Sample records for fe3o4 polymer composites

  1. Preparation of SiO2/(PMMA/Fe3O4) from monolayer linolenic acid modified Fe3O4 nanoparticles via miniemulsion polymerization.

    PubMed

    He, Lei; Li, Zhiyang; Fu, Jing; Deng, Yan; He, Nongyue; Wang, Zhifei; Wang, Hua; Shi, Zhiyang; Wang, Zunliang

    2009-10-01

    SiO2/(PMMA/Fe3O4) composite particles were prepared from linolenic acid (LA) instead of oleic acid (OA) modified Fe3O4 nanoparticles by miniemulsion polymerization. LA has three unsaturated double bonds with which it can polymerizate more easily than OA. And coating Fe3O4 with polymethyl methacrylate (PMMA) polymer beforehand can prevent magnetic nanoparticles from the aggregation that usually comes from the increasing of ionic strength during the hydrolyzation of tetraethoxysilane (TEOS) by the steric hindrance. Finally, the resulting PMMA/Fe3O4 nanoparticles were coated with silica, forming SiO2/(PMMA/Fe3O4) core-shell structure particles. The sizes of nanoparticles with core-shell structure were in the range from 300 to 600 nm. The nanoparticles were spherical particles and had consistent size. The result of magnetic measurement showed that the composite particles had superparamagnetic property.

  2. Removal of nitrate and phosphate using chitosan/Al2O3/Fe3O4 composite nanofibrous adsorbent: Comparison with chitosan/Al2O3/Fe3O4 beads.

    PubMed

    Bozorgpour, Farahnaz; Ramandi, Hossein Fasih; Jafari, Pooya; Samadi, Saman; Yazd, Shabnam Sharif; Aliabadi, Majid

    2016-12-01

    In the present study the chitosan/Al 2 O 3 /Fe 3 O 4 composite nanofibrous adsorbent was prepared by electrospinning process and its application for the removal of nitrate and phosphate were compared with chitosan/Al 2 O 3 /Fe 3 O 4 composite bead adsorbent. The influence of Al 2 O 3 /Fe 3 O 4 composite content, pH, contact time, nitrate and phosphate initial concentrations and temperature on the nitrate and phosphate sorption using synthesized bead and nanofibrous adsorbents was investigated in a single system. The reusability of chitosan/Al 2 O 3 /Fe 3 O 4 composite beads and nanofibers after five sorption-desorption cycles were carried out. The Box-Behnken design was used to investigate the interaction effects of adsorbent dosage, nitrate and phosphate initial concentrations on the nitrate and phosphate removal efficiency. The pseudo-second-order kinetic model and known Freundlich and Langmuir isotherm models were used to describe the kinetic and equilibrium data of nitrate and phosphate sorption using chitosan/Al 2 O 3 /Fe 3 O 4 composite beads and nanofibers. The influence of other anions including chloride, fluoride and sulphate on the sorption efficiency of nitrate and phosphate was examined. The obtained results revealed the higher potential of chitosan/Al 2 O 3 /Fe 3 O 4 composite nanofibers for nitrate and phosphate compared with chitosan/Al 2 O 3 /Fe 3 O 4 composite beads. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Fe3O4 nanoparticles modified by CD-containing star polymer for MRI and drug delivery.

    PubMed

    Cha, Ruitao; Li, Juanjuan; Liu, Yang; Zhang, Yifan; Xie, Qian; Zhang, Mingming

    2017-10-01

    Fe 3 O 4 nanoparticles with ultrasmall sizes show good T 1 or T 1 +T 2 contrast abilities, and have attracted considerable interest in the field of magnetic resonance imaging (MRI) contrast agents. For effective biomedical applications, the colloidal stability and biocompatibility of the Fe 3 O 4 nanoparticles need to be improved without reducing MRI relaxivity. In this paper, star polymers were used as coating materials to modify Fe 3 O 4 nanoparticles in view of their dense molecular architecture with moderate flexibility. The star polymer was composed of a β-cyclodextrin (β-CD) core and poly(2-(dimethylamino) ethyl methacrylate) (PDMAEMA) arms. Meanwhile, reduced glutathione (GSH), as a model drug, was also associated with the star polymer. Thus, a new platform for simultaneous diagnosis and treatment was achieved. Compared to the Fe 3 O 4 nanoparticles coated with linear polymers, the Fe 3 O 4 nanoparticles coated with star polymers (Fe 3 O 4 @GCP) possessed higher GSH association capacity and better stability in serum-containing solution. GSH could be released from Fe 3 O 4 @GCP nanoparticles in response to pH value of the solution. Since the sulfhydryl group on GSH is able to combine free radicals, Fe 3 O 4 @GCP nanoparticles exhibited less cytotoxicity compared to the Fe 3 O 4 nanoparticles without including GSH. Furthermore, the nanoparticles could also serve as good T 1 MRI contrast agent, and the MRI relaxivity of Fe 3 O 4 @GCP nanoparticles did not decrease after coated with the star polymer. These results indicate that the precisely designed Fe 3 O 4 @GCP nanoparticles could be used as a versatile promising theranostic nano-platform. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Composites Based on Core-Shell Structured HBCuPc@CNTs-Fe3O4 and Polyarylene Ether Nitriles with Excellent Dielectric and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Pu, Zejun; Zhong, Jiachun; Liu, Xiaobo

    2017-10-01

    Core-shell structured magnetic carbon nanotubes (CNTs-Fe3O4) coated with hyperbranched copper phthalocyanine (HBCuPc) (HBCuPc@CNTs-Fe3O4) hybrids were prepared by the solvent-thermal method. The results indicated that the HBCuPc molecules were decorated on the surface of CNTs-Fe3O4 through coordination behavior of phthalocyanines, and the CNTs-Fe3O4 core was completely coaxial wrapped by a functional intermediate HBCuPc shell. Then, polymer-based composites with a relatively high dielectric constant and low dielectric loss were fabricated by using core-shell structured HBCuPc@CNTs-Fe3O4 hybrids as fillers and polyarylene ether nitriles (PEN) as the polymer matrix. The cross-sectional scanning electron microscopy (SEM) images of composites showed that there is almost no agglomeration and internal delamination. In addition, the rheological analysis reveals that the core-shell structured HBCuPc@CNTs-Fe3O4 hybrids present better dispersion and stronger interface adhesion with the PEN matrix than CNTs-Fe3O4, thus resulting in significant improvement of the mechanical, thermal and dielectric properties of polymer-based composites.

  5. Facile synthesis of CuFe2O4-Fe2O3 composite for high-performance supercapacitor electrode applications

    NASA Astrophysics Data System (ADS)

    Khan, Rashid; Habib, Muhammad; Gondal, Mohammed A.; Khalil, Adnan; Rehman, Zia Ur; Muhammad, Zahir; Haleem, Yasir A.; Wang, Changda; Wu, Chuan Qiang; Song, Li

    2017-10-01

    We report the synthesis of CuFe2O4-Fe2O3 composite material for efficient and highly stable supercapacitor electrode by using eco-friendly low-temperature co-precipitation method. The CuFe2O4-Fe2O3 composite demonstrated the highest specific capacitance of 638.24 F g-1 and excellent stability up to 2000 charge/discharge cycles. The achieved capacitance value is 16 times higher than that of pure CuFe2O4. The results revealed the extraordinary performance of CuFe2O4-Fe2O3 composite as supercapacitor electrode with excellent retention in comparison to CuFe2O4. The enhanced electrochemical activity of CuFe2O4-Fe2O3 composite is attributed to the synergistic effect which is responsible for redox coupling between Cu2+ and Fe3+ that has never been achieved by single component before.

  6. Multifunctional Properties of Cyanate Ester Composites with SiO2 Coated Fe3O4 Fillers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Weixing; Sun, Wuzhu; Kessler, Michael R

    2013-02-22

    SiO2 coated Fe3O4 submicrometer spherical particles (a conducting core/insulating shell configuration) are fabricated using a hydrothermal method and are loaded at 10 and 20 vol % into a bisphenol E cyanate ester matrix for synthesis of multifunctional composites. The dielectric constant of the resulting composites is found to be enhanced over a wide frequency and temperature range while the low dielectric loss tangent of the neat cyanate ester polymer is largely preserved up to 160 ?C due to the insulating SiO2 coating on individual conductive Fe3O4 submicrometer spheres. These composites also demonstrate high dielectric breakdown strengths at room temperature. Dynamicmore » mechanical analysis indicates that the storage modulus of the composite with a 20 vol % filler loading is twice as high as that of neat resin, but the glass transition temperature considerably decreases with increasing filler content. Magnetic measurements reveal a large saturation magnetization and negligibly low coercivity and remanent magnetization in these composites.« less

  7. Polymer (PDMS-Fe3O4) magneto-dielectric substrate for a MIMO antenna array

    NASA Astrophysics Data System (ADS)

    Alqadami, Abdulrahman Shueai Mohsen; Jamlos, Mohd Faizal; Soh, Ping Jack; Kamarudin, Muhammad Ramlee

    2016-01-01

    This paper presents the design of a 2 × 4 multiple-input multiple-output (MIMO) antenna array fabricated on a nanocomposite magneto-dielectric polymer substrate. The 10-nm iron oxide (Fe3O4) nanoparticles and polydimethylsiloxane (PDMS) composite is used as substrate to enhance the performance of a MIMO antenna array. The measured results showed up to 40.8 % enhancement in terms of bandwidth, 9.95 dB gain, and 57 % of radiation efficiency. Furthermore, it is found that the proposed magneto-dielectric (PDMS-Fe3O4) composite substrate provides excellent MIMO parameters such as correlation coefficient, diversity gain, and mutual coupling. The prototype of the proposed antenna is transparent, flexible, lightweight, and resistant against dust and corrosion. Measured results indicate that the proposed antenna is suitable for WLAN and ultra-wideband biomedical applications within frequency range of 5.33-7.70 GHz.

  8. Nonstoichiometric Zn Ferrite and ZnFe2O4/Fe2O3 Composite Spheres: Preparation, Magnetic Properties, and Chromium Removal

    NASA Astrophysics Data System (ADS)

    Hang, Chun-Liang; Yang, Li-Xia; Sun, Chang-Mei; Liang, Ying

    2018-03-01

    Monodisperse and porous nonstoichiometric Zn ferrite can be prepared by a solvothermal method. Such non-Zn ferrite was used to be the precursor for synthesis of ZnFe2O4/Fe2O3 composite via calcination at 600°C for 3 h in air. X-ray powder diffractometer (XRD) and Energy Dispersive Spectrometer (EDS) proved the nonstoichiometry of Zn ferrite synthesized by solvothermal method and the formation of ZnFe2O4/Fe2O3 composite via calcination. TEM image showed that non-Zn ferrite spheres with wormlike nanopore structure were made of primary nanocrystals. BET surface area of non-Zn ferrite was much higher than that of ZnFe2O4/Fe2O3 composite. Saturation magnetization of non-Zn ferrites was significantly higher than that of ZnFe2O4/Fe2O3 composites. Calcination of non-Zn ferrite resulted in the formation of large amount of non-magnetic Fe2O3,which caused a low magnetization of composite. Because of higher BET surface area and higher saturation magnetization, non-Zn ferrite presented better Cr6+ adsorption property than ZnFe2O4/Fe2O3 composites.

  9. Fabrication, structure, and properties of Fe3O4@C encapsulated with YVO4:Eu3+ composites

    NASA Astrophysics Data System (ADS)

    Shi, Jianhui; Tong, Lizhu; Liu, Deming; Yang, Hua

    2012-03-01

    The use of carbon shells offers many advantages in surface coating or surface modification due to their surface with activated carboxyl and carbonyl groups. In this study, the Fe3O4@C@YVO4:Eu3+ composites were prepared through a simple sol-gel process. Reactive carbon interlayer was introduced as a key component, which separates lanthanide-based luminescent component from the magnetite, more importantly, it effectively prevent oxidation of the Fe3O4 core during the whole preparation process. The morphology, structure, magnetic, and luminescent properties of the composites were characterized by transmission electron microscopy (TEM), high-resolution TEM, X-ray diffraction, X-ray photoelectron spectra, VSM, and photoluminescent spectrophotometer. As a result, the Fe3O4@C/YVO4:Eu3+ composites with well-crystallized and core-shell structure were prepared and the YVO4:Eu3+ luminescent layer decorating the Fe3O4@C core-shell microspheres are about 10 nm. In addition, the Fe3O4@C@YVO4:Eu3+ composites have the excellent magnetic and luminescent properties, which allow them great potential for bioapplications such as magnetic bioseparation, magnetic resonance imaging, and drug/gene delivery.

  10. [Study on preparation of composite nano-scale Fe3O4 for phosphorus control].

    PubMed

    Li, Lei; Pan, Gang; Chen, Hao

    2010-03-01

    Composite nano-scale Fe3O4 particles were prepared in sodium carboxymethyl cellulose (CMC) solution by the oxidation deposition method. The adsorptions of phosphorus by micro-scale Fe3O4 and composite nano-scale Fe3O4 were investigated in water and soil, and the role of cellulase in the adsorption of composite nano-scale Fe3O4 was studied. Kinetic tests indicated that the equilibrium adsorption capacity of phosphorous on the composite nano-scale Fe3O4 (2.1 mg/g) was less than that of micro-scale Fe3O4 (3.2 mg/g). When cellulase was added to the solution of composite nano-scale Fe3O4 to degrade CMC, the removal rate of P by the nanoparticles (86%) was enhanced to the same level as the microparticles (90%). In the column tests, when the composite nano-scale Fe3O4 suspension was introduced in the downflow mode through the soil column, 72% of Fe3O4 penetrated through the soil bed under gravity. In contrast, the micro-scale Fe3O4 failed to pass through the soil column. The retention rate of P was 45% in the soil column when treated by the CMC-stabilized nanoparticles, in comparison with only 30% for the untreated soil column, however it could be improved to 74% in the soil column when treated by both the CMC-stabilized nanoparticles and cellulase, which degraded CMC after the nanoparticles were delivered into the soil.

  11. In-Situ Preparation and Magnetic Properties of Fe3O4/WOOD Composite

    NASA Astrophysics Data System (ADS)

    Gao, Honglin; Zhang, Genlin; Wu, Guoyuan; Guan, Hongtao

    2011-06-01

    Fe3O4/wood composite, a magnetic material, was prepared by In-situ chemosynthesis method at room temperature. The X-ray diffraction (XRD) shows that the average partical size of Fe3O4 was about 14 nm. The magnetic properties of the resulting composites were investigated by vibrating sample magnetometer (VSM). The composites have saturation magnetization (Ms) values from 4.7 to 25.3 emu/g with the increase of weight percent gains (WPG) of the wood for the composites, but coercive forces (Hc) are invariable, which is different from the magnetic materials reported before. It may be due to the fact that the interaction between wood and Fe3O4 becomes stronger when less of Fe3O4 particles are introduced in the composition, and this also changes the surface anisotropy (Ks) of the magnetism. A structural characterization by Fourier transform infrared (FTIR) proved the interaction between Fe3O4 particles and wood matrix, and it also illustrates that this interaction influences the coercive force of the composite.

  12. Zinc tetraaminophthalocyanine-Fe3O4 nanoparticle composite for laccase immobilization

    PubMed Central

    Huang, Jun; Liu, Cheng; Xiao, Haiyan; Wang, Juntao; Jiang, Desheng; GU, Erdan

    2007-01-01

    Zinc tetraaminophthalocyanine-Fe3O4 nanoparticle composites were prepared by organic-inorganic complex technology and characterized. It has been proved that the ZnTAPc dispersed randomly onto the surface of Fe3O4 nanoparticles to form molecular dispersion layer and there was a relatively strong bond between central zinc cation and oxygen. The nanoparticle composite took the shape of roundish spheres with the mean diameter of about 15 nm. Active amino groups of magnetic carriers could be used to bind laccase via glutaraldehyde. The optimal pH for the activity of the immobilized laccases and free laccase were the same at pH 3.0 and the optimal temperature for laccase immobilization on ZnTAPc-Fe3O4 nanoparticle composite was 45°. The immobilization yields and Km value of the laccase immobilized on ZnTAPc-Fe3O4 nanoparticle composite were 25% and 20.1 μM, respectively. This kind of immobilized laccase has good thermal, storage and operation stability, and could be used as the sensing biocomponent for the fiber optic biosensor based on enzyme catalysis. PMID:18203444

  13. Self-assembly and graft polymerization route to Monodispersed Fe3O4@SiO2--polyaniline core-shell composite nanoparticles: physical properties.

    PubMed

    Reddy, Kakarla Raghava; Lee, Kwang-Pill; Kim, Ju Young; Lee, Youngil

    2008-11-01

    This study describes the synthesis of monodispersed core-shell composites of silica-modified magnetic nanoparticles and conducting polyaniline by self-assembly and graft polymerization. Magnetic ferrite nanoparticles (Fe3O4) were prepared by coprecipitation of Fe+2 and Fe+3 ions in alkaline solution, and then silananized. The silanation of magnetic particles (Fe3O4@SiO2) was carried out using 3-bromopropyltrichlorosilane (BPTS) as the coupling agent. FT-IR spectra indicated the presence of Fe--O--Si chemical bonds in Fe3O4@SiO2. Core-shell type nanocomposites (Fe3O4@SiO2/PANI) were prepared by grafting polyaniline (PANI) on the surface of silanized magnetic particles through surface initiated in-situ chemical oxidative graft polymerization. The nanocomposites were characterized by high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), Fourier transform infrared (FTIR) spectra, UV-visible spectroscopy, photoluminescence (PL) spectra, electrical conductivity and magnetic characteristics. HRTEM images of the nanocomposites revealed that the silica-modified magnetic particles made up the core while PANI made up the shell. The XPS spectrum revealed the presence of silica in the composites, and the XRD results showed that the composites were more crystalline than pure PANI. PL spectra show that composites exhibit photoluminescent property. Conductivity of the composites (6.2 to 9.4 x 10(-2) S/cm) was higher than that of pristine PANI (3.7 x 10(-3) S/cm). The nanocomposites exhibited superparamagnetism. Formation mechanism of the core-shell structured nanocomposites and the effect of modified magnetic nanoparticles on the electro-magnetic properties of the Fe3O4@SiO2/PANI nanocomposites are also investigated. This method provides a new strategy for the generation of multi-functional nanocomposites that composed of other conducting polymers and metal nanoparticles.

  14. Shell thickness-dependent microwave absorption of core-shell Fe3O4@C composites.

    PubMed

    Du, Yunchen; Liu, Wenwen; Qiang, Rong; Wang, Ying; Han, Xijiang; Ma, Jun; Xu, Ping

    2014-08-13

    Core-shell composites, Fe3O4@C, with 500 nm Fe3O4 microspheres as cores have been successfully prepared through in situ polymerization of phenolic resin on the Fe3O4 surface and subsequent high-temperature carbonization. The thickness of carbon shell, from 20 to 70 nm, can be well controlled by modulating the weight ratio of resorcinol and Fe3O4 microspheres. Carbothermic reduction has not been triggered at present conditions, thus the crystalline phase and magnetic property of Fe3O4 micropsheres can be well preserved during the carbonization process. Although carbon shells display amorphous nature, Raman spectra reveal that the presence of Fe3O4 micropsheres can promote their graphitization degree to a certain extent. Coating Fe3O4 microspheres with carbon shells will not only increase the complex permittivity but also improve characteristic impedance, leading to multiple relaxation processes in these composites, thus the microwave absorption properties of these composites are greatly enhanced. Very interestingly, a critical thickness of carbon shells leads to an unusual dielectric behavior of the core-shell structure, which endows these composites with strong reflection loss, especially in the high frequency range. By considering good chemical homogeneity and microwave absorption, we believe the as-fabricated Fe3O4@C composites can be promising candidates as highly effective microwave absorbers.

  15. Facile synthesis of Fe3O4/C composites for broadband microwave absorption properties

    NASA Astrophysics Data System (ADS)

    Liu, Xiang; Ma, Yating; Zhang, Qinfu; Zheng, Zhiming; Wang, Lai-Sen; Peng, Dong-Liang

    2018-07-01

    Rod-like and flower-like Fe3O4/C composites were successfully synthesized via a facile approach in aqueous phase. The morphologies, structures and static magnetic properties of as-prepared rod-like and flower-like Fe3O4/C composites were characterized thoroughly. The relative complex permittivity and permeability of Fe3O4/C/paraffin composites were recorded by a vector network analyzer (VNA) in the range of 1-18 GHz. The resonant-antiresonant electromagnetic behavior was observed simultaneously in both rod-like and flower-like Fe3O4/C composites. Moreover, the resonant-antiresonant behavior was explained using displacement current lag at the "core/shell" interface. The flower-like Fe3O4/C/paraffin composites show superior microwave absorption performance with minimum reflection loss (RL) of up to -18.73 dB at 15.37 GHz. Comparatively, the rod-like Fe3O4/C/paraffin composites have uncommon continuous trinal absorption peaks at a thickness of 2.5 mm that effectively broadens the absorption bandwidth which is from 8.0 to 13.4 GHz. Furthermore, the microwave absorption mechanism has been discussed to provide a novel design for microwave absorption materials.

  16. Magnetically separable mesoporous Fe{sub 3}O{sub 4}/silica catalysts with very low Fe{sub 3}O{sub 4} content

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grau-Atienza, A.; Serrano, E.; Linares, N.

    2016-05-15

    Two magnetically separable Fe{sub 3}O{sub 4}/SiO{sub 2} (aerogel and MSU-X) composites with very low Fe{sub 3}O{sub 4} content (<1 wt%) have been successfully prepared at room temperature by co-condensation of MPTES-functionalized Fe{sub 3}O{sub 4} nanoparticles (NPs) with a silicon alkoxide. This procedure yields a homogeneous incorporation of the Fe{sub 3}O{sub 4} NPs on silica supports, leading to magnetic composites that can be easily recovered using an external magnetic field, despite their very low Fe{sub 3}O{sub 4} NPs content (ca. 1 wt%). These novel hybrid Fe{sub 3}O{sub 4}/SiO{sub 2} materials have been tested for the oxidation reaction of 3,3′,5,5′-tetramethylbenzidine (TMB) withmore » hydrogen peroxide showing an enhancement of the stability of the NPs in the Fe{sub 3}O{sub 4}/silica aerogel as compared to the Fe{sub 3}O{sub 4} NPs alone, even after five catalytic cycles, no leaching or agglomeration of the Fe{sub 3}O{sub 4}/SiO{sub 2} systems. - Graphical abstract: Novel magnetically separable mesoporous silica-based composites with very low magnetite content. - Highlights: • An innovative way to prepare magnetically separable composites with <1 wt% NPs. • The Fe{sub 3}O{sub 4}/silica composites are readily magnetized/demagnetized. • The Fe{sub 3}O{sub 4}/silica composites can be easily recovered using an external magnetic field. • Excellent catalytic performance and recyclability despite the low Fe{sub 3}O{sub 4} NPs content.« less

  17. Preparation of Fe3O4/TiO2 magnetic mesoporous composites for photocatalytic degradation of organic pollutants.

    PubMed

    Zhang, Hongfeng; He, Xiu; Zhao, Weiwei; Peng, Yu; Sun, Donglan; Li, Hao; Wang, Xiaocong

    2017-04-01

    Fe 3 O 4 /TiO 2 magnetic mesoporous composites were synthesized through a sol-gel method with tetra-n-butyl titanate as precursor and surfactant P123 as template. The as-prepared Fe 3 O 4 /TiO 2 composites were characterized by X-ray diffraction, diffuse reflectance spectroscopy, nitrogen adsorption-desorption isotherm and pore size distribution. The as-synthesized products were applied as photocatalysis for the degradation of Acid Black ATT and tannery wastewater under UV lamp irradiation. Fe 3 O 4 /TiO 2 -8 composites containing Fe 3 O 4 of 8 wt% were selected as model catalysts. The optimal catalyst dosage was 3 g/L in this photocalytic system. The magnetic Fe 3 O 4 /TiO 2 composites possessed good photocatalytic stability and durability. This approach may provide a platform to prepare a magnetic composite to optimize the catalytic ability.

  18. Fe doped BaTiO3 sensitized by Fe3O4 nanoparticles for improved photoelectrochemical response

    NASA Astrophysics Data System (ADS)

    Upadhyay, Rishibrind Kumar; Sharma, Dipika

    2018-01-01

    Nanostructured powders of pristine Fe3O4, BaTiO3, and Fe-BaTiO3 were synthesized using hydrothermal method and BaTiO3/Fe3O4 and Fe-BaTiO3/Fe3O4 composite sample were also prepared by mixing the appropriate amount of pristine powders. All samples were characterized using x-ray diffraction, SEM and UV-vis spectrometry. Photoelectrochemical properties were investigated in a three-electrode cell system. Maximum photocurrent density of 2.1 mA cm-2 at 0.95 V/SCE was observed for Fe-BaTiO3/Fe3O4 composite sample. Increased photocurrent density offered by composite may be attributed to improved conductivity and better separation of the photogenerated charge carriers at interface.

  19. Dispersion of nanocrystalline Fe 3O 4 within composite electrodes: Insights on battery-related electrochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David C. Bock; Takeuchi, Kenneth J.; Pelliccione, Christopher J.

    2016-04-20

    Aggregation of nanosized materials in composite lithium-ion-battery electrodes can be a significant factor influencing electrochemical behavior. In this study, aggregation was controlled in magnetite, Fe 3O 4, composite electrodes via oleic acid capping and subsequent dispersion in a carbon black matrix. A heat treatment process was effective in the removal of the oleic acid capping agent while preserving a high degree of Fe 3O 4 dispersion. Electrochemical testing showed that Fe 3O 4 dispersion is initially beneficial in delivering a higher functional capacity, in agreement with continuum model simulations. However, increased capacity fade upon extended cycling was observed for themore » dispersed Fe 3O 4 composites relative to the aggregated Fe 3O 4 composites. X-ray absorption spectroscopy measurements of electrodes post cycling indicated that the dispersed Fe 3O 4 electrodes are more oxidized in the discharged state, consistent with reduced reversibility compared with the aggregated sample. Higher charge-transfer resistance for the dispersed sample after cycling suggests increased surface-film formation on the dispersed, high-surface-area nanocrystalline Fe 3O 4 compared to the aggregated materials. Furthermore, this study provides insight into the specific effects of aggregation on electrochemistry through a multiscale view of mechanisms for magnetite composite electrodes.« less

  20. Dispersion of Nanocrystalline Fe 3 O 4 within Composite Electrodes: Insights on Battery-Related Electrochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bock, David C.; Pelliccione, Christopher J.; Zhang, Wei

    2016-04-20

    Aggregation of nanosized materials in composite lithium-ion-battery electrodes can be a significant factor influencing electrochemical behavior. In this study, aggregation was controlled in magnetite, Fe 3O 4, composite electrodes via oleic acid capping and subsequent dispersion in a carbon black matrix. A heat treatment process was effective in the removal of the oleic acid capping agent while preserving a high degree of Fe 3O 4 dispersion. Electrochemical testing showed that Fe 3O 4 dispersion is initially beneficial in delivering a higher functional capacity, in agreement with continuum model simulations. However, increased capacity fade upon extended cycling was observed for themore » dispersed Fe 3O 4 composites relative to the aggregated Fe 3O 4 composites. X-ray absorption spectroscopy measurements of electrodes post cycling indicated that the dispersed Fe 3O 4 electrodes are more oxidized in the discharged state, consistent with reduced reversibility compared with the aggregated sample. Higher charge-transfer resistance for the dispersed sample after cycling suggests increased surface-film formation on the dispersed, high-surface-area nanocrystalline Fe 3O 4 compared to the aggregated materials. This study provides insight into the specific effects of aggregation on electrochemistry through a multiscale view of mechanisms for magnetite composite electrodes.« less

  1. Magnetic ordered mesoporous Fe3O4/CeO2 composites with synergy of adsorption and Fenton catalysis

    NASA Astrophysics Data System (ADS)

    Li, Keyan; Zhao, Yongqin; Song, Chunshan; Guo, Xinwen

    2017-12-01

    Magnetic Fe3O4/CeO2 composites with highly ordered mesoporous structure and large surface area were synthesized by impregnation-calcination method, and the mesoporous CeO2 as support was synthesized via the hard template approach. The composition, morphology and physicochemical properties of the materials were characterized by XRD, SEM, TEM, XPS, Raman spectra and N2 adsorption/desorption analysis. The mesoporous Fe3O4/CeO2 composite played a dual-function role as both adsorbent and Fenton-like catalyst for removal of organic dye. The methylene blue (MB) removal efficiency of mesoporous Fe3O4/CeO2 was much higher than that of irregular porous Fe3O4/CeO2. The superior adsorption ability of mesoporous materials was attributed to the abundant oxygen vacancies on the surface of CeO2, high surface area and ordered mesoporous channels. The good oxidative degradation resulted from high Ce3+ content and the synergistic effect between Fe and Ce. The mesoporous Fe3O4/CeO2 composite presented low metal leaching (iron 0.22 mg L-1 and cerium 0.63 mg L-1), which could be ascribed to the strong metal-support interactions for dispersion and stabilization of Fe species. In addition, the composite can be easily separated from reaction solution with an external magnetic field due to its magnetic property, which is important to its practical applications.

  2. Three-dimensional Fe3O4-graphene macroscopic composites for arsenic and arsenate removal.

    PubMed

    Guo, Liangqia; Ye, Peirong; Wang, Jing; Fu, Fengfu; Wu, Zujian

    2015-11-15

    3D graphene macroscopic gel synthesized via self-assembly of GO nanosheets under basic conditions at low temperature is modified with polydopamine and Fe3O4 nanoparticles. The modification of polydopamine can not only strengthen the 3D graphene-based macroscopic architecture but also enhance the loadage and binding ability of Fe3O4 nanoparticles. The synthesized 3D Fe3O4-graphene macroscopic composites are characterized by SEM, XRD, XPS, BET, Raman and magnetic property and used as a versatile adsorbent for sub-ppm concentration of As(III) and As(V) removal from aqueous solutions. The experimental results suggest that the synthesized 3D Fe3O4-graphene macroscopic composites are promising for treating low concentration of arsenic contaminated water. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Surface enhanced Raman scattering activity of dual-functional Fe3O4/Au composites

    NASA Astrophysics Data System (ADS)

    Wang, Li-Ping; Huang, Yu-Bin; Lai, Ying-Huang

    2018-03-01

    There is a high demand for multifunctional materials that can integrate sample collection and sensing. In this study, magnetic Fe3O4 clusters were fabricated using a simple solvent-thermal method. The effect of the reductant (sodium citrate, SC) on the structure and morphology of Fe3O4 was examined by the variation in the reagent amount. The resulting Fe3O4 clusters were functionalized with 3-aminopropyltriethoxysilane (APTES) to anchor Au nanoparticles to its surface. The fabricated composites were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and a superconducting quantum interference device (SQUID) magnetometer. Dual-functional Fe3O4/Au clusters were obtained, effectively combining magnetic and plasmonic optical properties. The magnetic Fe3O4 cluster cores permitted the adsorption of the probe molecules, while sample concentration and collection were carried out under an external magnetic field. In addition, 4-nitrothiophenol (4-NTP) was chosen as the probe molecule to examine the analyte concentration ability and surface-enhanced Raman scattering (SERS) activity of the Fe3O4/Au composites. The results indicated that the Fe3O4/Au clusters exhibit a prominent SERS effect. The best 4-NTP detection limit obtained was 1 × 10-8 M, with a corresponding SERS analytical enhancement factor (AEF) exceeding 2 × 105.

  4. An effective approach to study the biocompatibility of Fe3O4 nanoparticles, graphene and their nanohybrid composite

    NASA Astrophysics Data System (ADS)

    Singh, Ashwani Kumar; Singh, Pallavi; Verma, Rajiv Kumar; Yadav, Suresh; Singh, Kedar; Srivastava, Amit

    2018-02-01

    The present manuscript describes a simple, facile and effective solvothermal route to synthesize Fe3O4 nanoparticles (Fe3O4 NPs), reduced graphene oxide nanosheets (rGO NSs) and Fe3O4/reduced graphene oxide nanohybrid composite (Fe3O4/rGO nanohybrid composite) and subsequently examines their comparative biocompatibilities. The as-obtained Fe3O4 NPs, rGO NSs and Fe3O4/rGO nanohybrid composite have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. The XRD studies and scanning electron microscope confirmed the proper phase formation and the surface morphology of the as-synthesized products, respectively. The Raman spectra of Fe3O4 NPs show the strongest peak at 673 cm-1 which can be assigned to A1g peak of bare Fe3O4 NPs and it complements the XRD studies. Furthermore, the increment in the I D/I G ratio in the Fe3O4/rGO nanohybrid composite suggests the creation of defects in graphene sheets due to strain caused by Fe3O4 NPs. The biocompatibility of these samples has been tested using Lung cancer cell line H1299 through MTT assay. The MTT assay reveals that the nanohybrid composite endows more biocompatible and effectiveness than rGO NSs and Fe3O4 NPs individually, as anti-proliferative agent for cancer treatment.

  5. Enhanced electromagnetic interference shielding properties of carbon fiber veil/Fe3O4 nanoparticles/epoxy multiscale composites

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Wang, Jun; Zhang, Bin; Wu, Qilei; Su, Xiaogang

    2017-12-01

    The multiscale approach has been adapted to enhance the electromagnetic interference shielding properties of carbon fiber (CF) veil epoxy-based composites. The Fe3O4 nanoparticles (NPs) were homogeneously dispersed in the epoxy matrix after surface modification by using silane coupling agent. The CF veil/Fe3O4 NPs/epoxy multiscale composites were manufactured by impregnating the CF veils with Fe3O4 NPs/epoxy mixture to prepare prepreg followed by vacuum bagging process. The electromagnetic interference shielding properties combined with the complex permittivity and complex permeability of the composites were investigated in the X-band (8.2-12.4 GHz) range. The total shielding effectiveness (SET) increases with increasing Fe3O4 NPs loadings and the maximum SET is 51.5 dB at low thickness of 1 mm. The incorporation of Fe3O4 NPs into the composites enhances the complex permittivity and complex permeability thus enhancing the electromagnetic wave absorption capability. The increased SET dominated by absorption loss SEA is attributed to the enhanced magnetic loss and dielectric loss generated by Fe3O4 NPs and multilayer construction of the composites. The microwave conductivity increases and the skin depth decreases with increasing Fe3O4 NPs loadings.

  6. Micro-tube biotemplate synthesis of Fe3O4/C composite as anode material for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Du, Jun; Ding, Yu; Guo, Liangui; Wang, Li; Fu, Zhengbing; Qin, Caiqin; Wang, Feng; Tao, Xinyong

    2017-12-01

    Kapok fibres were used as micro-tube biotemplate and bio-carbon source to synthesise Fe3O4/C composites, which were then utilised as anode materials. Fe3O4 nanoparticles were grown uniformly onto the external surface and internal channel of kapok carbon fibres. The flexibility, high specific surface area and electronic conduction of kapok fibres can buffer the volume expansion as well as inhibit the aggregation of Fe3O4 nanoparticles. Thus, the electrical integrity and structural of the Fe3O4/C composites electrode during lithiation/delithiation processes. The Fe3O4/C composites electrode delivers a high reversible capacity of 596 mA h g-1 after 100 cycles and an ultra-high coulombic efficiency approaching 100%. The high electrochemical performance of the Fe3O4/C composites can be caused by the synergistic effect of the Fe3O4 nanoparticles and the structure of kapok carbon fibres.

  7. Preparation and characterization of Fe3O4@Au-C225 composite targeted nanoparticles for MRI of human glioma

    PubMed Central

    Ge, Yaoqi; Zhong, Yuejiao; Ji, Guozhong; Lu, Qianling; Dai, Xinyu; Guo, Zhirui; Zhang, Peng; Peng, Gang; Zhang, Kangzhen; Li, Yuntao

    2018-01-01

    Objective To study the characterization of Fe3O4@Au-C225 composite targeted MNPs. Methods Fe3O4@Au-C225 was prepared by the absorption method. The immunosorbent assay was used to evaluate its absorption efficiency at C225 Fc. ZETA SIZER3000 laser particle size analyzer, ultraviolet photometer and its characteristics were analyzed by VSM. the targeting effect of Fe3O4@Au-C225 composite targeted MNPs on U251 cells in vitro were detected by 7.0 Tesla Micro-MR; and subcutaneous transplanted human glioma in nude mice were performed the targeting effect in vivo after tail vein injection of Fe3O4@Au-C225 composite targeted MNPs by MRI. Results The self-prepared Fe3O4@Au composite MNPs can adsorb C225 with high efficiency of adsorption so that Fe3O4@Au-C225 composite targeted MNPs were prepared successfully. Fe3O4@Au-C225 composite targeted MNPs favorably targeted human glioma cell line U251 in vitro; Fe3O4@Au-C225 composite targeted MNPs have good targeting ability to xenografted glioma on nude mice in vivo, and can be traced by MRI. Conclusion The Fe3O4@Au-C225 composite targeted MNPs have the potential to be used as a tracer for glioma in vivo. PMID:29652919

  8. Preparation and characterization of Fe3O4@Au-C225 composite targeted nanoparticles for MRI of human glioma.

    PubMed

    Ge, Yaoqi; Zhong, Yuejiao; Ji, Guozhong; Lu, Qianling; Dai, Xinyu; Guo, Zhirui; Zhang, Peng; Peng, Gang; Zhang, Kangzhen; Li, Yuntao

    2018-01-01

    To study the characterization of Fe3O4@Au-C225 composite targeted MNPs. Fe3O4@Au-C225 was prepared by the absorption method. The immunosorbent assay was used to evaluate its absorption efficiency at C225 Fc. ZETA SIZER3000 laser particle size analyzer, ultraviolet photometer and its characteristics were analyzed by VSM. the targeting effect of Fe3O4@Au-C225 composite targeted MNPs on U251 cells in vitro were detected by 7.0 Tesla Micro-MR; and subcutaneous transplanted human glioma in nude mice were performed the targeting effect in vivo after tail vein injection of Fe3O4@Au-C225 composite targeted MNPs by MRI. The self-prepared Fe3O4@Au composite MNPs can adsorb C225 with high efficiency of adsorption so that Fe3O4@Au-C225 composite targeted MNPs were prepared successfully. Fe3O4@Au-C225 composite targeted MNPs favorably targeted human glioma cell line U251 in vitro; Fe3O4@Au-C225 composite targeted MNPs have good targeting ability to xenografted glioma on nude mice in vivo, and can be traced by MRI. The Fe3O4@Au-C225 composite targeted MNPs have the potential to be used as a tracer for glioma in vivo.

  9. Magneto electric effects in BaTiO3-CoFe2O4 bulk composites

    NASA Astrophysics Data System (ADS)

    Agarwal, Shivani; Caltun, O. F.; Sreenivas, K.

    2012-11-01

    Influence of a static magnetic field (HDC) on the hysteresis and remanence in the longitudinal and transverse magneto electric voltage coefficients (MEVC) observed in [BaTiO3]1-x-[CoFe2O4]x bulk composites are analyzed. Remanence in MEVC at zero bias (HDC=0) is stronger in the transverse configuration over the longitudinal case. The observed hysteretic behavior in MEVC vs. HDC is correlated with the changes observed in the magnetostriction characteristics (λ and dλ/dH) reported for [BaTiO3]1-x-[CoFe2O4]x bulk composites.

  10. Facile preparation of magnetic mesoporous Fe3O4/C/Cu composites as high performance Fenton-like catalysts

    NASA Astrophysics Data System (ADS)

    Li, Keyan; Zhao, Yongqin; Janik, Michael J.; Song, Chunshan; Guo, Xinwen

    2017-02-01

    Fe-Cu composites with different compositions and morphologies were synthesized by a hydrothermal method combined with precursor thermal transformation. γ-Fe2O3/CuO and α-Fe2O3/CuO were obtained by calcining the Fe and Cu tartrates under air atmosphere at 350 °C and 500 °C, respectively, while Fe3O4/C/Cu was obtained by calcining the tartrate precursor under N2 atmosphere at 500 °C. The Fe3O4/C/Cu composite possessed mesoporous structure and large surface area up to 133 m2 g-1. The Fenton catalytic performance of Fe3O4/C/Cu composite was closely related to the Fe/Cu molar ratio, and only proper amounts of Fe and Cu exhibited a synergistic enhancement in Fenton catalytic activity. Cu inclusion reduced Fe3+ to Fe2+, which accelerated the Fe3+/Fe2+ cycles and favored H2O2 decomposition to produce more hydroxyl radicals for methylene blue (MB) oxidation. Due to the photo-reduction of Fe3+ and Cu2+, the Fenton catalytic performance was greatly improved when amending with visible light irradiation in the Fe3O4/C/Cu-H2O2 system, and MB (100 mg L-1) was nearly removed within 60 min. The Fe3O4/C/Cu composite showed good recyclability and could be conveniently separated by an applied magnetic field. Compared with conventional methods for mesoporous composite construction, the thermolysis method using mixed metal tartrates as precursors has the advantages of easy preparation and low cost. This strategy provides a facile, cheap and green method for the synthesis of mesoporous composites as excellent Fenton-like catalysts, without any additional reductants or organic surfactants.

  11. One-step solvothermal synthesis of magnetic Fe3O4-graphite composite for Fenton-like degradation of levofloxacin.

    PubMed

    Wang, Long; Zhao, Qi; Hou, Juan; Yan, Jin; Zhang, Fengshuang; Zhao, Jiahui; Ding, Hong; Li, Yi; Ding, Lan

    2016-01-01

    A novel Fe3O4-graphite composite was prepared, characterized, and investigated as a heterogeneous Fenton-like catalyst for the degradation of levofloxacin (LEV) in an aqueous solution. The results revealed that the Fe3O4-graphite composite exhibited excellent properties for the degradation and mineralization of LEV, achieving a nearly complete degradation of 50 mg L(-1) LEV in 15 min and 48% of total organic carbon removal in 60 min under optimal conditions. A large electronic conjugation structure exists in graphite, which may lead to the fast production of •OH radical species because of the easy reduction of Fe(III) to Fe(II). In addition, we observed that the graphite can degrade LEV in the presence of H2O2. Therefore, the synergistic results of the graphite structure and Fe3O4 magnetic nanoparticles (MNPs) may contribute to the high catalytic activity of the Fe3O4-graphite composite. Compared with pure Fe3O4 MNPs, lesser iron leaching of the Fe3O4-graphite composite was observed during the degradation of LEV. The degradation efficiency of LEV remained approximately 80% at the fifth recycling run, which indicates that the Fe3O4-graphite composite has potential applications in water treatment for removing organic pollutants.

  12. Magnetic properties of mixed spinel BaTiO{sub 3}-NiFe{sub 2}O{sub 4} composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, Babusona; Dalal, Biswajit; Dev Ashok, Vishal

    2014-03-28

    Solid solution of nickel ferrite (NiFe{sub 2}O{sub 4}) and barium titanate (BaTiO{sub 3}), (100-x)BaTiO{sub 3}–(x) NiFe{sub 2}O{sub 4} has been prepared by solid state reaction. Compressive strain is developed in NiFe{sub 2}O{sub 4} due to mutual structural interaction across the interface of NiFe{sub 2}O{sub 4} and BaTiO{sub 3} phases. Quantitative analysis of X-ray diffraction and X-ray photo electron spectrum suggest mixed spinel structure of NiFe{sub 2}O{sub 4}. A systematic study of composition dependence of composite indicates BaTiO{sub 3} causes a random distribution of Fe and Ni cations among octahedral and tetrahedral sites during non-equilibrium growth of NiFe{sub 2}O{sub 4}. Themore » degree of inversion decreases monotonically from 0.97 to 0.75 with increase of BaTiO{sub 3} content. Temperature dependence of magnetization has been analyzed by four sublattice model to describe complex magnetic exchange interactions in mixed spinel phase. Curie temperature and saturation magnetization decrease with increase of BaTiO{sub 3} concentration. Enhancement of strain and larger occupancy of Ni{sup 2+} at tetrahedral site increase coercivity up to 200 Oe. Magnetostructual coupling induced by BaTiO{sub 3} improves coercivity in NiFe{sub 2}O{sub 4}. An increase in the demagnetization and homogeneity in magnetization process in NiFe{sub 2}O{sub 4} is observed due to the interaction with diamagnetic BaTiO{sub 3}.« less

  13. Magnetic, local ferroelectricity and magnetodielectric properties of NiFe2O4-poly (vinylidene-fluoride)-BaTiO3 composite film

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Yadav, K. L.

    2016-04-01

    We report the magnetic, dielectric, and magnetoelctric properties of NiFe2O4-poly (vinylidene-fluoride)-BaTiO3 composite film. The coercive field (±2H c ˜ 344 Oe) and remnant magnetization (M r ˜ 6.1 emu g-1) were observed at room temperature. The dielectric permittivity at room temperature (ɛ‧RT ˜ 281) was found to decrease with increase in frequency. The magnetocapacitance was found to be ˜5.9% at an applied dc magnetic field of 8 kOe (frequency = 1 kHz). Magnetoelectric coupling coefficient (α E ˜ 4.1 mV cm-1 Oe-1) measured by dynamic method (at ac magnetic field = 30 Oe) is observed higher (two times) than those reported for some materials. In addition, we have observed the image of ferroelectric domain using piezoelectric force microscopy at room temperature. Large magnetodielectric/magnetoelectric response in this composite is possibly a result of the effective mechanical interaction between NiFe2O4 and BaTiO3 through the polymer matrix.

  14. Mössbauer Studies of Core-Shell FeO/Fe3O4 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Kamzin, A. S.; Valiullin, A. A.; Khurshid, H.; Nemati, Z.; Srikanth, H.; Phan, M. H.

    2018-02-01

    FeO/Fe3O4 nanoparticles were synthesized by thermal decomposition. Electron microscopy revealed that these nanoparticles were of the core-shell type and had a spherical shape with an average size of 20 nm. It was found that the obtained FeO/Fe3O4 nanoparticles had exchange coupling. The effect of anisotropy on the efficiency of heating (hyperthermic effect) of FeO/Fe3O4 nanoparticles by an external alternating magnetic field was examined. The specific absorption rate (SAR) of the studied nanoparticles was 135 W/g in the experiment with an external alternating magnetic field with a strength of 600 Oe and a frequency of 310 kHz. These data led to an important insight: the saturation magnetization is not the only factor governing the SAR, and the efficiency of heating of magnetic FeO/Fe3O4 nanoparticles may be increased by enhancing the effective anisotropy. Mössbauer spectroscopy of the phase composition of the synthesized nanoparticles clearly revealed the simultaneous presence of three phases: magnetite Fe3O4, maghemite γ-Fe2O3, and wustite FeO.

  15. Synthesis of magnetic Bi2O2CO3/ZnFe2O4 composite with improved photocatalytic activity and easy recyclability

    NASA Astrophysics Data System (ADS)

    Liu, Yumin; Ren, Hao; Lv, Hua; Guang, Jing; Cao, Yafei

    2018-03-01

    Magnetic Bi2O2CO3/ZnFe2O4 heterojunction photocatalysts with varying content of ZnFe2O4 were constructed by modifying Bi2O2CO3 nanosheets with mesoporous ZnFe2O4 nanoparticles. The photoactivity of the products was investigated by decomposing RhodamineB (RhB) and it was found that the photoactivity of Bi2O2CO3/ZnFe2O4 composite was closely related to the loading amount of ZnFe2O4. Under simulant sunlight irradiation, the optimum photoactivity of Bi2O2CO3/ZnFe2O4 composite was almost 2.3 and 2.1 times higher than that by bare ZnFe2O4 and Bi2O2CO3, respectively. The improved photoactivity resulted from the synergistic effect of Bi2O2CO3 and ZnFe2O4, which not only extended the photoabsorption region but also significantly facilitated the interfacial charge transfer. Besides the high photocatalytic performance, Bi2O2CO3/ZnFe2O4 composite also exhibited excellent stable and recycling properties, which enabled it have great potential in a long-term practical use.

  16. A chemiluminescence biosensor based on the adsorption recognition function between Fe3O4@SiO2@GO polymers and DNA for ultrasensitive detection of DNA

    NASA Astrophysics Data System (ADS)

    Sun, Yuanling; Li, Jianbo; Wang, Yanhui; Ding, Chaofan; Lin, Yanna; Sun, Weiyan; Luo, Chuannan

    2017-05-01

    In this work, a chemiluminescence (CL) biosensor was prepared for ultrasensitive determination of deoxyribonucleic acid (DNA) based on the adsorption recognition function between core-shell Fe3O4@SiO2 - graphene oxide (Fe3O4@SiO2@GO) polymers and DNA. The Fe3O4@SiO2@GO polymers were composed by GO and magnetite nanoparticles. And the core-shell polymers were confirmed by Scanning Electron Microscope (SEM), X-Ray Powder Diffraction (XRD) and Fourier Transform Infrared (FTIR). Then Fe3O4@SiO2@GO was modified by DNA. Based on the principle of complementary base, Fe3O4@SiO2@GO-DNA was introduced to the CL system and the selectivity, sensitivity of DNA detection was significantly improved. The adsorption properties of Fe3O4@SiO2@GO to DNA were researched through the adsorption equilibrium, adsorption kinetic and thermodynamics. Under optimized CL conditions, DNA could be assayed with the linear concentration range of 5.0 × 10- 12-2.5 × 10- 11 mol/L. The detection limit was 1.7 × 10- 12 mol/L (3δ) and the relative standard deviation (RSD) was 3.1%. The biosensor was finally used for the determination of DNA in laboratory samples and recoveries ranged from 99% to 103%. The satisfactory results revealed the potential application of Fe3O4@SiO2@GO-DNA-CL biosensor in the diagnosis and the treatment of human genetic diseases.

  17. A chemiluminescence biosensor based on the adsorption recognition function between Fe3O4@SiO2@GO polymers and DNA for ultrasensitive detection of DNA.

    PubMed

    Sun, Yuanling; Li, Jianbo; Wang, Yanhui; Ding, Chaofan; Lin, Yanna; Sun, Weiyan; Luo, Chuannan

    2017-05-05

    In this work, a chemiluminescence (CL) biosensor was prepared for ultrasensitive determination of deoxyribonucleic acid (DNA) based on the adsorption recognition function between core-shell Fe 3 O 4 @SiO 2 - graphene oxide (Fe 3 O 4 @SiO 2 @GO) polymers and DNA. The Fe 3 O 4 @SiO 2 @GO polymers were composed by GO and magnetite nanoparticles. And the core-shell polymers were confirmed by Scanning Electron Microscope (SEM), X-Ray Powder Diffraction (XRD) and Fourier Transform Infrared (FTIR). Then Fe 3 O 4 @SiO 2 @GO was modified by DNA. Based on the principle of complementary base, Fe 3 O 4 @SiO 2 @GO-DNA was introduced to the CL system and the selectivity, sensitivity of DNA detection was significantly improved. The adsorption properties of Fe 3 O 4 @SiO 2 @GO to DNA were researched through the adsorption equilibrium, adsorption kinetic and thermodynamics. Under optimized CL conditions, DNA could be assayed with the linear concentration range of 5.0×10 -12 -2.5×10 -11 mol/L. The detection limit was 1.7×10 -12 mol/L (3δ) and the relative standard deviation (RSD) was 3.1%. The biosensor was finally used for the determination of DNA in laboratory samples and recoveries ranged from 99% to 103%. The satisfactory results revealed the potential application of Fe 3 O 4 @SiO 2 @GO-DNA-CL biosensor in the diagnosis and the treatment of human genetic diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Synthesis of Cu-Fe{sub 3}O{sub 4}@graphene composite: A magnetically separable and efficient catalyst for the reduction of 4-nitrophenol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Ran; Bi, Huiping, E-mail: hpbi@njust.edu.cn; He, Guangyu

    2014-09-15

    Highlights: • The Cu-Fe{sub 3}O{sub 4}@GE composite was prepared by one-step solvent–thermal method. • The Cu-Fe{sub 3}O{sub 4}@GE composite exhibited the highest catalytic activity with excellent stability. • The Cu-Fe{sub 3}O{sub 4}@GE composite was magnetically separable. - Abstract: In this work, the Cu-Fe{sub 3}O{sub 4}@GE composite was prepared easily by a one-step solvent–thermal method, which achieved the formation of Cu nanoparticles (Cu NPs), Fe{sub 3}O{sub 4} nanoparticles (Fe{sub 3}O{sub 4} NPs) and reduction of GO simultaneously. The morphology and structure of the composite was fully characterized by means of X-ray diffraction (XRD), Fourier transformed infrared (FTIR) spectroscopy, transmission electron microscopymore » (TEM). The time-dependent adsorption spectra of the reaction mixture was measured by UV–vis absorption spectroscopy. The results demonstrated that the Cu NPs and Fe{sub 3}O{sub 4} NPs were densely and evenly deposited on the graphene (GE) sheets. It was found that the Cu-Fe{sub 3}O{sub 4}@GE composite exhibited high catalytic activities on the reduction of p-nitrophenol to p-aminophenol. Furthermore, the composite catalyst can be easily recovered due to its magnetic separability and high stability.« less

  19. Rapid removal of uranium from aqueous solutions using magnetic Fe3O4@SiO2 composite particles.

    PubMed

    Fan, Fang-Li; Qin, Zhi; Bai, Jing; Rong, Wei-Dong; Fan, Fu-You; Tian, Wei; Wu, Xiao-Lei; Wang, Yang; Zhao, Liang

    2012-04-01

    Rapid removal of U(VI) from aqueous solutions was investigated using magnetic Fe(3)O(4)@SiO(2) composite particles as the novel adsorbent. Batch experiments were conducted to study the effects of initial pH, amount of adsorbent, shaking time and initial U(VI) concentrations on uranium sorption efficiency as well as the desorbing of U(VI). The sorption of uranium on Fe(3)O(4)@SiO(2) composite particles was pH-dependent, and the optimal pH was 6.0. In kinetics studies, the sorption equilibrium can be reached within 180 min, and the experimental data were well fitted by the pseudo-second-order model, and the equilibrium sorption capacities calculated by the model were almost the same as those determined by experiments. The Langmuir sorption isotherm model correlates well with the uranium sorption equilibrium data for the concentration range of 20-200 mg/L. The maximum uranium sorption capacity onto magnetic Fe(3)O(4)@SiO(2) composite particles was estimated to be about 52 mg/g at 25 °C. The highest values of uranium desorption (98%) was achieved using 0.01 M HCl as the desorbing agent. Fe(3)O(4)@SiO(2) composite particles showed a good selectivity for uranium from aqueous solution with other interfering cation ions. Present study suggested that magnetic Fe(3)O(4)@SiO(2) composite particles can be used as a potential adsorbent for sorption uranium and also provided a simple, fast separation method for removal of heavy metal ion from aqueous solution. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Synthesis of Fe3O4/Polyacrylonitrile Composite Electrospun Nanofiber Mat for Effective Adsorption of Tetracycline.

    PubMed

    Liu, Qing; Zhong, Lu-Bin; Zhao, Quan-Bao; Frear, Craig; Zheng, Yu-Ming

    2015-07-15

    Novel Fe3O4/polyacrylonitrile (PAN) composite nanofibers (NFs) were prepared by a simple two-step process, an electrospinning and solvothermal method. Characterization by field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) demonstrated formation of a uniform nanoparticles coating (about 20 nm in thickness) on the PAN nanofiber backbone. The coating was constructed by well-crystallized cubic phase Fe3O4 nanoparticles as examined by X-ray diffraction spectroscopy (XRD). The coating doubled the specific surface area of NFs, from 8.4 to 17.8 m2 g(-1), as confirmed by nitrogen sorption isotherm analysis. To evaluate the feasibility of Fe3O4/PAN composite NFs as a potential adsorbent for antibiotic removal, batch adsorption experiments were conducted using tetracycline (TC) as the model antibiotic molecule. The results showed that Fe3O4/PAN composite NFs were effective in removing TC with no impactful loss of Fe in the pH regime of environmental interest (5-8). The adsorption of TC onto Fe3O4/PAN composite NFs better fitted the pseudo-second-order kinetics model, and the maximum adsorption capacity calculated from Langmuir isotherm model was 257.07 mg g(-1) at pH 6. The composite NFs also exhibited good regenerability over repeated adsorption/desorption cycles. Surface complexation between TC and the composite NFs contributed most to the adsorption as elucidated by X-ray photoelectron spectroscopy (XPS). This highly effective and novel adsorbent can be easily modularized and separated, promising its huge potential in drinking and wastewater treatment for antibiotic removal.

  1. Efficient reduced graphene oxide grafted porous Fe3O4 composite as a high performance anode material for Li-ion batteries.

    PubMed

    Bhuvaneswari, Subramani; Pratheeksha, Parakandy Muzhikara; Anandan, Srinivasan; Rangappa, Dinesh; Gopalan, Raghavan; Rao, Tata Narasinga

    2014-03-21

    Here, we report facile fabrication of Fe3O4-reduced graphene oxide (Fe3O4-RGO) composite by a novel approach, i.e., microwave assisted combustion synthesis of porous Fe3O4 particles followed by decoration of Fe3O4 by RGO. The characterization studies of Fe3O4-RGO composite demonstrate formation of face centered cubic hexagonal crystalline Fe3O4, and homogeneous grafting of Fe3O4 particles by RGO. The nitrogen adsorption-desorption isotherm shows presence of a porous structure with a surface area and a pore volume of 81.67 m(2) g(-1), and 0.106 cm(3) g(-1) respectively. Raman spectroscopic studies of Fe3O4-RGO composite confirm the existence of graphitic carbon. Electrochemical studies reveal that the composite exhibits high reversible Li-ion storage capacity with enhanced cycle life and high coulombic efficiency. The Fe3O4-RGO composite showed a reversible capacity ∼612, 543, and ∼446 mA h g(-1) at current rates of 1 C, 3 C and 5 C, respectively, with a coulombic efficiency of 98% after 50 cycles, which is higher than graphite, and Fe3O4-carbon composite. The cyclic voltammetry experiment reveals the irreversible and reversible Li-ion storage in Fe3O4-RGO composite during the starting and subsequent cycles. The results emphasize the importance of our strategy which exhibited promising electrochemical performance in terms of high capacity retention and good cycling stability. The synergistic properties, (i) improved ionic diffusion by porous Fe3O4 particles with a high surface area and pore volume, and (ii) increased electronic conductivity by RGO grafting attributed to the excellent electrochemical performance of Fe3O4, which make this material attractive to use as anode materials for lithium ion storage.

  2. Magnetic quenching of photonic activity in Fe3O4-elastomer composite

    NASA Astrophysics Data System (ADS)

    Ma, Danhao; Hess, Dustin T.; Shetty, Pralav P.; Adu, Kofi W.; Bell, Richard C.; Terrones, Mauricio

    2016-01-01

    We report a quenching phenomenon within the visible region of the electromagnetic spectrum in the photonic response of a passive Fe3O4-silicone elastomer composite film due to magnetically aligned Fe3O4 nanoparticles. We performed systematic studies of the polarization dependence, the effect of particle size, and an in- and out-of-plane particle alignment on the optical response of the Fe3O4-silicone elastomer composites using a UV/vis/NIR spectrometer. We observed systematic redshifts in the response of the out-of-plane composite films with increasing particle alignment and weight that are attributed to dipole-induced effects. There were no observable shifts in the spectra of the in-plane films, suggesting the orientation of the magnetic dipole and the induced electric dipole play a crucial role in the optical response. A dramatic suppression to near quenching of the photonic response occurred in films containing moderate concentrations of the aligned nanoparticles. This is attributed to the interplay between the intra- and the interparticle dipoles. This occurred even when low magnetic fields were used during the curing process, suggesting that particle alignment and particle size limitation are critical in the manipulation of the photonic properties. A dipole approximation model is used to explain the quenching phenomenon. An active system of such a composite has a potential application in magneto-optic switches.

  3. Facile One-pot Transformation of Iron Oxides from Fe2O3 Nanoparticles to Nanostructured Fe3O4@C Core-Shell Composites via Combustion Waves

    PubMed Central

    Shin, Jungho; Lee, Kang Yeol; Yeo, Taehan; Choi, Wonjoon

    2016-01-01

    The development of a low-cost, fast, and large-scale process for the synthesis and manipulation of nanostructured metal oxides is essential for incorporating materials with diverse practical applications. Herein, we present a facile one-pot synthesis method using combustion waves that simultaneously achieves fast reduction and direct formation of carbon coating layers on metal oxide nanostructures. Hybrid composites of Fe2O3 nanoparticles and nitrocellulose on the cm scale were fabricated by a wet impregnation process. We demonstrated that self-propagating combustion waves along interfacial boundaries between the surface of the metal oxide and the chemical fuels enabled the release of oxygen from Fe2O3. This accelerated reaction directly transformed Fe2O3 into Fe3O4 nanostructures. The distinctive color change from reddish-brown Fe2O3 to dark-gray Fe3O4 confirmed the transition of oxidation states and the change in the fundamental properties of the material. Furthermore, it simultaneously formed carbon layers of 5–20 nm thickness coating the surfaces of the resulting Fe3O4 nanoparticles, which may aid in maintaining the nanostructures and improving the conductivity of the composites. This newly developed use of combustion waves in hybridized nanostructures may permit the precise manipulation of the chemical compositions of other metal oxide nanostructures, as well as the formation of organic/inorganic hybrid nanostructures. PMID:26902260

  4. Low temperature magnetization and anomalous high temperature dielectric behaviour of (1-x) YMnO3/xZnFe2O4 composites

    NASA Astrophysics Data System (ADS)

    Kumar, Virendra; Gaur, Anurag

    2018-04-01

    We synthesized YMnO3 and ZnFe2O4 composites, (1-x)YMnO3/x(ZnFe2O4) with x = 0, 0.05, 0.10, and 0.15 by high temperature sintering. X-ray diffraction (XRD) patterns indicate the successful formation of composites. Weak ferromagnetism is manifested below Néel temperature (TN) for pristine YMnO3, according to (M-H) study performed at 10 K. For (1-x)YMnO3/xZnFe2O4 (x = 0.05, 0.10, 0.15) a thin coercivity is observed in all compositions, due to short range magnetic ordering at low temperature after the insertion of ZnFe2O4. For pristine YMnO3 explicit divarication between FC-ZFC curves is observed, with crimps observed in both FC and ZFC curves at 75 K, which is the TN of YMnO3. For 1-x(YMnO3)/x ZnFe2O4 composites (x = 0.05, 0.10, 0.15) crimps are perceived only in ZFC curves at slightly varying values of 39.8, 42.32 and 45.63 K respectively. Anomalous peaks are observed in high temperature dielectric curves above 400 K for 1-x(YMnO3)/xZnFe2O4 (x = 0, 0.05, 0.10, 0.15) composites due to Maxwell-Wagner relaxation effect.

  5. Facile synthesis of Fe3O4/g-C3N4/HKUST-1 composites as a novel biosensor platform for ochratoxin A.

    PubMed

    Hu, Shuisheng; Ouyang, Wenjun; Guo, Longhua; Lin, Zhenyu; Jiang, Xiaohua; Qiu, Bin; Chen, Guonan

    2017-06-15

    A fluorescent biosensor for ochratoxin A was fabricated on the basis of a new nanocomposite (Fe 3 O 4 /g-C 3 N 4 /HKUST-1 composites). Fe 3 O 4 /g-C 3 N 4 /HKUST-1 was synthesized in this work for the first time, which combined HKUST-1 with g-C 3 N 4 to improve its chemical stability. Fe 3 O 4 /g-C 3 N 4 /HKUST-1 composites have strong adsorption capacity for dye-labeled aptamer and are able to completely quench the fluorescence of the dye through the photoinduced electron transfer (PET) mechanism. In the presence of ochratoxin A (OTA), it can bind with the aptamer with high affinity, causing the releasing of the dye-labeled aptamer from the Fe 3 O 4 /g-C 3 N 4 /HKUST-1 and therefore results in the recovery of fluorescence. The fluorescence intensity of the biosensor has a linear relationship with the OTA concentration in the range of 5.0-160.0ng/mL. The LOD of sensor is 2.57ng/mL (S/N=3). This fluorescence sensor based on the Fe 3 O 4 /g-C 3 N 4 /HKUST-1 composites has been applied to detect OTA in corn with satisfying results. Copyright © 2016. Published by Elsevier B.V.

  6. Fe3O4@Au composite magnetic nanoparticles modified with cetuximab for targeted magneto-photothermal therapy of glioma cells.

    PubMed

    Lu, Qianling; Dai, Xinyu; Zhang, Peng; Tan, Xiao; Zhong, Yuejiao; Yao, Cheng; Song, Mei; Song, Guili; Zhang, Zhenghai; Peng, Gang; Guo, Zhirui; Ge, Yaoqi; Zhang, Kangzhen; Li, Yuntao

    2018-01-01

    Thermoresponsive nanoparticles have become an attractive candidate for designing combined multimodal therapy strategies because of the onset of hyperthermia and their advantages in synergistic cancer treatment. In this paper, novel cetuximab (C225)-encapsulated core-shell Fe 3 O 4 @Au magnetic nanoparticles (Fe 3 O 4 @Au-C225 composite-targeted MNPs) were created and applied as a therapeutic nanocarrier to conduct targeted magneto-photothermal therapy against glioma cells. The core-shell Fe 3 O 4 @Au magnetic nanoparticles (MNPs) were prepared, and then C225 was further absorbed to synthesize Fe 3 O 4 @Au-C225 composite-targeted MNPs. Their morphology, mean particle size, zeta potential, optical property, magnetic property and thermal dynamic profiles were characterized. After that, the glioma-destructive effect of magnetic fluid hyperthermia (MFH) combined with near-infrared (NIR) hyperthermia mediated by Fe 3 O 4 @Au-C225 composite-targeted MNPs was evaluated through in vitro and in vivo experiments. The inhibitory and apoptotic rates of Fe 3 O 4 @Au-C225 composite-targeted MNPs-mediated combined hyperthermia (MFH+NIR) group were significantly higher than other groups in vitro and the marked upregulation of caspase-3, caspase-8, and caspase-9 expression indicated excellent antitumor effect by inducing intrinsic apoptosis. Furthermore, Fe 3 O 4 @Au-C225 composite-targeted MNPs-mediated combined hyperthermia (MFH+NIR) group exhibited significant tumor growth suppression compared with other groups in vivo. Our studies illustrated that Fe 3 O 4 @Au-C225 composite-targeted MNPs have great potential as a promising nanoplatform for human glioma therapy and could be of great value in medical use in the future.

  7. Fe3O4@Au composite magnetic nanoparticles modified with cetuximab for targeted magneto-photothermal therapy of glioma cells

    PubMed Central

    Tan, Xiao; Zhong, Yuejiao; Yao, Cheng; Song, Mei; Song, Guili; Zhang, Zhenghai; Peng, Gang; Guo, Zhirui; Ge, Yaoqi; Zhang, Kangzhen; Li, Yuntao

    2018-01-01

    Background Thermoresponsive nanoparticles have become an attractive candidate for designing combined multimodal therapy strategies because of the onset of hyperthermia and their advantages in synergistic cancer treatment. In this paper, novel cetuximab (C225)-encapsulated core-shell Fe3O4@Au magnetic nanoparticles (Fe3O4@Au-C225 composite-targeted MNPs) were created and applied as a therapeutic nanocarrier to conduct targeted magneto-photothermal therapy against glioma cells. Methods The core-shell Fe3O4@Au magnetic nanoparticles (MNPs) were prepared, and then C225 was further absorbed to synthesize Fe3O4@Au-C225 composite-targeted MNPs. Their morphology, mean particle size, zeta potential, optical property, magnetic property and thermal dynamic profiles were characterized. After that, the glioma-destructive effect of magnetic fluid hyperthermia (MFH) combined with near-infrared (NIR) hyperthermia mediated by Fe3O4@Au-C225 composite-targeted MNPs was evaluated through in vitro and in vivo experiments. Results The inhibitory and apoptotic rates of Fe3O4@Au-C225 composite-targeted MNPs-mediated combined hyperthermia (MFH+NIR) group were significantly higher than other groups in vitro and the marked upregulation of caspase-3, caspase-8, and caspase-9 expression indicated excellent antitumor effect by inducing intrinsic apoptosis. Furthermore, Fe3O4@Au-C225 composite-targeted MNPs-mediated combined hyperthermia (MFH+NIR) group exhibited significant tumor growth suppression compared with other groups in vivo. Conclusion Our studies illustrated that Fe3O4@Au-C225 composite-targeted MNPs have great potential as a promising nanoplatform for human glioma therapy and could be of great value in medical use in the future. PMID:29719396

  8. Fe2O3/Reduced Graphene Oxide/Fe3O4 Composite in Situ Grown on Fe Foil for High-Performance Supercapacitors.

    PubMed

    Zhao, Chongjun; Shao, Xiaoxiao; Zhang, Yuxiao; Qian, Xiuzhen

    2016-11-09

    A Fe 2 O 3 /reduced graphene oxide (RGO)/Fe 3 O 4 nanocomposite in situ grown on Fe foil was synthesized via a simple one-step hydrothermal growth process, where the iron foil served as support, reductant of graphene oxide, Fe source of Fe 3 O 4 , and also the current collector of the electrode. When it directly acted as the electrode of a supercapacitor, as-synthesized Fe 2 O 3 /RGO/Fe 3 O 4 @Fe exhibited excellent electrochemical performance with a high capability of 337.5 mF/cm 2 at 20 mA/cm 2 and a superior cyclability with 2.3% capacity loss from the 600th to the 2000th cycle.

  9. Efficient removal of arsenic by strategically designed and layer-by-layer assembled PS@+rGO@GO@Fe3O4 composites.

    PubMed

    Kang, Bong Kyun; Lim, Byeong Seok; Yoon, Yeojoon; Kwag, Sung Hoon; Park, Won Kyu; Song, Young Hyun; Yang, Woo Seok; Ahn, Yong-Tae; Kang, Joon-Wun; Yoon, Dae Ho

    2017-10-01

    The PS@+rGO@GO@Fe 3 O 4 (PG-Fe 3 O 4 ) hybrid composites for Arsenic removal were successfully fabricated and well dispersed using layer-by-layer assembly and a hydrothermal method. The PG-Fe 3 O 4 hybrid composites were composed of uniformly coated Fe 3 O 4 nanoparticles on graphene oxide layers with water flow space between 3D structures providing many contact area and adsorption sites for Arsenic adsorption. The PG-Fe 3 O 4 hybrid composite has large surface adsorption sites and exhibits high adsorption capacities of 104 mg/g for As (III) and 68 mg/g for As (V) at 25 °C and pH 7 comparison with pure Fe 3 O 4 and P-Fe 3 O 4 samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Composited reduced graphene oxide into LiFePO4/Li2SiO3 and its electrochemical impedance spectroscopy properties

    NASA Astrophysics Data System (ADS)

    Arifin, M.; Rus, Y. B.; Aimon, A. H.; Iskandar, F.; Winata, T.; Abdullah, M.; Khairurrijal, K.

    2017-03-01

    LiFePO4 is commonly used as cathode material for Li-ion batteries due to its stable operational voltage and high specific capacity. However, it suffers from certain disadvantages such as low intrinsic electronic conductivity and low ionic diffusion. This study was conducted to analyse the effect of reduced graphene oxide (rGO) on the electrochemical properties of LiFePO4/Li2SiO3 composite. This composite was synthesized by a hydrothermal method. Fourier transform infrared spectroscopy measurement identified the O-P-O, Fe-O, P-O, and O-Si-O- bands in the LiFePO4/Li2SiO3 composite. X-ray diffraction measurement confirmed the formation of LiFePO4. Meanwhile, Raman spectroscopy confirmed the number of rGO layers. Further, scanning electron microscopy images showed that rGO was distributed around the LiFePO4/Li2SiO3 particles. Finally, the electrochemical impedance spectroscopy results showed that the addition of 1 wt% of rGO to the LiFePO4/Li2SiO3 composite reduced charge transfer resistance. It may be concluded that the addition of 1 wt% rGO to LiFePO4/Li2SiO3 composite can enhance its electrochemical performance as a cathode material.

  11. Enhancement of ferromagnetic properties in composites of BaSnO3 and CoFe2O4

    NASA Astrophysics Data System (ADS)

    Manju, M. R.; Ajay, K. S.; D'Souza, Noel M.; Hunagund, Shivakumar; Hadimani, R. L.; Dayal, Vijaylakshmi

    2018-04-01

    In this paper, we report structural and magnetic properties of BaSnO3(BSO)(1-x)-CoFe2O4 (CFO)(x) composite (with x = 0%, 1% (C1), 2% (C2) and 5% (C3) in molar ratio) synthesized using nitrate precursor method. The X-ray diffraction (XRD) pattern of the composite powder confirmed presence of both BaSnO3 with the cubic perovskite structure and CoFe2O4 with the cubic spinel structure. No signature of any other phases in pure BaSnO3, CoFe2O4 and composites have been detected either in XRD or energy dispersive X-ray (EDS) analysis. The temperature dependent zero field cooled (ZFC) & field cooled (FC) magnetization and magnetic field dependence magnetization measurements have been carried at room temperature of the pure BaSnO3. We observe a weak ferromagnetic (FM) behavior at room temperature in pure BaSnO3 even though it is non-magnetic in nature. The room temperature Raman spectroscopy and electron spin resonance measurements of the sample confirm the presence of oxygen vacancy and formation of F-center, which is responsible for the FM behavior. The oxidation state and elemental analysis have been carried out using X-ray photoelectron spectroscopy (XPS). The magnetic field dependence of magnetization of the composite samples reveal increase of saturation magnetization (Ms), remanence magnetization (Mr) and coercivity (Hc) with increase in ferrite content in the composite. Significant enhancement in FM components is observed with lowering of temperature.

  12. Controllable synthesis and enhanced microwave absorbing properties of Fe3O4/NiFe2O4/Ni heterostructure porous rods

    NASA Astrophysics Data System (ADS)

    Li, Yana; Wu, Tong; Jin, Keying; Qian, Yao; Qian, Naxin; Jiang, Kedan; Wu, Wenhua; Tong, Guoxiu

    2016-11-01

    We developed a coordinated self-assembly/precipitate transfer/sintering method that allows the controllable synthesis of Fe3O4/NiFe2O4/Ni heterostructure porous rods (HPRs). A series of characterizations confirms that changing [Ni2+] can effectively control the crystal size, internal strain, composition, textural characteristics, and properties of HPRs. Molar percentages of Ni and NiFe2O4 in HPRs increase with [Ni2+] in various Boltzmann function modes. Saturation magnetization Ms and coercivity Hc show U-shaped change trends because of crystal size, composition, and interface magnetic coupling. High magnetic loss is maintained after decorating NiFe2O4 and Ni on the surface of Fe3O4 PRs. Controlling the NiFe2O4 interface layers and Ni content can improve impedance matching and dielectric losses, thereby leading to lighter weight, stronger absorption, and broader absorption band of Fe3O4/NiFe2O4/Ni HPRs than Fe3O4 PRs. An optimum EM wave absorbing property was exhibited by Fe3O4/NiFe2O4/Ni HPRs formed at [Ni2+] = 0.05 M. The maximum reflection loss (RL) reaches -58.4 dB at 13.68 GHz, which corresponds to a 2.1 mm matching thickness. The absorbing bandwidth (RL ≤ -20 dB) reaches 14.4 GHz with the sample thickness at 1.6-2.4 and 2.8-10.0 mm. These excellent properties verify that Fe3O4/NiFe2O4/Ni HPRs are promising candidates for new and effective absorptive materials.

  13. A facile method for preparing porous, optically active, magnetic Fe3 O4 @poly(N-acryloyl-leucine) inverse core/shell composite microspheres.

    PubMed

    Liu, Dong; Deng, Jianping; Yang, Wantai

    2014-01-01

    The first synthesis of porous, optically active, magnetic Fe3 O4 @poly(N-acryloyl-leucine) inverse core/shell composite microspheres is reported, in which the core is constructed of chiral polymer and the shell is constructed of Fe3 O4 NPs. The microspheres integrate three significant concepts, "porosity", "chirality", and "magneticity", in one single microspheric entity. The microspheres consist of Fe3 O4 nanoparticles and porous optically active microspheres, and thus combine the advantages of both magnetic nanoparticles and porous optically active microspheres. The pore size and specific surface area of the microspheres are characterized by N2 adsorption, from which it is found that the composite microspheres possess a desirable porous structure. Circular dichroism and UV-vis absorption spectroscopy measurements demonstrate that the microspheres exhibit the expected optical activity. The microspheres also have high saturation magnetization of 14.7 emu g(-1) and rapid magnetic responsivity. After further optimization, these novel microspheres may potentially find applications in areas such as asymmetric catalysis, chiral adsorption, etc. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Bio-Inspired Hierarchical Nanofibrous Fe3O4-TiO2-Carbon Composite as a High-Performance Anode Material for Lithium-Ion Batteries.

    PubMed

    Li, Shun; Wang, Mengya; Luo, Yan; Huang, Jianguo

    2016-07-13

    A bioinspired hierarchical nanofibrous Fe3O4-TiO2-carbon composite was fabricated by employing natural cellulose substance (e.g., filter paper) as both the scaffold and the carbon source and showed improved electrochemical performances when it is employed as an anode material for lithium-ion batteries. FeOOH nanoparticles were first grown uniformly onto the surface of the titania thin-layer precoated cellulose nanofibers, and thereafter, the as-prepared FeOOH-TiO2-cellulose composite was calcined and carbonized in argon atmosphere at 500 °C for 6 h to produce the Fe3O4-TiO2-carbon composite. The resultant composite possesses a hierarchical structure that was faithfully inherited from the initial cellulose substance, which was composed of titania-coated carbon fibers with corncob-like shaped Fe3O4 nanoparticles immobilized on the surfaces. The diameter of the composite nanofiber is ca. 100-200 nm, and the diameter of the Fe3O4 nanoparticle is about 30 nm, which is coated with an ultrathin carbon layer with a thickness about 3 nm. This composite displayed superior lithium-ion storage performance. It showed a first-cycle discharge capacity of 1340 mAh/g, delivering a stable reversible capacity of ca. 525 mAh/g after 100 charge-discharge cycles at a current density of 100 mA/g, and the efficiency is as high as ca. 95% of the theoretical value. This is much higher than those of the commercial Fe3O4 powder (160 mAh/g) and the Fe3O4-carbon counter material (310 mAh/g). It was demonstrated that the thin titania precoating layer (thickness ca. 3-5 nm) is necessary for the high content loading of the Fe3O4 nanoparticles onto the carbon nanofibers. Owing to the unique three-dimensional porous network structure of the carbon-fiber scaffold, together with the ultrathin outer carbon-coating layer, the composite showed significantly improved cycling stability and rate capability.

  15. Highly efficient enrichment of low-abundance intact proteins by core-shell structured Fe3O4-chitosan@graphene composites.

    PubMed

    Zhang, Peng; Fang, Xiaoni; Yan, Guoquan; Gao, Mingxia; Zhang, Xiangmin

    2017-11-01

    In proteomics research, the screening and monitoring of disease biomarkers is still a major challenge, mainly due to their low concentration in biological samples. However, the universal enrichment of intact proteins has not been further studied. In this work, we developed a Fe 3 O 4 -chitosan@graphene (Fe 3 O 4 -CS@G) core-shell composite to enrich low-abundance proteins from biological samples. Fe 3 O 4 -CS@G composite holds chitosan layer decorated Fe 3 O 4 core, which improves the hydrophilicity of materials greatly. Meanwhile, the graphene nanosheets shell formed via electrostatic assembly endows the composite with huge surface area (178m 2 /g). The good water dispersibility ensures the sufficient contact opportunities between graphene composites and proteins, and the large surface area provides enough adsorption sites for the enrichment of proteins. Using Fe 3 O 4 -CS@G, four standard proteins Cyt-c, BSA, Myo and OVA were enriched with better adsorption capacity and recovery rate, compared with previously reported magnetic graphene composites. Additionally, the mechanism of compared to" is corrected into "compared with". proteins adsorption on Fe 3 O 4 -CS@G was further studied, which indicates that hydrophobic and electrostatic interaction work together to facilitate the universal and efficient enrichment of proteins. Human plasma sample was employed to further evaluate the enrichment performance of Fe 3 O 4 -CS@G. Eventually, 123 proteins were identified from one of SAX fractions of human plasma, which is much better than commercial Sep-pak C18 enrichment column (39 proteins). All these outstanding performances suggest that Fe 3 O 4 -CS@G is an ideal platform for the enrichment of low-abundance intact proteins and thus holds great potential to facilitate the identification of biomarkers from biological samples in proteomics research. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Arsenic removal from aqueous solutions using Fe3O4-HBC composite: effect of calcination on adsorbents performance.

    PubMed

    Baig, Shams Ali; Sheng, TianTian; Sun, Chen; Xue, XiaoQin; Tan, LiSha; Xu, XinHua

    2014-01-01

    The presence of elevated concentration of arsenic in water sources is considered to be health hazard globally. Calcination process is known to change the surface efficacy of the adsorbent. In current study, five adsorbent composites: uncalcined and calcined Fe3O4-HBC prepared at different temperatures (400°C and 1000°C) and environment (air and nitrogen) were investigated for the adsorptive removal of As(V) and As(III) from aqueous solutions determining the influence of solution's pH, contact time, temperature, arsenic concentration and phosphate anions. Characterizations from FTIR, XRD, HT-XRD, BET and SEM analyses revealed that the Fe3O4-HBC composite at higher calcination temperature under nitrogen formed a new product (fayalite, Fe2SiO4) via phase transformation. In aqueous medium, ligand exchange between arsenic and the effective sorbent site ( = FeOOH) was established from the release of hydroxyl group. Langmuir model suggested data of the five adsorbent composites follow the order: Fe3O4-HBC-1000°C(N2)>Fe3O4-HBC (uncalcined)>Fe3O4-HBC-400°C(N2)>Fe3O4-HBC-400°C(air)>Fe3O4-HBC-1000°C(air) and the maximum As(V) and As(III) adsorption capacities were found to be about 3.35 mg g(-1) and 3.07 mg g(-1), respectively. The adsorption of As(V) and As(III) remained stable in a wider pH range (4-10) using Fe3O4-HBC-1000°C(N2). Additionally, adsorption data fitted well in pseudo-second-order (R2>0.99) rather than pseudo-first-order kinetics model. The adsorption of As(V) and As(III) onto adsorbent composites increase with increase in temperatures indicating that it is an endothermic process. Phosphate concentration (0.0l mM or higher) strongly inhibited As(V) and As(III) removal through the mechanism of competitive adsorption. This study suggests that the selective calcination process could be useful to improve the adsorbent efficiency for enhanced arsenic removal from contaminated water.

  17. Arsenic Removal from Aqueous Solutions Using Fe3O4-HBC Composite: Effect of Calcination on Adsorbents Performance

    PubMed Central

    Baig, Shams Ali; Sheng, TianTian; Sun, Chen; Xue, XiaoQin; Tan, LiSha; Xu, XinHua

    2014-01-01

    The presence of elevated concentration of arsenic in water sources is considered to be health hazard globally. Calcination process is known to change the surface efficacy of the adsorbent. In current study, five adsorbent composites: uncalcined and calcined Fe3O4-HBC prepared at different temperatures (400°C and 1000°C) and environment (air and nitrogen) were investigated for the adsorptive removal of As(V) and As(III) from aqueous solutions determining the influence of solution's pH, contact time, temperature, arsenic concentration and phosphate anions. Characterizations from FTIR, XRD, HT-XRD, BET and SEM analyses revealed that the Fe3O4-HBC composite at higher calcination temperature under nitrogen formed a new product (fayalite, Fe2SiO4) via phase transformation. In aqueous medium, ligand exchange between arsenic and the effective sorbent site ( = FeOOH) was established from the release of hydroxyl group. Langmuir model suggested data of the five adsorbent composites follow the order: Fe3O4-HBC-1000°C(N2)>Fe3O4-HBC (uncalcined)>Fe3O4-HBC-400°C(N2)>Fe3O4-HBC-400°C(air)>Fe3O4-HBC-1000°C(air) and the maximum As(V) and As(III) adsorption capacities were found to be about 3.35 mg g−1 and 3.07 mg g−1, respectively. The adsorption of As(V) and As(III) remained stable in a wider pH range (4–10) using Fe3O4-HBC-1000°C(N2). Additionally, adsorption data fitted well in pseudo-second-order (R 2>0.99) rather than pseudo-first-order kinetics model. The adsorption of As(V) and As(III) onto adsorbent composites increase with increase in temperatures indicating that it is an endothermic process. Phosphate concentration (0.0l mM or higher) strongly inhibited As(V) and As(III) removal through the mechanism of competitive adsorption. This study suggests that the selective calcination process could be useful to improve the adsorbent efficiency for enhanced arsenic removal from contaminated water. PMID:24967645

  18. Thermodynamic Properties of α-Fe 2O 3 and Fe 3O 4 Nanoparticles

    DOE PAGES

    Spencer, Elinor C.; Ross, Nancy L.; Olsen, Rebecca E.; ...

    2015-04-21

    Here we comprehansively assessed the thermodynamic properties of hydrated α-Fe 2O 3 (hematite) and Fe 3O 4 (magnetite) nanoparticles. In addition to 9 nm Fe 3O 4, three α-e 2O 3nanoparticles samples of different sizes (11, 14, and 25 nm) and bulk α-e 2O 3 have been evaluated by inelastic neutron scattering methods. The contribution of the two-level magnetic spin flip transition to the heat capacity of the α-e 2O 3 particles has been determined. The isochoric heat capacity of the water confined on the surface of these two types of iron oxide particles have been calculated from their INSmore » spectra, and is affected by the chemical composition of the underlying particle. Furthermore, the heat capacity and dynamics of the particle hydration layers appear to be influenced by a complex array of factors including particle size, water coverage, and possibly the magnetic state of the particle itself.« less

  19. Enhanced microwave absorption property of epoxy nanocomposites based on PANI@Fe3O4@CNFs nanoparticles with three-phase heterostructure

    NASA Astrophysics Data System (ADS)

    Yang, Lingfeng; Cai, Haopeng; Zhang, Bin; Huo, Siqi; Chen, Xi

    2018-02-01

    Novel electromagnetic functionalized carbon nanofibers (CNFs) have been synthesized by coating with Fe3O4 magnetite nanoparticles and conducting polymers polyaniline (PANI) on CNFs through a layer by layer assembly. The Fe3O4@CNFs were first prepared by coating nano-Fe3O4 particles on CNFs via co-precipitation method; Then the PANI was coated on Fe3O4@CNFs using an in situ polymerization process to obtain PANI@Fe3O4@CNFs nanoparticles. The prepared PANI@Fe3O4@CNFs nanoparticles were dispersed in the epoxy matrix to fabricate microwave absorbing nanocomposites. Compared with the Fe3O4@CNFs/epoxy nanocomposites, the PANI@Fe3O4@CNFs/epoxy nanocomposites exhibit better microwave absorbing properties. The composite containing 15 wt% of PANI@Fe3O4@CNFs with the thickness of 2 mm showed a minimum reflection loss (RL) value of -23.7 dB with an effective absorption bandwidth which is about 3.7 GHz (11.9-15.6 GHz) in the frequency range of 1-18 GHz, indicating that it is an attractive candidate for efficient microwave absorber. A potential absorption mechanism was proposed for enhancement of the impedance-matching condition and electromagnetic wave-attenuation characteristic of materials. Specifically, the impedance-matching condition was improved by the combination of conductive polymers and magnetic nanoparticles with CNFs. The electromagnetic wave attenuation characteristic was enhanced by multiple reflections, due to the increased propagation paths.

  20. Preparation of MWCNT-Fe3O4 Nanocomposites from Iron Sand Using Sonochemical Route

    NASA Astrophysics Data System (ADS)

    Rahmawati, R.; Melati, A.; Taufiq, A.; Sunaryono; Diantoro, M.; Yuliarto, B.; Suyatman, S.; Nugraha, N.; Kurniadi, D.

    2017-05-01

    The composites of multi-walled carbon nanotube (MWCNT) and magnetite (Fe3O4) nanoparticles from iron sand were successfully prepared via the sonochemical route. In this experiment, the MWCNT-Fe3O4 nanocomposites were prepared with different compositions of MWCNT (0.01%, 0.02%, and 0.04%) with the constant composition of Fe3O4 particles. The characterizations were performed by means of X-Ray Diffractometry (XRD), Fourier Transform Infra-Red (FTIR) Spectrometer and Scanning Electron Microscopy (SEM) integrated with Energy Dispersive X-Ray (EDX). The XRD data analysis showed that the Fe3O4 crystallize in spinel structure in nanometric size. Furthermore, the crystallinity of the samples tended to reduce by increasing the MWCNT compositions. The SEM images showed that Fe3O4 tend to agglomerate in nanometric size. The FTIR spectra detected the functional groups of Fe-O bonding that showed the existence of Fe2+ and Fe3+. In the composites, the Fe3O4 nanoparticles were physically mixed with the MWCNTs constructing a unique structure. The as prepared MWCNT-Fe3O4 nanocomposites have the potential for bio-applications.

  1. Synthesis of Fe3O4 cluster microspheres/graphene aerogels composite as anode for high-performance lithium ion battery

    NASA Astrophysics Data System (ADS)

    Zhou, Shuai; Zhou, Yu; Jiang, Wei; Guo, Huajun; Wang, Zhixing; Li, Xinhai

    2018-05-01

    Iron oxides are considered as attractive electrode materials because of their capability of lithium storage, but their poor conductivity and large volume expansion lead to unsatisfactory cycling stability. We designed and synthesized a novel Fe3O4 cluster microspheres/Graphene aerogels composite (Fe3O4/GAs), where Fe3O4 nanoparticles were assembled into cluster microspheres and then embedded in 3D graphene aerogels framework. In the spheres, the sufficient free space between Fe3O4 nanoparticles could accommodate the volume change during cycling process. Graphene aerogel works as flexible and conductive matrix, which can not only significantly increase the mechanical stress, but also further improve the storage properties. The Fe3O4/GAs composite as an anode material exhibits high reversible capability and excellent cyclic capacity for lithium ion batteries (LIBs). A reversible capability of 650 mAh g-1 after 500 cycles at a current density of 1 A g-1 can be maintained. The superior storage capabilities of the composites make them potential anode materials for LIBs.

  2. Fabrication of nano-Fe3O4 3D structure on carbon fibers as a microwave absorber and EMI shielding composite by modified EPD method

    NASA Astrophysics Data System (ADS)

    Gholampoor, Mahdi; Movassagh-Alanagh, Farid; Salimkhani, Hamed

    2017-02-01

    Recently, electromagnetic interference (EMI) shielding materials have absorbed a lot of attention due to a growing need for application in the area of electronic and wireless devices. In this study, a carbon-based EMI shielding composite was fabricated by electrophoretic deposition of Fe3O4 nano-particles on carbon fibers (CFs) as a 3D structure incorporated with an epoxy resin. Co-precipitation method was employed to synthesize Fe3O4 nano-particles. This as-synthesized Fe3O4 nano-powder was then successfully deposited on CFs using a modified multi-step electrophoretic deposition (EPD) method. The results of structural studies showed that the Fe3O4 nano-particles (25 nm) were successfully and uniformly deposited on CFs. The measured magnetic properties of as-synthesized Fe3O4 nano-powder and nano-Fe3O4/CFs composite showed that the saturation magnetization of bare Fe3O4 was decreased from Ms = 72.3 emu/g to Ms = 33.1 emu/g for nano-Fe3O4/CFs composite and also corecivity of Fe3O4 was increased from Hc = 4.9 Oe to Hc = 168 Oe for composite. The results of microwave absorption tests revealed that the reflection loss (RL) of an epoxy-based nano-Fe3O4/CFs composite are significantly influenced by layer thickness. The maximum RL value of -10.21 dB at 10.12 GHz with an effective absorption bandwidth about 2 GHz was obtained for the sample with the thickness of 2 mm. It also exhibited an EMI shielding performance of -23 dB for whole the frequency range of 8.2-12.4 GHz.

  3. Preparation and study of (1 - x)CuFe2O4-xBaTiO3 (x = 0, 0.1 and 1) composite multiferroics

    NASA Astrophysics Data System (ADS)

    Murtaza, Tahir; Ali, Javid; Khan, M. S.

    2018-07-01

    The parent and mixed spinel-perovskite composite of (1 - x)CuFe2O4-xBaTiO3 (x = 0, 0.1 and 1) has been prepared by solid-state reaction method and studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), Mössbauer spectroscopy, magnetometry and P-E lope tracer. The XRD results showed the formation of single phase tetragonal spinel CuFe2O4 and tetragonal perovskite BaTiO3 at room temperature, further XRD of composite 0.1CuFe2O4-0.9BaTiO3 reflects the two crystallographic phases with 1:9 ratio. The SEM micrographs show the homogeneous and uniform formation of the samples. Through EDAX analysis, the chemical composition of the sample is found to be same as the nominal composition. The high field Mossbauer data of CuFe2O4 sample shows the ferrimagnetic ordering in the sample. The observed M-H and P-E loops of the composite 0.1CuFe2O4-0.9BaTiO3 sample show the presence of spontaneous magnetization and spontaneous electric polarization indicating the multiferroic nature of the sample.

  4. A Fe3O4/FeAl2O4 composite coating via plasma electrolytic oxidation on Q235 carbon steel for Fenton-like degradation of phenol.

    PubMed

    Wang, Jiankang; Yao, Zhongping; Yang, Min; Wang, Yajing; Xia, Qixing; Jiang, Zhaohua

    2016-08-01

    The Fe3O4/FeAl2O4 composite coatings were successfully fabricated on Q235 carbon steel by plasma electrolytic oxidation technique and used to degrade phenol by Fenton-like system. XRD, SEM, and XPS indicated that Fe3O4 and FeAl2O4 composite coating had a hierarchical porous structure. The effects of various parameters such as pH, phenol concentration, and H2O2 dosage on catalytic activity were investigated. The results indicated that with increasing of pH and phenol content, the phenol degradation efficiency was reduced significantly. However, the degradation rate was improved with the addition of H2O2, but dropped with further increasing of H2O2. Moreover, 100 % removal efficiency with 35 mg/L phenol was obtained within 60 min at 303 K and pH 4.0 with 6.0 mmol/L H2O2 on 6-cm(2) iron oxide coating. The degradation process consisted of induction period and rapid degradation period; both of them followed pseudo-first-order reaction. Hydroxyl radicals were the mainly oxidizing species during phenol degradation by using n-butanol as hydroxyl radical scavenger. Based on Fe leaching and the reaction kinetics, a possible phenol degradation mechanism was proposed. The catalyst exhibited excellent stability.

  5. Fe3O4/C composite with hollow spheres in porous 3D-nanostructure as anode material for the lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Yang, Zhao; Su, Danyang; Yang, Jinping; Wang, Jing

    2017-09-01

    3d transition-metal oxides, especially Fe3O4, as anode materials for the lithium-ion batteries have been attracting intensive attentions in recent years due to their high energy capacity and low toxicity. A new Fe3O4/C composite with hollow spheres in porous three-dimensional (3D) nanostructure, which was synthesized by a facile solvothermal method using FeCl3·6H2O and porous spongy carbon as raw materials. The specific surface area and microstructures of composite were characterized by nitrogen adsorption-desorption isotherm method, FE-SEM and HR-TEM. A homogeneous distribution of hollow Fe3O4 spheres (diameter ranges from 120 nm to 150 nm) in the spongy carbon (pore size > 200 nm) conductive 3D-network significantly reduced the lithium-ion diffusion length and increased the electrochemical reaction area, and further more enhanced the lithium ion battery performance, such as discharge capacity and cycle life. As an anode material for the lithium-ion battery, the title composite exhibit excellent electrochemical properties. The Fe3O4/C composite electrode achieved a relatively high reversible specific capacity of 1450.1 mA h g-1 in the first cycle at 100 mA g-1, and excellent rate capability (69% retention at 1000 mA g-1) with good cycle stability (only 10% loss after 100 cycles).

  6. Ni doped Fe3O4 magnetic nanoparticles.

    PubMed

    Larumbe, S; Gómez-Polo, C; Pérez-Landazábal, J I; García-Prieto, A; Alonso, J; Fdez-Gubieda, M L; Cordero, D; Gómez, J

    2012-03-01

    In this work, the effect of nickel doping on the structural and magnetic properties of Fe3O4 nanoparticles is analysed. Ni(x)Fe(3-x)O4 nanoparticles (x = 0, 0.04, 0.06 and 0.11) were obtained by chemical co-precipitation method, starting from a mixture of FeCl2 x 4H2O and Ni(AcO)2 x 4H2O salts. The analysis of the structure and composition of the synthesized nanoparticles confirms their nanometer size (main sizes around 10 nm) and the inclusion of the Ni atoms in the characteristic spinel structure of the magnetite Fe3O4 phase. In order to characterize in detail the structure of the samples, X-ray absorption (XANES) measurements were performed on the Ni and Fe K-edges. The results indicate the oxidation of the Ni atoms to the 2+ state and the location of the Ni2+ cations in the Fe2+ octahedral sites. With respect to the magnetic properties, the samples display the characteristic superparamagnetic behaviour, with anhysteretic magnetic response at room temperature. The estimated magnetic moment confirms the partial substitution of the Fe2+ cations by Ni2+ atoms in the octahedral sites of the spinel structure.

  7. Bi-functional Au/FeS (Au/Co3O4) composite for in situ SERS monitoring and degradation of organic pollutants

    NASA Astrophysics Data System (ADS)

    Ma, Shuzhen; Cai, Qian; Lu, Kailing; Liao, Fan; Shao, Mingwang

    2016-01-01

    The bi-functional Au/FeS (Au/Co3O4) composite was fabricated by in situ reducing Au nanoparticles onto the surface of FeS (Co3O4). The as-prepared FeS possessed a multi-structure composed of plenty of nanoplates, which were coated by Au nanoparticles with an average size of 47.5 nm. While the Co3O4 showed a thin hexagonal sheet containing Au nanoparticles on its surface with an average size of 79.0 nm. Both the as-prepared Au/FeS and Au/Co3O4 composites exhibited excellent SERS performance, capable of enhancing the Raman signals of R6G molecules with the enhancement factor up to 1.81 × 106 and 7.60 × 104, respectively. Moreover, Au/FeS (Au/Co3O4) composite also has been verified to have intrinsic peroxidase-like activity, which could decompose H2O2 into hydroxyl radicals and then degrade organic pollutants into small molecules. Therefore, SERS can be used to real-time and in situ monitoring the degradation process of R6G molecules, employing the Au/FeS (Au/Co3O4) composite both as SERS substrate and catalyst.

  8. Preparation, characterization, and antibacterial activity of NiFe2O4/PAMA/Ag-TiO2 nanocomposite

    NASA Astrophysics Data System (ADS)

    Allafchian, Alireza; Jalali, Seyed Amir Hossein; Bahramian, Hamid; Ahmadvand, Hossein

    2016-04-01

    We have described a facile fabrication of silver deposited on the TiO2, Poly Acrylonitrile Co Maleic Anhydride (PAMA) polymer and nickel ferrite composite (NiFe2O4/PAMA/Ag-TiO2) through a three-step procedure. A pre-synthesized NiFe2O4 was first coated with PAMA polymer and then Ag-TiO2 was deposited on the surface of PAMA polymer shell. After the characterization of this three-component composite by various techniques, such as FTIR, XRD, FESEM, BET, TEM and VSM, it was impregnated in standard antibiotic discs. The antibacterial activity of NiFe2O4/PAMA/Ag-TiO2 nanocomposite was investigated against some gram positive and gram negative bacteria by employing disc diffusion assay and then compared with that of naked NiFe2O4, NiFe2O4/Ag, AgNPs and NiFe2O4/PAMA. The results demonstrated that the AgNPs, when embedded in TiO2 and combined with NiFe2O4/PAMA, became an excellent antibacterial agent. The NiFe2O4/PAMA/Ag-TiO2 nanocomposite could be readily separated from water solution after the disinfection process by applying an external magnetic field.

  9. Biocompatible polyurethane/thiacalix[4]arenes functionalized Fe3O4 magnetic nanocomposites: Synthesis and properties.

    PubMed

    Mohammadi, Abbas; Barikani, Mehdi; Lakouraj, Moslem Mansour

    2016-09-01

    In this study, a series of magnetic polyurethane/Fe3O4 elastomer nanocomposites were prepared by covalently embedding novel thiacalix[4]arenes (TC4As) functionalized Fe3O4 nanoparticles (TC4As-Fe3O4) which contain macrocycles with reactive hydroxyl groups. Surface functionalization of Fe3O4 nanoparticles with TC4As macrocycles as unique reactive surface modifier not only gives specific characteristics to Fe3O4 nanoparticles but also improves the interphase interaction between nanoparticles and the polyurethane matrices through covalent attachment of polymer chains to nanoparticle surfaces. The novel synthesized TC4As-Fe3O4 nanoparticles were characterized by FTIR, XRD, TGA, VSM and SEM analysis. Furthermore, the effect of functionalization of Fe3O4 nanoparticles on the various properties of resulting nanocomposites was studied by XRD, TGA, DMTA, SEM, and a universal tensile tester. It was found that the functionalization of nanoparticles with TC4As affords better mechanical and thermal properties to polyurethane nanocomposites in comparison with unmodified nanoparticles. The SEM analysis showed finer dispersion of TC4As-Fe3O4 nanoparticles than unmodified Fe3O4 nanoparticles within the polyurethane matrices, which arising from formation of covalent bonding between TC4As functionalized Fe3O4 nanoparticles and polyurethane matrices. Moreover, the investigation of in vitro biocompatibility of novel nanocomposites showed that these samples are excellent candidate for biomedical use. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Fabrication of graphene oxide decorated with Fe3O4@SiO2 for immobilization of cellulase

    NASA Astrophysics Data System (ADS)

    Li, Yue; Wang, Xiang-Yu; Jiang, Xiao-Ping; Ye, Jing-Jing; Zhang, Ye-Wang; Zhang, Xiao-Yun

    2015-01-01

    Fe3O4@SiO2-graphene oxide (GO) composites were successfully fabricated by chemical binding of functional Fe3O4@SiO2 and GO and applied to immobilization of cellulase via covalent attachment. The prepared composites were further characterized by transmission electron microscopy and Fourier transform infrared spectroscopy. Fe3O4 nanoparticles (NPs) were monodisperse spheres with a mean diameter of 17 ± 0.2 nm. The thickness of SiO2 layer was calculated as being 6.5 ± 0.2 nm. The size of Fe3O4@SiO2 NPs was 24 ± 0.3 nm, similar to that of Fe3O4@SiO2-NH2. Fe3O4@SiO2-GO composites were synthesized by linking of Fe3O4@SiO2-NH2 NPs to GO with the catalysis of EDC and NHS. The prepared composites were used for immobilization of cellulase. A high immobilization yield and efficiency of above 90 % were obtained after the optimization. The half-life of immobilized cellulase (722 min) was 3.34-fold higher than that of free enzyme (216 min) at 50 °C. Compared with the free cellulase, the optimal temperature of the immobilized enzyme was not changed; but the optimal pH was shifted from 5.0 to 4.0, and the thermal stability was enhanced. The immobilized cellulase could be easily separated and reused under magnetic field. These results strongly indicate that the cellulase immobilized onto the Fe3O4@SiO2-GO composite has potential applications in the production of bioethanol.

  11. Preparation and structure of Na2Ag5Fe3(P2O7)4 -Ag metal composite: Insights on electrochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yiman; Marschilok, Amy C.; Takeuchi, Esther S.

    ABSTRACT Ag 7Fe 3(P 2O 7) 4is a 3D structured material which has been recently studied as a possible cathode material for lithium batteries. Notably, Na 7Fe 3(P 2O 7) 4is reported to be a fast-ion conductor, yet poor electrical conductor. Here, partial replacement of Na +for Ag +yielded Na 2Ag 5Fe 3(P 2O 7) 4pyrophosphate framework where the formation of Ag metal is proposed to increase the intrinsic low electrical conductivity of this polyanion electrode. Specifically, the Ag 5Na 2Fe 3(P 2O 7) 4-Ag composite is synthesized via chemical reduction of Ag 7Fe 3(P 2O 7) 4using NaBH 4.more » The occupancy of Ag +and Na +in each site was determined via Rietveld analysis of the diffraction pattern. Electrochemistry of the Ag 5Na 2Fe 3(P 2O 7) 4-Ag metal composite was explored with voltammetry and galvanostatic charge/discharge cycling. The Ag 5Na 2Fe 3(P 2O 7) 4-Ag metal composite electrodes displayed good rate capability assisted by the presence of Ag metal from the chemical reduction and in-situ electrochemical formation of a Ag conductive network.« less

  12. Lightweight reduced graphene oxide-Fe3O4 nanoparticle composite in the quest for an excellent electromagnetic interference shielding material.

    PubMed

    Singh, Ashwani Kumar; Kumar, Ajit; Haldar, Krishna Kamal; Gupta, Vinay; Singh, Kedar

    2018-06-15

    This work reports a detailed study of reduced graphene oxide (rGO)-Fe 3 O 4 nanoparticle composite as an excellent electromagnetic (EM) interference shielding material in GHz range. A rGO-Fe 3 O 4 nanoparticle composite was synthesized using a facile, one step, and modified solvothermal method with the reaction of FeCl 3 , ethylenediamine and graphite oxide powder in the presence of ethylene glycol. Various structural, microstructural and optical characterization tools were used to determine its synthesis and various properties. Dielectric, magnetic and EM shielding parameters were also evaluated to estimate its performance as a shielding material for EM waves. X-ray diffraction patterns have provided information about the structural and crystallographic properties of the as-synthesized material. Scanning electron microscopy micrographs revealed the information regarding the exfoliation of graphite into rGO. Well-dispersed Fe 3 O 4 nanoparticles over the surface of the graphene can easily be seen by employing transmission electron microscopy. For comparison, rGO nanosheets and Fe 3 O 4 nanoparticles have also been synthesized and characterized in a similar fashion. A plot of the dielectric and magnetic characterizations provides some useful information related to various losses and the relaxation process. Shielding effectiveness due to reflection (SE R ), shielding effectiveness due to absorption (SE A ), and total shielding effectiveness (SE T ) were also plotted against frequency over a broad range (8-12 GHz). A significant change in all parameters (SE A value from 5 dB to 35 dB for Fe 3 O 4 nanoparticles to rGO-Fe 3 O 4 nanoparticle composite) was found. An actual shielding effectiveness (SE T ) up to 55 dB was found in the rGO-Fe 3 O 4 nanoparticle composite. These graphs give glimpses of how significantly this material shows shielding effectiveness over a broad range of frequency.

  13. Lightweight reduced graphene oxide-Fe3O4 nanoparticle composite in the quest for an excellent electromagnetic interference shielding material

    NASA Astrophysics Data System (ADS)

    Singh, Ashwani Kumar; Kumar, Ajit; Kamal Haldar, Krishna; Gupta, Vinay; Singh, Kedar

    2018-06-01

    This work reports a detailed study of reduced graphene oxide (rGO)-Fe3O4 nanoparticle composite as an excellent electromagnetic (EM) interference shielding material in GHz range. A rGO-Fe3O4 nanoparticle composite was synthesized using a facile, one step, and modified solvothermal method with the reaction of FeCl3, ethylenediamine and graphite oxide powder in the presence of ethylene glycol. Various structural, microstructural and optical characterization tools were used to determine its synthesis and various properties. Dielectric, magnetic and EM shielding parameters were also evaluated to estimate its performance as a shielding material for EM waves. X-ray diffraction patterns have provided information about the structural and crystallographic properties of the as-synthesized material. Scanning electron microscopy micrographs revealed the information regarding the exfoliation of graphite into rGO. Well-dispersed Fe3O4 nanoparticles over the surface of the graphene can easily be seen by employing transmission electron microscopy. For comparison, rGO nanosheets and Fe3O4 nanoparticles have also been synthesized and characterized in a similar fashion. A plot of the dielectric and magnetic characterizations provides some useful information related to various losses and the relaxation process. Shielding effectiveness due to reflection (SER), shielding effectiveness due to absorption (SEA), and total shielding effectiveness (SET) were also plotted against frequency over a broad range (8–12 GHz). A significant change in all parameters (SEA value from 5 dB to 35 dB for Fe3O4 nanoparticles to rGO-Fe3O4 nanoparticle composite) was found. An actual shielding effectiveness (SET) up to 55 dB was found in the rGO-Fe3O4 nanoparticle composite. These graphs give glimpses of how significantly this material shows shielding effectiveness over a broad range of frequency.

  14. Synthesis and characterization of SiO2/(PMMA/Fe3O4) magnetic nanocomposites.

    PubMed

    Wang, Zhifei; Guo, Yafei; Li, Song; Sun, Yueming; He, Nongyue

    2008-04-01

    Magnetic silica nanocomposites (magnetic nanoparticles core coated by silica shell) have the wide promising applications in the biomedical field and usually been prepared based on the famous Stöber process. However, the flocculation of Fe3O4 nanoparticles easily occurs during the silica coating, which limits the amount of magnetic silica particles produced in the Stöber process. In this paper, PMMA/Fe3O4 nanoparticles were used in the Stöber process instead of the "nude" Fe3O4 nanoparticles. And coating Fe3O4 with PMMA polymer beforehand can prevent magnetic nanoparticles from the aggregation that usually comes from the increasing of ionic strength during the hydrolyzation of tetraethoxysilane (TEOS) by the steric hindrance. The results show that the critical concentration of magnetic nanoparticles can increase from 12 mg/L for "nude" Fe3O4 nanoparticles to 3 g/L for PMMA/Fe3O4 nanoparticles during the Stöber process. And before the deposition of silica shell, the surface of PMMA/FeO4 nanoparticles had to be further modified by hydrolyzing them in CH3OH/NH3 x H2O mixture solution, which provides the carboxyl groups on their surface to react further with the silanol groups of silicic acid.

  15. Structural and magnetic characteristics of PVA/CoFe{sub 2}O{sub 4} nano-composites prepared via mechanical alloying method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rashidi, S.; Ataie, A., E-mail: aataie@ut.ac.ir

    Highlights: • Single phase CoFe{sub 2}O{sub 4} nano-particles synthesized in one step by mechanical alloying. • PVA/CoFe{sub 2}O{sub 4} magnetic nano-composites were fabricated via mechanical milling. • FTIR confirmed the interaction between PVA and magnetic CoFe{sub 2}O{sub 4} particles. • Increasing in milling time and PVA amount led to well dispersion of CoFe{sub 2}O{sub 4}. - Abstract: In this research, polyvinyl alcohol/cobalt ferrite nano-composites were successfully synthesized employing a two-step procedure: the spherical single-phase cobalt ferrite of 20 ± 4 nm mean particle size was synthesized via mechanical alloying method and then embedded into polymer matrix by intensive milling. Themore » results revealed that increase in polyvinyl alcohol content and milling time causes cobalt ferrite particles disperse more homogeneously in polymer matrix, while the mean particle size and shape of cobalt ferrite have not been significantly affected. Transmission electron microscope images indicated that polyvinyl alcohol chains have surrounded the cobalt ferrite nano-particles; also, the interaction between polymer and cobalt ferrite particles in nano-composite samples was confirmed. Magnetic properties evaluation showed that saturation magnetization, coercivity and anisotropy constant values decreased in nano-composite samples compared to pure cobalt ferrite. However, the coercivity values of related nano-composite samples enhanced by increasing PVA amount due to domain wall mechanism.« less

  16. Exchange-coupled Fe3O4/CoFe2O4 nanoparticles for advanced magnetic hyperthermia

    NASA Astrophysics Data System (ADS)

    Glassell, M.; Robles, J.; Das, R.; Phan, M. H.; Srikanth, H.

    Iron oxide nanoparticles especially Fe3O4, γ-Fe2O3 have been extensively studied for magnetic hyperthermia because of their tunable magnetic properties and stable suspension in superparamagnetic regime. However, their relatively low heating capacity hindered practical application. Recently, a large improvement in heating efficiency has been reported in exchange-coupled nanoparticles with exchange coupling between soft and hard magnetic phases. Here, we systematically studied the effect of core and shell size on the heating efficiency of the Fe3O4/CoFe2O4 core/shell nanoparticles. The nanoparticles were synthesized using thermal decomposition of organometallic precursors. Transmission electron microscopy (TEM) showed formation of spherical shaped Fe3O4 and Fe3O-/CoFe2O4 nanoparticles. Magnetic measurements showed high magnetization (≅70 emu/g) and superparamagnetic behavior for the nanoparticles at room temperature. Magnetic hyperthermia results showed a large increase in specific absorption rate (SAR) for 8nm Fe3O4/CoFe2O4 compared to Fe3O4 nanoparticles of the same size. The heating efficiency of the Fe3O4/CoFe2O4 with 1 nm CoFe2O4 (shell) increased from 207 to 220 W/g (for 800 Oe) with increase in core size from 6 to 8 nm. The heating efficiency of the Fe3O4/CoFe2O4 with 2 nm CoFe2O4 (shell) and core size of 8 nm increased from 220 to 460 W/g (for 800 Oe). These exchange-coupled Fe3O4/CoFe2O4 core/shell nanoparticles can be a good candidate for advanced hyperthermia application.

  17. Fe3O4 and metal-organic framework MIL-101(Fe) composites catalyze luminol chemiluminescence for sensitively sensing hydrogen peroxide and glucose.

    PubMed

    Qian Tang, Xue; Dan Zhang, Yi; Wei Jiang, Zhong; Mei Wang, Dong; Zhi Huang, Cheng; Fang Li, Yuan

    2018-03-01

    In this work, Fe 3 O 4 and metal-organic framework MIL-101(Fe) composites (Fe 3 O 4 /MIL-101(Fe)) was demonstrated to possess excellent catalytic property to directly catalyze luminol chemiluminescence without extra oxidants. We utilized Fe 3 O 4 /MIL-101(Fe) to develop a ultra-sensitive quantitative analytical method for H 2 O 2 and glucose. The possible mechanism of the chemiluminescence reaction had been investigated. Under optimal conditions, the relative chemiluminescence intensity was linearly proportional to the logarithm of H 2 O 2 concentration in the range of 5-150nM with a limit of detection of 3.7nM (signal-to-noise ratio = 3), and glucose could be linearly detected in the range from 5 to 100nM and the detection limit was 4.9nM (signal-to-noise ratio = 3). Furthermore, the present approach was successfully applied to quantitative determination of H 2 O 2 in medical disinfectant and glucose in human serum samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. In-situ self-assembly of plant polyphenol-coated Fe3O4 particles for oleaginous microalgae harvesting.

    PubMed

    Wang, Xiaoyu; Zhao, Yuan; Jiang, Xiaoxue; Liu, Lijun; Li, Xue; Li, Huixian; Liang, Wenyan

    2018-05-15

    Plant polyphenol (PP), a natural polymer from the Larix gmelinii, was selected as the surfactant to synthesize Fe 3 O 4 . The Fe 3 O 4 -PP composite was prepared by in-situ self-assembly in solvothermal synthesis, and characterized using FE-SEM, TEM, XRD, FTIR, XPS, TGA, and VSM. The harvesting efficiency of Chlorella vulgaris was investigated under different parameters, including algal organic matter, dosage, and pH. The results showed that the core-shell sphere of Fe 3 O 4 -PP (∼150 nm) was coated by ∼50 nm PP with a saturated magnetization of 40.0 emu/g. The Fe 3 O 4 -PP could be directly applied to the culture broth (1.5 g dry cell weight/L, pH = 9.03), achieving 93.0% of harvesting efficiency at 20 g/L. Cells were detached from the harvested aggregates by adjusting pH value to 9.80 and with ultrasonication, which achieved 95.6% of recovery efficiency. The recycled Fe 3 O 4 -PP showed high stabilities in surface properties, maintaining more than 87.5% of harvesting efficiency after five recycles. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Facile transformation of FeO/Fe3O4 core-shell nanocubes to Fe3O4 via magnetic stimulation

    NASA Astrophysics Data System (ADS)

    Lak, Aidin; Niculaes, Dina; Anyfantis, George C.; Bertoni, Giovanni; Barthel, Markus J.; Marras, Sergio; Cassani, Marco; Nitti, Simone; Athanassiou, Athanassia; Giannini, Cinzia; Pellegrino, Teresa

    2016-09-01

    Here, we propose the use of magnetic hyperthermia as a means to trigger the oxidation of Fe1-xO/Fe3O4 core-shell nanocubes to Fe3O4 phase. As a first relevant consequence, the specific absorption rate (SAR) of the initial core-shell nanocubes doubles after exposure to 25 cycles of alternating magnetic field stimulation. The improved SAR value was attributed to a gradual transformation of the Fe1-xO core to Fe3O4, as evidenced by structural analysis including high resolution electron microscopy and Rietveld analysis of X-ray diffraction patterns. The magnetically oxidized nanocubes, having large and coherent Fe3O4 domains, reveal high saturation magnetization and behave superparamagnetically at room temperature. In comparison, the treatment of the same starting core-shell nanocubes by commonly used thermal annealing process renders a transformation to γ-Fe2O3. In contrast to other thermal annealing processes, the method here presented has the advantage of promoting the oxidation at a macroscopic temperature below 37 °C. Using this soft oxidation process, we demonstrate that biotin-functionalized core-shell nanocubes can undergo a mild self-oxidation transformation without losing their functional molecular binding activity.

  20. Structural, dielectric and magnetic properties of ZnFe2O4-Na0.5Bi0.5TiO3 multiferroic composites

    NASA Astrophysics Data System (ADS)

    Bhasin, Tanvi; Agarwal, Ashish; Sanghi, Sujata; Yadav, Manisha; Tuteja, Muskaan; Singh, Jogender; Rani, Sonia

    2018-04-01

    Multiferroic xNa0.5Bi0.5TiO3-(1-x)ZnFe2O4 (x=0.10, 0.20) composites were prepared by conventional solid state reaction method. Rietveld analysis of XRD data shows that samples exhibit both cubic (Fd-3m) and rhombohedral (R3c) crystal structure. Structural parameters and unit cell volume of samples vary with composition. The dielectric constant and dielectric loss (tanδ) display dispersion at low frequency due to space charge polarization and inhomogeneity in the composites. Magnetic analysis depicts the antiferromagnetic behavior of composites and magnetization is enhanced with the introduction of ferrite (ZnFe2O4) phase.

  1. Exchange-coupled Fe3O4/CoFe2O4 nanoparticles for advanced magnetic hyperthermia

    NASA Astrophysics Data System (ADS)

    Robles, J.; Das, R.; Glassell, M.; Phan, M. H.; Srikanth, H.

    2018-05-01

    We report a systematic study of the effects of core and shell size on the magnetic properties and heating efficiency of exchange-coupled Fe3O4/CoFe2O4 core/shell nanoparticles. The nanoparticles were synthesized using thermal decomposition of organometallic precursors. Transmission electron microscopy (TEM) confirmed the formation of spherical Fe3O4 and Fe3O4/CoFe2O4 nanoparticles. Magnetic measurements showed high saturation magnetization for the nanoparticles at room temperature. Increasing core diameter (6.4±0.7, 7.8±0.1, 9.6±1.2 nm) and/or shell thickness (˜1, 2, 4 nm) increased the coercive field (HC), while an optimal value of saturation magnetization (MS) was achieved for the Fe3O4 (7.8±0.1nm)/CoFe2O4 (2.1±0.1nm) nanoparticles. Magnetic hyperthermia measurements indicated a large increase in specific absorption rate (SAR) for 8.2±1.1 nm Fe3O4/CoFe2O4 compared to Fe3O4 nanoparticles of same size. The SAR of the Fe3O4/CoFe2O4 nanoparticles increased from 199 to 461 W/g for 800 Oe as the thickness of the CoFe2O4 shell was increased from 0.9±0.5 to 2.1±0.1 nm. The SAR enhancement is attributed to a combination of the large MS and the large HC. Therefore, these Fe3O4/CoFe2O4 core/shell nanoparticles can be a good candidate for advanced hyperthermia application.

  2. Effective reduction of p-nitrophenol by silver nanoparticle loaded on magnetic Fe3O4/ATO nano-composite

    NASA Astrophysics Data System (ADS)

    Karki, Hem Prakash; Ojha, Devi Prashad; Joshi, Mahesh Kumar; Kim, Han Joo

    2018-03-01

    A silver loaded hematite (Fe3O4) and antimony doped tin oxide (ATO) magnetic nano-composite (Ag-Fe3O4/ATO) was successfully synthesized by in situ one pot green and facile hydrothermal process. The formation of nano-composite, its structure, morphology, and stability were characterized by field emission scanning electron microscopy (FE-SEM), high resolution transmission electron microscopy (HRTEM), electron diffraction spectroscopy (EDS), elemental mapping by high resolution scanning transmission electron microscopy (STEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infra-red spectroscopy (FTIR). UV-vis spectroscopy was used to monitor the catalytic reduction of p-nitrophenol (PNP) into p-aminophenol (PAP) in presence of Ag-Fe3O4/ATO nano-composite with excess of sodium borohydride (NaBH4). The pseudo-first order kinetic equation could describe the reduction of p-nitrophenol with excess of NaBH4. For the first time, ATO surface was used for hydrothermal growth of silver and iron oxide magnetic nanoparticles. The in situ growth of these nanoparticles provided an effective bonding of components of the nano-composite over the surface of ATO nanoparticles. This nano-composite exhibited easy synthesis, high stability, cost effective and rapid separation using external magnet. The excellent catalytic and anti-bacterial activity of as-synthesized silver nano-composite makes it potential nano-catalyst for waste water treatment as well as biomedical application.

  3. Profound Interfacial Effects in CoFe2O4/Fe3O4 and Fe3O4/CoFe2O4 Core/Shell Nanoparticles

    NASA Astrophysics Data System (ADS)

    Polishchuk, Dmytro; Nedelko, Natalia; Solopan, Sergii; Ślawska-Waniewska, Anna; Zamorskyi, Vladyslav; Tovstolytkin, Alexandr; Belous, Anatolii

    2018-03-01

    Two sets of core/shell magnetic nanoparticles, CoFe2O4/Fe3O4 and Fe3O4/CoFe2O4, with a fixed diameter of the core ( 4.1 and 6.3 nm for the former and latter sets, respectively) and thickness of shells up to 2.5 nm were synthesized from metal chlorides in a diethylene glycol solution. The nanoparticles were characterized by X-ray diffraction, transmission electron microscopy, and magnetic measurements. The analysis of the results of magnetic measurements shows that coating of magnetic nanoparticles with the shells results in two simultaneous effects: first, it modifies the parameters of the core-shell interface, and second, it makes the particles acquire combined features of the core and the shell. The first effect becomes especially prominent when the parameters of core and shell strongly differ from each other. The results obtained are useful for optimizing and tailoring the parameters of core/shell spinel ferrite magnetic nanoparticles for their use in various technological and biomedical applications.

  4. Fe3O4@NiSx/rGO composites with amounts of heterointerfaces and enhanced electrocatalytic properties for oxygen evolution

    NASA Astrophysics Data System (ADS)

    Zhu, Guoxing; Xie, Xulan; Liu, Yuanjun; Li, Xiaoyun; Xu, Keqiang; Shen, Xiaoping; Yao, Yinjie; Shah, Sayyar Ali

    2018-06-01

    The sluggish oxygen evolution kinetics involved in water splitting and various metal-air batteries makes the effective and inexpensive electrocatalysts be highly desirable for oxygen evolution reaction (OER). Herein, an effective and facile two-step route is developed to construct Fe3O4@NiSx composite loaded on reduced graphene oxide (rGO). The morphology and microstructure of the composites were characterized by different characterization techniques. The obtained composites show amounts of heterointerfaces. The shift of binding energy in X-ray photoelectron spectrum demonstrates the existence of interfacial charge transfer effect between Fe3O4 and NiSx. The optimized Fe3O4@NiSx/rGO sample exhibits excellent electrocatalytic performance toward OER in alkaline media, showing 10 mA·cm-2 at η = 330 mV, lower Tafel slope (35.5 mV·dec-1), and good durability, demonstrating a great perspective. The excellent OER performance can be ascribed to the synergetic effect between Fe and Ni species. It is believed that the heterointerfaces between Fe3O4 and NiSx perform as active centers for OER.

  5. A facile synthesis of Fe3O4-charcoal composite for the sorption of a hazardous dye from aquatic environment.

    PubMed

    Ahmed, Md Juned K; Ahmaruzzaman, M

    2015-11-01

    Herein, we synthesized Fe3O4-charcoal composite using chemical precipitation technique and utilized it for the sorption of methylene blue from aqueous solution. The synthesized composite was characterized by Infra-red spectroscopy, N2 adsorption-desorption isotherm, X-ray diffraction, selected area electron diffraction, transmission electron microscopy, and vibrating sample magnetometer. The composite depicts absorption bands conforming to Fe-O, -OH, CO, and C-O vibrations. The composite was mesoporous in nature with a surface area of 387.30 m(2) g(-1). The observed diffraction planes correspond to face-centered cubic Fe3O4 and disordered graphitic carbon. The spherical Fe3O4 particles (average diameter ∼13.8 nm) were uniformly distributed in the carbon matrix of the charcoal. The saturation and remanent magnetizations demonstrate its potential for magnetic separation and reuse. The composite showed dye sorption capacities of 97.49 mg g(-1) and 90.85 mg g(-1) in batch and fixed-bed system. Pseudo-second order kinetics and Temkin isotherm best represented the sorption data. The sorption process was endothermic, spontaneous, and administered by electrostatic, π-π dispersive interactions, film, and intraparticle diffusion. Microwave irradiations followed by methanol elution regenerated the dye-loaded composite with nearly no loss in sorption capacity. The recovery of energy and potential utilization of bottom ash enhances the prospective of Fe3O4-charcoal composite for industrial applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Activated carbon/Fe(3)O(4) nanoparticle composite: fabrication, methyl orange removal and regeneration by hydrogen peroxide.

    PubMed

    Do, Manh Huy; Phan, Ngoc Hoa; Nguyen, Thi Dung; Pham, Thi Thu Suong; Nguyen, Van Khoa; Vu, Thi Thuy Trang; Nguyen, Thi Kim Phuong

    2011-11-01

    In the water treatment field, activated carbons (ACs) have wide applications in adsorptions. However, the applications are limited by difficulties encountered in separation and regeneration processes. Here, activated carbon/Fe(3)O(4) nanoparticle composites, which combine the adsorption features of powdered activated carbon (PAC) with the magnetic and excellent catalytic properties of Fe(3)O(4) nanoparticles, were fabricated by a modified impregnation method using HNO(3) as the carbon modifying agent. The obtained composites were characterized by X-ray diffraction, scanning and transmission electron microscopy, nitrogen adsorption isotherms and vibrating sample magnetometer. Their performance for methyl orange (MO) removal by adsorption was evaluated. The regeneration of the composite and PAC-HNO(3) (powdered activated carbon modified by HNO(3)) adsorbed MO by hydrogen peroxide was investigated. The composites had a high specific surface area and porosity and a superparamagnetic property that shows they can be manipulated by an external magnetic field. Adsorption experiments showed that the MO sorption process on the composites followed pseudo-second order kinetic model and the adsorption isotherm date could be simulated with both the Freundlich and Langmuir models. The regeneration indicated that the presence of the Fe(3)O(4) nanoparticles is important for a achieving high regeneration efficiency by hydrogen peroxide. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Polyaniline/Fe3O4-RGO Nanocomposites for Microwave Absorption

    NASA Astrophysics Data System (ADS)

    Mathew, Jithin; Sathishkumar, M.; Kothurkar, Nikhil K.; Senthilkumar, R.; Sabarish Narayanan, B.

    2018-02-01

    Fe3O4 nanoparticles were synthesized by co-precipitation of ferric chloride (FeCl3) and ferrous chloride (FeCl2). Reduced graphene oxide (RGO) was prepared by reducing the graphene oxide, which was synthesized by Hummer’s method, using hydrazine hydrate. Three nanocomposites based on sodium dodecyl benzene sulphonate (SDBS)-doped polyaniline were synthesized through in situ polymerization in the presence of the fillers (i) Fe3O4, (ii) reduced graphene oxide (RGO) and (iii) Fe3O4-decorated RGO respectively. The synthesized PANI and the composites were characterized by X-ray diffraction, Fourier transform infrared spectroscopy and transmission electron microscopy. Their microstructures, electrical conductivities, and EMI shielding effectiveness were studied. The nanocomposite containing 10 % RGO showed the maximum electrical conductivity and the one with 10 % RGO and 10 % Fe3O4 showed the maximum EMI shielding effectiveness of 7.5 dB for a 1 mm thick sample.

  8. Radio frequency shielding behaviour of silane treated Fe2O3/E-glass fibre reinforced epoxy hybrid composite

    NASA Astrophysics Data System (ADS)

    Arun prakash, V. R.; Rajadurai, A.

    2016-10-01

    In this work, radio frequency shielding behaviour of polymer (epoxy) matrixes composed of E-glass fibres and Fe2O3 fillers have been studied. The principal aim of this project is to prepare suitable shielding material for RFID application. When RFID unit is pasted on a metal plate without shielding material, the sensing distance is reduced, resulting in a less than useful RFID system. To improve RF shielding of epoxy, fibres and fillers were utilized. Magnetic behaviour of epoxy polymer composites was measured by hysteresis graphs (B-H) followed by radio frequency identifier setup. Fe2O3 particles of sizes 800, 200 and 100 nm and E-glass fibre woven mat of 600 g/m2 were used to make composites. Particle sizes of 800 nm and 200 nm were prepared by high-energy ball milling, whereas particles of 100 nm were prepared by sol-gel method. To enhance better dispersion of particles within the epoxy matrix, a surface modification process was carried out on fillers by an amino functional coupling agent called 3-Aminopropyltrimethoxysilane (APTMS). Crystalline and functional groups of siliconized Fe2O3 particles were characterized by XRD and FTIR spectroscopy analysis. Variable quantity of E-glass fibre (25, 35, and 45 vol%) was laid down along with 0.5 and 1.0 vol% of 800, 200, and 100 nm size Fe2O3 particles into the matrix, to fabricate the hybrid composites. Scanning electron microscopy and transmission electron microscopy images reveal the shape and size of Fe2O3 particles for different milling times and particle dispersion in the epoxy matrix. The maximum improved sensing distance of 45.2, 39.4 and 43.5 % was observed for low-, high-, and ultra-high radio frequency identifier setup along with shielding composite consist of epoxy, 1 vol% 200 nm Fe2O3 particles and 45 vol% of E-glass fibre.

  9. Incorporation of Fe3O4/CNTs nanocomposite in an epoxy coating for corrosion protection of carbon steel

    NASA Astrophysics Data System (ADS)

    Pham, Gia Vu; Truc Trinh, Anh; To, Thi Xuan Hang; Duong Nguyen, Thuy; Trang Nguyen, Thu; Hoan Nguyen, Xuan

    2014-09-01

    In this study Fe3O4/CNTs composite with magnetic property was prepared by attaching magnetic nanoparticles (Fe3O4) to carbon nanotubes (CNTs) by hydrothermal method. The obtained Fe3O4/CNTs composite was characterized by Fourier transform infrared (FTIR) spectroscopy, powder x-ray diffraction and transmission electron microscopy. The Fe3O4/CNTs composite was then incorporated into an epoxy coating at concentration of 3 wt%. Corrosion protection of epoxy coating containing Fe3O4/CNTs composite was evaluated by electrochemical impedance spectroscopy and adhesion measurement. The impedance measurements show that Fe3O4/CNTs composite enhanced the corrosion protection of epoxy coating. The corrosion resistance of the carbon steel coated by epoxy coating containing Fe3O4/CNTs composite was significantly higher than that of carbon steel coated by clear epoxy coating and epoxy coating containing CNTs. FE-SEM photographs of fracture surface of coatings showed good dispersion of Fe3O4/CNTs composite in the epoxy matrix.

  10. Oxidase-functionalized Fe(3)O(4) nanoparticles for fluorescence sensing of specific substrate.

    PubMed

    Liu, Cheng-Hao; Tseng, Wei-Lung

    2011-10-03

    This study reports the development of a reusable, single-step system for the detection of specific substrates using oxidase-functionalized Fe(3)O(4) nanoparticles (NPs) as a bienzyme system and using amplex ultrared (AU) as a fluorogenic substrate. In the presence of H(2)O(2), the reaction pH between Fe(3)O(4) NPs and AU was similar to the reaction of oxidase and the substrate. The catalytic activity of Fe(3)O(4) NPs with AU was nearly unchanged following modification with poly(diallyldimethylammonium chloride) (PDDA). Based on these features, we prepared a composite of PDDA-modified Fe(3)O(4) NPs and oxidase for the quantification of specific substrates through the H(2)O(2)-mediated oxidation of AU. By monitoring fluorescence intensity at 587 nm of oxidized AU, the minimum detectable concentrations of glucose, galactose, and choline were found to be 3, 2, and 20 μM using glucose oxidase-Fe(3)O(4), galactose oxidase-Fe(3)O(4), and choline oxidase-Fe(3)O(4) composites, respectively. The identification of glucose in blood was selected as the model to validate the applicability of this proposed method. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Uniform Fe3O4 coating on flower-like ZnO nanostructures by atomic layer deposition for electromagnetic wave absorption.

    PubMed

    Wan, Gengping; Wang, Guizhen; Huang, Xianqin; Zhao, Haonan; Li, Xinyue; Wang, Kan; Yu, Lei; Peng, Xiange; Qin, Yong

    2015-11-21

    An elegant atomic layer deposition (ALD) method has been employed for controllable preparation of a uniform Fe3O4-coated ZnO (ZnO@Fe3O4) core-shell flower-like nanostructure. The Fe3O4 coating thickness of the ZnO@Fe3O4 nanostructure can be tuned by varying the cycle number of ALD Fe2O3. When serving as additives for microwave absorption, the ZnO@Fe3O4-paraffin composites exhibit a higher absorption capacity than the ZnO-paraffin composites. For ZnO@500-Fe3O4, the effective absorption bandwidth below -10 dB can reach 5.2 GHz and the RL values below -20 dB also cover a wide frequency range of 11.6-14.2 GHz when the coating thickness is 2.3 mm, suggesting its potential application in the treatment of the electromagnetic pollution problem. On the basis of experimental observations, a mechanism has been proposed to understand the enhanced microwave absorption properties of the ZnO@Fe3O4 composites.

  12. Multifunctional Fe3O4/ZnO nanocomposites with magnetic and optical properties.

    PubMed

    Zou, Peng; Hong, Xia; Chu, Xueying; Li, Yajun; Liu, Yichun

    2010-03-01

    Multifunctional Fe3O4/ZnO nanocomposites were successfully synthesized through two-step solution-based methods. Fe3O4 nanoparticles were used as seeds for the deposit and growth of ZnO nanocrystals. Transmission electron microscopy (TEM) images, X-ray diffraction (XRD) patterns, and inductively coupled plasma-atomic emission spectroscopy (ICP-AES) were employed to observe the morphology, size, structure, and crystalline phase of the nanocomposites and confirm their chemical composition. The results of magnetization curves, resonant Raman scattering, and photoluminescence spectra revealed that the nanocomposites simultaneously possessed the super-paramagnetism of Fe3O4 and the multiphonon resonant Raman scattering and photoluminescence (PL) properties of ZnO. Compared with that of pure Fe3O4, the saturation magnetization of the Fe3O4 component within the nanocomposites was enhanced. The Raman spectroscopic fingerprint of ZnO component was preserved, and the fluorescent background was efficiently reduced. The interfacial effect was found to play an important role in modulating or improving the properties of the nanocomposites.

  13. Intercalating graphene with clusters of Fe3O4 nanocrystals for electrochemical supercapacitors

    NASA Astrophysics Data System (ADS)

    Ke, Qingqing; Tang, Chunhua; Liu, Yanqiong; Liu, Huajun; Wang, John

    2014-04-01

    A hierarchical nanostructure consisting of graphene sheets intercalated by clusters of Fe3O4 nanocystals is developed for high-performance supercapacitor electrode. Here we show that the negatively charged graphene oxide (GO) and positively charged Fe3O4 clusters enable a strong electrostatic interaction, generating a hierarchical 3D nanostructure, which gives rise to the intercalated composites through a rational hydrothermal process. The electrocapacitive behavior of the resultant composites is systematically investigated by cyclic voltammeter and galvanostatic charge-discharge techniques, where a positive synergistic effect between graphene and Fe3O4 clusters is identified. A maximum specific capacitance of 169 F g-1 is achieved in the Fe3O4 clusters decorated with effectively reduced graphene oxide (Fe3O4-rGO-12h), which is much higher than those of rGO (101 F g-1) and Fe3O4 (68 F g-1) at the current density of 1 Ag-1. Moreover, this intercalated hierarchical nanostructure demonstrates a good capacitance retention, retaining over 88% of the initial capacity after 1000 cycles.

  14. Photocatalysis applications of some hybrid polymeric composites incorporating TiO2 nanoparticles and their combinations with SiO2/Fe2O3

    PubMed Central

    Buruiana, Tinca; Melinte, Violeta; Buruiana, Emil C

    2017-01-01

    Polymer nanocomposites containing titanium oxide nanoparticles (TiO2 NPs) combined with other inorganic components (Si–O–Si or/and γ-Fe2O3) were prepared by the dispersion of premade NPs (nanocrystalline TiO2, TiO2/SiO2, TiO2/Fe2O3, TiO2/SiO2/Fe2O3) within a photopolymerizable urethane dimethacrylate (polytetrahydrofuran-urethane dimethacrylate, PTHF-UDMA). The physicochemical characterization of nanoparticles and hybrid polymeric composites with 10 wt % NPs (S1–S4) was realized through XRD, TEM and FTIR analyses. The mean size (10–30 nm) and the crystallinity of the NPs varied as a function of the inorganic constituent. The catalytic activity of these hybrid films was tested for the photodegradation of phenol, hydroquinone and dopamine in aqueous solution under UV or visible-light irradiation. The best results were obtained for the films with TiO2/Fe2O3 or TiO2/SiO2/Fe2O3 NPs. The degradation of the mentioned model pollutants varied between 71% and 100% (after 250 min of irradiation) depending on the composition of the hybrid film tested and the light applied (UV–visible light). Also, it was established that such hybrid films can be reused at least for five cycles, without losing too much of the photocatalytic efficiency (ca. 7%). These findings could have implications in the development of new nanocatalysts. PMID:28243566

  15. [Preparation of molecularly imprinted polypyrrole/Fe3O4 composite material and its application in recognition of tryptophan enantiomers].

    PubMed

    Chen, Zhidong; Shan, Xueling; Kong, Yong

    2012-04-01

    Ferrosoferric oxide (Fe(3)O(4)) magnetic material was first synthesized, and then the in-situ chemical polymerization of pyrrole was carried out on the surface of Fe(3)O(4) by using pyrole and L-tryptophan (L-Trp) as the functional monomer and templates, respectively. As a result, molecularly imprinted polypyrrole/Fe(3)O(4) composite material was obtained. This composite material was separated from the solution because of its magnetic property. Polypyrrole in the composite was overoxidized in 1 mol/L NaOH solution by applying a potential of 1.0 V, and thus L-Trp templates were de-deoped from the composite. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and electrochemical methods were employed to characterize the composite. The solution containing L- or D-Trp was pumped through a porous ceramic tube packed with the composite, separately. High performance liquid chromatography (HPLC) was adopted for the detection of L- or D-Trp in the eluate, and the results indicated that the enrichment ability of the composite for L-Trp was almost 2 times that of D-Trp. Therefore, the electro-magnetic composite material has potential applications as chromatographic stationary phase for chiral recognition.

  16. Study of AC Magnetic Properties and Core Losses of Fe/Fe3O4-epoxy Resin Soft Magnetic Composite

    NASA Astrophysics Data System (ADS)

    Laxminarayana, T. A.; Manna, Subhendu Kumar; Fernandes, B. G.; Venkataramani, N.

    Soft Magnetic Composites (SMC) were prepared by coating of nanocrystalline Fe3O4 particles, synthesized by co-precipitation method, on atomized iron powder of particle size less than 53 μm in size using epoxy resin as a binder between iron and Fe3O4. Fe3O4 was chosen, for its high electric resistivity and suitable magnetic properties, to keep the coating layer magnetic and seek improvement to the magnetic properties of SMC. SEM images and XRD patterns were recorded in order to investigate the coatings on the surface of iron powder. A toroid was prepared by cold compaction of coated iron powder at 1050 MPa and subsequently cured at 150˚C for 1 hr in argon atmosphere. For comparison of properties, a toroid of uncoated iron powder was also compacted at 1050 MPa and annealed at 600˚C for 2 hr in argon atmosphere. The coated iron powder composite has a resistivity of greater than 200 μΩm, measured by four probe method. A comparison of Magnetic Hysteresis loops and core losses using B-H Loop tracer in the frequency range 0 to 1500 Hz on the coated and uncoated iron powder is reported.

  17. Fabrication and photocatalytic property of magnetic NiFe2O4/Cu2O composites

    NASA Astrophysics Data System (ADS)

    He, Zuming; Xia, Yongmei; Tang, Bin; Su, Jiangbin

    2017-09-01

    Magnetically separable NiFe2O4/Cu2O composites were successfully synthesized by a two-step method. The samples were characterized by XRD, XPS, SEM and VSM as well as their PL spectra and UV-vis adsorption spectra. The results showed that the NiFe2O4/Cu2O composites were composed of cubic-structured Cu2O and spinel-structured NiFe2O4, were able to absorb a large amount of visible light, exhibited excellent photocatalytic activity under simulated solar light irradiation and could be easily separated by an external magnetic field. The NiFe2O4/Cu2O composites exhibited higher photocatalytic performance than that of a single semiconductor. It was found that the prominently enhanced photocatalytic performance of NiFe2O4/Cu2O composites was ascribed to the effective separation of photo-generated electron-hole pairs and the effective generation of the hydroxyl radical •OH.

  18. The Adsorption Capacity of GONs/CMC/Fe3O4 Magnetic Composite Microspheres and Applications for Purifying Dye Wastewater

    PubMed Central

    Lv, Shenghua; Zhu, Linlin; Li, Ying; Jia, Chunmao; Sun, Shiyu

    2017-01-01

    Graphene oxide nanosheets (GONs)/carboxymethyl chitosan (CMC)/Fe3O4 magnetic composite microspheres (MCMs) were prepared by enclosing Fe3O4 particles with CMC and GONs in turn. The microstructures of GONs and GONs/CMC/Fe3O4 MCMs were characterized by FTIR, XRD, TEM, and SEM. The effects of GON content, pH value, and adsorption time on the adsorption capacity of the MCMs were investigated. The results show that the GONs/CMC/Fe3O4 MCMs have a greater specific surface area and a strong adsorption capacity for dye wastewater. Meanwhile, the adsorption mechanism was investigated, and the results accorded with the pseudo-second-order kinetic model and the Freundlich isotherm model. The search results indicate that GONs/CMC/Fe3O4 MCMs can be used to purify dye wastewater and has an important potential use in the practical purification of dye wastewater. PMID:28772419

  19. Degradation of sulfamethazine using Fe3O4-Mn3O4/reduced graphene oxide hybrid as Fenton-like catalyst.

    PubMed

    Wan, Zhong; Wang, Jianlong

    2017-02-15

    In this paper, Fe 3 O 4 -Mn 3 O 4 /reduced graphene oxide (RGO) hybrid was synthesized through polyol process and impregnation method and used as heterogeneous Fenton-like catalyst for degradation of sulfamethazine (SMT) in aqueous solution. The hybrid catalyst had higher catalytic efficiency compared with Fe 3 O 4 -Mn 3 O 4 and Mn 3 O 4 as catalyst for degradation of SMT . The effects of pH value, H 2 O 2 concentration, catalyst dosage, initial SMT concentration and temperature on SMT degradation were investigated. The removal efficiency of SMT was about 98% at following optimal conditions: pH=3, T=35°C, Fe 3 O 4 /Mn 3 O 4 -RGO composites=0.5g/L, H 2 O 2 =6mM. The inhibitor experiments indicated that the main active species was hydroxyl radicals (·OH) on catalyst surface. At last, the possible catalytic mechanism was proposed. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Synthesis of composite magnetic nanoparticles Fe3O4 with alendronate for osteoporosis treatment

    PubMed Central

    Lee, Ming-Song; Su, Chao-Ming; Yeh, Jih-Chao; Wu, Pei-Ru; Tsai, Tien-Yao; Lou, Shyh-Liang

    2016-01-01

    Osteoporosis is a result of imbalance between bone formation by osteoblasts and resorption by osteoclasts (OCs). In the present study, we investigated the potential of limiting the aggravation of osteoporosis by reducing the activity of OCs through thermolysis. The proposed method is to synthesize bisphosphonate (Bis)-conjugated iron (II, III) oxide (Fe3O4) nanoparticles and incorporate them into OCs. The cells should be subsequently exposed to radiofrequency (RF) to induce thermolysis. In this study, particles of Fe3O4 were first synthesized by chemical co-precipitation and then coated with dextran (Dex). The Dex/Fe3O4 particles were then conjugated with Bis to form Bis/Dex/Fe3O4. Transmission electron microscopy revealed that the average diameter of the Bis/Dex/Fe3O4 particles was ~20 nm. All three kinds of nanoparticles were found to have cubic inverse spinel structure of Fe3O4 by the X-ray diffraction analysis. Fourier transform infrared spectroscopy confirmed that the Dex/Fe3O4 and Bis/Dex/Fe3O4 nanoparticles possessed their respective Dex and Bis functional groups, while a superconducting quantum interference device magnetometer measured the magnetic moment to be 24.5 emu. In addition, the Bis/Dex/Fe3O4 nanoparticles were fully dispersed in double-distilled water. Osteoblasts and OCs were individually cultured with the nanoparticles, and an MTT assay revealed that they were non-cytotoxic. An RF system (42 kHz and 450 A) was used to raise the temperature of the nanoparticles for 20 minutes, and the thermal effect was found to be sufficient to destroy OCs. Furthermore, in vivo studies verified that nanoparticles were indeed magnetic resonance imaging contrast agents and that they accumulated after being injected into the body of rats. In conclusion, we developed a water-dispersible magnetic nanoparticle that had RF-induced thermogenic properties, and the results indicated that the Bis/Dex/Fe3O4 nanoparticle had the potential for controlling osteoporosis. PMID

  1. A novel flake-ball-like magnetic Fe3O4/γ-MnO2 meso-porous nano-composite: Adsorption of fluorinion and effect of water chemistry.

    PubMed

    Zhao, Zhiwei; Geng, Cong; Yang, Chun; Cui, Fuyi; Liang, Zhijie

    2018-06-15

    A novel flake-ball-like magnetic Fe 3 O 4 /γ-MnO 2 meso-porous nano-composite was synthesized and characterized for defluoridation. Adsorption process, characters, and effects of solution chemistry on the adsorption of flourinion in Fe 3 O 4 /γ-MnO 2 were evaluated. The results show that the adsorption of fluorinion in the Fe 3 O 4 /γ-MnO 2 nano-composite is fitted with the Pseudo-first model and the Langmuir model, indicating that the adsorption process of fluorinion in the Fe 3 O 4 /γ-MnO 2 nano-composite was a physical process and not only controlled by the film diffusion but also controlled by the intra-particle diffusion and surface adsorption. It shows that the adsorption of fluorinion sharply decrease with the increase of pH due to the negative changed surface of Fe 3 O 4 /γ-MnO 2 in water and the competition of OH - for the active points. The competition from decreases the adsorption of fluoride in the order of Cl -  < NO 3 -  < SO 4 2- , which relied on the ratio of charge towards radius (z/r) of the anions, and the negatively charged humic acid competed with fluorinion for the adsorption sites. Based on the adsorption results and the XPS analysis, the OMn bond in the raw adsorbent supported the active site (OMnOH) for fluoride adsorption by forming an OMnF bond on the surface of Fe3O4/γ-MnO2. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Interaction mechanisms between α-Fe2O3, γ-Fe2O3 and Fe3O4 nanoparticles and Citrus maxima seedlings.

    PubMed

    Li, Junli; Hu, Jing; Xiao, Lian; Wang, Yunqiang; Wang, Xilong

    2018-06-01

    The interactions between α-Fe 2 O 3 , γ-Fe 2 O 3 , and Fe 3 O 4 nanoparticles (NPs) and Citrus maxima seedlings were examined so as to better understand possible particle applications as an Fe source for crop plants. NPs toxicity to the exposed plant was investigated as well. The α- and γ-Fe 2 O 3 NPs were accumulated by plant root cells through diapirism and endocytosis, respectively, but translocation to the shoots was negligible. Analysis of malondialdehyde (MDA), soluble protein content, and antioxidant enzyme activity revealed that Fe deficiency induced strong oxidative stress in Citrus maxima seedlings, which followed an order of Fe deficiency>Fe 3+ >α-Fe 2 O 3 , γ-Fe 2 O 3 NPs>Fe 3 O 4 NPs. However, the chlorophyll leaf content of plants exposed to α-Fe 2 O 3 , γ-Fe 2 O 3 , Fe 3 O 4 NPs and Fe 3+ were significantly reduced by 31.1%, 14.8%, 18.8% and 22.0%, respectively, relative to the control. Furthermore, RT-PCR analysis revealed no up-regulation of AHA and Nramp3 genes in Citrus maxima roots; however, the relative FRO2 gene expression upon exposure to iron oxide NPs was 1.4-2.8-fold higher than the control. Ferric reductase activity was consistently enhanced upon iron oxide NPs exposure. These findings advance understanding of the interaction mechanisms between metal oxide NPs and plants, and provide important knowledge need for the possible application of these materials in agriculture. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Removal of Cs+ from water and soil by ammonium-pillared montmorillonite/Fe3O4 composite.

    PubMed

    Zheng, Xianming; Dou, Junfeng; Yuan, Jing; Qin, Wei; Hong, Xiaoxi; Ding, Aizhong

    2017-06-01

    To remove cesium ions from water and soil, a novel adsorbent was synthesized by following a one-step co-precipitation method and using non-toxic raw materials. By combining ammonium-pillared montmorillonite (MMT) and magnetic nanoparticles (Fe 3 O 4 ), an MMT/Fe 3 O 4 composite was prepared and characterized. The adsorbent exhibited high selectivity of Cs + and could be rapidly separated from the mixed solution under an external magnetic field. Above all, the adsorbent had high removal efficiency in cesium-contaminated samples (water and soil) and also showed good recycling performance, indicating that the MMT/Fe 3 O 4 composite could be widely applied to the remediation of cesium-contaminated environments. It was observed that the pH, solid/liquid ratio and initial concentration affected adsorption capacity. In the presence of coexisting ions, the adsorption capacity decreased in the order of Ca 2+ >Mg 2+ >K + >Na + , which is consistent with our theoretical prediction. The adsorption behavior of this new adsorbent could be expressed by the pseudo-second-order model and Freundlich isotherm. In addition, the adsorption mechanism of Cs + was NH 4 + ion exchange and surface hydroxyl group coordination, with the former being more predominant. Copyright © 2016. Published by Elsevier B.V.

  4. Production of nearly monodisperse Fe3O4 and Fe@Fe3O4 nanoparticles in aqueous medium and their surface modification for biomedical applications

    NASA Astrophysics Data System (ADS)

    Tegafaw, Tirusew; Xu, Wenlong; Lee, Sang Hyup; Chae, Kwon Seok; Chang, Yongmin; Lee, Gang Ho

    2017-02-01

    Iron (Fe)-based nanoparticles are extremely valuable in biomedical applications owing to their low toxicity and high magnetization values at room temperature. In this study, we synthesized nearly monodisperse iron oxide (Fe3O4) and Fe@Fe3O4 (core: Fe, shell: Fe3O4) nanoparticles in aqueous medium under argon flow and then, coated them with various biocompatible ligands and silica. In this study, eight types of surface-modified nanoparticles were investigated, namely, Fe3O4@PAA (PAA = polyacrylic acid; Mw of PAA = 5100 amu and 15,000 amu), Fe3O4@PAA-FA (FA = folic acid; Mw of PAA = 5100 amu and 15,000 amu), Fe3O4@PEI-fluorescein (PEI = polyethylenimine; Mw of PEI = 1300 amu), Fe@Fe3O4@PEI (Mw of PEI = 10,000 amu), Fe3O4@SiO2 and Fe@Fe3O4@SiO2 nanoparticles. We characterized the prepared surface-modified nanoparticles using high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) absorption spectroscopy, a superconducting quantum interference device (SQUID), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) spectroscopy and confocal microscopy. Finally, we measured the cytotoxicity of the samples. The results indicate that the surface-modified nanoparticles are biocompatible and are potential candidates for various biomedical applications.

  5. Magnetoelectricity in CoFe2O4 nanocrystal-P(VDF-HFP) thin films

    PubMed Central

    2013-01-01

    Transition metal ferrites such as CoFe2O4, possessing a large magnetostriction coefficient and high Curie temperature (Tc > 600 K), are excellent candidates for creating magnetic order at the nanoscale and provide a pathway to the fabrication of uniform particle-matrix films with optimized potential for magnetoelectric coupling. Here, a series of 0–3 type nanocomposite thin films composed of ferrimagnetic cobalt ferrite nanocrystals (8 to 18 nm) and a ferroelectric/piezoelectric polymer poly(vinylidene fluoride-co-hexafluoropropene), P(VDF-HFP), were prepared by multiple spin coating and cast coating over a thickness range of 200 nm to 1.6 μm. We describe the synthesis and structural characterization of the nanocrystals and composite films by XRD, TEM, HRTEM, STEM, and SEM, as well as dielectric and magnetic properties, in order to identify evidence of cooperative interactions between the two phases. The CoFe2O4 polymer nanocomposite thin films exhibit composition-dependent effective permittivity, loss tangent, and specific saturation magnetization (Ms). An enhancement of the effective permittivity and saturation magnetization of the CoFe2O4-P(VDF-HFP) films was observed and directly compared with CoFe2O4-polyvinylpyrrolidone, a non-ferroelectric polymer-based nanocomposite prepared by the same method. The comparison provided evidence for the observation of a magnetoelectric effect in the case of CoFe2O4-P(VDF-HFP), attributed to a magnetostrictive/piezoelectric interaction. An enhancement of Ms up to +20.7% was observed at room temperature in the case of the 10 wt.% CoFe2O4-P(VDF-HFP) sample. PMID:24004499

  6. Polylactide-based polyurethane shape memory nanocomposites (Fe3O4/PLAUs) with fast magnetic responsiveness

    NASA Astrophysics Data System (ADS)

    Gu, Shu-Ying; Jin, Sheng-Peng; Gao, Xie-Feng; Mu, Jian

    2016-05-01

    Polylactide-based polyurethane shape memory nanocomposites (Fe3O4/PLAUs) with fast magnetic responsiveness are presented. For the purpose of fast response and homogeneous dispersion of magnetic nanoparticles, oleic acid was used to improve the dispersibility of Fe3O4 nanoparticles in a polymer matrix. A homogeneous distribution of Fe3O4 nanoparticles in the polymer matrix was obtained for nanocomposites with low Fe3O4 loading content. A small agglomeration was observed for nanocomposites with 6 wt% and 9 wt% loading content, leading to a small decline in the mechanical properties. PLAU and its nanocomposites have glass transition around 52 °C, which can be used as the triggering temperature. PLAU and its nanocomposites have shape fixity ratios above 99%, shape recovery ratios above 82% for the first cycle and shape recovery ratios above 91% for the second cycle. PLAU and its nanocomposites also exhibit a fast water bath or magnetic responsiveness. The magnetic recovery time decreases with an increase in the loading content of Fe3O4 nanoparticles due to an improvement in heating performance for increased weight percentage of fillers. The nanocomposites have fast responses in an alternating magnetic field and have potential application in biomedical areas such as intravascular stent.

  7. Magnetic properties of (SrFe{sub 12}O{sub 19}){sub x}(CaCu{sub 3}Ti{sub 4}O{sub 12}){sub 1–x} composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eremina, R. M., E-mail: REremina@yandex.ru; Sharipov, K. R.; Yatsyk, I. V.

    2016-07-15

    New composite materials (SrFe{sub 12}O{sub 19}){sub x}(CaCu{sub 3}Ti{sub 4}O{sub 12}){sub 1–x} (x = 0, 0.05, 1) have been synthesized. Their magnetic properties are studied in the temperature range 5–300 K using the magnetic resonance and magnetometry methods. It is found that strontium hexaferrite microinclusions in the (SrFe{sub 12}O{sub 19}){sub 0.05}(CaCu{sub 3}Ti{sub 4}O{sub 12}){sub 0.95} composite “magnetize” CaCu{sub 3}Ti{sub 4}O{sub 12} at temperatures from 300 to 200 K, forming a ferrimagnetic particle near the SrFe{sub 12}O{sub 19} “core.” The magnetic resonance line below 200 K splits into two lines corresponding to SrFe{sub 12}O{sub 19} and CaCu{sub 3}Ti{sub 4}O{sub 12}. The coremore » effect decoration is manifested in the increase in the Curie–Weiss temperature from 25 K in CaCu{sub 3}Ti{sub 4}O{sub 12} without the doping ceramics to 80 K in the composite with 5% of SrFe{sub 12}O{sub 19}.« less

  8. Formation of multiferroic PbTiO3/PbFe12O19 composite by exceeding the solubility limit of Fe in PbTiO3

    NASA Astrophysics Data System (ADS)

    Jaffari, G. Hassnain; Bilal, M.; Ur Rahman, Jamil; Lee, Soonil

    2017-09-01

    PbTiO3/PbFe12O19 composites have been synthesized by keeping the Fe concentration (x) in PbFexTi1-xO3 beyond solubility limit, i.e., x > 0.1% and 5% Pb excess. Both these factors have been successfully utilized to extract Fe doped PbTiO3 tetragonal phase which is composited with Magnetoplumbite (PbFe12O19) phase. A systematic evolution of the tetragonality of the former and improved stoichiometry of the later constituent has been observed. As x increases, emergence of additional Raman mode around 650 cm-1 with Fe addition was observed. Systematic increase in the relative intensity of this mode with x, showed that this mode corresponds to the magnetoplumbite phase. In addition to that resultant composite exhibited noticeable systematic decrease in the value of the energy gap as a function of x. Increasing Fe concentration in PbTiO3 constituent, led to monotonic decrease in c/a and increase in strain experienced by PbTiO3. Increase in the value of the saturation polarization was observed up to x = 0.4, which is identified to be associated with the strain induced by the dopant. A comprehensive magnetic characterization revealed monotonic decrease in magnetization with temperature for all compositions. Finally, we found an anomalous temperature dependent trend in the magnetic coercivity which is explained in terms of low temperature decrease in effective magnetic anisotropy by including magneto-electric coupling. Both constituent phases in the composite being ferroelectric and ferromagnetic at room temperature led to formation of better multiferroic properties and exhibited tunable physical properties with x.

  9. Hybrid absorbers composed of Fe3O4 thin film and magnetic composite sheet and enhancement of conduction noise absorption on a microstrip line

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Soo

    2015-05-01

    In response to develop wide-band noise absorbers with an improved low-frequency performance, this study investigates hybrid absorbers that are composed of conductive Fe3O4 thin film and magnetic composite sheets. The Fe3O4 films prepared via reactive sputtering exhibit a typical value of electrical resistivity of ≃10-4 Ωm. Rubber composites with flaky Fe-Si-Al particles of a high permeability and high permittivity are used as the magnetic sheet functioning as an electromagnetic shield barrier. Microstrip lines with a characteristic impedance of 50 Ω are used to measure the noise absorbing properties. For the Fe3O4 film with a low surface resistance and covered by the magnetic sheet, approximately 80% power absorption can be obtained at 1 GHz, which is significantly higher than that of the original magnetic sheet or Fe3O4 film. The high power absorption of the hybrid absorber is attributed to the enhanced ohmic loss of the Fe3O4 film through increased electric field strength bounded by the upper magnetic composite sheet. The noise absorption is further enhanced through increasing the electrical conductivity of the film containing more conductive phase (Fe3O4 + Fe), which can be prepared in a reduced oxygen partial pressure during reactive sputtering.

  10. Comparison of Photocatalytic Performance of Different Types of Graphene in Fe3O4/SnO2 Composites

    NASA Astrophysics Data System (ADS)

    Paramarta, Valentinus; Taufik, Ardiansyah; Saleh, Rosari

    2017-03-01

    We have reported the role of annealing temperature Fe3O4/SnO2 nanocomposites as a photocatalyst for remove methylene blue (MB) dye from aqueous solution. However, how to enhanced the degradation performance of Fe3O4/SnO2 nanocomposites is important to its photocatalytic application. Therefore, in this work Fe3O4/SnO2 nanocomposites was combined with two different types of graphene materials (NGP and grahene) to improve the photocatalytic performance for remove methylene blue (MB) dye. Fe3O4/SnO2/NGP and Fe3O4/SnO2/graphene have been successfully synthesized by co-precipitation method. The influence of two types graphene on Fe3O4/SnO2 nanocomposites properties were systematically investigated by means of X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and Thermal gravimetric analysis (TGA). Degradation of methylene Blue (MB) in aqueous solution was studied in detail under photocatalytic process. Effect of catalyst dosage (0.1-0.4 g/L) and scavengers on dye degradation were carried out to check the efficiency of photocatalyst. The results indicated Fe3O4/SnO2/graphene displayed higher photocatalytic activity than other catalyst. The reusability tests have also been done to ensure the stability of the used photocatalyst.

  11. Oxalate enhanced degradation of Orange II in heterogeneous UV-Fenton system catalyzed by Fe3O4@γ-Fe2O3 composite.

    PubMed

    Dai, Huiwang; Xu, Shuying; Chen, Jianxin; Miao, Xiaozeng; Zhu, Jianxi

    2018-05-01

    Oxalate enhanced mechanism of Fe 3 O 4 @γ-Fe 2 O 3 was developed to provide novel insight into catalytic process regulation of iron oxide catalysts in heterogeneous UV-Fenton system. And the iron oxide composite of Fe 3 O 4 @γ-Fe 2 O 3 was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), fourier transform infrared (FTIR) spectroscopy and nitrogen adsorption-desorption isotherms. The results showed that large amount of iron could be leached from catalyst in the presence of oxalate, which promoted the homogeneous UV-Fenton reactions in solution. Orange II degradation could be significantly enhanced with the increase of the ratio of homogeneous UV-Fenton process to heterogeneous UV-Fenton process. The optimum concentration of oxalate determined by experiment was 0.5 mM in oxalate enhanced heterogeneous UV-Fenton system. On this condition, the pseudo-first-order rate constant value of Orange II degradation was 0.314 min -1 , which was 2.3 times as high as that in heterogeneous UV-Fenton system. The removal rates of color and TOC were 100% and 86.6% after 20 min and 120 min treatment, respectively. In addition, the iron ions in solution could be almost completely adsorbed back to the catalyst surface in later degradation stages of Orange II. During the recycle experiments, the results showed that the increase of pH in solution and the sorption of intermediates on the catalyst surface would hinder oxalate enhanced process and lead to a decrease of degradation rate of Orange II in oxalate enhanced heterogeneous UV-Fenton system. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Enhanced microwave absorption properties of epoxy composites containing graphite nanosheets@Fe3O4 decorated comb-like MnO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Su, Xiaogang; Wang, Jun; Zhang, Bin; Chen, Wei; Wu, Qilei; Dai, Wei; Zou, Yi

    2018-05-01

    Recently, owing to the radiation and interference from electromagnetic wave (EMW), the requirements of EMW absorbing materials have been increasing. Herein, a novel absorber composed of graphite nanosheets@Fe3O4 composites decorated comb-like MnO2 (GNFM) has been successfully synthesized via a facile two steps, characterized using x-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), x-ray photoelectron spectroscopy (XPS), Raman spectroscopy, vibrating sample magnetometry (VSM) and vector network analyzer (VNA). The ternary composites with enhanced microwave absorption performance are due to the complementary effects of electroconductive material (graphite nanosheets), dielectric materials (MnO2) and magnetic material (Fe3O4 nanospheres). Hence, the maximum reflection loss of GNFM/epoxy composites is up to ‑31.7 dB at 5.85 GHz with absorbing thickness of 4.5 mm, and the efficient frequency bandwidth below ‑10 dB can reach up to 4.47 GHz (11.87–16.34 GHz) at matching thickness of 2 mm. The results demonstrate that GNFM could be regarded as a novel type of microwave absorbing material.

  13. Fe2O3/ZnO/ZnFe2O4 composites for the efficient photocatalytic degradation of organic dyes under visible light

    NASA Astrophysics Data System (ADS)

    Li, Xiaojuan; Jin, Bo; Huang, Jingwen; Zhang, Qingchun; Peng, Rufang; Chu, Shijin

    2018-06-01

    In this study, novel ternary Fe2O3/ZnO/ZnFe2O4 (ZFO) composites were successfully prepared through a simple hydrothermal reaction with subsequent thermal treatment. The as-prepared products were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET) analysis, Barrett-Joyner-Halenda (BJH) measurement, and UV-vis diffuse reflectance spectroscopy (UV-vis DRS). The photocatalytic degradation of rhodamine B (Rh B) under visible light irradiation indicated that the ZFO composites calcined at 500 °C has the best photocatalytic activity (the photocatalytic degradation efficiency can reach up to 95.7% within 60 min) and can maintain a stable photocatalytic degradation efficiency for at least three cycles. In addition, the photocatalytic activity of ZFO composites toward dye decomposition follows the order cationic Rh B > anionic methyl orange. Finally, using different scavengers, superoxide and hydroxyl radicals were identified as the primary active species during the degradation reaction of Rh B.

  14. Structural and magnetic properties of nanostructured composites (SrFe12O19)x(CaCu3Ti4O12)1-x

    NASA Astrophysics Data System (ADS)

    Gavrilova, T. P.; Deeva, J. A.; Yatsyk, I. V.; Yagfarova, A. R.; Gilmutdinov, I. F.; Lyadov, N. M.; Milovich, F. O.; Chupakhina, T. I.; Eremina, R. M.

    2018-05-01

    (SrFe12O19)x(CaCu3Ti4O12)1-x (x = 0.01, 0.03, 0.07, 0.1) composites were synthesized using a solid state method, while the pre-synthesized strontium hexaferrite SrFe12O19 (SFO) was added to the stoichiometric amount of CaO, CuO and TiO oxides to form the CaCu3Ti4O12 (CCTO) structure around SFO microinclusions. The structural and microstructural properties of obtained composites were studied by X-ray diffraction, scanning electron microscopy and transmission electron microscopy techniques. The magnetic properties were studied by electron spin resonance and magnetometry methods. Based on all experimental data we can conclude, that SFOxCCTO1-x nanostructured composites were formed only for concentrations x = 0.03 and x = 0.07, where SFO nanoinclusions are inside CCTO matrix, that leads to the strong mutual influence of the magnetic properties of both component.

  15. Influence of Ga-concentration on the electrical and magnetic properties of magnetoelectric CoGa xFe 2–xO 4/BaTiO 3 composite

    DOE PAGES

    Ni, Yan; Zhang, Zhen; Nlebedim, Cajetan I.; ...

    2015-03-20

    Multiferroic materials exhibit magnetoelectric (ME) coupling and promise new device applications including magnetic sensors, generators, and filters. An effective method for developing ME materials with enhanced ME effect is achieved by the coupling through the interfacial strain between piezoelectric and magnetostrictive materials. In this study, the electrical and magnetic properties of Ga doped magnetoelectric CoGa xFe 2–xO 4/BaTiO 3 composite are studied systematically. It is found that Ga doping improves the sensitivity of magnetoelastic response and stabilizes the magnetic phase of the composites. More importantly, Ga doping reduces the electrical conductivity of composite, as well as the dielectric loss. Anmore » enhancement of the electrostrain with doping Ga is also observed. Quantitative estimation indicates that magnetoelectric coupling is enhanced for Ga-doped CoGa xFe 2–xO 4/BaTiO 3 composites. As a result, the present work is beneficial to the practical application of composite CoFe 2O 4/BaTiO 3-based multiferroic materials.« less

  16. Non-aqueous synthesis of water-dispersible Fe3O4-Ca3(PO4)2 core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, HongLing; Wu, JunHua; Min, Ji Hyun; Hou, Peng; Song, Ah-Young; Kim, Young Keun

    2011-02-01

    The Fe3O4-Ca3(PO4)2 core-shell nanoparticles were prepared by one-pot non-aqueous nanoemulsion with the assistance of a biocompatible triblock copolymer, poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEO-PPO-PEO), integrating the magnetic properties of Fe3O4 and the bioactive functions of Ca3(PO4)2 into single entities. The Fe3O4 nanoparticles were pre-formed first by thermal reduction of Fe(acac)3 and then the Ca3(PO4)2 layer was coated by simultaneous deposition of Ca2 + and PO43 - . The characterization shows that the combination of the two materials into a core-shell nanostructure retains the magnetic properties and the Ca3(PO4)2 shell forms an hcp phase (a = 7.490 Å, c = 9.534 Å) on the Fe3O4 surface. The magnetic hysteresis curves of the nanoparticles were further elucidated by the Langevin equation, giving an estimation of the effective magnetic dimension of the nanoparticles and reflecting the enhanced susceptibility response as a result of the surface covering. Fourier transform infrared (FTIR) analysis provides the characteristic vibrations of Ca3(PO4)2 and the presence of the polymer surfactant on the nanoparticle surface. Moreover, the nanoparticles could be directly transferred to water and the aqueous dispersion-collection process of the nanoparticles was demonstrated for application readiness of such core-shell nanostructures in an aqueous medium. Thus, the construction of Fe3O4 and Ca3(PO4)2 in the core-shell nanostructure has conspicuously led to enhanced performance and multi-functionalities, offering various possible applications of the nanoparticles.

  17. High Energy Density Asymmetric Supercapacitor Based on NiOOH/Ni3S2/3D Graphene and Fe3O4/Graphene Composite Electrodes

    PubMed Central

    Lin, Tsung-Wu; Dai, Chao-Shuan; Hung, Kuan-Chung

    2014-01-01

    The application of the composite of Ni3S2 nanoparticles and 3D graphene as a novel cathode material for supercapacitors is systematically investigated in this study. It is found that the electrode capacitance increases by up to 111% after the composite electrode is activated by the consecutive cyclic voltammetry scanning in 1 M KOH. Due to the synergistic effect, the capacitance and the diffusion coefficient of electrolyte ions of the activated composite electrode are ca. 3.7 and 6.5 times higher than those of the Ni3S2 electrode, respectively. Furthermore, the activated composite electrode exhibits an ultrahigh specific capacitance of 3296 F/g and great cycling stability at a current density of 16 A/g. To obtain the reasonable matching of cathode/anode electrodes, the composite of Fe3O4 nanoparticles and chemically reduced graphene oxide (Fe3O4/rGO) is synthesized as the anode material. The Fe3O4/rGO electrode exhibits the specific capacitance of 661 F/g at 1 A/g and excellent rate capability. More importantly, an asymmetric supercapacitor fabricated by two different composite electrodes can be operated reversibly between 0 and 1.6 V and obtain a high specific capacitance of 233 F/g at 5 mV/s, which delivers a maximum energy density of 82.5 Wh/kg at a power density of 930 W/kg. PMID:25449978

  18. Solvothermal synthesis of Au@Fe3O4 nanoparticles for antibacterial applications

    NASA Astrophysics Data System (ADS)

    Kelgenbaeva, Zhazgul; Abdullaeva, Zhypargul; Murzubraimov, Bektemir

    2018-04-01

    We present Au@Fe3O4 nanoparticles obtained from Fe nanoparticles and HAuCl4 using a simple solvothermal method. Trisodium citrate (C6H5Na3O7*2H2O) served as a reducing agent for Au. X-ray diffraction analysis, electronic microscopes and energy-dispersive X-ray spectroscopy revealed cubic structure, elemental composition (Au, Fe and O) and spherical shape of nanoparticles. Antibacterial activity of the sample was tested against E. coli bacteria and obtained results were discussed.

  19. The synthesis and the magnetic properties of Gd 3+-doped Fe xCo 1-x/Co yFe 3-yO 4 micro-octahedrons composites

    NASA Astrophysics Data System (ADS)

    Wang, Qin; Li, Shuiming; Wu, Aibing; Yang, Hua

    2009-09-01

    Gd 3+-substituted micro-octahedron composites (Fe xCo 1-x/Co yGd zFe 3-y-zO 4) in which the Fe-Co alloy has either a bcc or fcc structure and the oxide is a spinel phase were fabricated by the hydrothermal method. The X-ray diffraction (XRD) patterns indicate that the as-synthesized Gd 3+-substituted micro-octahedron composites are well crystallized. Scanning electron microscopy (SEM) images show that the final product consists of larger numbers of micro-octahedrons with the size ranging from 1.3 to 5 μm, and the size of products are increased with increasing the concentration of KOH. The effect of the Co 2+/Fe 2+ ratio (0⩽Co 2+/Fe 2+⩽1) and substitution Fe 3+ ions by Gd 3+ ions on structure, magnetic properties of the micro-octahedrons composites were investigated, and a possible growth mechanism is suggested to explain the formation of micro-octahedrons composites. The magnetic properties of the structure show the maximal saturation magnetization (107 emu/g) and the maximal coercivity (1192 Oe) detected by a vibrating sample magnetometer.

  20. Use of hydroxypropyl-β-cyclodextrin/polyethylene glycol 400, modified Fe3O4 nanoparticles for congo red removal.

    PubMed

    Yu, Lan; Xue, Weihua; Cui, Lei; Xing, Wen; Cao, Xinli; Li, Hongyu

    2014-03-01

    Fe3O4 nanoparticles were modified with Hydroxypropyl-β-cyclodextrin (HP-β-CD) and Polyethylene glycol 400 (PEG400) by a facile one-pot homogeneous precipitation method, and were used as a novel nano-adsorbent for the removal of congo red (CR) from aqueous solutions. The polymer-modified composites were characterized by FTIR, TEM, TGA, XRD and VSM, and showed excellent adsorption efficiency for CR. The value of the maximum adsorption capacity calculated according to the Langmuir isotherm model were 1.895g/g, which are much high and about 19 times that of Fe3O4 nanoparticles. Desorption study further indicates the good regeneration ability of the nanocomposites. The results suggest that the HP-β-CD/PEG400-modified Fe3O4 nanoparticles is a promising adsorbent for CR removal from aqueous solutions, and it is easily recycled owing to its large specific surface area and unique magnetic responsiveness. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  1. Phase-pure eutectic CoFe2O4-Ba1-xSrxTiO3 composites prepared by floating zone melting

    NASA Astrophysics Data System (ADS)

    Breitenbach, Martin; Ebbinghaus, Stefan G.

    2018-02-01

    Composites consisting of ferrimagnetic CoFe2O4 and ferroelectric Ba1-xSrxTiO3 were grown by the floating zone technique. The influence of Sr substitution, growth rate and atmosphere during the floating zone process were investigated. The formation of the non-ferroelectric, hexagonal modification of BaTiO3 was avoided by a slight Sr substitution of 3 mol% and the formation of BaFe12O19 was suppressed using pure nitrogen as atmosphere during the floating zone melting. These synthesis parameters led to phase-pure, but electrically conductive CoFe2O4-Ba1-xSrxTiO3 composites. A thermal treatment at 973 K in air resulted in a strong increase of the electric resistivity accompanied by a decrease of the unit-cell parameters of both components indicating the healing of oxygen defects. SEM investigations revealed a variety of different geometric structures and crack-free interfaces between both phases. The low porosities observed in the micrographs correspond with densities above 90%. Magnetoelectric (ME) measurements confirmed a coupling between the ferroic orders of both phases with a hysteresis and maximum αME of 1.3 mV Oe-1 cm-1.

  2. Fabrication by Electrophoretic Deposition of Nano-Fe3O4 and Fe3O4@SiO2 3D Structure on Carbon Fibers as Supercapacitor Materials

    NASA Astrophysics Data System (ADS)

    Hajalilou, Abdollah; Abouzari-Lotf, Ebrahim; Etemadifar, Reza; Abbasi-Chianeh, Vahid; Kianvash, Abbas

    2018-05-01

    Core-shell nanostructured magnetic Fe3O4@SiO2 with particle size ranging from 3 nm to 40 nm has been synthesized via a facile precipitation method. Tetraethyl orthosilicate was employed as surfactant to prepare core-shell structures from Fe3O4 nanoparticles synthesized from pomegranate peel extract using a green method. X-ray diffraction analysis, Fourier-transform infrared and ultraviolet-visible (UV-Vis) spectroscopies, transmission electron microscopy, and scanning electron microscopy with energy-dispersive spectroscopy were employed to characterize the samples. The prepared Fe3O4 nanoparticles were approximately 12 nm in size, and the thickness of the SiO2 shell was 4 nm. Evaluation of the magnetic properties indicated lower saturation magnetization for Fe3O4@SiO2 powder ( 11.26 emu/g) compared with Fe3O4 powder ( 13.30 emu/g), supporting successful wrapping of the Fe3O4 nanoparticles by SiO2. As-prepared powders were deposited on carbon fibers (CFs) using electrophoretic deposition and their electrochemical behavior investigated. The rectangular-shaped cyclic voltagrams of Fe3O4@CF and Fe3O4@C@CF samples indicated electrochemical double-layer capacitor (EDLC) behavior. The higher specific capacitance of 477 F/g for Fe3O4@C@CF (at scan rate of 0.05 V/s in the potential range of - 1.13 to 0.45 V) compared with 205 F/g for Fe3O4@CF (at the same scan rate in the potential range of - 1.04 to 0.24 V) makes the former a superior candidate for use in energy storage applications.

  3. Synthesis of hierarchical Mg-doped Fe3O4 micro/nano materials for the decomposition of hexachlorobenzene.

    PubMed

    Su, Guijin; Liu, Yexuan; Huang, Linyan; Lu, Huijie; Liu, Sha; Li, Liewu; Zheng, Minghui

    2014-03-01

    An ethylene-glycol (EG) mediated self-assembly process was firstly developed to synthesize micrometer-sized nanostructured Mg-doped Fe3O4 composite oxides to decompose hexachlorobenzene (HCB) at 300°C. The synthesized samples were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy and inductively coupled plasma optical emission spectrometer. The morphology and composition of the composite oxide precursor were regulated by the molar ratio of the magnesium acetate and ferric nitrate as the reactants. Calcination of the precursor particles, prepared with different molar ratio of the metal salts, under a reducing nitrogen atmosphere, generated three kinds of Mg doped Fe3O4 composite oxide micro/nano materials. Their reactivity toward HCB decomposition was likely influenced by the material morphology and content of Mg dopants. Ball-like MgFe2O4-Fe3O4 composite oxide micro/nano material showed superior HCB dechlorination efficiencies when compared with pure Fe3O4 micro/nano material, prepared under similar experimental conditions, thus highlighting the benefits of doping Mg into Fe3O4 matrices. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. The Electrochemistry of Fe 3 O 4 /Polypyrrole Composite Electrodes in Lithium-Ion Cells: The Role of Polypyrrole in Capacity Retention

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruck, Andrea M.; Gannett, Cara N.; Bock, David C.

    In two series of magnetite (Fe 3O4) composite electrodes, one group with and one group without added carbon, containing varying quantities of polypyrrole (PPy), and a non-conductive polyvinylidene difluoride (PVDF) binder were constructed and then analyzed using electrochemical and spectroscopic techniques. Galvanostatic cycling and alternating current (AC) impedance measurements were used in tandem to measure delivered capacity, capacity retention, and the related impedance at various stages of discharge and charge. Further, the reversibility of Fe 3O 4 to iron metal (Fe0) conversion observed during discharge was quantitatively assessed ex-situ using X-ray Absorption Spectroscopy (XAS). The Fe 3O 4 composite containingmore » the largest weight fraction of PPy (20 wt%) with added carbon demonstrated reduced irreversible capacity on initial cycles and improved cycling stability over 50 cycles, attributed to decreased reaction with the electrolyte in the presence of PPy. Our study illustrated the beneficial role of PPy addition to Fe 3O 4 based electrodes was not strongly related to improved electrical conductivity, but rather to improved ion transport related to the formation of a more favorable surface electrolyte interphase (SEI).« less

  5. The Electrochemistry of Fe 3 O 4 /Polypyrrole Composite Electrodes in Lithium-Ion Cells: The Role of Polypyrrole in Capacity Retention

    DOE PAGES

    Bruck, Andrea M.; Gannett, Cara N.; Bock, David C.; ...

    2016-12-15

    In two series of magnetite (Fe 3O4) composite electrodes, one group with and one group without added carbon, containing varying quantities of polypyrrole (PPy), and a non-conductive polyvinylidene difluoride (PVDF) binder were constructed and then analyzed using electrochemical and spectroscopic techniques. Galvanostatic cycling and alternating current (AC) impedance measurements were used in tandem to measure delivered capacity, capacity retention, and the related impedance at various stages of discharge and charge. Further, the reversibility of Fe 3O 4 to iron metal (Fe0) conversion observed during discharge was quantitatively assessed ex-situ using X-ray Absorption Spectroscopy (XAS). The Fe 3O 4 composite containingmore » the largest weight fraction of PPy (20 wt%) with added carbon demonstrated reduced irreversible capacity on initial cycles and improved cycling stability over 50 cycles, attributed to decreased reaction with the electrolyte in the presence of PPy. Our study illustrated the beneficial role of PPy addition to Fe 3O 4 based electrodes was not strongly related to improved electrical conductivity, but rather to improved ion transport related to the formation of a more favorable surface electrolyte interphase (SEI).« less

  6. Synthesis and characterization of magnetic opal/Fe3O4 colloidal crystal

    NASA Astrophysics Data System (ADS)

    Carmona-Carmona, A. J.; Palomino-Ovando, M. A.; Hernández-Cristobal, Orlando; Sánchez-Mora, E.; Toledo-Solano, M.

    2017-03-01

    We report an experimental study of colloidal crystals based on SiO2 artificial opals, infiltrated with 1.34(M1), 2.03(M2) and 24.4(M3) wt% Fe3O4 nanoparticles, using the co-assembly method. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy and Vibration sample magnetometer (VSM) were used to study the structural, magnetic and optical properties of the samples. At 300 K all the samples exhibit superparamagnetic behavior due to the magnetic coupling of Fe3O4 nanoparticles infiltrated into opal. However, for higher concentration of nanoparticles this strong coupling distorts the opal network. The UV-vis diffuse reflectance spectroscopy and Kubelka-Munk theory were applied to determine that the energy band gap of the opal-magnetite composites can be adjusted by varying the concentration of Fe3O4 nanoparticles. This values are between the energy band gap of SiO2 and Fe3O4.

  7. Sodium citrate functionalized reusable Fe3O4@TiO2 photocatalyst for water purification

    NASA Astrophysics Data System (ADS)

    Li, Wenyu; Wu, Haoyi

    2017-10-01

    Easy-recycle photocatalysts are new materials for water treatment technologies. In order to improve the recyclable ability, we employed Fe3O4 particles, which were functionalized by sodium citrate, to serve as a substrate core to attract the deposition of a shell of TiO2 particles. When compared to the calcining process for preparing the composite, the TiO2 distributed homogeneously on the sodium citrate treated Fe3O4, forming a mesoporous shell layer. Due to the mesoporous structure, this Fe3O4@TiO2 exhibited high photocatalytic degradation activity to Rhodamine B, and it was easily recycled using a magnetic field to recover the catalyst from solution.

  8. Incorporation of the Fe3O4 and SiO2 nanoparticles in epoxy-modified silicone resin as the coating for soft magnetic composites with enhanced performance

    NASA Astrophysics Data System (ADS)

    Luo, Dahao; Wu, Chen; Yan, Mi

    2018-04-01

    Three inorganic-organic hybrids have been designed by incorporating epoxy-modified silicone resin (ESR) with SiO2, Fe3O4 and their mixture in the application as the coating of Fe soft magnetic composites (SMCs). The introduced SiO2 nanoparticles are well dispersed in the ESR, while the Fe3O4 tends to agglomerate or even separate from the ESR. Simultaneous addition of the SiO2 and Fe3O4 gives rise to satisfactory distribution of both nanoparticles and optimized magnetic performance of the SMCs with high permeability (124.6) and low loss (807.8 mW/cm3). On one hand, introduction of the ferromagnetic Fe3O4 reduces the magnetic dilution effect, which is beneficial for improved magnetization and permeability. On the other hand, SiO2 incorporation prevents the agglomeration of the Fe3O4 nanoparticles and gives rise to increased electrical resistivity for reduced core loss as well as enhanced mechanical strength of the SMCs.

  9. Carbon-coated CoFe-CoFe2O4 composite particles with high and dual-band electromagnetic wave absorbing properties.

    PubMed

    Guan, Zhen-Jie; Jiang, Jian-Tang; Chen, Na; Gong, Yuan-Xun; Zhen, Liang

    2018-07-27

    SiO 2 and TiO 2 , as conventional dielectric shells of ferromagnetic/dielectric composite particles, can protect ferromagnetic particles from aggregation and oxidation, but contribute little to electromagnetic loss. In this work, we designed nano-assembled CoFe-CoFe 2 O 4 @C composite particles, in which ferrites with high permeability were dielectric elements and carbon was introduced as protective layers, aiming for high-efficiency microwave absorption. These assembled particles with different CoFe contents were prepared through solvothermal methods and subsequent hydrogen-thermal reduction. CoFe nanoparticles were dispersed on a CoFe 2 O 4 matrix via an in situ reduction transformation from CoFe 2 O 4 to CoFe. The microstructure evolution of composite particles and corresponding electromagnetic properties tailoring were investigated. The content and size of CoFe as well as the porosity of composite particles increase gradually as the annealing temperature increases. A maximum reflection loss (RL max ) of -71.73 dB is observed at 4.78 GHz in 3.4 mm thick coating using particles annealed at 500 °C as fillers. The coating presents double-band absorbing characteristics, as broad effective absorption bandwidth with RL > 5 (ERL 5 ) and high RL max are observed in both S-C and X-K u bands. The tunability as well as the assembled characteristic of the electromagnetic property that endued from the composite structure contributes to the excellent electromagnetic wave absorbing performances.

  10. Fe{sub 3}O{sub 4}/CuO/ZnO/Nano graphene platelets (Fe{sub 3}O{sub 4}/CuO/ZnO/NGP) composites prepared by sol-gel method with enhanced sonocatalytic activity for the removal of dye

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendry, Tju; Taufik, Ardiansyah; Saleh, Rosari, E-mail: rosari.saleh@gmail.com, E-mail: rosari.saleh@ui.ac.id

    2016-04-19

    In this study, an attempt has been made to synthesize nanographene platelets coupled with Fe3O4/CuO/ZnO (Fe3O4/CuO/ZnO/NGP) with various ZnO loadings using a two step methods, sol-gel followed by hydrothermal method. Characterization was carried out by X-ray diffraction, energy-dispersive X-ray spectroscopy and vibrating sample magnetometer. The sonocatalytic performance was evaluated by degradation of methylene blue under ultrasonic irradiation.The Fe3O4/CuO/ZnO/NGP showed superior sonocatalytic activity than the Fe3O4/CuO/ZnO materials. They also showed high stability and can be easily separated from the reaction system for recycling process.

  11. Preparation of surface plasmon resonance biosensor based on magnetic core/shell Fe3O4/SiO2 and Fe3O4/Ag/SiO2 nanoparticles.

    PubMed

    Wang, Liying; Sun, Ying; Wang, Jing; Wang, Jian; Yu, Aimin; Zhang, Hanqi; Song, Daqian

    2011-06-01

    In this paper, surface plasmon resonance biosensors based on magnetic core/shell Fe(3)O(4)/SiO(2) and Fe(3)O(4)/Ag/SiO(2) nanoparticles were developed for immunoassay. With Fe(3)O(4) and Fe(3)O(4)/Ag nanoparticles being used as seeding materials, Fe(3)O(4)/SiO(2) and Fe(3)O(4)/Ag/SiO(2) nanoparticles were formed by hydrolysis of tetraethyl orthosilicate. The aldehyde group functionalized magnetic nanoparticles provide organic functionality for bioconjugation. The products were characterized by scanning electronic microscopy (SEM), transmission electronic microscopy (TEM), FTIR and UV-vis absorption spectrometry. The magnetic nanoparticles possess the unique superparamagnetism property, exceptional optical properties and good compatibilities, and could be used as immobilization matrix for goat anti-rabbit IgG. The magnetic nanoparticles can be easily immobilized on the surface of SPR biosensor chip by a magnetic pillar. The effects of Fe(3)O(4)/SiO(2) and Fe(3)O(4)/Ag/SiO(2) nanoparticles on the sensitivity of SPR biosensors were also investigated. As a result, the SPR biosensors based on Fe(3)O(4)/SiO(2) nanoparticles and Fe(3)O(4)/Ag/SiO(2) nanoparticles exhibit a response for rabbit IgG in the concentration range of 1.25-20.00 μg ml(-1) and 0.30-20.00 μg ml(-1), respectively. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Preparation of High Mechanical Performance Nano-Fe3O4/Wood Fiber Binderless Composite Boards for Electromagnetic Absorption via a Facile and Green Method

    PubMed Central

    Dang, Baokang; Chen, Yipeng; Wang, Hanwei; Chen, Bo; Jin, Chunde; Sun, Qingfeng

    2018-01-01

    Fe3O4/wood fiber composites are prepared with a green mechanical method using only distilled water as a solvent without any chemical agents, and then a binderless composite board with high mechanical properties is obtained via a hot-press for electromagnetic (EM) absorption. The fibers are connected by hydrogen bonds after being mechanically pretreated, and Fe3O4 nanoparticles (NPs) are attached to the fiber surface through physical adsorption. The composite board is bonded by an adhesive, which is provided by the reaction of fiber composition under high temperature and pressure. The Nano-Fe3O4/Fiber (NFF) binderless composite board shows remarkable microwave absorption properties and high mechanical strength. The optional reflection loss (RL) of the as-prepared binderless composite board is −31.90 dB. The bending strength of the NFF binderless composite board is 36.36 MPa with the addition of 6% nano-Fe3O4, the modulus of elasticity (MOE) is 6842.16 MPa, and the internal bond (IB) strength is 0.81 MPa. These results demonstrate that magnetic nanoparticles are deposited in binderless composite board by hot pressing, which is the easiest way to produce high mechanical strength and EM absorbers. PMID:29361726

  13. Zn0-CNTs-Fe3O4 catalytic in situ generation of H2O2 for heterogeneous Fenton degradation of 4-chlorophenol.

    PubMed

    Yang, Zhao; Gong, Xiao-Bo; Peng, Lin; Yang, Dan; Liu, Yong

    2018-06-04

    A novel Zn 0 -CNTs-Fe 3 O 4 composite was synthesized by the chemical co-precipitation combined with high sintering process at nitrogen atmosphere. The as-prepared composite was characterized by SEM, EDS, XRD, XPS, VSM and N 2 adsorption/desorption experiments. A novel heterogeneous Fenton-like system, composed of Zn 0 -CNTs-Fe 3 O 4 composite and dissolved oxygen (O 2 ) in solution, which can in situ generate H 2 O 2 and OH, was used for the degradation of 4-chlorophenol (4-CP). The influences of various operational parameters, including the initial pH, dosage of Zn 0 -CNTs-Fe 3 O 4 and initial concentration of 4-CP on the removal of 4-CP were investigated. The removal efficiencies of 4-CP and total organic carbon (TOC) were 99% and 57%, respectively, at the initial pH of 1.5, Zn 0 -CNTs-Fe 3 O 4 dosage of 2 g/L, 4-CP initial concentration of 50 mg/L and oxygen flow rate of 400 mL/min. Based on the results of the radical scavenger effect study, the hydroxyl radical was considered as the main reactive oxidants in Zn 0 -CNTs-Fe 3 O 4 /O 2 system and a possible degradation pathway of 4-CP was proposed. Copyright © 2018. Published by Elsevier Ltd.

  14. Facile synthesis of nanorod-type graphitic carbon nitride/Fe{sub 2}O{sub 3} composite with enhanced photocatalytic performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jiangpeng; Li, Changqing; Cong, Jingkun

    2016-06-15

    Here we report a facile synthesis of nanorod-type graphitic carbon nitride/Fe{sub 2}O{sub 3} composite (Fe{sub 2}O{sub 3}-g-C{sub 3}N{sub 4}) by using Fe-melamine supramolecular framework as precursor. The chemical and optical properties of the nanocomposites are well-characterized. The Fe{sub 2}O{sub 3}-g-C{sub 3}N{sub 4} nanocomposite demonstrated excellent photocatalytic activities under visible light due to the efficient utilization of sunlight and the construction of Z-scheme electron transfer pathway. The results indicated that it could be a promising approach for the preparation of efficient g-C{sub 3}N{sub 4} nanocomposites photocatalysts by using metal-melamine supramolecular framework as precursors. - Graphical abstract: Nanorod-type graphitic carbon nitride/Fe{sub 2}O{submore » 3} composite (Fe{sub 2}O{sub 3}-g-C{sub 3}N{sub 4}) was synthesized by using Fe-melamine supramolecular framework as precursor. The Fe{sub 2}O{sub 3}-g-C{sub 3}N{sub 4} nanocomposite demonstrated excellent photocatalytic activities under visible light. Display Omitted - Highlights: • Nanorod-type graphitic carbon nitride/Fe{sub 2}O{sub 3} composite (Fe{sub 2}O{sub 3}-g-C{sub 3}N{sub 4}) was synthesized. • Fe{sub 2}O{sub 3}-g-C{sub 3}N{sub 4} showed strong optical absorption in the visible-light region. • The Fe{sub 2}O{sub 3}-g-C{sub 3}N{sub 4} nanocomposite demonstrated excellent photocatalytic activities.« less

  15. Novel ZnO/MgO/Fe2O3 composite optomagnetic nanoparticles.

    PubMed

    Kamińska, I; Sikora, B; Fronc, K; Dziawa, P; Sobczak, K; Minikayev, R; Paszkowicz, W; Elbaum, D

    2013-05-15

    A facile sol-gel synthesis of novel ZnO/MgO/Fe2O3 nanoparticles (NPs) is reported and their performance is compared to that of ZnO/MgO. Powder x-ray diffraction (XRD) patterns reveal the crystal structure of the prepared samples. The average particle size of the sample was found to be 4.8 nm. The optical properties were determined by UV-vis absorption and fluorescence measurements. The NPs are stable in biologically relevant solutions (phosphate buffered saline (PBS), 20 mM, pH = 7.0) contrary to ZnO/MgO NPs which degrade in the presence of inorganic phosphate. Superparamagnetic properties were determined with a superconducting quantum interference device (SQUID). Biocompatible and stable in PBS ZnO/MgO/Fe2O3 core/shell composite nanocrystals show luminescent and magnetic properties confined to a single NP at room temperature (19-24 ° C), which may render the material to be potentially useful for biomedical applications.

  16. Monodisperse NixFe3-xO4 nanospheres: Metal-ion-steered size/composition control mechanism, static magnetic and enhanced microwave absorbing properties

    NASA Astrophysics Data System (ADS)

    Jiang, Kedan; Liu, Yun; Pan, Yefei; Wang, Ru; Hu, Panbing; He, Rujia; Zhang, Lingli; Tong, Guoxiu

    2017-05-01

    An easy metal-ion-steered solvothermal method was developed for the one-step synthesis of monodisperse, uniform NixFe3-xO4 polycrystalline nanospheres with tunable sphere diameter (40-400 nm) and composition (0 ≤ x ≤ 0.245) via changing just Ni2+/Fe3+ molar ratio (γ). With g increased from 0:1 to 2:1, sphere diameter gradually decreased and crystal size exhibited an inversed U-shaped change tendency, followed by increased Ni/Fe atom ratio from 0% to 0.0888%. An in situ-reduction, coordination-precipitation transformation mechanism was proposed to interpret the metal-ion-steered growth. Size- and composition-dependent static magnetic and microwave absorbing properties were systematically investigated. Saturation magnetization declines with g in a Boltzmann model due to the changes of crystal size, sphere diameter, and Ni content. The coercivity reaches a maximum at γ = 0.75:1 because of the critical size of Fe3O4 single domain (25 nm). Studies on microwave absorption reveal that 150-400 nm Fe3O4 nanospheres mainly obey the quarter-wavelength cancellation model with the single-band absorption; 40-135 nm NixFe3-xO4 nanospheres (0 ≤ x ≤ 0.245) obey the one and three quarter-wavelength cancellation model with the multi-band absorption. 150 nm Fe3O4 nanospheres exhibit the optimal EM wave-absorbing property with an absorbing band of 8.94 GHz and the maximum RL of -50.11 dB.

  17. Electrophoretically-Deposited Nano-Fe3O4@carbon 3D Structure on Carbon Fiber as High-Performance Supercapacitors

    NASA Astrophysics Data System (ADS)

    Hajalilou, Abdollah; Etemadifar, Reza; Abbasi-Chianeh, Vahid; Abouzari-Lotf, Ebrahim

    2018-05-01

    Structural and electrochemical behaviors of electrophortically-deposited Fe3O4 and Fe3O4@C nanoparticles on carbon fiber (CF) were investigated. The nanoparticles were synthesized via a green-assisted hydrothermal route. The as-prepared samples were characterized by x-ray diffraction, transmission and scanning electron microscopies, Fourier transform infrared and UV-visible spectroscopies as well as by a vibration sample magnetometer. Surprisingly, the saturation magnetization (M s) of the Fe3O4@C ( 26.99 emu/g) was about 20% higher than that of Fe3O4 nanoparticles. A rather rectangular CV curve for both the elecrophortically-deposited Fe3O4 and Fe3O4@C on CF indicated the double-layer supercapacitor behavior of the samples. The synergistic effects of double shells improved the electrochemical behavior of Fe3O4@CF. The Fe3O4@C@CF composite exhibited a higher specific capacitance of 412 F g-1 at scan rate of 0.05 V/s compared to the Fe3O4@CF with a value of 193 F g-1. The superb electrochemical properties of Fe3O4@C@CF confirm their potential for applications as supercapacitors in the energy storage field.

  18. Conformal Fe3O4 sheath on aligned carbon nanotube scaffolds as high-performance anodes for lithium ion batteries.

    PubMed

    Wu, Yang; Wei, Yang; Wang, Jiaping; Jiang, Kaili; Fan, Shoushan

    2013-02-13

    A uniform Fe(3)O(4) sheath is magnetron sputtered onto aligned carbon nanotube (CNT) scaffolds that are directly drawn from CNT arrays. The Fe(3)O(4)-CNT composite electrode, with the size of Fe(3)O(4) confined to 5-7 nm, exhibits a high reversible capacity over 800 mAh g(-1) based on the total electrode mass, remarkable capacity retention, as well as high rate capability. The excellent performance is attributable to the superior electrical conductivity of CNTs, the uniform loading of Fe(3)O(4) sheath, and the structural retention of the composite anode on cycling. As Fe(3)O(4) is inexpensive and environmentally friendly, and the synthesis of Fe(3)O(4)-CNT is free of chemical wastes, this composite anode material holds considerable promise for high-performance lithium ion batteries.

  19. Synthesis of ZnFe2O4/SiO2 composites derived from a diatomite template.

    PubMed

    Liu, Zhaoting; Fan, Tongxiang; Zhou, Han; Zhang, Di; Gong, Xiaolu; Guo, Qixin; Ogawa, Hiroshi

    2007-03-01

    A novel porous ZnFe2O4/SiO2 composite product has been generated with a template-directed assembly method from porous diatomite under different synthesis conditions, such as precursor concentrations (metallic nitrates), calcination temperature and diatomite type. The phase composition and morphology of all the materials were examined by x-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The results indicated that an inherited hierarchical porous structure from the diatomite template can be obtained, and the synthesis conditions were found to have clear effects on the formation of the ZnFe2O4/SiO2 composite. The ideal composite of ZnFe2O4/SiO2 can be obtained through optimization of diatomite template type, precursor solution and calcination temperature. Furthermore, the adsorption abilities of two types of diatomites were analyzed in detail using FTIR spectra and nitrogen adsorption measurements etc, which proved that A-diatomite (Shengzhou-diatomite) is better than B-diatomite (Changbai-diatomite) on the aspect of adsorbing Zn and Fe ions, and of forming the ZnFe2O4.

  20. Synthesis, structure and magnetic properties of porous magnetic composite, based on MCM-41 molecular sieve with Fe{sub 3}O{sub 4} nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolotilov, Sergey V.; Shvets, Oleksiy; Cador, Olivier

    2006-08-15

    Porous magnetic composites were prepared by the synthesis of molecular sieve MCM-41 in the presence of Fe{sub 3}O{sub 4} nanoparticles with average diameter of 15 nm. Nanoparticles were captured by porous silica matrix MCM-41, which resulted in their incorporation, as it was confirmed by TEM, SEM and X-ray diffraction. The materials possessed high surface area (392-666 m{sup 2} g{sup -1}), high pore volume (0.39-0.73 cm{sup 3} g{sup -1}) along with high magnetic response (M {sub S} up to 28.4 emu g{sup -1} at 300 K). Calcination of samples resulted in partial oxidation of Fe{sub 3}O{sub 4} to {alpha}-Fe{sub 2}O{sub 3}.more » The influence of nanoparticles content on sorption and magnetic properties of the composites was shown. No hysteresis was found for the samples at 300 K; at 5 K, H {sub C} was in the range 370-385 G for non-calcinated samples and 350-356 G for calcinated ones. - Graphical abstract: Schematic presentation of MCM-41/Fe{sub 3}O{sub 4} composite.« less

  1. Nano-sized Fe2O3/Fe3O4 facilitate anaerobic transformation of hexavalent chromium in soil-water systems.

    PubMed

    Zhang, Yaxian; Li, Hua; Gong, Libo; Dong, Guowen; Shen, Liang; Wang, Yuanpeng; Li, Qingbiao

    2017-07-01

    The purpose of this study is to investigate the effects of nano-sized or submicro Fe 2 O 3 /Fe 3 O 4 on the bioreduction of hexavalent chromium (Cr(VI)) and to evaluate the effects of nano-sized Fe 2 O 3 /Fe 3 O 4 on the microbial communities from the anaerobic flooding soil. The results indicated that the net decreases upon Cr(VI) concentration from biotic soil samples amended with nano-sized Fe 2 O 3 (317.1±2.1mg/L) and Fe 3 O 4 (324.0±22.2mg/L) within 21days, which were approximately 2-fold of Cr(VI) concentration released from blank control assays (117.1±5.6mg/L). Furthermore, the results of denaturing gradient gel electrophoresis (DGGE) and high-throughput sequencing indicated a greater variety of microbes within the microbial community in amendments with nano-sized Fe 2 O 3 /Fe 3 O 4 than the control assays. Especially, Proteobacteria occupied a predominant status on the phylum level within the indigenous microbial communities from chromium-contaminated soils. Besides, some partial decrease of soluble Cr(VI) in abiotic nano-sized Fe 2 O 3 /Fe 3 O 4 amendments was responsible for the adsorption of nano-sized Fe 2 O 3 /Fe 3 O 4 to soluble Cr(VI). Hence, the presence of nano-sized Fe 2 O 3 /Fe 3 O 4 could largely facilitate the mobilization and biotransformation of Cr(VI) from flooding soils by adsorption and bio-mediated processes. Copyright © 2017. Published by Elsevier B.V.

  2. Electromagnetic interference shielding and microwave absorption properties of cobalt ferrite CoFe2O4/polyaniline composite

    NASA Astrophysics Data System (ADS)

    Ismail, Mukhils M.; Rafeeq, Sewench N.; Sulaiman, Jameel M. A.; Mandal, Avinandan

    2018-05-01

    Improvement of microwave-absorbing materials (MAMs) is the most important research area in various applications, such as in communication, radiation medical exposure, electronic warfare, air defense, and different civilian applications. Conducting polymer, polyaniline doped with para toluene sulphonic acid (PANI-PTSA) as well as cobalt ferrite (CoFe2O4) is synthesized by sol-gel method and intensely blends in different ratios. The characterization of the composite materials, CoFe2O4/PANI-PTSA (CFP1, CFP2, CFP3 and CFP4), was performed by X-ray diffraction (XRD), atomic force microscopy (AFM) and vibrating sample magnetometry (VSM). The microwave-absorbing properties' reflection loss (dB) and important parameters, such as complex relative permittivity ( ɛ r '- jɛ r ″) and complex relative permeability ( µ r '- jµ r ″) were measured in different microwave frequencies in the X-band (8.2-12.4 GHz) region. The composite material CFP3 showed a wider absorption frequency range and maximum reflection loss of - 28.4 dB (99.8% power absorption) at 8.1 GHz and - 9.6 dB (> 90% power absorption) at 11.2 GHz, and so the composite can be used as a microwave absorber; however, it can be more suitable for application in daily life for making cell phones above 9 GHz. Also the results showed that the thicker composites like CFP3 (4 mm) exhibit obviously better EMI SE as compared with the thinner ones (0.19, 0.19, 0.3 mm); this may be related to the low transmission of the EM wave from the composites.

  3. A Scalable Strategy To Develop Advanced Anode for Sodium-Ion Batteries: Commercial Fe3O4-Derived Fe3O4@FeS with Superior Full-Cell Performance.

    PubMed

    Hou, Bao-Hua; Wang, Ying-Ying; Guo, Jin-Zhi; Zhang, Yu; Ning, Qiu-Li; Yang, Yang; Li, Wen-Hao; Zhang, Jing-Ping; Wang, Xin-Long; Wu, Xing-Long

    2018-01-31

    A novel core-shell Fe 3 O 4 @FeS composed of Fe 3 O 4 core and FeS shell with the morphology of regular octahedra has been prepared via a facile and scalable strategy via employing commercial Fe 3 O 4 as the precursor. When used as anode material for sodium-ion batteries (SIBs), the prepared Fe 3 O 4 @FeS combines the merits of FeS and Fe 3 O 4 with high Na-storage capacity and superior cycling stability, respectively. The optimized Fe 3 O 4 @FeS electrode shows ultralong cycle life and outstanding rate capability. For instance, it remains a capacity retention of 90.8% with a reversible capacity of 169 mAh g -1 after 750 cycles at 0.2 A g -1 and 151 mAh g -1 at a high current density of 2 A g -1 , which is about 7.5 times in comparison to the Na-storage capacity of commercial Fe 3 O 4 . More importantly, the prepared Fe 3 O 4 @FeS also exhibits excellent full-cell performance. The assembled Fe 3 O 4 @FeS//Na 3 V 2 (PO 4 ) 2 O 2 F sodium-ion full battery gives a reversible capacity of 157 mAh g -1 after 50 cycles at 0.5 A g -1 with a capacity retention of 92.3% and the Coulombic efficiency of around 100%, demonstrating its applicability for sodium-ion full batteries as a promising anode. Furthermore, it is also disclosed that such superior electrochemical properties can be attributed to the pseudocapacitive behavior of FeS shell as demonstrated by the kinetics studies as well as the core-shell structure. In view of the large-scale availability of commercial precursor and ease of preparation, this study provide a scalable strategy to develop advanced anode materials for SIBs.

  4. Preparation of Fe 3O 4/poly(styrene-butyl acrylate-[2-(methacryloxy)ethyl]trimethylammonium chloride) by emulsifier-free emulsion polymerization and its interaction with DNA

    NASA Astrophysics Data System (ADS)

    Li, Xiaolong; Liu, Guoqiang; Yan, Wei; Chu, Paul K.; Yeung, Kelvin W. K.; Wu, Shuilin; Yi, Changfeng; Xu, Zushun

    2012-04-01

    Cationic magnetic polymer particles Fe3O4/poly(styrene-butyl acrylate-[2-(methacryloxy)ethyl]trimethylammonium chloride), a type of potential gene carrier, were prepared by emulsifier-free emulsion polymerization with oleic acid modified magnetite Fe3O4, styrene, butyl acrylate and [2-(methacryloxy)ethyl]trimethylammonium chloride) (METAC). The morphology of the particles was characterized by transmission electron microscopy and the composites of particles were characterized by FT-IR spectroscopy, X-ray diffraction. These results showed that magnetic particles were well dispersed in polymers with the content of about 15%(wt/wt). The composites exhibited superparamagnetism and possessed a certain level of magnetic response. The interactions between the particles with calf-thymus DNA (ct DNA) were confirmed by zeta potential measurement, UV-vis spectroscopy and fluorescence spectroscopy. The DNA-binding capacity determined by the agarose gel electrophoresis showed good binding capacity of the emulsion to DNA. These results suggested the potential of the cationic magnetic polymer emulsion as gene target delivery carrier.

  5. Composition dependence of spin transition in (Mg,Fe)SiO 3 bridgmanite

    DOE PAGES

    Dorfman, Susannah M.; Badro, James; Rueff, Jean -Pascal; ...

    2015-10-01

    Spin transitions in (Mg,Fe)SiO 3 bridgmanite have important implications for the chemistry and dynamics of Earth’s lower mantle, but have been complex to characterize in experiments. We examine the spin state of Fe in highly Fe-enriched bridgmanite synthesized from enstatites with measured compositions (Mg 0.61Fe 0.38Ca 0.01)SiO 3 and (Mg 0.25Fe 0.74Ca 0.01)SiO 3. Bridgmanite was synthesized at 78-88 GPa and 1800-2400 K and X-ray emission spectra were measured on decompression to 1 bar (both compositions) and compression to 126 GPa ((Mg 0.61Fe 0.38Ca 0.01)SiO 3 only) without additional laser heating. Observed spectra confirm that Fe in these bridgmanites ismore » dominantly high spin in the lower mantle. However, the total spin moment begins to decrease at ~50 GPa in the 74% FeSiO 3 composition. Lastly, these results support density functional theory predictions of a lower spin transition pressure in highly Fe-enriched bridgmanite and potentially explain the high solubility of FeSiO 3 in bridgmanite at pressures corresponding to Earth’s deep lower mantle.« less

  6. Impact of Ti Incorporation on Hydroxylation and Wetting of Fe 3 O 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoerzinger, Kelsey A.; Pearce, Carolyn I.; Droubay, Timothy C.

    2017-08-24

    Understanding the interaction of water with compositionally tuned metal oxides is central to exploiting their unique catalytic and magnetic properties. However, processes such as hydroxylation, wetting, and resulting changes in electronic structure at ambient conditions are challenging to probe in situ. Here, we examine the hydroxylation and wetting of Fe(3-x)TixO4 epitaxial films directly using ambient pressure X-ray photoelectron spectroscopy under controlled relative humidity. Fe2+ formation promoted by Ti4+ substitution for Fe3+ increases with hydroxylation, commensurate with a decrease in the surface work function or change in the surface dipole. The incorporation of small amounts of Ti (x=0.25) as a bulkmore » dopant dramatically impacts hydroxylation, in part due to surface segregation, leading to coverages closer to that of TiO2 than Fe3O4. However, the Fe(3-x)TixO4 compositional series shows a similar affinity for water physisorption, which begins at notably lower relative humidity than on TiO2. The findings suggest that relative humidity rather than surface hydroxyl density controls wettability. Studies of this kind directly relate to rational design of doped magnetite into more active catalysts for UV/Fenton degradation, the adsorption of contaminants, and the development of spin filters.« less

  7. Fe3O4–Silicone Mixture as Flexible Actuator

    PubMed Central

    Song, Kahye

    2018-01-01

    In this study, we introduce Fe3O4-silicone flexible composite actuators fabricated by combining silicone and iron oxide particles. The actuators exploit the flexibility of silicone and the electric conductivity of iron oxide particles. These actuators are activated by electrostatic force using the properties of the metal particles. Herein, we investigate the characteristic changes in actuation performance by increasing the concentration of iron oxide from 1% to 20%. The developed flexible actuators exhibit a resonant frequency near 3 Hz and their actuation amplitudes increase with increasing input voltage. We found that the actuator can move well at metal particle concentrations >2.5%. We also studied the changes in actuation behavior, depending on the portion of the Fe3O4-silicone in the length. Overall, we experimentally analyzed the characteristics of the newly proposed metal particle-silicone composite actuators. PMID:29738466

  8. High Performance Lithium-Ion Hybrid Capacitors Employing Fe3O4-Graphene Composite Anode and Activated Carbon Cathode.

    PubMed

    Zhang, Shijia; Li, Chen; Zhang, Xiong; Sun, Xianzhong; Wang, Kai; Ma, Yanwei

    2017-05-24

    Lithium-ion capacitors (LICs) are considered as promising energy storage devices to realize excellent electrochemical performance, with high energy-power output. In this work, we employed a simple method to synthesize a composite electrode material consisting of Fe 3 O 4 nanocrystallites mechanically anchored among the layers of three-dimensional arrays of graphene (Fe 3 O 4 -G), which exhibits several advantages compared with other traditional electrode materials, such as high Li storage capacity (820 mAh g -1 at 0.1 A g -1 ), high electrical conductivity, and improved electrochemical stability. Furthermore, on the basis of the appropriated charge balance between cathode and anode, we successfully fabricated Fe 3 O 4 -G//activated carbon (AC) soft-packaging LICs with a high energy density of 120.0 Wh kg -1 , an outstanding power density of 45.4 kW kg -1 (achieved at 60.5 Wh kg -1 ), and an excellent capacity retention of up to 94.1% after 1000 cycles and 81.4% after 10 000 cycles. The energy density of the Fe 3 O 4 -G//AC hybrid device is comparable with Ni-metal hydride batteries, and its capacitive power capability and cycle life is on par with supercapacitors (SCs). Therefore, this lithium-ion hybrid capacitor is expected to bridge the gap between Li-ion battery and SCs and gain bright prospects in next-generation energy storage fields.

  9. Epoxy composites coating with Fe3O4 decorated graphene oxide: Modified bio-inspired surface chemistry, synergistic effect and improved anti-corrosion performance

    NASA Astrophysics Data System (ADS)

    Zhan, Yingqing; Zhang, Jieming; Wan, Xinyi; Long, Zhihang; He, Shuangjiang; He, Yi

    2018-04-01

    To obtain graphene or graphene derivatives based epoxy composite coatings with high anti-corrosion performance, the morphology of nanostructures, dispersion, and interfacial adhesion are key factors that need to be considered. We here demonstrated the bio-inspired co-modification of graphene oxide/Fe3O4 hybrid (GO-Fe3O4@ poly (DA+KH550)) and its synergistic effect on the anti-corrosion performance of epoxy coating. For this purpose, graphene oxide/Fe3O4 hybrid obtained from hydrothermal route was modified by self-polymerization between dopamine and secondary functional monomer (KH550), which led to the modified bio-inspired surface functionalization. This novel modified bio-inspired functionalization was quite distinct from conventional surface modification or decoration. Namely, abundant amino groups were introduced by modified bio-inspired functionalization, which allowed the graphene oxide/Fe3O4 hybrid to disperse well in epoxy resin and enhanced the interfacial adhesion between modified nanofiller and epoxy resin through chemical crosslinking reaction. The electrochemical impedance spectroscopy (EIS) test revealed that anti-corrosive performance of epoxy coatings was significantly enhanced by addition of 0.5 wt% modified bio-inspired functionalized GO-Fe3O4 hybrid compared with neat epoxy and other nanofillers/epoxy composite coatings. Moreover, the micro-hardness of epoxy coating was enhanced by 71.8% compared with pure epoxy coating at the same loading content. In addition, the anticorrosion mechanism of GO-Fe3O4@poly (DA+KH550) was tentatively discussed.

  10. Fabrication and Electromagnetic Properties of Conjugated NH2-CuPc@Fe3O4

    NASA Astrophysics Data System (ADS)

    Yan, Liang; Pu, Zejun; Xu, Mingzhen; Wei, Renbo; Liu, Xiaobo

    2017-10-01

    Conjugated amino-phthalocyanine copper containing carboxyl groups/magnetite (NH2-CuPc@Fe3O4) has been fabricated from FeCl3·6H2O and NH2-CuPc via a simple solvothermal method and its electromagnetic properties investigated. Scanning electron microscopy and transmission electron microscopy revealed that the NH2-CuPc@Fe3O4 was a waxberry-like nanomaterial with NH2-CuPc molecules effectively embedded in the interior of Fe3O4 particles in the form of beads. Introduction of NH2-CuPc effectively improved the complementarity between the dielectric and magnetic losses of the system, resulting in excellent electromagnetic performance. The minimum reflection loss of the as-prepared composite reached -33.4 dB at 7.0 GHz for coating layer thickness of 4.0 mm and bandwidth below -10.0 dB (90% absorption) of up to 3.8 GHz. These results indicate that introduction of NH2-CuPc results in a composite with potential for use as an electromagnetic microwave absorption material.

  11. Synergistic operation of photocatalytic degradation and Fenton process by magnetic Fe3O4 loaded TiO2

    NASA Astrophysics Data System (ADS)

    Sun, Qiong; Hong, Yong; Liu, Qiuhong; Dong, Lifeng

    2018-02-01

    The magnetic Fe3O4 loaded anatase TiO2 photocatalysts with different mass ratios were successfully synthesized by a one-step convenient calcining method. The morphology and structure analysis revealed that Fe3O4 was formed in TiO2 with very fine-grained particles. After a small amount of Fe3O4 loaded onto TiO2, the photocatalytic property enhanced obviously for the degradation of organic dye. Furthermore, the photo-Fenton-like catalysis of the iron-containing samples could also be induced after the addition of hydrogen peroxide. The apparent kinetic constant of the reaction that catalyzed by Fe-TiO2 was about 5.3 and 8.3 times of that catalyzed by TiO2 or Fe3O4 only, respectively, proving an effective synergistic contribution of the photocatalysis and Fenton reaction in the composite. Compared with Fe3O4 or free Fe3+ ions, only 13% of iron in TiO2 dissolved into acidic solution (25% for Fe3O4 and 100% for Fe3+) after the reaction, which confirmed the iron had been well immobilized onto TiO2. In addition, the extremely stable photocatalytic activity in cycling experiments proved the immobilized iron had been tightly attached onto TiO2, indicating the great potential of the catalyst for practical applications.

  12. Tailoring the nickel nanoparticles anchored on the surface of Fe3O4@SiO2 spheres for nanocatalysis.

    PubMed

    Ding, Lei; Zhang, Min; Zhang, Yanwei; Yang, Jinbo; Zheng, Jing; Hayat, Tasawar; Alharbi, Njud S; Xu, Jingli

    2017-08-25

    Herein, we report an efficient and universal strategy for synthesizing a unique triple-shell structured Fe 3 O 4 @SiO 2 @C-Ni hybrid composite. Firstly, the Fe 3 O 4 cores were synthesized by hydrothermal reaction, and sequentially coated with SiO 2 and a thin layer of nickel-ion-doped resin-formaldehyde (RF-Ni 2+ ) using an extended Stöber method. This was followed by carbonization to produce the Fe 3 O 4 @SiO 2 @C-Ni nanocomposites with metallic nickel nanoparticles embedded in an RF-derived thin graphic carbon layer. Interestingly, the thin SiO 2 spacer layer between RF-Ni 2+ and Fe 3 O 4 plays a critical role on adjusting the size and density of the nickel nanoparticles on the surface of Fe 3 O 4 @SiO 2 nanospheres. The detailed tailoring mechanism is explicitly discussed, and it is shown that the iron oxide core can react with the nickel nanoparticles without the SiO 2 spacer layer, and the size and density of the nickel nanoparticles can be effectively controlled when the SiO 2 layer exits. The multifunctional composites exhibit a significantly enhanced catalytic performance in the reduction of 4-nitrophenol (4-NP).

  13. Fabricate BC/Fe3O4@PPy 3D nanofiber film as flexible electrode for supercapacitor application

    NASA Astrophysics Data System (ADS)

    Lv, Xvdan; Li, Guohui; Pang, Zengyuan; Li, Dawei; Lei, Luo; Lv, Pengfei; Mushtaq, Muhammad; Wei, Qufu

    2018-05-01

    For flexible film supercapacitor, high areal capacitance is a main evaluating indicator. In this paper, bacterial cellulose (BC) with special three-dimensional structure was used as the natural flexible base material. Fe3O4 nanoparticles with average diameter of 20 nm were synthesized on the surface of BC fibers. The conductive path polypyrrole (PPy) was introduced as shell of BC/Fe3O4 fibers to further improve the pseudo capacitance in 1 mol/L H2SO4 solution. Besides, the BC/Fe3O4@PPy was used for supercapacitor application in acid electrolyte, and delivered higher areal capacitance compared to other Fe3O4 composites in previous reports. The obtained BC/Fe3O4@PPy film showed excellent mechanical strength (tensile strength reached 11 MPa), high areal specific capacitance (5.4 F cm-2 at active mass of 8.4 mg cm-2), and long cycle life (1.95 F cm-2 over 3500 cycles).

  14. Dielectric and phonon spectroscopy of Nb-doped Pb(Zr1-yTiy)O3-CoFe2O4 composites

    NASA Astrophysics Data System (ADS)

    Sakanas, Aurimas; Nuzhnyy, Dmitry; Grigalaitis, Robertas; Banys, Juras; Borodavka, Fedir; Kamba, Stanislav; Ciomaga, Cristina Elena; Mitoseriu, Liliana

    2017-06-01

    Broad-band dielectric and phonon response of Nb-doped (1-x)Pb(Zr1-yTiy)O3-xCoFe2O4 composites with x = 10%-30% was investigated between 0.1 MHz and 100 THz. At room temperature, a broad distribution of relaxation times causes a constant dielectric loss below 1 GHz. Above room temperature, a strong Maxwell-Wagner relaxation process dominates below 1 GHz due to the conductivity of CoFe2O4 (CF). Two additional relaxation processes are seen between 1 GHz and 1 THz. The lower-frequency one, coming from domain wall motion, disappears above TC ≈ 650 K. The higher-frequency component slows down on heating towards TC, because it is the central mode, which drives the ferroelectric phase transition. Time-domain THz transmission and infrared reflectivity spectra reveal a mixture of polar phonons from both ferroelectric Nb-doped Pb(Zr,Ti)O3 (PZTN) and magnetic CoFe2O4 (CF) components, while the micro-Raman scattering spectra allow to study phonons from both components separately. Similar temperature behavior of phonons as in the pure PZTN and CF was observed. While in CoFe2O4 the Raman-active phonons gradually reduce their intensities on heating due to increasing conductivity and related reduced Raman-scattering volume, some phonons in PZTN disappear above TC due to change of selection rules in the paraelectric phase. Like in the pure Pb(Zr,Ti)O3, the soft phonon and central modes were also observed.

  15. Facile preparation of magnetic mesoporous MnFe2O4@SiO2-CTAB composites for Cr(VI) adsorption and reduction.

    PubMed

    Li, Na; Fu, Fenglian; Lu, Jianwei; Ding, Zecong; Tang, Bing; Pang, Jiabin

    2017-01-01

    Chromium-contaminated water is regarded as one of the biggest threats to human health. In this study, a novel magnetic mesoporous MnFe 2 O 4 @SiO 2 -CTAB composite was prepared by a facile one-step modification method and applied to remove Cr(VI). X-ray diffraction, scanning electron microscopy, transmission electron microscopy, specific surface area, and vibrating sample magnetometer were used to characterize MnFe 2 O 4 @SiO 2 -CTAB composites. The morphology analysis showed that the composites displayed a core-shell structure. The outer shell was mesoporous silica with CTAB and the core was MnFe 2 O 4 nanoparticles, which ensured the easy separation by an external magnetic field. The performance of MnFe 2 O 4 @SiO 2 -CTAB composites in Cr(VI) removal was far better than that of bare MnFe 2 O 4 nanoparticles. There were two reasons for the effective removal of Cr(VI) by MnFe 2 O 4 @SiO 2 -CTAB composites: (1) mesoporous silica shell with abundant CTA + significantly enhanced the Cr(VI) adsorption capacity of the composites; (2) a portion of Cr(VI) was reduced to less toxic Cr(III) by MnFe 2 O 4 , followed by Cr(III) immobilized on MnFe 2 O 4 @SiO 2 -CTAB composites, which had been demonstrated by X-ray photoelectron spectroscopy results. The adsorption of Cr(VI) onto MnFe 2 O 4 @SiO 2 -CTAB followed the Freundlich isotherm model and pseudo-second-order model. Tests on the regeneration and reuse of the composites were performed. The removal efficiency of Cr(VI) still retained 92.4% in the sixth cycle. MnFe 2 O 4 @SiO 2 -CTAB composites exhibited a great potential for the removal of Cr(VI) from water. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Giant flexoelectricity in Ba0.6Sr0.4TiO3/Ni0.8Zn0.2Fe2O4 composite

    NASA Astrophysics Data System (ADS)

    Li, Yong; Shu, Longlong; Huang, Wenbin; Jiang, Xiaoning; Wang, Hong

    2014-10-01

    Enhanced flexoelectricity in perovskite ceramics and single crystals has been reported before. In this letter, 3-3 ceramic-ceramic Ba0.6Sr0.4TiO3/Ni0.8Zn0.2Fe2O4 composite with a colossal permittivity was employed in the conventional pure bending experiment in order to examine the transverse flexoelectric response. The measured flexoelectric coefficient at 30 Hz is 128 μC/m and varies to 16 μC/m with the frequency increasing from 30 Hz to 120 Hz, mainly due to the inverse correlation between the permittivity and the frequency. This result reveals the permittivity dependence of flexoelectric coefficient in the frequency dispersion materials, suggesting that the giant permittivity composites can be good flexoelectric materials.

  17. Fabrication of Fe3O4@CuO core-shell from MOF based materials and its antibacterial activity

    NASA Astrophysics Data System (ADS)

    Rajabi, S. K.; Sohrabnezhad, Sh.; Ghafourian, S.

    2016-12-01

    Magnetic Fe3O4@CuO nanocomposite with a core/shell structure was successfully synthesized via direct calcinations of magnetic Fe3O4@HKUST-1 in air atmosphere. The morphology, structure, magnetic and porous properties of the as-synthesized nano composites were characterized by using scanning electron microscope (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (PXRD), and vibration sample magnetometer (VSM). The results showed that the nanocomposite material included a Fe3O4 core and a CuO shell. The Fe3O4@CuO core-shell can be separated easily from the medium by a small magnet. The antibacterial activity of Fe3O4-CuO core-shell was investigated against gram-positive and gram-negative bacteria. A new mechanism was proposed for inactivation of bacteria over the prepared sample. It was demonstrated that the core-shell exhibit recyclable antibacterial activity, acting as an ideal long-acting antibacterial agent.

  18. Enhanced magnetization in morphologically and magnetically distinct BiFeO3 and La0.7Sr0.3MnO3 composites

    NASA Astrophysics Data System (ADS)

    Pillai, Shreeja; Reshi, Hilal Ahmad; Bagwaiya, Toshi; Banerjee, Alok; Shelke, Vilas

    2017-09-01

    Nanomaterials exhibit properties different from those of their bulk counterparts. The modified magnetic characteristics of manganite nanoparticles were exploited to improve magnetization in multiferroic BiFeO3 compound. We studied the composite of two morphologically and magnetically distinct compounds BiFeO3 (BFO) and La0.7Sr0.3MnO3 (LSMO). The microcrystalline BiFeO3 sample was prepared by solid state reaction method and the nanocrystalline La0.7Sr0.3MnO3 by sol-gel method. Composites with nominal compositions (1-x)BiFeO3-(x)La0.7Sr0.3MnO3 were prepared by modified solid state reaction method. The phase purity and crystal structures were checked by using X-ray diffraction. The formation of composites with phase separated BFO and LSMO was confirmed using Raman and Fourier Transform Infrared spectroscopy studies. The composite samples showed relatively high value of magnetization with finite coercivity. This improvement in magnetic behavior is ascribed to the coexistence of multiple magnetic orderings in composite samples. We scrutinized the possibility of oxygen vacancy or Fe mixed valency formation in the samples using X-ray photoelectron spectroscopy technique.

  19. Effect of Fe2O3 and Binder on the Electrochemical Properties of Fe2O3/AB (Acetylene Black) Composite Electrodes

    NASA Astrophysics Data System (ADS)

    Anh, Trinh Tuan; Thuan, Vu Manh; Thang, Doan Ha; Hang, Bui Thi

    2017-06-01

    In an effort to find the best anode material for Fe/air batteries, a Fe2O3/AB (Acetylene Black) composite was prepared by dry-type ball milling using Fe2O3 nanoparticles and AB as the active and additive materials, respectively. The effects of various binders and Fe2O3 content on the electrochemical properties of Fe2O3/AB electrodes in alkaline solution were investigated. It was found that the content of Fe2O3 strongly affected the electrochemical behavior of Fe2O3/AB electrodes; with Fe2O3 nanopowder content reaching 70 wt.% for the electrode and showing improvement of the cyclability. When the electrode binder polytetrafluoroethylene (PTFE) was used, clear redox peaks were observed via cyclic voltammetry (CV), while polyvinylidene fluoride-containing electrodes provided CV curves with unobservable redox peaks. Increasing either binder content in the electrode showed a negative effect in terms of the cyclability of the Fe2O3/AB electrode.

  20. Polyethylenimine functionalized Fe3O4/steam-exploded rice straw composite as an efficient adsorbent for Cr(VI) removal

    NASA Astrophysics Data System (ADS)

    Zhang, Shengli; Wang, Zhikai; Chen, Haoyu; Kai, Chengcheng; Jiang, Man; Wang, Qun; Zhou, Zuowan

    2018-05-01

    Polyethyleneimine functionalized Fe3O4/steam-exploded rice straw composite (Fe3O4-PEI-SERS), which combines magnetic separation with adsorption of PEI functionalized biosorbent, was successfully prepared via a simple glutaraldehyde crosslinking method. Its adsorption potential for the removal of Cr(VI) was systematically studied in batch mode. Results showed that Cr(VI) adsorption on Fe3O4-PEI-SESERS was highly pH-dependent, and the optimum pH was 2.0. The time to reach equilibrium was related to initial Cr(VI) concentration and was 1 and 6 h for 200 and 300 mg/L of Cr(VI), respectively. The adsorption system followed pseudo-second-order kinetic model and Langmuir isotherm. Its maximum adsorption capacity was 280.11, 317.46 and 338.98 mg/g at 25, 35 and 45 °C, respectively. The competitive uptake from coexisting ions (K+, Na+, Cu2+, Cl- and NO3-) was insignificant except SO42-. After six adsorption/desorption cycles, the adsorbent retained good adsorption capacity. The Cr(VI) removal involved its partial reduction into Cr(III). Due to the properties of high adsorption capacity, strong magnetic responsiveness, good reusability and Cr(VI) detoxification, the Fe3O4-PEI-SESERS has a potential application in Cr(VI) removal from wastewater.

  1. Preparation of carbon coated Fe3O4 nanoparticles for magnetic separation of uranium

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaofei; Wang, Jun

    2018-01-01

    Uranium(VI) was removed from aqueous solutions using carbon coated Fe3O4 nanoparticles (Fe3O4@C). Batch experiments were conducted to study the effects of initial pH, shaking time and temperature on uranium sorption efficiency. It was found that the maximum adsorption capacity of the Fe3O4@C toward uranium(VI) was ∼120.20 mg g-1 when the initial uranium(VI) concentration was 100 mg L-1, displaying a high efficiency for the removal of uranium(VI) ions. Kinetics of the uranium(VI) removal is found to follow pseudo-second-order rate equation. In addition, the uranium(VI)-loaded Fe3O4@C nanoparticles can be recovered easily from aqueous solution by magnetic separation and regenerated by acid treatment. Present study suggested that magnetic Fe3O4@C composite particles can be used as an effective and recyclable adsorbent for the removal of uranium(VI) from aqueous solutions.

  2. Fabrication, characterization, and photocatalytic property of α-Fe2O3/graphene oxide composite

    NASA Astrophysics Data System (ADS)

    Li, Hong; Zhao, Qidong; Li, Xinyong; Zhu, Zhengru; Tade, Moses; Liu, Shaomin

    2013-06-01

    Spindle-shaped microstructure of α-Fe2O3 was successfully synthesized by a simple hydrothermal method. The α-Fe2O3/graphene oxide (GO) composites was prepared using a modified Hummers' strategy. The properties of the samples were systematically investigated by X-ray powder diffraction (XRD), UV-Vis diffuse reflectance spectrophotometer, transmission electron microscope, atomic force microscope, X-ray photoelectron spectroscopy, and Raman spectroscopy (Raman) techniques. GO nanosheets act as supporting materials for anchoring the α-Fe2O3 particles. The average crystallite sizes of the α-Fe2O3 and α-Fe2O3/GO samples are ca. 27 and 24 nm, respectively. The possible growth of α-Fe2O3 onto GO layers led to a higher absorbance capacity for visible light by α-Fe2O3/GO than α-Fe2O3 composite. The photocatalytic degradation of toluene over the α-Fe2O3 and α-Fe2O3/GO samples under xenon-lamp irradiation was comparatively studied by in situ FTIR technique. The results indicate that the α-Fe2O3/GO sample synthesized exhibited a higher capacity for the degradation of toluene. The composite of α-Fe2O3/GO could be promisingly applied in photo-driven air purification.

  3. The dynamic magnetoviscoelastic properties of biomineralized (Fe3O4) PVP-CMC hydrogel

    NASA Astrophysics Data System (ADS)

    Ray, Ayan; Saha, Nabanita; Saha, Petr

    2017-05-01

    The Polyvinylpyrrolidone (PVP) and carboxymethylcellulose (CMC) based polymer matrix was used as a template for the preparation of magnetic hydrogel. This freshly prepared PVP-CMC hydrogel template was successfully mineralized by in situ synthesis of magnetic nanoparticles (Fe3O4) via chemical co-precipitation reaction using liquid diffusion method. The present study emphasizes on the rheological behavior of non-mineralized and mineralized PVP-CMC hydrogels. Scanning Electron Microscopy (SEM), transmission electron microscopy (TEM), X-ray Diffraction (XRD) pattern, Fourier transform infrared spectroscopy (FT-TR), Vibrating sample magnetometer (VSM) and dynamic magneto rheometer were used to study the morphological, physical, chemical and magnetic properties of nanoparticle (Fe3O4) filled PVP-CMC hydrogel respectively in order to monitor how Fe3O4 magnetic nanoparticles affects the mechanical properties of the hydrogel network. The storage (G') and loss (G") moduli with a complex viscosity of the system was measured using a parallel plate rheometer. Frequency and amplitude sweep with temperature variation was performed to determine the frequency and amplitude dependent magneto viscoelastic moduli for both hydrogel samples. A strong shear thinning effect was observed in both (non-mineralized and mineralized) PVP-CMC hydrogels, which confirm that Fe3O4 filled magnetic hydrogels, are pseudoplastic in nature. This Fe3O4 filled PVP-CMC hydrogel can be considered as stimuli-responsive soft matter that may be used as an actuator in medical devices.

  4. Development of Fe3O4/ZrO2 Composite Powered by Nanographene Platelets (NGP) for Degradation of Water Pollutants via Photo- and Sonocatalysis

    NASA Astrophysics Data System (ADS)

    Kristianto, Yogi; Taufik, Ardiansyah; Saleh, Rosari

    2017-03-01

    In this study, a series of Fe3O4/ZrO2/nanographene platelets (NGP) composite, with various weight percent (wt%) of NGP (5%, 10% and 15%), were prepared successfully using ultrasonic-assisted followed by simple hydrothermal method. Their physicochemical properties were fairly characterized by X-ray diffraction, fourier transform infrared and thermal gravimetric analysis. Furthermore, their catalytic activities were investigated toward anionic congo red (CR) and cationic methylene blue (MB) as models of organic pollutant under ultraviolet (UV) and ultrasonic (US) irradiation, respectively. The experimental results showed that the incorporation of NGP in Fe3O4/ZrO2 composite improved its efficiency in degrading CR and MB and became maximum at 10wt% of NGP. In addition, the role of active radicals involved in catalytic activities were discussed.

  5. A Polycarboxyl-Decorated FeIII -Based Xerogel-Derived Multifunctional Composite (Fe3 O4 /Fe/C) as an Efficient Electrode Material towards Oxygen Reduction Reaction and Supercapacitor Application.

    PubMed

    Devi, Bandhana; Venkateswarulu, Mangili; Kushwaha, Himmat Singh; Halder, Aditi; Koner, Rik Rani

    2018-05-02

    Low cost, non-noble metal catalysts with a good oxygen reduction reaction (ORR) activity comparable to that of platinum and also having good energy storage properties are highly desirable but challenging. Several challenges are associated with the development of such materials. Herein, we demonstrate a new polycarboxyl-functionalised Fe III -based gel material, synthesised following a solvothermal method and the development of its composite (Fe 3 O 4 /Fe/C) by annealing at optimised temperature. The developed composite displayed excellent electrocatalytic activity for the oxygen reduction reaction with an onset potential of 0.87 V (vs. RHE) and a current density value of -5 mA cm -2 , which are comparable with commercial 20 wt % Pt/C. In addition, as one of the most desirable properties, the composite exhibits a better methanol tolerance and greater durability than Pt/C. The same material was explored as an energy storage material for supercapacitors, which showed a specific capacitance of 245 F g -1 at a current density of 1 A g -1 . It is expected that this Fe 3 O 4 /Fe/C composite with a disordered graphitised carbon matrix will pave a horizon for developing energy conversion and energy storage devices. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Synthesis, Characterization, and Study of In Vitro Cytotoxicity of ZnO-Fe3O4 Magnetic Composite Nanoparticles in Human Breast Cancer Cell Line (MDA-MB-231) and Mouse Fibroblast (NIH 3T3).

    PubMed

    Bisht, Gunjan; Rayamajhi, Sagar; Kc, Biplab; Paudel, Siddhi Nath; Karna, Deepak; Shrestha, Bhupal G

    2016-12-01

    Novel magnetic composite nanoparticles (MCPs) were successfully synthesized by ex situ conjugation of synthesized ZnO nanoparticles (ZnO NPs) and Fe 3 O 4 NPs using trisodium citrate as linker with an aim to retain key properties of both NPs viz. inherent selectivity towards cancerous cell and superparamagnetic nature, respectively, on a single system. Successful characterization of synthesized nanoparticles was done by XRD, TEM, FTIR, and VSM analyses. VSM analysis showed similar magnetic profile of thus obtained MCPs as that of naked Fe 3 O 4 NPs with reduction in saturation magnetization to 16.63 emu/g. Also, cell viability inferred from MTT assay showed that MCPs have no significant toxicity towards noncancerous NIH 3T3 cells but impart significant toxicity at similar concentration to breast cancer cell MDA-MB-231. The EC50 value of MCPs on MDA-MB-231 is less than that of naked ZnO NPs on MDA-MB-231, but its toxicity on NIH 3T3 was significantly reduced compared to ZnO NPs. Our hypothesis for this prominent difference in cytotoxicity imparted by MCPs is the synergy of selective cytotoxicity of ZnO nanoparticles via reactive oxygen species (ROS) and exhausting scavenging activity of cancerous cells, which further enhance the cytotoxicity of Fe 3 O 4 NPs on cancer cells. This dramatic difference in cytotoxicity shown by the conjugation of magnetic Fe 3 O 4 NPs with ZnO NPs should be further studied that might hold great promise for the development of selective and site-specific nanoparticles. Schematic representation of the conjugation, characterization and cytotoxicity analysis of Fe 3 O 4 -ZnO magnetic composite particles (MCPs).

  7. New Polymorph of Fe3O4 Stable at Core-Mantle Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Greenberg, E.; Prakapenka, V. B.

    2017-12-01

    Magnetite Fe3O4 (and its high-pressure polymorphs) is one of the most studied iron bearing minerals. One reason for the interest in magnetite is that it contains both Fe2+ and Fe3+, which is especially important for understanding the physical and chemical properties of Earth's deep interior. Early studies on magnetite debated the nature of the structural phase transition at 35 GPa [1-4]. This high-pressure structure was shown to be of the CaTi2O4-type [5], but with Fe3+ occupying multiple sites. Furthermore, at pressures above 65 GPa a second structural transition to a Pmma space group was shown to take place [5], similar to that in Fe3-xTixO4 solid solution [6]. Other studies have focused on the P-T stability of Fe3O4. Early studies by Lazor et al. [7] predicted that Fe3O4 might disproportionate into FeO and h-Fe2O3 at 50 GPa. Other studies suggested that the high-pressure phase should be stable up to 100 GPa [3]. A more recent experimental study by Ricolleau and Fei [8] revealed that Fe3O4 is stable at least up to 103 GPa. Thus far, structural studies of Fe3O4 have been limited to pressures below 105 GPa. We have studied Fe3O4 up to pressures of 175 GPa and temperatures above 4000K, using diamond anvil cells in combination with synchrotron x-ray diffraction and an online pulsed laser-heating system to study the stability of Fe3O4 at relevant pressure-temperature conditions. Our results show that Fe3O4 is stable up to at least 176 GPa and 4200 K. We have discovered a new polymorph of Fe3O4 at these high P-T conditions. This new phase is stable in the pressure range of at least 100Fe3O4, EOS, structure and its properties across lower mantle - core conditions will be discussed in terms of impact on composition and evolution of Earth's deep interior. [1] Fei et al. American Mineralogist 84, 203 (1999). [2] Haavik et al. American Mineralogist 85, 514 (2000). [3] Dubrovinsky et al. Journal of

  8. Controllable construction of flower-like FeS/Fe2O3 composite for lithium storage

    NASA Astrophysics Data System (ADS)

    Wang, Jie; He, Huan; Wu, Zexing; Liang, Jianing; Han, Lili; Xin, Huolin L.; Guo, Xuyun; Zhu, Ye; Wang, Deli

    2018-07-01

    Transitions metal sulfides/oxides have been considered as promising anode candidates for next generation lithium-ion batteries (LIBs) due to high theoretical capacities. However, the large volume change during lithiation/delithiation process and poor electronic conductivity often result in a poor charging/discharging performance. Herein, we design a flower-like FeS/Fe2O3 composite via a simple "solvothermal-oxidation" method, in which the Fe2O3 is most distributed on the surface of the flower. The unique porous structure and synergistic effect between FeS and Fe2O3 not only accommodate the large volume expansion, but also facilitate Li ion and electron transport. The Fe2O3 shell effectively reduce the dissolution of Li2Sx during discharge/charge process. When serving as the anode material in lithium ion battery, FeS/Fe2O3 exhibits superior specific capacity, rate capacity and cycling stability compared with pure FeS and Fe2O3.

  9. Monodisperse magnetite (Fe3O4) nanoparticles modified with water soluble polymers for the diagnosis of breast cancer by MRI method

    NASA Astrophysics Data System (ADS)

    Rezayan, Ali Hossein; Mousavi, Majid; Kheirjou, Somayyeh; Amoabediny, Ghasem; Ardestani, Mehdi Shafiee; Mohammadnejad, Javad

    2016-12-01

    In this study, magnetic nanoparticles (MNPs) were synthesized via co-precipitation method. To enhance the biocompatibility and colloidal stability of the synthesized nanoparticles, they were modified with carboxyl functionalized PEG via dopamine (DPA) linker. Both modified and unmodified Fe3O4 nanoparticles exhibited super paramagnetic behavior (particle size below 20 nm). The saturation magnetization (Ms) of PEGdiacid-modified Fe3O4 was 45 emu/g, which was less than the unmodified Fe3O4 nanoparticles (70 emu/g). This difference indicated that PEGdiacid polymer was immobilized on the surface of Fe3O4 nanoparticles successfully. To evaluate the efficiency of the resulting nanoparticles as contrast agents for magnetic resonance imaging (MRI), different concentration of MNPs and different value of echo time TE were investigated. The results showed that by increasing the concentration of the nanoparticles, transverse relaxation time (T2) decreased, which subsequently resulted in MR signal enhancement. T2-weighted MR images of the different concentration of MNPs in different value of echo time TE indicated that MR signal intensity increased with increase in TE value up to 66 and then remained constant. The cytotoxicity effect of the modified and unmodified nanoparticles was evaluated in three different concentrations (12, 60 and 312 mg l-1) on MDA-MB-231 cancer cells for 24 and 48 h. In both tested time (24 and 48 h) for all three samples, the modified nanoparticles had long life time than unmodified nanoparticles. Cellular uptake of modified MNPs was 80% and reduced to 9% by the unmodified MNPs.

  10. Magnetoelectric coupling in multiferroic BaTiO3-CoFe2O4 composite nanofibers via electrospinning

    NASA Astrophysics Data System (ADS)

    Fu, Bi; Lu, Ruie; Gao, Kun; Yang, Yaodong; Wang, Yaping

    2015-07-01

    Magnetoelectric (ME) coupling in Pb-based multiferroic composites has been widely investigated due to the excellent piezoelectric property of lead zirconate titanate (PZT). In this letter, we report a strategy to create a hybrid Pb-free ferroelectric and ferromagnetic material and detect its ME coupling at the nanoscale. Hybrid Pb-free multiferroic BaTiO3-CoFe2O4 (BTO-CFO) composite nanofibers (NFs) were generated by sol-gel electrospinning. The perovskite structure of BTO and the spinel structure of CFO nanograins were homogenously distributed in the composite NFs and verified by bright-field transmission electron microscopy observations along the perovskite [111] zone axis. Multiferroicity was confirmed by amplitude-voltage butterfly curves and magnetic hysteresis loops. ME coupling was observed in terms of a singularity on a dM/dT curve at the ferroelectric Curie temperature (TC) of BaTiO3. The lateral ME coefficient was investigated by the evolution of the piezoresponse under an external magnetic field of 1000 Oe and was estimated to be α31 =0.78× 104 \\text{mV cm}-1 \\text{Oe}-1 . These findings could enable the creation of nanoscale Pb-free multiferroic composite devices.

  11. Magnetization-induced enhancement of photoluminescence in core-shell CoFe{sub 2}O{sub 4}@YVO{sub 4}:Eu{sup 3+} composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, Yanmin, E-mail: ymjia@zjnu.edu.cn, E-mail: wuzheng@zjnu.cn; Zhou, Zhihua; Wei, Yongbin

    2013-12-07

    After the core-shell CoFe{sub 2}O{sub 4}@YVO{sub 4}:Eu{sup 3+} composite synthesized through a facile sol-gel method was magnetized under an external magnetic field of 0.25 T for 4 h, an enhancement of ∼56% in photoluminescence intensity was observed. The remanent magnetization of the CoFe{sub 2}O{sub 4} core increases the intensity of the excited charge transfer transition of VO{sub 4}{sup 3−} group in YVO{sub 4}:Eu{sup 3+} shell, which may enhance the probability related to the Eu{sup 3+} radiative transition {sup 5}D{sub 0}-{sup 7}F{sub 2}, yielding to a high photoluminescence. The obvious remanent-magnetization-induced enhancement in photoluminescence is helpful in developing excellent magnetic/luminescent material for themore » practical display devices.« less

  12. Preparation and characterization of chain-like and peanut-like Fe3O4@SiO2 core-shell structure.

    PubMed

    Shi, Haowei; Huang, Yan; Cheng, Chao; Ji, Guoyuan; Yang, Yuxiang; Yuan, Hongming

    2013-10-01

    The size- and shape-controlled Fe3O4@SiO2 nanocomposites were successfully synthesized via the sol-gel method. The results showed that the size, shape, and property of the products were directly influenced by the amount of TEOS, and the concentration of water-based magnetic fluid in the coating process. The morphology and properties of the products were characterized by TEM, SEM, X-ray powder diffraction, IR and EDS. The Fe3O4@SiO2 composites with easily-controlled size arranged from 58 to 835 nm could be synthesized by adjusting the experimental parameters. When TEOS amount is 1 mL and the concentration of magnetic fluid were 30.0 and 10.0 mg/mL respectively, chain-like and peanuts-like well-dispersed Fe3O4@SiO2 particles with clear core-shell structure were obtained. These size- and shape-controlled Fe3O4@SiO2 composites may have potential application in the field of targeted drug delivery and MRI contrast agent.

  13. Monodisperse Fe3O4 and γ-Fe2O3 magnetic mesoporous microspheres as anode materials for lithium-ion batteries.

    PubMed

    Xu, Jing-San; Zhu, Ying-Jie

    2012-09-26

    Monodisperse Fe(3)O(4) and γ-Fe(2)O(3) magnetic mesoporous microspheres are prepared via a surfactant-free solvothermal combined with precursor thermal transformation method. The as-prepared Fe(3)O(4) and γ-Fe(2)O(3) magnetic mesoporous microspheres have a relatively high specific surface area of 122.3 and 138.6 m(2)/g, respectively. The Fe(3)O(4) and γ-Fe(2)O(3) magnetic mesoporous microspheres are explored as the anode materials for lithium-ion batteries, and they have a high initial discharge capacity of 1307 and 1453 mA h/g, respectively, and a good reversible performance (450 mA h/g for Fe(3)O(4) and 697 mA h/g for γ-Fe(2)O(3) after 110 cycles) at the current density of 0.2C.

  14. Evidence of spin phonon coupling in magnetoelectric NiFe{sub 2}O{sub 4}/PMN-PT composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahlawat, Anju; Satapathy, S., E-mail: srinu73@rrcat.gov.in, E-mail: srinusatapathy@gmail.com; Gupta, P. K.

    2013-12-16

    The coupling of phonon with spin in strain coupled magnetoelectric NiFe{sub 2}O{sub 4} (NFO)/0.65Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}–0.35PbTiO{sub 3} (PMN-PT) composite was investigated by temperature-dependent Raman spectroscopy and magnetic measurements in the range 30–350 °C. Pure NFO shows usual ferromagnetic behaviour in this temperature range while NFO/PMN-PT composite show dramatic change in magnetic moment across ferroelectric transition temperature (T{sub c} ∼ 180 °C) of PMN-PT. The temperature evolution of the Raman spectra for the composite shows significant phonon anomalies in T-site (Fe-O) and O-site (Ni/Fe-O) phonon modes at ferroelectric transition temperature is attributed to spin phonon coupling in NFO/PMN-PT composite. The strain mediated magnetoelectric couplingmore » mechanism in this composite is apparent from the observed spin phonon interaction.« less

  15. 1D Magnetic Materials of Fe3O4 and Fe with High Performance of Microwave Absorption Fabricated by Electrospinning Method

    PubMed Central

    Han, Rui; Li, Wei; Pan, Weiwei; Zhu, Minggang; Zhou, Dong; Li, Fa-shen

    2014-01-01

    Fe3O4 and Fe nanowires are successfully fabricated by electrospinning method and reduction process. Wiry microstructures were achieved with the phase transformation from α-Fe2O3 to Fe3O4 and Fe by partial and full reduction, while still preserving the wire morphology. The diameters of the Fe3O4 and Fe nanowires are approximately 50–60 nm and 30–40 nm, respectively. The investigation of microwave absorption reveals that the Fe3O4 nanowires exhibit excellent microwave absorbing properties. For paraffin-based composite containing 50% weight concentration of Fe3O4 nanowires, the minimum reflection loss reaches −17.2 dB at 6.2 GHz with the matching thickness of 5.5 mm. Furthermore, the calculation shows that the modulus of the ratio between the complex permittivity and permeability |ε/μ| is far away from unity at the minimum reflection loss point, which is quite different from the traditional opinions. PMID:25510415

  16. A Facile Electrophoretic Deposition Route to the Fe3O4/CNTs/rGO Composite Electrode as a Binder-Free Anode for Lithium Ion Battery.

    PubMed

    Yang, Yang; Li, Jiaqi; Chen, Dingqiong; Zhao, Jinbao

    2016-10-12

    Fe 3 O 4 is regarded as an attractive anode material for lithium ion batteries (LIBs) due to its high theoretical capacity, natural abundance, and low cost. However, the poor cyclic performance resulting from the low conductivity and huge volume change during cycling impedes its application. Here we have developed a facile electrophoretic deposition route to fabricate the Fe 3 O 4 /CNTs (carbon nanotubes)/rGO (reduced graphene oxide) composite electrode, simultaneously achieving material synthesis and electrode assembling. Even without binders, the adhesion and mechanical firmness of the electrode are strong enough to be used for LIB anode. In this specific structure, Fe 3 O 4 nanoparticles (NPs) interconnected by CNTs are sandwiched by rGO layers to form a robust network with good conductivity. The resulting Fe 3 O 4 /CNTs/rGO composite electrode exhibits much improved electrochemical performance (high reversible capacity of 540 mAh g -1 at a very high current density of 10 A g -1 , and a remarkable capacity of 1080 mAh g -1 can be maintained after 450 cycles at 1 A g -1 ) compared with that of commercial Fe 3 O 4 NPs electrode.

  17. Nanofibrillated Cellulose-Assisted Synthesis of Fiber-Like ZnO-ZnFe2O4 Composites with Enhanced Visible-Light-Driven Photocatalytic Activity

    NASA Astrophysics Data System (ADS)

    Cai, Aijun; Guo, Aiying; Du, Liqiang; Chang, Yongfang; Wang, Xiuping

    2018-05-01

    In this article, fiber-like ZnO-ZnFe2O4 composites are obtained by using nanofibrillated cellulose as a biotemplate. The as-prepared composites exhibit strong absorbance in the visible-light region. The ZnO-ZnFe2O4 composites exhibit a similar bandgap (1.88 eV) compared with the ZnFe2O4 (1.85 eV). The ZnO-ZnFe2O4 composites can be easily collected by an external magnet, which contributes to improving the utilization efficiency of the photocatalysts. The photocatalytic activity of the ZnO-ZnFe2O4 catalysts was evaluated by photodegrading rhodamine B (RhB) under visible-light irradiation. Compared with ZnO and ZnFe2O4, the ZnO-ZnFe2O4 catalysts show higher photocatalytic activity due to the efficient electron-hole separation.

  18. Liquid-phase deposition of TiO2 nanoparticles on core-shell Fe3O4@SiO2 spheres: preparation, characterization, and photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Ma, Jian-Qi; Guo, Shao-Bo; Guo, Xiao-Hua; Ge, Hong-Guang

    2015-07-01

    To prevent and avoid magnetic loss caused by magnetite core phase transition involving in high-temperature crystallization of amorphous sol-gel TiO2, core-shell Fe3O4@SiO2@TiO2 composite spheres were synthesized via non-thermal process of TiO2. First, core-shell Fe3O4@SiO2 particles were synthesized through a solvothermal method followed by a sol-gel process. Second, anatase TiO2 nanoparticles (NPs) were directly coated on Fe3O4@SiO2 surface by liquid-phase deposition method, which uses (NH4)2TiF6 as Ti source for TiO2 and H3BO3 as scavenger for F- ions at 50 °C. The morphology, structure, composition, and magnetism of the resulting composites were characterized and their photocatalytic activities were also evaluated. The results demonstrate that TiO2 NPs with an average size of 6-8 nm were uniformly deposited on the Fe3O4@SiO2 surface. Magnetic hysteresis curves indicate that the composite spheres exhibit superparamagnetic characteristics with a magnetic saturation of 32.5 emu/g at room temperature. The magnetic TiO2 composites show high photocatalytic performance and can be recycled five times by magnetic separation without major loss of activity, which meant that they can be used as efficient and conveniently renewable photocatalyst.

  19. Composite multifunctional nanostructures based on ZnO tetrapods and superparamagnetic Fe3O4 nanoparticles.

    PubMed

    Villani, M; Rimoldi, T; Calestani, D; Lazzarini, L; Chiesi, V; Casoli, F; Albertini, F; Zappettini, A

    2013-04-05

    A nanocomposite material is obtained by coupling superparamagnetic magnetite nanoparticles (Fe3O4 NP) and vapor phase grown zinc oxide nanostructures with 'tetrapod' morphology (ZnO TP). The aim is the creation of a multifunctional material which retains the attractive features of ZnO (e.g. surface reactivity, strong UV emission, piezoelectricity) together with added magnetism. Structural, morphological, optical, magnetic and functional characterization are performed. In particular, the high saturation magnetization of Fe3O4 NP (above 50 A m(2) kg(-1)), the strong UV luminescence and the enhanced photocatalytic activity of coupled nanostructures are discussed. Thus the nanocomposite turns out to be suitable for applications in energy harvesting and conversion, gas- and bio-sensing, bio-medicine and filter-free photocatalysis.

  20. Electrospun Fe3O4/TiO2 hybrid nanofibers and their in vitro biocompatibility: prospective matrix for satellite cell adhesion and cultivation.

    PubMed

    Amna, Touseef; Hassan, M Shamshi; Van Ba, Hoa; Khil, Myung-Seob; Lee, Hak-Kyo; Hwang, I H

    2013-03-01

    We report the fabrication of novel Fe3O4/TiO2 hybrid nanofibers with the improved cellular response for potential tissue engineering applications. In this study, Fe3O4/TiO2 hybrid nanofibers were prepared by facile sol-gel electrospinning using titanium isopropoxide and iron(III) nitrate nonahydrate as precursors. The obtained electrospun nanofibers were vacuum dried at 80 °C and then calcined at 500 °C. The physicochemical characterization of the synthesized composite nanofibers was carried out by scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy and X-ray diffraction pattern. To examine the in vitro cytotoxicity, satellite cells were treated with as-prepared Fe3O4/TiO2 and the viability of cells was analyzed by Cell Counting Kit-8 assay at regular time intervals. The morphological features of unexposed satellite cells and exposed to Fe3O4/TiO2 composite were examined with a phase contrast microscope whereas the quantification of cell viability was carried out via confocal laser scanning microscopy. The morphology of the cells attached to hybrid matrix was observed by Bio-SEM. Cytotoxicity experiments indicated that the satellite cells could attach to the Fe3O4/TiO2 composite nanofibers after being cultured. We observed that Fe3O4-TiO2 composite nanofibers could support cell adhesion and growth. Results from this study therefore suggest that Fe3O4/TiO2 composite scaffold with small diameters (approximately 200 nm) can mimic the natural extracellular matrix well and provide possibilities for diverse applications in the field of tissue engineering and regenerative medicine. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Synthesis, Characterization and Cytotoxicity of Novel Multifunctional Fe3O4@SiO2@GdVO4:Dy3+ Core-Shell Nanocomposite as a Drug Carrier

    PubMed Central

    Li, Bo; Fan, Huitao; Zhao, Qiang; Wang, Congcong

    2016-01-01

    In this study, multifunctional Fe3O4@SiO2@GdVO4:Dy3+ nanocomposites were successfully synthesized via a two-step method. Their structure, luminescence and magnetic properties were characterized by X-ray diffraction (XRD), scanning electronic microscope (SEM), transmission electron microscopy (TEM), photoluminescence (PL) spectra and vibrating sample magnetometer (VSM). The results indicated that the as-prepared multifunctional composites displayed a well-defined core-shell structure. The composites show spherical morphology with a size distribution of around 360 nm. Additionally, the composites exhibit high saturation magnetization (20.40 emu/g) and excellent luminescence properties. The inner Fe3O4 cores and the outer GdVO4:Dy3+ layers endow the composites with good responsive magnetic properties and strong fluorescent properties, which endow the nanoparticles with great potential applications in drug delivery, magnetic resonance imaging, and marking and separating of cells in vitro. PMID:28773275

  2. Synthesis and characterization of magnetic poly(divinyl benzene)/Fe3O4, C/Fe3O4/Fe, and C/Fe onionlike fullerene micrometer-sized particles with a narrow size distribution.

    PubMed

    Snovski, Ron; Grinblat, Judith; Margel, Shlomo

    2011-09-06

    Magnetic poly(divinyl benzene)/Fe(3)O(4) microspheres with a narrow size distribution were produced by entrapping the iron pentacarbonyl precursor within the pores of uniform porous poly(divinyl benzene) microspheres prepared in our laboratory, followed by the decomposition in a sealed cell of the entrapped Fe(CO)(5) particles at 300 °C under an inert atmosphere. Magnetic onionlike fullerene microspheres with a narrow size distribution were produced by annealing the obtained PDVB/Fe(3)O(4) particles at 500, 600, 800, and 1100 °C, respectively, under an inert atmosphere. The formation of carbon graphitic layers at low temperatures such as 500 °C is unique and probably obtained because of the presence of the magnetic iron nanoparticles. The annealing temperature allowed control of the composition, size, size distribution, crystallinity, porosity, and magnetic properties of the produced magnetic microspheres. © 2011 American Chemical Society

  3. Effect of Al2O3 in poly(methyl methacrylate) composite polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Sun, C. C.; You, A. H.; Teo, L. L.; Thong, L. W.

    2018-05-01

    In this work, the effect of inert fillers on poly(methyl methacrylate) (PMMA) composite polymer electrolytes (CPEs) are investigated. The PMMA-LiCF3SO3-EC-Al2O3 composite polymer electrolytes were prepared using solution casting method at room temperature. Lithium trifluoromethanesulfonate (LiCF3SO3) is used as the electrolyte salt which plays an important role in Li ion transfer. In order to soften the polymer matrix, ethylene carbonate (EC) is introduced into the CPEs to help in the disassociation of lithium salt ion pairs. Nano sized aluminium oxide (Al2O3) is then incorporated to enhance mechanical strength and ionic conductivity of the polymer electrolyte. The optimum of 2 wt.% 50 nm Al2O3 was added into the PMMA polymer electrolyte sample. Through Electrochemical Impedance Spectroscopy (EIS) measurements, the highest ionic conductivity at room temperature is determined as 1.52×10-4 S/cm. FTIR spectra analysis showed CH2 twisting mode at 1383.43 cm-1, C=O stretching mode at 1721.56 cm-1 which proven the interaction between host polymer and lithium salt and CH3 stretching mode at 2981.34 cm-1. XRD analysis had also been performed to study the structural behaviour of the PMMA polymer electrolyte. The intense peak at position 2θ angle of 15.04°, 30.92° and 45.58° occur upon interaction with Al2O3. Lastly, the surface morphology is studied through SEM+EDX analysis.

  4. Tailoring mechanical and antibacterial properties of chitosan/gelatin nanofiber membranes with Fe3O4 nanoparticles for potential wound dressing application

    NASA Astrophysics Data System (ADS)

    Cai, Ning; Li, Chao; Han, Chao; Luo, Xiaogang; Shen, Liang; Xue, Yanan; Yu, Faquan

    2016-04-01

    In this work, magnetic Fe3O4 nanoparticles (NPs) were utilized to improve the mechanical and antibacterial properties of chitosan (CS)/gelatin (GE) composite nanofiber membranes. Homogeneous Fe3O4/CS/GE nanofibers were electrospun successfully. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images confirmed the presence of well-dispersed Fe3O4 NPs in the composite nanofibers. Fourier transform infrared spectroscopy (FTIR) spectra revealed the effective interactions of Fe3O4 NPs to the composite matrix through hydrogen bonding. The improvement on the thermal stability of the Fe3O4/CS/GE was observed by differential scanning calorimetry (DSC) and thermo gravimetric analysis (TGA), which is tightly correlated to strong filler-matrix adhesion. The incorporation of Fe3O4 NPs resulted in a substantial enhancement of mechanical properties. The optimum mechanical performance was demonstrated on 1 wt% Fe3O4/CS/GE nanofiber membranes, achieving 155% augment of Young's modulus, 128% increase of tensile strength, and 100% boost of toughness from CS/GE. The excellent mechanical enhancement can be explained by the effective dispersion of fillers and the filler-matrix interactions, which ensures the efficient load transfer from CS/GE matrix to Fe3O4 nanofillers. Moreover, zones of inhibition for Escherichia coli and Staphylococcus aureus expanded markedly with the supplement of Fe3O4 NPs. In all, nanofiber membranes made of Fe3O4/CS/GE composite with tailored mechanical and antibacterial properties appear a promising wound dressing material.

  5. Synthesis and characterization of ZnS@Fe3O4 fluorescent-magnetic bifunctional nanospheres

    NASA Astrophysics Data System (ADS)

    Koc, Kenan; Karakus, Baris; Rajar, Kausar; Alveroglu, Esra

    2017-10-01

    Herein, we synthesized and characterized fluorescent and super paramagnetic ZnS@Fe3O4 nanospheres. First, (3-mercaptopropyl) trimethoxysilane (MPS) capped ZnS quantum dots (QDs) and SiO2 coated Fe3O4 nanoparticles were synthesized separately by using solution growth and co-precipitation techniques. After synthesis and characterization of these two nanoparticles, they were conglutinated together in a nano sized sphere. The QDs were attached to the surface of the Fe3O4 nanoparticles by Sisbnd Osbnd Si bonds and so Sisbnd Osbnd Si bonds created a SiO2 network around the nanoparticles during the formation of the ZnS@Fe3O4 nanospheres. The synthesized MPS capped ZnS fluorescent QDs, SiO2 coated magnetite super paramagnetic nanoparticles and ZnS@Fe3O4 fluorescent-magnetic bifunctional nanospheres were characterized by using UV-Vis Absorption Spectroscopy, Fluorescence Spectroscopy, X-ray analysis, Vibrating Sample Magnetometer analysis, Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy, Scanning Electron Microscope and Energy-dispersive X-ray spectroscopy. ZnS@Fe3O4 bifunctional nanospheres were shown to retain the magnetic properties of magnetite, while exhibiting the luminescent optical properties of ZnS nanoparticles. The combination of fluorescent and magnetic behaviors of nano composites make them useful for potential applications in the field of bio-medical and environmental.

  6. Structural phases, magnetic properties and Maxwell-Wagner type relaxation of CoFe2O4/Sr2Co2Fe12O22 ferrite composites

    NASA Astrophysics Data System (ADS)

    Patel, Chirag K.; Solanki, Neha P.; Singh, Charanjeet; Jotania, Rajshree B.; Chauhan, Chetna C.; Kulkarni, Shailja D.; Shirsath, Sagar E.

    2017-07-01

    CoFe2O4 (S:Y-1:0) and Sr2Co2Fe12O22 (S:Y-0:1) ferrites were synthesized separately by using chemical coprecipitation technique and calcined at 1000 °C for 5 h. The mixed ferrite composites (S:Y-3:7, 4:6, 5:5, 6:4 and 7:3) were prepared by physical mixing of individual ferrite powders in required weight proportions. The prepared composites were heated at 1150 °C for 5 h in a muffle furnace and then slowly cooled to room temperature. The prepared ferrites were characterized using various instrumental techniques like FTIR, XRD, SEM, VSM and dielectric measurements. The x-ray diffraction studies of pure Sr2Co2Fe12O22 ferrite sample show the presence of M and Y-type hexagonal phases, while the composites consist of spinel and Y-type phases. FTIR spectra of all samples show two bands of Fe-O stretching vibrations. VSM results of composites reveal that the values of the saturation magnetization (M s) vary from 50.44 emu g-1 to 31.21 emu g-1, while remanent magnetization values found from 11.18 emu g-1 to 3.70 emu g-1. A higher value of coercivity (H c  =  562 emu g-1) is observed in the composite S:Y-3:7 but M r/M s ratio of pure and composites is found to be less than 0.5. The dielectric behavior is explained using Maxwell-Wegner type interfacial polarization and N. Rezlescu’s model.

  7. Synthesis of quenchable high-pressure form of magnetite (h-Fe3O4) with composition [4](Fe0.732+ Mg0.26)[6](Fe0.713+ Cr0.14Al0.10 Si0.04)2O4

    NASA Astrophysics Data System (ADS)

    Koch-Müller, Monika; Mugnaioli, Enrico; Rhede, Dieter; Speziale, Sergio; Kolb, Ute; Wirth, Richard

    2014-05-01

    Cubic inverse-spinel magnetite transforms under pressure to orthorhombic normal-spinel magnetite, h-Fe3O4 ( e.g. Fei et al. 1999; Bengtson et al. 2013). The pressure at which the transition takes place is still controversial. The high-pressure form is reported to be not quenchable to ambient conditions. We report the synthesis of h-magnetite which incorporates considerable amounts of additional cations (Cr, Mg, Al, Si) and is quenchable to ambient conditions. Two experiments were performed at 18 GPa and 1800 ° C in a multi-anvil press. The run products were investigated by electron microprobe, transmission electron microscopy and electron diffraction tomography. We observed the formation of h-magnetite in both experiments. In experiment MA-367 we used an oxide mixture with a majoritic stoichiometry Mg1.8Fe1.2(Al1.4 Cr0.2Si0.2Mg0.2)Si3O12 as starting material, with Si and Mg in excess. The Fe-oxide phase forms elongated aggregates 10-30 μm in length, mutually intergrown with majorite, the latter being the main phase of the run products coexisting with small amounts of stishovite. The formula for h-magnetite in run MA-367 was calculated as [4](Fe0.732+ Mg0.26)[6](Fe0.713+ Cr0.14Al0.10 Si0.04)2O4. In the second experiment (MA-376) we used an oxide mixture corresponding to the composition of h-magnetite obtained in MA-367. In this experiment the main phase was h-magnetite with composition [4](Fe0.982+)[6](Fe0.683+ Cr0.17Al0.13 Si0.02)2O4coexisting with very small amounts of wadsleyite. Interestingly no magnesium was incorporated into the Fe-oxide in this experiment compared to MA-367 and no iron was found in the coexisting wadsleyite. For the first time it was possible to perform electron diffraction on recovered h-magnetite of both experiments and we observed that -at least in our case- the h-magnetite structure can better be described in space group Amam than in space group Bbmm as previously proposed. The substitution of Fe by Cr, Mg, Al and Si, all smaller in

  8. Highly-efficient forward osmosis membrane tailored by magnetically responsive graphene oxide/Fe3O4 nanohybrid

    NASA Astrophysics Data System (ADS)

    Rastgar, Masoud; Shakeri, Alireza; Bozorg, Ali; Salehi, Hasan; Saadattalab, Vahid

    2018-05-01

    Emerging forward osmosis (FO) process as a potentially more energy efficient method has recently gained remarkable attention. Herein, considering the unique features of graphene oxide (GO), a new facile method has been proposed to magnetically modify GO within the polyamide active layer to obtain highly efficient osmotically driven membranes. While exposed to magnetic field, thin film nanocomposite membranes modified by GO/Fe3O4 nanohybrids (TFN-MMGO/Fe3O4) were synthesized by in-situ interfacial polymerization of the prepared monomer solution and organic trimesoyl chloride. Water permeability, salt rejection, and fouling tendency of the modified membranes were then evaluated and compared with both pristine thin film composite (TFC) membrane and the ones modified by GO/Fe3O4 nanohybrides in the absence of magnetic field (TFN-GO/Fe3O4). According to the experimental results, when compared to the TFC and TFN-GO/Fe3O4 membranes, respectively, 117.4% and 63.2% water flux enhancements were achieved in TFN-MMGO/Fe3O4 membrane with optimal GO/Fe3O4 nanohybrid concentration of 100 ppm. In spite of such improvements in water flux, little compromise in reverse salt leakages were observed in the TFN-MMGO/Fe3O4 membranes compared to the TFC one. As well, the TFN-MMGO/Fe3O4 and TFN-GO/Fe3O4 membranes revealed higher fouling resistances than the TFC membrane due to their distinguished manipulated surface characteristics.

  9. Fabrication of bifunctional core-shell Fe3O4 particles coated with ultrathin phosphor layer

    NASA Astrophysics Data System (ADS)

    Atabaev, Timur Sh; Kim, Hyung-Kook; Hwang, Yoon-Hwae

    2013-08-01

    Bifunctional monodispersed Fe3O4 particles coated with an ultrathin Y2O3:Tb3+ shell layer were fabricated using a facile urea-based homogeneous precipitation method. The obtained composite particles were characterized by powder X-ray diffraction, transmission electron microscopy (TEM), quantum design vibrating sample magnetometry, and photoluminescence (PL) spectroscopy. TEM revealed uniform spherical core-shell-structured composites ranging in size from 306 to 330 nm with a shell thickness of approximately 25 nm. PL spectroscopy confirmed that the synthesized composites displayed a strong eye-visible green light emission. Magnetic measurements indicated that the composite particles obtained also exhibited strong superparamagnetic behavior at room temperature. Therefore, the inner Fe3O4 core and outer Y2O3:Tb3+ shell layer endow the composites with both robust magnetic properties and strong eye-visible luminescent properties. These composite materials have potential use in magnetic targeting and bioseparation, simultaneously coupled with luminescent imaging.

  10. Fabrication of bifunctional core-shell Fe3O4 particles coated with ultrathin phosphor layer

    PubMed Central

    2013-01-01

    Bifunctional monodispersed Fe3O4 particles coated with an ultrathin Y2O3:Tb3+ shell layer were fabricated using a facile urea-based homogeneous precipitation method. The obtained composite particles were characterized by powder X-ray diffraction, transmission electron microscopy (TEM), quantum design vibrating sample magnetometry, and photoluminescence (PL) spectroscopy. TEM revealed uniform spherical core-shell-structured composites ranging in size from 306 to 330 nm with a shell thickness of approximately 25 nm. PL spectroscopy confirmed that the synthesized composites displayed a strong eye-visible green light emission. Magnetic measurements indicated that the composite particles obtained also exhibited strong superparamagnetic behavior at room temperature. Therefore, the inner Fe3O4 core and outer Y2O3:Tb3+ shell layer endow the composites with both robust magnetic properties and strong eye-visible luminescent properties. These composite materials have potential use in magnetic targeting and bioseparation, simultaneously coupled with luminescent imaging. PMID:23962025

  11. High surface stability of magnetite on bi-layer Fe3O4/Fe/MgO(0 0 1) films under 1 MeV Kr+ ion irradiation

    NASA Astrophysics Data System (ADS)

    Kim-Ngan, N.-T. H.; Krupska, M.; Balogh, A. G.; Malinsky, P.; Mackova, A.

    2017-12-01

    We investigate the stability of the bi-layer Fe3O4/Fe(0 0 1) films grown epitaxially on MgO(0 0 1) substrates with the layer thickness in the range of 25-100 nm upon 1 MeV Kr+ ion irradiation. The layer structure and layer composition of the films before and after ion irradiation were studied by XRR, RBS and RBS-C techniques. The interdiffusion and intermixing was analyzed. No visible change in the RBS spectra was observed upon irradiation with ion fluence below 1015 Kr cm-2. The bi-layer structure and the stoichiometric Fe3O4 layer on the surface were well preserved after Kr+ ion irradiation at low damage levels, although the strong intermixing implied a large interfacial (Fe x O y ) and (Fe, Mg)O y layer respective at Fe3O4-Fe and Fe-MgO interface. The high ion fluence of 3.8  ×  1016 Kr cm-2 has induced a complete oxidization of the buffer Fe layer. Under such Kr fluence, the stoichiometry of the Fe3O4 surface layer was still preserved indicating its high stability. The entire film contains Fe x O y -type composition at ion fluence large than 5.0  ×  1016 Kr cm-2.

  12. Dual-pH/Magnetic-Field-Controlled Drug Delivery Systems Based on Fe3 O4 @SiO2 -Incorporated Salecan Graft Copolymer Composite Hydrogels.

    PubMed

    Hu, Xinyu; Wang, Yongmei; Zhang, Liangliang; Xu, Man; Zhang, Jianfa; Dong, Wei

    2017-10-09

    Salecan is a water-soluble extracellular β-glucan and has excellent physicochemical and biological properties for hydrogel preparation. In this study, a new pH/magnetic field dual-responsive hydrogel was prepared by the graft copolymerization of salecan with 4-pentenoic acid (PA) and N-hydroxyethylacrylamide (HEAA) in the presence of Fe 3 O 4 @SiO 2 nanoparticles for doxorubicin hydrochloride (DOX) release. Integration of Fe 3 O 4 @SiO 2 nanoparticles in salecan-g-poly(PA-co-HEAA) copolymers afforded magnetic sensitivity to the original material. DOX-loaded hydrogels exhibited a clear capacity for pH/magnetic field dual-responsive controlled drug release. Lowering the pH to acidic conditions or introducing an external magnetic field caused an enhancement in DOX release. This salecan-g-poly(PA-co-HEAA)/Fe 3 O 4 @SiO 2 composite hydrogel is a promising drug carrier for magnetically targeted drug delivery with enhanced DOX cytotoxicity against A549 cells. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Mössbauer study and magnetic properties of MgFe2O4 crystallized from the glass system B2O3/K2O/P2O5/MgO/Fe2O3

    NASA Astrophysics Data System (ADS)

    Shabrawy, S. El; Bocker, C.; Miglierini, M.; Schaaf, P.; Tzankov, D.; Georgieva, M.; Harizanova, R.; Rüssel, C.

    2017-01-01

    An iron containing magnesium borate glass with the mol% composition 51.7 B2O3/9.3 K2O /1 P2O5/27.6MgO/10.4Fe2O3was prepared by the conventional melts quenching method followed by a thermal treatment process at temperatures in the range from 530 to 604 °C.The thermally treated samples were characterized by X-ray diffraction, scanning and transmission electron microscopy. It was shown that superparamagnetic MgFe2O4 nanoparticles were formed during thermal treatment. The size of the spinel type crystals was in the range from 6 to 15 nm. Mössbauer spectra of the powdered glass ceramic samples and the extracted nanoparticles after dissolving the glass matrix in diluted acid were recorded at room temperature. The deconvolution of the spectra revealed the crystallization of two spinel phases MgFe2O4 (as a dominant phase) and superparamagnetic maghemite, γ-Fe2O3 (as a secondary phase). Room temperature magnetic measurements showed that, increasing the crystallization temperature changed the superparamagnetic behavior of the samples to ferrimagnetic behavior. The Curie temperatures of the samples were measured and showed a higher value than that of the pure bulk MgFe2O4.

  14. A novel electrochemical biosensor based on Fe3O4 nanoparticles-polyvinyl alcohol composite for sensitive detection of glucose.

    PubMed

    Sanaeifar, Niuosha; Rabiee, Mohammad; Abdolrahim, Mojgan; Tahriri, Mohammadreza; Vashaee, Daryoosh; Tayebi, Lobat

    2017-02-15

    In this research, a new electrochemical biosensor was constructed for the glucose detection. Iron oxide nanoparticles (Fe 3 O 4 ) were synthesized through co-precipitation method. Polyvinyl alcohol-Fe 3 O 4 nanocomposite was prepared by dispersing synthesized nanoparticles in the polyvinyl alcohol (PVA) solution. Glucose oxidase (GOx) was immobilized on the PVA-Fe 3 O 4 nanocomposite via physical adsorption. The mixture of PVA, Fe 3 O 4 nanoparticles and GOx was drop cast on a tin (Sn) electrode surface (GOx/PVA-Fe 3 O 4 /Sn). The Fe 3 O 4 nanoparticles were characterized by X-ray diffraction (XRD). Also, Fourier transform infrared (FTIR) spectroscopy and field emission scanning electron microscopy (FE-SEM) techniques were utilized to evaluate the PVA-Fe 3 O 4 and GOx/PVA-Fe 3 O 4 nanocomposites. The electrochemical performance of the modified biosensor was investigated using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). Presence of Fe 3 O 4 nanoparticles in the PVA matrix enhanced the electron transfer between enzyme and electrode surface and the immobilized GOx showed excellent catalytic characteristic toward glucose. The GOx/PVA-Fe 3 O 4 /Sn bioelectrode could measure glucose in the range from 5 × 10 -3 to 30 mM with a sensitivity of 9.36 μA mM -1 and exhibited a lower detection limit of 8 μM at a signal-to-noise ratio of 3. The value of Michaelis-Menten constant (K M ) was calculated as 1.42 mM. The modified biosensor also has good anti-interfering ability during the glucose detection, fast response (10 s), good reproducibility and satisfactory stability. Finally, the results demonstrated that the GOx/PVA-Fe 3 O 4 /Sn bioelectrode is promising in biosensor construction. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Double-phase-functionalized magnetic Janus polymer microparticles containing TiO2 and Fe2O3 nanoparticles encapsulated in mussel-inspired amphiphilic polymers.

    PubMed

    Yabu, Hiroshi; Ohshima, Hiroyuki; Saito, Yuta

    2014-10-22

    Recently, anisotropic colloidal polymeric materials including Janus microparticles, which have two distinct aspects on their surfaces or interiors, have garnered much interest due to their anisotropic alignment and rotational orientation with respect to external electric or magnetic fields. Janus microparticles are also good candidates for pigments in "twisting ball type" electronic paper, which is considered promising for next-generation flexible display devices. We demonstrate here a universal strategy to encapsulate inorganic nanoparticles and to introduce different such inorganic nanoparticles into distinct polymer phases in Janus microparticles. TiO2 and Fe2O3 nanoparticles were separately encapsulated in two different mussel-inspired amphiphilic copolymers, and then organic-inorganic composite Janus microparticles were prepared by simple evaporation of solvent from the dispersion containing the polymer and nanoparticle. These Janus microparticles were observed to rotate quickly in response to applied magnetic fields.

  16. Fe3O4/cyclodextrin polymer nanocomposites for selective heavy metals removal from industrial wastewater.

    PubMed

    Badruddoza, Abu Zayed M; Shawon, Zayed Bin Zakir; Tay, Wei Jin Daniel; Hidajat, Kus; Uddin, Mohammad Shahab

    2013-01-02

    In this work, carboxymethyl-β-cyclodextrin (CM-β-CD) polymer modified Fe(3)O(4) nanoparticles (CDpoly-MNPs) was synthesized for selective removal of Pb(2+), Cd(2+), Ni(2+) ions from water. This magnetic adsorbent was characterized by TEM, FTIR, XPS and VSM. The adsorption of all studied metal ions onto CDpoly-MNPs was found to be dependent on pH, ionic strength, and temperature. Batch adsorption equilibrium was reached in 45 min and maximum uptakes for Pb(2+), Cd(2+) and Ni(2+) in non-competitive adsorption mode were 64.5, 27.7 and 13.2 mg g(-1), respectively at 25 °C. Adsorption data were fitted well to Langmuir isotherm and pseudo-second-order models for kinetic study. The polymer grafted on MNPs enhanced the adsorption capacity because of the complexing abilities of the multiple hydroxyl and carboxyl groups in polymer backbone with metal ions. In competitive adsorption experiments, CDpoly-MNPs could preferentially adsorb Pb(2+) ions with an affinity order of Pb(2+)>Cd(2+)>Ni(2+) which can be explained by hard and soft acids and bases (HASB) theory. Furthermore, we explored the recyclability of CDpoly-MNPs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Speciation analysis of Mn(II)/Mn(VII) using Fe3O4@ionic liquids-β-cyclodextrin polymer magnetic solid phase extraction coupled with ICP-OES.

    PubMed

    Chen, Songqing; Qin, Xingxiu; Gu, Weixi; Zhu, Xiashi

    2016-12-01

    Ionic liquids-β-cyclodextrin polymer (ILs-β-CDCP) was attached on Fe 3 O 4 nanoparticles to prepare magnetic solid phase extraction agent (Fe 3 O 4 @ILs-β-CDCP). The properties and morphology of Fe 3 O 4 @ILs-β-CDCP were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction(XRD), size distribution and magnetic analysis. A new method of magnetic solid phase extraction (MSPE) coupled to ICP-OES for the speciation of Mn(II)/Mn(VII) in water samples was established. The results showed that Mn(VII) and total manganese [Mn(II)+Mn(VII)] were quantitatively extracted after adjusting aqueous sample solution to pH 6.0 and 10.0, respectively. Mn(II) was calculated by subtraction of Mn(VII) from total manganese. Fe 3 O 4 @ILs-β-CDCP showed a higher adsorption capacity toward Mn(II) and Mn(VII). Several factors, such as the pH value, extraction temperature and sample volume, were optimized to achieve the best extraction efficiency. Moreover, the adsorption ability of Fe 3 O 4 @ILs-β-CDCP would not be significantly lower after reusing of 10 times. The accuracy of the developed method was confirmed by analyzing certified reference materials (GSB 07-1189-2000), and by spiking spring water, city water and lake water samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Dielectric relaxation in 0-3 PVDF-Ba(Fe{sub 1/2}Nb{sub 1/2})O{sub 3} composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandra, K. P., E-mail: kpchandra23@gmail.com; Singh, Rajan; Kulkarni, A. R., E-mail: ajit2957@gmail.com

    2016-05-06

    (1-x)PVDF-xBa(Fe{sub 1/2}Nb{sub 1/2})O{sub 3} ceramic-polymer composites with x = 0.025, 0.05, 0.10, 0.15 were prepared using melt-mixing technique. The crystal symmetry, space group and unit cell dimensions were determined from the XRD data of Ba(Fe{sub 1/2}Nb{sub 1/2})O{sub 3} using FullProf software, whereas crystallite size and lattice strain were estimated using Williamson-Hall approach. The distribution of Ba(Fe{sub 1/2}Nb{sub 1/2})O{sub 3} particles in the PVDF matrix were examined on the cryo-fractured surfaces using a scanning electron microscope. Cole-Cole and pseudo Cole-Cole analysis suggested the dielectric relaxation in this system to be of non-Debye type. Filler concentration dependent real and imaginary parts ofmore » dielectric constant as well as ac conductivity data followed definite trends of exponential growth types of variation.« less

  19. Three-phase Fe3O4/MWNT/PVDF nanocomposites with high dielectric constant for embedded capacitor

    NASA Astrophysics Data System (ADS)

    Wang, Haiyun; Fu, Qiong; Luo, Jiangqi; Zhao, Dongmei; Luo, Laihui; Li, Weiping

    2017-06-01

    To get the dielectric material with a high dielectric constant and low dielectric loss, the modified multiwalled carbon nanotube (MWNT-S) and ferroferric oxide (Fe3O4) particles were embedded into polyvinylidene fluoride (PVDF) to fabricate the Fe3O4/MWNT-S/PVDF ternary composites. The maximum dielectric constant of these composites can be up to 3490 at a very low filler fraction, and dielectric loss can be suppressed below 0.5. The small amount of the second filler (Fe3O4) can accelerate the formation of a percolation conductive network and improve the interfacial polarization. Therefore, the excellent dielectric properties can be achieved at low loading of fillers.

  20. Structural, dielectric and ferroelectric studies of BZT doped Mg0.2Cu0.3Zn0.5Fe2O4 magnetoelectric composites

    NASA Astrophysics Data System (ADS)

    Khader, S. Abdul; Parveez, Asiya; Giridharan, N. V.; Sankarappa, T.

    2018-05-01

    The composites of ferrite-ferroelectric system (x) Mg0.2Cu0.3Zn0.5Fe2O4+ (1-x) Ba0.8Zr0.2TiO3 (x=15%, 30%, 45%) were synthesized by sintering mixtures of ferroelectric Ba0.8Zr0.2TiO3 (BZT) and ferrite component Mg0.2Cu0.3Zn0.5Fe2O4 (MCZF). The presences of two phases in magneto-electric composites were probed by X-ray diffraction (XRD) studies. The peaks observed in the XRD spectrum indicated spinel cubic structure for MCZF ferrite and tetragonal perovskite structure for BZT and, both spinel and pervoskite structures for synthesized composites. Surface morphology of the samples has been investigated using Field Emission Scanning Electron Microscope (FESEM). Frequency dependent dielectric properties of synthesized composites were measured from 100 Hz to 1 MHz at RT using HIOKI LCR HI-TESTER. The dielectric dispersion is observed at lower frequencies for the synthesized ME composites. The ferroelectric properties of synthesized composites were analyzed using a Precision ferroelectric tester. It is observed that the composites exhibited ferroelectric hysteresis with wide loops indicating lossy nature of composites.

  1. Hierarchically porous MnO2 microspheres doped with homogeneously distributed Fe3O4 nanoparticles for supercapacitors.

    PubMed

    Zhu, Jian; Tang, Shaochun; Xie, Hao; Dai, Yuming; Meng, Xiangkang

    2014-10-22

    Hierarchically porous yet densely packed MnO2 microspheres doped with Fe3O4 nanoparticles are synthesized via a one-step and low-cost ultrasound assisted method. The scalable synthesis is based on Fe(2+) and ultrasound assisted nucleation and growth at a constant temperature in a range of 25-70 °C. Single-crystalline Fe3O4 particles of 3-5 nm in diameter are homogeneously distributed throughout the spheres and none are on the surface. A systematic optimization of reaction parameters results in isolated, porous, and uniform Fe3O4-MnO2 composite spheres. The spheres' average diameter is dependent on the temperature, and thus is controllable in a range of 0.7-1.28 μm. The involved growth mechanism is discussed. The specific capacitance is optimized at an Fe/Mn atomic ratio of r = 0.075 to be 448 F/g at a scan rate of 5 mV/s, which is nearly 1.5 times that of the extremely high reported value for MnO2 nanostructures (309 F/g). Especially, such a structure allows significantly improved stability at high charging rates. The composite has a capacitance of 367.4 F/g at a high scan rate of 100 mV/s, which is 82% of that at 5 mV/s. Also, it has an excellent cycling performance with a capacitance retention of 76% after 5000 charge/discharge cycles at 5 A/g.

  2. Preparation of Fe2O3-TiO2 composite from Sukabumi iron sand through magnetic separation, pyrometallurgy, and hydrometallurgy

    NASA Astrophysics Data System (ADS)

    Wahyuningsih, S.; Ramelan, A. H.; Pranata, H. P.; Hanif, Q. A.; Ismoyo, Y. A.; Ichsan, K. F.

    2016-11-01

    Preparation of Fe2O3/TiO2 composite from Sukabumi iron sand by magnetic separation, roasting, leaching and precipitation treatment has been carried out. Magnetic separation can separate magnetic particles and non-magnetic particles of iron sand content, while the non-magnetic particles (wustite (FeO), hematite (α-Fe2O3), maghemite (γ-Fe2O3) and magnetite (Fe3O4)) was washing with oxalic acid 1 M. The result product then was roasted at 800 °C treated by sodium carbonate (Na2CO3) addition of 1:1; 2:1 and 1:2 (w/w) of iron sand to Na2CO3 weight ratio, respectively. The X-Ray Fluorescence (XRF) analysis result shown that Sukabumi iron sand have hematite (Fe2O3) and titanium dioxide (TiO2) content about 72.17% dan 14.42%. XRD analysis of roasted iron sand shown the rutile (TiO2), Hematite (Fe2O3), NaFeO2, FeO, and Na2TiO3. Leaching of roasted iron sand using sulphuric acid (H2SO4) have influenced by concentrations of the H2SO4 solution. The optimum iron sand dissolution occurred in H2SO4 9 M, which condensation product of the leachant have a weight ratio of Fe:Ti = 1:1 (w/w). Meanwhile, the settling back-filtrate result of second condensation was obtained a ratio of Fe2O3: TiO2 of 3: 1 (w/w).

  3. Easily Dispersible NiFe2O4/RGO Composite for Microwave Absorption Properties in the X-Band

    NASA Astrophysics Data System (ADS)

    Bateer, Buhe; Zhang, Jianjao; Zhang, Hongchen; Zhang, Xiaochen; Wang, Chunyan; Qi, Haiqun

    2018-01-01

    Composites with good dispersion and excellent microwave absorption properties have important applications. Therefore, an easily dispersible NiFe2O4/reduced graphene oxide (RGO) composite has been prepared conveniently through a simple hydrothermal method. Highly crystalline, small size (about 7 nm) monodispersed NiFe2O4 nanoparticles (NPs) are evenly distributed on the surface of RGO. The microwave absorbability revealed that the NiFe2O4/RGO composite exhibits excellent microwave absorption properties in the X-band (8-12 GHz), and the minimum reflection loss of the NiFe2O4/RGO composite is -27.7 dB at 9.2 GHz. The NiFe2O4/RGO composite has good dispersibility in nonpolar solvent, which facilitates the preparation of stable commercial microwave absorbing coatings. It can be a promising candidate for lightweight microwave absorption materials in many application fields.

  4. Facile hydrothermal synthesis of Fe3O4@cellulose aerogel nanocomposite and its application in Fenton-like degradation of Rhodamine B.

    PubMed

    Jiao, Yue; Wan, Caichao; Bao, Wenhui; Gao, He; Liang, Daxin; Li, Jian

    2018-06-01

    A magnetic cellulose aerogel-supported Fe 3 O 4 nanoparticles composite was designed as a highly efficient and eco-friendly catalyst for Fenton-like degradation of Rhodamine B (RhB). The composite (coded as Fe 3 O 4 @CA) was formed by embedding well-dispersed Fe 3 O 4 nanoparticles into the 3D structure of cellulose aerogels by virtue of a facile and cheap hydrothermal method. Comparative studies indicate that the RhB decolorization ratio is much higher in co-presence of Fe 3 O 4 and H 2 O 2 than that in presence of Fe 3 O 4 or H 2 O 2 only, revealing that the Fe 3 O 4 @CA-catalyzed Fenton-like reaction governed the RhB decolorization process. It was also found that almost 100% RhB removal was achieved in the Fenton-like system. Moreover, the composite exhibited higher catalytic activity than that of the individual Fe 3 O 4 particles. In addition, the Fe 3 O 4 @CA catalyst retained ∼97% of its ability to degrade RhB after the six successive degradation experiments, suggesting its excellent reusability. All these merits indicate that the green and low-cost catalyst with strong magnetic responsiveness possesses good potential for H 2 O 2 -driven Fenton-like treatment of organic dyestuff wastewater. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Superparamagnetic Fe3 O4 @SiO2 core-shell composite nanoparticles for the mixed hemimicelle solid-phase extraction of benzodiazepines from hair and wastewater samples before high-performance liquid chromatography analysis.

    PubMed

    Esmaeili-Shahri, Effat; Es'haghi, Zarrin

    2015-12-01

    Magnetic Fe3 O4 /SiO2 composite core-shell nanoparticles were synthesized, characterized, and applied for the surfactant-assisted solid-phase extraction of five benzodiazepines diazepam, oxazepam, clonazepam, alprazolam, and midazolam, from human hair and wastewater samples before high-performance liquid chromatography with diode array detection. The nanocomposite was synthesized in two steps. First, Fe3 O4 nanoparticles were prepared by the chemical co-precipitation method of Fe(III) and Fe(II) as reaction substrates and NH3 /H2 O as precipitant. Second, the surface of Fe3 O4 nanoparticles was modified with shell silica by Stober method using tetraethylorthosilicate. The Fe3 O4 /SiO2 composite were characterized by X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and vibrating sample magnetometry. To enhance their adsorptive tendency toward benzodiazepines, cetyltrimethylammonium bromide was added, which was adsorbed on the surface of the Fe3 O4 /SiO2 nanoparticles and formed mixed hemimicelles. The main parameters affecting the efficiency of the method were thoroughly investigated. Under optimum conditions, the calibration curves were linear in the range of 0.10-15 μgmL(-1) . The relative standard deviations ranged from 2.73 to 7.07%. The correlation coefficients varied from 0.9930 to 0.9996. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Optimization of NiFe2O4/rGO composite electrode for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Li, Chen; Wang, Xia; Li, Shandong; Li, Qiang; Xu, Jie; Liu, Xiaomin; Liu, Changkun; Xu, Yuanhong; Liu, Jingquan; Li, Hongliang; Guo, Peizhi; Zhao, Xiu Song

    2017-09-01

    The combination of carbon compositing and the proper choice of binders in one system offer an effective strategy for improving electrode performance for lithium ion batteries (LIBs). Here, we focus on the optimization of reduced graphene oxide content in NiFe2O4/reduced graphene oxide (abbreviated to NiFe2O4/rGO) composites and the proper choice of binders to enhance the cycling stability of the NiFe2O4 electrode. The NiFe2O4/rGO composites were fabricated by a hydrothermal-annealing method, in which the mean size of spinel NiFe2O4 nanoparticles was approximately 20 nm. When tested as anode materials for LIBs, the NiFe2O4/rGO electrodes with carboxymethylcellulose (CMC) binder exhibited excellent lithium-storage performance including high reversible capacity, good cycling durability and high-rate capability. The capacity could be retained as high as 1105 mAh g-1 at a current density of 100 mA g-1 for over 50 cycles, even cycled at higher current density of 1000 mA g-1, a capacity of 800 mAh g-1can be obtained, whereas the electrode with the polyvinylidene fluoride (PVDF) binder suffered from rapid capacity decay under the same test conditions. As a result, the NiFe2O4/rGO composites with CMC binder electrode in this work are promising as anodes for high-performance LIBs, resulting from the synergistic effect of optimal graphene content and proper choice of binder.

  7. Fabrication of core-shell Fe{sub 3}O{sub 4}@MIL-100(Fe) magnetic microspheres for the removal of Cr(VI) in aqueous solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Qingxiang, E-mail: qxyangzz@163.com; Zhao, Qianqian; Ren, ShuangShuang

    Facile regeneration of an adsorbent is very important for commercial feasibility. One typical highly porous metal-organic framework (MOF) materials based on MIL-100(Fe) and magnetic iron oxide particles (denoted as MMCs) with diameter about of 350 nm were successfully synthesized. The growth of MIL-100(Fe) shell on the surface of Fe{sub 3}O{sub 4} was utilized precursor as crystal seed via in-situ step hydrothermal reaction. It is a simple way to obtain well organized core-shell MOF composites, compared to the step-by-step method. MMCs were firstly used to uptake of Cr(VI) anions in aqueous solution. Adsorption experiments were carried out in batch sorption mode investigatingmore » with the factors of contact time (0–1000 min), pH (from 2 to 12), dose of adsorbent (4–25 mg), and initial Cr(VI) concentration (range from 10 to 100 ppm). - Graphical abstract: One typical highly porous metal-organic framework (MOF) materials based on MIL-100(Fe) and magnetic iron oxide particles (denoted as MMCs) were successfully synthesized. Utilizing Fe{sub 3}O{sub 4} precursor as crystal seed to grow MIL-100(Fe) shell by in-situ step hydrothermal reaction. It is a simple way to obtain core-shell MOF composites. MMCs could effectively uptake of Cr(VI) anions in aqueous solution. - Highlights: • Fe{sub 3}O{sub 4}@MIL-100(Fe) composites with core-shell structure were successfully prepared through a simple method. • The influence factors on Cr(VI) adsorption by Fe{sub 3}O{sub 4}@MIL-100(Fe) were investigated. • Cr(VI) can efficiently adsorbed by Fe{sub 3}O{sub 4}@MIL-100(Fe) composites from aqueous solution.« less

  8. Fabrication of Fe3O4@mSiO2 Core-Shell Composite Nanoparticles for Drug Delivery Applications

    NASA Astrophysics Data System (ADS)

    Uribe Madrid, Sergio I.; Pal, Umapada; Kang, Young Soo; Kim, Junghoon; Kwon, Hyungjin; Kim, Jungho

    2015-05-01

    We report the synthesis of Fe3O4@mSiO2 nanostructures of different meso-silica (mSiO2) shell thickness, their biocompatibility and behaviors for loading and release of a model drug ibuprofen. The composite nanostructures have superparamagnetic magnetite cores of 208 nm average size and meso-silica shells of 15 to 40 nm thickness. A modified Stöber method was used to grow the meso-silica shells over the hydrothermally grown monodispersed magnetite particles. The composite nanoparticles show very promising drug holding and releasing behaviors, which depend on the thickness of meso-silica shell. The biocompatibility of the meso-silica-coated and uncoated magnetite nanoparticles was tested through cytotoxicity assay on breast cancer (MCF-7), ovarian cancer (SKOV3), normal human lung fibroblasts MRC-5, and IMR-90 cells. The high drug holding capacity and reasonable biocompatibility of the nanostructures make them ideal agents for targeted drug delivery applications in human body.

  9. Study of the Thermodynamics of Chromium(III) and Chromium(VI) Binding to Fe3O4 and MnFe2O4 nanoparticles

    PubMed Central

    Luther, Steven; Brogfeld, Nathan; Kim, Jisoo; Parsons, J.G.

    2013-01-01

    Removal of chromium(III) or (VI) from aqueous solution was achieved using Fe3O4, and MnFe2O4 nanomaterials. The nanomaterials were synthesized using a precipitation method and characterized using XRD. The size of the nanomaterials was determined to be 22.4 ± 0.9 nm (Fe3O4) and 15.5 ± 0.5 nm (MnFe2O4). The optimal binding pH for chromium(III) and chromium(VI) were pH 6 and pH 3. Isotherm studies were performed, under light and dark conditions, to determine the capacity of the nanomaterials. The capacities for the light studies with MnFe2O4 and Fe3O4 were determined to be 7.189 and 10.63 mg/g, respectively, for chromium(III). The capacities for the light studies with MnFe2O4 and Fe3O4 were 3.21 and 3.46 mg/g, respectively, for chromium(VI). Under dark reaction conditions the binding of chromium(III) to the MnFe2O4 and Fe3O4 nanomaterials were 5.74 and 15.9 mg/g, respectively. The binding capacity for the binding of chromium(VI) to MnFe2O4 and Fe3O4 under dark reaction conditions were 3.87 and 8.54 mg/g, respectively. The thermodynamics for the reactions showed negative ΔG values, and positive ΔH values. The ΔS values were positive for the binding of chromium(III) and for chromium(VI) binding under dark reaction conditions. The ΔS values for chromium(VI) binding under the light reaction conditions were determined to be negative. PMID:23558081

  10. Synergistic interaction between pseudocapacitive Fe3O4 nanoparticles and highly porous silicon carbide for high-performance electrodes as electrochemical supercapacitors

    NASA Astrophysics Data System (ADS)

    Kim, Myeongjin; Kim, Jooheon

    2017-05-01

    Composites of micro- and mesoporous SiC flakes (SiCF) and ferroferric oxide (Fe3O4), SiCF/Fe3O4, were prepared via the chemical deposition of Fe3O4 on SiCF by the chemical reduction of an Fe precursor. The SiCF/Fe3O4 electrodes were fabricated at different Fe3O4 feeding ratios to determine the optimal Fe3O4 content that can maintain a high total surface area of SiCF/Fe3O4 composites as well as cause a vigorous redox reaction, thereby maximizing the synergistic effect between the electric double-layer capacitive effects of SiCF and the pseudo-capacitive effects of Fe3O4. The SiCF/Fe3O4 electrode fabricated with a Fe3O4/SiCF feeding ratio of 1.5:1 (SiCF/Fe3O4(1.5)) exhibited the highest charge storage capacity, showing a specific capacitance of 423.2 F g-1 at a scan rate of 5 mV s-1 with a rate performance of 81.8% from 5 to 500 mV s-1 in an aqueous 1 M KOH electrolyte. The outstanding capacitive performance of the SiCF/Fe3O4(1.5) electrode could be attributed to the harmonious synergistic effect between the electric double-layer capacitive contribution of the SiCF and the pseudocapacitive contribution of the Fe3O4 nanoparticles introduced on the SiCF surface. These encouraging results demonstrate that the SiCF/Fe3O4(1.5) electrode is a promising high-performance electrode material for use in supercapacitors.

  11. Synergistic interaction between pseudocapacitive Fe3O4 nanoparticles and highly porous silicon carbide for high-performance electrodes as electrochemical supercapacitors.

    PubMed

    Kim, Myeongjin; Kim, Jooheon

    2017-05-12

    Composites of micro- and mesoporous SiC flakes (SiCF) and ferroferric oxide (Fe 3 O 4 ), SiCF/Fe 3 O 4 , were prepared via the chemical deposition of Fe 3 O 4 on SiCF by the chemical reduction of an Fe precursor. The SiCF/Fe 3 O 4 electrodes were fabricated at different Fe 3 O 4 feeding ratios to determine the optimal Fe 3 O 4 content that can maintain a high total surface area of SiCF/Fe 3 O 4 composites as well as cause a vigorous redox reaction, thereby maximizing the synergistic effect between the electric double-layer capacitive effects of SiCF and the pseudo-capacitive effects of Fe 3 O 4 . The SiCF/Fe 3 O 4 electrode fabricated with a Fe 3 O 4 /SiCF feeding ratio of 1.5:1 (SiCF/Fe 3 O 4 (1.5)) exhibited the highest charge storage capacity, showing a specific capacitance of 423.2 F g -1 at a scan rate of 5 mV s -1 with a rate performance of 81.8% from 5 to 500 mV s -1 in an aqueous 1 M KOH electrolyte. The outstanding capacitive performance of the SiCF/Fe 3 O 4 (1.5) electrode could be attributed to the harmonious synergistic effect between the electric double-layer capacitive contribution of the SiCF and the pseudocapacitive contribution of the Fe 3 O 4 nanoparticles introduced on the SiCF surface. These encouraging results demonstrate that the SiCF/Fe 3 O 4 (1.5) electrode is a promising high-performance electrode material for use in supercapacitors.

  12. Efficient Removal of Tetracycline from Aqueous Media with a Fe3O4 Nanoparticles@graphene Oxide Nanosheets Assembly

    PubMed Central

    Hu, Xinjiang; Zhao, Yunlin; Wang, Hui; Tan, Xiaofei; Yang, Yuanxiu; Liu, Yunguo

    2017-01-01

    A readily separated composite was prepared via direct assembly of Fe3O4 magnetic nanoparticles onto the surface of graphene oxide (GO) (labeled as Fe3O4@GO) and used as an adsorbent for the removal of tetracycline (TC) from wastewater. The effects of external environmental conditions, such as pH, ionic strength, humic acid (HA), TC concentration, and temperature, on the adsorption process were studied. The adsorption data were analyzed by kinetics and isothermal models. The results show that the Fe3O4@GO composite has excellent sorptive properties and can efficiently remove TC. At low pH, the adsorption capacity of Fe3O4@GO toward TC decreases slowly with increasing pH value, while the adsorption capacity decreases rapidly at higher pH values. The ionic strength has insignificant effect on TC adsorption. The presence of HA affects the affinity of Fe3O4@GO to TC. The pseudo-second-order kinetics model and Langmuir model fit the adsorption data well. When the initial concentration of TC is 100 mg/L, a slow adsorption process dominates. Film diffusion is the rate limiting step of the adsorption. Importantly, Fe3O4@GO has good regeneration performance. The above results are of great significance to promote the application of Fe3O4@GO in the treatment of antibiotic wastewater. PMID:29194395

  13. Structural, magnetic, and electrical properties of (1-x)Bi0.85La0.15FeO3-(x)CoFe2O4 multiferroic composites

    NASA Astrophysics Data System (ADS)

    Pandey, Rabichandra; Pradhan, Lagen Kumar; Kar, Manoranjan

    2018-04-01

    In this study, the tartaric acid modified sol-gel method was used to synthesize (1-x)Bi0.85La0.15FeO3-(x)CoFe2O4 (BLFO-CFO) composites where x = 0.00, 0.10, 0.20, 0.30, 0.40, and 0.50. The X-ray diffraction (XRD) patterns indicated the formation of composites with both BLFO and CFO crystal symmetry, i.e., perovskite and spinel structures, respectively. Rietveld refinement of the XRD patterns was performed for all of the samples in order to analyze the crystal phases and obtain the structural parameters. There were decreases in the lattice parameters of the perovskite phase as the CFO spinel phase increased in the composites, which may be explained by the strain at the interface of the BLFO and CFO phases. Electrical polarization and dielectric constant enhancements were observed in the BLFO-CFO composites compared with BLFO. The saturation magnetization increased as the CFO phase increased in the composites. The theoretical saturation magnetization (calculated using Vegard's law) was less than the experimentally observed value, possibly due to the spin interaction at the interface of BLFO and CFO.

  14. Prediction on electronic structure of CH3NH3PbI3/Fe3O4 interfaces

    NASA Astrophysics Data System (ADS)

    Hou, Xueyao; Wang, Xiaocha; Mi, Wenbo; Du, Zunfeng

    2018-01-01

    The interfacial electronic structures of CH3NH3PbI3(MAPbI3)/Fe3O4 heterostructures are predicted by density functional theory. Four models (MAI/FeBO, PbI2/FeBO, MAI/FeA and PbI2/FeA) are included. Especially, a half-metal to semiconductor transition of Fe3O4 appears in PbI2/FeA model. A series of electric field is added to PbI2/FeA model, and a direct-indirect bandgap transition of Fe3O4 appears at a 500-kV/cm field. The electric field can control the bandgap of Fe3O4 in PbI2/FeA model by modulating the hybridization. The prediction of spin-related bandgap characteristic in MAPbI3/Fe3O4 is meaningful for further study.

  15. Novel solid-state synthesis of α-Fe and Fe3O4 nanoparticles embedded in a MgO matrix

    NASA Astrophysics Data System (ADS)

    Schneeweiss, O.; Zboril, R.; Pizurova, N.; Mashlan, M.; Petrovsky, E.; Tucek, J.

    2006-01-01

    Thermally induced reduction of amorphous Fe2O3 nanopowder (2-3 nm) with nanocrystalline Mg (~20 nm) under a hydrogen atmosphere is presented as a novel route to obtain α-Fe and Fe3O4 magnetic nanoparticles dispersed in a MgO matrix. The phase composition, structural and magnetic properties, size and morphology of the nanoparticles were monitored by x-ray diffraction, 57Fe Mössbauer spectroscopy at temperatures of 24-300 K, transmission electron microscopy and magnetic measurements. Spherical magnetite nanoparticles prepared at a reaction temperature of 300 °C revealed a well-defined structure, with a ratio of tetrahedral to octahedral Fe sites of 1/2 being common for the bulk material. A narrow particle size distribution (20-30 nm) and high saturation magnetization (95 ± 5 A m2 kg-1) predispose the magnetite nanoparticles to various applications, including magnetic separation processes. The Verwey transition of Fe3O4 nanocrystals was found to be decreased to about 80 K. The deeper reduction of amorphous ferric oxide at 600 °C allows α-Fe (40-50 nm) nanoparticles to be synthesized with a coercive force of about 30 mT. They have a saturation magnetization 2.2 times higher than that of synthesized magnetite nanoparticles, which corresponds well with the ratio usually found for the pure bulk phases. The magnetic properties of α-Fe nanocrystals combined with the high chemical and thermal stability of the MgO matrix makes the prepared nanocomposite useful for various magnetic applications.

  16. Thermodynamics of Fe(II)Fe(III) oxide systems I. Hydrothermal Fe3O4

    USGS Publications Warehouse

    Bartel, J.J.; Westrum, E.F.; Haas, J.L.

    1976-01-01

    The heat capacity of a hydrothermally-prepared polycrystalline sample of Fe3O4 was measured from 53 to 350 K, primarily to study the thermophysics of the Verwey transitions. Although the bifurcation of the transition was confirmed, the sample was found to contain traces of manganese. The observed transition temperatures of 117.0 and 123.0 K are 3.7 and 4.2 K higher respectively than those found in pure Fe3O4. Ancillary analytical results are consistent and indicate a stoichiometry of Mn0.008Fe2.992O4 for this material. Characteristics in the transition region are ascribed to dopant effects. ?? 1976.

  17. Optimizing Low-Concentration Mercury Removal from Aqueous Solutions by Reduced Graphene Oxide-Supported Fe3O4 Composites with the Aid of an Artificial Neural Network and Genetic Algorithm

    PubMed Central

    Cao, Rensheng; Hu, Jiwei; Ruan, Wenqian; Xiong, Kangning; Wei, Xionghui

    2017-01-01

    Reduced graphene oxide-supported Fe3O4 (Fe3O4/rGO) composites were applied in this study to remove low-concentration mercury from aqueous solutions with the aid of an artificial neural network (ANN) modeling and genetic algorithm (GA) optimization. The Fe3O4/rGO composites were prepared by the solvothermal method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic force microscopy (AFM), N2-sorption, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and superconduction quantum interference device (SQUID). Response surface methodology (RSM) and ANN were employed to model the effects of different operating conditions (temperature, initial pH, initial Hg ion concentration and contact time) on the removal of the low-concentration mercury from aqueous solutions by the Fe3O4/rGO composites. The ANN-GA model results (with a prediction error below 5%) show better agreement with the experimental data than the RSM model results (with a prediction error below 10%). The removal process of the low-concentration mercury obeyed the Freudlich isotherm and the pseudo-second-order kinetic model. In addition, a regeneration experiment of the Fe3O4/rGO composites demonstrated that these composites can be reused for the removal of low-concentration mercury from aqueous solutions. PMID:29112141

  18. Photocatalytic degradation of organic dyes by Er3+: YAlO3/Co- and Fe-doped ZnO coated composites under solar irradiation

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Lu, Chunxiao; Tang, Liang; Song, Yahui; Wei, Shengnan; Rong, Yang; Zhang, Zhaohong; Wang, Jun

    2016-12-01

    In this work, the Er3+: YAlO3/Co- and Fe-doped ZnO coated composites were prepared by the sol-gel method. Then, they were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy (EDX). Photo-degradation of azo fuchsine (AF) as a model dye under solar light irradiation was studied to evaluate the photocatalytic activity of the Er3+: YAlO3/Co- and Fe-doped ZnO coated composites. It was found that the photocatalytic activity of Co- and Fe-doped ZnO composites can be obviously enhanced by upconversion luminescence agent (Er3+: YAlO3). Besides, the photocatalytic activity of Er3+: YAlO3/Fe-doped ZnO is better than that of Er3+: YAlO3/Co-doped ZnO. The influence of experiment conditions, such as the concentration of Er3+: YAlO3, heat-treatment temperature and time on the photocatalytic activity of the Er3+: YAlO3/Co- and Fe-doped ZnO coated composites was studied. In addition, the effects of solar light irradiation time, dye initial concentration, Er3+: YAlO3/Co- and Fe-doped ZnO amount on the photocatalytic degradation of azo fuchsine in aqueous solution were investigated in detail. Simultaneously, some other organic dyes, such as Methyl Orange (MO), Rhodamine B (RM-B), Acid Red B (AR-B), Congo Red (CR), and Methyl Blue (MB) were also studied. The possible excitation principle of Er3+: YAlO3/Co- and Fe-doped ZnO coated composites under solar light irradiation and the photocatalytic degradation mechanism of organic dyes were discussed.

  19. Internal friction in particulate composites of (x)Mn0.4Zn0.6Fe2O4 –(1-x)PbZr0.53Ti0.47O3 in the vicinity of the structural phase transition temperatures

    NASA Astrophysics Data System (ADS)

    Kalgin, A. V.; Gridnev, S. A.

    2018-03-01

    The internal friction in particulate ceramic composites of (x)Mn0.4Zn0.6Fe2O4 –(1-x)PbZr0.53Ti0.47O3 (x = 0, 0.1, 0.2, 0.3, 0.4, and 0.6) in the vicinity of the phase transition temperatures was studied. We observed the influence of the composite composition on the exponent that characterizes a temperature dependence of the internal friction near the ferroelectric Curie point. The reason for this influence is shown to be the doping of the PbZr0.53Ti0.47O3 ferroelectric phase with atoms of the Mn04Zn0.6Fe2O4 ferrite phase that occurs during high- temperature sintering of composite samples.

  20. Electrical and magnetic properties of 0-3 Ba(Fe1/2Nb1/2)O3/PVDF composites

    NASA Astrophysics Data System (ADS)

    Ranjan, Hars; Mahto, Uttam K.; Chandra, K. P.; Kulkarni, A. R.; Prasad, A.; Prasad, K.

    Lead-free Ba(Fe1/2Nb1/2)O3/PVDF 0-3 composites were fabricated using melt-mixing technique. X-ray diffraction, scanning electron microscopy, dielectric, impedance, ac conductivity, magnetic force microscopy (MFM) and vibrating sample magnetometer studies were undertaken to characterize the samples. Average crystallite size of the Ba(Fe1/2Nb1/2)O3 powder, estimated using Williamson-Hall approach, was found to be ˜42nm. The filler particles of ˜0.5-1μm were found to disperse in the polymer matrix of all the composites. Filler concentration-dependent values of real and imaginary parts of complex permittivity showed increasing trend and were seen to follow Bruggeman and Furukawa equations. The data for ac conductivity exhibited negative temperature coefficient of resistance character of the test materials and were found to obey Jonscher’s power law. The correlated barrier hopping model was found to explain satisfactorily the mechanism of charge transport occurring in the system. MFM confirmed the presence of magnetic phases in the composites. Typical magnetization versus applied field curves indicated the possibility of magnetoelectric coupling in the system. Hence, the present composites have shown themselves as potential multi-functional candidate materials for use in high density data storage applications.

  1. Experimental heat capacities, excess entropies, and magnetic properties of bulk and nano Fe3O4-Co3O4 and Fe3O4-Mn3O4 spinel solid solutions

    NASA Astrophysics Data System (ADS)

    Schliesser, Jacob M.; Huang, Baiyu; Sahu, Sulata K.; Asplund, Megan; Navrotsky, Alexandra; Woodfield, Brian F.

    2018-03-01

    We have measured the heat capacities of several well-characterized bulk and nanophase Fe3O4-Co3O4 and Fe3O4-Mn3O4 spinel solid solution samples from which magnetic properties of transitions and third-law entropies have been determined. The magnetic transitions show several features common to effects of particle and magnetic domain sizes. From the standard molar entropies, excess entropies of mixing have been generated for these solid solutions and compared with configurational entropies determined previously by assuming appropriate cation and valence distributions. The vibrational and magnetic excess entropies for bulk materials are comparable in magnitude to the respective configurational entropies indicating that excess entropies of mixing must be included when analyzing entropies of mixing. The excess entropies for nanophase materials are even larger than the configurational entropies. Changes in valence, cation distribution, bonding and microstructure between the mixing ions are the likely sources of the positive excess entropies of mixing.

  2. Rapid degradation of methylene blue in a novel heterogeneous Fe3O4 @rGO@TiO2-catalyzed photo-Fenton system.

    PubMed

    Yang, Xiaoling; Chen, Wei; Huang, Jianfei; Zhou, Ying; Zhu, Yihua; Li, Chunzhong

    2015-05-22

    Herein, a ternary nanocomposite with TiO2 nanoparticles anchored on reduced graphene oxide (rGO)-encapsulated Fe3O4 spheres (Fe3O4@rGO@TiO2) is presented as a high efficient heterogeneous catalyst for photo-Fenton degradation of recalcitrant pollutants under neutral pH. Fe3O4@rGO@TiO2 was synthesized by depositing TiO2 nanoparticles on the surface of the Fe3O4 spheres wrapped by graphene oxide (GO) which was obtained by an electrostatic layer-by-layer method. This as-prepared catalyst reflected good ferromagnetism and superior stability which makes it convenient to be separated and recycled. Due to the synergic effects between the different components composed the catalyst, swift reduction of Fe(3+) can be achieved to regenerate Fe(2+). Fe3O4@rGO@TiO2 exhibited enhancing catalytic activity for the degradation of azo-dyes compared with Fe3O4, Fe3O4@SiO2@TiO2 or SiO2@rGO@TiO2, further conforming the rapid redox reaction between Fe(2+) and Fe(3+). All these merits indicate that the composite catalyst possesses great potential for visible-light driven destruction of organic compounds.

  3. Rapid degradation of methylene blue in a novel heterogeneous Fe3O4 @rGO@TiO2-catalyzed photo-Fenton system

    PubMed Central

    Yang, Xiaoling; Chen, Wei; Huang, Jianfei; Zhou, Ying; Zhu, Yihua; Li, Chunzhong

    2015-01-01

    Herein, a ternary nanocomposite with TiO2 nanoparticles anchored on reduced graphene oxide (rGO)-encapsulated Fe3O4 spheres (Fe3O4@rGO@TiO2) is presented as a high efficient heterogeneous catalyst for photo-Fenton degradation of recalcitrant pollutants under neutral pH. Fe3O4@rGO@TiO2 was synthesized by depositing TiO2 nanoparticles on the surface of the Fe3O4 spheres wrapped by graphene oxide (GO) which was obtained by an electrostatic layer-by-layer method. This as-prepared catalyst reflected good ferromagnetism and superior stability which makes it convenient to be separated and recycled. Due to the synergic effects between the different components composed the catalyst, swift reduction of Fe3+ can be achieved to regenerate Fe2+. Fe3O4@rGO@TiO2 exhibited enhancing catalytic activity for the degradation of azo-dyes compared with Fe3O4, Fe3O4@SiO2@TiO2 or SiO2@rGO@TiO2, further conforming the rapid redox reaction between Fe2+ and Fe3+. All these merits indicate that the composite catalyst possesses great potential for visible-light driven destruction of organic compounds. PMID:26000975

  4. The Cooperativity of Fe3O4 and Metal-Organic Framework as Multifunctional Nanocomposites for Laser Desorption Ionization Process.

    PubMed

    Fu, Chung-Wei; Lirio, Stephen; Shih, Yung-Han; Liu, Wan-Ling; Lin, Chia-Her; Huang, Hsi-Ya

    2018-05-10

    We report a novel and facile strategy for developing a water stable magnetic metal organic framework nanocomposite (Fe3O4@MOF), in which a Keggin polyoxometalate, phosphotungstic acid (HPW), was encapsulated within the MOF framework via one-pot synthesis method. The combination of HPW-embedded MOF and Fe3O4 endowed the composite with high surface area, strong UV absorption, good hydrophilicity, and enhanced water stability. With these unique properties, the Fe3O4@MOF embedded HPW were served as adsorbent as well as matrix for (surface-assisted laser desorption ionization mass spectrometry) SALDI-MS analysis of polar and non-polar compounds. The synergistic effect of Fe3O4 and MOF showed an interference-free background at low mass region than the pristine MOF or Fe3O4 counterpart. This simple approach can be used as new platform in developing magnetic MOF composites without the time consuming and labor-intensive preparation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. A Resumable Fluorescent Probe BHN-Fe3O4@SiO2 Hybrid Nanostructure for Fe3+ and its Application in Bioimaging

    NASA Astrophysics Data System (ADS)

    Zhou, Xi; Wang, Yujiao; Peng, Qi; Liu, Weisheng

    2017-12-01

    A multifunctional fluorescent probe BHN-Fe3O4@SiO2 nanostructure for Fe3+ was designed and developed. It has a good selective response to Fe3+ with fluorescence quenching and can be recycled using an external magnetic field. With adding EDTA (2.5 × 10-5 M) to the consequent product Fe3+-BHN-Fe3O4@SiO2, Fe3+ can be removed from the complex, and its fluorescence probing ability recovers, which means that this constituted on-off type fluorescence probe could be reversed and reused. At the same time, the probe has been successfully applied for quantitatively detecting Fe3+ in a linear mode with a low limit of detection 1.25 × 10-8 M. Furthermore, the BHN-Fe3O4@SiO2 nanostructure probe is successfully used to detect Fe3+ in living HeLa cells, which shows its great potential in bioimaging detection.

  6. Effects of Fe3O4 Magnetic Nanoparticles on the Thermoelectric Properties of Heavy-Fermion YbAl3 Materials

    NASA Astrophysics Data System (ADS)

    He, Danqi; Mu, Xin; Zhou, Hongyu; Li, Cuncheng; Ma, Shifang; Ji, Pengxia; Hou, Weikang; Wei, Ping; Zhu, Wanting; Nie, Xiaolei; Zhao, Wenyu

    2018-06-01

    The magnetic nanocomposite thermoelectric materials xFe3O4/YbAl3 ( x = 0%, 0.3%, 0.6%, 1.0%, and 1.5%) have been prepared by the combination of ultrasonic dispersion and spark plasma sintering process. The nanocomposites retain good chemical stability in the presence of the second-phase Fe3O4. The second-phase Fe3O4 magnetic nanoparticles are distributed on the interfaces and boundaries of the matrix. The x dependences of thermoelectric properties indicate that Fe3O4 magnetic nanoparticles can significantly decrease the thermal conductivity and electrical conductivity. The magnetic nanoparticles embedded in YbAl3 matrix are not only the phonon scattering centers of nanostructures, but also the electron scattering centers due to the Kondo-like effect between the magnetic moment of Fe3O4 nanoparticles and the spin of electrons. The ZT values of the composites are first increased in the x range 0%-1.0% and then decreased when x > 1.0%. The highest ZT value reaches 0.3 at 300 K for the nanocomposite with x = 1.0%. Our work demonstrates that the Fe3O4 magnetic nanoparticles can greatly increase the thermoelectric performance of heavy-fermion YbAl3 thermoelectric materials through simultaneously scattering electrons and phonons.

  7. Synthesis of multifunctional clustered nano-Fe3O4 chitosan nanocomposite for biomedical applications

    NASA Astrophysics Data System (ADS)

    Villamin, Maria Emma; Kitamoto, Yoshitaka

    2018-01-01

    Clustered iron oxide nanoparticles covered with chitosan hydrogel (FeOx/Ch NC) have multiple potential functionalities in biomedical applications such as pH-controlled drug release, magnetic hyperthermia, and magnetic non-contact pH sensing. In the present study, the synthesis and characterization of FeOx/Ch NC are demonstrated. Moreover, the heating capability of the nanocomposites is also explored for the potential magnetic hyperthermia application by measuring the temperature curves under different AC frequencies (900 kHz to 2500 kHz). Monodispersed FeOx NPs are first synthesized via thermal decomposition. Then, dried FeOx NPs are combined with chitosan using a homogenizer to form the clustered composites. Synthesized composites are then characterized using XRD, TEM, and FTIR. Temperature curves are measured via a custom-built hyperthermia setup. Results show successful synthesis of clustered Fe3O4-chitosan nanocomposite with XRD peaks corresponding to magnetite (Fe3O4) structure. FTIR results show the presence of functional groups of chitosan (N-H, C-O) and FeOx NPs (Fe-O). These confirms the successful fabrication of FeOx/Ch NC. The temperature curves show maximum temperature changes of about 2°C to 22°C depending on the AC frequency. The heating rate is found to increase with the frequency, which suggests that the resonance frequency is higher than 2500 kHz.

  8. Large-scale synthesis of ear-like Si{sub 3}N{sub 4} dendrites from SiO{sub 2}/Fe composites and Si powders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Feng; Graduate School of the Chinese Academy of Sciences, Beijing 100039; Jin Guoqiang

    2008-07-01

    Large-scale ear-like Si{sub 3}N{sub 4} dendrites were prepared by the reaction of SiO{sub 2}/Fe composites and Si powders in N{sub 2} atmosphere. The product was characterized by field emission scanning electron microscopy, X-ray diffraction, and transmission electron microscopy. The results reveal that the product mainly consists of ear-like Si{sub 3}N{sub 4} dendrites with crystal structures, which have a length of several microns and a diameter of 100-200 nm. Nanosized ladder-like Si{sub 3}N{sub 4} was also obtained when changing the Fe content in the SiO{sub 2}/Fe composites. The Si{sub 3}N{sub 4} nanoladders have a length of hundreds nanometers to several micronsmore » and a width of 100-300 nm. The ear-like Si{sub 3}N{sub 4} dendrites are formed from a two-step growth process, the formation of inner stem structures followed by the epitaxial growth of secondary branches.« less

  9. Fabrication of Fe{sub 3}O{sub 4}@CuO core-shell from MOF based materials and its antibacterial activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajabi, S.K.; Sohrabnezhad, Sh., E-mail: sohrabnezhad@guilan.ac.ir; Ghafourian, S.

    Magnetic Fe{sub 3}O{sub 4}@CuO nanocomposite with a core/shell structure was successfully synthesized via direct calcinations of magnetic Fe{sub 3}O{sub 4}@HKUST-1 in air atmosphere. The morphology, structure, magnetic and porous properties of the as-synthesized nano composites were characterized by using scanning electron microscope (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (PXRD), and vibration sample magnetometer (VSM). The results showed that the nanocomposite material included a Fe{sub 3}O{sub 4} core and a CuO shell. The Fe{sub 3}O{sub 4}@CuO core-shell can be separated easily from the medium by a small magnet. The antibacterial activity of Fe{sub 3}O{sub 4}-CuO core-shell was investigated againstmore » gram-positive and gram-negative bacteria. A new mechanism was proposed for inactivation of bacteria over the prepared sample. It was demonstrated that the core-shell exhibit recyclable antibacterial activity, acting as an ideal long-acting antibacterial agent. - Graphical abstract: Fe{sub 3}O{sub 4}@CuO core-shell release of copper ions. These Cu{sup 2+} ions were responsible for the exhibited antibacterial activity. - Highlights: • The Fe{sub 3}O{sub 4}@CuO core-shell was prepared by MOF method. • This is the first study of antibacterial activity of core-shell consist of CuO and Fe{sub 3}O{sub 4}. • The core-shell can be reused effectively. • Core-shell was separated from the reaction solution by external magnetic field.« less

  10. Self-assembled thin films of Fe3O4-Ag composite nanoparticles for spintronic applications

    NASA Astrophysics Data System (ADS)

    Jiang, Chengpeng; Leung, Chi Wah; Pong, Philip W. T.

    2017-10-01

    Controlled self-assembly of multi-component magnetic nanoparticles could lead to nanomaterial-based magnetic devices with novel structures and intriguing properties. Herein, self-assembled thin films of Fe3O4-Ag composite nanoparticles (CNPs) with hetero-dimeric shapes were fabricated using interfacial assembly method. The CNP-assembled thin films were further transferred to patterned silicon substrates followed by vacuum annealing, producing CNP-based magnetoresistive (MR) devices. Due to the presence of intra-particle interfaces and inter-particle barriers, an enhanced MR ratio and a non-linear current-voltage relation were observed in the device. The results of this work can potentially pave the way to the future exploration and development of spintronic devices built from composite nanomaterials.

  11. PREPARATION OF FLOWER-LIKE Co3O4/Fe3O4 MAGNETIC MICROSPHERES FOR PHOTODEGRADATION OF RhB UNDER UV LIGHT

    NASA Astrophysics Data System (ADS)

    Zhang, Baoliang; Zhang, Hepeng; Zhou, Lunwei; Ali, Nisar; Geng, Wangchang; Zhang, Qiuyu

    2013-07-01

    Flower-like Co3O4/Fe3O4 magnetic microspheres were prepared by coprecipitation of Fe2+ and Fe3+ in presence of flower-like Co3O4 microspheres as template. The preparation process included three steps: preparation of flower-like Co3O4 microspheres by hydrothermal method; immersion of Fe2+ and Fe3+ ions; coprecipitation in the presence of OH-. Rhodamine B (RhB) was chosen as model pollutants to investigate the photodegradation capacities of Co3O4/Fe3O4 magnetic microspheres. The results showed that the microspheres exhibited excellent degradation property and can be recycled to use again. After four times use the degradation efficiency was still above 90%.

  12. Synthesis, microstructure and magnetic properties of Fe{sub 3}Si{sub 0.7}Al{sub 0.3}@SiO{sub 2} core–shell particles and Fe{sub 3}Si/Al{sub 2}O{sub 3} soft magnetic composite core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jian, E-mail: snove418562@163.com; Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan, Hubei 430081; Fan, Xi’an, E-mail: groupfxa@163.com

    2015-11-15

    Fe{sub 3}Si{sub 0.7}Al{sub 0.3}@SiO{sub 2} core–shell particles and Fe{sub 3}Si/Al{sub 2}O{sub 3} soft magnetic composite core have been synthesized via a modified stöber method combined with following high temperature sintering process. Most of conductive Fe{sub 3}Si{sub 0.7}Al{sub 0.3} particles could be uniformly coated by insulating SiO{sub 2} using the modified stöber method. The Fe{sub 3}Si{sub 0.7}Al{sub 0.3}@SiO{sub 2} core–shell particles exhibited good soft magnetic properties with low coercivity and high saturation magnetization. The reaction 4Al+3SiO{sub 2}=2α-Al{sub 2}O{sub 3}+3Si took place during the sintering process. As a result the new Fe{sub 3}Si/Al{sub 2}O{sub 3} composite was formed. The Fe{sub 3}Si/Al{sub 2}O{submore » 3} composite core displayed more excellent soft magnetic properties, better frequency stability at high frequencies, much higher electrical resistivity and lower core loss than the pure Fe{sub 3}Si{sub 0.7}Al{sub 0.3} core. The method of introducing insulating layers surrounding magnetic particles provides a promising route to develop new and high compact soft magnetic materials with good magnetic and electric properties. - Graphical abstract: In Fe{sub 3}Si/Al{sub 2}O{sub 3} composite, Fe{sub 3}Si phases are separated by Al{sub 2}O{sub 3} layers and the eddy currents are confined in Fe{sub 3}Si phases, thus increasing resistivity and reducing core loss. - Highlights: • Fe{sub 3}Si{sub 0.7}Al{sub 0.3}@SiO{sub 2} core–shell particles and Fe{sub 3}Si/Al{sub 2}O{sub 3} cores were prepared. • Fe{sub 3}Si{sub 0.7}Al{sub 0.3} particles could be uniformly coated by nano-sized SiO{sub 2} clusters. • Fe{sub 3}Si{sub 0.7}Al{sub 0.3}@SiO{sub 2} particles and Fe{sub 3}Si/Al{sub 2}O{sub 3} cores showed good soft magnetic properties. • Fe{sub 3}Si/Al{sub 2}O{sub 3} had lower core loss and better frequency stability than Fe{sub 3}Si{sub 0.7}Al{sub 0.3} cores.« less

  13. Supraparamagnetic, conductive, and processable multifunctional graphene nanosheets coated with high-density Fe3O4 nanoparticles.

    PubMed

    He, Hongkun; Gao, Chao

    2010-11-01

    The amazing properties of graphene are triggering extensive interests of both scientists and engineers, whereas how to fully utilize the unique attributes of graphene to construct novel graphene-based composites with tailor-made, integrated functions remains to be a challenge. Here, we report a facile approach to multifunctional iron oxide nanoparticle-attached graphene nanosheets (graphene@Fe(3)O(4)) which show the integrated properties of strong supraparamagnetism, electrical conductivity, highly chemical reactivity, good solubility, and excellent processability. The synthesis method is efficient, scalable, green, and controllable and has the feature of reduction of graphene oxide and formation of Fe(3)O(4) nanoparticles in one step. When the feed ratios are adjusted, the average diameter of Fe(3)O(4) nanoparticles (1.2-6.3 nm), the coverage density of Fe(3)O(4) nanoparticles on graphene nanosheets (5.3-57.9%), and the saturated magnetization of graphene@Fe(3)O(4) (0.5-44.1 emu/g) can be controlled readily. Because of the good solubility of the as-prepared graphene@Fe(3)O(4), highly flexible and multifunctional films composed of polyurethane and a high content of graphene@Fe(3)O(4) (up to 60 wt %) were fabricated by the solution-processing technique. The graphene@Fe(3)O(4) hybrid sheets showed electrical conductivity of 0.7 S/m and can be aligned into a layered-stacking pattern in an external magnetic field. The versatile graphene@Fe(3)O(4) nanosheets hold great promise in a wide range of fields, including magnetic resonance imaging, electromagnetic interference shielding, microwave absorbing, and so forth.

  14. Effect of Fe3O4 addition on dielectric properties of LaFeO3 nano-crystalline materials synthesized by sol-gel method

    NASA Astrophysics Data System (ADS)

    Laysandra, H.; Triyono, D.

    2017-04-01

    Dielectric properties of nano-crystalline material LaFeO3.xFe3O4 with x = 0, 0.1, 0.2, 0.3, and 0.4 at.% have been studied by impedance spectroscopy method. LaFeO3 was synthesized by sol-gel method resulting nano-particle. Then, it was mixed with Fe3O4 powder. The mixture powder was pressed to form pellet and then sintered at 1300°C for 1 h to form nano-crystalline of LaFeO3.xFe3O4. X-ray diffraction characterization at room temperature for all samples show two phases i.e. perovskite LaFeO3 (orthorhombic) as a main phase and Fe3O4 (cubic) as second phase. It is found that the crystallite size of main phase increases with addition of Fe3O4 until 0.3 at.%. The electrical properties as a function of temperature (300-500 K) and frequency (100 Hz - 1 MHz) are presented in Nyquist and Bode plots. It is observed that from equivalent circuit and their parameters, dielectrical properties are contributed by grain and grain boundary. The dielectric constant, ε‧ were calculated by parallel plate method and their values reach up to 107 exhibiting typical colossal dielectric constant (CDC) material like behavior.

  15. Large magnetoresistance in Fe3O4/molecule nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, S.; Yue, F. J.; Lin, L.; Shi, Y. J.; Wu, D.

    2010-08-01

    In this work, we successfully fabricate Fe3O4 nanoparticles self-assembled with molecules to explore a new approach of studying the molecular spintronics. Fourier transform infrared spectroscopy measurements indicate that one monolayer molecules chemically bonds to the Fe3O4 nanoparticles and the physically absorbed molecules do not exist in the samples. The magnetoresistance (MR) of molecule fully coated ~10 nm size nanoparticles is up to 7.3% at room temperature and 17.5% at 115 K under a field of 5.8 kOe. And the MR ratio is more than two times larger than that of pure Fe3O4 nanoparticles. This enhanced MR is likely arising from weak spin scattering while carriers transport through the molecules. Moreover, a very large low field magnetoresistance is also observed with ~500nm ferromagnetic Fe3O4 nanoparticles coated with acetic acid molecules. Those features open a door for the development of future spin-based molecular electronics.

  16. Dielectric and optical study of poly (methyl methacrylate) (PMMA) / Fe2O3 films

    NASA Astrophysics Data System (ADS)

    Anita, Chimankar, O. P.; Bansod, A. R.; Sannakki, Basavaraja

    2013-06-01

    Organic/inorganic polymer composite films containing poly (methyl-methacrylate) (PMMA)/ ferric oxide Fe2O3 were prepared following solution casting technique. Dielectric Properties of films has been studied using LCR meter at room temperature 26°C. Also optical properties have been studied using digital abbey refractometer. The dielectric behavior of films have been studied as a function of concentration, and at lower frequencies over the range 100 Hz-25 KHz, The results elucidate that 70:30 and 50:50 wt% of PMMA/Fe2O3 composite films posses optimal conducting properties due to observed electronic polarisability dip at 40Wt% of Fe2O3.

  17. Low-Cost Carbothermal Reduction Preparation of Monodisperse Fe3O4/C Core-Shell Nanosheets for Improved Microwave Absorption.

    PubMed

    Liu, Yun; Fu, Yiwei; Liu, Lin; Li, Wei; Guan, Jianguo; Tong, Guoxiu

    2018-05-16

    This paper demonstrates a facile and low-cost carbothermal reduction preparation of monodisperse Fe 3 O 4 /C core-shell nanosheets (NSs) for greatly improved microwave absorption. In this protocol, the redox reaction between sheet-like hematite (α-Fe 2 O 3 ) precursors and acetone under inert atmosphere and elevated temperature generates Fe 3 O 4 /C core-shell NSs with the morphology inheriting from α-Fe 2 O 3 . Thus, Fe 3 O 4 /C core-shell NSs of different sizes ( a) and Fe 3 O 4 /C core-shell nanopolyhedrons are obtained by using different precursors. Benefited from the high crystallinity of the Fe 3 O 4 core and the thin carbon layer, the resultant NSs exhibit high specific saturation magnetization larger than 82.51 emu·g -1 . Simultaneously, the coercivity enhances with the increase of a, suggesting a strong shape anisotropy effect. Furthermore, because of the anisotropy structure and the complementary behavior between Fe 3 O 4 and C, the as-obtained Fe 3 O 4 /C core-shell NSs exhibit strong natural magnetic resonance at a high frequency, enhanced interfacial polarization, and improved impedance matching, ensuring the enhancement of the microwave absorption. The 250 nm NSs-paraffin composites exhibit reflection loss (RL) lower than -20 dB (corresponding to 99% absorption) in a large frequency ( f) range of 2.08-16.40 GHz with a minimum RL of -43.95 dB at f = 3.92 GHz when the thickness is tuned from 7.0 to 1.4 mm, indicating that the Fe 3 O 4 /C core-shell NSs are a good candidate to manufacture high-performance microwave absorbers. Moreover, the as-developed carbothermal reduction method could be applied for the fabrication of other composites based on ferrites and carbon.

  18. Morphological, electrical & antibacterial properties of trilayered Cs/PAA/PPy bionanocomposites hydrogel based on Fe3O4-NPs.

    PubMed

    Youssef, A M; Abdel-Aziz, M E; El-Sayed, E S A; Abdel-Aziz, M S; Abd El-Hakim, A A; Kamel, S; Turky, G

    2018-09-15

    Bionanocomposites hydrogel based on conducting polymers were successfully fabricated from chitosan/polyacrylic acid/polypyrrole (CS/PAA/PPy) as well as the magnetite nanoparticle (Fe 3 O 4 -NPs) was prepared via co-precipitation method. In addition, different ratios of Fe 3 O 4 -NPs were added to the prepared bionanocomposites to enhance the antimicrobial and the electrical conductivity of the prepared conductive hydrogel. Furthermore, the morphology, the swelling percent, antimicrobial activity and the dielectric properties of the prepared conducting bionanocomposites hydrogel were investigated. The antibacterial activities of the experienced microbes were improved with the increasing the loading of Fe 3 O 4 -NPs in conducting Bio-nanocomposites hydrogel. Moreover, the DC-conductivity was examined and our resulted indicated that the DC-conductivity was enhanced by increasing the loadings of Fe 3 O 4 -NPs compared to that of the pure CS/PAA as well as CS/PAA/PPy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Investigation of the physical, optical, and photocatalytic properties of CeO2/Fe-doped InVO4 composite

    NASA Astrophysics Data System (ADS)

    Chaison, Jindaporn; Wetchakun, Khatcharin; Wetchakun, Natda

    2017-12-01

    The CeO2/Fe-doped InVO4 composites with various Fe concentrations (0.5, 1.0, 2.0, 5.0 and 6.0 mol%) was synthesized by homogeneous precipitation and hydrothermal methods. The as-synthesized samples were characterized by powder X-ray diffraction (XRD), Brunauer Emmett and Teller (BET)-specific surface area, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and UV-visible diffuse reflectance spectroscopy (DRS). Fe-doping into InVO4 crystal induces the distortion of the crystalline structure, the transformation of InVO4 morphology, and the new energy subband level generation of Fe between the CB and VB edge of InVO4. The electron excitation from the VB to Fe orbitals results in the decreased band gap and the extended absorption of visible-light, and thus enhances its photocatalytic performance. Visible-light-driven photocatalytic degradation of Rhodamine B (RhB) dye in water was used to evaluate the photocatalytic performance of CeO2/Fe-doped InVO4 composites. The results revealed that there is an optimum Fe (5.0 mol %) doping level. The composite with the optimum doping level obtains high photocatalytic activity of CeO2/Fe-doped InVO4 composite compared to pure CeO2 and pure InVO4 host. The increase of photocatalytic activity of CeO2/Fe-doped InVO4 composite was ascribed to the surface area, crystal defect, and band gap energy. Moreover, the photocatalytic enhancement is also because iron ions act as a trapping site, which results in the higher separation efficiency of photogenerated electrons and holes pairs in the CeO2/InVO4 composite. The evaluation of radical scavengers confirmed that hydroxyl radical was the main active species during the photodegradation of RhB. These synergistic effects are responsible for the enhanced photocatalytic activity of CeO2/Fe-doped InVO4 composite. Furthermore, the possible enhanced photocatalytic mechanism

  20. A facile route to the synthesis of magnetically separable BiOBr/NiFe2O4 composites with enhanced photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Li, Xiaowei; Wang, Li; Zhang, Lei; Zhuo, Shuping

    2017-10-01

    Novel magnetically separable BiOBr/NiFe2O4 composite photocatalysts with different mass ratios were fabricated through a facile hydrothermal treatment. The phases, morphologies and photophysical properties of the as-obtained samples were characterized by X-ray diffraction (XRD), energy dispersive spectrometry (EDS), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microcopy (TEM) and diffuse reflection spectroscopy (DRS). Their visible light photocatalytic performances were examined by degradation of methylene blue (MB) and phenol. Compared with bare BiOBr and NiFe2O4, all heterostructured BiOBr/NiFe2O4 nanocomposites exhibited significantly enhanced photocatalytic efficiency. The BiOBr/NiFe2O4-20% composite showed the highest photodegradation capacity, which was about 3.2 and 22.4 times greater than that of individual BiOBr and NiFe2O4, respectively. The degradation efficiency of BiOBr/NiFe2O4-20% in the degradation of MB dye hardly changed after five cycles, signifying that the BiOBr/NiFe2O4-20% photocatalyst had excellent recyclability. In addition, BiOBr/NiFe2O4 composite photocatalysts could be easily separated from contaminant solution by using a magnet and recycled, exhibiting great potential for application in the fields of environmental purification of organic pollutants and wastewater treatment. In the light of experimental results, we proposed a photocatalytic mechanism which confirmed that the enhancement of photocatalytic performance for BiOBr/NiFe2O4 composites was mainly ascribed to the efficient separation of photo-induced charges resulting from the well-known "heterostructure effect" between NiFe2O4 nanorods and BiOBr nanosheets.

  1. Simple solvothermal synthesis of hydrophobic magnetic monodispersed Fe{sub 3}O{sub 4} nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jing; Wang, Lu; Wang, Jing, E-mail: Jingwang@home.ipe.ac.cn

    Graphical abstract: A facile method to produce monodispersed magnetite nanoparticles is based on the solvothermal reaction of iron acetylacetonate (Fe(acac)3) decomposition. The sizes ranged from 7 to 12 nm, which could be controlled by adjusting the volume ratio of oleylamine to n-hexane. Display Omitted Highlights: ► The solvethermal reaction of Fe(acac){sub 3} decomposition was carried out at mild temperature in the presence of oleylamine and n-hexane. ► The size of nanocrystals is controlled by adjusting the volume ratio of oleylamine to n-hexane. ► The low-boiling-point solvent n-hexane offered autogenous pressure parameter after gasified in the reaction temperature. ► The asmore » prepared hydrophobic monodisperse Fe{sub 3}O{sub 4} NPs can be used to prepare the magnetic micelles for future biomedical applications. -- Abstract: A new solvothermal method is proposed for the preparation of Fe{sub 3}O{sub 4} nanoparticles (NPs) from iron acetylacetonate in the presence of oleylamine and n-hexane. The products are characterized by X-ray powder diffraction, infrared (IR) spectroscopy, transmission electron microscopy, thermogravimetry/differential thermogravimetry (TG/DTG) analysis, and vibrating sample magnetometery. The new procedure yields superparamagnetic monodispersed Fe{sub 3}O{sub 4} particles with sizes ranging from 7 nm to 12 nm. The nanocrystal sizes are controlled by adjusting the volume ratio of oleylamine to n-hexane. IR and TG/DTG analyses indicate that the oleylamine molecules, as stabilizers, are adsorbed on the surface of Fe{sub 3}O{sub 4} NPs as bilayer adsorption models. The surface adsorption quantities of oleylamine on 7.5 and 10.4 nm-diameter Fe{sub 3}O{sub 4} NPs are 18% and 11%, respectively. The hydrophobic surface of the obtained nanocrystals is passivated by adsorbed organic solvent molecules. These molecules provide stability against agglomeration, enable solubility in nonpolar solvents, and allow the formation of magnetic

  2. Bottom-up meets top-down: tailored raspberry-like Fe3O4-Pt nanocrystal superlattices.

    PubMed

    Qiu, Fen; Vervuurt, René H J; Verheijen, Marcel A; Zaia, Edmond W; Creel, Erin B; Kim, Youngsang; Urban, Jeffrey J; Bol, Ageeth A

    2018-03-29

    Supported catalysts are widely used in industry and can be optimized by tuning the composition, chemical structure, and interface of the nanoparticle catalyst and oxide support. Here we firstly combine a bottom up colloidal synthesis method with a top down atomic layer deposition (ALD) process to achieve a raspberry-like Pt-decorated Fe3O4 (Fe3O4-Pt) nanoparticle superlattices. This nanocomposite ensures the precision of the catalyst/support interface, improving the catalytic efficiency of the Fe3O4-Pt nanocomposite system. The morphology of the hybrid nanocomposites resulting from different cycles of ALD was monitored by scanning transmission electron microscopy, giving insight into the nucleation and growth mechanism of the ALD process. X-ray photoelectron spectroscopy studies confirm the anticipated electron transfer from Fe3O4 to Pt through the nanocomposite interface. Photocurrent measurement further suggests that Fe3O4 superlattices with controlled decoration of Pt have substantial promise for energy-efficient photoelectrocatalytic oxygen evolution reaction. This work opens a new avenue for designing supported catalyst architectures via precisely controlled decoration of single component superlattices with noble metals.

  3. An Investigation of Facile One-Pot Synthesis of Li2FeSiO4/C Composite for Li Ion Batteries

    NASA Astrophysics Data System (ADS)

    Thirumoolam, Mani Chandran; Manikandan, Ananda Kumar; Sivaramakrishnan, Balaji; Kaluvan, Hariharan; Gowravaram, Mohan Rao

    2018-03-01

    Li2FeSiO4 and its carbon composite are prepared by an urea-assisted combustion method. The synthesis has been carried out in different urea concentrations, namely 1 Molar (M), 2 M and 3 M urea in the cost-effective ambient atmospheric condition. The x-ray diffraction analysis confirms the orthorhombic structure of Li2FeSiO4 compounds. The urea-assisted combustion reaction enhanced the phase purity of the compound and prevented the oxidation of ferrous ions in Li2FeSiO4. The x-ray photo electron spectroscopy analysis further confirmed the reduction of Fe3+ concentration in Li2FeSiO4 while adding urea. The Li2FeSiO4 compound formation in the presence of urea occurred at a temperature < 623 K. The one-pot synthesis of Li2FeSiO4/C with the help of starch and urea in ambient atmospheric condition resulted in Li2FeSiO4 with an orthorhombic crystal structure. The carbon coating in an amorphous nature is observed and the lattice dimension values of Li2FeSiO4/C are 6.248 Å, 5.330 Å, and 5.029 Å. The lattice parameter has remained unchanged with carbon addition. The addition of 5% carbon to Li2FeSiO4 improves the electrical conductivity and lithium diffusion coefficient to 7.24 × 10-4 S cm-1 and 5.54 × 10-6 cm2, respectively. The coulombic efficiency and capacity retention after 50 cycles of Li2FeSiO4/C composite are around 83% and 95%, respectively.

  4. Formation of Fe3O4@SiO2@C/Ni hybrids with enhanced catalytic activity and histidine-rich protein separation.

    PubMed

    Zhang, Yanwei; Zhang, Min; Yang, Jinbo; Ding, Lei; Zheng, Jing; Xu, Jingli; Xiong, Shenglin

    2016-09-21

    In this paper, we have developed an extended Stöber method to construct a Ni(2+)-polydopamine (PDA) complex thin coating on Fe3O4@SiO2 spheres, which can be carbonized to produce hybrid composites with metallic nickel nanoparticles embedded in a PDA-derived thin graphitic carbon layer (named Fe3O4@SiO2@C/Ni). Interestingly, by introducing a thin SiO2 spacer layer between PDA-Ni(2+) and Fe3O4, the reverse electron transfer from PDA to Fe3O4 is probably able to be suppressed in the calcination process, which leads to the in situ reduction of only Ni(2+) by PDA instead of Fe3O4 and Ni(2+). Consequently, the size and density of nickel nanoparticles on the surface of SiO2@Fe3O4 can be finely adjusted. Moreover, it is found that the ability of tuning nickel nanoparticles is mainly dependent on the thickness of the spacer layer. When the thickness of the SiO2 spacer is beyond the electron penetration depth, the size and density of nickel nanoparticles can be exactly tuned. The as-prepared Fe3O4@SiO2@C/Ni was employed as the catalyst to investigate the catalytic performance in the reduction of 4-nitrophenol (4-NP); furthermore, nickel nanoparticles decorated on Fe3O4@SiO2@C spheres display a strong affinity to His-tagged proteins (BHb and BSA) via a specific metal affinity force between polyhistidine groups and nickel nanoparticles.

  5. Solid phase extraction of magnetic carbon doped Fe3O4 nanoparticles.

    PubMed

    Yang, Jing; Li, Jia-yuan; Qiao, Jun-qin; Lian, Hong-zhen; Chen, Hong-yuan

    2014-01-17

    Carbon decorated Fe3O4 nanoparticles (Fe3O4/C) are promising magnetic solid-phase extraction (MSPE) sorbents in environmental and biological analysis. Fe3O4/C based MSPE method shows advantages of easy operation, rapidness, high sensitivity, and environmental friendliness. In this paper, the MSPE mechanism of Fe3O4/C nanoparticles has been comprehensively investigated, for the first time, through the following three efforts: (1) the comparison of extraction efficiency for polycyclic aromatic hydrocarbons (PAHs) between the Fe3O4/C sorbents and activated carbon; (2) the chromatographic retention behaviors of hydrophobic and hydrophilic compounds on Fe3O4/C nanoparticles as stationary phase; (3) related MSPE experiments for several typical compounds such as pyrene, naphthalene, benzene, phenol, resorcinol, anisole and thioanisole. It can be concluded that there are hybrid hydrophobic interaction and hydrogen bonding interaction or dipole-dipole attraction between Fe3O4/C sorbents and analytes. It is the existence of carbon and oxygen-containing functional groups coated on the surface of Fe3O4/C nanoparticles that is responsible for the effective extraction process. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Electromagnetic characteristics of manganese oxide-coated Fe3O4 nanoparticles at 2-18 GHz

    NASA Astrophysics Data System (ADS)

    Yang, R. B.; Liang, W. F.; Lin, C. K.

    2011-04-01

    The dielectric and magnetic properties of manganese oxide-coated Fe3O4 nanoparticles (NPs) were measured by the transmission/reflection method in 2-18 GHz. MnOx-coated Fe3O4 NPs were prepared by sol-gel method followed by heat-treating at 300, 400, and 500 °C, respectively. The heat-treated powders were then used as magnetic fillers and added to an epoxy resin to prepare MnOx-coated Fe3O4 composites for the complex permittivity (ɛ'-jɛ″) and permeability (μ'-jμ″) measurements. After the sol-gel process, the coating of manganese oxide (mixture of major Mn2O3 and minor Mn3O4) reduced the value of ɛ'. The lower the heat-treating temperature, the larger the decrease in ɛ'. The relative decrease in ɛ', compared with uncoated Fe3O4 nanoparticles, is 28.7, 23.5, and 20.0% for coated MnOx heat-treated at 300, 400, and 500 °C, respectively, while the relative decrease in ɛ″ is 74.1, 68.8, and 65.2%, respectively. In the present study, MnOx-coated Fe3O4 exhibited a significant decrease in dielectric loss tangent of ˜100% compared to that of uncoated NPs and can be of practical use for microwave components.

  7. Spinel, YbFe2O4, and Yb2Fe3O7 types of structure for compounds in the In2O3 and Sc2O3-A2O3-BO systems (A: Fe, Ga, or Al; B: Mg, Mn, Fe, Ni, Cu, or Zn) at temperatures over 1000C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimizuka, N.; Mohri, T.

    In the Sc2O3-Ga2O3-CuO, Sc2O3-Ga2O3-ZnO, and Sc2O3-Al2O3-CuO systems, ScGaCuO4, ScGaZnO4, and ScAlCuO4 with the YbFe2O4-type structure and Sc2Ga2CuO7 with the Yb2Fe3O7-type structure were obtained. In the In2O3-A2O3-BO systems (A: Fe, Ga, or Al; B: Mg, Mn, Fe, Ni, or Zn), InGaFeO4, InGaNiO4, and InFeT MgO4 with the spinel structure, InGaZnO4, InGaMgO4, and InAl-CuO4 with the YbFe2O4-type structure, and In2Ga2MnO7 and In2Ga2ZnO7 with the Yb2Fe3O7-type structure were obtained. InGaMnO4 and InFe2O4 had both the YbFe2O4-type and spinel-type structures. The revised classification for the crystal structures of AB2O4 compounds is presented, based upon the coordination numbers of constituent A and B cations. 5more » references, 2 tables.« less

  8. Electrochemical synthesis of Sm2O3 nanoparticles: Application in conductive polymer composite films for supercapacitors.

    PubMed

    Mohammad Shiri, Hamid; Ehsani, Ali; Jalali Khales, Mina

    2017-11-01

    A novel electrosynthetic method was introduced to synthesize of Sm 2 O 3 nanoparticles and furthermore, for improving the electrochemical performance of conductive polymer, hybrid POAP/Sm 2 O 3 films have then been fabricated by POAP electropolymerization in the presence of Sm 2 O 3 nanoparticles as active electrodes for electrochemical supercapacitors. The structure, morphology, chemical composition of Sm 2 O 3 nanoparticles was examined. Surface and electrochemical analyses have been used for characterization of Sm 2 O 3 and POAP/Sm 2 O 3 composite films. Different electrochemical methods including galvanostatic charge discharge experiments, cyclic voltammetry and electrochemical impedance spectroscopy have been applied to study the system performance. The supercapacity behavior of the composite film was attributed to the (i) high active surface area of the composite, (ii) charge transfer along the polymer chain due to the conjugation form of the polymer and finally (iii) synergism effect between conductive polymer and Sm 2 O 3 nanoparticles. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Low temperature preparation of highly fluorinated multiwalled carbon nanotubes activated by Fe3O4 towards enhanced microwave absorbing property.

    PubMed

    Liu, Yang; Zhang, Yichun; Zhang, Cheng; Huang, Benyuan; Li, Yulong; Lai, Wenchuan; Wang, Xu; Liu, Xiangyang

    2018-06-11

    Conventional approach to preparation highly fluorinated multiwalled carbon nanotubes (MWCNTs) always need high temperature. This paper presents a catalytic tactic realizing effective fluorination of MWNCTs at room temperature (RT). Fe3O4@MWCNTs composites with Fe3O4 loaded on MWCNTs were firstly prepared through solvothermal method, which is followed by fluorination treatment at RT. The attachment of Fe3O4 changes the charge distribution and dramatically improves the fluorination activity of MWCNTs. Consequently, the fluorine content of fluorinated Fe3O4@MWCNTs (F-Fe3O4@MWCNTs) can reach up to 17.13 at% (almost 6 times that of the unloaded sample) only after room temperature of fluorination, which lead to obvious decrease of permittivity. Besides, the partial fluorination of Fe3O4 brings about abnormal enhanced permeability due to strengthened exchange resonance. Benefiting from the lower permittivity and higher permeability, F-Fe3O4@CNTs composite exhibit increased impedance matching. As a result, F-Fe3O4@CNTs behave good microwave absorption property with minimal reflection loss -45 dB at 2.61 mm when filler content is 13 wt%. The efficient absorption bandwidth (<-10 dB) reaches 4.1 GHz when the thickness is 2.5 mm. This work illustrates a novel catalytic approach to prepare highly fluorinated MWCNTs as promising microwave absorbers, and the design concept can also be extended to the fluorination of other carbon materials. © 2018 IOP Publishing Ltd.

  10. Surface modification of porous suspended ceramsite used for water treatment by activated carbon/Fe3O4 magnetic composites.

    PubMed

    Lu, Mang; Xia, Guang-Hua; Zhao, Xiao-Dong

    2013-01-01

    In this study, porous suspended ceramsite with a specific density close to that of water was prepared by high-temperature calcination using fly ash, feldspar, calcite, fired talc and kaolin as the raw materials. The ceramsite was modified by activated carbon/Fe3O4 magnetic composites. The optimum modification conditions determined by methylene blue adsorption experiment were: KOH/glucose ratio of 1.5:1, carbonization temperature of 400 degrees C, activation temperature of 850 degrees C, activation time of 1 h, and Fe3O4/KOH+glucose ratio of 1:10. The results demonstrated that the adsorption capacity of the modified ceramsite for methylene blue was significantly higher than that of the unmodified ones. The presence of the composites did not lead to significant decrease in the mechanical properties of the modified ceramsite. Moreover, the modified ceramsite showed good resistance towards acid and alkali. The modified ceramsite can be used as biocarrier and adsorbent for a wide range of contaminants in water and can subsequently be removed from the medium by a simple magnetic procedure.

  11. Co3O4-x-Carbon@Fe2-yCoyO3 Heterostructural Hollow Polyhedrons for the Oxygen Evolution Reaction.

    PubMed

    Xu, Wangwang; Xie, Weiwei; Wang, Ying

    2017-08-30

    Hollow heterostructured nanomaterials have received tremendous interest in new-generation electrocatalyst applications. However, the design and fabrication of such materials remain a significant challenge. In this work, we present Co 3 O 4-x -carbon@Fe 2-y Co y O 3 heterostructural hollow polyhedrons that have been fabricated by facile thermal treatment followed by solution-phase growth for application as efficient oxygen evolution reaction (OER) electrocatalysts. Starting from a single ZIF-67 hollow polyhedron, a novel complex structured composite material constructed from Co 3 O 4-x nanocrystallite-embedded carbon matrix embedded with Fe 2-y Co y O 3 nanowires was successfully prepared. The Co 3 O 4-x nanocrystallite with oxygen vacancies provides both heterogeneous nucleation sites and growth platform for Fe 2-y Co y O 3 nanowires. The resultant heterostructure combines the advantages of Fe 2-y Co y O 3 nanowires with the large surface area and surface defects of Co 3 O 4-x nanocrystallite, resulting in improved electrocatalytic activity and electrical conductivity. As a result, such novel heterostructured OER electrocatalysts exhibit much lower onset potential (1.52 V) and higher current density (70 mA/cm 2 at 1.7 V) than Co 3 O 4-x -carbon hollow polyhedrons (onset 1.55 V, 35 mA/cm 2 at 1.7 V) and pure Co 3 O 4 hollow polyhedrons (onset 1.62 V, 5 mA/cm 2 at 1.7 V). Furthermore, the design and synthesis of metal-organic framework (MOF)-derived nanomaterials in this work offer new opportunities for developing novel and efficient electrocatalysts in electrochemical devices.

  12. Enhanced Catalytic Reduction of 4-Nitrophenol Driven by Fe3O4-Au Magnetic Nanocomposite Interface Engineering: From Facile Preparation to Recyclable Application

    PubMed Central

    Chen, Yue; Zhang, Yuanyuan; Kou, Qiangwei; Liu, Yang; Han, Donglai; Wang, Dandan; Sun, Yantao; Zhang, Yongjun; Wang, Yaxin; Lu, Ziyang; Chen, Lei; Yang, Jinghai; Xing, Scott Guozhong

    2018-01-01

    In this work, we report the enhanced catalytic reduction of 4-nitrophenol driven by Fe3O4-Au magnetic nanocomposite interface engineering. A facile solvothermal method is employed for Fe3O4 hollow microspheres and Fe3O4-Au magnetic nanocomposite synthesis via a seed deposition process. Complementary structural, chemical composition and valence state studies validate that the as-obtained samples are formed in a pure magnetite phase. A series of characterizations including conventional scanning/transmission electron microscopy (SEM/TEM), Mössbauer spectroscopy, magnetic testing and elemental mapping is conducted to unveil the structural and physical characteristics of the developed Fe3O4-Au magnetic nanocomposites. By adjusting the quantity of Au seeds coating on the polyethyleneimine-dithiocarbamates (PEI-DTC)-modified surfaces of Fe3O4 hollow microspheres, the correlation between the amount of Au seeds and the catalytic ability of Fe3O4-Au magnetic nanocomposites for 4-nitrophenol (4-NP) is investigated systematically. Importantly, bearing remarkable recyclable features, our developed Fe3O4-Au magnetic nanocomposites can be readily separated with a magnet. Such Fe3O4-Au magnetic nanocomposites shine the light on highly efficient catalysts for 4-NP reduction at the mass production level. PMID:29789457

  13. Sea-urchin-like Fe3O4@C@Ag particles: an efficient SERS substrate for detection of organic pollutants

    NASA Astrophysics Data System (ADS)

    Ye, Yingjie; Chen, Jin; Ding, Qianqian; Lin, Dongyue; Dong, Ronglu; Yang, Liangbao; Liu, Jinhuai

    2013-06-01

    Ag-coated sea-urchin-like Fe3O4@C core-shell particles can be synthesized by a facile one-step solvothermal method, followed by deposition of high-density Ag nanoparticles onto the carbon surface through an in situ growth process, respectively. The as-synthesized Ag-coated Fe3O4@C particles can be used as a surface-enhanced Raman scattering (SERS) substrate holding reproducible properties under an external magnetic force. The magnetic function of the particles allows concentrating the composite particles into small spatial regions, which can be exploited to decrease the amount of material per analysis while improving its SERS detection limit. In contrast to the traditional SERS substrates, the present Fe3O4@C@Ag particles hold the advantages of enrichment of organic pollutants for improving SERS detection limit and recycled utilization.Ag-coated sea-urchin-like Fe3O4@C core-shell particles can be synthesized by a facile one-step solvothermal method, followed by deposition of high-density Ag nanoparticles onto the carbon surface through an in situ growth process, respectively. The as-synthesized Ag-coated Fe3O4@C particles can be used as a surface-enhanced Raman scattering (SERS) substrate holding reproducible properties under an external magnetic force. The magnetic function of the particles allows concentrating the composite particles into small spatial regions, which can be exploited to decrease the amount of material per analysis while improving its SERS detection limit. In contrast to the traditional SERS substrates, the present Fe3O4@C@Ag particles hold the advantages of enrichment of organic pollutants for improving SERS detection limit and recycled utilization. Electronic supplementary information (ESI) available: Additional XRD patterns and SEM images of Fe3O4@C particles, SERS spectra of 4-ATP and 4-MPY using Fe3O4@C@Ag particles as the active substrates, magnetic behaviour of Fe3O4@C and Fe3O4@C@Ag particles. See DOI: 10.1039/c3nr01273e

  14. Surfactant-assisted synthesis of polythiophene/Ni0.5Zn0.5Fe2-xCexO4 ferrite composites: study of structural, dielectric and magnetic properties for EMI-shielding applications.

    PubMed

    Dar, M Abdullah; Majid, Kowsar; Hanief Najar, Mohd; Kotnala, R K; Shah, Jyoti; Dhawan, S K; Farukh, M

    2017-04-19

    This work reports the exploitation of nanocrystalline Ni 0.5 Zn 0.5 Fe 2-x Ce x O 4 ferrite for potential application by designing quasi-spherical shaped polythiophene (PTH) composites via in situ emulsion polymerization. The structural, electronic, dielectric, magnetic, and electromagnetic interference (EMI) shielding properties of PTH/Ni 0.5 Zn 0.5 Fe 2-x Ce x O 4 composites were investigated. Our results suggest that these properties could be optimized by modulating the concentration of x (composition) in the polymer matrix. Higher values of ε' and ε'' were obtained on composite formation, and could be due to the heterogeneity developed in the material. An enhancement in the value of saturation magnetization (123 emu g -1 for x = 0.04) and Curie temperature was obtained with Ce concentration, which is useful for high density recording purposes. A low value of saturation magnetization was obtained for the PTH/Ni 0.5 Zn 0.5 Fe 2-x Ce x O 4 composite (36 emu g -1 for x = 0.04). This could be attributed to the non-magnetic nature of the polymer. A total shielding effectiveness (SE T = SE A + SE R ) up to 34 dB (≈99.9% attenuation) was recorded for PTH/Ni 0.5 Zn 0.5 Fe 2-x Ce x O 4 composites (x = 0.04) in a frequency range of 8.2-12.4 GHz (X-band), which surpasses the shielding criteria of SE T > 30 dB for commercial purposes. Such a material with high SE identifies its potential for making electromagnetic shields. The effect of Ce substitution on the microstructure, dielectric, impedance and magnetic properties of PTH/Ni 0.5 Zn 0.5 Fe 2-x Ce x O 4 ferrite composites was also investigated. X-ray diffraction analysis confirmed cubic spinel phase formation, and the broad reflection peaks indicated the formation of smaller sized particles. The smaller energy band gap (2.53 eV) of the composite indicated that this material could be used for photocatalysis in the visible region. Dielectric and impedance measurements were carried out in a frequency range of 8.2-12.4

  15. Synthesis of MoS2-reduced graphene oxide/Fe3O4 nanocomposite for enhanced electromagnetic interference shielding effectiveness

    NASA Astrophysics Data System (ADS)

    Prasad, Jagdees; Singh, Ashwani Kumar; Shah, Jyoti; Kotnala, R. K.; Singh, Kedar

    2018-05-01

    This article presents a facile two step hydrothermal process for the synthesis of MoS2-reduced graphene oxide/Fe3O4 (MoS2-rGO/Fe3O4) nanocomposite and its application as an excellent electromagnetic interference shielding material. Characterization tools like; scanning electron microscope, transmission electron microscope, x-ray diffraction, and Raman spectroscopy were used to confirm the formation of nanocomposite and found that spherical Fe3O4 nanoparticles are well dispersed over MoS2-rGO composite with average particle size ∼25–30 nm was confirmed by TEM. Structural characterization done by XRD was found inconsistent with the known lattice parameter of MoS2 nanosheet, reduced graphene oxide and Fe3O4 nanoparticles. Electromagnetic shielding effectiveness of MoS2-rGO/Fe3O4 nanocomposite was evaluated and found to be an excellent EMI shielding material in X-band range (8.0–12.0 GHz). MoS2-rGO composite shows poor shielding capacity (SET ∼ 3.81 dB) in entire range as compared to MoS2-rGO/Fe3O4 nanocomposite (SET ∼ 8.27 dB). It is due to interfacial polarization in the presence of EM field. The result indicates that MoS2-rGO/Fe3O4 nanocomposite provide a new stage for the next generation in high-performance EM wave absorption and EMI shielding effectiveness.

  16. Structural, dielectric and magnetic studies of (x) Mg0.2Cu0.3Zn0.5Fe2O4 + (1-x) Ba0.8Zr0.2TiO3 magnetoelectric composites

    NASA Astrophysics Data System (ADS)

    Khader, S. Abdul; Giridharan, N. V.; Chaudhuri, Arka; Sankarappa, T.

    2016-05-01

    The Magneto-electric composites (x) Mg0.2Cu0.3Zn0.5Fe2O4 + (1-x) Ba0.8Zr0.2TiO3 (x=15%,30%,45%) were synthesized by sintering mixtures of highly ferroelectric Ba0.8Zr0.2TiO3 (BZT) and highly magneto-strictive component Mg0.2Cu0.3Zn0.5Fe2O4 (MCZF). The presences of two phases in magneto-electric composites were probed by X-ray diffraction (XRD) studies. The peaks observed in the XRD spectrum indicated spinel cubic structure for MCZF ferrite and tetragonal perovskite structure for BZT and, both spinel and pervoskite structures for synthesized composites. Surface morphology of the samples has been investigated using Field Emission Scanning Electron Microscope (FESEM). Frequency dependent dielectric properties of synthesized composites were measured from 100 Hz to 1 MHz at RT using HIOKI LCR HI-TESTER. The dielectric dispersion is observed at lower frequencies for the synthesized ME composites. The magnetic properties of synthesized composites were analyzed using a Vibrating Sample Magnetometer (VSM). It is observed that the values of saturation magnetization increases along with the ferrite content.

  17. Bacteria-Affinity 3D Macroporous Graphene/MWCNTs/Fe3O4 Foams for High-Performance Microbial Fuel Cells.

    PubMed

    Song, Rong-Bin; Zhao, Cui-E; Jiang, Li-Ping; Abdel-Halim, Essam Sayed; Zhang, Jian-Rong; Zhu, Jun-Jie

    2016-06-29

    Promoting the performance of microbial fuel cells (MFCs) relies heavily on the structure design and composition tailoring of electrode materials. In this work, three-dimensional (3D) macroporous graphene foams incorporated with intercalated spacer of multiwalled carbon nanotubes (MWCNTs) and bacterial anchor of Fe3O4 nanospheres (named as G/MWCNTs/Fe3O4 foams) were first synthesized and used as anodes for Shewanella-inoculated microbial fuel cells (MFCs). Thanks to the macroporous structure of 3D graphene foams, the expanded electrode surface by MWCNTs spacing, as well as the high affinity of Fe3O4 nanospheres toward Shewanella oneidensis MR-1, the anode exhibited high bacterial loading capability. In addition to spacing graphene nanosheets for accommodating bacterial cells, MWCNTs paved a smoother way for electron transport in the electrode substrate of MFCs. Meanwhile, the embedded bioaffinity Fe3O4 nanospheres capable of preserving the bacterial metabolic activity provided guarantee for the long-term durability of the MFCs. With these merits, the constructed MFC possessed significantly higher power output and stronger stability than that with conventional graphite rod anode.

  18. Synthesis, characterization and low temperature electrical conductivity of Polyaniline/NiFe2O4 nanocomposites

    NASA Astrophysics Data System (ADS)

    Prasanna, G. D.; Prasad, V. B.; Jayanna, H. S.

    2015-02-01

    Conducting polymer/ferrite nanocomposites with an organized structure provide a new functional hybrid between organic and inorganic materials. The most popular among the conductive polymers is the polyaniline (PANI) due to its wide application in different fields. In the present work nickel ferrite (NiFe2O4) nanoparticles were prepared by sol-gel citrate-nitrate method with an average size of 21.6nm. PANI/NiFe2O4 nanoparticles were synthesized by a simple general and inexpensive in-situ polymerization in the presence of NiFe2O4 nanoparticles. The effects of NiFe2O4 nanoparticles on the dc-electrical properties of polyaniline were investigated. The structural components in the nanocomposites were identified from Fourier Transform Infrared (FTIR) spectroscopy. The crystalline phase of nanocomposites was characterized by X-Ray Diffraction (XRD). The Scanning Electron Micrograph (SEM) reveals that there was some interaction between the NiFe2O4 particles and polyaniline and the nanocomposites are composed of polycrystalline ferrite nanoparticles and PANI. The dc conductivity of polyaniline/NiFe2O4 nanocomposites have been measured as a function of temperature in the range of 80K to 300K. It is observed that the room temperature conductivity cRT decreases with increase in the relative content of NiFe2O4. The experimental data reveals that the resistivity increases for all composites with decrease of temperature exhibiting semiconductor behaviour.

  19. Structural, dielectric and magnetic studies of (x) Ni0.7Co0.1Cu0.2Fe2O4 + (1-x) BaTiO3 magnetoelectric composites

    NASA Astrophysics Data System (ADS)

    Khader, S. Abdul; Parveez, Asiya; Giridharan, N. V.; Sankarappa, T.

    2016-05-01

    The Magneto-electric composites (x) Ni0.7Co0.1Cu0.2Fe2O4 + (1-x) BaTiO3 (x=10%, 20% and 30%) were synthesized by sintering mixtures of highly ferroelectric BaTiO3 (BT) and highly magneto-strictive component Ni0.7Co0.1Cu0.2Fe2O4 (NCCF). The presences of constituent phases in magneto-electric composites were probed by X-ray diffraction (XRD) studies. The peaks observed in the XRD spectrum indicated spinel cubic structure for NCCF ferrite phase and tetragonal perovskite structure for BT and, both spinel and pervoskite structures for synthesized ME composites. Surface morphology of the samples has been investigated using Field Emission Scanning Electron Microscope (FESEM). Frequency and composition dependent dielectric properties of synthesized composites were measured from 100 Hz to 1 MHz at room temperature using Hioki LCR Hi-TESTER. The dielectric dispersion is observed at lower frequencies for the synthesized ME composites. The hysteresis behavior was studied to understand the magnetic ordering in the synthesized composites using a Vibrating Sample Magnetometer (VSM). It is observed that the values of saturation magnetization increases along with the ferrite content.

  20. Carbon-coated CoFe–CoFe2O4 composite particles with high and dual-band electromagnetic wave absorbing properties

    NASA Astrophysics Data System (ADS)

    Guan, Zhen-Jie; Jiang, Jian-Tang; Chen, Na; Gong, Yuan-Xun; Zhen, Liang

    2018-07-01

    SiO2 and TiO2, as conventional dielectric shells of ferromagnetic/dielectric composite particles, can protect ferromagnetic particles from aggregation and oxidation, but contribute little to electromagnetic loss. In this work, we designed nano-assembled CoFe–CoFe2O4@C composite particles, in which ferrites with high permeability were dielectric elements and carbon was introduced as protective layers, aiming for high-efficiency microwave absorption. These assembled particles with different CoFe contents were prepared through solvothermal methods and subsequent hydrogen-thermal reduction. CoFe nanoparticles were dispersed on a CoFe2O4 matrix via an in situ reduction transformation from CoFe2O4 to CoFe. The microstructure evolution of composite particles and corresponding electromagnetic properties tailoring were investigated. The content and size of CoFe as well as the porosity of composite particles increase gradually as the annealing temperature increases. A maximum reflection loss (RL max) of –71.73 dB is observed at 4.78 GHz in 3.4 mm thick coating using particles annealed at 500 °C as fillers. The coating presents double-band absorbing characteristics, as broad effective absorption bandwidth with RL > 5 (ERL 5) and high RL max are observed in both S-C and X-Ku bands. The tunability as well as the assembled characteristic of the electromagnetic property that endued from the composite structure contributes to the excellent electromagnetic wave absorbing performances.

  1. A moderate method for preparation DMSA coated Fe3O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Song, L. N.; Gu, N.; Zhang, Y.

    2017-01-01

    A moderate way to prepare water soluble magnetic Fe3O4 nanoparticles has been developed. Firstly, oleic acid coated Fe3O4 is prepared by coprecipitation. Second, oleic acid were replaced by 2,3-dimercaptosuccinnic acid (DMSA) to prepare DMSA/Fe3O4 in the mixed solution of n-hexane and acetone. After dialysis and filtration the DMSA/Fe3O4 can be transferred into distilled water to form stable Fe3O4 nanoparticle solutions. The TEM images indicated that the particles had spherical shape and the nanoparticles were found to be 12 nm with a relatively narrow size distribution with the hydrodynamic size of 30 nm. And the result of VSM shows that DMSA/Fe3O4 nanoparticles have a saturation magnetization of 31 emu/g. The IR spectra indicated that the iron oxide was located by carboxyl matrix.

  2. γ-Fe2O3 and Fe3O4 magnetic hierarchically nanostructured hollow microspheres: preparation, formation mechanism, magnetic property, and application in water treatment.

    PubMed

    Xu, Jing-San; Zhu, Ying-Jie

    2012-11-01

    In this paper, we report the preparation of γ-Fe(2)O(3) and Fe(3)O(4) magnetic hierarchically nanostructured hollow microspheres by a solvothermal combined with precursor thermal conversion method. These γ-Fe(2)O(3) and Fe(3)O(4) magnetic hierarchically nanostructured hollow microspheres were constructed by three-dimensional self-assembly of nanosheets, forming porous nanostructures. The effects of experimental parameters including molar ratio of reactants and reaction temperature on the precursors were studied. The time-dependent experiments indicated that the Ostwald ripening was responsible for the formation of the hierarchically nanostructured hollow microspheres of the precursors. γ-Fe(2)O(3) and Fe(3)O(4) magnetic hierarchically nanostructured hollow microspheres were obtained by the thermal transformation of the precursor hollow microspheres. Both γ-Fe(2)O(3) and Fe(3)O(4) hierarchically nanostructured hollow microspheres exhibited a superparamagnetic property at room temperature and had the saturation magnetization of 44.2 and 55.4 emu/g, respectively, in the applied magnetic field of 20 KOe. Several kinds of organic pollutants including salicylic acid (SA), methylene blue (MB), and basic fuchsin (BF) were chosen as the model water pollutants to evaluate the removal abilities of γ-Fe(2)O(3) and Fe(3)O(4) magnetic hierarchically nanostructured hollow microspheres. It was found that γ-Fe(2)O(3) hierarchically nanostructured hollow microspheres showed a better adsorption ability over SA than MB and BF. However, Fe(3)O(4) hierarchically nanostructured hollow microspheres had the best performance for adsorbing MB. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Melt densities in the CaO-FeO-Fe 2O 3-SiO 2 system and the compositional dependence of the partial molar volume of ferric iron in silicate melts

    NASA Astrophysics Data System (ADS)

    Dingwell, Donald B.; Brearley, Mark

    1988-12-01

    The densities of 10 melts in the CaO-FeO-Fe 2O 3-SiO 2 system were determined in equilibrium with air, in the temperature range of 1200 to 1550°C, using the double-bob Archimedean technique. Melt compositions range from 6 to 58 wt% SiO 2, 14 to 76 wt% Fe 2O 3 and 10 to 46 wt% CaO. The ferric-ferrous ratios of glasses drop-quenched from loop fusion equilibration experiments were determined by 57Fe Mössbauer spectroscopy. Melt densities range from 2.689 to 3.618 gm/cm 3 with a mean standard deviation from replicate experiments of 0.15%. Least-squares regressions of molar volume versus molar composition have been performed and the root mean squared deviation shows that a linear combination of partial molar volumes for the oxide components (CaO, FeO, Fe 2O 3 and SiO 2) cannot describe the data set within experimental error. Instead, the inclusion of excess terms in CaFe 3+ and CaSi (product terms using the oxides) is required to yield a fit that describes the experimental data within error. The nonlinear compositional-dependence of the molar volumes of melts in this system can be explained by structural considerations of the roles of Ca and Fe 3+. The volume behavior of melts in this system is significantly different from that in the Na 2O-FeO-Fe 2O 3-SiO 2 system, consistent with the proposal that a proportion of Fe 3+ in melts in the CaO-FeO-Fe 2O 3-SiO 2 system is not tetrahedrally-coordinated by oxygen, which is supported by differences in 57Fe Mössbauer spectra of glasses. Specifically, this study confirms that the 57Fe Mössbauer spectra exhibit an area asymmetry and higher values of isomer shift of the ferric doublet that vary systematically with composition and temperature (this study; Dingwell and Virgo, 1987, 1988). These observations are consistent with a number of other lines of evidence ( e.g., homogeneous redox equilibria, Dickenson and Hess, 1986; viscosity, Dingwell and Virgo, 1987,1988). Two species of ferric iron, varying in proportions with

  4. Magnetic and interface properties of the core-shell Fe3O4/Au nanocomposites

    NASA Astrophysics Data System (ADS)

    Baskakov, A. O.; Solov'eva, A. Yu.; Ioni, Yu. V.; Starchikov, S. S.; Lyubutin, I. S.; Khodos, I. I.; Avilov, A. S.; Gubin, S. P.

    2017-11-01

    Core-shell Fe3O4/Au nanostructures were obtained with an advanced method of two step synthesis and several complementary methodics were applied for investigation structural and magnetic properties of the samples. Along with X-ray diffraction and transmission electron microscopy, electron diffraction, optical, Raman and Mössbauer spectroscopy were used for nanoparticle characterization. It was established that the physical and structural properties Fe3O4/Au nanocomposites are specific of intrinsic properties of gold and magnetite. Mössbauer and Raman spectroscopy data indicated that magnetite was in a nonstoichiometric state with an excess of trivalent iron both in the initial Fe3O4 nanoparticles and in the Fe3O4/Au nanocomposites. As follows from the Mössbauer data, magnetic properties of iron ions in the internal area (in core) and in the surface layer of magnetite nanoparticles are different due to the rupture of exchange bonds at the particles surface. This leads to decrease in an effective magnetic moment at the surface. Gold atoms at the interface of the composites interact with dangling bonds of magnetite and stabilize the magnetic properties of the surface layers of magnetite.

  5. Thermal evaporation-induced anhydrous synthesis of Fe3O4-graphene composite with enhanced rate performance and cyclic stability for lithium ion batteries.

    PubMed

    Dong, Yucheng; Ma, Ruguang; Hu, Mingjun; Cheng, Hua; Yang, Qingdan; Li, Yang Yang; Zapien, Juan Antonio

    2013-05-21

    We present a high-yield and low cost thermal evaporation-induced anhydrous strategy to prepare hybrid materials of Fe3O4 nanoparticles and graphene as an advanced anode for high-performance lithium ion batteries. The ~10-20 nm Fe3O4 nanoparticles are densely anchored on conducting graphene sheets and act as spacers to keep the adjacent sheets separated. The Fe3O4-graphene composite displays a superior battery performance with high retained capacity of 868 mA h g(-1) up to 100 cycles at a current density of 200 mA g(-1), and 539 mA h g(-1) up to 200 cycles when cycling at 1000 mA g(-1), high Coulombic efficiency (above 99% after 200 cycles), good rate capability, and excellent cyclic stability. The simple approach offers a promising route to prepare anode materials for practical fabrication of lithium ion batteries.

  6. The rational designed graphene oxide-Fe2O3 composites with low cytotoxicity.

    PubMed

    Yan, Dong; Zhao, Haiyan; Pei, Jiayun; Wu, Xin; Liu, Yue

    2017-03-01

    Novel two-dimensional materials with a layered structure are of special interest for a variety of promising applications. In current research, the nanostructured graphene oxide-Fe 2 O 3 composite (GO-Fe 2 O 3 ) was firstly obtained via a carefully elaborated approach of vacuum freeze-drying. The scanning electron microscopy (SEM) and transmission electron microscope (TEM) images revealed that α-Fe 2 O 3 nanoparticles loaded well on the surfaces of graphene. A series of characterization were performed to further elucidate the as-obtained nanomaterial's physicochemical properties. These results suggested the current route could be further extended to obtain the other kinds of two-dimensional materials based composites. For the sake of extending the potential application of herein achieved graphene composites, its cytotoxicity assessment on HeLa cells was systematically investigated. CCK-8 assay in HeLa cells treated by GO-Fe 2 O 3 showed dose- (1-100μg/ml) and time- (24-48h) dependent cytotoxicity, which was comparable to that of GO. The excess generation of intracellular reactive oxygen species (ROS) induced by these nanomaterials was responsible for the cytotoxicity. TEM analysis vividly illustrated GO-Fe 2 O 3 internalized by HeLa cells in endomembrane compartments such as lysosomes, and degraded through autophagic pathway. The detrimental biological consequence accompanied by cell internalization was limited. Based on the above results, it expected to render useful information for the development of new and popular strategies to design graphene-based composites, as well as deep insights into the mechanism of graphene-based composites cytotoxicity for further potential application. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Pressure induced para-antiferromagnetic switching in BiFeO3-PbTiO3 as determined using in-situ neutron diffraction

    NASA Astrophysics Data System (ADS)

    Comyn, Tim P.; Stevenson, Tim; Al-Jawad, Maisoon; Marshall, William G.; Smith, Ronald I.; Herrero-Albillos, Julia; Cywinski, Robert; Bell, Andrew J.

    2013-05-01

    BiFeO3-PbTiO3 exhibits both ferroelectric and antiferromagnetic order, depending on the composition. Moderate hydrostatic pressures have been used at room temperature to transform the crystallographic phase from P4mm to R3c for the compositions 0.7BiFeO3-0.3PbTiO3 and 0.65BiFeO3-0.35PbTiO3, as determined using in-situ neutron diffraction. Using Rietveld refinements, the resultant data showed that, for both compositions, a transformation from para- to G-type antiferromagnetic order accompanied the structural transition. The transformation occurred over the range 0.4-0.77 and 0.67-0.88 GPa for 0.7BiFeO3-0.3PbTiO3 and 0.65BiFeO3-0.35PbTiO3, respectively; at intermediate pressures, a mixture of P4mm and R3c phases were evident. These pressures are far lower than required to induce a phase transition in either the BiFeO3 or PbTiO3 end members. The driving force for this pressure induced first order phase transition is a significant difference in volume between the two phases, P4mm > R3c of 4%-5%, at ambient pressure. Upon removal of the pressure, 0.65BiFeO3-0.35PbTiO3 returned to the paramagnetic tetragonal state, whereas in 0.7BiFeO3-0.3PbTiO3 antiferromagnetic ordering persisted, and the structural phase remained rhombohedral. Using conventional laboratory x-ray diffraction with a hot-stage, the phase readily reverted back to a tetragonal phase, at temperatures between 100 and 310 °C for 0.7BiFeO3-0.3PbTiO3, far lower than the ferroelectric Curie point for this composition of 632 °C. To our knowledge, the reported pressure induced para- to antiferromagnetic transition is unique in the literature.

  8. Synthesis of Fe3O4@P4VP@ZIF-8 core-shell microspheres and their application in a Knoevenagel condensation reaction

    NASA Astrophysics Data System (ADS)

    Miao, Zongcheng; Yang, Fengxia; Luan, Yi; Shu, Xin; Ramella, Daniele

    2017-12-01

    In this work, a core-shell magnetic composite Fe3O4@P4VP@ZIF-8 microspheres were successfully designed and synthesized. A polymerization approach on the surface of pre-made Fe3O4 microspheres was employed for the synthesis of Fe3O4@P4VP. The zinc-derived Zeolite Imidazolate Framework (ZIF) shell was introduced through a layer-by-layer strategy. The obtained Fe3O4@P4VP@ZIF-8 core-shell structure was employed as an efficient Knoevenagel condensation catalyst for a variety of aldehydes. Furthermore, the inner P4VP layer also served as a basic additive in the condensation reaction process, while much less homogeneous basic additive was used. High catalytic reaction efficiency was achieved when the P4VP layer was utilized in combination with a Lewis acidity bearing ZIF-8 layer. The Fe3O4@P4VP@ZIF-8 catalyst was tested for recyclability and no drop in the catalytic activity was observed after more than five cycles.

  9. Fe3O4 and MnO2 assembled on honeycomb briquette cinders (HBC) for arsenic removal from aqueous solutions.

    PubMed

    Zhu, Jin; Baig, Shams Ali; Sheng, Tiantian; Lou, Zimo; Wang, Zhuoxing; Xu, Xinhua

    2015-04-09

    In this study, a novel composite adsorbent (HBC-Fe3O4-MnO2) was synthesized by combining honeycomb briquette cinders (HBC) with Fe3O4 and MnO2 through a co-precipitation process. The purpose was to make the best use of the oxidative property of MnO2 and the adsorptive ability of magnetic Fe3O4 for enhanced As(III) and As(V) removal from aqueous solutions. Experimental results showed that the adsorption capacity of As(III) was observed to be much higher than As(V). The maximum adsorption capacity (2.16 mg/g) was achieved for As(III) by using HBC-Fe3O4-MnO2 (3:2) as compared to HBC-Fe3O4-MnO2 (2:1) and HBC-Fe3O4-MnO2 (1:1). The experimental data of As(V) adsorption fitted well with the Langmuir isotherm model, whereas As(III) data was described perfectly by Freundlich model. The pseudo-second-order kinetic model was fitted well for the entire adsorption process of As(III) and As(V) suggesting that the adsorption is a rate-controlling step. Aqueous solution pH was found to greatly affect the adsorption behavior. Furthermore, co-ions including HCO3(-) and PO4(3-) exhibited greater influence on arsenic removal efficiency, whereas Cl(-), NO3(-), SO4(2-) were found to have negligible effects on arsenic removal. Five consecutive adsorption-regeneration cycles confirmed that the adsorbent could be reusable for successive arsenic treatment and can be used in real treatment applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Synthesis of LiFePO4/Li2SiO3/reduced Graphene Oxide (rGO) Composite via Hydrothermal Method

    NASA Astrophysics Data System (ADS)

    Arifin, M.; Iskandar, F.; Aimon, A. H.; Munir, M. M.; Nuryadin, B. W.

    2016-08-01

    LiFePO4 is a type of cathode active material used for lithium ion batteries. It has a high electrochemical performance. However, it suffers from certain disadvantages such as a very low intrinsic electronic conductivity and low ionic diffusion. This study was conducted to increase the conductivity of LiFePO4. We have investigated the addition of Li2SiO3 and reduced graphene oxide (rGO) to LiFePO4. The objective of this research was to synthesize LiFePO4/Li2SiO3/rGO via hydrothermal method. Fourier transform infrared spectroscopy (FTIR) measurement showed that the peaks corresponded to the vibration of LiFePO4/Li2SiO3. Further, X-ray diffraction (XRD) measurement confirmed a single phase of LiFePO4. Finally, scanning electron microscopy (SEM) images showed that rGO was distributed on the LiFePO4/Li2SiO3 structure.

  11. Fe3O4 nanoparticles decorated MWCNTs @ C ferrite nanocomposites and their enhanced microwave absorption properties

    NASA Astrophysics Data System (ADS)

    Zhang, Kaichuang; Gao, Xinbao; Zhang, Qian; Chen, Hao; Chen, Xuefang

    2018-04-01

    Fe3O4 nanoparticles decorated MWCNTs @ C ferrite nanocomposites were synthesized using a co-precipitation method and a calcination process. As one kind absorbing material, we researched the electromagnetic absorption properties of the composites that were mixed with a filler loading of 80 wt% paraffin. In addition, we studied the influence of the magnetic nanoparticle content on the absorbing properties. The results showed that the frequency corresponding to the maximum absorptions shifted to lower frequency when the magnetic nanoparticles content increased. The Fe3O4 nanoparticles decorated MWCNTs @ C ferrite nanocomposites with approximately 60% Fe3O4 nanoparticles showed the best electromagnetic absorption properties. The maximum reflection loss was -52.47 dB with a thickness of 2.0 mm at 10.4 GHz.

  12. Enhanced supercapacitive behaviour of Fe3O4/fMWCNT nanoassemblies synthesized by PEG-600 assisted solvothermal method

    NASA Astrophysics Data System (ADS)

    Aparna, M. L.; Sathyanarayanan, P.; Sahu, Niroj Kumar

    2018-04-01

    We report a simple PEG-600 assisted solvothermal method for the synthesis iron ferrite with functionalized multi-walled carbon nanotube (Fe3O4/fMWCNT) composite nanoassemblies. The results show that the composite deliver excellent electrochemical activity because of the synergistic effect of each component. The fMWCNT act as a conductive network with high surface area promoting fast movement of electrons which enhances the charge storing nature and stability of Fe3O4 nanoassemblies.

  13. Study on Preparing Al2O3 Particles Reinforced ZL109 Composite by in Situ Reaction of Fe2O3/Al System

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Yu, Huashun; Zhao, Qi; Wang, Haitao; Min, Guanghui

    Al2O3 particles reinforced ZL109 composite was prepared by in situ reaction between Fe2O3 and Al. The phases were identified by XRD and the microstructures were observed by SEM and TEM. The Al2O3 particles in sub-micron size distribute uniformly in the matrix and Fe displaced from the in situ reaction forms net-like alloy phases with Cu, Ni, Al, Mn ect. The hardness and the tensile strength at room temperature of the composites have a small increase compared with the matrix. However, the tensile strength at 350°C can reach 92.18 MPa, which is 18.87 MPa higher than that of the matrix. The mechanism of the reaction in the Fe2O3/Al system was studied by DSC. The reaction between Fe2O3 and Al involves two steps. The first step in which Fe2O3 reacts with Al to form FeO and Al2O3 takes place at the matrix alloy melting temperature. The second step in which FeO reacts with Al to form Fe and Al2O3 takes place at a higher temperature.

  14. High purity Fe3O4 from Local Iron Sand Extraction

    NASA Astrophysics Data System (ADS)

    Gunanto, Y. E.; Izaak, M. P.; Jobiliong, E.; Cahyadi, L.; Adi, W. A.

    2018-04-01

    Indonesia has a long coastline and is rich with iron sand. The iron sand is generally rich in various elements such as iron and titanium. One of the products processing of the iron sand mineral is iron (II) (III) oxide (magnetite Fe3O4). The stages of purification process to extracting magnetite phase and discarding the other phases has been performed. Magnetite phase analysis of ironsand extraction retrieved from Indonesia have been investigated. The result of analysis element of iron sand shows that it consists of majority Fe around 65 wt%. However, there are still 17 impurities such as Ti, Al, Ce, Co, Cr, Eu, La, Mg, Mn, Na, Sc, Sm, Th, V, Yb, and Zn. After extraction process, Fe element content increases up to 94%. The iron sand powder after milling for 10 hours and separating using a magnetic separator, the iron sand powders are dissolved in acid chloride solution to form a solution of iron chloride, and this solution is sprinkled with sodium hydroxide to obtain fine powders of Fe3O4. The fine powders which formed were washed with de-mineralization water. The X-ray diffraction pattern shows that the fine powders have a single phase of Fe3O4. The analysis result shows that the sample has the chemical formula: Fe3O4 with a cubic crystal system, space group: Fd-3m and lattice parameters: a = b = c = 8.3681 (1) Å, α = β = γ = 90°. The microstructure analysis shows that the particle of Fe3O4 homogeneously shaped like spherical. The magnetic properties using vibrating sample magnetometer shows that Fe3O4 obtained have ferromagnetic behavior with soft magnetic characteristics. We concluded that this purification of iron sand had been successfully performed to obtain fine powders of Fe3O4 with high purity.

  15. Polystyrene/Fe3O4 magnetic emulsion and nanocomposite prepared by ultrasonically initiated miniemulsion polymerization.

    PubMed

    Qiu, Guihua; Wang, Qi; Wang, Chao; Lau, Willie; Guo, Yili

    2007-01-01

    Ultrasonically initiated miniemulsion polymerization of styrene in the presence of Fe3O4 nanoparticles was successfully employed to prepare polystyrene (PS)/Fe3O4 magnetic emulsion and nanocomposite. The effects of Fe3O4 nanoparticles on miniemulsion polymerization process, the structure, morphology and properties of PS/Fe3O4 nanocomposite were investigated. The increase in the amount of Fe3O4 nanoparticles drastically increases the polymerization rate due to that Fe3O4 nanoparticles increase the number of radicals and the cavitation bubbles. Polymerization kinetics of ultrasonically initiated miniemulsion polymerization is similar to that of conventional miniemulsion polymerization. PS/Fe3O4 magnetic emulsion consists of two types of particles: latex particles with Fe3O4 nanoparticles and latex particles with no encapsulated Fe3O4 nanoparticles. Fe3O4 nanoparticles lower the molecular weight of PS and broaden the molecular weight and particle size distribution. Thermal stability of PS/Fe3O4 nanocomposite increases with the increase in Fe3O4 content. PS/Fe3O4 emulsion and nanocomposite exhibit magnetic properties. PS/Fe3O4 magnetic particles can be separated from the magnetic emulsion by an external magnetic field and redispersed into the emulsion with agitation.

  16. Fe3O4 Nanoparticles in Targeted Drug/Gene Delivery Systems

    PubMed Central

    Shen, Lazhen; Li, Bei; Qiao, Yongsheng

    2018-01-01

    Fe3O4 nanoparticles (NPs), the most traditional magnetic nanoparticles, have received a great deal of attention in the biomedical field, especially for targeted drug/gene delivery systems, due to their outstanding magnetism, biocompatibility, lower toxicity, biodegradability, and other features. Naked Fe3O4 NPs are easy to aggregate and oxidize, and thus are often made with various coatings to realize superior properties for targeted drug/gene delivery. In this review, we first list the three commonly utilized synthesis methods of Fe3O4 NPs, and their advantages and disadvantages. In the second part, we describe coating materials that exhibit noticeable features that allow functionalization of Fe3O4 NPs and summarize their methods of drug targeting/gene delivery. Then our efforts will be devoted to the research status and progress of several different functionalized Fe3O4 NP delivery systems loaded with chemotherapeutic agents, and we present targeted gene transitive carriers in detail. In the following section, we illuminate the most effective treatment systems of the combined drug and gene therapy. Finally, we propose opportunities and challenges of the clinical transformation of Fe3O4 NPs targeting drug/gene delivery systems. PMID:29473914

  17. Magnetic domain interactions of Fe3O4 nanoparticles embedded in a SiO2 matrix.

    PubMed

    Fuentes-García, J A; Diaz-Cano, A I; Guillen-Cervantes, A; Santoyo-Salazar, J

    2018-03-23

    Currently, superparamagnetic functionalized systems of magnetite (Fe 3 O 4 ) nanoparticles (NPs) are promising options for applications in hyperthermia therapy, drug delivery and diagnosis. Fe 3 O 4 NPs below 20 nm have stable single domains (SSD), which can be oriented by magnetic field application. Dispersion of Fe 3 O 4 NPs in silicon dioxide (SiO 2 ) matrix allows local SSD response with uniaxial anisotropy and orientation to easy axis, 90° <001> or 180° <111>. A successful, easy methodology to produce Fe 3 O 4 NPs (6-17 nm) has been used with the Stöber modification. NPs were embedded in amorphous and biocompatible SiO 2 matrix by mechanical stirring in citrate and tetraethyl orthosilicate (TEOS). Fe 3 O 4 NPs dispersion was sampled in the range of 2-12 h to observe the SiO 2 matrix formation as time function. TEM characterization identified optimal conditions at 4 h stirring for separation of SSD Fe 3 O 4 in SiO 2 matrix. Low magnetization (M s ) of 0.001 emu and a coercivity (H c ) of 24.75 Oe indicate that the embedded SSD Fe 3 O 4 in amorphous SiO 2 reduces the M s by a diamagnetic barrier. Magnetic force microscopy (MFM) showed SSD Fe 3 O 4 of 1.2 nm on average embedded in SiO 2 matrix with uniaxial anisotropy response according to Fe 3+ and Fe 2+ electron spin coupling and rotation by intrinsic Neél contribution.

  18. Linear magnetic field dependence of the magnetodielectric effect in eutectic BaTiO3-CoFe2O4 multiferroic material fabricated by containerless processing

    NASA Astrophysics Data System (ADS)

    Fukushima, J.; Ara, K.; Nojima, T.; Iguchi, S.; Hayashi, Y.; Takizawa, H.

    2018-05-01

    To maximize the formation of an anisotropic interface between the magnetostrictive phase and the electrostrictive phase, a eutectic BaTiO3-CoFe2O4 multiferroic material is fabricated by containerless processing. The composites in this process had a fine eutectic structure, especially at a eutectic composition of BaTiO3:CoFe2O4 = 62:38. TEM observations revealed that the (1 0 0) plane of tetragonal BaTiO3 and the (1 0 0) plane of CoFe2O4 were oriented in parallel. In addition to the largest magnetodielectric effect in the eutectic-composition samples, we confirmed the permittivity is controlled linearly by applying a high magnetic field through forced magnetostriction. So far, the peak of the magnetodielectric effect around 0.25 T has been only found in the sintered CoFe2O4 polycrystalline sample. Thus, the containerless processing provides us a route to produce an ideal microstructure without accompanying 90° domain wall process and rotational magnetization process, which enhances the magnetodielectric effect.

  19. Properties and rapid low-temperature consolidation of nanocrystalline Fe-ZrO2 composite by pulsed current activated sintering

    NASA Astrophysics Data System (ADS)

    Kang, Hyun-Su; Ko, In-Yong; Yoon, Jin-Kook; Doh, Jung-Mann; Hong, Kyung-Tae; Shon, In-Jin

    2011-02-01

    Nanopowders of Fe and ZrO2 were synthesized from Fe2O3 and Zr by high-energy ball milling. The powder sizes of Fe and ZrO2 were 70 nm and 12 nm, respectively. Highly dense nanostructured 4/3Fe-ZrO2 composite was consolidated by a pulsed current activated sintering method within 1 minute from the mechanically synthesized powders (Fe-ZrO2) and horizontal milled Fe2O3+Zr powders under the 1 GPa pressure. The grain sizes of Fe and ZrO2 in the composite were calculated. The average hardness and fracture toughness values of nanostuctured 4/3Fe-ZrO2 composite were investigated.

  20. LaCrO3/CuFe2O4 Composite-Coated Crofer 22 APU Stainless Steel Interconnect of Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Hosseini, Seyedeh Narjes; Enayati, Mohammad Hossein; Karimzadeh, Fathallah; Dayaghi, Amir Masoud

    2017-07-01

    Rapidly rising contact resistance and cathode Cr poisoning are the major problems associated with unavoidable chromia scale growth on ferritic stainless steel (FSS) interconnects of solid oxide fuel cells. This work investigates the performance of the novel screen-printed composite coatings consisting of dispersed conductive LaCrO3 particles in a CuFe2O4 spinel matrix for Crofer 22 APU FSS, with emphasis on the oxidation behavior and electrical conductivity of these coatings. The results show that the presence of protective spinel coating, accompanied by the effective role of LaCrO3 particle incorporation, prevents the Cr2O3 subscale growth as well as chromium migration into the coating surface at the end of 400 hours of oxidation at 1073 K (800 °C) in air. In addition, the composite coatings decreased the area specific resistance (ASR) from 51.7 and 13.8 mΩ cm2 for uncoated and spinel-coated samples, respectively, to a maximum of 7.7 mΩ cm2 for composite-coated samples after 400 hours of oxidation.

  1. Material properties of perovskites in the quasi-ternary system LaFeO3-LaCoO3-LaNiO3

    NASA Astrophysics Data System (ADS)

    Tietz, F.; Arul Raj, I.; Ma, Q.; Baumann, S.; Mahmoud, A.; Hermann, R. P.

    2016-05-01

    An overview is presented on the variation of electrical conductivity, oxygen permeation, and thermal expansion coefficient as a function of the composition of perovskites in the quasi-ternary system LaFeO3-LaCoO3-LaNiO3. Powders of thirteen nominal perovskite compositions were synthesized under identical conditions by the Pechini method. The powder X-ray diffraction data of two series, namely La(Ni0.5Fe0.5)1-xCoxO3 and LaNi0.5-xFexCo0.5O3, are presented after the powders had been sintered at 1100 °C for 6 h in air. The measurements revealed a rhombohedral structure for all compositions except LaNi0.5Fe0.5O3 for which 60% rhombohedral and 40% orthorhombic phase was found. The maximum DC electrical conductivity value of the perovskites at 800 °C was 1229 S cm-1 for the composition LaCoO3 and the minimum was 91 S cm-1 for the composition LaCo0.5Fe0.5O3. The oxygen permeation of samples with promising conductivities at 800 °C was one order of magnitude lower than that of La0.6Sr0.4Co0.8Fe0.2O3 (LSCF). The highest value of 0.017 ml cm-2 min-1 at 950 °C was obtained with LaNi0.5Co0.5O3. The coefficients of thermal expansion varied in the range of 13.2×10-6 K-1 and 21.9×10-6 K-1 for LaNi0.5Fe0.5O3 and LaCoO3, respectively. 57Fe Mössbauer spectroscopy was used as probe for the oxidation states, local environment and magnetic properties of iron ions as a function of chemical composition. The substitution had a great influence on the chemical properties of the materials.

  2. Mechanism of thermal decomposition of K2FeO4 and BaFeO4: A review

    NASA Astrophysics Data System (ADS)

    Sharma, Virender K.; Machala, Libor

    2016-12-01

    This paper presents thermal decomposition of potassium ferrate(VI) (K2FeO4) and barium ferrate(VI) (BaFeO4) in air and nitrogen atmosphere. Mössbauer spectroscopy and nuclear forward scattering (NFS) synchrotron radiation approaches are reviewed to advance understanding of electron-transfer processes involved in reduction of ferrate(VI) to Fe(III) phases. Direct evidences of Fe V and Fe IV as intermediate iron species using the applied techniques are given. Thermal decomposition of K2FeO4 involved Fe V, Fe IV, and K3FeO3 as intermediate species while BaFeO3 (i.e. Fe IV) was the only intermediate species during the decomposition of BaFeO4. Nature of ferrite species, formed as final Fe(III) species, of thermal decomposition of K2FeO4 and BaFeO4 under different conditions are evaluated. Steps of the mechanisms of thermal decomposition of ferrate(VI), which reasonably explained experimental observations of applied approaches in conjunction with thermal and surface techniques, are summarized.

  3. Hydrothermal synthesis of reduced graphene sheets/Fe2O3 nanorods composites and their enhanced electrochemical performance for supercapacitors

    NASA Astrophysics Data System (ADS)

    Yang, Wanlu; Gao, Zan; Wang, Jun; Wang, Bin; Liu, Lianhe

    2013-06-01

    Reduced graphene nanosheets/Fe2O3 nanorods (GNS/Fe2O3) composite has been fabricated by a hydrothermal route for supercapacitor electrode materials. The obtained GNS/Fe2O3 composite formed a uniform structure with the Fe2O3 nanorods grew on the graphene surface and/or filled between the graphene sheets. The electrochemical performances of the GNS/Fe2O3 hybrid supercapacitor were tested by cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge-discharge tests in 6 M KOH electrolyte. Comparing with the pure Fe2O3 electrode, GNS/Fe2O3 composite electrode exhibits an enhanced specific capacitance of 320 F g-1 at 10 mA cm-2 and an excellent cycle-ability with capacity retention of about 97% after 500 cycles. The simple and cost-effective preparation technique of this composite with good capacitive behavior encourages its potential commercial application.

  4. Dielectric characteristics of CaCu3Ti4O12/P(VDF-TrFE) nanocomposites

    NASA Astrophysics Data System (ADS)

    Zhang, Lin; Shan, Xiaobing; Wu, Peixuan; Cheng, Z.-Y.

    2012-06-01

    Composite thin film is highly desirable for the dielectric applications. In order to develop composite thin film, a nanocomposite, in which nanosized CaCu3Ti4O12 (CCTO) particles are used as filler and P(VDF-TrFE) 55/45 mol% copolymer is used as polymer matrix, is investigated. The contents of CCTO in the nanocomposites range from 0% to 50 vol%. The dielectric property of these nanocomposites was characterized at frequencies ranging from 100 Hz to 1 MHz and at temperatures ranging from 200 K to 370 K. A dielectric constant of 62 with a loss of 0.05 was obtained in nanocomposite with 50 vol% CCTO at room temperature at 1 kHz. At the phase transition temperature (˜340 K) of the copolymer, a dielectric constant of 150 with a loss less than 0.1 was obtained in this nanocomposite. It is found that the dielectric loss of the nanocomposites is dominated by the polymer which has a relaxation process. Comparing to composites made using microsized CCTO, the nanocomposites exhibit a much lower dielectric loss and a lower dielectric constant. This indicates that the nanosized CCTO particles have a lower dielectric constant than the microsized CCTO particles.

  5. Ultrasmall Fe2O3 nanoparticles/MoS2 nanosheets composite as high-performance anode material for lithium ion batteries.

    PubMed

    Qu, Bin; Sun, Yue; Liu, Lianlian; Li, Chunyan; Yu, Changjian; Zhang, Xitian; Chen, Yujin

    2017-02-20

    Coupling ultrasmall Fe 2 O 3 particles (~4.0 nm) with the MoS 2 nanosheets is achieved by a facile method for high-performance anode material for Li-ion battery. MoS 2 nanosheets in the composite can serve as scaffolds, efficiently buffering the large volume change of Fe 2 O 3 during charge/discharge process, whereas the ultrasmall Fe 2 O 3 nanoparticles mainly provide the specific capacity. Due to bigger surface area and larger pore volume as well as strong coupling between Fe 2 O 3 particles and MoS 2 nanosheets, the composite exhibits superior electrochemical properties to MoS 2 , Fe 2 O 3 and the physical mixture Fe 2 O 3 +MoS 2 . Typically, after 140 cycles the reversible capacity of the composite does not decay, but increases from 829 mA h g -1 to 864 mA h g -1 at a high current density of 2 A g -1 . Thus, the present facile strategy could open a way for development of cost-efficient anode material with high-performance for large-scale energy conversion and storage systems.

  6. Encapsulation of Fe3O4 Nanoparticles into N, S co-Doped Graphene Sheets with Greatly Enhanced Electrochemical Performance

    PubMed Central

    Yang, Zunxian; Qian, Kun; Lv, Jun; Yan, Wenhuan; Liu, Jiahui; Ai, Jingwei; Zhang, Yuxiang; Guo, Tailiang; Zhou, Xiongtu; Xu, Sheng; Guo, Zaiping

    2016-01-01

    Particular N, S co-doped graphene/Fe3O4 hybrids have been successfully synthesized by the combination of a simple hydrothermal process and a subsequent carbonization heat treatment. The nanostructures exhibit a unique composite architecture, with uniformly dispersed Fe3O4 nanoparticles and N, S co-doped graphene encapsulant. The particular porous characteristics with many meso/micro holes/pores, the highly conductive N, S co-doped graphene, as well as the encapsulating N, S co-doped graphene with the high-level nitrogen and sulfur doping, lead to excellent electrochemical performance of the electrode. The N-S-G/Fe3O4 composite electrode exhibits a high initial reversible capacity of 1362.2 mAhg−1, a high reversible specific capacity of 1055.20 mAhg−1 after 100 cycles, and excellent cycling stability and rate capability, with specific capacity of 556.69 mAhg−1 when cycled at the current density of 1000 mAg−1, indicating that the N-S-G/Fe3O4 composite is a promising anode candidate for Li-ion batteries. PMID:27296103

  7. Behaviour of Fe4O5-Mg2Fe2O5 solid solutions and their relation to coexisting Mg-Fe silicates and oxide phases

    NASA Astrophysics Data System (ADS)

    Uenver-Thiele, Laura; Woodland, Alan B.; Miyajima, Nobuyoshi; Ballaran, Tiziana Boffa; Frost, Daniel J.

    2018-03-01

    Experiments at high pressures and temperatures were carried out (1) to investigate the crystal-chemical behaviour of Fe4O5-Mg2Fe2O5 solid solutions and (2) to explore the phase relations involving (Mg,Fe)2Fe2O5 (denoted as O5-phase) and Mg-Fe silicates. Multi-anvil experiments were performed at 11-20 GPa and 1100-1600 °C using different starting compositions including two that were Si-bearing. In Si-free experiments the O5-phase coexists with Fe2O3, hp-(Mg,Fe)Fe2O4, (Mg,Fe)3Fe4O9 or an unquenchable phase of different stoichiometry. Si-bearing experiments yielded phase assemblages consisting of the O5-phase together with olivine, wadsleyite or ringwoodite, majoritic garnet or Fe3+-bearing phase B. However, (Mg,Fe)2Fe2O5 does not incorporate Si. Electron microprobe analyses revealed that phase B incorporates significant amounts of Fe2+ and Fe3+ (at least 1.0 cations Fe per formula unit). Fe-L2,3-edge energy-loss near-edge structure spectra confirm the presence of ferric iron [Fe3+/Fetot = 0.41(4)] and indicate substitution according to the following charge-balanced exchange: [4]Si4+ + [6]Mg2+ = 2Fe3+. The ability to accommodate Fe2+ and Fe3+ makes this potential "water-storing" mineral interesting since such substitutions should enlarge its stability field. The thermodynamic properties of Mg2Fe2O5 have been refined, yielding H°1bar,298 = - 1981.5 kJ mol- 1. Solid solution is complete across the Fe4O5-Mg2Fe2O5 binary. Molar volume decreases essentially linearly with increasing Mg content, consistent with ideal mixing behaviour. The partitioning of Mg and Fe2+ with silicates indicates that (Mg,Fe)2Fe2O5 has a strong preference for Fe2+. Modelling of partitioning with olivine is consistent with the O5-phase exhibiting ideal mixing behaviour. Mg-Fe2+ partitioning between (Mg,Fe)2Fe2O5 and ringwoodite or wadsleyite is influenced by the presence of Fe3+ and OH incorporation in the silicate phases.

  8. A new method for the preparation of a Fe{sub 3}O{sub 4}/graphene hybrid material and its applications in electromagnetic wave absorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Tsung-Yung; Lu, Kai-Tai; Peng, Cheng-Hsiung

    2015-10-15

    Graphical abstract: A microwave-assisted solvothermal process was used to prepare Fe{sub 3}O{sub 4} nanoparticles/graphene hybrids, which could be applied as an electromagnetic (EM) radiation absorbent. The absorber, composed of 20 wt% Fe{sub 3}O{sub 4}/graphene–epoxy, exhibited a dual-frequency reflection characteristic covering the C and Ku bands with maximum reflection losses of less than −20 dB at thicknesses of 4 and 5 mm. - Highlights: • Fe{sub 3}O{sub 4}/graphene composites were prepared by a microwave-assisted solvothermal route. • Uniform loading of Fe{sub 3}O{sub 4} nanoparticles on graphene was obtained. • The products as-synthesized show great promise as a microwave absorption material. •more » Synergistic effects of Fe{sub 3}O{sub 4} and graphene caused improved absorption efficiency. • The Fe{sub 3}O{sub 4}/graphene product possessed a dual-frequency reflection characteristic. - Abstract: A rapid, simple, and inexpensive process combining a microwave-assisted technique and a solvothermal method has been developed using graphene sheets and FeCl{sub 3}·6H{sub 2}O as the reactant to prepare graphene/Fe{sub 3}O{sub 4} nanoparticle hybrids, which can be applied as an electromagnetic radiation absorbent. The experimental factors (i.e., composition ratio, microwave power, and irradiation time) on the products’ characteristics were examined. Under optimal conditions, the morphological analysis revealed that the graphene sheet was homogeneously covered with Fe{sub 3}O{sub 4} nanoparticles (∼50 nm). The electromagnetic parameters of the composites made from 20 wt% Fe{sub 3}O{sub 4}/graphene–epoxy were measured by a vector network analyzer. It was found that the 4- and 5 mm-thick composites could attain a reflection loss below −20 dB in the dual-ranges of 4–8 and 12–18 GHz.« less

  9. Cube-like Fe3O4@SiO2@Au@Ag magnetic nanoparticles: a highly efficient SERS substrate for pesticide detection

    NASA Astrophysics Data System (ADS)

    Sun, Mei; Zhao, Aiwu; Wang, Dapeng; Wang, Jin; Chen, Ping; Sun, Henghui

    2018-04-01

    As a novel surface-enhanced Raman spectroscopic (SERS) nanocomposite, cube-like Fe3O4@SiO2@Au@Ag magnetic nanoparticles (NPs) were synthesized for the first time. Cube-like α-Fe2O3 NPs with uniform size were achieved by optimizing reaction temperature and time. Firstly, the cube-like Fe3O4@SiO2 with good dispersity was achieved by calcining α-Fe2O3@SiO2 NPs in hydrogen atmosphere at 360 °C for 2.5 h, followed by self-assembling a PEI shell via sonication. Furthermore, the Au@Ag particles were densely assembled on the Fe3O4@SiO2 NPs to form the Fe3O4@SiO2@Au@Ag composite structure via strong Ag-N interaction. The obtained nanocomposites exhibited an excellent SERS behavior, reflected by the low detection of limit (p-ATP) at the 5 × 10-14 M level. Moreover, these nanocubes were used for the detection of thiram, and the detection limit can reach 5 × 10-11 M. Meanwhile, the U.S. Environmental Protection Agency specifies that the residue in fruit must be lower than 7 ppm. Hence, the resulting substrate with high SERS activity has great practical potential applications in the rapid detection of chemical, biological, and environment pollutants with a simple portable Raman instrument at trace level.

  10. A study of the effects of synthesis conditions on Li5FeO4/carbon nanotube composites

    PubMed Central

    Lee, Suk-Woo; Kim, Hyun-Kyung; Kim, Myeong-Seong; Roh, Kwang Chul; Kim, Kwang-Bum

    2017-01-01

    Li5FeO4/carbon nanotube (LFO/CNT) composites composed of sub-micron sized LFO and a nanocarbon with high electrical conductivity were successfully synthesized for the use as lithium ion predoping source in lithium ion cells. The phase of LFO in the composite was found to be very sensitive to the synthesis conditions, such as the heat treatment temperature, type of lithium salt, and physical state of the precursors (powder or pellet), due to the carbothermic reduction of Fe3O4 by CNTs during high temperature solid state reaction. Under optimized synthesis conditions, LFO/CNT composites could be synthesized without the formation of impurities. To the best of our knowledge, this is the first report on the synthesis and characterization of a sub-micron sized LFO/CNT composites. PMID:28422146

  11. A study of the effects of synthesis conditions on Li5FeO4/carbon nanotube composites.

    PubMed

    Lee, Suk-Woo; Kim, Hyun-Kyung; Kim, Myeong-Seong; Roh, Kwang Chul; Kim, Kwang-Bum

    2017-04-19

    Li 5 FeO 4 /carbon nanotube (LFO/CNT) composites composed of sub-micron sized LFO and a nanocarbon with high electrical conductivity were successfully synthesized for the use as lithium ion predoping source in lithium ion cells. The phase of LFO in the composite was found to be very sensitive to the synthesis conditions, such as the heat treatment temperature, type of lithium salt, and physical state of the precursors (powder or pellet), due to the carbothermic reduction of Fe 3 O 4 by CNTs during high temperature solid state reaction. Under optimized synthesis conditions, LFO/CNT composites could be synthesized without the formation of impurities. To the best of our knowledge, this is the first report on the synthesis and characterization of a sub-micron sized LFO/CNT composites.

  12. Sol-gel derived silica/chitosan/Fe3O4 nanocomposite for direct electrochemistry and hydrogen peroxide biosensing

    NASA Astrophysics Data System (ADS)

    Satvekar, R. K.; Rohiwal, S. S.; Tiwari, A. P.; Raut, A. V.; Tiwale, B. M.; Pawar, S. H.

    2015-01-01

    A novel strategy to fabricate hydrogen peroxide third generation biosensor has been developed from sol-gel of silica/chitosan (SC) organic-inorganic hybrid material assimilated with iron oxide magnetic nanoparticles (Fe3O4). The large surface area of Fe3O4 and porous morphology of the SC composite facilitates a high loading of horseradish peroxidase (HRP). Moreover, the entrapped enzyme preserves its conformation and biofunctionality. The fabrication of hydrogen peroxide biosensor has been carried out by drop casting of the SC/F/HRP nanocomposite on glassy carbon electrode (GCE) for study of direct electrochemistry. The x-ray diffraction (XRD) pattern and transmission electron microscopy (TEM) confirms the phase purity and particle size of as-synthesized Fe3O4 nanoparticles, respectively. The nanocomposite was characterized by UV-vis spectroscopy, fluorescence spectroscopy and Fourier transform infrared (FTIR) for the characteristic structure and conformation of enzyme. The surface topographies of the nanocomposite thin films were investigated by scanning electron microscopy (SEM). Dynamic light scattering (DLS) was used to determine the particle size distribution. The electrostatic interactions of the SC composite with Fe3O4 nanoparticles were studied by the zeta potential measurement. Electrochemical impedance spectroscopy (EIS) of the SC/F/HRP/GCE electrode displays Fe3O4 nanoparticles as an excellent candidate for electron transfer. The SC/F/HRP/GCE exhibited a pair of well-defined quasi reversible cyclic voltammetry peaks due to the redox couple of HRP-heme Fe (III)/Fe (II) in pH 7.0 potassium phosphate buffer. The biosensor was employed to detect H2O2 with linear range of 5 μM to 40 μM and detection limit of 5 μM. The sensor displays excellent selectivity, sensitivity, good reproducibility and long term stability.

  13. Facile synthesis and paramagnetic properties of Fe3O4@SiO2 core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Yang, Lili; Zou, Ping; Cao, Jian; Sun, Yunfei; Han, Donglai; Yang, Shuo; Chen, Gang; Kong, Xiangwang; Yang, Jinghai

    2014-12-01

    The Fe3O4@SiO2 core-shell nanoparticles (NPs) had been successfully fabricated via direct decomposition of tetraethyl orthosilicate (TEOS) in solution under the presence of as-synthesized Fe3O4 NPs prepared by chemical coprecipitation method. The structure and magnetic properties of Fe3O4@SiO2 NPs were characterized and the result indicated that Fe3O4@SiO2 NPs are about 12 nm in size with paramagnetic property. The possible growth and magnetic mechanism was discussed in detail.

  14. Critical Evaluations and Thermodynamic Optimizations of the MnO-Mn2O3-SiO2 and FeO-Fe2O3-MnO-Mn2O3-SiO2 Systems

    NASA Astrophysics Data System (ADS)

    Kang, Youn-Bae; Jung, In-Ho

    2017-06-01

    A critical evaluation and thermodynamic modeling for thermodynamic properties of all oxide phases and phase diagrams in the Fe-Mn-Si-O system (MnO-Mn2O3-SiO2 and FeO-Fe2O3-MnO-Mn2O3-SiO2 systems) are presented. Optimized Gibbs energy parameters for the thermodynamic models of the oxide phases were obtained which reproduce all available and reliable experimental data within error limits from 298 K (25°C) to above the liquidus temperatures at all compositions covering from known oxide phases, and oxygen partial pressure from metal saturation to 0.21 bar. The optimized thermodynamic properties and phase diagrams are believed to be the best estimates presently available. Slag (molten oxide) was modeled using the modified quasichemical model in the pair approximation. Olivine (Fe2SiO4-Mn2SiO4) was modeled using two-sublattice model in the framework of the compound energy formalism (CEF), while rhodonite (MnSiO3-FeSiO3) and braunite (Mn7SiO_{12} with excess Mn2O3) were modeled as simple Henrian solutions. It is shown that the already developed models and databases of two spinel phases (cubic- and tetragonal-(Fe, Mn)3O4) using CEF [Kang and Jung, J. Phys. Chem. Solids (2016), vol. 98, pp. 237-246] can successfully be integrated into a larger thermodynamic database to be used in practically important higher order system such as silicate. The database of the model parameters can be used along with a software for Gibbs energy minimization in order to calculate any type of phase diagram section and thermodynamic properties.

  15. An amino-functionalized magnetic framework composite of type Fe3O4-NH2@MIL-101(Cr) for extraction of pyrethroids coupled with GC-ECD.

    PubMed

    He, Xi; Yang, Wei; Li, Sijia; Liu, Yu; Hu, Baichun; Wang, Ting; Hou, Xiaohong

    2018-01-24

    An amino-functionalized magnetic framework composite of type Fe 3 O 4 -NH 2 @MIL-101(Cr) was synthesized using a solvothermal method. The material was characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, nitrogen adsorption, and magnetometry. The composite combines the advantages of amino-modified Fe 3 O 4 and MIL-101(Cr). The presence of amino groups facilitates the fairly specific adsorption of pyrethroids. The composite was employed as a sorbent for magnetic solid phase extraction of five pyrethroids from environmental water samples. Following desorption with acidified acetone, the pyrethroids were quantified by gas chromatography with electron capture detection. The detection limits for bifenthrin, fenpropathrin, λ-cyhalothrin, permethrin, and deltamethrin range from 5 to 9 pg·mL -1 . The method is rapid, accurate, and highly sensitive. The molecular interactions and free binding energies between MIL-101(Cr) and the five pyrethroids were calculated by means of molecular docking. Graphical abstract A novel functionalized magnetic framework composite of type Fe 3 O 4 -NH 2 @MIL-101(Cr) was synthesized. It was applied as a sorbent for magnetic solid phase extraction of pyrethroids prior to their quantitation by gas chromatography with electron capture detection. The molecular interactions of analytes and MIL-101(Cr) were studied.

  16. Detection of malachite green in fish based on magnetic fluorescent probe of CdTe QDs/nano-Fe3O4@MIPs

    NASA Astrophysics Data System (ADS)

    Wu, Le; Lin, Zheng-Zhong; Zeng, Jun; Zhong, Hui-Ping; Chen, Xiao-Mei; Huang, Zhi-Yong

    2018-05-01

    A magnetic fluorescent probe of CdTe QDs/nano-Fe3O4@MIPs was prepared using CdTe QDs and Fe3O4 nanoparticles as co-nucleus and molecularly imprinted polymers (MIPs) as specific recognition sites based on a reverse microemulsion method. With the specific enrichment and magnetic separation properties, the probe of CdTe QDs/nano-Fe3O4@MIPs was used to detect malachite green (MG) in fish samples. The TEM analysis showed that the particles of CdTe QDs/nano-Fe3O4@MIPs were spherical with average diameter around 53 nm, and a core-shell structure was well-shaped with several Fe3O4 nanoparticles and CdTe QDs embedded in each of the microsphere. Quick separation of the probes from solutions could be realized with a magnet, indicating the excellent magnetic property of CdTe QDs/nano-Fe3O4@MIPs. The probe exhibited high specific adsorption towards MG and excellent fluorescence emission at λem 598 nm. The fluorescence of CdTe QDs/nano-Fe3O4@MIPs could be linearly quenched by MG at the concentrations from 0.025 to 1.5 μmol L-1. The detection limit was 0.014 μmol L-1. The average recovery of spiked MG in fish samples was 105.2%. The result demonstrated that the as-prepared CdTe QDs/nano-Fe3O4@MIPs could be used as a probe to the detection of trace MG in fish samples.

  17. Detection of malachite green in fish based on magnetic fluorescent probe of CdTe QDs/nano-Fe3O4@MIPs.

    PubMed

    Wu, Le; Lin, Zheng-Zhong; Zeng, Jun; Zhong, Hui-Ping; Chen, Xiao-Mei; Huang, Zhi-Yong

    2018-05-05

    A magnetic fluorescent probe of CdTe QDs/nano-Fe 3 O 4 @MIPs was prepared using CdTe QDs and Fe 3 O 4 nanoparticles as co-nucleus and molecularly imprinted polymers (MIPs) as specific recognition sites based on a reverse microemulsion method. With the specific enrichment and magnetic separation properties, the probe of CdTe QDs/nano-Fe 3 O 4 @MIPs was used to detect malachite green (MG) in fish samples. The TEM analysis showed that the particles of CdTe QDs/nano-Fe 3 O 4 @MIPs were spherical with average diameter around 53nm, and a core-shell structure was well-shaped with several Fe 3 O 4 nanoparticles and CdTe QDs embedded in each of the microsphere. Quick separation of the probes from solutions could be realized with a magnet, indicating the excellent magnetic property of CdTe QDs/nano-Fe 3 O 4 @MIPs. The probe exhibited high specific adsorption towards MG and excellent fluorescence emission at λ em 598nm. The fluorescence of CdTe QDs/nano-Fe 3 O 4 @MIPs could be linearly quenched by MG at the concentrations from 0.025 to 1.5μmolL -1 . The detection limit was 0.014μmolL -1 . The average recovery of spiked MG in fish samples was 105.2%. The result demonstrated that the as-prepared CdTe QDs/nano-Fe 3 O 4 @MIPs could be used as a probe to the detection of trace MG in fish samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Lightweight NiFe2O4 with controllable 3D network structure and enhanced microwave absorbing properties

    NASA Astrophysics Data System (ADS)

    Wang, Fen; Wang, Xing; Zhu, Jianfeng; Yang, Haibo; Kong, Xingang; Liu, Xiao

    2016-11-01

    3D network structure NiFe2O4 was successfully synthesized by a templated salt precipitation method using PMMA colloid crystal as templates. The morphology, phase composition and microwave absorbing properties of as-prepared samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), vector network analyzer (VNA), and so on. The results revealed that the 3D network structure was configurated with smooth spherical walls composed of NiFe2O4 nanocrystals and their pore diameters being in the range of 80-250 nm. The microwave absorption properties of the 3D network structure NiFe2O4 were crucially determined by the special structure. The synergy of intrinsic magnetic loss of magnetic NiFe2O4 and the interfacial polarization enhanced by 3D network structure and the interaction of multiple mechanisms endowed the sample with the feature of strong absorption, broad bandwidth and lightweight. There is more than one valley in the reflection loss curves and the maximum reflection loss is 27.5 dB with a bandwidth of 4 GHz. Moreover, the 3D network structure NiFe2O4 show a greater reflection loss with the same thickness comparing to the ordinary NiFe2O4 nanoparticles, which could achieve the feature of lightweight of the microwave absorbing materials.

  19. Lightweight NiFe2O4 with controllable 3D network structure and enhanced microwave absorbing properties

    PubMed Central

    Wang, Fen; Wang, Xing; Zhu, Jianfeng; Yang, Haibo; Kong, Xingang; Liu, Xiao

    2016-01-01

    3D network structure NiFe2O4 was successfully synthesized by a templated salt precipitation method using PMMA colloid crystal as templates. The morphology, phase composition and microwave absorbing properties of as-prepared samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), vector network analyzer (VNA), and so on. The results revealed that the 3D network structure was configurated with smooth spherical walls composed of NiFe2O4 nanocrystals and their pore diameters being in the range of 80–250 nm. The microwave absorption properties of the 3D network structure NiFe2O4 were crucially determined by the special structure. The synergy of intrinsic magnetic loss of magnetic NiFe2O4 and the interfacial polarization enhanced by 3D network structure and the interaction of multiple mechanisms endowed the sample with the feature of strong absorption, broad bandwidth and lightweight. There is more than one valley in the reflection loss curves and the maximum reflection loss is 27.5 dB with a bandwidth of 4 GHz. Moreover, the 3D network structure NiFe2O4 show a greater reflection loss with the same thickness comparing to the ordinary NiFe2O4 nanoparticles, which could achieve the feature of lightweight of the microwave absorbing materials. PMID:27897209

  20. High-loading Fe2O3/SWNT composite films for lithium-ion battery applications

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Guo, Jiahui; Li, Li; Ge, Yali; Li, Baojun; Zhang, Yingjiu; Shang, Yuanyuan; Cao, Anyuan

    2017-08-01

    Single-walled carbon nanotube (SWNT) films are a potential candidate as porous conductive electrodes for energy conversion and storage; tailoring the loading and distribution of active materials grafted on SWNTs is critical for achieving maximum performance. Here, we show that as-synthesized SWNT samples containing residual Fe catalyst can be directly converted to Fe2O3/SWNT composite films by thermal annealing in air. The mass loading of Fe2O3 nanoparticles is tunable from 63 wt% up to 96 wt%, depending on the annealing temperature (from 450 °C to 600 °C), while maintaining the porous network structure. Interconnected SWNT networks containing high-loading active oxides lead to synergistic effect as an anode material for lithium ion batteries. The performance is improved consistently with increasing Fe2O3 loading. As a result, our Fe2O3/SWNT composite films exhibit a high reversible capacity (1007.1 mA h g-1 at a current density of 200 mA g-1), excellent rate capability (384.9 mA h g-1 at 5 A g-1) and stable cycling performance with the discharge capacity up to 567.1 mA h g-1 after 600 cycles at 2 A g-1. The high-loading Fe2O3/SWNT composite films have potential applications as nanostructured electrodes for various energy devices such as supercapacitors and Li-ion batteries.

  1. Enhancement of the physical properties of novel (1- x) NiFe2O4 + ( x) Al2O3 nanocomposite

    NASA Astrophysics Data System (ADS)

    Mansour, S. F.; Ahmed, M. A.; El-Dek, S. I.; Abdo, M. A.; Kora, H. H.

    2017-07-01

    NiFe2O4, Al2O3 and their nanocomposites; (1- x) NiFe2O4 + ( x) Al2O3, 0.0 ≤ x ≤ 1; were synthesized using the citrate-nitrate technique. The crystal structure was examined by X-ray diffraction, the microstructure was observed by transmission electron microscopy. The Curie temperature T C grows until reaching more than 1100 K with increasing alumina content ( x), while the saturation magnetization ( M s) decreased. The large improvement of room temperature resistivity which achieved two orders of magnitude from x = 0 to x = 70% was interpreted from the fact that the NiFe2O4 grains become electrically isolated and the conduction path is broken by the insulating Al2O3 nanoparticulates in the composite. The electrical properties of the nanocomposite could thus be tuned easily by adjusting the Al2O3 ratio to realize the targeted value of losses and resistivity at any temperature and frequency.

  2. A comparative study of a (0-3) connectivity type composite and core-shell structure of CoFe2O4 - BaTiO3 based on microstructure and magnetic property

    NASA Astrophysics Data System (ADS)

    Das, Avisek; Gorige, Venkataiah

    2018-04-01

    In this work CoFe2O4 (CFO)-BaTiO3 (BTO) composite and core-shell CFO-BTO have been prepared to investigate the effect of microstructure on the magnetic properties. Detailed microstructure analysis has been carried out using X-ray diffraction, field emission scanning electron microscope and transmission electron microscope. Although uniform distribution of CFO is found in BTO matrix for the composite sample, magnetization and coercivity values are more enhanced in core-shell CFO-BTO.

  3. One-step facile hydrothermal synthesis of Fe2O3@LiCoO2 composite as excellent supercapacitor electrode materials

    NASA Astrophysics Data System (ADS)

    Gopi, Chandu V. V. Muralee; Somasekha, A.; Reddy, Araveeti Eswar; Kim, Soo-Kyoung; Kim, Hee-Je

    2018-03-01

    Herein, for the first time, we demonstrate the fabrication of Fe2O3@LiCoO2 hybrid nanostructures on Ni foam substrate by facile one-step hydrothermal technique. Morphological studies reveal that aggregated Fe2O3 nanoflakes anchored on the surface of sphere-like LiCoO2 nanoflakes. Electrochemical studies are used to examine the performance of the supercapacitor electrodes. The composite Fe2O3@LiCoO2 electrode exhibited excellent electrochemical performance than Fe2O3 and LiCoO2 electrodes, such as a low charge transfer resistance, a high specific capacitance of 489 F g-1 at 5 mA cm-2 and an enhanced capacity retention of 108% over 3000 cycles at 15 mA cm-2. The composite Fe2O3@LiCoO2 holds great promise for electrochemical applications due to well-defined hierarchical morphology, synergetic effect of Fe2O3 and LiCoO2, enhanced electrical conductivity, efficient electrolyte penetration and fast electron transfer.

  4. Graphene-Supported Spinel CuFe2O4 Composites: Novel Adsorbents for Arsenic Removal in Aqueous Media

    PubMed Central

    La, Duong Duc; Nguyen, Tuan Anh; Jones, Lathe A.; Bhosale, Sheshanath V.

    2017-01-01

    A graphene nanoplate-supported spinel CuFe2O4 composite (GNPs/CuFe2O4) was successfully synthesized by using a facile thermal decomposition route. Scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), Electron Dispersive Spectroscopy (EDS), X-ray diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS) were employed to characterize the prepared composite. The arsenic adsorption behavior of the GNPs/CuFe2O4 composite was investigated by carrying out batch experiments. Both the Langmuir and Freundlich models were employed to describe the adsorption isotherm, where the sorption kinetics of arsenic adsorption by the composite were found to be pseudo-second order. The selectivity of the adsorbent toward arsenic over common metal ions in water was also demonstrated. Furthermore, the reusability and regeneration of the adsorbent were investigated by an assembled column filter test. The GNPs/CuFe2O4 composite exhibited significant, fast adsorption of arsenic over a wide range of solution pHs with exceptional durability, selectivity, and recyclability, which could make this composite a very promising candidate for effective removal of arsenic from aqueous solution. The highly sensitive adsorption of the material toward arsenic could be potentially employed for arsenic sensing. PMID:28587257

  5. Uniform Fe3O4 microflowers hierarchical structures assembled with porous nanoplates as superior anode materials for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoliang; Liu, Yanguo; Arandiyan, Hamidreza; Yang, Hongping; Bai, Lu; Mujtaba, Jawayria; Wang, Qingguo; Liu, Shanghe; Sun, Hongyu

    2016-12-01

    Uniform Fe3O4 microflowers assembled with porous nanoplates were successfully synthesized by a solvothermal method and subsequent annealing process. The structural and compositional analysis of the Fe3O4 microflowers were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The Bruauer-Emmett-Teller (BET) specific surface area was calculated by the nitrogen isotherm curve and pore size distribution of Fe3O4 microflowers was determined by the Barret-Joyner-Halenda (BJH) method. When evaluated as anode material for lithium-ion batteries, the as-prepared Fe3O4 microflowers electrodes delivered superior capacity, better cycling stability and rate capability than that of Fe3O4 microspheres electrodes. The improved electrochemical performance was attributed to the microscale flowerlike architecture and the porous sheet structural nature.

  6. Enhancement of simultaneous algicidal and denitrification of immobilized Acinetobacter sp. J25 with magnetic Fe3O4 nanoparticles.

    PubMed

    Su, Jun Feng; Liang, Dong Hui; Huang, Ting Lin; Wei, Li; Ma, Min; Lu, Jinsuo

    2017-07-01

    In this study, immobilization technique was employed to improve simultaneous algicidal and denitrification of immobilized Acinetobacter sp. J25 with magnetic Fe 3 O 4 in eutrophic landscape water. After 7 days of operation, the maximum superoxide dismutase (SOD) activity (54.43 U mg -1 ), nitrate removal efficiency (100% (0.2127 mg L -1  h -1 )), and chlorophyll-a removal efficiency (89.71%) were obtained from the immobilized J25 with magnetic Fe 3 O 4 . The results suggest that immobilized J25 with magnetic Fe 3 O 4 had better nitrogen removal efficiency and algicidal activity in eutrophic landscape water. High-throughput sequencing data profiled the strain J25 that was immobilized with magnetic Fe 3 O 4 which changed the composition of the microbial community. The results indicated a novel concept of enhancing the algicidal and denitrification property of immobilized bacteria with magnetic Fe 3 O 4 in eutrophic landscape water.

  7. The Effect of Ligands on FePt–Fe 3O 4 Core–Shell Magnetic Nanoparticles

    DOE PAGES

    Kim, Dong-Hyun; Tamada, Yoshinori; Ono, Teruo; ...

    2014-03-01

    FePt–Fe 3O 4 core–shell nanoparticles functionalized with 3,4-dihydroxyphenylacetic acid (DOPAC) and dimercaptosuccinic acid (DMSA) ligands were synthesized and characterized. We also found that the DOPAC ligand enhances the magnetic properties of the FePt–Fe 3O 4 particles, in comparison with the DMSA ligand, which induces the oxidation of the shell layer that causes a significant reduction of the saturation magnetization. We evaluated the synthesized magnetic nanoparticles for applications in magnetic hyperthermia and magnetic resonance imaging contrast enhancement.

  8. Fe3O4 nanoparticles: protein-mediated crystalline magnetic superstructures

    NASA Astrophysics Data System (ADS)

    Okuda, Mitsuhiro; Eloi, Jean-Charles; Jones, Sarah E. Ward; Sarua, Andrei; Richardson, Robert M.; Schwarzacher, Walther

    2012-10-01

    The synthesis of magnetic, monodisperse nanoparticles has attracted great interest in nanoelectronics and nanomedicine. Here we report the fabrication of pure magnetite nanoparticles, less than ten nanometers in size, using the cage-shaped protein apoferritin (Fe3O4-ferritin). Crystallizable proteins were obtained through careful successive separation methods, including a magnetic chromatography that enabled the effective separation of proteins, including a Fe3O4 nanoparticle (7.9 ± 0.8 nm), from empty ones. Macroscopic protein crystals allowed the fabrication of three-dimensional arrays of Fe3O4 nanoparticles with interparticle gaps controlled by dehydration, decreasing their magnetic susceptibilities and increasing their blocking temperatures through enhanced dipole-dipole interactions.

  9. Enhanced Water Oxidation Photoactivity of Nano-Architectured α-Fe2O3-WO3 Composite Synthesized by Single-Step Hydrothermal Method

    NASA Astrophysics Data System (ADS)

    Rahman, Gul; Joo, Oh-Shim; Chae, Sang Youn; Shah, Anwar-ul-Haq Ali; Mian, Shabeer Ahmad

    2018-04-01

    This study reports the one-step in situ synthesis of a hematite-tungsten oxide (α-Fe2O3-WO3) composite on fluorine-doped tin oxide substrate via a simple hydrothermal method. Scanning electron microscopy images indicated that the addition of tungsten (W) precursor into the reaction mixture altered the surface morphology from nanorods to nanospindles. Energy-dispersive x-ray spectroscopy analysis confirmed the presence of W content in the composite. From the ultraviolet-visible spectrum of α-Fe2O3-WO3, it was observed that absorption began at ˜ 600 nm which corresponded to the bandgap energy of ˜ 2.01 eV. The α-Fe2O3-WO3 electrode demonstrated superior performance, with water oxidation photocurrent density of 0.80 mA/cm2 (at 1.6 V vs. reversible hydrogen electrode under standard illumination conditions; AM 1.5G, 100 mW/cm2) which is 2.4 times higher than α-Fe2O3 (0.34 mA/cm2). This enhanced water oxidation performance can be attributed to the better charge separation properties in addition to the large interfacial area of small-sized particles present in the α-Fe2O3-WO3 nanocomposite film.

  10. Diclofenac degradation by heterogeneous photocatalysis with Fe3O4/Ti x O y /activated carbon fiber composite synthesized by ultrasound irradiation

    NASA Astrophysics Data System (ADS)

    Moreno-Valencia, E. I.; Paredes-Carrera, S. P.; Sánchez-Ochoa, J. C.; Flores-Valle, S. O.; Avendaño-Gómez, J. R.

    2017-11-01

    In this work, a photocatalytic system to degrade diclofenac was developed using a composite Fe3O4/Ti x O y on an activated carbon fiber. Diclofenac is widely used as an anti-inflammatory compound worldwide and it is constantly being added as waste in the environment (Heberer 2002 J. Hydrol. 266 175-89), exceeding the permissible maximum concentration in the wastewater (GEO-3 2002 Programa de las Naciones Unidas para el Medio Ambiente; Golet et al 2003 Environ. Sci. Technol. 37 3243-9 Oviedo et al 2010 Environ. Toxicol. Pharmacol. 29 9-43 Le-Minh et al 2010 Water Res. 44 4295-323 Legrini et al 1993 Chem. Rev. 1093 671-98). The composite was synthesized by sol-gel technique with and without ultrasound irradiation (Singh and Nakate 2014 J. Nanopart. 2014 326747). The solids were deposited by ultrasound irradiation on active carbon fiber in order to optimize the diclofenac degradation. The solids were characterized by x-ray diffraction (XRD), nitrogen physisorption (BET), and scanning electron microscopy with EDS microanalysis (SEM-EDS). The crystal size was calculated with the Debye-Scherrer equation, and the band gap values by the diffuse reflectance method. The evaluation process was studied by UV-vis spectroscopy (Rizzoa et al 2009 Water Res. 43 979-88). It was found that in this synthesis method (ultrasound), textural properties such as porosity, specific surface area and morphology depend on the ultrasound irradiation. The proposed system, Fe3O4/titanium oxide hydrate showed better degradation profile than TiO2 anatase phase; the increase of diclofenac degradation was attributed to the textural properties of the composite, it avoids the filtering process since the separation can be achieved by magnetizing and/or decantation.

  11. Fenton-like oxidation of 4-chlorophenol using H2O2 in situ generated by Zn-Fe-CNTs composite.

    PubMed

    Liu, Yong; Fan, Qing; Liu, Yanlan; Wang, Jianlong

    2018-05-15

    In this paper, a zinc-iron-carbon nanotubes (Zn-Fe-CNTs) composite was prepared, characterized and used to develop a Fenton-like system of Zn-Fe-CNTs/O 2 for the degradation of 4-chlorophenol (4-CP), in which H 2 O 2 was generated in situ from zinc-carbon galvanic cells and oxygen in aqueous solution was activated by iron attached on the surface of CNTs to produce ·OH radicals for the oxidation of 4-CP. The experimental results showed that the particles of Zn and Fe in Zn-Fe-CNTs composite were adhered to the surface of CNTs, which accelerated the electron transfer process. The BET area of Zn-Fe-CNTs composite was 32.9 m 2 /g. The contents of Zn and Fe (% w) in the composite were 44.7% and 4.2%, respectively. The removal efficiency of 4-CP and TOC in Zn-Fe-CNTs/O 2 system was 90.8% and 52.9%, respectively, with the initial pH of 2.0, O 2 flow rate of 800 mL/min, Zn-Fe-CNTs dosage of 1.0 g/L, 4-CP concentration of 50 mg/L and reaction time of 20 min. Based on the analysis of the degradation intermediate products with LC-MS and IC, a possible degradation pathway of 4-CP in Zn-Fe-CNTs/O 2 system was proposed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Synthesis, structural, characterization and dielectric spectroscopy of PVDF - BaTiO3 polymer composite

    NASA Astrophysics Data System (ADS)

    Kulkarni, S. S.; Belavi, P. B.; Khadke, U. V.

    2018-05-01

    In this paper we report the method of synthesis of ferroelectric polymer Polyvinyldene fluoride (PVDF) and Barium Titanate (BaTiO3) composite self supporting thin films and its dielectric response. BaTiO3 was synthesized by solid state reaction method. The PVDF - BaTiO3 polymer composites with various concentrations were synthesized by solution mixing method using Dimethylformadide (DMF) as a solvent. The phase transformation and surface methodology of the prepared composites were characterized by X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM) respectively. The XRD pattern confirms the formation of tetragonal pervoskite structure of ferroelectric phase. The XRD pattern shows the proper mixing of BaTiO3 particles intestinally and found to be improving its crystallinity with increase of BaTiO3 composition in the PVDF matrix. The dielectric properties of the composites as a function of frequency were computed using impedance analyzer. The dielectric constant decreases with increase of frequency shows the Maxwell - Wagner type of interfacial polarization in accordance with Koop's phenomenological theory.

  13. Synthesis and electrochemical properties of Fe3O4@MOF core-shell microspheres as an anode for lithium ion battery application

    NASA Astrophysics Data System (ADS)

    Sun, Xuemin; Gao, Ge; Yan, Dongwei; Feng, Chuanqi

    2017-05-01

    The Fe3O4@MOF composite with a microspheric core and a porous metal-organic framework (MOF HKUST-1) shell has been successfully synthesized utilizing a versatile Layer-by-Layer (LBL) assembly method. The structure was identified by X-ray diffraction (XRD), and the morphology was investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques. The Fe3O4@MOF composite exhibited outstanding electrochemical properties when it was used as an anode material for lithium ion batteries (LIBs). After 100 discharge-charge cycles at a current density of 100 mA g-1, the reversible capacity of Fe3O4@MOF could maintain ∼1002 mAh g-1, which was much higher than that of the bare Fe3O4 counterpart (696 mAh g-1). Moreover, load the current density as high as 2 A g-1 (after 70 cycles at the current density step increased from 0.1 to 2 A g-1), it still delivered a reversible capacity of ∼429 mAh g-1. The results demonstrate that the cycling stability of Fe3O4 as an anode could be significantly improved by coating Cu3(1,3,5-benzenetricarboxylate)2 (HKUST-1). This strategy may offer new route to prepare other composite materials using different particles and suitable Metal-organic frameworks (MOFs) for LIBs application.

  14. Porous nanocubic Mn3O4-Co3O4 composites and their application as electrochemical supercapacitors.

    PubMed

    Pang, Huan; Deng, Jiawei; Du, Jimin; Li, Sujuan; Li, Juan; Ma, Yahui; Zhang, Jiangshan; Chen, Jing

    2012-09-14

    A simple approach has been developed to fabricate ideal supercapacitors based on porous Mn(3)O(4)-Co(3)O(4) nanocubic composite electrodes. We can easily obtain porous corner-truncated nanocubic Mn(3)O(4)-Co(3)O(4) composite nanomaterials without any subsequent complicated workup procedure for the removal of a hard template, seed or by using a soft template. In such a composite, the porous Mn(3)O(4)-Co(3)O(4) enables a fast and reversible redox reaction to improve the specific capacitance. The porous nanocubic Mn(3)O(4)-Co(3)O(4) composite electrode can effectively transport electrolytes and shorten the ion diffusion path, which offers excellent electrochemical performance. These results suggest that such porous Mn(3)O(4)-Co(3)O(4) composite nanocubes are very promising for next generation high-performance supercapacitors.

  15. Canted spin structure and the first order magnetic transition in CoFe2O4 nanoparticles coated by amorphous silica

    NASA Astrophysics Data System (ADS)

    Lyubutin, I. S.; Starchikov, S. S.; Gervits, N. E.; Korotkov, N. Yu.; Dmitrieva, T. V.; Lin, Chun-Rong; Tseng, Yaw-Teng; Shih, Kun-Yauh; Lee, Jiann-Shing; Wang, Cheng-Chien

    2016-10-01

    The functional polymer (PMA-co-MAA) latex microspheres were used as a core template to prepare magnetic hollow spheres consisting of CoFe2O4/SiO2 composites. The spinel type crystal structure of CoFe2O4 ferrite is formed under annealing, whereas the polymer cores are completely removed after annealing at 450 °C. Magnetic and Mössbauer spectroscopy measurements reveal very interesting magnetic properties of the CoFe2O4/SiO2 hollow spheres strongly dependent on the particle size which can be tuned by the annealing temperature. In the ground state of low temperatures, the CoFe2O4 nanoparticles are in antiferromagnetic state due to the canted magnetic structure. Under heating in the applied field, the magnetic structure gradually transforms from canted to collinear, which increases the magnetization. The Mössbauer data revealed that the small size CoFe2O4/SiO2 particles (2.2-4.3 nm) do not show superparamagnetic behavior but transit from the magnetic to the paramagnetic state by a jump-like magnetic transition of the first order This effect is a specific property of the magnetic nanoparticles isolated by inert material, and can be initiated by internal pressure creating at the particle surface. The suggested method of synthesis can be modified with various bio-ligands on the silane surface, and such materials can find many applications in diagnostics and bio-separation.

  16. Superparamagnetic Au-Fe3O4 nanoparticles: one-pot synthesis, biofunctionalization and toxicity evaluation

    NASA Astrophysics Data System (ADS)

    Pariti, A.; Desai, P.; Maddirala, S. K. Y.; Ercal, N.; Katti, K. V.; Liang, X.; Nath, M.

    2014-09-01

    Superparamagnetic Au-Fe3O4 bifunctional nanoparticles have been synthesized using a single step hot-injection precipitation method. The synthesis involved using Fe(CO)5 as iron precursor and HAuCl4 as gold precursor in the presence of oleylamine and oleic acid. Oleylamine helps in reducing Au3+ to Au0 seeds which simultaneously oxidizes Fe(0) to form Au-Fe3O4 bifunctional nanoparticles. Triton® X-100 was employed as a highly viscous solvent to prevent agglomeration of Fe3O4 nanoparticles. Detailed characterization of these nanoparticles was performed by using x-ray powder diffraction, transmission electron microscopy, scanning tunneling electron microscopy, UV-visible spectroscopy, Mössbauer and magnetometry studies. To evaluate these nanoparticles’ applicability in biomedical applications, L-cysteine was attached to the Au-Fe3O4 nanoparticles and cytotoxicity of Au-Fe3O4 nanoparticles was tested using CHO cells by employing MTS assay. L-cysteine modified Au-Fe3O4 nanoparticles were qualitatively characterized using Fourier transform infrared spectroscopy and Raman spectroscopy; and quantitatively using acid ninhydrin assay. Investigations reveal that that this approach yields Au-Fe3O4 bifunctional nanoparticles with an average particle size of 80 nm. Mössbauer studies indicated the presence of Fe in Fe3+ in A and B sites (tetrahedral and octahedral, respectively) and Fe2+ in B sites (octahedral). Magnetic measurements also indicated that these nanoparticles were superparamagnetic in nature due to Fe3O4 region. The saturation magnetization for the bifunctional nanoparticles was observed to be ˜74 emu g-1, which is significantly higher than the previously reported Fe3O4 nanoparticles. Mössbauer studies indicated that there was no significant Fe(0) impurity that could be responsible for the superparamagnetic nature of these nanoparticles. None of the investigations showed any presence of other impurities such as Fe2O3 and FeOOH. These Au-Fe3O4 bifunctional

  17. A Facile synthesis of superparamagnetic Fe3O4 nanofibers with superior peroxidase-like catalytic activity for sensitive colorimetric detection of L-cysteine

    NASA Astrophysics Data System (ADS)

    Chen, Sihui; Chi, Maoqiang; Zhu, Yun; Gao, Mu; Wang, Ce; Lu, Xiaofeng

    2018-05-01

    Superaramagnetic Fe3O4 nanomaterials are good candidates as enzyme mimics due to their excellent catalytic activity, high stability and facile synthesis. However, the morphology of Fe3O4 nanomaterials has much influence on their enzyme-like catalytic activity. In this work, we have developed a simple polymer-assisted thermochemical reduction approach to prepare Fe3O4 nanofibers for peroxidase-like catalytic applications. The as-prepared Fe3O4 nanofibers show a higher catalytic activity than commercial Fe3O4 nanoparticles. The steady-state kinetic assay result shows that the Michaelis-Menten constant value of the as-obtained Fe3O4 nanofibers is similar to that of horseradish peroxidase (HRP), indicating their superior affinity to the 3,3‧,5,5‧-tetramethylbenzidine (TMB) and H2O2 substrate. Based on the outstanding catalytic activity, a sensing platform for the detection of L-cysteine has been performed and the limit of detection is as low as 0.028 μM. In addition, an excellent selectivity toward L-cysteine over other types of amino acids, glucose and metal ions has been achieved as well. This work offers an original means for the fabrication of superparamagnetic Fe3O4 nanofibers and demonstrates their delightful potential applications in the fields of biosensing, environmental monitoring, and medical diagnostics.

  18. Effect of Composite Fabrication on the Strength of Single Crystal Al2O3 Fibers in Two Fe-Base Alloy Composites

    NASA Technical Reports Server (NTRS)

    Draper, Susan L.; Aiken, Beverly J. M.

    1998-01-01

    Continuous single-crystal Al2O3 fibers have been incorporated into a variety of metal and intermetallic matrices and the results have consistently indicated that the fiber strength had been reduced by 32 to 50% during processing. Two iron-based alloys, FeNiCoCrAl and FeAlVCMn, were chosen as matrices for Al2O3 fiber reinforced metal matrix composites (MMC) with the goal of maintaining Al2O3 fiber strength after composite processing. The feasibility of Al2O3/FeNiCoCrAl and Al2O3/FeAlVCMn composite systems for high temperature applications were assessed in terms of fiber-matrix chemical compatibility, interfacial bond strength, and composite tensile properties. The strength of etched-out fibers was significantly improved by choosing matrices containing less reactive elements. The ultimate tensile strength (UTS) values of the composites could generally be predicted with existing models using the strength of etched-out fibers. However, the UTS of the composites were less than desired due to a low fiber Weibull modulus. Acoustic emission analysis during tensile testing was a useful tool for determining the efficiency of the fibers in the composite and for determining the failure mechanism of the composites.

  19. Synthesis and characterization of Fe3O4-SiO2-AgCl photocatalyst

    NASA Astrophysics Data System (ADS)

    Husni, H. N.; Mahmed, N.; Ngee, H. L.

    2016-07-01

    Magnetite-silica-silver chloride (Fe3O4-SiO2-AgCl) coreshell particles with AgCl crystallite size of 117 nm was prepared by a wet chemistry method at ambient temperature. The magnetite-core was synthesized by using iron (II) sulfate heptahydrate (FeSO4•7H2O) and iron (III) sulfate hydrate (Fe2(SO4)3) with ammonium hydroxide (NH4OH) as the precipitating agent. The silica-shell was synthesized by using a modified Stöber process. The silver ions (Ag+) was adsorbed onto the silica surface after Söber process, followed by the addition of Cl- and polyvinylpyrrolidone (PVP) for the formation of Fe3O4-SiO2-AgCl coreshell particles. The effectiveness of the synthesized photocatalyst was investigated by monitoring the degradation of the methylene blue (MB) under sunlight for five cycles. About 90 % of the MB solution can be degraded after 2 hours. The degradation of MB solution by the Fe3O4-SiO2-AgCl particles is highly efficient for first three cycles according to the MB concentration recorded by the UV-Visible spectroscopy (UV-Vis). Nevertheless, the synthesized particles could be a promising material for photocatalytic applications.

  20. Material properties of perovskites in the quasi-ternary system LaFeO 3–LaCoO 3–LaNiO 3

    DOE PAGES

    Tietz, F.; Arul Raj, I.; Ma, Q.; ...

    2016-02-02

    We present an overview on the variation of electrical conductivity, oxygen permeation, oxygen surface exchange and thermal expansion coefficient as a function of the composition of perovskites in the quasi-ternary system LaFeO 3–LaCoO 3–LaNiO 3. Powders of thirteen nominal perovskite compositions were synthesized under identical conditions by the Pechini method. The powder X-ray diffraction data of two series, namely La(Ni 0.5Fe 0.5) 1-xCo xO 3 and LaNi 0.5- xFe xCo 0.5O 3, are presented after the powders had been sintered at 1100 C for 6 h in air. The measurements revealed a rhombohedral structure for all compositions except LaNi 0.5Femore » 0.5O 3 for which 60% rhombohedral and 40% orthorhombic phase was found. Moreover, the maximum DC electrical conductivity value of the perovskites at 800 C was 1229 S cm-1 for the composition LaCoO 3 and the minimum was 91 S cm-1 for the composition LaCo 0.5Fe 0.5O 3. The oxygen permeation of samples with promising conductivities at 800 C was one order of magnitude lower than that of La 0.6Sr 0.4Co 0.8Fe 0.2O 3 (LSCF). The highest value of 0.017 ml cm -2 min-1 at 950 C was obtained with LaNi 0.5Co 0.5O 3. The coefficients of thermal expansion varied in the range of 13.2 x 10 -6 K -1 and 21.9 x 10 -6 K -1 for LaNi 0.5Fe 0.5O 3 and LaCoO 3, respectively. 57Fe M ssbauer spectroscopy was used as probe for the oxidation states, local environment and magnetic properties of iron ions as a function of chemical composition. Ultimately, the substitution had a great influence on the chemical properties of the materials.« less

  1. A novel synthesis method for TiO2 particles with magnetic Fe3O4 cores.

    PubMed

    Dong, Qi; Zhang, Keqiang; An, Yi

    2014-01-01

    TiO2@(AC/Fe3O4) (AC is activated carbon) was prepared by using AC and Fe3O4 as joint support. The morphological features, crystal structure, and magnetism of the final product were characterized. The results indicate that TiO2 particles formed on the surface of AC and Fe3O4; the sizes of TiO2 and Fe3O4 were 0.5 and 0.7 μm respectively, and that of AC fell within a wide range. The highly crystalline cubic structures of the TiO2 particles was in accord with the standard X-ray diffractometry spectrum of magnetite and anatase. The maximum saturation magnetization of TiO2@(AC/Fe3O4) was 75 emu g(-1), which was enough to support magnetic recovery. The rate of methylene blue (MB) removal photocatalyzed by TiO2@(AC/Fe3O4) was higher by 50% than that achieved with AC/Fe3O4 photocatalysis, and similar to that achieved with TiO2@AC. The removal rate (kobs) decreased drastically from 1.77 × 10(-2) to 9.36 × 10(-3)min(-1) when the initial concentration of MB solution increased from 2.0 to 5.0 mg L(-1). The kobs value increased from 9.41 × 10(-3) to 1.34 × 10(-2)min(-1) with increasing photocatalyst dosage from 0.2 to 1.0 g, then slightly decreased to 1.33 × 10(-2)min(-1) at 2.0 g dosage.

  2. Comparison of heat transfer performance on closed pulsating heat pipe for Fe3O4 and ɤFe2O3 for achieving an empirical correlation

    NASA Astrophysics Data System (ADS)

    Goshayeshi, Hamid Reza; Izadi, Farhad; Bashirnezhad, Kazem

    2017-05-01

    This paper describes the effect of heat transfer coefficient in an oscillating heat pipe for Fe3O4/water and ɤ (gamma) Fe2O3/kerosene. Experimental studies were performed to investigate the thermal performance of three oscillating heat pipes operating with heating power input in a range of 0-140 W. The tested OHPs are all made from copper tubes with inner diameters (IDs) of 2, 2.5 and 3 mm with different number of turns. Two working fluids, Fe3O4/water and ɤ (gamma) Fe2O3/kerosene, were used by filling ratios of 50%, by volume. Experimental results show that thermal performance of the OHPs depends on the conjugation effects of working fluid, inner diameter, heating power input and magnetic field. The 2.5 mm ID CLOHPs had better thermal performance when charged with Fe3O4/water as compared with ɤFe2O3/kerosene. Finally, an empirical correlation based on 600 sets of available experimental data was proposed to predict the thermal performance of vertical CLOHPs for Fe3O4/water and ɤ (gamma) Fe2O3/kerosene.

  3. Feasibility study of Fe3O4/TaO x nanoparticles as a radiosensitizer for proton therapy

    NASA Astrophysics Data System (ADS)

    Ahn, Sang Hee; Lee, Nohyun; Choi, Changhoon; Shin, Sung Won; Han, Youngyih; Park, Hee Chul

    2018-06-01

    We investigated the feasibility of using multifunctional Fe3O4/TaO x (core/shell) nanoparticles, developed for use in contrast agents for computed tomography (CT) and magnetic resonance imaging (MRI), as dose-enhancing radiosensitizers. First, to verify the detectability of Fe3O4/TaO x nanoparticles in imaging, in vivo tests were conducted. Approximately 600 mg kg‑1 of 19 nm-diameter Fe3O4/TaO x nanoparticles dispersed in phosphate-buffered saline was injected into the tail vein of six Balb/c mice used as tumour (4T1 mammary carcinoma cell) models. Three mice underwent MRI (BioSpec 70/20 USR, Bruker, Billerica, MA, USA) and micro-CT (Inveon, Siemens Preclinical, Knoxville, TN, USA) before and after the injection. The difference between the pre- and post-injection images was quantified by finding the correlation coefficient. The aorta, blood vessel, and liver were clearly seen in the MRI and micro-CT images 60 min after intravenous injection of Fe3O4/TaO x nanoparticles, but the tumour region was not visible in the CT images until after 24 h. There were large differences between the pre- and post-injection images. Second, the therapeutic enhancement dose of nanomaterials was computed via Monte Carlo simulation. Monoenergetic 70- and 150 MeV proton beams irradiated x-ray contrast agent (iodine, BaSO4), MRI contrast agent (gadolinium, Fe3O4), Au, Fe3O4/TaO x (core/shell) nanoparticles and water located at the centre of a 4  ×  4  ×  4 µm3 water phantom, upon which the dose enhancement ratio (DER) (dose with/without nanoparticles) was computed. When 70 MeV protons irradiated the Au, gadolinium, Fe3O4/TaO x , Fe3O4, iodine, and BaSO4 nanoparticles, the DERs at 1 nm were 15.76, 7.68, 7.82, 6.17, 4.85, and 5.51, respectively. Fe3O4/TaO x nanoparticles have the potential to be used as a multifunctional agent that enhances tumour detection and increases the dose. Dose enhancement with Fe3O4/TaO x was half that with Au. However, Fe3O4/TaO x is

  4. Superior performance of nanoscaled Fe3O4 as anode material promoted by mosaicking into porous carbon framework

    NASA Astrophysics Data System (ADS)

    Wan, Wang; Wang, Chao; Zhang, Weidong; Chen, Jitao; Zhou, Henghui; Zhang, Xinxiang

    2014-01-01

    A nanoscale Fe3O4/porous carbon-multiwalled carbon nanotubes (MWCNTs) composite is synthesized through a simple hard-template method by using Fe2O3 nanoparticles as the precursor and SiO2 nanoparticles as the template. The composite shows good cycle performance (941 mAh g-1 for the first cycle at 0.1 C, with 106% capacity retention at the 80th cycle) and high rate capability (71% capacity retained at 5 C rate). Its excellent electrical properties can be attributed to the porous carbon framework structure, which is composed of carbon and MWCNTs. In this composite, the porous structure provides space for the change in Fe3O4 volume during cycling and shortens the lithium ion diffusion distance, the MWCNTs increase the electron conductivity, and the carbon coating reduces the risk of side reactions. The results provide clear evidences for the utility of porous carbon framework to improve the electrochemical performances of nanosized transition-metal oxides as anode materials for lithium-ion batteries.

  5. On stoichiometry and intermixing at the spinel/perovskite interface in CoFe2O4/BaTiO3 thin films.

    PubMed

    Tileli, Vasiliki; Duchamp, Martial; Axelsson, Anna-Karin; Valant, Matjaz; Dunin-Borkowski, Rafal E; Alford, Neil McN

    2015-01-07

    The performance of complex oxide heterostructures depends primarily on the interfacial coupling of the two component structures. This interface character inherently varies with the synthesis method and conditions used since even small composition variations can alter the electronic, ferroelectric, or magnetic functional properties of the system. The focus of this article is placed on the interface character of a pulsed laser deposited CoFe2O4/BaTiO3 thin film. Using a range of state-of-the-art transmission electron microscopy methodologies, the roles of substrate morphology, interface stoichiometry, and cation intermixing are determined on the atomic level. The results reveal a surprisingly uneven BaTiO3 substrate surface formed after the film deposition and Fe atom incorporation in the top few monolayers inside the unit cell of the BaTiO3 crystal. Towards the CoFe2O4 side, a disordered region extending several nanometers from the interface was revealed and both Ba and Ti from the substrate were found to diffuse into the spinel layer. The analysis also shows that within this somehow incompatible composite interface, a different phase is formed corresponding to the compound Ba2Fe3Ti5O15, which belongs to the ilmenite crystal structure of FeTiO3 type. The results suggest a chemical activity between these two oxides, which could lead to the synthesis of complex engineered interfaces.

  6. Yolk-like Fe3O4@C-Au@void@TiO2-Pd hierarchical microspheres with visible light-assisted enhanced photocatalytic degradation of dye

    NASA Astrophysics Data System (ADS)

    Chen, Suqing; Liang, Huading; Shen, Mao; Jin, Yanxian

    2018-04-01

    In this paper, we present the design and implementation of a type of yolk-like Fe3O4@C-Au@void@TiO2-Pd hierarchical microspheres with visible light-assisted enhanced photocatalytic degradation of dye and rapid magnetic separation. The resulting composite microspheres exhibited yolk-like hierarchical structures with a 236.3 m2 g-1 surface area and a high-saturation magnetization of 31.5 emu g-1. As an example of applications, the photodegradation of Rhodamine B (RhB) in the presence of NaBH4 was investigated under simulated sunlight irradiation. The results show that the photocatalytic activity of the yolk-like Fe3O4@C-Au@void@TiO2-Pd microcomposites in the RhB photodegradation is higher than the Fe3O4@C-Au@void@TiO2 and Fe3O4@C@TiO2 microcomposites, as they can degrade RhB with 40 min of irradiation time. In addition, by magnetic separation, the as-prepared yolk-like Fe3O4@C-Au@void@TiO2-Pd hierarchical microcomposites can be completely separated and reused for four times.

  7. Influence of Fe3O4/Fe-phthalocyanine decorated graphene oxide on the microwave absorbing performance

    NASA Astrophysics Data System (ADS)

    Li, Jingwei; Wei, Junji; Pu, Zejun; Xu, Mingzhen; Jia, Kun; Liu, Xiaobo

    2016-02-01

    Novel graphene oxide@Fe3O4/iron phthalocyanine (GO@Fe3O4/FePc) hybrid materials were prepared through a facile one-step solvothermal method with graphene oxide (GO) sheets as template in ethylene glycol. The morphology and structure of the hybrid materials were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectrophotometer (FTIR) and X-ray diffraction (XRD), respectively. The results indicated that the monodispersed Fe3O4/FePc hybrid microspheres were uniformly self-assembled along the surface of GO sheets through electrostatic attraction and the morphology can be tuned by controlling the amount of 4,4‧-bis(3,4-dicyanophenoxy)biphenyl (BPH). As the BPH content increases, magnetization measurement of the GO@Fe3O4/FePc hybrid materials showed that the coercivity increased, while saturation magnetizations decreased. Electromagnetic properties of the hybrid materials were measured in the range of 0.5-18.0 GHz. The microwave absorbing performance enhanced with the increase of BPH content and a maximum reflection loss of -27.92 dB was obtained at 10.8 GHz when the matching thickness was 2.5 mm. Therefore, the novel electromagnetic hybrid materials can be considered as potential materials in the microwave absorbing field.

  8. Hilarionite, Fe{2/3+}(SO4)(AsO4)(OH) · 6H2O, a new supergene mineral from Lavrion, Greece

    NASA Astrophysics Data System (ADS)

    Pekov, I. V.; Chukanov, N. V.; Yapaskurt, V. O.; Rusakov, V. S.; Belakovsky, D. I.; Turchkova, A. G.; Voudouris, P.; Magganas, A.; Katerinopoulos, A.

    2014-12-01

    A new mineral, hilarionite, ideally Fe{2/3+} (SO4)(AsO4)(OH) · 6H2O, has been found in the Hilarion Mine, Agios Konstantinos, Kamariza, Lavrion district, Attiki Prefecture, Greece. It was formed in the oxidation zone of a sulfide-rich orebody in association with goethite, gypsum, bukovskyite, jarosite, melanterite, chalcanthite, allophane, and azurite. Hilarionite occurs as light green (typically with an olive or grayish tint) to light yellowish green spherulites (up to 1 mm in size) and bunches of prismatic to acicular "individuals" up to 0.5 mm long that are in fact near-parallel or divergent aggregates of very thin, curved fibers up to 0.3 mm long and usually lesser than 2 μm thick. The luster is silky to vitreous. The Mohs' hardness is ca. 2. Hilarionite is ductile, its "individuals" are flexible and inelastic; fracture is uneven or splintery. D(meas) = 2.40(5), D(calc) = 2.486 g/cm3. IR spectrum shows the presence of arsenate and sulfate groups and H2O molecules in significant amounts. The Mössbauer spectrum indicates the presence of Fe3+ at two six-fold coordinated sites and the absence of Fe2+. Hilarionite is optically biaxial (+), α = 1.575(2), γ = 1.64(2), 2 V is large. The chemical composition (electron microprobe, average of 7 point analyses; H2O determined by modified Penfield method) is as follows, wt %: 0.03 MnO, 0.18 CuO, 0.17 ZnO, 33.83 Fe2O3, 0.22 P2O5, 18.92 As2O5, 22.19 SO3, 26.3 H2O, total is 101.82%. The empirical formula calculated on the basis of 15 O is: (Fe{1.90/3+}Cu0.01Zn0.01)Σ1.92[(SO4)1.24(AsO4)0.74(PO4)0.01]Σ1.99(OH)1.01 · 6.03H2O. The X-ray powder diffraction data show close structural relationship of hilarionite and kaňkite, Fe{2/3+}(AsO4)2 · 7H2O. Hilarionite is monoclinic, space group C2/ m, Cm or C2, a = 18.53(4), b = 17.43(3), c = 7.56(1) Å, β = 94.06(15)°, V = 2436(3) Å3, Z = 8. The strongest reflections in the X-ray powder diffraction pattern ( d, Å- I[ hkl]) are: 12.66-100[110], , 5.00-10[22l], , 4

  9. Synthesis and microwave absorption property of graphene oxide/carbon nanotubes modified with cauliflower-like Fe3O4 nanospheres

    NASA Astrophysics Data System (ADS)

    Yan, Shaojiu; Wang, Lina; Wang, Tihong; Zhang, Liqiang; Li, Yongfeng; Dai, Shenglong

    2016-03-01

    We report a simple procedure to fabricate graphene oxide/carbon nanotube hybrids coated with cauliflower-like Fe3O4 sphere. Characterizations have been carried out to investigate the morphology, crystalline structure of the composites by scanning electron microscopy, transmission electron microscopy and X-ray diffraction. Fe3O4 particles have the morphologies of multi-lacuna; moreover, some spheres are hollow. As a kind of potential microwave absorption material, the composites are lightweight and exhibit excellent microwave absorbing ability in the range of 2-16 GHz.

  10. Damping studies in Ni-Mn-Ga-Fe/PU polymer composites

    NASA Astrophysics Data System (ADS)

    Saranya, C.; Kumar, S. Vinodh; Seenithurai, S.; Pandyan, R. Kodi; Munieswaran, P.; Mahendran, M.

    2015-06-01

    Ni-Mn-Ga-Fe/PU polymer composite is prepared to investigate the damping behavior by using an indigenous experimental setup. The excellent damping properties of Ni-Mn-Ga-Fe alloys bonded with polymer matrix makes possible to develop new damping materials which are effective, less expensive and easier than bulk Ni-Mn-Ga. At low frequency, the stress amplitude increases and then smoothly decreases on increasing the frequency.

  11. Room Temperature Ferromagnetism of Fe Doped Indium Tin Oxide Based on Dispersed Fe3O4 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Okada, Koichi; Kohiki, Shigemi; Nishi, Sachio; Shimooka, Hirokazu; Deguchi, Hiroyuki; Mitome, Masanori; Bando, Yoshio; Shishido, Toetsu

    2007-09-01

    Transmission electron microscopy revealed that Fe3O4 nanoparticles with diameter of ≈200 nm dispersed in Fe doped indium tin oxide (Fe@ITO) powders exhibiting co-occurrence of room temperature ferromagnetism and superparamagnetism. Although we observed no X-ray diffraction peak from Fe related compounds for Fe0.19@ITO (ITO: In1.9Sn0.1O3) powders, the powders showed both hysteresis loop in field dependent magnetization at 300 K and divergence of zero-field-cooled magnetization from field-cooled magnetization. Scanning transmission electron microscopy with energy dispersive X-ray spectroscopy demonstrated that the nanoparticle with diameter of ≈200 nm consists of Fe and oxygen. Transmission electron diffraction revealed that crystal structure of the nanoparticle is inverse spinel type Fe3O4. The Fe3O4 crystalline phase by electron diffraction is consistent with the saturation magnetization of 1.3 μB/Fe and magnetic anomaly at ≈110 K observed for the powders.

  12. Synthesis and electrochemical characterization of mesoporous Li2FeSiO4/C composite cathode material for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Kumar, Ajay; Jayakumar, O. D.; Bazzi, Khadije; Nazri, Gholam-Abbas; Naik, Vaman M.; Naik, Ratna

    2015-03-01

    Lithium iron silicate (Li2FeSiO4) has the potential as cathode for Li ion batteries due to its high theoretical capacity (~ 330 mAh/g) and improved safety. The application of Li2FeSiO4 as cathode material has been challenged by its poor electronic conductivity and slow lithium ion diffusion in the solid phase. In order to solve these problems, we have synthesized mesoporous Li2FeSiO4/C composites by sol-gel method using the tri-block copolymer (P123) as carbon source. The phase purity and morphology of the composite materials were characterized by x-ray diffraction, SEM and TEM. The XRD pattern confirmed the formation of ~ 12 nm size Li2FeSiO4 crystallites in composites annealed at 600 °C for 6 h under argon atmosphere. The electrochemical properties are measured using the composite material as positive electrode in a standard coin cell configuration with lithium as the active anode and the cells were tested using AC impedance spectroscopy, cyclic voltammetry, and galvanostatic charge/discharge cycling. The Li2FeSiO4/C composites showed a discharge capacity of ~ 240 mAh/g at a rate of C/30 at room temperature. The effect of different annealing temperature and synthesis time on the electrochemical performance of Li2FeSiO4/C will be presented.

  13. Synthesis and characterization of Fe{sub 3}O{sub 4}: Porous carbon nanocomposites for biosensor application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arora, Manju, E-mail: marora@nplindia.org; Zargar, R. A., E-mail: rayeesphy12@gmail.com

    2015-08-28

    Fe{sub 3}O{sub 4}:Porous carbon (Fe{sub 3}O{sub 4}:PC) nano-magnetic composites were prepared by using different weight fractions of acid treated PC by the chemical co-precipitation route and annealed at 573 K, 773 K and 973 K temperatures in inert N{sub 2} gas atmosphere for 2 hrs to obtain desired stoichiometry of nanocomposites. The structural, morphological and magnetic properties of these composites were characterized by powder XRD, TEM, EPR and VSM analytical techniques. The crystallinity of the composites, g-value and spin concentration increases with increasing annealing temperature. TEM images confirmed the formation of nanosized ferrite nanoprticles whose size increases from 23 nm to 54 nm on increasingmore » annealing temperature. Porous carbon increases porosity, coercivity and reduces saturation magnetization of these prepared nanocomposites.« less

  14. Thermodynamic properties and crystal structure refinement of ferricopiapite, coquimbite, rhomboclase, and Fe2(SO4)3(H2O)5

    USGS Publications Warehouse

    Majzlan, J.; Navrotsky, A.; McCleskey, R. Blaine; Alpers, Charles N.

    2006-01-01

    Enthalpies of formation of ferricopiapite [nominally Fe4.67(SO4)6(OH)2 (H2O)20]. coquimbite [Fe2(SO4)3(H2O)9], rhomboclase [(H3O)Fe(SO4)2 (H2O)3], and Fe2(SO4)3(H2O)5 were measured by acid (5 N HCl) solution calorimetry. The samples were characterized by wet chemical analyses and synchrotron powder X-ray diffraction (XRD). The refinement of XRD patterns gave lattice parameters, atomic positions, thermal factors, and occupancies of the sites. The calculated formulae differ slightly from the nominal compositions: Fe4.78(SO4)6 (OH)2.34(H2O)20.71 (ferricopiapite), (Fe1.47Al0.53)(SO4)3 (H2O)9.65 (coquimbite), (H3O)1.34Fe(SO4)2.17 (H2O)3.06 (rhomboclase), and Fe2(SO4)3 (H2O)5.03. All thermodynamic data are given per mole of these formulae. The measured standard enthalpies (in kJ/mol) of formation from the elements (crystalline Fe, Al, S, and ideal gases O2 and H2) at T = 298.15 K are -4115.8??4.1 [Fe2(SO4)3 (H2O)5.03], -12045.1??9.2 (ferricopiapite), -5738.4??3.3 (coquimbite), and -3201.1??2.6 (rhomboclase). Standard entropy (S??) was estimated as a sum of entropies of oxide, hydroxide, and sulfate components. The estimated S?? (in J/mol.K) values for the iron sulfates are 488.2 [Fe2(SO4)3 (H2O)5.03], 1449.2 (ferricopiapite), 638.3 (coquimbite), and 380.1 (rhomboclase). The calculated Gibbs free energies of formation (in kJ/mol) are -3499.7??4.2 [Fe2(SO4)3 (H2O)5.03], -10089.8??9.3 (ferricopiapite), -4845.6??3.3 (coquimbite), and -2688.0??2.7 (rhomboclase). These results combined with other available thermodynamic data allow construction of mineral stability diagrams in the FeIII2(SO4)3-FeII SO4-H2O system. One such diagram is provided, indicating that the order of stability of ferric sulfate minerals with decreasing pH in the range of 1.5 to -0.5 is: hydronium jarosite, ferricopiapite, and rhomboclase. ?? 2006 E. Schweizerbart'sche Verlagsbuchhandlung.

  15. Preparation of Fe3O4/SiO2-guanidine organobase catalyst for 1,5-diphenylpenta-2,4-dien-1-one synthesis

    NASA Astrophysics Data System (ADS)

    Cahyana, A. H.; Fitria, D.; Ardiansah, B.; Rahayu, D. U. C.

    2017-04-01

    A novel heterogeneous organobase catalyst of Fe3O4/SiO2-guanidine was prepared in three stages. First, Fe3O4 nanoparticle was obtained by co-precipitation method using seaweed Sargassum Sp. as natural reductant. Fe3O4 was then coated by SiO2 using TEOS as silica source, resulting Fe3O4/SiO2. Finally, Fe3O4/SiO2-Guanidine was obtained by modifying Fe3O4/SiO2 with guanidine in the suitable reaction condition. This organobase catalyst was characterized by Scanning Electron Microscope (SEM), Energy Dispersive X-ray Spectroscopy (EDS), and Particle Size Analyzer (PSA). The material was then used as a highly active catalyst in aldol condensation reaction between acetophenone and cinnamaldehyde to produce 1,5-diphenylpenta-2,4-dien-1-one. The structure elucidation of the organic product was confirmed by UV-Vis, FTIR, and LC-MS.

  16. Synthesis and Characterization of Fe3O4 Nanoparticles using Polyvinyl Alcohol (PVA) as Capping Agent and Glutaraldehyde (GA) as Crosslinker

    NASA Astrophysics Data System (ADS)

    Budi Hutami Rahayu, Lale; Oktavia Wulandari, Ika; Herry Santjojo, Djoko; Sabarudin, Akhmad

    2018-01-01

    The use of polyvinyl alcohol (PVA) as a capping agent and glutaraldehyde (GA) as a crosslinker for a synthesis of magnetite (Fe3O4) nanoparticles is able to reduce agglomeration of produced Fe3O4. Additionally, oxidation of Fe3O4 by air could be avoided. The synthesis is carried out in two steps: first step, magnetite (Fe3O4) nanoparticles were prepared by dissolving the FeCl3.6H2O and FeCl2.4H2O in alkaline media (NH3.H2O). The second step, magnetite nanoparticles were coated with polyvinyl alcohol (PVA) and glutaraldehyde (GA) to obtain Fe3O4-PVA-GA. The latter material was then characterized by FTIR to determine the typical functional groups of magnetite coated with PVA-GA. X-ray Diffraction analysis was used to determine structure and size of crystal as well as the percentage of magnetite produced. It was found that the produced nanoparticles have crystal sizes around 4-9 nm with the cubic crystal structure. The percentage of magnetite phase increases when the amount of glutaraldehyde increased. SEM-EDX was employed to assess the surface morphology and elemental composition of the resulted nanoparticles. The magnetic character of the magnetite and Fe3O4- PVA-GA were studied using Electron Spin Resonance.

  17. Highly efficient visible-light driven photocatalytic hydrogen production from a novel Z-scheme Er3+:YAlO3/Ta2O5-V5+||Fe3+-TiO2/Au coated composite

    NASA Astrophysics Data System (ADS)

    Wang, Guowei; Ma, Xue; Wei, Shengnan; Li, Siyi; Qiao, Jing; Wang, Jun; Song, Youtao

    2018-01-01

    In this work, the preparation of a novel Z-scheme photocatalyst, Er3+:YAlO3/Ta2O5-V5+||Fe3+-TiO2/Au coated composite, for visible-light photocatalytic hydrogen production is reported for the first time. In this photocatalyst, Au nanoparticles as conduction band co-catalyst provide more active sites to enrich electrons. Ta2O5-V5+||Fe3+-TiO2 as composite redox cycle system thoroughly separates the photo-generated electrons and holes. In addition, Er3+:YAlO3 as up-conversion luminescence agent (from visible-light to ultraviolet-light) provides enough ultraviolet-light for satisfying the energy demand of wide band-gap semiconductors (TiO2 and Ta2O5). The photocatalytic hydrogen production can be achieved from methanol as sacrificial agent (electron donor) under visible-light irradiation. The main influence factors such as initial solution pH and molar ratio of TiO2 and Ta2O5 on visible-light photocatalytic hydrogen production activity of Er3+:YAlO3/Ta2O5-V5+||Fe3+-TiO2/Au coated composite are discussed in detail. The results show that the Er3+:YAlO3/Ta2O5-V5+||Fe3+-TiO2/Au coated composite with 1.0:0.5 M ratio of TiO2 and Ta2O5 in methanol aqueous solution at pH = 6.50 displays the highest photocatalytic hydrogen production activity. Furthermore, a high level of photocatalytic activity can be still maintained within three cycles under the same conditions. It implies that the prepared Z-scheme Er3+:YAlO3/Ta2O5-V5+||Fe3+-TiO2/Au coated composite may be a promising photocatalyst utilizing solar energy for hydrogen production.

  18. Cube-like Fe3O4@SiO2@Au@Ag magnetic nanoparticles: a highly efficient SERS substrate for detection of pesticide.

    PubMed

    Sun, Mei; Zhao, Aiwu; Wang, Dapeng; Wang, Jin; Chen, Ping; Sun, Henghui

    2018-02-09

    As a novel SERS nanocomposities, cube-like Fe3O4@SiO2@Au@Ag magnetic nanoparticles have been synthesized for the first time. Cube-like α-Fe2O3 NPs with uniform size can be achieved by optimizing reaction temperature and time. Firstly, the cube-like Fe3O4@SiO2 with good dispersity were achieved by calcining α-Fe2O3@SiO2 NPs in hydrogen atmosphere at 360 °C for 2.5 h, followed by self-assembling PEI shell via sonication. Furthermore, the Au@Ag particles can be densely assembled on the Fe3O4@SiO2 NPs to form the Fe3O4@SiO2@Au@Ag composite structure via strong Ag-N interaction. The obtained nanocomposites exhibit an excellent surface-enhanced Raman (SERS) behavior, reflected from low detection of limit (p-ATP) at 5×10-14 M level. Moreover, these nanocubes are used for detection of thiram and the detection limit can reach up to 5×10-11 M, while the rule of U.S. Environmental Protection Agency specifies that the residue in fruit must be lower than 7 ppm. Hence, the resulting substrate with high SERS activity has great practical potential applications in rapid detection of chemical, biological and environment pollutants with a simple portable Raman instrument at trace level. © 2018 IOP Publishing Ltd.

  19. Perrierite-(La), (La,Ce,Ca)4(Fe2+,Mn)(Ti,Fe3+,Al)4(Si2O7)2O8, a new mineral species from the Eifel volcanic district, Germany

    NASA Astrophysics Data System (ADS)

    Chukanov, N. V.; Blass, G.; Pekov, I. V.; Belakovskiy, D. I.; Van, K. V.; Rastsvetaeva, R. K.; Aksenov, S. M.

    2012-12-01

    Non-metamict perrierite-(La) discovered in the Dellen pumice quarry, near Mendig, in the Eifel volcanic district, Rheinland-Pfalz, Germany has been approved as a new mineral species (IMA no. 2010-089). The mineral was found in the late assemblage of sanidine, phlogopite, pyrophanite, zirconolite, members of the jacobsite-magnetite series, fluorcalciopyrochlore, and zircon. Perrierite-(La) occurs as isolated prismatic crystals up to 0.5 × 1 mm in size within cavities in sanidinite. The new mineral is black with brown streak; it is brittle, with the Mohs hardness of 6 and distinct cleavage parallel to (001). The calculated density is 4.791 g/cm3. The IR spectrum does not contain absorption bands that correspond to H2O and OH groups. Perrierite-(La) is biaxial (-), α = 1.94(1), β = 2.020(15), γ = 2.040(15), 2 V meas = 50(10)°, 2 V calc = 51°. The chemical composition (electron microprobe, average of seven point analyses, the Fe2+/Fe3+ ratio determined from the X-ray structural data, wt %) is as follows: 3.26 CaO, 22.92 La2O3, 19.64 Ce2O3, 0.83 Pr2O2, 2.09 Nd2O3, 0.25 MgO, 2.25 MnO, 3.16 FeO, 5.28 Fe2O3, 2.59 Al2O3, 16.13 TiO2, 0.75 Nb2O5, and 20.06 SiO2, total is 99.21. The empirical formula is (La1.70Ce1.45Nd0.15Pr0.06Ca0.70)Σ4.06(Fe{0.53/2+}Mn0.38Mg0.08)Σ0.99(Ti2.44Fe{0.80/3+}Al0.62Nb0.07)Σ3.93Si4.04O22. The simplified formula is (La,Ce,Ca)4(Fe2+,Mn)(Ti,Fe3+,Al)4(Si2O7)2O8. The crystal structure was determined by a single crystal. Perrierite-(La) is monoclinic, space group P21/ a, and the unit-cell dimensions are as follows: a =13.668(1), b = 5.6601(6), c = 11.743(1) Å, β = 113.64(1)°; V = 832.2(2) Å3, Z = 2. The strong reflections in the X-ray powder diffraction pattern are [ d, Å ( I, %) ( hkl)]: 5.19 (40) (110), 3.53 (40) (overline 3 11), 2.96 (100) (overline 3 13, 311), 2.80 (50) (020), 2.14 (50) (overline 4 22, overline 3 15, 313), 1.947 (50) (024, 223), 1.657 (40) (overline 4 07, overline 4 33, 331). The holotype specimen of perrierite-(La) is

  20. A luminescent zinc(ii) coordination polymer with unusual (3,4,4)-coordinated self-catenated 3D network for selective detection of nitroaromatics and ferric and chromate ions: a versatile luminescent sensor.

    PubMed

    Zhang, Ya-Qian; Blatov, Vladislav A; Zheng, Tian-Rui; Yang, Chang-Hao; Qian, Lin-Lu; Li, Ke; Li, Bao-Long; Wu, Bing

    2018-05-01

    A zinc(ii) coordination polymer {[Zn3(mtrb)3(btc)2]·3H2O}n (1) was synthesized and characterized (mtrb = 1,3-bis(1,2,4-triazole-4-ylmethyl)benzene, btc = 1,3,5-benzenetricarboxylate). The polymer 1 shows an unusual (3,4,4)-coordinated self-catenated 3D network with the point symbol of {63}2{62·82·102}{64·82}2. The polymer 1 is the first luminescent sensor for the detection of 2-amino-4-nitrophenol (ANP). The polymer 1 is also a good luminescence sensor for detection of TNP, 2,4-DNP, 4-NP, ANP and 2-NP in MeOH, particularly for TNP. The order of detection efficiency is TNP > 2,4-DNP > 4-NP > ANP > 2-NP. The polymer 1 also exhibits high sensitivity and selectivity as a luminescence sensor for the detection of Fe3+, Cr2O72- and CrO42- in aqueous solution. Our experiments showed that the presence of interfering ions had no significant effect on the sensing of Fe3+, Cr2O72- or CrO42- ions. The detection limits for TNP, ANP, Fe3+, Cr2O72- and CrO42- are 0.22 μM, 4.12 μM, 1.78 μM, 2.83 μM, and 4.52 μM, respectively. The luminescence sensor is stable and can be recycled for detection at least five times. The possible quenching mechanisms are discussed. The polymer 1 is also an effective photocatalyst for degradation of methylene blue (MB) under visible or UV light irradiation.

  1. Multiple Interfacial Fe3O4@BaTiO3/P(VDF-HFP) Core-Shell-Matrix Films with Internal Barrier Layer Capacitor (IBLC) Effects and High Energy Storage Density.

    PubMed

    Zhou, Ling; Fu, Qiuyun; Xue, Fei; Tang, Xiahui; Zhou, Dongxiang; Tian, Yahui; Wang, Geng; Wang, Chaohong; Gou, Haibo; Xu, Lei

    2017-11-22

    Flexible nanocomposites composed of high dielectric constant fillers and polymer matrix have shown great potential for electrostatic capacitors and energy storage applications. To obtain the composited material with high dielectric constant and high breakdown strength, multi-interfacial composited particles, which composed of conductive cores and insulating shells and possessed the internal barrier layer capacitor (IBLC) effect, were adopted as fillers. Thus, Fe 3 O 4 @BaTiO 3 core-shell particles were prepared and loaded into the poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) polymer matrix. As the mass fraction of core-shell fillers increased from 2.5 wt % to 30 wt %, the dielectric constant of the films increased, while the loss tangent remained at a low level (<0.05 at 1 kHz). Both high electric displacement and high electric breakdown strength were achieved in the films with 10 wt % core-shell fillers loaded. The maximum energy storage density of 7.018 J/cm 3 was measured at 2350 kV/cm, which shows significant enhancement than those of the pure P(VDF-HFP) films and analogous composited films with converse insulating-conductive core-shell fillers. A Maxwell-Wagner capacitor model was also adopted to interpret the efficiency of IBLC effects on the suppressed loss tangent and the superior breakdown strength. This work explored an effective approach to prepare dielectric nanocomposites for energy storage applications experimentally and theoretically.

  2. Superparamagnetic Fe3O4 particles formed by oxidation of pyrite heated in an anoxic atmosphere

    USGS Publications Warehouse

    Thorpe, A.N.; Senftle, F.E.; Talley, R.; Hetherington, S.; Dulong, F.

    1990-01-01

    As a follow-up to previous gas analysis experiments in which pyrite was heated to 681 K in an anoxic (oxygen starved) atmosphere, the first oxidation product, FeSO4, was studied as a bulk material. No decomposition of FeSO4 to Fe3O4 was observed in the temperature range studied. The lack of decomposition of bulk FeSO4 to Fe3O4 suggests that FeS2 oxidizes directly to Fe3O4, or that FeSO4, FeS2 and O2 react together to form Fe3O4. Magnetic susceptibility and magnetization measurements, along with magnetic hysteresis curves, show that small particles of Fe3O4 form on the pyrite surface, rather than a continuous layer of bulk Fe3O4. A working model describing the oxidation steps is presented. ?? 1990.

  3. Photo-, sono- and sonophotocatalytic degradation of methylene blue using Fe3O4/ZrO2 composites catalysts

    NASA Astrophysics Data System (ADS)

    Kristianto, Y.; Taufik, A.; Saleh, R.

    2017-07-01

    In the present work, magnetite material Fe3O4/ZrO2 with various molar ratios was prepared by the two-step method (sol-gel followed by the ultrasonic-assisted method). The as-prepared samples were fairly characterized by various characterization methods, such as X-ray Diffraction (XRD), Vibrating Sample Magnetometer (VSM), Fourier Transform Infrared (FT-IR) and Thermal Gravimetric Analysis (TGA). The catalytic performance of the as-prepared samples was evaluated based on the degradation of methylene blue under UV light, ultrasound and combination of UV and ultrasound irradiation. The results revealed that the sample with Fe3O4:ZrO2 molar ratio of 0.5:1 showed the best catalytic performance under UV, ultrasound and UV + ultrasound irradiation. The degradation of methylene blue follows the order: sonophotocatalytic > sonocatalytic > photocatalytic. In addition, the effect of various scavengers has also been studied. Furthermore, all prepared samples could be used as a convenient recyclable catalyst.

  4. Rapid ultrasound-assisted magnetic microextraction of gallic acid from urine, plasma and water samples by HKUST-1-MOF-Fe3O4-GA-MIP-NPs: UV-vis detection and optimization study.

    PubMed

    Asfaram, Arash; Ghaedi, Mehrorang; Dashtian, Kheibar

    2017-01-01

    Magnetite (Fe 3 O 4 nanoparticles (NPs)) HKUST-1 metal organic framework (MOF) composite as a support was used for surface imprinting of gallic acid imprinted polymer (HKUST-1-MOF-Fe 3 O 4 -GA-MIP) using vinyltrimethoxysilane (VTMOS) as the cross-linker. Subsequently, HKUST-1-MOF-Fe 3 O 4 -NPs-GA-MIP characterized by FT-IR, XRD and FE-SEM analysis and applied for fast and selective and sensitive ultrasound assisted dispersive magnetic solid phase microextraction of gallic acid (GA) by UV-Vis (UA-DMSPME-UV-Vis) detection method. Plackett-Burman design (PBD) and central composite design (CCD) according to desirability function (DF) indicate the significant variables among the extraction factors vortex (mixing) time (min), sonication time (min), temperature (°C), eluent volume (L), pH and HKUST-1-MOF-Fe 3 O 4 -NPs-GA-MIP mass (mg) and their contribution on the response. Optimum conditions and values correspond to pH, HKUST-1-MOF-Fe 3 O 4 -NPs-GA-MIP mass, sonication time and the eluent volume were set as follow 3.0, 1.6mg, 4.0min and 180μL, respectively. The average recovery (ER%) of GA was 98.13% with desirability of 0.997, while the present method has best operational performance like wide linear range 8-6000ngmL -1 with a Limit of detection (LOD) of 1.377ngmL -1 , limit of quantification (LOQ) 4.591ngmL -1 and precision (<3.50% RSD). The recovery of GA in urine, human plasma and water samples within the range of 92.3-100.6% that strongly support high applicability of present method for real samples analysis, which candidate this method as promise for further application. Copyright © 2016. Published by Elsevier B.V.

  5. Sustained magnetization oscillations in polyaniline-Fe{sub 3}O{sub 4} nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Araújo, A. C. V. de; Rodrigues, A. R., E-mail: ricalde@df.ufpe.br; Machado, F. L. A.

    2015-09-28

    We report experiments with polyaniline-Fe{sub 3}O{sub 4} (PANI-Fe{sub 3}O{sub 4}) nanocomposites synthesized under several different conditions. With a reaction carried out at room temperature and assisted by intense ultra-violet (UV) irradiation, we observe sustained oscillations in the magnetization with a period of about 25 min. The oscillations are interpreted as the result of an oscillatory chemical reaction in which part of the Fe{sup +2} ions of magnetite, Fe{sub 3}O{sub 4}, are oxidized by the UV irradiation to form Fe{sup +3} so that a fraction of the magnetite content transforms into maghemite, γ-Fe{sub 2}O{sub 3}. Then, Fe{sup +3} ions at themore » nanoparticle surfaces are reduced and transformed back into Fe{sup +2}, when acting as an oxidizing agent for polyaniline in the polymerization process. Since maghemite has smaller magnetization than magnetite, the oscillating chemical reaction results in the oscillatory magnetization. The observations are interpreted with the Lotka-Volterra nonlinear coupled equations with parameters that can be adjusted to fit very well the experimental data.« less

  6. Synthesis, characterisation of polyaniline-Fe3O4 magnetic nanocomposite and its application for removal of an acid violet 19 dye

    NASA Astrophysics Data System (ADS)

    Patil, Manohar R.; Khairnar, Subhash D.; Shrivastava, V. S.

    2016-04-01

    The present work deals with the development of a new method for the removal of dyes from an aqueous solution using polyaniline (PANI)-Fe3O4 magnetic nanocomposite. It is synthesised in situ through self-polymerisation of monomer aniline. Photocatalytic degradation studies were carried out for cationic acid violet 19 (acid fuchsine) dye using PANI-Fe3O4 nanocomposite in aqueous solution. Different parameters like catalyst dose, contact time and pH have been studied to optimise reaction condition. The optimum conditions for the removal of the dye are initial concentration 20 mg/l, adsorbent dose 6 gm/l, pH 7. The EDS technique gives elemental composition of synthesised PANI-Fe3O4. The SEM and XRD studies were carried for morphological feature characteristics of PANI-Fe3O4 nanocomposite. The VSM (vibrating sample magnetometer) gives magnetic property of PANI-Fe3O4 nanocomposite; also FT-IR analysis gives characteristics frequency of synthesised PANI-Fe3O4. Besides the above studies kinetic study has also been carried out.

  7. Preparation and characterization of functional material based on hybrid polymer composites

    NASA Astrophysics Data System (ADS)

    Agusu, La; Amiruddin; Taswito, Chen Chen; Herdianto; Zamrun, Muh.

    2016-08-01

    The microstructures and properties of hybrid polymer composites based on polyaniline (PANi)/γ-Fe2O3 nanoparticles/TiO2/carbon have been investigated for multifunctional applications such as heavy metal removal and initial study for radar absorbing material application. γ-Fe2O3 nanoparticles with spherical shape were synthetized by a coprecipitation method from iron sand. By activating the polyethylene glycol (PEG-400) coated carbon of coconut shell, the homogenous shape and size of carbon was achieved. Then, γ- Fe2O3, TiO2, and carbon were mixed with PANi by an in situ polymerization method at low temperature 0-5 oC. Characterization process involved XRD, SEM, FTIR, VSM, and DC conductivity measurements. For radar absorber application, the functionalized polymer composites showed good electrical conductivity 0.45 S/cm to absorb the incoming electromagnetic energy. An efficient and effective reduction of Pb2+ ion from the water has been achieved by using this material.

  8. Ferromagnetic resonance of NiCoFe2O4 nanoparticles and microwave absorption properties of flexible NiCoFe2O4-carbon black/poly(vinyl alcohol) composites.

    PubMed

    Datt, Gopal; Kotabage, Chetan; Abhyankar, A C

    2017-08-09

    The effect of cationic disorder and particle morphology on the ferromagnetic resonance (FMR) of NiCoFe 2 O 4 nanoparticles (NPs) and the electromagnetic shielding effectiveness of flexible composites (wherein the nanoparticles are used as fillers) has been presented. Upon annealing at 1000 °C, spherical, ∼25 nm, single crystalline (as-prepared) NPs are transformed into octahedral, ∼200 nm, polycrystalline (annealed) NPs and change the cationic distribution significantly. The effect of shape, size and cationic distribution on the resonance properties has been discussed using the randomly-oriented anisotropic-axis model. The temperature dependent evolution of FMR spectra has been found to be consistent with a Bloch spin-relaxation model. Analysis of the FMR spectra reveals that NiCoFe 2 O 4 nanoparticles have a large internal magnetic field along with broad FMR linewidths of ∼2-3 kOe, signifying high magnetic losses that are essential for the absorption of electromagnetic (EM) waves. Next, NiCoFe 2 O 4 -carbon black (NCF-CB) hybrids grafted in a PVA matrix, as flexible composite films with a thickness of ∼1.5 mm, are assessed for EM wave absorption properties in the range of 8-18 GHz. As compared to annealed-NCF-CB/PVA (21 dB, ∼99.5%), the as-prepared-NCF-CB/PVA composite film exhibits significantly large SE of 27 dB (∼99.9% attenuation of the EM wave), with a dominant contribution from absorption (SE A ∼ 21 dB). The electrical conductivity, the electric modulus, and Cole-Cole plots reveal that the dielectric losses in the as-prepared-NCF-CB/PVA have significant contributions from cationic disorder and particle size, as compared to the annealed-NCF-CB/PVA composites. Cationic disorder increases the d-d electron transition probability between adjacent ionic pairs such as Co 2+ /Fe 3+ and a reduced particle size creates large interfacial polarization in the as-prepared NCF/CB hybrids. Considerably large values of the Landes g-factor, magnetic anisotropy

  9. Modulated exchange bias in NiFe/CoO/α-Fe2O3 trilayers and NiFe/CoO bilayers

    NASA Astrophysics Data System (ADS)

    Li, X.; Lin, K.-W.; Yeh, W.-C.; Desautels, R. D.; van Lierop, J.; Pong, Philip W. T.

    2017-02-01

    While the exchange bias in ferromagnetic/antiferromagnetic (FM/AF) bilayer and FM1/AF/FM2 trilayer configurations has been widely investigated, the role of an AF2 layer in FM/AF1/AF2 trilayer configurations is still not well understood. In this work, the magnetic properties of NiFe/CoO, NiFe/α-Fe2O3 bilayers, and NiFe/CoO/α-Fe2O3 trilayer were studied comparatively. The microstructure and chemical composition were characterized. Temperature dependent magnetometry reveals increased irreversibility temperature in NiFe/CoO/α-Fe2O3 trilayer compared with NiFe/CoO bilayer. The magnetic hysteresis loops show that the exchange bias (Hex) and coercivity (Hc) depend strongly on the anisotropy of AF layer (CoO, α-Fe2O3 and CoO/α-Fe2O3). Our work shows that the AF1/AF2 interfacial interactions can be used effectively for tuning the exchange bias in FM/AF1/AF2 trilayers.

  10. Comparative study of three magnetic nano-particles (FeSO4, FeSO4/SiO2, FeSO4/SiO2/TiO2) in plasmid DNA extraction.

    PubMed

    Rahnama, H; Sattarzadeh, A; Kazemi, F; Ahmadi, N; Sanjarian, F; Zand, Z

    2016-11-15

    Recent updates on Magnetic Nano-Particles (MNPs) based separation of nucleic acids have received more attention due to their easy manipulation, simplicity, ease of automation and cost-effectiveness. It has been indicated that DNA molecules absorb on solid surfaces via hydrogen-bonding, and hydrophobic and electrostatic interactions. These properties highly depend on the surface condition of the solid support. Therefore, surface modification of MNPs may enhance their functionality and specification. In the present study, we functionalized Fe3O4 nano-particle surface utilizing SiO2 and TiO2 layer as Fe3O4/SiO2 and Fe3O4/SiO2/TiO2 and then compare their functionality in the adsorption of plasmid DNA molecules with the naked Fe3O4 nano-particles. The result obtained showed that the purity and amount of DNA extracted by Fe3O4 coated by SiO2 or SiO2/TiO2 were higher than the naked Fe3O4 nano-particles. Furthermore, we obtained pH 8 and 1.5 M NaCl as an optimal condition for desorption of DNA from MNPs. The result further showed that, 0.2 mg nano-particle and 10 min at 55 °C are the optimal conditions for DNA desorption from nano-particles. In conclusion, we recommended Fe3O4/SiO2/TiO2 as a new MNP for separation of DNA molecules from biological sources. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Modeling Verwey transition temperature of Fe3O4 nanocrystals

    NASA Astrophysics Data System (ADS)

    Jiang, Xiao bao; Xiao, Bei bei; Yang, Hong yu; Gu, Xiao yan; Sheng, Hong chao; Zhang, Xing hua

    2016-11-01

    The Verwey transition in nanoscale is an important physical property for Fe3O4 nanocrystals and has attracted extensive attention in recent years. In this work, an analytic thermodynamic model without any adjusting parameters is developed to estimate the size and shape effects on modulating the Verwey transition temperature of Fe3O4 nanocrystals. The results show that the Verwey transition temperature reduces with increasing shape parameter λ or decreasing size D. A good agreement between the prediction and the experimental data verified our physical insight that the Verwey transition of Fe3O4 can be directly related to the atomic thermal vibration. The results presented in this work will be of benefit to the understanding of the microscopic mechanism of the Verwey transition and the design of future generation switching and memory devices.

  12. Highly Efficient visible-light-induced photoactivity of magnetically retrievable Fe3O4@SiO2@Bi2WO6@g-C3N4 hierarchical microspheres for the degradation of organic pollutant and production of hydrogen

    NASA Astrophysics Data System (ADS)

    Lu, Dingze; Wang, Hongmei; Shen, Qingqing; Kondamareddy, Kiran Kumar; Neena D

    2017-07-01

    The new multifunctional composite Fe3O4@SiO2@Bi2WO6@g-C3N4 (FSBG) hierarchical microspheres with Bi2WO6/g-C3N4 heterostructure as an outer shell and Fe3O4@SiO2 as a magnetic core have been synthesized and characterized for photocatalytic applications. An efficient and adoptable approach of synthesizing magnetic Bi2WO6/g-C3N4 hierarchical microspheres of grape-like morphology is realized. The as-synthesized structures exhibit highly efficient visible-light absorption and separation efficiency of photo-induced charge. The visible-light-induced photocatalytic activity of g-C3N4, Fe3O4@SiO2@Bi2WO6, and FSBG is evaluated by investigating the photodegradation of Rhodamine B (RhB) and hydrogen (H2) out of water. The comparative study reveals that the FSBG microspheres exhibit an optimum visible-light-induced photocatalytic activity in degrading Rhodamin B (RhB), which is 3.06 and 1.92 times to that of g-C3N4 and Fe3O4@SiO2@Bi2WO6 systems respectively and 3.89 and 2.31 times in the production of hydrogen (H2) out of water, respectively. The FSBG composite microspheres also exhibit good magnetic recoverability. An alternate mechanism for the enhanced visible-light photocatalytic activity is given in the present manuscript.

  13. Optical spectroscopic study of multiferroic BiFeO3 and LuFe2O4

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoshan

    2010-03-01

    Iron-based multiferroics such as BiFeO3 and LuFe2O4 exhibit the highest magnetic and ferroelectric ordering temperatures among known multiferroics. LuFe2O4 is a frustrated system with several phase transitions that result in electronically driven multiferroicity. To understand how this peculiar multiferroic mechanism correlates with magnetism, we studied electronic excitations by optical spectroscopy and other complementary techniques. We show that the charge order, which determines the dielectric properties, is due to the ``order by fluctuation'' mechanism, evidenced by the onset of charge fluctuation well below the charge ordering transition. We also find a low temperature monoclinic distortion driven by both temperature and magnetic field, indicating strong coupling between structure, magnetism and charge order. BiFeO3 is the only known single phase multiferroics with room temperature magnetism and ferroelectricity. To investigate the spin-charge coupling, we measured the optical properties of BiFeO3. We find that the absorption onset occurs due to on-site Fe^3+ excitations at 1.41 and 1.90 eV. Temperature and magnetic-field-induced spectral changes reveal complex interactions between on-site crystal-field and magnetic excitations in the form of magnon sidebands. The sensitivity of the magnon sidebands allows us to map out the magnetic-field temperature phase diagram which demonstrates optical evidence for spin spiral quenching above 20 T and suggests a spin domain reorientation near 10 T. Work done in collaboration with T.V. Brinzari, R.C. Rai, M. Angst, R.P. Hermann, A.D. Christianson, J.-W. Kim, Z. Islam, B.C. Sales, D. Mandrus, S. Lee, Y.H. Chu, L. W. Martin, A. Kumar, R. Ramesh, S.W. Cheong, S. McGill, and J.L. Musfeldt.

  14. Oxidative degradation of the antibiotic oxytetracycline by Cu@Fe3O4 core-shell nanoparticles.

    PubMed

    Pham, Van Luan; Kim, Do-Gun; Ko, Seok-Oh

    2018-08-01

    A core-shell nanostructure composed of zero-valent Cu (core) and Fe 3 O 4 (shell) (Cu@Fe 3 O 4 ) was prepared by a simple reduction method and was evaluated for the degradation of oxytetracycline (OTC), an antibiotic. The Cu core and the Fe 3 O 4 shell were verified by X-ray diffractometry (XRD) and transmission electron microscopy. The optimal molar ratio of [Cu]/[Fe] (1/1) in Cu@Fe 3 O 4 created an outstanding synergic effect, leading to >99% OTC degradation as well as H 2 O 2 decomposition within 10min at the reaction conditions of 1g/L Cu@Fe 3 O 4 , 20mg/L OTC, 20mM H 2 O 2 , and pH3.0 (and even at pH9.0). The OTC degradation rate by Cu@Fe 3 O 4 was higher than obtained using single nanoparticle of Cu or Fe 3 O 4 . The results of the study using radical scavengers showed that OH is the major reactive oxygen species contributing to the OTC degradation. Finally, good stability, reusability, and magnetic separation were obtained with approximately 97% OTC degradation and no notable change in XRD patterns after the Cu@Fe 3 O 4 catalyst was reused five times. These results demonstrate that Cu@Fe 3 O 4 is a novel prospective candidate for the pharmaceutical and personal care products degradation in the aqueous phase. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Highly visible-light-responsive Cu2O/rGO decorated with Fe3O4@SiO2 nanoparticles as a magnetically recyclable photocatalyst

    NASA Astrophysics Data System (ADS)

    Liu, Shou-Heng; Lu, Jun-Sheng; Yang, Sheng-Wei

    2018-07-01

    The rhombic dodecahedral cuprous oxide-reduced graphene oxide/core–shell Fe3O4@SiO2 composites (denoted as rCu2O-rGO/Fe3O4@SiO2) are successfully synthesized facilely via a wet-chemical route. The resulting rCu2O-rGO/Fe3O4@SiO2 combines the unique structure of Cu2O, electronic characteristics of reduced graphene oxide (rGO) and magnetic property of Fe3O4@SiO2 to be an effective and recoverable photocatalyst for the degradation of methyl orange (MO). The obtained results show that rCu2O-rGO/Fe3O4@SiO2 is capable of completely degrading MO in the presence of a very low catalyst concentration (0.125 g l‑1) within a short time (60 min) under visible light compared to the reported catalysts. The observations may be due to the distinctive interfacial structures of rhombic dodecahedral Cu2O nanoparticles connected to rGO sheets that can enhance the separation of photogenerated electron–hole pairs, stabilize the Cu2O and increase MO adsorption, as evidenced by a variety of spectroscopic analyses (transmission electron microscopy, x-ray photoelectron spectroscopy and photoluminescence). More importantly, these efficient photocatalysts can easily be recovered under a magnetic field and remain highly photoactive towards the degradation of MO after cyclic tests, and may be promising photocatalysts for practical applications in the solar-energy purification of wastewater.

  16. Highly visible-light-responsive Cu2O/rGO decorated with Fe3O4@SiO2 nanoparticles as a magnetically recyclable photocatalyst.

    PubMed

    Liu, Shou-Heng; Lu, Jun-Sheng; Yang, Sheng-Wei

    2018-07-27

    The rhombic dodecahedral cuprous oxide-reduced graphene oxide/core-shell Fe 3 O 4 @SiO 2 composites (denoted as rCu 2 O-rGO/Fe 3 O 4 @SiO 2 ) are successfully synthesized facilely via a wet-chemical route. The resulting rCu 2 O-rGO/Fe 3 O 4 @SiO 2 combines the unique structure of Cu 2 O, electronic characteristics of reduced graphene oxide (rGO) and magnetic property of Fe 3 O 4 @SiO 2 to be an effective and recoverable photocatalyst for the degradation of methyl orange (MO). The obtained results show that rCu 2 O-rGO/Fe 3 O 4 @SiO 2 is capable of completely degrading MO in the presence of a very low catalyst concentration (0.125 g l -1 ) within a short time (60 min) under visible light compared to the reported catalysts. The observations may be due to the distinctive interfacial structures of rhombic dodecahedral Cu 2 O nanoparticles connected to rGO sheets that can enhance the separation of photogenerated electron-hole pairs, stabilize the Cu 2 O and increase MO adsorption, as evidenced by a variety of spectroscopic analyses (transmission electron microscopy, x-ray photoelectron spectroscopy and photoluminescence). More importantly, these efficient photocatalysts can easily be recovered under a magnetic field and remain highly photoactive towards the degradation of MO after cyclic tests, and may be promising photocatalysts for practical applications in the solar-energy purification of wastewater.

  17. Formation mechanisms of Fe3−xSnxO4 by a chemical vapor transport (CVT) process

    PubMed Central

    Su, Zijian; Zhang, Yuanbo; Liu, Bingbing; Chen, Yingming; Li, Guanghui; Jiang, Tao

    2017-01-01

    Our former study reported that Fe-Sn spinel (Fe3−xSnxO4) was easily formed when SnO2 and Fe3O4 were roasted under CO-CO2 atmosphere at 900–1100 °C. However, the formation procedure is still unclear and there is a lack of theoretical research on the formation mechanism of the Fe-Sn spinel. In this work, the reaction mechanisms between SnO2 and Fe3O4 under CO-CO2 atmosphere were determined using XRD, VSM, SEM-EDS, XPS, etc. The results indicated that the formation of Fe3−xSnxO4 could be divided into four steps: reduction of SnO2 to solid phase SnO, volatilization of gaseous SnO, adsorption of gaseous SnO on the surface of Fe3O4, and redox reaction between SnO and Fe3O4. During the roasting process, part of Fe3+ in Fe3O4 was reduced to Fe2+ by gaseous SnO, and meanwhile Sn2+ was oxidized to Sn4+ and entered into Fe3−xSnxO4. The reaction between SnO2 and Fe3O4 could be summarized as Fe3O4 + xSnO(g) → Fe3−xSnxO4 (x = 0–1.0). PMID:28262673

  18. Vancomycin-modified Fe3O4@SiO2@Ag microflowers as effective antimicrobial agents.

    PubMed

    Wang, Chongwen; Zhang, Kehan; Zhou, Zhe; Li, Qingjun; Shao, Liting; Hao, Rong Zhang; Xiao, Rui; Wang, Shengqi

    2017-01-01

    Nanomaterials combined with antibiotics exhibit synergistic effects and have gained increasing interest as promising antimicrobial agents. In this study, vancomycin-modified magnetic-based silver microflowers (Van/Fe 3 O 4 @SiO 2 @Ag microflowers) were rationally designed and prepared to achieve strong bactericidal ability, a wide antimicrobial spectrum, and good recyclability. High-performance Fe 3 O 4 @SiO 2 @Ag microflowers served as a multifunction-supporting matrix and exhibited sufficient magnetic response property due to their 200 nm Fe 3 O 4 core. The microflowers also possessed a highly branched flower-like Ag shell that provided a large surface area for effective Ag ion release and bacterial contact. The modified-vancomycin layer was effectively bound to the cell wall of bacteria to increase the permeability of the cell membrane and facilitate the entry of the Ag ions into the bacterium, resulting in cell death. As such, the fabricated Van/Fe 3 O 4 @SiO 2 @Ag microflowers were predicted to be an effective and environment-friendly antibacterial agent. This hypothesis was verified through sterilization of Gram-negative Escherichia coli and Gram-positive methicillin-resistant Staphylococcus aureus , with minimum inhibitory concentrations of 10 and 20 μg mL -1 , respectively. The microflowers also showed enhanced effect compared with bare Fe 3 O 4 @SiO 2 @Ag microflowers and free-form vancomycin, confirming the synergistic effects of the combination of the two components. Moreover, the antimicrobial effect was maintained at more than 90% after five cycling assays, indicating the high stability of the product. These findings reveal that Van/Fe 3 O 4 @SiO 2 @Ag microflowers exhibit promising applications in the antibacterial fields.

  19. Cyclic Oxidation of FeCrAlY/Al2O3 Composites

    NASA Technical Reports Server (NTRS)

    Nesbitt, James A.; Draper, Susan L.; Barrett, Charles A.

    1999-01-01

    Three-ply FeCrAlY/Al2O3 composites and FeCrAlY matrix-only samples were cyclically oxidized at 1000 C and 1100 C for up to 1000 1-hr cycles. Fiber ends were exposed at the ends of the composite samples. Following cyclic oxidation, cracks running parallel to and perpendicular to the fibers were observed on the large surface of the composite. In addition, there was evidence of increased scale damage and spallation around the exposed fiber ends, particularly around the middle ply fibers. This damage was more pronounced at the higher temperature. The exposed fiber ends showed cracking between fibers in the outer plies, occasionally with Fe and Cr-rich oxides growing out of the cracks. Large gaps developed at the fiber/matrix interface around many of the fibers, especially those in the outer plies. Oxygen penetrated many of these gaps resulting in significant oxide formation at the fiber/matrix interface far within the composite sample. Around several fibers, the matrix was also internally oxidized showing Al2O3 precipitates in a radial band around the fibers. The results show that these composites have poor cyclic oxidation resistance due to the CTE mismatch and inadequate fiber/matrix bond strength at temperatures of 1000 C and above.

  20. CoFe2O4-TiO2 and CoFe2O4-ZnO thin film nanostructures elaborated from colloidal chemistry and atomic layer deposition.

    PubMed

    Clavel, Guylhaine; Marichy, Catherine; Willinger, Marc-Georg; Ravaine, Serge; Zitoun, David; Pinna, Nicola

    2010-12-07

    CoFe(2)O(4)-TiO(2) and CoFe(2)O(4)-ZnO nanoparticles/film composites were prepared from directed assembly of colloidal CoFe(2)O(4) in a Langmuir-Blodgett monolayer and atomic layer deposition (ALD) of an oxide (TiO(2) or ZnO). The combination of these two methods permits the use of well-defined nanoparticles from colloidal chemistry, their assembly on a large scale, and the control over the interface between a ferrimagnetic material (CoFe(2)O(4)) and a semiconductor (TiO(2) or ZnO). Using this approach, architectures can be assembled with a precise control from the Angstrom scale (ALD) to the micrometer scale (Langmuir-Blodgett film). The resulting heterostructures present well-calibrated thicknesses. Electron microscopy and magnetic measurement studies give evidence that the size of the nanoparticles and their intrinsic magnetic properties are not altered by the various steps involved in the synthesis process. Therefore, the approach is suitable to obtain a layered composite with a quasi-monodisperse layer of ferrimagnetic nanoparticles embedded in an ultrathin film of semiconducting material.

  1. A water stable europium coordination polymer as fluorescent sensor for detecting Fe3+, CrO42-, and Cr2O72- ions

    NASA Astrophysics Data System (ADS)

    Chen, Chen; Zhang, Xiaolei; Gao, Peng; Hu, Ming

    2018-02-01

    A europium coordination polymer constructed by the 4‧-(4-carboxyphenyl)- 2,2‧:6‧,2″-terpyridine ligand (HL), namely, [EuL(CH3COO)Cl]n (1), has been prepared by the solvothermal method. Compound 1 was structurally characterized by the elemental analysis, FT-IR, powder X-ray diffractions (PXRD), thermogravimetric (TG) analysis, and single-crystal X-ray diffraction. Complex 1 displays a novel linear chain structure, which further extends to the 3D supramolecular structure via π···π and hydrogen bonds interactions. The luminescent properties of 1 were investigated in detail, which exhibit the fluorescent sensing for detecting Fe3+, CrO42-, and Cr2O72- ions in aqueous solution, respectively. In addition, 1 shows high sensitive and selective sensing for CrO42- and Cr2O72- anions with the great quenching efficiency. Furthermore, the luminescent sensing mechanisms of differentiating analytes are explored in detail. It is worth noting that there exists the weak interaction between Fe3+ ions and carboxylate oxygen atoms of CH3COO- groups through XPS characterization, resulting in the high quenching effect of 1.

  2. Role of initial heat treatment of the ferrite component on magnetic properties in the composite of ferrimagnetic Co1.75Fe1.25O4 ferrite and non-magnetic BaTiO3 oxide

    NASA Astrophysics Data System (ADS)

    Bhowmik, R. N.; Kazhugasalamoorthy, S.; Sinha, A. K.

    2017-12-01

    We have prepared a composite of ferrimagnetic ferrite Co1.75Fe1.25O4 and non-magnetic oxide BaTiO3. The ferrite composition Co1.75Fe1.25O4 has been prepared by chemical co-precipitation and subsequently heated at different temperatures. The heat treated ferrite powder has been mixed with BaTiO3 powder with mass ratio 1:1 and the mixed powder has been finally heated at 1000 °C to form composite material. Structural phase of the composite material has been confirmed by high quality Synchrotron X-ray diffraction pattern and Micro-Raman spectra. The grain surface morphology and elemental composition have been studied by Scanning electron microscope and Energy dispersive X-ray analysis. The distribution of magnetic exchange interactions and blocking behavior of the ferrimagnetic grains in composite samples has been understood by analyzing the temperature and magnetic field dependence of dc magnetization. Finally, information on modified micro-structure and ferrimagnetic parameters in composite samples has been obtained as the variation of annealing temperature of the ferrite component before making composite.

  3. Utilizing Waste Thermocol Sheets and Rusted Iron Wires to Fabricate Carbon-Fe3O4 Nanocomposite Based Supercapacitors: Turning Wastes into Value-Added Materials.

    PubMed

    Vadiyar, Madagonda M; Liu, Xudong; Ye, Zhibin

    2018-05-14

    In the present work, we demonstrate the synthesis of porous activated carbon (specific surface area, 1,883 m2 g-1), Fe3O4 nanoparticles, and carbon-Fe3O4 nanocomposites using local waste thermocol sheets and rusted iron wires. The resulting carbon, Fe3O4 nanoparticles, and carbon-Fe3O4 composites are used as electrode materials for supercapacitor application. In particular, C-Fe3O4 composite electrodes exhibit a high specific capacitance of 1,375 F g-1 at 1 A g-1 and longer cyclic stability with 98 % of capacitance retention over 10,000 cycles. Subsequently, asymmetric supercapacitor, i. e., C-Fe3O4//Ni(OH)2/CNT device exhibits a high energy density of 91.1 Wh kg-1 and a remarkable cyclic stability, showing 98% of capacitance retention over 10,000 cycles. Thus, this work has important implications not only for the fabrication of low-cost electrodes for high-performance supercapacitors but also for the recycling of waste thermocol sheets and rust iron wires for value-added reuse. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Green Synthesis of Magnetite (Fe3O4) Nanoparticles Using Seaweed ( Kappaphycus alvarezii) Extract

    NASA Astrophysics Data System (ADS)

    Yew, Yen Pin; Shameli, Kamyar; Miyake, Mikio; Kuwano, Noriyuki; Bt Ahmad Khairudin, Nurul Bahiyah; Bt Mohamad, Shaza Eva; Lee, Kar Xin

    2016-06-01

    In this study, a simple, rapid, and eco-friendly green method was introduced to synthesize magnetite nanoparticles (Fe3O4-NPs) successfully. Seaweed Kappaphycus alvarezii ( K. alvarezii) was employed as a green reducing and stabilizing agents. The synthesized Fe3O4-NPs were characterized with X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV-Vis), Fourier transform infrared (FT-IR), and transmission electron microscopy (TEM) techniques. The X-ray diffraction planes at (220), (311), (400), (422), (511), (440), and (533) were corresponding to the standard Fe3O4 patterns, which showed the high purity and crystallinity of Fe3O4-NPs had been synthesized. Based on FT-IR analysis, two characteristic absorption peaks were observed at 556 and 423 cm-1, which proved the existence of Fe3O4 in the prepared nanoparticles. TEM image displayed the synthesized Fe3O4-NPs were mostly in spherical shape with an average size of 14.7 nm.

  5. Green Synthesis of Magnetite (Fe3O4) Nanoparticles Using Seaweed (Kappaphycus alvarezii) Extract.

    PubMed

    Yew, Yen Pin; Shameli, Kamyar; Miyake, Mikio; Kuwano, Noriyuki; Bt Ahmad Khairudin, Nurul Bahiyah; Bt Mohamad, Shaza Eva; Lee, Kar Xin

    2016-12-01

    In this study, a simple, rapid, and eco-friendly green method was introduced to synthesize magnetite nanoparticles (Fe3O4-NPs) successfully. Seaweed Kappaphycus alvarezii (K. alvarezii) was employed as a green reducing and stabilizing agents. The synthesized Fe3O4-NPs were characterized with X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV-Vis), Fourier transform infrared (FT-IR), and transmission electron microscopy (TEM) techniques. The X-ray diffraction planes at (220), (311), (400), (422), (511), (440), and (533) were corresponding to the standard Fe3O4 patterns, which showed the high purity and crystallinity of Fe3O4-NPs had been synthesized. Based on FT-IR analysis, two characteristic absorption peaks were observed at 556 and 423 cm(-1), which proved the existence of Fe3O4 in the prepared nanoparticles. TEM image displayed the synthesized Fe3O4-NPs were mostly in spherical shape with an average size of 14.7 nm.

  6. Fe3O4/PS magnetic nanoparticles: Synthesis, characterization and their application as sorbents of oil from waste water

    NASA Astrophysics Data System (ADS)

    Yu, Liuhua; Hao, Gazi; Gu, Junjun; Zhou, Shuai; Zhang, Ning; Jiang, Wei

    2015-11-01

    In this work, Fe3O4/PS composites with a rough surface and different coating rates were successfully designed and synthesized by emulsion polymerization. We carried out some comparative experiments to compare magnetic properties and oil absorption properties of the nano-magnetic materials. It had been found that several prepared groups of magnetic nanocomposites have a core-shell structure and good coating rates. These nanoparticles combined with unsinked, highly hydrophobic and superoleophilic properties. The absorption capacity of Fe3O4/PS composites for organic solvents and the composites could absorb diesel oil up to 2.492 times of its own weight. It is more important that the oil could be readily removed from the surfaces of nanoparticles by a simple ultrasonic treatment whereas the nanocomposites particles still kept highly hydrophobic and superoleophilic characteristics. With a combination of simple synthesis process, low density, magnetic responsibility and excellent hydrophobicity, Fe3O4/PS nanocomposites as a promising absorbent have great potential in the application of spilled oil recovery and environmental protection.

  7. Physicochemical characteristics of Fe3O4 magnetic nanocomposites based on Poly(N-isopropylacrylamide) for anti-cancer drug delivery.

    PubMed

    Davaran, Soodabeh; Alimirzalu, Samira; Nejati-Koshki, Kazem; Nasrabadi, Hamid Tayef; Akbarzadeh, Abolfazl; Khandaghi, Amir Ahmad; Abbasian, Mojtaba; Alimohammadi, Somayeh

    2014-01-01

    Hydrogels are a class of polymers that can absorb water or biological fluids and swell to several times their dry volume, dependent on changes in the external environment. In recent years, hydrogels and hydrogel nanocomposites have found a variety of biomedical applications, including drug delivery and cancer treatment. The incorporation of nanoparticulates into a hydrogel matrix can result in unique material characteristics such as enhanced mechanical properties, swelling response, and capability of remote controlled actuation. In this work, synthesis of hydrogel nanocomposites containing magnetic nanoparticles are studied. At first, magnetic nanoparticles (Fe3O4) with an average size 10 nm were prepared. At second approach, thermo and pH-sensitive poly (N-isopropylacrylamide -co-methacrylic acid-co-vinyl pyrrolidone) (NIPAAm-MAA- VP) were prepared. Swelling behavior of co-polymer was studied in buffer solutions with different pH values (pH=5.8, pH=7.4) at 37 °C. Magnetic iron oxide nanoparticles (Fe3O4) and doxorubicin were incorporated into copolymer and drug loading was studied. The release of drug, carried out at different pH and temperatures. Finally, chemical composition, magnetic properties and morphology of doxorubicin-loaded magnetic hydrogel nanocomposites were analyzed by FT- IR, vibrating sample magnetometry (VSM), scanning electron microscopy (SEM). The results indicated that drug loading efficiency was increased by increasing the drug ratio to polymer. Doxorubicin was released more at 40 °C and in acidic pH compared to that 37 °C and basic pH. This study suggested that the poly (NIPAAm-MAA-VP) magnetic hydrogel nanocomposite could be an effective carrier for targeting drug delivery systems of anti-cancer drugs due to its temperature sensitive properties.

  8. Templated assembly of BiFeO3 nanocrystals into 3D mesoporous networks for catalytic applications

    NASA Astrophysics Data System (ADS)

    Papadas, I. T.; Subrahmanyam, K. S.; Kanatzidis, M. G.; Armatas, G. S.

    2015-03-01

    The self-assembly of uniform nanocrystals into large porous architectures is currently of immense interest for nanochemistry and nanotechnology. These materials combine the respective advantages of discrete nanoparticles and mesoporous structures. In this article, we demonstrate a facile nanoparticle templating process to synthesize a three-dimensional mesoporous BiFeO3 material. This approach involves the polymer-assisted aggregating assembly of 3-aminopropanoic acid-stabilized bismuth ferrite (BiFeO3) nanocrystals followed by thermal decomposition of the surfactant. The resulting material consists of a network of tightly connected BiFeO3 nanoparticles (~6-7 nm in diameter) and has a moderately high surface area (62 m2 g-1) and uniform pores (ca. 6.3 nm). As a result of the unique mesostructure, the porous assemblies of BiFeO3 nanoparticles show an excellent catalytic activity and chemical stability for the reduction of p-nitrophenol to p-aminophenol with NaBH4.The self-assembly of uniform nanocrystals into large porous architectures is currently of immense interest for nanochemistry and nanotechnology. These materials combine the respective advantages of discrete nanoparticles and mesoporous structures. In this article, we demonstrate a facile nanoparticle templating process to synthesize a three-dimensional mesoporous BiFeO3 material. This approach involves the polymer-assisted aggregating assembly of 3-aminopropanoic acid-stabilized bismuth ferrite (BiFeO3) nanocrystals followed by thermal decomposition of the surfactant. The resulting material consists of a network of tightly connected BiFeO3 nanoparticles (~6-7 nm in diameter) and has a moderately high surface area (62 m2 g-1) and uniform pores (ca. 6.3 nm). As a result of the unique mesostructure, the porous assemblies of BiFeO3 nanoparticles show an excellent catalytic activity and chemical stability for the reduction of p-nitrophenol to p-aminophenol with NaBH4. Electronic supplementary information (ESI

  9. The Partial Molar Volume and Thermal Expansivity of Fe2O3 in Alkali Silicate Liquids: Evidence for the Average Coordination of Fe3+

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Lange, R.

    2003-12-01

    Ferric iron is an important component in magmatic liquids, especially in those formed at subduction zones. Although it has long been known that Fe3+ occurs in four-, five- and six-fold coordination in crystalline compounds, only recently have all three Fe3+ coordination sites been confirmed in silicate glasses utilizing XANES spectroscopy at the Fe K-edge (Farges et al., 2003). Because the density of a magmatic liquid is largely determined by the geometrical packing of its network-forming cations (e.g., Si4+, Al3+, Ti4+, and Fe3+), the capacity of Fe3+ to undergo composition-induced coordination change affects the partial molar volume of the Fe2O3 component, which must be known to calculate how the ferric-ferrous ratio in magmatic liquids changes with pressure. Previous work has shown that the partial molar volume of Fe2O3 (VFe2O3) varies between calcic vs. sodic silicate melts (Mo et al., 1982; Dingwell and Brearley, 1988; Dingwell et al., 1988). The purpose of this study is to extend the data set in order to search for systematic variations in VFe2O3 with melt composition. High temperature (867-1534° C) density measurements were performed on eleven liquids in the Na2O-Fe2O3-FeO-SiO2 (NFS) system and five liquids in the K2O-Fe2O3-FeO-SiO2 (KFS) system using Pt double-bob Archimedean method. The ferric-ferrous ratio in the sodic and potassic liquids at each temperature of density measurement were calculated from the experimentally calibrated models of Lange and Carmichael (1989) and Tangeman et al. (2001) respectively. Compositions range (in mol%) from 4-18 Fe2O3, 0-3 FeO, 12-39 Na2O, 25-37 K2O, and 43-78 SiO2. Our density data are consistent with those of Dingwell et al. (1988) on similar sodic liquids. Our results indicate that for all five KFS liquids and for eight of eleven NFS liquids, the partial molar volume of the Fe2O3 component is a constant (41.57 ñ 0.14 cm3/mol) and exhibits zero thermal expansivity (similar to that for the SiO2 component). This value

  10. Preparation and magnetic properties of magnetic photonic crystal by using monodisperse polystyrene covered Fe3O4 nanoparticles onto glass substrate

    NASA Astrophysics Data System (ADS)

    Azizi, Zahra Sadat; Tehranchi, Mohammad Mehdi; Vakili, Seyed Hamed; Pourmahdian, Saeed

    2018-05-01

    Engineering approach towards combined photonic band gap properties and magnetic/polymer composite particles, attract considerable attention of researchers due to their unique properties. In this research, two different magnetic particles were prepared by nearly monodisperse polystyrene spheres as bead with two concentrations of Fe3O4 nanoparticles to prepare magnetic photonic crystals (MPCs). The crystal surfaces and particles morphology were investigated employing scanning electron microscopy and transmission electron microscopy. The volume fraction of magnetic material embedded into colloidal spheres and their morphology was found to be a key parameter in the optical and magneto-optical properties of transparent MPC.

  11. MnFe2 O4 Nanocrystals Wrapped in a Porous Organic Polymer: A Designed Architecture for Water-Splitting Photocatalysis.

    PubMed

    Dhanalaxmi, Karnekanti; Yadav, Rajkumar; Kundu, Sudipta K; Reddy, Benjaram Mahipal; Amoli, Vipin; Sinha, Anil Kumar; Mondal, John

    2016-10-24

    A novel MnFe 2 O 4 -porous organic polymer (POP) nanocomposite was synthesized by a facile hydrothermal method and using the highly cross-linked N-rich benzene-benzylamine POP. The nanocomposite presented highly efficient photocatalytic performance in the hydrogen evolution reaction (HER) from pure water without addition of any sacrificial agent under one AM 1.5 G sunlight illumination. A photocatalytic activity of 6.12 mmol h -1  g -1 was achieved in the absence of any noble metal cocatalyst, which is the highest H 2 production rate reported for nonprecious metal catalysts. The photocatalytic performance of MnFe 2 O 4 -POP could be attributed to the intrinsic synergistic effects of manganese ferrite (MnFe 2 O 4 ) nanoclusters interacting with the nitrogen dopant POP with a unique mesoporous nanoarchitecture and spatially confined growth of MnFe 2 O 4 in the interconnected POP network, leading to high visible-light absorption with fast electron transport. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Enzymes immobilization on Fe 3O 4-gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Kalska-Szostko, B.; Rogowska, M.; Dubis, A.; Szymański, K.

    2012-01-01

    In the present study Fe3O4 magnetic nanoparticles were synthesized by coprecipitation of Fe2+ and Fe3+ from chlorides. In the next step magnetite-gold core-shell nanoparticles were synthesized from HAuCl4 using an ethanol as a reducing agent. Finally, magnetic nanoparticles were functionalized by hexadecanethiol. The immobilization of biological molecules (trypsin and glucose oxidase) to the thiol-modified and unmodified magnetite-gold nanoparticles surface was tested. The resulting nanoparticles were characterized by infrared spectroscopy, differential scanning calorimetry, Mössbauer spectroscopy and transmission electron microscopy.

  13. Structural, dielectric and ferroelectric studies of (x) Mg0.25Cu0.25Zn0.5Fe2O4 + (1-x) BaTiO3 magnetoelectric nano-composites

    NASA Astrophysics Data System (ADS)

    Khader, S. Abdul; Muneeswaran, M.; Giridharan, N. V.; Sankarappa, T.

    2016-05-01

    The Particulate nano-composites of ferrite and ferroelectric phases having the general formula (x) Mg0.25Cu0.25Zn0.5Fe2O4 + (1-x) BaTiO3 (x=15%, 30% and 45%) were synthesized by sintering mixtures of highly ferroelectric BaTiO3 (BT) and highly magneto-strictive magnetic component Mg0.25Cu0.25Zn0.5Fe2O4(MCZF). The presence of constituent phases of ferrite, ferroelectric and their composites were probed and confirmed by X-ray diffraction (XRD) studies. Surface morphology of the samples has been investigated using Field Emission Scanning Electron Microscope (FESEM). The variation of dielectric constant and dissipation factor as a function of frequency from 100 Hz to 1 MHz at room temperature were carried out using a Hioki LCR Hi-Tester. The dielectric constant and dielectric loss were found to decrease rapidly in the low frequency region and became almost constant in the high frequency region. The electrical conductivity deduced from the measured dielectric data has been thoroughly analyzed and found that the conduction mechanism in these composites is in conformity with small polaron hopping model. The ferroelectric properties of synthesized magneto-electric nano-composites were measured using P-E loop tracer.

  14. Preparation of CNC-dispersed Fe3O4 nanoparticles and their application in conductive paper.

    PubMed

    Liu, Kai; Nasrallah, Joseph; Chen, Lihui; Huang, Liulian; Ni, Yonghao

    2015-08-01

    Well-dispersed Fe3O4 nanoparticles (NPs) were synthesized by a co-precipitation method in the presence of cellulose nano-crystals (CNC) as the template. The thus prepared Fe3O4 NPs were then used as a coating agent for the preparation of conductive paper. Fourier transform infrared spectroscopy (FTIR) results revealed that the Fe3O4 NPs were immobilized on the CNC through interactions between the hydroxyl groups of CNC and Fe3O4. Scanning transmission electron microscopy (STEM) images showed that the Fe3O4 NPs prepared in the presence of CNC can be dispersed in the CNC network, while the Fe3O4 NPs prepared in the absence of CNC tended to aggregate in aqueous solutions. The conductivity of the Fe3O4 NPs coated paper can reach to 0.0269 S/m at the coating amount of 14.75 g/m(2) Fe3O4/CNC nanocomposites. Therefore, the thus obtained coated paper can be potentially used as anti-static packaging material in the packaging field. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. TiO2-based (Fe3O4, SiO2, reduced graphene oxide) magnetically recoverable photocatalysts for imazalil degradation in a synthetic wastewater.

    PubMed

    Santiago, Dunia E; Pastrana-Martínez, Luisa M; Pulido-Melián, Elisenda; Araña, Javier; Faria, Joaquim L; Silva, Adrián M T; González-Díaz, Óscar; Doña-Rodríguez, José M

    2018-03-02

    Magnetite (Fe 3 O 4 ), a core-shell material (SiO 2 @Fe 3 O 4 ), and reduced graphene oxide-Fe 3 O 4 (referred as rGO-MN) were used as supports of a specific highly active TiO 2 photocatalyst. Thermal treatments at 200 or 450 °C, different atmospheres (air or N 2 ), and TiO 2 :support weight ratios (1.0, 1.5, or 2.0) were investigated. X-ray diffractograms revealed that magnetite is not oxidized to hematite when the core-shell SiO 2 @Fe 3 O 4 material-or a N 2 atmosphere (instead of air) in the thermal treatment-was employed to prepare the TiO 2 -based catalysts (the magnetic properties being preserved). The materials treated with N 2 were first tested for degradation of imazalil (a well-known fungicide) in deionized water. The best compromise between the photocatalytic activity, magnetic separation, and Fe leached (1.61 mg L -1 , i.e., below the threshold for water reuse in irrigation) was found for the magnetic catalyst prepared with SiO 2 @Fe 3 O 4 , an intermediate TiO 2 :support ratio (1.5), and treated at 200 °C under N 2 atmosphere (i.e., SiO 2 @Fe 3 O 4 -EST-1.5-200-N 2 ). This material was then tested for the treatment of imazalil in a synthetic wastewater, SW (with a chemical composition simulating an effluent resulting from fruit postharvest activity). This SW has a pH of 4.2 and the experiments were carried out at this natural pH 0 and at neutral conditions (keeping pH at 7 along the reaction). The magnetic catalyst was more active than bare TiO 2 for the treatment of imazalil in SW at natural pH. Since Fe leaching was observed (3.53 mg L -1 ), added H 2 O 2 enhanced both imazalil degradation and mineralization. Conveniently, these catalysts can be readily recovered by using a conventional magnetic field, as demonstrated over three consecutive recycling runs. Graphical abstract % Imazalil conversion using different magnetic catalysts and comparison with bare TiO 2 .

  16. Magnetic anisotropy modulation of epitaxial Fe3O4 films on MgO substrates

    NASA Astrophysics Data System (ADS)

    Chichvarina, O.; Herng, T. S.; Xiao, W.; Hong, X.; Ding, J.

    2015-05-01

    Fe3O4 has been widely studied because of its great potential in spintronics and other applications. As a magnetic electrode, it is highly desired if magnetic anisotropy can be controlled. Here, we report the results from our systematic study on the magnetic properties of magnetite (Fe3O4) thin films epitaxially grown on various MgO substrates. Strikingly, we observed a prominent perpendicular magnetic anisotropy in Fe3O4 film deposited on MgO (111) substrate. When measured in out-of-plane direction, the film (40 nm thick) exhibits a well-defined square hysteresis loop with coercivity (Hc) above 1 kOe, while much lower coercivity was obtained in the in-plane orientation. In sharp contrast, the films deposited onto MgO (100) and MgO (110) substrates show in-plane magnetic anisotropy. These films exhibit a typical soft magnet characteristic—Hc lies within the range of 200-400 Oe. All the films showed a clear Verwey transition near 120 K—a characteristic of Fe3O4 material. In addition, a series of magnetoresistance (MR) measurements is performed and the MR results are in good agreement with the magnetic observations. The role of the substrate orientation and film thickness dependency is also investigated.

  17. Graphene/Fe3 O4 Nanocomposites as Efficient Anodes to Boost the Lifetime and Current Output of Microbial Fuel Cells.

    PubMed

    Song, Rong-Bin; Zhao, Cui-E; Gai, Pan-Pan; Guo, Dan; Jiang, Li-Ping; Zhang, Qichun; Zhang, Jian-Rong; Zhu, Jun-Jie

    2017-02-01

    The enhancement of microbial activity and electrocatalysis through the design of new anode materials is essential to develop microbial fuel cells (MFCs) with longer lifetimes and higher output. In this research, a novel anode material, graphene/Fe 3 O 4 (G/Fe 3 O 4 ) composite, has been designed for Shewanella-inoculated MFCs. Because the Shewanella species could bind to Fe 3 O 4 with high affinity and their growth could be supported by Fe 3 O 4 , the bacterial cells attached quickly onto the anode surface and their long-term activity improved. As a result, MFCs with reduced startup time and improved stability were obtained. Additionally, the introduction of graphene not only provided a large surface area for bacterial attachment, but also offered high electrical conductivity to facilitate extracellular electron transfer (EET). The results showed that the current and power densities of a G/Fe 3 O 4 anode were much higher than those of each individual component as an anode. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Photo-thermal characteristics of water-based Fe3O4@SiO2 nanofluid for solar-thermal applications

    NASA Astrophysics Data System (ADS)

    Khashan, Saud; Dagher, Sawsan; Omari, Salahaddin Al; Tit, Nacir; Elnajjar, Emad; Mathew, Bobby; Hilal-Alnaqbi, Ali

    2017-05-01

    This work proposes and demonstrates the novel idea of using Fe3O4@SiO2 core/shell structure nanoparticles (NPs) to improve the solar thermal conversion efficiency. Magnetite (Fe3O4) NPs are synthesized by controlled co-precipitation method. Fe3O4@SiO2 NPs are prepared based on sol-gel approach, then characterized. Water-based Fe3O4@SiO2 nanofluid is prepared and usedto illustrate the photo-thermal conversion characteristics of a solar collector under solar simulator. The temperature rise characteristics of the nanofluids are investigated at different heights of the solar collector, for duration of 300 min, under a solar intensity of 1000 W m-2. The experimental results show that Fe3O4@SiO2 NPs have a core/shell structure with spherical morphology and size of about 400 nm. Fe3O4@SiO2/H2O nanofluid enhances the photo-thermal conversion efficiency compared with base fluid and Fe3O4/H2O nanofluid, since the silica coating improves both the thermodynamic stability of the nanofluid and the light absorption effectiveness of the NPs. At a concentration of 1 mg/1 ml of Fe3O4@SiO2/H2O, and with the utilization of kerosene into the solar collector, and exposure for radiation for 5 min, the photo-thermal conversion efficiency has shown an enhancement at the bottom of the collector of about 32.9% compared to the base fluid.

  19. CMC-coated Fe3O4 nanoparticles as new MRI probes for hepatocellular carcinoma

    NASA Astrophysics Data System (ADS)

    Sitthichai, Sudarat; Pilapong, Chalermchai; Thongtem, Titipun; Thongtem, Somchai

    2015-11-01

    Pure Fe3O4 nanoparticles and Fe3O4 magnetic nanoparticles (MNPs) coated with carboxymethyl cellulose (CMC) were successfully prepared by co-precipitating of FeCl2·4H2O and FeCl3·6H2O in the solutions containing ammonia at 80 °C for 3 h. Phase, morphology, particle-sized distribution, surface chemistry, and weight loss were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) including high-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED), thermogravimetric analysis (TGA), and Fourier transform infrared (FTIR) spectroscopy. In this research, CMC-coated Fe3O4 MNPs consisting of Fe2+ and Fe3+ ions with 543.3-mM-1 s-1 high relaxivity were detected and were able to be used for magnetic resonance imaging (MRI) application with very good contrast for targeting hepatocellular carcinoma (HCC) without any further vectorization.

  20. Vancomycin-modified Fe3O4@SiO2@Ag microflowers as effective antimicrobial agents

    PubMed Central

    Wang, Chongwen; Zhang, Kehan; Zhou, Zhe; Li, Qingjun; Shao, Liting; Hao, Rong Zhang; Xiao, Rui; Wang, Shengqi

    2017-01-01

    Nanomaterials combined with antibiotics exhibit synergistic effects and have gained increasing interest as promising antimicrobial agents. In this study, vancomycin-modified magnetic-based silver microflowers (Van/Fe3O4@SiO2@Ag microflowers) were rationally designed and prepared to achieve strong bactericidal ability, a wide antimicrobial spectrum, and good recyclability. High-performance Fe3O4@SiO2@Ag microflowers served as a multifunction-supporting matrix and exhibited sufficient magnetic response property due to their 200 nm Fe3O4 core. The microflowers also possessed a highly branched flower-like Ag shell that provided a large surface area for effective Ag ion release and bacterial contact. The modified-vancomycin layer was effectively bound to the cell wall of bacteria to increase the permeability of the cell membrane and facilitate the entry of the Ag ions into the bacterium, resulting in cell death. As such, the fabricated Van/Fe3O4@SiO2@Ag microflowers were predicted to be an effective and environment-friendly antibacterial agent. This hypothesis was verified through sterilization of Gram-negative Escherichia coli and Gram-positive methicillin-resistant Staphylococcus aureus, with minimum inhibitory concentrations of 10 and 20 μg mL−1, respectively. The microflowers also showed enhanced effect compared with bare Fe3O4@SiO2@Ag microflowers and free-form vancomycin, confirming the synergistic effects of the combination of the two components. Moreover, the antimicrobial effect was maintained at more than 90% after five cycling assays, indicating the high stability of the product. These findings reveal that Van/Fe3O4@SiO2@Ag microflowers exhibit promising applications in the antibacterial fields. PMID:28450783

  1. Synthesis of a novel magnetic Fe3O4/γ-Al2O3 hybrid composite using electrode-alternation technique for the removal of an azo dye

    NASA Astrophysics Data System (ADS)

    Jung, Kyung-Won; Choi, Brian Hyun; Ahn, Kyu-Hong; Lee, Sang-Hyup

    2017-11-01

    A novel magnetic adsorbent of Fe3O4/γ-Al2O3 hybrid composite (denoted as M-Fe/Al-H) was developed electrochemically via a sequential application of iron and aluminum electrodes in a one-pot fashion, which called here as electrode-alternation technique, followed by pyrolysis. Physical and chemical properties of the prepared adsorbents were characterized and their feasibility towards the removal of di-anionic azo dye Acid Black 1 (AB1) was assessed. Textural and structural characterization revealed that the prepared M-Fe/Al-H possesses superior properties than those of M-Fe (sole usage of iron electrode), which may improve the adsorption capacity. Kinetics revealed that the adsorption equilibrium was reached within 12 h with approximately 90% of the equilibrium adsorption capacity within the first 3 h. Comprehensive analysis using the pseudo-second order and intraparticle diffusion models indicated that the dominant mechanism of the reaction is film diffusion with intraparticle diffusion being the rate determining step. The adsorption equilibrium isotherm data were best represented by the Sips isotherm model, which found to be approximately 1501, 1786, and 1959 mg/g at 283, 293, and 303 K, respectively. The exceptional performance as well as its ease of separation allows M-Fe/Al-H to be a promising candidate as an effective for azo dye removal from various aqueous medium.

  2. Hematite (α-Fe2O3) - A potential Ce4+ carrier in red mud.

    PubMed

    Bolanz, Ralph M; Kiefer, Stefan; Göttlicher, Jörg; Steininger, Ralph

    2018-05-01

    Cerium is the most abundant rare earth element (REE) within the waste product of alumina production (red mud), but its speciation in this complex material is still barely understood. Previous studies showed evidence for a correlation between Ce and the main constituent of red mud, iron oxides, which led us to investigate the most abundant iron oxide in red mud, hematite, as possible carrier phase for Ce. Synthetic hematite can incorporate up to 1.70±0.01wt% Ce, which leads to a systematical increase of all unit cell parameters. Investigations by extended X-ray absorption fine structure spectroscopy suggest an incorporation of Ce 4+ O 6 into the hematite structure by a novel atomic arrangement, fundamentally different from the close-range order around Fe 3+ in hematite. Samples of red mud were taken in Lauta (Saxony), Germany and analyzed by powder X-ray diffraction, inductively coupled plasma mass and optical emission spectrometry, electron microprobe analysis and X-ray absorption near-edge structure spectroscopy. Red mud samples consist of hematite (Fe 2 O 3 ) (34-58wt%), sodalite (Na 8 Al 6 Si 6 O 24 Cl 2 ) (4-30wt%), gibbsite (Al(OH) 3 ) (0-25wt%), goethite (FeOOH) (10-23wt%), böhmite (AlOOH) (0-11wt%), rutile (TiO 2 ) (4-8wt%), cancrinite (Na 6 Ca 2 Al 6 Si 6 O 24 (CO 3 ) 2 ) (0-5wt%), nordstrandite (Al(OH) 3 ) (0-5wt%) and quartz (SiO 2 ) (0-4wt%). While the main elemental composition is Fe>Al>Na>Ti>Ca (Si not included), the average concentration of REE is 1109±6mg/kg with an average Ce concentration of 464±3mg/kg. The main carrier of Ce was located in the Fe-rich fine-grained fraction of red mud (0.10wt% Ce 2 O 3 ), while other potential Ce carriers like monazite, lead oxides, secondary Ce-minerals and particles of potentially anthropogenic origin are of subordinated relevance. Cerium in red mud occurs predominantly as Ce 4+ , which further excludes Ce 3+ minerals as relevant sources. Copyright © 2017. Published by Elsevier B.V.

  3. Facile one-pot fabrication of nano-Fe3O4/carboxyl-functionalized baker's yeast composites and their application in methylene blue dye adsorption

    NASA Astrophysics Data System (ADS)

    Du, Zongjun; Zhang, Yue; Li, Zhengjie; Chen, Hui; Wang, Ying; Wang, Guangtu; Zou, Ping; Chen, Huaping; Zhang, Yunsong

    2017-01-01

    Nano-Fe3O4/carboxyl-functionalized baker's yeast composites (NF/CF-BYs) were prepared for the first time based on the ultrasonic cavitation assisted oxygen implosion method using single Fe2+ as iron source. The series of characterization analysis results showed that the obtained NF/CF-BYs had not only the superparamagnetic properties of nano-Fe3O4, but their surface also had plenty of functional groups (especially carboxyl groups) introduced by strong oxidization. The adsorption properties of NF/CF-BYs for methylene blue (MB) were also evaluated. The results displayed that the uptakes of NF/CF-BYs for MB were higher than that of pristine baker's yeast (P-BYs), and the adsorption process was followed by the pseudo-second-order kinetic model and Langmuir isotherm. The maximum adsorption capacity of NF/CF-BYs for MB was estimated to be 141.75 mg g-1 at pH 6. The regeneration efficiency of the obtained NF/CF-BYs was attained to be more than 90%.

  4. N-Doped Dual Carbon-Confined 3D Architecture rGO/Fe3O4/AC Nanocomposite for High-Performance Lithium-Ion Batteries.

    PubMed

    Ding, Ranran; Zhang, Jie; Qi, Jie; Li, Zhenhua; Wang, Chengyang; Chen, Mingming

    2018-04-25

    To address the issues of low electrical conductivity, sluggish lithiation kinetics and dramatic volume variation in Fe 3 O 4 anodes of lithium ion battery, herein, a double carbon-confined three-dimensional (3D) nanocomposite architecture was synthesized by an electrostatically assisted self-assembly strategy. In the constructed architecture, the ultrafine Fe 3 O 4 subunits (∼10 nm) self-organize to form nanospheres (NSs) that are fully coated by amorphous carbon (AC), formatting core-shell structural Fe 3 O 4 /AC NSs. By further encapsulation by reduced graphene oxide (rGO) layers, a constructed 3D architecture was built as dual carbon-confined rGO/Fe 3 O 4 /AC. Such structure restrains the adverse reaction of the electrolyte, improves the electronic conductivity and buffers the mechanical stress of the entire electrode, thus performing excellent long-term cycling stability (99.4% capacity retention after 465 cycles relevant to the second cycle at 5 A g -1 ). Kinetic analysis reveals that a dual lithium storage mechanism including a diffusion reaction mechanism and a surface capacitive behavior mechanism coexists in the composites. Consequently, the resulting rGO/Fe 3 O 4 /AC nanocomposite delivers a high reversible capacity (835.8 mA h g -1 for 300 cycles at 1 A g -1 ), as well as remarkable rate capability (436.7 mA h g -1 at 10 A g -1 ).

  5. Magnetically Separable Fe3O4/SnO2/Graphene Adsorbent for Waste Water Removal

    NASA Astrophysics Data System (ADS)

    Paramarta, V.; Taufik, A.; Saleh, R.

    2017-05-01

    Our previous study conducted the SnO2 and SnO2/graphene adsorption efficiency in Methylene Blue removal from aqueous solution, however, the difficulty of adsorbent separation from the methylene blue solution limits its efficiency. Therefore, in this work, SnO2 and SnO2/graphene was combined with Fe3O4 to improve the separation process and adsorption performance for removing the organic dyes. Fe3O4/SnO2/grapheme were synthesized by using the co-precipitation method. The graphene content was varied from 1, 3, and 5 weight percent (wt%). The crystalline phase and thermal stability of the samples were characterized by using X- ray Diffraction (XRD) and Thermal Gravimetric Analysis (TGA). The adsorption ability of the samples was investigated by using significant adsorption degradation of MB observed when the graphene in Fe3O4/SnO2 nanocomposite was added. The other parameters such as pH and initial concentration have also been investigated. The reusability was also investigated to study the stability of the samples. The fitting of equilibrium adsorption capacity result indicates that the adsorption mechanism of Fe3O4/SnO2 nanocomposite with graphene tends to follow the Langmuir adsorption isotherm model.

  6. Fast and Selective Preconcentration of Europium from Wastewater and Coal Soil by Graphene Oxide/Silane@Fe3O4 Dendritic Nanostructure.

    PubMed

    Patra, Santanu; Roy, Ekta; Madhuri, Rashmi; Sharma, Prashant K

    2015-05-19

    In this study, nanocomposite of graphene oxide and silane modified magnetic nanoparticles (silane@Fe3O4) were synthesized in a form of dendritic structure. For this, silane@Fe3O4 nanoparticle gets sandwiched between two layers of graphene oxide by chemical synthesis route. The synthesized dendritic structure was used as a monomer for synthesis of europium ion imprinted polymer. The synthesis of imprinted polymer was contemplated onto the surface of the vinyl group modified silica fiber by activated generated free radical atom-transfer radical polymerization, that is, AGET-ATRP technique. The synthesized dendritic monomer was characterized by XRD, FT-IR, VSM, FE-SEM, and TEM analyses. The imprinted polymer modified silica fiber was first validated in the aqueous and blood samples for successful extraction and detection of europium ion with limit of detection = 0.050 pg mL(-1) (signal/noise = 3). The imprinted polymer modified silica fiber was also used for preconcentration and separation of europium metal ion from various soil samples of coal mine areas. However, the same silica fiber was also used for wastewater treatment and shows 100% performance for europium removal. The findings herein suggested that dendritic nanocomposite could be potentially used as a highly effective material for the enrichment and preconcentration of europium or other trivalent lanthanides/actinides in nuclear waste management.

  7. Synthesis and characterization of functionalized mesoprous SBA-15 decorated with Fe(3)O(4) nanoparticles for removal of Ce(III) ions from aqueous solution: ICP-OES detection and central composite design optimization.

    PubMed

    Dashtian, Kheibar; Zare-Dorabei, Rouholah

    2017-05-15

    A selective adsorbent based on the modification of mesoprous SBA-15 with N,N'-bis(salicylidene)-1,3-ethylenediamine Schiff base and decorated with Fe 3 O 4 nanoparticles (SBA-15-BSEA-Fe 3 O 4 -NPs) for Ce(III) ions removal was reported. The SBA-15-BSEA-Fe 3 O 4 -NPs was identified by XRD, FE-SEM, TEM, SEM, FT-IR, VSM, BET and BJH analysis. Central composite design (CCD) was applied to evaluate the main and interactive effects of adsorption variables and optimize the operational parameters. The important variable such as initial pH solution, SBA-15-BSEA-Fe 3 O 4 -NPs mass, shaking time and initial concentration of Ce 3+ ions were studied under batch mode. In desirability concession of 1.0 as optimum value for R% Ce(III) , the level of factors was as follows: shaking time 80min, SBA-15-BSEA-Fe 3 O 4 -NPs mass 0.05g, pH 5 and initial concentration of Ce(III) ions 40mgL -1 . The SBA-15-BSEA-Fe 3 O 4 -NPs exhibited high adsorption efficiency and very good selectivity through cerium removal even in the presence of other ions (La 3+ , Nb 3+ , Er 3+ , Cu 2+ , Cd 2+ , Cr 3+ , and Fe 2+ ions). The SBA-15-BSEA-Fe 3 O 4 -NPs was successfully regenerated and the response was reversible. The R.S.D. of the adsorption process was less than 1.02%. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Bimetallic-organic framework derived porous Co3O4/Fe3O4/C-loaded g-C3N4 nanocomposites as non-enzymic electrocatalysis oxidization toward ascorbic acid, dopamine acid, and uric acid

    NASA Astrophysics Data System (ADS)

    Hu, Bin; Liu, Yongkang; Wang, Zhuo-Wei; Song, Yingpan; Wang, Minghua; Zhang, Zhihong; Liu, Chun-Sen

    2018-05-01

    We report on the synthesis of Co- and Fe-based bimetallic nanocatalysts embedded in mesoporous carbon and g-C3N4 nanosheets (denoted as Co3O4/Fe3O4/mC@g-C3N4) for selectively simultaneous determination of ascorbic acid (AA), dopamine acid (DA), and uric acid (UA). These electrocatalysts consisting of bimetallic Co-Fe alloy nanoparticles encapsulated in N-doped carbon matrix were prepared via pyrolysis of Co/Fe-MOFs after grinding with high amounts of melamine. Chemical/crystal structures suggest high contents of mesoporous carbon in calcinated Co3O4/Fe3O4/mC nanocomposites, which exhibited enhanced electrocatalytic activity toward small biomolecules. The intrinsic performances of Co/Fe-MOFs with large specific surface area and regular nodes in the two-dimensional nanostructured g-C3N4 nanosheets endowed the as-prepared series of Co3O4/Fe3O4/mC@g-C3N4 nanocomposites with remarkable electrocatalytic activities and high adsorption ability toward oxidation of AA, DA, and UA. The developed biosensors also showed long-term stability and high selectivity for targeted analytes, with satisfactory results on actual samples in human urine. The results indicate that the as-synthesized Co3O4/Fe3O4/mC@g-C3N4 nanostructure exhibits good electrocatalytic activity and potential applications in clinical diagnosis and biosensing.

  9. Facile synthesis of magnetic Fe3O4/graphene composites for enhanced U(VI) sorption

    NASA Astrophysics Data System (ADS)

    Zhao, Donglin; Zhu, Hongyu; Wu, Changnian; Feng, Shaojie; Alsaedi, Ahmed; Hayat, Tasawar; Chen, Changlun

    2018-06-01

    A novel magnetic Fe3O4/graphene composite (FGC) was fabricated by a facile one-step reaction route and shown to be effective for sorbing U(VI) from aqueous solution. The structure, properties and application of the prepared FGC composite were well evaluated. The high saturation magnetization (45.6 emu/g) made FGC easier to be separated from the media within several seconds under an external magnetic. Effects of different ambient conditions (i.e., pH and ionic strength, contact time, temperatures) on sorption behaviors of U(VI) on FGC were carried out by batch experiments. According to the calculation of Langmuir model, the maximum sorption capacity of U(VI) on the FGC at pH 5.5 and 298 K was 176.47 mg/g. The sorption was correlated with the effects of pH, contact time, and temperature. X-ray photoelectron spectroscopy analysis revealed that U(VI) was sorbed on FGC via oxygen-containing functional groups. This work demonstrated that FGC could be recycled and used as an effective recyclable sorbent for sorption of U(VI).

  10. The phase relations in the In 2O 3Fe 2ZnO 4ZnO system at 1350°C

    NASA Astrophysics Data System (ADS)

    Nakamura, Masaki; Kimizuka, Noboru; Mohri, Takahiko

    1990-05-01

    The phase relations in the In 2O 3Fe 2ZnO 4ZnO system at 1350°C are determined by means of a classical quenching method. There are a series of homologous solid solutions, In 1.28Fe 0.72O 3(ZnO)InFeO 3(ZnO), In 1.69Fe 0.31O 3(ZnO) 2InFeO 3(ZnO) 2In 0.85Fe 1.15O 3(ZnO) 2, In 2O 3(ZnO) 3InFeO 3(ZnO) 3In 0.78Fe 1.22O 3(ZnO) 3, In 2O 3(ZnO) 4InFeO 3(ZnO) 4In 0.62Fe 1.38O 3(ZnO) 4, In 2O 3(ZnO) 5InFeO 3(ZnO) 5In 0.67Fe 1.33O 3(ZnO) 5, In 2O 3(ZnO) 6InFeO 3(ZnO) 6In 0.60Fe 1.40O 3(ZnO) 6, In 2O 3(ZnO) 7InFeO 3(ZnO) 7In 0.51Fe 1.49O 3(ZnO) 7, In 2O 3(ZnO) 8InFeO 3(ZnO) 8In 1- xFe 1+ xO 3(ZnO) 8 (0.44 ≦ x ≦ 0.64), In 2O 3(ZnO) 9InFeO 3(ZnO) 9In 0.20Fe 1.80O 3(ZnO) 9, In 2O 3(ZnO) 10InFeO 3(ZnO) 10In 1- xFe 1+ xO 3(ZnO) 10 (0.74 ≦ x ≦ 0.89), In 2O 3(ZnO) 11InFeO 3(ZnO) 11In 1- xFe 1+ xO 3(ZnO) 11 (0.60 ≦ x < 1.00), and In 2O 3(ZnO) 13InFeO 3(ZnO) 13Fe 2O 3(ZnO) 13 having the layered structures with space group R overline3m (m = odd) or {P6 3}/{mmc} (m = even) for m in the InFeO 3(ZnO) m. We conclude that there are a series of homologous phases, (Fe 2O 3)(ZnO) m (m ≧ 12) , in the binary ZnOFe 2O 3 system. The lattice constants for these solid solutions are presented as a hexagonal crystal system. It is also concluded that the crystal structures for each solid solution consist of three kinds of layers which are stacked perpendicular to the c-axis in the hexagonal crystal system. In 1+ xFe 1- xO 3(ZnO) m (0 ≦ x ≦ 1) is composed of the InO 1.5, (In xFe 1- xZn)O 2.5, and ZnO layers, and In 1- xFe 1+ xO 3(ZnO) m (0 ≦ x ≦ 1) is composed of (In 1- xFe x)O 1.5, (FeZn)O 2.5, and ZnO layers, respectively. The solid solution range between Fe 2ZnO 4 and In xFe 2- xZnO 4 ( x = 0.40 ± 0.02) with a spinel structure is observed.

  11. Epitaxial Fe{sub 3}Pt/FePt nanocomposites on MgO and SrTiO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casoli, F., E-mail: casoli@imem.cnr.it; Nasi, L.; Cabassi, R.

    We have exploited the pseudomorphic growth of the magnetically soft Fe{sub 3}Pt phase on top of L1{sub 0}-FePt to obtain fully epitaxial soft/hard nanocomposites on both MgO(100) and SrTiO{sub 3}(100). The magnetic properties of this new nanocomposite system, driven by the soft/hard exchange-coupling, can be tailored by varying soft phase thickness, soft phase magnetic anisotropy and substrate. Coercivity is strongly reduced by the addition of the soft phase, a reduction which is definitely affected by the nominal composition of the soft phase and by the substrate choice; similarly is the magnetic phase diagram of the composite system. Coercive field decreasesmore » down to 21% of the hard layer value for Fe{sub 3}Pt(5 nm)/FePt(3.55 nm) nanocomposites on SrTiO{sub 3}; this maximum coercivity reduction was obtained with a nominal atomic content of Fe in the soft phase of 80%.« less

  12. Enhanced microwave absorption properties of Fe3O4-modified flaky FeSiAl

    NASA Astrophysics Data System (ADS)

    He, Jun; Deng, Lianwen; Liu, Sheng; Yan, Shuoqing; Luo, Heng; Li, Yuhan; He, Longhui; Huang, Shengxiang

    2017-12-01

    The magnetic insulator Fe3O4-modified flaky Fe85Si9.5Al5.5 (FeSiAl) powders with significantly enhanced electromagnetic wave absorption properties in the frequency range of 2-8 GHz were prepared by chemical co-precipitation. X-ray diffraction (XRD) and scanning electron microscopy (SEM) have confirmed the formation of nanoparticles Fe3O4 precipitated on the flake-shaped FeSiAl. The electromagnetic measurements of the modified flakes presents a nearly invariable complex permeability and decreased complex permittivity in the 2-8 GHz, as well as improved impedance matching performance. More importantly, an excellent microwave absorbing performance with the bandwidth (RL <-10 dB) of 5.36 GHz is achieved in modified sample with the thickness of 1.5 mm, which is a promising microwave absorbing material in 2-8 GHz.

  13. Multifunctional magnetic Fe3O4 nanoparticles combined with chemotherapy and hyperthermia to overcome multidrug resistance

    PubMed Central

    Ren, Yanyan; Zhang, Haijun; Chen, Baoan; Cheng, Jian; Cai, Xiaohui; Liu, Ran; Xia, Guohua; Wu, Weiwei; Wang, Shuai; Ding, Jiahua; Gao, Chong; Wang, Jun; Bao, Wen; Wang, Lei; Tian, Liang; Song, Huihui; Wang, Xuemei

    2012-01-01

    Background Multidrug resistance in cancer is a major obstacle for clinical therapeutics, and is the reason for 90% of treatment failures. This study investigated the efficiency of novel multifunctional Fe3O4 magnetic nanoparticles (Fe3O4-MNP) combined with chemotherapy and hyperthermia for overcoming multidrug resistance in an in vivo model of leukemia. Methods Nude mice with tumor xenografts were randomly divided into a control group, and the treatment groups were allocated to receive daunorubicin, 5-bromotetrandrine (5-BrTet) and daunorubicin, Fe3O4-MNP, and Fe3O4-MNP coloaded with daunorubicin and 5-bromotetrandrine (Fe3O4-MNP-DNR-5-BrTet), with hyperthermia in an alternating magnetic field. We investigated tumor volume and pathology, as well as P-glycoprotein, Bcl-2, Bax, and caspase-3 protein expression to elucidate the effect of multimodal treatment on overcoming multidrug resistance. Results Fe3O4-MNP played a role in increasing tumor temperature during hyperthermia. Tumors became significantly smaller, and apoptosis of cells was observed in both the Fe3O4-MNP and Fe3O4-MNP-DNR-5-BrTet groups, especially in the Fe3O4-MNP-DNR-5-BrTet group, while tumor volumes in the other groups had increased after treatment for 12 days. Furthermore, Fe3O4-MNP-DNR-5-BrTet with hyperthermia noticeably decreased P-glycoprotein and Bcl-2 expression, and markedly increased Bax and caspase-3 expression. Conclusion Fe3O4-MNP-DNR-5-BrTet with hyperthermia may be a potential approach for reversal of multidrug resistance in the treatment of leukemia. PMID:22619560

  14. Multifunctional magnetic Fe3O4 nanoparticles combined with chemotherapy and hyperthermia to overcome multidrug resistance.

    PubMed

    Ren, Yanyan; Zhang, Haijun; Chen, Baoan; Cheng, Jian; Cai, Xiaohui; Liu, Ran; Xia, Guohua; Wu, Weiwei; Wang, Shuai; Ding, Jiahua; Gao, Chong; Wang, Jun; Bao, Wen; Wang, Lei; Tian, Liang; Song, Huihui; Wang, Xuemei

    2012-01-01

    Multidrug resistance in cancer is a major obstacle for clinical therapeutics, and is the reason for 90% of treatment failures. This study investigated the efficiency of novel multifunctional Fe(3)O(4) magnetic nanoparticles (Fe(3)O(4)-MNP) combined with chemotherapy and hyperthermia for overcoming multidrug resistance in an in vivo model of leukemia. Nude mice with tumor xenografts were randomly divided into a control group, and the treatment groups were allocated to receive daunorubicin, 5-bromotetrandrine (5-BrTet) and daunorubicin, Fe(3)O(4)-MNP, and Fe(3)O(4)-MNP coloaded with daunorubicin and 5-bromotetrandrine (Fe(3)O(4)-MNP-DNR-5-BrTet), with hyperthermia in an alternating magnetic field. We investigated tumor volume and pathology, as well as P-glycoprotein, Bcl-2, Bax, and caspase-3 protein expression to elucidate the effect of multimodal treatment on overcoming multidrug resistance. Fe(3)O(4)-MNP played a role in increasing tumor temperature during hyperthermia. Tumors became significantly smaller, and apoptosis of cells was observed in both the Fe(3)O(4)-MNP and Fe(3)O(4)-MNP-DNR-5-BrTet groups, especially in the Fe(3)O(4)-MNP-DNR-5-BrTet group, while tumor volumes in the other groups had increased after treatment for 12 days. Furthermore, Fe(3)O(4)-MNP-DNR-5-BrTet with hyperthermia noticeably decreased P-glycoprotein and Bcl-2 expression, and markedly increased Bax and caspase-3 expression. Fe(3)O(4)-MNP-DNR-5-BrTet with hyperthermia may be a potential approach for reversal of multidrug resistance in the treatment of leukemia.

  15. Kamarizaite, Fe{3/3+}(AsO4)2(OH)3 · 3H2O, a new mineral species, arsenate analogue of tinticite

    NASA Astrophysics Data System (ADS)

    Chukanov, N. V.; Pekov, I. V.; Möckel, S.; Mukhanova, A. A.; Belakovsky, D. I.; Levitskaya, L. A.; Bekenova, G. K.

    2010-12-01

    Kamarizaite, a new mineral species, has been identified in the dump of the Kamariza Mine, Lavrion mining district, Attica Region, Greece, in association with goethite, scorodite, and jarosite. It was named after type locality. Kamarizaite occurs as fine-grained monomineralic aggregates (up to 3 cm across) composed of platy crystals up to 1 μm in size and submicron kidney-shaped segregations. The new mineral is yellow to beige, with light yellow streak. The Mohs hardness is about 3. No cleavage is observed. The density measured by hydrostatic weighing is 3.16(1) g/cm3, and the calculated density is 3.12 g/cm3. The wavenumbers of absorption bands in the IR spectrum of kamarizaite are (cm-1; s is strong band, w is weak band): 3552, 3315s, 3115, 1650w, 1620w, 1089, 911s, 888s, 870, 835s, 808s, 614w, 540, 500, 478, 429. According to TG and IR data, complete dehydration and dehydroxylation in vacuum (with a weight loss of 15.3(1)%) occurs in the temperature range 110-420°C. Mössbauer data indicate that all iron in kamarizaite is octahedrally coordinated Fe3+. Kamarizaite is optically biaxial, positive: n min = 1.825, n max = 1.835, n mean = 1.83(1) (for a fine-grained aggregate). The chemical composition of kamarizaite (electron microprobe, average of four point analyses) is as follows, wt %: 0.35 CaO, 41.78 Fe2O3, 39.89 As2O5, 1.49 SO3, 15.3 H2O (from TG data); the total is 98.81. The empirical formula calculated on the basis of (AsO4,SO4)2 is Ca0.03Fe{2.86/3+} (AsO4)1.90(SO4)0.10(OH)2.74 · 3.27H2O. The idealized formula is Fe{3/3+}(AsO4)2(OH)3 · 3H2O. Kamarizaite is an arsenate analogue of orthorhombic tinticite, space group Pccm, Pcc2, Pcmm, Pcm21, or Pc2 m; a = 21.32(1), b = 13.666(6), c =15.80(1) Å, V= 4603.29(5) Å3, Z= 16. The strongest reflections of the X-ray powder diffraction pattern [ bar d , Å ( I, %) ( hkl)] are: 6.61 (37) (112, 120), 5.85 (52) (311), 3.947 (100) (004, 032, 511), 3.396 (37) (133, 431), 3.332 (60) (314), 3.085 (58) (621, 414, 324

  16. Enhanced Photocatalytic Activity of Two-Pot-Synthesized BiFeO3-ZnFe2O4 Heterojunction Nanocomposite

    NASA Astrophysics Data System (ADS)

    Ghasemi, A.; Hasheminiasari, M.; Masoudpanah, S. M.; Safizade, B.

    2018-04-01

    BiFeO3-ZnFe2O4 heterojunction nanocomposites have been produced by a chemical synthesis method using one- and two-pot approaches. X-ray diffraction patterns of as-calcined samples indicated formation of pure zinc ferrite (ZnFe2O4) and bismuth ferrite (BiFeO3) phases, each retaining its crystal structure. Diffuse reflectance spectrometry was applied to calculate the optical bandgap of the photocatalysts, revealing values in the range from 2.03 eV to 2.17 eV, respectively. The maximum photodegradation of methylene blue of about 97% was achieved using two-pot-synthesized photocatalyst after 120 min of visible-light irradiation due to the higher probability of charge separation of photogenerated electron-hole pairs in the heterojunction structure. Photoluminescence spectra showed lower emission intensity of two-pot-synthesized photocatalyst, due to its lower recombination rate originating from greater charge separation.

  17. Structural, magnetic and hyperfine characterization of ZnxFe3-xO4 nanoparticles prepared by sol-gel approach via inorganic precursors

    NASA Astrophysics Data System (ADS)

    Kotsikau, Dzmitry; Pankov, Vladimir; Petrova, Elena; Natarov, Valentin; Filimonov, Dmitry; Pokholok, Konstantin

    2018-03-01

    Structural characteristics and magnetic properties of ZnxFe3-xO4 (where x = 0; 0.09; 0.18; 0.45; 1) nanoparticles were studied with X-ray diffraction (XRD), transmission electron microscopy (TEM), infrared spectroscopy (IR) and vibrating sample magnetometry (VSM). Oxidation of Fe2+ ions, redistribution of Zn2+ and Fe3+ ions between octahedral and tetrahedral sites, and the formation of cation vacancies in spinel-type cubic structure of the obtained ZnxFe3-x-y□yO4 substitutional solid solutions were revealed by 57Fe Mössbauer spectroscopy. The nanoparticles synthesized via a modified sol-gel method using inorganic precursors have a size of 4-10 nm, single-phase composition, superparamagnetic behavior at room temperature (300 K) and a relatively hydrophilic surface to form stable aqueous suspensions. The maximum magnetization of 59 emu/g at 300 K corresponds to Zn0.18Fe2.82O4 composition. The listed features make the materials promising candidates for various biological and medical applications such as contrast-enhanced magnetic resonance imaging, hyperthermia of pathological tissues, controlled drug release, and separation of nucleic acids.

  18. Effect of size and site preference of trivalent non-magnetic metal ions (Al3+, Ga3+, In3+) substituted for Fe3+ on the magnetostrictive properties of sintered CoFe2O4

    NASA Astrophysics Data System (ADS)

    Anantharamaiah, P. N.; Joy, P. A.

    2017-11-01

    The influence of size and crystallographic site preference of three non-magnetic isovalent metal ions of larger (In3+), comparable (Ga3+) and smaller (Al3+) sizes, substituted for Fe3+ in the spinel lattice of CoFe2O4 on its magnetostrictive properties is compared. For the different compositions in CoFe2-x M x O4 (M  =  In3+, Ga3+, Al3+ and 0  ⩽  x  ⩽  0.3), significant changes in the structural and magnetic parameters are observed with the degree of substitution, due to the size and site preferences. Magnetic and Raman spectral studies revealed that Al3+ is substituted for Fe3+ at both octahedral and tetrahedral sites for all compositions, whereas In3+ and Ga3+ are substituted for Fe3+ at the tetrahedral site only for x  ⩽  0.2 and partly at the octahedral site for x  >  0.2. Regardless of the differences in the ionic size, site preference and the magnetic properties, compositions in all three series with x  =  0.1 showed almost equal magnitude of maximum magnetostriction (λ max  =  ~230 ppm), marginally higher than that of x  =  0 (217 ppm). However, at higher substituted compositions, λ max is decreased with x, but the decrease is much faster for the Al-substituted compositions. The maximum strain sensitivity, [dλ/dH]max, is also found to be comparable for all three compositions. The comparable magnetostriction characteristics and high strain at low magnetic fields for different substituted compositions at low levels of substitution are attributed to the local structural distortions associated with the inhomogeneous distribution of the substituted ions in the spinel ferrite lattice. The studies suggest ways to optimise the magnetostriction properties of properly substituted sintered cobalt ferrite for applications in sensors and actuators.

  19. Magnetism mediated by a majority of [Fe3+ + \\mathbf{V}_{\\mathbf{O}}^{\\mathbf{2-}} ] complexes in Fe-doped CeO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Paidi, V. K.; Ferreira, N. S.; Goltz, D.; van Lierop, J.

    2015-08-01

    We examine the role of Fe3+ and vacancies ({{V}\\text{O}} ) on the magnetism of Fe-doped CeO2 nanoparticles. Magnetic nanoparticles of Ce100-xFexO2 (x  =  0, 0.26, 1.82, 2.64, 5.26, 6.91, and 7.22) were prepared by a co-precipitation method, and their structural, compositional and magnetic properties were investigated. The CeO2 nanoparticles had a mixed valance of Ce4+ and Ce3+ ions, and doping introduced Fe3+ ions. The decrease in Ce3+ and increase in Fe3+ concentrations indicated the presence of more [Fe3+ +V\\text{O}2- ] complexes with Fe loading in the particles. Charge neutralization, Fe3+ + V\\text{O}2- + 2Ce4+ ≤ftrightarrow 2Ce3+ + Fe3+, identified the impact of {{V}\\text{O}} on the magnetism, where our results suggest that the Fe-doped CeO2 nanoparticle magnetism is mediated by a majority of [Fe3+ +V\\text{O}2- ]—Ce3+ —[Fe3+ +V\\text{O}2- ] complexes.

  20. Viscosity of SiO2-"FeO"-Al2O3 System in Equilibrium with Metallic Fe

    NASA Astrophysics Data System (ADS)

    Chen, Mao; Raghunath, Sreekanth; Zhao, Baojun

    2013-08-01

    The present study delivered the measurements of viscosities in SiO2-"FeO"-Al2O3 system in equilibrium with metallic Fe. The rotational spindle technique was used in the measurements at the temperature range of 1473 K to 1773 K (1200 °C to 1500 °C). Molybdenum crucibles and spindles were employed in all measurements. The Fe saturation condition was maintained by an iron plate placed at the bottom of the crucible. The equilibrium compositions of the slags were measured by EPMA after the viscosity measurements. The effect of up to 20 mol. pct Al2O3 on the viscosity of the SiO2-"FeO" slag was investigated. The "charge compensation effect" of the Al2O3 and FeO association has been discussed. The modified quasi-chemical viscosity model has been optimized in the SiO2-"FeO"-Al2O3 system in equilibrium with metallic Fe to describe the viscosity measurements of the present study.

  1. Three-dimensionally ordered macroporous Li2FeSiO4/C composite as a high performance cathode for advanced lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Ding, Zhengping; Liu, Jiatu; Ji, Ran; Zeng, Xiaohui; Yang, Shuanglei; Pan, Anqiang; Ivey, Douglas G.; Wei, Weifeng

    2016-10-01

    Li2MSiO4 (M = Mn, Fe, Co, Ni, et al.) has received great attention because of the theoretical possibility to reversibly deintercalate two Li+ ions from the structure. However, the silicates still suffer from low electronic conductivity, sluggish lithium ion diffusion and structural instability upon deep cycling. In order to solve these problems, a "hard-soft" templating method has been developed to synthesize three-dimensionally ordered macroporous (3DOM) Li2FeSiO4/C composites. The 3DOM Li2FeSiO4/C composites show a high reversible capacity (239 mAh g-1) with ∼1.50 lithium ion insertion/extraction, a capacity retention of nearly 100% after 420 cycles and excellent rate capability. The enhanced electrochemical performance is ascribed to the interconnected carbon framework that improves the electronic conductivity and the 3DOM structure that offers short Li ion diffusion pathways and restrains volumetric changes.

  2. Chemoselectivity-induced multiple interfaces in MWCNT/Fe3O4@ZnO heterotrimers for whole X-band microwave absorption.

    PubMed

    Wang, Zhijiang; Wu, Lina; Zhou, Jigang; Jiang, Zhaohua; Shen, Baozhong

    2014-11-07

    A chemoselective route to induce Fe3O4@ZnO core-shell nanoparticles decorating carbon nanotubes to form MWCNT/Fe3O4@ZnO heterotrimers has been developed. Charges are redistributed in the heterotrimers through C-O-Zn, C-O-Fe and Fe-O-Zn bondings, giving rise to multiple electronic phases. The generated significant interfacial polarization and synergetic interaction between dielectric and magnetic absorbers result in the MWCNT/Fe3O4@ZnO heterotrimers with high-performance microwave absorption in an entire X band.

  3. Fabrication of aligned porous LaNi0.6Fe0.4O3 perovskite by water based freeze casting

    NASA Astrophysics Data System (ADS)

    Soltani, Niloofar; Martínez-Bautista, Rubén; Bahrami, Amin; Huerta Arcos, Lázaro; Cassir, Michel; Chávez Carvayar, José

    2018-05-01

    A novel porous cathode of LaNi0.6Fe0.4O3 perovskite with aligned porosities was engineered for solid oxide fuel cells. LaNi0.6Fe0.4O3 was produced through metal nitrate and acid citric combustion method and calcined at different temperatures. The synthesized LNF at 600 °C shows specific surface area (SBET) of 24.4 m2 g-1 and an average pore size of 12.2 nm. The chemical composition and structure of LaNi0.6Fe0.4O3 synthesized at temperature 600-1400 °C, were analyzed by XRD, XPS and HRTEM. SEM observations of freeze cast nano-sized LNF showed the vertically aligned hexagonal walls. These walls contain a great value of fine pores which accelerate the gas transportation.

  4. Controlled synthesis and microwave absorption properties of Ni0.6Zn0.4Fe2O4/PANI composite via an in-situ polymerization process

    NASA Astrophysics Data System (ADS)

    Wang, Min; Ji, Guangbin; Zhang, Baoshan; Tang, Dongming; Yang, Yi; Du, Youwei

    2015-03-01

    The binary composites of conducting polyaniline (PANI) and nickle zinc ferrite were synthesized by an in-situ polymerization process, and the electromagnetic absorption properties of the composites were also investigated. The FT-IR spectra present the peaks of PANI (1562, 1481, 1301, 1109, and 799 cm-1) and the bonds of NiZn ferrite (579 and 390 cm-1), indicating the existence of both NiZn ferrite particles and PANI in the composites. With the increasing ratio of nickle zinc ferrite, the composites distributes in irregular compared with pure PANI and Ni0.6Zn0.4Fe2O4. The TG curves of the pure PANI and PANI/Ni0.6Zn0.4Fe2O4 composites with different molar ratios clearly show the increase percentage of the ferrite in the composites. Furthermore, we found that the excellent electromagnetic absorption properties and wide absorption bandwidth can be achieved by adjusting proper molar ratios Ni0.6Zn0.4Fe2O4 to PANI. The maximum reflection loss of Ni0.6Zn0.4Fe2O4/PANI can reach to -41 dB at 12.8 GHz and the bandwidth exceeding -10 dB can reach to 5 GHz with the absorber thickness of 2.6 mm at the molar ratio of 1:2. This can be attributed to the enhancing magnetic loss and the better impedance matching. Therefore, Ni0.6Zn0.4Fe2O4/PANI ferrite composites can become a new kind of candidate in the field of the microwave absorbing.

  5. 3D carbon fiber mats/nano-Fe3O4 hybrid material with high electromagnetic shielding performance

    NASA Astrophysics Data System (ADS)

    Zhan, Yingqing; Long, Zhihang; Wan, Xinyi; Zhang, Jiemin; He, Shuangjiang; He, Yi

    2018-06-01

    To obtain high-performance electromagnetic shielding materials, structure and morphology are two key factors. We here developed an efficient and facial method to prepare high-performance 3D carbon nanofiber mats (CFM)/Fe3O4 hybrid electromagnetic shielding materials. For this purpose, the CFM were chemically modified by mussel-inspired poly-dopamine coating, which were further used as templates for decoration of Fe3O4 nanoparticles via solvothermal route. It was found that the Fe3O4 nano-spheres with diameters of 200-250 nm were uniformly coated on the surface of 3D carbon nanofibers. More importantly, the morphology and structure of resulting 3D carbon nanofiber mats/Fe3O4 hybrids could be easily controlled by altering the experiment parameters, which were examined by FT-IR, XPS, TGA, XRD, SEM, and TEM. The measured magnetic properties showed that saturation magnetism and coercivity increased from 13.4 to 39.7 emu/g and 85.3 to 104.6 Oe, respectively. The lowest reflectivity of resulting hybrid was calculated to be -47 dB at 10.0 GHz (2.5 mm). In addition, the reflectivity of 3D carbon nanofiber mats/Fe3O4 hybrid was less than -25 dB in the range of 7-13 GHz. Moreover, the resulting 3D carbon nanofiber mats/Fe3O4 hybrid exhibited an EMI shielding performance of -62.6 dB in the frequency range of 8.2-12.4 GHz. Therefore, 3D carbon fiber mats/Fe3O4 hybrids can be ideal EMI materials with strong absorption, low density, and wide absorption range.

  6. Self-assembly and electrical characteristics of 4-pentynoic acid functionalized Fe3O4-γ-Fe2O3 nanoparticles on SiO2/n-Si

    NASA Astrophysics Data System (ADS)

    Baharuddin, Aainaa Aqilah; Ang, Bee Chin; Wong, Yew Hoong

    2017-11-01

    A novel investigation on a relationship between temperature-influential self-assembly (70-300 °C) of 4-pentynoic acid functionalized Fe3O4-γ-Fe2O3 nanoparticles (NPs) on SiO2/n-Si with electrical properties was reported with the interests for metal-oxide-semiconductor applications. X-ray diffractometer (XRD) analysis conveyed that 8 ± 1 nm of the NPs were assembled. Increasing heating temperature induced growth of native oxide (SiO2). Raman analysis confirmed the coexistence of Fe3O4-γ-Fe2O3. Attenuated Total Reflectance Infrared (ATR-IR) spectra showed that self-assembly occurred via Sisbnd Osbnd C linkages. While Sisbnd Osbnd C linkages were broken down at elevated temperatures, formations of Si-OH defects were amplified; a consequence of physisorbed surfactants disintegration. Atomic force microscopy (AFM) showed that sample with more physisorbed surfactants exhibited the highest root-mean-square (RMS) roughness (18.12 ± 7.13 nm) whereas sample with lesser physisorbed surfactants displayed otherwise (12.99 ± 4.39 nm RMS roughness). Field Emission Scanning Electron Microscope (FE-SEM) analysis showed non-uniform aggregation of the NPs, deposited as film (12.6 μm thickness). The increased saturation magnetization (71.527 A m2/kg) and coercivity (929.942 A/m) acquired by vibrating sample magnetometer (VSM) of the sample heated at 300 °C verified the surfactants' disintegration. Leakage current density-electric field (J-E) characteristics showed that sample heated at 150 °C with the most aggregated NPs as well as the most developed Sisbnd Osbnd C linkages demonstrated the highest breakdown field and barrier height at 2.58 × 10-3 MV/cm and 0.38 eV respectively. Whereas sample heated at 300 °C with the least Sisbnd Osbnd C linkages as well as lesser aggregated NPs showed the lowest breakdown field and barrier height at 1.08 × 10-3 MV/cm and 0.19 eV respectively. This study opens up better understandings on how formation and breaking down of covalent

  7. Fe3O4@Polypyrrole Microspheres with High Magnetization and Superparamagnetism for Efficient and Fast Removal of Pb(II) Ions

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Zhu, Wanyan; Xu, Wutong; Wang, Yan; Li, Ning; Zhang, Tingting; Wang, Hui

    2017-12-01

    Core-shell structured Fe3O4@PPy microspheres are synthesized successfully through a facile polyol reduction method in combination with a modified Stöber method. We show that the as-prepared Fe3O4@PPy microspheres with high saturation magnetization, superparamagnetism, and good dispersibility have a high efficient adsorption capacity for high efficient removal of Pb(II) ions of up to 391.71 mg g-1 and a fast adsorption equilibrium time of 20 min. Furthermore, the lead-adsorbed Fe3O4@PPy microspheres can be rapidly separated from solution because of the excellent superparamagnetic properties. The composite Fe3O4@PPy microspheres are characterized using X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and vibrating sample magnetometer (VSM). The adsorption data from our experiments show that the adsorption process fits well with the pseudosecond- order kinetic model and the adsorption isotherm follows the Langmuir isotherm model. The thermodynamic studies show that the adsorption of Pb(II) on Fe3O4@PPy microspheres is an endothermic and spontaneous process. Comprehensive comparison among adsorbents for the removal of Pb(II) ions that literature reported, reusability, high adsorption efficiency, fast adsorption equilibrium, and rapid magnetic separation make these Fe3O4@PPy microspheres very promising application for removal of Pb(II) ions from contaminated water.

  8. Beyond Yolk–Shell Nanoparticles: Fe 3 O 4 @Fe 3 C Core@Shell Nanoparticles as Yolks and Carbon Nanospindles as Shells for Efficient Lithium Ion Storage

    DOE PAGES

    Zhang, Jianan; Wang, Kaixi; Xu, Qun; ...

    2015-02-25

    In order to well address the problems of large volume change and dissolution of Fe 3O 4 nanomaterials during Li + intercalation/extraction, herein we demonstrate a one-step in situ nanospace-confined pyrolysis strategy for robust yolk–shell nanospindles with very sufficient internal void space (VSIVS) for high-rate and long-term lithium ion batteries (LIBs), in which an Fe 3O 4@Fe 3C core@shell nanoparticle is well confined in the compartment of a hollow carbon nanospindle. This structure can not only introduce VSIVS to accommodate volume change of Fe 3O 4 but also afford a dual shell of Fe 3C and carbon to restrict Femore » 3O 4 dissolution, thus providing dual roles for greatly improving the capacity retention. Consequently, Fe 3O 4@Fe 3C–C yolk–shell nanospindles deliver a high reversible capacity of 1128.3 mAh g –1 at even 500 mA g –1, excellent high rate capacity (604.8 mAh g –1 at 2000 mA g –1), and prolonged cycling life (maintaining 1120.2 mAh g –1 at 500 mA g –1 for 100 cycles) for LIBs, which are much better than those of Fe 3O 4@C core@shell nanospindles and Fe 3O 4 nanoparticles. The present Fe 3O 4@Fe 3C–C yolk–shell nanospindles are the most efficient Fe 3O 4-based anode materials ever reported for LIBs.« less

  9. One-pot synthesis of in-situ carbon-coated Fe3O4 as a long-life lithium-ion battery anode

    NASA Astrophysics Data System (ADS)

    Liu, Min; Jin, Hongyun; Uchaker, Evan; Xie, Zhiqiang; Wang, Ying; Cao, Guozhong; Hou, Shuen; Li, Jiangyu

    2017-04-01

    Fe3O4 has been regarded as a promising anode material for lithium-ion batteries (LIBs) due to its high theoretical capacity, low cost, and environmental friendliness. In this work, we present a one-pot reducing-composite-hydroxide-mediated (R-CHM) method to synthesize in situ carbon-coated Fe3O4 (Fe3O4@C) at 280 °C using Fe(NO3)3 · 9H2O and PEG800 as raw materials and NaOH/KOH as the medium. The as-prepared Fe3O4 octahedron has an average size of 100 nm in diameter, covered by a carbon layer with a thickness of 3 nm, as revealed by FESEM and HRTEM images. When used as anode materials in LIBs, Fe3O4@C exhibited an outstanding rate capability (1006, 918, 825, 737, 622, 455 and 317 mAh g-1 at 0.1, 0.2, 0.5, 0.8, 1.0, 1.5 and 2.0 A g-1). Moreover, it presented an excellent cycling stability, with a retained capacity of 261 mAh g-1 after 800 cycles under an extremely high specific current density of 2.0 A g-1. Such results indicate that Fe3O4@C can provide a new route into the development of long-life electrodes for future rechargeable LIBs. Importantly, the R-CHM developed in our work can be extended for the synthesis of other carbon-coated electrodes for LIBs and functional nanostructures for broader applications.

  10. Magnetically addressable fluorescent Fe3O4/ZnO nanocomposites: Structural, optical and magnetization studies

    NASA Astrophysics Data System (ADS)

    Roychowdhury, A.; Pati, S. P.; Mishra, A. K.; Kumar, S.; Das, D.

    2013-06-01

    Fe3O4/ZnO nanocomposites (NCs) are prepared by a wet chemical route. X-ray diffraction, transmission electron microscopy and Fourier transform infrared spectroscopy studies confirm the coexistence of Fe3O4 and ZnO phases in the NCs. The UV-vis absorption spectra show a red shift of the absorption peak with increase in Fe3O4 content indicating a modification of the band structure of ZnO in the NCs. Photoluminescence emission spectra of the NCs display strong excitonic emission in the UV region along with weak emission bands in the visible range caused by electronic transitions involving defect-related energy levels in the band gap of ZnO. Positron annihilation lifetimes indicate that cation vacancies in the ZnO structure are the strong traps for positrons and the overall defect concentration in the NCs decreases with increase in Fe3O4 content. Dc magnetization measurements reveal an anomalous temperature dependence of the coercivity of the NCs that is argued to be due to the anomalous variation of magnetocrystalline anisotropy at lower temperature. The irreversibility observed in the temperature dependent ZFC-FC magnetization points to the presence of a spin-glass phase in the NCs.

  11. Large low-field magnetoresistance in Fe3O4/molecule nanoparticles at room temperature

    NASA Astrophysics Data System (ADS)

    Yue, F. J.; Wang, S.; Lin, L.; Zhang, F. M.; Li, C. H.; Zuo, J. L.; Du, Y. W.; Wu, D.

    2011-01-01

    Acetic acid molecule-coated Fe3O4 nanoparticles, 450-650 nm in size, have been synthesized using a chemical solvothermal reduction method. Fourier transform infrared spectroscopy measurements confirm one monolayer acetic acid molecules chemically bond to the Fe3O4 nanoparticles. The low-field magnetoresistance (LFMR) of more than -10% at room temperature and -23% at 140 K is achieved with saturation field of less than 2 kOe. In comparison, the resistivity of cold-pressed bare Fe3O4 nanoparticles is six orders of magnitudes smaller than that of Fe3O4/molecule nanoparticles, and the LFMR ratio is one order of magnitude smaller. Our results indicate that the large LFMR in Fe3O4/molecule nanoparticles is associated with spin-polarized electrons tunnelling through molecules instead of direct nanoparticle contacts. These results suggest that magnetic oxide-molecule hybrid materials are an alternative type of materials to develop spin-based devices by a simple low-cost approach.

  12. Thrombolysis based on magnetically-controlled surface-functionalized Fe3O4 nanoparticle

    PubMed Central

    Chang, Ming; Lin, Yu-Hao; Gabayno, Jacque Lynn; Li, Qian; Liu, Xiaojun

    2017-01-01

    ABSTRACT In this study, the control of magnetic fields to manipulate surface-functionalized Fe3O4 nanoparticles by urokinase coating is investigated for thrombolysis in a microfluidic channel. The urokinase-coated Fe3O4 nanoparticles are characterized using particle size distribution, zeta potential measurement and spectroscopic data. Thrombolytic ratio tests reveal that the efficiency for thrombus cleaning is significantly improved when using magnetically-controlled urokinase-coated Fe3O4 nanoparticles than pure urokinase solution. The average increase in the rate of thrombolysis with the use of urokinase-coated Fe3O4 nanoparticles is about 50%. In vitro thrombolysis test in a microfluidic channel using the coated nanoparticles shows nearly complete removal of thrombus, a result that can be attributed to the clot busting effect of the urokinase as it inhibits the possible formation of blood bolus during the magnetically-activated microablation process. The experiment further demonstrates that a thrombus mass of 10.32 mg in the microchannel is fully removed in about 180 s. PMID:27689864

  13. Conductivity and Thermal Studies on Plasticized Nano-Composite Solid Polymer Electrolyte, Peo: Ec: LiTf: Al2O3

    NASA Astrophysics Data System (ADS)

    Pitawala, H. M. J. C.; Dissanayake, M. A. K. L.; Seneviratne, V. A.

    2006-06-01

    Poly (ethylene oxide)-(PEO)-based composite polymer electrolytes are of great interest for solid-state-electrochemical devices. This paper presents the results of a preliminary study on electrical conductivity and thermal behavior (DSC) of composite polymer electrolytes (CPEs) containing PEO: LiCF3SO3 complexed with plasticizer (EC) and incorporating nano-sized particles of the ceramic filler Al2O3. Ionic conductivity enhancement in these electrolytes has been obtained by optimizing the combined effect of the plasticizer and the ceramic filler. Nano-composite, plasticized polymer electrolyte films (400-600μm) were prepared by common solvent casting method. It was revealed that the presence of the Al2O3 filler in PEO: LiTf polymer electrolyte significantly enhanced the ionic conductivity in the temperature range of interest, giving the maximum conductivity for (PEO)9LiTf+15 wt.% Al2O3 CPE [σRT (max)=2×10-5 S cm-1]. It was also observed that the addition of plasticizer (EC) to this electrolyte up to a concentration of 50 wt. % EC, showed a further conductivity enhancement [σRT (max) = 1.5×10-4 S cm-1]. It is suggested that the conductivity is enhanced mainly by two mechanisms. The plasticizer (EC) would directly contribute by reducing the crystallinity and increasing the amorphous phase content of the polymer electrolytes. The ceramic filler (Al2O3) would contribute to conductivity enhancement by creating additional sites to migrating ionic species through transient bonding with O/OH groups in the filler surface. The decrease of Tg values of plasticized CPE systems seen in the DSC thermograms points towards the improved segmental flexibility of polymer chains, increasing the mobility of conducting ions.

  14. Template-etching route to construct uniform rattle-type Fe3O4@SiO2 hollow microspheres as drug carrier.

    PubMed

    Cheng, Lin; Liu, Yuanyuan; Zou, Bingfang; Yu, Yong; Ruan, Weimin; Wang, Yongqiang

    2017-06-01

    Template-etching strategy was put forward to synthesize rattle-type magnetic silica (Fe 3 O 4 @SiO 2 ) hollow microspheres in a controlled way. During the experiment, monodisperse Fe 2 O 3 microspheres were fabricated as physical template to generate uniform Fe 2 O 3 @SiO 2 with controlled shell thicknesses through sol-gel method, and the subsequent Fe 2 O 3 template etching process created variable space between Fe 2 O 3 core and SiO 2 shell, and the final calcination process transformed rattle-type Fe 2 O 3 @SiO 2 hollow microspheres into corresponding Fe 3 O 4 @SiO 2 product in hydrogen/nitrogen atmosphere. Compared with traditional physical template, here template-etching synthesis of rattle-type hollow microspheres saved the insertion of middle shells and their removal, which simplified the synthesis process with controllable core size and shell thickness. The rattle-type Fe 3 O 4 @SiO 2 hollow microspheres as drug carrier show efficient doxorubicin (DOX) loading, and the release rate of DOX loaded the rattle-type Fe 3 O 4 @SiO 2 hollow microspheres exhibit a surprising shell-thickness-dependent and a pH responsive drug release features. Additionally, MTT assays in HeLa cells demonstrated that the Fe 3 O 4 @SiO 2 nanocarriers were non-toxic even at the concentration of 250µgmL -1 for 48h. Thus, our results revealed that the Fe 3 O 4 @SiO 2 -DOX could play an important role in the development of intracellular delivery nanodevices for cancer therapy. Copyright © 2017. Published by Elsevier B.V.

  15. Synthesis of raspberry-like monodisperse magnetic hollow hybrid nanospheres by coating polystyrene template with Fe(3)O(4)@SiO(2) particles.

    PubMed

    Wang, Chunlei; Yan, Juntao; Cui, Xuejun; Wang, Hongyan

    2011-02-01

    In this paper, we present a novel method for the preparation of raspberry-like monodisperse magnetic hollow hybrid nanospheres with γ-Fe(2)O(3)@SiO(2) particles as the outer shell. PS@Fe(3)O(4)@SiO(2) composite nanoparticles were successfully prepared on the principle of the electrostatic interaction between negatively charged silica and positively charged polystyrene, and then raspberry-like magnetic hollow hybrid nanospheres with large cavities were achieved by means of calcinations, simultaneously, the magnetite (Fe(3)O(4)) was transformed into maghemite (γ-Fe(2)O(3)). Transmission electron microscopy (TEM) demonstrated that the obtained magnetic hollow silica nanospheres with the perfect spherical profile were well monodisperse and uniform with the mean size of 253nm. The Fourier transform infrared (FTIR) spectrometry, energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) provided the sufficient evidences for the presence of Fe(3)O(4) in the silica shell. Moreover, the magnetic hollow silica nanospheres possessed a characteristic of superparamagnetic with saturation magnetization value of about 7.84emu/g by the magnetization curve measurement. In addition, the nitrogen adsorption-desorption measurement exhibited that the pore size, BET surface area, pore volume of magnetic hollow silica nanospheres were 3.5-5.5nm, 307m(2)g(-1) and 1.33cm(3)g(-1), respectively. Therefore, the magnetic hollow nanospheres possess a promising future in controlled drug delivery and targeted drug applications. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Drug-loaded poly (ε-caprolactone)/Fe3O4 composite microspheres for magnetic resonance imaging and controlled drug delivery

    NASA Astrophysics Data System (ADS)

    Wang, Guangshuo; Zhao, Dexing; Li, Nannan; Wang, Xuehan; Ma, Yingying

    2018-06-01

    In this study, poly (ε-caprolactone) (PCL) microspheres loading magnetic Fe3O4 nanoparticles and anti-cancer drug of doxorubicin hydrochloride (DOX) were successfully prepared by a modified solvent-evaporation method. The obtained magnetic composite microspheres exhibited dual features of magnetic resonance imaging and controlled drug delivery. The morphology, structure, thermal behavior and magnetic properties of the drug-loaded magnetic microspheres were investigated in detail by SEM, XRD, DSC and SQUID. The obtained composite microspheres showed superparamagnetic behavior and T2-weighted enhancement effect. The drug loading, encapsulation efficiency, releasing behavior and in vitro cytotoxicity of the drug-loaded composite microspheres were systematically investigated. It was found that the values of drug loading and encapsulation efficiency were 36.7% and 25.8%, respectively. The composite microspheres were sensitive to pH and released in a sustained way, and both the release curves under various pH conditions (4.0 and 7.4) were well satisfied with the biphase kinetics function. In addition, the magnetic response of the drug-loaded microspheres was studied and the results showed that the composite microspheres had a good magnetic stability and strong targeting ability.

  17. Flexible Fe3O4@Carbon Nanofibers Hierarchically Assembled with MnO2 Particles for High-Performance Supercapacitor Electrodes.

    PubMed

    Iqbal, Nousheen; Wang, Xianfeng; Babar, Aijaz Ahmed; Zainab, Ghazala; Yu, Jianyong; Ding, Bin

    2017-11-09

    Increasing use of wearable electronic devices have resulted in enhanced demand for highly flexible supercapacitor electrodes with superior electrochemical performance. In this study, flexible composite membranes with electrosprayed MnO 2 particles uniformly anchored on Fe 3 O 4 doped electrospun carbon nanofibers (Fe 3 O 4 @CNF Mn ) have been prepared as flexible electrodes for high-performance supercapacitors. The interconnected porous beaded structure ensures free movement of electrolyte within the composite membranes, therefore, the developed supercapacitor electrodes not only offer high specific capacitance of ~306 F/g, but also exhibit good capacitance retention of ~85% after 2000 cycles, which certify that the synthesized electrodes offer high and stable electrochemical performance. Additionally, the supercapacitors fabricated from our developed electrodes well maintain their performance under flexural stress and exhibit a very minute change in specific capacitance even up to 180° bending angle. The developed electrode fabrication strategy integrating electrospinning and electrospray techniques paves new insights into the development of potential functional nanofibrous materials for light weight and flexible wearable supercapacitors.

  18. Electromagnetic interference attenuation and shielding effect of quaternary Epoxy-PPy/Fe3O4-ZnO nanocomposite as a broad band microwave-absorber

    NASA Astrophysics Data System (ADS)

    Olad, Ali; Shakoori, Sahar

    2018-07-01

    An increase in the electromagnetic wave pollution generated from wireless telecommunication devices has devoted to a great request for exploiting microwave absorbing materials for themselves. The combination of inherently conducting polymers such as polypyrrole (PPy) with metal oxides has led to design ideal microwave absorbing materials which benefit both advantage effects of ICPs and metal oxide nanoparticles. Herein, the quaternary nanocomposite of Epoxy-PPy/Fe3O4-ZnO was prepared and tested for the absorption of X-band microwaves. Simultaneous application of metal oxides and conducting polypyrrole in the epoxy matrix was evaluated in order to increase the absorption intensity and broadness of microwaves in X-band region. The morphology, microstructure, and phase structure of Fe3O4, ZnO, and PPy, as well as quaternary nanocomposite were characterized and studied using FTIR, XRD, FESEM and TEM techniques. The presence of nanoparticles in the quaternary nanocomposite was confirmed by EDS. The magnetization of iron oxide was studied by VSM. The synergetic effect of iron oxide and zinc oxide nanoparticles in different weight ratios (Fe3O4/ZnO) on the electromagnetic wave absorption was evaluated. The electromagnetic parameters have been evaluated by the vector network analyzer in the frequency range of 8.2-12.4 GHz which is named as X-band region and is adequate for radar applications. The electromagnetic wave absorbing outcomes indicated that Epoxy-PPy/Fe3O4-ZnO quaternary nanocomposite has wide absorption area and high attenuation, which is believed to be due to dielectric loss properties related to the polypyrrole, magnetic loss factor of Fe3O4, and synergetic effects of components. The maximum reflection loss reached to -32.53 dB at 9.96 GHz with a nanocomposite thickness of 2 mm which is dedicated to the Epoxy-PPy/Fe3O4-ZnO with iron oxide to zinc oxide ratio of 2:1. The absorption bandwidth with the reflection loss lower than -10 dB (90% attenuation) was up to

  19. Fe3O4@SiO2@CS-TETA functionalized graphene oxide for the adsorption of methylene blue (MB) and Cu(II)

    NASA Astrophysics Data System (ADS)

    Wang, Fan; Zhang, Lijuan; Wang, Yeying; Liu, Xijian; Rohani, Sohrab; Lu, Jie

    2017-10-01

    The graphene oxide (GO) functionalized by Fe3O4@SiO2@CS-TETA nanoparticles, Fe3O4@SiO2@CS-TETA-GO, was firstly fabricated in a mild way as a novel adsorbent for the removal of Cu(II) ions and methylene blue (MB) from aqueous solutions. The magnetic composites showed a good dispersity in water and can be conveniently collected for reuse through magnetic separation due to its excellent magnetism. When the Fe3O4@SiO2@CS- TETA-GO was used as an absorbent for the absorption of MB and Cu(II), the adsorption kinetics and isotherms data well fitted the pseudo-second-order model and the Langmuir model, respectively. Under the optimized pH and initial concentration, the maximum adsorption capacity was about 529.1 mg g-1 for MB in 20 min and 324.7 mg g-1 for Cu(II) in 16 min, respectively, exhibiting a better adsorption performance than other GO-based adsorbents reported recently. More importantly, the synthesized adsorbent could be effectively regenerated and repeatedly utilized without significant capacity loss after six times cycles. All the results demonstrated that Fe3O4@SiO2@CS-TETA-GO could be used as an excellent adsorbent for the adsorption of Cu(II) and MB in many fields.

  20. β-K3Fe(MoO4)2Mo2O7

    PubMed Central

    Souilem, Amira; Zid, Mohamed Faouzi; Driss, Ahmed

    2014-01-01

    The title compound, tripotassium iron(III) bis­(ortho­molyb­date) dimolybdate, was obtained by a solid-state reaction. The main structural building units are one FeO6 octa­hedron, two MoO4 tetra­hedra and one Mo2O7 dimolybdate group, all with point group symmetries m. These units are linked via corner-sharing to form ribbons parallel to [010]. The three K+ cations are located between the ribbons on mirror planes and have coordination numbers of 10 and 12. Two O atoms of one of the MoO4 tetra­hedra of the dimolybdate group are disordered over two positions in a 0.524 (11):0.476 (11) ratio. The structure of the title compound is compared briefly with that of Rb3FeMo4O15. PMID:25161509

  1. Film fabrication of Fe or Fe3O4 nanoparticles mixed with palmitic acid for vertically aligned carbon nanotube growth using Langmuir-Blodgett technique

    NASA Astrophysics Data System (ADS)

    Nakamura, Kentaro; Kuriyama, Naoki; Takagiwa, Shota; Sato, Taiga; Kushida, Masahito

    2016-03-01

    Vertically aligned carbon nanotubes (VA-CNTs) were studied as a new catalyst support for polymer electrolyte fuel cells (PEFCs). Controlling the number density and the diameter of VA-CNTs may be necessary to optimize PEFC performance. As the catalyst for CNT growth, we fabricated Fe or Fe3O4 nanoparticle (NP) films by the Langmuir-Blodgett (LB) technique. The catalyst Fe or Fe3O4 NPs were widely separated by mixing with filler molecules [palmitic acid (C16)]. The number density of VA-CNTs was controlled by varying the ratio of catalyst NPs to C16 filler molecules. The VA-CNTs were synthesized from the catalyst NP-C16 LB films by thermal chemical vapor deposition (CVD) using acetylene gas as the carbon source. The developing solvents used in the LB technique and the hydrogen reduction conditions of CVD were optimized to improve the VA-CNT growth rate. We demonstrate that the proposed method can independently control both the density and the diameter of VA-CNTs.

  2. A Novel Nanofilm Sensor Based on Poly-(Alizarin Red)/Fe3O4 Magnetic Nanoparticles-Multiwalled Carbon Nanotubes Composite Material for Determination of Nitrite.

    PubMed

    Qu, Jianying; Dong, Ying; Yong, Wang; Lou, Tongfang; Du, Xueping; Qu, Jianhang

    2016-03-01

    Fe3O4 magnetic nanoparticles were synthesized by chemical co-precipitation with sodium citrate as surfactant and were characterized by FT-IR spectrometer, X-ray diffraction and transmission electron microscopy. A novel nitrite sensor was fabricated by electropolymerization of alizarin red on the surface of glassy carbon electrode modified with Fe3O4-multiwalled carbon nanotubes composite nanofilm. Under the optimal experimental conditions, it was showed that the proposed sensor exhibited good electrocatalytic activity to the oxidation of nitrite, and the peak current increased linearly with the nitrite concentration from 9.64 x 10(-6) mol x L(-1) to 1.30 x 10(-3) mol x L(-1) (R = 0.9976) with a detection limit of 1.19 x 10(-6) mol x L(-1) (S/N = 3). This sensor showed excellent sensitivity, wide linear range, stability and repeatability for nitrite determination with potential applications.

  3. High Curie temperature and enhanced magnetoelectric properties of the laminated Li0.058(Na0.535K0.48)0.942NbO3/Co0.6 Zn0.4Fe1.7Mn0.3O4 composites

    PubMed Central

    Yang, Haibo; Zhang, Jintao; Lin, Ying; Wang, Tong

    2017-01-01

    Laminated magnetoelectric composites of Li0.058(Na0.535K0.48)0.942NbO3 (LKNN)/Co0.6Zn0.4Fe1.7Mn0.3O4 (CZFM) prepared by the conventional solid-state sintering method were investigated for their dielectric, magnetic, and magnetoelectric properties. The microstructure of the laminated composites indicates that the LKNN phase and CZFM phase can coexist in the composites. Compared with the particulate magnetoelectric composites, the laminated composites have better piezoelectric and magnetoelectric properties due to their higher resistances and lower leakage currents. The magnetoelectric behaviors lie on the relative mass ratio of LKNN phase and CZFM phase. The laminated composites possess a high Curie temperature (TC) of 463 °C, and the largest ME coefficient of 285 mV/cm Oe, which is the highest value for the lead-free bulk ceramic magnetoelectric composites so far. PMID:28338006

  4. Adsorption of proteins on γ-Fe2O3 and γ-Fe2O3/SiO2 magnetic materials

    NASA Astrophysics Data System (ADS)

    Khokhlova, T. D.

    2017-10-01

    γ-Fe2O3-SiO2 composites are synthesized via the coprecipitation of a γ-Fe2O3 magnetic carrier (with specific surface S = 17 m2/g and pore volume V = 0.51 cm3/g) and silicon dioxide from an aqueous glass (sodium silicate) solution. The effect coagulation agent NaCl has on the coprecipitation process and structural characteristics of the composite is discussed. Adding NaCl to the aqueous glass solution prevents the formation of SiO2 macrogel making it possible to obtain highly porous composites with high adsorption capacity for proteins cytochrome C and hemoglobin. It is established that a composite that is 50% SiO2 and produced with the addition of 5% NaCl ( S = 150 m2/g and V = 0.87 cm3/g) has a sixfold and twofold higher capacity (280 and 175 mg/g) for cytochrome C and hemoglobin, respectively, than the initial ferric oxide (45 and 82 mg/g). The capacity for cytochrome C and hemoglobin of a composite synthesized without NaCl ( S = 50 m2/g and V = 0.45 cm3/g) is 19 and 20 mg/g, respectively, which is twofold and fourfold lower than those of the initial γ-Fe2O3. The dependence of protein adsorption on pH and the ionic strength of a solution is studied, and the conditions for the maximum adsorption and complete desorption of proteins are established. It is concluded that composites synthesized with additions of NaCl can be used as magnetocontrollable sorbents for the purification, concentration, and immobilization of proteins, and for the preparation of biocatalysts based on immobilized enzymes.

  5. Exosome purification based on PEG-coated Fe3O4 nanoparticles.

    PubMed

    Chang, Ming; Chang, Yaw-Jen; Chao, Pei Yu; Yu, Qing

    2018-01-01

    Cancer cells secrete many exosomes, which facilitate metastasis and the later growth of cancer. For early cancer diagnosis, the detection of exosomes is a crucial step. Exosomes exist in biological fluid, such as blood, which contains various proteins. It is necessary to remove the proteins in the biological fluid to avoid test interference. This paper presented a novel method for exosome isolation using Fe3O4 magnetic nanoparticles (MNPs), which were synthesized using the chemical co-precipitation method and then coated with polyethylene glycol (PEG). The experimental results showed that the diameter of the PEG-coated Fe3O4 nanoparticles was about 20 nm, while an agglomerate of MNPs reached hundreds of nanometers in size. In the protein removal experiments, fetal bovine serum (FBS) was adopted as the analyte for bioassays of exosome purification. PEG-coated Fe3O4 MNPs reduced the protein concentration in FBS to 39.89% of the original solution. By observing a particle size distribution of 30~200 nm (the size range of various exosomes), the exosome concentrations were kept the same before and after purification. In the gel electrophoresis experiments, the bands of CD63 (~53 kDa) and CD9 (~22 kDa) revealed that exosomes existed in FBS as well as in the purified solution. However, the bands of the serum albumins (~66 kDa) and the various immunoglobulins (around 160 ~ 188 kDa) in the purified solution's lane explained that most proteins in FBS were removed by PEG-coated Fe3O4 MNPs. When purifying exosomes from serum, protein removal is critical for further exosome investigation. The proposed technique provides a simple and effective method to remove proteins in the serum using the PEG-coated Fe3O4 MNPs.

  6. Magnetic and hyperthermia properties of CoxFe3-xO4 nanoparticles synthesized via cation exchange

    NASA Astrophysics Data System (ADS)

    Mohapatra, Jeotikanta; Xing, Meiying; Liu, J. Ping

    2018-05-01

    We demonstrate magnetic and hyperthermia properties of CoxFe3-xO4 (x = 0, 0.1, 0.3 and 0.5) nanoparticles synthesized via a simple cation exchange reaction of ˜12 nm Fe3O4 nanoparticles. The substitution of Fe cations with Co2+ ions leads to enhanced magnetocrystalline anisotropy and coercivity of the pristine superparamagnetic Fe3O4 nanoparticles. Hyperthermia measurement shows that by controlling the Co content (x = 0 to 0.5) in CoxFe3-xO4 nanoparticles, their specific absorption rate (SAR) can be greatly improved from 132 to 534 W/g. The strong enhancement in SAR value is attributed to the increased anisotropy and coercivity. Moreover, with the increase of ac magnetic field from 184 to 491 Oe, the SAR values of Fe3O4 and Co0.5Fe2.5O4 nanoparticles increase from 81 to 132 W/g and 220 to 534 W/g, respectively.

  7. Electrospun PVDF fibers and a novel PVDF/CoFe2O4 fibrous composite as nanostructured sorbent materials for oil spill cleanup

    NASA Astrophysics Data System (ADS)

    Dorneanu, Petronela Pascariu; Cojocaru, Corneliu; Olaru, Niculae; Samoila, Petrisor; Airinei, Anton; Sacarescu, Liviu

    2017-12-01

    In this work, pure polyvinylidene fluoride (PVDF) and PVDF/cobalt ferrite (CoFe2O4) magnetic fibrous composite were successfully prepared by electrospinning method for oil spill sorption applications. The pure spinel phase of CoFe2O4 and PVDF/CoFe2O4 composites were confirmed by X-ray diffraction analysis (XRD). Electrospun sorbent materials were characterized by scanning and transmission electron microscopy (SEM and TEM) as well as by contact angle measurements. In addition, the composite sorbent (PVDF/CoFe2O4) was characterized by magnetic measurements. It revealed good magnetic properties that are of real interest to facilitate the separation of the oil-loaded sorbent under the external magnetic field. Finally, the produced electrospun sorbents were tested for sorption of oily liquids, such as: decane, dodecane and commercial motor oils. We obtained good oil sorption capacity (between 9.751-23.615 g/g of pure PVDF) and (8.133-18.074 g/g for the magnetic composite) depending on the nature of oil tested. The present electrospun magnetic PVDF/CoFe2O4 fibrous composite could be potentially useful for the efficient removal of oil in water and recovery of sorbent material.

  8. A new mineral species rossovskyite, (Fe3+,Ta)(Nb,Ti)O4: crystal chemistry and physical properties

    NASA Astrophysics Data System (ADS)

    Konovalenko, Sergey I.; Ananyev, Sergey A.; Chukanov, Nikita V.; Rastsvetaeva, Ramiza K.; Aksenov, Sergey M.; Baeva, Anna A.; Gainov, Ramil R.; Vagizov, Farit G.; Lopatin, Oleg N.; Nebera, Tatiana S.

    2015-11-01

    A new mineral rossovskyite named after L.N. Rossovsky was discovered in granite pegmatites of the Bulgut occurrence, Altai Mts., Western Mongolia. Associated minerals are microcline, muscovite, quartz, albite, garnet of the almandine-spessartine series, beryl, apatite, triplite, zircon, pyrite, yttrobetafite-(Y) and schorl. Rossovskyite forms flattened anhedral grains up to 6 × 6 × 2 cm. The color of the mineral is black, and the streak is black as well. The luster is semi-metallic, dull. Mohs hardness is 6. No cleavage or parting is observed. Rossovskyite is brittle, with uneven fracture. The density measured by the hydrostatic weighing method is 6.06 g/cm2, and the density calculated from the empirical formula is 6.302 g/cm3. Rossovskyite is biaxial, and the color in reflection is gray to dark gray. The IR spectrum contains strong band at 567 cm-1 (with shoulders at 500 and 600 cm-1) corresponding to cation-oxygen stretching vibrations and weak bands at 1093 and 1185 cm-1 assigned as overtones. The reflection spectrum in visible range is obtained. According to the Mössbauer spectrum, the ratio Fe2+:Fe3+ is 35.6:64.4. The chemical composition is as follows (electron microprobe, Fe apportioned between FeO and Fe2O3 based on Mössbauer data, wt%): MnO 1.68, FeO 5.92, Fe2O3 14.66, TiO2 7.69, Nb2O5 26.59, Ta2O5 37.51, WO3 5.61, total 99.66. The empirical formula calculated on four O atoms is: {{Mn}}_{0.06}^{2 + } {{Fe}}_{0.21}^{2 + } {{Fe}}_{0.47}^{3 + } Ti0.25Nb0.51Ta0.43W0.06O4. The crystal structure was determined using single-crystal X-ray diffraction data. The new mineral is monoclinic, space group P2/ c, a = 4.668(1), b = 5.659(1), c = 5.061(1) Å, β = 90.21(1)º; V = 133.70(4) Å3, Z = 2. Topologically, the structure of rossovskyite is analogous to that of wolframite-group minerals. The crystal-chemical formula of rossovskyite is [(Fe3+, Fe2+, Mn)0.57Ta0.32Nb0.11][Nb0.40Ti0.25Fe0.18Ta0.11W0.06]O4. The strongest lines of the powder X-ray diffraction pattern

  9. Electrodeposition of Fe{sub 3}O{sub 4} layer from solution of Fe{sub 2}(SO{sub 4}){sub 3} with addition ethylene glycol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahlan, Dahyunir, E-mail: dahyunir@yahoo.com; Asrar, Allan

    2016-03-11

    The electrodeposition of Fe{sub 3}O{sub 4} layer from the solution Fe{sub 2}(SO{sub 4}){sub 3} with the addition of ethylene glycol on Indium Tin Oxide (ITO) substrate has been performed. The electrodeposition was carried out using a voltage of 5 volts for 120 seconds, with and without the addition of 2% wt ethylene glycol. Significant effects of temperature on the resulting the samples is observed when they are heated at 400 °C. Structural characterization using X-ray diffraction (XRD) shows that all samples produce a layer of Fe{sub 3}O{sub 4} with particle size less than 50 nanometers. The addition of ethylene glycolmore » and the heating of the sample causes a shrinkage in particle size. The scanning electron microscopy (SEM) characterization shows that Fe{sub 3}O{sub 4} layer resulting from the process of electrodeposition of Fe{sub 2}(SO{sub 4}){sub 3} without ethylene glycol, independent of whether the sample is heated or not, is uneven and buildup. Layer produced by the addition of ethylene glycol without heating produces spherical particles. On contrary, when the layer is heated the spherical particles transform to irregularly-shaped particles with smaller size.« less

  10. Highly efficient and porous TiO2-coated Ag@Fe3O4@C-Au microspheres for degradation of organic pollutants

    NASA Astrophysics Data System (ADS)

    Shen, Mao; Chen, Suqing; Jia, Wenping; Fan, Guodong; Jin, Yanxian; Liang, Huading

    2016-12-01

    In this paper, we reported a novel hierarchical porous Ag@Fe3O4@C-Au@TiO2 core@shell microspheres with a highly photocatalytic activity and magnetically separable properties. The synthesis method is included of a Fe3O4 magnetic embedded Ag core (Ag@Fe3O4), an interlayer of carbon modified by PEI to form sufficient amounts of amine functional groups (Ag@Fe3O4@C-PEI), the grafting of Au nanoparticles on the surface of Ag@Fe3O4@C-PEI (Ag@Fe3O4@C-Au), and an ordered porous TiO2 structured shell. As an example of the applications, the photocatalytic activities of the samples were investigated by the reduction of Rhodamine B (RhB) under visible-light irradiation. The results show that the porous Ag@Fe3O4@C-Au@TiO2 core@shell microspheres display higher adsorption and photocatalytic activities compared to the pure porous TiO2 and Ag@Fe3O4@C@TiO2 microspheres, which are attributed to the local surface plasmon resonance (LSPR) by the Ag and Au nanoparticles and the high specific surface area.

  11. Ethylenediamine grafted to graphene oxide@Fe3O4 for chromium(VI) decontamination: Performance, modelling, and fractional factorial design

    PubMed Central

    Xu, Jiawen; Wu, Cuiyu; Deng, Jianbin; Liao, Wenwei; Ling, Yuxiang; Yang, Yuanxiu; Zhao, Yina; Zhao, Yunlin; Hu, Xi; Wang, Hui; Liu, Yunguo

    2017-01-01

    A method for grafting ethylenediamine to a magnetic graphene oxide composite (EDA-GO@Fe3O4) was developed for Cr(VI) decontamination. The physicochemical properties of EDA-GO@Fe3O4 were characterized using HRTEM, EDS, FT-IR, TG-DSC, and XPS. The effects of pH, sorbent dose, foreign anions, time, Cr(VI) concentration, and temperature on decontamination process were studied. The solution pH can largely affect the decontamination process. The pseudo-second-order model is suitable for being applied to fit the adsorption processes of Cr(VI) with GO@Fe3O4 and EDA-GO@Fe3O4. The intra-particle diffusion is not the rate-controlling step. Isotherm experimental data can be described using the Freundlich model. The effects of multiple factors on the Cr(VI) decontamination was investigated by a 25−1 fractional factorial design (FFD). The adsorption process can significantly be affected by the main effects of A (pH), B (Cr(VI) concentration), and E (Adsorbent dose). The combined factors of AB (pH × Cr(VI) concentration), AE (pH × Adsorbent dose), and BC (Cr(VI) concentration × Temperature) had larger effects than other factors on Cr(VI) removal. These results indicated that EDA-GO@Fe3O4 is a potential and suitable candidate for treatment of heavy metal wastewater. PMID:29084287

  12. Electronic and Optical Properties of a Semiconducting Spinel (Fe 2 CrO 4 )

    DOE PAGES

    Chambers, Scott A.; Droubay, Timothy C.; Kaspar, Tiffany C.; ...

    2017-01-13

    Epitaxial chromium ferrite (Fe 2CrO 4), prepared by state-of-the-art oxygen plasma assisted molecular beam epitaxy, is shown to exhibit unusual electronic transport properties driven by the crystallographic structure and composition of the material. By replacing 1/3 of the Fe cations with Cr converts the host ferrimagnet from a metal into a semiconductor by virtue of its fixed valence (3+); Cr substitutes for Fe at B sites in the spinel lattice. Conversely, replacing 2/3 of the Fe cations with Cr results in an insulator. Three candidate conductive paths, all involving electron hopping between Fe 2+ and Fe 3+, are identified inmore » Fe 2CrO 4. Moreover, Fe 2CrO 4 is shown to be photoconductive across the visible portion of the electromagnetic spectrum. As a result, this material is of potential interest for important photo-electrochemical processes such as water splitting.« less

  13. Spontaneous ferroelectricity in strained low-temperature monoclinic Fe3O4: A first-principles study

    NASA Astrophysics Data System (ADS)

    Liu, Xiang; Mi, Wen-Bo

    2018-04-01

    As a single-phase multiferroic material, Fe3O4 exhibits spontaneous ferroelectric polarization below 38 K. However, the nature of the ferroelectricity in Fe3O4 and effect of external disturbances such as strain on it remains ambiguous. Here, the spontaneous ferroelectric polarization of low-temperature monoclinic Fe3O4 was investigated by first-principles calculations. The pseudo-centrosymmetric Fe B42-Fe B43 pair has a different valence state. The noncentrosymmetric charge distribution results in ferroelectric polarization. The initial ferroelectric polarization direction is in the - x and - z directions. The ferroelectricity along the y axis is limited owing to the symmetry of the Cc space group. Both the ionic displacement and charge separation at the Fe B42-Fe B43 pair are affected by strain, which further influences the spontaneous ferroelectric polarization of monoclinic Fe3O4. The ferroelectric polarization along the z axis exhibits an increase of 45.3% as the strain changes from 6% to -6%.

  14. Adsorption mechanism of magnetically separable Fe3O4/graphene oxide hybrids

    NASA Astrophysics Data System (ADS)

    Ouyang, Ke; Zhu, Chuanhe; Zhao, Ya; Wang, Leichao; Xie, Shan; Wang, Qun

    2015-11-01

    A reclaimable Fe3O4/graphene oxide (GO) magnetic hybrid was successfully synthesized via a facile one-pot polyol approach and employed as a recyclable adsorbent for Bisphenol A (BPA) in aqueous solutions. The maximum adsorption capacity (qm) of the Fe3O4/GO hybrid for BPA was 72.80 mg/g at 273 K. The kinetics of the adsorption process and the adsorption isotherm data were fitted using the Freundlich equation and a pseudo-second-order kinetic model. The results of the thermodynamic parameters ΔH°, ΔS° and ΔG° showed that the adsorption process was exothermic and spontaneous. Furthermore, the reusability of the samples was investigated, and the results indicated that the samples exhibited high stability. The magnetic characterization demonstrated that hybrids were superparamagnetic and could be recovered conveniently by magnetic separation. The strong π-π interaction was determined to be the predominant driving force behind the adsorption of BPA onto the Fe3O4/GO hybrid. Therefore, the Fe3O4/GO hybrid could be regarded as a potential adsorbent for wastewater treatment and purification processes.

  15. EPR spectroscopic investigations in 15BaO-25Li2O-(60-x) B2O3-xFe2O3 glass system

    NASA Astrophysics Data System (ADS)

    Bhogi, Ashok; Kumar, R. Vijaya; Kistaiah, P.

    2018-05-01

    Glasses with composition 15BaO-25Li2O-(60-x) B2O3 -xFe2O3 (x = 0, 0.2, 0.4, 0.6, 0.8 and 1 mol %) were prepared by the conventional melt quenching technique. These glasses were characterized using X-ray diffraction (XRD). Electron paramagnetic resonance (EPR) investigations have been carried out as a function of iron ion concentration. The observed EPR spectra of Fe3+ ion exhibits resonance signals at g= 2.0, 4.3 and 8.0. The resonance signal at g= 4.3 is due to isolated Fe3+ ions in site with rhombic symmetry where as the g= 2.0 resonance signal is attributed to the Fe3+ ions coupled by exchange interaction in a distorted octahedral environment and the signal at g= 8.0 arises from axially distorted sites. The number of spins participating in resonance (N) and its paramagnetic susceptibilities (χ) have also been evaluated. The peak-to-peak line width ΔB for the resonance lines at g ≈ 4.3 and at g ≈ 2.0 is increasing as function of the iron ion content. The line intensity of the resonance centered at g ≈ 4.3 and at g ≈ 2.0 increases up to 0.8 mol% of Fe2O3 and for 1 mol% of Fe2O3 its value is found to decrease. The analysis of these results indicated that the conversion some of Fe3+ cations to Fe2+ ions beyond 0.8 mol%.

  16. Phase Constituents and Microstructure of Ti3Al/Fe3Al + TiN/TiB2 Composite Coating on Titanium Alloy

    NASA Astrophysics Data System (ADS)

    Li, Jianing; Chen, Chuanzhong; Zhang, Cuifang

    Laser cladding of the Fe3Al + B4C/TiN + Al2O3 pre-placed powders on the Ti-6Al-4V alloy can form the Ti3Al/Fe3Al + TiN/TiB2 composite coating, which improved the wear resistance of the Ti-6Al-4V alloy surface. In this study, the Ti3Al/Fe3Al + TiN/TiB2 composite coating has been researched by means of X-ray diffraction and scanning electron microscope. It was found that during the laser cladding process, Al2O3 can react with TiB2, leading to the formations of Ti3Al and B. This principle can be used to improve the Fe3Al + B4C/TiN laser-cladded coating on the Ti-6Al-4V alloy. Furthermore, during the cladding process, C consumed the oxygen in Fe3Al + B4C /TiN + Al2O3 molten pool, which retarded the productions of the redundant metal oxides.

  17. A comparative study on the morphology of P3HT:PCBM solar cells with the addition of Fe3O4 nanoparticles by spin and rod coating methods

    NASA Astrophysics Data System (ADS)

    Zhang, Wenluan; Nguyen, Ngoc A.; Murray, Roy; Xin, Jiyuan; Mackay, Michael E.

    2017-09-01

    Our previous study presented up to 20% power conversion efficiency (PCE) enhancement of poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester (P3HT:PCBM) solar cells under the Fe3O4 nanoparticles (NPs) self-assembly (SA) effect by spin coating. Fe3O4 NPs (about 11 nm hydrodynamic diameter) form a thin layer at the top interface of the light absorbing active layer, which results in the generation of PCBM rich region improving the charge transport (Zhang et al. Sol Energ Mat Sol C 160:126-133, 2017). In order to investigate the feasibility of this Fe3O4 NPs SA effect under large-scale production condition, a smooth rod was implemented to mimic roll-to-roll coating technique and yield active layers having about the same thickness as the spin-coated ones. Small angle neutron scattering and grazing incidence X-ray diffraction were employed finding out similar morphologies of the active layers by these two coating techniques. However, rod-coated solar cell's PCE decreases with the addition of Fe3O4 NPs compared with the one without them. This is because PCBM rich region is not created at the top interface of the active layer due to the absence of Fe3O4 NPs, which is attributed to the weak convective flow and low diffusion rate. Moreover, in the rod-coated solar cells, the presence of Fe3O4 NPs causes decrease in P3HT crystallinity, thus the charge transport and the device performance. Our study confirms the role of spin coating in the Fe3O4 NPs SA effect and enables researchers to explore this finding in other polymer nanocomposite systems.

  18. In situ loading of gold nanoparticles on Fe3O4@SiO2 magnetic nanocomposites and their high catalytic activity.

    PubMed

    Zheng, Jinmin; Dong, Yalei; Wang, Weifeng; Ma, Yanhua; Hu, Jing; Chen, Xiaojiao; Chen, Xingguo

    2013-06-07

    In this work, a facile approach was successfully developed for in situ catalyzing Au nanoparticles loaded on Fe3O4@SiO2 magnetic nanospheres via Sn(2+) linkage and reduction. After the Fe3O4@SiO2 MNPs were first prepared via a sol-gel process, only one step was needed to synthesize the Fe3O4@SiO2-Au magnetic nanocomposites (Fe3O4@SiO2-Au MNCs), so that both the synthesis step and the reaction cost were remarkably decreased. Significantly, the as-synthesized Fe3O4@SiO2-Au MNCs showed high performance in the catalytic reduction of 4-nitrophenol to 4-aminophenol and could be reused for several cycles with convenient magnetic separability. This approach provided a useful platform based on Fe3O4@SiO2 MNPs for the fabrication of Au or other noble metal magnetic nanocatalysts, which would be very useful in various catalytic reductions.

  19. Synthesis and characterization of Mn-ZnFe2O4 and Mn-ZnFe2O4/rGO nanocomposites from waste batteries for photocatalytic, electrochemical and thermal studies

    NASA Astrophysics Data System (ADS)

    Mylarappa, M.; Venkata Lakshmi, V.; Vishnu Mahesh, K. R.; Nagaswarupa, H. P.; Raghavendra, N.

    2017-11-01

    In the present paper, Mn-ZnFe2O4 and Mn-ZnFe2O4/rGO composites recovered from waste batteries using acid dissolution and ferrite processing were studied. The recovered Mn-ZnFe2O4 nanocomposites were decorated onto rGO using the facile hydrothermal method. The recovered material was characterized using x-ray powder diffraction to study the particle size and crystallinity. The morphology of the composites was analyzed using scanning electron microscopy, and elements present in the materials were studied using energy dispersive x-ray analysis. The functional groups attached were observed using a Fourier transform infrared spectrometer. Furthermore, the recovered composites were evaluated in thermal studies using thermal gravimetric analysis, differential scanning calorimetry and dynamic thermal analysis. The material was used as a photocatalyst for the removal of acid orange 88 dye, and as an electrocatalyst. The decreased band gap energy for the Mn-ZnFe2O4/rGO composite was displayed in better photocatalytic activity for a given reaction. The electrochemical properties of Mn-ZnFe2O4 and Mn-ZnFe2O4/rGO have been investigated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) with a paste-type electrode. The CV indicated the reversibility of the electrode reaction, and the EIS revealed that a decrease in the charge transfer resistance increases the double layer capacitance of the rGO/Mn-ZnFe2O4 electrode.

  20. The synthesis of Fe3O4/MWCNT nanocomposites from local iron sands for electrochemical sensors

    NASA Astrophysics Data System (ADS)

    Rahmawati, Retno; Taufiq, Ahmad; Sunaryono, Yuliarto, Brian; Suyatman, Nugraha, Noviandri, Indra; Setyorini, Dian Ayu; Kurniadi, Deddy

    2018-05-01

    The aim of this research is producing the electrochemical sensor, especially for working electrodes based on the nanocomposites of multi-walled carbon nanotube (MWCNT) and magnetite (Fe3O4) nanoparticles from iron sands. The sonochemical method by ultrasonic horn was successfully used for the synthesis of the nanocomposites. The characterizations of the sample were conducted via X-Ray Diffractometer (XRD), Fourier Transform Infra-Red (FTIR) Spectrometer, Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Brunauer-Emmett-Teller (BET) method for surface area, Vibrating Sample Magnetometer (VSM) and Cyclic Voltammetry (CV). The analysis of X-Ray Diffraction (XRD) pattern showed two phases of crystalline, namely MWCNT and Fe3O4, peak of MWCNT comes from (002) plan while peaks of Fe3O4 come from (2 2 0), (3 1 1), (4 0 0), (4 2 2), (5 1 1), and (4 4 0) plans. From XRD data, MWCNT has a hexagonal structure and Fe3O4 has inverse spinel cubic structure, respectively. The FTIR spectra revealed that the functionalization process of MWCNT successfully generated carboxyl and carbonyl groups to bind Fe3O4 on MWCNT surfaces. Moreover, the functional groups of Fe-O bonding that showed the existence of Fe3O4 in the nanocomposites were also detected in those spectra. Meanwhile, the SEM and TEM images showed that the nanoparticles of Fe3O4 attached on the MWCNT surface and formed agglomeration between particles due to magnetic forces. Through Brunauer-Emmett-Teller (BET) method, it is identified that the nanocomposite has a large surface area 318 m2/g that makes this material very suitable for electrochemical sensor applications. Moreover, the characterization of magnetic properties via Vibrating Sample Magnetometer (VSM) showed that the nanocomposites have superparamagnetic behavior at room temperature and the presence of the MWCNT reduced the magnetic properties of Fe3O4. Lastly, the electrochemical characterization with Cyclic Voltammetry (CV) proved that

  1. TEA controllable preparation of magnetite nanoparticles (Fe3O4 NPs) with excellent magnetic properties

    NASA Astrophysics Data System (ADS)

    Han, Chengliang; Zhu, Dejie; Wu, Hanzhao; Li, Yao; Cheng, Lu; Hu, Kunhong

    2016-06-01

    A fast and controllable synthesis method for superparamagnetic magnetite nanoparticles (Fe3O4 NPs) was developed in Fe(III)-triethanolamine (TEA) solution. The phase structure, morphology and particle size of the as-synthesized samples were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results showed that the magnetic particles were pure Fe3O4 with mean sizes of approximately 10 nm. The used TEA has key effects on the formation of well dispersing Fe3O4 NPs. Vibrating sample magnetometer (VSM) result indicated that the as-obtained Fe3O4 NPs exhibited superparamagnetic behavior and the saturation magnetization (Ms) was about 70 emu/g, which had potential applications in magnetic science and technology.

  2. Composite CuFe1 - xSnxO2/p-type silicon photodiodes

    NASA Astrophysics Data System (ADS)

    Al-Sehemi, Abdullah G.; Mensah-Darkwa, K.; Al-Ghamdi, Ahmed A.; Soylu, M.; Gupta, R. K.; Yakuphanoglu, F.

    2017-06-01

    CuFe1 - xSnxO2 composite thin film/p-type silicon diodes were prepared on substrate by sol-gel method (x = 0.00, 0.01, 0.03, 0.05, 0.07). The structure of CuFe1 - xSnxO2 composite thin films was studied using XRD analysis and films exhibited amorphous behavior. The elemental compositions and surface morphology of the films were characterized using SEM and EDX. EDX results confirmed the presence of the compositional elements. The optical band gap of CuFe1 - xSnxO2 composite thin films was determined using the optic spectra. The optical band gaps of the CuFe1 - xSnxO2 composite thin films were calculated using optical data and were found to be 3.75, 3.78, 3.80, 3.85 and 3.83 eV for x = 0.00, 0.01, 0.03, 0.05 and 0.07, respectively. The photoresponse and electrical properties of the Al/CuFe1 - xSnxO2/p-Si/Al diode were studied. The barrier height and ideality factor were determined to be averagely 0.67 eV and 2.6, respectively. The electrical and photoresponse characteristics of the diodes have been investigated under dark and solar light illuminations, respectively. The interface states were used to explain the results obtained in present study. CuFe1 - xSnxO2 photodiodes exhibited a high photoresponsivity to be used in optoelectronic applications.

  3. Degradation of atenolol via heterogeneous activation of persulfate by using BiOCl@Fe3O4 catalyst under simulated solar light irradiation.

    PubMed

    Shi, Yahong; Chen, Hongche; Wu, Yanlin; Dong, Wenbo

    2018-01-01

    Efficient oxidative degradation of pharmaceutical pollutants in aquatic environments is of great importance. This study used magnetic BiOCl@Fe 3 O 4 catalyst to activate persulfate (PS) under simulated solar light irradiation. This degradation system was evaluated using atenolol (ATL) as target pollutant. Four reactive species were identified in the sunlight/BiOCl@Fe 3 O 4 /PS system. The decreasing order of the contribution of each reactive species on ATL degradation was as follows: h +  ≈ HO ·  > O 2 ·-  > SO 4 ·- . pH significantly influenced ATL degradation, and an acidic condition favored the reaction. High degradation efficiencies were obtained at pH 2.3-5.5. ATL degradation rate increased with increased catalyst and PS contents. Moreover, ATL mineralization was higher in the sunlight/BiOCl@Fe 3 O 4 /PS system than in the sunlight/BiOCl@Fe 3 O 4 or sunlight/PS system. Nine possible intermediate products were identified through LC-MS analysis, and a degradation pathway for ATL was proposed. The BiOCl@Fe 3 O 4 nanomagnetic composite catalyst was synthesized in this work. This catalyst was easily separated and recovered from a treated solution by using a magnet, and it demonstrated a high catalytic activity. Increased amount of the BiOCl@Fe 3 O 4 catalyst obviously accelerated the efficiency of ATL degradation, and the reusability of the catalyst allowed the addition of a large dosage of BiOCl@Fe 3 O 4 to improve the degradation efficiency.

  4. NASICON-related Na3.4Mn0.4Fe1.6(PO4)3

    PubMed Central

    Yatskin, Michael M.; Strutynska, Nataliya Yu.; Baumer, Vyacheslav N.; Ogorodnyk, Ivan V.; Slobodyanik, Nikolay S.

    2012-01-01

    The solid solution, sodium [iron(III)/manganese(II)] tris­(orthophosphate), Na3.4Mn0.4Fe1.6(PO4)3, was obtained using a flux method. Its crystal structure is related to that of NASICON-type compounds. The [(Mn/Fe)2(PO4)3] framework is built up from an (Mn/Fe)O6 octa­hedron (site symmetry 3.), with a mixed Mn/Fe occupancy, and a PO4 tetra­hedron (site symmetry .2). The Na+ cations are distributed over two partially occupied sites in the cavities of the framework. One Na+ cation (site symmetry -3.) is surrounded by six O atoms, whereas the other Na+ cation (site symmetry .2) is surrounded by eight O atoms. PMID:22807697

  5. Well-ordered mesoporous Fe2O3/C composites as high performance anode materials for sodium-ion batteries.

    PubMed

    Li, Mei; Ma, Chao; Zhu, Qian-Cheng; Xu, Shu-Mao; Wei, Xiao; Wu, Yong-Min; Tang, Wei-Ping; Wang, Kai-Xue; Chen, Jie-Sheng

    2017-04-11

    Sodium-ion batteries have attracted considerable attention in recent years. In order to promote the practical application of sodium-ion batteries, the electrochemical performances, such as specific capacity, reversibility, and rate capability of the anode materials, should be further improved. In this work, a Fe 2 O 3 /C composite with a well-ordered mesoporous structure is prepared via a facile co-impregnation method by using mesoporous silica SBA-15 as a hard template. When used as an anode material for sodium-ion batteries, the well-ordered mesoporous structure ensures fast mass transport kinetics. The presence of nano-sized Fe 2 O 3 particles confined within the carbon walls significantly enhances the specific capacity of the composite. The carbon walls in the composite act not only as an active material contributing to the specific capacity, but also as a conductive matrix improving the cycling stability of Fe 2 O 3 nanoparticles. As a result, the well-ordered mesoporous Fe 2 O 3 /C composite exhibits high specific capacity, excellent cycleability, and high rate capability. It is proposed that this simple co-impregnation method is applicable for the preparation of well-ordered mesoporous transition oxide/carbon composite electrode materials for high performance sodium-ion and lithium-ion batteries.

  6. Battery Relevant Electrochemistry of Ag 7Fe 3(P 2O 7 ) 4 : Contrasting Contributions from the Redox Chemistries of Ag + and Fe 3+

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yiman; Kirshenbaum, Kevin C.; Marschilok, Amy C.

    Ag 7Fe 3(P 2O 7 ) 4 is an example of an electrochemical displacement material which contains two different electrochemically active metal cations, where one cation (Ag +) forms metallic silver nanoparticles external to the crystals of Ag 7Fe 3(P 2O 7 ) 4 via an electrochemical reduction displacement reaction, while the other cation (Fe +3) is electrochemically reduced with the retention of iron cations within the anion structural framework concomitant with lithium insertion. These contrasting redox chemistries within one pure cathode material enable high rate capability and reversibility when Ag 7Fe 3(P 2O 7 ) 4 is employed asmore » cathode material in a lithium ion battery (LIB). Further, pyrophosphate materials are thermally and electrically stable, desirable attributes for cathode materials in LIBs. In this article, a bimetallic pyrophosphate material Ag 7Fe 3(P 2O 7 ) 4 is synthesized and confirmed to be a single phase by Rietveld refinement. Electrochemistry of Ag 7Fe 3(P 2O 7 ) 4 is reported for the first time in the context of lithium based batteries using cyclic voltammetry and galvanostatic discharge–charge cycling. The reduction displacement reaction and the lithium (de)insertion processes are investigated using ex situ X-ray absorption spectroscopy and X-ray diffraction of electrochemically reduced and oxidized Ag 7Fe 3(P 2O 7 ) 4. Ag 7Fe 3(P 2O 7 ) 4 exhibits good reversibility at the iron centers indicated by ~80% capacity retention over 100 cycles following the initial formation cycle and excellent rate capability exhibited by ~70% capacity retention upon a 4-fold increase in current.« less

  7. Battery Relevant Electrochemistry of Ag 7Fe 3(P 2O 7 ) 4 : Contrasting Contributions from the Redox Chemistries of Ag + and Fe 3+

    DOE PAGES

    Zhang, Yiman; Kirshenbaum, Kevin C.; Marschilok, Amy C.; ...

    2016-10-12

    Ag 7Fe 3(P 2O 7 ) 4 is an example of an electrochemical displacement material which contains two different electrochemically active metal cations, where one cation (Ag +) forms metallic silver nanoparticles external to the crystals of Ag 7Fe 3(P 2O 7 ) 4 via an electrochemical reduction displacement reaction, while the other cation (Fe +3) is electrochemically reduced with the retention of iron cations within the anion structural framework concomitant with lithium insertion. These contrasting redox chemistries within one pure cathode material enable high rate capability and reversibility when Ag 7Fe 3(P 2O 7 ) 4 is employed asmore » cathode material in a lithium ion battery (LIB). Further, pyrophosphate materials are thermally and electrically stable, desirable attributes for cathode materials in LIBs. In this article, a bimetallic pyrophosphate material Ag 7Fe 3(P 2O 7 ) 4 is synthesized and confirmed to be a single phase by Rietveld refinement. Electrochemistry of Ag 7Fe 3(P 2O 7 ) 4 is reported for the first time in the context of lithium based batteries using cyclic voltammetry and galvanostatic discharge–charge cycling. The reduction displacement reaction and the lithium (de)insertion processes are investigated using ex situ X-ray absorption spectroscopy and X-ray diffraction of electrochemically reduced and oxidized Ag 7Fe 3(P 2O 7 ) 4. Ag 7Fe 3(P 2O 7 ) 4 exhibits good reversibility at the iron centers indicated by ~80% capacity retention over 100 cycles following the initial formation cycle and excellent rate capability exhibited by ~70% capacity retention upon a 4-fold increase in current.« less

  8. Zincobotryogen, ZnFe3+(SO4)2(OH)ṡ7H2O: validation as a mineral species and new data

    NASA Astrophysics Data System (ADS)

    Yang, Zhuming; Giester, Gerald; Mao, Qian; Ma, Yuguang; Zhang, Di; Li, He

    2017-06-01

    Zincobotryogen occurs in the oxidation zone of the Xitieshan lead-zinc deposit, Qinghai, China. The mineral is associated with jarosite, copiapite, zincocopiapite, and quartz. The mineral forms prismatic crystals, 0.05 to 2 mm in size. It is optically positive (2Vcalc = 54.1°), with Z ‖ b and X ∧ c = 10°. The elongation is negative. The refractive indices are n α = 1.542(5), n β = 1.551(5), n γ = 1.587(5). The pleochroism scheme is X = colorless, Y = light yellow, Z = yellow. Microprobe analysis gave (in wt%): SO3 = 38.04, Al2O3 = 0.04, Fe2O3 = 18.46, ZnO = 13.75, MgO = 1.52, MnO = 1.23, H2O = 31.06 (by calculation), Total = 104.10. The simplified formula is (Zn,Mg)Fe3+(SO4)2(OH)ṡ7H2O. The mineral is monoclinic, P121/ n1, a = 10.504(2), b = 17.801(4), c = 7.1263(14) Å, and β = 100.08(3)°, V = 1311.9(5) Å3, Z = 4. The strongest lines in the powder X-ray diffraction pattern d(I)( hkl) are: 8.92 (100)(110), 6.32 (77)(-101), 5.56 (23)(021), 4.08 (22)(-221),3.21 (31)(231), 3.03 (34)(032), 2.77 (22)(042). The crystal structure was refined using 2816 unique reflections to R1( F) = 0.0355 and wR2( F 2) = 0.0651. The refined formula is (Zn0.84Mg0.16)Fe3+(SO4)2(OH)ṡ7H2O. The atomic arrangement is characterized by chains with composition [Fe3+(SO4)2(OH)(H2O)]2- and 7 Å repeat distance running parallel to the c-axis. The chain links to a [ MO(H2O)5] octahedron ( M = Zn, Mg) and an unshared H2O molecule, and forms a larger chain building module with composition [ M 2+Fe3+(SO4)2(OH)(H2O)6(H2O)]. The inter-chain module linkage involves only hydrogen bonding.

  9. Anisotropy effects in magnetic hyperthermia: A comparison between spherical and cubic exchange-coupled FeO/Fe{sub 3}O{sub 4} nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khurshid, H., E-mail: khurshid@usf.edu, E-mail: sharihar@usf.edu; Nemati, Z.; Phan, M. H.

    2015-05-07

    Spherical and cubic exchange-coupled FeO/Fe{sub 3}O{sub 4} nanoparticles, with different FeO:Fe{sub 3}O{sub 4} ratios, have been prepared by a thermal decomposition method to probe anisotropy effects on their heating efficiency. X-ray diffraction and transmission electron microscopy reveal that the nanoparticles are composed of FeO and Fe{sub 3}O{sub 4} phases, with an average size of ∼20 nm. Magnetometry and transverse susceptibility measurements show that the effective anisotropy field is 1.5 times larger for the cubes than for the spheres, while the saturation magnetization is 1.5 times larger for the spheres than for the cubes. Hyperthermia experiments evidence higher values of the specificmore » absorption rate (SAR) for the cubes as compared to the spheres (200 vs. 135 W/g at 600 Oe and 310 kHz). These observations point to an important fact that the saturation magnetization is not a sole factor in determining the SAR and the heating efficiency of the magnetic nanoparticles can be improved by tuning their effective anisotropy.« less

  10. Controllable synthesis of magnetic Fe3O4 particles with different morphology by one-step hydrothermal route

    NASA Astrophysics Data System (ADS)

    Chen, Zhongtao; Du, Yi; Li, Zhongfu; Yang, Kai; Lv, Xingjie

    2017-03-01

    Well-defined Fe3O4 particles were successfully fabricated by a facile triethanolamine (TEA)-assisted method under mild hydrothermal conditions. Hydrated ferric salt was employed as the single iron precursor. TEA was used as the complexing agent and/or alkaline source. The crystalline phases of the as-obtained samples were characterized by X-ray diffraction (XRD). Furthermore, the morphology as well as the compositions of the samples were investigated by scanning electron microscopy (SEM) equipped with an energy dispersion spectroscopy (EDS). The results indicated that the products were Fe3O4 crystal phase, and the morphology and powder size of the particles were varied with adding different amount of NaOAc and keeping the content of TEA unchanged. On the basis of these results, the possible formation mechanism of Fe3O4 was discussed. It was observed that TEA and NaOAc affected the growth rate of crystal planes and nucleation. Besides, the magnetic property tested by a vibrating sample magnetometer (VSM) showed that the products exhibited a ferromagnetic behavior and possessed the excellent saturation magnetization (Ms) at room temperature.

  11. Reversible [4Fe-3S] cluster morphing in an O(2)-tolerant [NiFe] hydrogenase.

    PubMed

    Frielingsdorf, Stefan; Fritsch, Johannes; Schmidt, Andrea; Hammer, Mathias; Löwenstein, Julia; Siebert, Elisabeth; Pelmenschikov, Vladimir; Jaenicke, Tina; Kalms, Jacqueline; Rippers, Yvonne; Lendzian, Friedhelm; Zebger, Ingo; Teutloff, Christian; Kaupp, Martin; Bittl, Robert; Hildebrandt, Peter; Friedrich, Bärbel; Lenz, Oliver; Scheerer, Patrick

    2014-05-01

    Hydrogenases catalyze the reversible oxidation of H(2) into protons and electrons and are usually readily inactivated by O(2). However, a subgroup of the [NiFe] hydrogenases, including the membrane-bound [NiFe] hydrogenase from Ralstonia eutropha, has evolved remarkable tolerance toward O(2) that enables their host organisms to utilize H(2) as an energy source at high O(2). This feature is crucially based on a unique six cysteine-coordinated [4Fe-3S] cluster located close to the catalytic center, whose properties were investigated in this study using a multidisciplinary approach. The [4Fe-3S] cluster undergoes redox-dependent reversible transformations, namely iron swapping between a sulfide and a peptide amide N. Moreover, our investigations unraveled the redox-dependent and reversible occurence of an oxygen ligand located at a different iron. This ligand is hydrogen bonded to a conserved histidine that is essential for H(2) oxidation at high O(2). We propose that these transformations, reminiscent of those of the P-cluster of nitrogenase, enable the consecutive transfer of two electrons within a physiological potential range.

  12. Fast removal of malachite green dye using novel superparamagnetic sodium alginate-coated Fe3O4 nanoparticles.

    PubMed

    Mohammadi, Abbas; Daemi, Hamed; Barikani, Mehdi

    2014-08-01

    In this study, superparamagnetic sodium alginate-coated Fe3O4 nanoparticles (Alg-Fe3O4) as a novel magnetic adsorbent were prepared by in situ coprecipitation method, in which Fe3O4 nanoparticles were precipitated from FeCl3 and FeCl2 under alkaline medium in the presence of sodium alginate. The Alg-Fe3O4 nanoparticles were used for removal of malachite green (MG) from aqueous solutions using batch adsorption technique. The characterization of synthesized nanoparticles was performed using XRD, FTIR, TEM, TGA and vibrating sample magnetometer (VSM) techniques. FTIR analysis of synthesized nanoparticles provided the evidence that sodium alginate was successfully coated on the surface of Fe3O4 nanoparticles. The FT-IR and TGA characterization showed that the Alg-Fe3O4 nanoparticles contained about 14% (w/w) of sodium alginate. Moreover, TEM analysis indicated that the average diameter of the Alg-Fe3O4 nanoparticles was about 12nm. The effects of adsorbent dosage, pH and temperature were investigated on the adsorption properties of MG onto Alg-Fe3O4 nanoparticles. The equilibrium adsorption data were modeled using the Langmuir and Freundlich isotherms. The maximum adsorption capacity obtained from Langmuir isotherm equation was 47.84mg/g. The kinetics of adsorption of MG onto Alg-Fe3O4 nanoparticles were investigated using the pseudo-first-order and pseudo-second-order kinetic models. The results showed that the adsorption of MG onto nanoparticles followed pseudo-second-order kinetic model. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Oxygen-isotopic Compositions of Low-FeO relicts in High-FeO Host Chondrules in Acfer 094, a Type 3.0 Carbonaceous Chondrite Closely Related to CM

    NASA Technical Reports Server (NTRS)

    Rubin, Alan E.; Kunihiro, Tak; Wasson, John T.

    2006-01-01

    With one exception, the low-FeO relict olivine grains within high-FeO porphyritic chondrules in the type 3.0 Acfer 094 carbonaceous chondrite have DELTA O-17 ( = delta O-17 - 0.52 X delta O-18) values that are substantially more negative than those of the high-FeO olivine host materials. These results are similar to observations made earlier on chondrules in C03.0 chondrites and are consistent with two independent models: (1) Nebular solids evolved from low-FeO, low-DELTA O-17 compositions towards high-FeO, more positive DELTA O-17 compositions; and (2) the range of compositions resulted from the mixing of two independently formed components. The two models predict different trajectories on a DELTA O-17 vs. log Fe/Mg (olivine) diagram, but our sample set has too few values at intermediate Fe/Mg ratios to yield a definitive answer. Published data showing that Acfer 094 has higher volatile contents than CO chondrites suggest a closer link to CM chondrites. This is consistent with the high modal matrix abundance in Acfer 094 (49 vol.%). Acfer 094 may be an unaltered CM chondrite or an exceptionally matrix-rich CO chondrite. Chondrules in Acfer 094 and in CO and CM carbonaceous chondrites appear to sample the same population. Textural differences between Acfer 094 and CM chondrites are largely attributable to the high degree of hydrothermal alteration that the CM chondrites experienced in an asteroidal setting.

  14. Facile synthesis of Fe4N/Fe2O3/Fe/porous N-doped carbon nanosheet as high-performance anode for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Dan; Li, Guangshe; Yu, Meijie; Fan, Jianming; Li, Baoyun; Li, Liping

    2018-04-01

    Iron nitrides are considered as highly promising anode materials for lithium-ion batteries because of their nontoxicity, high abundance, low cost, and higher electrical conductivity. Unfortunately, their limited synthesis routes are available and practical application is still hindered by their fast capacity decay. Herein, a facile and green route is developed to synthesize Fe4N/Fe2O3/Fe/porous N-doped carbon nanosheet composite. The size of Fe4N/Fe2O3/Fe particles is small (10-40 nm) and they are confined in porous N-doped carbon nanosheet. These features are conducive to accommodate volume change well, shorten the diffusion distance and further elevate electrical conductivity. When tested as anode material for lithium-ion batteries, a high discharge capacity of 554 mA h g-1 after 100 cycles at 100 mA g-1 and 389 mA h g-1 after 300 cycles at 1000 mA g-1 are retained. Even at 2000 mA g-1, a high capacity of 330 mA h g-1 can be achieved, demonstrating superior cycling stability and rate performance. New prospects will be brought by this work for the synthesis and the potential application of iron nitrides materials as an anode for LIBs.

  15. Magneto-optical and catalytic properties of Fe3O4@HA@Ag magnetic nanocomposite

    NASA Astrophysics Data System (ADS)

    Amir, Md.; Güner, S.; Yıldız, A.; Baykal, A.

    2017-01-01

    Fe3O4@HA@Ag magnetic nanocomposites (MNCs) were successfully synthesized by the simple reflux method for the removal of azo dyes from the industrial aqueous media. Fe3O4@HA@AgMNCs exhibited high catalytic activity to reduce MB within 20 min from the waste water. The obtained materials were characterized by the means of different techniques. Powder X-ray diffraction (XRD) analysis confirmed the single-phase of Fe3O4 spinel structure. SEM and TEM analysis indicated that Fe3O4@HA@AgMNCs were nanoparticles like structure with small agglomeration. TG result showed that the products contained 9% of HA. The characteristic peaks of HA at 1601 cm-1 and 1703 cm-1 was observed by the means of FT-IR spectra of Fe3O4@HA@AgMNCs. The hysteresis (σ-H) curves revealed Fe3O4@HA@Ag MNCs exhibit a typical superparamagnetic characteristic with a saturation magnetization of 59.11 emu/g and measured magnetic moment is 2.45 μB. The average magnetic particle dimension (Dmag) is 13.25 nm. In accordance, the average crystallite and particle dimensions were obtained as 11.50 nm and 13.10 nm from XRD and TEM measurements, respectively. Magnetocrystalline anisotropy was offered as uniaxial and calculated effective anisotropy constant (Keff) is 2.96×105 Erg/g. The blocking temperature was estimated as 522 K. The size-dependent saturation magnetization suggests the existence of a magnetically dead layer as 0.793 nm for Fe3O4@HA@Ag MNCs. The UV-vis diffuse reflectance spectroscopy (DRS) and Kubelka-Munk theory were applied to determine the optical properties of powder samples. The direct optical energy band gap (Eg) values were estimated from Tauc plots between 1.62 eV and 2.12 eV.

  16. Hydrothermal synthesis of superparamagnetic Fe{sub 3}O{sub 4} nanoparticles with ionic liquids as stabilizer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiao-Di, E-mail: liuxiaodiny@126.com; Chen, Hao; Liu, Shan-Shan

    2015-02-15

    Highlights: • Superparamagnetic Fe{sub 3}O{sub 4} nanoparticles with good dispersity have been synthesized via hydrothermal method. • Ionic liquid [C{sub 16}mim]Cl acts as stabilizer for the Fe{sub 3}O{sub 4} nanoparticles. • Fe{sub 3}O{sub 4} nanoparticles have a saturation magnetization of 67.69 emu/g at 300 K. - Abstract: Superparamagnetic Fe{sub 3}O{sub 4} nanoparticles have been successfully synthesized under hydrothermal condition with the assistant of ionic liquid 1-hexadecyl-3-methylimidazolium chloride ([C{sub 16}mim]Cl). The structure and morphology of the sample have been investigated by X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), transmission electron microscopy (TEM), and high-resolution TEM (HRTEM), and the results indicate thatmore » the as-synthesized inverse spinel Fe{sub 3}O{sub 4} nanoparticles have an average diameter of about 10 nm and exhibit relatively good dispersity. More importantly, it is found that [C{sub 16}mim]Cl acts as stabilizer for the Fe{sub 3}O{sub 4} nanoparticles by adsorbing on the particles surfaces to prevent the agglomeration. In addition, the obtained superparamagnetic Fe{sub 3}O{sub 4} nanoparticles have a saturation magnetization of 67.69 emu/g at 300 K.« less

  17. Excellent temperature performance of spherical LiFePO4/C composites modified with composite carbon and metal oxides.

    PubMed

    Zhang, Bao; Zeng, Tao; Zhang, Jiafeng; Peng, Chunli; Zheng, Junchao; Chen, Guomin

    2014-01-01

    Nanosized spherical LiFePO4/C composite was synthesized from nanosized spherical FePO4 ·2H2O, Li2C2O4, aluminum oxide, titanium oxide, oxalic acid, and sucrose by binary sintering process. The phases and morphologies of LiFePO4/C were characterized using SEM, TEM, CV, EIS, EDS, and EDX as well as charging and discharging measurements. The results showed that the as-prepared LiFePO4/C composite with good conductive webs from nanosized spherical FePO4 ·2H2O exhibits excellent electrochemical performances, delivering an initial discharge capacity of 161.7 mAh·g(-1) at a 0.1 C rate, 152.4 mAh·g(-1) at a 1 C rate and 131.7 mAh·g(-1) at a 5 C rate, and the capacity retention of 99.1%, 98.7%, and 95.8%, respectively, after 50 cycles. Meanwhile, the high and low temperature performance is excellent for 18650 battery, maintaining capacity retention of 101.7%, 95.0%, 88.3%, and 79.3% at 55°C, 0°C, -10°C, and -20°C by comparison withthat of room temperature (25°C) at the 0.5 C rate over a voltage range of 2.2 V to 3.6 V, respectively.

  18. Yolk–shell Fe 2O 3 ⊙ C composites anchored on MWNTs with enhanced lithium and sodium storage

    DOE PAGES

    Zhao, Yi; Feng, Zhenxing; Xu, Zhichuan J.

    2015-04-24

    For this research, a unique architecture with yolk–shell Fe 2O 3 ⊙ C composites attached to the surface of MWNTs is designed. Benefiting from the good electrical conductivity of MWNTs and carbon layers, as well as the large void space to accommodate the volume expansion/extraction of Fe 2O 3 during battery cycling, the obtained MWNT@Fe 2O 3 ⊙ C exhibited outstanding lithium and sodium storage performance.

  19. Metallic State FeS Anchored (Fe)/Fe3O4/N-Doped Graphitic Carbon with Porous Spongelike Structure as Durable Catalysts for Enhancing Bioelectricity Generation.

    PubMed

    Xu, Xin; Dai, Ying; Yu, Jia; Hao, Liang; Duan, Yaqiang; Sun, Ye; Zhang, Yanhong; Lin, Yuhui; Zou, Jinlong

    2017-03-29

    The critical issues in practical application of microbial fuel cells (MFCs) for wastewater treatment are the high cost and poor activity and durability of precious metal catalysts. To alleviate the activity loss and kinetic barriers for oxygen reduction reaction (ORR) on cathode, (Fe)/Fe 3 O 4 /FeS/N-doped graphitic carbon ((Fe)/Fe 3 O 4 /FeS/NGC) is prepared as ORR catalyst through a one-step method using waste pomelo skins as carbon source. Various characterization techniques and electrochemical analyses are conducted to illustrate the correlation between structural characteristics and catalytic activity. MFCs with Fe/Fe 3 O 4 /FeS/NGC (900 °C) cathode produces the maximum power density of 930 ± 10 mW m -2 (Pt/C of 489 mW m -2 ) and maintains a good long-term durability, which only declines 18% after 90 day operation. Coulombic efficiency (22.2%) obtained by Fe/Fe 3 O 4 /FeS/NGC (900 °C) cathode is significantly higher than that of Pt/C (17.3%). Metallic state FeS anchored in porous NGC skeleton can boost electron transport through the interconnected channels in spongelike structure to improve catalytic activity. Charge delocalization of C atoms can be strengthened by N atoms incorporation into carbon skeleton, which correspondingly contributes to the O 2 chemisorptions and O-O bond weakening during ORR. Energetically existed active components (Fe and N species) are more efficient than Pt to trap and consume electrons in catalyzing ORR in wastewater containing Pt-poisoning substances (bacterial metabolites). (Fe)/Fe 3 O 4 /FeS/NGC catalysts with the advantages of durable power outputs and environmental-friendly raw material can cover the shortages of Pt/C and provide an outlook for further applications of these catalysts.

  20. Heterostructured ZnFe2O4/Fe2TiO5/TiO2 Composite Nanotube Arrays with an Improved Photocatalysis Degradation Efficiency Under Simulated Sunlight Irradiation

    NASA Astrophysics Data System (ADS)

    Xiong, Kun; Wang, Kunzhou; Chen, Lin; Wang, Xinqing; Fan, Qingbo; Courtois, Jérémie; Liu, Yuliang; Tuo, Xianguo; Yan, Minhao

    2018-03-01

    To improve the visible light absorption and photocatalytic activity of titanium dioxide nanotube arrays (TONTAs), ZnFe2O4 (ZFO) nanocrystals were perfused into pristine TONTA pipelines using a novel bias voltage-assisted perfusion method. ZFO nanocrystals were well anchored on the inner walls of the pristine TONTAs when the ZFO suspensions (0.025 mg mL-1) were kept under a 60 V bias voltage for 1 h. After annealing at 750 °C for 2 h, the heterostructured ZFO/Fe2TiO5 (FTO)/TiO2 composite nanotube arrays were successfully obtained. Furthermore, Fe3+ was reduced to Fe2+ when solid solution reactions occurred at the interface of ZFO and the pristine TONTAs. Introducing ZFO significantly enhanced the visible light absorption of the ZFO/FTO/TONTAs relative to that of the annealed TONTAs. The coexistence of type I and staggered type II band alignment in the ZFO/FTO/TONTAs facilitated the separation of photogenerated electrons and holes, thereby improving the efficiency of the ZFO/FTO/TONTAs for photocatalytic degradation of methylene blue when irradiated with simulated sunlight. [Figure not available: see fulltext.

  1. Magnetic epoxy nanocomposites reinforced with hierarchical α-Fe2O3 nanoflowers: a study of mechanical properties

    NASA Astrophysics Data System (ADS)

    Balguri, Praveen Kumar; Harris Samuel, D. G.; Thumu, Udayabhaskararao

    2017-09-01

    In this work, we presented the potentiality of monodispersed 3D hierarchical α-Fe2O3 nanoflowers (α-Fe2O3) as reinforcement for epoxy polymer. α-Fe2O3 are synthesized through the thermal decomposition of iron alkoxide precursor in ethylene glycol. α-Fe2O3/epoxy nanocomposites (0.1 wt% of α-Fe2O3) show 109%, 59%, 13%, and 15% enhancement in impact (un-notched), impact (notched), flexural and tensile properties, respectively. The uniformly embedded α- Fe2O3 nanoflowers in epoxy polymer not only provide mechanical strength but also induced magnetic nature to the nanocomposite as observed from the Scanning electron microscopy and vibrating sample magnetometer.

  2. Design and syntheses of hybrid metal-organic materials based on K3[M(C2O4)33H2O [M(III)=Fe, Al, Cr] metallotectons

    NASA Astrophysics Data System (ADS)

    Sun, Yayong; Zong, Yingxia; Ma, Haoran; Zhang, Ao; Liu, Kang; Wang, Debao; Wang, Wenqiang; Wang, Lei

    2016-05-01

    By using K3[M(C2O4)33H2O [M(III)=Fe, Al, Cr] (C2O42-=oxalate) metallotectons as the starting material, we have synthesized eight novel complexes with formulas [{Fe(C2O4)2(H2O)2}2]·(H-L1)2·H2O 1, [Fe(C2O4)Cl2]·(H2-L2)0.5·(L2)0.5·H2O 2, [{Fe(C2O4)1.5Cl2}2]·(H-L3)43, [Fe2(C2O4)Cl8]·(H2-L4)2·2H2O 4, K[Al(C2O4)3]·(H2-L5)·2H2O 5, K[Al(C2O4)3]·(H-L6)2·2H2O 6, K[Cr(C2O4)3]·2H2O 7, Na[Fe(C2O4)3]·(H-L6)2·2H2O 8 (with L1=4-dimethylaminopyridine, L2=2,3,5,6-tetramethylpyrazine, L3=2-aminobenzimidazole, L4=1,4-bis-(1H-imidazol-1-yl)benzene, L5=1,4-bis((2-methylimidazol-1-yl)methyl)benzene, L6=2-methylbenzimidazole). Their structures have been determined by single-crystal X-ray diffraction analyses, elemental analyses, IR spectra and thermogravimetric analyses. Compound 3 is a 2D H-bonded supramolecular architecture. Others are 3D supramolecular structures. Compound 1 shows a [Fe(C2O4)2(H2O)2]- unit and 3D antionic H-bonded framework. Compound 2 features a [Fe(C2O4)Cl2]- anion and 1D iron-oxalate-iron chain. Compound 3 features a [Fe2(C2O4)3Cl4]4- unit. Compound 4 features distinct [Fe2(C2O4)Cl8]4- units, which are mutual linked by water molecules to generated a 2D H-bonded network. Compound 5 features infinite ladder-like chains constructed by [Al(C2O4)3]3- units and K+ cations. The 1D chains are further extended into 3D antionic H-bonded framework through O-H···O H-bonds. Compounds 6-8 show 2D [KAl(C2O4)3]2- layer, [KCr(C2O4)3]2- layer and [NaFe(C2O4)3]2- layer, respectively.

  3. Functionalized graphene oxide/Fe3O4 hybrids for cellular magnetic resonance imaging and fluorescence labeling.

    PubMed

    Zhou, Chaohui; Wu, Hui; Wang, Mingliang; Huang, Chusen; Yang, Dapeng; Jia, Nengqin

    2017-09-01

    In this work, we developed a T 2 -weighted contrast agent based on graphene oxide (GO)/Fe 3 O 4 hybrids for efficient cellular magnetic resonance imaging (MRI). The GO/Fe 3 O 4 hybrids were obtained by combining with co-precipitation method and pyrolysis method. The structural, surface and magnetic characteristics of the hybrids were systematically characterized by transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), AFM, Raman, FT-IR and XRD. The GO/Fe 3 O 4 hybrids were functionalized by modifying with anionic and cationic polyelectrolyte through layer-by-layer assembling. The fluorescence probe fluorescein isothiocyanate (FITC) was further loaded on the surface of functionalized GO/Fe 3 O 4 hybrids to trace the location of GO/Fe 3 O 4 hybrids in cells. Functionalized GO/Fe 3 O 4 hybrids possess good hydrophilicity, less cytotoxicity, high MRI enhancement with the relaxivity (r 2 ) of 493mM -1 s -1 as well as cellular MRI contrast effect. These obtained results indicated that the functionalized GO/Fe 3 O 4 hybrids could have great potential to be utilized as cellular MRI contrast agents for tumor early diagnosis and monitoring. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Sintering of (Ni,Mg)(Al,Fe)2O4 Materials and their Corrosion Process in Na3AlF6-AlF3-K3AlF6 Electrolyte

    NASA Astrophysics Data System (ADS)

    Xu, Yibiao; Li, Yawei; Yang, Jianhong; Sang, Shaobai; Wang, Qinghu

    2017-06-01

    The application of ledge-free sidewalls in the Hall-Héroult cells can potentially reduce the energy requirement of aluminum production by about 30 pct (Nightingale et al. in J Eur Ceram, 33:2761-2765, 2013). However, this approach poses great material challenges since such sidewalls are in direct contact with corrosive electrolyte. In the present paper, (Ni,Mg)(Al,Fe)2O4 materials were prepared using fused magnesia, reactive alumina, nickel oxide, and iron oxide powders as the starting materials. The sintering behaviors of specimens as well as their corrosion resistance to molten electrolyte have been investigated by means of X-ray diffraction and scanning electron microscope. The results show that after firing at temperature ranging from 1673 K (1400 °C) up to 1873 K (1600 °C), all the specimens prepared are composed of single-phase (Ni,Mg)(Al,Fe)2O4 composite spinel, the lattice parameter of which increases with increasing Fe3+ ion concentration. Increasing the iron oxide content enhances densification of the specimens, which is accompanied by the formation of homogeneously distributed smaller pores in the matrix. The corrosion tests show that corrosion layers consist of fluoride and Ni(Al,Fe)2O4 composite spinel grains are produced in specimens with Fe/Al mole ratio no more than 1, whereas dense Ni(Al,Fe)2O4 composite spinel layers are formed on the surface of the specimens with Fe/Al mole ratio more than 1. The dense Ni(Al,Fe)2O4 composite spinel layers formed improve the corrosion resistance of the specimens by inhibiting the infiltration of electrolyte and hindering the chemical reaction between the specimen and electrolyte.

  5. Contribution of Fe3O4 nanoparticles to the fouling of ultrafiltration with coagulation pre-treatment

    PubMed Central

    Yu, Wenzheng; Xu, Lei; Graham, Nigel; Qu, Jiuhui

    2015-01-01

    A coagulation (FeCl3)-ultrafiltration process was used to treat two different raw waters with/without the presence of Fe3O4 nanoparticle contaminants. The existence of Fe3O4 nanoparticles in the raw water was found to increase both irreversible and reversible membrane fouling. The trans-membrane pressure (TMP) increase was similar in the early stages of the membrane runs for both raw waters, while it increased rapidly after about 15 days in the raw water with Fe3O4 nanoparticles, suggesting the involvement of biological effects. Enhanced microbial activity with the presence of Fe3O4 nanoparticles was evident from the measured concentrations of extracellular polymeric substances (EPS) and deoxyribonucleic acid (DNA), and fluorescence intensities. It is speculated that Fe3O4 nanoparticles accumulated in the cake layer and increased bacterial growth. Associated with the bacterial growth is the production of EPS which enhances the bonding with, and between, the coagulant flocs; EPS together with smaller sizes of the nano-scale primary particles of the Fe3O4-CUF cake layer, led to the formation of a lower porosity, more resilient cake layer and membrane pore blockage. PMID:26268589

  6. The MIL-88A-Derived Fe3O4-Carbon Hierarchical Nanocomposites for Electrochemical Sensing

    PubMed Central

    Wang, Li; Zhang, Yayun; Li, Xia; Xie, Yingzhen; He, Juan; Yu, Jie; Song, Yonghai

    2015-01-01

    Metal or metal oxides/carbon nanocomposites with hierarchical superstructures have become one of the most promising functional materials in sensor, catalysis, energy conversion, etc. In this work, novel hierarchical Fe3O4/carbon superstructures have been fabricated based on metal-organic frameworks (MOFs)-derived method. Three kinds of Fe-MOFs (MIL-88A) with different morphologies were prepared beforehand as templates, and then pyrolyzed to fabricate the corresponding novel hierarchical Fe3O4/carbon superstructures. The systematic studies on the thermal decomposition process of the three kinds of MIL-88A and the effect of template morphology on the products were carried out in detail. Scanning electron microscopy, transmission electron microscopy, X-ray powder diffraction, X-ray photoelectron spectroscopy and thermal analysis were employed to investigate the hierarchical Fe3O4/carbon superstructures. Based on these resulted hierarchical Fe3O4/carbon superstructures, a novel and sensitive nonenzymatic N-acetyl cysteine sensor was developed. The porous and hierarchical superstructures and large surface area of the as-formed Fe3O4/carbon superstructures eventually contributed to the good electrocatalytic activity of the prepared sensor towards the oxidation of N-acetyl cysteine. The proposed preparation method of the hierarchical Fe3O4/carbon superstructures is simple, efficient, cheap and easy to mass production. It might open up a new way for hierarchical superstructures preparation. PMID:26387535

  7. Distinctive uniaxial magnetic anisotropy and positive magnetoresistance in (110)-oriented Fe3O4 films

    NASA Astrophysics Data System (ADS)

    Dho, Joonghoe; Kim, Byeong-geon; Ki, Sanghoon

    2015-04-01

    Magnetite (Fe3O4) films were synthesized on (110)-oriented MgO, MgAl2O4, and SrTiO3 substrates for comparative studies of the substrates' effects on magnetic and magnetoresistance properties of the films. For the [-110] direction, the hysteresis loops of the Fe3O4 film on MgAl2O4 exhibited a good squareness with the largest coercivity of ˜1090 Oe, and the ratio of remanent magnetization to saturation magnetization was ˜0.995. For the [001] direction, positive magnetoresistance in weak magnetic fields was most distinct for the (110) SrTiO3 substrate with the largest lattice mismatch. Positive magnetoresistance in the (110) Fe3O4 films was presumably affected by imperfect atomic arrangements at anti-phase boundaries.

  8. Green synthesis of soya bean sprouts-mediated superparamagnetic Fe 3O 4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Cai, Yan; Shen, Yuhua; Xie, Anjian; Li, Shikuo; Wang, Xiufang

    2010-10-01

    Superparamagnetic Fe 3O 4 nanoparticles were first synthesized via soya bean sprouts (SBS) templates under ambient temperature and normal atmosphere. The reaction process was simple, eco-friendly, and convenient to handle. The morphology and crystalline phase of the nanoparticles were determined from scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and X-ray diffraction (XRD) spectra. The effect of SBS template on the formation of Fe 3O 4 nanoparticles was investigated using X-ray photoemission spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR). The results indicate that spherical Fe 3O 4 nanoparticles with an average diameter of 8 nm simultaneously formed on the epidermal surface and the interior stem wall of SBS. The SBS are responsible for size and morphology control during the whole formation of Fe 3O 4 nanoparticles. In addition, the superconducting quantum interference device (SQUID) results indicate the products are superparamagnetic at room temperature, with blocking temperature ( TB) of 150 K and saturation magnetization of 37.1 emu/g.

  9. Efficient removal of arsenite through photocatalytic oxidation and adsorption by ZrO2-Fe3O4 magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Sun, Tianyi; Zhao, Zhiwei; Liang, Zhijie; Liu, Jie; Shi, Wenxin; Cui, Fuyi

    2017-09-01

    Bifunctional ZrO2-Fe3O4 magnetic nanoparticles were synthesized and characterized, to remove As(III) through photocatalyic oxidation and adsorption. With a saturation magnetization of 27.39 emu/g, ZrO2-Fe3O4 nanoparticles with size of 10-30 nm could be easily separated from solutions with a simple magnetic process. Under UV light, As(III) could be completely oxidized to less toxic As(V) by ZrO2-Fe3O4 nanoparticles within 40 min in the photocatalytic reaction. Simultaneously, As(V) could be adsorbed onto the surface of nanoparticles with high efficiency. The adsorption of As(V) was well fitted by the pseudo-second-order model and the Freundlich isotherm model, respectively, and the maximum adsorption capacities of the nanoparticles was 133.48 mg/g at pH 7.0. As(III) could be effectively removed by ZrO2-Fe3O4 nanoparticles at initial pH range from 4 to 8. Among all the common coexisting ions investigated, except for chloride and sulfate, carbonate, silicate and phosphate decreased the As(III) removal by competing with arsenic species for adsorption sites. The synthesized magnetic ZrO2-Fe3O4 combined the photocatalytic oxidation property of ZrO2 and the high adsorption capacity of both ZrO2 and Fe3O4, which make it have significant potential applications in the As(III)-contaminated water treatment.

  10. An eco-friendly route of γ-Fe2O3 nanoparticles formation and investigation of the mechanical properties of the HPMC-γ-Fe2O3 nanocomposites.

    PubMed

    Sarkar, Joy; Mollick, Md Masud Rahaman; Chattopadhyay, Dipankar; Acharya, Krishnendu

    2017-03-01

    In recent times, biosynthetic approaches toward the synthesis of nanoparticles have been shown to have several advantages over physical and chemical methods. Here, we report the extracellular mycosynthesis of γ-Fe 2 O 3 nanoparticles by Alternaria alternata. The fungal biomass when exposed to aqueous iron(III) chloride solution led to the formation of highly stable γ-Fe 2 O 3 nanoparticles extracellularly. The influence of these biosynthesized γ-Fe 2 O 3 nanoparticles on the properties of hydroxyl propyl methyl cellulose was also investigated. Characterization of the biosynthesized γ-Fe 2 O 3 nanoparticles and HPMC-γ-Fe 2 O 3 nanocomposite films were done by the different types of spectral and electron microscopic analysis. The size of the γ-Fe 2 O 3 nanoparticles ranges from 75 to 650 nm. The mechanical effect of the agglomerated γ-Fe 2 O 3 nanoparticles into the HPMC polymer matrix was also investigated.

  11. Micro-optical coherence tomography tracking of magnetic gene transfection via Au-Fe3O4 dumbbell nanoparticles

    NASA Astrophysics Data System (ADS)

    Shi, Wei; Liu, Xinyu; Wei, Chao; Xu, Zhichuan J.; Sim, Stanley Siong Wei; Liu, Linbo; Xu, Chenjie

    2015-10-01

    Heterogeneous Au-Fe3O4 dumbbell nanoparticles (NPs) are composed of Au NPs and Fe3O4 NPs that bring in optical and magnetic properties respectively. This article reports the engineering of Au-Fe3O4 NPs as gene carriers for magnetic gene transfection as well as contrast agents for micro-optical coherence tomography (μOCT). As a proof-of-concept, Au-Fe3O4 NPs are used to deliver the green fluorescent protein to HEK 293T cells and their entrance into the cells is monitored through μOCT.Heterogeneous Au-Fe3O4 dumbbell nanoparticles (NPs) are composed of Au NPs and Fe3O4 NPs that bring in optical and magnetic properties respectively. This article reports the engineering of Au-Fe3O4 NPs as gene carriers for magnetic gene transfection as well as contrast agents for micro-optical coherence tomography (μOCT). As a proof-of-concept, Au-Fe3O4 NPs are used to deliver the green fluorescent protein to HEK 293T cells and their entrance into the cells is monitored through μOCT. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05459a

  12. Magnetic activated carbon-Fe3O4 nanocomposites--synthesis and applications in the removal of acid yellow dye 17 from water.

    PubMed

    Ranjithkumar, V; Hazeen, A Nizarul; Thamilselvan, M; Vairam, S

    2014-07-01

    In this work, synthesis of activated carbon-Fe3O4 composites using activated carbon and iron benzoate/oxalate precursors by simple pyrolytic method and its utility for the removal of acid yellow dye from water are presented. Iron carboxylates held up into the pores of carbon dissociate at their decomposition temperatures form dispersed Fe3O4 nanoparticles in carbon matrix. The composites were characterized by FTIR, PXRD, SEM, TEM, EDX and magnetization measurements. The size of the nano iron oxides are in the range of 21-33 nm formed from iron benzoate precursor and 6-11 nm from iron oxalate precursor. The oxides are magnetic and their saturation magnetization in the range of 0.08-0.16 emu/g and Coercivity (H(c)) 474-600, being lower and higher than that of bare bulk Fe3O4 are due to the nano size of oxides. Composites find application in the removal of acid yellow dye 17 from the synthetic aqueous solution at pH 5. The adsorption data are found to fit well for Langmuir adsorption isotherm. Kinetics data of adsorption of dyes indicate that the adsorption follows pseudo-second order kinetic model.

  13. OPTICAL AND SPECTROSCOPIC STUDIES OF Fe2O3-Bi2O3-B2O3:V2O5 GLASSES

    NASA Astrophysics Data System (ADS)

    Sanjay; Kishore, N.; Agarwal, A.; Dahiya, S.; Pal, Inder; Kumar, Navin

    2013-11-01

    The glasses of compositions xFe2O3ṡ (40 - x)Bi2O3ṡ60B2O3ṡ2V2O5 have been prepared by the standard melt-quenching technique. Amorphous nature of these samples is ascertained by XRD patterns. The presence of BO3 and BO4 units is identified by IR spectra of glass samples. The absorption edge (λcut-off) shifts toward longer wavelengths with an increase in Fe2O3 content in the glass matrix. The values of optical band gap energy for indirect allowed and forbidden transitions have been determined and it is found to decrease with increase in transition metal ions. The Urbach's energy is used to characterize the degree of disorder in amorphous solids.

  14. Fe(0)-Fe3O4 nanocomposites embedded polyvinyl alcohol/sodium alginate beads for chromium (VI) removal.

    PubMed

    Lv, Xiaoshu; Jiang, Guangming; Xue, Xiaoqin; Wu, Donglei; Sheng, Tiantian; Sun, Chen; Xu, Xinhua

    2013-11-15

    In this study, Fe(0)-Fe3O4 nanocomposites embedded polyvinyl alcohol (PVA)/sodium alginate (SA) beads were synthesized, which exhibited an excellent physical properties and catalytic reactivity, and a robust performance of post-separation (complete separation using a simple grille) and reusability (efficiency of 69.8% after four runs) in Cr(VI) removal. 5.0 wt% PVA with 1.5 wt% SA was the optimal proportion for beads molding, and the followed acidification and reduction treatments were critical to ensure high mechanical strength and high Cr(VI) removal ability of beads. Effects of Fe(0) and Fe3O4 mass fraction, initial pH and Cr(VI) concentration on final removal efficiency were also evaluated. Merely 0.075 wt% Fe(0) together with 0.30 wt% Fe3O4 was sufficient to deal with 20 mg L(-1) Cr(VI) solution. The efficiency decreased from 100 to 79.5% as initial Cr(VI) increased from 5 to 40 mg L(-1), while from 99.3 to 76.3% with increasing pH from 3.0 to 11.0. This work provides a practical and high-efficient method for heavy metal removal from water body, and simultaneously solves the problems in stabilization, separation and regeneration of Fe(0) nanoparticles. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Growth, and magnetic study of Sm0.4Er0.6FeO3 single crystal grown by optical floating zone technique

    NASA Astrophysics Data System (ADS)

    Wu, Anhua; Zhao, Xiangyang; Man, Peiwen; Su, Liangbi; Kalashnikova, A. M.; Pisarev, R. V.

    2018-03-01

    Sm0.4Er0.6FeO3 single crystals were successfully grown by optical floating zone method; high quality samples with various orientations were manufactured. Based on these samples, Magnetic property of Sm0.4Er0.6FeO3 single crystals were investigated systemically by means of the temperature dependence of magnetization. It indicated that compositional variations not only alter the spin reorientation temperature, but also the compensation temperature of the orthoferrites. Unlike single rare earth orthoferrites, the reversal transition temperature point of Sm0.4Er0.6FeO3 increases as magnetic field increases, which is positive for designing novel spin switching or magnetic sensor device.

  16. Studies on hydrothermal synthesis of photolumniscent rare earth (Eu3+ & Tb3+) doped NG@FeMoO4 for enhanced visible light photodegradation of methylene blue dye

    NASA Astrophysics Data System (ADS)

    Singh, R.; Kumar, M.; Khajuria, H.; Sharma, S.; Sheikh, H. Nawaz

    2018-02-01

    FeMoO4 nanorods and their rare earth (Eu3+ and Tb3+) doped composites with nitrogen doped graphene (NG) were synthesized by facile hydrothermal method in aqueous medium. X-ray diffraction (XRD) analysis of the as-synthesized samples was done to study the phase purity and crystalline nature. FTIR and Raman Spectroscopy have been studied for investigating the bonding in nanostructures. The surface morphology of the samples was investigated with field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The photolumniscent nature of the samples was investigated by the using the fluorescence spectrophotometer. The photocatalytic degradation efficiency of the prepared pure FeMoO4 and its rare earth doped composites with nitrogen doped graphene was evaluated as function of visible light irradiation versus concentration of methylene blue (MB dye). The prepared nanocomposites show enhanced photocatalytic efficiency as compared to the bare FeMoO4 nanorods.

  17. Bizarre dielectric anomalies in magnetoelectric composites of CoFe2O4 and BaTi0.9Zr0.1O3

    NASA Astrophysics Data System (ADS)

    Mathur, Shubhra; Srivastava, Subodh; Surve, Sachin; Wadhwani, Kiran; Singh Rajaura, Rajveer; Dolia, S. N.

    2017-12-01

    The magnetoelectric (ME) composites containing cobalt ferrite as the magnetic phase and Zr substituted (10 atomic % occupancy) barium titanate as the ferroelectric counterpart having the general formula (x) CoFe2O4  +  (1  -  x) BaTi0.9Zr0.1O3 (where x  =  0, 0.25, 0.50, 0.75 and 1) have been synthesised by the conventional solid state diffusion route. Powder x-ray diffraction of thus prepared materials confirms the presence of ferrite and ferroelectric phases and their concurrent existence in all three composites without showing traces of any superfluous phase. Dielectric measurements have been recorded as a function of frequency (ranging from 100 Hz to 1 MHz) at room temperature and temperature (from 325 K up to a maximum of 825 K). In composites, relative permittivity and loss tangent curves with variable temperature show upsurge of bizarre anomalies which can be associated to the defect modes existing in the form of oxygen ion vacancies rather than ascribing it to the benchmark ferro to paraeletric transition.

  18. Magnetically Separable Fe2O3/g-C3N4 Nanocomposites with Cocoon-Like Shape: Magnetic Properties and Photocatalytic Activities

    NASA Astrophysics Data System (ADS)

    Yu, Xiaojia; Yang, Xiaoyu; Li, Guang

    2018-01-01

    We report magnetically separable Fe2O3/g-C3N4 nanocomposites as a photocatalyst under visible-light irradiation in this study. The Fe2O3/g-C3N4 nanocomposites were synthesized through a two-step hydrothermal method. The Fe2O3 with cocoon-like shape was obviously dispersed on the surface of g-C3N4 with porous and layered nanostructure as seen from micrographs of the particles. Furthermore, the magnetic conversion of the samples was studied via vibrating sample magnetometer technology. It was found that the saturated magnetization Ms of the Fe2O3/g-C3N4 nanoparticles obviously decreased in the presence of g-C3N4, and the photocatalytic activity of the samples investigated by degrading Rhodamine B suggested that the Fe2O3/g-C3N4 photocatalyst was prior to the pure Fe2O3 and g-C3N4 samples. In addition, the magnetically separable ability of Fe2O3/g-C3N4 nanocomposites was efficiently exhibited by an external magnet.

  19. Dependence of catalytic properties of Al/Fe{sub 2}O{sub 3} thermites on morphology of Fe{sub 2}O{sub 3} particles in combustion reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Ningning; He, Cuicui; Liu, Jianbing

    2014-11-15

    Three Fe{sub 2}O{sub 3} particle samples with the same crystal structure but different morphologies were prepared by the hydrothermal method and then combined with Al nanoparticles to produce Al/Fe{sub 2}O{sub 3} thermites using ultrasonic mixing. The properties of Fe{sub 2}O{sub 3} and Al/Fe{sub 2}O{sub 3} were studied using a combination of experimental techniques including scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC). The influences of the three Al/Fe{sub 2}O{sub 3} thermites on the combustion properties of the AP/HTPB (ammonium perchlorate/hydroxyl-terminated polybutadiene) composite propellant were investigated in comparisonmore » to those of Fe{sub 2}O{sub 3}. The results show that the Al/Fe{sub 2}O{sub 3} thermites are better than Fe{sub 2}O{sub 3} in enhancing the combustion performance of AP/HTPB. Furthermore, the surface area, which depends on size and mophology, of Fe{sub 2}O{sub 3} particles was found to play a vital role in improving the burning rate of the thermites-containing propellant formulation, with the smallest particles with the largest surface-to-volume (S/V) ratio performing the best. The enhanced catalytic property of the granular-shape Fe{sub 2}O{sub 3} and the corresponding thermite is attributed to the large specific surface area of Fe{sub 2}O{sub 3}. The different thermal behaviors of these three superthemites were supposed to be attributed to the surface site of Fe{sub 2}O{sub 3} particles. This work provides a better understanding on the catalytic properties of thermites that are important for combustion applications. - Graphical abstract: Effects of Fe{sub 2}O{sub 3} and Al/Fe{sub 2}O{sub 3} have been compared for the first time by analyzing combustion properties of formulations containing them, suggesting their potential application in AP/HTPB composite propellant systems. - Highlights

  20. MWCNT-MnFe2O4 nanocomposite for efficient hyperthermia applications

    NASA Astrophysics Data System (ADS)

    Seal, Papori; Hazarika, Monalisa; Paul, Nibedita; Borah, J. P.

    2018-04-01

    In this work we present synthesis of multi-walled carbon nanotube (MWCNT)-Manganese ferrite (MnFe2O4) nanocomposite and its probable application in hyperthermia. MnFe2O4 nanoparticles were synthesized by co-precipitation method. X ray diffractogram (XRD) confirms the formation of cubic phase of MnFe2O4 with preferred crystallographic orientation along (311) plane. High resolution electron microscope (HRTEM) image of the composites confirms the presence of MnFe2O4 spherical nanoparticles on the surface of CNT which are bound strongly to the surface. MWCNT-MnFe2O4 nanocomposite were prepared after acid functionalization of MWCNT. Vibrational features of the synthesized samples were confirmed through Fourier transformed infra-red spectroscopy (FTIR). FTIR spectra of acid functionalized MWCNT shows a peak positioned at ˜1620cm-1 which corresponds to C=O functional group of carboxylic acid. Prepared MnFe2O4 nanoparticles and MWCNT-MnFe2O4 nanocomposites were subjected to hyperthermia studies.

  1. Synthesis, characterization and wound healing imitation of Fe3O4 magnetic nanoparticle grafted by natural products

    NASA Astrophysics Data System (ADS)

    Pala, Sravan Kumar

    This research focused on the study of the core-shelled magnetic nanomaterials derived from a colloidal chemistry. The goals are four-fold: (1) synthesis of Fe3O4MNMs using colloidal chemistry. The Fe 3O4 MNMs were then grafted with extracts derived from natural products, namely Olecraceavar italica (broccoli), Boletus edulis (mushroom)and Solanum lycopersicum (tomato);(2)characterization of natural products by chromatography and mass spectrometry;(3) characterization of MNMs to determine their crystallinity, morphological and elemental composition by the state-of-the-art instruments; and (4) biological evaluation using Gram-negative and Gram-positive bacteria. The approach provides advantages to precisely control the composition and homogeneity. The second advantage of the colloidal chemistry is its user friendliness and feasibility. Due to the nature of the natural products, the compatibility of MNM is anticipated to be enhanced.In this chapter, the nanomaterials will be discussed from four perspectives,§1.1 Nanotechnology (§1.1), §1.2 Synthesis of nanomaterials; §1.3 The natural product extract,; §1.4 Characterization of nanomaterials; and §1.5Biological application of nanomaterials.Fig. 1 summarized the overarching goals of this study.

  2. Synthesis, characterization, and antibacterial activities of ZnLaFe2O4/NiTiO3 nanocomposite

    NASA Astrophysics Data System (ADS)

    Sobhani-Nasab, Ali; Zahraei, Zohreh; Akbari, Maryam; Maddahfar, Mahnaz; Hosseinpour-Mashkani, S. Mostafa

    2017-07-01

    In this research, for the first time, ZnLaFe2O4/NiTiO3 nanocomposites have been synthesized through a polyol assistant sol-gel method. To investigate the effect of different surfactants on the morphology and particle size of ZnLaFe2O4 nanostructure, cetrimonium bromide, sodium dodecyl sulfate, polyvinylpyrrolidone, polyvinyl alcohol, and oleic acid were used as surfactant agents. Based on the SEM results, it was found that morphology and particle size of the products could be affected by these surfactants. Furthermore, study on antibacterial effect of ZnLaFe2O4/NiTiO3 nanocomposites by colony forming unit (CFU) reduction assay showed that ZnLaFe2O4/NiTiO3 nanocomposites have antibacterial activity against Gram-negative Escherchia coli (ATCC 10536) and Gram-positive Staphylococcus aureus (ATCC 29737). Antibacterial results demonstrate that nanocomposite significantly reduced the growth rate of E. coli bacteria and S. aureus after 120 min. The structure and morphology of the resulting particles were characterized by XRD, FT-IR, EDX, and SEM analysis.

  3. A New CuO-Fe2 O3 -Mesocarbon Microbeads Conversion Anode in a High-Performance Lithium-Ion Battery with a Li1.35 Ni0.48 Fe0.1 Mn1.72 O4 Spinel Cathode.

    PubMed

    Di Lecce, Daniele; Verrelli, Roberta; Campanella, Daniele; Marangon, Vittorio; Hassoun, Jusef

    2017-04-10

    A ternary CuO-Fe 2 O 3 -mesocarbon microbeads (MCMB) conversion anode was characterized and combined with a high-voltage Li 1.35 Ni 0.48 Fe 0.1 Mn 1.72 O 4 spinel cathode in a lithium-ion battery of relevant performance in terms of cycling stability and rate capability. The CuO-Fe 2 O 3 -MCMB composite was prepared by using high-energy milling, a low-cost pathway that leads to a crystalline structure and homogeneous submicrometrical morphology as revealed by XRD and electron microscopy. The anode reversibly exchanges lithium ions through the conversion reactions of CuO and Fe 2 O 3 and by insertion into the MCMB carbon. Electrochemical tests, including impedance spectroscopy, revealed a conductive electrode/electrolyte interface that enabled the anode to achieve a reversible capacity value higher than 500 mAh g -1 when cycled at a current of 120 mA g -1 . The remarkable stability of the CuO-Fe 2 O 3 -MCMB electrode and the suitable characteristics in terms of delivered capacity and voltage-profile retention allowed its use in an efficient full lithium-ion cell with a high-voltage Li 1.35 Ni 0.48 Fe 0.1 Mn 1.72 O 4 cathode. The cell had a working voltage of 3.6 V and delivered a capacity of 110 mAh g cathode -1 with a Coulombic efficiency above 99 % after 100 cycles at 148 mA g cathode -1 . This relevant performances, rarely achieved by lithium-ion systems that use the conversion reaction, are the result of an excellent cell balance in terms of negative-to-positive ratio, favored by the anode composition and electrochemical features. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Preparation of stable magnetic nanofluids containing Fe3O4@PPy nanoparticles by a novel one-pot route

    PubMed Central

    2011-01-01

    Stable magnetic nanofluids containing Fe3O4@Polypyrrole (PPy) nanoparticles (NPs) were prepared by using a facile and novel method, in which one-pot route was used. FeCl3·6H2O was applied as the iron source, and the oxidizing agent to produce PPy. Trisodium citrate (Na3cit) was used as the reducing reagent to form Fe3O4 NPs. The as-prepared nanofluid can keep long-term stability. The Fe3O4@PPy NPs can still keep dispersing well after the nanofluid has been standing for 1 month and no sedimentation is found. The polymerization reaction of the pyrrole monomers took place with Fe3+ ions as the initiator, in which these Fe3+ ions remained in the solution adsorbed on the surface of the Fe3O4 NPs. Thus, the core-shell NPs of Fe3O4@PPy were obtained. The particle size of the as-prepared Fe3O4@PPy can be easily controlled from 7 to 30 nm by the polymerization reaction of the pyrrole monomers. The steric stabilization and weight of the NPs affect the stability of the nanofluids. The as-prepared Fe3O4@PPy NPs exhibit superparamagnetic behavior. PMID:21711771

  5. Development of new magnetic nanoparticles: Oligochitosan obtained by γ-rays and -coated Fe3O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Le Thi, Thao Nguyen; Nguyen, Thi Hiep; Hoang, Dong Quy; Tran, Tuong, Vi; Nguyen, Ngoc Thuy; Nguyen, Dai Hai

    2017-11-01

    Oligochitosan (OCS) have been utilized as a potential bioactive material for improving food quality and human health. In this study, superparamagnetic iron oxide (Fe3O4) nanoparticles were originally coated with OCS irradiated by gamma rays for their possible biomedical applications. The formation of Fe3O4@OCS was characterized by Fourier transform infrared (FT-IR), X-ray diffraction patterns (XRD), energy dispersive X-ray spectroscopy (EDS) and thermogravimetric analysis (TGA). In addition, the superparamagnetic properties and sizes and morphologies of Fe3O4 and Fe3O4@OCS nanoparticles were demonstrated by vibrating sample magnetometer (VSM) and transmission electron microscopy (TEM), respectively. These results indicated that Fe3O4@OCS nanoparticles still maintained their superparamagnetic properties after polymeric coating, and were nearly spherical in shape with average diameter of 14.4 ± 0.31 nm, compared with 11.8 ± 0.52 nm of bare Fe3O4 nanoparticles, respectively. As a result, Fe3O4@OCS nanoparticles may serve as a promising platform for the development of new magnetic materials, which could be useful for biomedical applications.

  6. Effect of metal cation ratio on chemical properties of ZnFe2O4/AC composite and adsorption of organic contaminant

    NASA Astrophysics Data System (ADS)

    Meilia, Demara; Misbah Khunur, Mochamad; Setianingsih, Tutik

    2018-01-01

    Porous woody char is biochar prepared through pyrolisis. The biochar can be used as adsorbent. In this research, ZnFe2O4/AC composite was synthesized through imregnation of the woody biochar with ZnFe2O4 to study effect of mol ratio of Fe(III) and Zn(II) toward their physicochemistry and adsorption of drug wastewater. Paracetamol was used as adsorbate model. This research was conducted in several steps, including activation of the woody biochar using KOH activator at temperatur 500 °C for 15 min to produce the activated carbon, fungsionalization of the carbon using H2SO4 oxidator (6M) at temperature of 80 °C for 3 h, impregnation of the oxidized activated carbon with Zn-Fe-LDH (Layered Double Hydroxide) at various mol ratio of Fe(III) and Zn(III), including 1:2, 1:3 and 1:4 using NaOH solution (5M) for coprecipitation, and calcination of Zn-Fe-LDH/AC at 950 °C for 5 min to produce ZnFe2O4/AC. FTIR diffraction characterization indicated existence of M-O (M = Zn(II), Fe(III)) and OH functional groups. FTIR spectra showed increasing of bands connected to -OH by increasing of the ratio till the ratio was achieved at 1:4, then decreased again. The ratio mol showed effect on the adsorption of paracetamol. Profile of adsorption value was fit with changing of functional groups. The highest adsorption was achieved at the ratio of 1:4. After calcination it gave the adsorption value of 17,66 mg/g.

  7. A Novel Ionic Polymer Metal ZnO Composite (IPMZC)

    PubMed Central

    Kim, Sang-Mun; Tiwari, Rashi; Kim, Kwang J.

    2011-01-01

    The presented research introduces a new Ionic Polymer-Metal-ZnO Composite (IPMZC) demonstrating photoluminescence (PL)-quenching on mechanical bending or application of an electric field. The newly fabricated IPMZC integrates the optical properties of ZnO and the electroactive nature of Ionic Polymer Metal Composites (IPMC) to enable a non-contact read-out of IPMC response. The electro-mechano-optical response of the IPMZC was measured by observing the PL spectra under mechanical bending and electrical regimes. The working range was measured to be 375–475 nm. It was noted that the PL-quenching increased proportionally with the increase in curvature and applied field at 384 and 468 nm. The maximum quenching of 53.4% was achieved with the membrane curvature of 78.74/m and 3.01% when electric field (12.5 × 103 V/m) is applied. Coating IPMC with crystalline ZnO was observed to improve IPMC transduction. PMID:22163869

  8. Interfacial characteristics and multiferroic properties of ion-doped BiFeO3/NiFe2O4 thin films

    NASA Astrophysics Data System (ADS)

    Guo, Meiyou; Tan, Guoqiang; Zheng, Yujuan; Liu, Wenlong; Ren, Huijun; Xia, Ao

    2017-05-01

    Multi-ion doped BiFeO3/NiFe2O4 bilayered thin films were successfully prepared on fluorine-doped SnO2/glass (SnO2:F) substrates by sol-gel method. The crystalline structure, leakage current, interfacial characteristics, and multiferroic properties were investigated in detail. The results of Rietveld refinement showed that the structure of BSrSFMC layer is transformed from rhombohedral to tetragonal structure by the means of ion-doping. The difference of leakage current density of the BSrSFMC/NiFe2O4 (NFO) bilayered films of the -40 V to 40 V and 40 V to -40 V are 0.32 × 10-5 and 1.13 × 10-5 A/cm2, respectively. It was observed that there are obvious interface effects between BSrSFMC and NFO layers, which will cause the accumulation of space charges and the establishment of built-in internal electric field (EI) at the interface. Therefore, different EI directions will affect the dipoles reversal and migration of carriers in the BSrSFMC layer, which will result in different values of transient current with the same applied voltage in the opposite directions. The larger coercive field (Ec ˜ 750 kV/cm) of BSrSFMC/NFO film indicated that there is a tensile stress at the interface between BSrSFMC and NFO layers, making the polarization difficult. These results showed that the above interesting phenomena of the J-V are closely related to the interface effects between the layer of BiFeO3 and NiFe2O4.

  9. Hierarchical 3D NiFe2O4@MnO2 core-shell nanosheet arrays on Ni foam for high-performance asymmetric supercapacitors.

    PubMed

    Zhang, Xinyang; Zhang, Ziqing; Sun, Shuanggan; Sun, Qiushi; Liu, Xiaoyang

    2018-02-13

    Hierarchical NiFe 2 O 4 @MnO 2 core-shell nanosheet arrays (NSAs) were synthesized on Ni foam as an integrated electrode for supercapacitors, using a facile two-step hydrothermal method followed by calcination treatment. The NiFe 2 O 4 nanosheets were designed as the core and ultrathin MnO 2 nanoflakes as the shell, creating a unique three-dimensional (3D) hierarchical electrode on Ni foam. The composite electrode exhibited remarkable electrochemical performance with a high specific capacitance of 1391 F g -1 at a current density of 2 mA cm -2 and long cycling stability at a high current density of 10 mA cm -2 (only 11.4% loss after 3000 cycles). Additionally, an asymmetric supercapacitor (ASC) device was fabricated with a NiFe 2 O 4 @MnO 2 composite as the positive electrode material and activated carbon (AC) as the negative one. The ASC device exhibited a high energy density (45.2 W h kg -1 ) at a power density of 174 W kg -1 , and an excellent cycling stability over 3000 cycles with 92.5% capacitance retention. The remarkable electrochemical performance demonstrated its great potential as a promising candidate for high-performance supercapacitors.

  10. Synthesis of transparent BaTiO3 nanoparticle/polymer composite film using DC field

    NASA Astrophysics Data System (ADS)

    Kondo, Yusuke; Okumura, Yasuko; Oi, Chifumi; Sakamoto, Wataru; Yogo, Toshinobu

    2008-10-01

    Transparent BaTiO3 nanoparticle/polymer composite films were synthesized from titanium-organic film and barium ion in aqueous solution under direct current (DC) field. Titanium-organic precursor was synthesized from titanium isopropoxide, acetylacetone and methacrylate derivative. The UV treatment was effective to increase the anti-solubility of the titanium-organic film during DC processing. BaTiO3 nanoparticles were crystallized in the precursor films on stainless substrates without high temperature process, as low as 40°C. The crystallite size of BaTiO3 increased with increasing reaction temperature from 40 to 50 °C at 3.0 V/cm. BaTiO3 nanoparticles also grew in size with increasing reaction time from 15 min to 45 min at 3.0 V/cm and 50 °C. Transparent BaTiO3 nanoparticle/polymer films were synthesized on stainless substrates at 3.0 V/cm and 50°C for 45 min.

  11. Synthesis of GO supported Fe2O3-TiO2 nanocomposites for enhanced visible-light photocatalytic applications.

    PubMed

    Jo, Wan-Kuen; Selvam, N Clament Sagaya

    2015-09-28

    This article reports novel ternary composites consisting of Fe2O3 nanorods, TiO2 nanoparticles, and graphene oxide (GO) flakes that provide enhanced photocatalytic performance and stability. Fe2O3 nanorods grow evenly and embed themselves on the agglomerated TiO2/GO surface, which facilitate the formation of heterojunctions for effective migration of charge carriers at the interface of Fe2O3/TiO2 in the ternary composites. The formation of heterostructured Fe2O3-TiO2/GO composites and the effect of GO addition on the photophysical properties of the composites were systematically investigated using various spectroscopic techniques. The photocatalytic performance of Fe2O3 was improved by coupling with TiO2 in the presence of GO, suggesting uncommon electron transfer from the conduction band of Fe2O3 to that of TiO2via GO under visible-light irradiation. An improved charge separation in the composite materials compared with that in bare Fe2O3 was confirmed by drastic fluorescence quenching and stronger absorption in the visible range. The optimum content of GO in the ternary composite was 1.0 wt%, which exhibited enhanced photocatalytic activity. The synergistic effect, heterostructured composite and role of GO, as an electron transporter, in the ternary composites account for the enhanced photocatalytic activity.

  12. Preparation of SiO2-Protecting Metallic Fe Nanoparticle/SiO2 Composite Spheres for Biomedical Application

    PubMed Central

    Hsieh, Pin-Wei; Tseng, Ching-Li; Kuo, Dong-Hau

    2015-01-01

    Functionalized Fe nanoparticles (NPs) have played an important role in biomedical applications. In this study, metallic Fe NPs were deposited on SiO2 spheres to form a Fe/SiO2 composite. To protect the Fe from oxidation, a thin SiO2 layer was coated on the Fe/SiO2 spheres thereafter. The size and morphology of the SiO2@Fe/SiO2 composite spheres were examined by transmission electron microscopy (TEM). The iron form and its content and magnetic properties were examined by X-ray diffraction (XRD), inductively-coupled plasma mass spectrometry (ICP-MS) and a superconducting quantum interference device (SQUID). The biocompatibility of the SiO2@Fe/SiO2 composite spheres was examined by Cell Counting Kit-8 (CCK-8) and lactate dehydrogenase (LDH) tests. The intracellular distribution of the SiO2@Fe/SiO2 composite spheres was observed using TEM. XRD analysis revealed the formation of metallic iron on the surface of the SiO2 spheres. According to the ICP-MS and SQUID results, using 0.375 M FeCl3·6H2O for Fe NPs synthesis resulted in the highest iron content and magnetization of the SiO2@Fe/SiO2 spheres. Using a dye loading experiment, a slow release of a fluorescence dye from SiO2@Fe/SiO2 composite spheres was confirmed. The SiO2@Fe/SiO2 composite spheres co-cultured with L929 cells exhibit biocompatibility at concentrations <16.25 µg/mL. The TEM images show that the SiO2@Fe/SiO2 composite spheres were uptaken into the cytoplasm and retained in the endosome. The above results demonstrate that the SiO2@Fe/SiO2 composite spheres could be used as a multi-functional agent, such as a magnetic resonance imaging (MRI) contrast agent or drug carriers in biomedical applications.

  13. The structural and magnetic investigation of ( x) BiFe0.95Co0.05O3: (1- x) La0.7Ca0.3MnO3 composites

    NASA Astrophysics Data System (ADS)

    Zhang, Hongguang; Fu, Dexiang; Wang, Yang; Xie, Liang; Li, Yongtao; Chen, Wei

    2017-12-01

    The structural and magnetic behaviors are studied in the composites ( x) BiFe0.95Co0.05O3: (1- x) La0.7Ca0.3MnO3. An influence on the lattice parameters and magnetic states of BiFe0.95Co0.05O3 (BFCO) to the La0.7Ca0.3MnO3 (LCMO) are investigated. Although the variation of the relative X-ray intensity of LCMO to BFCO with composition ( x) in XRD patterns and the randomly distributed small nanoparticle of LCMO ( 200 nm) mixed in the large nanoparticle of BFCO ( 900 nm) given by SEM images indicate an almost immiscibility of BFCO and LCMO in composites obtained by solid solution method, an obvious change of lattice parameters indicates their mutual influence on lattice structure. A detail magnetic investigation of the composites shows that the Griffiths phase is increased with increase of composition x due to the incorporation of ferromagnetism of BFCO to the paramagnetic phase of LCMO. An approximate magnetic phase diagram for the composites is established, which would be helpful for understanding the magnetic singularity of the composites with colossal magnetoresistance and multiferroics.

  14. Enhanced photoelectrochemical response of plasmonic Au embedded BiVO4/Fe2O3 heterojunction.

    PubMed

    Verma, Anuradha; Srivastav, Anupam; Khan, Saif A; Rani Satsangi, Vibha; Shrivastav, Rohit; Kumar Avasthi, Devesh; Dass, Sahab

    2017-06-14

    The effect of embedding Au nanoparticles (NPs) in a BiVO 4 /Fe 2 O 3 heterojunction for photoelectrochemical water splitting is studied here for the first time. The present nanostructured heterojunction offers three major advantages over pristine BiVO 4 and Fe 2 O 3 : (i) the formation of a heterojunction between BiVO 4 and Fe 2 O 3 enhances the charge carrier separation and transfer, (ii) the layer of Fe 2 O 3 provides protection to BiVO 4 from photocorrosion and, (iii) the Au NPs possessing surface plasmon resonance (SPR) enhance the photoelectrochemical response by transferring energy to metal oxides by hot electron transfer (HET) and plasmon resonant energy transfer (PRET). The present study reveals that the heterojunction ITO/BiVO 4 /Fe 2 O 3 (with 32% v/v Au solution in both layers) gives the best performance and mitigates the limitations of both pristine Fe 2 O 3 and BiVO 4 . A thirteen-fold increment in applied bias photon-to-current conversion efficiency (ABPE) was observed at 1.24 V vs. RHE under the condition of 1 Sun illumination. Monochromatic incident photon-to-current conversion efficiency (IPCE) measurements indicated that an Au embedded heterojunction is more effective in harvesting visible light in comparison to a heterojunction without Au NPs.

  15. Electrochemical performance of Fe3O4 micro flower as anode for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Noerochim, Lukman; Anggara, Dika; Susanti, Diah; Subhan, Achmad; Sudaryanto

    2018-04-01

    Graphite is generally employed in commercial lithium ion batteries which has a specific capacity of 372 mAh/g. In this study, graphite is replaced with carbon-coated magnetite (Fe3O4/C) which has large theoretical specific capacity of 926 mAh/g, environmental friendly, and low cost production. The synthesis of Fe3O4/C is carried out by hydrothermal method with reacting FeCl3 and hexamethylenetetramine (HMT) at temperature variation of 160, 170 and 180°C. The following process is heated by calcination at temperature variations 450, 500 and 550°C. XRD and SEM results show that the as-prepared Fe3O4/C powder has a single phase of Fe3O4 and morphology micro-flowers like with size between 700 nm - 3 µm. CV test results show redox reaction occurs in the voltage range between 0.21-0.85 V and 1.68-1.81 V. The highest specific discharge capacity is obtained 644 mAh/g for specimen with temperature hydrothermal of 170°C and temperature calcination of 550°C. This result shows that Fe3O4/C has a high potential as anode material for lithium ion battery.

  16. Enhanced spin accumulation in Fe3O4 based spin injection devices below the Verwey transition

    NASA Astrophysics Data System (ADS)

    Bhat, Shwetha G.; Kumar, P. S. Anil

    2016-12-01

    Spin injection into GaAs and Si (both n and p-type) semiconductors using Fe3O4 is achieved with and without a tunnel barrier (MgO) via three-terminal electrical Hanle measurement. Interestingly, the magnitude of spin accumulation voltage (ΔV) in semiconductor is found to be associated with a drastic increment in ΔV in Fe3O4 based devices for temperature <120 K (T V, the Verwey transition). Such an enhancement of ΔV is absent in the devices with Fe as spin source. Further, the overall device resistance has no drastic difference at T V. This renders a direct proof that the observed ΔV is not influenced by the so-called metal-to-insulator transition of Fe3O4 at T V. Observations from our elaborate investigations show that spin polarization of Fe3O4 has an explicit influence on the enhanced spin injection. It is argued that the theoretical prediction of half-metallicity of Fe3O4 above and below T V has to be reinvestigated.

  17. Microstructure and wear resistance of Al2O3-M7C3/Fe composite coatings produced by laser controlled reactive synthesis

    NASA Astrophysics Data System (ADS)

    Tan, Hui; Luo, Zhen; Li, Yang; Yan, Fuyu; Duan, Rui

    2015-05-01

    Based on the principle of thermite reaction of Al and Fe2O3 powders, the Al2O3 ceramic reinforced Fe-based composite coatings were fabricated on a steel substrate by laser controlled reactive synthesis and cladding. The effects of different additions of thermite reactants on the phase transition, microstructure evolution, microhardness and wear resistance of the composite coatings were investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Vickers microhardness and block-on-ring wear test, respectively. The results show that Al2O3 ceramic and M7C3 carbide are in situ synthesized via the laser controlled reactive synthesis. The Al2O3 ceramic and M7C3 carbides prefer to distribute along the γ-Fe phase boundary continuously, which separates the γ-Fe matrix and is beneficial to the grain refinement. With the increase of thermite reactants, the amount of Al2O3 ceramic and M7C3 carbide in the composite coatings increases gradually. Moreover the cladding layer changes from dendritic structure to columnar structure and martensite structure in the heat affected zone becomes coarse. The increased thermite reactants improve the microhardness and wear resistance of the in situ composite coatings obviously and enhance the hardness of the heat affected zone, which should be ascribed to the grain refinement, ceramic and carbide precipitation and solid solution strengthening.

  18. Aloe vera plant-extracted solution hydrothermal synthesis and magnetic properties of magnetite (Fe3O4) nanoparticles

    NASA Astrophysics Data System (ADS)

    Phumying, Santi; Labuayai, Sarawuth; Thomas, Chunpen; Amornkitbamrung, Vittaya; Swatsitang, Ekaphan; Maensiri, Santi

    2013-06-01

    Magnetite (Fe3O4) nanoparticles have been successfully synthesized by a novel hydrothermal method using ferric acetylacetonate (Fe(C5H8O2)3) and aloe vera plant-extracted solution. The influences of different reaction temperatures and times on the structure and magnetic properties of the synthesized Fe3O4 nanoparticles were investigated. The synthesized nanoparticles are crystalline and have particle sizes of ˜6-30 nm, as revealed by transmission electron microscopy (TEM). The results of X-ray diffraction (XRD), High resolution TEM (HRTEM) and selected area electron diffraction (SAED) indicate that the synthesized Fe3O4 nanoparticles have the inverse cubic spinel structure without the presence of any other phase impurities. The hysteresis loops of the Fe3O4 nanoparticles at room temperature show superparamagnetic behavior and the saturation magnetization of the Fe3O4 samples increases with increasing reaction temperature and time.

  19. Mechanisms of spin-flipping and metal-insulator transition in nano-Fe3O4

    NASA Astrophysics Data System (ADS)

    Dito Fauzi, Angga; Aziz Majidi, Muhammad; Rusydi, Andrivo

    2017-04-01

    Fe3O4 is a half-metallic ferrimagnet with {{T}\\text{C}}˜ 860 K exhibiting metal-insulator transition (MIT) at  ˜120 K. In bulk form, the saturation magnetization is 0.6 Tesla (˜471 emu cm-3). A recent experimental study has shown that the saturation magnetization of nano-Fe3O4 thin films can achieve up to  ˜760 emu cm-3, attributed to spin-flipping of Fe ions at tetrahedral sites assisted by oxygen vacancies (V O). Such a system has shown to have higher MIT temperature (˜150 K). The spin-flipping is a new phenomenon in Fe3O4, while the MIT is a long-standing one. Here, we propose a model and calculations to investigate the mechanisms of both phenomena. Our results show that, for the system without V O, the ferrimagnetic configuration is energetically favorable. Remakably, upon inclusion of V O, the ground-state configuration switches into ferromagnetic. As for the MIT, by proposing temperature dependences of some hopping integrals in the model, we demonstrate that the system without and with V O undergo the MIT in slightly different ways, leading to higher MIT temperature for the system with V O, in agreement with the experimental data. Our results also show that the MIT in both systems occur concomitantly with the redistribution of electrons among the three Fe ions in each Fe3O4 formula unit. As such temperature dependences of hopping integrals may arise due to dynamic Jahn-Teller effects, our phenomenological theory may provide a way to reconcile existing theories relating the MIT to the structural transition and the charge ordering.

  20. Study on the Electrochemical Reaction Mechanism of ZnFe2O4 by In Situ Transmission Electron Microscopy

    PubMed Central

    Su, Qingmei; Wang, Shixin; Yao, Libing; Li, Haojie; Du, Gaohui; Ye, Huiqun; Fang, Yunzhang

    2016-01-01

    A family of mixed transition–metal oxides (MTMOs) has great potential for applications as anodes for lithium ion batteries (LIBs). However, the reaction mechanism of MTMOs anodes during lithiation/delithiation is remain unclear. Here, the lithiation/delithiation processes of ZnFe2O4 nanoparticles are observed dynamically using in situ transmission electron microscopy (TEM). Our results suggest that during the first lithiation process the ZnFe2O4 nanoparticles undergo a conversion process and generate a composite structure of 1–3 nm Fe and Zn nanograins within Li2O matrix. During the delithiation process, volume contraction and the conversion of Zn and Fe take place with the disappearance of Li2O, followed by the complete conversion to Fe2O3 and ZnO not the original phase ZnFe2O4. The following cycles are dominated by the full reversible phase conversion between Zn, Fe and ZnO, Fe2O3. The Fe valence evolution during cycles evidenced by electron energy–loss spectroscopy (EELS) techniques also exhibit the reversible conversion between Fe and Fe2O3 after the first lithiation, agreeing well with the in situ TEM results. Such in situ TEM observations provide valuable phenomenological insights into electrochemical reaction of MTMOs, which may help to optimize the composition of anode materials for further improved electrochemical performance. PMID:27306189