsequent carbonization heat treatment. The nanostructures exhibit a unique composite architecture, with uniformly dispersed Fe3O4 nanoparticles and N, S co-doped graphene encapsulant. The particular porous characteristics with many meso/micro holes/pores, the highly conductive N, S co-doped graphene, as well as the encapsulating N, S co-doped graphene with the high-level nitrogen and sulfur doping, lead to excellent electrochemical performance of the electrode. The N-S-G/Fe3O4 composite electrode exhibits a high initial reversible capacity of 1362.2 mAhg(-1), a high reversible specific capacity of 1055.20 mAhg(-1) after 100 cycles, and excellent cycling stability and rate capability, with specific capacity of 556.69 mAhg(-1) when cycled at the current density of 1000 mAg(-1), indicating that the N-S-G/Fe3O4 composite is a promising anode candidate for Li-ion batteries. PMID:27296103

  14. Preparation of multi-functionalized Fe3O4/Au nanoparticles for medical purposes.

    PubMed

    del Mar Ramos-Tejada, María; Viota, Julian L; Rudzka, Katarzyna; Delgado, Angel V

    2015-04-01

    In this work, we investigate a route towards the synthesis of multi-functionalized nanoparticles for medical purposes. The aim is to produce magnetite/gold (Fe3O4/Au) nanoparticles combining several complementary properties, specifically, being able to carry simultaneously an antitumor drug and a selected antibody chosen so as to improve specificity of the drug vehicle. The procedure included, firstly, the preparation of Fe3O4 cores coated with Au nanoparticles: this was achieved by using initially the layer-by-layer technique in order to coat the magnetite particles with a three polyelectrolyte (cationic-anionic-cationic) layer. With this, the particles became a good substrate for the growth of the gold layer in a well-defined core-shell structure. The resulting nanoparticles benefit from the magnetic properties of the magnetite and the robust chemistry and the biostability of gold surfaces. Subsequently, the Fe3O4/Au nanoparticles were functionalized with a humanized monoclonal antibody, bevacizumab, and a chemotherapy drug, doxorubicin. Taken together, bevacizumab enhances the therapeutic effect of chemotherapy agents on some kinds of tumors. In this work we first discuss the morphology of the particles and the electrical characteristics of their surface in the successive synthesis stages. Special attention is paid to the chemical stability of the final coating, and the physical stability of the suspensions of the nanoparticles in aqueous solutions and phosphate buffer. We describe how optical absorbance and electrokinetic data provide a follow up of the progress of the nanostructure formation. Additionally, the same techniques are employed to demonstrate that the composite nanoparticles are capable of loading/releasing doxorubicin and/or bevacizumab.

  15. Effect of Fe3O4 Nanoparticles on Skin Tumor Cells and Dermal Fibroblasts

    PubMed Central

    Alili, Lirija; Chapiro, Swetlana; Marten, Gernot U.; Schmidt, Annette M.; Zanger, Klaus; Brenneisen, Peter

    2015-01-01

    Iron oxide (Fe3O4) nanoparticles have been used in many biomedical approaches. The toxicity of Fe3O4 nanoparticles on mammalian cells was published recently. Though, little is known about the viability of human cells after treatment with Fe3O4 nanoparticles. Herein, we examined the toxicity, production of reactive oxygen species, and invasive capacity after treatment of human dermal fibroblasts (HDF) and cells of the squamous tumor cell line (SCL-1) with Fe3O4 nanoparticles. These nanoparticles had an average size of 65 nm. Fe3O4 nanoparticles induced oxidative stress via generation of reactive oxygen species (ROS) and subsequent initiation of lipid peroxidation. Furthermore, the question was addressed of whether Fe3O4 nanoparticles affect myofibroblast formation, known to be involved in tumor invasion. Herein, Fe3O4 nanoparticles prevent the expression alpha-smooth muscle actin and therefore decrease the number of myofibroblastic cells. Moreover, our data show in vitro that concentrations of Fe3O4 nanoparticles, which are nontoxic for normal cells, partially reveal a ROS-triggered cytotoxic but also a pro-invasive effect on the fraction of squamous cancer cells surviving the treatment with Fe3O4 nanoparticles. The data herein show that the Fe3O4 nanoparticles appear not to be adequate for use in therapeutic approaches against cancer cells, in contrast to recently published data with cerium oxide nanoparticles. PMID:26090418

  16. Supercritical carbon dioxide assisted deposition of Fe(3)O(4) nanoparticles on hierarchical porous carbon and their lithium-storage performance.

    PubMed

    Wang, Lingyan; Zhuo, Linhai; Zhang, Chao; Zhao, Fengyu

    2014-04-01

    A composite of highly dispersed Fe3 O4 nanoparticles (NPs) anchored in three-dimensional hierarchical porous carbon networks (Fe3 O4 /3DHPC) as an anode material for lithium-ion batteries (LIBs) was prepared by means of a deposition technique assisted by a supercritical carbon dioxide (scCO2 )-expanded ethanol solution. The as-synthesized Fe3 O4 /3DHPC composite exhibits a bimodal porous 3D architecture with mutually connected 3.7 nm mesopores defined in the macroporous wall on which a layer of small and uniform Fe3 O4 NPs was closely coated. As an anode material for LIBs, the Fe3 O4 /3DHPC composite with 79 wt % Fe3 O4 (Fe3 O4 /3DHPC-79) delivered a high reversible capacity of 1462 mA h g(-1) after 100 cycles at a current density of 100 mA g(-1) , and maintained good high-rate performance (728, 507, and 239 mA h g(-1) at 1, 2, and 5 C, respectively). Moreover, it showed excellent long-term cycling performance at high current densities, 1 and 2 A g(-1) . The enhanced lithium-storage behavior can be attributed to the synergistic effect of the porous support and the homogeneous Fe3 O4 NPs. More importantly, this straightforward, highly efficient, and green synthetic route will definitely enrich the methodologies for the fabrication of carbon-based transition-metal oxide composites, and provide great potential materials for additional applications in supercapacitors, sensors, and catalyses.

  17. Superparamagnetic Fe3O4 particles formed by oxidation of pyrite heated in an anoxic atmosphere

    USGS Publications Warehouse

    Thorpe, A.N.; Senftle, F.E.; Talley, R.; Hetherington, S.; Dulong, F.

    1990-01-01

    As a follow-up to previous gas analysis experiments in which pyrite was heated to 681 K in an anoxic (oxygen starved) atmosphere, the first oxidation product, FeSO4, was studied as a bulk material. No decomposition of FeSO4 to Fe3O4 was observed in the temperature range studied. The lack of decomposition of bulk FeSO4 to Fe3O4 suggests that FeS2 oxidizes directly to Fe3O4, or that FeSO4, FeS2 and O2 react together to form Fe3O4. Magnetic susceptibility and magnetization measurements, along with magnetic hysteresis curves, show that small particles of Fe3O4 form on the pyrite surface, rather than a continuous layer of bulk Fe3O4. A working model describing the oxidation steps is presented. ?? 1990.

  18. Sol-gel derived silica/chitosan/Fe3O4 nanocomposite for direct electrochemistry and hydrogen peroxide biosensing

    NASA Astrophysics Data System (ADS)

    Satvekar, R. K.; Rohiwal, S. S.; Tiwari, A. P.; Raut, A. V.; Tiwale, B. M.; Pawar, S. H.

    2015-01-01

    A novel strategy to fabricate hydrogen peroxide third generation biosensor has been developed from sol-gel of silica/chitosan (SC) organic-inorganic hybrid material assimilated with iron oxide magnetic nanoparticles (Fe3O4). The large surface area of Fe3O4 and porous morphology of the SC composite facilitates a high loading of horseradish peroxidase (HRP). Moreover, the entrapped enzyme preserves its conformation and biofunctionality. The fabrication of hydrogen peroxide biosensor has been carried out by drop casting of the SC/F/HRP nanocomposite on glassy carbon electrode (GCE) for study of direct electrochemistry. The x-ray diffraction (XRD) pattern and transmission electron microscopy (TEM) confirms the phase purity and particle size of as-synthesized Fe3O4 nanoparticles, respectively. The nanocomposite was characterized by UV-vis spectroscopy, fluorescence spectroscopy and Fourier transform infrared (FTIR) for the characteristic structure and conformation of enzyme. The surface topographies of the nanocomposite thin films were investigated by scanning electron microscopy (SEM). Dynamic light scattering (DLS) was used to determine the particle size distribution. The electrostatic interactions of the SC composite with Fe3O4 nanoparticles were studied by the zeta potential measurement. Electrochemical impedance spectroscopy (EIS) of the SC/F/HRP/GCE electrode displays Fe3O4 nanoparticles as an excellent candidate for electron transfer. The SC/F/HRP/GCE exhibited a pair of well-defined quasi reversible cyclic voltammetry peaks due to the redox couple of HRP-heme Fe (III)/Fe (II) in pH 7.0 potassium phosphate buffer. The biosensor was employed to detect H2O2 with linear range of 5 μM to 40 μM and detection limit of 5 μM. The sensor displays excellent selectivity, sensitivity, good reproducibility and long term stability.

  19. One-Pot Synthesis of Pomegranate-Structured Fe3 O4 /Carbon Nanospheres-Doped Graphene Aerogel for High-Rate Lithium Ion Batteries.

    PubMed

    He, Dafang; Li, Lixian; Bai, Fengjuan; Zha, Chenyang; Shen, Liming; Kung, Harold H; Bao, Ningzhong

    2016-03-18

    A unique hierarchically nanostructured composite of iron oxide/carbon (Fe3O4/C) nanospheres-doped three-dimensional (3D) graphene aerogel has been fabricated by a one-pot hydrothermal strategy. In this novel nanostructured composite aerogel, uniform Fe3O4 nanocrystals (5-10 nm) are individually embedded in carbon nanospheres (ca. 50 nm) forming a pomegranate-like structure. The carbon matrix suppresses the aggregation of Fe3O4 nanocrystals, avoids direct exposure of the encapsulated Fe3O4 to the electrolyte, and buffers the volume expansion. Meanwhile, the interconnected 3D graphene aerogel further serves to reinforce the structure of the Fe3O4/C nanospheres and enhances the electrical conductivity of the overall electrode. Therefore, the carbon matrix and the interconnected graphene network entrap the Fe3O4 nanocrystals such that their electrochemical function is retained even after fracture. This novel hierarchical aerogel structure delivers a long-term stability of 634 mA h g(-1) over 1000 cycles at a high current density of 6 A g(-1) (7 C), and an excellent rate capability of 413 mA h g(-1) at 10 A g(-1) (11 C), thus exhibiting great potential as an anode composite structure for durable high-rate lithium-ion batteries. PMID:26879124

  20. One-Pot Synthesis of Pomegranate-Structured Fe3 O4 /Carbon Nanospheres-Doped Graphene Aerogel for High-Rate Lithium Ion Batteries.

    PubMed

    He, Dafang; Li, Lixian; Bai, Fengjuan; Zha, Chenyang; Shen, Liming; Kung, Harold H; Bao, Ningzhong

    2016-03-18

    A unique hierarchically nanostructured composite of iron oxide/carbon (Fe3O4/C) nanospheres-doped three-dimensional (3D) graphene aerogel has been fabricated by a one-pot hydrothermal strategy. In this novel nanostructured composite aerogel, uniform Fe3O4 nanocrystals (5-10 nm) are individually embedded in carbon nanospheres (ca. 50 nm) forming a pomegranate-like structure. The carbon matrix suppresses the aggregation of Fe3O4 nanocrystals, avoids direct exposure of the encapsulated Fe3O4 to the electrolyte, and buffers the volume expansion. Meanwhile, the interconnected 3D graphene aerogel further serves to reinforce the structure of the Fe3O4/C nanospheres and enhances the electrical conductivity of the overall electrode. Therefore, the carbon matrix and the interconnected graphene network entrap the Fe3O4 nanocrystals such that their electrochemical function is retained even after fracture. This novel hierarchical aerogel structure delivers a long-term stability of 634 mA h g(-1) over 1000 cycles at a high current density of 6 A g(-1) (7 C), and an excellent rate capability of 413 mA h g(-1) at 10 A g(-1) (11 C), thus exhibiting great potential as an anode composite structure for durable high-rate lithium-ion batteries.

  1. Electrochemical sensing property of Mn doped Fe3O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Suresh, R.; Giribabu, K.; Manigandan, R.; Vijayalakshmi, L.; Stephen, A.; Narayanan, V.

    2013-02-01

    The Mn doped Fe3O4 nanoparticles were synthesized by hydrothermal method. The prepared nanoparticles were characterized by X-ray diffraction (XRD) analysis, UV-Visible spectroscopy (UV-Vis) and field emission scanning electron microscopy (FE-SEM). The electrochemical sensing property of pure and Mn doped Fe3O4 nanoparticles were examined using uric acid (UA) as an analyte. The obtained results indicated that the Mn doped Fe3O4 nanoparticles exhibited higher electrocatalytic activity towards UA.

  2. Synthesis, characterization and magnetorheological study of 3-aminopropyltriethoxysilane-modified Fe3O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Guangshuo; Ma, Yingying; Tong, Yu; Dong, Xufeng

    2016-03-01

    In this study, monodisperse Fe3O4 nanoparticles were synthesized successfully using a sonochemical method in the presence of 3-aminopropyltriethoxysilane (APTES). The morphology, microstructure and magnetic properties of the bare Fe3O4 and APTES-coated Fe3O4 were investigated in detail by TEM, XRD, FTIR and SQUID. It was found that APTES-coated Fe3O4 showed relatively good dispersion with a narrow size distribution of 8.4 ± 2.1 nm diameter. The functionalization of Fe3O4 was proved to be covalent linking between Fe3O4 and APTES. The field-dependent magnetization curve indicated superparamagnetic behavior of Fe3O4-APTES with a saturation magnetization (M s) of 70.5 emu g-1 at room temperature. A magnetorheological (MR) fluid was prepared using the obtained Fe3O4-APTES nanoparticles with 25 wt% particles, and its MR properties were tested using a Physica MCR301 rheometer fitted with an MRmodule. The results showed that the as-prepared APTES-coated Fe3O4 nanoparticle-based MR fluid exhibited typical MR effects, with increasing viscosity, shear stress and yield stress depending on the applied magnetic field strength.

  3. Thermodynamic Properties of α-Fe2O3 and Fe3O4 Nanoparticles

    DOE PAGES

    Spencer, Elinor C.; Ross, Nancy L.; Olsen, Rebecca E.; Huang, Baiyu; Kolesnikov, Alexander I.; Woodfield, Brian F.

    2015-04-21

    Here we comprehansively assessed the thermodynamic properties of hydrated α-Fe2O3 (hematite) and Fe3O4 (magnetite) nanoparticles. In addition to 9 nm Fe3O4, three α-e2O3nanoparticles samples of different sizes (11, 14, and 25 nm) and bulk α-e2O3 have been evaluated by inelastic neutron scattering methods. The contribution of the two-level magnetic spin flip transition to the heat capacity of the α-e2O3 particles has been determined. The isochoric heat capacity of the water confined on the surface of these two types of iron oxide particles have been calculated from their INS spectra, and is affected by the chemical composition of the underlying particle.more » Furthermore, the heat capacity and dynamics of the particle hydration layers appear to be influenced by a complex array of factors including particle size, water coverage, and possibly the magnetic state of the particle itself.« less

  4. Charge Separation and Catalytic Activity of Fe3 O4 @Ag "Nanospheres".

    PubMed

    Hemmateenejad, Bahram; Shamsipur, Mojtaba; Jalili-Jahani, Naser

    2016-01-01

    Nanospheres of Ag-coated Fe3 O4 were successfully synthesized and characterized. Photocatalytic properties of Fe3 O4 @Ag composites have been investigated using steady-state studies and laser pulse excitations. Accumulation of the electrons in the Ag shell was detected from the shift in the surface plasmon band from 430 to 405 nm, which was discharged when an electron acceptor such as O2 , Thionine (TH) or C60 was introduced into the system. Charge equilibration with redox couple such as C60 (●-) /C60 indicated the ability of these core-shell structures to carry out photocatalytic reduction reactions. As well, outer Ag layer could boost charge separation in magnetic core through dual effects of Schottky junction and localized surface plasmonic resonance (LSPR)-powered band gap breaking effect under sunlight irradiation; resulted in higher photocatalytic degradation of diphenylamine (DPA). The maximum photocatalytic degradation rate was achieved at optimum amount of Ag-NP loading to products. Adsorption studies confirmed that degradation of DPA dominantly occurred in solution. Moderately renewability of the nanocatalysts under sunlight was due to oxidation and dissolution of the outer Ag layer.

  5. Synthesis and Characterization of Magnetized Photocatalyst Fe3O4/SiO2/TiO2 by Heteroagglomeration Method

    NASA Astrophysics Data System (ADS)

    Hasnah Dewi, Sari; Sutanto; Fisli, A.; Wardiyati, S.

    2016-08-01

    Magnetic photocatalysts Fe3O4/SiO2/TiO2 have been prepared using heteroagglomeration method. Synthesis of magnetic photocatalyst Fe3O4/SiO2/TiO2 was carried out through four stages : (1) synthesis of photocatalyst TiO2 nanoparticles by TiCl4 coprecipitation in ammonia solution, (2) synthesis of Fe3O4 nanoparticles through precipitation method using a mixture of Fe (III) / Fe (II) (2: 1 mole ratio) in ammonia solution, (3) coating with SiO2 through hydrolysis of silicate ion, (4) in the final stage, Fe3O4/SiO2 was mixed with TiO2 in hetero-agglomeration manner. Structure and morphology of resultan composites have been investigated by X-ray diffraction (XRD), Vibrating sample magnetometer (VSM), Fourier transform infrared (FTIR) and Transmission electron microscopy (TEM) were confirmed that composite Fe3O4/SiO2/TiO2 succefully synthesized. The functionality photocatalyst of the particles was tested by eliminating of methylene blue (MB) under UV light. The result showed the magnetite photocatalyst Fe3O4/SiO2/TiO2 has phototacalytic and absorbtion properties so that it has good performance at dyes removal in water higher than pure TiO2, and capable to perform repeatition process at least 4 times.

  6. Synthesis, characterisation of polyaniline-Fe3O4 magnetic nanocomposite and its application for removal of an acid violet 19 dye

    NASA Astrophysics Data System (ADS)

    Patil, Manohar R.; Khairnar, Subhash D.; Shrivastava, V. S.

    2016-04-01

    The present work deals with the development of a new method for the removal of dyes from an aqueous solution using polyaniline (PANI)-Fe3O4 magnetic nanocomposite. It is synthesised in situ through self-polymerisation of monomer aniline. Photocatalytic degradation studies were carried out for cationic acid violet 19 (acid fuchsine) dye using PANI-Fe3O4 nanocomposite in aqueous solution. Different parameters like catalyst dose, contact time and pH have been studied to optimise reaction condition. The optimum conditions for the removal of the dye are initial concentration 20 mg/l, adsorbent dose 6 gm/l, pH 7. The EDS technique gives elemental composition of synthesised PANI-Fe3O4. The SEM and XRD studies were carried for morphological feature characteristics of PANI-Fe3O4 nanocomposite. The VSM (vibrating sample magnetometer) gives magnetic property of PANI-Fe3O4 nanocomposite; also FT-IR analysis gives characteristics frequency of synthesised PANI-Fe3O4. Besides the above studies kinetic study has also been carried out.

  7. 99mTc radiolabelling of Fe3O4-Au core-shell and Au-Fe3O4 dumbbell-like nanoparticles

    NASA Astrophysics Data System (ADS)

    Felber, M.; Alberto, R.

    2015-04-01

    The development of nanoparticle-based dual-modality probes for magnetic resonance imaging (MRI) and positron emission tomography (PET) or single photon emission computed tomography (SPECT) is increasingly growing in importance. One of the most commonly used radionuclides for clinical SPECT imaging is 99mTc and the labelling of Fe3O4 nanoparticles with 99mTc was shown to be a successful strategy to obtain dual-modality imaging agents. In this work, we focus on gold containing magnetic nanomaterials. The radiolabelling of magnetic Fe3O4-Au core-shell and Fe3O4-Au dumbbell-like nanoparticles with the [99mTc(CO)3]+ fragment is described. The key elements for this 99mTc labelling approach are novel coating ligands, consisting of an anchor for the Au surface, a polyethylene glycol linker and a strong chelator for the [99mTc(CO)3]+ moiety.The development of nanoparticle-based dual-modality probes for magnetic resonance imaging (MRI) and positron emission tomography (PET) or single photon emission computed tomography (SPECT) is increasingly growing in importance. One of the most commonly used radionuclides for clinical SPECT imaging is 99mTc and the labelling of Fe3O4 nanoparticles with 99mTc was shown to be a successful strategy to obtain dual-modality imaging agents. In this work, we focus on gold containing magnetic nanomaterials. The radiolabelling of magnetic Fe3O4-Au core-shell and Fe3O4-Au dumbbell-like nanoparticles with the [99mTc(CO)3]+ fragment is described. The key elements for this 99mTc labelling approach are novel coating ligands, consisting of an anchor for the Au surface, a polyethylene glycol linker and a strong chelator for the [99mTc(CO)3]+ moiety. Electronic supplementary information (ESI) available: Analyses of Fe3O4-Au core-shell nanoparticles; analyses of Au-Fe3O4 dumbbell-like nanoparticles; 99mTc labelling of Fe3O4-Au core-shell nanoparticles; 99mTc complexes; 99mTc labelling of Au-Fe3O4 dumbbell-like nanoparticles; syntheses coating ligands. See

  8. Preparation of CNC-dispersed Fe3O4 nanoparticles and their application in conductive paper.

    PubMed

    Liu, Kai; Nasrallah, Joseph; Chen, Lihui; Huang, Liulian; Ni, Yonghao

    2015-08-01

    Well-dispersed Fe3O4 nanoparticles (NPs) were synthesized by a co-precipitation method in the presence of cellulose nano-crystals (CNC) as the template. The thus prepared Fe3O4 NPs were then used as a coating agent for the preparation of conductive paper. Fourier transform infrared spectroscopy (FTIR) results revealed that the Fe3O4 NPs were immobilized on the CNC through interactions between the hydroxyl groups of CNC and Fe3O4. Scanning transmission electron microscopy (STEM) images showed that the Fe3O4 NPs prepared in the presence of CNC can be dispersed in the CNC network, while the Fe3O4 NPs prepared in the absence of CNC tended to aggregate in aqueous solutions. The conductivity of the Fe3O4 NPs coated paper can reach to 0.0269 S/m at the coating amount of 14.75 g/m(2) Fe3O4/CNC nanocomposites. Therefore, the thus obtained coated paper can be potentially used as anti-static packaging material in the packaging field.

  9. Preparation and characterization of magnetic Fe3O4-chitosan nanoparticles loaded with isoniazid

    NASA Astrophysics Data System (ADS)

    Qin, H.; Wang, C. M.; Dong, Q. Q.; Zhang, L.; Zhang, X.; Ma, Z. Y.; Han, Q. R.

    2015-05-01

    A novel and simple method has been proposed to prepare magnetic Fe3O4-chitosan nanoparticles loaded with isoniazid (Fe3O4/CS/INH nanocomposites). Efforts have been made to develop isoniazid (INH) loaded chitosan (CS) nanoparticles by ionic gelation of chitosan with tripolyphosphate (TPP). The factors that influence the preparation of chitosan nanoparticles, including the TPP concentration, the chitosan/TPP weight ratio and the chitosan concentration on loading capacity and encapsulation efficiency of chitosan nanoparticles were studied. The magnetic Fe3O4 nanoparticles were prepared by co-precipitation method of Fe2+ and Fe3+. Then the magnetic Fe3O4/CS/INH nanocomposites were prepared by ionic gelation method. The magnetic Fe3O4 nanoparticles and magnetic Fe3O4/CS/INH nanocomposites were characterized by XRD, TEM, FTIR and SQUID magnetometry. The in vitro release of Fe3O4/CS/INH nanocomposites showed an initial burst release in the first 10 h, followed by a more gradual and sustained release for 48 h. It is suggested that the magnetic Fe3O4/CS/INH nanocomposites may be exploited as potential drug carriers for controlled-release applications in magnetic targeted drugs delivery system.

  10. Inversion of spin dependent photocurrent at Fe3O4/modulation doped GaAs heterointerfaces

    NASA Astrophysics Data System (ADS)

    Shirahata, Y.; Wada, E.; Itoh, M.; Taniyama, T.

    2011-04-01

    We demonstrate inversion of the spin dependent photocurrent across an Fe3O4/modulation doped GaAs interface under optical spin orientation condition. The spin dependent photocurrent for fully epitaxial Fe3O4/GaAs and Fe/GaAs interfaces clearly show the opposite magnetic field dependence, where the spin filtering efficiency for the Fe3O4/GaAs decreases with increasing magnetic field. The results clearly indicate that the spin polarization of the Fe3O4 layer has the opposite sign to that of Fe at the Fermi energy, consistent with theoretical predictions, and the result is a consequence of the atomically flat Fe3O4/GaAs interface we obtained.

  11. Sea-urchin-like Fe3O4@C@Ag particles: an efficient SERS substrate for detection of organic pollutants

    NASA Astrophysics Data System (ADS)

    Ye, Yingjie; Chen, Jin; Ding, Qianqian; Lin, Dongyue; Dong, Ronglu; Yang, Liangbao; Liu, Jinhuai

    2013-06-01

    Ag-coated sea-urchin-like Fe3O4@C core-shell particles can be synthesized by a facile one-step solvothermal method, followed by deposition of high-density Ag nanoparticles onto the carbon surface through an in situ growth process, respectively. The as-synthesized Ag-coated Fe3O4@C particles can be used as a surface-enhanced Raman scattering (SERS) substrate holding reproducible properties under an external magnetic force. The magnetic function of the particles allows concentrating the composite particles into small spatial regions, which can be exploited to decrease the amount of material per analysis while improving its SERS detection limit. In contrast to the traditional SERS substrates, the present Fe3O4@C@Ag particles hold the advantages of enrichment of organic pollutants for improving SERS detection limit and recycled utilization.Ag-coated sea-urchin-like Fe3O4@C core-shell particles can be synthesized by a facile one-step solvothermal method, followed by deposition of high-density Ag nanoparticles onto the carbon surface through an in situ growth process, respectively. The as-synthesized Ag-coated Fe3O4@C particles can be used as a surface-enhanced Raman scattering (SERS) substrate holding reproducible properties under an external magnetic force. The magnetic function of the particles allows concentrating the composite particles into small spatial regions, which can be exploited to decrease the amount of material per analysis while improving its SERS detection limit. In contrast to the traditional SERS substrates, the present Fe3O4@C@Ag particles hold the advantages of enrichment of organic pollutants for improving SERS detection limit and recycled utilization. Electronic supplementary information (ESI) available: Additional XRD patterns and SEM images of Fe3O4@C particles, SERS spectra of 4-ATP and 4-MPY using Fe3O4@C@Ag particles as the active substrates, magnetic behaviour of Fe3O4@C and Fe3O4@C@Ag particles. See DOI: 10.1039/c3nr01273e

  12. Preparation and enhanced properties of Fe3O4 nanoparticles reinforced polyimide nanocomposites

    NASA Astrophysics Data System (ADS)

    Ding, Daowei; Yan, Xingru; Zhang, Xi; He, Qingliang; Qiu, Bin; Jiang, Dawei; Wei, Huige; Guo, Jiang; Umar, Ahmad; Sun, Luyi; Wang, Qiang; Khan, Mojammel A.; Young, David P.; Zhang, Xin; Weeks, Brandon; Ho, Thomas C.; Guo, Zhanhu; Wei, Suying

    2015-09-01

    Polyimide (PI) nanocomposite reinforced with Fe3O4 nanoparticles (NPs) at various NPs loadings levels of 5.0, 10.0, 15.0, and 20.0 wt% were prepared. The chemical interactions of the Fe3O4 NPs/PI nanocomposites were characterized using Fourier Transform Infrared (FT-IR) spectroscopy. X-ray Diffraction (XRD) results revealed that the addition of NPs had a significant effect on the crystallization of PI. Scanning electron microscope (SEM) and the atomic force microscope (AFM) were used to characterize the dispersion and surface morphology of the Fe3O4 NPs and the PI nanocomposites. The obtained optical band gap of the nanocomposites characterized using Ultraviolet-Visible Diffuse Reflectance Spectroscopy (UV-Vis DRS) was decreased with increasing the Fe3O4 loading. Differential scanning calorimetry (DSC) results showed a continuous increase of Tg with increasing the Fe3O4 NPs loading. Some differences were observed in the onset decomposition temperature between the pure PI and nanocomposites since the NPs and the PI matrix were physically entangled together to form the nanocomposites. The contact angle of pure PI was larger than that of Fe3O4/PI nanocomposites films, and increased with increasing the loading of Fe3O4. The degree of swelling was increased with increasing the Fe3O4 loading and the swelling time. The dielectric properties of the nanocomposite were strongly related to the Fe3O4 loading levels. The Fe3O4/PI magnetic property also had been improved with increasing the loading of the magnetic nanoparticles.

  13. Core-shell Fe3O4@SiO2 nanoparticles synthesized with well-dispersed hydrophilic Fe3O4 seeds.

    PubMed

    Hui, Chao; Shen, Chengmin; Tian, Jifa; Bao, Lihong; Ding, Hao; Li, Chen; Tian, Yuan; Shi, Xuezhao; Gao, Hong-Jun

    2011-02-01

    Silica coated magnetite (Fe3O4@SiO2) core-shell nanoparticles (NPs) with controlled silica shell thicknesses were prepared by a modified Stöber method using 20 nm hydrophilic Fe3O4 NPs as seeds. The core-shell NPs were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), selected area electron diffraction (SAED), and UV-Vis adsorption spectra (UV-Vis). The results imply that NPs consist of a crystalline magnetite core and an amorphous silica shell. The silica shell thickness can be controlled from 12.5 nm to 45 nm by varying the experimental parameters. The reaction time, the ratio of TEOS/Fe3O4, and the concentration of hydrophilic Fe3O4 seeds were found to be very influential in the control of silica shell thickness. These well-dispersed core-shell Fe3O4@SiO2 NPs show superparamagnetic properties at room temperature.

  14. Magnetic Properties of CoFe_2O4 and Fe_3O_4

    NASA Astrophysics Data System (ADS)

    Rodriguez, Robert; Chan, T.; Kenning, G. G.; Huang, L.; Yan, Y.

    2002-03-01

    In order to optimize the magnetization of magnetic nanoparticles for use as Magnetic Resonance Imaging contrast agents and other in vivo biological applications, we have synthesized CoFe_2O_4(Liu, C.; Bingsuo, Z.; Rondinone, A.J.; Zhang, Z.J. J. Am. Chem. Soc.) 122, 6263 (2000). and Fe_3O_4(Shen, T.; Weissleder, R.; Papisov, M.; Bogdanov, A.; Brady, T. MRM) 29, 599 (1993). magnetic nanoparticles of sizes 5, 8, and 11nm using water-in-oil reverse micelles. Size was determined using Dynamic Light Scattering (DLS), X-Ray Diffraction (XRD), and High Pressure Liquid Chromatography (HPLC). Magnetic properties were measure from 10K-340K using SQUID magnetometry. Magnetization as a function of magnetic field has been performed at approximately body temperature ( ~310K) in order to help us determine the optimal size and composition for in vivo application.

  15. Fe3O4/PS magnetic nanoparticles: Synthesis, characterization and their application as sorbents of oil from waste water

    NASA Astrophysics Data System (ADS)

    Yu, Liuhua; Hao, Gazi; Gu, Junjun; Zhou, Shuai; Zhang, Ning; Jiang, Wei

    2015-11-01

    In this work, Fe3O4/PS composites with a rough surface and different coating rates were successfully designed and synthesized by emulsion polymerization. We carried out some comparative experiments to compare magnetic properties and oil absorption properties of the nano-magnetic materials. It had been found that several prepared groups of magnetic nanocomposites have a core-shell structure and good coating rates. These nanoparticles combined with unsinked, highly hydrophobic and superoleophilic properties. The absorption capacity of Fe3O4/PS composites for organic solvents and the composites could absorb diesel oil up to 2.492 times of its own weight. It is more important that the oil could be readily removed from the surfaces of nanoparticles by a simple ultrasonic treatment whereas the nanocomposites particles still kept highly hydrophobic and superoleophilic characteristics. With a combination of simple synthesis process, low density, magnetic responsibility and excellent hydrophobicity, Fe3O4/PS nanocomposites as a promising absorbent have great potential in the application of spilled oil recovery and environmental protection.

  16. A simple way to prepare Au@polypyrrole/Fe3O4 hollow capsules with high stability and their application in catalytic reduction of methylene blue dye

    NASA Astrophysics Data System (ADS)

    Yao, Tongjie; Cui, Tieyu; Wang, Hao; Xu, Linxu; Cui, Fang; Wu, Jie

    2014-06-01

    Metal nanoparticles are promising catalysts for dye degradation in treating wastewater despite the challenges of recycling and stability. In this study, we have introduced a simple way to prepare Au@polypyrrole (PPy)/Fe3O4 catalysts with Au nanoparticles embedded in a PPy/Fe3O4 capsule shell. The PPy/Fe3O4 capsule shell used as a support was constructed in one-step, which not only dramatically simplified the preparation process, but also easily controlled the magnetic properties of the catalysts through adjusting the dosage of FeCl2.4H2O. The component Au nanoparticles could catalyze the reduction of methylene blue dye with NaBH4 as a reducing agent and the reaction rate constant was calculated through the pseudo-first-order reaction equation. The Fe3O4 nanoparticles permitted quick recycling of the catalysts with a magnet due to their room-temperature superparamagnetic properties; therefore, the catalysts exhibited good reusability. In addition to catalytic activity and reusability, stability is also an important property for catalysts. Because both Au and Fe3O4 nanoparticles were wrapped in the PPy shell, compared with precursor polystyrene/Au composites and bare Fe3O4 nanoparticles, the stability of Au@PPy/Fe3O4 hollow capsules was greatly enhanced. Since the current method is simple and flexible to create recyclable catalysts with high stability, it would promote the practicability of metal nanoparticle catalysts in industrial polluted water treatment.Metal nanoparticles are promising catalysts for dye degradation in treating wastewater despite the challenges of recycling and stability. In this study, we have introduced a simple way to prepare Au@polypyrrole (PPy)/Fe3O4 catalysts with Au nanoparticles embedded in a PPy/Fe3O4 capsule shell. The PPy/Fe3O4 capsule shell used as a support was constructed in one-step, which not only dramatically simplified the preparation process, but also easily controlled the magnetic properties of the catalysts through adjusting

  17. Fates of Fe3O4 and Fe3O4@SiO2 nanoparticles in human mesenchymal stem cells assessed by synchrotron radiation-based techniques.

    PubMed

    Tian, Fei; Chen, Guangcun; Yi, Peiwei; Zhang, Jichao; Li, Aiguo; Zhang, Jing; Zheng, Lirong; Deng, Zongwu; Shi, Qin; Peng, Rui; Wang, Qiangbin

    2014-08-01

    Superparamagnetic iron oxide nanoparticles (SPIOs) have been widely used as the magnetic resonance imaging (MRI) contrast agent in biomedical studies and clinical applications, with special interest recently in in vivo stem cell tracking. However, a full understanding of the fate of SPIOs in cells has not been achieved yet, which is particularly important for stem cells since any change of the microenvironment may disturb their propagation and differentiation behaviors. Herein, synchrotron radiation-based X-ray fluorescence (XRF) in combination with X-ray absorption spectroscopy (XAS) were used to in situ reveal the fate of Fe3O4 and Fe3O4@SiO2 NPs in human mesenchymal stem cells (hMSCs), in which the dynamic changes of their distribution and chemical speciation were precisely determined. The XAS analysis evidences that Fe3O4 NPs cultured with hMSCs are quite stable and almost keep their initial chemical form up to 14 days, which is contradictory to the previous report that Fe3O4 NPs were unstable in cell labeling assessed by using a simplified lysosomal model system. Coating with a SiO2 shell, Fe3O4@SiO2 NPs present higher stability in hMSCs without detectable changes of their chemical form. In addition, XRF analysis demonstrates that Fe3O4@SiO2 NPs can label hMSCs in a high efficiency manner and are solely distributed in cytoplasm during cell proliferation, making it an ideal probe for in vivo stem cell tracking. These findings with the help of synchrotron radiation-based XAS and XRF improve our understanding of the fate of SPIOs administered to hMSCs and will help the future design of SPIOs for safe and efficient stem cells tracking.

  18. Combined use of lightweight magnetic Fe3O4-coated hollow glass spheres and electrically conductive reduced graphene oxide in an epoxy matrix for microwave absorption

    NASA Astrophysics Data System (ADS)

    Wang, Junpeng; Wang, Jun; Zhang, Bin; Sun, Yu; Chen, Wei; Wang, Tao

    2016-03-01

    Epoxy resin based lightweight composites comprising Fe3O4-coated hollow glass spheres (HGS@Fe3O4) and reduced graphene oxide (RGO) were prepared. Impedance matching condition and electromagnetic wave attenuation characteristic are used for analysis of the reflection loss (RL) performance of the composites. Compared with pure HGS@Fe3O4 and RGO composite, the -10 dB absorption bandwidth and the minimum RL of the hybrid composites are enhanced. RL values less than -10 dB are obtained in a wide frequency range and the corresponding bandwidth can reach up to 3.6 GHz when an appropriate absorber thickness is chosen. The density of the hybrid composite is in the range of 0.57-0.72 g/cm3, which is attractive candidate for a new type of lightweight microwave absorber.

  19. Preparation and antibacterial activity of Fe3O4@Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Gong, Ping; Li, Huimin; He, Xiaoxiao; Wang, Kemin; Hu, Jianbing; Tan, Weihong; Zhang, Shouchun; Yang, Xiaohai

    2007-07-01

    Bifunctional Fe3O4@Ag nanoparticles with both superparamagnetic and antibacterial properties were prepared by reducing silver nitrate on the surface of Fe3O4 nanoparticles using the water-in-oil microemulsion method. Formation of well-dispersed nanoparticles with sizes of 60 ± 20 nm was confirmed by transmission electron microscopy and dynamic light scattering. X-ray diffraction patterns and UV-visible spectroscopy indicated that both Fe3O4 and silver are present in the same particle. The superparamagnetism of Fe3O4@Ag nanoparticles was confirmed with a vibrating sample magnetometer. Their antibacterial activity was evaluated by means of minimum inhibitory concentration value, flow cytometry, and antibacterial rate assays. The results showed that Fe3O4@Ag nanoparticles presented good antibacterial performance against Escherichia coli (gram-negative bacteria), Staphylococcus epidermidis (gram-positive bacteria) and Bacillus subtilis (spore bacteria). Furthermore, Fe3O4@Ag nanoparticles can be easily removed from water by using a magnetic field to avoid contamination of surroundings. Reclaimed Fe3O4@Ag nanoparticles can still have antibacterial capability and can be reused.

  20. Facile synthesis of multifunctional attapulgite/Fe3O4/polyaniline nanocomposites for magnetic dispersive solid phase extraction of benzoylurea insecticides in environmental water samples.

    PubMed

    Yang, Xiaoling; Qiao, Kexin; Ye, Yiren; Yang, Miyi; Li, Jing; Gao, Haixiang; Zhang, Sanbing; Zhou, Wenfeng; Lu, Runhua

    2016-08-31

    In this study, the superparamagnetic attapulgite/Fe3O4/polyaniline (ATP/Fe3O4/PANI) nanocomposites were successfully synthesized by a one-pot method. Fe (III) was applied as both the oxidant for the oxidative polymerization of aniline and the single iron source of Fe3O4 formed by the redox reaction between aniline and Fe (III). The ATP/Fe3O4/PANI was used as sorbent for magnetic dispersive solid phase extraction (MDSPE) of benzoylurea insecticides (BUs) in environmental water samples. The as-prepared nanocomposite sorbents were characterized by Fourier transform infrared spectra (FT-IR), X Ray diffraction (XRD), scanning electron microscopy(SEM), transmission electron microscopy (TEM), and vibrating sample magnetometry. Various experimental parameters affecting the ATP/Fe3O4/PANI-based MDSPE procedure, including the composition of the nanocomposite sorbents, amount of ATP/Fe3O4/PANI nanocomposites, vortex time, pH, and desorption conditions were investigated. Under the optimal conditions, a good linearity was observed for all target analytes, with correlation coefficients (r(2)) ranging from 0.9985 to 0.9997; the limits of detection (LOD) were in the range of 0.02-0.43 μg L(-1), and the recoveries of analytes using the proposed method ranged between 77.37% and 103.69%. The sorbents exhibited an excellent reproducibility in the range of 1.52-5.27% in extracting the five target analytes. In addition, the intra-day and inter-day precision values were found to be in the range of 0.78-6.86% and 1.66-8.41%, respectively. Finally, the proposed ATP/Fe3O4/PANI-based MDSPE method was successfully applied to analyze river water samples by rapid preconcentration of BUs. PMID:27506351

  1. Facile synthesis of multifunctional attapulgite/Fe3O4/polyaniline nanocomposites for magnetic dispersive solid phase extraction of benzoylurea insecticides in environmental water samples.

    PubMed

    Yang, Xiaoling; Qiao, Kexin; Ye, Yiren; Yang, Miyi; Li, Jing; Gao, Haixiang; Zhang, Sanbing; Zhou, Wenfeng; Lu, Runhua

    2016-08-31

    In this study, the superparamagnetic attapulgite/Fe3O4/polyaniline (ATP/Fe3O4/PANI) nanocomposites were successfully synthesized by a one-pot method. Fe (III) was applied as both the oxidant for the oxidative polymerization of aniline and the single iron source of Fe3O4 formed by the redox reaction between aniline and Fe (III). The ATP/Fe3O4/PANI was used as sorbent for magnetic dispersive solid phase extraction (MDSPE) of benzoylurea insecticides (BUs) in environmental water samples. The as-prepared nanocomposite sorbents were characterized by Fourier transform infrared spectra (FT-IR), X Ray diffraction (XRD), scanning electron microscopy(SEM), transmission electron microscopy (TEM), and vibrating sample magnetometry. Various experimental parameters affecting the ATP/Fe3O4/PANI-based MDSPE procedure, including the composition of the nanocomposite sorbents, amount of ATP/Fe3O4/PANI nanocomposites, vortex time, pH, and desorption conditions were investigated. Under the optimal conditions, a good linearity was observed for all target analytes, with correlation coefficients (r(2)) ranging from 0.9985 to 0.9997; the limits of detection (LOD) were in the range of 0.02-0.43 μg L(-1), and the recoveries of analytes using the proposed method ranged between 77.37% and 103.69%. The sorbents exhibited an excellent reproducibility in the range of 1.52-5.27% in extracting the five target analytes. In addition, the intra-day and inter-day precision values were found to be in the range of 0.78-6.86% and 1.66-8.41%, respectively. Finally, the proposed ATP/Fe3O4/PANI-based MDSPE method was successfully applied to analyze river water samples by rapid preconcentration of BUs.

  2. Superior Antibacterial Activity of Fe3O4-TiO2 Nanosheets under Solar Light.

    PubMed

    Ma, Shuanglong; Zhan, Sihui; Jia, Yanan; Zhou, Qixing

    2015-10-01

    Fe3O4-TiO2 nanosheets (Fe3O4-TNS) were synthesized by means of lamellar reverse micelles and solvothermal method, which were characterized by TEM, XRD, XPS, BET, and magnetic property analysis. It can be found that Fe3O4-TNS nanosheets exhibited better photocatalytic antibacterial activity toward Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus than pure Fe3O4 and TNS, and the antibacterial efficiency could reach 87.2% and 93.7% toward E. coli and S. aureus with 100 μg/mL Fe3O4-TNS after 2 h of simulated solar light illumination, respectively. The photocatalytic destruction of bacteria was further confirmed by fluorescent-based cell live/dead test and SEM images. It was uncovered that Fe3O4-TNS inactivated G- E. coli and G+ S. aureus by different mechanisms: the destruction of outer membranes and ruptured cell bodies were responsible for the bactericidal effect against E. coli, while the antibacterial effect toward S. aureus were due to the fact that the cells were adsorbed in form of clusters by massive Fe3O4-TNS, which could restrict their activities and cause malfunction of the selective permeable barriers. Furthermore, the antibacterial mechanism was studied by employing scavengers to understand exact roles of different reactive species, indicating the key roles of h(+) and H2O2. The recovery and reusability experiments indicated that Fe3O4-TNS still retained more than 90% bacteria removal efficiency even after five cycles. Considering the easy magnetic separation, bulk availability, and high antibacterial activity of Fe3O4-TNS, it is a promising candidate for cleaning the microbial contaminated water environment.

  3. Superior Antibacterial Activity of Fe3O4-TiO2 Nanosheets under Solar Light.

    PubMed

    Ma, Shuanglong; Zhan, Sihui; Jia, Yanan; Zhou, Qixing

    2015-10-01

    Fe3O4-TiO2 nanosheets (Fe3O4-TNS) were synthesized by means of lamellar reverse micelles and solvothermal method, which were characterized by TEM, XRD, XPS, BET, and magnetic property analysis. It can be found that Fe3O4-TNS nanosheets exhibited better photocatalytic antibacterial activity toward Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus than pure Fe3O4 and TNS, and the antibacterial efficiency could reach 87.2% and 93.7% toward E. coli and S. aureus with 100 μg/mL Fe3O4-TNS after 2 h of simulated solar light illumination, respectively. The photocatalytic destruction of bacteria was further confirmed by fluorescent-based cell live/dead test and SEM images. It was uncovered that Fe3O4-TNS inactivated G- E. coli and G+ S. aureus by different mechanisms: the destruction of outer membranes and ruptured cell bodies were responsible for the bactericidal effect against E. coli, while the antibacterial effect toward S. aureus were due to the fact that the cells were adsorbed in form of clusters by massive Fe3O4-TNS, which could restrict their activities and cause malfunction of the selective permeable barriers. Furthermore, the antibacterial mechanism was studied by employing scavengers to understand exact roles of different reactive species, indicating the key roles of h(+) and H2O2. The recovery and reusability experiments indicated that Fe3O4-TNS still retained more than 90% bacteria removal efficiency even after five cycles. Considering the easy magnetic separation, bulk availability, and high antibacterial activity of Fe3O4-TNS, it is a promising candidate for cleaning the microbial contaminated water environment. PMID:26372171

  4. P(EO-co-LLA) functionalized Fe3O4@mSiO2 nanocomposites for thermo/pH responsive drug controlled release and hyperthermia.

    PubMed

    Guo, Wei; Yang, Chunyu; Lin, Huiming; Qu, Fengyu

    2014-12-28

    The Fe3O4@mSiO2 nanocarrier that consisted of a magnetic Fe3O4 nanoparticle core and a mesoporous silica (mSiO2) shell was synthesized. It shows a uniform sphere morphology about 65 nm in diameter. Considering the magnetic hyperthermia of Fe3O4 under an alternating magnetic field (AMF), a thermo-sensitive polymer, poly[(ethylene glycol)-co-(L-lactide)] (P(EO-co-LLA)), was used as "gatekeeper" coating outside Fe3O4@mSiO2 to regulate the drug release behavior. The design of the nanocarrier was expected to block off the pores at low temperature and to reopen them at high temperature reversibly. The obtained hybrid nanocomposites were capable of loading the anti-cancer drug doxorubicin (DOX) and controlled drug release behavior trigged by the hyperthermia of Fe3O4 under AMF. Besides, the nanocarriers also show pH-sensitive drug release based on the slight differences between the tumor (weakly acid) and the normal tissue (weakly alkaline). What's more, the chemotherapy of DOX combined with magnetic hyperthermia can improve the cytotoxicity obviously. On the basis of the high stability and excellent controlled release performance, the multifunctional nanocarriers exhibit potential applications in targeted-control drug release and hyperthermia for cancer treatment.

  5. Click chemistry: a new facile and efficient strategy for the preparation of Fe3O4 nanoparticles covalently functionalized with IDA-Cu and their application in the depletion of abundant protein in blood samples

    NASA Astrophysics Data System (ADS)

    Jian, Guiqin; Liu, Yuxing; He, Xiwen; Chen, Langxing; Zhang, Yukui

    2012-09-01

    In this study, we report a novel method to synthesize core-shell structured Fe3O4 nanoparticles (NPs) covalently functionalized with iminodiacetic acid (IDA) via click chemistry between the azide and alkyne groups and charged with Cu2+. Firstly, the Fe3O4@SiO2 NPs were obtained using tetraethoxysilane (TEOS) to form a silica shell on the surface of the Fe3O4 core. The azide group-modified Fe3O4@SiO2 NPs were obtained by a sol-gel process using 3-azidopropyltriethoxysilane (AzPTES) as the silane agent. Fe3O4@SiO2-N3 was directly reacted with N-propargyl iminodiacetic via click chemistry, in the presence of a Cu(I) catalyst, to acquire the IDA-modified Fe3O4 NPs. Finally, through the addition of Cu2+, the Fe3O4@SiO2-IDA-Cu NP product was obtained. The morphology, structure and composition of the NPs were characterized by transmission electron microscopy (TEM), X-ray powder diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The resulting NPs showed a strong magnetic response to an externally applied magnetic field, a high adsorption capacity and excellent specificity towards hemoglobin (Hb). In addition, the Fe3O4@SiO2-IDA-Cu NPs can be used for the selective removal of abundant Hb protein in bovine and human blood samples.

  6. A Facile Solvothermal Synthesis of Octahedral Fe3O4 Nanoparticles

    SciTech Connect

    Ooi, Frances; DuChene, Joseph S.; Qiu, Jianqing; Graham, Jeremy O.; Engelhard, Mark H.; Cao, Guixin; Gai, Zheng; Wei, Wei

    2015-06-01

    Magnetic nanoparticles are of great technological interest because they promise numerous potential opportunities in biomedicine and data storage. Although intriguing, these applications require exquisite control over nanostructure morphology in order to appropriately harness their magnetic properties. Most synthesis strategies reported to date are unable to routinely produce anisotropic Fe3O4 nanostructures with appropriate sizes to enable integration into biological systems. Here, we report a simple solvothermal synthesis for obtaining octahedral Fe3O4 nanoparticles with suitable sizes for cellular internalization. Furthermore, these ferromagnetic Fe3O4 octahedrons exhibit substantial saturation magnetization with minimal remanence, suggesting their potential applicability for a host of biomedical applications.

  7. Microfluidic assisted synthesis of multi-functional polycaprolactone microcapsules: incorporation of CdTe quantum dots, Fe3O4 superparamagnetic nanoparticles and tamoxifen anticancer drugs.

    PubMed

    Yang, C-H; Huang, K-S; Lin, Y-S; Lu, K; Tzeng, C-C; Wang, E-C; Lin, C-H; Hsu, W-Y; Chang, J-Y

    2009-04-01

    This paper demonstrates a proof-of-concept approach for encapsulating the anticancer drug tamoxifen, Fe3O4 nanoparticles (NPs) and CdTe quantum dots (QDs) into size-controlled polycaprolactone (PCL) microcapsules utilizing microfluidic emulsification, which combined magnetic targeting, fluorescence imaging and drug controlled release properties into one drug delivery system. Cross-linking the composite PCL microcapsules with poly(vinyl alcohol) (PVA) tailored their size, morphology, optical and magnetic properties and drug release behaviors. The flow conditions of the two immiscible solutions were adjusted in order to successfully generate various sizes of polymer droplets. The result showed superparamagnetic and fluorescent properties, and was used as a controlled drug release vehicle. The composite magnetic and fluorescent PCL microcapsules are potential candidates for a smart drug delivery system. PMID:19294308

  8. UCST-like hybrid PAAm-AA/Fe3O4 microgels. Effect of Fe3O4 nanoparticles on morphology, thermosensitivity and elasticity.

    PubMed

    Echeverria, Coro; Mijangos, Carmen

    2011-07-01

    The incorporation of metal oxide nanoparticles into microgels forming hybrid systems gives additional functionalities to the system and widens the field of potential application in biomedicine, biotechnology, and other fields. In particular, there have been very few investigations regarding UCST-like hybrid microgels. In connection with this, we report the preparation of UCST-like hybrid microgels of magnetite nanoparticles (Fe(3)O(4)) encapsulated in poly(acrylamide-acrylic acid) microgel matrix via an inverse emulsion polymerization method. The key factor in the preparation of hybrid microgels is the need to divide in two the aqueous phase of the emulsion and feed them separately in order to avoid the aggregation of magnetic nanoparticles prior to polymerization reaction. The morphology, size, and spherical shape of hybrid microgels are determined by scanning electron microscopy. The encapsulation of magnetite nanoparticles within the polymer matrix is confirmed by transmission electron microscopy. Dynamic light scattering is employed to study both the swelling UCST-like behavior and the surface charge of the hybrid microgels. Swelling measurements confirm that the incorporation of magnetite does not affect the thermosensitivity of the system. In order to highlight the rheological behavior that can affect the final potential applications of these hybrid systems, a deep study of the viscoelastic properties is carried out by means of an oscillatory rheometer. The dependence of G' and G'' of the microgel dispersions with the frequency suggests a gel-like behavior and hence the occurrence of structural organization. In order to understand this structure formation and the influence of the magnetite in the interaction between hybrid microgels, scaling theory was applied. In terms of rheology, the addition of magnetite leads to a change in the interaction between hybrid microgels giving rise to an increase in the elasticity of the system.

  9. Oriented assembly of Fe3O4 nanoparticles into monodisperse hollow single-crystal microspheres.

    PubMed

    Yu, Dabin; Sun, Xiaoquan; Zou, Jiwei; Wang, Zirong; Wang, Feng; Tang, Kun

    2006-11-01

    Magnetite nanoparticles of Fe3O4 were found to assemble into monodisperse hollow Fe3O4 microspheres with tunable diameters ranging from 200 to 400 nm and open pores on the shells in ethylene glycol in the presence of dodecylamine (DDA). The oriented assembly of nanoparticles conferred the individual hollow Fe3O4 microspheres a remarkable feature of single crystals. The morphologies of the products could be easily manipulated by varying the synthesis parameters. Increasing the concentration of DDA led to an obvious shape evolution of the products from rhombic nanoparticles to hollow microspheres, solid microspheres, and finally irregular nanoparticles, which were mainly attributed to the special self-assembly phenomenon of Fe3O4 nanoparticles in the solvothermal process.

  10. Attapulgite-Fe 3O 4 magnetic nanoparticles via co-precipitation technique

    NASA Astrophysics Data System (ADS)

    Liu, Yushan; Liu, Peng; Su, Zhixing; Li, Fashen; Wen, Fusheng

    2008-12-01

    The attapulgite/Fe 3O 4 magnetic nanoparticles (ATP-Fe 3O 4) were prepared by co-precipitation technique in the aqueous suspension of attapulgite pre-modified with FeCl 3. The co-precipitation occurred by ammonia in presence of ferrous chloride at 90 °C under magnetic stirring. Morphology observation showed that the Fe 3O 4 nanoparticles were absorbed to attapulgite nano-needles' surfaces and their dispersibilities in water was also studied. The ATP-Fe 3O 4 particles had been characterized with Fourier transform infrared (FT-IR) spectroscopy analysis, X-ray diffraction (XRD), pore surface area (BET), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM).

  11. Synthesis of Fe3O4 nanoparticles and its antibacterial application

    NASA Astrophysics Data System (ADS)

    Prabhu, Y. T.; Rao, K. Venkateswara; Kumari, B. Siva; Kumar, Vemula Sesha Sai; Pavani, Tambur

    2015-02-01

    The Present work outlines the antibacterial activity of Fe3O4 nanoparticles synthesized through chemical combustion method where ferric nitrate is used as precursor material and urea as fuel with the assistant of Tween 80, a non-ionic surfactant. The obtained Fe3O4 nanoparticles were characterized by X-ray diffraction, differential thermal analysis/thermo gravimetric analysis (DTA/TGA), particle size analyzer, SEM with EDAX and TEM. Various parameters such as dislocation density, micro strain, analysis of weight loss and surface morphological studies were calculated. The particle size was calculated from XRD and it was found to be 33-40 nm. Using well diffusion method antibacterial activity of Fe3O4 nanoparticles was tested against gram-positive and gram-negative Staphylococus aureus, Xanthomonas, Escherichia coli and Proteus vulgaris. Fe3O4 nanoparticles exhibited strong antibacterial activity against bacterial species.

  12. Exceeding natural resonance frequency limit of monodisperse Fe3O4 nanoparticles via superparamagnetic relaxation

    PubMed Central

    Song, Ning-Ning; Yang, Hai-Tao; Liu, Hao-Liang; Ren, Xiao; Ding, Hao-Feng; Zhang, Xiang-Qun; Cheng, Zhao-Hua

    2013-01-01

    Magnetic nanoparticles have attracted much research interest in the past decades due to their potential applications in microwave devices. Here, we adopted a novel technique to tune cut-off frequency exceeding the natural resonance frequency limit of monodisperse Fe3O4 nanoparticles via superparamagnetic relaxation. We observed that the cut-off frequency can be enhanced from 5.3 GHz for Fe3O4 to 6.9 GHz forFe3O4@SiO2 core-shell structure superparamagnetic nanoparticles, which are much higher than the natural resonance frequency of 1.3 GHz for Fe3O4 bulk material. This finding not only provides us a new approach to enhance the resonance frequency beyond the Snoek's limit, but also extend the application for superparamagnetic nanoparticles to microwave devices. PMID:24196377

  13. TEA controllable preparation of magnetite nanoparticles (Fe3O4 NPs) with excellent magnetic properties

    NASA Astrophysics Data System (ADS)

    Han, Chengliang; Zhu, Dejie; Wu, Hanzhao; Li, Yao; Cheng, Lu; Hu, Kunhong

    2016-06-01

    A fast and controllable synthesis method for superparamagnetic magnetite nanoparticles (Fe3O4 NPs) was developed in Fe(III)-triethanolamine (TEA) solution. The phase structure, morphology and particle size of the as-synthesized samples were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results showed that the magnetic particles were pure Fe3O4 with mean sizes of approximately 10 nm. The used TEA has key effects on the formation of well dispersing Fe3O4 NPs. Vibrating sample magnetometer (VSM) result indicated that the as-obtained Fe3O4 NPs exhibited superparamagnetic behavior and the saturation magnetization (Ms) was about 70 emu/g, which had potential applications in magnetic science and technology.

  14. Crystal structures and magnetic properties of magnetite (Fe3O4)/Polyvinyl alcohol (PVA) ribbon

    NASA Astrophysics Data System (ADS)

    Ardiyanti, Harlina; Suharyadi, Edi; Kato, Takeshi; Iwata, Satoshi

    2016-04-01

    Ribbon of magnetite (Fe3O4)/Polyvinyl Alcohol (PVA) nanoparticles have been successfully fabricated with various concentration of PVA synthesized by co-precipitation method. Particle size of nanoparticles Fe3O4 sample and ribbon Fe3O4/PVA 25% sample is about 9.34 nm and 11.29 nm, respectively. The result of Vibrating Sample Magnetometer (VSM) showed that saturation magnetization value decreased from 76.99 emu/g to 15.01 emu/g and coercivity increased from 49.30 Oe to 158.35 Oe as increasing concentration of PVA. Atomic Force Microscopy (AFM) analysis showed that encapsulated PVA given decreasing agglomeration, controlled shape of nanoparticles Fe3O4 more spherical and dispersed. Surface roughness decreased with increasing concentration of PVA.

  15. Fe3O4@mesoporous SBA-15: A magnetically recoverable catalyst for photodegradation of malachite green

    NASA Astrophysics Data System (ADS)

    Aliyan, Hamid; Fazaeli, Razieh; Jalilian, Rahil

    2013-07-01

    Surface of mesostructured silica (SBA-15) was modified by immobilizing Fe3O4. This modified-nanosized mesoporous silica Fe3O4@SBA-15 was characterized by FTIR, XRD, BET and SEM. A comparison of the photoefficiency of Fe3O4@SBA-15 toward photodegradation of malachite green (MG) was investigated in a photocatalytic reactor using UV lamp as a light source. The effect of various experimental parameters on the degradation performance of the process was evaluated by examining catalyst dosage, initial dye concentration and pH of the dye solution in the presence of Fe3O4@SBA-15 as photocatalyst. It was found that the photocatalyst exhibited significantly high catalytic stability, and the activity loss is negligible after five MG degradation cycles.

  16. Polyvinyl Pyrrolidone-Assisted Solvothermal Synthesis of Fe3O4 Vesicular Nanospheres.

    PubMed

    Song, Hongfei; Liu, Meiying; Li, Sainan; Chen, Linlin; Lin, Chunming; Zhang, Liqing

    2015-05-01

    Monodispersed Fe3O4 vesicular nanospheres with a diameter of 160 nm have been fabricated solvothermally in the mixed solution of ethylene glycol (EG) and ethylenediamine (en) with the surfactant polyvinyl pyrrolidone (PVP). The microstructure and magnetic properties of the products were characterized by XRD, Raman, SEM, TEM, HRTEM, N2 adsorption-desorption and SQUID techniques. The HRTEM result shows that spherical Fe3O4 nanoparticles are structurally uniform with a distinct lattice spacing of 2.6 Å, which can be assigned to the (311) crystal facet of cubic Fe3O4. Besides, the as-obtained Fe3O4 vesicular nanospheres are ferromagnetic with a saturation magnetization of 86.9 emu/g as high as its bulk counterpart, demonstrating its promising applications in advanced magnetic materials and biomedicine. PMID:26505038

  17. Magnetically Separable Fe3O4@DOPA-Pd: A Heterogeneous Catalyst for Aqueous Heck Reaction

    EPA Science Inventory

    Magnetically separable Fe3O4@DOPA-Pd catalyst has been synthesized via anchoring of palladium over dopamine-coated magnetite via non-covalent interaction and the catalyst is utilized for expeditious Heck coupling in aqueous media.

  18. Multifunctional Fe3O4 @ Au core/shell nanostars: a unique platform for multimode imaging and photothermal therapy of tumors

    NASA Astrophysics Data System (ADS)

    Hu, Yong; Wang, Ruizhi; Wang, Shige; Ding, Ling; Li, Jingchao; Luo, Yu; Wang, Xiaolin; Shen, Mingwu; Shi, Xiangyang

    2016-06-01

    We herein report the development of multifunctional folic acid (FA)-targeted Fe3O4 @ Au nanostars (NSs) for targeted multi-mode magnetic resonance (MR)/computed tomography (CT)/photoacoustic (PA) imaging and photothermal therapy (PTT) of tumors. In this present work, citric acid-stabilized Fe3O4/Ag composite nanoparticles prepared by a mild reduction route were utilized as seeds and exposed to the Au growth solution to induce the formation of Fe3O4 @ Au core/shell NSs. Followed by successive decoration of thiolated polyethyleneimine (PEI-SH), FA via a polyethylene glycol spacer, and acetylation of the residual PEI amines, multifunctional Fe3O4 @ Au NSs were formed. The designed multifunctional NSs possess excellent colloidal stability, good cytocompatibility in a given concentration range, and specific recognition to cancer cells overexpressing FA receptors. Due to co-existence of Fe3O4 core and star-shaped Au shell, the NSs can be used for MR and CT imaging of tumors, respectively. Likewise, the near infrared plasmonic absorption feature also enables the NSs to be used for PA imaging and PTT of tumors. Our study clearly demonstrates a unique theranostic nanoplatform that can be used for high performance multi-mode imaging-guided PTT of tumors, which may be extendable for theranostics of different diseases in translational medicine.

  19. 1D Magnetic Materials of Fe3O4 and Fe with High Performance of Microwave Absorption Fabricated by Electrospinning Method

    PubMed Central

    Han, Rui; Li, Wei; Pan, Weiwei; Zhu, Minggang; Zhou, Dong; Li, Fa-shen

    2014-01-01

    Fe3O4 and Fe nanowires are successfully fabricated by electrospinning method and reduction process. Wiry microstructures were achieved with the phase transformation from α-Fe2O3 to Fe3O4 and Fe by partial and full reduction, while still preserving the wire morphology. The diameters of the Fe3O4 and Fe nanowires are approximately 50–60 nm and 30–40 nm, respectively. The investigation of microwave absorption reveals that the Fe3O4 nanowires exhibit excellent microwave absorbing properties. For paraffin-based composite containing 50% weight concentration of Fe3O4 nanowires, the minimum reflection loss reaches −17.2 dB at 6.2 GHz with the matching thickness of 5.5 mm. Furthermore, the calculation shows that the modulus of the ratio between the complex permittivity and permeability |ε/μ| is far away from unity at the minimum reflection loss point, which is quite different from the traditional opinions. PMID:25510415

  20. Tailor-made magnetic Fe3O4@mTiO2 microspheres with a tunable mesoporous anatase shell for highly selective and effective enrichment of phosphopeptides.

    PubMed

    Ma, Wan-Fu; Zhang, Ying; Li, Lu-Lu; You, Li-Jun; Zhang, Peng; Zhang, Yu-Ting; Li, Ju-Mei; Yu, Meng; Guo, Jia; Lu, Hao-Jie; Wang, Chang-Chun

    2012-04-24

    Selective enrichment of phosphoproteins or phosphopeptides from complex mixtures is essential for MS-based phosphoproteomics, but still remains a challenge. In this article, we described an unprecedented approach to synthesize magnetic mesoporous Fe(3)O(4)@mTiO(2) microspheres with a well-defined core/shell structure, a pure and highly crystalline TiO(2) layer, high specific surface area (167.1 m(2)/g), large pore volume (0.45 cm(3)/g), appropriate and tunable pore size (8.6-16.4 nm), and high magnetic susceptibility. We investigated the applicability of Fe(3)O(4)@mTiO(2) microspheres in a study of the selective enrichment of phosphopeptides. The experiment results demonstrated that the Fe(3)O(4)@mTiO(2) possessed remarkable selectivity for phosphopeptides even at a very low molar ratio of phosphopeptides/non-phosphopeptides (1:1000), large enrichment capacity (as high as 225 mg/g, over 10 times as that of the Fe(3)O(4)@TiO(2) microspheres), extreme sensitivity (the detection limit was at the fmol level), excellent speed (the enrichment can be completed in less than 5 min), and high recovery of phosphopeptides (as high as 93%). In addition, the high magnetic susceptibility allowed convenient separation of the target peptides by magnetic separation. These outstanding features give the Fe(3)O(4)@mTiO(2) composite microspheres high benefit for mass spectrometric analysis of phosphopeptides. PMID:22452444

  1. Multifunctional Fe3O4 @ Au core/shell nanostars: a unique platform for multimode imaging and photothermal therapy of tumors

    PubMed Central

    Hu, Yong; Wang, Ruizhi; Wang, Shige; Ding, Ling; Li, Jingchao; Luo, Yu; Wang, Xiaolin; Shen, Mingwu; Shi, Xiangyang

    2016-01-01

    We herein report the development of multifunctional folic acid (FA)-targeted Fe3O4 @ Au nanostars (NSs) for targeted multi-mode magnetic resonance (MR)/computed tomography (CT)/photoacoustic (PA) imaging and photothermal therapy (PTT) of tumors. In this present work, citric acid-stabilized Fe3O4/Ag composite nanoparticles prepared by a mild reduction route were utilized as seeds and exposed to the Au growth solution to induce the formation of Fe3O4 @ Au core/shell NSs. Followed by successive decoration of thiolated polyethyleneimine (PEI-SH), FA via a polyethylene glycol spacer, and acetylation of the residual PEI amines, multifunctional Fe3O4 @ Au NSs were formed. The designed multifunctional NSs possess excellent colloidal stability, good cytocompatibility in a given concentration range, and specific recognition to cancer cells overexpressing FA receptors. Due to co-existence of Fe3O4 core and star-shaped Au shell, the NSs can be used for MR and CT imaging of tumors, respectively. Likewise, the near infrared plasmonic absorption feature also enables the NSs to be used for PA imaging and PTT of tumors. Our study clearly demonstrates a unique theranostic nanoplatform that can be used for high performance multi-mode imaging-guided PTT of tumors, which may be extendable for theranostics of different diseases in translational medicine. PMID:27325015

  2. Aptamer-conjugated bio-bar-code Au-Fe3O4 nanoparticles as amplification station for electrochemiluminescence detection of tumor cells.

    PubMed

    Chen, Min; Bi, Sai; Jia, Xiaoqiang; He, Peng

    2014-07-21

    An electrochemiluminescence (ECL) assay has been developed for highly sensitive and selective detection of tumor cells based on cell-SELEX aptamer-target cell interactions through a cascaded amplification process by using bio-bar-code Au-Fe3O4 as amplification station. Firstly, bio-bar-code toehold-aptamer/DNA primer/Au-Fe3O4 (TA/DP/Au-Fe3O4) nanoconjugates are fabricated with a ratio of 1:10 to efficiently avoid cross-linking reaction and recognize target cells, which are immobilized on the substrate by hybridizing aptamer to capture probe with 18-mer. Through strand displacement reaction (SDR), the TA/DP/Au-Fe3O4 composites further act as the amplification station to initiate rolling circle amplification (RCA). As a result, on the surface of TA/DP/Au-Fe3O4, a large number of Ru(bpy)2(dcbpy)NHS-labeled probes hybridize to RCA products, which are easily trapped by magnetic electrode to perform the magnetic particle-based ECL platform. Under isothermal conditions, this powerful amplification strategy permits detection of Ramos cells as low as 16 cells with an excellent selectivity. Moreover, analysis of Ramos cells in complex samples and whole blood samples further show the great potential of this ultrasensitive approach in clinical application involving cancer cells-related biological processes.

  3. Multifunctional nanocomposites of Fe3O4-graphene-Au for repeated use in simultaneous adsorption, in situ SERS detection and catalytic reduction of 4-nitrophenol in water

    NASA Astrophysics Data System (ADS)

    Chen, Fenghua; Wang, Yongwei; Chen, Qingtao; Han, Lifeng; Chen, Zhijun; Fang, Shaoming

    2014-12-01

    This work is directed towards the synthesis of a ternary nanocomposite of Fe3O4-graphene-Au, i.e. Fe3O4 nanoparticles (˜300 nm in size) and Au nanoparticles (˜50 nm in size) loaded on the carbon basal planes of reduced graphene oxide, aimed for repeated use in simultaneous adsorption, in situ SERS detection and catalytic reduction of 4-nitrophenol (4-NP) in water, and also for recovering the useful reduction product of 4-aminophenol (4-AP). The results indicate that the amount of 4-NP and 4-AP absorbed to the prepared Fe3O4-graphene-Au nanocomposite can reach 170 mg g-1 and 447 mg g-1, respectively. The reduction reaction of 4-NP to 4-AP by NaBH4 with the Fe3O4-graphene-Au nanocomposite as a catalyst follows first-order kinetics with a rate constant (k) of about 0.4964 min-1, remarkably superior to the 0.1199 min-1 for the reduction reaction with the bare Au nanoparticles under the same conditions. In addition, in situ SERS can also be carried out to detect 4-NP and to monitor the reduction reaction with Fe3O4-graphene-Au as the substrate. Recycling of the composite can be achieved by simply applying an external magnetic field and the results demonstrate that it can be reused at least eight times with almost unaffected catalytic efficiency.

  4. A DNA-Assembled Fe3O4@Ag Nanorod in Silica Matrix for Cholesterol Biosensing

    NASA Astrophysics Data System (ADS)

    Satvekar, R. K.; Tiwari, A. P.; Rohiwal, S. S.; Tiwale, B. M.; Pawar, S. H.

    2015-12-01

    A novel nanocomposite having DNA-assembled Fe3O4@Ag nanorods in silica matrix has been proposed for fabrication of bienzymatic cholesterol nanobiosensor. Cholesterol oxidase and horseradish peroxidase have been co-encapsulated in Silica/Fe3O4@Ag-DNA nanocomposite deposited on the indium tin oxide electrode. Cyclic voltammetry was employed for the electrochemical behavior of proposed biosensor and used to estimate cholesterol with a linear range of 5-195 mg/dL.

  5. Removal of Microcystis aeruginosa using nano-Fe3O4 particles as a coagulant aid.

    PubMed

    Zhang, Bo; Jiang, Dan; Guo, Xiaochen; He, Yiliang; Ong, Choon Nam; Xu, Yongpeng; Pal, Amrita

    2015-12-01

    Blue-green algae bloom is of great concern globally since they adversely affect the water ecosystem and also drinking water treatment processes. This work investigated the removal of Microcystis aeruginosa (M. aeruginosa) by combining the conventional coagulant polyaluminum chloride (PACl) with nano-Fe3O4 particles as a coagulant aid. The results showed that the addition of nano-Fe3O4 significantly improved the removal efficiency of M. aeruginosa by reducing the amount of PACl dosage and simultaneously hastening the sedimentation. At the M. aeruginosa density of an order of magnitude of 10(7), 10(6), and 10(5) pcs/mL, respectively, the corresponding PACl dose of 200, 20, and 2 mg/L and the mass ratio of PACl to nano-Fe3O4 of 4:1, the removal efficiency of M. aeruginosa could be increased by 33.0, 44.7, and 173.1%, respectively. Compared to PACl, PACl combined with the nano-Fe3O4 as a coagulant aid had higher removal efficiency at a wider pH range. SEM images showed that nano-Fe3O4 first combined with PACl to form clusters and further generated the flocs with algae. Results from the laser particle analyzer further suggested that the floc size increased with the addition of nano-Fe3O4. It was noted that the addition of nano-Fe3O4 led to aluminum species change after PACl hydrolyzed in the algae solution, from Ala to Alb and Alc subsequently. As a coagulant aid, the nano-Fe3O4, in conjunction with PACl, apparently provided nucleation sites for larger flocs to integrate with M. aeruginosa. In addition, increased floc density improved the removal of M. aeruginosa. PMID:26194241

  6. Spin transport in molecules studied by Fe3O4/molecule nanoparticles

    NASA Astrophysics Data System (ADS)

    Yue, F. J.; Wang, S.; Wu, D.

    2013-05-01

    In this work, we synthesize single molecular layer coated Fe3O4 nanoparticles to form the network of the molecular junction spin valves. The Fe3O4 nanoparticles chemically bond with molecules without any physically absorbed molecules, leading to one monolayer molecule coated on nanoparticles. The magnetoresistance (MR) of cold-pressed Fe3O4/oleic acid nanoparticles is more than two times larger than bare Fe3O4 nanoparticles, indicating weaker spin scattering in molecules. Furthermore, the MR ratio is as high as ˜21 % at room temperature for Fe3O4/alkane molecule nanoparticles. Interestingly, even though the resistance spans about two decades as the alkane molecular length varies from 0.7 to 2.5 nm, the MR ratio stays approximately constant. This molecular length independent spin valve MR, originated from the weaker hyperfine interaction strength of the σ-electrons in alkane molecules, entails room-temperature spin-conserving transport in molecular materials. Using the size of ˜500 nm Fe3O4 nanoparticles, a large MR is achieved in a relatively low magnetic field. This feature opens a door for the development of future spin-based molecular electronics. Moreover, spin injection at the interface of Fe3O4/stearic acid molecule is investigated in a comparative study between Fe3O4 nanoparticles chemically bonded (ChemNPs) and physically absorbed (PhyNPs) molecules. A MR of 12 % at room temperature is observed in ChemNPs, in sharp contrast to the zero MR ratio in PhyNPs, reflecting that the chemical bonding is crucial for spin injection. These results show that the hybrid nanoparticles provide a simple approach to study the spin transport in molecules.

  7. Effects of Fe3O4 Magnetic Nanoparticles on A549 Cells

    PubMed Central

    Watanabe, Masatoshi; Yoneda, Misao; Morohashi, Ayaka; Hori, Yasuki; Okamoto, Daiki; Sato, Akiko; Kurioka, Daisuke; Nittami, Tadashi; Hirokawa, Yoshifumi; Shiraishi, Taizo; Kawai, Kazuaki; Kasai, Hiroshi; Totsuka, Yukari

    2013-01-01

    Fe3O4 magnetic nanoparticles (MgNPs-Fe3O4) are widely used in medical applications, including magnetic resonance imaging, drug delivery, and in hyperthermia. However, the same properties that aid their utility in the clinic may potentially induce toxicity. Therefore, the purpose of this study was to investigate the cytotoxicity and genotoxicity of MgNPs-Fe3O4 in A549 human lung epithelial cells. MgNPs-Fe3O4 caused cell membrane damage, as assessed by the release of lactate dehydrogenase (LDH), only at a high concentration (100 μg/mL); a lower concentration (10 μg/mL) increased the production of reactive oxygen species, increased oxidative damage to DNA, and decreased the level of reduced glutathione. MgNPs-Fe3O4 caused a dose-dependent increase in the CD44+ fraction of A549 cells. MgNPs-Fe3O4 induced the expression of heme oxygenase-1 at a concentration of 1 μg/mL, and in a dose-dependent manner. Despite these effects, MgNPs-Fe3O4 had minimal effect on cell viability and elicited only a small increase in the number of cells undergoing apoptosis. Together, these data suggest that MgNPs-Fe3O4 exert little or no cytotoxicity until a high exposure level (100 μg/mL) is reached. This dissociation between elevated indices of cell damage and a small effect on cell viability warrants further study. PMID:23892599

  8. Removal of Microcystis aeruginosa using nano-Fe3O4 particles as a coagulant aid.

    PubMed

    Zhang, Bo; Jiang, Dan; Guo, Xiaochen; He, Yiliang; Ong, Choon Nam; Xu, Yongpeng; Pal, Amrita

    2015-12-01

    Blue-green algae bloom is of great concern globally since they adversely affect the water ecosystem and also drinking water treatment processes. This work investigated the removal of Microcystis aeruginosa (M. aeruginosa) by combining the conventional coagulant polyaluminum chloride (PACl) with nano-Fe3O4 particles as a coagulant aid. The results showed that the addition of nano-Fe3O4 significantly improved the removal efficiency of M. aeruginosa by reducing the amount of PACl dosage and simultaneously hastening the sedimentation. At the M. aeruginosa density of an order of magnitude of 10(7), 10(6), and 10(5) pcs/mL, respectively, the corresponding PACl dose of 200, 20, and 2 mg/L and the mass ratio of PACl to nano-Fe3O4 of 4:1, the removal efficiency of M. aeruginosa could be increased by 33.0, 44.7, and 173.1%, respectively. Compared to PACl, PACl combined with the nano-Fe3O4 as a coagulant aid had higher removal efficiency at a wider pH range. SEM images showed that nano-Fe3O4 first combined with PACl to form clusters and further generated the flocs with algae. Results from the laser particle analyzer further suggested that the floc size increased with the addition of nano-Fe3O4. It was noted that the addition of nano-Fe3O4 led to aluminum species change after PACl hydrolyzed in the algae solution, from Ala to Alb and Alc subsequently. As a coagulant aid, the nano-Fe3O4, in conjunction with PACl, apparently provided nucleation sites for larger flocs to integrate with M. aeruginosa. In addition, increased floc density improved the removal of M. aeruginosa.

  9. Synthesis and microwave absorption property of graphene oxide/carbon nanotubes modified with cauliflower-like Fe3O4 nanospheres

    NASA Astrophysics Data System (ADS)

    Yan, Shaojiu; Wang, Lina; Wang, Tihong; Zhang, Liqiang; Li, Yongfeng; Dai, Shenglong

    2016-03-01

    We report a simple procedure to fabricate graphene oxide/carbon nanotube hybrids coated with cauliflower-like Fe3O4 sphere. Characterizations have been carried out to investigate the morphology, crystalline structure of the composites by scanning electron microscopy, transmission electron microscopy and X-ray diffraction. Fe3O4 particles have the morphologies of multi-lacuna; moreover, some spheres are hollow. As a kind of potential microwave absorption material, the composites are lightweight and exhibit excellent microwave absorbing ability in the range of 2-16 GHz.

  10. Chelerythrine and Fe3O4 Loaded Multi-Walled Carbon Nanotubes for Targeted Cancer Therapy.

    PubMed

    Cao, Liangli; Liang, Yongbo; Zhao, Feijun; Zhao, Xiongjie; Chen, Zhencheng

    2016-06-01

    The work focused on manufacturing improved drug loaded multifunctional magnetic nanoparticles that can overcome the relative non-specificity and potential side-effects of some chemotherapeutic drugs to healthy tissues. A new drug delivery system, Chelerythrine (CHE) and Fe3O4 loaded multi-walled carbon nanotubes (Fe3O4/MWNTs-CHE nanocomposites) that can target hepatocytes when treating malignant tumors, was prepared through a simple adsorption method. The formulation and structure of the Fe3O4/MWNTs-CHE nanocomposites were characterized by vibrating sample magnetometer (VSM), Fourier Transform infrared spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). The cytotoxicity and anti-proliferation effect from the prepared nanocomposites were in vitro tested on human hepatocarcinoma HepG2 and normal liver LO2 cell lines. The results showed the saturated magnetization of Fe3O4/MWNTs-CHE nanocomposites could reach to 45.4O3 emu/g, and the in vitro CHE release behavior exhibited a biphasic release pattern. Moreover, the in vitro cytotoxicity studies revealed that the Fe3O4/MWNTs-CHE nanocomposites showed an efficient inhibition rate to HepG2 cell line and exhibited a lower cytotoxicity to LO2 cell line in comparison to the native CHE. Therefore, the multifunctional Fe3O4/MWNTs-CHE nanocomposites should be a useful and promising candidate for treatment of malignant tumors. PMID:27319224

  11. Green Synthesis of Magnetite (Fe3O4) Nanoparticles Using Seaweed (Kappaphycus alvarezii) Extract.

    PubMed

    Yew, Yen Pin; Shameli, Kamyar; Miyake, Mikio; Kuwano, Noriyuki; Bt Ahmad Khairudin, Nurul Bahiyah; Bt Mohamad, Shaza Eva; Lee, Kar Xin

    2016-12-01

    In this study, a simple, rapid, and eco-friendly green method was introduced to synthesize magnetite nanoparticles (Fe3O4-NPs) successfully. Seaweed Kappaphycus alvarezii (K. alvarezii) was employed as a green reducing and stabilizing agents. The synthesized Fe3O4-NPs were characterized with X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV-Vis), Fourier transform infrared (FT-IR), and transmission electron microscopy (TEM) techniques. The X-ray diffraction planes at (220), (311), (400), (422), (511), (440), and (533) were corresponding to the standard Fe3O4 patterns, which showed the high purity and crystallinity of Fe3O4-NPs had been synthesized. Based on FT-IR analysis, two characteristic absorption peaks were observed at 556 and 423 cm(-1), which proved the existence of Fe3O4 in the prepared nanoparticles. TEM image displayed the synthesized Fe3O4-NPs were mostly in spherical shape with an average size of 14.7 nm. PMID:27251326

  12. The MIL-88A-Derived Fe3O4-Carbon Hierarchical Nanocomposites for Electrochemical Sensing

    PubMed Central

    Wang, Li; Zhang, Yayun; Li, Xia; Xie, Yingzhen; He, Juan; Yu, Jie; Song, Yonghai

    2015-01-01

    Metal or metal oxides/carbon nanocomposites with hierarchical superstructures have become one of the most promising functional materials in sensor, catalysis, energy conversion, etc. In this work, novel hierarchical Fe3O4/carbon superstructures have been fabricated based on metal-organic frameworks (MOFs)-derived method. Three kinds of Fe-MOFs (MIL-88A) with different morphologies were prepared beforehand as templates, and then pyrolyzed to fabricate the corresponding novel hierarchical Fe3O4/carbon superstructures. The systematic studies on the thermal decomposition process of the three kinds of MIL-88A and the effect of template morphology on the products were carried out in detail. Scanning electron microscopy, transmission electron microscopy, X-ray powder diffraction, X-ray photoelectron spectroscopy and thermal analysis were employed to investigate the hierarchical Fe3O4/carbon superstructures. Based on these resulted hierarchical Fe3O4/carbon superstructures, a novel and sensitive nonenzymatic N-acetyl cysteine sensor was developed. The porous and hierarchical superstructures and large surface area of the as-formed Fe3O4/carbon superstructures eventually contributed to the good electrocatalytic activity of the prepared sensor towards the oxidation of N-acetyl cysteine. The proposed preparation method of the hierarchical Fe3O4/carbon superstructures is simple, efficient, cheap and easy to mass production. It might open up a new way for hierarchical superstructures preparation. PMID:26387535

  13. Green Synthesis of Magnetite (Fe3O4) Nanoparticles Using Seaweed ( Kappaphycus alvarezii) Extract

    NASA Astrophysics Data System (ADS)

    Yew, Yen Pin; Shameli, Kamyar; Miyake, Mikio; Kuwano, Noriyuki; Bt Ahmad Khairudin, Nurul Bahiyah; Bt Mohamad, Shaza Eva; Lee, Kar Xin

    2016-06-01

    In this study, a simple, rapid, and eco-friendly green method was introduced to synthesize magnetite nanoparticles (Fe3O4-NPs) successfully. Seaweed Kappaphycus alvarezii ( K. alvarezii) was employed as a green reducing and stabilizing agents. The synthesized Fe3O4-NPs were characterized with X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV-Vis), Fourier transform infrared (FT-IR), and transmission electron microscopy (TEM) techniques. The X-ray diffraction planes at (220), (311), (400), (422), (511), (440), and (533) were corresponding to the standard Fe3O4 patterns, which showed the high purity and crystallinity of Fe3O4-NPs had been synthesized. Based on FT-IR analysis, two characteristic absorption peaks were observed at 556 and 423 cm-1, which proved the existence of Fe3O4 in the prepared nanoparticles. TEM image displayed the synthesized Fe3O4-NPs were mostly in spherical shape with an average size of 14.7 nm.

  14. The MIL-88A-Derived Fe3O4-Carbon Hierarchical Nanocomposites for Electrochemical Sensing

    NASA Astrophysics Data System (ADS)

    Wang, Li; Zhang, Yayun; Li, Xia; Xie, Yingzhen; He, Juan; Yu, Jie; Song, Yonghai

    2015-09-01

    Metal or metal oxides/carbon nanocomposites with hierarchical superstructures have become one of the most promising functional materials in sensor, catalysis, energy conversion, etc. In this work, novel hierarchical Fe3O4/carbon superstructures have been fabricated based on metal-organic frameworks (MOFs)-derived method. Three kinds of Fe-MOFs (MIL-88A) with different morphologies were prepared beforehand as templates, and then pyrolyzed to fabricate the corresponding novel hierarchical Fe3O4/carbon superstructures. The systematic studies on the thermal decomposition process of the three kinds of MIL-88A and the effect of template morphology on the products were carried out in detail. Scanning electron microscopy, transmission electron microscopy, X-ray powder diffraction, X-ray photoelectron spectroscopy and thermal analysis were employed to investigate the hierarchical Fe3O4/carbon superstructures. Based on these resulted hierarchical Fe3O4/carbon superstructures, a novel and sensitive nonenzymatic N-acetyl cysteine sensor was developed. The porous and hierarchical superstructures and large surface area of the as-formed Fe3O4/carbon superstructures eventually contributed to the good electrocatalytic activity of the prepared sensor towards the oxidation of N-acetyl cysteine. The proposed preparation method of the hierarchical Fe3O4/carbon superstructures is simple, efficient, cheap and easy to mass production. It might open up a new way for hierarchical superstructures preparation.

  15. Chelerythrine and Fe3O4 Loaded Multi-Walled Carbon Nanotubes for Targeted Cancer Therapy.

    PubMed

    Cao, Liangli; Liang, Yongbo; Zhao, Feijun; Zhao, Xiongjie; Chen, Zhencheng

    2016-06-01

    The work focused on manufacturing improved drug loaded multifunctional magnetic nanoparticles that can overcome the relative non-specificity and potential side-effects of some chemotherapeutic drugs to healthy tissues. A new drug delivery system, Chelerythrine (CHE) and Fe3O4 loaded multi-walled carbon nanotubes (Fe3O4/MWNTs-CHE nanocomposites) that can target hepatocytes when treating malignant tumors, was prepared through a simple adsorption method. The formulation and structure of the Fe3O4/MWNTs-CHE nanocomposites were characterized by vibrating sample magnetometer (VSM), Fourier Transform infrared spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). The cytotoxicity and anti-proliferation effect from the prepared nanocomposites were in vitro tested on human hepatocarcinoma HepG2 and normal liver LO2 cell lines. The results showed the saturated magnetization of Fe3O4/MWNTs-CHE nanocomposites could reach to 45.4O3 emu/g, and the in vitro CHE release behavior exhibited a biphasic release pattern. Moreover, the in vitro cytotoxicity studies revealed that the Fe3O4/MWNTs-CHE nanocomposites showed an efficient inhibition rate to HepG2 cell line and exhibited a lower cytotoxicity to LO2 cell line in comparison to the native CHE. Therefore, the multifunctional Fe3O4/MWNTs-CHE nanocomposites should be a useful and promising candidate for treatment of malignant tumors.

  16. Magnetic characteristics of Fe3O4/α-Fe2O3 hybrid cubes

    NASA Astrophysics Data System (ADS)

    Ma, Ji; Chen, Kezheng; Zhang, Xiaodan

    2012-02-01

    The high spin polarized Fe3O4 was incorporated with α-Fe2O3 to form micro-cubes with high Curie temperature. It was observed that the magnetic characteristics of such hybrid structure are quite different from those of pure Fe3O4 or α-Fe2O3 phase, such as the absence of hematite Morin transition and the strong temperature dependence of magnetite saturated magnetization. The absence of Morin transition in Fe3O4/α-Fe2O3 hybrid cubes not only excludes the possibility of simply mixture of Fe3O4 and α-Fe2O3 components during the synthetic process, but also confirms that the introduction of high spin polarized Fe3O4 provides another way for the extinction of hematite Morin temperature apart from formerly reported factors, such as the particle size, shape, crystallinity, and surface properties. Moreover, the observed strong temperature dependence of magnetite saturation behavior has not been reported experimentally so far. Both intriguing phenomena could be ascribed to the magnetic interactions between Fe3O4 and α-Fe2O3 components, which are of great importance not only for the understanding of mutually magnetic influence between high spin polarized materials and semiconducting matrix, but also for the potential applications in fabricating spin devices.

  17. Superparamagnetic Au-Fe3O4 nanoparticles: one-pot synthesis, biofunctionalization and toxicity evaluation

    NASA Astrophysics Data System (ADS)

    Pariti, A.; Desai, P.; Maddirala, S. K. Y.; Ercal, N.; Katti, K. V.; Liang, X.; Nath, M.

    2014-09-01

    Superparamagnetic Au-Fe3O4 bifunctional nanoparticles have been synthesized using a single step hot-injection precipitation method. The synthesis involved using Fe(CO)5 as iron precursor and HAuCl4 as gold precursor in the presence of oleylamine and oleic acid. Oleylamine helps in reducing Au3+ to Au0 seeds which simultaneously oxidizes Fe(0) to form Au-Fe3O4 bifunctional nanoparticles. Triton® X-100 was employed as a highly viscous solvent to prevent agglomeration of Fe3O4 nanoparticles. Detailed characterization of these nanoparticles was performed by using x-ray powder diffraction, transmission electron microscopy, scanning tunneling electron microscopy, UV-visible spectroscopy, Mössbauer and magnetometry studies. To evaluate these nanoparticles’ applicability in biomedical applications, L-cysteine was attached to the Au-Fe3O4 nanoparticles and cytotoxicity of Au-Fe3O4 nanoparticles was tested using CHO cells by employing MTS assay. L-cysteine modified Au-Fe3O4 nanoparticles were qualitatively characterized using Fourier transform infrared spectroscopy and Raman spectroscopy; and quantitatively using acid ninhydrin assay. Investigations reveal that that this approach yields Au-Fe3O4 bifunctional nanoparticles with an average particle size of 80 nm. Mössbauer studies indicated the presence of Fe in Fe3+ in A and B sites (tetrahedral and octahedral, respectively) and Fe2+ in B sites (octahedral). Magnetic measurements also indicated that these nanoparticles were superparamagnetic in nature due to Fe3O4 region. The saturation magnetization for the bifunctional nanoparticles was observed to be ˜74 emu g-1, which is significantly higher than the previously reported Fe3O4 nanoparticles. Mössbauer studies indicated that there was no significant Fe(0) impurity that could be responsible for the superparamagnetic nature of these nanoparticles. None of the investigations showed any presence of other impurities such as Fe2O3 and FeOOH. These Au-Fe3O4 bifunctional

  18. Controllable synthesis and enhanced microwave absorbing properties of Fe3O4/NiFe2O4/Ni heterostructure porous rods

    NASA Astrophysics Data System (ADS)

    Li, Yana; Wu, Tong; Jin, Keying; Qian, Yao; Qian, Naxin; Jiang, Kedan; Wu, Wenhua; Tong, Guoxiu

    2016-11-01

    We developed a coordinated self-assembly/precipitate transfer/sintering method that allows the controllable synthesis of Fe3O4/NiFe2O4/Ni heterostructure porous rods (HPRs). A series of characterizations confirms that changing [Ni2+] can effectively control the crystal size, internal strain, composition, textural characteristics, and properties of HPRs. Molar percentages of Ni and NiFe2O4 in HPRs increase with [Ni2+] in various Boltzmann function modes. Saturation magnetization Ms and coercivity Hc show U-shaped change trends because of crystal size, composition, and interface magnetic coupling. High magnetic loss is maintained after decorating NiFe2O4 and Ni on the surface of Fe3O4 PRs. Controlling the NiFe2O4 interface layers and Ni content can improve impedance matching and dielectric losses, thereby leading to lighter weight, stronger absorption, and broader absorption band of Fe3O4/NiFe2O4/Ni HPRs than Fe3O4 PRs. An optimum EM wave absorbing property was exhibited by Fe3O4/NiFe2O4/Ni HPRs formed at [Ni2+] = 0.05 M. The maximum reflection loss (RL) reaches -58.4 dB at 13.68 GHz, which corresponds to a 2.1 mm matching thickness. The absorbing bandwidth (RL ≤ -20 dB) reaches 14.4 GHz with the sample thickness at 1.6-2.4 and 2.8-10.0 mm. These excellent properties verify that Fe3O4/NiFe2O4/Ni HPRs are promising candidates for new and effective absorptive materials.

  19. Fe3O4 and MnO2 assembled on honeycomb briquette cinders (HBC) for arsenic removal from aqueous solutions.

    PubMed

    Zhu, Jin; Baig, Shams Ali; Sheng, Tiantian; Lou, Zimo; Wang, Zhuoxing; Xu, Xinhua

    2015-04-01

    In this study, a novel composite adsorbent (HBC-Fe3O4-MnO2) was synthesized by combining honeycomb briquette cinders (HBC) with Fe3O4 and MnO2 through a co-precipitation process. The purpose was to make the best use of the oxidative property of MnO2 and the adsorptive ability of magnetic Fe3O4 for enhanced As(III) and As(V) removal from aqueous solutions. Experimental results showed that the adsorption capacity of As(III) was observed to be much higher than As(V). The maximum adsorption capacity (2.16 mg/g) was achieved for As(III) by using HBC-Fe3O4-MnO2 (3:2) as compared to HBC-Fe3O4-MnO2 (2:1) and HBC-Fe3O4-MnO2 (1:1). The experimental data of As(V) adsorption fitted well with the Langmuir isotherm model, whereas As(III) data was described perfectly by Freundlich model. The pseudo-second-order kinetic model was fitted well for the entire adsorption process of As(III) and As(V) suggesting that the adsorption is a rate-controlling step. Aqueous solution pH was found to greatly affect the adsorption behavior. Furthermore, co-ions including HCO3(-) and PO4(3-) exhibited greater influence on arsenic removal efficiency, whereas Cl(-), NO3(-), SO4(2-) were found to have negligible effects on arsenic removal. Five consecutive adsorption-regeneration cycles confirmed that the adsorbent could be reusable for successive arsenic treatment and can be used in real treatment applications. PMID:25585269

  20. Stability and magnetically induced heating behavior of lipid-coated Fe3O4 nanoparticles.

    PubMed

    Allam, Ayat A; Sadat, Md Ehsan; Potter, Sarah J; Mast, David B; Mohamed, Dina F; Habib, Fawzia S; Pauletti, Giovanni M

    2013-10-17

    Magnetic nanoparticles that are currently explored for various biomedical applications exhibit a high propensity to minimize total surface energy through aggregation. This study introduces a unique, thermoresponsive nanocomposite design demonstrating substantial colloidal stability of superparamagnetic Fe3O4 nanoparticles (SPIONs) due to a surface-immobilized lipid layer. Lipid coating was accomplished in different buffer systems, pH 7.4, using an equimolar mixture of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and l-α-dipalmitoylphosphatidyl glycerol (DPPG). Particle size and zeta potential were measured by dynamic laser light scattering. Heating behavior within an alternating magnetic field was compared between the commercial MFG-1000 magnetic field generator at 7 mT (1 MHz) and an experimental, laboratory-made magnetic hyperthermia system at 16.6 mT (13.7 MHz). The results revealed that product quality of lipid-coated SPIONs was significantly dependent on the colloidal stability of uncoated SPIONs during the coating process. Greatest stability was achieved at 0.02 mg/mL in citrate buffer (mean diameter = 80.0 ± 1.7 nm; zeta potential = -47.1 ± 2.6 mV). Surface immobilization of an equimolar DPPC/DPPG layer effectively reduced the impact of buffer components on particle aggregation. Most stable suspensions of lipid-coated nanoparticles were obtained at 0.02 mg/mL in citrate buffer (mean diameter = 179.3 ± 13.9 nm; zeta potential = -19.1 ± 2.3 mV). The configuration of the magnetic field generator significantly affected the heating properties of fabricated SPIONs. Heating rates of uncoated nanoparticles were substantially dependent on buffer composition but less influenced by particle concentration. In contrast, thermal behavior of lipid-coated nanoparticles within an alternating magnetic field was less influenced by suspension vehicle but dramatically more sensitive to particle concentration. These results underline the advantages of lipid

  1. Ultra-small Fe3O4 nanoparticle decorated graphene nanosheets with superior cyclic performance and rate capability

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Song, Bohang; Lu, Li; Xue, Junmin

    2013-07-01

    Advanced anode materials for next generation lithium ion batteries have attracted great interest due to the ever increasing demand for powerful, light-weight, and compact electrical devices. In this work, graphene nanosheets decorated with ultra-small Fe3O4 nanoparticles (USIO/G) were synthesized via a facile hydrothermal method. Compared with other reported Fe3O4-based anode composites, USIO/G demonstrated superior cyclic ability and excellent rate capability owing to its ultra-small size of active lithium storage sites, Fe3O4, with an average diameter less than 5 nm. Furthermore, graphene nanosheets played an important role in the overall electrochemical performance of the composite by enhancing the electrical conductivity, forming a flexible network, and providing extra lithium storage sites. The obtained composites were tested for electrochemical performance for a total number of 2120 cycles: a rate capability test with current densities ranged from 90 to 7200 mA g-1 for 920 cycles, followed by a cycling test at 1800 mA g-1 for 1200 cycles. For the rate capability test, steady reversible capacities were delivered under each current density with final reversible capacities of 1177, 1096, 833, 488, 242, and 146 mA h g-1 at 90, 180, 900, 1800, 3600, and 7200 mA g-1, respectively. The subsequent cyclic test demonstrated the superior cyclic stability of USIO/G and a reversible capacity of 437 mA h g-1 at the 2120th cycle was delivered.Advanced anode materials for next generation lithium ion batteries have attracted great interest due to the ever increasing demand for powerful, light-weight, and compact electrical devices. In this work, graphene nanosheets decorated with ultra-small Fe3O4 nanoparticles (USIO/G) were synthesized via a facile hydrothermal method. Compared with other reported Fe3O4-based anode composites, USIO/G demonstrated superior cyclic ability and excellent rate capability owing to its ultra-small size of active lithium storage sites, Fe3O4, with

  2. Controlling disorder-mediated exchange bias in (Mn,Zn,Fe)3O4 thin films

    NASA Astrophysics Data System (ADS)

    Alaan, U. S.; Sreenivasulu, G.; Yu, K. M.; Jenkins, C.; Shafer, P.; Arenholz, E.; Srinivasan, G.; Suzuki, Y.

    2016-05-01

    We report exchange bias in (Mn,Zn,Fe)3O4 thin films that are compositionally homogeneous. We show that exchange bias in these Mn-Zn ferrite (MZFO) films can be tuned quite easily through annealing of the as-deposited films. The annealing process increases the crystallinity, as measured by X-ray diffraction (XRD). This improvement in crystallinity is accompanied by lower coercive fields, lower exchange bias fields, and higher saturation magnetizations. Exchange bias in these nominally homogeneous ferrite films is correlated with the degree of both structural and magnetic disorder. Based on the annealing experiments, we believe that these MZFO films may consist of crystalline regions that are separated from one another by disordered regions of the same nominal composition. The disordered regions serve to exchange bias the more structurally and magnetically ordered crystalline MZFO grains, leading to a shift of the magnetic hysteresis loop. Together these results indicate that the magnitude of the exchange bias can be controlled by tuning the degree of crystallinity in the system.

  3. Microwave absorption behavior of ZnO whisker modified by nanosized Fe3O4 particles.

    PubMed

    Hu, Shuchun; Wu, Guofeng; Huang, Zhenhao; Chen, Xiaolang

    2010-11-01

    Tetra-needle-like ZnO whisker was magnetic modified through in situ synthesis of nanosized Fe3O4 particles on the surface of the whisker, and the microwave absorption behavior of the as-prepared product was investigated in detail. The result of the comparative microwave absorbing experiment showed that the magnetic modified ZnO whisker appeared more superior property of microwave absorption than that of the original ZnO whisker in 2-18 GHz. Further investigation indicated that the microwave absorption behavior of the product was influenced by ferrite content and Fe3O4 particles' distribution in the product. When the ferrite content of the product changed from 2 wt% to 9 wt%, the microwave absorbing ability of the product was increased; then, the microwave absorbing ability of the product decreased with the further increasing of ferrite content from 9 wt% to 16 wt%. The product with uniform distribution of Fe3O4 particles showed better microwave absorption property than that with irregular distribution of Fe3O4 particles, and this result inferred that the biphase interface between ZnO and Fe3O4 contributed to microwave absorption through interface polarization. PMID:21137989

  4. Synthesis of talc/Fe3O4 magnetic nanocomposites using chemical co-precipitation method

    PubMed Central

    Kalantari, Katayoon; Ahmad, Mansor Bin; Shameli, Kamyar; Khandanlou, Roshanak

    2013-01-01

    The aim of this research was to synthesize and develop a new method for the preparation of iron oxide (Fe3O4) nanoparticles on talc layers using an environmentally friendly process. The Fe3O4 magnetic nanoparticles were synthesized using the chemical co-precipitation method on the exterior surface layer of talc mineral as a solid substrate. Ferric chloride, ferrous chloride, and sodium hydroxide were used as the Fe3O4 precursor and reducing agent in talc. The talc was suspended in deionized water, and then ferrous and ferric ions were added to this solution and stirred. After the absorption of ions on the exterior surface of talc layers, the ions were reduced with sodium hydroxide. The reaction was carried out under a nonoxidizing oxygen-free environment. There were not many changes in the interlamellar space limits (d-spacing = 0.94−0.93 nm); therefore, Fe3O4 nanoparticles formed on the exterior surface of talc, with an average size of 1.95–2.59 nm in diameter. Nanoparticles were characterized using different methods, including powder X-ray diffraction, transmission electron microscopy, emission scanning electron microscopy, energy dispersive X-ray spectroscopy, and Fourier transform infrared spectroscopy. These talc/Fe3O4 nanocomposites may have potential applications in the chemical and biological industries. PMID:23696700

  5. Functionalized Magnetic Fe3O4-β-Cyclodextran Nanoparticles for Efficient Removal of Bilirubin.

    PubMed

    Han, Lulu; Chu, Simin; Wei, Houliang; Ren, Jun; Xu, Li; Jia, Lingyun

    2016-06-01

    Bilirubin (BR), as a lipophilic toxin, can binds and deposits in various tissues, especially the brain tissue, leading to hepatic coma and even death. Magnetic nanoparticles adsorbent modified by β-cyclodextran (Fe3O4-β-CD) was developed to remove the BR from the plasma. Fe3O4-β-CD nanoparticles was prepared through Schiff base reaction between the polyethylenimine (PEI)-modified Fe3O4 and aldehyde-functionalized β-CD, and characterized by Fourier transform infrared (FTIR) spectra, X-ray diffraction (XRD), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM) and dynamic light scattering (DLS). Under optimized conditions, the Fe3O4-β-CD adsorbent could adsorb 225.6 mg/g free BR in PBS and reach the adsorption equilibrium within 90 min mainly through hydrophobic interaction; Moreover, the adsorbent displayed better adsorption capability in a dialysis system for BSA-bound bilirubin, plasma bilirubin and total bile acid, and the removal rates of those were 66%, 31% and 41% respectively. Because of the advantages of fast separation and purification process, low preparation cost, good adsorption capability for plasma bilirubin, Fe3O4-β-CD may become an economical and promising absorbent of BR for clinical applications. PMID:27427594

  6. Weaving a two-dimensional fishing net from titanoniobate nanosheets embedded with Fe3O4 nanocrystals for highly efficient capture and isotope labeling of phosphopeptides

    NASA Astrophysics Data System (ADS)

    Chen, Xueqin; Li, Siyuan; Zhang, Xiaoxia; Min, Qianhao; Zhu, Jun-Jie

    2015-03-01

    Qualitative and quantitative characterization of phosphopeptides by means of mass spectrometry (MS) is the main goal of MS-based phosphoproteomics, but suffers from their low abundance in the large haystack of various biological molecules. Herein, we introduce two-dimensional (2D) metal oxides to tackle this biological separation issue. A nanocomposite composed of titanoniobate nanosheets embedded with Fe3O4 nanocrystals (Fe3O4-TiNbNS) is constructed via a facile cation-exchange approach, and adopted for the capture and isotope labeling of phosphopeptides. In this nanoarchitecture, the 2D titanoniobate nanosheets offer enlarged surface area and a spacious microenvironment for capturing phosphopeptides, while the Fe3O4 nanocrystals not only incorporate a magnetic response into the composite but, more importantly, also disrupt the restacking process between the titanoniobate nanosheets and thus preserve a greater specific surface for binding phosphopeptides. Owing to the extended active surface, abundant Lewis acid sites and excellent magnetic controllability, Fe3O4-TiNbNS demonstrates superior sensitivity, selectivity and capacity over homogeneous bulk metal oxides, layered oxides, and even restacked nanosheets in phosphopeptide enrichment, and further allows in situ isotope labeling to quantify aberrantly-regulated phosphopeptides from sera of leukemia patients. This composite nanosheet greatly contributes to the MS analysis of phosphopeptides and gives inspiration in the pursuit of 2D structured materials for separation of other biological molecules of interests.Qualitative and quantitative characterization of phosphopeptides by means of mass spectrometry (MS) is the main goal of MS-based phosphoproteomics, but suffers from their low abundance in the large haystack of various biological molecules. Herein, we introduce two-dimensional (2D) metal oxides to tackle this biological separation issue. A nanocomposite composed of titanoniobate nanosheets embedded with Fe3

  7. Weaving a two-dimensional fishing net from titanoniobate nanosheets embedded with Fe3O4 nanocrystals for highly efficient capture and isotope labeling of phosphopeptides

    NASA Astrophysics Data System (ADS)

    Chen, Xueqin; Li, Siyuan; Zhang, Xiaoxia; Min, Qianhao; Zhu, Jun-Jie

    2015-03-01

    Qualitative and quantitative characterization of phosphopeptides by means of mass spectrometry (MS) is the main goal of MS-based phosphoproteomics, but suffers from their low abundance in the large haystack of various biological molecules. Herein, we introduce two-dimensional (2D) metal oxides to tackle this biological separation issue. A nanocomposite composed of titanoniobate nanosheets embedded with Fe3O4 nanocrystals (Fe3O4-TiNbNS) is constructed via a facile cation-exchange approach, and adopted for the capture and isotope labeling of phosphopeptides. In this nanoarchitecture, the 2D titanoniobate nanosheets offer enlarged surface area and a spacious microenvironment for capturing phosphopeptides, while the Fe3O4 nanocrystals not only incorporate a magnetic response into the composite but, more importantly, also disrupt the restacking process between the titanoniobate nanosheets and thus preserve a greater specific surface for binding phosphopeptides. Owing to the extended active surface, abundant Lewis acid sites and excellent magnetic controllability, Fe3O4-TiNbNS demonstrates superior sensitivity, selectivity and capacity over homogeneous bulk metal oxides, layered oxides, and even restacked nanosheets in phosphopeptide enrichment, and further allows in situ isotope labeling to quantify aberrantly-regulated phosphopeptides from sera of leukemia patients. This composite nanosheet greatly contributes to the MS analysis of phosphopeptides and gives inspiration in the pursuit of 2D structured materials for separation of other biological molecules of interests.Qualitative and quantitative characterization of phosphopeptides by means of mass spectrometry (MS) is the main goal of MS-based phosphoproteomics, but suffers from their low abundance in the large haystack of various biological molecules. Herein, we introduce two-dimensional (2D) metal oxides to tackle this biological separation issue. A nanocomposite composed of titanoniobate nanosheets embedded with Fe3

  8. Removal of Pb2+, Hg2+, and Cu2+ by Chain-Like Fe3O4@SiO2@Chitosan Magnetic Nanoparticles.

    PubMed

    Shi, Haowei; Yang, Junya; Zhu, Lizhong; Yang, Yuxiang; Yuan, Hongming; Yang, Yubing; Liu, Xiangnong

    2016-02-01

    In this paper, the chain-like core-shell structure Fe3O4@SiO2@Chitosan composite nanoparticles were synthesized by a two-step coating and following crosslinking glutaraldehyde on chitosan shell. The composite particles showed nearly monodisperse 105 sized particles with a core diameter of 80 nm and chitosan shell thickness of 12 nm. The synthesis conditions of the product were studied, and the morphology and properties of the composite nanoparticles were characterized by IR, XRD, TEM, SEM, EDS and VSM. The adsorption properties of Hg2+, Pb2+ or Cu2+ ions on Fe3O4, Fe3O4@SiO2 and the composite particles were in detail studied using the colorimetric method based on forming colored mercuric dithizone, rhodamine-Pb2+ complex and DDTC-Cu(2+) complex. The results showed, adsorption isotherm, kinetics and separation coefficient of heavy metal ions on these three magnetic nanoparticles were concerned with pH, metal ions' electronic configuration, silica coating and chitosan shell respectively. In addition, the recycle efficiency was also studied. The findings demonstrated that Fe3O4@SiO2@Chitosan composite nanoparticles have great application value in the adsorption and separation of heavy metal ions. PMID:27433691

  9. Magnetic Fe3O4@C nanoparticles as adsorbents for removal of amoxicillin from aqueous solution.

    PubMed

    Kakavandi, Babak; Esrafili, Ali; Mohseni-Bandpi, Anoushiravan; Jonidi Jafari, Ahmad; Rezaei Kalantary, Roshanak

    2014-01-01

    In the present study, powder activated carbon (PAC) combined with Fe(3)O(4) magnetite nanoparticles (MNPs) were used for the preparation of magnetic composites (MNPs-PAC), which was used as an adsorbent for amoxicillin (AMX) removal. The properties of magnetic activated carbon were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Brunaeur, Emmett and Teller and vibrating sample magnetometer. The operational factors affecting adsorption such as pH, contact time, adsorbent dosage, initial AMX concentration and temperature were studied in detail. The high surface area and saturation magnetization for the synthesized adsorbent were found to be 671.2 m(2)/g and 6.94 emu/g, respectively. The equilibrium time of the adsorption process was 90 min. Studies of adsorption equilibrium and kinetic models revealed that the adsorption of AMX onto MNPs-PAC followed Freundlich and Langmuir isotherms and pseudo-second-order kinetic models. The calculated values of the thermodynamic parameters, such as ΔG°, ΔH° and ΔS° demonstrated that the AMX adsorption was endothermic and spontaneous in nature. It could be concluded that MNPs-PAC have a great potential for antibiotic removal from aquatic media.

  10. Conjugating folate on superparamagnetic Fe3O4@Au nanoparticles using click chemistry

    NASA Astrophysics Data System (ADS)

    Shen, Xiaofang; Ge, Zhaoqiang; Pang, Yuehong

    2015-02-01

    Gold-coated magnetic core@shell nanoparticles, which exhibit magneto-optical properties, not only enhance the chemical stability of core and biocompatibility of surface, but also provide a combination of multimodal imaging and therapeutics. The conjugation of these tiny nanoparticles with specific biomolecules allows researchers to target the desired location. In this paper, superparamagnetic Fe3O4@Au nanoparticles were synthesized and functionalized with the azide group on the surface by formation of self-assembled monolayers. Folate (FA) molecules, non-immunogenic target ligands for cancer cells, are conjugated with alkyne and then immobilized on the azide-terminated Fe3O4@Au nanoparticles through copper(I)-catalyzed azide-alkyne cycloaddition (click reaction). Myelogenous leukemia K562 cells were used as a folate receptor (FR) model, which can be targeted and extracted by magnetic field after interaction with the Fe3O4@Au-FA nanoparticles.

  11. Influence of the uniform electric field on viscosity of magnetic nanofluid (Fe3O4-EG)

    NASA Astrophysics Data System (ADS)

    Monajjemi Rarani, E.; Etesami, N.; Nasr Esfahany, M.

    2012-11-01

    Viscosity of Fe3O4/ethylene glycol nanofluids under electric field (ac and dc) was investigated experimentally. Magnetic nanofluids were prepared by dispersing Fe3O4 nanoparticles in ethylene glycol using a sonicator. Experiments showed that dilute magnetic nanofluids (<0.05 vol. %) as well as base fluid exhibit Newtonian behavior. Viscosity of Fe3O4 / ethylene glycol nanofluids in electric field was measured using capillary tube viscometer. Electric field decreased the viscosity of magnetic nanofluids and base fluid. The viscosity reduction was more profound in higher volume concentrations of nanoparticles. dc electric field caused greater viscosity reduction in magnetic nanofluids relative to ac electric field while ac electric field showed greater reduction effect for base liquid.

  12. Preparation of Fe3O4 Nanoparticles and Removal of Methylene Blue through Adsorption

    NASA Astrophysics Data System (ADS)

    Trujillo Hernandez, J. S.; Aragón Muriel, A.; Tabares, J. A.; Pérez Alcázar, G. A.; Bolaños, A.

    2015-07-01

    In this work, we studied the catalytic activity, structural properties, and behavior of a Fe3O4 magnetic system. The Fe3O4 nanoparticles were prepared by the thermal decomposition method. X-ray diffraction confirmed the presence of a structural Fe3O4 phase, where acicular shape of the grains is shown. Transmission Mossbauer spectroscopy showed a wide distribution of particle sizes at room temperature, some of these present superparamagnetic behavior and are responsible of paramagnetic sites. The hysteresis loops obtained by the use of a vibrating sample magnetometer showed that these nanoparticles exhibit superparamagnetic behavior. However, the cycles present a significant contribution from a ferrimagnetic component at 2 K, which agrees with Mossbauer results. Through scanning electron microscopy, a tendency to the agglomeration of nanoparticles was observed. Nanoparticle activity in the degradation of methylene blue (MB) was studied through fluorescence spectroscopy, finding dye adsorption properties.

  13. Finite-size scaling law in single-crystalline Fe3O4 hollow nanostructures

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoping; Wang, Jun; Gao, Miao

    2016-07-01

    Single-crystalline Fe3O4 hollow nanostructures (nanoring and nanotube) have been successfully synthesized by a hydrothermal method along with a heat treatment process. The temperature dependences of the magnetization of the hollow nanostructures were measured under a high vacuum ( < 9.5 × 10‑6 Torr) from 300K to 900K. The Curie temperatures of the nanoring and nanotube samples were found to decrease with decreasing the mean wall thickness. The Curie temperatures of the hollow magnetite nanostructures follow a finite-size scaling relation with the scaling exponent ν = 1.04 ± 0.03. By comparison with those of the zero-dimensional Fe3O4 particles and two-dimensional Fe3O4 films, we show that the scaling relation for our hollow nanostructures is in better agreement with the quasi-two-dimensional finite-size scaling law.

  14. Analysis of surface potential and magnetic properties of Fe3O4/graphene oxide nanocomposites

    NASA Astrophysics Data System (ADS)

    Mishra, Amodini; Mohanty, Tanuja

    2016-05-01

    Nanocomposite of magnetite/graphene oxide (Fe3O4/GO) has been synthesized by co-precipitation method. The phase formation of the magnetite nanoparticles (Fe3O4 NPs) was confirmed by X-ray diffraction (XRD) analysis. Effect of Fe3O4 NPs on the Raman spectra and on the surface potential of GO has been analyzed. Due to incorporation of NPs, change in the characteristic Raman peaks and also on the surface potential of GO is observed. Transmission electron microscopic (TEM) study has been carried out for surface morphology. Magnetic property measurement was carried out by using physical property measurement system (PPMS) at two different temperatures (30 K and 300K).

  15. Tunable fluorescence enhancement based on bandgap-adjustable 3D Fe3O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Hu, Fei; Gao, Suning; Zhu, Lili; Liao, Fan; Yang, Lulu; Shao, Mingwang

    2016-06-01

    Great progress has been made in fluorescence-based detection utilizing solid state enhanced substrates in recent years. However, it is still difficult to achieve reliable substrates with tunable enhancement factors. The present work shows liquid fluorescence enhanced substrates consisting of suspensions of Fe3O4 nanoparticles (NPs), which can assemble 3D photonic crystal under the external magnetic field. The photonic bandgap induced by the equilibrium of attractive magnetic force and repulsive electrostatic force between adjacent Fe3O4 NPs is utilized to enhance fluorescence intensity of dye molecules (including R6G, RB, Cy5, DMTPS-DCV) in a reversible and controllable manner. The results show that a maximum of 12.3-fold fluorescence enhancement is realized in the 3D Fe3O4 NP substrates without the utilization of metal particles for PCs/DMTPS-DCV (1.0 × 10‑7 M, water fraction (f w) = 90%).

  16. Structure determination of (Fe3O4)n+(n = 1 - 3) clusters via DFT

    NASA Astrophysics Data System (ADS)

    Li, Yanhua; Cai, Congzhong; Zhao, Chengjun; Gu, Yonghong

    2016-07-01

    In virtue of the particle swarm optimization (PSO) algorithm, the global minimum candidate structures with the lowest energy for (Fe3O4)n(n = 1 - 3) clusters were obtained by first-principles structural searches. The geometric structures and spin configurations of three cationic (Fe3O4)n+(n = 1 - 3) clusters have been identified for the first time by comparing the experimental IR spectra with the calculated results from density functional theory by using different exchange-correlation functionals. It is found that the lowest energy structures of these clusters are of a shape of hat, boat and tower, respectively, with a ferrimagnetic arrangement of spins, and M06L functional is more suitable for Fe3O4 clusters than other ones.

  17. Enzyme encapsulation in magnetic chitosan-Fe3O4 microparticles.

    PubMed

    Costa-Silva, Tales Alexandre; Marques, Polyana Samorano; Souza, Cláudia Regina Fernandes; Said, Suraia; Oliveira, Wanderley Pereira

    2015-01-01

    Two simple procedures for the preparation of magnetic chitosan enzyme microparticles have been investigated and used for the immobilisation of endophytic fungus Cercospora kikuchii lipase as model enzyme. In the first case, lipase was entrapped in Fe3O4-chitosan microparticles by cross-linking method, while in the second case magnetic immobilised derivatives were produced using spray drying. Immobilised enzymes showed high enzyme activity retention and stability during storage without significant loss of activity. Glutaraldehyde Fe3O4-chitosan powders presented a higher lipase activity retention and storage stability than the others preparations. However, the immobilised derivatives produced by cross-linking showed higher enzyme activity after reuse cycles. The results proved that the magnetic Fe3O4-chitosan microparticles are an effective support for the enzyme immobilisation since the immobilised lipase showed best properties than the free form.

  18. Photo-induced electric polarizability of Fe3O4 nanoparticles in weak optical fields

    PubMed Central

    2013-01-01

    Using a developed co-precipitation method, we synthesized spherical Fe3O4 nanoparticles with a wide nonlinear absorption band of visible radiation. Optical properties of the synthesized nanoparticles dispersed in an optically transparent copolymer of methyl methacrylate with styrene were studied by optical spectroscopy and z-scan techniques. We found that the electric polarizability of Fe3O4 nanoparticles is altered by low-intensity visible radiation (I ≤ 0.2 kW/cm2; λ = 442 and 561 nm) and reaches a value of 107 Å3. The change in polarizability is induced by the intraband phototransition of charge carriers. This optical effect may be employed to improve the drug uptake properties of Fe3O4 nanoparticles. PACS 33.15.Kr 78.67.Bf 42.70.Nq PMID:23837726

  19. Controlled synthesis and size-dependent thermal conductivity of Fe3O4 magnetic nanofluids.

    PubMed

    Wang, Baodui; Wang, Baogang; Wei, Pengfei; Wang, Xiaobo; Lou, Wenjing

    2012-01-21

    The effect of nanoparticle size (4~44 nm) on the thermal conductivities of heat transfer oils has been systematically examined using iron oxide nanoparticles. Such Fe(3)O(4) nanoparticles were synthesized by a simple one-pot pyrolysis method. The size (16~44 nm), shape and assembly patterns of monodisperse Fe(3)O(4) nanoparticles were modulated by only controlling the amount of Fe(acac)(3). After the as-prepared Fe(3)O(4) NPs were dispersed in heat transfer oils, the prepared magnetic nanofluids exhibit higher thermal conductivity than heat transfer oils, and the enhanced values increase with a decrease in particle size. In addition, the viscosities of all nanofliuids are remarkably lower than that of the base fluid, which has been found for the first time in the nanofluid field. The promising features offer potential application in thermal energy engineering. PMID:22086086

  20. Distinctive uniaxial magnetic anisotropy and positive magnetoresistance in (110)-oriented Fe3O4 films

    NASA Astrophysics Data System (ADS)

    Dho, Joonghoe; Kim, Byeong-geon; Ki, Sanghoon

    2015-04-01

    Magnetite (Fe3O4) films were synthesized on (110)-oriented MgO, MgAl2O4, and SrTiO3 substrates for comparative studies of the substrates' effects on magnetic and magnetoresistance properties of the films. For the [-110] direction, the hysteresis loops of the Fe3O4 film on MgAl2O4 exhibited a good squareness with the largest coercivity of ˜1090 Oe, and the ratio of remanent magnetization to saturation magnetization was ˜0.995. For the [001] direction, positive magnetoresistance in weak magnetic fields was most distinct for the (110) SrTiO3 substrate with the largest lattice mismatch. Positive magnetoresistance in the (110) Fe3O4 films was presumably affected by imperfect atomic arrangements at anti-phase boundaries.

  1. Synthesis of single phase magnetite, Fe3O4 nanocrystallites using single source precursor

    NASA Astrophysics Data System (ADS)

    Disale, Sujit D.; Garje, Shivram S.

    2010-10-01

    Nanocrystalline Fe3O4 have been prepared using Fe(benzsczH)2Cl2 (where, benzsczH = benzaldehyde semicarbazone) as a single-source precursor. Fe(benzsczH)2Cl2 was characterized by elemental analyses, molar conductivity measearments, magnetic susceptibility studies, cyclic voltammetry and IR spectroscopy. The pyrolysis and solvothermal decomposition in ethylene glycol of this complex resulted in cubic phase Fe3O4 nanocrystals. These nanocrystals were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive analysis by X-rays, IR spectroscopy and hysteresis loop. XRD shows formation of cubic phase Fe3O4 for nanocrystallites obtained by both the methods. The TEM of nanoparticles obtained by pyrolysis show cubic shape plate-like morphology with average grain size of 54 nm and the nanoparticles obtained from solvothermal decomposition route have spherical shape morphology with average grain size of 16 nm.

  2. Preparation of surface plasmon resonance biosensor based on magnetic core/shell Fe3O4/SiO2 and Fe3O4/Ag/SiO2 nanoparticles.

    PubMed

    Wang, Liying; Sun, Ying; Wang, Jing; Wang, Jian; Yu, Aimin; Zhang, Hanqi; Song, Daqian

    2011-06-01

    In this paper, surface plasmon resonance biosensors based on magnetic core/shell Fe(3)O(4)/SiO(2) and Fe(3)O(4)/Ag/SiO(2) nanoparticles were developed for immunoassay. With Fe(3)O(4) and Fe(3)O(4)/Ag nanoparticles being used as seeding materials, Fe(3)O(4)/SiO(2) and Fe(3)O(4)/Ag/SiO(2) nanoparticles were formed by hydrolysis of tetraethyl orthosilicate. The aldehyde group functionalized magnetic nanoparticles provide organic functionality for bioconjugation. The products were characterized by scanning electronic microscopy (SEM), transmission electronic microscopy (TEM), FTIR and UV-vis absorption spectrometry. The magnetic nanoparticles possess the unique superparamagnetism property, exceptional optical properties and good compatibilities, and could be used as immobilization matrix for goat anti-rabbit IgG. The magnetic nanoparticles can be easily immobilized on the surface of SPR biosensor chip by a magnetic pillar. The effects of Fe(3)O(4)/SiO(2) and Fe(3)O(4)/Ag/SiO(2) nanoparticles on the sensitivity of SPR biosensors were also investigated. As a result, the SPR biosensors based on Fe(3)O(4)/SiO(2) nanoparticles and Fe(3)O(4)/Ag/SiO(2) nanoparticles exhibit a response for rabbit IgG in the concentration range of 1.25-20.00 μg ml(-1) and 0.30-20.00 μg ml(-1), respectively.

  3. Magnetic Fe3O4 nanoparticle catalyzed chemiluminescence for detection of nitric oxide in living cells.

    PubMed

    Wang, Huiliang; Li, Mei; Wang, Bing; Wang, Meng; Kurash, Ibrahim; Zhang, Xiangzhi; Feng, Weiyue

    2016-08-01

    Direct and real-time measurement of nitric oxide (NO) in biological media is very difficult due to its transient nature. Fe3O4 nanoparticles (nanoFe3O4) because of their unique catalytic activities have attracted much attention as catalysts in a variety of organic and inorganic reactions. In this work, we have developed a magnetic Fe3O4 nanoparticle-based rapid-capture system for real-time detection of cellular NO. The basic principle is that the nanoFe3O4 can catalyze the decomposition of H2O2 in the system to generate superoxide anion (O2 (·-)) and the O2 (·-) can serve as an effective NO(·) trapping agent yielding peroxynitrite oxide anion, ONOO(-). Then the concentration of NO in cells can be facilely determined via peroxynitrite-induced luminol chemiluminescence. The linear range of the method is from 10(-4) to 10(-8) mol/L, and the detection of limit (3σ, n = 11) is as low as 3.16 × 10(-9) mol/L. By using this method, the NO concentration in 0.1 and 0.5 mg/L LPS-stimulated BV2 cells was measured as 4.9 and 11.3 μM, respectively. Surface measurements by synchrotron X-ray photoelectron spectroscopy (SRXPS) and scanning transmission X-ray microscopy (STXM) demonstrate the catalytic mechanism of the nanoFe3O4-based system is that the significantly excess Fe(II) exists on the surface of nanoFe3O4 and mediates the rapid heterogeneous electron transfer, thus presenting a new Fe2O3 phase on the surface.

  4. Magnetic Fe3O4 nanoparticle catalyzed chemiluminescence for detection of nitric oxide in living cells.

    PubMed

    Wang, Huiliang; Li, Mei; Wang, Bing; Wang, Meng; Kurash, Ibrahim; Zhang, Xiangzhi; Feng, Weiyue

    2016-08-01

    Direct and real-time measurement of nitric oxide (NO) in biological media is very difficult due to its transient nature. Fe3O4 nanoparticles (nanoFe3O4) because of their unique catalytic activities have attracted much attention as catalysts in a variety of organic and inorganic reactions. In this work, we have developed a magnetic Fe3O4 nanoparticle-based rapid-capture system for real-time detection of cellular NO. The basic principle is that the nanoFe3O4 can catalyze the decomposition of H2O2 in the system to generate superoxide anion (O2 (·-)) and the O2 (·-) can serve as an effective NO(·) trapping agent yielding peroxynitrite oxide anion, ONOO(-). Then the concentration of NO in cells can be facilely determined via peroxynitrite-induced luminol chemiluminescence. The linear range of the method is from 10(-4) to 10(-8) mol/L, and the detection of limit (3σ, n = 11) is as low as 3.16 × 10(-9) mol/L. By using this method, the NO concentration in 0.1 and 0.5 mg/L LPS-stimulated BV2 cells was measured as 4.9 and 11.3 μM, respectively. Surface measurements by synchrotron X-ray photoelectron spectroscopy (SRXPS) and scanning transmission X-ray microscopy (STXM) demonstrate the catalytic mechanism of the nanoFe3O4-based system is that the significantly excess Fe(II) exists on the surface of nanoFe3O4 and mediates the rapid heterogeneous electron transfer, thus presenting a new Fe2O3 phase on the surface. PMID:27289465

  5. Green synthesis and characterization of superparamagnetic Fe 3O 4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Lu, Wensheng; Shen, Yuhua; Xie, Anjian; Zhang, Weiqiang

    2010-07-01

    In this paper, we have first demonstrated a facile and green synthetic approach for preparing superparamagnetic Fe 3O 4 nanoparticles using α- D-glucose as the reducing agent and gluconic acid (the oxidative product of glucose) as stabilizer and dispersant. The X-ray powder diffraction (XRD), X-ray photoelectron spectrometry (XPS), and selected area electron diffraction (SAED) results showed that the inverse spinel structure pure phase polycrystalline Fe 3O 4 was obtained. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results exhibited that Fe 3O 4 nanoparticles were roughly spherical shape and its average size was about 12.5 nm. The high-resolution TEM (HRTEM) result proved that the nanoparticles were structurally uniform with a lattice fringe spacing about 0.25 nm, which corresponded well with the values of 0.253 nm of the (3 1 1) lattice plane of the inverse spinel Fe 3O 4 obtained from the JCPDS database. The superconducting quantum interference device (SQUID) results revealed that the blocking temperature ( Tb) was 190 K, and that the magnetic hysteresis loop at 300 K showed a saturation magnetization of 60.5 emu/g, and the absence of coercivity and remanence indicated that the as-synthesized Fe 3O 4 nanoparticles had superparamagnetic properties. Fourier transform infrared spectroscopy (FT-IR) spectrum displayed that the characteristic band of Fe-O at 569 cm -1 was indicative of Fe 3O 4. This method might provide a new, mild, green, and economical concept for the synthesis of other nanomaterials.

  6. Effect of particle size and relative density on powdery Fe3O4 microwave heating.

    PubMed

    Hayashi, Miyuki; Yokoyama, Yuki; Nagata, Kazuhiro

    2010-01-01

    In recent years, microwave energy is expected to be a heat source of high temperature process aiming for CO2 reduction and energy conservation owing to the possibility of volumetric heating. In order to examine the applicability of microwave heating to ironmaking, it is important to investigate the microwave heating of raw materials of ironmaking such as Fe3O4. In this study, the effect of particle size and relative density on microwave absorptivity of powdery Fe3O4 was elucidated by the heating curves. Powdery Fe3O4 samples having different particle sizes and relative densities and bulk Fe3O4 samples were heated at the positions of the H (magnetic) and E (electric) field maxima in a 2.45 GHz single-mode microwave cavity. Sample temperatures abruptly increase and become constant after a while. At a constant temperature, the energy balance is attained, i.e., the rate of microwave energy absorption is equal to the rate of thermal energy dissipation. Assuming that the thermal energy dissipation rate due to convection and radiation heat fluxes is only a function of the sample temperature, the microwave absorptivity could be evaluated by the temperature at the steady state. It has been found that the microwave absorptivity of Fe3O4 powder decreases with an increase in relative density. On the other hand, the microwave absorptivity hardly depends on the particle size, which may be due to its quite a large penetration depth of Fe3O4 compared to metal.

  7. Adsorption of C.I. Reactive Red 228 and Congo Red dye from aqueous solution by amino-functionalized Fe3O4 particles: kinetics, equilibrium, and thermodynamics.

    PubMed

    Yan, Ting-guo; Wang, Li-Juan

    2014-01-01

    A magnetic adsorbent was synthesized by γ-aminopropyltriethoxysilane (APTES) modification of Fe(3)O(4) particles using a two-step process. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and vibration sample magnetometry were used to characterize the obtained magnetic adsorbent. EDS and XPS showed that APTES polymer was successfully introduced onto the as-prepared Fe(3)O(4)/APTES particle surfaces. The saturation magnetization of the magnetic adsorbent was around 65 emu g(-1), which indicated that the dye can be removed fast and efficiently from aqueous solution with an external magnetic field. The maximum adsorption capacities of Fe(3)O(4)/APTES for C.I. Reactive Red 228 (RR 228) and Congo Red (CR) were 51.4 and 118.8 mg g(-1), respectively. The adsorption of C.I. Reactive Red 228 (RR 228) and Congo Red (CR) on Fe(3)O(4)/APTES particles corresponded well to the Langmuir model and the Freundlich model, respectively. The adsorption processes for RR 228 and CR followed the pseudo-second-order model. The Boyd's film-diffusion model showed that film diffusion also played a major role in the studied adsorption processes for both dyes. Thermodynamic study indicated that both of the adsorption processes of the two dyes are spontaneous exothermic. PMID:24552735

  8. Hydrothermal fabrication of octahedral-shaped Fe3O4 nanoparticles and their magnetorheological response

    NASA Astrophysics Data System (ADS)

    Jung, H. S.; Choi, H. J.

    2015-05-01

    Octahedral-shaped Fe3O4 nanoparticles were synthesized in the presence of 1,3-diaminopropane using a hydrothermal method and assessed as a potential magnetorheological (MR) material. Their morphology, crystal structure, and magnetic properties were examined by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and vibrating sample magnetometry, respectively. The MR characteristics of the octahedral-shaped, Fe3O4 nanoparticle-based MR particles when dispersed in silicone oil with a 10 vol. % particle concentration were examined using a rotational rheometer under an external magnetic field. The resulting MR fluids exhibited a Bingham-like behavior with a distinctive yield stress from their flow curves.

  9. Mössbauer evidence of 57Fe3O4 based ferrofluid biodegradation in the brain

    NASA Astrophysics Data System (ADS)

    Polikarpov, D.; Cherepanov, V.; Chuev, M.; Gabbasov, R.; Mischenko, I.; Nikitin, M.; Vereshagin, Y.; Yurenia, A.; Panchenko, V.

    2014-04-01

    The ferrofluid, based on 57Fe isotope enriched Fe3O4 nanoparticles, was synthesized, investigated by Mössbauer spectroscopy method and injected transcranially in the ventricle of the rat brain. The comparison of the Mössbauer spectra of the initial ferrofluid and the rat brain measured in two hours and one week after the transcranial injection allows us to state that the synthesized magnetic 57Fe3O4 nanoparticles undergo intensive biodegradation in live brain and, therefore, they can be regarded as a promising target for a new method of radionuclide-free Mössbauer brachytherapy.

  10. Preparation and characterization of chain-like and peanut-like Fe3O4@SiO2 core-shell structure.

    PubMed

    Shi, Haowei; Huang, Yan; Cheng, Chao; Ji, Guoyuan; Yang, Yuxiang; Yuan, Hongming

    2013-10-01

    The size- and shape-controlled Fe3O4@SiO2 nanocomposites were successfully synthesized via the sol-gel method. The results showed that the size, shape, and property of the products were directly influenced by the amount of TEOS, and the concentration of water-based magnetic fluid in the coating process. The morphology and properties of the products were characterized by TEM, SEM, X-ray powder diffraction, IR and EDS. The Fe3O4@SiO2 composites with easily-controlled size arranged from 58 to 835 nm could be synthesized by adjusting the experimental parameters. When TEOS amount is 1 mL and the concentration of magnetic fluid were 30.0 and 10.0 mg/mL respectively, chain-like and peanuts-like well-dispersed Fe3O4@SiO2 particles with clear core-shell structure were obtained. These size- and shape-controlled Fe3O4@SiO2 composites may have potential application in the field of targeted drug delivery and MRI contrast agent. PMID:24245170

  11. Radiolytic Formation of Fe3O4 Nanoparticles: Influence of Radiation Dose on Structure and Magnetic Properties

    PubMed Central

    Abedini, Alam; Daud, Abdul Razak; Abdul Hamid, Muhammad Azmi; Kamil Othman, Norinsan

    2014-01-01

    Colloidal Fe3O4 nanoparticles were synthesized using a gamma-radiolysis method in an aqueous solution containing iron chloride in presence of polyvinyl alcohol and isopropanol as colloidal stabilizer and hydroxyl radical scavenger, respectively. Gamma irradiation was carried out in a 60Co gamma source chamber at different absorbed doses. Increasing the radiation dose above a certain critical dose (100 kGy) leads to particle agglomeration enhancement, and this can influence the structure and crystallinity, and consequently the magnetic properties of the resultant particles. The optimal condition for formation of Fe3O4 nanoparticles with a uniform and narrow size distribution occurred at a dose of 100 kGy, as confirmed by X-ray diffractometry and transmission electron microscopy. A vibrating sample magnetometry study showed that, when radiation dose increased, the saturation and remanence magnetization decreased, whereas the coercivity and the remanence ratio increased. This magnetic behavior results from variations in crystallinity, surface effects, and particle size effects, which are all dependent on the radiation dose. In addition, Fourier transform infrared spectroscopy was performed to investigate the nature of the bonds formed between the polymer chains and the metal surface at different radiation doses. PMID:24608715

  12. Determination of the Phase Boundary Fe3O4 - h-Fe3O4 at high Temperature and Pressure using in situ Synchroton Radiation

    NASA Astrophysics Data System (ADS)

    Schollenbruch, K.; Woodland, A. B.; Frost, D. J.; Wang, Y.; Sanehira, T.

    2009-12-01

    Magnetite is an important accessory mineral in the Earth’s mantle and its rare occurrence as inclusions in diamonds means that this phase has a direct relevance to geochemical processes in the deep earth. For this reason it is important to define its thermodynamic behaviour at high P and T. Magnetite transforms to an orthorhombic high-pressure phase (h-Fe3O4) at room T and ~25 GPa, however the reaction is very sluggish and h-Fe3O4 is unquenchable, complicating the determination of the exact position of the phase boundary at low T. For this reason the phase transition has been investigated by a combination of a multianvil press and in situ X-ray diffraction measurements performed at the Advanced Photo Source (APS) at Argonne National Laboratory, U.S.A.. With this setup, pressure can be monitored during an experiment, allowing different P-T trajectories to be employed (i.e. pressurisation at high T) compared to conventional methods. Experiments were performed up to 15 GPa and 1400°C. A series of measurements during pressurisation at different temperatures revealed, that diffraction peaks related to h-Fe3O4 appeared at the expense of magnetite peaks at about 10 GPa. At the onset of the phase transition, the pressure decreased slightly due to pressure buffering from the 7% volume reduction attending the transition. However, the strongest magnetite reflections remained even at the highest P and T, underlining the sluggishness of the reaction. Measurements made while tracking down P at high T provided reversals, where the regrowth of magnetite diffraction peaks were observed. Once formed, h-Fe3O4 remains metastable down to nearly ambient conditions. Post-experiment TEM investigation revealed extensive twinning and other microstructures, confirming the interpretation of Frost et al. (2001), that such structures formed during the reconversion to magnetite at low pressure. Our high P-T experiments indicate a nearly isobaric phase boundary over a range of 800-1400

  13. Bacteria-Affinity 3D Macroporous Graphene/MWCNTs/Fe3O4 Foams for High-Performance Microbial Fuel Cells.

    PubMed

    Song, Rong-Bin; Zhao, Cui-E; Jiang, Li-Ping; Abdel-Halim, Essam Sayed; Zhang, Jian-Rong; Zhu, Jun-Jie

    2016-06-29

    Promoting the performance of microbial fuel cells (MFCs) relies heavily on the structure design and composition tailoring of electrode materials. In this work, three-dimensional (3D) macroporous graphene foams incorporated with intercalated spacer of multiwalled carbon nanotubes (MWCNTs) and bacterial anchor of Fe3O4 nanospheres (named as G/MWCNTs/Fe3O4 foams) were first synthesized and used as anodes for Shewanella-inoculated microbial fuel cells (MFCs). Thanks to the macroporous structure of 3D graphene foams, the expanded electrode surface by MWCNTs spacing, as well as the high affinity of Fe3O4 nanospheres toward Shewanella oneidensis MR-1, the anode exhibited high bacterial loading capability. In addition to spacing graphene nanosheets for accommodating bacterial cells, MWCNTs paved a smoother way for electron transport in the electrode substrate of MFCs. Meanwhile, the embedded bioaffinity Fe3O4 nanospheres capable of preserving the bacterial metabolic activity provided guarantee for the long-term durability of the MFCs. With these merits, the constructed MFC possessed significantly higher power output and stronger stability than that with conventional graphite rod anode.

  14. A facile solvothermal synthesis of octahedral Fe3O4 nanoparticles

    DOE PAGES

    DuChene, Joseph S.; Qiu, Jingjing; Graham, Jeremy O.; Engelhard, Mark H.; Cao, Guixin; Gai, Zheng; Wei, Wei David; Ooi, Frances

    2015-01-26

    Anisotropic Fe3O4 octahedrons are obtained via a simple solvothermal synthesis with appropriate sizes for various technological applications. Here, a complete suite of materials characterization methods confirms the magnetite phase for these structures, which exhibit substantial saturation magnetization and intriguing morphologies for a wide range of applications.

  15. Characterizing the phase purity of nanocrystalline Fe3O4 thin films using Verwey transition

    NASA Astrophysics Data System (ADS)

    Bohra, Murtaza; Prasad, K. Eswar; Bollina, Ravi; Sahoo, S. C.; Kumar, Naresh

    2016-11-01

    We have employed Verwey transition as a probe to check phase purity of nanocrystalline Fe3O4 films grown at different substrate temperatures (Ts) by means of magnetization study. The drop in magnetization at temperatures other than Verwey transition temperature Tv (120 K), in the low and high Ts films indicates the presence of antiferromagnetic (α-Fe2O3/FeO) impurity phases. After wet H2 reduction treatment on these films, a vibrant appearance of Verwey transition is observed which confirms Fe3O4 phase at all Ts. However, high Ts films exhibit low Tv value with distribution, Tv±ΔTv=112+25 K emanating from residual magnetic phases, which were not traced by XRD studies. Interestingly, these nanocrystalline Fe3O4 films exhibit anisotropic magnetic behaviors above Tv, similar to the single crystal Fe3O4. Below the saturation field, the easy (111) and relatively hard (110) axis of magnetizations align along their texture planes.

  16. A novel technique to extract Bi from mechanochemically prepared Bi-Fe 3O 4 nanocomposite

    NASA Astrophysics Data System (ADS)

    Mozaffari, M.; Amighian, J.; Hasanpour, A.

    2006-01-01

    The solid-state reduction of Bi 2O 3 to bismuth (Bi) nanoparticles by high-energy ball milling of raw materials (Bi 2O 3 and Fe) in air and argon atmospheres has been described. XRD results show that in addition to bismuth, a second phase of nanocrystalline magnetite is also formed. This is due to the formation of Fe 2O 3 and the subsequent change to Fe 3O 4 in the course of ball milling. Mean particle sizes of the obtained Bi and Fe 3O 4 particles were 22 and 18 nm, respectively, using Scherrer's formula. A saturation magnetization of 80 emu/g is achieved for magnetic phase (Fe 3O 4). As both Bi and magnetite were nanosized particles, it was not possible to separate these two phases by the magnetic separation technique. A novel technique based on different thermal expansions of the Bi and Fe 3O 4 was then used to extract metallic Bi from the as-milled powders.

  17. Catalytic performance of Fe3O4 nanoparticles for cyclocondensation synthesis of thiacrown ethers

    NASA Astrophysics Data System (ADS)

    Lin, Shangxin; Chen, Yajie; Tan, Xiepeng; Song, Feng; Yue-Bun Pun, Edwin; He, Zhubing; Pu, Jixiong

    2015-01-01

    The catalytic function of nanoparticles is one the most successful applications of nanotechnologies so far. A novel and mild one-pot cyclocondensation reaction catalyzed by Fe3O4 nanoparticles is achieved for the first time in this work. By the function of those nanoparticles, the thiacrown ethers, including both 1,4-dithiane and 1,4,7-trithiacyclononane were obtained with considerable yield and turnover in a milder condition than that of the conventional routes. The excellent dehydrating ability and acid sensitivity of Fe3O4 nanoparticles were discovered in a series of experiments of esterification of DL-malic acid. The catalytic reaction mechanism of Fe3O4 nanoparticles was explored through the investigation of morphology evolution of those nanoparticles by transmission electron microscopy. Interestingly, the as-prepared big nanoparticles were decomposed into hollow or loose bounded aggregates of smaller nanoparticles after catalytic cycles. The result shown in this work claims promising utilization of Fe3O4 nanoparticles with big potential in catalytic synthesis.

  18. The investigation of giant magnetic moment in ultrathin Fe3O4 films

    NASA Astrophysics Data System (ADS)

    Guan, Xiaofen; Zhou, Guowei; Xue, Wuhong; Quan, Zhiyong; Xu, Xiaohong

    2016-03-01

    The magnetic and transport properties of Fe3O4 films with a series of thicknesses are investigated. For the films with thickness below 15 nm, the saturation magnetization (Ms) increases and the coercivity decreases with the decrease in films' thickness. The Ms of 3 nm Fe3O4 film is dramatically increased to 1017 emu/cm3. As for films' thickness more than 15 nm, Ms is tending to be close to the Fe3O4 bulk value. Furthermore, the Verwey transition temperature (Tv) is visible for all the films, but suppressed for 3 nm film. We also find that the ρ of 3 nm film is the highest of all the films. The suppressed Tv and high ρ may be related to the islands morphology in 3 nm film. To study the structure, magnetic, and transport properties of the Fe3O4 films, we propose that the giant magnetic moment most likely comes from the spin of Fe ions in the tetrahedron site switching parallel to the Fe ions in the octahedron site at the surface, interface, and grain boundaries. The above results are of great significance and also provide a promising future for either device applications or fundamental research.

  19. Mössbauer investigations of Fe and Fe3O4 magnetic nanoparticles for hyperthermia applications

    NASA Astrophysics Data System (ADS)

    Kamzin, A. S.

    2016-03-01

    Magnetic nanoparticles of magnetite Fe3O4 and Fe synthesized by physical vapor deposition with a fast highly effective method using a solar energy have been studied. Targets have been prepared from tablets pressed from Fe3O4 or Fe powders. Relationships between the structure of nanoparticles and their magnetic properties have been investigated in order to understand principles of the control of the parameters of magnetic nanoparticles. Mössbauer investigations have revealed that the nanoparticles synthesized from tablets of both pure iron and Fe3O4 consist of two phases: pure iron and iron oxides (γ-Fe2O3 and Fe3O4). The high iron oxidability suggests that the synthesized nanoparticles have a core/shell structure, where the core is pure iron and the shell is an oxidized iron layer. Magnetite nanoparticles synthesized at a pressure of 80 Torr have the best parameters for hyperthermia due to their core/shell structure and core-to-shell volume ratio.

  20. Adsorption mechanism of magnetically separable Fe3O4/graphene oxide hybrids

    NASA Astrophysics Data System (ADS)

    Ouyang, Ke; Zhu, Chuanhe; Zhao, Ya; Wang, Leichao; Xie, Shan; Wang, Qun

    2015-11-01

    A reclaimable Fe3O4/graphene oxide (GO) magnetic hybrid was successfully synthesized via a facile one-pot polyol approach and employed as a recyclable adsorbent for Bisphenol A (BPA) in aqueous solutions. The maximum adsorption capacity (qm) of the Fe3O4/GO hybrid for BPA was 72.80 mg/g at 273 K. The kinetics of the adsorption process and the adsorption isotherm data were fitted using the Freundlich equation and a pseudo-second-order kinetic model. The results of the thermodynamic parameters ΔH°, ΔS° and ΔG° showed that the adsorption process was exothermic and spontaneous. Furthermore, the reusability of the samples was investigated, and the results indicated that the samples exhibited high stability. The magnetic characterization demonstrated that hybrids were superparamagnetic and could be recovered conveniently by magnetic separation. The strong π-π interaction was determined to be the predominant driving force behind the adsorption of BPA onto the Fe3O4/GO hybrid. Therefore, the Fe3O4/GO hybrid could be regarded as a potential adsorbent for wastewater treatment and purification processes.

  1. A general route to construct diverse multifunctional Fe3O4/metal hybrid nanostructures.

    PubMed

    Guo, Shaojun; Dong, Shaojun; Wang, Erkang

    2009-01-01

    We have developed a simple, efficient, economical, and general approach to construct diverse multifunctional Fe(3)O(4)/metal hybrid nanostructures displaying magnetization using 3-aminopropyltrimethoxysilane (APTMS) as a linker. High-density Au nanoparticles (NPs) could be supported on the surface of superparamagnetic Fe(3)O(4) spheres and used as seeds to construct Au shell-coated magnetic spheres displaying near-infrared (NIR) absorption, which may make them promising in biosensor and biomedicine applications. High-density flowerlike Au/Pt hybrid NPs could be supported on the surface of Fe(3)O(4) spheres to construct multifunctional hybrid spheres with high catalytic activity towards the electron-transfer reaction between potassium ferricyanide and sodium thiosulfate. High-density Ag or Au/Ag core/shell NPs could also be supported on the surface of Fe(3)O(4) spheres and exhibited pronounced surface-enhanced Raman scattering (SERS), which may possibly be used as an optical probe with magnetic function for application in high-sensitivity bioassays.

  2. Strong electron correlation on the Fe3O4(0 0 1) surfaces

    NASA Astrophysics Data System (ADS)

    Pinto, Henry; Elliott, Simon D.; Foster, Adam; Nieminen, R. M.

    2007-03-01

    Magnetite Fe3O4 is a fascinating material that still is not well understood and presents challenges for the state-of-the-art computational methods. This transition metal oxide undergoes a first-order metal-insulator transition at TV=120 K. The ferrimagnetic properties of Fe3O4 makes it a promising material for spintronic applications. We use a plane wave density functional theory in the generalized gradient approximation adding a Hubbard-U parameter to describe properly the strongly correlated Fe--3d electrons. Based on previous results, we compute the surface structure, magnetic properties and electronic structure of several Fe3O4(0 0 1) surfaces with (√2x√2)R45^o reconstruction. The simulated scanning tunneling microscopy images of these surfaces are compared and discussed in the light of available experimental data. Finally, we analyze the possible existence of charge ordering on the Fe3O4(0 0 1) surface and the effect on the surface electronic structure with changing the value of the Hubbard-U parameter on the superficial Fe sites. H. Pinto, S. Elliott, J.Phys.: Condens. Matter 18, 10427 (2006)

  3. Characterization and immobilization of trypsin on tannic acid modified Fe3O4 nanoparticles.

    PubMed

    Atacan, Keziban; Özacar, Mahmut

    2015-04-01

    Fe3O4 nanoparticles (NPs) were synthesized by co-precipitating Fe2+ and Fe3+ in an ammonia solution. Fe3O4 NPs functionalized with tannic acid were prepared. After functionalization process, trypsin enzyme was immobilized on these Fe3O4 NPs. The influence of pH, temperature, thermal stability, storage time stability and reusability on non-covalent immobilization was studied. The properties of Fe3O4 and its modified forms were examined by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), UV-vis spectrometer (UV) and X-ray diffraction (XRD), magnetization and zeta potential measurements. The immobilized enzyme was slightly more stable than the free enzyme at 45°C. According to the results, the activity of immobilized trypsin was preserved 55% at 45°C after 2 h and 90% after 120 days storage. In addition, the activity of the immobilized trypsin was preserved 40% of its initial activity after eight times of successive reuse. PMID:25686792

  4. Intracellular distribution of Fe3O4 nanoparticles in both human and mouse cells

    NASA Astrophysics Data System (ADS)

    Palihawadana Arachchige, Maheshika; Laha, Suvra; Rajagopal, Amulya; Kulkarni, Sanjana; Wang, Shuo; Flack, Amanda; Li, Chunying; Jena, Bhanu; Lawes, Gavin

    2014-03-01

    In recent years there has been an increasing interest in developing Fe3O4 nanoparticles for biomedical applications including targeted drug delivery and magnetic resonance imaging. Understanding of the intracellular distribution of these nanoparticles is crucial when considering these nanoparticles for specific applications. We have synthesized Fe3O4 nanoparticles having average size of 14 nm using a co-precipitation technique, which were coated with dextran. We studied the structural and morphological characteristics of the nanoparticles using x-ray diffraction, electron microscopy, dynamic light scattering, and zeta potential measurements. We also characterized the magnetic properties of the nanoparticles. In order to investigate the intracellular distribution of these Fe3O4 nanoparticles, we functionalized the dextran coated Fe3O4 nanoparticles with a fluorescent dye, Fluorescein isothiocyanate (FITC), and cultured them with both mouse insulinoma MIN 6 cells and human pancreatic MIA PaCa 2 cells. Using optical microscope we investigated the intracellular distribution of the nanoparticles and the effects on cell growth.

  5. Synthesis, characterization and wound healing imitation of Fe3O4 magnetic nanoparticle grafted by natural products

    NASA Astrophysics Data System (ADS)

    Pala, Sravan Kumar

    This research focused on the study of the core-shelled magnetic nanomaterials derived from a colloidal chemistry. The goals are four-fold: (1) synthesis of Fe3O4MNMs using colloidal chemistry. The Fe 3O4 MNMs were then grafted with extracts derived from natural products, namely Olecraceavar italica (broccoli), Boletus edulis (mushroom)and Solanum lycopersicum (tomato);(2)characterization of natural products by chromatography and mass spectrometry;(3) characterization of MNMs to determine their crystallinity, morphological and elemental composition by the state-of-the-art instruments; and (4) biological evaluation using Gram-negative and Gram-positive bacteria. The approach provides advantages to precisely control the composition and homogeneity. The second advantage of the colloidal chemistry is its user friendliness and feasibility. Due to the nature of the natural products, the compatibility of MNM is anticipated to be enhanced.In this chapter, the nanomaterials will be discussed from four perspectives,§1.1 Nanotechnology (§1.1), §1.2 Synthesis of nanomaterials; §1.3 The natural product extract,; §1.4 Characterization of nanomaterials; and §1.5Biological application of nanomaterials.Fig. 1 summarized the overarching goals of this study.

  6. The preparation of Fe3O4 cube-like nanoparticles via the ethanol reduction of α-Fe2O3 and the study of its electromagnetic wave absorption

    NASA Astrophysics Data System (ADS)

    Zhang, Lili; Dai, Peng; Yu, Xinxin; Li, Yang; Bao, Zhiwei; Zhu, Jin; Zhu, Kerong; Wu, Mingzai; Liu, Xiansong; Li, Guang; Bi, Hong

    2015-12-01

    Cube-like Fe3O4 nanoparticles with size between 60 nm and 80 nm were reduced via ethanol using α-Fe2O3 nanocubes as precursors at 350 °C. The possible mechanism for the CH3CH2OH reduction of α-Fe2O3 into Fe3O4 was discussed. Electromagnetic wave absorption test showed that these Fe3O4 nanoparticles possessed excellent microwave absorption performance due to its complementary effect of dielectric loss and magnetic loss. The minimum absorption reflection loss value is -47.8 dB for Fe3O4 nanoparticles/paraffin wax composite sample with thickness of 4 mm, much higher than that of the commercial microwave absorber [Fe, Ni].

  7. [Low-temperature preparation of TiO2/PS/Fe3O4, and its photocatalytic activity and magnetic recovery].

    PubMed

    Wang, Xue-jiao; Ren, Xue-chang; Nian, Juan-ni; Xiao, Ju-qian; Wang, Gang; Chang, Qing

    2012-08-01

    This study reports the fabrication of magnetically responsive titania catalyst, which consisted of a magnetic core surrounded by a titania shell. The magnetic core (oleic acid-modified Fe3O4 nanoparticles) was modified with polystyrene as inert isolating layer. The magnetic photocatalyst was prepared at low temperature (90 degrees C) and a neutral pH (about 7). The phase composition, morphology, surface properties and magnetic properties of the composite particles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), fourier infrared photometer (FT-IR) and vibrating sample magnetometer (VSM). The photocatalytic activity of the samples were determined by degradation of phenol and their recovery characteristics were determined by a self-regulating magnetic recycling equipment. The results illustrated that the mean diameter of anatase titanium dioxide synthesized at low temperature was 2-5 nm, the catalyst TiO2/PS/Fe3O4 [the molar ratio of the magnetic photocatalyst was n(TiO2): n(St): n(Fe3O4) = 60:2.5:1] had the structural integrity of shell/shell/core, and titanium dioxide was loaded firmly on the PS/FeO4 surface. The photocatalytic degradation of phenol followed first-order reaction kinetics and the reaction rate constant K of the TiO2/PS/Fe3O4 [n(TiO2): n(St): n (Fe3O4) = 60:2.5:1] was 0.0258, which was close to that of pure TiO2 (K = 0.0262). After 5 times recycling, the K value reduced only by 0.0034. The catalyst had a strong magnetic induction, and the average recovery rate reached 92%. The magnetic TiO2 photocatalyst prepared by this low-temperature hydrolysis method has a good application prospect. PMID:23213901

  8. [Low-temperature preparation of TiO2/PS/Fe3O4, and its photocatalytic activity and magnetic recovery].

    PubMed

    Wang, Xue-jiao; Ren, Xue-chang; Nian, Juan-ni; Xiao, Ju-qian; Wang, Gang; Chang, Qing

    2012-08-01

    This study reports the fabrication of magnetically responsive titania catalyst, which consisted of a magnetic core surrounded by a titania shell. The magnetic core (oleic acid-modified Fe3O4 nanoparticles) was modified with polystyrene as inert isolating layer. The magnetic photocatalyst was prepared at low temperature (90 degrees C) and a neutral pH (about 7). The phase composition, morphology, surface properties and magnetic properties of the composite particles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), fourier infrared photometer (FT-IR) and vibrating sample magnetometer (VSM). The photocatalytic activity of the samples were determined by degradation of phenol and their recovery characteristics were determined by a self-regulating magnetic recycling equipment. The results illustrated that the mean diameter of anatase titanium dioxide synthesized at low temperature was 2-5 nm, the catalyst TiO2/PS/Fe3O4 [the molar ratio of the magnetic photocatalyst was n(TiO2): n(St): n(Fe3O4) = 60:2.5:1] had the structural integrity of shell/shell/core, and titanium dioxide was loaded firmly on the PS/FeO4 surface. The photocatalytic degradation of phenol followed first-order reaction kinetics and the reaction rate constant K of the TiO2/PS/Fe3O4 [n(TiO2): n(St): n (Fe3O4) = 60:2.5:1] was 0.0258, which was close to that of pure TiO2 (K = 0.0262). After 5 times recycling, the K value reduced only by 0.0034. The catalyst had a strong magnetic induction, and the average recovery rate reached 92%. The magnetic TiO2 photocatalyst prepared by this low-temperature hydrolysis method has a good application prospect.

  9. Efficient removal of crystal violet using Fe3O4-coated biochar: the role of the Fe3O4 nanoparticles and modeling study their adsorption behavior

    PubMed Central

    Sun, Pengfei; Hui, Cai; Azim Khan, Rashid; Du, Jingting; Zhang, Qichun; Zhao, Yu-Hua

    2015-01-01

    Biochar shows great promise for use in adsorbing pollutants. However, a process for enhancing its adsorption capacity and re-collection efficiency is yet to be further developed. Hence, in this study, we developed a type of biochar coated with magnetic Fe3O4 nanoparticles (i.e., magnetic biochar (MBC)) and assessed its use for crystal violet (CV) adsorption as well as its recycling potential. The coating of Fe3O4 nanoparticles, which was not only on the surface, but also in the interior of biochar, performed two functions. Firstly, it produced a saturation magnetization of 61.48 emu/g, which enabled the biochar being efficiently re-collected using a magnet. Secondly, it significantly enhanced the adsorption capacity of the biochar (from 80.36 to 99.19 mg/g). The adsorption capacity of the MBC was determined to be the largest by so far (349.40 mg/g) for an initial CV concentration of 400 mg/L, pH of 6.0, and temperature of 40 °C, and the adsorption capacity of re-collected MBC was 73.31 mg/g. The adsorption of CV by the MBC was found to be a spontaneous and endothermic physical process in which the intraparticle diffusion was the limiting step. These findings inspire us to use other similar materials to tackle the menace of pollutions. PMID:26220603

  10. Fabrication of flexible and self-standing inorganic-organic three phase magneto-dielectric PVDF based multiferroic nanocomposite films through a small loading of graphene oxide (GO) and Fe3O4 nanoparticles.

    PubMed

    Jayakumar, O D; Abdelhamid, Ehab H; Kotari, Vasundhara; Mandal, Balaji P; Rao, Rekha; Jagannath; Naik, Vaman M; Naik, Ratna; Tyagi, A K

    2015-09-28

    Flexible inorganic-organic magneto-electric (ME) nanocomposite films (PVDF, PVDF-GO, PVDF-Fe3O4 and PVDF-GO-Fe3O4), composed of well-dispersed graphene oxide (GO 5 wt%) and magnetic Fe3O4 nanoparticles (5 wt%) embedded into a poly(vinylidene-fluoride) (PVDF) matrix, have been prepared by a solvent casting route. The magnetic, ferroelectric, dielectric, magneto-dielectric (MD) coupling and structural properties of these films have been systematically investigated. Magnetic (Ms = 2.21 emu g(-1)) and ferroelectric (P = 0.065 μC cm(-2)) composite films of PVDF-GO-Fe3O4 (PVDF loaded with 5% GO and 5% Fe3O4) with an MD coupling of 0.02% at room temperature (RT) showed a three times higher dielectric constant than that of the pure PVDF film, with a dielectric loss as low as 0.6. However, the PVDF-Fe3O4 film, which exhibited improved magnetic (Ms = 2.5 emu g(-1)) and MD coupling (0.04%) properties at RT with a lower dielectric loss (0.3), exhibited decreased ferroelectric properties (P = 0.06 μC cm(-2)) and dielectric constant compared to the PVDF-GO-Fe3O4 film. MD coupling measurements carried out as a function of temperature on the multi-functional PVDF-GO-Fe3O4 film showed a systematic increase in MD values up to 100 K and a decrease thereafter. The observed magnetic, ferroelectric, dielectric, MD coupling and structural properties of the nanocomposite films are attributed to the homogeneous dispersion and good alignment of Fe3O4 nanoparticles and GO in the PVDF matrix along with a partial conversion of nonpolar α-phase PVDF to polar β-phase. The above multi-functionality of the composite films of PVDF-Fe3O4 and PVDF-GO-Fe3O4 paves the way for their application in smart multiferroic devices.

  11. Fabrication of flexible and self-standing inorganic-organic three phase magneto-dielectric PVDF based multiferroic nanocomposite films through a small loading of graphene oxide (GO) and Fe3O4 nanoparticles.

    PubMed

    Jayakumar, O D; Abdelhamid, Ehab H; Kotari, Vasundhara; Mandal, Balaji P; Rao, Rekha; Jagannath; Naik, Vaman M; Naik, Ratna; Tyagi, A K

    2015-09-28

    Flexible inorganic-organic magneto-electric (ME) nanocomposite films (PVDF, PVDF-GO, PVDF-Fe3O4 and PVDF-GO-Fe3O4), composed of well-dispersed graphene oxide (GO 5 wt%) and magnetic Fe3O4 nanoparticles (5 wt%) embedded into a poly(vinylidene-fluoride) (PVDF) matrix, have been prepared by a solvent casting route. The magnetic, ferroelectric, dielectric, magneto-dielectric (MD) coupling and structural properties of these films have been systematically investigated. Magnetic (Ms = 2.21 emu g(-1)) and ferroelectric (P = 0.065 μC cm(-2)) composite films of PVDF-GO-Fe3O4 (PVDF loaded with 5% GO and 5% Fe3O4) with an MD coupling of 0.02% at room temperature (RT) showed a three times higher dielectric constant than that of the pure PVDF film, with a dielectric loss as low as 0.6. However, the PVDF-Fe3O4 film, which exhibited improved magnetic (Ms = 2.5 emu g(-1)) and MD coupling (0.04%) properties at RT with a lower dielectric loss (0.3), exhibited decreased ferroelectric properties (P = 0.06 μC cm(-2)) and dielectric constant compared to the PVDF-GO-Fe3O4 film. MD coupling measurements carried out as a function of temperature on the multi-functional PVDF-GO-Fe3O4 film showed a systematic increase in MD values up to 100 K and a decrease thereafter. The observed magnetic, ferroelectric, dielectric, MD coupling and structural properties of the nanocomposite films are attributed to the homogeneous dispersion and good alignment of Fe3O4 nanoparticles and GO in the PVDF matrix along with a partial conversion of nonpolar α-phase PVDF to polar β-phase. The above multi-functionality of the composite films of PVDF-Fe3O4 and PVDF-GO-Fe3O4 paves the way for their application in smart multiferroic devices. PMID:26274764

  12. Quantitative two-dimensional strain mapping of small core-shell FePt@Fe3O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Monteforte, Marianne; Kobayashi, Shoko; Tung, Le D.; Higashimine, Koichi; Mott, Derrick M.; Maenosono, Shinya; Thanh, Nguyen T. K.; Robinson, Ian K.

    2016-03-01

    We report a facile one-pot chemical synthesis of colloidal FePt@Fe3O4 core-shell nanoparticles (NPs) with an average diameter of 8.7 ± 0.4 nm and determine their compositional morphology, microstructure, two-dimensional strain, and magnetic hysteresis. Using various state-of-the-art analytical transmission electron microscopy (TEM) characterization techniques—including high resolution TEM imaging, TEM tomography, scanning TEM-high angle annular dark field imaging, and scanning TEM-energy dispersive x-ray spectroscopy elemental mapping—we gain a comprehensive understanding of the chemical and physical properties of FePt@Fe3O4 NPs. Additional analysis using x-ray photoelectron spectroscopy, x-ray diffraction, and superconducting quantum interference device magnetometry distinguishes the oxide phase and determines the magnetic properties. The geometric phase analysis method is effective in revealing interfacial strain at the core-shell interface. This is of fundamental interest for strain engineering of nanoparticles for desirable applications.

  13. Thiol-functionalized Fe3O4/SiO2 microspheres with superparamagnetism and their adsorption properties for Au(III) ion separation

    NASA Astrophysics Data System (ADS)

    Peng, Xiangqian; Zhang, Wei; Gai, Ligang; Jiang, Haihui; Tian, Yan

    2016-08-01

    Thiol-functionalized Fe3O4/SiO2 microspheres (Fe3O4/SiO2-SH) with high saturation magnetization (69.3 emu g-1), superparamagnetism, and good dispersibility have been prepared by an ethylene glycol reduction method in combination with a modified Stöber method. The as-prepared composite magnetic spheres are characterized with fourier transform infrared spectroscopy (FT-IR), zeta potential, X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and superconducting quantum interference magnetometer, and tested in separation of Au(III) ions from aqueous solutions. The data for Au(III) adsorption on Fe3O4/SiO2-SH are analyzed with the Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich isotherm models, and the pseudo-first-order, pseudo-second-order, and intraparticle diffusion kinetics models. The adsorption behaviors of Au(III) on Fe3O4/SiO2-SH follow the Langmuir isotherm model, and the adsorption process conforms to the pseudo-second-order kinetic model. The maximum adsorption capacity of Au(III) on Fe3O4/SiO2-SH is 43.7 mg g-1. Acetate anions play an important role yet Cu(II) ions have little interference in the adsorption of Au(III) on the adsorbent. A satisfactory recovery percentage of 89.5% is acquired by using an eluent with 1 M thiourea and 5% HCl, although thiols have a high affinity to Au(III) ions based on the hard-soft acid-base (HSAB) theory by Pearson.

  14. Electrical properties and hyperfine interactions of boron doped Fe3O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Amir, Md; Ünal, B.; Geleri, M.; Güngüneş, H.; Shirsath, Sagar E.; Baykal, A.

    2015-12-01

    The single spinel phase nano-structured particles of FeBxFe2-xO4 (x = 0.1, 0.2, 0.3, 0.4 and 0.5) were synthesized by the glycothermal method and the effect of B3+ substitution on structural and dielectric properties of Fe3O4 were studied. From 57Fe Mössbauer spectroscopy data, the variation in line width, isomer shift, quadrupole splitting and hyperfine magnetic field values on B3+ substitution have been determined. The hyperfine field values at B- and A-sites gradually decrease with increasing B3+ ion concentration (x). The cation distributions obtained from Bertaut method are in line with Mössbauer results. Complex impedance analysis of boron-substituted spinel ferrites have been made extensively in order to investigate the significant changes in ac and dc conductivity as well as complex permittivity when the boron composition ratio varies from 0.1 to 0.5. It is found that both ac and dc conductivity are also dependent on the boron content in addition to both temperature and applied frequency. The dc conductivity tendency does not purely obey the Arrhenius plots. The dielectric constant and loss of complex permittivity, in general, show similar attitudes as seen in some nanocomposites containing spinel ferrites except for some fluctuations and shifts along the characteristics of the curves. Furthermore, their imaginary components of both permittivity and modulus are almost found to obey the power law with any exponent values varying between 0.5 and 2 in accordance with the level of boron concentrations.

  15. Click chemistry: a new facile and efficient strategy for the preparation of Fe3O4 nanoparticles covalently functionalized with IDA-Cu and their application in the depletion of abundant protein in blood samples.

    PubMed

    Jian, Guiqin; Liu, Yuxing; He, Xiwen; Chen, Langxing; Zhang, Yukui

    2012-10-21

    In this study, we report a novel method to synthesize core-shell structured Fe(3)O(4) nanoparticles (NPs) covalently functionalized with iminodiacetic acid (IDA) via click chemistry between the azide and alkyne groups and charged with Cu(2+). Firstly, the Fe(3)O(4)@SiO(2) NPs were obtained using tetraethoxysilane (TEOS) to form a silica shell on the surface of the Fe(3)O(4) core. The azide group-modified Fe(3)O(4)@SiO(2) NPs were obtained by a sol-gel process using 3-azidopropyltriethoxysilane (AzPTES) as the silane agent. Fe(3)O(4)@SiO(2)-N(3) was directly reacted with N-propargyl iminodiacetic via click chemistry, in the presence of a Cu(I) catalyst, to acquire the IDA-modified Fe(3)O(4) NPs. Finally, through the addition of Cu(2+), the Fe(3)O(4)@SiO(2)-IDA-Cu NP product was obtained. The morphology, structure and composition of the NPs were characterized by transmission electron microscopy (TEM), X-ray powder diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The resulting NPs showed a strong magnetic response to an externally applied magnetic field, a high adsorption capacity and excellent specificity towards hemoglobin (Hb). In addition, the Fe(3)O(4)@SiO(2)-IDA-Cu NPs can be used for the selective removal of abundant Hb protein in bovine and human blood samples. PMID:22941423

  16. Seeded preparation of ultrathin FeS2 nanosheets from Fe3O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Tingting; Liu, Huiwen; Wu, Zhennan; Liu, Yi; Guo, Zuoxing; Zhang, Hao

    2016-06-01

    FeS2 nanomaterials with two-dimensional features hold great promise for electrochemical and photovoltaic applications. However, the preparation of ultrathin FeS2 nanosheets is still challenging because of the lack of a tailor-made approach. In this work, FeS2 nanosheets with a thickness of 2.1 nm are prepared through a Fe3O4-seeded approach. Uniform Fe3O4 nanoparticles are foremost synthesized via the standard method in organic media. The injection of a S solution leads to the replacement of O in Fe3O4 through anion-exchange, which generates (110) facet-enriched FeS2 nuclei. The subsequent (110) facet-mediated oriented attachment and fusion of FeS2 nuclei produce ultrathin FeS2 nanosheets. As catalysts in the hydrogen evolution reaction, FeS2 nanosheets exhibit good electrochemical activity.FeS2 nanomaterials with two-dimensional features hold great promise for electrochemical and photovoltaic applications. However, the preparation of ultrathin FeS2 nanosheets is still challenging because of the lack of a tailor-made approach. In this work, FeS2 nanosheets with a thickness of 2.1 nm are prepared through a Fe3O4-seeded approach. Uniform Fe3O4 nanoparticles are foremost synthesized via the standard method in organic media. The injection of a S solution leads to the replacement of O in Fe3O4 through anion-exchange, which generates (110) facet-enriched FeS2 nuclei. The subsequent (110) facet-mediated oriented attachment and fusion of FeS2 nuclei produce ultrathin FeS2 nanosheets. As catalysts in the hydrogen evolution reaction, FeS2 nanosheets exhibit good electrochemical activity. Electronic supplementary information (ESI) available: EDX, AFM images, small-angle XRD pattern, SAED pattern, and TEM images of FeS2 nanosheets. See DOI: 10.1039/c6nr02211a

  17. Magnetic C-C@Fe3O4 double-shelled hollow microspheres via aerosol-based Fe3O4@C-SiO2 core-shell particles.

    PubMed

    Zhu, Yangzhi; Li, Xiangcun; He, Gaohong; Qi, Xinhong

    2015-02-18

    Magnetic C-C@Fe3O4 hollow microspheres were prepared by using aerosol-based Fe3O4@C-SiO2 core-shell particles as templates. The magnetic double-shelled microspheres efficiently worked as carriers to load Pt nanoparticles, thus making the catalyst recyclable and reusable.

  18. Reactions of Deuterated Methanol (CD3OD) on Fe3O4(111)

    SciTech Connect

    Li, Zhisheng; Potapenko, Denis V.; Rim, Kwang T.; Flytzani-Stephanopoulos, Maria; Flynn, George; Osgood, Richard; Wen, Xiaodong; Batista, Enrique R.

    2015-01-15

    We report an experimental and theoretical investigation of the decomposition (partial oxidation) of deuterated methanol (CD3OD) on a single-crystal Fe3O4(111) surface. The crystal surface contains majority areas of a Fe-terminated Fe3O4(111) surface as well as smaller regions of O-terminated FeO(111) or biphase surface reconstruction. Our investigation uses a combination of scanning tunneling microscopy, temperature-programmed desorption, and density functional theory calculations to examine the surface reactions and adsorbates as a function of coverage. Our studies show that the reaction of methanol on this iron–oxide surface is highly sensitive to atomic-level surface reconstructions

  19. Fabrication, characterization and measurement of thermal conductivity of Fe 3O 4 nanofluids

    NASA Astrophysics Data System (ADS)

    Abareshi, Maryam; Goharshadi, Elaheh K.; Mojtaba Zebarjad, Seyed; Khandan Fadafan, Hassan; Youssefi, Abbas

    2010-12-01

    Magnetite Fe 3O 4 nanoparticles were synthesized by a co-precipitation method at different pH values. The products were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, and transmission electronic microscopy. Their magnetic properties were evaluated on a vibrating sample magnetometer. The results show that the shape of the particles is cubic and they are superparamagnetic at room temperature. Magnetic nanofluids were prepared by dispersing the Fe 3O 4 nanoparticles in water as a base fluid in the presence of tetramethyl ammonium hydroxide as a dispersant. The thermal conductivity of the nanofluids was measured as a function of volume fraction and temperature. The results show that the thermal conductivity ratio of the nanofluids increases with increase in temperature and volume fraction. The highest enhancement of thermal conductivity was 11.5% in the nanofluid of 3 vol% of nanoparticles at 40 °C. The experimental results were also compared with the theoretical models.

  20. Thermodynamics of Fe(II)Fe(III) oxide systems I. Hydrothermal Fe3O4

    USGS Publications Warehouse

    Bartel, J.J.; Westrum, E.F.; Haas, J.L.

    1976-01-01

    The heat capacity of a hydrothermally-prepared polycrystalline sample of Fe3O4 was measured from 53 to 350 K, primarily to study the thermophysics of the Verwey transitions. Although the bifurcation of the transition was confirmed, the sample was found to contain traces of manganese. The observed transition temperatures of 117.0 and 123.0 K are 3.7 and 4.2 K higher respectively than those found in pure Fe3O4. Ancillary analytical results are consistent and indicate a stoichiometry of Mn0.008Fe2.992O4 for this material. Characteristics in the transition region are ascribed to dopant effects. ?? 1976.

  1. Reversed ageing of Fe3O4 nanoparticles by hydrogen plasma

    NASA Astrophysics Data System (ADS)

    Schmitz-Antoniak, Carolin; Schmitz, Detlef; Warland, Anne; Svechkina, Nataliya; Salamon, Soma; Piamonteze, Cinthia; Wende, Heiko

    2016-02-01

    Magnetite (Fe3O4) nanoparticles suffer from severe ageing effects when exposed to air even when they are dispersed in a solvent limiting their applications. In this work, we show that this ageing can be fully reversed by a hydrogen plasma treatment. By x-ray absorption spectroscopy and its associated magnetic circular dichroism, the electronic structure and magnetic properties were studied before and after the plasma treatment and compared to results of freshly prepared magnetite nanoparticles. While aged magnetite nanoparticles exhibit a more γ-Fe2O3 like behaviour, the hydrogen plasma yields pure Fe3O4 nanoparticles. Monitoring the temperature dependence of the intra-atomic spin dipole contribution to the dichroic spectra gives evidence that the structural, electronic and magnetic properties of plasma treated magnetite nanoparticles can outperform the ones of the freshly prepared batch.

  2. Facile synthesis of pectin coated Fe3O4 nanospheres by the sonochemical method

    NASA Astrophysics Data System (ADS)

    Dai, Junjun; Wu, Shixi; Jiang, Wei; Li, Pingyun; Chen, Xiaolong; Liu, Li; Liu, Jie; Sun, Danping; Chen, Wei; Chen, Binhua; Li, Fengsheng

    2013-04-01

    Pectin coated Fe3O4 magnetic nanospheres (PCMNs) were synthesized by the sonochemical method. The Fe3O4 nanoparticles were prepared by chemical precipitation as reported in the previous articles, and the PCMNs were characterized by transmission electron microscopy, dynamic light scattering, thermogravimetric analysis, Fourier-transform infrared spectroscopy, a vibrating sample magnetometer and energy dispersive X-ray spectrum. The results indicated that the magnetic nanoparticles have been coated by pectin, magnetite content of which was up to 63%, with the saturation magnetization being 32.69 emu/g. The formation mechanism and further application of PCMNs have also been discussed. The results show that the PCMNs can be applied to biomedical applications.

  3. Reversed ageing of Fe3O4 nanoparticles by hydrogen plasma

    PubMed Central

    Schmitz-Antoniak, Carolin; Schmitz, Detlef; Warland, Anne; Svechkina, Nataliya; Salamon, Soma; Piamonteze, Cinthia; Wende, Heiko

    2016-01-01

    Magnetite (Fe3O4) nanoparticles suffer from severe ageing effects when exposed to air even when they are dispersed in a solvent limiting their applications. In this work, we show that this ageing can be fully reversed by a hydrogen plasma treatment. By x-ray absorption spectroscopy and its associated magnetic circular dichroism, the electronic structure and magnetic properties were studied before and after the plasma treatment and compared to results of freshly prepared magnetite nanoparticles. While aged magnetite nanoparticles exhibit a more γ-Fe2O3 like behaviour, the hydrogen plasma yields pure Fe3O4 nanoparticles. Monitoring the temperature dependence of the intra-atomic spin dipole contribution to the dichroic spectra gives evidence that the structural, electronic and magnetic properties of plasma treated magnetite nanoparticles can outperform the ones of the freshly prepared batch. PMID:26902789

  4. Structure-Property relationship for H covered Fe3 O4 (001)

    NASA Astrophysics Data System (ADS)

    Liu, Fangyang; Kizilkaya, Orhan; Sprunger, Phillip; Kurtz, Richard; Jin, Rongying; Zhang, Jiandi; Plummer, Ward

    2015-03-01

    Magnetite (Fe3O4), the oldest permanent magnet, is still being studied, due to the fascinating surface properties. Clean B layer terminated Fe3O4(001) surface exhibits a (√2 × √2)R45 reconstruction, which as reported by LEED experiments can be removed by hydrogen adsorption at RT. However, the mechanism of this surface structural change is unknown. Combining HREELS, LEIS, ARXPS, UPS and XANES, we discovered a very unusual adsorption mechanism. Hydrogen appears to be bonded to the surface iron atoms not oxygen as expected. We observe H-Fe vibration mode with HREELS while no OH mode is present. Furthermore LEIS experiments confirmed H is on the iron atoms site. We will discuss the adsorption mechanism and electronic structure change with information provided by the core level photoemission techniques. This work was supported by Energy Frontier Research Center (EFRC) funded by the U.S. Department of Energy.

  5. Doping of inorganic materials in microreactors - preparation of Zn doped Fe3O4 nanoparticles.

    PubMed

    Simmons, M D; Jones, N; Evans, D J; Wiles, C; Watts, P; Salamon, S; Escobar Castillo, M; Wende, H; Lupascu, D C; Francesconi, M G

    2015-08-01

    Microreactor systems are now used more and more for the continuous production of metal nanoparticles and metal oxide nanoparticles owing to the controllability of the particle size, an important property in many applications. Here, for the first time, we used microreactors to prepare metal oxide nanoparticles with controlled and varying metal stoichiometry. We prepared and characterised Zn-substituted Fe3O4 nanoparticles with linear increase of Zn content (ZnxFe3-xO4 with 0 ≤ x ≤ 0.48), which causes linear increases in properties such as the saturation magnetization, relative to pure Fe3O4. The methodology is simple and low cost and has great potential to be adapted to the targeted doping of a vast array of other inorganic materials, allowing greater control on the chemical stoichiometry for nanoparticles prepared in microreactors. PMID:26099495

  6. Micro-optical coherence tomography tracking of magnetic gene transfection via Au-Fe3O4 dumbbell nanoparticles

    NASA Astrophysics Data System (ADS)

    Shi, Wei; Liu, Xinyu; Wei, Chao; Xu, Zhichuan J.; Sim, Stanley Siong Wei; Liu, Linbo; Xu, Chenjie

    2015-10-01

    Heterogeneous Au-Fe3O4 dumbbell nanoparticles (NPs) are composed of Au NPs and Fe3O4 NPs that bring in optical and magnetic properties respectively. This article reports the engineering of Au-Fe3O4 NPs as gene carriers for magnetic gene transfection as well as contrast agents for micro-optical coherence tomography (μOCT). As a proof-of-concept, Au-Fe3O4 NPs are used to deliver the green fluorescent protein to HEK 293T cells and their entrance into the cells is monitored through μOCT.Heterogeneous Au-Fe3O4 dumbbell nanoparticles (NPs) are composed of Au NPs and Fe3O4 NPs that bring in optical and magnetic properties respectively. This article reports the engineering of Au-Fe3O4 NPs as gene carriers for magnetic gene transfection as well as contrast agents for micro-optical coherence tomography (μOCT). As a proof-of-concept, Au-Fe3O4 NPs are used to deliver the green fluorescent protein to HEK 293T cells and their entrance into the cells is monitored through μOCT. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05459a

  7. Amperometric carbon paste enzyme electrodes with Fe(3)O(4) nanoparticles and 1,4-benzoquinone for glucose determination.

    PubMed

    Erden, Pınar Esra; Zeybek, Bülent; Pekyardımcı, Şule; Kılıç, Esma

    2013-06-01

    Two new amperometric carbon paste enzyme electrodes including Fe(3)O(4) nanoparticles with and without 1,4-benzoquinone were developed for glucose determination. Electron transfer properties of unmodified and Fe(3)O(4) nanoparticles and/or 1,4-benzoquinone modified carbon paste electrodes were investigated in 0.1 M KCl support electrolyte containing Fe(CN)6(3-/4-) as redox probe by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) methods. Fe(3)O(4) nanoparticles increased electron transfer at solution/electrode interface. The parameters affecting the analytical performance of the enzyme electrode have been investigated in detail and optimized for Fe(3)O(4) nanoparticle modified enzyme electrode (Fe(3)O(4)-CPEE). Fe(3)O(4) nanoparticles and 1,4-benzoquinone modified enzyme electrode (BQ-Fe(3)O(4)-CPEE) exhibited linear response from 1.9 × 10(-7) M to 3.7 × 10(-6) M, from 7.2 × 10(-6) M to 1.5 × 10(-4) M and from 1.3 × 10(-3) M to 1.2 × 10(-2) M with an excellent detection limit of 1.9 × 10(-8) M. BQ-Fe(3)O(4)-CPEE was used for determination of glucose in serum samples and results were in good agreement with those obtained by spectrophotometric method.

  8. A facile strategy to synthesize monodisperse superparamagnetic OA-modified Fe3O4 nanoparticles with PEG assistant

    NASA Astrophysics Data System (ADS)

    Sun, Minmin; Zhu, Aimei; Zhang, Qiugen; Liu, Qinglin

    2014-11-01

    A facile strategy was reported to synthesize monodisperse super-paramagnetic oleic acid (OA) modified Fe3O4 nanoparticles, which the poly ethylene glycol (PEG) was used as the assistant. The influence of the molecular weight and concentration of PEG was investigated in the process of OA-modification. In addition, the mechanism of PEG action in the reaction system was discussed. The morphology and properties of the as-synthesized Fe3O4 magnetic nanoparticles were characterized by the scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and superconducting quantum interference device (SQUID). The size (12 nm) of the as-prepared Fe3O4 nanoparticles is smaller than the superparamagnetic critical size (25 nm) of Fe3O4 nanoparticles, which endows the OA-modified Fe3O4 nanoparticles with superparamagnetic property. Furthermore, the dispersibility and stability of as-synthesized OA-modified Fe3O4 magnetic nanoparticles were very good. As the stabilizer and dispersant, PEG played a very important role and did not encapsulate the OA-modified Fe3O4 nanoparticles. The condition for OA-modified Fe3O4 nanoparticles preparation was optimized.

  9. Structural And Magnetic Properties Of Mn And Zn Doped Fe3O4 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Varshney, Dinesh; Verma, Kavita; Yogi, A.

    2011-07-01

    Mn and Zn doped Fe3O4 nanoparticles of size 7.36 and 12.52 nm were prepared by co precipitation method. X-ray diffraction (XRD) pattern infers that both the samples are in single phase with Fd3m space group, which was further confirmed by Rietveld refinement. Transmission Mössbauer spectra reveals ferrimagnetic nature for Mn doping concentration while into that for Zn doping concentration it shows diamagnetic behaviour. Zn doped nanoparticles shows the superparamagnetic property.

  10. The Magnetorheological Finishing (MRF) of Potassium Dihydrogen Phosphate (KDP) Crystal with Fe3O4 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Ji, Fang; Xu, Min; Wang, Chao; Li, Xiaoyuan; Gao, Wei; Zhang, Yunfei; Wang, Baorui; Tang, Guangping; Yue, Xiaobin

    2016-02-01

    The cubic Fe3O4 nanoparticles with sharp horns that display the size distribution between 100 and 200 nm are utilized to substitute the magnetic sensitive medium (carbonyl iron powders, CIPs) and abrasives (CeO2/diamond) simultaneously which are widely employed in conventional magnetorheological finishing fluid. The removal rate of this novel fluid is extremely low compared with the value of conventional one even though the spot of the former is much bigger. This surprising phenomenon is generated due to the small size and low saturation magnetization ( M s) of Fe3O4 and corresponding weak shear stress under external magnetic field according to material removal rate model of magnetorheological finishing (MRF). Different from conventional D-shaped finishing spot, the low M s also results in a shuttle-like spot because the magnetic controllability is weak and particles in the fringe of spot are loose. The surface texture as well as figure accuracy and PSD1 (power spectrum density) of potassium dihydrogen phosphate (KDP) is greatly improved after MRF, which clearly prove the feasibility of substituting CIP and abrasive with Fe3O4 in our novel MRF design.

  11. Experimental study of natural convection enhancement using a Fe3O4-water based magnetic nanofluid.

    PubMed

    Stoian, Floriana D; Holotescu, Sorin

    2012-10-01

    The effect of nanoparticles dispersed in a carrier fluid on the natural convection heat transfer is still raising controversies. While the reported experimental results show no improvement or even worsening of the heat transfer performance of nanofluids, the numerical simulations show an increase of the heat transfer coefficient, at least for certain ranges of Ra number. We report an experimental investigation regarding the natural convection heat transfer performance of a Fe3O4-water based nanofluid, in a cylindrical enclosure. The fluid was heated linearly from the bottom wall using an electric heater and cooled from the upper wall by a constant flow of water, such that a constant temperature difference between the upper and bottom walls was obtained at steady-state. The experiment was also carried out using water, in order to observe the effect of the addition of Fe3O4 nanoparticles on the heat transfer coefficient. Several regimes were tested, both for water and nanofluid. The experimental results showed that values obtained for the heat transfer coefficient for Fe3O4-water nanofluid were higher than those for water, at the same temperature difference. The present experimental results are also compared with our previous work and the reference literature. PMID:23421199

  12. The Magnetorheological Finishing (MRF) of Potassium Dihydrogen Phosphate (KDP) Crystal with Fe3O4 Nanoparticles.

    PubMed

    Ji, Fang; Xu, Min; Wang, Chao; Li, Xiaoyuan; Gao, Wei; Zhang, Yunfei; Wang, Baorui; Tang, Guangping; Yue, Xiaobin

    2016-12-01

    The cubic Fe3O4 nanoparticles with sharp horns that display the size distribution between 100 and 200 nm are utilized to substitute the magnetic sensitive medium (carbonyl iron powders, CIPs) and abrasives (CeO2/diamond) simultaneously which are widely employed in conventional magnetorheological finishing fluid. The removal rate of this novel fluid is extremely low compared with the value of conventional one even though the spot of the former is much bigger. This surprising phenomenon is generated due to the small size and low saturation magnetization (M s) of Fe3O4 and corresponding weak shear stress under external magnetic field according to material removal rate model of magnetorheological finishing (MRF). Different from conventional D-shaped finishing spot, the low M s also results in a shuttle-like spot because the magnetic controllability is weak and particles in the fringe of spot are loose. The surface texture as well as figure accuracy and PSD1 (power spectrum density) of potassium dihydrogen phosphate (KDP) is greatly improved after MRF, which clearly prove the feasibility of substituting CIP and abrasive with Fe3O4 in our novel MRF design. PMID:26858161

  13. Synthesis and characterization of Fe3O4-SiO2-AgCl photocatalyst

    NASA Astrophysics Data System (ADS)

    Husni, H. N.; Mahmed, N.; Ngee, H. L.

    2016-07-01

    Magnetite-silica-silver chloride (Fe3O4-SiO2-AgCl) coreshell particles with AgCl crystallite size of 117 nm was prepared by a wet chemistry method at ambient temperature. The magnetite-core was synthesized by using iron (II) sulfate heptahydrate (FeSO4•7H2O) and iron (III) sulfate hydrate (Fe2(SO4)3) with ammonium hydroxide (NH4OH) as the precipitating agent. The silica-shell was synthesized by using a modified Stöber process. The silver ions (Ag+) was adsorbed onto the silica surface after Söber process, followed by the addition of Cl- and polyvinylpyrrolidone (PVP) for the formation of Fe3O4-SiO2-AgCl coreshell particles. The effectiveness of the synthesized photocatalyst was investigated by monitoring the degradation of the methylene blue (MB) under sunlight for five cycles. About 90 % of the MB solution can be degraded after 2 hours. The degradation of MB solution by the Fe3O4-SiO2-AgCl particles is highly efficient for first three cycles according to the MB concentration recorded by the UV-Visible spectroscopy (UV-Vis). Nevertheless, the synthesized particles could be a promising material for photocatalytic applications.

  14. Sustained magnetization oscillations in polyaniline-Fe3O4 nanocomposites

    NASA Astrophysics Data System (ADS)

    de Araújo, A. C. V.; Rodrigues, A. R.; de Azevedo, W. M.; Machado, F. L. A.; Rezende, S. M.

    2015-09-01

    We report experiments with polyaniline-Fe3O4 (PANI-Fe3O4) nanocomposites synthesized under several different conditions. With a reaction carried out at room temperature and assisted by intense ultra-violet (UV) irradiation, we observe sustained oscillations in the magnetization with a period of about 25 min. The oscillations are interpreted as the result of an oscillatory chemical reaction in which part of the Fe+2 ions of magnetite, Fe3O4, are oxidized by the UV irradiation to form Fe+3 so that a fraction of the magnetite content transforms into maghemite, γ-Fe2O3. Then, Fe+3 ions at the nanoparticle surfaces are reduced and transformed back into Fe+2, when acting as an oxidizing agent for polyaniline in the polymerization process. Since maghemite has smaller magnetization than magnetite, the oscillating chemical reaction results in the oscillatory magnetization. The observations are interpreted with the Lotka-Volterra nonlinear coupled equations with parameters that can be adjusted to fit very well the experimental data.

  15. Ultrafast Preparation of Monodisperse Fe3 O4 Nanoparticles by Microwave-Assisted Thermal Decomposition.

    PubMed

    Liang, Yi-Jun; Zhang, Yu; Guo, Zhirui; Xie, Jun; Bai, Tingting; Zou, Jiemeng; Gu, Ning

    2016-08-01

    Thermal decomposition, as the main synthetic procedure for the synthesis of magnetic nanoparticles (NPs), is facing several problems, such as high reaction temperatures and time consumption. An improved a microwave-assisted thermal decomposition procedure has been developed by which monodisperse Fe3 O4 NPs could be rapidly produced at a low aging temperature with high yield (90.1 %). The as-synthesized NPs show excellent inductive heating and MRI properties in vitro. In contrast, Fe3 O4 NPs synthesized by classical thermal decomposition were obtained in very low yield (20.3 %) with an overall poor quality. It was found for the first time that, besides precursors and solvents, magnetic NPs themselves could be heated by microwave irradiation during the synthetic process. These findings were demonstrated by a series of microwave-heating experiments, Raman spectroscopy and vector-network analysis, indicating that the initially formed magnetic Fe3 O4 particles were able to transform microwave energy into heat directly and, thus, contribute to the nanoparticle growth.

  16. Ultrafast Preparation of Monodisperse Fe3 O4 Nanoparticles by Microwave-Assisted Thermal Decomposition.

    PubMed

    Liang, Yi-Jun; Zhang, Yu; Guo, Zhirui; Xie, Jun; Bai, Tingting; Zou, Jiemeng; Gu, Ning

    2016-08-01

    Thermal decomposition, as the main synthetic procedure for the synthesis of magnetic nanoparticles (NPs), is facing several problems, such as high reaction temperatures and time consumption. An improved a microwave-assisted thermal decomposition procedure has been developed by which monodisperse Fe3 O4 NPs could be rapidly produced at a low aging temperature with high yield (90.1 %). The as-synthesized NPs show excellent inductive heating and MRI properties in vitro. In contrast, Fe3 O4 NPs synthesized by classical thermal decomposition were obtained in very low yield (20.3 %) with an overall poor quality. It was found for the first time that, besides precursors and solvents, magnetic NPs themselves could be heated by microwave irradiation during the synthetic process. These findings were demonstrated by a series of microwave-heating experiments, Raman spectroscopy and vector-network analysis, indicating that the initially formed magnetic Fe3 O4 particles were able to transform microwave energy into heat directly and, thus, contribute to the nanoparticle growth. PMID:27381301

  17. Effective PEGylation of Fe3O4 Nanomicelles for In Vivo MR Imaging.

    PubMed

    Song, Lina; Zang, Fengchao; Song, Mengjie; Chen, Gong; Zhang, Yu; Gu, Ning

    2015-06-01

    A practical and effective strategy for synthesizing PEGylated Fe3O4 nanomicelles is established. In this strategy, a magnetic fluid of the Fe3O4 nanomicelles was synthesized with amphiphilic PEGylated phospholipid as surfactant and soybean oil as stabilizer under simple mechanical stirring and subsequent ultrasonication. Transmission electron microscope (TEM) measurement indicated that the sample is monodisperse spherical Fe3O4 nanoparticles with internal core size of 9 nm and external nanomicelle shell thickness of 1.5 nm. The final hydrodynamic size of the sample is 19.5 nm and its zeta potential is - 38.5 mV, suggesting good stability of the magnetic nanomicelles in water. To assess the ability of magnetic nanomicelles to escape reticuloendothelial system (RES) uptake, in vitro cell phagocytosis experiments were conducted using murine macrophages (RAW264.7). The results indicated that the PEGylation can effectively prevent the uptake of the nanomicelles by the macrophages. Using a mouse model of 4T1 breast cancer, the nanomicelles provided a good magnetic resonance imaging (MRI) capability to sensitively detect tumor by enhanced permeability and retention (EPR) effect. The PEGylated monodisperse magnetic nanomicelles would become a potential contrast agent for passive targeting diagnosis of tumor by MR imaging. PMID:26369019

  18. Adsorption studies of cationic, anionic and azo-dyes via monodispersed Fe3O4 nanoparticles.

    PubMed

    Chaudhary, Ganga Ram; Saharan, Priya; Kumar, Arun; Mehta, S K; Mor, Suman; Umar, Ahmad

    2013-05-01

    The present paper reports the applicability of magnetite (Fe3O4) nanoparticles as an adsorbent for the removal of three dyes viz. Acridine orange (cationic dye), Comassie Brilliant Blue R-250 (anionic dye) and Congo red (azo dye) from their aqueous solution. The Fe3O4 nanoparticles were synthesized via simple chemical precipitation method using CTAB, as surfactant. The as-prepared nanoparticles were characterized in terms of their morphological, structural and optical properties by using transmission electron microscopy X-ray diffraction and UV-visible spectroscopic measurements. The dye removal efficiency of Fe3O4 NPs have been determined by investigating several factors such as effect of pH, amount of adsorbent dose and effect of contact time on different dye concentrations. Langmuir and Freundlich adsorption isotherms have also been studied to explain the interaction of dyes. The experimental data indicate that the adsorption rate follows pseudo- second-order kinetics for the removal of all the three dyes. Moreover, the nanoparticles and the adsorbed dyes were desorbed. The identities of recovered nanoparticles as well as the three dyes have been found, as same and were reused. PMID:23858837

  19. Low temperature glassy relaxation in rare earth doped Fe3O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Laha, Suvra; Lawes, Gavin

    2012-10-01

    Magnetic nanoparticles typically exhibit glassy relaxation at low temperature, which can be affected by doping. Gadolinium and Lanthanum doped Fe3O4 nanoparticles were synthesized using a chemical co-precipitation method. The structural and optical properties of these nanoparticles were characterized by using Transmission Electron Microscope (TEM) and the Raman spectroscopy. The TEM images show the formation of nanoparticles of size ranging between 12-14 nm and Raman spectra are consistent with the formation of Fe3O4. AC magnetic measurements were also conducted on these nanoparticles. From the ac out-of-phase susceptibility (χ//) vs temperature (T) graphs, it is observed that the doped nanoparticles show larger amplitude relaxation peaks at low temperature as compared to the undoped particles. These magnetic relaxation features develop roughly between 25K to 35K and show frequency dependence. The increased magnetic relaxation at low temperatures can be attributed to structural defects which may arise due to the doping of lanthanides in Fe3O4 nanoparticles.

  20. Effects of impurity states on exchange coupling in Fe/Fe3O4 junctions

    NASA Astrophysics Data System (ADS)

    Inoue, J.; Honda, S.; Itoh, H.; Mibu, K.; Yanagihara, H.; Kita, E.

    2012-05-01

    Exchange coupling (EC) in Fe/Fe3O4 junctions containing magnetic impurities and in-gap states at the interface is calculated using a formula obtained by a cleaved layer method. The model for EC is constructed by performing first-principles calculations of the electronic and magnetic states of Co, Mn, and Cr impurities on the Fe surface and those of in-gap states in a bulk γ-Fe2O3, which has the same lattice structure as Fe3O4 but contains Fe defects. We show that the effect of Co impurities on EC is opposite to that of Cr and Mn impurities and that in-gap states tend to cause parallel magnetization alignment of two ferromagnets. These results are attributed to the change in electronic states caused by the presence of impurities. Further, we compare calculated results with experimental ones obtained in Fe/Fe3O4 junctions and suggest that doping magnetic impurities at the interface could be a useful way to control the magnitude and sign of the EC.

  1. Magnetic properties of In2O3 containing Fe3O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Alshammari, Marzook S.; Alqahtani, Mohammed S.; Albargi, Hasan B.; Alfihed, Salman A.; Alshetwi, Yaser A.; Alghihab, Abdulrahman A.; Alsamrah, Abdullah M.; Alshammari, Nawaf M.; Aldosari, Mohammed A.; Alyamani, Ahmed; Hakimi, Ali M. H. R.; Heald, Steve M.; Blythe, Harry J.; Blamire, Mark G.; Fox, A. Mark; Gehring, Gillian A.

    2014-10-01

    Films of Fe-doped In2O3 that were deliberately fabricated so they contained Fe3O4 nanoparticles were deposited on sapphire substrates by pulsed laser deposition at low oxygen pressure. The concentration of Fe was varied between 1% and 5%, and the effect of including 5% of Sn and vacuum annealing were also investigated. Structural analysis indicated a high concentration of Fe3O4 nanoparticles that caused substantial values of the coercive field at room temperature. Transport measurements indicated that the films were metallic, and an anomalous Hall effect was observed for the sample with 5% of Fe. The concentration of nanoparticles was reduced dramatically by the inclusion of 5% of Sn. Magnetic circular dichroism spectra taken in field and at remanence were analyzed to show that the samples had a magnetically polarized defect band located below the conduction band as well as magnetic Fe3O4 nanoparticles. The signal from the defect states near the band edge was enhanced by increasing the number of carriers by either including Sn or by annealing in vacuum.

  2. Effect of Fe3O4 nanoparticles on positive streamer propagation in transformer oil

    NASA Astrophysics Data System (ADS)

    Lv, Yuzhen; Wang, Qi; Zhou, You; Li, Chengrong; Ge, Yang; Qi, Bo

    2016-03-01

    Fe3O4 nanoparticles with an average diameter of 10 nm were prepared and used to modify streamer characteristic of transformer oil. It was found that positive streamer propagation velocity in transformer oil-based Fe3O4 nanofluid is greatly reduced by 51% in comparison with that in pure oil. The evolution of streamer shape is also dramatically affected by the presence of nanoparticles, changing from a tree-like shape with sharp branches in pure oil to a bush-like structure with thicker and denser branches in nanofluid. The TSC results reveal that the modification of Fe3O4 nanoparticle can greatly increase the density of shallow trap and change space charge distribution in nanofluid by converting fast electrons into slow electrons via trapping and de-trapping process in shallow traps. These negative space charges induced by nanoparticles greatly alleviate the electric field distortion in front of the positive streamer tip and significantly hinder the propagation of positive streamer.

  3. Fe3O4@Nico-Ag magnetically recyclable nanocatalyst for azo dyes reduction

    NASA Astrophysics Data System (ADS)

    Kurtan, U.; Amir, Md.; Baykal, A.

    2016-02-01

    In this study, we report the successful synthesis of Fe3O4@Nico-Ag nanocomposite as magnetically recyclable nanocatalyst (MRCs) via reflux process at 80 °C for 5 h followed by reduction of Ag+. FeCl3·6H2O, FeCl2·4H2O, AgNO3 as starting reactants and nicotinic acid as linker. The structure, morphology, thermal behaviour and magnetic properties of the product were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy dispersive spectrometry (EDX), thermal gravimetry (TG) and vibrating sample magnetometry (VSM), respectively. The catalytic activity of product for various azo dyes such as methylene blue (MB), methyl orange (MO), Rhodamine B (RhB) and eosin Y (EY) and their double mixtures were studied. It was found that Fe3O4@Nico-Ag MRCs is an efficient catalyst and can also rapidly separated from the reaction medium using magnet without considerable loss in its catalytic activity and used several times. Fe3O4@Nico-Ag MRCs has potential for the treatment of industrial dye pollutants.

  4. Sustained magnetization oscillations in polyaniline-Fe3O4 nanocomposites.

    PubMed

    de Araújo, A C V; Rodrigues, A R; de Azevedo, W M; Machado, F L A; Rezende, S M

    2015-09-28

    We report experiments with polyaniline-Fe3O4 (PANI-Fe3O4) nanocomposites synthesized under several different conditions. With a reaction carried out at room temperature and assisted by intense ultra-violet (UV) irradiation, we observe sustained oscillations in the magnetization with a period of about 25 min. The oscillations are interpreted as the result of an oscillatory chemical reaction in which part of the Fe(+2) ions of magnetite, Fe3O4, are oxidized by the UV irradiation to form Fe(+3) so that a fraction of the magnetite content transforms into maghemite, γ-Fe2O3. Then, Fe(+3) ions at the nanoparticle surfaces are reduced and transformed back into Fe(+2), when acting as an oxidizing agent for polyaniline in the polymerization process. Since maghemite has smaller magnetization than magnetite, the oscillating chemical reaction results in the oscillatory magnetization. The observations are interpreted with the Lotka-Volterra nonlinear coupled equations with parameters that can be adjusted to fit very well the experimental data. PMID:26429031

  5. One-pot preparation of superparamagnetic attapulgite/Fe3O4/polydopamine nanocomposites for adsorption of methylene blue

    NASA Astrophysics Data System (ADS)

    Mu, Bin; Kang, Yuru; Zheng, Maosong; Wang, Aiqin

    2016-05-01

    Superparamagnetic attapulgite/Fe3O4/polydopamine nanocomposites have been facilely prepared by a one-pot process without the nitrogen protection, in which Fe(III) was served as both of the oxidant for dopamine and the precursor of Fe3O4 in the presence of attapulgite. The introduction of attapulgite can effectively induce the uniform encapsulation of polydopamine and Fe3O4 nanoparticles on the surface of attapulgite, preventing from the formation of the free aggregates of Fe3O4 nanoparticles. The as-prepared APT/Fe3O4/PANI nanocomposites can be used as an adsorbent for the removal of methylene blue, and the adsorption ratio toward 100 ppm of methylene blue could reach 95.8%.

  6. Preparation of Fe3O4 encapsulated-silica sulfonic acid nanoparticles and study of their in vitro antimicrobial activity.

    PubMed

    Naeimi, Hossein; Nazifi, Zahra Sadat; Amininezhad, Seyedeh Matin

    2015-08-01

    A simple and efficient method for the functionalization of silica-coated Fe3O4 magnetic nanoparticles (Fe3O4@SiO2) using chlorosulfonic acid is described. The prepared compounds were screened for antibacterial activity against Escherichia coli (E. coli ATCC 25922) and Staphylococcus aureus (S. aureus ATCC 25923) under UV-light and dark conditions. It was found that the Fe3O4@SiO2-SO3H was significantly indicated the higher photocatalytic inactivation than both Fe3O4 and Fe3O4@SiO2 against E. coli in compared with S. aureus. Furthermore, the inactivation efficiency against both organisms under light conditions has been higher than this efficiency under dark conditions.

  7. Magnetic fluid with high dispersion and heating performance using nano-sized Fe3O4 platelets

    NASA Astrophysics Data System (ADS)

    Kishimoto, Mikio; Miyamoto, Ryoichi; Oda, Tatsuya; Yanagihara, Hideto; Ohkohchi, Nobuhiro; Kita, Eiji

    2016-01-01

    Magnetic fluid with high dispersion and heating performance was developed using 30 to 50 nm platelet Fe3O4 particles. This fluid was prepared by mechanical dispersion in ethyl alcohol with a silane coupling agent, bonding with polyethylene glycol (PEG), and removal of aggregates formed by precipitation. The peak diameter of the resulting Fe3O4 particles, measured by dynamic light scattering, was approximately 150 nm. The fluid exhibited a 300 W/g specific loss power (measured at 114 kHz by a 50.9 kA/m magnetic field). Distribution of the Fe3O4 particles in tissues was observed by intravenously administrating the fluid in mice. The Fe3O4 particles passed through the lungs, and were uniformly distributed throughout the liver and spleen. High dispersion and high heating performance were simultaneously achieved in the magnetic fluid using platelet Fe3O4 particles surface modified with PEG.

  8. Controlled synthesis and photocatalysis of sea urchin-like Fe3O4@TiO2@Ag nanocomposites

    NASA Astrophysics Data System (ADS)

    Zhao, Yilin; Tao, Chengran; Xiao, Gang; Wei, Guipeng; Li, Linghui; Liu, Changxia; Su, Haijia

    2016-02-01

    Based on the synergistic photocatalytic activities of nano-sized TiO2 and Ag, as well as the magnetic properties of Fe3O4, a sea urchin-like Fe3O4@TiO2@Ag nanocomposite (Fe3O4@TiO2@Ag NCs) is controllably synthesized with tunable cavity size, adjustable shell layer of TiO2 nanofiber, higher structural stability and larger specific surface area. Here, Fe3O4@TiO2@Ag NCs are obtained with Fe3O4 as the core and nanofiber TiO2/Fe3O4/Ag nanoheterojunctions as the shell; and Ag nanoparticles with diameter of approximately 4 nm are loaded both on TiO2 nanofibers and inside the cavities of sea urchin-like Fe3O4@TiO2 nanocomposites uniformly. Ag nanoparticles lead to the production of more photogenerated charges in the TiO2/Fe3O4/Ag heterojunction via LSPR absorption, and enhance the band-gap absorption of TiO2, while the Fe3O4 cocatalyst provides the active sites for oxygen reduction by the effective transfer of photogenerated electrons to oxygen. So the photocatalytic performance is improved due to the synergistic effect of TiO2/Fe3O4/Ag nanoheterojunctions. As photocatalysts under UV and visible irradiation, the as-synthesized nanocomposites display enhanced photocatalytic and recycling properties for the degradation of ampicillin. Moreover, they present better broad-spectrum antibiosis under visible irradiation. The enhanced photocatalytic activity and excellent chemical stability, in combination with the magnetic recyclability, makes this multifunctional nanostructure a promising candidate for antibiosis and remediation in aquatic environmental contamination in the future.Based on the synergistic photocatalytic activities of nano-sized TiO2 and Ag, as well as the magnetic properties of Fe3O4, a sea urchin-like Fe3O4@TiO2@Ag nanocomposite (Fe3O4@TiO2@Ag NCs) is controllably synthesized with tunable cavity size, adjustable shell layer of TiO2 nanofiber, higher structural stability and larger specific surface area. Here, Fe3O4@TiO2@Ag NCs are obtained with Fe3O4 as the

  9. Aloe vera plant-extracted solution hydrothermal synthesis and magnetic properties of magnetite (Fe3O4) nanoparticles

    NASA Astrophysics Data System (ADS)

    Phumying, Santi; Labuayai, Sarawuth; Thomas, Chunpen; Amornkitbamrung, Vittaya; Swatsitang, Ekaphan; Maensiri, Santi

    2013-06-01

    Magnetite (Fe3O4) nanoparticles have been successfully synthesized by a novel hydrothermal method using ferric acetylacetonate (Fe(C5H8O2)3) and aloe vera plant-extracted solution. The influences of different reaction temperatures and times on the structure and magnetic properties of the synthesized Fe3O4 nanoparticles were investigated. The synthesized nanoparticles are crystalline and have particle sizes of ˜6-30 nm, as revealed by transmission electron microscopy (TEM). The results of X-ray diffraction (XRD), High resolution TEM (HRTEM) and selected area electron diffraction (SAED) indicate that the synthesized Fe3O4 nanoparticles have the inverse cubic spinel structure without the presence of any other phase impurities. The hysteresis loops of the Fe3O4 nanoparticles at room temperature show superparamagnetic behavior and the saturation magnetization of the Fe3O4 samples increases with increasing reaction temperature and time.

  10. Synthesis of novel nanocomposite Fe3O4/ZrO2/chitosan and its application for removal of nitrate and phosphate

    NASA Astrophysics Data System (ADS)

    Jiang, Hualin; Chen, Pinghua; Luo, Shenglian; Tu, Xinman; Cao, Qun; Shu, Meng

    2013-11-01

    A novel nanocomposite with a BET surface area of 212.9 m2/g was synthesized from chitosan and Fe3O4/ZrO2 using an inexpensive protocol at mild condition. The Fe3O4/ZrO2/chitosan composite has the ability to adsorb both nitrate and phosphate. The maximum adsorption amount of nitrate and phosphate is 89.3 mg/g and 26.5 mg P/g, respectively. The adsorption process fits well to the pseudo-first-order kinetic rate model, and the mechanism involves simultaneous adsorption and intra-particle diffusion. The experimental results suggest that the composite is a promising adsorbent for treating water that is contaminated with nutrients.

  11. The effect of initial alignment on the optical properties of Fe3O4 nanoparticles doped in nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Dehghani, Z.; Iranizad, E. Saievar

    2014-02-01

    Recently the nonlinear effects of the different materials doped liquid crystals are more interesting. In all previous works, nonlinearity of samples with the homeotropic alignment is investigated because of the larger component of the refractive index in this direction. Here, there are spherical Fe3O4 nanoparticles that have both parallel and perpendicular components. We were looking for the effect of initial alignment on the nonlinearity of pure and doped nematic liquid crystals (NLCs). The experimental results emphasize, even the same compositional percentage of nanoparticles prepared by two different alignment configurations are showing different results when dispersed in the same NLCs. Comparing nonlinear studies, the magnitude of nonlinear refraction index, n2 and nonlinear absorption coefficient, β increase 102 and 101 times, respectively, in homeotropic alignment samples and the sign of these parameters is changed rather than homogeneous ones.

  12. Novel electrochemical sensing platform based on magnetic field-induced self-assembly of Fe3O4@Polyaniline nanoparticles for clinical detection of creatinine.

    PubMed

    Wen, Tingting; Zhu, Wanying; Xue, Cheng; Wu, Jinhua; Han, Qing; Wang, Xi; Zhou, Xuemin; Jiang, Huijun

    2014-06-15

    A novel electrochemical sensing platform based on magnetic field-induced self-assembly of Fe3O4@Polyaniline nanoparticles (Fe3O4@PANI NPs) has been for the first time fabricated for the sensitive detection of creatinine in biological fluids. The template molecule, creatinine, was self-assembled on the surface of Fe3O4@PANI NPs together with the functional monomer aniline by the formation of N-H hydrogen bonds. After pre-assembled, through the magnetic-induction of the magnetic glassy carbon electrode (MGCE), the ordered structure of molecularly imprinted polymers (MIPs) were established by the electropolymerization and assembled on the surface of MGCE with the help of magnetic fields by a simple one-step approach. The structural controllability of the MIPs film established by magnetic field-induced self-assembly was further studied. The stable and hydrophilic Fe3O4@PANI can not only provide available functionalized sites with which the template molecule creatinine can form hydrogen bond by the abundant amino groups in PANI matrix, but also afford a promoting pathway for electron transfer. The as-prepared molecularly imprinted electrochemical sensor (MIES) shows good stability and reproducibility for the determination of creatinine with the detection limit reached 0.35 nmol L(-1) (S/N=3). In addition, the highly sensitive and selective MIES has been successfully used for the clinical determination of creatinine in human plasma and urine samples. The average recoveries were 90.8-104.9% with RSD lower than 2.7%.

  13. Fe3O4 nanoparticles and nanocomposites with potential application in biomedicine and in communication technologies: Nanoparticle aggregation, interaction, and effective magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Allia, P.; Barrera, G.; Tiberto, P.; Nardi, T.; Leterrier, Y.; Sangermano, M.

    2014-09-01

    Magnetite nanoparticles with a size of 5-6 nm with potential impact on biomedicine and information/communication technologies were synthesized by thermal decomposition of Fe(acac)3 and subsequently coated with a silica shell exploiting a water-in-oil synthetic procedure. The as-produced powders (comprised of either Fe3O4 or Fe3O4@silica nanoparticles) were mixed with a photocurable resin obtaining two magnetic nanocomposites with the same nominal amount of magnetic material. The static magnetic properties of the two nanopowders and the corresponding nanocomposites were measured in the 10 K-300 K temperature range. Magnetic measurements are shown here to be able to give unambiguous information on single-particle properties such as particle size and magnetic anisotropy as well as on nanoparticle aggregation and interparticle interaction. A comparison between the size distribution functions obtained from magnetic measurements and from TEM images shows that figures estimated from properly analyzed magnetic measurements are very close to the actual values. In addition, the present analysis allows us to determine the value of the effective magnetic anisotropy and to estimate the anisotropy contribution from the surface. The Field-cooled/zero field cooled curves reveal a high degree of particle aggregation in the Fe3O4 nanopowder, which is partially reduced by silica coating and strongly decreased by dissolution in the host polymer. In all considered materials, the nanoparticles are magnetically interacting, the interaction strength being a function of nanoparticle environment and being the lowest in the nanocomposite containing bare, well-separate Fe3O4 particles. All samples behave as interacting superparamagnetic materials instead of ideal superparamagnets and follow the corresponding scaling law.

  14. Preparation and characterization of magnetically separable photocatalyst (TiO2/SiO2/Fe3O4): effect of carbon coating and calcination temperature.

    PubMed

    Gad-Allah, Tarek A; Fujimura, Kyoko; Kato, Shigeru; Satokawa, Shigeo; Kojima, Toshinori

    2008-06-15

    TiO2/SiO2/Fe3O4 composite was synthesized by sol-gel technique for silica and titania coatings on magnetite core to enable recovery after photocatalytic degradation. Carbon coating was also carried out by calcination of TiO2/SiO2/Fe3O4 under nitrogen atmosphere in presence of PVA as a source of carbon to enhance the adsorption of organic compounds on catalyst surface and to get better activity. All prepared samples were characterized using EDX, CN analyzer, XRD, BET and SEM. Degradation of methyl orange dye was used to assess the photocatalytic performance of the prepared samples. Calcination temperature was found to affect rate of reaction because of the formation of rutile phase at high calcination temperature. Carbon coated samples unexpectedly exhibited lower rate of reaction at almost all calcination temperatures. PMID:18082953

  15. Polar Spinel-Perovskite Interfaces: an atomistic study of Fe3O4(111)/SrTiO3(111) structure and functionality

    NASA Astrophysics Data System (ADS)

    Gilks, Daniel; McKenna, Keith P.; Nedelkoski, Zlatko; Kuerbanjiang, Balati; Matsuzaki, Kosuke; Susaki, Tomofumi; Lari, Leonardo; Kepaptsoglou, Demie; Ramasse, Quentin; Tear, Steve; Lazarov, Vlado K.

    2016-07-01

    Atomic resolution scanning transmission electron microscopy and electron energy loss spectroscopy combined with ab initio electronic calculations are used to determine the structure and properties of the Fe3O4(111)/SrTiO3(111) polar interface. The interfacial structure and chemical composition are shown to be atomically sharp and of an octahedral Fe/SrO3 nature. Band alignment across the interface pins the Fermi level in the vicinity of the conduction band of SrTiO3. Density functional theory calculations demonstrate very high spin-polarization of Fe3O4 in the interface vicinity which suggests that this system may be an excellent candidate for spintronic applications.

  16. Polar Spinel-Perovskite Interfaces: an atomistic study of Fe3O4(111)/SrTiO3(111) structure and functionality.

    PubMed

    Gilks, Daniel; McKenna, Keith P; Nedelkoski, Zlatko; Kuerbanjiang, Balati; Matsuzaki, Kosuke; Susaki, Tomofumi; Lari, Leonardo; Kepaptsoglou, Demie; Ramasse, Quentin; Tear, Steve; Lazarov, Vlado K

    2016-01-01

    Atomic resolution scanning transmission electron microscopy and electron energy loss spectroscopy combined with ab initio electronic calculations are used to determine the structure and properties of the Fe3O4(111)/SrTiO3(111) polar interface. The interfacial structure and chemical composition are shown to be atomically sharp and of an octahedral Fe/SrO3 nature. Band alignment across the interface pins the Fermi level in the vicinity of the conduction band of SrTiO3. Density functional theory calculations demonstrate very high spin-polarization of Fe3O4 in the interface vicinity which suggests that this system may be an excellent candidate for spintronic applications. PMID:27411576

  17. Polar Spinel-Perovskite Interfaces: an atomistic study of Fe3O4(111)/SrTiO3(111) structure and functionality

    PubMed Central

    Gilks, Daniel; McKenna, Keith P.; Nedelkoski, Zlatko; Kuerbanjiang, Balati; Matsuzaki, Kosuke; Susaki, Tomofumi; Lari, Leonardo; Kepaptsoglou, Demie; Ramasse, Quentin; Tear, Steve; Lazarov, Vlado K.

    2016-01-01

    Atomic resolution scanning transmission electron microscopy and electron energy loss spectroscopy combined with ab initio electronic calculations are used to determine the structure and properties of the Fe3O4(111)/SrTiO3(111) polar interface. The interfacial structure and chemical composition are shown to be atomically sharp and of an octahedral Fe/SrO3 nature. Band alignment across the interface pins the Fermi level in the vicinity of the conduction band of SrTiO3. Density functional theory calculations demonstrate very high spin-polarization of Fe3O4 in the interface vicinity which suggests that this system may be an excellent candidate for spintronic applications. PMID:27411576

  18. Ferroic ordering and charge-spin-lattice order coupling in Gd doped Fe3O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Laha, Suvra; Abdelhamid, Ehab; Palihawadana Arachchige, Maheshika; Dixit, Ambesh; Lawes, Gavin; Naik, Vaman; Naik, Ratna

    Rare earth doped spinels have been extensively studied for their potential applications in magneto-optical recording and as MRI contrast agents. In the present study, we have investigated the effect of gadolinium doping (1-5 at.%) on the magnetic and dielectric properties of Fe3O4nanoparticles synthesized by the chemical co-precipitation method. The structure and morphology of the as-synthesized gadolinium doped Fe3O4(Gd-Fe3O4) nanoparticles were characterized by XRD, SEM and TEM, and the magnetic properties were measured by a Quantum Design physical property measurement system. We find that the penetration of excess Gd3+ ions into Fe3O4 spinel matrix significantly influences the average crystallite size and saturation magnetization in Gd-Fe3O4. The average crystallite size, estimated from XRD using Scherrer equation, increases with increasing Gd doping percentage and the saturation magnetization drops monotonically with excess Gd3+ ions. Interestingly, Gd- Fe3O4develops enhanced ferroelectric ordering at low temperatures. The details of the temperature dependent dielectric, ferroelectric and magnetocapacitance measurements to understand the onset of charge-spin-lattice coupling in Gd-Fe3O4 system will be presented.

  19. Physiological effects of magnetite (Fe3O4) nanoparticles on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta) plants.

    PubMed

    Wang, Huanhua; Kou, Xiaoming; Pei, Zhiguo; Xiao, John Q; Shan, Xiaoquan; Xing, Baoshan

    2011-03-01

    To date, knowledge gaps and associated uncertainties remain unaddressed on the effects of nanoparticles (NPs) on plants. This study was focused on revealing some of the physiological effects of magnetite (Fe(3)O(4)) NPs on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta cv. white cushaw) plants under hydroponic conditions. This study for the first time reports that Fe(3)O(4) NPs often induced more oxidative stress than Fe(3)O(4) bulk particles in the ryegrass and pumpkin roots and shoots as indicated by significantly increased: (i) superoxide dismutase and catalase enzyme activities, and (ii) lipid peroxidation. However, tested Fe(3)O(4) NPs appear unable to be translocated in the ryegrass and pumpkin plants. This was supported by the following data: (i) No magnetization was detected in the shoots of either plant treated with 30, 100 and 500 mg l(-1) Fe(3)O(4) NPs; (ii) Fe K-edge X-ray absorption spectroscopic study confirmed that the coordination environment of Fe in these plant shoots was similar to that of Fe-citrate complexes, but not to that of Fe(3)O(4) NPs; and (iii) total Fe content in the ryegrass and pumpkin shoots treated with Fe(3)O(4) NPs was not significantly increased compared to that in the control shoots.

  20. Preparation of stable magnetic nanofluids containing Fe3O4@PPy nanoparticles by a novel one-pot route

    PubMed Central

    2011-01-01

    Stable magnetic nanofluids containing Fe3O4@Polypyrrole (PPy) nanoparticles (NPs) were prepared by using a facile and novel method, in which one-pot route was used. FeCl3·6H2O was applied as the iron source, and the oxidizing agent to produce PPy. Trisodium citrate (Na3cit) was used as the reducing reagent to form Fe3O4 NPs. The as-prepared nanofluid can keep long-term stability. The Fe3O4@PPy NPs can still keep dispersing well after the nanofluid has been standing for 1 month and no sedimentation is found. The polymerization reaction of the pyrrole monomers took place with Fe3+ ions as the initiator, in which these Fe3+ ions remained in the solution adsorbed on the surface of the Fe3O4 NPs. Thus, the core-shell NPs of Fe3O4@PPy were obtained. The particle size of the as-prepared Fe3O4@PPy can be easily controlled from 7 to 30 nm by the polymerization reaction of the pyrrole monomers. The steric stabilization and weight of the NPs affect the stability of the nanofluids. The as-prepared Fe3O4@PPy NPs exhibit superparamagnetic behavior. PMID:21711771

  1. Valence band structure and magnetic properties of Co-doped Fe3O4(100) films

    NASA Astrophysics Data System (ADS)

    Ran, F. Y.; Tsunemaru, Y.; Hasegawa, T.; Takeichi, Y.; Harasawa, A.; Yaji, K.; Kim, S.; Kakizaki, A.

    2011-06-01

    Structural and magnetic properties, and the valence band structure of pure and Co-doped (up to 33%) Fe3O4(100) films were investigated. Reconstruction of the Fe3O4(100) surface is found to be blocked by Co doping. Doped Co ions in Fe3O4 are in a charge state of 2 + and substitute the Fe2+ in the B site of Fe3O4. All the films exhibit room temperature ferromagnetism. Co doping changes the coercivity and reduces saturation magnetization. The density of states near the Fermi level is reduced by Co doping due to the decrease of Fe2+ in the B site, which might responsible for the decrease in conductivity and magnetoresistance of Co-doped Fe3O4. The Verwey transition in the range of 100-120 K is observed for the pure Fe3O4 film, while no transition could be detected for Co-doped Fe3O4 films.

  2. [Preparation of multi-walled carbon nanotubes decorated with Fe3O4 nanoparticles for determination of trace pyrethroid pesticides in water and honey samples].

    PubMed

    Yao, Weixuan; Ying, Jianbo; Zhang, Suling; Zhang, Chunxiao; Wang, Haidong; Cai, Guodong

    2015-04-01

    A magnetic carbon nanotube hybrid material was prepared using a chemical co-precipitation method. The Fe3O4 nanoparticles were enclosed onto the surface of the acid multi-walled carbon nanotubes (AMWNTs), and they were identified as Fe3O4/AMWNTs composites. This hybrid materials displayed typical superparamagnetic behavior, good dispersibility, and good adsorption capacity for pyrethroid pesticides. A magnetic solid-phase microextraction (MSPE) procedure based on Fe3O4/AMWNTs composites, combined with gas chromatography, was developed for the quantification of six pyrethroid pesticides in water and honey samples. Several important parameters affecting the extraction efficiency for six pyrethroid pesticides were optimized in sequential order, including ionic strength, extraction time and desorption time. Under the optimized conditions, this method showed wide linearity ranging from 0.5 µg/L to 50 µg/L with correlation coefficients (R2) higher than 0.990. The limits of detection (LODs) ranged from 0.07 µg/L to 0.20 µg/L at a singal-to-noise ratio of 3. The relative standard deviations (RSDs) ranged from 3. 8% to 8. 1%. Satisfactory recoveries (> 78.4%) were obtained for the simultaneous analysis of the six pyrethroid pesticide residues in river water, fish-pond water and two honey samples. This method is sensitive and simple. It can meet the actual requirement for the analysis of trace analytes from environmental water and honey samples. PMID:26292402

  3. [Preparation of multi-walled carbon nanotubes decorated with Fe3O4 nanoparticles for determination of trace pyrethroid pesticides in water and honey samples].

    PubMed

    Yao, Weixuan; Ying, Jianbo; Zhang, Suling; Zhang, Chunxiao; Wang, Haidong; Cai, Guodong

    2015-04-01

    A magnetic carbon nanotube hybrid material was prepared using a chemical co-precipitation method. The Fe3O4 nanoparticles were enclosed onto the surface of the acid multi-walled carbon nanotubes (AMWNTs), and they were identified as Fe3O4/AMWNTs composites. This hybrid materials displayed typical superparamagnetic behavior, good dispersibility, and good adsorption capacity for pyrethroid pesticides. A magnetic solid-phase microextraction (MSPE) procedure based on Fe3O4/AMWNTs composites, combined with gas chromatography, was developed for the quantification of six pyrethroid pesticides in water and honey samples. Several important parameters affecting the extraction efficiency for six pyrethroid pesticides were optimized in sequential order, including ionic strength, extraction time and desorption time. Under the optimized conditions, this method showed wide linearity ranging from 0.5 µg/L to 50 µg/L with correlation coefficients (R2) higher than 0.990. The limits of detection (LODs) ranged from 0.07 µg/L to 0.20 µg/L at a singal-to-noise ratio of 3. The relative standard deviations (RSDs) ranged from 3. 8% to 8. 1%. Satisfactory recoveries (> 78.4%) were obtained for the simultaneous analysis of the six pyrethroid pesticide residues in river water, fish-pond water and two honey samples. This method is sensitive and simple. It can meet the actual requirement for the analysis of trace analytes from environmental water and honey samples.

  4. Fast removal of malachite green dye using novel superparamagnetic sodium alginate-coated Fe3O4 nanoparticles.

    PubMed

    Mohammadi, Abbas; Daemi, Hamed; Barikani, Mehdi

    2014-08-01

    In this study, superparamagnetic sodium alginate-coated Fe3O4 nanoparticles (Alg-Fe3O4) as a novel magnetic adsorbent were prepared by in situ coprecipitation method, in which Fe3O4 nanoparticles were precipitated from FeCl3 and FeCl2 under alkaline medium in the presence of sodium alginate. The Alg-Fe3O4 nanoparticles were used for removal of malachite green (MG) from aqueous solutions using batch adsorption technique. The characterization of synthesized nanoparticles was performed using XRD, FTIR, TEM, TGA and vibrating sample magnetometer (VSM) techniques. FTIR analysis of synthesized nanoparticles provided the evidence that sodium alginate was successfully coated on the surface of Fe3O4 nanoparticles. The FT-IR and TGA characterization showed that the Alg-Fe3O4 nanoparticles contained about 14% (w/w) of sodium alginate. Moreover, TEM analysis indicated that the average diameter of the Alg-Fe3O4 nanoparticles was about 12nm. The effects of adsorbent dosage, pH and temperature were investigated on the adsorption properties of MG onto Alg-Fe3O4 nanoparticles. The equilibrium adsorption data were modeled using the Langmuir and Freundlich isotherms. The maximum adsorption capacity obtained from Langmuir isotherm equation was 47.84mg/g. The kinetics of adsorption of MG onto Alg-Fe3O4 nanoparticles were investigated using the pseudo-first-order and pseudo-second-order kinetic models. The results showed that the adsorption of MG onto nanoparticles followed pseudo-second-order kinetic model.

  5. The investigation of the electrical properties of Fe3O4/n-Si heterojunctions in a wide temperature range.

    PubMed

    Deniz, Ali Rıza; Çaldıran, Zakir; Metin, Önder; Meral, Kadem; Aydoğan, Şakir

    2016-07-01

    Monodisperse 8nm Fe3O4 nanoparticles (NPs) were synthesized by the thermal decomposition of iron(III) acetylacetonate in oleylamine and then were deposited onto n-type silicon wafer having the Al ohmic contact. Next, the morphology of the Fe3O4 NPs were characterized by using TEM and XRD. The optical properties of Fe3O4 NPs film was studied by UV-Vis spectroscopoy and its band gap was calculated to be 2.16eV. Au circle contacts with 7.85×10(-3)cm(2) area were provided on the Fe3O4 film via evaporation at 10(-5)Torr and the Au/Fe3O4 NPs/n-Si/Al heterojunction device were fabricated. The temperature-dependent junction parameters of Au/Fe3O4/n-Si/Al device including ideality factor, barrier height and series resistance were calculated by using the I-V characteristics in a wide temperature range of 40-300K. The results revealed that the ideality factor and series resistance increased by the decreasing temperature while the barrier height decreases. The Richardson constant of Au/Fe3O4/n-Si/Al device was calculated to be 2.17A/K(2)cm(2) from the I-V characteristics. The temperature dependence of Au/Fe3O4/n-Si/Al heterojunction device showed a double Gaussian distribution, which is caused by the inhomogeneities characteristics of Fe3O4/n-Si heterojunction.

  6. Magnetically separable Cu2O/chitosan-Fe3O4 nanocomposites: Preparation, characterization and visible-light photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Cao, Chunhua; Xiao, Ling; Chen, Chunhua; Cao, Qihua

    2015-04-01

    A novel magnetically-separable visible-light-induced photocatalyst, Cu2O/chitosan-Fe3O4 nanocomposite (Cu2O/CS-Fe3O4 NC), was prepared via a facile one-step precipitation-reduction process by using magnetic chitosan chelating copper ions as precursor. The structure and properties of Cu2O/CS-Fe3O4 NCs were characterized by XRD, FT-IR, SEM, HRTEM, SAED, EDS, BET, VSM, XPS and UV-vis/DRS. The photocatalytic activity of Cu2O/CS-Fe3O4 NCs was evaluated by decolorization of reactive brilliant red X-3B (X-3B) under visible light irradiation. The characterization results indicated that Cu2O/CS-Fe3O4 NCs exhibited relatively large specific surface areas and special dimodal pore structure because Cu2O was wrapped in chitosan matrix embedded with Fe3O4 nanoparticles. The tight combination of magnetic Fe3O4 and semiconductor Cu2O through chitosan made the nanocomposites show good superparamagnetism and photocatalytic activity. It was found that X-3B could be decolorized more efficiently in acidic media than in neutral or alkaline media. The decolorization of X-3B was ascribed to the synergistic effect of photocatalysis and adsorption. Cu2O/CS-Fe3O4 NCs could be easily separated from the solution by an external magnet, and the decolorization rates of X-3B were still above 87% after five reaction cycles, indicating that Cu2O/CS-Fe3O4 NCs had excellent reusability and stability.

  7. Effect of natural Fe3O4 nanoparticles on structural and optical properties of Er3+ doped tellurite glass

    NASA Astrophysics Data System (ADS)

    Widanarto, W.; Sahar, M. R.; Ghoshal, S. K.; Arifin, R.; Rohani, M. S.; Hamzah, K.

    2013-01-01

    Control doping of magnetic nanoparticles and its influence on optical and structural properties of tellurite glass is important from device perspectives. Natural Fe3O4 nanoparticles obtained by extracting and ball milling iron sand, are incorporated in the Er3+ doped tellurite glasses having composition (80-x)TeO2·xFe3O4·18ZnO·1Li2O·1Er2O3 (0≤x≤1.5) in mol% by melt quenching method at 850 °C. X-Ray diffraction spectra confirms the presence of iron nanoparticles with estimated sizes 18-70 nm and an amorphous structure of the samples. Thermal and optical characterizations are made using diffential thermal analysis, ultraviolet-visible and photoluminescence spectrocopies. It is found that the presence of nanoparticles changes color and thermal stability of the glasses, which is proved by increasing thermal stability factor from 118 to 132 °C. Absorption spectra consist of six peaks corresponding to different transition from ground state to the excited states in which the quench of the peak associated with 4F1/2 is attributed to the effect nanoparticles. Moreover, the shift in the absorption edge from ∼400 to ∼500 nm indicates a significant decrease of the optical energy band gap for both direct and indirect allowed transitions and a decrease in the Urbach energy as much as 0.116 eV is observed. The room temperature down-conversion luminescence spectra obtained under 500 nm excitation exhibit two strong peaks related to excited states 4S3/2 and 4F9/2 of Er3+ ions in the absence of nanoparticles. Furthermore, embedding nanoparticles into the glass not only make the peaks weaker but the second peak completely disappears. Interestingly, the emission bands of the Er3+ ion are quenched as concentration of the magnetic nanoparticles is increased.

  8. Biosurfactant assisted synthesis of Fe3O4@rhamnolipid@BiOBr and its behaviour in plasma discharge system

    NASA Astrophysics Data System (ADS)

    Wang, Li; Yu, Zebin; Hou, Yanping; Peng, Zhenbo; Zhang, Li; Meng, Zhengcheng; Li, Fengyuan; He, Jun; Huang, Junlin

    2016-06-01

    A novel Fe3O4@rhamnolipid@BiOBr (FRB) was synthesized via a modified precipitation method and applied in the plasma discharge system. Rhamnolipid was used as biosurfactant to modify Fe3O4 by interacting with Fe3O4 via its aliphatic chain. The results show that the prepared FRB magnetic photocatalyst exhibited excellent photocatalytic activity and Fenton reaction behavior in the plasma discharge system. Meanwhile, the addition of FRB could improve energy efficiency of defluorination by 21.29 mg kW‑1 h‑1.

  9. Use of aerosol route to fabricate positively charged Au/Fe3O4 Janus nanoparticles as multifunctional nanoplatforms

    NASA Astrophysics Data System (ADS)

    Byeon, Jeong Hoon; Park, Jae Hong

    2016-10-01

    Gold (Au)-decorated iron oxide (Fe3O4), Au/Fe3O4, Janus nanoparticles were fabricated via the continuous route for aerosol Au incorporation with Fe3O4 domains synthesized in an aqueous medium as multifunctional nanoplatforms. The fabricated nanoparticles were subsequently exposed to 185-nm UV light to generate positive charges on Au surfaces, and their activities were tested in computed tomography (CT) and magnetic resonance (MR) imaging, gene-delivery and photothermal therapy. No additional polymeric coatings of the Janus particles also had a unique ability to suppress inflammatory responses in macrophages challenged with lipopolysaccharide, which may be due to the absence of amine groups.

  10. Biosurfactant assisted synthesis of Fe3O4@rhamnolipid@BiOBr and its behaviour in plasma discharge system

    NASA Astrophysics Data System (ADS)

    Wang, Li; Yu, Zebin; Hou, Yanping; Peng, Zhenbo; Zhang, Li; Meng, Zhengcheng; Li, Fengyuan; He, Jun; Huang, Junlin

    2016-06-01

    A novel Fe3O4@rhamnolipid@BiOBr (FRB) was synthesized via a modified precipitation method and applied in the plasma discharge system. Rhamnolipid was used as biosurfactant to modify Fe3O4 by interacting with Fe3O4 via its aliphatic chain. The results show that the prepared FRB magnetic photocatalyst exhibited excellent photocatalytic activity and Fenton reaction behavior in the plasma discharge system. Meanwhile, the addition of FRB could improve energy efficiency of defluorination by 21.29 mg kW-1 h-1.

  11. Self-assembly of Fe 3 O 4 nanocrystal-clusters into cauliflower-like architectures: Synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Zhu, Lu-Ping; Liao, Gui-Hong; Bing, Nai-Ci; Wang, Lin-Lin; Xie, Hong-Yong

    2011-09-01

    Large-scale cauliflower-like Fe 3O 4 architectures consist of well-assembled magnetite nanocrystal clusters have been synthesized by a simple solvothermal process. The as-synthesized Fe 3O 4 samples were characterized by XRD, XPS, FT-IR, SEM, TEM, etc. The results show that the samples exhibit cauliflower-like hierarchical microstructures. The influences of synthesis parameters on the morphology of the samples were experimentally investigated. Magnetic properties of the Fe 3O 4 cauliflower-like hierarchical microstructures have been detected by VSM at room temperature, showing a relatively low saturation magnetization of 65 emu/g and an enhanced coercive force of 247 Oe.

  12. High coverage hydrogen adsorption on the Fe3O4(1 1 0) surface

    NASA Astrophysics Data System (ADS)

    Yu, Xiaohu; Zhang, Xuemei; Wang, Shengguang

    2015-10-01

    Hydrogen adsorption on the A and B termination layers of the Fe3O4(1 1 0) surface at different coverage has been systematically studied by density functional theory calculations including an on-site Hubbard term (GGA + U). The adsorption of hydrogen prefers surface oxygen atoms on both layers. The more stable A layer has stronger adsorption energy than the less stable B layer. The saturation coverage has two dissociatively adsorbed H2 on the A layer, and one dissociatively adsorbed H2 on the B layer. The adsorption mechanism has been analyzed on the basis of projected density of states (PDOS).

  13. Folate-conjugated luminescent Fe3O4 nanoparticles for magnetic hyperthermia

    NASA Astrophysics Data System (ADS)

    Barick, K. C.; Rana, Suman; Hassan, P. A.

    2014-04-01

    We demonstrate a facile approach for the synthesis of folate-conjugated luminescent iron oxide nanoparticles (FLIONs). XRD and TEM analyses reveal the formation of highly crystalline single-phase Fe3O4 nanoparticles of size about 10 nm. The conjugation of folate receptor (folic acid, FA) and luminescent molecule (fluorescein isothiocyanate, FITC) onto the surface of nanoparticles was evident from FTIR and UV-visible spectroscopy. These FLIONs show good colloidal stability, high magnetic field responsivity and excellent self-heating efficacy. Specifically, a new class of magnetic nanoparticles has been fabricated, which can be used as an effective heating source for hyperthermia.

  14. Morphology and magnetic flux distribution in superparamagnetic, single-crystalline Fe3O4 nanoparticle rings

    NASA Astrophysics Data System (ADS)

    Takeno, Yumu; Murakami, Yasukazu; Sato, Takeshi; Tanigaki, Toshiaki; Park, Hyun Soon; Shindo, Daisuke; Ferguson, R. Matthew; Krishnan, Kannan M.

    2014-11-01

    This study reports on the correlation between crystal orientation and magnetic flux distribution of Fe3O4 nanoparticles in the form of self-assembled rings. High-resolution transmission electron microscopy demonstrated that the nanoparticles were single-crystalline, highly monodispersed, (25 nm average diameter), and showed no appreciable lattice imperfections such as twins or stacking faults. Electron holography studies of these superparamagnetic nanoparticle rings indicated significant fluctuations in the magnetic flux lines, consistent with variations in the magnetocrystalline anisotropy of the nanoparticles. The observations provide useful information for a deeper understanding of the micromagnetics of ultrasmall nanoparticles, where the magnetic dipolar interaction competes with the magnetic anisotropy.

  15. Magnetic hyperthermia in brick-like Ag@Fe3O4 core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Brollo, M. E. F.; Orozco-Henao, J. M.; López-Ruiz, R.; Muraca, D.; Dias, C. S. B.; Pirota, K. R.; Knobel, M.

    2016-01-01

    Heating efficiency of multifunctional Ag@Fe3O4 brick-like nanoparticles under alternating magnetic field was investigated by means of specific absorption rate (SAR) measurements, and compared with equivalent measurements for plain magnetite and dimer heteroparticles. The samples were synthesized by thermal decomposition reactions and present narrow size polydispersity and high degree of crystallinity. The SAR values are analyzed using the superparamagnetic theory, in which the basic morphology, size and dispersion of sizes play key roles. The results suggest that these novel brick-like nanoparticles are good candidates for hyperthermia applications, displaying heating efficiencies comparable with the most efficient plain nanoparticles.

  16. A novel electrochemical DNA biosensor based on a modified magnetic bar carbon paste electrode with Fe3O4NPs-reduced graphene oxide/PANHS nanocomposite.

    PubMed

    Jahanbani, Shahriar; Benvidi, Ali

    2016-11-01

    In this study, we have designed a label free DNA biosensor based on a magnetic bar carbon paste electrode (MBCPE) modified with nanomaterial of Fe3O4/reduced graphene oxide (Fe3O4NP-RGO) as a composite and 1- pyrenebutyric acid-N- hydroxysuccinimide ester (PANHS) as a linker for detection of DNA sequences. Probe (BRCA1 5382 insC mutation detection) strands were immobilized on the MBCPE/Fe3O4-RGO/PANHS electrode for the exact incubation time. The characterization of the modified electrode was studied using different techniques such as scanning electron microscopy (SEM), infrared spectroscopy (IR), vibrating sample magnetometer (VSM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry methods. Some experimental parameters such as immobilization time of probe DNA, time and temperature of hybridization process were investigated. Under the optimum conditions, the immobilization of the probe and its hybridization with the target DNA (Complementary DNA) were tested. This DNA biosensor revealed a good linear relationship between ∆Rct and logarithm of the complementary target DNA concentration ranging from 1.0×10(-18)molL(-1) to 1.0×10(-8)molL(-1) with a correlation coefficient of 0.9935 and a detection limit of 2.8×10(-19)molL(-1). In addition, the mentioned biosensor was satisfactorily applied for discriminating of complementary sequences from non-complementary sequences. The constructed biosensor (MBCPE/Fe3O4-RGO/PANHS/ssDNA) with high sensitivity, selectivity, stability, reproducibility and low cost can be used for detection of BRCA1 5382 insC mutation. PMID:27523989

  17. Heterogeneous Degradation of Organic Pollutants by Persulfate Activated by CuO-Fe3O4: Mechanism, Stability, and Effects of pH and Bicarbonate Ions.

    PubMed

    Lei, Yang; Chen, Chuh-Shun; Tu, Yao-Jen; Huang, Yao-Hui; Zhang, Hui

    2015-06-01

    Magnetic CuO-Fe3O4 composite was fabricated by a simple hydrothermal method and characterized as a heterogeneous catalyst for phenol degradation. The effects of pH and bicarbonate ions on catalytic activity were extensively evaluated in view of the practical applications. The results indicated that an increase of solution pH and the presence of bicarbonate ions were beneficial for the removal of phenol in the CuO-Fe3O4 coupled with persulfate (PS) process. Almost 100% mineralization of 0.1 mM phenol can be achieved in 120 min by using 0.3 g/L CuO-Fe3O4 and 5.0 mM PS at pH 11.0 or in the presence of 3.0 mM bicarbonate. The positive effect of bicarbonate ion is probably due to the suppression of copper leaching as well as the formation of Cu(III). The reuse of catalyst at pH0 11.0 and 5.6 showed that the catalyst remains a high level of stability at alkaline condition (e.g., pH0 11.0). On the basis of the characterization of catalyst, the results of metal leaching and EPR studies, it is suggested that phenol is mainly destroyed by the surface-adsorbed radicals and Cu(III) resulting from the reaction between PS and Cu(II) on the catalyst. Taking into account the widespread presence of bicarbonate ions in waste streams, the CuO-Fe3O4/PS system may provide some new insights for contaminant removal from wastewater. PMID:25955238

  18. A novel electrochemical DNA biosensor based on a modified magnetic bar carbon paste electrode with Fe3O4NPs-reduced graphene oxide/PANHS nanocomposite.

    PubMed

    Jahanbani, Shahriar; Benvidi, Ali

    2016-11-01

    In this study, we have designed a label free DNA biosensor based on a magnetic bar carbon paste electrode (MBCPE) modified with nanomaterial of Fe3O4/reduced graphene oxide (Fe3O4NP-RGO) as a composite and 1- pyrenebutyric acid-N- hydroxysuccinimide ester (PANHS) as a linker for detection of DNA sequences. Probe (BRCA1 5382 insC mutation detection) strands were immobilized on the MBCPE/Fe3O4-RGO/PANHS electrode for the exact incubation time. The characterization of the modified electrode was studied using different techniques such as scanning electron microscopy (SEM), infrared spectroscopy (IR), vibrating sample magnetometer (VSM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry methods. Some experimental parameters such as immobilization time of probe DNA, time and temperature of hybridization process were investigated. Under the optimum conditions, the immobilization of the probe and its hybridization with the target DNA (Complementary DNA) were tested. This DNA biosensor revealed a good linear relationship between ∆Rct and logarithm of the complementary target DNA concentration ranging from 1.0×10(-18)molL(-1) to 1.0×10(-8)molL(-1) with a correlation coefficient of 0.9935 and a detection limit of 2.8×10(-19)molL(-1). In addition, the mentioned biosensor was satisfactorily applied for discriminating of complementary sequences from non-complementary sequences. The constructed biosensor (MBCPE/Fe3O4-RGO/PANHS/ssDNA) with high sensitivity, selectivity, stability, reproducibility and low cost can be used for detection of BRCA1 5382 insC mutation.

  19. Facile synthesis of Fe3O4-graphene@mesoporous SiO2 nanocomposites for efficient removal of Methylene Blue

    NASA Astrophysics Data System (ADS)

    Wu, Xi-Lin; Shi, Yanpeng; Zhong, Shuxian; Lin, Hongjun; Chen, Jian-Rong

    2016-08-01

    Herein, we have developed a facile and low-cost method for the synthesis of novel graphene based nanosorbents. Firstly, well-defined Fe3O4 nanoparticles were decorated onto graphene sheets, and then a layer of mesoporous SiO2 were deposited on the surface of the Fe3O4-graphene composites. The obtained Fe3O4-graphene@mesoporous SiO2 nanocomposites (denoted as MG@m-SiO2) were characterized by scanning electron microscopic (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Fourier transformed infrared (FTIR) spectroscopy and X-ray diffraction (XRD). The adsorptive property was investigated by using MG@m-SiO2 as sorbents and Methylene Blue (MB), a common dye, as model of the organic pollutants. Adsorption kinetics, isotherms, thermodynamics as well as effects of pH and adsorbent dose on the adsorption were studied. The adsorption isotherms and kinetics are better described by Langmuir isotherm model and pseudo-second-order kinetic model, respectively. Thermodynamic studies suggest that the adsorption of MB onto the MG@m-SiO2 is endothermic and spontaneous process. The results imply that the MG@m-SiO2 can be served as a cost-effective adsorbent for the removal of organic pollutants from aqueous solutions.

  20. Study on enhanced photocatalytic activity of magnetically recoverable Fe3O4@C@TiO2 nanocomposites with core-shell nanostructure

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Meng, Guihua; Wu, Jianning; Li, Deqiang; Liu, Zhiyong

    2015-08-01

    A novel and simple approach for the fabrication of Fe3O4@C@TiO2 nanocomposites with a good core-shell structure has been successfully constructed. The as-synthesized core-shell structure is composed of a magnetic core, an interlayer of carbon, and an outer TiO2 shell. In this method, the carbon middle layer could provide negatively charged for the TiO2 coating without the surfactants. The as-obtained core-shell structure composites were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray photoelectron spectroscopy (EDX), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TG), N2 adsorption-desorption isotherm analyses and the magnetization measurement (SQUID). The TEM images showed that the thickness of TiO2 shell could be controlled by varying tertrabutyl titanate (TBOT) content in the ethanol/acetonitrile mixed solvents. Photocatalytic property of Fe3O4@C@TiO2 nanocomposites were evaluated by photodegradation methylene blue (MB). The results showed that the well-designed nanocomposites exhibited a higher photoactivity than Fe3O4@TiO2 nanocomposites. Moreover, this photocatalyst can be easily recovered by an external magnetic field and remain stable photocatalytic activity after five cycles. The presence of carbon interlayer can avoid the occurrence of photodissolution. Therefore, the photocatalytic activity of titania would not deteriorate seriously, which played key role for the enhanced photocatalytic activity.

  1. Synthesis of Yolk-Shell Structured Fe3O4@void@CdS Nanoparticles: A General and Effective Structure Design for Photo-Fenton Reaction.

    PubMed

    Shi, Wen; Du, Dan; Shen, Bin; Cui, Chuanfeng; Lu, Liujia; Wang, Lingzhi; Zhang, Jinlong

    2016-08-17

    Yolk-shell (Y-S) structured Fe3O4@void@CdS nanoparticles (NPs) are synthesized through a one-pot coating-etching process with Fe3O4@SiO2 as the core, where the coating of an outer CdS shell from a chemical bath deposition (CBD) process is simultaneously accompanied by the gradual etching of an inner SiO2 shell. The as-prepared Fe3O4@void@CdS NPs (ca. 200 nm) possess good monodispersity and a uniform CdS shell of ca.15 nm. This composite exhibits excellent photo-Fenton (ph-F) activity toward the degradation of methylene blue (MB) in a wide pH working range of 4.5-11 under the visible light irradiation. A series of control experiments demonstrate the unique Y-S structure contributes to the enhanced activity, where the separation of hole-electron pair from CdS and the reduction of Fe(2+) from Fe(3+) are mutually promoted. The similar efficiency can also be achieved when the shell component changes to TiO2 or CeO2, demonstrating a general strategy for the design of robust ph-F agent. PMID:27466968

  2. Smart MoS2/Fe3O4 Nanotheranostic for Magnetically Targeted Photothermal Therapy Guided by Magnetic Resonance/Photoacoustic Imaging

    PubMed Central

    Yu, Jie; Yin, Wenyan; Zheng, Xiaopeng; Tian, Gan; Zhang, Xiao; Bao, Tao; Dong, Xinghua; Wang, Zhongliang; Gu, Zhanjun; Ma, Xiaoyan; Zhao, Yuliang

    2015-01-01

    The ability to selectively destroy cancer cells while sparing normal tissue is highly desirable during the cancer therapy. Here, magnetic targeted photothermal therapy was demonstrated by the integration of MoS2 (MS) flakes and Fe3O4 (IO) nanoparticles (NPs), where MoS2 converted near-infrared (NIR) light into heat and Fe3O4 NPs served as target moiety directed by external magnetic field to tumor site. The MoS2/Fe3O4 composite (MSIOs) functionalized by biocompatible polyethylene glycol (PEG) were prepared by a simple two-step hydrothermal method. And the as-obtained MSIOs exhibit high stability in bio-fluids and low toxicity in vitro and in vivo. Specifically, the MSIOs can be applied as a dual-modal probe for T2-weighted magnetic resonance (MR) and photoacoustic tomography (PAT) imaging due to their superparamagnetic property and strong NIR absorption. Furthermore, we demonstrate an effective result for magnetically targeted photothermal ablation of cancer. All these results show a great potential for localized photothermal ablation of cancer spatially/timely guided by the magnetic field and indicated the promise of the multifunctional MSIOs for applications in cancer theranostics. PMID:26155310

  3. Multifunctional nanocomposites Fe3O4@SiO2-EDTA for Pb(II) and Cu(II) removal from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Fu, Ruiqi; Sun, Yue; Zhou, Xiaoxin; Baig, Shams Ali; Xu, Xinhua

    2016-04-01

    In this study, EDTA-functionalized Fe3O4 (Fe3O4@SiO2-EDTA) was prepared by silanization reaction between N-(trimethoxysilylpropyl) ethylenediamine triacetic acid (EDTA-silane) and hydroxyl groups for Pb(II) and Cu(II) removal from aqueous solutions. Fe3O4@SiO2-EDTA composites were characterized using SEM, TEM, EDX, FTIR, XPS, TGA and saturated magnetization techniques. Maximum Pb(II) adsorption capacity was found to be 114.94 mg g-1 with SiO2/EDTA molar ratio of 2.5:1. The adsorption rate was significantly fast and the equilibrium was reached within 10 min. The optimum pH was recorded to be 5.0. The maximum adsorption capacity of the studied heavy metal ions calculated by Langmuir model followed the order: Cu(II) (0.58 mmol g-1) > Pb(II) (0.55 mmol g-1) ≈ Ni(II) (0.55 mmol g-1) > Cd(II) (0.45 mmol g-1). Moreover, Pb(II) and Cu(II) adsorption capacities were not significantly affected by co-existing cations and NOM. These results suggested that this adsorbent can be considered as a promising adsorbent to remove Pb(II) and Cu(II) from wastewaters.

  4. A facile method for the preparation of bifunctional Mn:ZnS/ZnS/Fe3O4 magnetic and fluorescent nanocrystals

    PubMed Central

    Labiadh, Houcine; Ben Chaabane, Tahar; Sibille, Romain; Balan, Lavinia

    2015-01-01

    Summary Bifunctional magnetic and fluorescent core/shell/shell Mn:ZnS/ZnS/Fe3O4 nanocrystals were synthesized in a basic aqueous solution using 3-mercaptopropionic acid (MPA) as a capping ligand. The structural and optical properties of the heterostructures were characterized by X-ray diffraction (XRD), dynamic light scattering (DLS), transmission electron microscopy (TEM), UV–vis spectroscopy and photoluminescence (PL) spectroscopy. The PL spectra of Mn:ZnS/ZnS/Fe3O4 quantum dots (QDs) showed marked visible emission around 584 nm related to the 4T1 → 6A1 Mn2+ transition. The PL quantum yield (QY) and the remnant magnetization can be regulated by varying the thickness of the magnetic shell. The results showed that an increase in the thickness of the Fe3O4 magnetite layer around the Mn:ZnS/ZnS core reduced the PL QY but improved the magnetic properties of the composites. Nevertheless, a good compromise was achieved in order to maintain the dual modality of the nanocrystals, which may be promising candidates for various biological applications. PMID:26425426

  5. Smart MoS2/Fe3O4 Nanotheranostic for Magnetically Targeted Photothermal Therapy Guided by Magnetic Resonance/Photoacoustic Imaging.

    PubMed

    Yu, Jie; Yin, Wenyan; Zheng, Xiaopeng; Tian, Gan; Zhang, Xiao; Bao, Tao; Dong, Xinghua; Wang, Zhongliang; Gu, Zhanjun; Ma, Xiaoyan; Zhao, Yuliang

    2015-01-01

    The ability to selectively destroy cancer cells while sparing normal tissue is highly desirable during the cancer therapy. Here, magnetic targeted photothermal therapy was demonstrated by the integration of MoS2 (MS) flakes and Fe3O4 (IO) nanoparticles (NPs), where MoS2 converted near-infrared (NIR) light into heat and Fe3O4 NPs served as target moiety directed by external magnetic field to tumor site. The MoS2/Fe3O4 composite (MSIOs) functionalized by biocompatible polyethylene glycol (PEG) were prepared by a simple two-step hydrothermal method. And the as-obtained MSIOs exhibit high stability in bio-fluids and low toxicity in vitro and in vivo. Specifically, the MSIOs can be applied as a dual-modal probe for T2-weighted magnetic resonance (MR) and photoacoustic tomography (PAT) imaging due to their superparamagnetic property and strong NIR absorption. Furthermore, we demonstrate an effective result for magnetically targeted photothermal ablation of cancer. All these results show a great potential for localized photothermal ablation of cancer spatially/timely guided by the magnetic field and indicated the promise of the multifunctional MSIOs for applications in cancer theranostics. PMID:26155310

  6. Conjugation of quantum dots and Fe3O4 on carbon nanotubes for medical diagnosis and treatment

    NASA Astrophysics Data System (ADS)

    Shi, Donglu; Cho, Hoon Sung; Huth, Chris; Wang, Feng; Dong, Zhongyun; Pauletti, Giovanni. M.; Lian, Jie; Wang, Wei; Liu, Guokui; Bud'ko, Sergey L.; Wang, Lumin; Ewing, Rodney C.

    2009-11-01

    Quantum dots (QDs) and Fe3O4 nanoparticles were conjugated onto the surfaces of carbon nanotubes (CNTs) for medical diagnosis and treatment. The nanoassembly was designed to meet the specific needs in cancer in vivo imaging and simultaneous treatment. The key functionalities needed for clinical applications were integrated, including CNT surface functionalization for attachment of biological molecules in targeting, drug storage capabilities, fluorescent emissions near the infrared range, and magnetic hyperthermia. CNT-QD-Fe3O4 developed exhibited a strong fluorescence near the infrared region for noninvasive optical in vivo imaging. Magnetization measurements showed nearly reversible hysteresis curves from CNT-QD-Fe3O4 nanoassembly. Fe3O4 conjugated CNT was found to experience hyperthermia heating under alternating electromagnetic field.

  7. Nanoscale modification of electrical and magnetic properties of Fe3O4 thin film by atomic force microscopy lithography

    NASA Astrophysics Data System (ADS)

    Hirooka, Motoyuki; Tanaka, Hidekazu; Li, Runwei; Kawai, Tomoji

    2004-09-01

    We present a report on the nanopatterning of an epitaxial ultrathin film of Fe3O4 with room-temperature (ferri)magnetism using atomic force microscopy (AFM). Fe3O4 thin films with atomically flat surfaces were grown using laser molecular-beam epitaxy on a MgAl2O4(111) single-crystal substrate. (Nanowire) were constructed on Fe3O4 thin film by applying an electric field between an AFM conductive tip and the surface of the film. The minimum width and height in the resulting nanowire are 48nm and 2nm, respectively. The patterned region of the Fe3O4 film surface possesses a resistance which is 105 times higher than the unpatterned region. Furthermore, magnetic force microscopy measurements also revealed that magnetization of the patterned region is strongly suppressed.

  8. The role of Fe3O4 nanocrystal film in bilayer-heterojunction CuPc/C60 solar cells.

    PubMed

    Meng, Fanxu; Tao, Chen; Wang, Yongfan; Shen, Liang; Guo, Wenbin; Chen, Yu; Ruan, Shengping

    2014-05-01

    The CuPc/C60 thin-film bilayer-heterojunction solar cells are fabricated by vacuum deposition with bathocuproine (BCP) as the exciton-blocking layer. Ferroferric oxide (Fe3O4) nanocrystal film is inserted between the copper phthalocaynine (CuPc) layer and indium tin oxide (ITO) anode. The device performances dependent on the thickness of Fe3O4 are investigated and compared. The results show that both the short-circuit current density and fill factor are enhanced by introducing a 1 nm Fe3O4 buffer layer, leading to an increase of power conversion efficiency. The role of Fe3O4 as a buffer layer in the improvement of the device performances is studied in detail by ultraviolet photoemission spectroscopy (UPS). PMID:24734601

  9. Sonocatalytic Methylene Blue in The Presence of Fe3O4-CuO-TiO2 Nanocomposites Heterostructure

    NASA Astrophysics Data System (ADS)

    Fauzian, Malleo; Jalaludin, Shofianina; Taufik, Ardiansyah; Saleh, Rosari

    2016-04-01

    In this work, the emphasis was mainly placed on investigating the sonocatalytic activity of Fe3O4-CuO-TiO2 nanocomposites heterostructure. The prepared samples were characterized by X-ray diffraction (XRD), Vibrating Sample Magnetometer (VSM), Brunauer-Emmett-Teller (BET) Surface Area Analysis. Methylene blue dye was selected to examine the sonocatalytic activity of Fe3O4-CuO-TiO2 nanocomposites heterostructure. The degradation reaction processes were monitored by UV-vis spectrophotometer. The influence on the activity of the Fe3O4-CuO-TiO2 nanocomposites heterostructure such as TiO2 loading was studied. The sonocatalyst Fe3O4-CuO-TiO2 with molar ratio of 1:1:5 showed the highest sonocatalytic activity. At last, the experiment also indicated that holes are the main reactive species in the photodegradation mechanism in methylene blue.

  10. Grape-Like Fe3O4 Agglomerates Grown on Graphene Nanosheets for Ultrafast and Stable Lithium Storage.

    PubMed

    Qi, Liya; Xin, Yuelong; Zuo, Zicheng; Yang, Chengkai; Wu, Kai; Wu, Bin; Zhou, Henghui

    2016-07-13

    An in situ simple and effective synthesis method is effectively exploited to construct MOF-derived grape-like architecture anchoring on nitrogen-doped graphene, in which ultrafine Fe3O4 nanoparticles are uniformly dispersed (Fe3O4@C/NG). In this hybrid hierarchical structure, new synergistic features are accessed. The graphene oxide plane with functional groups is expected to alleviate the aggregation problem in the MOFs' growth. Moreover, the morphology and size of iron-based MOFs and carbon content are conveniently controlled by controlling the solution concentration of precursor. Through making use of in situ carbonization of the organic ligands in MOFs, Fe3O4 subunits are effectively protected by 3D interconnected conductive carbon at microscale. Consequently, when applied as anode materials, even as high as 10 A g(-1) after 1000 cycles, Fe3O4@C/NG still maintains as high as 458 mA h g(-1). PMID:27311737

  11. Linear birefringence and dichroism in citric acid coated Fe3O4 magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Lin, Jing-Fung; Tsai, Chun-Chin; Lee, Meng-Zhe

    2014-12-01

    To prepare highly dispersed water-based Fe3O4 magnetic nanoparticles (MNPs), we adopted the co-precipitation method and used citric acid (CA) as the surfactant. Via transmission electronic microscopy, dynamic light scattering, and X-ray diffractometry, we characterized the dispersibility and size of the products. Through two single-parameter experiments, including the pH value of suspension and the action of double centrifugations, the appropriate parameters' values were determined. Further, to produce CA coated MNPs with good magneto-optical properties as high retardance and low dichroism, the orthogonal design method was used to find the optimal parameters' values, including pH value of suspension after coating was 5, molar ratio of CA to Fe3O4 MNPs was 0.06, volume of CA was 40 ml, and coating temperature was 70 °C. Above all, the linear birefringence and dichroism of the best CA coated ferrofluid we produced were measured by a Stokes polarimeter as 23.6294° and 0.3411 under 64.5 mT, respectively. Thus, the biomedical applications could be performed hereafter.

  12. Investigation of the Magnetic Behavior in Fe3O4 Ferrofluid Functionalized by Carapa Guianensis Oil

    NASA Astrophysics Data System (ADS)

    López, Jorge Luis; Rodriguez, Anselmo Fortunato Ruiz; de Jesus Nascimento Pontes, Maria; de Morais, Paulo Cesar; de Azevedo, Ricardo Bentes; Pfannes, Hans Dieter; Dias Filho, José Higino

    2010-12-01

    A ferrofluid based on Fe3O4 has been synthesized using the condensation method by coprecipitating aqueous solutions of FeSO4 and FeCl3 mixtures in NH4OH and treated further in order to obtain colloidal sols by creating a charge density on their surface and functionalized by carapa guianensis (andiroba oil). Aqueous sample with an average particle diameter ˜7 nm were studied by Mössbauer spectroscopy and dc magnetization measurements in the range of 4.2-250 K. The saturation magnetization (Ms) at 4.2 K was determined from M vs 1/H plots by extrapolating the value of magnetizations to infinite fields, to 5.6 emu/g and coercivity to 344 Oe. The low saturation magnetization value was attributed to spin noncollinearity predominantly at the surface. From the magnetization measurements a magnetic anisotropy energy constant (K) of 1×104 J/m3 was calculated. Fe3O4 spectra at room temperature showed a singlet due to superparamagnetic relaxation and a sextet at low temperature.

  13. Electron Localization in Fe3 O4 : an Ab Initio Wannier Study

    NASA Astrophysics Data System (ADS)

    Sakkaris, Perry; Boekema, Carel

    2014-03-01

    Magnetite, Fe3O4 , is an unusual ferrimagnetic oxide with emergent physical properties that are not yet fully understood. Among these are the metal-insulator transition at the Verwey Temperature TV (123K) and a spin-glass-like transition at about twice TV. The ``extra'' fully spin-polarized 3d electrons that span the t2 g bands of the B sublattice show strong electron correlation effects and are mainly responsible for conduction above TV. We perform a DFT+U calculation to obtain a set of Bloch orbitals describing the t2 g bands. We then use the gauge invariance of Wannier functions to transform the Bloch orbitals into a set of Maximally Localized Wannier Functions (MLWFs). The MLWFs are a real space description of the ``extra'' 3d electrons allowing us to describe their spatial localization and determine the mechanism of conduction above TV. Wannier studies of Fe3O4 may also allow us to determine the extent of electronic coupling to lattice vibrations, which may provide us substantial quantitative clues on the physical mechanism of the Verwey Transition. Research is supported by AFC San Jose.

  14. Arsenic (V) adsorption on Fe3O4 nanoparticle-coated boron nitride nanotubes.

    PubMed

    Chen, Rongzhi; Zhi, Chunyi; Yang, Huang; Bando, Yoshio; Zhang, Zhenya; Sugiur, Norio; Golberg, Dmitri

    2011-07-01

    Multiwalled boron nitride nanotubes (BNNTs) functionalized with Fe(3)O(4) nanoparticles (NPs) were used for arsenic removal from water solutions. Sonication followed by a heating process was developed to in situ functionalize Fe(3)O(4) NPs onto a tube surface. A batch of adsorption experiments conducted at neutral pH (6.9) and room temperature (25 °C) and using the developed nanocomposites revealed effective arsenic (V) removal. The Langmuir, Freundlich, and Dubinin-Radushkevich adsorption isotherms were measured for a range of As(V) initial concentrations from 1 to 40 mg/L under the same conditions. The equilibrium data well fitted all isotherms, indicating that the mechanism for As(V) adsorption was a combination of chemical complexation and physical electrostatic attraction with a slight preference for chemisorption. The magnetite NPs functionalized on BNNTs led to a simple and rapid separation of magnetic metal-loaded adsorbents from the treated water under an external magnetic field. PMID:21507418

  15. Water dispersible oleic acid-coated Fe3O4 nanoparticles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Shete, P. B.; Patil, R. M.; Tiwale, B. M.; Pawar, S. H.

    2015-03-01

    Fe3O4 magnetic nanoparticles (MNPs) have proved their tremendous potential to be used for various biomedical applications. Oleic acid (OA) is widely used in ferrite nanoparticle synthesis because it can form a dense protective monolayer, thereby producing highly uniform and monodispersed particles. Capping agents such as oleic acid are often used because they form a protective monolayer, which is strongly bonded to the surface of nanoparticles. This is necessary for making monodisperse and highly uniform MNPs. Coating of Fe3O4 MNPs with OA makes the particles dispersible only in organic solvents and consequently limits their use for biomedical applications. Hence, in this work, the OA coated MNPs were again functionalized with chitosan (CS), in order to impart hydrophilicity on their surface. All the morphological, magnetic, colloidal and cytotoxic characteristics of the resulting core-shells were studied thoroughly. Their heating induction ability was studied to predict their possible use in hyperthermia therapy of cancer. Specific absorption rate was found to be increased than that of bare MNPs.

  16. Thermal stability of nonmagnetic Cd and In impurities in Fe3O4

    NASA Astrophysics Data System (ADS)

    Sato, W.; Ida, T.; Komatsuda, S.; Fujisawa, T.; Takenaka, S.; Ohkubo, Y.

    2016-10-01

    Magnetite (Fe3O4) was doped with radioactive 111mCd and 111In ions as impurities, and their residence sites and thermal stability were investigated by means of time-differential perturbed angular correlation (TDPAC) spectroscopy. Well-defined TDPAC spectra unequivocally show their sites: Cd ions are stably located only in the tetrahedral A site in all the temperature range of the present observation (77 K-873 K); In ions also specifically occupy the A site at low temperature, but at high temperature part of them select the B site in a reversible fashion. The energy difference between the A and B sites for the accommodation of In was experimentally determined to be 0.119 (9) eV by assuming a Boltzmann distribution for the populations of the 111In probe in the respective sites. The element-dependent thermal stabilities observed for Cd and In were well corroborated by density functional theory calculations. The successful observation of thermally activated site-to-site displacement of impurity In ions in Fe3O4 is reported.

  17. Preparation Fe3O4@chitosan magnetic particles for covalent immobilization of lipase from Thermomyces lanuginosus.

    PubMed

    Wang, Xiang-Yu; Jiang, Xiao-Ping; Li, Yue; Zeng, Sha; Zhang, Ye-Wang

    2015-04-01

    Magnetic Fe3O4@chitosan nanoparticles were prepared by a simple in situ co-precipitation method and characterized by transmission electron microscope (TEM) and Fourier transform infrared spectroscopy (FTIR). The prepared Fe3O4@chitosan nanoparticles were used for covalent immobilization of lipase from Thermomyces lanuginosus by chemical conjugation after electrostatic entrapment (CCEE). The optimal immobilization conditions were obtained as follows: enzyme/support 19.8 mg/g, pH 5.0, time 4h and temperature 30 °C. Under these conditions, a high immobilization efficiency of 75% and a protein loading of 16.8 mg/g-support were obtained. Broad pH tolerance and high thermostability could be achieved by immobilization. The immobilized lipase retained 70% initial activity after ten cycles. Kinetic parameters Vmax and Km of free and immobilized lipase were determined as 5.72 mM/min, 2.26 mM/min and 21.25 mM, 28.73 mM, respectively. Ascorbyl palmitate synthesis with immobilized lipase was carried out in tert-butanol at 50 °C, and the conversion of ascorbic acid was obtained higher than 50%. These results showed that the immobilization of lipase onto magnetic chitosan nanoparticles by the method of CCEE is an efficient and simple way for preparation of stable lipase. PMID:25603148

  18. Carboxyl decorated Fe3O4 nanoparticles for MRI diagnosis and localized hyperthermia.

    PubMed

    Barick, K C; Singh, Sarika; Bahadur, D; Lawande, Malini A; Patkar, Deepak P; Hassan, P A

    2014-03-15

    We report the development of carboxyl decorated iron oxide nanoparticles (CIONs) by a facile soft-chemical approach for magnetic resonance imaging (MRI) and hyperthermia applications. These superparamagnetic CIONs (~10 nm) are resistant to protein adsorption under physiological medium and exhibit good colloidal stability, magnetization and cytocompatibility with cell lines. Analysis of the T2-weighted MRI scans of CIONs in water yields a transverse relaxivity (r2) value of 215 mM(-1) s(-1). The good colloidal stability and high r2 value make these CIONs as promising candidates for high-efficiency T2 contrast agent in MRI. Further, these biocompatible nanoparticles show excellent self-heating efficacy under external AC magnetic field (AMF). The infrared thermal imaging confirmed the localized heating of CIONs under AMF. Thus, these carboxyl decorated Fe3O4 nanoparticles can be used as a contrast agent in MRI as well as localized heat activated killing of cancer cells. Furthermore, the active functional groups (COOH) present on the surface of Fe3O4 nanoparticles can be accessible for routine conjugation of biomolecules/drugs through well-developed bioconjugation chemistry. PMID:24461826

  19. Fe3O4/carbon hybrid nanoparticle electrodes for high-capacity electrochemical capacitors.

    PubMed

    Lee, Jun Seop; Shin, Dong Hoon; Jun, Jaemoon; Lee, Choonghyeon; Jang, Jyongsik

    2014-06-01

    Fe3O4/carbon hybrid nanoparticles (FeCHNPs) were fabricated using dual-nozzle electrospraying, vapor deposition polymerization (VDP), and carbonization. FeOOH nanoneedles decorated with polypyrrole (PPy) nanoparticles (FePNPs) were fabricated by electrospraying pristine PPy mixed with FeCl3 solution, followed by heating stirring reaction. A PPy coating was then formed on the FeOOH nanoneedles through a VDP process. FeCHNPs were produced through carbonization of PPy and FeOOH phase transitions. These hybrid carbon nanoparticles (NPs) were used to build electrodes of electrochemical capacitors. The specific capacitance of the FeCHNPs was 455 F g(-1), which is larger than that of pristine PPy NPs (105 F g(-1)) or other hybrid PPy NPs. Furthermore, the FeCHNP-based capacitors exhibited better cycle stability during charge-discharge cycling than other hybrid NP capacitors. This is because the carbon layer on the Fe3 O4 surface formed a protective coating, preventing damage to the electrode materials during the charge-discharge processes. This fabrication technique is an effective approach for forming stable carbon/metal oxide nanostructures for energy storage applications.

  20. Origin of the giant magnetic moment in epitaxial Fe3O4 thin films

    NASA Astrophysics Data System (ADS)

    Orna, J.; Algarabel, P. A.; Morellón, L.; Pardo, J. A.; de Teresa, J. M.; López Antón, R.; Bartolomé, F.; García, L. M.; Bartolomé, J.; Cezar, J. C.; Wildes, A.

    2010-04-01

    We study the enhanced magnetic moment observed in epitaxial magnetite (Fe3O4) ultrathin films (t<15nm) grown on MgO (001) substrates by means of pulsed laser deposition. The Fe3O4 (001) thin films exhibit high crystallinity, low roughness, and sharp interfaces with the substrate, and the existence of the Verwey transition at thicknesses down to 4 nm. The evolution of the Verwey transition temperature with film thickness shows a dependence with the antiphase boundaries density. Superconducting quantum interference device (SQUID) and vibrating sample magnetometry measurements in ultrathin films show a magnetic moment much higher than the bulk magnetite value. In order to study the origin of this anomalous magnetic moment, polarized neutron reflectivity (PNR), and x-ray magnetic circular dichroism (XMCD) experiments have been performed, indicating a decrease in the magnetization with decreasing sample thickness. X-ray photoemission spectroscopy measurements show no metallic Fe clusters present in the magnetite thin films. Through inductively coupled plasma mass spectroscopy and SQUID magnetometry measurements performed in commercial MgO (001) substrates, the presence of Fe impurities embedded within the substrates has been observed. Once the substrate contribution has been corrected, a decrease in the magnetic moment of magnetite thin films with decreasing thickness is found, in good agreement with the PNR and XMCD measurements. Our experiments suggest that the origin of the enhanced magnetic moment is not intrinsic to magnetite but due to the presence of Fe impurities in the MgO substrates.

  1. Fluorescence and magnetic properties of hydrogels containing Fe3O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Alveroğlu, E.; Sözeri, H.; Baykal, A.; Kurtan, U.; Şenel, M.

    2013-04-01

    In this study, Fe3O4 (magnetite) nanoparticles were synthesized by in situ in polyacrylamide (PAAm) gels. Structural and magnetic properties of magnetite nanoparticles were investigated by X-Ray diffractometry (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometry (VSM) methods. Interaction of pyranine molecules with Fe3O4 nanoparticles was investigated by fluorescence spectroscopy measurements in which pyranine (POH) molecules were used as a flouroprobe. It was observed that magnetite nanoparticles have single domain structure with average grain size of 12 nm which was also supported by magnetization measurements. M-H hysteresis curves revealed the superparamagnetic nature of magnetite nanoparticles synthesized in PAAm gels. Fluorescence measurements depicted that there is an interaction between POH and magnetite nanoparticles which was deduced from the presence of two new peaks at 380 nm and 405 nm in emission spectrum. Besides, it was observed that POH molecules could not diffuse into the gel when it consists of magnetite nanoparticles which also make the gel more homogeneous. As swelling ratio increases from 1 to 13, magnetization of the gel does not change which reveals that magnetic nanoparticles do not diffuse out of the gel during water-intake. This feature makes the gel suitable for applications as waste water treatments.

  2. Fractal Structures on Fe3O4 Ferrofluid: A Small-Angle Neutron Scattering Study

    NASA Astrophysics Data System (ADS)

    Giri Rachman Putra, Edy; Seong, Baek Seok; Shin, Eunjoo; Ikram, Abarrul; Ani, Sistin Ari; Darminto

    2010-10-01

    A small-angle neutron scattering (SANS) which is a powerful technique to reveal the large scale structures was applied to investigate the fractal structures of water-based Fe3O4ferrofluid, magnetic fluid. The natural magnetite Fe3O4 from iron sand of several rivers in East Java Province of Indonesia was extracted and purified using magnetic separator. Four different ferrofluid concentrations, i.e. 0.5, 1.0, 2.0 and 3.0 Molar (M) were synthesized through a co-precipitation method and then dispersed in tetramethyl ammonium hydroxide (TMAH) as surfactant. The fractal aggregates in ferrofluid samples were observed from their SANS scattering distributions confirming the correlations to their concentrations. The mass fractal dimension changed from about 3 to 2 as ferrofluid concentration increased showing a deviation slope at intermediate scattering vector q range. The size of primary magnetic particle as a building block was determined by fitting the scattering profiles with a log-normal sphere model calculation. The mean average size of those magnetic particles is about 60 - 100 Å in diameter with a particle size distribution σ = 0.5.

  3. Preparation of Fe3O4 magnetic nanoparticles coated with gallic acid for drug delivery

    PubMed Central

    Dorniani, Dena; Hussein, Mohd Zobir Bin; Kura, Aminu Umar; Fakurazi, Sharida; Shaari, Abdul Halim; Ahmad, Zalinah

    2012-01-01

    Background and methods Magnetic iron oxide nanoparticles were prepared using a sonochemical method under atmospheric conditions at a Fe2+ to Fe3+ molar ratio of 1:2. The iron oxide nanoparticles were subsequently coated with chitosan and gallic acid to produce a core-shell structure. Results X-ray diffraction demonstrated that the magnetic nanoparticles were pure Fe3O4 with a cubic inverse spinel structure. Transmission electron microscopy showed that the Fe3O4 nanoparticles were of spherical shape with a mean diameter of 11 nm, compared with 13 nm for the iron oxide-chitosan-gallic acid (FCG) nanocarriers. Conclusion The magnetic nanocarrier enhanced the thermal stability of the drug, gallic acid. Release of the active drug from the FCG nanocarrier was found to occur in a controlled manner. The gallic acid and FCG nanoparticles were not toxic in a normal human fibroblast (3T3) line, and anticancer activity was higher in HT29 than MCF7 cell lines. PMID:23166439

  4. Magnetoelectric properties of epitaxial Fe3O4 thin films on (011) PMN-PT piezosubstrates

    NASA Astrophysics Data System (ADS)

    Tkach, Alexander; Baghaie Yazdi, Mehrdad; Foerster, Michael; Büttner, Felix; Vafaee, Mehran; Fries, Maximilian; Kläui, Mathias

    2015-01-01

    We determine the magnetic and magnetotransport properties of 33 nm thick Fe3O4 films epitaxially deposited by rf-magnetron sputtering on unpoled (011) [PbMg1/3Nb2/3O3] 0.68-[PbTiO3]0.32 (PMN-PT) substrates. The magnetoresistance (MR), as well as the magnetization reversal, strongly depend on the in-plane crystallographic direction of the epitaxial (011) Fe3O4 film and strain. When the magnetic field is applied along [100], the magnetization loops are slanted and the sign of the longitudinal MR changes from positive to negative around the Verwey transition at 125 K on cooling. Along the [01 1 ¯] direction, the loops are square shaped and the MR is negative above the switching field across the whole temperature range, just increasing in absolute value when cooling from 300 K to 150 K. The value of the MR is found to be strongly affected by poling the PMN-PT substrate, decreasing in the [100] direction and slightly increasing in the [01 1 ¯] direction upon poling, which results in a strained film.

  5. Linear birefringence and dichroism measurement in oil-based Fe3O4 magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Lin, Jing-Fung; Wang, Chia-Hung; Lee, Meng-Zhe

    2013-04-01

    To prepare dispersed Fe3O4 magnetic nanoparticles (MNPs), we adopt a co-precipitation method and consider surfactant amount, stirring speed, dispersion mode, and molar ratio of Fe3+/Fe2+. Via transmission electronic microscopy and X-ray diffractometry, we characterize the dispersibility and size of the products and determine the appropriate values of experimental parameters. The stirring speed is 1000 rpm in titration. There is simultaneous ultrasonic vibration and mechanical stirring in the titration and surface coating processes. The surfactant amount of oleic acid is 1.2 ml for molar ratios of Fe3+/Fe2+ as 1.7:1, 1.8:1, and 1.9:1. The average diameters of these Fe3O4 MNPs are 11 nm, and the ratios of saturation magnetization for these MNPs to that of bulk magnetite range from 45% to 65%, with remanent magnetization close to zero and low coercivity. Above all, the linear birefringence and dichroism measurements of the kerosene-based ferrofluid (FF) samples are investigated by a Stokes polarimeter. The influences of particle size distribution and magnetization in the birefringence and dichroism measurements of FFs are discussed.

  6. MAPLE fabricated Fe3O4@Cinnamomum verum antimicrobial surfaces for improved gastrostomy tubes.

    PubMed

    Anghel, Alina Georgiana; Grumezescu, Alexandru Mihai; Chirea, Mariana; Grumezescu, Valentina; Socol, Gabriel; Iordache, Florin; Oprea, Alexandra Elena; Anghel, Ion; Holban, Alina Maria

    2014-01-01

    Cinnamomum verum-functionalized Fe3O4 nanoparticles of 9.4 nm in size were laser transferred by matrix assisted pulsed laser evaporation (MAPLE) technique onto gastrostomy tubes (G-tubes) for antibacterial activity evaluation toward Gram positive and Gram negative microbial colonization. X-ray diffraction analysis of the nanoparticle powder showed a polycrystalline magnetite structure, whereas infrared mapping confirmed the integrity of C. verum (CV) functional groups after the laser transfer. The specific topography of the deposited films involved a uniform thin coating together with several aggregates of bio-functionalized magnetite particles covering the G-tubes. Cytotoxicity assays showed an increase of the G-tube surface biocompatibility after Fe3O4@CV treatment, allowing a normal development of endothelial cells up to five days of incubation. Microbiological assays on nanoparticle-modified G-tube surfaces have proved an improvement of anti-adherent properties, significantly reducing both Gram negative and Gram positive bacteria colonization. PMID:24979402

  7. Beta-cyclodextrins conjugated magnetic Fe3O4 colloidal nanoclusters for the loading and release of hydrophobic molecule

    NASA Astrophysics Data System (ADS)

    Lv, Shaonan; Song, Yubei; Song, Yaya; Zhao, Zhigang; Cheng, Changjing

    2014-06-01

    Herein, we report a facile method to prepare beta-cyclodextrin (β-CD)-conjugated magnetic Fe3O4 colloidal nanocrystal clusters (Fe3O4@GLY-CD) using (3-glycidyloxypropyl) trimethoxysilane (GLY) as the intermediate linker. The resulting Fe3O4@GLY-CD was characterized by several methods including Fourier transform infrared (FT-IR) spectroscopy, field-emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and vibrating sample magnetometer (VSM). In addition, the loading and release properties of the synthesized Fe3O4@GLY-CD for the hydrophobic molecule 8-anilino-1-naphthalenesulfonic acid ammonium salt (ANS) were also investigated. The results show that the Fe3O4@GLY-CD has a spherical structure with an average diameter of 186 nm and high saturated magnetism of 51.2 emu/g. The grafting of β-CD onto Fe3O4 colloidal nanocrystal clusters can markedly increase the loading capacity of ANS because of β-CD/ANS inclusion complex formation. The in vitro delivery profile shows that the release of ANS from the Fe3O4@GLY-CD nanosystem exhibits an initial burst followed by a slow and steady release. Moreover, Fe3O4@GLY-CD also demonstrates a temperature-dependent release behavior for ANS owing to the effect of temperature on the association constants of β-CD/ANS inclusion complexes. The developed magnetic hybrid nanomaterial is expected to find potential applications in several fields including separation science and biomedicine.

  8. Carbon-coated Fe3O4 microspheres with a porous multideck-cage structure for highly reversible lithium storage.

    PubMed

    Wang, Yanrong; Zhang, Lei; Wu, Yali; Zhong, Yijun; Hu, Yong; Lou, Xiong Wen David

    2015-04-25

    A novel H3PO4 etching strategy together with subsequent carbon coating has been developed for the synthesis of carbon-coated Fe3O4 microspheres with a porous multideck-cage structure. These carbon-coated Fe3O4 microspheres manifest high specific capacity (∼1100 m h g(-1) at 200 mA g(-1)) and excellent cycling stability for lithium storage.

  9. Fe3O4@Au/polyaniline multifunctional nanocomposites: their preparation and optical, electrical and magnetic properties

    NASA Astrophysics Data System (ADS)

    Yu, Qiaozhen; Shi, Minmin; Cheng, Yunan; Wang, Mang; Chen, Hong-zheng

    2008-07-01

    Fe3O4@Au/polyaniline (PANI) nanocomposites were fabricated by in situ polymerization in the presence of mercaptocarboxylic acid. The mercaptocarboxylic acid was used to introduce hydrogen bonding and/or electrostatic interaction; it acts as a template in the formation of Fe3O4@Au/PANI nanorods. The morphology and structure of the resulting nanocomposites were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy, x-ray diffraction and x-ray energy dispersion spectroscopy (EDS). It was found that the nanocomposites were rod-like with an average diameter of 153 nm, and they exhibited a core-shell structure. A UV-visible spectrometer, semiconductor parameter analyzer and vibrating sample magnetometer (VSM) were used to characterize the optical, electrical and magnetic properties of the Fe3O4@Au/PANI nanocomposites. It was interesting to find that these properties are dependent on the molar ratio of Au to Fe3O4 when the molar ratio of Fe3O4@Au to PANI is fixed. The magnetic property of the Fe3O4@Au/PANI nanocomposite is very close to superparamagnetic behavior.

  10. Multifunctional nanocomposites constructed from Fe3O4-Au nanoparticle cores and a porous silica shell in the solution phase.

    PubMed

    Chen, Fenghua; Chen, Qingtao; Fang, Shaoming; Sun, Yu'an; Chen, Zhijun; Xie, Gang; Du, Yaping

    2011-11-01

    This work is directed towards the synthesis of multifunctional nanoparticles composed of Fe(3)O(4)-Au nanocomposite cores and a porous silica shell (Fe(3)O(4)-Au/pSiO(2)), aimed at ensuring the stability, magnetic, and optical properties of magnetic-gold nanocomposite simultaneously. The prepared Fe(3)O(4)-Au/pSiO(2) core/shell nanoparticles are characterized by means of TEM, N(2) adsorption-desorption isotherms, FTIR, XRD, UV-vis, and VSM. Meanwhile, as an example of the applications, catalytic activity of the porous silica shell-encapsulated Fe(3)O(4)-Au nanoparticles is investigated by choosing a model reaction, reduction of o-nitroaniline to benzenediamine by NaBH(4). Due to the existence of porous silica shells, the reaction with Fe(3)O(4)-Au/pSiO(2) core/shell nanoparticles as a catalyst follows second-order kinetics with the rate constant (k) of about 0.0165 l mol(-1) s(-1), remarkably different from the first-order kinetics with the k of about 0.002 s(-1) for the reduction reaction with the core Fe(3)O(4)-Au nanoparticles as a catalyst. PMID:21637876

  11. Multifunctional nanotube-like Fe3O4/PANI/CDs/Ag hybrids: An efficient SERS substrate and nanocatalyst.

    PubMed

    Yan, Manqing; Shen, Yang; Zhang, Guiyang; Bi, Hong

    2016-01-01

    In this paper, the stable and environment-friendly Fe3O4 nanotubes with polyaniline (Fe3O4 NTs/PANI hybrids) have been prepared via mesoporous anodic alumina oxide (AAO) template, sol-gel method and in-situ polymerization. Then multifunctional Fe3O4 NTs/PANI/Ag hybrids have been obtained by decorating Ag nanoparticles by glucose reduction on surface of Fe3O4 NTs/PANI hybrids. The morphologies and structures of these hybrids were subsequently investigated by SEM, XRD, TEM and XPS measurements. The Fe3O4 NTs/PANI/Ag hybrids presented high catalytic activity due to the template-assisted presence, preventing Ag particulate agglomeration. Importantly, the Fe3O4 NTs/PANI/Ag hybrids achieve sensitive surface-enhanced Raman scattering (SERS) signals. Furthermore, the introduction of carbon dots (CDs) endows these hybrids good dispersion and stable photoluminescence (PL). Therefore, the obtained hybrids may have potential applications in waste water treatment, biomedicine, photocatalyst, and environmental analysis.

  12. Structural, magnetic, and Magneto optical properties of Fe3O4/NiO bilayers on MgO(001)

    NASA Astrophysics Data System (ADS)

    Wollschläger, Joachim; Schemme, Tobias; Kuschel, Olga; Witziok, Matthäus; Kuschel, Timo; Kuepper, Karsten

    2016-02-01

    Ultrathin magnetite (Fe3O4) films are attractive for applications in the field of spintronics due to their ferrimagnetic behavior with assumed high degree of spin polarized electrons at the Fermi energy. For these applications, it is necessary to form epitactical bilayer structure combining ferrimagnetic magnetite with an antiferromagnetic layer. Therefore, here we study Fe3O4/NiO bilayers on MgO(001) substrates. Bilayers grown by reactive molecular beam epitaxy are stoichiometric and have well-developed surface and interface structures. The NiO layers are laterally pinned to the structure of the MgO(001) substrate while the magnetite films gradually relax. The interfaces show smooth morphologies and the films have very homogeneous film thickness necessary for spintronical applications. The magnetic and magneto optical properties of the Fe3O4/NiO bilayers were probed by the magneto optical Kerr effect. Compared to single Fe3O4 layers on MgO(001), the bilayers show complicated ferrimagnetic behavior depending on the azimuthal direction of the external applied field. The coercive field of the bilayers, however, is increased with the coercive field of single layer Fe3O4/MgO(001) structures making the Fe3O4/NiO bilayers attractive for spintronic applications.

  13. Eryptosis Indices as a Novel Predictive Parameter for Biocompatibility of Fe3O4 Magnetic Nanoparticles on Erythrocytes.

    PubMed

    Ran, Qian; Xiang, Yang; Liu, Yao; Xiang, Lixin; Li, Fengjie; Deng, Xiaojun; Xiao, Yanni; Chen, Li; Chen, Lili; Li, Zhongjun

    2015-11-05

    Fe3O4 magnetic nanoparticles (Fe3O4-MNPs) have been widely used in clinical diagnosis. Hemocompatibility of the nanoparticles is usually evaluated by hemolysis. However, hemolysis assessment does not measure the dysfunctional erythrocytes with pathological changes on the unbroken cellular membrane. The aim of this study is to evaluate the use of suicidal death of erythrocytes (i.e. eryptosis indices) as a novel predictive and prognostic parameter, and to determine the impact of Fe3O4-MNPs on cellular membrane structure and the rheology properties of blood in circulation. Our results showed that phosphatidylserine externalization assessment was significantly more sensitive than classical hemolysis testing in evaluating hemocompatibility. Although no remarkable changes of histopathology, hematology and serum biochemistry indices were observed in vivo, Fe3O4-MNPs significantly affected hemorheology indices including erythrocyte deformation index, erythrocyte rigidity index, red blood cell aggregation index, and erythrocyte electrophoresis time, which are related to the mechanical properties of the erythrocytes. Oxidative stress induced calcium influx played a critical role in the eryptotic activity of Fe3O4-MNPs. This study demonstrated that Fe3O4-MNPs cause eryptosis and changes in flow properties of blood, suggesting that phosphatidylserine externalization can serve as a predictive parameter for hemocompatibility assay.

  14. Near-infrared laser light mediated cancer therapy by photothermal effect of Fe3O4 magnetic nanoparticles.

    PubMed

    Chu, Maoquan; Shao, Yuxiang; Peng, Jinliang; Dai, Xiangyun; Li, Haikuo; Wu, Qingsheng; Shi, Donglu

    2013-05-01

    The photothermal effect of Fe3O4 magnetic nanoparticles is investigated for cancer therapy both in vitro and in vivo experiments. Heat is found to be rapidly generated by red and near-infrared (NIR) range laser irradiation of Fe3O4 nanoparticles with spherical, hexagonal and wire-like shapes. These Fe3O4 nanoparticles are coated with carboxyl-terminated poly (ethylene glycol)-phospholipid for enhanced dispersion in water. The surface-functionalized Fe3O4 nanoparticles can be taken up by esophageal cancer cells and do not obviously affect the cell structure and viability. Upon irradiation at 808 nm however, the esophageal cancer cell viability is effectively suppressed, and the cellular organelles are obviously damaged when incubated with the NIR laser activated Fe3O4 nanoparticles. Mouse esophageal tumor growth was found to be significantly inhibited by the photothermal effect of Fe3O4 nanoparticles, resulting in effective tumor reduction. A morphological examination revealed that after a photothermal therapy, the tumor tissue structure exhibited discontinuation, the cells were significantly shriveled and some cells have finally disintegrated.

  15. Significant improvement of critical current density in MgB2 doped with ferromagnetic Fe3O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Qu, B.; Sun, X. D.; Li, J.-G.; Xiu, Z. M.; Liu, S. H.; Xue, C. P.

    2009-01-01

    Ferromagnetic Fe3O4-doped MgB2 bulks were first fabricated in this work by the hot pressing method. It was found that Fe3O4 does not react with Mg or B during the fabrication process. Peak Jc values of the 5 wt% Fe3O4-doped MgB2 are higher than 106 A cm-2 in the temperature range 5-30 K. Especially at 30 K, the peak Jc is 1.02 × 106 A cm-2 for the 5 wt% Fe3O4-doped MgB2, the highest values at 30 K found in the literature, and about seven times that of the 5 wt% SiC-doped MgB2 sample. The drop in Jc with increasing field for the Fe3O4-doped MgB2 is significantly slower than that of the SiC-doped MgB2 at 30 K. These results indicate that the Fe3O4-doped MgB2 is a potential superconductor to be used at temperatures greater than 25 K which is a critical temperature for large-scale practical applications.

  16. Eryptosis Indices as a Novel Predictive Parameter for Biocompatibility of Fe3O4 Magnetic Nanoparticles on Erythrocytes

    PubMed Central

    Ran, Qian; Xiang, Yang; Liu, Yao; Xiang, Lixin; Li, Fengjie; Deng, Xiaojun; Xiao, Yanni; Chen, Li; Chen, Lili; Li, Zhongjun

    2015-01-01

    Fe3O4 magnetic nanoparticles (Fe3O4-MNPs) have been widely used in clinical diagnosis. Hemocompatibility of the nanoparticles is usually evaluated by hemolysis. However, hemolysis assessment does not measure the dysfunctional erythrocytes with pathological changes on the unbroken cellular membrane. The aim of this study is to evaluate the use of suicidal death of erythrocytes (i.e. eryptosis indices) as a novel predictive and prognostic parameter, and to determine the impact of Fe3O4-MNPs on cellular membrane structure and the rheology properties of blood in circulation. Our results showed that phosphatidylserine externalization assessment was significantly more sensitive than classical hemolysis testing in evaluating hemocompatibility. Although no remarkable changes of histopathology, hematology and serum biochemistry indices were observed in vivo, Fe3O4-MNPs significantly affected hemorheology indices including erythrocyte deformation index, erythrocyte rigidity index, red blood cell aggregation index, and erythrocyte electrophoresis time, which are related to the mechanical properties of the erythrocytes. Oxidative stress induced calcium influx played a critical role in the eryptotic activity of Fe3O4-MNPs. This study demonstrated that Fe3O4-MNPs cause eryptosis and changes in flow properties of blood, suggesting that phosphatidylserine externalization can serve as a predictive parameter for hemocompatibility assay. PMID:26537855

  17. Multifunctional nanotube-like Fe3O4/PANI/CDs/Ag hybrids: An efficient SERS substrate and nanocatalyst.

    PubMed

    Yan, Manqing; Shen, Yang; Zhang, Guiyang; Bi, Hong

    2016-01-01

    In this paper, the stable and environment-friendly Fe3O4 nanotubes with polyaniline (Fe3O4 NTs/PANI hybrids) have been prepared via mesoporous anodic alumina oxide (AAO) template, sol-gel method and in-situ polymerization. Then multifunctional Fe3O4 NTs/PANI/Ag hybrids have been obtained by decorating Ag nanoparticles by glucose reduction on surface of Fe3O4 NTs/PANI hybrids. The morphologies and structures of these hybrids were subsequently investigated by SEM, XRD, TEM and XPS measurements. The Fe3O4 NTs/PANI/Ag hybrids presented high catalytic activity due to the template-assisted presence, preventing Ag particulate agglomeration. Importantly, the Fe3O4 NTs/PANI/Ag hybrids achieve sensitive surface-enhanced Raman scattering (SERS) signals. Furthermore, the introduction of carbon dots (CDs) endows these hybrids good dispersion and stable photoluminescence (PL). Therefore, the obtained hybrids may have potential applications in waste water treatment, biomedicine, photocatalyst, and environmental analysis. PMID:26478345

  18. Superparamagnetic Fe3O4/Poly(N-isopropyl acrylamide) Nanocomposites Synthesized in Inverse Miniemulsions: Magnetic and Particle Properties.

    PubMed

    Cui, Qinmin; Zhu, Shudi; Yan, Yingjie; Ye, Quanlin; Ziener, Ulrich; Cao, Zhihai

    2015-06-01

    In the present study, superparamagnetic Fe3O4/poly(N-isopropyl acrylamide) nanocomposites were synthesized by one-step inverse miniemulsion copolymerization of N-isopropyl acrylamide and N,N'-methylene diacrylamide. The loading of Fe3O4 nanoparticles in the nanocomposites was 27 wt%, and the saturation moment of the nanocomposites was 12.4 emu x g(-1). Fe3O4 nanoparticles were prepared through a coprecipitation method. The amount of stabilizer (poly(acrylic acid)) significantly influenced the size and size distribution of the Fe3O4 nanoparticles, and, therefore, their magnetic properties. Superparamagnetism of the Fe3O4 nanoparticles was preserved in the nanocomposites. The effects of synthetic parameters on the particle properties, namely surfactant loading, concentration of ferrofluid, type of lipophobe and initiator, and amount of cross-linker were investigated. Nanocomposites of Fe3O4/poly(N-isopropyl acrylamide) displayed a guava-like morphology, which they could retain after being redispersed in polar solvents. PMID:26369088

  19. Heterogenized Bimetallic Pd-Pt-Fe3O4 Nanoflakes as Extremely Robust, Magnetically Recyclable Catalysts for Chemoselective Nitroarene Reduction.

    PubMed

    Byun, Sangmoon; Song, Yeami; Kim, B Moon

    2016-06-15

    A very simple synthesis of bimetallic Pd-Pt-Fe3O4 nanoflake-shaped alloy nanoparticles (NPs) for cascade catalytic reactions such as dehydrogenation of ammonia-borane (AB) followed by the reduction of nitro compounds (R-NO2) to anilines or alkylamines (R-NH2) in methanol at ambient temperature is described. The Pd-Pt-Fe3O4 NPs were easily prepared via a solution phase hydrothermal method involving the simple one-pot coreduction of potassium tetrachloroplatinate (II) and palladium chloride (II) in polyvinylpyrrolidone with subsequent deposition on commercially available Fe3O4 NPs. The bimetallic Pd-Pt alloy NPs decorated on Fe3O4 NPs provide a unique synergistic effect for the catalysis of cascade dehydrogenation/reduction. Various nitroarene derivatives were reduced to anilines with very specific chemoselectivity in the presence of other reducible functional groups. The bimetallic Pd-Pt-Fe3O4 NPs provide a unique synergistic effect for the catalysis of cascade dehydrogenation/reduction. The nitro reduction proceeded in 5 min with nearly quantitative conversions and yields. Furthermore, the magnetically recyclable nanocatalysts were readily separated using an external magnet and reused up to 250 times without any loss of catalytic activity. A larger scale (10 mmol) reaction was also successfully performed with >99% yield. This efficient, recyclable Pd-Pt-Fe3O4 NPs system can therefore be repetitively utilized for the reduction of various nitro-containing compounds. PMID:27191706

  20. Contribution of Fe3O4 nanoparticles to the fouling of ultrafiltration with coagulation pre-treatment

    PubMed Central

    Yu, Wenzheng; Xu, Lei; Graham, Nigel; Qu, Jiuhui

    2015-01-01

    A coagulation (FeCl3)-ultrafiltration process was used to treat two different raw waters with/without the presence of Fe3O4 nanoparticle contaminants. The existence of Fe3O4 nanoparticles in the raw water was found to increase both irreversible and reversible membrane fouling. The trans-membrane pressure (TMP) increase was similar in the early stages of the membrane runs for both raw waters, while it increased rapidly after about 15 days in the raw water with Fe3O4 nanoparticles, suggesting the involvement of biological effects. Enhanced microbial activity with the presence of Fe3O4 nanoparticles was evident from the measured concentrations of extracellular polymeric substances (EPS) and deoxyribonucleic acid (DNA), and fluorescence intensities. It is speculated that Fe3O4 nanoparticles accumulated in the cake layer and increased bacterial growth. Associated with the bacterial growth is the production of EPS which enhances the bonding wi